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Abstract. Recently Clark and Eyraud (2005, 2007) have shown that
substitutable context-free languages are polynomial-time identifiable in
the limit from positive data. Substitutability in context-free languages
can be thought of as the analogue of reversibility in regular languages.
While reversible languages admit a hierarchy, namely k-reversible regu-
lar languages for each nonnegative integer k, Clark and Eyraud targeted
the subclass of context-free languages that corresponds to zero-reversible
regular languages only. Following Clark and Eyraud’s proposal, this pa-
per introduces a hierarchy of substitutable context-free languages as the
analogue of that of k-reversible regular languages and shows that each
class in the hierarchy is also polynomial-time identifiable in the limit
from positive data.

1 Introduction

Efficient learning of context-free languages is a topical issue on grammatical
inference (see e.g. de la Higuera [12], Lee [18]), but not many techniques are
known to be applicable to identification in the limit from positive data of non-
regular subclasses of context-free languages, in comparison with subclasses of
regular languages (see e.g. Lange et al. [17]). Recently Clark and Eyraud [6, 7]
have shown that substitutable context-free languages are polynomial-time iden-
tifiable in the limit from positive data. Their work is remarkable among other
achievements on learning context-free languages in several regards. One is the ef-
ficiency of the learning algorithm. Their algorithm for substitutable context-free
languages runs in time polynomial in the size of the given data and it admits a
set of positive examples of polynomial cardinality in the description size of the
target grammar on which the conjecture converges to the target language. The
second virtue is that the notion of substitutability can explain an aspect of nat-
ural language phenomena, which meets the very first motivation of grammatical
inference [9]. A language L is said to be substitutable if and only if

x1y1z1, x1y2z1, x2y1z2 ∈ L implies x2y2z2 ∈ L

for any strings x1, y1, z1, x2, y2, z2. From the point of view of formal language
theory, substitutability of context-free languages can be thought of as the ex-
act analogue of zero-reversibility in regular languages. Angluin [1] introduced
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the hierarchy of k-reversible languages for nonnegative integers k and showed
polynomial-time learnability of k-reversible regular languages.1 A language L is
k-reversible if and only if

x1vy1, x1vy2, x2vy1 ∈ L implies x2vy2 ∈ L

where the length of v is k. As the literature has paid much attention to reversible
regular languages and their variants and obtained many fruitful results (e.g., [2,
14,16,15,13,19,21,23]), the close relation of substitutable context-free languages
to reversible regular languages also seems an advantage of their study. In fact
Clark and Eyraud [7] suggested that one may define for context-free languages
the exact analogue of k-reversibility in regular languages and that such classes
would be still polynomial-time identifiable in the limit from positive data. This
paper answers to those expectations in the affirmative. We call a language L
k, l-substitutable if and only if

x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L

where the length of v is k and that of u is l. This paper proves that k, l-
substitutable context-free languages are identifiable in the limit from positive
data by a polynomial-time algorithm that is a natural generalization of Clark
and Eyraud’s one.

2 Definitions

We start by some standard notation, most of which follows Clark and Eyraud [7].
Let Σ be a non-empty finite set. |Σ| denotes its cardinality. If x is a finite sequence
consisting of elements of Σ, it is called a string (over Σ) and |x| denotes its length.
λ is the empty string. Σ∗ denotes the set of all strings over Σ, Σ+ = Σ∗ − {λ},
Σk = { x ∈ Σ∗ | |x| = k }, Σ≤k = { x ∈ Σ∗ | |x| ≤ k } and Σ<k = Σ≤k − Σk.
For x ∈ Σ∗ and a ∈ Σ, |x|a denotes the number of occurrences of a in x. Any
subset of Σ∗ is called a language (over Σ). If L is a finite language over Σ, its size
is defined as ‖L‖ =

∑
w∈L |w|. We shall assume an order ≺ or � on Σ which we

shall extend to Σ∗ in the canonical way by saying that u ≺ v if either |u| < |v| or
|u| = |v| and u is lexicographically before v.

A context-free grammar (cfg) is denoted by a quadruple G = 〈Σ, V, P, S〉,
where Σ is the finite set of terminal symbols, V , disjoint from Σ, is the finite set
of nonterminal symbols, P is the finite set of production rules and S ∈ N is the
start symbol. A production rule in P has the form A → β for some A ∈ V and
β ∈ (Σ ∪ V )+. If A → β ∈ P , we write αAγ ⇒G αβγ for any α, γ ∈ (Σ ∪ V )∗.
⇒+

G is the transitive closure of ⇒G and ⇒∗
G is the reflexive and transitive closure

of ⇒G. The subscript G of ⇒G is omitted if it is understood from the context.
The context-free language (cfl) L(G) generated by G is the set L(G, S), where
L(G, α) = { w ∈ Σ∗ | α

∗⇒ w } for α ∈ (Σ ∪ V )∗. Two grammars G1 and
1 Angluin defined k-reversible languages as a subclass of regular languages, while this

paper calls any language satisfying k-reversibility a k-reversible language.
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G2 are equivalent iff L(G1) = L(G2). The description size of G is defined as
‖G‖ =

∑
A→β∈P (|Aβ|). A symbol A ∈ Σ ∪ V is useless in G if there are no

x, y, z ∈ Σ∗ such that S
∗⇒ xAz

∗⇒ xyz. A cfg G is reduced iff every A ∈ Σ ∪ V
is not useless. We assume all grammars to be reduced in this paper. Note that
we do not allow empty right hand side to production rules, and thus any cfls
dealt with in this paper are λ-free.

In the following, terminal symbols will be indicated by a, b, c, . . . , nonterminal
symbols by A, B, strings over Σ by u, v, . . . , z, and strings over (Σ ∪ V )∗ by
α, β, γ, δ.

We now define our learning criterion. This is identification in the limit from
text (or equivalently from positive data) as defined by Gold [9]. Let R be any
recursive set of finite descriptions, say cfgs, and L be a function from R to
non-empty languages over Σ. A learning algorithm A on R, is an algorithm that
computes a function from finite sequences of strings w1, . . . , wn ∈ Σ∗ to R. We
define a presentation of a language L to be an infinite sequence of elements
(called positive examples) of L such that every element of L occurs at least
once. Given a presentation, we can consider the sequence of hypotheses that the
algorithm produces, writing Rn = A(w1, . . . , wn) for the nth such hypothesis.
The algorithm A is said to identify the class L of languages in the limit from
positive data if for every L ∈ L, for every presentation of L, there is an integer
n0 such that for all n > n0, Rn = Rn0 and L = L(Rn0). For R

′ ⊆ R satisfying
that L = { L(R) | R ∈ R

′ }, one also says A identifies R
′ in the limit from

positive data. For convenience, we often allow the learner to refer to the previous
hypothesis Rn for computing Rn+1 in addition to w1, . . . , wn+1. Obviously this
relaxation does not effect the learnability of language classes. Moreover, learning
algorithms in this paper compute hypotheses from a set of positive examples by
identifying a sequence with the set consisting of the elements of the sequence.

We further require that the algorithm needs only polynomially bounded
amounts of data and computation. De la Higuera’s proposal is to measure the
efficiency by a set of examples on which the learner converges to a representation
of the target language [11].

Definition 1 (de la Higuera [11]). A representation class R is identifiable in
the limit from positive data with polynomial time and data if and only if there
exist two polynomials p and q and an algorithm A such that

1. Given a set S of positive examples of size ‖S‖ = m, A returns a hypothesis
in time p(m),

2. For each representation R ∈ R of size n, there exists a characteristic set CS
of size less than q(n) such that if CS ⊆ S, A returns a representation R0
such that L(R) = L(R0).

The first condition (polynomial updating time) is widely accepted as a neces-
sary condition for efficient learning. On the other hand, the second condition is
somehow unsuitable as a model for efficient learning of cfgs, as this definition
was initially designed for learning of regular languages. Even in a very restricted
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kind of cfgs2, like very simple grammars [25], the length of a shortest string in
the language cannot be bounded by any polynomial in the size of a grammar.
At present there is no consensus on the most appropriate modification of this
criterion for learning of cfgs. Several ideas have been formulated to tackle this
problem. Carme et al. [4] count the cardinality |CS| of a characteristic set in-
stead of the size ‖CS‖. Wakatsuki and Tomita [24] have proposed to measure the
complexity of an algorithm dealing with cfgs by another parameter τG, called
thickness, defined by

τG = max{ |ω(A)| | A ∈ V } where ω(A) = min{ w ∈ Σ∗ | A
∗⇒
G

w }

where “min” is with respect to ≺. We will show that our learning algorithm
for k, l-substitutable context-free languages admits a characteristic set whose
cardinality is bounded by a polynomial in the size of the target grammar and
whose size is bounded by a polynomial in the thickness and the size of the target
grammar.

We would like to remark that the notion of characteristic sets by de la
Higuera [11] differs from that of characteristic samples by Angluin [1]. Let K be
a finite subset of a language L and L a class of languages. We say that K is a
characteristic sample of L with respect to L if it holds that

K ⊆ L′ iff L ⊆ L′

for any L′ ∈ L. The definition of a characteristic sample does not depend on any
specific learning algorithm.

3 k, l-Substitutable Languages

Definition 2 (k, l-substitutability). Let k and l be nonnegative integers. A
language L is said to be k, l-substitutable if and only if for any x1, y1, z1, x2, y2,
z2 ∈ Σ∗, v ∈ Σk, u ∈ Σl such that vy1u, vy2u = λ,

x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L.

The notion of substitutability by Clark and Eyraud [7] is exactly 0, 0-substi-
tutability in this paper and the condition vy1u, vy2u = λ is essential only when
k = l = 0 (otherwise trivially vy1u, vy2u = λ holds). k, l-substitutability says
nothing about strings of length shorter than k + l. L ∪ {w} is k, l-substitutable
if and only if L − {w} is for any L ⊆ Σ∗, w ∈ Σ<k+l and integers k and l.

It is obvious that if a language is k, l-substitutable, then it is m, n-substi-
tutable for any m ≥ k and n ≥ l. It is easy to see that the hierarchy is strict.
For each k, l ∈ N, there is a k, l-substitutable regular language that is m, n-
substitutable if and only if m ≥ k and n ≥ l. If a language is k, 0-substitutable or
0, k-substitutable, then it is k-reversible. Recall that a language L is k-reversible
if and only if for any x1, y1, x2, y2 ∈ Σ∗ and v ∈ Σk, x1vy1, x1vy2, x2vy1 ∈ L
implies x2vy2 ∈ L [1].
2 One exception is subclasses of linear grammars.
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Proposition 1. k, l-substitutable languages are not closed under intersection
with regular sets, union, concatenation, complement, Kleene closure (+, ∗), λ-
free homomorphism, inverse homomorphism. k, l-substitutable languages are
closed under reversal if and only if k = l. k, l-substitutable languages are closed
under intersection and λ-free inverse homomorphism.

Proof. Let us say that a pair of strings (called a context) 〈x, z〉 is applicable to
y in L if and only if xyz ∈ L.

Intersection with regular sets: Let L0 = ae∗ce∗a∪ae∗de∗a∪ be∗ce∗b and
L1 = L0∪be∗de∗b. L0 is regular and L1 is 0, 0-substitutable. Clearly L1∩L0 = L0
is not k, l-substitutable for any k, l. The context 〈a, a〉 is applicable to ekcel and
ekdel in L0, but 〈b, b〉 is applicable only to ekcel.

Union: Let L2 = ae∗ce∗a ∪ ae∗de∗a and L3 = be∗ce∗b. L2 and L3 are both
0, 0-substitutable, but the union L2 ∪ L3 = L0 is not k, l-substitutable for
any k, l.

Concatenation: Languages L4 = ae∗c ∪ ae∗d ∪ b and L5 = e∗a ∪ e∗ce∗b
are 0, 0-substitutable. The concatenation L4L5 is not k, l-substitutable for any
k, l, because 〈a, a〉 is applicable to ekcel and ekdel, but 〈b, b〉 is applicable only
to ekcel.

Complement: L6 = a∗b is 0, 0-substitutable, but the complement L6 is not
k, l-substitutable for any k, l, because while 〈b, λ〉 is applicable to both akaal

and akbal in L6, 〈λ, b〉 is applicable only to akbal.

Kleene closure: L7 = { anban | n ≥ 0 } is 0, 0-substitutable, but neither
L+

7 nor L∗
7 is k, l-substitutable. Let m = max{k, l}. The context 〈am, am+1〉 is

applicable to ba2m+1b and bambam+1b in L+
7 , but 〈am+1, am〉 is applicable only

to ba2m+1b in L∗
7.

λ-free homomorphism: L8 = ae∗ce∗a∪be∗ce∗b∪fe∗de∗f is 0, 0-substi-tutable.
Let h be the homomorphism that is almost the identify but h(f) = a, i.e.,
h(a) = a, h(b) = b, h(c) = c, h(d) = d, h(e) = e, h(f) = a. h(L8) = L0 is not
k, l-substitutable.

Inverse homomorphism: L6 = a∗b is 0, 0-substitutable. Let h be such that
h(a) = a, h(b) = b, h(e) = λ. h−1(L6) is not k, l-substitutable, because 〈λ, b〉 is
applicable to both ekeel and ekael in h−1(L6), but 〈b, λ〉 is applicable only to
ekeel.

Reversal: If L is k, l-substitutable, its reversal LR is trivially l, k-substi-tutable.
It is enough to show that k, l-substitutable languages are not closed under re-
versal for k > l ≥ 0. L9 = ek−1ce∗ ∪ ek−1de∗ ∪ aek−1ce∗a is k, 0-substitutable,
but its reversal LR

9 is not l, m-substitutable for any m < k and l. In LR
9 , 〈λ, λ〉 is

applicable to both elcek−1 and eldek−1, but 〈a, a〉 is applicable only to elcek−1.

Intersection: Let L and L′ be k, l-substitutable. If x1vy1uz1, x1vy2uz1,
x2vy1uz2 ∈ L ∩ L′ for some v ∈ Σk, u ∈ Σl and vy1u, vy2u ∈ Σ+, then those
are in both L and L′. Since L and L′ are k, l-substitutable, x2vy2uz2 is in both
L and L′ and thus in L ∩ L′.
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λ-free inverse homomorphism: Let L be a k, l-substitutable language and
h a λ-free homomorphism. We denote h(w) by w for readability. If x1vy1uz1,
x1vy2uz1, x2vy1uz2 ∈ h−1(L) for some v ∈ Σk, u ∈ Σl and vy1u, vy2u ∈ Σ+,
then x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L. Since L is k, l-substitutable and |v| ≥
|v| = k, |u| ≥ |u| = l, |vy1u|, |vy2u| ≥ 1, we have x2vy2uz2 ∈ L. This entails that
x2vy2uz2 ∈ h−1(L). �

We are particularly concerned with k, l-substitutable context-free languages (k, l-
scfls) in this paper. As Clark and Eyraud [7] conjecture that all 0, 0-scfls are
nts languages (see [22, 3] for the definition and properties of nts languages),
we conjecture all k, l-scfls are nts too. The simple nts example { anbn | n ≥
1 } presented by Clark and Eyraud as a non-0, 0-substitutable language is 1, 1-
substitutable. The class of very simple languages is also an important subclass
of cfls due to the efficient identifiability in the limit from positive data [25,26].
Clark and Eyraud show that the class of very simple languages and that of 0, 0-
scfls are incomparable. It is also the case for k, l-scfls. The language generated
by the very simple grammar G consisting of two rules S → aSS and S → b is
not k, l-substitutable for any k, l.

We note that Proposition 1 holds of classes of k, l-scfls except that k, l-scfls
are not closed under intersection.

4 Learning Algorithm for k, l-Substitutable Context-Free
Languages

Let us arbitrarily fix nonnegative integers k and l. Our learning target is the
class of all k, l-substitutable context-free languages (k, l-scfls). However we do
not yet have any grammatical characterization of this class. For mathematical
completeness, yet we have to define our learning target by saying that our tar-
get representations are cfgs generating k, l-substitutable languages, though this
property is not decidable. We remark that the class { L | L is a k, l-scfl for
some k, l ∈ N } is not identifiable in the limit from positive data, because this
class is superfinite modulo λ, that is, it contains at least one infinite language
and all the finite languages that do not contain λ. Obviously the absence of λ
does not effect Gold’s theorem [9] that any superfinite class is not identifiable in
the limit from positive data.

Our learning algorithm for k, l-scfls is a natural generalization of Clark and
Eyraud’s original algorithm for 0, 0-scfls [7]. However we omit the procedure
in the original algorithm that constructs “the substitution graph” where poten-
tial nonterminal symbols that generate the same languages are merged. Though
the procedure is important for making the output grammar more compact, we
present a simpler learning algorithm and a simpler proof for the learnability
instead.

Algorithm 1 is our learning algorithm k, l-SGL (k, l-Substitutable Grammar
Learner) for learning k, l-scfls. If the new positive example is generated by the
previous hypothesis by k, l-SGL, it keeps the hypothesis. Otherwise, let K be
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the set of positive examples given so far. k, l-SGL computes the following cfg

Ĝ = 〈Σ, VK , PK , S〉 defined by

VK = { [y] | xyz ∈ K, y = λ } ∪ {S},

PK = { [vyu] → [vy′u] | xvyuz, xvy′uz ∈ K, |v| = k, |u| = l, vyu, vy′u = λ }
∪ { S → [w] | w ∈ K }
∪ { [xy] → [x][y] | [xy], [x], [y] ∈ VK }
∪ { [a] → a | a ∈ Σ }.

We note that k, l-SGL is specific to fixed nonnegative integers k and l. In other
words, k and l are known to k, l-SGL a priori.

Algorithm 1. k, l-SGL
Data: A sequence of strings w1, w2, . . .
Result: A sequence of cfgs G1, G2, . . .
let Ĝ = cfg generating the empty language;
for n = 1, 2, . . . do

read the next string wn;
if wn �∈ L(G) then

let Ĝ = 〈Σ, VK , PK , S〉 where K = {w1, . . . , wn};
end if
output Ĝ;

end for

This section will establish the following main theorem of this paper.

Theorem 1. The learning algorithm k, l-SGL identifies k, l-scfls in the limit
from positive data with polynomial updating time. k, l-SGL admits a character-
istic set KG of polynomial cardinality in ‖G‖ and of polynomial size in ‖G‖τG

for the target grammar G.

4.1 Proof That Hypothesized Language Is Not Too Large

First of all we shall show that k, l-SGL never hypothesizes too large a language.

Lemma 1. If K is a finite subset of a k, l-substitutable language L, then L(Ĝ) ⊆ L.

Proof. Let (·) be the homomorphism from (Σ ∪ VK − {S})∗ to Σ∗ such that
a = a for all a ∈ Σ and [w] = w for all [w] ∈ VK − {S}. We prove by induction
on the length of derivation that S ⇒+

Ĝ
α ∈ (Σ ∪ VK − {S})∗ implies α ∈ L.

Suppose that the last rule used in the derivation is of the form S → [w]. Then
[w] = w ∈ K ⊆ L by definition. Suppose that S ⇒+

Ĝ
αBγ ⇒ αβγ for some

rule B → β with B = S. The only nontrivial case is when B = [vyu] and
β = [vy′u] for some v ∈ Σk, u ∈ Σl and y, y′ ∈ Σ∗. In this case, there are
x, z ∈ Σ∗ such that xvyuz, xvy′uz ∈ K ⊆ L by the definition of Ĝ. By induction
hypothesis, we have αBγ = αvyuγ ∈ L. Since L is k, l-substitutable, this entails
that αvy′uγ = αβγ ∈ L. �
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For some finite language K, Ĝ does not define a k, l-substitutable language.

Example 1. Let k = l = 0 and K = { a, ab, abbc }. Because a and ab occur in
the same context 〈λ, λ〉, if L is a 0, 0-substitutable language including K, then
L is closed under substituting a for ab and we have abc, ac ∈ L by abbc ∈ L.
On the other hand, the output grammar Ĝ by the algorithm for the input K is
equivalent to the grammar G consisting of the following rules:

S → A, A → a | AB | ABc, B → b | BBc.

We have ac ∈ L − L(G). That is, L(Ĝ) is not 0, 0-substitutable.

Actually the least 0, 0-substitutable language including K of the above example
is a{b, c}∗, which is indeed context-free and thus in the target class of our al-
gorithm 0, 0-SGL. This means that even if a characteristic sample (in Angluin’s
sense [1]) of the target 0, 0-scfl is given, our and Clark and Eyraud’s learning
algorithms do not necessarily converge to the target language.

4.2 Proof That Hypothesized Language Is Large Enough

To prove that the hypothesized language is large enough, we first need to define a
characteristic set, that is to say a subset of a target language L∗ which will ensure
that the algorithm k, l-SGL will output a grammar Ĝ such that L(Ĝ) = L∗.
We define a characteristic set in terms of a cfg in the following normal form,
while we do not yet have any grammatical characterization on cfgs generating
k, l-substitutable languages. Because Clark and Eyraud have already given a
characteristic set of 0, 0-scfls for their algorithm and it works for our algorithm
0, 0-SGL, which is essentially the same as theirs, hereafter (including the next
subsection) we target k, l-scfls with 〈k, l〉 = 〈0, 0〉.
Definition 3. Let k and l be nonnegative integers such that at least one of
them is not zero. We say that a cfg G = 〈Σ, V, P, S〉 is in k, l-Gnf if every
production has the form A → w for some w ∈ Σ≤k+l − {λ} or A → xαz for
some x ∈ Σk, z ∈ Σl and α ∈ V +.

The notion of k, l-Gnf is a generalization of Greibach normal form [10] and
double Greibach normal form [20, 8]. Standard Greibach normal form is 1, 0-
Gnf and double Greibach normal form is 1, 1-Gnf.

Lemma 2. Let k and l be nonnegative integers such that at least one of them
is not zero. For any cfg G, there is an equivalent cfg G′ = 〈Σ, V ′, P ′, S′〉 in
k, l-Gnf such that P ′ ⊆ V ′ × (Σ≤k+l ∪ ΣkV ′≤7(k+l)Σl), ‖G′‖ is polynomial in
‖G‖ and τG′ is polynomial in ‖G‖τG.

Proof. Case 1. k, l = 0. We would like to refer the reader to Engelfriet’s conver-
sion to double Greibach normal form of cfgs [8]. Observing his proof, one can
see that every cfg in Chomsky normal form can be converted into an equivalent
cfg whose productions have one of the following forms:

A → a or A → aαb
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for some A ∈ V , a, b ∈ Σ and α ∈ V ≤7. Moreover, the size of the obtained gram-
mar by his conversion is bounded by a polynomial in the size of the original gram-
mar. Together with the well-known fact that any cfg can be transformed into
Chomsky normal form of polynomial size, we may assume that G = 〈Σ, V, P, S〉
satisfies P ⊆ V × (Σ ∪ ΣV ≤7Σ) without loss of generality.

Here we introduce a subrelation �of ⇒G. We write α �β if either

– α = xAδ and β = xγδ for some x ∈ Σ<k, A → γ ∈ P and δ ∈ (Σ ∪ V )∗,
– α = δAx and β = δγx for some x ∈ Σ<l, A → γ ∈ P and δ ∈ (Σ ∪ V )∗.

Let us define a cfg G′ = 〈Σ, V, P ′, S〉 with

P ′ = {A → α | A
+

�α ∈ Σ+ ∪ (Σk(Σ ∪ V )∗Σl) }

where
+

�is the transitive closure of �. Some productions in P ′ may violate
the condition of k, l-Gnf, as some terminal symbols occur in α in a rule of
the form A → xαz with x ∈ Σk and z ∈ Σl. A solution is trivial. For each
terminal symbol a ∈ Σ, let us introduce a new nonterminal symbol Na and
a new production Na → a. Then we replace violating occurrences of terminal
symbols a in productions by Na. It is easy to see that L(G′) = L(G).

We evaluate the size of G′. Because G is in 1, 1-Gnf, if α �β and α ∈ Σm(Σ∪
V )∗Σn, then either β ∈ Σm+1(Σ ∪ V )∗Σn or β ∈ Σm(Σ ∪ V )∗Σn+1. Therefore,
when A has n derivation steps induced by �, i.e., A �α1 �. . . �αn, we have
n < k + l (note α1 ∈ ΣV +Σ ∪Σ+). Because the maximum length of production
rules in P is at most 9, α �β implies |β| ≤ |α| + 8. Thus if A �+ α, then
|α| ≤ 1 + 8(k + l − 1) = 8(k + l) − 7. If α = vα′u for some v ∈ Σk and u ∈ Σl,
then |α′| ≤ 7(k + l − 1). Moreover we see that |P ′| ≤ |P |k+l−1 + |Σ|. We have
‖G′‖ ≤ (8(k + l) − 7)(|P |k+l−1 + |Σ|) ∈ O(|P |k+l−1).

Moreover, it is not hard to see that when Engelfriet’s conversion is applied to
a cfg in Chomsky normal form obtained from a general cfg G′′ by a reasonable
method, then the thickness τG of the resultant grammar G in 1, 1-Gnf is bounded
by a polynomial in ‖G′′‖τG′′ . By the fact τG′ = τG, we get the lemma.

Case 2. k > 0 and l = 0. Apply the similar conversion to Case 1 to cfg G
in Greibach normal form such that P ⊆ V × ΣV ≤2.

Case 3. k = 0 and l > 0. This case is just symmetric to Case 2. �

It is easy to get rid of useless nonterminals in G′ obtained by the above method
if any.

Now we define a characteristic set KG of a k, l-scfl in terms of a reduced
cfg G = 〈Σ, V, P, S〉 in k, l-Gnf generating it as follows, where “min” is with
respect to ≺, which is extended from Σ∗ to Σ∗ × Σ∗ in some reasonable way:

ω(α) = min{ w ∈ Σ∗ | α
∗⇒
G

w } for α ∈ (Σ ∪ V )∗,

χ(A) = min{ 〈x, z〉 ∈ Σ∗ × Σ∗ | S
∗⇒
G

xAz } for A ∈ V,
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KA = { vw1 . . . wnu ∈ Σ∗ | A → vB1 . . . Bnu, Bi → βi ∈ P, wi = ω(βi) }
∪ { y ∈ Σ∗ | A → y ∈ P } for A ∈ V,

KG = { xyz ∈ Σ∗ | χ(A) = 〈x, z〉, y ∈ KA, A ∈ V }.

The following trivial lemma is implicitly used in the proof of Lemma 4.

Lemma 3. KA ⊆ L(G, A) and KS ⊆ KG ⊆ L(G). KG is finite.
Let k, l-SGL compute Ĝ = 〈Σ, VK , PK , S〉 from K such that KG ⊆ K ⊆ L(G).

Then for any w ∈ KA, [w] ∈ VK . If [w1 . . . wm] ∈ VK with w1, . . . , wm ∈ Σ+,
then [w1 . . . wm] ⇒∗

Ĝ
[w1] . . . [wm] ∗⇒ w1 . . . wm.

Lemma 4. Suppose that the algorithm outputs Ĝ for the input K including KG.
Then L(G) ⊆ L(Ĝ).

Proof. We first show that if A → vB1 . . . Bnu ∈ P with v ∈ Σk, u ∈ Σl and
wi ∈ KBi , then there is w ∈ KA such that [w] ⇒∗

Ĝ
v[w1] . . . [wn]u. Let βi be

such that Bi ⇒G βi
∗⇒ wi and

I = { i | wi = ω(βi), 1 ≤ i ≤ n }.

For each i ∈ I, we have βi ∈ ΣkV +Σl. Thus there are vi ∈ Σk, ui ∈ Σl and
yi, y

′
i ∈ Σ∗ such that wi = viyiui and ω(βi) = viy

′
iui. The fact ω(βi), wi ∈ KBi

entails that xiviy
′
iuizi, xiviyiuizi ∈ KG where 〈xi, zi〉 = χ(Bi). By definition, Ĝ

has rule [ω(βi)] → [wi] ∈ PK . We have vω(β1) . . . ω(βn)u ∈ KA and

[vω(β1) . . . ω(βn)u] ∗⇒̂
G

v[ω(β1)] . . . [ω(βn)]u ∗⇒ v[w1] . . . [wn]u.

By using this claim inductively, we see that for any A ⇒∗
G w ∈ Σ∗, there is

w′ ∈ KA such that [w′] ⇒∗
Ĝ

w. Since Ĝ has rule S → [w′] ∈ PK for any w′ ∈ KS ,
we obtain the lemma. �

Clark and Eyraud [7] define a characteristic set of 0, 0-scfls L(G) by

CS(G) = { xyz | A → β ∈ P, 〈x, z〉 ∈ χ(A), y = ω(β) },

where G is not assumed to be in any special form. This set CS(G) is more
compact than KG. However, CS(G) can be too small as a characteristic set
of a k, l-scfl in general. Let G be a cfg in 1, 0-Gnf consisting of production
rules S → aSC, S → b and C → c. Then L(G) = { anbcn | n ≥ 0 } is 1, 0-
substitutable. On the other hand, CS(G) = { b, abc } is also 1, 0-substitutable,
and thus CS(G) cannot be a characteristic set of L(G) for any algorithm learning
1, 0-scfls.

4.3 Polynomial Time and Data

Now we discuss the efficiency of our learning algorithm k, l-SGL. Though the
class of k, l-scfls is not identifiable in the limit from positive data with poly-
nomial time and data in de la Higuera’s sense (Definition 1), k, l-SGL satisfies
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de la Higuera’s definition if we accept the thickness τG of the target grammar
as a fundamental parameter (Lemma 7). Besides, k, l-SGL identifies k, l-scfls
in the limit from positive data with polynomial time and data in Carme et
al.’s sense [4], i.e., k, l-SGL admits a characteristic set of polynomial cardinality
(Lemma 6). Although we have no grammatical characterization of k, l-scfls,
Lemma 2 justifies evaluating the characteristic set KG where G is in k, l-Gnf

such that P ⊆ V × (Σ≤k+l ∪ ΣkV ≤7(k+l)Σl).

Lemma 5. Computation of Ĝ from a finite language K is done in polynomial
time in the description size of K.

Proof. Let �K = max{ |w| | w ∈ K }. For fixed w, w′ ∈ K, the cost for enumer-
ating all pairs vyu and vy′u such that w = xvyuz, w′ = xvy′uz, |v| = k, |u| = l,
vyu, vy′u = λ for some x, z ∈ Σ∗ is bounded by O(�2

K). Thus computing all the
rules of the form [vyu] → [vy′u] takes O(|K|2�2

K) time. Computing all the rules
of the form S → [w] for w ∈ K takes O(‖K‖) time. For each [w] ∈ VK , there are
(|w|−1) pairs 〈x, y〉 such that w = xy and x, y = λ. Thus computing all the rules
of the form [xy] → [x][y] takes O(|VK |�K) time. Together with �K , |K| ≤ ‖K‖
and |VK | ≤ ‖K‖2, totally the algorithm updates its hypothesis in O(‖K‖4) time.

�

Therefore, k, l-SGL updates its hypothesis quickly even for large k and l. How-
ever, the amount of data for letting k, l-SGL converge increases depending on k
and l. For instance, to learn the k, l-scfl Σ≤k+l − {λ}, the learner requires all
elements of Σ≤k+l − {λ} to be given as positive examples, because any subset
of Σ≤k+l − {λ} is also a k, l-scfl.

Lemma 6. |KG| is bounded by a polynomial in ‖G‖.

Proof. Let n = max{ |β| | A → xβz ∈ P with |x| = k, |z| = l }. Then we have
|KG| ≤ |P |n+1. By Lemma 2, we have n ≤ 7(k + l) (constant). |KG| is bounded
by a polynomial. �

Lemma 7. The description size of ‖KG‖ is bounded by a polynomial in ‖G‖
and τG.

Proof. By Lemma 6, it is enough to prove that the length of each element in
KG is bounded by a polynomial in ‖G‖ and τG. Suppose that xyz ∈ KG where
χ(A) = 〈x, z〉 and y ∈ KA for A ∈ V . We have a derivation

A0 ⇒
G

α1A1γ1 ⇒ · · · ⇒ α1 . . . αmAmγm . . . γ1
∗⇒ xAmz

where A0 = S, Ai−1 → αiAiγi for i = 1, . . . , m, Am = A, x = ω(α1 . . . αm)
and z = ω(γm . . . γ1). We see Ai = Aj if i = j by the definition of χ(A).
Thus |α1 . . . αmγm . . . γ1| ≤ ‖G‖ and |xz| ≤ ‖G‖τG. If y ∈ KA, then either
A → y ∈ P , or there are productions A → vB1 . . . Bnu ∈ P , Bi → βi ∈ P for
i = 1, . . . , n and y = vω(β1 . . . βn)u. Let p = k + l (constant). By Lemma 2,
we have n ≤ 7p and βi ∈ Σ≤p ∪ ΣkV ≤7pΣl. Therefore |ω(βi)| ≤ p + 7pτG and
|y| ≤ p + 7p(p + 7pτG) ∈ O(τG). All in all we have |xyz| ∈ O(‖G‖τG). �
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5 Discussion

Following the proposal given by Clark and Eyraud [7], this paper gave a formal
definition of a hierarchy of substitutable languages by generalizing the origi-
nal notion of substitutability and showed that each class of context-free lan-
guages in the hierarchy is polynomial-time identifiable in the limit from positive
data. While this generalization can be thought of as the exact analogue of k-
reversibility introduced by Angluin [1], some properties that hold of k-reversible
regular languages do not hold of k, l-scfls, or are not known to hold of k, l-scfls.

One is a grammatical characterization of k, l-scfls, as already pointed out
by Clark and Eyraud. The original definition of k-reversible languages is given
in terms of finite state automata and the syntactic characterization of them is a
theorem [1].

Kobayashi and Yokomori [14] have shown that the least k-reversible language
including a finite language is always regular. In fact Angluin’s learning algo-
rithm always hypothesizes the least k-reversible regular language including the
given data. On the other hand, the least 0, 0-substitutable language including
{abc, acb, bac, bca, aabbcc} is MIX = { w ∈ {a, b, c}+ | |w|a = |w|b = |w|c }, which
is known to be non-context-free.3 Moreover, MIX does not have a least 0, 0-scfl

including it. L1 = { w ∈ {a, b, c}+ | |w|a = |w|b } and L2 = { w ∈ {a, b, c}+ |
|w|a = |w|c } are 0, 0-scfls and MIX = L1 ∩ L2. This shows that some set of
positive examples does not admit a least consistent 0, 0-scfl.

The literature has established many results on reversible regular languages
and their variants (e.g., [2, 14, 16, 15, 13, 19, 21, 23]). It would be interesting to
investigate whether or not analogous results hold of k, l-scfls.

Clark and Eyraud’s algorithm SGL for 0, 0-scfls [7] bases Clark’s pac learn-
ing algorithm for unambiguous nts languages [5]. Though some unambiguous
nts languages are not 0, 0-substitutable, taking into account the difference of
context distributions of substrings, he successes learning non-0, 0-scfls using
SGL. Our learning algorithm k, l-SGL is more powerful than SGL for k, l > 0,
but we still conjecture all k, l-scfls are nts. It is doubtful whether an applica-
tion of Clark’s method to k, l-SGL could enable a pac learning algorithm that
is more efficient or more powerful.
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The author is deeply grateful to Rémi Eyraud, Alexander Clark and Thomas
Zeugmann for their valuable comments and advice. He also appreciates the
anonymous reviewers for their helpful comments and suggestions.

This work was supported by Grant-in-Aid for Young Scientists (B-20700124)
and a grant from the Global COE Program,“Center for Next-Generation Informa-
tion Technology based on Knowledge Discovery and Knowledge Federation”, from
the Ministry of Education, Culture, Sports, Science and Technology of Japan.
3 It is Eyraud and Clark who gave the author a critical clue to find this example in

personal communication.



278 R. Yoshinaka

References

1. Angluin, D.: Inference of reversible languages. Journal of the Association for Com-
puting Machinery 29(3), 741–765 (1982)

2. Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150
(1990)

3. Boasson, L., Sénizergues, G.: NTS languages are deterministic and congruential.
Journal of Computer and System Sciences 31(3), 332–342 (1985)

4. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node select-
ing tree transducer. Machine Learning 66(1), 33–67 (2007)

5. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

6. Clark, A., Eyraud, R.: Identification in the limit of substitutable context-free lan-
guages. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI),
vol. 3734, pp. 283–296. Springer, Heidelberg (2005)

7. Clark, A., Eyraud, R.: Polynomial identification in the limit of context-free substi-
tutable languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

8. Engelfriet, J.: An elementary proof of double Greibach normal form. Information
Processing Letters 44(6), 291–293 (1992)

9. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

10. Greibach, S.A.: A new normal-form theorem for context-free phrase structure gram-
mars. Journal of the Association for Computing Machinery 12(1), 42–52 (1965)

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–138 (1997)

12. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nition 38(9), 332–1348 (2005)

13. Kobayashi, S.: Iterated transductions and efficient learning from positive data: A
unifying view. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp.
157–170. Springer, Heidelberg (2000)

14. Kobayashi, S., Yokomori, T.: On approximately identifying concept classes in the
limit. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS,
vol. 997, pp. 298–312. Springer, Heidelberg (1995)

15. Kobayashi, S., Yokomori, T.: Identifiability of subspaces and homomorphic im-
ages of zero-reversible languages. In: Li, M., Maruoka, A. (eds.) ALT 1997. LNCS,
vol. 1316, pp. 48–61. Springer, Heidelberg (1997)

16. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with re-
versible languages. Theoretical Computer Science 174(1-2), 251–257 (1997)

17. Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages
from positive data: A survey. Theoretical Computer Science 397(1-3), 194–232
(2008)

18. Lee, L.: Learning of context-free languages: A survey of the literature. Technical
Report TR-12-96, Harvard University (1996),
ftp://deas-ftp.harvard.edu/techreports/tr-12-96.ps.gz
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