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1 Introduction

Within the data mining community there has been a lot of interest in mining
and learning from graphs (see [1] for a recent overview). Most work in this
area has has focussed on finding algorithms that help solve real-world problems.
Although useful and interesting results have been obtained, more fundamental
issues like learnability properties have hardly been adressed yet. This kind of
work also tends not to be grounded in graph grammar theory, even though some
approaches aim at inducing grammars from collections of graphs.

This paper is intended as a step towards an approach that is more theoretically
sound. We present results concerning learnable classes of graph grammars.

2 Graph Grammars

Many approaches to representing graph languages exist, the present paper is
restricted to the popular node label controlled (NLC ) grammars. These consist
of production rules with a non-terminal label at the left-hand side (lhs) of a
rule, and on the right-hand side (rhs) a graph called the daughter graph, and
an embedding relation. The daughter graph has its nodes labelled with both
terminal and non-terminal labels.

Generation of a graph starts with the axiom, a node labelled with the start
non-terminal symbol. Rules from the grammar are applied such that non-terminal
nodes are replaced by daughter graphs, which are connected to the host graph ac-
cording to the embedding relations. The graph language generated by a grammar
consists of all graphs thus obtained that have terminal labels exclusively.

The embedding relation specifies how the daughter graph is connected by
considering just the neighbourhood of the replaced node. For each vertex in the
daughter graph, the embedding relation specifies either ’empty’ or a node label.
All nodes in the neighbourhood with the label will be connected to that vertex.

We assume that all rules in all grammars are productive, i.e., do not contain
useless symbols, and that unit- and ε-productions are absent. We also assume
that every rule contains at least one terminal (cf lexicalized TAG, for example).
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Note that for many classes of graph grammar the generating grammar does
not necessarily function as a parser as well. The reason is that, as part of a
derivation step, the edges incident on the node to be replaced are removed, and
the daughter graph that is inserted is connected in a pre-determined way. In
this setting, there is no way to recover the removed edges. This may however be
required for deciding membership of some given graph.

A number of restricted subclasses of NLC grammars can be found in the
literature, we will focus on Boundary NLC (B -NLC ), which disallows edges
between non-terminal vertices in the rhs. This is the most expressive class of
NLC grammars known for which parsers can effectively be obtained.

The graph language generated by grammar G will be denoted GL(G), the
derivation language generated by grammar G will be denoted DL(G).

Informally speaking, a derivation tree for a graph and graph grammar is a
tree that reflects the generation process from grammar to derived graph, i.e., the
nodes correspond to the applications of rewrite rules. We define them so that
the nodes are labelled with the daughter graphs of their corresponding rules.
The daughters of any node in the tree correspond to the rewritings applied to
the non-terminals in the rhs. The number of daughters is exactly the number of
non-terminals, that is, these rules are considered to all be applied in one step.

In the case of a rule that has no non-terminals in the rhs (a terminal rule), the
corresponding node is a leaf. In the present context, the embedding relations can
be safely ignored, we thus leave these out of the derivation tree representation.

3 Learnability

We are interested in learnability in the technical sense of identification in the
limit ([2]). In this paradigm a class of languages is considered learnable just
if there exists an algorithm over sequences of input data that converges on a
correct hypothesis after a finite number of presentations. It is assumed that all
data is presented eventually. A sufficient condition for a class to be identifiable
in the limit ([3]) is being r.e., consisting of just recursive languages and having
the property of infinite elasticity:

Definition 1. Infinite elasticity[3, 4]
A class L of languages is said to have infinite elasticity if there exists an infinite
sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages in
L such that for all n ∈ N, sn �∈ Ln, and {s0, . . . , sn} ⊆ Ln+1.

A class L of languages is said to have finite elasticity if it does not have
infinite elasticity.

So, one way of proving learnability of a class is demonstrating it has finite elas-
ticity and to extend the class by exploiting a closure property. The following
theorem, from [5], is useful when the relation between language element and
possible derivation is finite-valued. It is generally easier to prove finite elasticity
of a class of derivation languages than of a class of string languages.
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Let Σ and Υ be two alphabets, a relation R ⊆ Σ∗ × Υ ∗ is said to be finite-
valued just if for every s ∈ Σ∗, there are at most finitely many u ∈ Υ ∗ such
that Rsu. If M is a language over Υ , define a language R−1[M ] over Σ by
R−1[M ] = {s | ∃u(Rsu ∧ u ∈ M)}.

Theorem 2. Let M be a class of languages over Υ that has finite elasticity,
and let R ⊆ Σ∗ × Υ ∗ be a finite-valued relation. Then L = {R−1[M ] | M ∈ M}
also has finite elasticity.

In order to obtain learnable subclasses of B -NLC , additional restrictions need
to be imposed. Let k be an upper bound on the number of occurences of any
terminal, and let k-B -NLC denote the class of all B -NLC grammars with k
as such a bound. This bound implies a bound on the number of occurences of
distinct non-terminal parts of daughter graphs. Since we assume a fixed alphabet
and terminals in all rules, a bound on the number of rules in the grammar is
implied, which implies a bound on the number of non-terminals.

Proposition 3. For k = 1, DL(Gk-B-NLC ) has finite elasticity.

Proof. Sketch: Assume that this class has infinite elasticity with trees t1, . . . and
derivation languages D1, . . ., with corresponding grammars G1, . . .. For any i,
the set G′′

i of grammars in the class that generate a minimal derivation language
and are consistent with t1 . . . ti−1 is of finite cardinality. The grammar Gi must
be such that it is a superset of some such grammar, with a substitution applied
to it. There are just a finite number of such substitutions for each G′, so after p
there can only occur a finite number of different grammars. Since ti �∈ DL(Gi)
and {t1, . . . ti−1} ⊆ DL(Gi), each of these grammars can only occur a finite
number of times in the sequence. Thus, the whole sequence G1, . . ., and thus the
whole sequence D1, . . ., must be of finite length. 	


Applying Theorem 2 twice, this result can be generalized to k > 1, and then from
derivation- to graph language. It then follows that For any k, GL(Gk-B-NLC ) is
learnable from positive data (graphs) by a consistent and conservative learner.
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