
Towards Feasible PAC-Learning of Probabilistic
Deterministic Finite Automata�

Jorge Castro and Ricard Gavaldà

Departament de Llenguatges i Sistemes Informàtics
LARCA Research Group

Universitat Politècnica de Catalunya, Barcelona
{castro,gavalda}@lsi.upc.edu

Abstract. We present an improvement of an algorithm due to Clark and
Thollard (Journal of Machine Learning Research, 2004) for PAC-learning
distributions generated by Probabilistic Deterministic Finite Automata
(PDFA). Our algorithm is an attempt to keep the rigorous guarantees
of the original one but use sample sizes that are not as astronomical
as predicted by the theory. We prove that indeed our algorithm PAC-
learns in a stronger sense than the Clark-Thollard. We also perform
very preliminary experiments: We show that on a few small targets (8-
10 states) it requires only hundreds of examples to identify the target.
We also test the algorithm on a web logfile recording about a hundred
thousand sessions from an ecommerce site, from which it is able to extract
some nontrivial structure in the form of a PDFA with 30-50 states. An
additional feature, in fact partly explaining the reduction in sample size,
is that our algorithm does not need as input any information about the
distinguishability of the target.

1 Introduction

1.1 Context

Probabilistic Finite-State Automata (PFA) are thoroughly studied objects, both
because of its inherent theoretical interest and their applications. Probabilistic
Deterministic Finite-State Automata (PDFA) are a robust and natural subclass
of PFA: See [6] for a study of the relations among these models, as well as HMM
and POMDP.

These devices generate distributions on strings, and learning to approximate
them from a sample is one of the central associated problems. A good number of
algorithms have been proposed to infer PDFA. Some of them are only empirically
evaluated while, for others, convergence in the limit to the target PDFA can be
proven; see among others [1, 4, 2, 15, 11].

� Research supported in part by the EU PASCAL2 Network of Excellence and by
the Spanish Ministry of Education and Science under projects MOISES-TA and
TRANGRAM.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 163–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

164 J. Castro and R. Gavaldà

In the more demanding PAC model, some evidence that learning PDFA is
hard was provided by Kearns et al. [10]. More precisely, it is shown in [10] that
assuming that noisy parities are hard to PAC-learn, distributions generated by
2-letter PDFA cannot be PAC-learned in time polynomial in n, 1/ε, and 1/δ,
where from now on n denotes an upper bound on the number of states in the
target machine, and ε and δ are the usual accuracy and confidence parameters
in the PAC framework.

On the other hand, Ron et al. [13] gave an algorithm to PAC learn
acyclic PDFA if polynomiality is measured in an additional parameter, the
distinguishability of the target states - which we will denote as μ from now
on. This formalized the observation, present already e.g. in [2], that one of the
reasons that made some PDFA hard to learn was the presence of states with
very similar suffix distributions. Clark and Thollard [3] showed how to extend
this result to cyclic PDFA if still another parameter, the expected length of the
generated strings L is taken into account. Their work is the culmination of a line
of research, in the sense of identifying a set of parameters that make polynomial-
time learning possible. We will state their result precisely in Section 2.

A number of papers have since presented variations or extensions of Clark
and Thollard’s algorithm (for brevity, called the C-T algorithm from now on).
The related paper [14] by the same authors presents a more algorithmic view
of the same ideas, with emphasis on the structure identification part. Palmer
and Goldberg [12] showed the analogous result for learning with respect to the
variation (L1) distance rather than the KL-distance as C-T. Guttman et al [9]
showed that the class of μ2-distinguishable PDFA is also learnable with respect
to the KL-distance; C-T uses the easier μ∞-distinguishability measure. See also
the related results in Guttman’s thesis [8]. Denis et al [5] gave a quite deep
PAC-style result for the full class of PFA, although the parameters in which the
algorithm is polynomial are not completely identified there. Gavaldà et al. [7]
give another variation of C-T that adapts to the complexity of the target, in
the sense that it may stop earlier than the worst-case bound if convergence is
achieved.

While the Clark-Thollard result proves polynomial-time learnability of PDFA,
the actual polynomial is huge for interesting parameter values. For example, it
is in the order of 1024 for |Σ| = 2, n = L = 6, and ε = δ = μ = 0.1. For
values similar to these ones, the algorithm in [7] uses sample sizes in the order of
105 in their experiments. On the other hand, these algorithms do not look that
different from other state-merging algorithms in the literature, which often do
pretty well in practice with much smaller samples.

We believe that it is an interesting question whether these huge numbers
are unavoidable if PAC-like guarantees are required or whether one can design
algorithms with guaranteed polynomiality in well-defined parameters that have
use realistic sample sizes; or, let us say, about as realistic as those of the
algorithms which have been validated empirically only. It is important to note
that we discuss algorithms having no prior knowledge about the structure of the
state space; otherwise, the problem is much simpler.

Towards Feasible PAC-Learning of PDFA 165

1.2 Our Results

Our initial intention in this work was to produce an algorithm that does not
ask for a bound on the distinguishability μ of the target PDFA. This value is in
practice very hard to guess, and basically only trial-and-error can be used. As
the work progressed, we incorporated other optimizations, all of which can still
be rigorously justified. Yet, our algorithm is as easy to describe, if not more,
than the original C-T algorithm.

We show that our algorithm PAC-learns in the same sense as that the C-
T algorithm. In fact it learns with respect to a more demanding notion of
distinguishability than the L∞-distance as C-T, which we call prefL∞-distance.
This proof is the core of the paper.

While all our improvements are technical rather than conceptual, their
combination could lead to dramatic experimental speedups. We describe a few
experiments with an implementation of our algorithm that, we admit, are still
far from being “an experimental evaluation”. We first use the example PFAs
in [7], having 10 states each, for which the algorithm in [7] required about 4 ·105

examples to converge. Our algorithm identifies the structure of the PDFAs and
achieves low error with about 200-500 examples, i.e., a reduction by a factor of
1000 w.r.t. [7]. An additional example taken from [2] produces similar results.

We perform an additional experiment on a large dataset: a weblog of a high-
traffic Spanish online travel agent, recording about 120,000 user sessions. Each
session can be modelled as a string over an alphabet of size about 90, and average
length about 12. On this dataset, our algorithm is able to identify some nontrivial
structure: it extracts PDFA with 30-50 states that are certainly quite different
from trees. We are currently in touch with the company to assess whether the
patterns embodied in the PDFA make sense to local experts.

To finish this section, let us remark an important difference of our algorithm
with C-T, of a high-level rather than purely technical nature: The C-T algorithm
receives a number of parameters of the target as input, computes the worst-case
number of examples required for those parameters, and asks for the full sample
of that size upfront. Rather, we place ourselves in the more common situation
where we have a given, fixed sample and we have to extract as much information
as possible from it. Our main theorem then says that the algorithm PAC-learns
provided this sample is large enough with respect to the target’s parameters
(some of which, such as μ, are unknown; we are currently working on removing
the need to have the other parameters as inputs).

2 Preliminaries

We essentially follow notation in [3]. A PDFA A is a tuple 〈Q, Σ, τ, γ, ξ, q0〉 where
Q is a finite set of states, Σ is the alphabet, τ : Q × Σ −→ Q is the transition
function, γ : Q × (Σ ∪ {ξ}) −→ [0, 1] defines the probability of emitting each
symbol from each state (γ(q, σ) = 0 when σ ∈ Σ and τ(q, σ) is not defined), ξ
is a special symbol not in Σ reserved to mark the end of a string, and q0 ∈ Q is
the initial state. Transition function τ is extended to Q × Σ� in the usual way.

166 J. Castro and R. Gavaldà

Given an observation string xξ = σ0 . . . σkξ emitted by a known PDFA A,
the state at each step can be tracked by starting from the initial state q0
and following the labelled transitions according to x until reaching last symbol
ξ. Also, the probability of generating a given string xξ from state q can be
calculated recursively as follows: if x is the empty word λ the probability is
γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with k ≥ 0 and γ(q, σ0σ1 . . . σkξ) =
γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ).

The probability of state q in PDFA A is defined as the sum of values γ(q0, xξ),
where x ranges over the set of strings in Σ� that traverse q.

Assuming every state of A has non-zero probability of generating some string,
one can define for each state q a probability distribution DA

q on Σ�: For each
x, probability DA

q (x) is γ(q, xξ). The one corresponding to the initial state DA
q0

is called the distribution defined by A, written DA in short. When there is no
ambiguity, we will omit superindex A.

Given a multiset S of strings from Σ� we denote by S(x) the multiplicity of x
in S, write |S| =

∑
x∈Σ� S(x) and for every σ ∈ Σ define S(σ) =

∑
x∈Σ� S(σx).

To resolve the ambiguity of this notation on strings of length 1, we will always use
greek letters to mean elements of Σ, and latin letters for strings. We also denote
by S(ξ) the multiplicity of the empty word, S(λ). To each multiset S corresponds
an empirical distribution Ŝ defined in the usual way, Ŝ(x) = S(x)/|S|. Finally,
prefixes(S) denotes the multiset of prefixes of strings in S.

We consider several measures of divergence between distributions. Let D1 and
D2 be probability distributions on Σ�. The Kullback–Leibler divergence, KL for
short, is defined as

KL(D1, D2) =
∑

x

D1(x) log
D1(x)
D2(x)

.

The L∞ supremum distance is

L∞(D1, D2) = max
x∈Σ�

|D1(x) − D2(x)|.

Finally, we also use the supremum distance on prefixes (introduced here, as far
as we know):

prefL∞(D1, D2) = max
x∈Σ�

|D1(xΣ�) − D2(xΣ�)|.

Definition 1. We say distributions D1 and D2 are μ-distinguishable when
μ ≤ max{L∞(D1, D2), prefL∞(D1, D2)}. A PDFA A is μ-distinguishable when
for each pair of states q1 and q2 their corresponding distributions Dq1 and Dq2

are μ-distinguishable.

Observe that prefL∞(Dq1 , Dq2) ≥ μ iff there is any x ∈ Σ� such that
|γ(q1, x)−γ(q2, x)| ≥ μ. By definition, our measure of distinguishability is never
smaller than the usual L∞-distinguishability in the literature [3, 12].

Towards Feasible PAC-Learning of PDFA 167

3 Description of the Algorithm

We show below a learning algorithm for PDFAs that has as input parameters the
alphabet size |Σ|, an upper bound L on the expected length of strings emitted
from any state of the target (alternatively, a bound on the expected length of
strings from the initial state and a bound on the variance), an upper bound
n on the number of states of the target, and the confidence (δ) and precision
(ε) parameters. In contrast with the C-T algorithm, it does not need as input
parameter the distinguishability μ of the target.

According to [3], a PAC learner for the class of PDFA can be easily obtained
from a polynomial-time algorithm, so-called Learner from now on, satisfying
the requirements listed below; we follow their notation.

1. Learner returns (with high probability) a graph G isomorphic to a subgraph
of the target PDFA A. This means that there is a bijection Φ from a subset
of states of A to all nodes of G such that 1) Φ(q0) = v0 (where q0, v0 are
the initial states of A and G, respectively) and 2) if τG(v, σ) = w then
τ(Φ−1(v), σ) = Φ−1(w).

2. The states in A whose probability is greater than ε2/(L + 1), which we call
frequent states, have a representative in G. That is Φ is defined on frequent
states.

3. If q is a frequent state in A and σ ∈ Σ is such that γ(q, σ) > ε5 (we say (q, σ)
is a frequent transition) then τG(Φ(q), σ) exists and it equals Φ(τ(q, σ)).

4. A multiset Sv is attached to every node v in the graph. If v represents a
frequent target state q (i.e., Φ(q) = v where q is frequent), then for every
σ ∈ Σ ∪ {ξ}, it holds |Sv(σ)/|Sv| − γ(q, σ)| < ε1. A multiset holding this
property is said to be ε1-good.

Numbers ε1, ε2 and ε5 above and auxiliar quantities ε0 and δ0 that we use later
are defined as follows. Note that they do not depend on μ.

ε1 =
ε2

16(|Σ| + 1)(L + 1)2

ε2 =
ε

4n(n + 1)L(L + 1) log(4(L + 1)(|Σ| + 1)/ε)

ε5 =
ε

4|Σ|(n + 1)L(L + 1) log(4(L + 1)(|Σ| + 1)/ε)

ε0 =
ε2ε5

n|Σ|(L + 1)

δ0 =
δ

n2|Σ| + 3n|Σ| + n

From a such graph G a PDFA hypothesis H can be easily built having a small KL
divergence with respect to A. This is described in the paragraphs “Completing
the Graph” and “Estimating Probabilities” in [3], page 480. Basically, it is
enough to complete the graph when necessary by introducing a new node, the

168 J. Castro and R. Gavaldà

ground node, representing all the low frequency states and new transitions to the
ground node. Finally, a smoothing scheme is performed in order to estimate the
transition probabilities.

The proof that an algorithm Learner with these properties, plus this
additional graph completion and probability estimation step, is a PAC-learner
is essentially the contents of Sections 4.3, 4.4 and 5 in [3]. It does not involve
distinguishability at all, so we can apply it in our setting even if we have changed
our measure of distinguishability.

Our learning algorithm takes as inputs the parameters listed above and a
sample from the target machine containing N examples. Learner performs at
most n|Σ|+1 learning stages, each one making a pass over all training examples
and guaranteed to add one transition to the graph G it is building.

At the beginning of each stage, Learner has a graph G that summarizes our
current knowledge of the target A. Nodes and edges in G represent, respectively,
states and transitions of the target A. We call safe nodes the nodes of G, as they
are inductively guaranteed (with probability at least 1− δ0) as stand for distinct
states of A, with transitions among them as in A. Safe nodes are denoted by
strings in Σ�.

Attached to each safe node v there is a multiset Sv that keeps information
about the distribution on the target state represented by v. The algorithm starts
with a trivial graph G consisting of a single node v0 = λ representing the initial
state q0 of the target, whose attached multiset is formed by all the available
examples.

When a new stage starts, the learner adds a candidate node u = vuσ for each
(safe) node vu of G and each σ ∈ Σ such that τG(vu, σ) is undefined. Candidate
nodes gather information about transitions of A leading from states that have
already a safe representative in G but not having yet an edge counterpart in G.
Attached to each candidate node u there is also a multiset Su, initially empty.
The learner also keeps, for each candidate node u, a list Lu of safe nodes that
have not been yet distinguished (proved different) from u. Initially Lu contains
all nodes in G.

For each training example xξ = σ0 . . . σi−1σiσi+1 . . . σkξ in the dataset,
Learner traverses the graph matching each observation σi to a state until either
(1) all observations in x have been exhausted or (2) a transition to a candidate
node is reached. This occurs when all transitions up to σi−1 are defined and lead
to a safe node w, but there is no edge out of w labeled by σi. In this case, we add
the suffix σi+1 . . . σk to the multiset Su of candidate node u = wσi and, before
processing a new example, we consider all pairs (u, v) where safe node v belongs
to Lu. For each such pair, we call function Test Distinct(u, v) described in
Figure 1. If the test returns “distinct”, we assume that u and v reach distinct
states in the target and we remove v from Lu.

A candidate node becomes important when |Su| exceeds ε0N/2. Every time
that there is an important candidate node u = vuσ whose associated set Lu is
empty, u is promoted to a new safe node (G gets a new node labelled with u),
u is not anymore a candidate node, and an edge from vu to u labeled by σ is

Towards Feasible PAC-Learning of PDFA 169

added to G. The multiset Su is attached to the new safe node, u is included in
the list Lu′ of all remaining candidate nodes u′, and the phase continues.

If all training examples are processed without the condition above occurring,
the algorithm checks whether there are any important candidate nodes left. If
none remains, Learner returns G and stops. Otherwise, it closes the phase as
follows: It chooses the important candidate u = vuσ and the safe node v ∈ Lu

having smallest distinguishability on the empirical distributions (samples), and
identifies them, by adding to G an edge from vu to v labeled by σ.

Finally, the phase ends by erasing all the candidate nodes and another phase
starts.

function Test Distinct(u, v)
//u is a candidate node; v is safe
mu ← |Su|; su ← | prefixes(Su)|;
mv ← |Sv|; su ← | prefixes(Sv)|;

tu,v ←
(

2
min(mu,mv) ln 4m2

u(su+sv)π2

3δ0

)1/2

d ← max
(
L∞(Ŝu, Ŝv), prefL∞(Ŝu, Ŝv)

)

if d > tu,v then return “distinct”
else return “not clear”

Fig. 1. The state-distinctness test

4 Analysis

In this section we show that algorithm Learner satisfies conditions (1)-(4) before,
and therefore can be turned into a PAC-learner for PDFA.

The following two lemmas describe the behavior of Test Distinct. Here
Du (respectively, Dv) denotes the target distribution on state q = τ(q0, u)
(q = τ(q0, v)).

Lemma 2. If Du = Dv function Test Distinct(u, v) returns “not clear” with
probability 1 − 6δ0/(π2m2

u).

Proof. Let D = Du(= Dv). Function Test Distinct returns “different” when
there exists a string x such that |Ŝu(xΣ�)− Ŝv(xΣ�)| > tu,v or |Ŝu(x)− Ŝv(x)| >

tu,v. First, we bound the probability of the event prefL∞(Ŝu, Ŝv) > tu,v. To avoid
summing over infinitely many x, consider Su ∪Sv ordered, say lexicographically.
Then the event above is equivalently to saying “there is an index i in this
ordering such that some prefix of the ith string in Su ∪ Sv in this ordering,
call it x, satisfies the condition above”. (This is another way of saying that only
x’s appearing in prefixes(Su ∪ Sv) can make the inequality true, since all others
have Ŝu(xΣ�) = Ŝv(xΣ�) = 0.) Therefore, its probability is bounded above by
the maximum of (su + sv) Pr[|Ŝu(xΣ�) − Ŝv(xΣ�)| > tu,v] over all strings x. By
the triangle inequality, this is at most

(su +sv)
(
Pr[|Ŝu(xΣ�) − D(xΣ�)| > tu,v/2] + Pr[|Ŝv(x) − D(xΣ�)| > tu,v/2]

)
.

170 J. Castro and R. Gavaldà

Since E[Ŝu(xΣ�)] = E[Ŝv(xΣ�)] = D(xΣ�), by Hoeffding’s inequality this is at
most

(su + sv)(2 exp(−2(t2u,v/4) mu) + 2 exp(−2(t2u,v/4) mu))

≤ 4(su + sv) exp(−(t2u,v/2) min(mu, mv)),

which is 3δ0/(π2m2
u) by definition of tu,v.

A similar reasoning also shows that the probability of the event L∞(Ŝu, Ŝv) >
tu,v is at most 3δ0/(π2m2

u) and we are done.

Lemma 3. If Du and Dv are μ-distinguishable and min(mu, mv) ≥ 8
μ2 ln

8(mu+mv)m2
uLπ2

3δ2
0

then Test Distinct(u, v) returns “different” with probability
1 − δ0.

Proof. We first bound the size of prefixes(Su ∪ Sv). Clearly, its expected size
is at most L|Su ∪ Sv|. Then, by Markov’s inequality, Pr[| prefixes(Su ∪ Sv)| ≥
2
δ0

· L|Su ∪ Sv|] is less than δ0/2. Therefore, we have with probability at least
1 − δ0/2 that su + sv ≤ 2(mu + mv)L/δ0.

Now assume there is a string x witnessing that prefL∞(Du, Dv) > μ (otherwise
some x is a witness for L∞(Du, Dv) > μ and we argue in a similar way), i.e. a string
such that |Du(xΣ�)−Dv(xΣ�)| > μ. If min(mu, mv) ≥ 8

μ2 ln 8(mu+mv)m2
uLπ2

3δ2
0

, by
the argument above with high probability we have tu,v ≤ μ/2 and the proba-
bility of returning “different” is at least the probability of the event |Ŝu(xΣ�) −
Ŝv(xΣ�)| > μ/2. The hypothesis on x and the triangle inequality shows that
probability of the complementary event |Ŝu(xΣ�) − Ŝv(xΣ�)| ≤ μ/2 is at most
Pr[|Ŝu(xΣ�) − Du(xΣ�)| > μ/4] + Pr[|Ŝv(xΣ�) − Dv(xΣ�)| > μ/4]. By the
Hoeffding bound, this sum is less than δ0/2, and we are done.

Lemmas 4–8 below share the hypothesis the current G is isomorphic to a
subgraph of A and deal with one fixed stage of the learning algorithm.
Probabilities are taken over samples.

Lemma 4. Let u be a candidate node. If u is promoted to safe (in this stage)
then, with probability 1 − δ0, node u corresponds to a new target state, i.e., one
not represented in the current graph G.

Proof. We show that a candidate node u representing the same target state
than a safe state v has very small probability of being promoted. By Lemma 2
at any specific call to Test Distinct(u, v), the function returns the wrong value
“different” with probability at most 6δ0/(π2m2

u). The test is called once for every
example included in Su, so the value of mu increases by 1 at each consecutive
call within the stage. Therefore, the probability that safe node v is ruled out
from Lu is at most ∑

mu≥1

6δ0/(π2 m2
u) = δ0

Lemma 5. Let u be a candidate node, and let μ be the distinguishability of the
target. If N is greater than 16

ε0μ2 (3e ln 48
ε0μ2 + ln 16Lπ2

3δ2
0

) with probability 1−nδ0, if

Towards Feasible PAC-Learning of PDFA 171

candidate node u is merged with a safe node v then, strings u and v end in the
same state in the target.

Proof. Assume candidate u is merged with safe node v. Necessarily u is
important and N ≥ mu > ε0N/2. As v is safe it also holds mv > ε0N/2. It is
also clear that mu + mv ≤ 2N . From these values of mu, mv and the hypothesis
on N , it can be checked that min(mu, mv) satisfies requirement in Lemma 3. So,
if they were representatives of different target states, safe v would remain in Lu

with probability at most δ0.

Lemma 6. Assume that, after processing all examples, graph G has no safe node
v representing a frequent state q of A. If N > 8(L+1)

ε2
ln 1

δ0
then, with probability

1 − δ0, the learner will not finish yet.

Lemma 7. Assume that, after processing all examples, graph G has no edge
representing a frequent transition (q, σ) in A. If N > 8(L+1)

ε2ε5
ln 1

δ0
then with

probability 1 − δ0, some candidate is important and the learner will not
finish yet.

Lemma 8. Let u be a candidate node. If the number N of training examples
is greater than 1

ε0ε21
ln 2(|Σ|+1)

δ0
and u is promoted to safe then, with probability

1 − δ0, multiset Su is ε1-good.

Let N0 be max
(

16
ε0μ2 (3e ln 48

ε0μ2 + ln 16Lπ2

3δ2
0

), 8
ε0ε21

ln 2(|Σ|+1)
δ0

)
. A straightforward

induction shows the main theorem:

Theorem 9. If N > N0, with probability 1 − δ Learner returns a graph G
satisfying requirements (1)–(4) listed above.

As explained already, the second phase of the learning algorithm takes the graph
G, completes it if necessary, and sets the transition probabilities according to their
empirical distribution. An additional smoothing is performed, as described in [3].
We do not describe it here, but state that the resulting PDFA will approximate
the target in the KL distance, as can be deduced from the proof in [3].

5 Experiments

5.1 Small Targets

Our first experiments used the two automata tested by Gavaldà et al. [7],
shown in Figure 2. The one on the left is a (nondeterministic) HMM repeatedly
generating strings in {abb, aaa, bba} with different probabilities. The one on the
right is the “cheese maze”: at each state (or square), an observation (a letter in
{1, 2, 3}) indicates the number of walls around that state, with the exception of
s10 where the automaton terminates. They have thus 10 states each. We have
additionally used the Reber grammar automaton, with 8 states, discussed in [2]
and shown in Figure 3.

172 J. Castro and R. Gavaldà

Fig. 2. Example PFAs from [7]

Fig. 3. The Reber grammar; plot taken from [2]

For each of these automata, and different values of N , we generated 10
examples of size N from the target, and run our algorithm on these examples.
In all experiments we used δ = 0.05 and the (known) number of target states
for n. For the Reber grammar, the full structure of the automaton was identified
about half the times with N = 100, but systematically identified when N = 200,
at which point transition probabilities were correct within (absolute) 5%. For
N = 1000, transition probabilities were correct within 1%. For the cheese maze
automaton, at N = 300 the structure was found 9 out of 10 times, with transition
probabilities correct up to 2%. For N = 1000, the structure was correctly found
in all trials. Interestingly, when the program was changed to use only L∞-, rather
than prefL∞-distinguishability, the point at which the structure is identified
more than 50% of the times was around N = 1300. That is, using prefL∞ did
help in this case. Results were similar for the HMM on the left of Figure 2.

5.2 An Experiment with a Real, Large Dataset

As a larger test, we used a web logfile recording sessions from a high-traffic
Spanish online travel agency, selling flights, hotel stays, car rentals, and theater
tickets. Each entry in the logfile records a user request to the company’s web
to initiate some action. The local experts distinguish 91 types of requests or

Towards Feasible PAC-Learning of PDFA 173

Sample # states L1 distance
40k 35 .582
50k 36 .546
60k 39 .518
70k 42 .516
80k 45 .480
100k 54 .439

Fig. 4. Results on the online travel agency dataset

tags; some examples could be “search flight”, “search hotel”, “book flight”,
“credit card info”, “home”, “register”, “help”, etc. We preprocessed the logfile
transforming each request into a tag identifier and grouping clicks from the
same user into sessions. Therefore each session can be viewed as a string over
a 91-letter alphabet. The median and average of session length are 4 and 11.9,
excluding 1-click sessions, and we had 120,000 sessions to work with.

We ran our algorithm on subsets of several sizes N of this dataset. Since
human web users cannot be perfectly modelled by PDFA, one should not expect
high accuracy. Still, there are certainly patterns that users tend to follow, so it
was worth checking whether any structure is found.

We tried N = 40, 000 to N = 100, 000 in multiples of 10, 000. Figure 4
presents, for each N , the size of the resulting PDFA and the L1-distance from
the dataset to a randomly generated sample of size 100, 000 from the output
machine.

Note that the L1 distance can have value up to 2. (In fact, we tried generating
several independent samples of size 100k from the PDFA obtained with the 100k
sample and computing their L1 mutual distance. The results were around 0.39
even though they came from the same machine, so this value is really the baseline
once sample size has been fixed to 100k.) The table shows that convergence to
a fixed machine did not occur, which is no surprise. On the other hand, the
resulting machines were not at all tree-like PDFAs that occur when no states
can be merged: most safe states did absorb candidate states at some point. Given
the alphabet size (91) and number of states (≥ 30), depicting and understanding
them is not immediate.

Note that we have not discussed the values of ε and L used in the experiments.
In fact, our implementation does not use them: they are used only to determine
when a state is important. In particular, observe that ε and L are not used in
the state distinctness test. The implementation keeps merging candidate states
as long as there is any left at the end of the stage, hence every candidate state
is eventually merged. We believe that it is possible to prove that this variant is
still a PAC learner, since non-important states, after smoothing, by definition
do not contribute much to the KL distance. We believe it is also possible to
remove the need for an upper bound on n without significantly increasing sample
size in practice; this would give a PAC-learning whose only parameter is the
confidence δ.

174 J. Castro and R. Gavaldà

6 Conclusions

We believe that these first experiments, as preliminary as they are, show that
maybe one cannot rule out the existence of a provably-PAC learner that has
reasonable sample sizes in practice. More systematic experimentation, as well as
improving of our slow, quick-and-dirty implementation, is work in progress.

References

[1] Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: ICGI, pp. 139–152 (1994)

[2] Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from
stochastic samples in polynomial time. ITA 33(1), 1–20 (1999)

[3] Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research 5, 473–497 (2004)

[4] de la Higuera, C., Oncina, J., Vidal, E.: Identification of DFA: data-dependent vs
data-independent algorithms. In: ICGI, pp. 313–325 (1996)

[5] Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 274–288.
Springer, Heidelberg (2006)

[6] Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition 38, 1349–1371 (2005)

[7] Gavaldà, R., Keller, P.W., Pineau, J., Precup, D.: PAC-learning of Markov models
with hidden state. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML
2006. LNCS (LNAI), vol. 4212, pp. 150–161. Springer, Heidelberg (2006)

[8] Guttman, O.: Probabilistic Automata Distributions over Sequences. Ph.D. thesis,
The Australian National University (September 2006)

[9] Guttman, O., Vishwanathan, S.V.N., Williamson, R.C.: Learnability of proba-
bilistic automata via oracles. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT
2005. LNCS (LNAI), vol. 3734, pp. 171–182. Springer, Heidelberg (2005)

[10] Kearns, M.J., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On
the learnability of discrete distributions. In: STOC, pp. 273–282 (1994)

[11] Kermorvant, C., Dupont, P.: Stochastic grammatical inference with multinomial
tests. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS
(LNAI), vol. 2484, pp. 149–160. Springer, Heidelberg (2002)

[12] Palmer, N., Goldberg, P.W.: PAC-learnability of probabilistic deterministic finite
state automata in terms of variation distance. In: Jain, S., Simon, H.U., Tomita,
E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 157–170. Springer, Heidelberg
(2005)

[13] Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic
probabilistic finite automata. J. Comput. Syst. Sci. 56(2), 133–152 (1998)

[14] Thollard, F., Clark, A.: Learning stochastic deterministic regular languages. In:
Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp.
248–259. Springer, Heidelberg (2004)

[15] Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In: ICML, pp. 975–982 (2000)

	Towards Feasible PAC-Learning of Probabilistic Deterministic Finite Automata
	Introduction
	Context
	Our Results

	Preliminaries
	Description of the Algorithm
	Analysis
	Experiments
	Small Targets
	An Experiment with a Real, Large Dataset

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

