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Abstract. The accuracy of an inferred grammar is commonly computed
by measuring the percentage of sequences that are correctly classified
from a random sample of sequences produced by the target grammar.
This approach is problematic because (a) it is unlikely that a random
sample of sequences will adequately test the grammar and (b) the use of
a single probability value provides little insight into the extent to which
a grammar is (in-)accurate. This paper addresses these two problems by
proposing the use of established model-based testing techniques from the
field of software engineering to systematically generate test sets, along
with the use of the Precision and Recall measure from the field of in-
formation retrieval to concisely represent the accuracy of the inferred
machine.
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1 Introduction

Inferring an unknown regular grammar from a sample of valid and invalid sen-
tences is a well-established problem [13]. In practice it is often difficult to collect
a representative sample of valid and invalid sentences that suitably encapsulates
every required behavior of the target grammar. This has spurred the develop-
ment of inductive approaches [19,16], which can produce a reasonable inferred
grammar even if the provided set of sentences is only a sparse sample.

The ability to reliably measure the accuracy of an inferred grammar is funda-
mental to the evaluation of a technique as a whole. Conventionally, the accuracy
of a grammar is evaluated by generating a random ‘test’ sample from the target
grammar, and counting the proportion of tests that are correctly classified by
the inferred grammar.

In this paper we point out that the standard evaluation techniques of regular
grammars can present a skewed perspective of their accuracy. We outline the
two main challenges and propose the use of software engineering and information
retrieval methods to tackle them.
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1. Generating a representative test sample: Certain aspects of the gram-
mar (a) can be difficult to exercise with random tests, but (b) represent key lan-
guage features. To address this problem we propose the use of test-generation
techniques from the field of model-based testing [17] in software-engineering.
Many conformance testing algorithms have been designed to establish with cer-
tainty if an implementation of a software system conforms to a known speci-
fication of the system. Both implementation and specification are modeled by
deterministic finite automata, and so it becomes straightforward to apply these
techniques for the sake of establishing the accuracy of inferred grammars.
2. Measuring the accuracy of the inferred grammar: Conventionally, an
inferred grammar is evaluated by measuring the proportion of correctly classified
sentences. However, this provides little insight into grammar properties that are
of interest such as exactness or completeness.

Instead of the traditional single value to quantify machine accuracy, this paper
illustrates the use of precision and recall [24], a well understood measure from the
field of information retrieval. This can be visualised in an accessible manner, and
can be used to establish to what extent the approach over / under generalises.
We show how this correlates with Dupont’s lattice-based representation [10] of
the regular inference search space.

The format of the paper is as follows. Section 2 introduces the regular infer-
ence problem, and shows how inferred grammars are conventionally evaluated.
Section 3 describes state machine testing techniques. Precision and recall are de-
scribed in Section 4 with their relation to an established lattice-based inference
search space shown in Section 5. Section 6 contains a small case study. Related
work and conclusions can be found in Sections 7 and 8 respectively.

2 Regular Inference and the Evaluation of Inferred
Grammars

This section provides a brief background to the challenge of regular inference,
followed by a description of the conventional evaluation approach along with
its pitfalls. First, we list some basic definitions and set our notation based on
Dupont et al. [9,10]. A deterministic finite automaton (DFA) is a 5-tuple A =
(Q, Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite alphabet, δ :
Q × Σ → Q is a partial function, q0 ∈ Q is the initial state and F ⊆ Q is the set
of accepting states. We say a sequence s ∈ Σ∗ is accepted by A if there is a path
from the initial state q0 to an accepting state q. In symbols, q0

s→ q, for q ∈ F .
Throughout this paper, we only consider a special type of DFA where all states
are accepting states. A labelled transition system (LTS) A is a DFA whenever
F = Q. The consequence of this is that for any sequence accepted by an LTS, all
prefixes of that sequence are also accepted. That is, every LTS is prefix closed.

A grammar is a set of rules which specify a subset L, called a language, from
the set Σ∗ of all possible sequences of characters in Σ. We use deterministic
finite automata to represent regular grammars and write A(L) to denote a DFA
A which produces the language L. When referring to two or more languages, we



254 N. Walkinshaw, K. Bogdanov, and K. Johnson

denote the language produced by the DFA A as LA; when no ambiguities arise,
the subscript is omitted. We define the concatenation LALA′ of two languages
LA and LA′ to be the set {ls | l ∈ LA, s ∈ LA′}. For a state q ∈ Q define
LA(q) = {s ∈ Σ∗ | q

s→ qf for some qf ∈ Q} to be the language accepted
by A in q.

Given sample sets of valid sequences which are in L and optionally invalid
sequences that are not in L, the regular grammar inference problem is to identify
a regular grammar which defines L, using the samples. That is, given S+ ⊆ L
and S− such that S− ∩ L = ∅, construct a DFA A(L) = (Q, Σ, δ, q0, F ) where
for each l ∈ L there exists a q ∈ Q such that q0

l→ q, and for all s ∈ S− there is
no such a path.

The DFA A is a prefix tree acceptor (PTA) [20,22] of S+ if each sequence in
S+ has a unique path from the start state to an accepting state, with common
prefixes sharing the same path. If a set S− is available, it is trivial to augment
the PTA to include them, preventing false merges (below) from occurring. This
is conventionally referred to as the augmented prefix tree acceptor (APTA).

State merging techniques take a PTA or APTA as input, and proceed to
merge states that are deemed to be equivalent. Ultimately they aim to converge
on the most general machine that is consistent with the given samples. We recall
a partition π maps a set Q to a disjoint family of subsets whose union is Q.
For q ∈ Q, π(q) is the unique subset containing q; when states are merged, they
are placed in the same subset π(q). Let A = (QA, Σ, δA, qA, FA) be a DFA. A
quotient automaton [10] A/π = (QA/π, Σ, δA/π, qA/π, FA/π) is derived from A
with respect to a partition π as follows. The set of states QA/π is defined as
QA/π = {π(q) | q ∈ QA} and the set of final states FA/π as FA/π = {π(q) |
q ∈ FA}. Let Q, Q′ ∈ π(QA) and a ∈ Σ. Define the transition function δA/π :
QA/π × Σ → QA/π as δA/π(Q, a) = Q′ if, and only if, there exists q ∈ Q and
q′ ∈ Q′ such that δA(q, a) = q′, for a ∈ Σ. The initial state qA/π is the set
qA/π = π(qA). As a consequence of state merging, any path that is accepted in
A is also accepted in A/π. In fact, A/π is a generalization of A where LA ⊆ LA/π.

Given a DFA A, the set S+ is structurally complete with respect to A if it
covers every transition in A. If one uses a PTA built from such an S+ and
there is sufficient information to prevent an incorrect merge from occurring,
the state merging process can be guaranteed to correctly converge at A(L).
In other words, then there exists a partitioning π such that the quotient au-
tomaton PTA/π = A(L) [10]. This requirement is however unrealistic for most
real-world applications; if the target machine is unknown it is often difficult to
guarantee structural completeness, and if the target automaton is nontrivial, a
complete set of samples can simply be too large to obtain or difficult to identify.
In practice, techniques need to be able to infer fairly accurate grammars given
only sparse samples. Spurred on by several competitions, a number of promising
state-merging techniques have emerged [16,9]. The ability of these approaches
to infer reasonably accurate grammars from sparse samples, coupled with the
scalability of these techniques, renders them particularly appealing for many
practical applications.
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Grammar inference techniques are evaluated in terms of their accuracy at
classifying a test sample of sequences [15,16,4,9]. The set of test sequences (re-
ferred to as a test set) is usually compiled by tracing a selection of random paths
over the target machine, ensuring that they are evenly split between sequences
that should be rejected and accepted, as well as ensuring that their lengths fit a
uniform distribution. The accuracy is then measured as the proportion of test se-
quences that are correctly classified as either accepted or rejected by the inferred
grammar.

This approach to evaluation is however problematic for two reasons. The va-
lidity of the accuracy metric is entirely dependent upon a test set that is rep-
resentative of the target machine, and this is often improbable if the test set
generation process is essentially random. The second reason is that, even if a
representative test set is found, a single value provides very few insights into
what might make one approach to grammar inference superior / inferior to an-
other. These two problems are elaborated below.

Obtaining a test set that is ‘representative’ of the target grammar is very
challenging. Usually, the language of the target machine will contain an infinite
number of possible valid (and invalid) sequences, but it is not sufficient to simply
pick a random sample for the sake of testing. Grammars that correspond to a
large DFA with a large alphabet have a low observability: certain aspects are
much less likely to appear in a random sequence than others. Bongard and
Lipson [4] use the example of the Tomita 1 language [21], that only produces
a positive classification for a binary string 2.4% of the time. As demonstrated
in Lang’s experiments with random DFAs [15], the size of a random test set
that approximately infers a grammar invariably has to increase by orders of
magnitude as the size of the target machine increases.

Alongside the problem of identifying a suitable test set, there is also the
problem of how to interpret the final accuracy result - a single value provides
very few qualitative insights into the resulting grammar. Assuming, for example,
that we can confidently assert that a DFA has an accuracy of 70%. Does this
mean that it is more likely to falsely classify a string that should be accepted or
rejected? If we wanted to improve its accuracy, would we need to make it more
general or more specific?

3 Model-Based Test Generation

The challenge of identifying a test set that reliably covers every behavior of
some specification DFA is nontrivial. Random sets of strings may easily explore
specific aspects of the machine much more thoroughly than others, and hence
may result in a skewed accuracy measurement. How do we identify a finite set
of strings that can be used to evaluate the accuracy of the hypothesis machine?

This problem has been considered in the area of model-based software testing
where the focus is to check by testing whether an implementation is similar to
a model. Testing uses a model (reflecting the intended behavior) and generates
test sequences from it. If an implementation produces a different result to a
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model on any of those sequences, such an implementation is considered faulty;
otherwise, one may wish to have a confidence that an implementation is similar
to a model. The extent of such a similarity depends on the specific testing method
used to generate test sequences and on the properties of both a model and an
implementation. In the context of this paper, the aim is to compare two DFAs,
the hypothesis and the target. For this reason, the focus is on testing methods
which can demonstrate an equivalence between languages accepted by the two
DFAs rather than, for instance, whether one language contains another one.

The problem of checking whether two DFAs are accepting the same language
by experiment cannot be solved in the most general case — since a test set has
to be finite, it is always possible for an implementation DFA to contain more
states than could be explored with a chosen test set and those extra states may
have undesired behavior. For this reason, all DFA testing methods assume that
it is possible to estimate the maximal number of states in an implementation, in
advance. In addition, an alphabet of an implementation is usually assumed to
be known. Finally, both machines are expected to be deterministic, minimal and
feature a reliable reset (a special input which brings them to their respective ini-
tial states, not usually shown on a transition diagram); this simplifies testing and
holds in the case considered in this paper. State-based testing methods system-
atically explore the (unknown) transition structure of an implementation DFA,
comparing it to the model. From every state which is included in a model, they
attempt every symbol in an alphabet. This verifies that all transitions absent in
a model are also absent in an implementation; symbols which label transitions
in a model are followed with specific sequences to verify target states of those
transitions. This way, every state and every transition in a model are checked
in an implementation. Target state verification is based on an assumption that
all states in a model are different, i.e. they accept different languages. For this
reason, for every pair of states, it is possible to choose a sequence which dis-
tinguishes between them and a set of such sequences (called a characterisation
set below) can be used to check that an implementation has reached the ex-
pected states. The testing method used in this paper is the implementation by
the authors of the original Vasilevski/Chow W-Method [6].

Construction of a test set using the W-Method is briefly described follow-
ing [3]. For an implementation DFA A = (Q, Σ, δ, q0, F ) and a model DFA S,
the W-Method constructs Y ⊆ Σ∗ such that (LA ∩ Y = LS ∩ Y ) ⇒ LA = LS .
Such a set is called a test set of A. A state cover C is a prefix-closed subset of
Σ∗ containing all sequences of inputs needed to visit every state of a DFA from
the initial state; in symbols, ε ∈ C and for all states q ∈ Q \ {q0} there exists
a c ∈ C such that δ(q0, c) = q. For a subset W ⊆ Σ∗ the states q1, q2 ∈ Q are
called W -distinguishable if (LA(q1) ∩ W ) �= (LA(q2) ∩ W ). We call W a char-
acterisation set [12] of A if any two distinct states of A are W -distinguishable.
Given an estimate k as to how many more states an implementation may have
compared to a model, a test set Y = C({ε} ∪ Σ ∪ · · · ∪ Σk+1)W .

There is a clear overlap between the two fields of conformance testing
and grammar (DFA) inference, because tests generated from a model can be
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interpreted as membership queries to be answered by a hidden implementation
machine to establish whether the two are equivalent. Several software engineer-
ing researchers have previously explored the relationship between the two areas
[2,14], and the use of conformance testing algorithms for answering equivalence
queries posed by Angluin’s L∗ algorithm.

4 Evaluating Accuracy with Precision and Recall

Grammar inference techniques, and classifiers in general, are commonly evalu-
ated in terms of the probability that they will return a correct response [16,9,4].
This measure is often suitable as a coarse summary of classifier behavior, but
provides a user with very little insight into any particular strengths / weaknesses
of the technique. A single accuracy figure can give no insight into questions such
as (a) whether a hypothesis machine over/under generalised and (b) whether a
hypothesis language contains too many false positives or negatives.

4.1 Precision and Recall in Grammar Inference

Precision and recall [24] is a more descriptive measure, because it quantifies the
similarity of two objects with two variables instead of one – precision (exactness)
and recall (completeness). Originally from the domain of information retrieval,
it is used to measure the overlap between what has been retrieved and what is
relevant.

The conventional precision-recall evaluation process works by trying to estab-
lish the “overlap” between an inferred model and its target. This is achieved
by computing random samples from the inferred and target models, and adding
sequences to the RET and REL sets depending on how they are classified. This
classification is illustrated in the table below; if a sequence (from either machine)
is accepted by both machines, it is added to both RET and REL sets, if the
string is accepted only by the inferred machine, then it is added to RET etc.
The final RET and REL sets are then used to compute precision and recall as
follows: precision is computed by |REL∩RET |

|RET | and recall by |REL∩RET |
|REL| . Preci-

sion and recall have been used in the past to measure the accuracy of inferred
models in both the domains of software engineering and grammar inference. As
an example, in software engineering, Lo et al. [18] use it to establish the ac-
curacy of reverse-engineered software specifications. In grammar inference, Tu
and Hanovar [23] use it to measure the accuracy of their context-free grammar
inference technique. The two variables reflect complementary aspects of the in-
ferred model, and are more descriptive as a result, helping to answer the above
questions that arise with the use of a single “accuracy” measure.

H Machine (Hypothesis) S Machine (Specification) RET REL

accept accept × ×
accept reject ×
reject accept ×
reject reject
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Unfortunately, obtaining reliable precision and recall scores when comparing
DFAs is not straightforward. The conventional approach has two flaws that can
undermine confidence in the results:

1. Sampling: It relies on the assumption that the random positive samples
computed for each of the machines are thorough enough to capture the differ-
ences between the two machines. This approach will only identify disagreements
between the machines that are easy to reach with random sequences, and will
ignore those that are less likely to be exercised. There is also the danger that the
sample will simply represent the training sample, which is often also a random
sample from the target machine. Ultimately, any measure of accuracy that is
computed from samples that are constructed in this way is at best indicative of
the correspondence between two machines, and risks being misleading.
2. Measuring: The computation of RET and REL sets (as shown in the ta-
ble above) is biased towards the accepting behavior of the two machines. As
noted above, conventional samples do not include invalid sequences, but even if
they did, they would not be accounted for according to the scheme in the table
above. If both machines correctly reject a sequence, this would not be incorpo-
rated into the computation of precision and recall. In the context of grammar
inference, it is as important to evaluate an inferred grammar in terms of the
sequences it rejects as well as the sequences it accepts. Hence, approaches that
do not use precision and recall (using the conventional single-valued approach)
[9] tend to ensure that test samples are evenly split into sets of valid and invalid
sequences.

A naive solution to the two problems would be to (a) evenly construct a sample
from both valid and invalid sequences, and (b) add invalid sequences to both
RET and REL when the two machines are in agreement about their rejection.
This will however still bias the results, because the sampling emphasises those
parts of the machine that are easy to reach. There is also the problem that
the split between valid and invalid sequences is in effect arbitrary; an even split
is making the unlikely assumption that the language of the machine is evenly
balanced in terms of its valid and invalid sequences.

4.2 Authoritative Measurement of Precision and Recall by
Conformance Testing

One apparent solution to the sampling problem mentioned above is to apply
conformance testing techniques (see Section 3). For a given DFA, techniques
such as the W-Method will produce a finite set of sequences that is not overly
biased towards any particular part of the machine. The conventional approach
discussed above generates a composite set of random samples from both the
inferred and the target machine, in the hope that this will highlight the differ-
ences between the two machines. Instead, using model-based testing techniques,
it is only necessary to generate one test set from the target machine. This is
guaranteed to highlight every discrepency between the two machines.
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Although test sets that are generated by techniques such as the W-Method
are comprehensive, they do have two characteristics that should be noted when
applied for the sake of evaluating inferred grammars,

1. Scale: The test set is usually very large. With software and hardware systems,
depending on the latency of the system under test, each test execution incurs a
cost that can in practice render the execution of a complete test set infeasible.
Large test sets are much less of an issue when they are used to evaluate the
accuracy of hypothesis grammars. The time taken by test execution is reduced
by many orders of magnitude if it merely consists of traversing a path in a
graph that is stored in memory. For this reason, this work does not use more
efficient testing methods such as Wp and HSI which use a subset of distinguishing
sequences depending on a state to be checked (although these methods could just
as well be applied).
2. Partial inclusion of training set: The test set invariably incorporates a
proportion of the training set, which could be seen to bias the results. A certain
overlap between the training and test set is inevitable – the prefixes of invalid
sequences are valid ones, many of which are a necessary part of a rigorous test
set. This overlap can be problematic when the training and test set are both
sampled from the same distribution of sequences in the target language; in this
context test sequences are meant to test how well the classifier generalises from
the training set, and this does not happen if training sequences appear in the
test set. However, by generating the test set with a test set generation algorithm,
the test set is no longer testing the generalisation of the classifier, but instead
serves to produce an absolute measure of difference between the inferred and the
target grammars.

Although conformance testing solves the sampling problem, there still remains
the challenge of using these tests to accurately measure precision and recall. As
mentioned earlier, the conventional approach used to work out the values of
RET and REL relies on the assumption that the set of samples contains an
equal number of valid and invalid sequences. However, in the case of the W-
Method, the vast majority of the tests test for invalid behavior (making sure
that the machine does not have extra transitions). This is a property of models
of software where an alphabet is a set of commands and from each state only a
small subset of those commands can be executed. Numerous invalid sequences
can result in skewed precision and recall results: even if the inferred machine
does not accept any of the sequences it should, if it correctly rejects most of the
invalid sequences, the precision and recall will be disproportionately high.

This problem is addressed by refining the conventional scoring approach to
distinguish between accepting and rejecting behavior. Instead of computing a
single precision and recall pair, we compute one that describes the accuracy of
the hypothesis machine H in terms of the set of traces it should accept, and the
other in terms of the set of traces it should reject. For this reason, we divide
RET and REL into RET +, RET−, REL+ and REL−. Test sequences can thus
be categorised according to the table below.
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H Machine (Hypothesis) S Machine (Specification) RET + REL+ RET− REL−

accept accept × ×
accept reject × ×
reject accept × ×
reject reject × ×

If a sequence is accepted by H but should in fact be rejected, it is added to
RET + and REL− as shown in Row 2. Thus, precision+ = |REL+∩RET+|

|RET+| and

recall+ = |REL+∩RET+|
|REL+| , and the same approach is used to compute the negative

precision and recall from RET− and REL−. The above definitions of positive
and negative precision and recall can be interpreted as follows: precision+: high
value means that the positive sequences represented by the hypothesis machine
are largely correct; recall+: high value means that the set of positive sequences
represented by the hypothesis machine is largely complete; precision−: high
value means that the negative sequences represented by the hypothesis machine
are largely correct; recall−: high value means that the set of negative sequences
represented by the hypothesis machine is largely complete.

5 Relationship between Precision, Recall and the
State-Merging Search Space

Precision and recall are more suitable for characterising the success of state merg-
ing sequences than the traditional single-valued accuracy approach. By adopting
the precision and recall metrics introduced in Section 4.1, it is possible to de-
termine with greater certainty whether a particular merge improves machine
accuracy or not. This is best illustrated with the lattice-based characterisation
of the state-merging search space.

Inference techniques invariably involve searching a potentially very large space
of hypotheses in order to arrive at some result. The representation of this space
is key to their efficiency. A representation might, for example, indicate that the
selection of one hypothesis would rule out the subsequent selection of another
(potentially more suitable) hypothesis. This sort of information can be very
valuable during the inference process.

In regular inference hypotheses are commonly related to each other in terms
of their respective generality [1]. A grammar B is more general than A if B is
the quotient of a merge (Section 2) in A. In symbols, let A = (QA, Σ, δA, qA, FA)
be a DFA and P (A) denote the set of all partitions of the state space QA of A.
We define a partial order on P (A), as described in [10]: let π1 ∈ P (A) such that
π1(QA) = {Q1, . . . , Qr}. Define π2 = {Qj ∪Qk}∪π1/{Qj, Qk}, 1 ≤ j, k ≤ r, j �=
k. We say that π2 derives from π1, denoted π2 ≥ π1. This derivation operation
on partitions defines a partial ordering on the set P (A).

A useful metric for the evaluation of a hypothesis machine should also be
useful as a guide for the search process. In terms of the lattice search-space
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Fig. 1. Lattice-based search space

(Figure 1), it should be possible to tell whether a given solution is too general
or too specific, to direct the search. From this perspective the traditional single-
valued accuracy score can be highly misleading. For example, given a test set
where half of the sequences should be valid, and half invalid, the universal DFA
at the top of the lattice would result in a score of about 50% (despite the fact
that the machine is grossly overgeneralised). Conversely, it is possible that the
PTA at the bottom of the lattice produces a similar score, by correctly rejecting
most of the negative tests, but also incorrectly rejecting most of the positive
tests. During the merging process, the score could fluctuate, but not necessarily
provide any guidance — there is thus no relationship between a path through
the search-space, and a definite increase or decrease in accuracy.

When adopting precision and recall, there is a more direct relationship with
the search-space. In the figure above we depict values of precision and recall
using bars of different width. The structurally complete PTA at the bottom of the
figure is the starting point of the merging process. In the course of merging states
(reflected by a path through the lattice of partitions of states of the initial PTA)
one aims to increase Recall+ and Precision− without compromising Precision+

and Recall−. If the process of generalisation goes too far, the overly-general
outcome has low positive recall and negative precision, but the high positive
precision and negative recall.

For any pair of hypothesis πA, πB in the lattice where πB ≥ πA, we can state
the following: Precision+(πB) ≤ Precision+(πA), Recall+(πB) ≥ Recall+(πA),
Precision−(πB) ≥ Precision−(πA), and Recall−(πB) ≤ Recall−(πA).

6 Case Study: Effect of DFA Generalisation on Accuracy

In this section we use a small case study to illustrate how the precision and
recall measures, paired with a model-based test set generation strategy can pro-
vide more accurate and detailed quantitative insights into the performance of
inference algorithms. The purpose of this case study is to illustrate the utility
of our proposed evaluation technique (as opposed to the efficacy of any specific
state-merging algorithms). Although the case study subject is quite specific, it
is probable that the extra insights garnered from combining precision and recall
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with model-based test sets would apply to most evaluations of regular inference
techniques.

As a basis for the case study, we compare the performance of two variants of
the well-known EDSM merging algorithm [16] at inferring a randomly generated
grammar. The EDSM algorithm selects suitable state merges by assigning a score
for every pair of states (we use the Blue-Fringe algorithm [16] to select these
pairs). The first variant merges states where the score ≥ 1, and the second one
merges states where the score ≥ 2. The target grammar is randomly generated;
its DFA has 50 states, and has an alphabet of 1001.

The training set is generated in the traditional way by tracing a selection
of random paths across the target machine. We chose a small sample size to
emphasise the performance of the algorithms with respect to sparse samples.
The sample is composed of 50 valid and 50 invalid sequences. The length of
each path is a random number between 2 and n + 5, where n is the diameter of
the target DFA. For each variant of the inference algorithm, the accuracy was
charted for every iteration (state-merge), using both the traditional single-valued
measurement, and the precision and recall approach proposed in this paper. The
results are shown in Figure 2, with the left chart showing results for the case
of merge threshold ≥ 1, middle chart showing the results for merge threshold
≥ 2. The single-value accuracy (black line) was established by using a test set
consisting of random traces over the target grammar, whereas the test set for
the precision and recall scores was generated using the W-Method.
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Fig. 2. Traditional Accuracy vs. Precision-Recall measurements at each iteration of a
state merging algorithm, for two variants of the EDSM algorithm

In both charts, the single-valued accuracy score has a similar shape. It starts
at zero, and finshes at a score of about 40-50% accuracy. With a higher merge
threshold it is slightly steeper, suggesting that it produces more accurate results
early-on in the state-merging process. In isolation, the single-valued accuracy
line in both charts suggests that the state merging process is moving towards
1 A GraphML file containing the target DFA can be downloaded from
http://www.dcs.shef.ac.uk/~nw/Files/icgiExample.xml The source code for the
W-Method and comparison of two DFAs is part of a larger framework developed by
the authors, available from http://statechum.sourceforge.net/.
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an increasingly accurate result. This is however somewhat deceptive. Looking at
the precision and recall scores, it becomes apparent that, although the positive
recall is increasing, the positive precision is substantially reduced as the merging
continues. This is clearest in the left chart around the 58th iteration, a merge
happens that reduces the positive precision by about 10%, whereas at the same
point the accuracy score increases sharply.

For the sake of illustration, the purpose of this study is to investigate the per-
formance difference in the EDSM algorithm for different thresholds. The single-
valued measure gives little insight in this respect. The precision and recall scores
on the other hand are much more descriptive. They show that the difference in
accuracy between the two versions is due to a combined improvement in positive
precision and negative recall. In practice this means that with a lower merging
threshold the resulting DFA accepts too many false positives and negatives. On
the left chart, the positive precision drops by about 70% throughout the inference
process, whereas in the middle chart it only drops by about 40%. The negative
recall drops by about 20% in the left chart, it stays around 95% in the second one.

Finally, precision and recall can be visualised together, to provide an over-
all summary of the accuracy of a particular search technique. For the sake of
simplicity, we omit the rejecting behavior in this case, where there is only a
small trade off between precision and recall. The rightmost chart in Figure 2
plots the positive precision versus the positive recall for the two EDSM vari-
ants, as measured using the W-Method test set. These plots [24] clearly depict
the performance increase for the higher score threshold, where the precision is
compromised to a much lesser extent as the recall increases.

7 Related Work

The problem of measuring the accuracy of learner hypotheses forms the basis
of a substantial amount of discussion in machine learning literature. Receiver
Operator Characteristic (ROC) curves have emerged as a useful solution to
this problem [5]. These make explicit the relationship between the number of
true-positives and false-positives and are closely related to precision and recall.
However, if the data set upon which the curve is built is skewed (which is usually
the case with grammar inference data sets), precision and recall is a preferable
measure [7]. To the best of the authors’ knowledge, precision and recall have not
been applied in the context of regular grammar inference.

Competitions, most notably the Abbadingo competition [16], have played a
major role in driving the development of new inference techniques. These are
usually operated by setting up a server that randomly generates a (hidden) target
DFA, along with an accompanying random training and test set. Conventionally,
a winning inference technique has to be able to produce a hypothesis DFA that
produces an accuracy score of 99%. As we have shown, depending on the test set
and the target machine, this accuracy score can be misleading. In the context of
such a competition, this has the potential to result in the selection of inference
techniques that might not fare as well if the criterion for success was that the
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resulting machine should produce high precision and recall scores, and if the test
set was generated systematically as opposed to randomly.

The lattice-based representation of search-space (and its relation with preci-
sion and recall) is particularly relevant to heuristic grammar inference techniques
that depend upon a notion of “fitness”. As an example, Dupont’s GIG method
[8] uses a genetic algorithm to search the lattice of automata, where one search
result is considered to be “fitter” than another if it has fewer states and misclas-
sifies fewer strings in S−. If we assume that part of the (unused) training sample
can be used as a more complete test set, then it becomes possible to work out
the positive and negative precision and recall for each automaton. This measure
could then be used as a more fine-grained fitness function and could form a
suitable basis for a multi-objective search-based inference algorithm [11].

8 Conclusions

Due to the fact that most target machines are inherently unbalanced, the con-
ventional use of evenly-split random traces in the target machine as test sets
is insufficient, and can provide a skewed view of the accuracy of the final ma-
chine. The use of a single value to summarise this accuracy is too simplistic, and
does not provide enough of an insight into why a particular inference algorithm
becomes inaccurate. In this paper we have shown how the use of precision and
recall, combined with a systematic test set generation strategy, can be used to
evaluate inferred grammars in an authoritative manner.

We distinguish between the precision and recall for rejecting and accepting
behavior of the inferred machine because the target machine is usually unbal-
anced. This provides a more detailed means for evaluating machines and makes
it easier to see whether a hypothesis machine has been under or over generalised.
We have also shown how this means of evaluation links in with the established
lattice-based view of the inference search space.
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