
Learning Subclasses of Pure Pattern Languages

P.J. Abisha1, D.G. Thomas1, and Sindhu J. Kumaar2

1 Department of Mathematics, Madras Christian College, Chennai - 600 059
2 Department of Mathematics, Crescent Engineering College, Chennai - 600 048

sindhujkumaar@yahoo.co.in

Abstract. Pattern language learning algorithms within the inductive
inference model and query learning setting have been of great interest.
In this paper, we study the problem of learning pure pattern languages
using queries and examples.

1 Introduction

Inductive inference introduced by Gold [6], is a model that treats as an infinite
process, which identifies the unknown concept in the limit. Inferring a pattern
common to all words in a given sample is a typical instance of inductive infer-
ence. Motivated by the study of Angluin [2], a generative device called pattern
grammar is defined by Dassow et al. [5]. In [1], a new generative device called the
pure pattern grammar is defined. We do not specify variables, instead constants
themselves are replaced by axioms initially and the process is continued with the
current set of words to get the associated language. As the study of pattern lan-
guages is motivated by the inference problem and there are algorithms to learn
subclasses of pure languages, it is of interest to analyze the inference problem
for pure pattern languages. Here we give algorithms to learn two subclasses of
the family of pure pattern languages using queries.

2 Pure Pattern Grammars

Definition 1. A pure pattern grammar is a triple G = (Σ, A, P) where Σ is an
alphabet, A ⊆ Σ∗ is a finite set of elements of Σ∗ called axioms and P is a finite
subset of Σ+ called the set of patterns. For a set P and a language L ⊆ Σ∗,
let P (L) be the set of strings obtained by replacing, uniformly and in parallel
each letter of the patterns in P , by strings in L, occurrences of the same letter
of a pattern in a particular step being replaced by the same string. The language
(PPL) generated by G, denoted by L(G), is the smallest L ⊆ Σ∗ for which we
have P ⊆ L, A ⊆ L and P (L) ⊆ L. Here L(G) = P ∪A∪P (A)∪P (P (A))∪

Proposition 1. (i) Any finite set F with at least one word p of length 1 is a
pure pattern language, (ii) The families of pure context free languages (PCF),
context free languages (CFL), regular languages (RL) are incomparable with the
family of pure pattern languages (PPL). The family of pure pattern languages
generated by grammars with a single pattern is strictly included in the family of
deterministic tabled 0L languages.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 280–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Subclasses of Pure Pattern Languages 281

3 Learning a Subclass of PPL

We now give a polynomial time algorithm to learn a subclass of PPL using the
restricted subset queries and restricted superset queries. The inclusion problem
for this class is decidable, as the difference between the pattern languages with
a single pattern over only variables and the pure pattern languages of this class
lies mainly in the patterns. The technique of the algorithm is as follows: First,
the pattern is learnt using restricted superset queries and then the axioms are
learnt using restricted subset queries. We assume that length of the pattern is
known (fixed), say ‘n’ and the length of the longest axioms is known, say ‘m’.
If Σ = {a1, a2, . . . , ak} is the known alphabet of the language to be learnt then
the axiom set A is a subset of all words over Σ of length i, 1 ≤ i ≤ m. The
words in Σn are lexicographically arranged and restricted superset queries for(

Σ,

m⋃
i=0

Σi, pi

)
where pi ∈ Σn are made. If the answer is yes, pi is the pattern

p; otherwise repeat the same procedure for the next word in Σn. Now, to learn
axiom set A, initially fix A = φ. Arrange the words in Σi, i = 0 to m, according to
increasing order of length and among the words of equal length lexicographically.
Let them be w1, w2, . . . , ws. At the tth step, ask the restricted subset query for
(Σ, A∪{wt}, p). If the answer is ‘yes’, increment A to A∪ {wt}. If the answer is
‘no’, A is not incremented. The output at the last step is the required PPG.

Algorithm
Input: An alphabet Σ = {a1, a2, . . . , ak}, m = max{|xi| : xi ∈ A}, n = |p|

Words p1, p2, . . . , pr from Σn arranged lexicographically.
Words w1, w2, . . . , ws are given in the increasing length order, among
words of equal length according to lexicographic order.

Output: G = (Σ, A, p)
begin

for t = 1 to r do
begin

ask restricted superset query for

(
Σ,

m⋃
i=0

Σi, pt

)

If ‘yes’ then output p = pt

else t = t + 1
end

A = φ
for t = 1 to s do
begin

ask restricted subset query for G = (Σ, A ∪ {wt}, p)
If ‘yes’ then A = A ∪ {wt} and t = t + 1

else output G
end

end

282 P.J. Abisha, D.G. Thomas, and S.J. Kumaar

4 Learning Another Subclass of PPL

In the MAT learning [3], the teacher / oracle can answer membership query and
equivalence query. We consider any subclass of PPL for which membership and
equivalence queries are decidable. In addition, we require that, the axiom set
A is a code [4]. However, the PPG need not have only a single pattern. The
algorithm to learn a pure pattern language L(G) from the above subclass works
as follows:

The fixed alphabet Σ of cardinality k and the axiom set A whose cardinality
is greater than or equal to k are the inputs to the algorithm. Let the target PPG
be G = (Σ, A, P). Initially, when j = 0, the pattern set Pj is assumed to be
empty by the algorithm. The learner asks the oracle, first the equivalence query
for L(G) and L(Gj) where Gj = (Σ, A, Pj). We have either L(Gj) ⊂ L(G) or
L(Gj) = L(G). If the answer is positive, we obtain an equivalent grammar Gj

of the target grammar. Otherwise, a positive sample word x ∈ L(G) − L(Gj)
is returned. If x �∈ A+. Then Pj+1 = Pj ∪ {x} and Gj+1 = (Σ, A, Pj+1). If
x ∈ A+, then the learner factorises x over A. It should be noted that this can be
done in linear time by Sardinas-Patterson algorithm [4]. Let x = x1x2x3 . . . xm,
xi ∈ A. The learner finds the minimal prefix of x which belongs to L(G). It
is denoted by min(x) and this is found by asking membership query to the
oracle. Let min(x) = w = x1x2 . . . xr and bagmin(x) = {x′

1x
′
2 . . . x′

s} where x′
j

(1 ≤ j ≤ s) are distinct and {x1, x2, . . . , xr} = {x′
1, x

′
2, . . . , x

′
s}. It should be

noted that the number of distinct elements in bagmin(x) is less than or equal
to number of elements in A. Let {f1, f2, . . . , fn} be the set of all 1-1 morphisms
from bagmin(x) to Σ. There is atmost k! such morphisms (i.e.,) n ≤ k!. The
learner asks membership query for fq(min(x)) (q = 1, 2, . . . , n). If the answer is
positive the learner updates the pattern set Pj to Pj+1 = Pj ∪{fq(min(x))} and
asks the equivalence query for L(G) and L(Gj+1), where Gj+1 = (Σ, A, Pj+1).
This process is repeated until we get a PPG equivalent to G.

References

1. Abisha, P.J., Subramanian, K.G., Thomas, D.G.: Pure Pattern Grammars. In: Pro-
ceedings of International Workshop on Grammar Systems, Austria, pp. 253–262
(2000)

2. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and
System Sciences 21, 46–62 (1980)

3. Angluin, D.: Learning regular sets from queries and counter examples. Information
and Computation 75, 87–106 (1987)

4. Berstel, J., Perrin, D.: The Theory of Codes. Academic Press, New York (1985)
5. Dassow, J., Paun, G., Salomaa, A.: Grammars based on patterns. International

Journal of Foundations of Computer Science 4, 1–14 (1993)
6. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–

474 (1967)

	Learning Subclasses of Pure Pattern Languages
	Introduction
	Pure Pattern Grammars
	Learning a Subclass of PPL
	Learning Another Subclass of PPL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

