
On Learning Regular Expressions and Patterns
Via Membership and Correction Queries

Efim Kinber

Department of Computer Science, Sacred Heart University, Fairfield, CT 06825-1000,
U.S.A.

kinbere@sacredheart.edu

Abstract. Based on the ideas suggested in [5], the following model for
learning from a variant of correction queries to an oracle is proposed:
being asked a membership query, the oracle, in the case of negative an-
swer, returns also a correction – a positive datum (that has not been
seen in the learning process yet) with the smallest edit distance from the
queried string. Polynomial-time algorithms for learning a class of regular
expressions from one such query and membership queries and learning
pattern languages from queries of this type are proposed and discussed.

1 Introduction

In this paper, we propose and discuss some algorithms for learning pattern lan-
guages and a class of regular expressions from positive data. There exist dif-
ferent models for learning languages from examples, in particular, the popular
Gold’s model [9] for learning languages in the limit from a stream of all pos-
itive examples, Angluin’s model [3,4] for learning languages from queries to a
teacher (oracle), and Valiant’s PAC learning model [18]. In this paper, we follow
the Angluin’s query model representing learning process as an interactive ses-
sion between a learner and a teacher. Specifically, the learner asks the teacher
queries of a certain type, and the teacher returns correct answers to the queries.
After a finite number of queries, the learner must output a correct description of
the target language. This description of the target language must be within cer-
tain general class chosen by the teacher and known to the learner (for example,
regular expressions, patterns, DFAs, an acceptable numbering of all recursively
enumerable sets, etc.)

Over the years, capabilities of different types of queries for various classes
of target languages have been explored within the framework of the Angluin’s
query model. In particular, in her seminal paper [3], D. Angluin presented a
polynomial-time algorithm using membership and equivalence queries and learn-
ing (minimal) deterministic finite automata. Since then, query model has been
used for studies of learning various classes of target concepts via membership,
equivalence, subset, superset and disjointness queries. Among the classes of tar-
get concepts, context-free grammars ([14]), non-deterministic finite automata
([19]), regular tree languages ([17]), and some others have been used.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 125–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 E. Kinber

Using the general framework of the Angluin’s query model, L. Becerra-Bonache,
A. H. Dediu, and C. Tı̂rnăucă introduced in [5] a new type of queries - so called
correction queries. A correction query is a modification of the most popular and
most natural type of queries defined by D. Angluin - membership queries. While
in response to a membership query, a teacher just answers ‘yes’ or ‘no’, respond-
ing to a correction query, the teacher, in case the answer is negative (and, thus,
the queried string is not in the target language), provides also a shortest extension
of the queried example (string) belonging to the target language. This approach
to modeling learning processes stems from the following observation discussed, in
particular, in [13]: while learning a language, in addition to overt explicit negative
evidence (when a parent points out that a certain statement by a child is gram-
matically incorrect), a child often receives also covert explicit evidence in form of
corrected or rephrased utterances. The choice of correction in form of a shortest
extension of a wrong queried string in [5] and some other works following this line
of research (e.g. [16]) has been dictated by the nature of classes of languages being
learned. For example, C. Tı̂rnăucă and T. Knuutila in [16] consider learning so-
called k-reversible regular languages (introduced and shown to be learnable in the
limit within the Gold’s learning model by D. Angluin in [2]). For these languages,
where a prefix of a string in a language defines the set of all extensions belonging
to the language, an extension of an incorrect string seems to be the most natural
type of a “closest” correction. They also apply this model to learning pattern lan-
guages. In [6], the authors propose a different type of corrections: the correction
string is “closest” to the queried one in terms of shortest edit distance; they do not
impose any other restrictions on the correction string.

In this paper, we consider learning the class of patterns (introduced by D.
Angluin in [1]) and a class of regular expressions using membership queries and
a type of correction queries similar, but somewhat different from the one in [6],
which is more suitable to the nature of main operations forming strings in the
corresponding target languages. Namely, for our class of regular expressions, the
main operation forming strings in corresponding languages will be looping, while
in patterns such operation is substitution of variables by strings. Accordingly, for
the concept classes under consideration in this paper, we consider the following
type of correction queries: if the queried string is not in the target language, then
the teacher returns the positive example with a smallest edit distance from the
queried string and previously not used in the learning process (the requirement
of correction being not previously used in the learning process is not a part of
the learning model in [6]). For our class of regular expressions, we use one such
query to get the shortest string in the target language, and then use membership
queries. For learning patterns, we use correction queries only. Within this frame-
work, we suggest polynomial-time algorithms for learning respective classes of
concepts.

Learning pattern languages has been a subject of intensive study since the
introduction of this concept by D. Angluin in 1979. A comprehensive survey
of results in this area, including some interesting practical applications, can be
found in [15].

On Learning Regular Expressions and Patterns 127

While there is a significant body of work on polynomial-time learning of de-
terministic finite automata, relatively little has been done on learning regular
expressions (practically all articles on this subject are listed in [10]), whereas
regular expressions are often more suitable for specifying regular languages by
human beings than, say, DFAs ([10]) and more suitable for representing various
learning tasks (see, for example, [7] and [8] where learning algorithms for regu-
lar expressions have been designed for inference of Document Type Descriptions
and XML Schema Definitions). Thus, we hope that this work will contribute to
a better understanding of how regular expressions can be efficiently learned.

2 Notation and Preliminaries

Let Σ be a finite alphabet. Σ∗ denotes the set of all finite strings (words) over
Σ. A language is any subset of Σ∗. The length of a string w is denoted by |w|.
uv denotes the concatenation of the strings u and v. Let ε be a character not
belonging to Σ. Given any two strings u and v, the Levenshtein edit distance
d(u, v) is defined as the minimum number of operations needed to transform one
string to another, where an operation is insertion, deletion, or substitution of a
single character.

By a substring of a string w, we will understand any string u such that
w = vux for some strings v and x. For any string v and any number k, let
vk denote the concatenation of k copies of v.

Let w = a1a2 . . . ak be a string. Any string aiai+1 . . . aka1a2 . . . ai−1 is called
a circular shift of w. For any string v, the regular expression (v)+ will be called
a loop, and the string v will be called the body of this loop.

3 Learning Via Queries

The classes of languages considered in this paper are examples of so-called in-
dexable classes of recursive languages over Σ∗. A class of recursive languages L
is an indexable class if there exists an effective numbering Li, i = 0, 1, 2, 3, . . .
of all the languages in L such that membership in these languages is uniformly
decidable (in other words, there is a recursive function that, for any w ∈ Σ∗, and
any index i, outputs 1 if w ∈ Li and 0, otherwise). We consider the following
model of learning of an indexed class L: a learner M is an algorithmic device
that has access to an oracle that truthfully answers queries of a certain type.
Having received an answer for its query, the learner M either generates a new
query to the oracle, or returns a conjecture, an index of a language in L, and
halts. If the conjecture, say i, is an index of the target language L, then we say
that M learns the target language L. We say that M learns the class L if M
learns every language in this class. Obviously, for every language in a learnable
class, the learner M asks a finite number of queries.

In this paper, we will consider the following types of queries:

Membership queries. The learner asks if a string w belongs to the target
language and gets the answer “yes” or “no”.

128 E. Kinber

Correction queries. The learner asks if a string w belongs to the target lan-
guage L. If the answer is negative, the teacher (oracle) returns also a correction
- a string v ∈ L\A such that

|v| = |w| and d(v, w) = min{d(u, w)|u ∈ L, u /∈ A}

where A is the (finite) set of all strings for which the learner has received the
answer “yes” on the previous steps and all the correction strings received by
the learner on the previous steps (in other words, the oracle never returns posi-
tive examples of the target language seen on the previous steps of the learning
process). If no such string v exists, the teacher returns a shortest string of the
length different from |w| such that d(v, w) = min{d(u, w)|u ∈ L and u /∈ A}. (In
other words, preference is always given to correction strings of the same length,
if any). If no such string v exists, the teacher returns ε /∈ Σ. We will also assume
that, among the correction strings of the same length, the teacher always chooses
the smallest one in the lexicographic order (for patterns, we will consider learn-
ing via correction queries for the languages over the binary alphabet Σ = {0, 1}
only, and will assume that 0 < 1, and empty character < 0).

The learning algorithms presented in the next two sections will have running
times polynomial in the length of the shortest string in the target language (or,
in the length of the target expression).

4 Learning a Class of Regular Expressions

We consider the following regular expressions over the alphabet Σ:

u1(v1)+u2(v2)+ . . . un(vn)+un+1,

where ui, vi, i = 1, 2, . . . , n are strings over Σ (at least one of them must be
nonempty). Thus, all loops must be used at least once, unions are not used, and
the loop depth is 1 (similar regular expressions for a different learning task were
considered in [11]).

An example of such an expression is:

a(aa)+bccd(cd)+ddabb+b(abb)+.

A regular expression α in our class is called left-aligned if, for any string
v ∈ Σ+, there are no segments vm1(u1)+vm2(u2)+vmk(uk)+ in α, where each
ui, i = 1, 2, . . . , k is vr for some r, and at least one mj > 1. For instance, the
above example of the regular expression is not left-aligned, and it is equivalent
to the (unique) left-aligned expression (aa)+abc(cd)+cddab+bb(abb)+.

In other words, in left-aligned expressions, all loops are shifted to the left
as much as possible. We will limit expressions in our class to just left-aligned
expressions. We will also assume that if, in an expression α in our class, there is
a subexpression-loop β = (vk)+ for some (shortest possible) string v and some
k, then there is no (vm)+ neighboring β on the left or on the right in α. For
example, subexpressions ((ab)3)+((ab)5)+ are not allowed.

On Learning Regular Expressions and Patterns 129

Let R1+ denote the class of regular expressions satisfying the above condi-
tions. For any expression α in this class, let L(α) denote language defined by α.
We will also use R1+ to denote the class of corresponding languages.

We will often use shifting of loops in regular expressions. Sometimes, in our
algorithm, we will use shifting individual loops to the right as much as possible,
right-aligning them (and, obviously, preserving equivalence). For example, in the
left-aligned expression (a)+a(ab)+ababa(b)+b, right-aligning the loop (ab)+ will
result in the expression (a)+aababab(ab)+b+ (note that the loop (b)+ has also
been shifted to the right as the result of right-aligning the loop in question).

4.1 The Learning Algorithm for R1+

We now present an algorithm that learns any language in R1+ using one correc-
tion query and membership queries. The algorithm will always output a (unique)
left-aligned expression representing the target language.

To make our presentation of the algorithm clear, we will begin with an ex-
ample (the example uses a two-letter alphabet Σ, however, the algorithm works
for expressions over arbitrary finite Σ). Consider the following (left-aligned) ex-
pression in R1+:

a+a(ab)+ab+(ab)+ab+a(bb)+.

Let L denote the target language. On the very first (special) step of the algo-
rithm, ask the correction query for the empty string. Obviously, the teacher will
return the shortest string w = aaabababababb. Now we switch to the main part
of the algorithm. On its first phase, the algorithm tries to find all one-letter
loops. It finds all the longest one-letter substrings, listing them in the order they
are found in the string w - in our case, they are aaa, b, a, b, a, b, a, b, a, bb. Then,
for each block, it determines if there are loops associated with it. First, query
‘aaaabababababb ∈ L?’ (using one extra a in the first block). As the answer
is ‘yes’, transform w to a+aabababababb. Using similar queries, the algorithm
arrives to to the expression r1 = a+aabab+abab+abb.

Now the algorithm attempts to find all two and more-letter loops. First, the al-
gorithm finds all two-letter loops. As we already have the loop a+, the algorithm
does not attempt to construct the loop (aa)+. Thus, the algorithm will try all
three strings ab and the tail bb of r1 . First, it will query ‘aaabababbabababb ∈ L?’.
Obviously, the answer is ‘yes’. Note that the first substring abb in the queried
string can be contributed only by (already found) subexpression ab+, and, thus,
the first substring abab must have been contributed by the loop (ab)+ before the
subexpression ab+. Note also that the (obvious) query ‘aaababababababb ∈ L?’
(simply using the first substring ab twice) would not work, as the substring
abababab after the prefix aa could have been contributed by the subexpression
abab+(ab)+ containing the loop (ab)+ after the subexpression ab+. Given the
answer ‘yes’, the algorithm conjectures the expression a+a(ab)+ab+abab+abb,
and queries ‘aaababbabababbabb ∈ L?’ to find out if the substring ab after the
first loop b+ is the body of a loop. The answer is ‘yes’. Note that, again, the first
and the second substrings abb could have been contributed only by the (already

130 E. Kinber

found) subexpressions ab+, and, thus, the substring abab has been contributed
by the loop (ab)+ between them. Thus, our next (intermediate) conjecture is
a+a(ab)+ab+(ab)+ab+abb. Now, using the query ‘aabababababbababb ∈ L?’, the
algorithm will try to determine if the last substring ab in w is the body of a loop.
The answer is negative, and the last query ‘aaabababababbbb ∈ L’? will find the
last two-letter loop (bb)+. Then the algorithm, in a similar way, will determine
that there are no three- or more letter loops, and output the correct expression.

Now we present a formal description of the learning algorithm.

Algorithm
Let L denote the target language.

On the Phase 1, query empty string. Let w be the correction string (obviously,
the shortest one in the target language). Now, for any substring v in w, let wl(v)
and wr(v) denote the strings such that w = wl(v)vwr(v).

PHASE 2 (It uses membership queries only):
On the STEP 1, inserting one extra character a at the end of each (maximal)

substring aa . . . a in w (same for b), and making a query for the corresponding
string (of the length |w| + 1), if the answer is ‘yes’, replace the first character
of the substring by the loop (a)+ (keeping the resulting exression, denoted r1,
left-aligned).

If there are no substrings of the type ab (after, possibly, shifting a loop (b)+

to the right) in r1, then terminate and output r1 as the target expression. Oth-
erwise, go to STEP 2.

STEP n: Let r = rn−1 be the regular expression obtained on the
step n − 1. By induction, we assume that r is left-aligned. Let

r = (α1)+β1(α2)+β2 . . . (αk)+βk

for some k and some α, β ∈ Σ∗.
On each iteration j of the FOR loop below, the algorithm will be constructing

loops between (possibly shifted to the right on the previous iteration) the loop
α+

j and the right-aligned loop α+
j+1. Let r0 = r.

FOR j = 1, 2, . . . k:

Step j:
Let t be the expression obtained from rj−1 (the expression from j−1 iteration

of the FOR-loop) and by right-aligning α+
j+1 as much as possible.

Let u be the substring in t between the loop preceding α+
j+1 and α+

j+1. If
|u| < n (thus, there is not enough space for another loop between two
neighboring loops), then let rj = rj−1 and go to the next iteration of the
FOR loop. Otherwise, let u = a1a2 . . . ap for a1, a2, . . . , ap ∈ Σ.

In the WHILE loop below, the algorithm will attempt to construct loops
based on the substrings in u (with the length of the body n), thus trans-
forming t. Let Tail = u.

WHILE (|Tail| ≥ n) DO
Let x be the prefix of Tail with the length |x| = n. Let x = vi for

some (shortest) v. If x is preceded in t by the loop (vk)+ for some k,

On Learning Regular Expressions and Patterns 131

then remove from the Tail the shortest prefix such that the prefix
of the length n of the remaining string is neither x nor (z)i for some
circular shift z of v. Let Tail be the remaining string. (For example,
if n = 4, Tail is ababababcccc and preceded in t by (ab)+, then Tail
is set to babcccc; if ababababacccc is preceded by the same loop, then
Tail is set to abacccc). Go to the top of the WHILE loop.

If x is not preceded by any such (vk)+, then the goal is to determine if
x is the body of a loop in the target expression. Let z be the longest
extension of x in Tail equal to vk for some k.

Consider all loops (γ)+ to the right from z in the expression t. Let t′

denote the expression obtained from t by substituting each loop (γ)+

by the string γ. Let z′ be the longest extension of z in t′, of which z
is a prefix, such that z′ = vm for some m. Now substitute all loops
(δ)+ to the left from Tail in t by δ, and let t′′ be the corresponding
expression obtained from t. Let z′′ be the longest substring in t′′

extending Tail to the left such that z′′ = vm for some m.
Now the following cases are possible:
Case 1: z′ = z and z′′ = z. Query ‘wl(x)xxwr(x) ∈ L?’.
Case 2: |z′| > |z| and z′′ = z. Then, there is a substring γ in wr(x),

which is the body of the leftmost loop (γ)+ mentioned above. Re-
place this γ in wr(x) by γγ, and let w′ be the string obtained from
wr(x). Query ‘wl(x)xxw′ ∈ L?’.

Case 3: z′ = z and |z′′| > |z|. Then, there is a substring δ in wl(x)
which is the body of the rightmost loop (δ)+ mentioned above. Re-
place this δ in wl(x) by δδ, and let w′′ be the string obtained from
wl(x). Query ‘w′′xxwr(x) ∈ L?’.

Case 4: |z′| > |z| and |z′′| > |z|. Then, as in cases 2 and 3, replace γ
by γγ in wr(x), getting w′, and replace δ by δδ in wl(x), getting w′′.
Now query ‘w′′xxw′ ∈ L?’.

In all four cases, if the answer is ‘yes’, substitute x in t by (x)+, remove
the prefix x from Tail, and go to the top of the loop. If the answer is
‘no’, then remove from Tail the longest prefix (x)iy, where x = yz
for some y and z, so that the prefix of the remaining string is not
zy (for example, if x = abb and Tail is abbabbabbaccc, then the Tail
becomes baccc, rather than bbaccc); go to the top of WHILE loop.

EndWhile
Left-align all loops in the current expression t. Set rj = t. End step j.

END STEP n.
Return rk for k = |w| as the target expression.

4.2 Correctness of the Algorithm

Correctness of the algorithm is proved by induction. By induction, let us assume
that all loops that have been created before some iteration of the WHILE loop on
Step j of the FOR loop on STEP n are correct. Now, we will show that, on the

132 E. Kinber

given interation of the WHILE loop, either a new loop cannot be created, or, if it
is created, it is correct. Consider the prefix x of Tail of the length n (as defined
in the WHILE loop). As defined in the WHILE loop, let x = vi for the shortest
possible v and some i. Consider the case when the loop to the left from x in the
current expression t is (vk)+ for some k. Then x cannot be the body of a loop in
the target expression, and Tail is reduced appropriately (so that copies of x or its
circular shifts following the given x would not be tested as bodies of possible loops
later). In all four Cases (as defined in the WHILE loop), if the answer is ‘no’, then
x obviously cannot be the body of a loop. Now, we will assume that the answer is
‘yes’. In the Case 1, the second x in the query can be contributed to the string only
by the loop corresponding to the first x (as the target expression is left-aligned).
Now consider the remaining three cases and the strings γ and δ as defined in the
WHILE loop. In the Case 2, γ (the body of the leftmost loop to the right from x)
cannot be equal to any ve or ye for some circular shift y of v, as, otherwise, the
corresponding loop would have been shifted to the left from x (note that every
expression t in the loop WHILE is left-aligned). Thus, neither the string with the
prefix x obtained when u is extended by substituting γ by γγ, nor any its extension
to the right in t can be equal to vp for any p. Therefore, if the answer to the query
in Case 2 using xx is ‘yes’, the second x can be contributed by neither the loop
(γ)+, nor a loop to the right from it in the target expression. Now, in the Case 3,
δ (the body of the rightmost loop to the left from x) cannot be equal to ve (or its
cicular shift), since, otherwise, x could not be a prefix of Tail. Thus, if the answer
to the query in this case is ‘yes’, the second x cannot be contributed by the loop
(δ)+ or a loop to the left from it, and, similarly, by neither (γ)+, nor (δ)+, nor
loops to the right from the former, or to the left from the latter, respectively, in
the Case 4.

4.3 Complexity of the Learning Algorithm

The total number of queries asked is obviously O(n3), as on each step of the
WHILE loop, the algorithm makes just one query. On each step of the WHILE
loop, the algorithm performs some work that requires time O(n2). Thus, overall
complexity of the algorithm is O(n5).

4.4 Modifications of the Class R1+

It would be interesting to explore if some modifications of the class R1+ were
learnable in polynomial time. One such modification is the class R1 that contains
loops (v)∗ rather than (v)+. However, this class may be too hard to learn in poly-
nomial time. A modification of this class, R2, would contain only those loops (v)∗

where the body v did not contain any repetitions (for example, v = abb would
not be allowed). We can exhibit a polynomial-time learning algorithm using one
correction query and membership queries for the following limited version R21
of R2: one-letter loops are allowed only, and there is a nonempty string between
any two loops. An example of such a regular expression is a∗aab∗ac∗ca∗aa. R21
is a subclass of the class of regular expressions considered in [10] (where unions

On Learning Regular Expressions and Patterns 133

are allowed), however, the algorithm in [10] learns regular expressions in the
limit, while in our model, the first conjecture must be correct. We omit details
due to limitations on the size of the paper.

Another approach to learning modifications of R1+ containing loops (v)∗

would involve variants of correction queries, or both membership and correc-
tion queries.

In, probably, the most recent paper on learing regular expressions [8], the
authors define an interesting (and practically useful) class of regular exressions
and design polyomial-time algorithms for inference of the expressions in this
class from positive data. All expressions in [8] must be deterministic (or one-
unambiguous) and cannot have more than a uniformly bounded number of occur-
rences of each alphabet symbol. Our class R1+ does not have these restrictions.

5 Learning Pattern Languages Via Correction Queries

Learning patterns has been a subject of intensive study since their introduction
by D. Angluin in [1]. A pattern π over a finite (in our case - binary) alphabet Σ
and a countable infinite set X = {x1, x2, . . .} of variables is a (nonempty) string
in (Σ ∪X)∗. An example of a pattern is x1x1x201x1x30. The (non-erasable) pat-
tern language L(π) consists of all strings obtained by substituting the variables
in the pattern π by arbitrary strings in Σ+. For example, substituting x1 by 01,
x2 by 00, and x3 by 1 in the above example, we get the string 010100010110.

Different authors used different paradigms of learning to study learnability of
the class of pattern languages. Among the latest works on this topic, is the paper
[16], where patterns are being efficiently learnt from correction queries, and, in
case of the answer ‘no’, the teacher returns the shortest extension u of the queried
string v belonging to the target language. Unlike their approach, our algorithm
for learning pattern languages uses the type of queries introduced in Section 3.

5.1 The Learning Algorithm

Let L be the target language. First, we present our algorithm on two examples.
Our first example is the pattern π = x101x2x3x3x3x3x3x3x3x4x4x4x5x5x5. Let
π(r), 1 ≤ r ≤ |π|, denote the r-th character in π (either a variable, or a constant).

First, query the empty string. The oracle will obviously return the correction
string w = 001014 (of total length 17). Now query ‘117 ∈ L?’ . The answer
is ‘no’, and the oracle returns the correction string 10115. Now we know that
π(2) = 0, π(3) = 1, and all other π(r) are variables. Our goal now is to find
these variables. First, query ‘101014 ∈ L?’, trying 1 for the first position. The
answer is ‘yes’. The algorithm sets π(1) = x1. Now, query ‘0011013 ∈ L?’,
trying 1 for the fourth position. The answer is ‘yes’, and the algorithm sets
π(4) = x2. Now, query ‘00101012 ∈ L?’, trying 1 for the 5-th position. The
answer is ‘no’, and the correction string is 1011013 (note that strings 101014 and
0011013 are closer to the queried string, however, both of them have already
been used). Now query ‘10111013 ∈ L?’, trying 1 for the 5-th position again.

134 E. Kinber

The answer is ‘no’ again, and this time the (smallest in lexicographic order)
correction string is 1011010111. As the tail 111 has never appeared, the algorithm
sets π(15) = π(16) = π(17) = x3 (the numbers of variables in the output of the
algorithm can obviously be different from the ones in the original pattern). Now,
query ‘1011109111 ∈ L?’, trying 1 for the 5-th position once again. This time
the correction string is 10111111111000111, and the algorithm sets π(r) = x4 for
5 ≤ r ≤ 11. Now, it queries ‘00108100000 ∈ L?’, trying 1 for the 12-th position.
The answer is ‘no’ and the correction string is 00108111000. The algorithm sets
π(12) = π(13) = π(14) = x5. As all variables have been found, the algorithm
returns π as the target pattern.

Our next example is the pattern π = 10x1x1. Using first two queries (and
getting correction strings 1000 and, respectively, 1011), the algorithm will find
constant characters 1 and 0. Then it will query ‘1010 ∈ L?’. The answer is ‘no’,
but the oracle must return a string u with the length |u| > 4, as all the strings
in L of the length 4 (in particular, 1011) have already been seen. In this case,
the algorithm sets π(r) = x1 for r ∈ {3, 4} and terminates.

Now we give a description of the learning algorithm.

Algorithm
Query if the empty string is in L. The teacher will return a string w = a1a2 . . . an.
Note that all characters 1 in this string must be constants, while all values 0 are
either constants, or correspond to occurrences of variables, as the string w must
be the smallest in the lexicographic order among all the shortest strings (of the
length n) in the target language. If there are no 0 in w, the algorithm returns
the result 1n and terminates.

Otherwise, first consider the special case of w = 0. Query ‘1 ∈ L?’. If ‘yes’
then set π = x1, if ‘no’, set π = 0 and terminate the algorithm.

Now consider the case |w| > 1. Our goal is to determine which characters
ai must be replaced by variables, and which are constants 0 (constants 1 have
already been determined). Query ‘1n ∈ L?’. If the answer is ‘no’ (thus, the target
pattern contains some constants 0) , let u = b1b2 . . . bn be the correction string
returned (note that it will have the same length n as the queried string). If the
answer is ‘yes’, let br = 1, 1 ≤ r ≤ n.

Now the algorithm enters the FOR loop executed for j = 1, 2, . . . n. In this
loop, let πi denote the pattern output at the end of the step i. In πi, let πi(j)
denote the symbol on the j-th position in πi (either a variable, or a constant).
For all j ∈ {1, 2, . . . , n}, we set π0(j) = 1 if aj = 1, and π0(j) = 0, otherwise.

Now we describe the step j of the loop. Let π = πj−1. If either π(j) = 1, or
π(j) = bj = 0, or π(j) is a variable, then the corresponding symbol in the target
pattern is a constant or an already found variable. Thus, set πj = π and go to
the step j + 1 of the loop (or terminate if j = n).

Otherwise, we have π(j) = 0 and bj = 1. This means that there must be a
variable on the position j in the target pattern. If all symbols π(r) for r > j
are already variables or constants 1, then just set πj(j) to a new variable, set
πj(r) = π(r) for all r �= j and terminate the loop. Otherwise, let α be the string
obtained from π by substituting π(j) by 1 and all occurrences of variables by 0.

On Learning Regular Expressions and Patterns 135

Query ‘α ∈ L?’ (note that α contains at least one symbol 0 on a position s > j
where bs = 1, and, thus, it is not u or 1n seen before). If the answer is ‘yes’, then
set πj(j) to a new variable, set πj(r) = π(r) for all other r and go to step j + 1.

If the answer is ‘no’ (this means that there must be other occurrences of the
same variable as on the position j in the target pattern), then let β be the
correction string. If |β| > n (thus, all corrections of the length n have already
been seen), then set πj(j) and all other πj(r) for r such that π(r) = 0 and br = 1
to a new variable (same for all such r) and terminate the algorithm.

Otherwise, let β = c1c2 . . . cn. The algorithm enters the following WHILE loop
that runs until cj in the last correction stringβ becomes 1.On each step of this loop,

(1) set all πj(r) for r such that π(r) = 0 and cr = 1 to a new variable; if
cj = 1, terminate the WHILE loop.

(2) replace cj by 1 in β, and let γ be the modified string; query ‘γ ∈ L?’
(note that the answer is ‘no’ - otherwise, the answer ‘yes’ would have been given
earlier). Let β be the correction string. If |β| > n, then, as in the corresponding
case above, substitute all π(r) = 0 for which br = 1 by a new variable and
terminate the algorithm. Otherwise, let β = c1c2 . . . cn. Return to the top of
WHILE loop.

Once the loop WHILE has terminated, go to step j + 1 of the FOR loop.
Return the pattern πj created on the last executed STEP j of the FOR loop.

5.2 Correctness of the Algorithm

By induction on j, let us assume that the initial segment πj−1(r), r ≤ j − 1, of
πj−1 and all variables and constants 1 among πj−1(r) for r > j of the target
pattern being constructed, have been constructed correctly. Now, we will show
that the same is true for πj .

Obviously, the only interesting case is when α is queried as described in the
algorithm. Note that this α has not been used yet in the learning process: the
only strings used before in the learning process and having 1 on the position j
were 1n and, possibly, the correction string u (containing 1-s for all variables),
however, as it is pointed out in the description of the algorithm, α is neither u,
nor 1n. If the answer is ‘yes’, then substituting just πj−1(j) = 0 by the single
occurrence of a new variable is obviously correct. Now suppose the answer is
‘no’. Then there must be some new variable (not used before), say x, on the
position j, however, there are some other occurrences of this variable in the
target pattern, and we don’t know them yet. Now, suppose the correction string
β has the length greater than n. If some 0 on a position r > j in πj−1 for which
br = 1 is not a value of x, then the oracle should have returned some string
β ∈ L with 1 on the position j and 0 on the position r, as such a string has not
been seen yet. However, it returned a longer string. Therefore, all values 0 on
the positions > j in πj−1 where br = 1 are values of the same variable x and,
thus, πj is the correct (final) target pattern.

If |β| ≤ n, then the algorithm enters the WHILE loop. In the case (1), the algo-
rithm observes the correction string, where some already existing variables have
been replaced by 1, and, possibly 0-s on the positions > j in π; as the correction

136 E. Kinber

string is at the shortest distance from the queried one, all these replaced 0-s (if
any) must be the values of the same variable. Thus, the algorithm is obviously
correct, having replaced all cr in question by occurrences of a new variable.

In the case (2), if |β| > n, then the analysis is as above. Otherwise, the
algorithm returns to the case (1) with the new correction string.

Now note that, on some iteration of the WHILE loop, the oracle must return
either a correction string β with |β| = n and cj = 1 (as cj is a value of a variable,
and, since oracle each time returns a string of the length n not seen yet, some
correction string of the length n must have cj = 1), or with |β| > n. Thus
WHILE loop always terminates, whenever entered.

Therefore, the algorithm correctly learns the target pattern π.

5.3 Complexity

The WHILE loop runs at most O(n) times, as every correction string contains
more characters 1 than the one on the previous step. Creating (possibly) a new
vaiable in the body of this loop requires time O(n). Thus, the total running time
of the algorithm comes to at most O(n3). The total number of queries in the
WHILE loop is O(n), and, thus, the total number of queries is O(n2).

5.4 Discussion

Two distinctive features of the oracle in our model are that a) it returns a correc-
tion not previously seen, and b) it gives preference to corrections of the size equal
to the size of the queried string. Both of them are important for the success of our
algorithm. If the oracle may return previously seen corrections, then, in many
cases, it will keep providing the string that has been utilized, and the learner
will not be able to get necessary information about unknown variables. Also,
corrections of arbitrary length (even closest to the queried string) are of little
help (if a returned string is longer than the pattern being constructed, our algo-
rithm just uses this fact to finish its work, but not the correction string itself).
The fact that positive examples of arbitary length are not helpful for learning
patterns when the shortest string in the target language becomes available, was
noticed (and successfully utilized) yet in [12], where the learning algorithm, while
learning patterns in the limit from all positive data, simply ignores all examples
longer than the shortest positive example seen so far. Our algorithm is similar to
the algorithm in [12] in this respect - however, it gets (and, accordingly, utilizes)
input data differently.

It is possible to slightly modify our query model, leaving the learning algorithm
intact. Instead of using requirement of selecting lexicographically smallest correc-
tion string,we coulduse correction strings that contain largestnumber of 0-s among
the ones at the shortest edit distance from the queried string (still giving preference
to correction strings of the length equal to the length of the queried string).

As it was shown in [16], patterns cannot be learned in polynomial time
using membership queries. Thus, corrections are essential for polynomial-time
learnability.

On Learning Regular Expressions and Patterns 137

There are multiple ways of relaxing constraints of our query model. First,
within the framework of the given model, it would be interesting to find out if
polynomial-time learnability can be preserved for patterns over arbitrary alpha-
bets Σ. Another interesting question is if the requirement of preference given
to correction strings smallest in the lexicographic order (or containing largest
number of 0-s) can be lifted. Yet another interesting case would be when a cor-
rection string were just at the shortest edit distance from the queried one -
without any other constraints. However, we conjecture that a polynomial time
algorithm could not exist in this case. One more interesting open problem is to
find out if polynomial-time learning of patterns is possible while dropping the
requirement that correction string must be selected among those not seen so far
in the learning process (in this case, selection of the correction string will not
depend on the learning algorithm, and the teacher will not need to remember
which strings have been used in the learning process). Yet another interesting
open problem is whether, within the framework of our model, polynomial-time
algorithms exist for patterns over alphabets of the size 3 or more.

Acknowledgments. The author is grateful to C. Tı̂rnăucă for a useful discus-
sion and to anonymous referees for several helpful comments and suggestions.

References

1. Angluin, D.: Finding Patterns Common to a Set of Strings (extended abstract).
In: 11th Annual ACM Symposium on Theory of Computing, pp. 130–141. ACM
Press, New York (1979)

2. Angluin, D.: Inference of Reversible Languages. Journal of the ACM 29(3), 741–765
(1982)

3. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

4. Angluin, D.: Queries and Concept Learning. Machine Learning 2, 319–342 (1988)
5. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from Correction

and Equivalence Queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino,
T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,
Heidelberg (2006)

6. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning Balls of
Strings with Correction Queries. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 18–29. Springer, Heidelberg (2007)

7. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of Concise DTDs from
XML Data. In: 32nd International Conference on Very Large Data Bases VLDB
(2006)

8. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning Deterministic Reg-
ular Expressions for the Inference of Schemas from XML Data. In: WWW Confer-
ence 2008, Beijing, China, pp. 825–836 (2008)

9. Gold, E.M.: Language Identification in the Limit. Information and Control 10,
447–474 (1967)

138 E. Kinber

10. Fernau, H.: Algorithms for Learning Regular Expressions. In: Jain, S., Simon, H.U.,
Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 297–311. Springer,
Heidelberg (2005)

11. Kinber, E.: Learning a Class of Regular Expressions via Restricted Subset Queries.
In: Jantke, K.P. (ed.) AII 1992. LNCS, vol. 642, pp. 232–243. Springer, Heidelberg
(1992)

12. Lange, S., Wiehagen, R.: Polynomial-time Inference of Arbitrary Pattern Lan-
guages. New Generation Computing 8(4), 361–370 (1991)

13. Rohde, D.L.T., Plaut, D.C.: Language Acquisition in the Absence of Explicit Neg-
ative Evidence: How Important Is Starting Small? Cognition 72, 67–109 (1999)

14. Sakakibara, Y.: Learning Context-free Grammars from Structural Data in Polyno-
mial Time. Theoretical Computer Science 76, 223–242 (1990)

15. Shinohara, T., Arikawa, S.: Pattern Inference. In: Lange, S., Jantke, K.P. (eds.)
GOSLER 1994. LNCS, vol. 961, pp. 259–291. Springer, Heidelberg (1995)

16. T̂ırnăucă, C., Knuutila, T.: Polynomial Time Algorithms for Learning k-reversible
Languages and Pattern Languages with Correction Queries. In: Hutter, M., Serve-
dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 264–276.
Springer, Heidelberg (2007)

17. T̂ırnăucă, C.I., T̂ırnăucă, C.: Learning Regular Tree Languages from Correction
and Equivalence Queries. Journal of Automata, Languages and Combinatorics 12
(2007)

18. Valiant, L.G.: A Theory of the Learnable. Communications of the ACM 27(11),
1134–1142 (1984)

19. Yokomori, T.: Learning Non-deterministic Finite Automata from Queries and
Counterexamples. Machine Intelligence 13, 169–189 (1994)

	On Learning Regular Expressions and Patterns Via Membership and Correction Queries
	Introduction
	Notation and Preliminaries
	Learning Via Queries
	Learning a Class of Regular Expressions
	The Learning Algorithm for $R1^+$
	Correctness of the Algorithm
	Complexity of the Learning Algorithm
	Modifications of the Class $R1^+$

	Learning Pattern Languages Via Correction Queries
	The Learning Algorithm
	Correctness of the Algorithm
	Complexity
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

