
A Note on the Relationship between
Different Types of Correction Queries�

Cristina Tı̂rnăucă

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
cristina.bibire@estudiants.urv.es

http://www.grlmc.com

Abstract. The adult-child interaction which takes place during the
child’s language acquisition process has been the inspiration for Angluin’s
teacher-learner model [1], the forerunner of today’s active learning field.
But the initial types of queries have some drawbacks: equivalence queries
are both unrealistic and computationally costly; membership queries, on
the other hand, are not informative enough, not being able to capture
the feedback received by the child when he or she makes mistakes. This
is why a new type of query (called correction query), weaker than the
first one and more informative than the second, appeared. While in the
case of natural languages it is well understood what correcting means,
in formal language theory different objects may require different types
of corrections. Therefore, several types of correction queries have been
introduced so far. In this paper we investigate the relations existing be-
tween different models of correction queries, as well as their connection
to other well-known Gold-style and query learning models. The study
comprises results obtained in the general case when time complexity is-
sues are ignored, and in the restricted case when efficiency constraints
are imposed.

Keywords: query learning, Gold-style learning, correction query.

1 Introduction

The way children learn their mother language is an amazing process. They receive
examples of words in the vocabulary and sentences in that language, and after
some transitory period - in which they still make mistakes and are corrected by
adults - they are suddenly able to express themselves fluently and errorless.

It has been argued that the formal model that best describes the child-adult
interaction within the process of child acquiring his or her native language is
the query learning model [1]. The most investigated types of queries, and in the

� This work was possible thanks to the FPU Fellowships AP2004-6968 from the Span-
ish Ministry of Education and Science.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 213–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.grlmc.com

214 C. T̂ırnăucă

same time the first introduced, are membership queries (MQs) and equivalence
queries (EQs).

There are quite a few reasons though for which people working in grammati-
cal inference, and especially in active learning, have been trying to find effective
query learning algorithms that avoid the use of EQs. First of all, EQs are com-
putationally costly. Secondly, they are quite unnatural for a real-life setting: no
child would ever ask his mother if the current hypothesis represents the correct
grammar of the language. Finally, it might happen that the teacher does not
even have a grammar for the target language - take, for example, the case of
native speakers that did not ever studied grammar.

On the other hand, when answering a MQ in the negative way, no other
information is provided by the teacher. Inspired by the way adults guide the
process of children’s language acquisition by correcting them when necessary,
the authors of [2] propose a modified version of MQs, called correction query
(CQ), that incorporates this idea. More precisely, the difference consists in the
fact that for strings not belonging to the target language, the teacher must
provide the learner with a correction.

Whereas in a real-life setting correcting an ungrammatical utterance is done,
most of the times, by replacing the error with a correct (sequence of) word(s),
if the target is a formal language, then one needs to adapt the type of correc-
tion to best suit the particularities of that language class. And indeed, since
their introduction, several types of corrections have been proposed in order to
learn different objects: prefix correction queries [2] and length bounded correc-
tion queries [3] for deterministic finite automata, edit distance based correction
queries for balls of strings [4], regular expressions and pattern languages [5], the
nearest positive example [6] for sets of positive integers, and structural correction
queries for regular tree languages [7].

Intuitively, this new type of query can be placed somewhere between MQs
and EQs. But what exactly can we learn with CQs, and what can be done in
polynomial time? These are the questions whose answers constitute the object
of the present paper. The first steps in this research direction have been done
already: Tı̂rnăucă and Kobayashi [8] investigate the relations existing between
the model of learning with prefix correction queries (PCQs) and other well-known
Gold-style and query learning models when time complexity issues are neglected
(they show, among other things, that learning with PCQs is strictly less powerful
than learning with EQs, and more powerful than the model of learning with
MQs). Moreover, this study is continued in [9] by imposing efficiency constraints.

In this paper we focus on the identification of formal languages ranging over
indexable classes of non-empty recursive languages as target concepts when the
learner is allowed to ask one of the other two types of CQs: length bounded
correction queries (LBCQs) and edit distance correction queries (EDCQs).

The article is organized as follows. Preliminary notions are presented in Sec-
tion 2. In the third section we show that when we neglect time complexity issues,
learning with LBCQs or EDCQs is basically the same as learning with MQs. In
Section 4 we concentrate on polynomial time algorithms and we present the

A Note on the Relationship between Different Types of Correction Queries 215

relations between different models of learning with CQs. We conclude with fur-
ther remarks and future work topics in Section 5.

2 Preliminaries

Let Σ be a finite set of symbols called alphabet, and Σ∗ the set of strings over Σ.
A language L over Σ is a subset of Σ∗. The elements of L are called strings. Let
u, v, w be strings in Σ∗ and |w| be the length of the string w. λ is a special string
called the empty string and has length 0. We denote by uv the concatenation of
the strings u and v. If w = uv for some u, v in Σ∗, then u is a prefix of w and v
is a suffix of w. By TailL(u) we denote the set {v | uv ∈ L}.

Assume that Σ is a totally ordered set, and let ≺L be the lexicographical
order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either
|u| < |v|, or else |u| = |v| and u ≺L v. In other words, strings are compared first
according to length and then lexicographically. In the rest of the paper strings
are always compared with respect to the lex-length order.

The edit distance between two strings w and w′, denoted d(w, w′) in the
sequel, is the minimum number of edit operations needed to transform w into w′

and can be computed in O(|w| · |w′|) time by dynamic programming [10]. The
edit operations are either (1) deletion: w = uav and w′ = uv, or (2) insertion:
w = uv and w′ = uav, or (3) substitution: w = uav and w′ = ubv, where
u, v ∈ Σ∗, a, b ∈ Σ and a �= b.

2.1 Learning Models

An indexed family (or indexable class) Let C = (Li)i≥1 is a recursive enumeration
of non-empty languages such that membership in Li is uniformly decidable for
all i ≥ 1, i.e., there is a computable function that, for any w ∈ Σ∗ and i ≥ 1,
returns 1 if w ∈ Li, and 0 otherwise.

Gold-Style Learning. An inductive inference machine (IIM) Alg is an algo-
rithmic device that reads longer and longer initial segments σ of a text (infor-
mant), and outputs numbers as its hypotheses. Given a text (an informant) σ for
a language L ∈ C, Alg learns L from σ if the sequence of hypotheses output by
Alg , when fed σ, stabilizes on a number i with Li = L. We say that Alg learns
C from text (informant) if it identifies each L ∈ C from every corresponding text
(informant). A slightly modified version of the learning in the limit model is the
so-called model of conservative learning (see [12,13] for more details). A conser-
vative IIM is only allowed to change its mind in case its actual guess contradicts
the data seen so far.

We denote by LimTxt (LimInf) the collection of all indexable classes C for
which there is an IIM Alg such that Alg identifies C from text (informant). One
can similarly define ConsvTxt and ConsvInf for which the inference machines
should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times before
returning its final and correct hypothesis, in general it is not decidable whether

216 C. T̂ırnăucă

or not it has already output its final hypothesis. In case that for a given indexable
class C, there exists an IIM Alg such that given any language L ∈ C and any
text (or informant) for L, the first hypothesis i output by Alg is already correct
(i.e., Li = L), we say that Alg finitely identifies C (see [14]). The corresponding
models FinTxt and FinInf are defined as above.

Query Learning. In this model a learner has access to an oracle or a teacher
that truthfully answers queries of a specified kind. Conform [15], a query learner
Alg is an algorithmic device that, depending on the reply of the previous queries,
either computes a new query, or returns a hypothesis and halts. More formally, let
C be an indexable class and L an arbitrary language in C. The query learner Alg
learns L using some type of queries if it eventually halts and its only hypothesis,
say i, correctly describes L (i.e., Li = L). So, Alg returns its unique and correct
guess i after only finitely many queries. Moreover, Alg learns the class C using
some type of queries if it learns every language of that class using queries of the
specified type.

Apart from the well-known membership and equivalence queries, in this paper
we investigate three types of correction queries. Let L be a language over the
alphabet Σ and w a string in Σ∗.

– Prefix correction queries (Becerra, Dediu, Tı̂rnăucă [2])
The prefix correcting string of w with respect to L, denoted CL(w), is

CL(w) =
{

min{v | v ∈ TailL(w)}, if TailL(w) �= ∅
Θ, otherwise.

Hence, CL is a function from Σ∗ to Σ∗ ∪ {Θ}. Note that CL(w) is λ if and
only if w ∈ L, and CL(w) equals Θ if and only if w is not the prefix of any
of the strings in L.

– Length bounded correction queries (Tı̂rnăucă [3])
Let us fix an integer l. The l-bounded correction of w with respect to L,
denoted Cl

L(w), is

Cl
L(w) = {v ∈ TailL(w) | |v| ≤ l}.

So, Cl
L is a function from Σ∗ to P(Σ∗). Note that λ ∈ Cl

L(w) if and only if
w ∈ L.

– Edit distance correction queries (Becerra et al. [4])
The edit distance correction of w with respect to L, denoted EdcL(w), is

EdcL(w) =
{

Yes, if w ∈ L
one string of {w′ ∈ L | d(w, w′) is minimum}, if w �∈ L.

The collection of all indexable classes C for which there is a query learner Alg
such that Alg learns C using MQs is denoted by MemQ . EquQ , PCorQ , lBCorQ
and EditCorQ are defined similarly for the models of learning with EQs, PCQs,
l-bounded correction queries (lBCQs) and EDCQs, respectively.

There is a strong relation between query learning models and Gold-style learn-
ing models. The following strict hierarchy holds [15]:

FinTxt ⊂ FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ .

A Note on the Relationship between Different Types of Correction Queries 217

3 Learning with Correction Queries

In [8], necessary and sufficient conditions for a language class to be learnable with
PCQs are given, facilitating a comparison between the model of learning with
PCQs and other well-known learning models. The results can be summarized as
follows:

– MemQ is strictly included in PCorQ ,
– PCorQ and ConsvTxt are incomparable, and
– PCorQ is strictly included in LimTxt .

We continue this study for LBCQs and EDCQs.

3.1 Learning with Length Bounded Correction Queries

Note that in the case of DFAs, returning the answer to a PCQ can be easily
done in polynomial time. However, when the target concept ranges over arbi-
trary recursive languages, the answer to a PCQ might be very long or not even
computable (given a recursive language L and a string w, one cannot decide,
in general, if w is a prefix of a string in L). A possible solution to avoid very
long (or infinite) searches is to restrict the search space to only short enough
suffixes. So, let us consider the model in which the learner must identify the
target language after asking a finite number of lBCQs for a fixed integer l ≥ 0.

Since any 0BCQ can be simulated by a MQ and the other way around, it is
clear that when l = 0, learning with lBCQs is equivalent to learning with MQs.
It is though less straightforward that the same property holds for an arbitrary
l. We show in the sequel that for any l, a language class is learnable with MQs
if and only if it is learnable with lBCQs.

Theorem 1. For any l ≥ 0, lBCorQ = MemQ.

Proof. Since for any language L and any string w in Σ∗, if we know the answer
to Cl

L(w) we also know if the string w is in L or not, it is clear that lBCorQ
includes MemQ . Hence, we have to show only that lBCorQ ⊆ MemQ .

Let us consider a language class C in lBCorQ , and let Alg be an l-bounded
correction query learner for C. We modify Alg such that instead of submitting an
lBCQ for a given string w, to submit MQs for all the strings wu with u ∈ Σ≤l.
The learner will use this information to construct the answer for Cl

L(w) (recall
that Cl

L(w) = {u ∈ Σ≤l | wu ∈ L}). Clearly, this modified version of Alg is a
query learner algorithm that learns C using MQs. ��
This theorem is basically saying that having an oracle that can return at once
the answers for more than one MQ (one lBCQ contains the answer for 1+ |Σ|+
. . .+|Σ|l MQs) does not increase the learnability power of the model (that is, the
learning with MQs model). The result was somehow expected if we recall that
time complexity issues are neglected in our analysis. Moreover, this allows us to
talk about the model of learning with LBCQs in general, without specifying a
given length bound. Therefore, we can talk about LBCorQ , the collection of all
language classes C for which there exists an l ≥ 0 and a query learner Alg such
that Alg learns C using a finite number of l-bounded correction queries.

218 C. T̂ırnăucă

3.2 Learning with Edit Distance Correction Queries

Let us now investigate the model of learning with EDCQs. It is clear that any
oracle answering EDCQs would implicitly give us the answer for the correspond-
ing MQ, so EditCorQ trivially includes MemQ . In fact, the two learning models
are equivalent:

Theorem 2. EditCorQ = MemQ.

Proof. Let us first show that having an MQ oracle allows us to compute the
answer to an EDCQ using a finite number of MQs. Indeed, given a non-empty
recursive language L and a string w in Σ∗, the following algorithm computes
the value of EdcL(w) by asking only MQs.

Algorithm 1. An algorithm that computes EdcL(w) with an MQ oracle
1: input: L, w
2: ask the oracle if w is in L
3: if the answer is Yes then
4: output Yes
5: else
6: while TRUE do
7: i := 1
8: for all u such that d(w, u) = i do
9: ask the oracle if u is in L

10: if the answer is Yes then
11: output u and halt
12: end if
13: end for
14: i := i + 1
15: end while
16: end if

Clearly, Algorithm 1 terminates by outputting a string u ∈ L such that there
is no v ∈ L with d(w, v) < d(w, u). Note that for a given w ∈ Σ∗ and i ∈ IN
there are only a finite number of strings v ∈ Σ∗ such that d(w, v) = i, and there
exists an algorithm who can generate all these strings (remember that we are not
concerned with the complexity of the resulting algorithm - the only requirement
is to return the answer after finite steps).

Now, if we take C to be a language class in EditCorQ , then there exists an
algorithm Alg that learns C using EDCQs. Alg can be modified to use the MQ
oracle instead of the EDCQ oracle to get the necessary answers as described
above. We obtained an algorithm that learns C using MQs only, so EditCorQ ⊆
MemQ which concludes our proof. ��

3.3 The Global Picture

A complete picture displaying the relations between all discussed versions of
query learning and Gold-style learning is obtained (see Figure 1).

A Note on the Relationship between Different Types of Correction Queries 219

Fig. 1. A hierarchy of Gold-style and query learning models

As we have already mentioned, the results in this section are all about learning
with queries where we do not take into account time complexity issues. So, what
happens if we restrict to polynomial time learning? We will answer this question
in the next section.

4 Polynomial Time Learning with Correction Queries

Although from a theoretical point of view it is important to know which lan-
guage classes are inferable in finite time steps (see the proof of Proposition 3 for
a relevant example), what matters in practice is the efficiency of the algorithms.
In this section we investigate the relations between different types of CQs when
complexity issues are taken into consideration. We will see that there are situa-
tions when, although two query types are equally powerful in the general case,
the equality is not preserved under efficiency constraints. So far we know that
learning with MQs is a strictly weaker model than learning with PCQs for both
finite time algorithms [8] and polynomial ones [9]. We show by an example why
one can not automatically generalize a result obtained in the general case to the
restricted model of polynomial time learning.

Let us first recall that learning with EQs is strictly more powerful than learn-
ing with PCQs when ignoring time complexity: PCorQ is strictly included in
LimTxt [8], and LimTxt is strictly included in EquQ [15]. Nevertheless, there
exists a class of languages, namely the zero-reversible languages, that is poly-
nomially learnable with PCQs [9] and not identifiable in polynomial time with
EQs [16].

For a better comprehension of our results, let us introduce some notations. Let
C = (Li)i≥1 be an indexable class. We denote by PolMemQ the collection of all
indexable classes C for which there exists a polynomial p(·) and an algorithm Alg

220 C. T̂ırnăucă

that learns any language L in C in time O(p(size(L))) by asking a finite number
of MQs. Similarly, PolPCorQ , Pol lBCorQ and PolEditCorQ are defined for the
models of learning with PCQs, lBCQs and EDCQs, respectively.

4.1 Polynomial Time Learning with LBCQs

Let us first recall that there is basically no difference between a 0-BCQ and
an MQ, so Pol0BCorQ = PolMemQ . Now, if we take l to be a fixed positive
integer, then the following property holds.

Proposition 1. Pol(l-1)BCorQ = Pol lBCorQ for any l ≥ 1.

Proof. Since one can easily extract the answer to an (l − 1)BCQ from the cor-
responding lBCQ, it is clear that Pol(l-1)BCorQ is included in Pol lBCorQ . Let
us now show that the other inclusion holds as well. Let C be an indexed family
of languages in Pol lBCorQ and Alg a polynomial time algorithm that learns C
with lBCQs. Note that for any language L over Σ, any w ∈ Σ∗ and any l ≥ 1,

Cl
L(w) = {u ∈ Σ≤l | wu ∈ L}

= {u ∈ Σ≤l−1 | wu ∈ L} ∪ {au | a ∈ Σ, u ∈ Σl−1 and wau ∈ L}
= Cl−1

L (w) ∪ {au | a ∈ Σ, u ∈ Cl−1
L (wa)}

= Cl−1
L (w) ∪

⋃
a∈Σ aCl−1

L (wa).
So, one can modify Alg such that instead of asking an lBCQ for the string

w, to ask a finite number of (l − 1)BCQs (|Σ| + 1 queries to be precise) for the
strings wa with a in {λ}∪Σ. Clearly, the modified algorithm is still polynomial.
Hence, Pol(l-1)BCorQ equals Pol lBCorQ .

We draw the conclusion that Pol lBCorQ = PolMemQ for any l ≥ 0, and hence,
we can talk about the model of polynomial learning with LBCQs in general, with-
out specifying the length bound (we denote by PolLBCorQ the collection of all
language classes C for which there exists an l ≥ 0 such that C is in Pol lBCorQ).
So, having the possibility to get answers for more than one MQ at once does not
add any more learning power, even if we impose time restrictions.

4.2 Polynomial Time Learning with EDCQs

We continue the analysis done in Section 3.2 about the power of learning with
EDCQs, this time by taking into account time complexity issues. We have seen
that what happens in the general model does not necessary carry on to the
polynomially bounded model. Let us recall the already known results:

– MemQ � PCorQ [8] and PolMemQ � PolPCorQ [9],
– PCorQ � EquQ [8] but PolPCorQ �⊆ PolEquQ (see page 8 above, lines 5-8),
– MemQ = LBCorQ and PolMemQ = PolLBCorQ ,
– EditCorQ = MemQ .

We show that in the case of EDCQs, the equality is not preserved.

Proposition 2. PolMemQ � PolEditCorQ.

A Note on the Relationship between Different Types of Correction Queries 221

Proof. Recall that EdcL(w) is Yes if and only if w belongs to L. Assume that
C is a language class in PolMemQ and let Alg be a polynomial time algorithm
that learns every L of C after asking a finite number of MQs. Obviously, the
number of MQs asked while Alg is running with input L is also bounded by a
polynomial, let us say p(n), where n is the size of the target language L. If we
modify Alg so that instead of asking the oracle a MQ for the string w, to ask an
EDCQ for the same string, we obtain another algorithm Alg′ which learns C with
EDCQs (it just uses the information received from asking EDCQs to determine
whether or not the given string is in the target language). The only thing left to
be shown is that Alg′ is still polynomial. But this is clear if we notice that Alg′

performs at most p(n) more operations than Alg (for each queried string w it
compares EdcL(w) with Yes). Since Alg′ is a polynomial time algorithm that
learns C using EDCQs, we obtain that C is in PolEditCorQ .

Moreover, if S = (Lw)w∈Σ∗ is the class of singleton languages Lw = {w} over
the alphabet Σ, then S can be used as a separating language class:

– S �∈ PolMemQ since any algorithm that learns S using MQs might need to
ask |Σ| + |Σ|2 + . . . + |Σ||w| MQs in the worst case when running on input
language Lw;

– S ∈ PolEditCorQ since there exists a very simple EDCQ algorithm for this
class. Indeed, it is enough to ask one EDCQ for an arbitrarily chosen string
w. The algorithm just outputs w, if the oracle’s answer is Yes, and w′ if
the answer returned by the oracle is the string w′. The algorithm described
above is clearly polynomial in the size of the target language. ��

So learning with EDCQs is strictly more powerful than leaning with MQs when
we restrict to efficient algorithms.

4.3 The Global Picture

In the end of the previous section we exhibited a complete picture of the relations
existing between several models of learning with CQs and other learning models.
We have seen that when we neglect time complexity issues learning with LBCQs
and EDCQs is basically the same as learning with MQs, whereas PCQs are the
only ones adding some power to the model.

When we restrict to polynomial time algorithms, things are changing. And
although having an LBCQs oracle does still not improve on the learnability
power with respect to the MQ learning model, an EDCQ oracle or a PCQ oracle
does. It is less clear what relation is between learning with EDCQs and learning
with PCQs when we restrict to efficient algorithms.

Let us first notice that the class of singleton languages is in PolPCorQ ∩
PolEditCorQ . Moreover, we argue that there are languages polynomial time
learnable with PCQs for which there is no efficient EDCQ algorithm.

Proposition 3. PolPCorQ\PolEditCorQ �= ∅.

Proof. From [9] we know that the class of k-reversible languages is in PolPCorQ
and not in MemQ . But MemQ = EditCorQ by Theorem 2 (recall we mentioned

222 C. T̂ırnăucă

that sometimes theoretical results like this one might be useful), so k-reversible
languages are not identifiable in finite time steps with EDCQs, and hence, they
can not be polynomial time learnable with EDCQs either. ��
To complete the picture, we would like to be able to say if there are language
classes polynomial time learnable with EDCQs for which there is no efficient
PCQ algorithm. We conjecture that the two classes PolEditCorQ and PolPCorQ
are incomparable (see Figure 2).

Fig. 2. Different types of correction queries

Our candidate for showing that PolEditCorQ\PolPCorQ �= ∅ is a subset of
the class BΣ = (Br(w))w∈Σ∗,r∈IR, where Br(w) = {v ∈ Σ∗ | d(v, w) ≤ r} is
a ball of center w and radius r. The authors of [4] show that for the so-called
q-good balls (the balls Br(w) for which there exists a polynomial q(·) such that
the radius r is no longer than q(|w|)), there exists an EDCQ algorithm which
runs in polynomial time in the size of (the representation of) the language. So,
what is left to be shown is that PCQs are not very useful in the process of leaning
this particular class.

A slightly different type of EDCQ is used in [5] for learning the class of pattern
languages: if the queried string is not in the target language, then the oracle
returns the positive example with a smallest distance from the queried string
and previously not used in the learning process. Moreover, preference is given to
correcting strings of the same length, if any, and among those having the same
length, the smallest one with respect to the lexicographical order is returned.
Kinber describes in [5] an efficient algorithm that learns any pattern language
with this modified type of EDCQ. We strongly believe that this requirement
(i.e., that the oracle must not return as a correction any of the strings which
appeared before) is actually mandatory, that is, there is no algorithm which can
learn the class of pattern languages with regular EDCQs. We leave this as an
open problem.

A Note on the Relationship between Different Types of Correction Queries 223

Acknowledgements

Special thanks to Colin de la Higuera for valuable advices, and to the anonymous
reviewers for their remarks and suggestions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

2. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from correction
and equivalence queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T.,
Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,
Heidelberg (2006)

3. T̂ırnăucă, C.: Learning reversible languages from correction queries only,
http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/
publications.htm

4. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of
strings with correction queries. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 18–29. Springer, Heidelberg (2007)

5. Kinber, E.: On learning regular expressions and patterns via membership and cor-
rection queries (manuscript, 2008)

6. Jain, S., Kinber, E.B.: One-shot learners using negative counterexamples and near-
est positive examples. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT
2007. LNCS (LNAI), vol. 4754, pp. 257–271. Springer, Heidelberg (2007)

7. T̂ırnăucă, C.I., T̂ırnăucă, C.: Learning regular tree languages from correction and
equivalence queries. Journal of Automata, Languages and Combinatorics 12(4),
501–524 (2007)

8. T̂ırnăucă, C., Kobayashi, S.: A characterization of the language classes learnable
with correction queries. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 398–407. Springer, Heidelberg (2007)

9. T̂ırnăucă, C., Knuutila, T.: Polynomial time algorithms for learning k-reversible
languages and pattern languages with correction queries. In: Hutter, M., Serve-
dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 272–284.
Springer, Heidelberg (2007)

10. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
ACM 21(1), 168–173 (1974)

11. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765
(1982)

12. Zeugmann, T., Lange, S., Kapur, S.: Characterizations of monotonic and dual mono-
tonic language learning. Information and Computation 120(2), 155–173 (1995)

13. Zeugmann, T.: Inductive inference and language learning. In: Cai, J.-Y., Cooper,
S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 464–473. Springer, Heidelberg
(2006)

14. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

15. Lange, S., Zilles, S.: Formal language identification: query learning vs. Gold-style
learning. Information Processing Letters 91(6), 285–292 (2004)

16. Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–
150 (1990)

http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/publications.htm
http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/publications.htm

	A Note on the Relationship between Different Types of Correction Queries
	Introduction
	Preliminaries
	Learning Models

	Learning with Correction Queries
	Learning with Length Bounded Correction Queries
	Learning with Edit Distance Correction Queries
	The Global Picture

	Polynomial Time Learning with Correction Queries
	Polynomial Time Learning with LBCQs
	Polynomial Time Learning with EDCQs
	The Global Picture

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

