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In this paper, we interpret in terms of operations applying on extended finite
state automata some algorithms that have been specified on categorial grammars
to learn subclasses of context-free languages. The algorithms considered imple-
ment specialization strategies. This new perspective also helps to understand how
it is possible to control the combinatorial explosion that specialization techniques
have to face, thanks to a typing approach.

1 Introduction

There are often several ways to represent a language: it is well known that every
regular language can be specified either by a regular grammar or by a deter-
ministic finite state automaton. Context-free languages can also be specified by
different kinds of devices. In recent previous papers [17,18], we have shown that
some classes of categorial grammars (CGs in the following), generating context-
free languages, could easily be represented by a family of extended automata
called recursive automata (RA). This translation allowed to exhibit connexions
between two previously distinct approaches of grammatical inference from posi-
tive examples: the one used in [3,13,14] to learn CGs, and the one used to learn
regular grammars represented by finite state automata [1,10]. This was possible
because both employ a generalization strategy. In particular, the generalization
operators used in both contexts were shown to be similar.

Now, we want to apply the same process for specialization strategies from pos-
itive examples. In such strategies, the initial hypothesis is too general a grammar
(or set of grammars) and each example is considered as a constraint which re-
stricts the search space, until it is reduced to the target grammar. We show here
that the translation of CGs into RA, which has helped to better understand the
family of generalization strategies, can also help to better understand the family
of specialization strategies. As a matter of fact, although barely used, special-
ization approaches have been proposed independently in both backgrounds: to
learn subclasses of CGs in the one hand [16], and to learn regular grammars rep-
resented by finite state automata in the other hand [11]. A first move towards
that direction has been briefly proposed in [19], but limited to unidirectional
CGs. In this paper, we generalize the approach to its full generality.

To reach this aim, we first need to recall in section 2 how to transform a
CG into a RA preserving the structures produced, in both unidirectional and
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bidirectional cases. In section 3, we first briefly present the specialization strategy
described by Moreau in [16], allowing to learn rigid CGs from positive examples.
We then explain how it relates to the specialization strategy proposed by Fre-
douille and Miclet in [11], which targets regular languages represented by finite
state automata. We show that Moreau’s algorithm can be interpreted as some
kind of well founded “state splitting” strategy applying on RA. Finaly, the whole
picture is completed in section 4, by a new interpretation of yet another already
known algorithm allowing to learn CGs from sentences enriched by lexical types
[8,7]. It appears to be an efficiently controled specialization approach.

This paper thus proposes neither any new algorithm or result, nor any exper-
iment, but it suggests a new stimulating look on already known strategies.

2 From Categorial Grammars to Recursive Automata

2.1 Basic Definitions of Categorial Grammars

Definition 1 (Categories, Categorial Grammars and their Language).
Let B be a set (at most countable) of basic categories containing a distinguished
category S ∈ B, called the axiom. Cat(B) is the smallest set such that B ⊂ Cat(B)
and for any A, B ∈ Cat(B): A/B ∈ Cat(B) and B\A ∈ Cat(B). Unidirectional
variants allow only one of these operators (either / or \) but not both. For every
finite vocabulary Σ and for every set B containing S, a categorial grammar (or
CG) is a finite relation G over Σ × Cat(B). We note 〈v, C〉 ∈ G the assignment
of the category C ∈ Cat(B) to the element of the vocabulary v ∈ Σ. The syntactic
rules of a CG take the form of two rewriting schemes: ∀A, B ∈ Cat(B)

– FA (Forward Application) : A/B B → A

– BA (Backward Application) : B B\A → A

Unidirectional CGs make use of only one of these rules (either FA or BA) but
not of both. The language generated (or recognized) by a CG G is:
L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈ {1, . . . , n}, ∃Ci ∈ Cat(B) such that 〈vi, Ci〉 ∈
G and C1 . . . Cn →∗ S},
where →∗ is the reflexive and transitive closure of the relation →, defined by
FA and BA schemes. For every w ∈ L(G), a syntactic analysis structure can
be produced, taking the form of a binary-branching tree whose leaf nodes are
assignments of G and whose internal nodes are labelled either by FA or BA and
by a category (see Figure 1).

Example 1 (a simple CG). CGs have mainly been used to represent natural lan-
guage syntax, as illustrated by this example. Let B = {S, T, CN} where T stands
for “term” and CN for “common noun”, Σ = {John, runs, a, man, fast} and G =
{〈John, T 〉,〈runs, T \S〉, 〈man, CN〉, 〈a, (S/(T \S))/CN〉, 〈fast, ((T \S)\(T\S))〉}.
This over-simple CG recognizes sentences like “John runs” or “a man runs fast”
with the syntactic analysis structures of Figure 1.
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Fig. 1. Syntactic analysis structures produced by a CG

2.2 Recursive Automata and Their Language

Definition 2 (Recursive Automaton). A recursive automaton R is a 5-
tuple R = 〈Q, Σ, γ, q0, F 〉 with Q a the finite set of states, Σ a finite vocabulary,
q0 ∈ Q a (unique) initial state and F ∈ Q a (unique) final state. γ is the
transition function of R, defined from Q × (Σ ∪ Q) to 2Q.

We restrict ourselves here to recursive automata (RA in the following) with
unique initial and final states, but it is not a crucial choice. The only important
difference between this definition and the usual definition of finite state automata
is that, in a RA, it is possible to label a transition either by an element of Σ or
by an element of Q. To use a transition labelled by a state, you have to produce
a string belonging to the language of this state. RA can thus be considered as
special cases of “recursive transition networks” or RTRs [20]. But, depending on
the notion of “state language” used, there exist in fact two distinct notions of
RA which will be called, for reasons that will become clear soon, RAFA and
RABA. In a RAFA, the language LFA(q) associated with the state q ∈ Q is the
set of strings starting from q and reaching the final state F , whereas in a RABA,
LBA(q) is the set of strings starting from the initial state q0 and reaching q.

Definition 3 (Language Recognized by a RA). Let R = 〈Q, Σ, γ, q0, F 〉 be
a RAFA (resp. a RABA). For every q ∈ Q we define the language LFA(q) (resp.
LBA(q)) associated with q as the smallest set satisfying:

– ε ∈ LFA(F ) (resp. ε ∈ LBA(q0));
– if there exists a transition labelled by a ∈ Σ between q and q′ ∈ Q, i.e.

q′ ∈ γ(q, a) then: a.LFA(q′) ⊆ LFA(q) (resp. LBA(q).a ⊆ LBA(q′));
– if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q, i.e. q′ ∈

γ(q, r) then: LFA(r).LFA(q′) ⊆ LFA(q) (resp. LBA(q).LBA(r) ⊆ LBA(q′)).

The language LFA(R) of the RAFA (resp. the language LBA(R) of the RABA)
is defined by: LFA(R) = LFA(q0) (resp. LBA(R) = LBA(F )).

For a state q ∈ Q such that q �= F (resp. q �= q0), the definition of LFA(q) (resp.
of LBA(q)) may be recursive: when it exists, it is a smallest fix-point. A real
recursion occurs when, in a RAFA, there exists a path starting from a state q,
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using a transition labelled by q and reaching F (resp., in a RABA, when there
exists a path starting from q0, using a transition labelled by q and reaching the
state q). Unlike finite state automata, RA are not limited to producing flat trees,
because recursive transitions allow a real branching. We have shown in [19] that
RAFA and RABA are respectively linked with the two possible unidirectional
CGs. This property, which justifies their name, is detailed in the following.

2.3 From Unidirectional CGs to RA

Each one of the two families of unidirectional CGs can produce any ε-free
context-free language [2]. Here, we show that every FA-unidirectional (resp. BA-
unidirectional) CG can be easily transformed into a strongly equivalent RAFA

(resp. RABA), i.e. generating the same structural descriptions [19]. The process,
for a given FA-unidirectional (resp. BA-unidirectional) CG G, is the following :

– the vocabulary Σ of the RA is the same as the one of G.
– let N be the set of every subcategory of a category assigned to a member of

the vocabulary in G (a category is a subcategory of itself). The set of states
for the RAFA (resp. RABA) to be built is N ∪{F} with F /∈ N (resp. N ∪{I}
with I /∈ N). The initial state is S (resp. I), the final one is F (resp. S).

– for every C ∈ N , define a transition labelled by C between the states C and
F (resp. between I ans C), i.e. F ∈ γ(C, C) (resp. C ∈ γ(I, C)).

– for every A/B ∈ N (resp. A\B ∈ N), define a transition labelled by A/B
(resp. A\B) between the states A and B, that is: B ∈ γ(A, A/B) (resp.
B ∈ γ(A, A\B)).

– for every 〈v, ,〉C ∈ G, add a transition labelled by v between the state C and
F , i.e. F ∈ γ(C, v) (resp. add a transition between I and C labelled by v,
i.e. C ∈ γ(I, v)).

2.4 Mutually Recursive Automata

Both families of unidirectional CGs have the expressivity of ε-free context-free
languages at the string level, but bidirectional CGs are useful for linguistic pur-
poses, because of the structures they produce, and particularly the labels FA or
BA assigned to each internal node. It is thus natural to try to extend our notion
of RA to the general case of bidirectional CGs, where both FA and BA rules
are used. As we have seen, it is possible to represent the use of FA rules in a
RAFA and the use of BA rules in a RABA. So, we propose to represent a (bidi-
rectional) CG by a pair of mutually recursive automata (MRA in the following):
one element of the pair is a RAFA, the other one is a RABA. For a syntactic
analysis that uses both FA and BA rules, mutual calls between the two RA will
be necessary. After an introducing example, we provide a general definition of
MRA and give some of their properties.

Example 2 (Example of a MRA). Let us translate the CG G given in Example
1 into a MRA (cf. Figure 2). The states of each of these RA correspond to
every possible subcategory of a category assigned by G to a element of the
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Fig. 2. A pair of mutually recursive automata: the RAF A and the RABA

vocabulary, plus a final state F in the RAFA (above), and an initial state I in the
RABA (under). The transitions have been designed exactly as explained before.
Then, each RA has been simplified for readability (some un-necessary states and
transitions are deleted), but not as much as possible: here, we have chosen to
preserve the representation of all the final vocabulary Σ in both automata.

Definition 4 (MRA and their Language). A pair of mutually recur-
sive automata (or MRA) is a pair M = (RFA, RBA) where RFA = 〈Q ∪
{F}, Σ, γFA, SFA, F 〉 is a RAFA and RBA = 〈Q ∪ {I}, Σ, γBA, I, SBA〉 is a
RABA sharing the same vocabulary Σ and the same set of state names Q except
for the final state of the RAFA (F /∈ Q) and for the initial state of the RABA

(I /∈ Q). We consider ε ∈ LFA(I) and ε ∈ LBA(F ) and for every state q ∈ Q,
the language LM (q) of the state q in M is the smallest set such that:

– LFA(q) ∪ LBA(q) ⊆ LM (q)
– if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q in RFA

(resp. in RBA), i.e. q′ ∈ γFA(q, r) (resp. q′∈ γBA(q, r)) then: LM (r).LFA(q′)
⊆ LFA(q) (resp. LBA(q).LM (r) ⊆ LBA(q′)).

We define the language of the MRA as: L(M) = LM (SFA) ∪ LM (SBA).
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For every CG G, there exists a MRA M = (RFA, RBA) strongly equivalent with
G, i.e. generating the same structures.

3 Learning by Specialization

3.1 Learning Rigid CG from Positive Examples

A rigid CG is a CG in which every v ∈ Σ is assigned at most one category.
Kanazawa has proved [13,14] that the set of every (bidirectional) rigid CG
is learnable in the limit (i.e. in the sense of [12]) from positive examples, i.e.
from sentences. Two distinct learning algorithms are now available for this pur-
pose. The best known is Kanazawa’s, derived from “BP” (proposed earlier by
Buszkowski and Penn [3]) and is a classical generalization strategy. The other
one, called RGPL (Rigid Grammar Partial Learning) is described by Moreau
in [16]. It is this second algorithm that we will concentrate on here. Although
its author did not present it this way, we show that it is in fact a specialization
strategy.

Let us first illustrate how it works on a simple example. We suppose that the
available set of positive examples is {“John runs”, “a man runs fast”}. At its first
step, the algorithm assigns to each member of the vocabulary used at least once
in the examples a distinct variable. This initial assignment is thus here:

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}.

Even if a word is used several times in the examples, only one variable is intro-
duced because the target grammar is rigid. In fact, A implicitely specifies a set
of grammars: the set of rigid CGs built on the used vocabulary. As a matter of
fact, every such rigid CG G can be obtained by applying a substitution σ from
the set of variables to a set of categories to A such that:

G = σ(A) = {〈v, σ(C)〉|〈v, C〉 ∈ A}
The substitution σ has only the effect of renaming the variables into categories.

Of course, A can also be represented by a MRA M = (RFA, RBA). In this
MRA, RFA (resp.RBA) has {x1, x2, x3, x4, x5, F} (resp. {I, x1, x2, x3, x4, x5}) as
set of states, and each state xi for 1 ≤ i ≤ 5 is connected to F (resp. I is
connected to xi) by a transition labelled by the corresponding word (another
transition labelled by xi should be added but it is useless at this point). As S
appears nowhere in this MRA, the language it recognizes is empty. But it is a
compact way to represent the whole class of rigid CGs built on Σ.

Then, each sentence is syntactically parsed with the assigments in A, by a
CYK-like algorithm. The only two possible ways to parse “John runs” are :

– either to replace x1 by S/x2: then a FA rule can be applied
– either to replace x2 by x1\S: then a BA rule can be applied

These kinds of substitutions express a constraint that the variables (x1 or x2)
must satisfy: A must thus be updated to a disjunction of sets of assignments,
each subset corresponding to a subclass of rigid CGs. A simpler way to store the
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current subsets of possible solutions is to store the set of possible substitutions
that can be applied to A. In our case, this set is made of {σ1, σ2}, with σ1(x1) =
S/x2 and is equal to the identical function elsewhere, and σ2(x2) = x1\S and
is equal to the identical function elsewhere. σ1(A), as well as σ2(A), can be
represented by a MRA derived from the previous one. This time, both MRA
recognize exactly the sentence “John runs”.

To parse “a man runs fast”, many more solutions are possible. The maximum
theoretical number is 5 ∗ 23 = 40 because there are 5 possible binary branching
trees with 4 leaves (this can be computed in the general case by the Catalan
number), and each of them has 3 internal nodes which can receive either a FA
or a BA label. This makes 40 ∗ 2 = 80 theoretical possible substitutions by
combining the constraints obtained from both sentences (the combinaison is a
classical composition of functions). But, among them, some are contradictory:
as the target grammar is rigid, the unique category assigned to the word “runs”
cannot be of the form xi/xj and xk\xl at the same time. We thus see where the
initial class plays a role in the learning strategy.

It is easy to see that the main problem with this algorithm is the combinato-
rial explosion it has to face, especially when examples do not share any common
word. This is not surprising, since the problem of learning rigid CGs from sen-
tences is known to be NP-hard [4].To limit this explosion, Moreau proposes to
exploit as much initial knowledge as possible, in the form of an initial grammar,
that is, initially known categories for some usual words (for example the lexical
ones) which cannot be renamed, as it is the case for the variable categories.

Furthermore, there is no guarantee at all that this strategy always converges
to a unique solution. In theory, to fulfill the requirements of learnabiblity in the
limit, when several possible compatible grammars are available, inclusion tests
should be performed to select the one generating the “smallest” language. This
problem also occurred with Kanazawa’s algorithm, when applied to sentences.

3.2 State Merges and State Splits

The previous strategy can now be interpreted in terms of operations applying
on MRA. As we have seen, at every step of this algorithm, the search space
is a disjunction of sets of assignments of the form σ(A) for some substitution
σ, and each of them can be represented by a MRA. The MRA corresponding
with A recognizes no sentence. But, as soon as at least one example has been
treated (and, thus, the category S been introduced), σ(A) specifies a set of CGs
recognizing at least this example. What is the effect of a constraint on a MRA ?

The constraints always take the form: xk = xl, where xk and xl are already
introduced variables or equal to S, or xk = Xm/Xn or xk = Xm\Xn , with Xm

and Xn any category built on the set of every variable union S.

– the effect of a constraint of the form xk = xl on a MRA is a state merge in
both the RAFA and the RABA of the MRA. As, in MRA, xk can also be
used as transition labels, corresponding transition merges can also occur.

– the effect of a constraint of the form xk = Xm/Xn (resp. Xm\Xn) can be
decomposed into four steps:
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1. Xm/Xn (resp. Xm\Xn) replaces xk everywhere in the MRA;
2. every subcategory of Xm and Xn (including themselves) not already

identified (i.e. not already a sub-category of the previous set of assign-
ments) becomes a new state in both RA: in the RAFA, it is linked to the
state F (resp. in the RABA from the state I) by a transition labelled by
its name;

3. in the RAFA (resp. in the RABA), a new transition labelled by Xm/Xn

(resp. Xm\Xn) links the states Xm and Xn, and the same occurs for
every newly identified subcategory;

4. the states and transitions of the same name are merged in each RA.

This operation can now be compared to the “state splitting strategy” proposed
by Fredouille and Miclet in [11] to learn regular languages represented by finite
state automata by specialization. For example, the constraint x1 = S/x2 has
the effect of splitting the state x1 into two new states: S and x2. Then, as a
state named x2 already exists, the new one is merged with the previous one.
But our specialization operation is more general than Fredouille and Miclet’s,
because of the recursive nature of the automata on which it applies. Furthermore,
their algorithm was a specialization strategy at the language level : their initial
hypothesis was the most general regular language Σ∗ and constraints were used
to specialize the language. Moreau’s algorithm is a specialization strategy at the
set of grammars level : its initial hypothesis is the set of possible grammars, and
the examples are used to introduce constraints that reduce this set to subsets.
The corresponding MRA represents a set of grammars and not only a specific
language. For these reasons, our approach cannot be easily adapted to usual
finite state automata. But we believe that our state splitting operator is better
founded than the previous one, because it is the formal counterpart of well-
defined substitutions.

4 Learning from Typed Examples Revisited

We now show that the algorithm proposed in [8,7] to learn CGs from typed
examples can be considered as a specialization strategy where state splits and
state merges are controlled by a typing approach.

4.1 Learning from Semantically Typed Examples

The idea of learning CGs from typed examples was first introduced in [8]. The
types considered in this work are borrowed from Montague’s theory [6]: they are
lexicalized terms derived from syntactic categories by a morphism, and coincide
with the type of the logical formula that translates the associated word. Learning
from typed examples is cognitively relevant because types can be interpreted as
semantic information available in the environment or previously learned. In this
section, we briefly recall this notion in a general fashion and give the conditions
under which they can help learning.
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The notion of types useful for learning CGs is based on:

– a finite set τ of basic types among which is a distinguished type t ∈ τ
standing for “truth values”: usually, this set is τ = {e, t} where e ∈ τ is the
type of “entities”. Montague also used a type s for “intensions” that will not
be used in the following;

– the set Types(τ) of every type is the smallest set such that τ ⊂ Types(τ)
and for every type α, β ∈ Types(τ), 〈α, β〉 ∈ Types(τ). 〈α, β〉 is the type of
functions that require an argument of type α and provide a result of type β.

Types in Types(τ) are useful for learning a CG only if they are connected
with its syntactic categories in Cat(B). More precisely, the necessary condition
to be fulfilled is that there exists a homomorphism h such that:

– for every basic category C ∈ B, h(C) is defined and belongs to Types(τ).
The distinguished category S ∈ B is associated with the distinguished type
t ∈ τ : h(S) = t.

– for every other category in Cat(B) of the form A/B or A\B, we have:
h(A/B) = h(B\A) = 〈h(B), h(A)〉.

Example 3 (classical semantic types for natural languages). Let τ = {e, t}. The
words of the grammar defined in Example 1 receive the following semantic types:

– “John” can be considered as an entity of type e;
– “runs” and “man” are one-place predicates; their type is: 〈e, t〉;
– “fast” is a “one-place-predicate modifier”, i.e. it transforms a predicate of arity

one into another one of the same arity: it thus has the type 〈〈e, t〉, 〈e, t〉〉;
– finaly, if we follow Montague’s intuition about the “proper treatment of quan-

tification” [6], the determiner “a” has the most complex type: 〈〈e, t〉, 〈〈e, t〉, t〉〉.

The corresponding homomorphism h is defined by: h(S) = t, h(T ) = e, h(CN) =
〈e, t〉. As required, if 〈v, C〉 ∈ G, the semantic type of v is h(C).

4.2 How Types Help to Control State Splits and State Merges

Learning from typed examples means learning from sentences where each ele-
ment of the vocabulary v ∈ Σ, which should be assigned C ∈ Cat(B) by the
target grammar G to analyse this sentence, is provided with the corresponding
type h(C) ∈ Types(τ). As we will see, the learning strategy proposed in [8,7] can
also be interpreted in terms of operations applying on MRA. We illustrate this
algorithm on our example. The input data are now of the form:

John runs
e 〈e, t〉
e x1〈e, t〉

a man runs fast
〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉
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In these typed examples, the third line is the result of a simple pre-treatment
which consists in introducing variables in front of every “functional type”. The
variables are all distinct, except when the same couple “word, type” occurs (as it
is the case here for the couple “runs, 〈e, t〉”). These variables will eventually take
the value “/” or “\” during the learning process. The initial set of assignements
is, this time:

A = {〈John, e〉, 〈runs, x1〈e, t〉〉, 〈a, x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉〉, 〈man, x6〈e, t〉〉,
〈fast, x7〈x8〈e, t〉, x9〈e, t〉〉〉}.

As previously, A implicitely specifies a set of grammars. This set is much
larger than the one of rigid CGs: it is the set of CGs which can assign an
arbitrary number of distinct categories to each word (so, it intersects every class
of k-valued CGs), but for which there exists a homomorphism such that every
distinct category assigned to the same word gives rise to a distinct type. In
formal terms, it is such that there exists a homomorphism h satisfying:

∀〈v, C1〉, 〈v, C2〉 ∈ G, h(C1) = h(C2) =⇒ C1 = C2.

We have shown [9] that for every ε-free context-free language, it is possible to
define a CG generating this language, a set of types and a homomorphism such
that this property is satisfied. This new target class is learnable in the limit from
typed examples [8,7].

As previously, A can also be represented by a MRA. But the information
carried by the types is much richer than the one carried by the basic variables
Moreau used: types can be interpreted as some kind of maximal bound on the
possible categories they replace; they display all their potential renaming.

The learning algorithm applies as in section 3.1: it consists in trying to parse
each sentence with the rules FA and BA adapted to types so as to reach the
type t at the root, by defining constraints on the variables (see [7] for details).
The only possible type-compatible way to parse the first typed example “John
runs” is to have: x1 = \, meaning that only a BA rule is compatible with the
type assignments. “runs” should thus finaly receive the category e\t. This time,
there is only one type-compatible way to parse “a man runs fast”: this parse
(isomorphic to the one in Figure 1) is shown on Figure 3. Both typed examples
lead to the following (unique) set of constraints: x2 = /, x3 = x6, x7 = \,
x8 = x1 = \, x4 = /, x5 = x9.

The set of assignments is thus updated to:

A = {〈John, e〉, 〈runs, \〈e, t〉〉, 〈a, /〈x3〈e, t〉, /〈x5〈e, t〉, t〉〉〉, 〈man, x3〈e, t〉〉,
〈fast, \〈\〈e, t〉, x5〈e, t〉〉〉}.

If we apply the process of section 2.4 to this set (after re-ordering the types
to make them similar to syntactic categories and t playing the role of S), we
obtain the MRA of Figure 4. In this example, with only two typed examples, we
obtain a unique MRA which is nearly isomorphic to the target one.

In this context, the constraints take the form xi = xj , xi = / or xi = \ and
give rise to the same transformations as the one detailed in section 3.2. It could
seem that the first kind corresponds to a state merge and the other two to a
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t
FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉
FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉
a

x6〈e, t〉
man

x9〈e, t〉
BA : x7 = \

x8 = x1

x1〈e, t〉
runs

x7〈x8〈e, t〉, x9〈e, t〉〉
fast

Fig. 3. Parse tree for a typed example

e\t e

t x5〈e, t〉 F (e\t)\x5〈e, t〉

t/x5〈e, t〉 x3〈e, t〉

t/(x5〈e, t〉)

Johne

x5〈e, t〉

e\t

runs

(e\t)\(x5〈e, t〉)

fast

a

(t/x5〈e, t〉)/x3〈e, t〉

man x3〈e, t〉

x3〈e, t〉 (e\t)\x5〈e, t〉

I e t

(t/(x5〈e, t〉))/x3〈e, t〉 e\t x5〈e, t〉

man

x3〈e, t〉

e

John

e\t

runs

runs

e\t

a

(t/x5〈e, t〉)/x3〈e, t〉

fast

(e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast

Fig. 4. MRA for type assignments

state split, but the situation is a bit more complex. In our example, to reach the
target, only one constraint is missing: x5 = \. The typed example corresponding
to the sentence “John runs fast” would provide this constraint. Its first effect on
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vocabulary Moreau’s initial target category pre-treated
assigment initial assignment types

John x1 T e

a x2 (S/(T\S)/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉
man x3 CN x6〈e, t〉
runs x4 T\S x1〈e, t〉
fast x5 (T\S)\(T\S) x7〈x8〈e, t〉, x9〈e, t〉〉

Fig. 5. Tabular showing the starting points and target of the two algorithms

the MRA would be to rename the state x5〈e, t〉 both in the RAFA and in the
RABA by \〈e, t〉, that is e\t. But, doing so, this state becomes identical to an
already existing one and then must be merged to it.

The table of Figure 5 explains why types help the algorithm to avoid a com-
binatorial explosion and to converge quicker. We have seen that there always
exists a homomorphism σ between column 2 and column 3, which is the target
of the learning process. Hypotheses about types ensure that there also exists
a homomorphism h between column 3 and column 4. This situation is similar
to the one described in [15], and analyzed in [5]. The two learning algorithms
presented here are both specialization strategies at the set of grammars level,
but their initial hypothesis is either a lower bound or an upper bound of the set
of categories of the target grammar. Types are efficient because they allow to
control the possible renamings.

5 Conclusion

In grammatical inference from positive examples, two sources of information
are usually available: the target class and the set of examples. Generalization
techniques use the examples to generate a “most specific grammar” compatible
with them (the prefix tree automaton in the case of regular languages), and then
use the target class to generalize it. Specialization techniques do the contrary:
the class is the starting point and the examples help to specialize it.

In this paper, we propose a new perspective on these techniques. First, we
see that disjunctions of MRA are able to represent the search space of such
learning algorithms. Second, we show that the algorithm to learn CGs from
typed examples proposed in [8,7] introduces type control into the process. The
initial semantic types associated with the elements of the vocabulary specify
some kind of maximal bound on the possible renamings, allowing to limit the
combinatorial explosion of solutions.
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