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Abstract. Multiplicity Automata are devices that implement functions
from a string space to a field. Usually the real number’s field is used.
From a learning point of view there exists some algorithms that are able
to identify any multiplicity automaton from membership and equivalence
queries.

In this work we realize that those algorithms can also be used if the
algebraic structure of a field is relaxed to a divisive ring structure, that
is, the commutativity of the product operation is dropped.

Moreover, we define an algebraic structure, which is an extension of
the string monoid, that allows the identification of any transduction that
can be realized by finite state machines without empty-transitions.

1 Introduction

In the same way a language is defined as a subset (usually infinite) of strings,
a transducer can be defined as a subset of pairs or strings. The first string is
interpreted as the input string and the second as the output string, i.e. in a
translation task the pair (“to be”,“ser”) can represent that the English verb “to
be” can be translate to Spanish by the verb “ser”.

One of the biggest classes of transductions that are known to be identifiable
are the subsequential functions. Those functions can be describe as the set of the
transductions that can be implemented by deterministic finite state machines in
which the arcs and the states are labeled with strings of the output string space.
The translation of a string is the concatenation of the strings in the labels of
the arcs and the final state used in the parsing of the string (note that since the
automaton is deterministic there is at most one path).

In this work we are interested in learning transducers in the exact learning
model. In this model, proposed by Angluin in 1988 [Ang88], the learner is allowed
to actively search information by asking queries to a teacher. Two types of queries
are allowed:

– membership queries. When the learner can ask for the translation of some
sentence.
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– equivalence query. When the learner thinks it has a suitable hypothesis,
it can ask the teacher if it is correct. If the model is correct the teacher
answers YES and the process stops. If it is incorrect, the teacher answers
with a counter example.

In 1996 Vilar [Vil96] proposed an algorithm to efficiently identify any subsequen-
tial transducer in this model.

The most important drawback of the subsequential functions is that they can
not cope with ambiguities. For example, the verb “to be” can also be translated
to Spanish by the verb “estar”, but subsequential functions, as they are based
on deterministic machines, are unable to give several options.

In this work we are going to describe a class of transductions that includes
properly the subsequential functions and permits the expression of ambiguous
transductions. This class includes all the transductions that can be performed
by non deterministic ε-free automata where the edges and the states can have
several labels.

The proposed algorithm is a reinterpretation of an algorithm to identify Mul-
tiplicity Automata (MA) [BBB+00] in the exact learning framework. Usually
MA implement string to real functions. MA are very similar to stochastic au-
tomata where there are no restrictions to force the function to be a distribution
probability. They can be described as a non deterministic automata with labels
in the edges and states (usually real numbers). The value assigned to a string is
the sum over all possible parses of the string of the product of the labels in the
edges and the final state used in each parse.

Our idea relays in substituting the field of the real numbers (with its mul-
tiplication and addition) that is usually used in MA by an alphabet with the
concatenation playing the role of the multiplication and the inclusion in a mul-
tiset playing the role of the addition. Note that the commutativity is lost when
replacing the product of reals by the concatenation of strings. That means we
are not longer working in a field but, with some extensions described later, in a
divisive ring. It is easy to check that, in the demonstration of the properties of
his algorithm, Beimel et al did not use the commutativity of the product, and
therefore, their results remains valid in the case of divisive rings.

2 Notation

2.1 String Expressions

Let Σ = {a, b, . . .} be a finite set or Alphabet. The set of string expressions over
Σ (E(Σ)) is defined as follows:

– ε ∈ E(Σ) and ∅ ∈ E(Σ)
– let a ∈ Σ ⇒ a ∈ E(Σ)
– let x ∈ E(Σ) ⇒ −x ∈ E(Σ)
– let x ∈ E(Σ) ⇒ x−1 ∈ E(Σ)
– let x, y ∈ E(Σ) ⇒ x + y ∈ E(Σ)
– let x, y ∈ E(Σ) ⇒ x · y ∈ E(Σ)
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Let x, y, z ∈ E(Σ), we define the following relation of equivalence:

– (x · y) · z ≡ x · (y · z) product associativity
– (x + y) + z ≡ x + (y + z) addition associativity
– x + y ≡ y + x addition commutativity
– x · (y + z) ≡ x · y + x · z product distributivity
– x + ∅ ≡ ∅ + x ≡ x addition neutral element
– x · ε ≡ ε · x ≡ x product neutral element
– x + (−x) ≡ ∅ addition inverses
– x · x−1 ≡ ε product inverses

Let we call [Σ] the collection of the equivalence classes in E(Σ). Then ([Σ], +, ·),
in abstract algebra, has a structure of divisive ring, that is, a field where the prod-
uct operator is not commutative.

The product is interpreted as the usual concatenation of strings (this is the
reason to avoid the commutativity) where ε (the neutral element) represents the
null string. The set has been enriched with concatenation symmetric elements,
then it is expected to have strings like ab−1a. We can think in this strings as
“intermediate” results. It should be assured that, at the end of all the computa-
tions, no strings with “special symbols” appears. In the sequel, we use the usual
juxtaposition notation (xy instead of x · y).

The addition is interpreted as a multiset inclusion. Then the expression x+ y
represents a multiset with two elements, x and y, x + x + x is a multiset with
three elements (that are equal), x+y +−y a multiset with just one element (the
x) since y − y ≡ ∅ and y + ∅ ≡ y.

2.2 Multiplicity Automata

Definition 1 (Multiplicity Automata). Let Σ be an alphabet and let K be
a ring. A Multiplicity Automaton (MA) is a 3-tuple (λ, μ, γ) such that:

– λ ∈ K1×n (a 1 × n matrix with values in K)
– γ ∈ Kn×1 matrix (a n × 1 matrix with values in K)
– μ is morphism of monoids μ : Σ∗ → Kn×n (return a n × n matrix)

That is, μ(λ) = I (the unit matrix), and ∀x, y ∈ Σ∗, μ(xy) = μ(x)μ(y). Then, μ
can be represented as a set of |Σ| Kn×n matrices.

Let α = (λ, μ, γ) be a multiplicity automaton, we can define the function
performed by α as fα : Σ∗ → K such that:

fα(x) = λμ(x)γ

A Multiplicity automata α = (λ, μ, γ) can also be interpreted as a weighted
non deterministic automata with n states. Where λi is the weight of beginning
in state qi, [μ(a)]i,j is the weight of the arc that goes from state qi to state qj

with the symbol a and γi is the weight of ending in state qi. The weight of a path
is computed as the product of the weight of the start state times the weights of
the arcs used in its parsing times the weight of the ending state. The weight of
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a string is the sum of the weights of all the possible paths of the string in the
automaton.

It is easy to see that any multiplicity automata function can be implemented
by a multiplicity automaton with only one initial state and with at most one
more state than the original. Then, without loss of generality, the vector λ in
the definition can be fixed to a vector such that λ1 = ε and λi = ∅, 1 < i ≤ n.

In our case instead of a generic ring we are going to use the divisive ring of
the string expressions.

Example 1. Let Σi = {a} and Σo = {0, 1} be respectively the input and output
alphabets, let f : Σ∗

i → [Σo] be a function such that:

f(an) =

{
0n if n is odd
1n if n is even

(1)

It is easy to see that the MA depicted in figure 1 realizes this function.

q1

εstart

q2

ε

q3

∅

q4

∅

q5

ε

a|0

a|1

a|0

a|1

a|0

a|1

Fig. 1. MA for function in equation 3

Example 2. The matrix representation of the automaton in figure 1 is:

λ =
(
ε ∅ ∅ ∅ ∅

)
μa =

⎛
⎜⎜⎜⎜⎝

∅ 0 1 ∅ ∅
∅ ∅ ∅ 0 ∅
∅ ∅ ∅ ∅ 1
∅ 0 ∅ ∅ ∅
∅ ∅ 1 ∅ ∅

⎞
⎟⎟⎟⎟⎠ F =

⎛
⎜⎜⎜⎜⎝

ε
ε
∅
∅
ε

⎞
⎟⎟⎟⎟⎠ (2)

Example 3. It is not very difficult to see that the function in equation 3 can also
be realized by the MA automaton in figure 2.

It is easy to see that any transducer based on a non deterministic ε-free automa-
ton with a finite number of strings in the edges or states can be represented as
a MA over the string expressions divisive ring.

Let we see an example to illustrate that.
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q1

εstart
q2

0

q3

11

q4

000

a|ε a|ε a|ε

a|14 − (04 − 14)(02 − 12)−112

a|(04 − 14)(02 − 12)−1

Fig. 2. A minimum size automaton that realizes equation 1 function

Example 4. Let Σi = {a} and Σo = {0} be respectively the input and output
alphabets, let f : Σ∗

i → [Σo] be a function such that:

f(an) =
n∑

i=0

0i (3)

That is:

f(ε) = ε (≡ {ε})
f(a) = ε + 0 (≡ {ε, 0})

f(aa) = ε + 0 + 00 (≡ {ε, 0, 00})
. . .

It is easy to see that the MA depicted in figure 3 realizes this function.

q0

εstart
q1

ε + 0

a|ε

a|ε + 0

a| − 0

Fig. 3. MA for function in equation 3

2.3 Hankel Matrix

The MA inference algorithm that we are going to use relies on some properties of
the Hankel matrix. Although the following definitions and theorems are stated
for fields we can realize the the commutativity of the product is never used and
then, they still valid for divisive rings. Part of the following material can be
found in some Beimel et al papers [BBB+96] [BBB+00], we just transliterate it
for divisive rings to make the paper more self content.
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Let D be a divisive ring (A field where the product is not commutative), Σ
be an alphabet, ε be the empty string, and f : Σ∗ → D be a function. The
Hankel matrix of the function f is an infinite matrix F where each of its rows
and columns are indexed by strings in Σ∗. The (x, y) entry of F contains the
value f(xy) ∈ D

We use Fx to denote the xth row of F . The (x, y) entry of F may be therefore
denoted as Fx(y) or as Fx,y.

Example 5. The Hankel matrix of the function in equation 1 is:

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε 0 11 000 1111 . . .
0 11 000 1111 00000 . . .
11 000 1111 00000 111111 . . .
000 1111 00000 111111 0000000 . . .
1111 00000 111111 0000000 11111111 . . .
. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

The following theorem of Carlyle and Paz [CP71] and Fliess [Fli74] is a funda-
mental theorem from the theory of formal series. Although it was stated for field
it is easy to check that is is also valid for divisive rings as we state here.

Theorem 1. Let f : Σ∗ → D such that f 	≡ 0 and let F be the corresponding
Hankel matrix. Then, the size r of the smallest MA α such that fα ≡ f satisfies
r = rank(F ) (over the divisive ring D)1

The importance of the theorem is double: first, it relates the size of the minimal
automaton for f to the rank of its Hankel matrix. And second, the proof is
constructive. It gives a way to build a MA from any finite rank Hankel Matrix.

Given a function f : Σ∗ → D such that the corresponding matrix F has finite
rank r, let Fx1 , Fx2 , . . . , Fxr be r linearly independent rows of F (i.e. a basis)
corresponding to strings x1, x2, . . . , xr. (since f 	≡ 0, it holds that Fε 	= 0, then
Fε can always be an element of the basis. Then, we take x1 = ε).

Then the MA α = (λ, μ, γ) that realizes the function fα is:

– λ = (ε, ∅, . . . , ∅).
– γ = (f(x1), . . . , f(xr))t.
– for every a ∈ Σ, define the ith row of the matrix μ(a) as the (unique) coeffi-

cients of the row Fxia when expressed as a linear combination of Fx1 , . . . , Fxr .
That is,

Fxia =
r∑

j=1

[μ(a)]i,jFxj (5)

Example 6. It can be show that Fε, Fa, Faa and Faaa in the Hankel matrix of
equation 4 forms a basis.

We are going to show that Faaaa can be expressed as a linear combination of
Fε, Fa, Faa and Faaa.
1 The demonstration of the theorem can also be found in [BBB+96] [BBB+00].
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That is we have to solve the system of equations:

α1 +α20 +α312 +α403 = 14

α10 +α212 +α303 +α414 = 05

α112 +α203 +α314 +α405 = 16

α103 +α214 +α305 +α416 = 07

It is straight forward to use the Gauss method to solve the system (paying
attention to not use the product commutativity) and find the solution:

α4 = ∅
α2 = ∅
α3 = (04 − 14)(02 − 12)−1

α1 = 14 − (04 − 14)(02 − 12)−112

Observe that these are the values that were used to depict the MA in figure 2.

3 The Beimel et al Algorithm

The algorithm works using a finite version of the Hankel matrix F̂ . Let X and
Y be two sets where the indexes of the finite version of the Hankel matrix are
stored.

The algorithm works as follows:

1. X = {x1 = ε}, Y = {y1 = ε} and � = 1
2. Build a MA α = (λ, μ, γ) using theorem 1
3. Ask an equivalence query.

If the answer is YES halt with output α.
Otherwise, let z be the counterexample.
(a) Find (using membership queries) a string wa which is a prefix of z such

that:
i. F̂w =

∑�
i=1[λμ(w)]iF̂xia; but

ii. there exists a y such that: F̂wa 	=
∑�

i=1[λμ(w)]iF̂xia(y)
(b) X = X ∪ {x�+1 = w}, Y = {y�+1 = ay}, � = � + 1
GO TO step 2

Beimel et al showed that the algorithm works in O((|Σi| + m)rM(r)) time
using r equivalence queries and O((|Σi| + log m)r2) membership queries. Where
Σi is the input alphabet, r is the rank of the Hankel matrix, M(r) is the com-
plexity of multiplying two r × r matrices (O(r2.376)) and m is the length of the
longest counter example.

Once more, it can be checked in the work of Beimel et al that the commuta-
tivity of the product is not used and then, the algorithm still valid in divisive
rings.

Note that in our case, the equivalence query should return a string expression
describing all the possible output strings and the counter example of an equiva-
lence query should return a pair (string, string expression) such that the string
expression is a description of all the possible transduction of the input string.
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q0

εstart

a|ε + 0 f(ε) = ε

f(a) = ε + 0

f(aa) = (ε + 0)(ε + 0) = ε + 0 + 0 + 00

· · ·
Fig. 4. MA that does no realize function in equation 3

Example 7. Let we try to find a transducer for the function in equation 3:
In such case we need 2 states and the system to solve is:

α1ε +α2(ε + 0) = ε + 0 + 02

α1(ε + 0) +α2(ε + 0 + 02) = ε + 0 + 02 + 03

The solution is:

α1 = −0 α2 = ε + 0

And the transducer in figure 2 is obtained.
Note that the transducer in figure 4 does not produces the transduction of

equation 3 since some of the output strings have a different number of repetitions
(multiplicity).

4 Conclusions and Open Questions

This work shows how to use an algorithm devised to learn multiplicity automata
from membership and equivalence queries to identify transducer relations.

The proposed method can identify the class of transductions than can be
expressed as finite state (and arc) machines with no ε transitions.

As this is a first step to deal with ambiguous transductions it remains many
problems to solve in order to be able to apply similar technique in more realistic
situations:

– The way the membership and equivalence queries should be answered is too
demanding. Information about all the transductions for the involved input
string should be provided. Can we still be able to learn if only information
about just one transduction is provided in each query?

– Since the method assures the identification, if the target function does not
produces strings with inverse symbols, neither the produced function will
do. But it can produce a complex string expression that, when simplified, is
just a plain string (as happens in the MA in figure 2). Does it exist a general
method to simplify and compare string expressions? Does it exist a method to
know if a multiplicity automaton produces only plain strings? If we compare
automata in figures 1 and 2, obviously the first one is more understandable
than the second one. Does it exist a method to remove complex expressions
is arcs and states, possibly adding more states?
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– The multiplicity is important in learning. Automata in figures 3 and 4 show
that, when the multiplicity doesn’t care, smaller automata can be obtained.
How much can this reduction be? Any learnable function remains learnable
if the multiplicity is not taken into account?
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