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Abstract. This paper presents PCFG-BCL, an unsupervised algorithm
that learns a probabilistic context-free grammar (PCFG) from positive
samples. The algorithm acquires rules of an unknown PCFG through it-
erative biclustering of bigrams in the training corpus. Our analysis shows
that this procedure uses a greedy approach to adding rules such that each
set of rules that is added to the grammar results in the largest increase
in the posterior of the grammar given the training corpus. Results of
our experiments on several benchmark datasets show that PCFG-BCL
is competitive with existing methods for unsupervised CFG learning.

1 Introduction

Context-free grammars (CFG) constitute an important class of grammars, with
a broad range of applications including programming languages, natural lan-
guage processing, and bioinformatics, among others. A probabilistic context-free
grammar (PCFG) is a CFG with probabilities assigned to grammar rules, which
can better accommodate the ambiguity and the need for robustness in real-world
applications. Hence, the problem of learning a PCFG from data (typically, pos-
itive samples generated by the target grammar) is an important problem in
grammar induction and machine learning. Several methods for learning (P)CFG
from positive data have been proposed. Some rely on different heuristics to itera-
tively construct an approximation of the unknown CFG [1,2,3,4,5]; others search
for a PCFG that has the largest posterior given the training corpus [6,7,8,9].

In this paper we propose PCFG-BCL, a new unsupervised algorithm that
learns a PCFG from a positive corpus. The proposed algorithm uses (distribu-
tional) biclustering to group symbols into non-terminals. This is a more natural
and robust alternative to the more widely used substitutability heuristic or distri-
butional clustering, especially in the presence of ambiguity, e.g., when a symbol
can be reduced to different nonterminals in different contexts, or when a context
can contain symbols of different nonterminals, as illustrated in [1]. PCFG-BCL
can be understood within a Bayesian structure search framework. Specifically,
it uses a greedy approach to adding rules to a partially constructed grammar,
choosing at each step a set of rules that yields the largest possible increase in
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the posterior of the grammar given the training corpus. The Bayesian framework
also supports an ensemble approach to PCFG learning by effectively combining
multiple candidate grammars. Results of our experiments on several benchmark
datasets show that the proposed algorithm is competitive with other methods
for learning CFG from positive samples.

The rest of the paper is organized as follows. Section 2 introduces the repre-
sentation of PCFG used in PCFG-BCL. Section 3 describes the key ideas behind
PCFG-BCL. Section 4 presents the complete algorithm and some implementa-
tion details. Section 5 presents the results of experiments. Section 6 concludes
with a summary and a brief discussion of related work.

2 Grammar Representation

It is well-known that any CFG can be transformed into the Chomsky normal
form (CNF), which only has two types of rules: A → BC or A → a. Because a
PCFG is simply a CFG with a probability associated with each rule, it is easy
to transform a PCFG into a probabilistic version of CNF.

To simplify the explanation of our algorithm, we make use of the fact that a
CNF grammar can be represented in an AND-OR form containing three types
of symbols, i.e., AND, OR, and terminals. An AND symbol appears on the left-
hand side of exactly one grammar rule, and on the right-hand side of that rule
there are exactly two OR symbols. An OR symbol appears on the left-hand side
of one or more rules, each of which has only one symbol on the right-hand side,
either an AND symbol or a terminal. A multinomial distribution can be assigned
to the set of rules of an OR symbol, defining the probability of each rule being
chosen. An example is shown below (with rules probabilities in the parentheses).

CNF The AND-OR Form
S → a (0.4) | AB (0.6) ORS → a (0.4) | ANDAB (0.6)
A → a (1.0) ANDAB → ORAORB

B → b1 (0.2) | b2 (0.5) | b3 (0.3) ORA → a (1.0)
ORB → b1 (0.2) | b2 (0.5) | b3 (0.3)

It is easy to show that a CNF grammar in the AND-OR form can be divided
into a set of AND-OR groups plus the start rules (rules with the start symbol on
the left-hand side). Each AND-OR group contains an AND symbol N , two OR
symbols A and B such that N → AB, and all the grammar rules that have one
of these three symbols on the left-hand side. In the above example, there is one
such AND-OR group, i.e., ANDAB, ORA, ORB and the corresponding rules (the
last three lines). Note that there is a bijection between the AND symbols and
the groups; but an OR symbol may appear in multiple groups. We may simply
make identical copies of such OR symbols to eliminate overlap between groups.

3 Main Ideas

PCFG-BCL is designed to learn a PCFG using its CNF representation in the
AND-OR form. Sentences in the training corpus are assumed to be sampled from
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an unknown PCFG under the i.i.d. (independent and identically distributed)
assumption.

Starting from only terminals, PCFG-BCL iteratively adds new symbols and
rules to the grammar. At each iteration, it first learns a new AND-OR group
by biclustering, as explained in Section 3.1. Once a group is learned, it tries to
find rules that attach the newly learned AND symbol to existing OR symbols,
as discussed in Section 3.2. This second step is needed because the first step
alone is not sufficient for learning such rules. In both steps, once a new set of
rules are learned, the corpus is reduced using the new rules, so that subsequent
learning can be carried out on top of the existing learning result. These two
steps are repeated until no further rule can be learned. Then start rules are
added to the learned grammar in a postprocessing step (Section 3.3). Since any
CNF grammar can be represented in the form of a set of AND-OR groups and a
set of start rules, these three steps are capable, in principle, of constructing any
CNF grammar.

We will show later that the first two steps of PCFG-BCL outlined above
attempt to find rules that yield the greatest increase in the posterior probability
of the grammar given the training corpus. Thus, PCFG-BCL performs a local
search over the space of grammars using the posterior as the objective function.

3.1 Learning a New AND-OR Group by Biclustering

Intuition. In order to show what it means to learn a new AND-OR group, it
is helpful to construct a table T , where each row or column represents a symbol
appearing in the corpus, and the cell at row x and column y records the number
of times the pair xy appears in the corpus. Because the corpus might have been
partially reduced in previous iterations, a row or column in T may represent
either a terminal or a nonterminal.

Since we assume the corpus is generated by a CNF grammar, there must be
some symbol pairs in the corpus that are generated from AND symbols of the
target grammar. Let N be such an AND symbol, and let A, B be the two OR
symbols such that N → AB. The set {x|A → x} corresponds to a set of rows
in the table T , and the set {y|B → y} corresponds to a set of columns in T .
Therefore, the AND-OR group that contains N , A and B is represented by a
bicluster [10] (i.e., a submatrix) in T , and each pair xy in this bicluster can be
reduced to N . See Fig.1 (a), (b) for an example, where the AND-OR group
shown in Fig.1(a) corresponds to the bicluster shown in Fig.1(b).

Further, since we assume the target grammar is a PCFG, we have two multino-
mial distributions defined on A and B respectively that independently determine
the symbols generated from A and B. Because the corpus is assumed to be gen-
erated by this PCFG, it is easy to prove that the resulting bicluster must be
multiplicatively coherent [10], i.e., it satisfies the following condition:

aik

ajk
=

ail

ajl
for any two rows i, j and two columns k, l (1)

where axy is the cell value at row x (x = i, j) and column y (y = k, l).
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ANDNP → ORDetORN

ORDet → the(0.67) | a(0.33)

ORN → circle(0.2)
| triangle(0.3) | square(0.5)

(a) An AND-OR group (with
rule probabilities in the paren-
theses)

(b) A part of the table T and the bicluster that
represents the AND-OR group. Zero cells are left
blank.

(c) A part of the expression-context matrix of the bicluster

Fig. 1. Example: a bicluster and its expression-context matrix

Given a bicluster in T , we can construct an expression-context matrix, in
which the rows represent the set of symbol pairs (expressions) in the bicluster,
the columns represent all the contexts in which these symbol pairs appear, and
the value in each cell denotes the number of times the corresponding expression-
context combination appears in the corpus (see Fig.1(c) for an example). Be-
cause the target grammar is context-free, if a bicluster represents an AND-OR
group of the target grammar, then the choice of the symbol pair is independent
of its context and thus the resulting expression-context matrix should also be
multiplicatively coherent, i.e., it must satisfy Eq.1.

The preceding discussion suggests an intuitive approach to learning a new
AND-OR group: first find a bicluster of T that is multiplicatively coherent and
has a multiplicatively coherent expression-context matrix, and then construct
an AND-OR group from it. The probabilities associated with the grammar rules
can be estimated from the statistics of the bicluster. For example, if we find
that the bicluster shown in Fig.1(b) and its expression-context matrix shown in
Fig.1(c) are both multiplicatively coherent, we can learn an AND-OR group as
shown in Fig.1(a).

Probabilistic Analysis. We now present an analysis of the intuitive idea out-
lined above within a probabilistic framework. Consider a trivial initial grammar
where the start symbol directly generates each sentence of the corpus with equal
probability. We can calculate how the likelihood of the corpus given the grammar
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is changed by extracting a bicluster and learning a new AND-OR group as de-
scribed above.

Suppose we extract a bicluster BC and add to the grammar an AND-OR
group with an AND symbol N and two OR symbols A and B. Suppose there
is a sentence d containing a symbol pair xy that is in BC. First, since xy is
reduced to N after this learning process, the likelihood of d is reduced by a
factor of P (N → xy|N) = P (A → x|A) × P (B → y|B). Second, the reduction
may make some other sentences in the corpus become identical to d, resulting in
a corresponding increase in the likelihood. Suppose the sentence d is represented
by row p and column q in the expression-context matrix of BC, then this second
factor is exactly the ratio of the sum of column q to the value of cell pq, because
before the reduction only those sentences represented by cell pq are equivalent to
d, and after the reduction the sentences in the entire column become equivalent
(the same context plus the same expression N).

Let LG(BC) be the likelihood gain resulting from extraction of BC; let Gk

and Gk+1 be the grammars before and after extraction of BC, D be the training
corpus; in the bicluster BC, let A denote the set of rows, B the set of columns,
rx the sum of entries in row x, cy the sum of entries in column y, s the sum
over all the entries in BC, and axy the value of cell xy; in the expression-context
matrix of BC, let EC-row denote the set of rows, EC-col the set of columns, r′p
the sum of entries in row p, c′q the sum of entries in column q, s′ the sum of all
the entries in the matrix, and EC(p, q) or a′

pq the value of cell pq. With a little
abuse of notation we denote the context of a symbol pair xy in a sentence d by
d−“xy”. We can now calculate the likelihood gain as follows:

LG(BC)=
P (D|Gk+1)
P (D|Gk)

=
∏

d∈D

P (d|Gk+1)
P (d|Gk)

=
∏

x∈A, y∈B, xy appears in d∈D

P (x|A)P (y|B)

∑
p∈EC-row EC(p, d − “xy”)
EC(“xy”, d − “xy”)

=
∏

x∈A

P (x|A)rx

∏

y∈B

P (y|B)cy

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq

It can be shown that, the likelihood gain is maximized by setting:

P (x|A) =
rx

s
P (y|B) =

cy

s

Substituting this into the likelihood gain formula, we get

max
Pr

LG(BC) =
∏

x∈A

(rx

s

)rx ∏

y∈B

(cy

s

)cy

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq

=

∏
x∈A rx

rx
∏

y∈B cy
cy

s2s
×

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq
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where Pr represents the set of grammar rule probabilities. Notice that s = s′ and
axy = r′p (where row p of the expression-context matrix represents the symbol
pair xy). Thus we have

max
Pr

LG(BC) =

∏
x∈A rx

rx
∏

y∈B cy
cy

ss
∏

x∈A
y∈B

axy
axy

×
∏

p∈EC-row r′p
r′

p
∏

q∈EC-col c
′
q
c′

q

s′s
′ ∏

p∈EC-row
q∈EC-col

a′
pq

a′
pq

The two factors in the righthand side are of the same form, one for the bicluster
and one for the expression-context matrix. This form of formula actually mea-
sures the multiplicative coherence of the underlying matrix (in a slightly different
way from Eq.18 of [10]), which is maximized when the matrix is perfectly coher-
ent. Therefore, we see that when extracting a bicluster (with the new grammar
rule probabilities set to the optimal values), the likelihood gain is the product of
the multiplicative coherence of the bicluster and its expression-context matrix,
and that the maximal gain in likelihood is obtained when both the bicluster and
its expression-context matrix are perfectly multiplicatively coherent. This vali-
dates the intuitive approach in the previous subsection. More derivation details
can be found in the appendix in [11].

It must be noted however, in learning from data, simply maximizing the like-
lihood can result in a learned model that overfits the training data and hence
generalizes poorly on data unseen during training. In our setting, maximizing the
likelihood is equivalent to finding the most coherent biclusters. This can result in
a proliferation of small biclusters and hence grammar rules that encode highly
specific patterns appearing in the training corpus. Hence learning algorithms
typically have to trade off the complexity of the model against the quality of fit
on the training data. We achieve this by choosing the prior P (G) = 2−DL(G)

over the set of candidate grammars, where DL(G) is the description length of the
grammar G. This prior penalizes more complex grammars, as complex grammars
are more likely to overfit the training corpus.

Formally, the logarithm of the gain in posterior as a result of extracting an
AND-OR group from a bicluster and updating the grammar from Gk to Gk+1
(assuming the probabilities associated with the grammar rules are set to their
optimal values) is given by:

max
Pr

LPG(BC) = max
Pr

log
P (Gk+1|D)
P (Gk|D)

=

⎛

⎝
∑

x∈A

rx log rx +
∑

y∈B

cy log cy − s log s −
∑

x∈A,y∈B

axy log axy

⎞

⎠

+

⎛

⎜⎝
∑

p∈EC-row

r′p log r′p +
∑

q∈EC-col

c′q log c′q − s′ log s′ −
∑

p∈EC-row
q∈EC-col

a′
pq log a′

pq

⎞

⎟⎠

+ α

⎛

⎝4
∑

x∈A,y∈B

axy − 2|A| − 2|B| − 8

⎞

⎠ (2)
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where LPG(BC) denotes the logarithmic posterior gain resulting from extrac-
tion of the bicluster BC; α is a parameter in the prior that specifies how much
the prior favors compact grammars, and hence it controls the tradeoff between
the complexity of the learned grammar and the quality of fit on the training
corpus. Note that the first two terms in this formula correspond to the gain in
log likelihood (as shown earlier). The third term is the logarithmic prior gain,
biasing the algorithm to favor large biclusters and hence compact grammars (see
the appendix in [11] for details).

3.2 Attaching a New AND Symbol under Existing OR Symbols

Intuition. For a new AND symbol N learned in the first step, there may exist
one or more OR symbols in the current partially learned grammar, such that
for each of them (denoted by O), there is a rule O → N in the target grammar.
Such rules cannot be acquired by extracting biclusters as described above: When
O is introduced into the grammar, N simply does not exist in the table T , and
when N is introduced, it only appears in a rule of the form N → AB. Hence, we
need a strategy for discovering such OR symbols and adding the corresponding
rules to the grammar. Note that, if there are recursive rules in the grammar,
they are learned in this step. This is because the first step establishes a partial
order among the symbols, and only by this step can we connect nonterminals to
form cycles and thus introduce recursions into the grammar.

Consider an OR symbol O that was introduced into the grammar as part of
an AND-OR group obtained by extracting a bicluster BC. Let M be the AND
symbol and P the other OR symbol in the group, such that M → OP . So O
corresponds to the set of rows and P corresponds to the set of columns of BC.

If O → N , and if we add to BC a new row for N , where each cell records
the number of appearances of Nx (for all x s.t. P → x) in the corpus, then
the expanded bicluster should be multiplicatively coherent, for the same reason
that BC was multiplicatively coherent. The new row N in BC results in a
set of new rows in the expression-context matrix. This expanded expression-
context matrix should be multiplicatively coherent for the same reason that the
expression-context matrix of BC was multiplicatively coherent. The situation is
similar when we have M → PO instead of M → OP (thus a new column is
added to BC when adding the rule O → N). An example is shown in Fig.2.

Thus, if we can find an OR symbol O such that the expanded bicluster and
the corresponding expanded expression-context matrix are both multiplicatively
coherent, we should add the rule O → N to the grammar.

Probabilistic Analysis. The effect of attaching a new AND symbol under
existing OR symbols can be understood within a probabilistic framework. Let
B̃C be a derived bicluster, which has the same rows and columns as BC, but
the values in its cells correspond to the expected numbers of appearances of the
symbol pairs when applying the current grammar to expand the current partially
reduced corpus. B̃C can be constructed by traversing all the AND symbols that
M can be directly or indirectly reduced to in the current grammar. B̃C is close to
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AND → OR1OR2

OR1 → big (0.6) | old (0.4)
OR2 → dog (0.6) | cat (0.4)

New rule: OR2 → AND

(a) An existing AND-OR group
and a proposed new rule

(b) The bicluster and its expan-
sion (a new column)

(c) The expression-context matrix and its expansion

Fig. 2. An example of adding a new rule that attaches a new AND under an existing
OR. Here the new AND is attached under one of its own OR symbols, forming a
self-recursion.

BC if for all the AND symbols involved in the construction, their corresponding
biclusters and expression-context matrices are approximately multiplicatively
coherent, a condition that is ensured in our algorithm. Let B̃C

′
be the expanded

derived bicluster that contains both B̃C and the new row or column for N . It
can be shown that the likelihood gain of adding O → N is approximately the
likelihood gain of extracting B̃C

′
, which, as shown in Section 3.1, is equal to

the product of the multiplicative coherence of B̃C
′

and its expression-context
matrix (when the optimal new rule probabilities are assigned that maximize
the likelihood gain). Thus it validates the intuitive approach in the previous
subsection. See the appendix in [11] for details.

As before, we need to incorporate the effect of the prior into the above analysis.
So we search for existing OR symbols that result in maximal posterior gains
exceeding a user-specified threshold. The maximal posterior gain is approximated
by the following formula.

max
Pr

log
P (Gk+1|D)
P (Gk|D)

≈ max
Pr

LPG(B̃C
′
) − max

Pr

LPG(B̃C) (3)

where Pr is the set of new grammar rule probabilities, Gk and Gk+1 is the
grammar before and after adding the new rule, D is the training corpus, LPG()
is defined in Eq.2. Please see the appendix in [11] for the details.
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3.3 Postprocessing

The two steps described above are repeated until no further rule can be learned.
Since we reduce the corpus after each step, in an ideal scenario, upon termination
of this process the corpus is fully reduced, i.e., each sentence is represented by
a single symbol, either an AND symbol or a terminal. However, in practice
there may still exist sentences in the corpus containing more than one symbol,
either because we have applied the wrong grammar rules to reduce them, or
because we have failed to learn the correct rules that are needed to reduce
them.

At this stage, the learned grammar is almost complete, and we only need to
add the start symbol S (which is an OR symbol) and start rules. We traverse the
whole corpus: In the case of a fully reduced sentence that is reduced to a symbol
x, we add S → x to the grammar if such a rule is not already in the grammar
(the probability associated with the rule can be estimated by the fraction of
sentences in the corpus that are reduced to x). In the case of a sentence that is
not fully reduced, we can re-parse it using the learned grammar and attempt to
fully reduce it, or we can simply discard it as if it was the result of noise in the
training corpus.

4 Algorithm and Implementation

The complete algorithm is presented in Algorithm 1, and the three steps are
shown in Algorithm 2 to 4 respectively. Algorithm 2 describes the “learning
by biclustering” step (Section 3.1). Algorithm 3 describes the “attaching” step
(Section 3.2), where we use a greedy solution, i.e., whenever we find a good
enough OR symbol, we learn the corresponding new rule. In both Algorithm 2
and 3, a valid bicluster refers to a bicluster where the multiplicative coherence of
the bicluster and that of its expression-context matrix both exceed a threshold
δ. This corresponds to the heuristic discussed in the “intuition” subsections in
Section 3, and it is used here as an additional constraint in the posterior-guided
search. Algorithm 4 describes the postprocessing step (Section 3.3), wherein to
keep things simple, sentences not fully reduced are discarded.

Algorithm 1. PCFG-BCL: PCFG Learning by Iterative Biclustering
Input: a corpus C
Output: a CNF grammar in the AND-OR form
1. create an empty grammar G
2. create a table T of the number of appearances of each symbol pair in C
3. repeat
4. G, C, T , N ⇐ LearningByBiclustering(G, C, T )
5. G, C, T ⇐ Attaching(N , G, C, T )
6. until no further rule can be learned
7. G ⇐ Postprocessing(G, C)
8. return G
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Algorithm 2. LearningByBiclustering(G, C, T )
Input: the grammar G, the corpus C, the table T
Output: the updated G, C, T ; the new AND symbol N
1. find the valid bicluster Bc in T that leads to the maximal posterior gain (Eq.2)
2. create an AND symbol N and two OR symbols A, B
3. for all row x of Bc do
4. add A → x to G, with the row sum as the rule weight
5. for all column y of Bc do
6. add B → y to G, with the column sum as the rule weight
7. add N → AB to G
8. in C, reduce all the appearances of all the symbol pairs in Bc to N
9. update T according to the reduction

10. return G, C, T , N

Algorithm 3. Attaching(N , G, C, T )
Input: an AND symbol N , the grammar G, the corpus C, the table T
Output: the updated G, C, T
1. for each OR symbol O in G do
2. if O leads to a valid expanded bicluster as well as a posterior gain (Eq.3) larger

than a threshold then
3. add O → N to G
4. maximally reduce all the related sentences in C
5. update T according to the reduction
6. return G, C, T

4.1 Implementation Issues

In the “learning by biclustering” step we need to find the bicluster in T that
leads to the maximal posterior gain. However, finding the optimal bicluster is
computationally intractable [10]. In our current implementation, we use stochas-
tic hill-climbing to find only a fixed number of biclusters, from which the one
with the highest posterior gain is chosen. This method is not guaranteed to find
the optimal bicluster when there are more biclusters in the table than the fixed
number of biclusters considered. In practice, however, we find that if there are
many biclusters, often it is the case that several of them are more or less equally
optimal and our implementation is very likely to find one of them.

Algorithm 4. Postprocessing(G, C)
Input: the grammar G, the corpus C
Output: the updated G
1. create an OR symbol S
2. for each sentence s in C do
3. if s is fully reduced to a single symbol x then
4. add S → x to G, or if the rule already exists, increase its weight by 1
5. return G
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Constructing the expression-context matrix becomes time-consuming when
the average context length is long. Moreover, when the training corpus is not
large enough, long contexts often result in rather sparse expression-context ma-
trices. Hence, in our implementation we only check context of a fixed size (by
default, only the immediate left and immediate right neighbors). It can be shown
that this choice leads to a matrix whose coherence is no lower than that of the
true expression-context matrix, and hence may overestimate the posterior gain.

4.2 Grammar Selection and Averaging

Because we use stochastic hill-climbing with random start points to do biclus-
tering, our current implementation can produce different grammars in different
runs. Since we calculate the posterior gain in each step of the algorithm, for each
learned grammar an overall posterior gain can be obtained, which is proportional
to the actual posterior. We can use the posterior gain to evaluate different gram-
mars and perform model selection or model averaging, which usually leads to
better performance than using a single grammar.

To perform model selection, we run the algorithm multiple times and return
the grammar that has the largest posterior gain. To perform model averaging, we
run the algorithm multiple times and obtain a set of learned grammars. Given
a sentence to be parsed, in the spirit of Bayesian model averaging, we parse the
sentence using each of the grammars and use a weighted vote to accept or reject
it, where the weight of each grammar is its posterior gain. To generate a new
sentence, we select a grammar in the set with the probability proportional to its
weight, and generate a sentence using that grammar; then we parse the sentence
as described above, and output it if it’s accepted, or start over if it is rejected.

5 Experiments

A set of PCFGs obtained from available artificial, English-like CFGs were used in
our evaluation, as listed in the table below. The CFGs were converted into CNF
with uniform probabilities assigned to the grammar rules. Training corpora were
then generated from the resulting grammars. We compared PCFG-BCL with
EMILE [1] and ADIOS [5]. Both EMILE and ADIOS produce a CFG from a
training corpus, so we again assigned uniform distributions to the rules of the
learned CFG in order to evaluate them.

Grammar Name Size (in CNF) Recursion Source
Num-agr 19 Terminals, 15 Nonterminals, 30 Rules No Boogie[12]
Langley1 9 Terminals, 9 Nonterminals, 18 Rules Yes Boogie[12]
Langley2 8 Terminals, 9 Nonterminals, 14 Rules Yes Boogie[12]
Emile2k 29 Terminals, 15 Nonterminals, 42 Rules Yes EMILE[1]
TA1 47 Terminals, 66 Nonterminals, 113 Rules Yes ADIOS[5]

We evaluated our algorithm by comparing the learned grammar with the
target grammar on the basis of weak generative capacity. That is, we compare
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the language of the learned grammar with that of the target grammar in terms
of precision (the percentage of sentences generated by the learned grammar
that are accepted by the target grammar), recall (the percentage of sentences
generated by the target grammar that are accepted by the learned grammar),
and F-score (the harmonic mean of precision and recall). To estimate precision
and recall, 200 sentences were generated using either the learned grammar or the
target grammar (as the case may be), and then parsed by the other grammar.

To ensure a fair comparison, we tuned the parameters of PCFG-BCL, EMILE
and ADIOS on a separate dataset before running the evaluation experiments.
Table 1 shows the experimental results. Each table cell shows the mean and
standard deviation of performance estimates from 50 independent runs. In each
run, each algorithm produced a single grammar as the output.

The results summarized in Table 1 show that PCFG-BCL outperformed both
EMILE and ADIOS, on each of the test grammars, and by substantial margins
on several of them. Moreover, in a majority of the tests, the standard deviations
of the performance estimates of PCFG-BCL were lower than those of EMILE and
ADIOS, suggesting that PCFG-BCL is more stable than the other two methods.
It should be noted however, that neither EMILE nor ADIOS assume the training
corpus to be generated from a PCFG, and thus they do not make full use of the
distributional information in the training corpus. This might explain in part the
superior performance of PCFG-BCL relative to EMILE and ADIOS.

We also examined the effect of grammar selection and grammar averaging (see
Section 4.2), on the four datasets where PCFG-BCL did not achieve a perfect F-
score on its own. In each case, we ran the algorithm for 10 times and then used
the resulting grammars to perform grammar selection or grammar averaging
as described in Section 4.2. The results (data not shown) show that grammar
selection improved the F-score by 1.5% on average, and the largest increase of
4.4% was obtained on the TA1-200 data; grammar averaging improved the F-
score by 3.2% on average, and the largest increase of 9.3% was obtained also on
the TA1-200 data. In addition, both grammar selection and averaging reduced
the standard deviations of the performance estimates.

Table 1. Experimental results. The training corpus sizes are indicated in the paren-
theses after the grammar names. P=Precision, R=Recall, F=F-score. The numbers in
the table denote the performance estimates averaged over 50 trials, with the standard
deviations in parentheses.

Grammar
Name

PCFG-BCL EMILE ADIOS
P R F P R F P R F

Num-agr (100) 100 (0) 100 (0) 100 (0) 50 (4) 100 (0) 67 (3) 100 (0) 92 (6) 96 (3)
Langley1 (100) 100 (0) 100 (0) 100 (0) 100 (0) 99 (1) 99 (1) 99 (3) 94 (4) 96 (2)
Langley2 (100) 98 (2) 100 (0) 99 (1) 96 (3) 39 (7) 55 (7) 76 (21) 78 (14) 75 (14)
Emile2k (200) 85 (3) 90 (2) 87 (2) 75 (12) 68 (4) 71 (6) 80 (0) 65 (4) 71 (3)
Emile2k (1000) 100 (0) 100 (0) 100 (0) 76 (7) 85 (8) 80 (6) 75 (3) 98 (3) 85 (3)
TA1 (200) 82 (7) 73 (5) 77 (5) 77 (3) 14 (3) 23 (4) 77 (24) 55 (12) 62 (14)
TA1 (2000) 95 (6) 100 (1) 97 (3) 98 (5) 48 (4) 64 (4) 50 (22) 92 (4) 62 (17)
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6 Summary and Discussion

6.1 Related Work

Several algorithms for unsupervised learning of CFG from only positive samples
are available in the literature. EMILE [1] uses a simpler form of biclustering to
create new nonterminals. It performs biclustering on an initial table constructed
from the unreduced corpus, finding rules with only terminals on the right-hand
side; and then it turns to the substitutability heuristic to find high-level rules.
In contrast, PCFG-BCL performs iterative biclustering that finds both kinds
of rules. ABL [2] employs the substitutability heuristic to group possible con-
stituents to nonterminals. Clark’s algorithm [4] uses the “substitution-graph”
heuristic or distributional clustering [3] to induce new nonterminals and rules.
These techniques could be less robust than the biclustering method, especially
in the presence of ambiguity as discussed in Section 1 and also in [1]. Both ABL
and Clark’s method rely on some heuristic criterion to filter non-constituents,
whereas PCFG-BCL automatically identifies constituents as a byproduct of
learning new rules from biclusters that maximize the posterior gain. ADIOS
[5] uses a probabilistic criterion to learn “patterns” (AND symbols) and the
substitutability heuristic to learn “equivalence classes” (OR symbols). In com-
parison, our algorithm learns the two kinds of symbols simultaneously in a more
unified manner.

The inside-outside algorithm [13,14], one of the earliest algorithms for learning
PCFG, assumes a fixed, usually fully connected grammar structure and tries
to maximize the likelihood, making it very likely to overfit the training corpus.
Subsequent work has adopted the Bayesian framework to maximize the posterior
of the learned grammar given the corpus [6,7], and has incorporated grammar
structure search [6,8]. Our choice of prior over the set of candidate grammars
is inspired by [6]. However, compared with the approach used in [6], PCFG-
BCL adds more grammar rules at each step without sacrificing completeness
(the ability to find any CFG); and the posterior re-estimation in PCFG-BCL is
more straightforward and efficient (by using Eq.2 and 3). An interesting recent
proposal within the Bayesian framework [9] involves maximizing the posterior
using a non-parametric model. Although there is no structure search, the prior
used tends to concentrate the probability mass on a small number of rules,
thereby biasing the learning in favor of compact grammars.

Some unsupervised methods [15,16] for learning grammatical structures other
than CFG with the goal of parsing natural language sentences also employ some
techniques similar to those used in CFG learning.

6.2 Summary and Future Work

We have presented PCFG-BCL, an unsupervised algorithm that learns a prob-
abilistic context-free grammar (PCFG) from positive samples. The algorithm
acquires rules of an unknown PCFG through iterative biclustering of bigrams in
the training corpus. Results of our experiments on several benchmark datasets
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show that PCFG-BCL is competitive with the state of the art methods for
learning CFG from positive samples. Work in progress is aimed at improving
PCFG-BCL e.g., by exploring alternative strategies for optimizing the objective
function, and more systematic empirical evaluation of PCFG-BCL on real-world
applications (e.g., induction of grammars from natural language corpora) with
respect to both weak and strong generative capacity.
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