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Abstract. We study the complexity of identifying (learning) timed au-
tomata in the limit from data. Timed automata are finite state models
that model time explicitly, i.e., using numbers. Because timed automata
use numbers to represent time, they can be exponentially more compact
than models that model time implicitly, i.e., using states.

We show three results that are essential in order to exactly determine
when timed automata are efficiently identifiable in the limit. First, we
show that polynomial distinguishability is a necessary condition for effi-
cient identifiability in the limit. Second, we prove that deterministic time
automata with two or more clocks are not polynomially distinguishable.
As a consequence, they are not efficiently identifiable. Last but not least,
we prove that deterministic timed automata with one clock are poly-
nomially distinguishable, which makes them very likely to be efficiently
identifiable in the limit.

1 Introduction

Timed automata [1] (TAs) are finite state models that model time explicitly, i.e.,
using numbers. They can be used to model and reason about real-time systems,
see e.g. [2]. In practice, it can be very difficult to construct such an automaton
by hand, for instance because expert knowledge is unavailable or hard to obtain.
That is why we are interested in automatically identifying such models from data.
In this paper, we prove several theorems regarding the complexity of identifying
TAs from data.

Often this data is obtained using sensors. This results in a time series of sys-
tem states: every millisecond the state of (or event occurring in) the system is
measured and recorded. From such timed data, we could have opted to iden-
tify a model that models time implicitly, i.e., using states. Examples of such
models are the deterministic finite state automaton (DFA), see e.g. [3], and the
hidden Markov model (HMM) [4]. Our main reason for modeling time explicitly
is that modeling time implicitly results in an exponential blow-up of the model
size: numbers use a binary representation of time while states use a unary rep-
resentation of time. Because of this, we believe that if the data contains timed
properties, i.e., it can be modeled efficiently using a timed automaton, then it is
less efficient and much more difficult to identify an untimed model correctly from
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this data. In previous work [5], we have experimentally compared a state merg-
ing and transition splitting algorithm for identifying a simple timed automaton
with the evidence driven state merging method (EDSM) [6] for identifying DFAs
on such data. While EDSM has been the most successful method for identifying
DFAs from untimed data, on timed data it performed worse than our algorithm.

In contrast to DFAs and HMMs, the identification problem for TAs has not
been well-studied. We are only aware of studies on the related problem of the
identification of event-recording automata (ERAs) [7]. For example, it has been
shown that ERAs are identifiable in the query learning framework [8]. However,
the used query learning algorithm requires an exponential amount of queries,
and is hence inefficient in the amount of data it requires. Naturally, we would
like our identification process to be efficient. This is difficult due to the fact
the identification problem for DFAs is NP-complete [9]. This property easily
generalizes to the problem of identifying a TA (by setting all time values to
0). Thus, unless P = NP , a TA cannot be identified efficiently. Even more
troublesome is the fact that the DFA identification problem cannot even be
approximated within any polynomial [10]. Hence (since this also generalizes),
the TA identification problem is also inapproximable.

These two facts make the prospects of finding an efficient identification process
for TAs look very bleak. However, both of these results rely on there being a fixed
input for the identification problem (encoding a hard problem). While in normal
decision problems this is very natural, in an identification problem the amount
of input data is somewhat arbitrary: more data can be sampled if necessary.
Therefore, it makes sense to study the behavior of an identification process
when is it given more and more data (no longer encoding the hard problem).
The framework that studies this behavior is called identification in the limit [11].
This framework can be summarized as follows. Let C be a class of languages (for
example the regular languages, modeled by DFAs). When given an increasing
amount of examples from some language L ∈ C, a limit identification algorithm
for C should at some point converge to L. If there exists such an algorithm
A, the class C is said to be identifiable in the limit. If a polynomial amount of
examples in the size of the smallest model for L is sufficient for convergence of A,
C is said to be identifiable in the limit from polynomial data. If A requires time
polynomial in the size of the examples, C is said to be identifiable in polynomial
time. If both these statements hold, then C is identifiable from polynomial time
and data, i.e efficiently identifiable in the limit.

DFAs have been shown to be efficiently identifiable in the limit using a state
merging method [12]. Also, it has been shown that non-deterministic finite au-
tomata (NFAs) are not efficiently identifiable in the limit [13]. This again gener-
alizes to the problem of identifying a non-deterministic TA. Therefore, we only
consider the identification problem for deterministic timed automata (DTAs).
Our goal is to determine exactly when DTAs are efficiently identifiable in the
limit and data. In this paper, we show the following results in order to achieve
this goal:
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– Polynomial distinguishability (Definition 6) is a necessary condition for effi-
cient identifiability in the limit (Lemma 1).

– DTAs with two or more clocks are not polynomially distinguishable (Propo-
sition 2). Hence, they are not efficiently identifiable (Corollary 1).

– DTAs with one clock (1-DTAs) are polynomially distinguishable (Theorem 5).

The fact that 1-DTAs are polynomially distinguishable is based on a central
lemma regarding their modeling power (Lemma 2). These results tell us that
1-DTAs seem to be a good model for identifying a timed system.

The paper is organized as follows. In order to prove our results, we start
with a brief introduction to DTAs (Section 2), and a formal explanation of
efficient identifiability in the limit (Section 3). We then prove that DTAs are not
(Section 4), and that 1-DTAs are (Section 5) polynomially distinguishable. We
end our paper with a discussion regarding the obtained results (Section 6).

2 Timed Automata

An timed automaton (TA) [1] is an automaton that accepts (or generates) strings
with event-time value pairs, called timed strings. A finite timed string τ over a
finite set of symbols Σ is a sequence (a1, t1)(a2, t2) . . . (an, tn) of symbol-time
value pairs (ai, ti) ∈ Σ × N.1 We use τi to denote the prefix of length i of τ , i.e.,
τi = (a1, t1) . . . (ai, ti). Every time value ti in a timed string represents the time
until the occurrence of symbol ai since the occurrence of the previous symbol
ai−1. We define the length of a timed string τ , denoted |τ |, as the number of
symbol-time value pairs in τ , i.e., |τ | = n.

In TAs, timing conditions are added using a finite set X of clocks and one
clock guard on every transition. These clocks may have different valuations, but
all move at the same speed. A valuation v is a mapping from X to N, returning
the value of a clock x ∈ X . We can add or subtract constants or other valuations
to or from a valuation: if v = v′ + t then ∀x ∈ X : v(x) = v′(x) + t, and if
v = v′ + v′′ then ∀x ∈ X : v(x) = v′(x) + v′′(x). Every transition δ in a TA
is associated with a set of clocks R. When a transition δ occurs (or fires), the
values of all the clocks in R are set to 0, i.e., ∀x ∈ R : v(x) := 0. The values of
all other clocks remain the same. We say that δ resets x if x ∈ R. In this way,
clocks are used to record the time since the occurrence of some specific event.
Clock guards are then used to change the behavior of the TA depending on the
value of clocks. A clock guard g is a boolean constraint defined by the grammar:
g := x ≤ c | x ≥ c | g ∧ g, where x ∈ X is a clock, and c ∈ N is a constant.2

A valuation v is said to satisfy a clock guard g, denoted v ∈ g, if for each clock
x ∈ X , whenever each occurrence of x in g is replaced by v(x) the resulting
statement is true. A timed automaton is defined as follows:
1 Sometimes R is used as a time domain for TAs. However, for identification of TAs

N is sufficient since in practice we always measure time using finite precision.
2 Since we use the natural numbers to represent time open (x < c) and closed (x ≤ c)

timed automata are equivalent.
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Fig. 1. A timed automaton. The start state (state 1) is denoted by an arrow pointing
to it from nowhere. The final state (state 4) has two circles instead of one. The arrows
represent transitions. The labels, clock guards, and clock resets are specified for every
transition. When no guard is specified it means that the guard is always satisfied.

Definition 1. A timed automaton (TA) is a tuple A = 〈Q, X, Σ, Δ, q0, F 〉,
where Q is a finite set of states, X is a finite set of clocks, Σ is a finite set of
symbols, Δ is a finite set of transitions, q0 is the start state, and F ⊆ Q is a set
of final states.

A transition δ ∈ Δ is a tuple 〈q, q′, a, g, R〉, where q, q′ ∈ Q are the source and
target states, a ∈ Σ is a symbol called the transition label, g is a clock guard,
and R ⊆ X is the set of clock resets.

The final states are also known as accepting states. The non-final states (q ∈
Q \ F ) are known as rejecting states. Figure 1 shows an example of a TA. The
behavior of a TA and the way it depends on time values is defined by what is
called a run of a TA:

Definition 2. A finite run of a TA A = 〈Q, X, Σ, Δ, q0, F 〉 over a (finite) timed
string τ = (a1, t1) . . . (an, tn) is a finite sequence

(q0, v0)
t1−→ (q0, v0 + t1)

a1−→ (q1, v1)
t2−→ (q1, v1 + t2)

a2−→ (q2, v2) . . .

. . . (qn−1, vn−1)
tn−→ (qn−1, vn−1 + tn) an−→ (qn, vn)

such that for all 1 ≤ i ≤ n : qi ∈ Q, there exists a transition δ =
〈qi−1, qi, ai, g, R〉 ∈ Δ such that vi−1 + ti ∈ g, and for all x ∈ X : v0(x) = 0, and
vi(x) := 0 if x ∈ R, vi(x) := vi−1(x) + ti otherwise.

We call a pair (q, v) of a state and a valuation a timed state. In a run the sub-
sequence (qi, vi + t)

ai+1−→ (qi+1, vi+1) represents a state transition like in a finite
automaton without time. In addition to these, a TA makes time transitions rep-
resented by (qi, vi)

ti+1−→ (qi, vi + ti+1). A time transition of t time units increases
the value of all clocks of the TA by t. One can view such a transition as moving
from one timed state (q, v) to another timed state (q, v+t) while remaining in the
same untimed state q. We say that a timed string τ reaches a timed state (q, v)

in a TA A if there exist two time values t ≤ t′ such that (q, v′) t′
−→ (q, v′ + t′)

occurs somewhere in the run of A over τ and v = v′ + t. If a timed string reaches
a timed state (q, v) in A for some valuation v, it also reaches the untimed state
q in A. A timed string ends in the last (timed) state it reaches, i.e., (qn, vn)
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(or qn). A timed string τ is accepted by a TA A if τ ends in a final state qf ∈ F .
The set of all strings τ that are accepted by A is called the language L(A) of A.

Example 1. Consider the TA A of Fig. 1. The run of A over the timed string
τ = (a, 5)(a, 6)(a, 2)(b, 3) is given by: (1, (0, 0)) 5−→ (1, (5, 5)) a−→ (2, (0, 5)) 6−→
(2, (3, 8)) a−→ (3, (3, 0)) 2−→ (3, (5, 2)) a−→ (3, (0, 2)) 3−→ (3, (3, 5)) b−→
(4, (3, 5)), where a timed state (q, v) is written as (i, (j, k)) meaning that: q
is the state labeled with i, v(x) = i, and v(y) = j. Since state 4 is a final state, it
holds that τ ∈ L(A). Note that a run cannot reach state 4 directly after reaching
state 3 from state 2: the value of x is greater or equal to the value of y and the
guard of the transition to state 4 requires it to be less then the value of y.

In this paper we only consider deterministic timed automata. A TA A is called
deterministic (DTA) if for each possible timed string τ there exists at most one
run of A over τ . We only consider DTAs because non-deterministic TAs cannot
be identified efficiently in the limit due to the fact that untimed non-deterministic
automata are not efficiently identifiable in the limit [13].

3 Efficient Identification in the Limit

An identification process tries to find (learn) a model that explains a set of obser-
vations (data). The ultimate goal of such a process is to find a model equivalent
to the actual concept that was responsible for producing the observations, called
the target concept. In our case, we try to find a DTA model A that is equivalent
to a target language Lt, i.e., L(A) = Lt. If this is the case, we say that Lt is
identified correctly. We try to find this model using labeled data: an input sample
S is a pair of finite sets of positive examples S+ ⊆ Lt and negative examples
S− ⊆ Lc

t = {τ | τ �∈ Lt}. We modify the non-strict set inclusion operators for
input samples such that they operate on the positive and negative examples
separately, for example if S = (S+, S−) and S′ = (S′

+, S′−) then S ⊆ S′ means
S+ ⊆ S′

+ and S− ⊆ S′
−.

An identification process is called efficient in the limit (from polynomial time
and data) if the time and data it needs to converge to the target concept are both
polynomial in the size of the target concept. Efficient identifiability in the limit
can be proved by showing the existence of polynomial characteristic sets [13].

Definition 3. A characteristic set Scs of a target language Lt for an identifica-
tion algorithm A is an input sample {S+ ∈ Lt, S− ∈ Lc

t} such that:

– given Scs as input, algorithm A identifies Lt correctly, i.e., A returns an
automaton A such that L(A) = Lt,

– and given any input sample S′ ⊇ Scs as input, algorithm A still identifies Lt

correctly.3

3 This requirement is necessary to avoid collusion: otherwise it is possible to encode
Lt in S′ making identification a trivial task.
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Fig. 2. In order to reach state 4, we require a string of exponential length (2n). However,
due to the binary encoding of clock guards, the DTA is of size polynomial in n.

Definition 4. A class of automata C is efficiently identifiable in the limit if
there exist two polynomials p and q and an algorithm A such that:

– given an input sample of size n, A runs in time bounded by p(n),
– and for every target language Lt = L(A), A ∈ C, there exists a characteristic

set Scs of Lt for A of size bounded by q(|A|).

4 Timed Automata Are Not Efficiently Identifiable

DTAs are not efficiently identifiable in the limit. The reason is that in order to
reach some parts of a DTA, one may need a timed string of exponential length.
We give an example of this in Fig. 2. Formally, this example can be used to show
that in general DTAs are not polynomially reachable:

Definition 5. We call a class of automata C polynomially reachable if there
exists a polynomial function p, such that for any reachable state q from any
A ∈ C, there exists a string τ , with |τ | ≤ p(|A|), such that τ reaches q in A.

Proposition 1. The class of DTAs is not polynomially reachable.

Proof. Let C∗ = {An | n ≥ 1} denote the (infinite) class of DTAs defined by
Fig. 2. In any DTA An ∈ C∗, state q = 4 can be reached only if both x ≥ 2n

and y ≤ 1 are satisfied. Moreover, x ≤ 1 is satisfied when y is reset for the first
time, and later y can be reset only if y ≤ 1 is satisfied. Therefore, in order to
satisfy both y ≤ 1 and x ≥ 2n, y has to be reset 2n times. Hence, the shortest
string τ that reaches state q = 4 is of length 2n. However, since the clock guards
are encoded in binary, the size of An is only polynomial in n. Thus, there exists
no polynomial function p such that τ ≤ p(|An|). Since every An ∈ C∗ is a DTA,
DTAs are not polynomially reachable.

The non-polynomial reachability of DTAs implies non-polynomial distinguisha-
bility of DTAs:

Definition 6. We call a class of automata C polynomially distinguishable if
there exists a polynomial function p, such that for any two automata A, A′ ∈ C
such that L(A) �= L(A′), there exists a string τ ∈ L(A)  L(A′), such that
|τ | ≤ p(|A| + |A′|).
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Proposition 2. The class of DTAs is not polynomially distinguishable.

Proof. DTAs are not polynomially reachable, hence there exists no polyno-
mial function p such that for every state q of any DTA A, the length of the
shortest timed string τ that reaches q in A is bounded by p(|A|). So, there
is a DTA A with a state q for which the length of τ cannot be polynomially
bounded by p(|A|). Given this A = 〈Q, X, Σ, Δ, q0, F 〉, construct two DTAs
A1 = 〈Q, X, Σ, Δ, q0, {q}〉 and A2 = 〈Q, X, Σ, Δ, q0, ∅〉. By definition of A1 and
A2, τ is the shortest string such that τ ∈ L(A1)  L(A2). Since |A1| + |A2| ≤
2×|A|, there exists no polynomial function p such that the length of τ is bounded
by p(|A1| + |A2|). Hence the class of DTAs is not polynomially distinguishable.

It is fairly straightforward to show that polynomial distinguishability is a nec-
essary requirement for efficient identifiability:

Lemma 1. If a class of automata C is efficiently identifiable, then C is polyno-
mially distinguishable.

Proof. Suppose a class of automata C is efficiently identifiable, but not polyno-
mially distinguishable. Thus, there exists no polynomial function p such that for
any two automata A, A′ ∈ C (with L(A) �= L(A′)) the length of the shortest
timed string τ ∈ L(A)  L(A′) is bounded by p(|A| + |A′|). Let A and A′ be
two automata for which such a function p does not exist and let Scs and S′

cs

be their polynomial characteristic sets. Let S = Scs ∪ S′
cs be the input sample

for the identification algorithm A for C from Definition 4. Since C is not poly-
nomially distinguishable, neither Scs or S′

cs contains an example τ such that
τ ∈ L(A) and τ �∈ L(A′), or vice versa (because no distinguishing string is of
polynomial length). Hence, S = (S+, S−) is such that S+ ⊆ L(A), S+ ⊆ L(A′),
S− ⊆ L(A)C, and S− ⊆ L(A)C. The second requirement of Definition 3 now
requires that A returns both A and A′, a contradiction.

This leads to the main result of this section:

Theorem 1. DTAs cannot be identified efficiently.

Proof. By Proposition 2 and Lemma 1.

Or more specifically:

Corollary 1. DTAs with two or more clocks cannot be identified efficiently.

Proof. The corollary follows from the fact that the argument of Proposition 1
only requires a DTA with two clocks.

This result seems to shatter all hope of ever finding an efficient algorithm for
identifying DTAs. Instead of identifying general DTAs, we therefore would like
to focus on subclasses of DTAs that are efficiently identifiable.
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5 Polynomially Distinguishable Timed Automata

In the previous section we showed DTAs not to be efficiently identifiable in
general. The proof for this result was based on the fact that DTAs are not
polynomially distinguishable. Since polynomial distinguishability is a necessary
requirement for efficient identifiability, we are interested in classes of DTAs that
are polynomially distinguishable. In this section, we show that DTAs with a
single clock are polynomially distinguishable.

A one-clock DTA (1-DTA) is a DTA that contains exactly one clock, i.e.,
|X | = 1. Our proof that 1-DTAs are polynomially distinguishable is based on
the following observation:

– If a timed string τ reaches some timed state (q, v) in a 1-DTA A, then all
timed states (q, v′) with v′(x) ≥ v(x) can be reached in A.

This holds because when a timed string reaches (q, v) it could have made a
bigger time transition to reach all bigger valuations. This property is specific
to 1-DTAs: a DTA with multiple clocks can wait in q, but only those bigger
valuations can be reached where the difference between the clocks remains the
same. It is this property of 1-DTAs that allows us to polynomially bound the
length of a timed string that distinguishes between two 1-DTAs. We first use
this property to show that 1-DTAs are polynomially reachable. We then use a
similar argument to show the polynomial distinguishability of 1-DTAs.

Proposition 3. 1-DTAs are polynomially reachable.

Proof. Given a 1-DTA A = 〈Q, {x}, Σ, Δ, q0, F 〉, let τ = (a1, t1) . . . (an, tn) be a
shortest timed string such that τ reaches some state qn ∈ Q. Suppose that some
prefix τi = (a1, t1) . . . (ai, ti) of τ ends in some timed state (q, v). Then for any
j > i, τj cannot end in (q, v′) if v(x) ≤ v′(x). If this were the case, τi instead of
τj could be used to reach (q, v′), and hence a shorter timed string could be used
to reach qn, resulting in a contradiction. Thus, for some index j > i, if τj also
ends in q, then x has to be reset between index i and j in τ . In other words,
there exists some index i < k ≤ j and a state q′ �= q such that τk ends in (q′, v0),
where v0(x) = 0. It follows that, if x is reset at index i (τi ends in (q, v0)), there
cannot exist any index j > i such that τj ends in q. Hence:

– For every state q ∈ Q, the number of prefixes of τ that end in q is bounded
by the number of times x is reset by τ .

– For every state q′ ∈ Q, there exists at most one index i such that τi ends in
(q′, v0). In other words, x is reset by τ at most |Q| times.

Consequently, each state is visited at most |Q| times by the run of A on τ . Thus,
the length of a shortest timed string τ that reaches qn is bounded by |Q| ∗ |Q|,
which is polynomial in the size of A.

Given that 1-DTAs are polynomially reachable, one would guess that it should
be easy to prove the polynomial distinguishability of 1-DTAs. However, this is
not the case. The main problem is that when considering the difference between
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two 1-DTAs, we effectively have access to two clocks instead of one. Note that,
although we have access to two clocks, there are no clock guards that bound
both clock values. Because of this, we cannot construct DTAs such as the one
in Fig. 2. Our proof for the polynomial distinguishability of 1-DTAs follows the
same line of reasoning as our proof of Proposition 3, although it is much more
complicated to bound the amount of times x is reset. We have split the proof
of this bound into several proofs of smaller propositions and lemmas. The main
theorem follows from combining these propositions and lemmas.

For the remainder of this section, let A1 = 〈Q1, {x1}, Σ1, Δ1, q1,0, F1〉 and
A2 = 〈Q2, {x2}, Σ2, Δ2, q2,0, F2〉 be two 1-DTAs. Let τ = (a1, t1) . . . (an, tn)
be a shortest string that distinguishes between these 1-DTAs, i.e., τ ∈ L(A1),
τ �∈ L(A2), or vice versa, and the size of τ is minimal amongst all such timed
strings. The combined run of A1 and A2 over τ is the sequence:

〈q1,0, v1,0, q2,0, v2,0〉
t1−→ 〈q1,0, v1,0 + t1, q2,0, v2,0 + t1〉 . . .

. . . 〈q1,n−1, v1,n−1 + tn, q2,n−1, v2,n−1 + tn〉 an−→ 〈q1,n, v1,n, q2,n, v2,n〉

where (q1,0, v1,0)
t1−→ (q1,0, v1,0 + t1) . . . (q1,n−1, v1,n−1 + tn) an−→ (q1,n, v1,n) is the

run of A1 over τ and (q2,0, v2,0)
t1−→ (q2,0, v2,0 + t1) . . . (q2,n−1, v2,n−1 + tn) an−→

(q2,n, v2,n) is the run of A2 over τ . All the definitions of properties of runs
are easily adapted to properties of combined runs. We now use the notion of a
combined run to show the following:

Proposition 4. The length of τ is bounded by a polynomial in the size of A1,
the size of A2, and the number of times x1 or x2 is reset by τ .

Proof. Suppose that for some index 1 ≤ i ≤ n, τi ends in 〈q1, v1, q2, v2〉. Using
the same argument used in the proof of Proposition 3, one can show that for
every j > i and for some v′1 and v′2, if τj ends in 〈q1, v

′
1, q2, v

′
2〉, then there exists

an index i < k ≤ j such that τk ends in (q′1, v1,0) in A1 for some q′1 ∈ Q1, or
in (q′2, v2,0) in A2 for some q′2 ∈ Q2. Thus, for every combined state (q1, q2) ∈
Q1×Q2, the number of prefixes of τ that end in (q1, q2) is bounded by the number
of times r that τ resets either x1 or x2. Hence the length of τ is bounded by
|Q1| ∗ |Q2| ∗ r, which is polynomial in r and in the sizes of A1 and A2.

We want to bound the number of clock resets in the combined run of a shortest
distinguishing string τ . In order to do so, we first prove a restriction on the
possible clock valuations in a combined state (q1, q2) that is reached directly
after one clock x1 has been reset. In Proposition 3, there was exactly one possible
valuation, namely v(x) = 0. But since we now have an additional clock x2, this
restriction no longer holds. We can show, however, that after the second time
(q1, q2) is reached by τ directly after resetting x1, the valuation of x2 has to be
decreasing with respect to the previous times τ reached (q1, q2):

Lemma 2. If there exists (at least) three indexes 1 ≤ i < j < k ≤ n such
that τi ends in 〈q1, v1,0, q2, v2,i〉, τj ends in 〈q1, v1,0, q2, v2,j〉, and τk ends in
〈q1, v1,0, q2, v2,k〉, then the valuation of x2 has to be decreasing, i.e., it has to be
the case that v2,i(x2) > v2,k(x2) and v2,j(x2) > v2,k(x2).
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Proof. Without loss of generality we assume that τ ∈ L(A1), and consequently
τ �∈ L(A2). Let l = k + 1, and let τ−l = (al+1, tl+1) . . . (an, tn) denote the
suffix of τ starting at index l + 1, i.e., τ = τk(al, tl)τ−l. Assume for the sake
of contradiction that the valuations v2,i, v2,j , and v2,k are such that v2,i(x2) <
v2,j(x2) < v2,k(x2) (the argument below can be repeated for the case when
v2,j(x2) < v2,i(x2) < v2,k(x2)). Let d1 and d2 denote the differences in clock
values of x2 between the first and second, and second and third time (q1, q2) is
reached by τ , i.e., d1 = v2,j(x2) − v2,i(x2) and d2 = v2,k(x2) − v2,j(x2).

We are now going to make some observations about the acceptance property
of the runs of A1 and A2 over τ . But, instead of following the path specified by
τ , we are going to make a time transition in (q1, q2) and then only run the final
part of τ . Under our assumption, this is possible because we assume that (q1, q2)
is reached (at least) three times, and each time the valuation of x2 is increasing.
Hence, in A2 we can reach the timed state that is reached the last time (q1, q2)
is visited (at index k) by making a time transition. Because we reach the same
timed state and the subsequent run is identical, the acceptance property has to
remain the same. We know that τ = τk(al, tl)τ−l �∈ L(A2). Hence, it has to hold
that τj(al, tl +d2)τ−l �∈ L(A2) and that τi(al, tl +d1 +d2)τ−l �∈ L(A2). Similarly,
since τ ∈ L(A1), and since τi, τj , and τk all end in the same timed state (q1, v1,0)
in A1, it holds that τi(al, tl)τ−l ∈ L(A1) and that τj(al, tl)τ−l ∈ L(A1). Lets put
this type of information in a table (+ denotes true, and − denotes false):

value of t 0 d1 d2 (d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) +
τi(al, tl + t)τ−l ∈ L(A2) −
τj(al, tl + t)τ−l ∈ L(A1) +
τj(al, tl + t)τ−l ∈ L(A2) −

Since τ is a shortest distinguishing string, it cannot be that both τi(al, tl+t)τ−l ∈
L(A1) and τi(al, tl + t)τ−l �∈ L(A2) (or vice versa) hold for for some t ∈ N.
Otherwise, τi(al, tl + t)τ−l would be a shorter distinguishing string for A1 and
A2. This also holds if we replace i by j. Furthermore, since τi ends in the same
timed state as τj in A2, it holds that for all t ∈ N: τi(al, tl + t)τ−l ∈ L(A2) if
and only if τj(al, tl + t)τ−l ∈ L(A2). The table thus becomes:

value of t 0 d1 d2 (d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) + − −
τi(al, tl + t)τ−l ∈ L(A2) + − −
τj(al, tl + t)τ−l ∈ L(A1) + − −
τj(al, tl + t)τ−l ∈ L(A2) + − −

Now, since τi(al, tl + d1) ends in the same timed state as τj(al, tl) in A1, it
holds that τi(al, tl + d1)τ−l ∈ L(A1) if and only if τj(al, tl)τ−l ∈ L(A1) (they
reach the same timed state and then their subsequent runs are identical). More
generally, for any time value t ∈ N, τi(al, tl + d1 + t)τ−l ∈ L(A1) if and only if
τj(al, tl + t)τ−l ∈ L(A1). Hence we can extend the table in the following way:
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value of t 0 d1 d2 (d1 + d2) 2d1 (2d1 + d2) 3d1 (3d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) + + − − + − + −
τi(al, tl + t)τ−l ∈ L(A2) + + − − + − + −
τj(al, tl + t)τ−l ∈ L(A1) + + − − + − + −
τj(al, tl + t)τ−l ∈ L(A2) + + − − + − + −
This extention can be continued infinitely. Thus, for any value n ∈ N it holds
that τi(al, tl + n ∗ d1)τ−l ∈ L(A1) and τi(al, tl + n ∗ d1 + d2)τ−l �∈ L(A1). This
can only be the case if a different transition is fired for each of these |N| different
values for x. Consequently, A should contain an infinite amount of transitions,
and hence A is not a 1-DTA, a contradiction.

We have just shown that if τ reaches some combined state (q1, q2) twice directly
after a reset of x1 (i.e., 〈q1, v1,0, q2, v〉 is reached at least twice for some v), then
the valuation of x2 has to be decreasing with respect to the previous time it
reached (q1, q2). Without loss of generality we assume that x1 has already been
reset at least twice at previous indexes just before reaching (q1, q2). This can be
used to show that if τ reaches (q1, q2) again then:

– x2 is reset before again reaching (q1, q2) and resetting x1, and
– on the path from (q1, q2) to (q1, q2), there has to exist at least one transition

that cannot be satisfied by a valuation smaller than the one reached by τ .

The first statement follows from the observation that the valuation of x2 has to
be decreasing. The second statement holds because if there is no such transition,
then a timed string τ ′ exists that reaches a smaller valuation of x2 than τ when it
reaches (q1, q2) again. By the argument of Lemma 2, it cannot be the case that a
non-shortest distinguishing reaches a smaller valuation than τ . Hence this either
leads to a contradiction or τ ′ is a shortest distinguishing string. In this case the
statement holds for the shortest distinguishing string τ ′. Formally:

Corollary 2. If for some index i, τi ends in (q1, q2) directly after a reset of x1,
and if there exists an index j > i such that τj ends in (q1, q2) directly after a
reset of x1, then there exists an index i < k ≤ j such that τk ends in (q2,k, v2,0).

Proof. By Lemma 2, it holds that v2,i(x2) > v2,j(x2). The value of x2 can only
decrease if it is reset. Hence, there exists an index i < k ≤ j at which x2 is reset.

Corollary 3. If for some index i, τi ends in (q1, q2) directly after a reset of
x1, and if there exists another index j > i such that τj ends in (q1, q2) directly
after a reset of x1, then there exists an index i < l ≤ j such that τl ends
in 〈q1,l, v1,l, q2,l, v2,l〉, where either v1,l or v2,l is the minimum clock valuation
satisfying the last transition fired by τl in A1 or A2, respectively.

Proof. Suppose there exists no such index l. In this case, we can subtract 1 from
a time value occurring in τj to create a timed string τ ′

j that follows the same path
as τj , but ends in 〈q1, v1,0, q2, v2,j − 1〉 instead of 〈q1, v1,0, q2, v2,j〉. Without loss
of generality τ ′

j is not a shortest distinguishing string (otherwise the corollary
also holds). We know that τ ′

j reaches a smaller valuation than τl, i.e., it holds
that v2,j(x2) < v2,j(x2). Hence τ ′

j can be used to reach a contradiction using the
argument of Lemma 2.
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We now use these these two properties of τ to polynomially bound the number
of different ways in which x2 can be reset by τ before reaching (q1, q2). By Corol-
lary 2, this also polynomially bounds the amount of resets of x1. In combination
with Proposition 4 this proves that 1-DTAs are polynomially distinguishable.

Lemma 3. The number of times x2 is reset by τ before reaching a combined
state (q1, q2) directly after a reset of x1 is bounded by a polynomial in the sizes
of A1 and A2

Proof. Suppose x1 is reset at index 1 ≤ i ≤ n just before reaching (q1, q2), i.e.,
τi ends in 〈q1, v1,0, q2, v2,i〉. Thus, by Lemma 2, v2,i is decreasing with respect
to previous indexes. By Corollary 2, we know that x2 has reset before index
i. Let k < i be the largest index before i where x2 is reset. By Lemma 2, we
know that v1,k is decreasing with respect to previous indexes. We also know, by
Corollary 3, that there exists an index l such that the last transition that is fired
τl in either A1 or A2 has a clock guard g1 or g2 such that the minimal valuation
that satisfies g1 or g2 is v1,l or v2,l, respectively. Let us consider these two cases.

Suppose v1,l is the minimal valuation that satisfies g1. Since v1,k is decreasing,
and x1 is not reset between index k and l, it has to be the case that v1,l is
decreasing. Hence, if at later indexes i < m < o it again occurs that: x1 is reset
at index o just before reaching (q1, q2), m is the largest index before o where x2
is reset, and τm ends in the same combined state as τk, then there can be no
index p such that v1,p satisfies g1. Thus, if the same combined state (q′1, q

′
2) is

used to reset x2 before reaching (q1, q2) and resetting x1, there exists at least one
transition in A1 that can no longer be fired on the path from (q′1, q′2) to (q1, q2).
Hence, there are at most |Q1| ∗ |Q2| ∗ |Δ1| ways in which this can occur in τ .

Suppose v2,l is the minimal valuation that satisfies g2. Since v2,i is decreasing,
and x2 is not reset between index l and i, it has to be the case that v2,l is
decreasing. Hence if at some later index i < o it occurs again that x1 is reset at
index o just before reaching (q1, q2), then there can be no index p such that v2,p

satisfies g2. Hence, there are at most |Δ2| ways in which this can occur.
In conclusion, the number of times that x2 can be reset by τ before reaching

(q1, q2) directly after a reset of x1 is bounded by (|Q1| ∗ |Q2| ∗ |Δ1|+ |Δ2|), which
is polynomial in the sizes of A1 and A2.

We are now ready to show the main result of this section:

Theorem 2. 1-DTAs are polynomially distinguishable.

Proof. By Lemma 2, after the second time a combined state (q1, q2) is reached by
τ after resetting x1, it can only be reached again if x2 is reset. By Lemma 3, the
total number of different ways in which x2 can be reset before reaching (q1, q2)
and resetting x1 is bounded by a polynomial p in |A1| + |A2|. Hence the total
number of times a combined state (q1, q2) can be reached by τ directly after
resetting x1 is bounded by |Q1| ∗ |Q2| ∗p(|A1|+ |A2|). This is polynomial in |A1|
and |A2|. By symmetry, this also holds for combined states that are reached
directly after resetting x2. Hence, the total numer of resets of either x1 or x2 by
τ is bounded by a polynomial in |A1|+ |A2|. Since, by Proposition 4, the length
of τ is bounded by this number, 1-DTAs are polynomially distinguishable.
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6 Discussion and Conclusions

In this paper we have shown that deterministic timed automata (DTAs) cannot
be identified efficiently in the limit (Theorem 1). Moreover, this even holds if the
class of DTAs is only allowed access to two clocks (Corollary 1). Furthermore,
we have shown that DTAs with a single clock (1-DTAs) are polynomially distin-
guishable (see Definition 6 and Theorem 5). Polynomial distinguishability is a
necessary condition for efficient identifiability in the limit (Lemma 1). Therefore,
it is an important step for proving the efficient identifiability of 1-DTAs.

It is possible to construct for every DTA a DFA that accepts the same lan-
guage. However, this DFA is exponentially larger than the original DTA. There-
fore, it is not unexpected that DTAs cannot be identified efficiently. For 1-DTAs,
the standard method of creating a DFA that accepts the same language (i.e.,
the region construction [1]) still results in an exponential blowup of the amount
of states. Therefore, one may guess that 1-DTAs can not be identified efficiently.
Surprisingly, however, in this paper we have shown that 1-DTAs are polynomially
distinguishable, which makes them very likely to be efficiently identifiable.

Currently, we are writing an algorithm that we intend to use to prove effi-
cient identifiability based on the results in this paper. The idea is to write a
state merging and transition splitting algorithm like our algorithm for identify-
ing simple TAs (see [5]) that uses polynomial distinguishing strings to ensure
the correct identification of 1-DTAs. This is similar to the way state merging
was used to show the efficient identifiability of DFAs (see [12]).

Besides allowing us to write such an algorithm, the results in this paper have
several other important consequences and/or possible applications. We now give
a few examples of consequences and applications.

The fact that 1-DTAs are polynomially distinguishable relies on an important
lemma regarding their modeling power (Lemma 2). We believe this lemma has
consequences beyond the scope of the 1-DTA identification problem. For exam-
ple, when model checking a system of two 1-DTAs, the search space may be
reduced by restricting the search to smaller valuations in combined states.

The efficiency results have important consequences for anyone interested in
identifying timed systems (and TAs in particular). Most importantly, they tell
us that 1-DTAs seem to be a good model for identifying a timed system. Fur-
thermore, they show that anyone who needs to identify a DTA with two or more
clocks should either be satisfied with sometimes requiring an exponential amount
of data, or he or she has to find some other method to deal with this problem.
This also holds for other learning frameworks.

For instance, in related work, a query learning algorithm is described for iden-
tifying event recording automata (ERAs) [8]. An important property of ERAs
is that they are determinizable [7]. This property ensures that the language in-
clusion problem is decidable for determinizable TAs. Since language inclusion is
relevant for identification, this seems to indicate that ERAs are a class of au-
tomata that are well-suited for identification. However, a class of automata can
only be identified efficiently from queries if it is also efficiently identifiable in the
limit from data [14]. Thus, our results show that ERAs can never be identified
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efficiently since an ERA has access to multiple clocks. We believe it would be
interesting, and very valuable for real-world applications, to adapt the timed
query learning algorithm to the class of 1-DTAs. Our results indicate that this
may result in an efficient query learning algorithm for timed systems.
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funded by the Dutch Ministry of Economic Affairs under the SENTER program,
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