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Abstract. We show a probabilistic learnability of a subclass of linear
languages with queries. Learning via queries is an important problem in
grammatical inference but the power of queries to probabilistic learn-
ability is not clear yet. In probabilistic learning model, PAC (Probably
Approximately Correct) criterion is an important one and many results
have been shown in this model. Angluin has shown the ability of replace-
ment from equivalence queries to random examples in PAC criterion but
there are also many hardness results. We have shown that the class of
simple deterministic languages is polynomial time learnable from mem-
bership queries and a representative sample. Also, we have shown that
a representative sample can be constructed from polynomial number of
random examples with the confidence probability. In this paper, we newly
define a subclass of linear languages called strict deterministic linear lan-
guages and show the probabilistic learnability with membership queries
in polynomial time. This learnability is derived from an exact learning
algorithm for this subclass with membership queries, equivalence queries
and a representative sample.

Keywords: learning via queries, linear language, PAC learning, repre-
sentative sample.

1 Introduction

Learning via queries is an important problem in grammatical inference started
from Angluin’s work[2]. Many results about learning via queries have been shown
for various language classes. A model which uses membership queries and equiv-
alence queries is called MAT (Minimally Adequate Teacher) model and regular
languages are polynomial time learnable from MAT[2]. This result is extend to
some subclasses of linear languages[9].

Learning via queries and some additional information is studied about regular
languages. In [1], a representative sample or a live-complete set is useful for poly-
nomial time learning with membership queries. With this setting, a learnability
of simple deterministic languages has been shown[8].

On the other hand, PAC (Probably Approximately Correct) learning model[10]
is one of the most important probabilistic learning model. Learning of probabilis-
tic deterministic finite automata[3] is studied but there are not many results about

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 187–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



188 Y. Tajima and Y. Kotani

PAC model in grammatical inference. It has been shown that equivalence query
can be replaced by polynomial number of random examples in PAC criterion[2],
but the power of queries to probabilistic learnability is not clear yet.

In this paper, we show a probabilistic learnability of a subclass of linear lan-
guages with membership queries. This language class called strict deterministic
linear languages is newly defined and it is unambiguous and incomparable to the
class of simple deterministic languages. The probabilistic learnability is derived
from an exact learning algorithm for this subclass with membership queries,
equivalence queries and a representative sample. Where a representative sam-
ple can be constructed from polynomial number of random example with the
confidence probability. For the class of linear languages, an equivalence problem
is unsolvable[5], and an equivalence problem in our newly defined languages is
unknown, thus our exact learning algorithm uses powerful queries. Nevertheless,
from the result of conversion from equivalence query to random examples, we
can obtain a probabilistic learning algorithm of this language class.

2 Preliminaries

A context-free grammar (CFG for short) is a 4-tuple G = (N,Σ , P, S) where N
is a finite set of nonterminals, Σ is a finite set of terminals, P is a finite set of
rewriting rules (rules for short) and S ∈ N is the start symbol. Let ε be the word
whose length is 0. If there exists no rule of the form A → ε for any A(�= S) ∈ N ,
then G is called ε-free. In this paper, we assume that every CFG is ε-free.

The length of β is denoted by |β| if β is a string and for a set W , |W | denotes
the cardinality of W . For W ⊂ Σ∗ and u ∈ Σ∗, we define u\W = {v ∈ Σ∗|uv ∈
W} and W/u = {v ∈ Σ∗|vu ∈ W}.

Let A → β be in P where A ∈ N and β ∈ (Σ∪N)∗. Then γAγ′ ⇒
G

γβγ′ denotes

the derivation from γAγ′ to γβγ′ in G where γ, γ′ ∈ (N ∪ Σ)∗. We define ∗⇒
G

to

be the reflexive and transitive closure of ⇒
G

. When it is not necessary to specify

the grammar G, α ⇒ α′ and α
∗⇒ β stand for α ⇒

G
α′ and α

∗⇒
G

β, respectively. A

word generated from γ ∈ (N ∪ Σ)∗ by G is w ∈ Σ∗ such that γ
∗⇒
G

w and the

language generated from γ by G is denoted by LG(γ) = {w ∈ Σ∗ | γ
∗⇒
G

w}. A

word generated from S by G for the start symbol S is called a word generated by
G and the language generated by G is denoted by L(G) = LG(S). A nonterminal
A ∈ N is said to be reachable if S

∗⇒
G

uAw for some u, w ∈ Σ∗. and a nonterminal

D ∈ N is said to be live if LG(D) �= ∅.
A CFG G = (N,Σ , P, S) is a linear grammar if every rule in P is of the

form A → uV w or A → a where A ∈ N , a ∈ Σ , u, w ∈ Σ∗ and uv �= ε. For
every linear grammar G, there exists a grammar G′ = (N ′,Σ , P ′, S′) such that
L(G) = L(G′) and every rule in G is of the form A → aBc, A → aB, A → Ba
or A → a where A, B ∈ N and a, c ∈ Σ .
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3 Our Target Language

We newly define a normal form of a linear grammar. A linear grammar G =
(N,Σ , P, S) is an RL-linear grammar iff the followings hold.

1. Every rule in P is of the form A → aB, A → Ba or A → a for A, B ∈ N
and a ∈ Σ .

2. If A → aB and A → aC are in P then B = C for A, B, C ∈ N and a ∈ Σ .
3. If A → Ba and A → Ca are in P then B = C for A, B, C ∈ N and a ∈ Σ .

Theorem 1. For any linear grammar G = (N,Σ , P, S), there exists an RL-
linear grammar G′ = (N ′,Σ , P ′, S′) such that L(G) = L(G′).

Proof. We suppose that every rule in P is of the form A → aBc, A → aB,
A → Ba or A → a for A, B ∈ N and a, c ∈ Σ . We can make G′ from G by the
following two step conversion. Let N ′ = N, P ′ = P, S′ = S.

1. For every rule of the form A → aBc in P ′, replace it by A → aB′ and
B′ → Bc where B′ is a new nonterminal in N ′. After this conversion, every
rule in P ′ is of the form A → aB, A → Ba or A → a.

2. Delete nondeterminism in P ′. Let BodyR(A, a) = {B ∈ N ′|A → aB ∈ P ′}
and BodyL(A, a) = {B ∈ N ′|A → Ba ∈ P ′} for A ∈ N ′ and a ∈ Σ .
For every pair of A ∈ N ′ and a ∈ Σ such that |BodyR(A, a)| ≥ 2 (or
|BodyL(A, a)| ≥ 2), delete all rules of the form A → aB (or A → Ba) in
P ′, then add A → a · Z(BodyR(A, a)) (or A → Z(BodyL(A, a)) · a) where
Z(BodyR(A, a)) (or Z(BodyL(A, a))) is a new nonterminal.
In addition, for every b ∈ Σ and every new nonterminal Z(Q)(Q ⊆ N ′), add

Z(Q) → bZ(U), if U �= ∅,

Z(Q) → Z(V )b, if V �= ∅,

and Z(Q) → c to P ′ where

U = {C ∈ N |D ∈ Q, D → bC ∈ P},

V = {C ∈ N |D ∈ Q, D → Cb ∈ P},

c ∈ {d ∈ Σ |D ∈ Q, D → d ∈ P}.

If a new nonterminal Z(Q) for some Q ⊆ N ′ newly appears then repeat this
step.

Then, delete all non-reachable or non-live nonterminals in N ′. Now, every rule
A → β ∈ P ′, we can derive A

∗⇒
G′

β. It implies that G′ is equivalent to G. Moreover,

G′ is an RL-linear grammar. ��
We assume that every linear grammar in this paper is in RL-linear. It is impor-
tant for grammatical inference that the grammar is unambiguous or not. If the
target language is ambiguous then membership query is not powerful because
it would not check the membership about nonterminals. We define the follow-
ing subclass of linear grammars which is unambiguous. Learning the subclass of
linear languages generated by the grammars is our goal.
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Definition 1. An RL-linear grammar G = (N,Σ , P, S) is a strict determinis-
tic linear grammar if the followings holds.

– If A → aB is in P for A, B ∈ N and a ∈ Σ then every rule whose left-hand
side is A is of the form A → bC for some C ∈ N and b ∈ Σ.

– If A → Ba is in P for A, B ∈ N and a ∈ Σ then every rule whose left-hand
side is A is of the form A → Cb for some C ∈ N and b ∈ Σ.

Thus, for every A ∈ N , there are only right linear rules or only left linear rules
whose left-hand side is A ∈ N .

For example, the following grammar is a strict deterministic linear grammar.

G = (N,Σ , P, S) (1)
N = {S, A, B, C, D, E}
Σ = {a, b, c}
P = {S → aA,

A → Bb, A → Cc, A → b, A → c,

B → aD, D → Bb, D → b,

C → aE, E → Cc, E → c }

This grammar generates aibi ∪ aici (i ≥ 1) which can not be generated by
regular grammars or LL(1).

We denote the language class which generated by strict deterministic linear
grammars by strict-det. A strict deterministic linear grammar G satisfies that

S
∗⇒
G

uAv ⇐⇒ u\L(G)/v = LG(A)

for any nonterminal A and u, v ∈ Σ∗. In [7], some subclasses of deterministic
linear languages and learnability are studied.

Definition 2. A deterministic linear language (DL) is represented by a linear
grammar G = (N,Σ , P, S) such that

– all rules are of the form A → aBu or A → ε, and
– if both of A → aBu and A → aCv are in P then B = C and u = v,

here A, B, C ∈ N , a ∈ Σ and u, v ∈ Σ∗.

It is shown that DL is identifiable in the limit from polynomial time and data[7].

Theorem 2. DL ⊂ strict-det.

Proof. The language aibi ∪ aici (i ≥ 1) which is generated by the grammar in
Example (1) is strict-det, but it is not in DL[7].

Suppose that G = (N,Σ , P, S) is a linear grammar such that L(G) is in DL.
We can make a strict deterministic linear grammar G′ = (N ′,Σ , P ′, S′) from G
as follows.
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1. Let N ′ = N, P ′ = P, S′ = S.
2. Suppose that A → ε is in P . Then, delete A → ε from P ′ and for all rules

B → aAu in P where u ∈ Σ∗, a ∈ Σ and B ∈ N , add B → aZu to P ′ where
Zu is a new nonterminal in N ′. Then add

Zb1b2···bn → Zb1b2···bn−1bn (n = 2, 3, · · · |u|)

and Zb1 → b1 to P ′ where u = b1b2 · · · bn, bi ∈ Σ (i = 1, · · · , n).
3. Let A, B ∈ N ′ and a, bi ∈ Σ . Replace every rule A → aBb1b2 · · · bn in P ′

with
A → aZBb1b2···bn

where ZBb1b2···bn is a new nonterminal, then add

ZBb1b2···bn → ZBb1b2···bn−1bn,

ZBb1b2···bn−1 → ZBb1b2···bn−2bn−1,

ZBb1b2···bn−2 → ZBb1b2···bn−3bn−2,

...

ZBb1 → Bb1

to P ′ with these new nonterminals.
4. Delete nondeterminism in P ′ with the same method in Theorem1.

Now, L(G′) is in strict-det and L(G′) = L(G).
��

4 Queries and Probabilistic Learning

Two types of queries are important for grammatical inference since Angluin’s
work[2]. Let Lt ∈strict-det be the target language, and Gt(Nt,Σ , Pt, St) be a
strict deterministic linear grammar such that L(Gt) = Lt. Throughout this pa-
per, we call the class of grammars which can generate the target language target
grammars. The class of grammars by whom the learner outputs a hypothesis is
called hypothesis grammars.

Membership query. For w ∈ Σ∗ as input, “yes” is responded if w ∈ Lt and
“no” is responded otherwise. MEMBER(w) = 1 denotes that the member-
ship query for w ∈ Σ∗ responds “yes”, and MEMBER(w) = 0 denotes that
the query responds “no.”

Equivalence query. For a hypothesis grammar Gh as input, “yes” is responded
if L(Gh) = Lt and “no” is responded otherwise. In addition, the learner can
obtain a counterexample v ∈ (Lt − L(Gh)) ∪ (L(Gh) − Lt) if the response is
“no.”

A learning algorithm which outputs a hypothesis Gh such that Lt = L(Gh)
is called an exact learning algorithm. A learning algorithm which uses mem-
bership queries and equivalence queries and which outputs a hypothesis with
“yes” response of an equivalence query is called an exact learning algorithm
with queries.
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Membership queries are useful for checking whether a word can be generated
by a nonterminal or not. The result of a membership query for uxv means
whether x ∈ LGt(A) or not for A ∈ Nt if target grammars hold that

u\Lt/v = LGt(A) ⇔ St
∗⇒ uAv

∗⇒ uwv

for u, v, w ∈ Σ∗.
We define probabilistic learning with queries as follows.

Definition 3. Let D be a distribution on Σ∗. The probability for w ∈ Σ∗ is
denoted by PrD(w) and PrD(T ) =

∑
w∈T PrD(w) for a set T ⊂ Σ∗. A random

example is a pair of a word w ∈ Σ∗ drawn according to D and the sign whether
w ∈ Lt or not.

For any distribution D on Σ∗, if a learning algorithm outputs a hypothesis
Gh such that

Pr(PrD((Lt − L(Gh)) ∪ (L(Gh) − Lt)) ≤ ε) ≥ 1 − δ

for given 0 < ε ≤ 1 and 0 < δ ≤ 1, then the learning algorithm is a probabilistic
learning algorithm.

In addition, a probabilistic learning algorithm which uses membership queries
in it is called a probabilistic learning algorithm with queries.

We define that a language class is probabilistic learnable with queries if there ex-
ists a probabilistic learning algorithm with queries for the language class. Then,
our goal is to show that strict-det is polynomial time probabilistic learnable
with queries.

Equivalence queries in an exact learning algorithm can be replaced by poly-
nomial number of random examples.

Theorem 3 (Angluin(1987)). A learning algorithm which uses equivalence
queries can be converted to a probabilistic learning algorithm without equivalence
queries. In the converted algorithm, ni random examples are needed instead of
i-th equivalence query in the original algorithm where

ni =
1
ε

(

ln
1
δ

+ (ln 2)(i + 1)
)

.

In other words, we can construct a wrapper algorithm which includes an exact
learning algorithm with equivalence queries. When an equivalence query is asked
by the included algorithm, the wrapper simulates the equivalence oracle with ni

random examples. Thus, the wrapper algorithm works as a probabilistic learning
algorithm from outside viewpoints.

We note that this theorem shows the one-way conversion from equivalence
queries to random examples. We can not declare the exact learnability from
equivalence queries and membership queries if there exists a probabilistic learn-
ing algorithm with queries.
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5 A Representative Sample

We define a representative sample which is a set of positive examples and it covers
every rule usage. A representative sample is introduced in [1] to show the polyno-
mial time learnability of regular sets from membership queries and it. For a strict
deterministic linear grammar, we define a representative sample as follows.

Definition 4. A word set R ⊂ Σ∗ is a representative sample for a strict deter-
ministic linear grammar Gt if there exists w ∈ R for every rule A → β in Pt

such that
St

∗⇒ uAv ⇒ uβv
∗⇒ w

where u, v ∈ Σ∗.

Nevertheless, we can easily construct a representative sample for a strict deter-
ministic linear grammar, it is difficult to determine whether a set W ⊂ Σ∗ is a
representative sample or not for a language in strict-det. Thus, in our learn-
ing model, the teacher would need a strict deterministic linear grammar which
generates the target language to construct a representative sample of it.

A representative sample also can be replaced by polynomial number of
examples.

Definition 5. Let D be a distribution on Σ∗, and Gt be a strict deterministic
linear grammar. For a rule A → β in Pt, we define

p(A → β) =
∑

St

∗⇒
Gt

uAv ⇒ uβv
∗⇒

Gt

w

PrD(w).

Theorem 4 (Tajima et al.(2004)). Let d = min{p(A → β)|A → β ∈ Pt}.
Then, m random examples contains a representative sample for Gt where

m >
1
d

ln
(

|Pt|
δ

)

.

From this theorem, we can make a probabilistic learning algorithm with queries
from an exact learning algorithm which uses membership queries, and a repre-
sentative sample.

Combining Theorem 3 and 4, we can construct a wrapper algorithm Aw such
that

– Aw uses random examples and membership queries,
– Aw includes an exact learning algorithm which uses membership queries,

equivalence queries and a representative sample, and
– Aw works as a probabilistic learning algorithm with queries.

Fig.1 is the overview of the wrapper algorithm.
Teachability[4] is one of the most important study on a special examples and

learnability. When we think about the teachability on grammatical inference, iden-
tification in the limit from polynomial time and data[7] is a suitable model. The
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wrapper
algorithm

exact learning
algorithm

hypothesis Gnegative
examples

positive
examples

m-random
examples

n   -random
examples

i
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sample

membership
query

equivalence
query

yes/no +
counterexample

query

response

Are n   -examples
consistent with L(G)?

i

example
oracle

membership
oracle

Fig. 1. The wrapper algorithm for probabilistic learning

learner can use a superset of special examples which helps the learning in these
models.

In contrast, our learning model needs queries after a representative sample is
given. Thus, we can not directly conclude that a language class which is prob-
abilistic learnable with queries is also polynomial time teachable. The relation
between our model and teachability is still unknown.

6 The Learning Algorithm

We show an exact learning algorithm for a strict deterministic linear language
from membership queries, equivalence queries and a representative sample. It
is unknown whether an equivalence problem of strict deterministic grammars
is solvable or not. Nevertheless, polynomial number of random examples can
substitute for both of equivalence queries and a representative sample. Thus,
we can obtain a probabilistic learning algorithm with queries. This learning
algorithm is a modification of our previous algorithm[8].

[Nonterminals construction.] If a representative sample R is given, there exists
a 3-tuple (uA, vA, wA) ∈ Σ∗ ×Σ+ ×Σ∗ for every A ∈ Nt such that uAvAwA ∈ R

and St
∗⇒

Gt

uAAwA
∗⇒

Gt

uAvAwA. Thus, the following set Mh of 3-tuples is a set of

candidates for nonterminals in hypothesis.

Mh = {(u, v, w) ∈ Σ∗ × Σ+ × Σ∗|uvw ∈ R}
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We define an equivalence class on Mh with a test word set T ⊂ Σ∗. This
is a similar process of making an observation table in [2]. At the start of the
learning algorithm, T = Σ . For (u1, v1, w1) ∈ R and (u2, v2, w2) ∈ R, we define
the equivalence relation T= by

(u1, v1, w1)
T=(u2, v2, w2) ⇔ MEMBER(u1xw1) = MEMBER(u2xw2)

for any x ∈ T .
The equivalence class for (u, v, w) ∈ Mh is denoted by A((u, v, w), T=) and the

classification derived by T= on Mh is denoted by Nh = Mh/
T=.

Obviously, for any w1, w2 ∈ T , it holds that

(ε, w1, ε)
T=(ε, w2, ε).

Thus, these (ε, w1, ε) and (ε, w2, ε) are in the same equivalence class.

[Rules construction] Next, candidates Qh of production rules is made. For every
(u, avb, w) ∈ Mh and (u, a, v) ∈ Mh here a, b ∈ Σ , u, v, w ∈ Σ∗, we add

A((u, avb, w), T=) → aA((ua, vb, w), T=) if (ua, vb, w) ∈ Mh,

A((u, avb, w), T=) → A((u, av, bw), T=)b if (u, av, bw) ∈ Mh, and

A((u, a, w), T=) → a

to Qh.
Next, we delete inappropriate rules from Qh. Let A → β be in Qh. If there

exists t ∈ T which is an evidence such that A can derive t but β can not derive
it or vice versa, then A → β must be deleted. In other words, a rule A → β
is inappropriate if A → β conflicts with results of the observation on T . The
deletion procedure is as follows.

1. Delete A((u, av, w), T=) → aA((ua, v, w), T=) from Qh if there exist

(x1, y1, z1) ∈ A((u, av, w), T=), (x2, y2, z2) ∈ A((ua, v, w), T=)and ay ∈ T

such that

MEMBER(x1 · ay · z1) �= MEMBER(x2a · y · z2).

2. Delete A((u, va, w), T=) → A((u, v, aw), T=)a from Qh if there exist

(x1, y1, z1) ∈ A((u, va, w), T=), (x2, y2, z2) ∈ A((u, v, aw), T=)and ya ∈ T

such that

MEMBER(x1 · ya · z1) �= MEMBER(x2 · y · az2).
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After this deletion, if there is an inappropriate nonterminal B ∈ Nh such that
B can not derive t ∈ T but MEMBER(utw) = 1 where (u, v, w) ∈ B, then
we delete such nonterminals at the next step. In addition, since a hypothesis
should be a strict deterministic linear grammar, we must delete all rules which
are of the form A → aB for A, B ∈ Nh and a ∈ Σ if there exists b ∈ Σ such
that A → bC is not in Qh but MEMBER(ubxw) = 1. These deletions can be
written as follows.

3. Let B ∈ Nh and a ∈ Σ . Suppose that B → aC is not in Qh for any C ∈ Nh.
If there exist

at ∈ T, t ∈ Σ∗and (u, v, w) ∈ B

such that
MEMBER(u · at · w) = 1

then delete all rules of B → bD for every b ∈ Σ and every D ∈ Nh.
4. Let B ∈ Nh and a ∈ Σ . Suppose that B → Ca is not in Qh for any C ∈ Nh.

If there exist
ta ∈ T, t ∈ Σ∗and (u, v, w) ∈ B

such that
MEMBER(u · ta · w) = 1

then delete all rules of B → Db for every b ∈ Σ and every D ∈ Nh.
5. Repeat back to 3. |R| times.
6. Delete all nonterminals which are not live or not reachable.

We define Sh = A((ε, w, ε), T=).
With this process, every nonterminal A((u, v, w), T=) ∈ Nh can derive x ∈ T

such that MEMBER(uxw) = 1 by a linear grammar G = (Nh,Σ , Qh, Sh).

[Make a hypothesis] Now, G = (Nh,Σ , Qh, Sh) is a RL-linear grammar but
is not strict deterministic linear grammar. The hypothesis Gh is constructed as
follows.

1. Let Ph = {A → a|A ∈ Nh, a ∈ Σ , A → a ∈ Qh}.
2. Assign the type of rule to every nonterminal A ∈ Nh. If there are both form

of rules such that A → aB and A → Bb where a, b ∈ Σ in Qh then assign
“Left” or “Right” to A randomly. Otherwise, (if A has only left or right
linear rules,) assign the type to A.

3. For every A ∈ Nh and every a ∈ Σ , chose a rule randomly which is of the
form A → aB if A is assigned “Right” or A → Ba if A is assigned “Left”,
then add the rule to Ph.

Now, G = (Nh,Σ , Ph, Sh) is a strict deterministic linear grammar and make an
equivalence query for Gh. If a counterexample w is responded then update T by

T := T ∪ {y ∈ Σ+|x, z ∈ Σ∗, xyz = w}.

Fig.2 is the whole learning algorithm.
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INPUT: a representative sample R;
OUTPUT: correct hypothesis Gh;
begin

Mh := {(u, v, w) ∈ Σ∗ × Σ+ × Σ∗|uvw ∈ R};
T := Σ ;
finish := 0;
while (finish == 0)
begin

make Nh of nonterminals with the equivalence relation T=;
make Qh of rules and delete inappropriate rules;
make a hypothesis Gh = (Nh,Σ , Ph, Sh);
if (equivalence query for Gh responds “yes”)
then

output Gh, and finish := 1;
else

let w ∈ Σ∗ be the counterexample;
T := T ∪ {y ∈ Σ+|x, z ∈ Σ∗, xyz = w};

endif
end

end.

Fig. 2. The exact learning algorithm with queries and a representative sample

Now, we show the correctness of the learning algorithm in Fig.2 and its time
complexity. If the algorithm terminates then the correctness of the hypothesis is
clear because of the definition of equivalence query. We are concerned with the
time complexity of it.

Lemma 1. The learning algorithm in Fig.2 terminates in polynomial time of
|Nt|, |Σ |, |Pt|, |R| and max{|w||w ∈ R} where R is the given representative
sample.

Proof. Let l = max{|w||w ∈ R}. Obviously, |Mh| ≤ l(l+1)
2 |R| holds, thus |Nh| ≤

l(l+1)
2 |R| also holds. For (u, avb, w) ∈ Mh, u, v, w ∈ Σ∗ and a, b ∈ Σ , there are

at most 2 rules added to Qh such that

A((u, avb, w), T=) → aA((ua, vb, w), T=)

and
A((u, avb, w), T=) → A((u, av, bw), T=)b

and A((u, a, w), T=) → a is added to Qh for (u, a, w) ∈ Mh. Thus, |Qh| < 2|Mh|
and |Ph| ≤ |Qh| hold.

Throughout the learning algorithm, Mh is not increased. It implies that
|Nh|, |Qh|, |Ph| are bounded by a polynomial during the learning.

Assume that a counterexample w is responded by an equivalence query. Since

T is monotone increasing, (u1, v1, w1)
T

�=(u2, v2, w2) holds once, they are never
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contained in the same equivalence class. It implies that |Qh| is also monotone
decreasing if Nh is not changed by w.

We can claim that if a counterexample w is given, either of the following holds.

– |Qh| decreases.
– |Nh| increases.

On the other hand, assume that (u, avb, w) ∈ Mh and (ua, vb, w) ∈ Mh cor-
respond to a nonterminal A ∈ Nt and B ∈ Nt in the target grammar Gt,
respectively, i.e. it holds that

S
∗⇒

Gt

uAw ⇒
Gt

uaBw
∗⇒

Gt

uavbw

for (u, avb, w) ∈ Mh and (ua, vb, w) ∈ Mh. Then, the rule

A((u, avb, w), T=) → aA((ua, vb, w), T=)

is never deleted from Qh. Thus, Qh contains at least |Pt| rules. We can conclude
the polynomial time termination of the learning algorithm. ��
We have the main theorem.

Theorem 5. strict-det is polynomial time exact learnable from membership
queries, equivalence queries and a representative sample.

Proof. It is clear from Lemma1 and the learning algorithm in Fig.2. ��
Theorem 6. strict-det is polynomial time probabilistic learnable with queries.

Proof. From Theorems3 and 4, we can replace both of equivalence queries and
a representative sample by polynomial number of random examples. Then, the
learning algorithm becomes a probabilistic learning algorithm with queries. Ob-
viously, its time complexity is bounded by a polynomial of |Nt|, |Σ |, |Pt|, |R|
and max{|w||w ∈ R}. ��

7 Conclusions

We have shown that strict-det is probabilistic learnable in polynomial time
with membership queries. This result is derived from the polynomial time exact
learning algorithm of strict-det from equivalence queries, membership queries
and a representative sample. We can show the power of a representative sample
in learning via queries but there are some problems for the future. In the study
of teachability, a learning algorithm with example based queries can derive the
teachability by making a teaching set contains enough many words to simulate
the learning algorithm[4]. On the other hand, a representative sample can not
be constructed from example based queries, thus it is hard to derive some teach-
ability from our result. Thus, study of teachability and a representative sample
is one of future works.

In [6], it has been shown that characteristic samples are important in the
learning from positive and negative examples. Relation between a representative
sample and characteristic sample is another future work.
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