

Lecture Notes in Artificial Intelligence 5278
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Alexander Clark François Coste
Laurent Miclet (Eds.)

Grammatical Inference:
Algorithms
and Applications

9th International Colloquium, ICGI 2008
Saint-Malo, France, September 22-24, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Alexander Clark
Royal Holloway, University of London
Department of Computer Science
Egham, Surrey TW20 0EX, UK
E-mail: alexc@cs.rhul.ac.uk

François Coste
INRIA Rennes - Bretagne Atlantique
IRISA/Symbiose
Campus de Beaulieu, 35042 Rennes CEDEX, France
E-mail: Francois.Coste@irisa.fr

Laurent Miclet
University of Rennes 1
IRISA/ENSSAT
22305 Lannion CEDEX, France
E-mail: miclet@enssat.fr

Library of Congress Control Number: 2008935398

CR Subject Classification (1998): I.2, F.4, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-88008-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88008-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12525829 06/3180 5 4 3 2 1 0

Preface

The 9th International Colloquium on Grammatical Inference (ICGI 2008) was
held at the Palais du Grand Large, Saint Malo, France during September 22–24,
2006. ICGI 2008 was the ninth in a series of successful biennial international
conferences in the area of grammatical inference. Previous meetings were held
in Essex, UK; Alicante, Spain; Montpellier, France; Ames, Iowa, USA; Lisbon,
Portugal; Amsterdam, The Netherlands; Athens, Greece; Tokyo, Japan. This
series of conferences seeks to provide a forum for presentation and discussion of
original research papers on all aspects of grammatical inference.

Grammatical inference, the study of learning grammars from data, is an es-
tablished research field in artificial intelligence, dating back to the 1960s and has
been extensively addressed by researchers in automata theory, language acquisi-
tion, computational linguistics, machine learning, pattern recognition, computa-
tional learning theory and neural networks. ICGI 2008 particularly emphasized
the multi-disciplinary nature of the research field and the diverse domains in which
grammatical inference is being applied, such as natural language acquisition, com-
putational biology, structural pattern recognition, information retrieval,Web min-
ing, text processing, data compression and adaptive intelligent agents.

We received 36 high-quality papers from 15 countries around the world. The
papers were reviewed by three reviewers. Based on the positive comments of
the reviewers, 21 full papers were accepted. In addition, we decided to accept
eight short papers for poster presentation. Short papers appear as extended
abstracts in a separate section of this volume. The topics of the accepted papers
vary from theoretical results of learning algorithms to innovative applications
of grammatical inference, and from learning several interesting classes of formal
grammars to applications to natural language processing.

The editors would like to acknowledge the contribution of the conference’s
Program Committee and the additional reviewers in reviewing the submitted
papers, and we thank the Organizing Committee for their invaluable help in
organizing the conference. We would also like to acknowledge the use of the
EasyChair conference system, in the submission and reviewing process. Finally,
we are grateful for the generous support and sponsorship of the conference by
the PASCAL2 Network of Excellence, the INRIA, the University of Rennes 1
and the Région Bretagne.

July 2008 Alexander Clark
François Coste
Laurent Miclet

Organization

Program Chairs

Alexander Clark
François Coste
Laurent Miclet

Program Committee

Pieter Adriaans
Dana Angluin
Jose Balcazar
Rens Bod
Rafael Carrasco
Christophe Costa Florencio
Francois Denis
Pierre Dupont
Remi Eyraud
Henning Fernau
Remi Gilleron
Vasant Honavar
Makoto Kanazawa
Satoshi Kobayashi
Leonid Kontorovich
Tim Oates
Jose Oncina
Georgios Paliouras
Rajesh Parekh
Yasubumi Sakakibara
Isabelle Tellier
Franck Thollard
Etsuji Tomita
Enrique Vidal
Chris Watkins
Ryo Yoshinaka
Colin de la Higuera
Menno van Zaanen

VIII Organization

Local Organization

Elisabeth Lebret
Marie-Noëlle Georgeault
Matthias Gallé

External Reviewers

Tom Armstrong
Rafael Carrasco
Amaury Habrard
Gabriel Infante-Lopez
Jean-Christophe Janodet
Satoshi Kobayashi
Stasinos Konstantopoulos
Faissal Ouardi
Georgios Paliouras
Georgios Petasis
Emilie Samuel
Kengo Sato
Yasuhiro Tajima
Frederic Tantini
Franck Thollard
Enrique Vidal
Mitsuo Wakatsuki

Sponsoring Organizations

Table of Contents

Regular Papers

Learning Meaning Before Syntax . 1
Dana Angluin and Leonor Becerra-Bonache

Schema-Guided Induction of Monadic Queries . 15
Jérôme Champavère, Rémi Gilleron, Aurélien Lemay, and
Joachim Niehren

A Polynomial Algorithm for the Inference of Context Free Languages . . . 29
Alexander Clark, Rémi Eyraud, and Amaury Habrard

Learning Languages from Bounded Resources: The Case of the DFA
and the Balls of Strings . 43

Colin de la Higuera, Jean-Christophe Janodet, and Frédéric Tantini

Relevant Representations for the Inference of Rational Stochastic Tree
Languages . 57

François Denis, Édouard Gilbert, Amaury Habrard,
Fäıssal Ouardi, and Marc Tommasi

Learning Commutative Regular Languages . 71
Antonio Cano Gómez and Gloria I. Álvarez

Learning Left-to-Right and Right-to-Left Iterative Languages 84
Jeffrey Heinz

Learning Bounded Unions of Noetherian Closed Set Systems Via
Characteristic Sets . 98

Yuuichi Kameda, Hiroo Tokunaga, and Akihiro Yamamoto

A Learning Algorithm for Multi-dimensional Trees, or: Learning
Beyond Context-Freeness . 111

Anna Kasprzik

On Learning Regular Expressions and Patterns Via Membership and
Correction Queries . 125

Efim Kinber

State-Merging DFA Induction Algorithms with Mandatory Merge
Constraints . 139

Bernard Lambeau, Christophe Damas, and Pierre Dupont

X Table of Contents

Using Multiplicity Automata to Identify Transducer Relations from
Membership and Equivalence Queries . 154

Jose Oncina

Towards Feasible PAC-Learning of Probabilistic Deterministic Finite
Automata . 163

Jorge Castro and Ricard Gavaldà

Learning Context-Sensitive Languages from Linear Structural
Information . 175

José M. Sempere

Polynomial Time Probabilistic Learning of a Subclass of Linear
Languages with Queries . 187

Yasuhiro Tajima and Yoshiyuki Kotani

How to Split Recursive Automata . 200
Isabelle Tellier

A Note on the Relationship between Different Types of Correction
Queries . 213

Cristina Tı̂rnăucă

Unsupervised Learning of Probabilistic Context-Free Grammar Using
Iterative Biclustering . 224

Kewei Tu and Vasant Honavar

Polynomial Distinguishability of Timed Automata 238
Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Evaluation and Comparison of Inferred Regular Grammars 252
Neil Walkinshaw, Kirill Bogdanov, and Ken Johnson

Identification in the Limit of k, l-Substitutable Context-Free
Languages . 266

Ryo Yoshinaka

Poster Papers

Learning Subclasses of Pure Pattern Languages . 280
P.J. Abisha, D.G. Thomas, and Sindhu J. Kumaar

Which Came First, the Grammar or the Lexicon? . 283
Tom Armstrong and Tim Oates

Learning Node Label Controlled Graph Grammars
(Extended Abstract) . 286

Christophe Costa Florêncio

Table of Contents XI

Inference of Uniquely Terminating EML . 289
S. Kannamma, D.G. Thomas, and K. Rangarajan

Estimating Graph Parameters Using Graph Grammars 292
Sourav Mukherjee and Tim Oates

Learning of Regular ω-Tree Languages . 295
M. Jayasrirani, M.H. Begam, and D.G. Thomas

Inducing Regular Languages Using Grammar-Based Classifier
System . 298

Olgierd Unold

Problems with Evaluation of Unsupervised Empirical Grammatical
Inference Systems . 301

Menno van Zaanen and Jeroen Geertzen

Author Index . 305

Learning Meaning Before Syntax

Dana Angluin and Leonor Becerra-Bonache�

Department of Computer Science, Yale University
P.O. Box 208285, New Haven, CT, USA

{dana.angluin,leonor.becerra-bonache}@yale.edu

Abstract. We present a simple computational model that includes se-
mantics for language learning, as motivated by readings in the literature
of children’s language acquisition and by a desire to incorporate a ro-
bust notion of semantics in the field of Grammatical Inference. We argue
that not only is it more natural to take into account semantics, but also
that semantic information can make learning easier, and can give us a
better understanding of the relation between positive data and correc-
tions. We propose a model of meaning and denotation using finite-state
transducers, motivated by an example domain of geometric shapes and
their properties and relations. We give an algorithm to learn a meaning
function and prove that it finitely converges to a correct result under a
specific set of assumptions about the transducer and examples.

Keywords: semantics, finite-state transducers, corrections.

1 Introduction

In 1972, Feldman stated that some of the interesting remaining questions in
Grammatical Inference were: inference in the presence of noise, general strate-
gies for interactive presentation and the inference of systems with semantics [1].
Thirty-six years later some of these questions still remain open. In this paper,
we focus on the last one: learning systems with semantics.

The results of Gold [2] show that not even regular grammars can be learned
in the limit from positive data. Despite this, positive learnability results have
been obtained by restricting the class of grammars to be learned, restricting
the method of selecting examples, providing structural information, or making
negative data available. See [3,4] for surveys of these results.

These approaches tend to omit semantic information and reduce the language
learning problem to syntax learning. In natural situations, semantic information
is also available to the child [5, 6,7,8]. Moreover, semantic information plays an
important role in the early stages of children’s language acquisition, particularly
in the two-word stage, when children go from the production of one word to
the combination of two elements. Two-word sentences may be viewed as “se-
mantic speech” [9, 10]; the meanings of the two elements in the shared context

� Supported by a Marie Curie International Fellowship within the 6th European Com-
munity Framework Programme.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Angluin and L. Becerra-Bonache

indicate the implied syntactic relations. Despite their very different grammars,
adult and child can communicate with each other because of their shared context
and semantics. “Syntactic speech” develops when the communication is less con-
textually determined and the child uses more complex syntactic rules. Given the
established difficulty of learning formal grammars, we conjecture that semantics
can make language learning easier.

Several researchers have studied the role of semantics in language learning;
the approaches nearest to ours are [11,12,13]. These approaches require a correct
or nearly correct parse to assign a meaning to a sentence. In the case of two-
word sentences, the utterances of the child are far from parsing in the adult
grammar and vice versa. One goal of our model is to overcome this obstacle to
communication. Moreover, in contrast to approaches that assume the learner’s
input is pairs consisting of an utterance and its meaning, the inputs of our
learning algorithm are pairs consisting of an utterance and the situation in which
the utterance is produced, analogous to the shared context of adult and child in
the two-word stage.

Ideally, the input provided to the learner should be the same kinds of exam-
ples that are available to the child. Whereas the availability of positive data (i.e.,
utterances that are grammatically correct) is generally accepted, the availability
of another kind of data, which is often called negative data, remains a matter
of significant controversy. However, there is a kind of information that is some-
times available during the two-word stage, namely, a type of correction called
an expansion. The following example is from Brown and Bellugi [14]):

CHILD: Eve lunch
ADULT: Eve is having lunch

The adult’s answer is a grammatical sentence (positive information), but is an
expansion of an incomplete sentence uttered by the child (providing negative
information by suggesting that the child’s utterance was not grammatically cor-
rect). The expansion preserves the meaning of the child’s utterance; the adult has
understood the child’s meaning and re-expressed it in the adult grammar. The
shared context is crucial – in other contexts the adult would reply differently.
One goal of our model is to be able to reflect this kind of interaction.

Also, there is a close relationship between positive data and expansions. Con-
sider the two cases depicted in Fig. 1. In case A, the child receives positive
information and, using the context, determines the intended meaning, which the
child then re-expresses in her grammar. (This kind of “echo” is sometimes explic-
itly verbalized [7, 15].) In case B, the child produces a sentence in her grammar
which is understood and expanded by the adult. In both cases the child has
access to the meaning and to the adult and child expressions of it.

We propose a new computational learning model to reflect the issues of con-
text, semantics, positive data and corrections. The model should accommodate
at least two different tasks: comprehension and production. Here we focus on
comprehension. The scenario we consider is cross-situational and supervised;
the teacher provides to the learner several example pairs consisting of a situa-
tion and a utterance that denotes something in the situation. The goal of the

Learning Meaning Before Syntax 3

Situation

Child Adult

Daddy throw Daddy is throwing the ball
A

processing

Daddy throw
B Daddy is throwing the ball

processing

Fig. 1. Adult and child share a situation. In A, the child receives positive data. In B,
an expansion is returned to the child.

learner is to learn the meaning function, permitting the comprehension of novel
utterances. In Sect. 2, we define meaning and denotation functions; in Sect. 3, we
examine simple learning strategies to motivate our algorithm to learn a meaning
function, which we present and prove correct in Sect. 4. We conclude with a
discussion in Sect. 5. More details are available in [16].

2 A Model of Meaning and Denotation

Meaning Functions. To specify a meaning function, we use a finite state trans-
ducer M that maps sequences of words to sequences of predicate symbols, and
a path-mapping function π that maps sequences of predicate symbols to se-
quences of logical atoms. We consider three disjoint finite alphabets of symbols:
W , the set of words, P , the set of unary predicate symbols, and R, the
set of primary binary predicate symbols. For each symbol r ∈ R, there
is also a new binary predicate symbol rt, which is used to denote r with its
arguments reversed; the set of all such rt is denoted Rt. The symbols in P and
R are primary predicates, and the symbols in Rt are derived predicates.
The function primary maps each primary predicate symbol to itself, and each
predicate symbol rt to r.

An utterance is a finite sequence of words, that is, an element of W ∗. Define
the function c to map a finite sequence of elements to the set of distinct elements
occuring in the sequence. Thus, c(u) is the set of words occurring in the
utterance u.

We define a meaning transducer M with input symbols W and output
symbols Y = P ∪R ∪Rt. M has a finite set Q of states, an initial state q0 ∈ Q,
a finite set F ⊆ Q of final states, a deterministic transition function δ mapping
Q ×W to Q, and an output function γ mapping Q ×W to Y ∪ {ε}, where ε
denotes the empty sequence.

The transition function δ is extended to define δ(q, u) to be the state reached
from q following the transitions specified by the utterance u. The language of
M , denoted L(M) is the set of all utterances u ∈W ∗ such that δ(q0, u) ∈ F . For

4 D. Angluin and L. Becerra-Bonache

each utterance u, we define the output of M , denoted M(u), to be the finite
sequence of non-empty outputs produced by starting at state q0 and following
the transitions specified by u. A state q ∈ Q is live if there exists an utterance
u such that δ(q, u) ∈ F , and dead otherwise.

As an illustration, we describe an extended example of utterances in English
involving geometric shapes and their properties and relative locations. W con-
tains the words the, triangle, square, circle, red, blue, green, above, below, to, left,
right and of. P contains the symbols tr, sq, ci, bi, re, bl, gr referring to the proper-
ties of being a triangle, a square, a circle, big, red, blue, and green, respectively,
and R contains the symbols ab, le, referring to the relations of being above and
to the left of, respectively. (Note that there is no word big – a property or relation
may not have a corresponding word.) We define the meaning transducer M1 as
follows. M1 has states qi for 0 ≤ i ≤ 7; q0 is the initial state and there is one
final state, q2. The transition function is partially defined in Fig. 2. Undefined
transitions go to a non-final dead state, q7. L(M1) contains such utterances as
the triangle, the blue triangle to the left of the red circle. The output of M1 for
the utterance the triangle is the sequence 〈tr〉; the output of M1 for the utterance
the blue triangle above the square is the sequence 〈bl , tr , ab, sq〉.

Path-mapping. Given a finite sequence of predicate symbols, we define a spe-
cific function, path-mapping, to convert it into a finite sequence of atoms in the
predicate logic. Let x1, x2, . . . be distinct variables and t1, t2, . . . be distinct con-
stants. Different constants will be used to denote different objects in a situation.
An atom is one of p(v), where p ∈ P or r(v, w) or rt(v, w), where r ∈ R and v
and w are constants or variables. An atom is primary if its predicate symbol
is primary, that is, not from Rt. An atom is ground if it does not contain any
variables.

The path-mapping function, denoted π, takes a finite sequence of predi-
cate symbols and supplies each predicate with the correct number of argument
variables, as follows. Working left to right, x1 is the argument of each predicate
in the initial sequence of unary predicates, then x1 and x2 (in order) are the

q0 q1 q2

q3

q4 q5

the /

circle / ci

square / sq

triangle / tr

blue / bl

green / gr

red / re

circle / ci

square / sq

triangle / tr

above / ab

below / ab
t

to / the /

of /

q6

left / le

right / le
t

Fig. 2. Meaning transducer M1

Learning Meaning Before Syntax 5

arguments of the first binary predicate, then x2 is the argument of each of the
subsequent sequence of unary predicates, then x2 and x3 (in order) are the argu-
ments of the second binary predicate, and so on, introducing successive variables
for successive binary predicates. Applying π to the sequence of predicates

〈bl , tr , ab, sq , let, re, ci〉,

we get the following sequence of atoms

〈bl(x1), tr(x1), ab(x1, x2), sq(x2), let(x2, x3), re(x3), ci(x3)〉.

The meaning assigned by a meaning transducer M to an utterance u is
π(M(u)). As an example, the meaning assigned by M1 to the utterance the blue
square to the right of the green circle is

〈bl(x1), sq(x1), let(x1, x2), gr (x2), ci(x2)〉.

The definition of π reflects a strong restriction on the way properties and rela-
tions can be expressed by a meaning transducer.

Situations and Denotation Functions. Next we define situations, which represent
the objects, properties and binary relations that are noticed in some environment
of the teacher or learner. A situation is a finite set of primary ground atoms. 1

Noticing a big blue triangle above a big green square gives the following
situation.

S1 = {bl(t1), bi(t1), tr(t1), ab(t1, t2), gr (t2), bi(t2), sq(t2)}.

The things in a situation S, denoted things(S), is the set of all ti that occur
in atoms in S. The assignment of constants ti to things in the situation is ar-
bitrary. The predicates in a situation S, denoted predicates(S), is the set of
all predicate symbols that occur in atoms in S. Thus, things(S1) = {t1, t2} and
predicates(S1) = {bl , bi , tr , ab, gr , sq}.

To determine the denotation of an utterance u in a situation S, the teacher
takes the meaning π(M(u)) of u and attempts to match it to a subset of the
situation. A ground atom A is supported by a situation S if A is primary and
an element of S, or, if A is rt(ti, tj) for some r ∈ R and r(tj , ti) is an element of
S. For example, gr(t2), ab(t1, t2), and abt(t2, t1) are supported by the situation
S1 defined above, but gr(t1) and le(t1, t2) are not.

Let V = {x1, . . . , xk} denote the variables that occur in π(M(u)) and T
denote the things in the situation S. A match of π(M(u)) to S is a one-to-one
function f from V to T such that substituting f(xi) for every occurrence of xi in
π(M(u)) produces a set of ground atoms that are all supported by the situation
S. A match is unique if no other one-to-one function of V to T is also a match
of π(M(u)) to S. Given a match f , the first thing mentioned is the constant
f(x1) and the last thing mentioned is the constant f(xk).
1 Only primary predicates (from P ∪ R) occur in situations, although meanings may

use both primary predicates and derived predicates (from Rt).

6 D. Angluin and L. Becerra-Bonache

As an example, the function f(x1) = t1 and f(x2) = t2 is a unique match of
π(〈bl , tr , ab, sq〉) in the situation S1. In this match, the first thing mentioned is
t1 and the last thing mentioned is t2.

A denotation function is specified by a meaning transducer M and a choice
of a parameter which from {first , last}. Given an utterance u and a situation S
such that u ∈ L(M) and there is a unique match f of π(M(u)) in S, then the
denoted object is the first thing mentioned if which = first and the last thing
mentioned if which = last . Otherwise, the denotation function is undefined for
u and S.

With M1 we specify a denotation function by choosing which = first . Then in
the situation S1, the utterance the blue triangle above the square denotes t1 and
the square below the blue triangle denotes t2. The utterance the green triangle
has no denotation in the situation S1.

3 Strategies for Learning Meanings

For the meaning function, we assume that the learner receives a sequence of pairs
(Si, ui) from the teacher, where Si is a situation, and ui is an utterance with
a denotation in the situation Si. For the denotation function, we assume that
the learner receives triples (Si, ui, di) where Si is a situation, ui is a denoting
utterance in Si, and di indicates which thing, tj , in the situation is denoted by ui.
In practice, the denoted object might be indicated by non-linguistic means, e.g.,
pointing at it. This setting gives rather less information than pairs consisting
of an utterance u ∈ L(M) and its meaning π(M(u)). We focus on learning the
meaning function because once it is learned, learning the denotation function
just requires setting the parameter which correctly. We assume that the learner
and teacher share the relevant situation Si.

Given a pair (S, u) of situation and utterance, the learner knows that the
teacher’s transducer M may map some words in u to the empty result, ε, but
each other word in u must have been mapped by γ either to one of the predicates
in S, or to rt, where r is a binary predicate in S. In general, the mapping of a
word by M depends on the state that M is in when the word is encountered.
However, in the transducer M1, the output map is state-independent, at least
for states other than the dead state. To simplify the learning problem, in this
paper we make the following state-independence assumption.

Assumption 1. For all states q, q′ ∈ Q and words w ∈W , γ(q, w) = γ(q′, w).

Thus we write γ(w) instead of γ(q, w). Under this assumption, knowing γ is
sufficient to compute M(u) for any u ∈ L(M); we apply γ sequentially to the
words of u and form the sequence of results. And because the path-mapping
function π is fixed, knowing γ is sufficient to compute the meaning π(M(u)) of
any u ∈ L(M). Thus, we may think of M as separated into a finite state acceptor
for L(M) and the function γ to compute the outputs for elements of L(M).

Learning Meaning Before Syntax 7

A Cross-Situational Conjunctive Strategy. Given the state-independence as-
sumption, we consider a cross-situational conjunctive learning strategy. Cross-
situational learning has been investigated by [17,18,19], among others. For each
encountered word w, we consider all utterances ui containing w and their cor-
responding situations Si, and form the intersection of the sets of predicates
occurring in these Si. That is, for each encountered word w let

C(w) =
⋂
{predicates(Si) : w ∈ c(ui)}.

Because ui is a correct denotation in Si, if γ(w) is a primary predicate, that
predicate must be in C(w). Similarly, if γ(w) = rt, then r must be in C(w).
Hence, if C(w) is empty then the learner may correctly conclude that γ(w) = ε.

Continuing with our earlier example, suppose we apply this approach to the
pairs of utterances and situations shown in the left part of the table below.
Each situation is described by an abbreviation: for example brtlbbs represents
the situation of a big red triangle to the left of a big blue square.

utterance situation
the triangle bbt
the blue triangle bbtlbrt
the red triangle to the left of the blue square brtlbbs
the circle above the green triangle bbcabgt
the red circle to the right of the green circle bgclbrc
the triangle above the red square bgtabrs
the green triangle bgtabrs
the blue circle bbcabgt
the red triangle to the right of the blue triangle bbtlbrt
the red circle brc
the circle above the square bbcabrs
the circle to the left of the square bgclbgs
the blue circle above the square bbcabgs
the circle to the left of the triangle bbclbgt
the triangle to the right of the circle bbclbgt

w C′(w)
the ∅
triangle {tr}
circle {ci}
square {sq}
blue {bl}
red {re}
green {gr}
above {ab}
left {le}
right {le}
to {le}
of {le}

For the data in the left part of this table, every C(w) contains the predicate
bi because it is present in every situation; it is a background predicate. Let
C′(w) be C(w) with all background predicates removed. The values of C′(w) for
this data are shown in the right part of this table. 2

The results in this table for the, triangle, circle, square, blue, red, green, above
and left agree with the meaning function for M1, but the values for right, to and
of disagree. For right, the value should be let instead of le. This arises because
although derived predicates may be meanings, they do not occur in situations.
As an example of how we might determine that ab rather than abt is the correct
image of the word above, consider the pair consisting of the utterance the circle
above the green triangle and the situation bbcabgt. With the C′ values learned
2 There is no entry for below because it is not encountered in the examples.

8 D. Angluin and L. Becerra-Bonache

for circle, green and triangle, the choice of ab for above leads to a match for
this utterance, because ab(t1, t2) is supported by the situation, while abt(t1, t2)
is not. This approach relies on the correctness of the object identifications as
established by the unary predicates. The words to and of occur only in the
phrases to the left of and to the right of, which ensures that the binary predicate
le is always in the situation when they occur. However, a similar attempt to
assign a definite order of arguments to le will fail for these words.

Other Languages, Other Phenomena. We have gathered comparable samples for
several other languages, which exhibit various other phenomena. For example, in
our sample for Mandarin, a circle is designated as yuan or yuan xing, a triangle as
san jiao xing and a square as zheng fan xing. The English utterance the triangle
below the circle is rendered as yuan xing xia mian de san jiao xing. In this case,
the denotation of the utterance (the triangle) is mentioned last in the utterance
rather than first; this is a case in which the parameter which must be last rather
than first.

Also in our sample for Mandarin, san and jiao always co-occur, and both
of their C′ values are the unary predicate tr ; analogously, zheng and fan both
have the value sq . If two (or more) words always co-occur and have a non-
empty meaning, there may be no evidence for which word should be assigned
the meaning. In our sample, tr can be assigned to either san or jiao and the
denotation function will be unaffected. 3

Another phenomenon is present in our sample for Greek: the word for circle
appears in three forms: kyklos, kyklou and kyklo, depending on whether it is
the object of a preposition, and, if so, which preposition. A combination of
morphological and semantic evidence would suggest that these three words are
in fact one word. If, however, we treat them as separate words, in the case of
kyklou, the binary predicate le will be present in every situation in which the
word is used, so that its C′ value is {ci , le} in the limit. Similarly, kyklo will
always co-occur with the binary predicate ab. We would like a criterion to select
one of the two possibilities.

4 The Learning Algorithm

Based on the ideas developed above, we propose a learning algorithm, and give
a set of assumptions under which it finitely converges to a correct meaning
function.

Further Assumptions about M . We make additional assumptions about the
meaning transducer M . In Assumption 1, we have assumed that γ(w) depends
only on the input word w. If W ′ is a set of words, we define

γ(W ′) = {γ(w) : w ∈ W ′, γ(w) 	= ε}.

3 It would be preferable to recognize lexical items that are combinations of words.

Learning Meaning Before Syntax 9

We define the set of all utterances in L(M) that contain w:

LM (w) = {u ∈ L(M) : w ∈ c(u)}.

A word w1 implies a word w2, denoted w1 →M w2 if LM (w1) ⊆ LM (w2); this is
true if every utterance in L(M) that contains w1 also contains w2. Two words w1

and w2 always co-occur, denoted w1 ↔M w2, if LM (w2) = LM (w1). This is an
equivalence relation; its equivalence classes are co-occurrence classes. In our
English example, the words to and of always co-occur and each one is implied by
the word left. In our Mandarin example, the words san and jiao always co-occur.

To deal with co-occurrence classes instead of words as the units to which
meanings are assigned, we assume that γ is well-behaved with respect to co-
occurrence classes. We say that γ is single-valued if for every co-occurrence
class K, γ assigns a nonempty output to at most one word from K.

Assumption 2. The output function γ is single-valued and for any single-
valued output function γ′ such that γ(K) = γ′(K) for all co-occurrence classes
K, M(u) = M ′(u) for every u ∈ L(M), where M ′ is M with output function γ′.

For example, in our sample of Mandarin: either san or jiao can be assigned the
meaning tr without affecting the resulting values M(u) for utterances u ∈ L(M).
This assumption is not true in our Greek example: if o rather than kyklos is
assigned the output ci , then the output of o mple kyklos pano apo to tetragono
is changed from 〈bl , ci , ab, sq〉 to 〈ci , bl , ab, sq〉. 4

We next assume that the language of denoting utterances and their meanings
are sufficient to determine the value of γ for each co-occurrence class. Define for
each co-occurrence class K,

PM (K) =
⋂
{c(M(u)) : u ∈ L(M), K ⊆ c(u)}.

This is all predicates common to meanings of utterances from L(M) that contain
the words in K. Note that for all co-occurrence classes, γ(K) ⊆ PM (K). The
following assumption strengthens this to equality.

Assumption 3. For all co-occurrence classes K, γ(K) = PM (K).

This assumption holds of the transducer M1. For example, the value of PM for
the co-occurrence class {of , to}, is ∅, witnessed by the utterances the circle to
the right of the square, the triangle to the left of the circle and the square to
the right of the triangle and their corresponding sets of predicates: {ci , let, sq},
{tr , le, ci} and {sq, let, tr}. In the case of Greek there are occurrences of kyklou
with both sta deksia and sta aristera that eliminate both le and let from the
value of PM .

Lemma 1. Under Assumptions 1, 2, and 3, knowing the set of co-occurrence
classes K and the values PM (K) is sufficient to compute the value of γ(u) for
every u ∈ L(M).
4 The denotation function is unaffected; perhaps this assumption should be weakened.

10 D. Angluin and L. Becerra-Bonache

(The proof of Lemma 1 is omitted for lack of space.)
However, in the setting we consider, what is observed is the primary versions

of binary predicates. We therefore define a variant of PM (K) in which predicates
are first transformed to their primary versions.

PPM (K) =
⋂
{primary(c(M(u))) : u ∈ L(M), K ⊆ c(u)}.

For the example of the transducer M1 and the co-occurrence class {of , to},
the value of PPM is {le} because whenever these two words occur in an ut-
terance u from L(M), either right or left occurs, and therefore le occurs in
primary(c(M(u))). Similarly, in the case of Greek, the value of PPM for the
class containing kyklou consists of ci and le. A useful property of PPM (K) is
that it gives correct information about the unary predicates.

Lemma 2. For every co-occurrence class K, PPM (K) ∩ P = PM (K) ∩ P .

(The proof of Lemma 2 is omitted for lack of space.)

The Learning Algorithm. We assume that the learning algorithm receives exam-
ples (Si, ui) for i = 1, 2, . . . and responds to each one by hypothesizing a meaning
function γn based on the first n examples. The criterion of success is whether
the algorithm finitely converges to a meaning function γ′ such that γ(u) = γ′(u)
for all utterances u ∈ L(M).

After receiving the example (Sn, un), the learner computes the intersection of
the sets of predicates seen in every situation so far, as follows.

Gn =
n⋂

i=1

predicates(Si).

Let G be the set of background predicates, that is, all predicates that occur
in every situation Si.

G =
⋂

i

predicates(Si).

Then Gn finitely converges to G, because the set of predicates in any situation
is finite.

The algorithm maintains a partition Kn of the words it has seen, in which
two words w1 and w2 are in the same class if they occur in exactly the same set
of utterances ui with 1 ≤ i ≤ n. For each class K ∈ Kn, the learning algorithm
computes the set of unary predicates that occur in every situation Si for which
the utterance ui contains the class K:

Un(K) = P ∩
⋂
{predicates(Si) : 1 ≤ i ≤ n, K ⊆ c(ui)}.

The algorithm uses these sets to define a partial meaning function gn as
follows. For each class K ∈ Kn, if (Un(K)−Gn) is nonempty then the algorithm
selects one word w ∈ K and one predicate p ∈ (Un(K) − Gn) and defines
gn(w) = p. For all other words, the algorithm defines gn(w) = ε.

The map gn translates any utterance into a sequence of unary predicates. For
example, using the map gn derived from the data in Sect. 3, the translation of
the green circle to the right of the red triangle is 〈gr , ci , re, tr〉.

Learning Meaning Before Syntax 11

Resolving Argument Order. The partial meaning function gn is used to try to
gather information about the possible orders of arguments of binary predicates
as follows. Let u be a denoting utterance in a situation S, with partial transla-
tion gn(u) = 〈p1, p2, . . . , pk〉. Let 〈ti1 , ti2 , . . . , tir 〉 be a finite sequence of distinct
things from the situation S. We say that this sequence is compatible with the
partial translation gn(u) if there exists a partition of the sequence 〈1, 2, . . . , k〉
into r (possibly empty) non-overlapping consecutive intervals I1, I2, . . . , Ir such
that p�(tij) is supported by S for every j = 1, . . . , r and � ∈ Ij .

We define the set of possible binary predicates possible(S, u) as follows. For
each atom r(ti, tj) in S, r is included in possible(S, u) if there is an ordering
compatible with g(u) in which ti immediately precedes tj , and rt is included in
possible(S, u) if there is an ordering compatible with g(u) in which tj immediately
precedes ti. Note that

primary(possible(S, u)) ⊆ R ∩ predicates(S).

For example, if the situation S is a big red triangle (t1) to the left of a big green
circle (t2), with a big red square (t3) below the circle, then the only orderings
compatible with 〈gr , ci , re, tr〉 are 〈t2, t1〉, 〈t3, t2, t1〉, 〈t2, t3, t1〉 and 〈t2, t1, t3〉.
Then in the computation of possible(S, u), let is included (because le(t1, t2) is in
the situation and t2 immediately precedes t1 in some compatible ordering) but le
is not (because t1 does not immediately precede t2 in any compatible ordering.)
Considering the occurrences of t2 and t3 in the compatible orderings, both ab
and abt will be included.

The learner defines for each class K ∈ Kn a set of binary predicates as follows.

Bn(K) =
⋂
{possible(Si, ui) : 1 ≤ i ≤ n, K ⊆ c(ui)}.

Finally, the learner uses Bn(K) to extend gn to a hypothesized meaning function
γn as follows. For each w such that gn(w) 	= ε, γn(w) is set to gn(w). For each
class K ∈ Kn, if (Un(K) − Gn) = ∅ and (Bn(K) − Gn) 	= ∅, then a word w is
selected from K and a predicate q from (Bn(K)−Gn) and γn(w) is set to q. For
all remaining words w, γn(w) is set to ε. This concludes the description of the
learning algorithm.

We note that the algorithm prefers to assign a unary predicate as the meaning
of a co-occurrence class K if possible. This means that it prefers ci to le as the
meaning of the co-occurrence class of kyklou in our Greek sample.

Correctness of the Algorithm. We make some additional assumptions about the
sequence of examples (Si, ui) and then prove the following.

Theorem 1. Under Assumptions 1 through 6, the learning algorithm finitely
converges to a meaning function γ′ such that γ′(u) = γ(u) for every u ∈ L(M).

For the following assumptions, we consider only words w and co-occurrence
classes K that actually appear in some example (Si, ui). Our first assumption
about the data sequence (Si, ui) guarantees that the partition Kn finitely con-
verges to the correct co-occurrence classes for L(M).

12 D. Angluin and L. Becerra-Bonache

Assumption 4. For all pairs of words w1 and w2, w1 ↔M w2 if and only if for
all i, c(ui) contains both w1 and w2 or neither w1 nor w2.

The second assumption about the sequence of examples allows the algorithm to
compute PPM (K) in the limit. If K is a co-occurrence class, let

C(K) =
⋂

i

{predicates(Si) : K ⊆ c(ui)},

and C′(K) = C(K)−G.

Assumption 5. For each co-occurrence class K, C′(K) = PPM (K).

Note that this implies that no background predicate is in γ(K) for a co-occurrence
class K that appears in some example (Si, ui). Our final assumption regarding
the data is that if the unary predicates are learned correctly, then compatibility
considerations are enough to rule out any incorrect binary predicates.

Assumption 6. Suppose g is a partial meaning function such that for all co-
occurrence classes K, g(K) = γ(K) if γ(K) is a unary predicate and g(K) = ∅
otherwise. Then for every co-occurrence class K such that γ(K) is not a unary
predicate and every predicate q ∈ (R ∪Rt −G), such that q 	∈ γ(K), there exists
an example (Si, ui) such that q 	∈ possible(Si, ui), where possible is computed
with respect to g.

Assumptions 4, 5, and 6 are satisfied by the data in Sect. 3 with respect to M1.

Proof (of Theorem 1).
By Assumption 4, the partition Kn finitely converges to the correct co-

occurrence classes of L(M), so let n be sufficiently large that this is true. Because
Gn finitely converges to the background predicates G and Un(K) finitely con-
verges to the unary predicates in PPM (K), we have that (Un(K)−Gn) finitely
converges to the unary predicates in PPM (K), which by Lemma 2 and Assump-
tion 3 are just the unary predicates in γ(K). If n is also sufficiently large that
this is true, then gn(K) = γ(K) for all co-occurence classes K such that γ(K)
is a unary predicate and gn(K) = ∅ for all other co-occurrence classes K.

Thus gn satisfies the hypotheses of Assumption 6. Consider any co-occurrence
class K such that γ(K) is not a unary predicate. If γ(K) = ∅, then for every
binary predicate q ∈ (R∪Rt−G), there exists an example (Si, ui) such that q 	∈
possible(Si, ui). Thus, for n sufficiently large, (Bn(K)−Gn) = ∅ and γn(K) = ∅.

Suppose γ(K) = {q} for some q ∈ R ∪Rt. Then q 	∈ G, so q ∈ (R ∪Rt −G),
by Assumption 5. For all sufficiently large n, q is in possible(Si) if K ⊆ c(ui)
for all 1 ≤ i ≤ n. This is true because ui is a denoting utterance in Si, so
there is a match f from x1, . . . , xk to things in Si such that all the atoms of
π(M(ui)) are supported in Si. Thus, there is an ordering f(x1), f(x2), . . . , f(xk)
of things from Si compatible with the subsequence of M(ui) consisting of unary
predicates (which is equal to gn(ui)), and in which q(tj , tj+1) for some j. Thus,
q ∈ (Bn(K) − Gn) for all sufficiently large n. Every other predicate from (R ∪
Rt −G) is eliminated by some example (Si, ui), by Assumption 6.

Learning Meaning Before Syntax 13

Thus, for sufficiently large n, γn finitely converges to a meaning function γ′

such that γ′(K) = γ(K) for all co-occurrence classes K of L(M). By Assump-
tion 2, γ′(u) = γ(u) for all utterances u ∈ L(M). �

5 Discussion and Future Work

What about computational feasibility? Word co-occurrence classes, the sets of
predicates that have occurred with them, and background predicates can all be
maintained efficiently and incrementally. However, the problem of determining
whether there is a match of π(M(u)) in a situation S when there are N variables
and at least N things, includes as a special case finding a directed path of length
N in the situation graph, which is NP-hard in general. Also, our method of
determining the order of arguments of binary predicates potentially involves
considering all possible orderings of the distinct things in a situation. It is likely
that human learners do not cope well with situations involving arbitrarily many
things, and it is important to find good models of focus of attention.

Our model suggests that learning meaning not only facilitates learning syntax,
but also precedes it. We agree with Tellier’s suggestion [11] that “the acquisition
of a conceptual representation of the world is necessary before the acquisition of
the syntax of a natural language can start.”

We have tested our model in the simple domain of geometric shapes with sets
of utterances in a number of natural languages, including Arabic, English, Greek,
Hebrew, Hindi, Mandarin, Russian, Spanish and Turkish [16]. These experiments
show the robustness of our assumptions for this domain and the adequacy of our
model to deal with crosslinguistic data.

Further work is required to relax some of the more restrictive assumptions. For
example, in the current framework, disjunctive meanings cannot be learned, nor
can a function that assigns meanings to more than one of a set of co-occurring
words. Statistical approaches may produce more powerful versions of the models
we consider. We plan to develop our model to incorporate production and syntax
learning by the learner, as well as corrections and expansions from the teacher.

The authors thank Ronny Dakdouk, Kevin Gold, Melis Inan, Gaja Jarosz, Edo
Liberty, Lev Reyzin, Brian Scassellati, Nikhil Srivastava, Antonis Stampoulis,
and Yinghua Wu for their help with aspects of this work.

References

1. Feldman, J.: Some decidability results on grammatical inference and complexity.
Information and Control 20, 244–262 (1972)

2. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

3. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer
Science 185, 15–45 (1997)

4. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nition 38, 1332–1348 (2005)

14 D. Angluin and L. Becerra-Bonache

5. Feldman, J.: Real language learning. In: Honavar, V.G., Slutzki, G. (eds.) ICGI
1998. LNCS (LNAI), vol. 1433, pp. 114–125. Springer, Heidelberg (1998)

6. Anderson, J.: Induction of augmented transition networks. Cognitive Science 1,
125–157 (1977)

7. Hill, J.A.C.: A Computational Model of Language Acquisition in the Two-year-old.
Indiana University Linguistics Club, Indiana (1983)

8. Hamburger, H., Wexler, K.: A mathematical theory of learning transformational
grammar. Journal of Mathematical Psychology 12, 137–177 (1975)

9. Schlesinger, I.: Production of utterances and language acquisition. In: Slobin, D.
(ed.) The Ontogenesis of Grammar, pp. 63–103. Academic Press, New York (1971)

10. Schaerlaekens, A.M.: The two-word sentence in child language development. Mou-
ton, The Hague (1973)

11. Tellier, I.: Meaning helps learning syntax. In: Honavar, V.G., Slutzki, G. (eds.)
ICGI 1998. LNCS (LNAI), vol. 1433, pp. 25–36. Springer, Heidelberg (1998)

12. Oates, T., Armstrong, T., Harris, J., Nejman, M.: On the relationship between
lexical semantics and syntax for the inference of context-free grammars. In: AAAI,
pp. 431–436 (2004)

13. Gold, K., Scassellati, B.: A robot that uses existing vocabulary to infer non-visual
word meanings from observation. In: AAAI, pp. 883–888 (2007)

14. Brown, R., Bellugi, U.: Three processes in the child’s acquisition of syntax. Harvard
Educational Review 34, 133–151 (1964)

15. Brown, R., Fraser, C.: The acquisition of syntax. In: Cofer, C., Musgrave, B. (eds.)
Verbal behavior and learning: Problems and processes, pp. 158–197. McGraw-Hill,
New York (1963)

16. Angluin, D., Becerra-Bonache, L.: Learning meaning before syntax. Technical Re-
port YALE/DCS/TR1407, Computer Science Department, Yale University (2008)

17. Siskind, J.: A computational study of cross-situational techniques for learning
word-to-meaning mappings. Cognition 61, 39–61 (1996)

18. Smith, K., Smith, A.D.M., Blythe, R.A., Vogt, P.: Cross-situational learning: a
mathematical approach. In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C.L. (eds.)
EELC 2006. LNCS (LNAI), vol. 4211, pp. 31–44. Springer, Heidelberg (2006)

19. Thompson, C.A., Mooney, R.J.: Acquiring word-meaning mappings for natural
language interfaces. Journal of Artificial Intelligence Research 18, 1–44 (2003)

Schema-Guided Induction of Monadic Queries

Jérôme Champavère, Rémi Gilleron, Aurélien Lemay, and Joachim Niehren

University of Lille and INRIA Lille-Nord Europe, France

Abstract. The induction of monadic node selecting queries from par-
tially annotated XML-trees is a key task in Web information extraction.
We show how to integrate schema guidance into an RPNI-based learning
algorithm, in which monadic queries are represented by pruning node
selecting tree transducers. We present experimental results on schema
guidance by the DTD of HTML.

1 Introduction

Various machine learning techniques have been applied for automating Web
information extraction. These range from classification [11,12,16], conditional
random fields [14], inductive logic programming [7], to tree automata induction
[19,13,4,15].

We study information extraction from well-structured HTML documents gen-
erated by some database. The basic problem is to find monadic queries that
select informative nodes in unranked trees. Surprisingly, no schema information
has been taken into account so far, even not the document type definition (DTD)
of HTML. Inferred DTDs obtained from some independent algorithm have not
been exploited either [1]. Instead, all available techniques rely on some finite set
of attributes or local properties of the environment of nodes in the trees. The
reason for ignoring schema information may be that it cannot be integrated into
most approaches. Tree automata based techniques for the inference of regular
tree languages are the exception [4,15], as we show in this article, but it requires
considerable effort. Automata for local tree languages are not sufficient [19,13].

In this article, we introduce schema guidance into the learning algorithm
for monadic queries represented by pruning node selecting tree transducers
(pNSTTs) presented in [4]. These are tree automata that recognize monadic
queries represented as tree languages. The first idea is to learn only such queries
that are consistent with the schema, in that they select nodes in trees satisfying
the schema only. This is known as domain bias [9] in the more restrictive frame-
work for inference of regular word languages. The second idea is that schema
information is useful in pruning heuristics for interactive query learning.

Checking the consistency of queries with respect to schemas amounts to test-
ing language inclusion L(A) ⊆ L(D) for stepwise tree automata A which may
be nondeterministic [8,5] and (deterministic) DTDs D over the same signa-
ture Σ. This can be done in time O(|A| ∗ |Σ| ∗ |D|) due to a recent algorithm [6],
motivated by the application presented here, which is quite evolved. It avoids

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 15–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 J. Champavère et al.

quadratic blowups in two places: in the translation of DTDs to bottom-up deter-
ministic tree automata by introducing factorization, and by avoiding automata
complementation all over (the completion of a binary tree automaton may be of
quadratic size).

Interactions between the user and the system are essential for keeping the
overall amount of annotations reasonably small. Pruning heuristics serve for in-
teractive learning of pNSTT queries from partially annotated example trees.
The only completeness assumption that can be maintained in interactive infor-
mation extraction is that all selected ancestors of positively annotated nodes
are annotated. pNSTTs restore complete annotations by pruning subtrees that
do not contain positive annotations (and interpreting missing annotations above
positive annotations as negative). Pruning means to replace subtrees by place-
holder symbols. pNSTTs use a single symbol � that denotes the set of all pos-
sible trees. If the schema is defined by a deterministic tree automaton S (or a
DTD), we can refined this idea and replace subtrees by their type, which is the
unique state into which it is evaluated by S . This leads to a generalization of pN-
STTs to schema-dependant S -pNSTTs. Algorithmically, the RPNI algorithm [17]
has to check whether a tree automaton is an S -pNSTT, i.e., whether it actu-
ally represents a valid query. We present a polynomial time algorithm for this
purpose.

We have implemented the complete interactive learning algorithm for S -
pNSTTs from scratch including the two aspects of schema guidance by S . This is
done in such a way that we can run the same algorithm with or without schema
consistency, schema-guided pruning, or a state typing heuristics. No other hid-
den heuristics or preprocessing steps have been used. A preliminary experimen-
tal evaluation yields the following insights on schema guidance by the DTD of
HTML. First, it might be of interest to observe that the number of state merges
is decreased considerably by schema guidance, while the learning time remains
stable. This means that the time gained by fewer merge failures is sufficient to
account for the additional inclusion tests. We didn’t expect this effect at the
beginning. It shows that the approach is feasible. Second, the overall learning
quality (precision and recall) do not change very much. Typing heuristics per-
mit to avoid wrong generalizations and allow to improve performance of learning
algorithms. The effect of schema guidance remains questionable, while schema
guided pruning works well. We only use HTML documents, thus the DTD of
HTML. Clearly XML queries with other XML schemas must be considered to
answer the remaining questions. In the interactive setting, typing heuristics and
schema-guided pruning allow to decrease the number of user interactions needed
to achieve a consistent query.

2 Schemas, Tree Automata, and Inclusion Checking

Schemas and node selection queries for unranked trees can be defined in various
XML standards or by tree automata [8]. We will use DTDs as for the definition
of HTML and stepwise tree automata for encoding DTDs, and defining queries.

Schema-Guided Induction of Monadic Queries 17

<!ELEMENT doc
(b lock+)> <!ELEMENT block (text , (l ink , t e x t ?)?

| l ink , t e x t ?)>
<!ELEMENT t e x t
(#PCDATA)> <!ELEMENT l i n k
(#PCDATA)>

block

doc block

block
text text

text

link

link

text

link
1 2

3
4 5 6

7 8

9

10

Fig. 1. An example DTD and the corresponding Glushkov automata

We recall how to translate DTDs into deterministic stepwise tree automata, and
discuss inclusion checking.

Let Σ be a finite set, N the set of natural numbers (starting from 1) and
B = {0, 1} the set of Booleans. The set of unranked trees TΣ is the least set that
contains all tuples a(t1, . . . , tn) where a ∈ Σ, n ≥ 0, and t1, . . . , tn ∈ TΣ. A node
of a tree is a word π ∈ N∗ (using classical Dewey encoding). We write ε for the
empty word and i · π for the concatenation of letter i with word π. The set of
nodes of an unranked tree is nodes(a(t1, . . . , tn)) = {ε} ∪ {i · π | 1 ≤ i ≤ n, π ∈
nodes(ti)}. The label of a tree t at a node π ∈ nodes(t) is denoted by t(π) ∈ Σ,
the root of t is distinguished by root(t). By t|π, we denote the subtree of t rooted
by t(π).

A schema over Σ is a regular language of unranked trees L ⊆ TΣ. We will use
two kinds of schema definitions: XML DTDs and stepwise tree automata [5], pos-
sibly with factorization [6] in order to avoid a quadratic blowup when encoding
DTDs.

A DTD D over Σ consists of a collection of one-unambiguous regular ex-
pressions (eD

a)a∈Σ [3], and a (unique) accepting symbol startD ∈ Σ. The word
language L(e) ⊆ Σ∗ defined by a regular expression e over Σ is defined as usual.
For every DTD D we define tree languages La(D) ⊆ TΣ by the least solution of
the following system of equations where a, a1, . . . , an ∈ Σ:

La(D) = {a(t1, . . . , tn) | a1 · · · an ∈ L(eD
a), ai = root(ti), ti ∈ Lai(D), 1 ≤ i ≤ n}

The above definition basically means that the word obtained by concatenating
the labels of the children of each node labeled by a must be in L(eD

a). The
language of the schema is L(D) = LstartD(D). An example DTD is given in
Fig. 1. The regular expressions of DTDs can be converted into finite automata
recognizing the same language by Glushkov’s construction [2]. These automata
are deterministic, since the regular expressions in DTDs are one-unambiguous [3].
The size of the Glushkov automaton Ge of a regular expression e is at most
|Σ| ∗ |e|, which is the maximal number of transitions in deterministic automata
over Σ with |e| states.

A stepwise tree automaton A over Σ is a standard tree automaton over the
ranked signature Σ@ = Σ � {@}, where all elements of Σ are constants and @
is a binary function symbol. The rules of A, denoted rules(A), are of the form
a → q, q1@q2 → q, or q1

ε→ q2, where a ∈ Σ and q, q1, q2 ∈ states(A), the set of
states of A. Automaton A is (bottom-up) deterministic, if it has no ε-rules and

18 J. Champavère et al.

doc

block

text link text

@

doc @

@

@

block text

link

text

Fig. 2. Currying the unranked tree doc(block(text,link,text) into the binary tree
doc@(block@text@link@text)

no two rules with the same left-hand side. We call an automaton productive if
all of its states are accessible and co-accessible.

Let T bin
Σ@

be the set of binary trees over the signature Σ@ and Lbin(A) ⊆ TΣ@

be the set of binary trees recognized by A. Every unranked tree t ∈ TΣ can be
encoded via Currying into a binary tree in TΣ@ , so that curry(a) = a and if n ≥
1 then curry(a(t1, . . . , tn)) = curry(a(t1, . . . , tn−1))@curry(tn). An example
is depicted in Fig. 2. Here, we write t1@t2 instead of @(t1, t2). The language
L(A) ⊆ TΣ of unranked trees recognized by a stepwise tree automaton A is the
set:

L(A) = {t ∈ TΣ | curry(t) ∈ Lbin(A)}

The direct transformation of DTDs into deterministic stepwise tree automata
implies a quadratic blowup in the size of the DTD. To avoid such a blowup, we
introduce factorized tree automata [6]. These are stepwise tree automata with
ε-rules which represent stepwise tree automata in a compact manner. Neverthe-
less, we can still define an appropriate notion of determinism for factorized tree
automata in order to deal with DTDs.

Definition 1. A factorized tree automaton F over Σ is a stepwise tree automa-
ton over Σ with ε-rules, and a partition into two sorts states(F) = states1(F) �
states2(F) such that if q1@q2 → q in rules(F) then q1 ∈ states1(F) and q2 ∈
states2(F). F is (bottom-up) deterministic if its ε-free part is (bottom-up) deter-
ministic and all q ∈ states(F) have at most one outgoing ε-edge, the target of
which must be of the other sort.

It should be noticed that the idea of factorization is equally provided by the tree
automata for unranked trees proposed in [18].

The collection of Glushkov automata (Ga)a∈Σ of a DTD D can now be
translated in linear time to a factorized tree automaton F with states1(F) =
�a∈Σstates(Ga) and states2(F) = Σ. The rules of F are defined as follows:

Schema-Guided Induction of Monadic Queries 19

1

2

doc

block

doc

3

4 5 6

7

text

8

block

link

block

block

text

text

textlink

link

9 text

10 link
ε-transitions

Fig. 3. The deterministic factorized tree automaton for the DTD in Fig. 1

q1
a→ q2 ∈ rules(Ga) iff q1@a → q2 ∈ rules(F), and q ∈ final(Ga) iff q

ε→ a ∈
rules(F). This correspondence is equally useful for drawing factorized tree au-
tomata as in Fig. 3. The single final state of F is the accepting label of D, i.e.,
final(F) = {startD}. Indeed, L(A) = L(F). Furthermore, F is deterministic as
a factorized tree automaton. Its ε-free part is deterministic, since all Glushkov
automata are deterministic. The only states having outgoing ε-edges are the fi-
nal states of Glushkov automata, which are of sort 1. They have at most one
outgoing ε-edge, since every q belongs to at most one Glushkov automaton Ga;
the target of this edge is of other sort 2. In principle, these ε-edges can be elim-
inated in order to obtain a deterministic tree automaton, but this could lead to
a quadratic size increase.

Theorem 1 ([6]). Language inclusion L(A) ⊆ L(F) between stepwise tree au-
tomata A with ε-rules and deterministic factorized tree automata F can be tested
in time O(|A| ∗ |F |).

The most important point here is that one does not have to compute the automa-
ton for the complement of F , which could grow up quadratically to O(|F |2) since
completion is necessary before swapping final states. The second point is that
factorization avoids a quadratic blowup when translating DTDs into stepwise
tree automata. As a corollary, we can check language inclusion between stepwise
tree automata A and DTDs D over signature Σ in time O(|A| ∗ |Σ| ∗ |D|). Third,
the inclusion test is incremental with respect to adding ε-edges to A. This can
be used to check inclusion incrementally in a learning algorithm because, after
state merging in A, we simply add back and forth ε-edges rather than physically
identifying the merged states.

3 Schema-Guided pNSTTs for Monadic Queries

We generalize the notion of pNSTTs to S -pNSTTs such that pruning is guided
by a schema S , and present a polynomial time algorithm testing whether a
deterministic tree automaton is an S -pNSTT.

20 J. Champavère et al.

Node Selecting Tree Transducers. A monadic query Q in unranked trees
over Σ is a total function mapping trees t ∈ TΣ to sets of nodes Q(t) ⊆ nodes(t).
We call a monadic query Q consistent with a schema L ⊆ TΣ if it selects nodes
only in trees satisfying the schema, i.e., if Q(t) = ∅ for all t ∈ TΣ \ L.

A (Boolean) annotated tree over Σ is a tree over Γ = Σ×B. Every annotated
tree s ∈ TΓ can be decomposed in a unique manner into two trees t ∈ TΣ and
β ∈ TB with the same sets of nodes nodes(s) = nodes(t) = nodes(β) such that
for all nodes π therein, s(π) = (t(π), β(π)). In this case, we write s = t ∗ β.

A language L ⊆ TΓ of annotated trees defines a relation rL ⊆ TΣ × TB

between trees of the same structure, which is rL = {(t, β) | t ∗ β ∈ L}. We call
L functional if this relation rL is a partial function. In other words, for every
tree t ∈ TΣ there exists at most one tree β ∈ TB such that t ∗ β ∈ L. A node
selecting tree transducer (NSTT) for Σ is an automaton over Γ which recognizes
a functional language of annotated trees.

A completely annotated example for a query Q is a tree t ∗ β where β(π) =
1 for all selected nodes π ∈ Q(t) and β(π) = 0 otherwise. An algorithm for
testing functionality and an RPNI algorithm for learning NSTTs from completely
annotated examples have been presented in [4].

Schema-Guided Pruning. In Web information extraction, however, only par-
tially annotated examples for the target query Q are available. These are triples
(t, e+, e−) such that e+ ⊆ Q(t) and e− ⊆ nodes(t) \Q(t). The only completeness
assumption for partially annotated examples that can be maintained is that se-
lected nodes on paths from the root to some annotated selected node in e+ are
annotated, too. If π ∈ e+ and π′ ∈ Q(t) is a prefix of π then π′ ∈ e+.

Pruning is a method by which to deal with partially annotated examples. The
idea is to cut down all subtrees from t that do not contain nodes in e+. These
subtrees are replaced by special symbols, which indicate the type of the subtree.
Then all other nodes are annotated by using the given partial annotation and
the completeness assumption, i.e., a node is annotated by 1 if it is in e+, and
by 0 otherwise. The pNSTTs from [4] permit only a single type satisfied by all
trees. When having schema information available, we can refine this approach by
using the states of the schema as type information. This leads to the following
formal definitions.

Let S be a tree automaton over Σ which defines the schema, and let us
consider states(S) as symbols of arity 0. An S-pruned annotated tree is a tree
s ∈ TΓ∪states(S). We call a tree s ∈ TΓ∪states(S) an S-consistent pruning of an
annotated tree t ∗ β ∈ TΓ if:

(i) s(π) = t ∗ β(π) if s(π) ∈ Γ , or
(ii) t|π ∈ Ls(π)(S) if s(π) ∈ states(S).

Now, let us consider a language L ⊆ TΓ∪states(S). L is S-cut-functional if for all
s1 and s2 in TΓ∪states(S) such that there exist t∗β1 and t∗β2 in L with s1, resp s2,
an S -consistent pruning of t ∗ β1, resp. t ∗ β2, then for all nodes π ∈ nodes(β1)∩
nodes(β2), it holds that β1(π) = β2(π). In other words, two S -consistent prunings

Schema-Guided Induction of Monadic Queries 21

of an annotated tree can not define contradictory annotations. We can now define
S -guided pruning node selecting tree transducers.

Definition 2. Given a schema S, an S -pNSTT over Σ is a tree automaton
over signature (Σ × B) ∪ states(S) whose language is S-cut-functional.

If S� is the tree automaton with a unique state � that recognizes all unranked
trees, then S�-pNSTTs coincide with pNSTTs presented before in [4]. Such
pNSTTs can be learned by the variant pRNPI of RPNI, which tests for cut-
functionality after all deterministic merges. In order to generalize pRNPI with
schema-guided pruning, we need an algorithm testing S -cut-functionality for
languages recognized by tree automata over the signature Γ ∪ states(S).

Let S be a deterministic factorized tree automaton over Σ and let A be a
deterministic stepwise tree automaton over Γ ∪ states(S). Deciding whether A
is an S -pNSTT, i.e., verifying that the language of A is S -cut-functional, can be
done by a ground Datalog program of polynomial size, and thus in polynomial
time (see, e.g., [10]). Such a program can be inferred from A and S as described
in the following.

The predicate schema(p, q) holds for p ∈ states(A) and q ∈ states(S) if there
exist an annotated tree t ∗ β and an S -consistent pruning s of t ∗ β such that
A evaluates s to p and S evaluates t to q. Note that only the second rule is
concerned by pruning (state q of S is a constant symbol for A).

(a, b) → p ∈ rules(A) a → q ∈ rules(S)

schema(p, q).

q ∈ states(S) q → p ∈ rules(A)

schema(p, q).

p1@p2 → p ∈ rules(A) q1@q2 → q ∈ rules(S)

schema(p, q) :− schema(p1, q1), schema(p2, q2).

q
ε→ q′ ∈ rules(S)

schema(p, q′) :− schema(p, q).

The predicate sim(p, p′) (for similar pruning) holds for two states p, p′ of
states(A) if there exist two S -consistent-pruning s, s′ of the same annotated tree
t ∗ β which are evaluated to p and p′ by A. Here, only the second rule is directly
concerned by pruning.

p ∈ states(A)

sim(p, p).

q ∈ states(S) q → p′ ∈ rules(A)

sim(p, p′) :− schema(p, q).

p1@p2 → p ∈ rules(A) p′
1@p′

2 → p′ ∈ rules(A)

sim(p, p′) :− sim(p1, p
′
1), sim(p2, p

′
2).

The predicate dast(p, p′) (different annotations on same tree) holds for two
states p, p′ of states(A) if there exist an S-consistent pruning s of t ∗ β and an
S-consistent pruning s′ of t ∗ β′ with a position π verifying s(π) ∈ Γ , s′(π) ∈ Γ
and s(π) 	= s′(π), such that A evaluates s to p and s′ to p′. This predicate allows
to detect failure for testing S -cut-functionality.

(a, b) → p ∈ rules(A) (a,¬b) → p′ ∈ rules(A)

dast(p, p′).

22 J. Champavère et al.

p1@p2 → p ∈ rules(A) p′
1@p′

2 → p′ ∈ rules(A)

dast(p, p′) :− dast(p1, p
′
1), dast(p2, p

′
2).

dast(p, p′) :− dast(p1, p
′
1), sim(p2, p

′
2).

dast(p, p′) :− sim(p1, p
′
1), dast(p2, p

′
2).

The next proposition indicates how to determine whether an automaton is
S -cut-functional by using the inferred Datalog program.

Proposition 1. A deterministic tree automaton A over Γ ∪ states(S) is S-cut-
functional with respect to a productive deterministic factorized tree automaton
S over Σ if and only if there are no two states p, p′ ∈ states(A) such that
dast(p, p′) holds, and either p, p′ ∈ final(A) or sim(p, p′) holds.

Note that when defining the schema by automaton S�, predicate schema becomes
trivial, and the test for S�-cut-functionality coincides with the cut-functionality
test for pNSTTs presented in [4].

4 Schema-Guided Learning

We present the learning algorithm RPNIS,type
prune,cons in Fig. 4 which is a variant of

RPNI [17] that learns S -pNSTTs in a schema-guided manner. It is parameterized
by a deterministic factorized tree automaton S over Σ which defines the schema.
It inputs a finite set of completely annotated examples E ⊆ TΣ×B and a single
partially annotated example 〈t, e+, e−〉 in TΣ × nodes(t)2. The algorithm could
easily be extended to a set of partially annotated examples, but a single one is
enough in most interactive learning scenarios.

The schema S intervenes in the definition of the pruning algorithm pruneS,
in definitions of queries by deterministic S -pNSTTs over Σ (distinguished by
S -cut-functionality), and in consistency checking of queries with respect to the
schema L(S), which amounts to check for language inclusion (in polynomial
time since S is deterministic). We will consider several variants of the algorithm:
whether S -guided pruning is done; whether S -consistency is checked for queries,
and whether typing heuristics are used.

Learning without schema means to choose S = S�, the automaton with a sin-
gle state that accepts all trees. S -consistency checking for queries can be switched
on by choosing parameter cons = yes. Learning without pruning amounts to set
pruneS to the identity function on annotated trees, i.e., pruneS(s) = s for all
s ∈ TΣ×B. With pruning, the function pruneS replaces subtrees, in which no
nodes are selected, by their state with respect to S. This can be defined as
follows where t ∈ TΣ, β ∈ TB, s, s1, . . . , sn ∈ TΣ×B, a ∈ Σ, and b ∈ B:

pruneS(t ∗ β) = evalS(t) if β ∈ T{0}
pruneS((a, b)(s1, . . . , sn)) = (a, b)(pruneS(s1), . . . , pruneS(sn)) otherwise

Here evalS(t) ∈ states(S) is the state into which S evaluates t. This state exists
for all annotated examples since these are supposed to satisfy schema S. It is
unique since S is assumed deterministic.

Schema-Guided Induction of Monadic Queries 23

RPNIS,type
prune,cons (E, 〈t, e+, e−〉)

// sample of completely annotated examples E ⊆ TΣ×B

// partially annotated example 〈t, e+, e−〉 ∈ TΣ × nodes(t)2

// schema defined by a deterministic factorized tree automaton S over Σ

// prune all example trees w.r.t. schema definition S//
let E′ = {pruneS(t′ ∗ β) | t′ ∗ β ∈ E} ∪ {pruneS(t ∗ p+)}
// compute the initial automaton
let A be a deterministic S -pNSTT such that L(A) = E′

let states(A)= {q1, . . . , qn} in some admissible order
// generalize A by state merging //
for i = 1 to n do

for j = 1 to i − 1 with type (qj)=type (qi) do
let A′ = det-merge(A, qi, qj)
if A′ is S cut-functional // S -consistency of annotations on pruned trees
and if cons =yes then {t | t ∗ β ∈ L(A′)} ⊆ L(S) // query S -consistent
and A′ consistent with sample E and example 〈t, e+, e−〉
then A ← A′

else skip
Output : A

Fig. 4. Learning from completely and partially annotated example trees

State typing heuristics forbid to merge states of the automaton that have dif-
ferent types type(qj) 	= type(qi). This is called typing bias in [9]. The definition of
types depends on the application. In our algorithm, they are introduced by param-
eter type. When no typing heuristics are used, we set type to a constant function
on states. Otherwise, we say that a state q of stepwise tree automaton A has type
type(q) = a ∈ Σ, if q is reachable from a in the graph representing the stepwise
automaton. We impose that no two states may have the same type, so that the
graphical representation of A can be decomposed into a disjoint union of inde-
pendent connected components for all letters a ∈ Σ. For instance, typing heuris-
tics for HTML forbid shared generalizations for different elements, which may be
tables, rows, or lines, or the same elements with different attribute values.

Interactive Learning. All successful Web information extraction systems learn
in an incremental manner [19,16,4]. This is essential for solving extraction tasks
with a reasonably small number of user annotations. The algorithm RPNIS,type

prune,cons
can be used as core learning algorithm in an interactive environment such as
Squirrel [4], in which it is repeatedly applied during user interaction.

Incremental learning algorithms help users to annotate a collection of Web
pages. They always know a current hypothesis for the target query, which should
solve the information extraction task at the end. At the beginning, this query
can be chosen to be empty, i.e., Q(t) = ∅ for all t ∈ TΣ. For every Web page,
the user loops as follows in order to find complete annotations for all pages:

24 J. Champavère et al.

– apply the current query hypothesis to the current page,
– either accept the result and continue with the next page,
– or else, correct some of the errors by adding new partial annotations for the

current page, learn a new query hypothesis by running algorithm RPNIS,type
prune,cons

with all complete annotations for earlier pages and all partial annotations for
the current page, and repeat the procedure for the current page.

The quality of such interactive learning algorithms is usually measured in the
number of pages that are to be annotated before the target query is found, and
in the total number of corrections effected on these pages.

5 Experimental Results

We have implemented the learning algorithm RPNIS,type
prune,cons, and integrated it

into the interactive environment Squirrel. Here we describe aspects of the imple-
mentation and results of experiments of schema-guided query induction for Web
information extraction. The schema definition we use is the DTD of HTML.

Preprocessing the DTD of HTML. The complete DTD of HTML is huge.
We have kept only the essential part with respect to information extraction. In-
deed, HTML (XHTML1-transitional) DTD has 89 defined symbols. In practice,
depending on the considered set of Web pages, the number of elements actually
used ranges between 20 and 30. Reducing the size of the DTD can be done by
filtering those elements and putting away the others and the unused rules of
the schema automaton, i.e., rules that contain states that are not accessible or
co-accessible. The automaton for the whole HTML DTD obtained by classical
Glushkov’s construction has 3951 rules. This reduction technique allows us to
deal with an automaton whose number of rules ranges from 107 to 218 depending
on the benchmark, and thus to speed up the inclusion tests.

Implementing the Learner. We have implemented RPNIS,type
prune,cons in Objective

CAML. Besides the usual efforts for implementing RPNI, a large part of the ef-
fort was spend on the inclusion test, which is done in an incremental manner. All
parameters of the algorithm are provided, and can be freely instantiated (schema-
guided pruning, schema-guided consistency, state typing heuristics). This allows
us to measure the impact of these heuristics together or independently. No fur-
ther heuristic has been introduced. This is quite important. It excludes all kinds
of dirty tricks, so that the results can be obtained from the description presented
here. As a drawback, it leaves some room for improving the performance.

Benchmarks. We have performed preliminary experiments on three bench-
marks: Google, Okra and Bigbook1. Google presents a set of 34 result Web
pages for the well-known search engine where links are to be extracted. Okra
(251 pages) and Bigbook (234 pages) are classical benchmarks for data extraction

1 Those benchmarks can be found at
http://www.grappa.univ-lille3.fr/~carme/WebWiki/DataSets.html

http://www.grappa.univ-lille3.fr/~carme/WebWiki/DataSets.html

Schema-Guided Induction of Monadic Queries 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10

f-
m

ea
su

re

of examples

okra-mails

 Typing + Inclusion (inf.)
 Typing + Inclusion (XHTML)

 Inclusion (XHTML)
 Typing

 No options

Fig. 5. Experimental results for Okra benchmark in non-interactive mode

on the Web. They both correspond to lists of people with several information on
them. The task on Okra is to extract emails of persons, and names for Bigbook.
We present here only Okra and Google because of space constraints. While a far
simpler task, Bigbook results are comparable with those of Google in the way
that the order of the different curves are similar, but with better overall results
for every option set.

Non-interactive Learning. For the chosen benchmarks, a sample of 1 to 10
randomly chosen completely annotated Web pages is submitted to the learning
algorithm. The resulting queries is tested on 30 other Web pages of the corpus
using precision, recall and f-measure. The presented results are averages on 30
experiments.

Results are presented for different sets of options in Fig. 5 and 6. Results
for pruning are not presented here because this option does not alter a lot the
results in non-interactive learning. For inclusion with inferred DTDs, only the
best result is presented (the one obtained when joint with typing).

From this, several conclusions can be raised. First, surprisingly, inclusion with
inferred DTD leads to poor results. This might be related to the chosen DTD
inference algorithm itself. Second, inclusion alone is not helpful, but joint with
typing, it may be of serious help. In Okra benchmark, the learning algorithm
with typing and inclusion within HTML DTD gives the best results, especially
with few examples. On the other hand, results on Google (and Bigbook) do not
really improve existing results.

Also, experiments on running time and number of merges performed have been
done. Results vary but algorithm with schema consistency checking is usually
around five time slower, which is still acceptable for an interactive use considering

26 J. Champavère et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10

f-
m

ea
su

re

of examples

google

 Typing + Inclusion (inf.)
 Typing + Inclusion (XHTML)

 Inclusion (XHTML)
 Typing

 No options

Fig. 6. Experimental results for Google benchmark in non-interactive mode

that the overall learning time rarely exceed one second. This proves the feasibility
of the approach. On Okra, the schema consistency option allows to reduce the
number of merges. This means that in this case, extra computation time can
actually be compensated by a better guiding of merge operations. However, on
other benchmarks, the number of merges is quite similar with or without schema
consistency.

Interactive Learning. We now evaluate our algorithm in an interactive setting.
It is tested automatically by a “user simulator” which performs the following task.
We first begin with the empty query and a randomly chosen Web page. The query
is tested on the Web page. If the result of the query is not correct, the user gives
exactly one extra annotation (a correction): either a positive annotation on a
node that the query forgot or a negative annotation on a node that is incorrectly
annotated by the query. The annotation is chosen as being on the first node (in
the document order) returned by the query that is incorrect. If the annotation
returned by the query is correct, the user choses an other page and reiterate until
it is satisfied, which is obtained when 30 consecutive Web pages are correctly
annotated by this process.

During this protocol, we count the number of corrections the user had to do
and the number of pages on which there has been an interaction (Web pages
on which the query was already correct is not counted here). Also, once an
annotated Web page has been accepted, we complete its annotation, i.e., we
annotate negatively every non-annotated node. The results presented in Table 1
are averages on 30 experiments.

All the experiments have been performed using pruning.We present here the
results obtained when adding typing, inclusion within HTML DTD, or both.

Schema-Guided Induction of Monadic Queries 27

Table 1. Interactive learning. For each dataset, we present the number of necessary cor-
rections/pages to learn the target query (T=typing heuristics; I=inclusion; P=schema-
guided pruning). All experiments have been done with regular pruning, unless P is
specified.

T I T + I T + I T + P
(HTML DTD) (HTML DTD) (Inferred DTD) (HTML DTD)

Okra failed 17.93/3.87 4.00/2.03 4.60/2.73 3.73/1.87
Bigbook 3.03/1.37 3.20/1.57 2.77/1.77 2.33/1.33 3.90/1.37
Google 4.53/2.33 9.60/3.43 8.00/4.00 28.60/12.03 6.90/3.53

Also, we present results with typing and inclusion within the inferred DTD.
Last, we tried inference using typing and pruning using schema, without us-
ing inclusion. Indeed, while inclusion is not possible with regular pruning (i.e.,
without schema), it is possible to prune trees by replacing them by their DTD
state, without using inclusion. This is useful to separate the effect of this kind
of pruning and the one of inclusion checking.

Those results are to be compared with other existing systems. The Squirrel
system [4] learns correctly the query for Okra with 1.6 pages and 3.5 (average)
corrections, 1 page and 3 corrections for Bigbook and 1.9 pages and 4.8 correc-
tions for Google. Squirrel is basically the same algorithm as the one presented
here, with options typing and pruning, but with several other heuristics and
various optimizations. In [19], the (k,l)-contextual learning algorithm can infer
the query for Okra and Bigbook with respectively 2 and 2.3 corrections (number
of pages is not specified).

In the interactive setting, we can observe that there is a benchmark where
inclusion really helps. On Okra, we have not been able to obtain decent results
without this option. On the other hand, on Google and Bigbook, inclusion either
does not give important improvement or even may lower performance a bit.
Surprisingly, results of pruning with schema without using inclusion are a bit
better (although maybe not significantly) than with inclusion. This could tend
to indicate that, at least on observed benchmarks, the main use of the schema
is actually in the pruning part rather than in the inclusion test.

Acknowledgments. We are grateful to Grégoire Laurence for his help on exper-
iments. The work was supported by the Mostrare team-project of the INRIA
Lille-Nord Europe research center, the Laboratoire d’Informatique Fonda-
mentale de Lille (LIFL) UMR 8022 CNRS.

References

1. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of Concise DTDs from
XML data. In: VLDB, pp. 115–126 (2006)

2. Brüggemann-Klein, A.: Regular Expressions to Finite Automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

28 J. Champavère et al.

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous Regular Languages. Informa-
tion and Computation 142(2), 182–206 (1998)

4. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive Learning of Node Se-
lecting Tree Transducers. Machine Learning 66(1), 33–67 (2007)

5. Carme, J., Niehren, J., Tommasi, M.: Querying Unranked Trees with Stepwise Tree
Automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004)

6. Champavère, J., Gilleron, R., Lemay, A., Niehren, J.: Efficient Inclusion Checking
for Deterministic Tree Automata and DTDs. In: LATA (to appear, 2008)

7. Cohen, W.W., Hurst, M., Jensen, L.S.: A Flexible Learning System for Wrapping
Tables and Lists in HTML Documents. In: WWW, pp. 232–241 (2002)

8. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (revised)
(October 2007), http://www.grappa.univ-lille3.fr/tata

9. Coste, F., Fredouille, D., Kermovant, C., de la Higuera, C.: Introducing Domain
and Typing Bias in Automata Inference. In: Paliouras, G., Sakakibara, Y. (eds.)
ICGI 2004. LNCS (LNAI), vol. 3264, pp. 115–126. Springer, Heidelberg (2004)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power
of Logic Programming. ACM Computing Surveys 33(3), 374–425 (2001)

11. Finn, A., Kushmerick, N.: Multi-level Boundary Classification for Information Ex-
traction. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 111–122. Springer, Heidelberg (2004)

12. Gilleron, R., Marty, P., Tommasi, M., Torre, F.: Interactive Tuples Extraction from
Semi-structured Data. In: WI, pp. 997–1004 (2006)

13. Kosala, R.: Information Extraction by Tree Automata Inference. PhD thesis, K.
U. Leuven (July 2003)

14. Kristjansson, T.T., Culotta, A., Viola, P., McCallum, A.: Interactive Information
Extraction with Constrained Conditional Random Fields. In: AAAI (2004)

15. Lemay, A., Niehren, J., Gilleron, R.: Learning n-ary Node Selecting Tree Trans-
ducers from Completely Annotated Examples. In: Sakakibara, Y., Kobayashi, S.,
Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp.
253–267. Springer, Heidelberg (2006)

16. Lerman, K., Minton, S., Knoblock, C.: Wrapper Maintenance: a Machine Learning
Approach. Journal of Artificial Intelligence Research 18, 149–181 (2003)

17. Oncina, J., Garcia, P.: Inferring Regular Languages in Polynomial Update Time.
In: Pattern Recognition and Image Analysis, pp. 49–61 (1992)

18. Raeymaekers, S.: Information Extraction from Web Pages Based on Tree Automata
Induction. PhD thesis, K. U. Leuven (January 2008)

19. Raeymaekers, S., Bruynooghe, M., Van den Bussche, J.: Learning (k,l)-contextual
Tree Languages for Information Extraction. In: Gama, J., Camacho, R., Brazdil,
P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp.
305–316. Springer, Heidelberg (2005)

http://www.grappa.univ-lille3.fr/tata

A Polynomial Algorithm for the Inference of

Context Free Languages

Alexander Clark1, Rémi Eyraud2, and Amaury Habrard2

1 Department of Computer Science,
Royal Holloway, University of London

alexc@cs.rhul.ac.uk
2 Laboratoire d’Informatique Fondamentale,

University of Aix-Marseille, CNRS
{remi.eyraud,amaury.habrard}@lif.univ-mrs.fr

Abstract. We present a polynomial algorithm for the inductive infer-
ence of a large class of context free languages, that includes all regular
languages. The algorithm uses a representation which we call Binary
Feature Grammars based on a set of features, capable of representing
richly structured context free languages as well as some context sen-
sitive languages. More precisely, we focus on a particular case of this
representation where the features correspond to contexts appearing in
the language. Using the paradigm of positive data and a membership
oracle, we can establish that all context free languages that satisfy two
constraints on the context distributions can be identified in the limit by
this approach. The polynomial time algorithm we propose is based on a
generalisation of distributional learning and uses the lattice of context
occurrences. The formalism and the algorithm seem well suited to natural
language and in particular to the modelling of first language acquisition.

1 Introduction

For dealing with natural languages, there is a tension between using highly ex-
pressive formalisms and using formalisms that can be learned. For example,
Tree Adjoining Grammars or other mildly context sensitive formalisms are very
powerful but are difficult to handle from a machine learning standpoint. Many
learnability results have been obtained for regular languages or for small sub-
classes of context free languages [1,2,3], but these results are still much too
limited from a language theoretic point of view. In this paper, we propose to
bridge for the first time the gap between theoretically well founded grammat-
ical inference methods and the sorts of representations required for modelling
natural languages. We present a family of representations for highly structured
context free languages and show how they can be learned using a generalisation
of distributional learning.

The contributions of this paper are as follows: We present in Section 3 a rich
grammatical formalism, which we call Binary Feature Grammars (BFG). The
class of languages defined by BFGs contains all context free languages (CFL)

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 29–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 A. Clark, R. Eyraud, and A. Habrard

and some non context free languages. This makes the formalism a good candidate
for representing natural languages. We will then show how the features can be
defined in terms of the contexts of strings (Section 4), and how these grammars
using context features can be learned directly from samples. We then prove in
Section 5 our main result: that there is an algorithm that can efficiently identify
in the limit the class of CFLs with certain properties, the finite context property
and the finite kernel property, from positive data and a membership oracle.

2 Basic Definitions

We consider a finite alphabet Σ, and Σ∗ the free monoid generated by Σ. λ is the
empty string, and a language is a subset of Σ∗. We will write the concatenation
of u and v as uv, and similarly for sets of strings. u ∈ Σ∗ is a substring of v ∈ Σ∗

if there are strings l, r ∈ Σ∗ such that v = lur. Define Sub(u) to be the set of
nonempty substrings of u. For a set of strings S define Sub(S) =

⋃
u∈S Sub(u).

A context is an element of Σ∗×Σ∗. For a string u and a context f = (l, r) we
write f � u = lur; the insertion or wrapping operation. We extend this to sets
of strings and contexts in the natural way. Define Con(w) = {(l, r)|∃u ∈ Σ+ :
lur = w}; i.e. the set of all contexts of a word; similarly for a set of strings we
define: Con(S) =

⋃
w∈S Con(w).

The set of contexts, or context distribution, of a string u of a language L is,
CL(u) = {(l, r) ∈ Σ∗×Σ∗|lur ∈ L}. We will often drop the subscript where there
is no ambiguity. We define the syntactic congruence as u ≡L v iff CL(u) = CL(v).
The equivalence classes under this relation are the congruence classes of the
language.

We now recall the definition of a context free grammar.

Definition 1. A context free grammar (CFG) is a quadruple G = (Σ, V, P, S).
Σ is a finite alphabet of terminal symbols, V is a set of non terminals s.t. Σ∩V =
∅, P ⊆ V × (V ∪Σ)+ is a finite set of productions, S ∈ V is the start symbol.

We denote a production of P : N → α with N ∈ V and α ∈ (V ∪ Σ)+. We
will write uNv ⇒G uαv if there is a production N → α in G. ∗⇒G denotes the
reflexive transitive closure of ⇒G.

The language defined by a CFG G is L(G) = {w ∈ Σ∗|S ∗⇒G w}. In general
we will assume that λ is not a member of any language.

3 Binary Feature Grammars

Before the presentation of our formalism, we give some results about contexts
that will help give an intuition about the representation. A standard lemma is:

Lemma 1. For any language L and for any strings u, u′, v, v′ if C(u) = C(u′)
and C(v) = C(v′), then C(uv) = C(u′v′).

This establishes that the syntactic monoid Σ∗/ ≡L is well-defined; from a learn-
ability point of view this means that if we want to compute the contexts of a

A Polynomial Algorithm for the Inference of Context Free Languages 31

string w we can look for a split into two strings uv where u is congruent to u′

and v is congruent to v′; if we can do this and we know how u′ and v′ combine,
then we know that the contexts of uv will be exactly the contexts of u′v′. There
is also a slightly stronger result:

Lemma 2. For any language L and for any strings u, u′, v, v′ if C(u) ⊆ C(u′)
and C(v) ⊆ C(v′), then C(uv) ⊆ C(u′v′).

Proof. We write out the proof completely as the ideas will be used later on:
suppose we have u, v, u′, v′ that satisfy the conditions. Suppose (l, r) ∈ C(uv);
then (l, vr) ∈ C(u) and therefore (l, vr) ∈ C(u′). So (lu′, r) ∈ C(v), and therefore
(lu′, r) ∈ C(v′), so (l, r) ∈ C(u′v′). �

Looking at Lemma 2 we can also say that, if we have some finite set of strings
K, where we know the contexts, then:

Corollary 1
C(w) ⊇

⋃

u′,v′:
u′v′=w

⋃

u∈K:
C(u)⊆C(u′)

⋃

v∈K:
C(v)⊆C(v′)

C(uv)

This is the basis of our representation: a word w is characterised by its set of
contexts. We can compute the representation of w, from the representation of
its parts u′, v′, by looking at all of the other matching strings u and v where we
understand how they combine (with subset inclusion). Rather than representing
just the congruence classes, we will represent the lattice structure of the set of
contexts using subset inclusion; sometimes called Dobrušin-domination [4].

To express this basic idea of inference, we will define an appropriate formal-
ism: binary feature grammars. Initially, we will define it with no reference to
learnability. Note the resemblance between this formalism and GPSG [5], and
most importantly the class of Range Concatenation Grammars (RCG) [6].

Definition 2. We define a Binary Feature Grammar (BFG) G as a tuple
〈F, fs, P, PL, Σ〉. F is a finite set (of features), where we write C = 2F for the
power set of F defining the categories of the grammar, P ⊆ C×C×C is a finite
set of productions that we write x→ yz where x, y, z ∈ C and PL ⊆ C ×Σ is a
set of lexical rules, written x→ a and fs ∈ F is the sentence feature.

Normally PL will contain exactly one production for each letter in the alphabet.
A BFG G defines recursively a map fG from Σ∗ → C as follows:

fG(λ) = ∅ (1)

fG(w) =
⋃

(c→w)∈PL

c iff |w| = 1 (2)

fG(w) =
⋃

u,v:uv=w

⋃

x→yz∈P :
y⊆fG(u)∧
z⊆fG(v)

x iff |w| > 1. (3)

32 A. Clark, R. Eyraud, and A. Habrard

Note the relation between the third clause above and Corollary 1. Note also
that in general we will apply more than one production at each step of the
analysis. Given a BFG G and a string w it is possible to compute fG(w) in time
O(|F ||P ||w|3) using standard dynamic programming techniques.

Definition 3. The language defined by a BFG G is the set of all strings that
are assigned the sentence feature: L(G) = {u|fs ∈ fG(u)}.

While this formalism has some relationship to a context free grammar, and
some to a semi-Thue system (also known as a string rewriting system), it is not
formally identical to either of these. The only exact equivalence is to a restricted
subset of Range Concatenation Grammars; a very powerful formalism [6]. We
include the following relationship, but suggest that the reader unfamiliar with
RCGs proceeds to the discussion of the relationship with the more familiar class
of context free grammars.

Lemma 3. For every BFG G, there is a non-erasing positive range concatena-
tion grammar of arity one, in 2-var form that defines the same language.

Proof. Suppose G = 〈F, fs, P, PL〉. Define a RCG with a set of predicates equal
to F and the following clauses, and the two variables U, V . For each production
x→ yz in P , for each f ∈ x, where y = {g1, . . . gi}, z = {h1, . . . hj} add clauses

f(UV)→ g1(U), . . . gi(U), h1(V), . . . hj(V).

For each lexical production {f1 . . . fk} → a add clauses

fi(a)→ ε.

It is straightforward to verify that f(w) � ε iff f ∈ fG(w). �

3.1 BFGs and CFGs

Let G = 〈V, S, P, Σ〉 be a CFG in Chomsky Normal Form (CNF). We will now
construct an equivalent BFG grammar GBFG = 〈F, fs, P̂ , PL, Σ〉 where F = V ,
fs = S and P̂ = {{X} → {Y }{Z}|X → Y Z ∈ P}, and PL = {{X} → a|X →
a ∈ P}. We claim that the BFG GBFG defines the same language as G.

Lemma 4. Let G = 〈V, S, P, Σ〉 be a CFG in CNF. For every string w, N
∗⇒ w

if and only if N ∈ fGBFG(w).

Note that for this construction, computing the feature map fG is exactly equiv-
alent to computing the CKY parse table.

Lemma 5. Every CF language can be represented by a BFG.

Proof. Let G a CFG and GBFG the BFG described above. By Lemma 4, if
S ⇒∗ w then S = fS ∈ fGBFG(w) and vice versa; thus L(G) = L(GBFG). �

A Polynomial Algorithm for the Inference of Context Free Languages 33

BFG and Non context free languages. BFGs are more powerful than CFGs
in two respects. First, BFGs can compactly represent languages like the finite
language of all n! permutations of an n-letter alphabet, that have no concise
representation as a CFG [7]. Secondly, BFGs can represent some non-context free
languages. Let L = {anbncnd|n > 0}, which is clearly not context free. However
we can construct a BFG that recognises this language. Let G = 〈F, S, P, PL, Σ〉
a BFG s.t.:

– F = {A, A′, B, C, C′, AB, AB′, AAB, BC, BC′, BBC, D, S},
– P = {{S} → {AB′, BC′}{D}, {AB′} → {AB}{C′},
{AB} → {AAB}{B}, {AB} → {A}{B},
{AAB} → {A}{AB}, {BC′} → {A′}{BC},
{BC} → {BBC}{C}, {BC} → {B}{C}, {BBC} → {B}{BC},
{A′} → {A′}{A}, {C′} → {C′}{C}},

– PL = {{A, A′} → a, {B} → b, {C, C′} → c, {D} → d}.

To give an intuition on the construction of the grammar, we describe the con-
tribution of some features:

– AB defines the language {anbn|n > 0}
– AB′ defines the language {anbncm|m > 0, n > 0},
– AAB defines the language {aanbn|n > 0},
– BC′ defines the language {ambncn|m > 0, n > 0},
– BC defines the language {bncn|n > 0},
– BBC defines the language {bbncn|n > 0}.

3.2 Contextual Binary Feature Grammars

The class of BFGs is a powerful formalism: we are interested in a special case
where the features are contexts. Here we define this in the most straightforward
way though there are a number of obvious extensions.

Definition 4. A Contextual Binary Feature Grammar is a BFG where the fea-
ture set is a finite set of contexts (i.e. F ⊂ Σ∗ ×Σ∗) and the sentential feature
is (λ, λ).

By itself this is not a constraint but we are interested in cases where there is
a correspondence between the language theoretic interpretation of a context,
and the occurrence of that context as a feature in the grammar: in this case
the features will be observable which will lead to learnability. Clearly from an
inference point of view, at the minimum we want the sentence features to be
correct: if we are learning a target language L, then if (λ, λ) ∈ fG(u) iff u ∈ L
then L(G) = L which is what we want. But ideally we also want fG to be correct
for all features.

Definition 5. Given a finite set of contexts F = {(l1, r1), . . . , (ln, rn)} and a
language L we can define the context feature map FL : Σ∗ → 2F which is just
the map u �→ {(l, r) ∈ F |lur ∈ L} = CL(u) ∩ F .

34 A. Clark, R. Eyraud, and A. Habrard

Using this definition, we now need a correspondence between the language the-
oretic context feature map FL and the representation in our CBFG, fG.

Definition 6. A CBFG G is exact if for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example. Let L = {anbn|n > 0}. Let 〈F, (λ, λ), P, PL , Σ〉 a CBFG s.t.
F = {(λ, λ), (a, λ), (aab, λ), (λ, b), (λ, abb)}. The lexical productions in PL are:
{(λ, b), (λ, abb)} → a and {(a, λ), (aab, λ)} → b. Then, the productions in P are
defined by the set: {(λ, λ)} → {(λ, b)}{(aab, λ)}, {(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)}, {(a, λ)} → {(λ, λ)}{(aab, λ)}.

This defines an exact CBFG for L.
Clearly every exact CBFG is a BFG, but we conjecture that the class of

languages with an exact CBFG is strictly smaller than the class of languages
defined by general BFGs.

4 Inference

We have carefully defined the representation so that the inference algorithm will
be almost trivial. Given a set of strings, and a set of contexts, we can simply
write down a CBFG that will approximate a particular language.

Definition 7. Let F be the set of contexts, (λ, λ) ∈ F , K a finite set of strings,
PL = {FL(u) → u|u ∈ K ∧ |u| = 1} and P = {FL(uv) → FL(u)FL(v)|u, v,
uv ∈ K}. We define G0(K, L, F) as the CBFG 〈F, (λ, λ), P, PL, Σ〉.

We will call K here the basis for the language. The set of productions is defined
merely by observation: we take the set of all productions that we observe as
the concatenation of elements of the small set K. Often K will be closed under
substrings: i.e. Sub(K) = K. This grammar is a CBFG but in general it will not
be exact. For example, the language it defines might be empty, in which case
FL(u) = ∅ for all u, and yet it could define some features on the grammar.

Clearly the language defined depends on two factors: the set of strings K and
the set of features F . We now establish two important lemmas: first, that as K
increases the language defined by G0(K, L, F) will increase, and secondly that
as F increases the language will decrease.

Lemma 6. Suppose we have two CBFGs defined by G = G0(K, L, F) and G′ =
G0(K, L, F ′) where F ⊆ F ′. Then for all u, fG(u) ⊇ fG′(u) ∩ F .

Proof. Let G′ have a set of productions P ′, P ′
L, and G have a set of productions

P, PL. Clearly if x→ yz ∈ P ′ then x∩F → (y∩F)(z∩F) is in P by the definition
of G0, and likewise for PL, P ′

L. By induction on |u| we can show that any feature
in fG′(u)∩F will be in fG(u). The base case is trivial since F ′

L(a)∩F = FL(a);
if it is true for all strings up to length k, then if f ∈ fG′(u) ∩ F ; there must be
a production in F ′ with f on the head. By the inductive hypothesis, the right
hand sides of the corresponding production in P will be triggered, and so f must
be in fG(u). �

A Polynomial Algorithm for the Inference of Context Free Languages 35

Corollary 2. Suppose we have two CBFGs defined by G = G0(K, L, F) and
G′ = G0(K, L, F ′) where F ⊆ F ′; then L(G) ⊇ L(G′).

Conversely, we can show that as we increase K, the language and the map fG

will increase. This is addressed by the next lemma.

Lemma 7. Suppose we have two CBFGs defined by G = G0(K, L, F) and G′ =
G0(K ′, L, F) where K ⊆ K ′. Then for all u, fG0(K,L,F)(u) ⊆ fG0(K′,L,F)(u).

Proof. Clearly the sets of productions of G0(K, L, F) will be a subset of the set
of productions of G0(K ′, L, F), and so anything that can be derived by the first
can be derived by the second, again by induction on the length of the string. �

To establish learnability, we need to prove that for a target language L, if we
have a sufficiently large F then L(G0(K, L, F)) will be contained within L and
that if we have a sufficiently large K, then L(G0(K, L, F)) will contain L.

4.1 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for any K if we have enough features then the
language defined will be included within the target language L. We formalise
the idea of having enough features in the following way:

Definition 8. For a language L and a string u, a set of features F is fiducial
on u if for all v ∈ Σ∗, FL(u) ⊆ FL(v) implies CL(u) ⊆ CL(v).

Note that if F is fiducial on u and F ⊂ F ′ then F ′ is fiducial on u. Therefore
we can naturally extend this to sets of strings.

Definition 9. For a set of strings K, a set of features F is fiducial if for all
u ∈ K, F is fiducial on u.

Note the asymmetry between u and v in these definitions. If u and v are both in K
then having the same features means they are syntactically congruent. However
if two strings, neither of which are in K, have the same features this does not
mean they are necessarily congruent (for instance if FL(v) = FL(v′) = ∅). For
non finite state languages, the set of congruence classes will be infinite, and thus
we cannot have a finite fiducial set for the set of all strings in Sub(L), but we can
have a feature set that is correct for a finite subset of strings, or more generally
for an infinite set of strings, if they fall into a finite number of congruence classes.

We now define the finite context property.

Definition 10. A language L has the Finite Context Property (FCP) if every
string has a finite fiducial feature set.

Clearly if L has the FCP, then any finite set of substrings, K, has a finite fiducial
feature set which will be the union of the finite fiducial feature sets for each
element of K. If u 	∈ Sub(L) then any set of features is fiducial since CL(u) = ∅.

36 A. Clark, R. Eyraud, and A. Habrard

Not all CFL have the FCP: for instance L = {anb|n > 0}∪{ancm|n > m > 0},
does not have the FCP, since there is no finite fiducial feature set for the string
b; for any such set there will be some N such that cN will have all of those
features, but CL(cN) is not a superset of CL(b).

However, all regular languages have the FCP since they have a finite number
of syntactic congruence classes.

We can now state the most important lemma: this lemma links up the defini-
tion of the feature map in a BFG, with the fiducial set of features to show that
only correct features will be assigned to substrings by the grammar. It states that
the features assigned by the grammar will correspond to the language theoretic
interpretation of them as contexts.

Lemma 8. For any language L, given a set of strings K and a set of features F ,
let G = G0(K, L, F). If F is fiducial on K, then for all w ∈ Σ∗ fG(w) ⊆ FL(w).

Proof. We proceed by induction on length of the string. Base case: strings of
length 1. fG(w) will be the set of observed contexts of w, and since we have
observed these contexts, they must be in the language. Inductive step: let w
a string of length k. Take a feature f on fG(w); by definition this must come
from some production x → yz and a split u, v of w. The production must be
from some elements of K, u′, v′ and u′v′ such that y = FL(u′), z = FL(v′)
and x = FL(u′v′). If the production applies this means that FL(u′) = y ⊆
fG(u) ⊆ FL(u) (by inductive hypothesis), and similarly FL(v′) ⊆ FL(v). By
fiduciality of F this means that C(u′) ⊆ C(u) and C(v′) ⊆ C(v). So by Lemma 2
C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w). Therefore, since
f ∈ F and C(w) ∩ F = FL(w), f ∈ FL(w), and therefore fG(w) ⊆ FL(w). �

Corollary 3. If F is fiducial on K, and (λ, λ) ∈ F then L(G0(K, F, L)) ⊆ L.

Therefore for any finite set K from an FCP language, we can find a set of features
so that the language defined by those features on K is not too big.

4.2 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently large
K the language defined by G0 will include the target language.

Definition 11. A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set
of features F , L(G0(K, F, L)) ⊇ L.

To prove that a set is a kernel, it suffices to show that a fiducial set of features
will define the language; any smaller set of features define then a larger language.
In fact we can take the infinite set of all contexts and define productions based on
the congruence classes. If F is the set of all contexts then we have FL(u) = CL(u),
thus the productions will be exactly of the form C(uv)→ C(u)C(v).

This is a slight abuse of notation since feature sets are normally finite.

Lemma 9. Let F = Σ∗ ×Σ∗; if L(G0(K, L, F)) ⊇ L then K is a kernel.

A Polynomial Algorithm for the Inference of Context Free Languages 37

Proof. By monotonicity of F : any finite feature set will be a subset of F . �
Not all context free languages will have a finite kernel. For example L = {a+}∪
{anbm|n < m} does not have a finite kernel, but is clearly CF. Indeed, assume
that the a set K contains all strings of length less than or equal to k. Assume
w.l.o.g. that the fiducial set of features for K includes all features (λ, bi), where
i ≤ k + 1. Consider the rules of the form FL(ak) → FL(aj)FL(ak−j); it is easy
to see that no matter how large k is, the derived CBFG will undergenerate as
ak is not congruent to ak−1.

Definition 12. A context free grammar GT = 〈V, S, P, Σ〉 has the Finite Kernel
Property (FKP) iff for every non-terminal N ∈ V there is a finite set of strings
K(N) such that for all k ∈ K(N), N ∗⇒ k and where for every string w ∈ Σ∗

such that N
∗⇒ w there is a string k ∈ K(N) such that C(k) ⊆ C(w). A CFL

L has the FKP, if there is a grammar in CNF for it with the FKP. We also
assume that a ∈ K(N) if a ∈ Σ and N → a ∈ P .

Notice that all regular languages have the FKP since they have a finite number
of congruence classes.

Lemma 10. Any context free language with the FKP has a finite kernel.

Proof. Let GT = 〈V, S, P, Σ〉 be such a CNF CFG with the FKP. Define

K(GT) =
⋃

N∈V

(
K(N) ∪

⋃

X→MN∈P

K(M)K(N)

)
. (4)

We claim that K(GT) is a kernel. Assume that F = Σ∗ × Σ∗. Let G =
G0(K(GT), L(GT), F) = 〈F, (λ, λ), P, PL, Σ〉.

We will show, by induction on the length of derivation of w in GT , that for
all N, w if N

∗⇒ w then there is a k in K(N) such that fG(w) ⊇ C(k). If length
of derivation is 1, then this is true since |w| = 1 and thus w ∈ K(N): therefore
C(w) → w ∈ PL. Suppose it is true for all derivations of length less than j.
Take a derivation of length j; say N

∗⇒ w. There must be a production in GT

of the form N → PQ, where P ⇒∗ u and Q ⇒∗ v, and w = uv. By inductive
hypothesis; we have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By construction kukv ∈
K(GT) and then there will be a rule C(kukv) → C(ku)C(kv) in P . Therefore
fG(uv) ⊇ C(kukv). Since N

∗⇒ kukv there must be some kuv ∈ K(N) such that
C(kuv) ⊆ C(kukv). Therefore fG(w) ⊇ C(kukv) ⊇ C(kuv). �

Now we can see that if w ∈ L, then S
∗⇒ w, then there is a k ∈ K(S) such that

fG(w) ⊇ C(k) and S
∗⇒ k, therefore (λ, λ) ∈ fG(w) since (λ, λ) ∈ C(k), thus

w ∈ L(G) and therefore K is a kernel.

5 Algorithm

Before we present the algorithm, we will discuss the learning model that we
use. The class of languages that we will learn is suprafinite and thus we can-
not get a straight identification in the limit (IIL) result [8]. Ultimately we are

38 A. Clark, R. Eyraud, and A. Habrard

interested in a more realistic probabilistic learning paradigm, but for mathe-
matical convenience it is appropriate to establish the basic results in a symbolic
paradigm. The ultimate goal is to model natural languages, where negative data,
or equivalence queries are generally not available or are computationally impos-
sible. Accordingly, we have decided to use the model of positive data together
with membership queries: an oracle can tell the learner whether a string is in
the language or not [9]. The presented algorithm runs in time polynomial in the
size of the sample S: since the strings are of variable length, this size must be
the sum of the lengths of the strings in S,

∑
w∈S |w|.

We should note that this is not a strong enough result: [10] showed that any
algorithm can be made polynomial, by only processing a small prefix of the data.

It is hard to tighten the model sufficiently: the suggestion in [11] for a poly-
nomial characteristic set is inapplicable for representations, such as the ones in
this paper, that are powerful enough to define languages whose shortest strings
are exponentially long. We note that the situation is unsatisfactory, but we do
not intend to propose a solution in this paper. We merely point out that the
algorithm is genuinely polynomial, processes all of the data in the sample with-
out delaying tricks, is conservative and always produces a hypothesis that is
compatible with the observed data and answers from the oracle.

Before we present the algorithm we hope that it is intuitively obvious how the
approach will work. Figure 1 shows the relationship between K and F . When
we have a large enough K, we will be to the right of the vertical line; when we
have enough features for that K we will be above the diagonal line. Thus the
basis of the algorithm is to move to the right, until we have enough data, and
then to move up vertically, increasing the feature set until we have a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informally, D is
the list of all strings that have been seen so far: the algorithm examines the

K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Fig. 1. The relationship between K and F : The diagonal line is the line of fiduciality:
above this line means that F is fiducial on K. K0 is the (a) kernel for the language.

A Polynomial Algorithm for the Inference of Context Free Languages 39

Algorithm 1. BFG learning algorithm IIL

Data: A sequence of strings S = {w1, w2 . . . , }, membership oracle O
Result: A sequence of CBFGs G1, G2, . . .
K ← ∅ ; D ← ∅ ; F ← {(λ, λ)} ; G0 = G0(K, O, F) ;
for wi do

D ← D ∪ {wi}; T ← Con(D) � Sub(D) ;
if ∃w ∈ T such that w ∈ L(Gi−1) \ L then F ← Con(D) ;
if ∃w ∈ T such that w ∈ L \ L(Gi−1) then K ← Sub(D) ; F ← Con(D) ;
Output Gi = G0(K, O, F) ;

end

set of strings T = Con(D) � Sub(D). If the current hypothesis generates some
element of this set that is not in the language, then it is overgeneralising: we
need to add features. If on the other hand we undergeneralise, then we add all
of the substrings of D to K, and all possible contexts to F . In Algorithm 1,
G0(K,O, F) denotes the same construction as G0(K, L, F), except that we use
membership queries with the oracle O to compute FL for each element in K.

Theorem 1. Algorithm 1 runs in polynomial time in the size of the sample,
and makes a polynomial number of calls to the membership oracle.

Proof. The value of D will just be the set of observed strings; Sub(D) and
Con(D) are both polynomially bounded by the size of the sample, so the num-
ber of calls to the oracle is clearly polynomial. Computing the feature map is
polynomial in the length of the strings, and computing G0 is also polynomial,
since K and F will also be polynomially bounded. �

In the following, we consider the class of context free languages having the FCP
and the FKP, represented by CBFG. Kn denotes the value of K at the nth loop,
and similarly for F , D and T , which is the test set; called by [12] the “explosion”.

Clearly, if the grammar undergeneralises, when it encounters a string in L(G)\
L it will increase the kernel. The corresponding fact for overgeneralisation is
stated in this lemma:

Lemma 11. For a given positive presentation of a CFL with the FCP and the
FKP, if there is an m such that L ⊂ L(Gm) and L 	= L(Gm), then there is a
string w ∈ L(Gm) \ L such that there exists an n ≥ m such that w ∈ Tn.

Proof. Let w be a shortest string such that there is a feature f ∈ fGm(w)\FL(w).
We know that this set is non empty as there is some string with f = (λ, λ).

If w ∈ Sub(L), then let f ′ be some feature in CL(w), et n be the smallest
number such that f ′�w ∈ Dn. Tn must contain f�w, which satisfies the lemma.

Alternatively suppose w 	∈ Sub(L), then the feature f must come from some
rule acting upon uv = w, where u, v ∈ Sub(L) (since w is a shortest string, all
rules will have non empty features by construction of G). Let (u′v′)→ (u′)(v′) be
one of the triples of strings in Km that produced this rule. Since C(u′v′) 	⊂ C(uv)

40 A. Clark, R. Eyraud, and A. Habrard

by Lemma 2 we have C(u′) 	⊂ C(u), or C(v′) 	⊂ C(v). Suppose w.l.o.g. that it
is u, and consider a feature from f ′′ ∈ C(u′) \ C(u). Clearly f ′′ ∈ Con(L),
u ∈ Sub(L) and f ′′ � u is in L(Gm) \ L. Let n be the smallest index where we
have u ∈ Sub(Dn) and f ′′ ∈ Con(Dn); and then f ′′ � u satisfies the lemma. �

Lemma 12. For every positive presentation of a CFL L with the FCP and the
FKP, there is some n such that either L(Gn) = L or Kn is a kernel, and ∀N > n
KN = Kn.

Proof. First of all if Kn is a kernel, then L\L(Gn) = ∅, and so the the algorithm
will not add any more strings to the kernel. Let m be the smallest number such
that Sub(Dm) is a kernel. Recall that any superset of a kernel is a kernel, and
that all CFL with the FKP have a finite kernel (Lemma 10) so such an m must
exist. Consider the grammar Gm; there are three possibilities:

1. L(Gm) = L; in which case the grammar has converged.
2. L \L(Gm) 	= ∅, in which case, let w ∈ L \L(Gm), and let n be the first index
of the presentation such that wn = w; then Kn must contain Sub(Dm), since at
some point the kernel must have been expanded, and therefore Kn is a kernel.
3. L(Gm) \ L(G) 	= ∅, but L ⊂ L(Gm). Let F be a finite fiducial feature set
for Km, (we assume w.l.o.g. that all such F are in Con(Km)), and consider the
smallest m′ such that (F �Km) ∩ L ⊂ Dm′ . Consider Gm′ , either it is correct
or undergeneralises, in which case we apply the same argument we just used.
Otherwise, it strictly overgeneralises, in which case by Lemma 11, we will expand
the feature set to a set which by construction will be fiducial. At this point we
will either have enlarged K, in which case it will be a kernel, or we have not, in
which case we will either undergeneralise or be exact; if it undergeneralises, then
when we observe some incorrect string, the basis will be enlarged to a kernel. �

Lemma 13. For every positive presentation of a language L with the FCP and
the FKP, let n be the smallest number such that Kn is a kernel, if there is such
an n. There is some n2 ≥ n such that for all N > n2, FN = Fn2 and the
L(G0(KN , L, FN)) = L.

Proof. Let F be a finite fiducial feature set for Kn. Let n1 the smallest number
s.t. Dn1 ⊇ (F � Kn) ∩ L. Either Gn1 is correct, in which case it is done, or it
overgeneralises in which case by Lemma 11 there will be an n2 which triggers
the enlargement of the feature set. Since F ⊆ Con(Dn1), the feature set will be
fiducial. �

Theorem 2. Algorithm 1 identifies in the limit the class of context free lan-
guages with the finite context property and the finite kernel property.

Proof. Immediate by the preceding two lemmas. �

6 Discussion

First of all, we should establish how large the class of languages with the FCP
and the FKP is: it includes all finite languages and all regular languages, since the

A Polynomial Algorithm for the Inference of Context Free Languages 41

set of congruence classes is finite for finite state languages. It similarly includes
the context-free substitutable languages, [3], since every string in a substitutable
language belongs to only one syntactic congruence class.

As already stated it does not include all CFLs since not all CFLs have the
FCP and/or the FKP. However it does include languages like the Dyck languages
of arbitrary order, Lukacevic language and most other classic simple examples.

As a special case consider the equivalence relation between contexts f ∼=L f ′

iff ∀u we have that f �u ∈ L iff f ′�u ∈ L. The class of CFLs where the context
distribution of every string is a finite union of equivalence classes of contexts
clearly has both the FKP and the FCP.

Our approach to context free grammatical inference is based on a generalisa-
tion of distributional learning, following the work of [3]. The current state of the
art in context free inductive inference from flat examples only has been rather
limited. When learning from stochastic data or using a membership oracle, it
is possible to have powerful results, if we allow exponential computation (see
for example [13]). The main contribution of this paper is to show that efficient
learning is possible, with an appropriate representation. We currently rely on
using a membership oracle, but under suitable assumptions about distributions,
it should be possible to get a PAC-learning result for this class along the lines
of [14], placing some bounds on the number of features required.

Linguistics. The field of grammatical inference has close relations to the study
of language acquisition. Attempts to model natural languages with context free
grammars require additional machinery: natural language categories such as
noun phrases contain many overlapping subclasses with features such as case,
number, gender and similarly for verbal categories. Modelling this requires either
an exponential explosion of the number of non-terminals employed or a switch
to a richer set of features. In our formalism, motivated by normal CF inference,
we get this additional power for free. While we have implemented the algorithm
described here, and verified that it works in accordance with theory on small
artificial examples, there are a number of modifications that would need to be
made before it can be applied to real grammar induction on natural language.
First, the algorithm is very naive; in practice a more refined algorithm could
select both the kernel and the feature set in a more sophisticated way. Secondly,
considering features that correspond to individual contexts may be too narrow a
definition for natural language given the well known problems of data sparseness
and it will be necessary to switch to features corresponding to sets of contexts,
which may overlap. Thus for example one might have features that correspond to
sets of contexts of the form F (u, v) = {(lu, vr)|l, r ∈ Σ∗}. This would take this
approach closer to methods that have been shown to be effective in unsupervised
learning in NLP[15] where typically |u| = |v| = 1. In any event, we think such
modifications will be necessary for the acquisition of non context free languages.
Finally, at the moment the algorithm has polynomial update time, but in the
worst case, there are deterministic finite state automata such that the size of the
smallest kernel will be exponential in the number of states. There are, however,
natural algorithms for generalising the productions by removing features from

42 A. Clark, R. Eyraud, and A. Habrard

the right hand sides of the rules; this would have the effect of accelerating the
convergence of the algorithm, and removing the requirement for the FKP.

Acknowledgements

Part of the work described in this paper was carried out while Alex Clark was a
Professeur Invité at the University of Marseille.

References

1. Higuera, C.D.L., Oncina, J.: Inferring deterministic linear languages. In: Kivinen,
J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer,
Heidelberg (2002)

2. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298(1), 179–206 (2003)

3. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

4. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, N. Y (1967)
5. Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalised Phrase Structure Grammar.

Basil Blackwell, Malden (1985)
6. Boullier, P.: A Cubic Time Extension of Context-Free Grammars. Grammars 3,

111–131 (2000)
7. Asveld, P.: Generating all permutations by context-free grammars in Chomsky

normal form. Theoretical Computer Science 354(1), 118–130 (2006)
8. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–

474 (1967)
9. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

10. Pitt, L.: Inductive inference, dfa’s, and computational complexity. LNCS (LNAI),
pp. 8–14. Springer, Heidelberg (1989)

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27(2), 125–138 (1997)

12. Adriaans, P.: Learning shallow context-free languages under simple distributions.
Algebras, Diagrams and Decisions in Language, Logic and Computation 127 (2002)

13. Horning, J.J.: A Study of Grammatical Inference. PhD thesis, Stanford University,
Computer Science Department, California (1969)

14. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

15. Klein, D., Manning, C.: Corpus-based induction of syntactic structure: models of
dependency and constituency. In: Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, pp. 478–485 (2004)

Learning Languages from Bounded Resources:

The Case of the DFA and the Balls of Strings�

Colin de la Higuera, Jean-Christophe Janodet, and Frédéric Tantini

Universities of Lyon, 18 r. Pr. Lauras, F-42000 St-Etienne
{cdlh,janodet,frederic.tantini}@univ-st-etienne.fr

Abstract. Comparison of standard language learning paradigms (iden-
tification in the limit, query learning, Pac learning) has always been
a complex question. Moreover, when to the question of converging to
a target one adds computational constraints, the picture becomes even
less clear: how much do queries or negative examples help? Can we find
good algorithms that change their minds very little or that make very
few errors? In order to approach these problems we concentrate here on
two classes of languages, the topological balls of strings (for the edit dis-
tance) and the deterministic finite automata (Dfa), and (re-)visit the
different learning paradigms to sustain our claims.

Keywords: Polynomial learnability, deterministic finite automata, balls
of strings, edit distance.

1 Introduction

The study of the properties of the learning algorithms, particularly those in
grammatical inference, can be either empirical (based on experiments from data-
sets), or theoretical. In the latter, the goal is to study the capacity of the algo-
rithm to retrieve, exactly or approximately, a target language. Often, the goal
is also to measure the resources (time, amount of data) necessary to achieve
this task. Different paradigms have been proposed to take into account notions
of convergence from bounded resources, but none has really imposed itself, and
few comparison exists between these definitions.

In this paper, we visit standard criteria for polynomial identification and com-
pare them by considering two fundamentally different classes of languages: the
regular languages represented by deterministic finite automata, and the balls of
strings w.r.t. the edit distance [1]. These balls of strings are formed by choosing
one specific string, called the centre, and all its neighbours up to a given length
for the edit distance, called the radius.

From a practical standpoint, the balls of strings appear in a variety of settings:
in approximate string matching tasks, the goal is to find all close matches to some

� This work was supported in part by the IST Programme of the European Commu-
nity, under the Pascal Network of Excellence, IST-2006-216886. This publication
only reflects the authors’ views.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 43–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 C. de la Higuera, J.-C. Janodet, and F. Tantini

target string [2,3]; in noisy settings, garbled versions of an unidentified string are
given and the task is to recover the original string [4]; when using dictionaries, the
task can be described as that of finding the intersection between two languages,
the dictionary itself and a ball around the target string [5]; in the field of bioinfor-
matics, extracting valid models from large datasets of Dna or proteins can involve
looking for substrings at distance less than some given bound, and the set of these
approximate substrings can also be represented by balls [6].

When aiming to prove that a class of languages is learnable, there are typically
three different settings. The first one, identification in the limit [7], mimes the
cognitive process of a child that would acquire his native language by picking
up the sentences that are broadcasted in his environment. More formally, infor-
mation keeps on arriving about a target language and the Learner keeps making
new hypotheses. We say that convergence takes place if there is a moment when
the process is stationary and the hypothesis is correct.

The second one, query learning [8], looks like a game of riddles where the
Learner (pupil) can asks questions (queries) to an Oracle (teacher) about the
target language. The game ends when the Learner guesses the target. Of course,
the learning results strongly depends on the sort of queries that the Learner
is allowed to ask. Both previous paradigms are probably at least as interesting
for the negative results they induce as for the positive ones. Indeed, concerning
query learning, if a Learner cannot identify an unknown concept by choosing
and testing examples, how could he hope to succeed to learn from examples that
are imposed by an application?

The last paradigm, Pac learning (for Probably Approximately Correct) [9]
is intended to be a more pragmatic setting. It formalizes a situation where one
tries to build automatically a predictive model from the data. In this setting,
one assumes that there is a (unknown) distribution D over the strings of the
target language, which is used to sample learning and testing examples. Two
parameters are fixed: ε is related to the error of the model (i.e., the probability
of a string to be misclassified) and δ is related to the confidence one has in the
sampling. Ideally, a good Pac-Learner returns, with high confidence (> 1 − δ),
hypotheses that have small error rates (< ε).

The three settings are usually difficult to compare, in particular when com-
plexity issues are discussed. Some exceptions are the work by Angluin comparing
Pac-learning and using equivalence queries [10], the work by Pitt relating equiv-
alence queries and implicit prediction errors [11], comparisons between learning
with characteristic samples, simple Pac [12,13] and Mat in [14]. Other anal-
ysis of polynomial aspects of learning grammars, automata and languages can
be found in [11,15,16,17]. If the customary comparative approach is to intro-
duce a learning paradigm and survey a variety of classes of languages for this
paradigm, we choose here to fix the classes of languages and to proceed to a
horizontal analysis of their learnability by visiting the paradigms systematically.

Concerning the Dfa, we complete a long list of known results. Concerning
the balls of strings, our results are generally negative: identification in the limit
from examples and counter-examples is impossible in most cases, even from

Learning Languages from Bounded Ressources 45

membership and equivalence queries. Pac-learning is also impossible in polyno-
mial time, unless RP = NP . Yet, the errors are usually due to the counter-
examples. Hence, we show that it is sometimes (and surprisingly) easier to learn
from positive examples only than from positive and negative examples.

Section 2 is devoted to preliminary definitions. In Sections 3, 4 and 5, we
focus on the so-called good balls and on the Dfa, and we present the results
concerning Pac-learning, query learning and polynomial identification in the
limit, respectively. We conclude in Section 6.

2 Definitions

An alphabet Σ is a finite nonempty set of symbols called letters. In the sequel,
we suppose that |Σ| ≥ 2. A string w = a1 · · ·an is any finite sequence of letters.
We write λ for the empty string and |w| for the length of w. Let Σ� denote the
set of all strings over Σ. We say that u is a subsequence of v, denoted u � v,
ifdef u = a1 · · · an and there exist u0, · · · , un ∈ Σ� s.t. v = u0a1u1 · · ·anun. We
introduce the set lcs(u, v) of all longest common subsequences of u and v. We also
introduce the hierarchical order : u � v ifdef |u| < |v| or (|u| = |v| and u ≤lex v),
where ≤lex denotes the standard lexicographic order. A language is any subset
L ⊆ Σ�. Let IN denote the set of non negative integers. For all k ∈ IN, let Σ≤k

(respectively Σ>k) be the set of all strings of length at most k (respectively of
length more than k). We define A⊕B = (A \B) ∪ (B \A).

Grammatical inference aims at learning the languages of a fixed class L
represented by the grammars of a class G. L and G are related by a nam-
ing function L : G → L that is total (∀G ∈ G, L(G) ∈ L) and surjective
(∀L ∈ L, ∃G ∈ G s.t. L(G) = L). For any string w ∈ Σ� and language L ∈ L,
we shall write L |= w ifdef w ∈ L. Concerning the grammars, they may be
understood as any piece of information allowing some parser to recognize the
strings. For any string w ∈ Σ� and grammar G ∈ G, we shall write G � w if
the parser recognizes w. Basically, the parser must be sound and complete w.r.t.
the semantics: G � w ⇐⇒ L(G) |= w. In the following, we will mainly consider
learning paradigms subject to complexity constraints. In their definitions, ‖G‖
will denote the size of the grammar G (e.g., the number of states in the case of
Dfa). Moreover, given a set X of strings, we will write |X | for the cardinality
of X and ‖X‖ for the sum of the lengths of the strings in X .

The edit distance d(w, w′) is the minimum number of primitive edit operations
needed to transform w into w′ [1]. The operation is either (1) a deletion: w = uav
and w′ = uv , or (2) an insertion: w = uv and w′ = uav, or (3) a substitution:
w = uav and w′ = ubv, where u, v ∈ Σ�, a, b ∈ Σ and a 	= b. E.g., d(abaa, aab) =
2 since abaa −→ aaa −→ aab and the rewriting of abaa into aab cannot be achieved
with less than two steps. d(w, w′) can be computed in O (|w| · |w′|) time by
dynamic programming [18].

The edit distance is a metric, so we can introduce the balls over Σ. The ball
of centre o ∈ Σ� and radius r ∈ IN, denoted Br(o), is the set of all strings whose
distance is at most r from o: Br(o) = {w ∈ Σ� : d(o, w) ≤ r}. E.g., if Σ = {a, b},

46 C. de la Higuera, J.-C. Janodet, and F. Tantini

then B1(ba) = {a,b,aa,ba,bb,aba,baa,bab,bba} and Br(λ) = Σ≤r for all r ∈ IN.
We will write BALL(Σ) for the family of all the balls.

To the purpose of grammatical inference, we are going to represent any ball
Br(o) by the pair (o, r) that will play the role of a grammar. Indeed, its size
is |o| + log r (which corresponds to the number of bits necessary to encode the
grammar1). Moreover, the parser able to decide whether w ∈ Br(o) or not is
simple: (1) it computes d(o, w) and (2) it checks if this distance is ≤ r, that can
be achieved in time O (|o| · |w|+ log r). Finally, as |Σ| ≥ 2, we can show that
(o, r) is a unique thus canonical grammar of Br(o) [20]. In consequence, we shall
also denote by BALL(Σ) the class of grammars associated to the balls.

A ball Br(o) is called good ifdef r ≤ |o|. The advantage of using good balls is
that there is a polynomial relation between the size of the centre and the size of
the longest strings in the ball. We will write GB(Σ) for the class of all the good
balls (and that of the corresponding grammars).

A deterministic finite automaton (Dfa) is a 5-tuple A = 〈Σ, Q, q0, F, δ〉 s.t. Q
is a set of states, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states and
δ : Q ×Σ → Q is a transition function. Every Dfa can be completed with one
sink state s.t. δ is a total function. As usual, δ is extended to Σ�. The language
recognized by A is L(A) = {w ∈ Σ� : δ(q0, w) ∈ F}. The size of A is |Q|. We will
write DFA(Σ) for the class of all Dfa over the alphabet Σ.

The inference of Dfa has been intensively studied for forty years at least
[7,11,21]. On the other hand, the learnability of the balls is a recent issue [20]
motivated by the problem of identifying languages from noisy data. However,
our approach raises a preliminary question: if any ball whose grammar would
have size n could be recognized by a Dfa with p(n) states (for some polynomial
p()), then one could deduce learnability results on the former from (known)
learnability results on the latter. Yet it is generally believed (albeit still an open
question) that the transformation of a ball into a Dfa is not polynomial [2].

3 PAC-Learnability

The Pac paradigm [9] has been widely used in machine learning. It aims at
building, with high confidence, good approximations of an unknown concept.

Definition 1 (ε-good hypothesis). Let G be the target grammar and H be a
hypothesis grammar. Let D be a distribution over Σ� and ε > 0. We say that H
is an ε-good hypothesis w.r.t. G ifdef PrD(x ∈ L(G) ⊕ L(H)) < ε.

The Pac-learnability of grammars from strings of unbounded size has always
been tricky [22,16,23]. Indeed, with the standard definition, a Pac-Learner can
ask an Oracle to return a sample randomly drawn according to the distribu-
tion D. However, in the case of strings, there is always the risk (albeit small) to
sample a string too long to account for in polynomial time. In order to avoid this

1 Notice that |o| + r is not a correct measure of the size as implicitly it would mean
encoding the radius in unary, something unreasonable [19].

Learning Languages from Bounded Ressources 47

problem, we will sample from a distribution restricted to strings shorter than a
specific value given by the following lemma:

Lemma 1. Let D be a distribution over Σ�. Then ∀ε, δ > 0, with probability at
least 1 − δ, if one draws a sample X of at least 1

ε ln 1
δ strings following D, then

the probability of any new string x to be longer than all the strings of X is less
than ε. Formally, let μX = max{|y| : y ∈ X}, then Prx∼D(|x| > μX) < ε.

Proof. Let � be the smallest integer s.t. PrD(Σ>�) < ε. A sufficient condition for
PrD(|x| > μX) < ε is that we take a sample X large enough to be nearly sure
(with probability > 1 − δ) to have one string ≥ �. Basically, the probability of
drawing n strings in X of length < � is ≤ (1− ε)n. So the probability of getting
at least one string of length ≥ � is > 1− (1 − ε)n. In order to build X , we thus
need 1− (1 − ε)n > 1 − δ, that is to say, (1 − ε)n < δ. As (1 − ε)n ≤ e−nε, it is
sufficient to take n ≥ 1

ε ln 1
δ to reach a convenient value for μX . �

An algorithm is now asked to learn a grammar given a confidence parameter δ
and an error parameter ε. The algorithm must also be given an upper bound
n on the size of the target grammar and an upper bound m on the length
of the examples it is going to get (perhaps computed using Lemma 1). The
algorithm can query an Oracle for an example randomly drawn according to the
distribution D. The query of an example or a counter-example will be denoted
Ex(). When the Oracle is only queried for a positive example, we will write
Pos-Ex(). And when the Oracle is only queried for string of length ≤ m, we
will write Ex(m) and Pos-Ex(m) respectively. Formally, the Oracle will then
return a string drawn from D, or D(L(G)), or D(Σ≤m), or D(L(G) ∩ Σ≤m),
respectively, where D(L) is the restriction of D to the strings of L: PrD(L)(x) =
PrD(x)/PrD(L) if x ∈ L, 0 otherwise. PrD(L)(x) is not defined if L = ∅.

Definition 2 (Polynomial Pac-learnability). Let G be a class of grammars.
G is Pac-learnable ifdef there exists an algorithm A s.t. ∀ε, δ > 0, for any dis-
tribution D over Σ�, ∀n ∈ N, ∀G ∈ G of size ≤ n, for any upper bound m ∈ N

on the size of the examples, if A has access to Ex(), ε, δ, n and m, then with
probability > 1 − δ, A returns an ε-good hypothesis w.r.t. G. If A runs in time
polynomial in 1

ε ,
1
δ , n and m, we say that G is polynomiallly Pac-learnable.

Typical techniques proving non Pac-learnability depend on complexity assump-
tions [24]. Let us recall that RP (Randomised Polynomial Time) is the com-
plexity class of decision problems for which a probabilistic Turing machine exists
which (1) runs in time polynomial in the input size, (2) on a negative instance,
always returns No and (3) on a positive instance, returns Yes with probability
> 1

2 (otherwise, it returns No). The algorithm is randomised: it is allowed to
flip a random coin while it is running. The algorithm does not make any error
on negative instances, and it is important to remark that on positive instances,
since the error is < 1

2 , by repeating the run of the algorithm as many times as
necessary, the actual error can be brought to be as small as one wants. We will
use the strong belief and assumption that RP 	= NP [19].

48 C. de la Higuera, J.-C. Janodet, and F. Tantini

We are going to show that the good balls are not polynomially Pac-learnable.
The proof follows the classical lines for such results: we first prove that the asso-
ciated consistency problem is NP-hard, through reductions from a well known
NP-complete problem (Longest Common Subsequence). Then it follows that
if a polynomial Pac-learning algorithm for balls existed, this algorithm would
provide us with a proof that this NP-complete problem would also be in RP .

Lemma 2. The following problems are NP-complete:

1. Longest Common Subsequence (Lcs): Given n strings x1, . . . , xn and
an integer k, does there exist a string w which is a subsequence of each xi

and is of length k?
2. LongestCommonSubsequenceofStringsof aGivenLength (Lcssgl):

Given n strings x1, . . . , xn all of length 2k, does there exist a string w which is
a subsequence of each xi and is of length k?

3. Consistent ball (Cb): Given two sets X+ and X− of strings, does there
exist a good ball containing X+ and which does not intersect X−?

Proof. (1) See [25]. (2) See [26, page 42], Problem Lcs0. (3) We use a reduction
of Problem Lcssgl. We take the strings of length 2k, and put these with string
λ into the set X+. We build X− by taking each string of length 2k and inserting
every possible symbol once only (hence constructing at most n(2k+1)|Σ| strings
of size 2k +1). It follows that a ball that contains X+ but no element of X− has
necessarily a centre of length k and a radius of k (since we focus on good balls
only). The centre is then a subsequence of all the strings of length 2k that were
given. Conversely, if a ball is built using a subsequence of length k as centre,
this ball is of radius k, contains also λ, and because of the radius, contains no
element of X−. Finally the problem is in NP , since given a centre o, it is easy
to check if maxx∈X+ d(o, x) < minx∈X− d(o, x). �

Theorem 1. Unless RP = NP, GB(Σ) is not polynomially Pac-learnable.

Proof. Suppose that GB(Σ) is polynomially Pac-learnable with A and take an
instance 〈X+, X−〉 of Problem Cb. We write h = |X+| + |X−| and define over
Σ� the distribution Pr(x) = 1

h if x ∈ X+ ∪ X−, 0 if not. Let ε = 1
h+1 , δ < 1

2 ,
m = n = max{|w| : w ∈ X+}. Let Br(o) be the ball returned by A(ε, δ, n, m)
and test if (X+ ⊆ Br(o) and X−∩Br(o) = ∅). If there is no consistent ball, then
Br(o) is inconsistent with the data, so the test is false. If there is a consistent
ball, then Br(o) is ε-good, with ε < 1

h . So, with probability at least 1 − δ > 1
2 ,

there is no error at all and the test is true. This procedure runs in polynomial
time in 1

ε , 1
δ , n and m. So if the good balls were Pac-learnable, there would be

a randomized algorithm for the NP-complete Cb Problem (by Lemma 2). �

Concerning the Pac-learnability of the Dfa, a lot of studies have been done
[11,16,23,24] The associated consistency problem is hard [27] and an efficient
learning algorithm could be used to invert the Rsa encryption function [16]:

Theorem 2 ([16]). DFA(Σ) is not polynomially Pac-learnable.

Learning Languages from Bounded Ressources 49

In certain cases, it may even be possible to Pac-learn from positive examples
only. In this setting, during the learning phase, the examples are sampled follow-
ing Pos-Ex() whereas during the testing phase, the sampling is done following
Ex(), but in both cases the distribution is identical. Again, we can sample using
Pos-Ex(m), where m is obtained by using Lemma 1 and little additional cost.
For any class L of languages, we get:

Lemma 3. If L contains 2 languages L1 and L2 s.t. L1 ∩L2 	= ∅, L1 	⊂ L2 and
L2 	⊂ L1, then L is not polynomially Pac-learnable from positive examples only.

Proof. Let w1 ∈ L1 − L2, w2 ∈ L2 − L1 and w3 ∈ L1 ∩ L2. Consider the
distribution D1 s.t. PrD1(w1) = PrD1(w3) = 1

2 and the distribution D2 s.t.
PrD2(w2) = PrD2(w3) = 1

2 . Basically, if one learns either L1 from positive ex-
amples drawn according to D2, or L2 from positive examples drawn according
to D1, only the string w3 will be used. However, the error will be ≥ 1

2 . �

Theorem 3. (1) GB(Σ) and (2) DFA(Σ) are not polynomially Pac-learnable
from positive examples only.

Proof. An immediate consequence of Lemma 3 with L1 = B1(a), L2 = B1(b),
w1 = aa, w2 = bb and w3 = ab. �

4 Query Learning

Learning from queries involves the Learner (he) being able to interrogate the
Oracle (she) using queries from a given set [8]. The goal of the Learner is to
identify a grammar of an unknown language L. The Oracle knows L and properly
answers to the queries (i.e., she does not lie). Below, we will use three kinds of
queries. With the Membership Queries (Mq), the Learner submits a string w to
the Oracle and she answers Yes if w ∈ L, No otherwise. With the Equivalence
Queries (Eq), he submits (the grammar of) a language K and she answers Yes if
K = L, and a string belonging to K⊕L otherwise. With the Correction Queries
based on the Edit Distance (Cq

Edit
), he submits a string w and she answers Yes

if w ∈ L, and any correction z ∈ L at minimum edit distance of w otherwise.

Definition 3. A class G is polynomially identifiable from queries ifdef there is
an algorithm A able to identify every G ∈ G s.t. at any call of a query, the total
number of queries and of time used up to that point by A is polynomial both in
‖G‖ and in the size of the information presented up to that point by the Oracle.

In the case of good balls, we have shown:

Theorem 4 ([20]). (1) GB(Σ) is not polynomially identifiable from Mq and
Eq. (2) GB(Σ) is polynomially identifiable from Cq

Edit
.

Notice however that if the Learner is given one string from a good ball, then he
can learn using a polynomial number of Mq only.

50 C. de la Higuera, J.-C. Janodet, and F. Tantini

Concerning the class of the Dfa, we get:

Theorem 5. (1) DFA(Σ) is polynomially identifiable from Mq and Eq [21],
but is not from (2) Mq only [8], nor (3) Eq only [10], nor (4) Cq

Edit
only.

Proof. (4) Let Aw denote the Dfa that recognizes Σ� \{w}. Let n ∈ N and
DFA≤n = {Aw : w ∈ Σ≤n}. Following [10], we describe an Adversary that
maintains a set X of all the possible Dfa. At the beginning, X = DFA≤n.
Each time the correction of any string w is demanded, the Adversary answers
Yes and eliminates only one Dfa of X :Aw. As there is Ω(|Σ|n) Dfa in DFA≤n,
identifying one of them will require Ω(|Σ|n) queries in the worst case. �

5 Polynomial Identification in the Limit

Identification in the limit [7] is standard: a Learner receives an infinite sequence
of information (presentation) that should help him to find the grammar G ∈ G of
an unkown target language L ∈ L. The set of admissible presentations is denoted
by Pres, each presentation being a function N→ X where X is any set. Given
f ∈ Pres, we will write fm for the m + 1 first elements of f, and f(n) for its nth

element. Below, we will consider two sorts of presentations. When Pres=Text,
all the strings in L are presented: f(N) = L(G). When Pres=Informant, a
presentation is of labelled pairs (w, l) where (w ∈ L ⇒ l = +) and (w 	∈ L ⇒
l = −): f(N) = L(G)×{+}∪L(G)×{−}; we will write Pres = Presentation

for all the results that concern both Text and Informant.

Definition 4. We say that G is identifiable in the limit from Pres ifdef there
exists an algorithm A s.t. for all G ∈ G and for any presentation f of L(G),
there exists a rank n s.t. for all m ≥ n, A(fm) = A(fn) and L(A(fn)) = L(G).

This definition yields a number of learnability results. However, the absence
of efficiency constraints often leads to unusable algorithms. Firstly, it seems
reasonable that the amount of time an algorithm has to learn should be bounded:

Definition 5 (Polynomial Update Time). An algorithm A is said to have
polynomial update time ifdef there is a polynomial p() s.t., for every presentation
f and every integer n, computing A(fn) requires O(p(‖fn‖)) time.

It is known that polynomial update time is not sufficient [11]: a Learner could
receive an exponential number of examples without doing anything but wait,
and then use the amount of time he saved to solve any NP-hard problem. . .
Polynomiality should also concern the minimum amount of data that any Learner
requires:

Definition 6 (Polynomial Characteristic Sample). We say that G admits
polynomial characteristic samples ifdef there exist an algorithm A and a polyno-
mial p() s.t. for all G ∈ G, there exists Cs ⊆ X s.t. (1) ‖Cs‖ ≤ p(‖G‖), (2)
L(A(Cs)) = L(G) and (3) for all f ∈ Pres, for all n ≥ 0, if Cs ⊆ fn then
A(fn) = A(Cs). Such a set Cs is called a characteristic sample of G for A. If A
exists, we say that G is identifiable in the limit in Cs polynomial time.

Learning Languages from Bounded Ressources 51

Lastly, polynomiality may concern either the number of implicit prediction er-
rors [11] or the number of mind changes (Mc) [28] done by the learner:

Definition 7 (Implicit Prediction Errors). We say that an algorithm A
makes an implicit prediction error (Ipe) at time n of a presentation f ifdef
A(fn−1) 	� f(n). A is called consistent ifdef it changes its mind each time a
prediction error is detected with the new presented element.

A identifies G in the limit in Ipe polynomial time ifdef (1) A identifies G
in the limit, (2) A has polynomial update time and (3) A makes a polynomial
number of implicit prediction errors: let #Ipe(f) = |{k ∈ N : A(fk) 	� f(k + 1)}|;
there exists a polynomial p() s.t. for each G ∈ G and each presentation f of
L(G), #Ipe(f) ≤ p(‖G‖).

Definition 8 (Mind Changes). We say that an algorithm A changes its mind
(Mc) at time n of presentation f ifdef A(fn) 	= A(fn−1). A is called conservative
ifdef it never changes its mind when the current hypothesis is consistent with the
new presented element.

A identifies G in the limit in Mc polynomial time ifdef (1) A identifies G
in the limit, (2) A has polynomial update time and (3) A makes a polynomial
number of mind changes: Let #Mc(f) = |{k ∈ N : A(fk) 	= A(fk+1)}|; there
exists a polynomial p() s.t. for each G ∈ G and each presentation f of L(G),
#Mc(f) ≤ p(‖G‖).

Concerning both last notions, one can notice that if an algorithm A is consistent
then #Ipe(f) ≤ #Mc(f) for every presentation f. Likewise, if A is conservative
then #Mc(f) ≤ #Ipe(f). So we deduce the following lemma:

Lemma 4. If A identifies the class G in Mc polynomial time and is consistent,
then A identifies G in Ipe polynomial time. Conversely, if A identifies G in Ipe

polynomial time and is conservative, then A identifies G in Mc polynomial time.

5.1 Polynomial Identification from Text

The aim of this section is to show the following result:

Theorem 6. GB(Σ) is identifiable in the limit from Text in (1) Mc polyno-
mial time, (2) Ipe polynomial time and (3) Cs polynomial time.

Notice that as the Dfa recognize a superfinite class of languages (i.e., containing
all the finite languages and at least one infinite language), it is impossible to
identify the class in the limit from positive examples only:

Theorem 7 ([7]). DFA(Σ) is not identifiable in the limit from Text.

In order to prove Theo. 6, we will need to build the minimum consistent good
ball containing a set X = {x1, . . . , xn} of strings (sample). This problem is NP-
hard but some instances are efficiently solvable. Let Xmax (resp. Xmin) denote
the set of all longest (resp. shortest) strings of X . A minimality fingerprint is a
subset {u, v, w} ⊆ X s.t. (1) u, v ∈ Xmax, (2) w ∈ Xmin, (3) |u| − |w| = 2r for

52 C. de la Higuera, J.-C. Janodet, and F. Tantini

some r ∈ N, (4) u and v have only one longest common subsequence, that is,
lcs(u, v) = {o} for some o ∈ Σ�, (5) |o| = |u| − r and (6) X ⊆ Br(o).

Checking if X contains a minimality fingerprint, and computing o and r can
be achieved in polynomial time (in ‖X‖). Indeed, the only critical point is that
the cardinal of lcs(u, v) may be > 1.442n [29] (where n = |u| = |v|); nevertheless,
a data structure such as the Lcs-graph [30] allows one to conclude polynomially.
Moreover, the minimality fingerprints are meaningful. Indeed, only the properties
of the edit distance are needed to show that if X contains a minimality fingerprint
{u, v, w} for the ball Br(o) and X ⊆ Br′(o′), then either r′ > r, or (r′ = r and
o′ = o). In other words, Br(o) is the smallest ball containing X w.r.t. the radius.

We can now consider Algo. 1. This algorithm does identify GB(Σ) in the limit
since if Br(o) denotes the target ball, then at some point, the algorithm will
meet the strings u = aro, v = bro, and some w of length |o| − r that constitute a
minimality fingerprint for Br(o). Moreover, it obviously has a polynomial update
time. Finally, it makes a polynomial number of Mc. Indeed, it only changes its
hypothesis in favour of a valid ball if the ball has a larger radius than all the valid
balls it has ever conjecture, that may happen ≤ r times. And it only changes its
hypothesis in favour of a junk ball if either it must abandon a valid ball, or if the
actual junk ball does not contain all the examples, that may happen ≤ r + 2r
times. So the total number of Mc is ≤ 4r. So Claim (1) holds.

Concerning Claim (2), note that Algo. 1 is consistent (thanks to the use of the
junk balls), thus Claim (2) holds by Lemma 4. Lastly, every minimality fingerprint
is a characteristic set that makes Algo. 1 converge, so Claim (3) holds.

Algorithm 1. Identification of good balls from text.
Data: A text f = {x1, x2, . . .}
read(x1); c ← x1; output (x1, 0);
while true do

read(xi);
if fi is a minimality fingerprint for Br(o) then

output (o, r) (* valid ball *)
else

if c �∈ fmax
i then c ← any string in fmax

i ;
output (c, |c|) (* junk ball *)

end
end

5.2 Polynomial Identification from Informant

Theorem 8. (1) GB(Σ) is not identifiable from Informant in Ipe polynomial
time, but is identifiable in (2) Mc polynomial time and (3) Cs polynomial time.

Proof. (1) Similar proof as that of [11] for the Dfa: if GB(Σ) was identifiable
in Ipe polynomial time from Informant, then GB(Σ) would be polynomially
identifiable from Eq, that contradicts Theo. 4. (2) As the hypotheses are not

Learning Languages from Bounded Ressources 53

necessarily consistent with the data, one can use Algo. 1, ignoring the negative
examples. (3) Same characteristic sets as those of Theo. 6, Claim (3). �

Theorem 9. (1) DFA(Σ) is not identifiable from Informant in Ipe poly-
nomial time [11], but is identifiable in (2) Mc polynomial time and (3) Cs

polynomial time [31,32].

Let us prove Claim (2) with minimality fingerprints again. We say that X =
〈X+, X−〉 contains a minimality fingerprint ifdef the following conditions hold:
(1) let A = 〈Σ, Q, q0, F, δ〉 be the Dfa computed by Rpni [32] on X possibly
completed with one hole state; (2) for all q ∈ Q, the smallest string wq w.r.t. the
hierarchical order � s.t. δ(q0, wq) = q belongs to either X+ if q ∈ F , or X− if
q /∈ F ; (3) for all q ∈ Q, a ∈ Σ, wqa belongs to either X+ if δ(q, a) ∈ F , or X− if
δ(q, a) /∈ F ; (4) for all p, q, r ∈ Q, a ∈ Σ s.t. δ(p, a) = q 	= r, there exists f ∈ Σ�

s.t. either (wpaf ∈ X+, wrf ∈ X−), or (wpaf ∈ X−, wrf ∈ X+).
Notice that not all the Dfa have minimality fingerprints. Moreover, every

fingerprint contains a characteristic sample of A for Rpni [32], plus new infor-
mation: actually, all the states and the transitions of A are determined by the
fingerprint, so any other complete Dfa A′ compatible with X necessarily has
more states than A. A is thus the unique complete minimal Dfa compatible
with X . Lastly, checking if X contains a minimality fingerprint, and computing
A is achievable in polynomial time (in ‖X‖).

We can now define a Learner A. At each step, A tests if fi contains a minimality
fingerprint. If yes, A changes its mind in favour of the Dfa Ai returned by Rpni

on fi. If no, A returns the previous hypothesis (that may not be consistent).
Clearly, the number of states of Ai strictly increases (thanks to the fingerprints).
As this number is bounded by the number of states of the target Dfa A, we get
#Mc(f) ≤ ‖A‖. Moreover, at some point, a fingerprint (thus a characteritic set
of A) will appear in the data, and then A will converge.

6 Conclusion

In this paper, we have performed a systematic study of two classes of languages
whose definitions is based on very different principles. Table 1 sumarize our
results. Those marked with a † were proved in this article.

Clearly, the goal of this work was not to show that any paradigm is equivalent
or better than any other: comparing two classes is not sufficient. Nevertheless,
we have shown that several hints were wrong. For instance, it is wrong to think
that the identification in Mc polynomial time implies the identification in Ipe

polynomial time. It is also wrong to think that it is easier to learn from positive
and negative examples (Informant) than from positive examples only (Text)
(because in some paradigm, misclassifying negative examples is expensive in
terms of complexity).

In Table 1, we also show (without proof, due to the lack of space), the results
that concern all the balls including those that are not good. Let us recall that a
ball Br(o) is good ifdef r ≤ |o|, so for a bad ball, it is possible that r " 2|o|. In

54 C. de la Higuera, J.-C. Janodet, and F. Tantini

Table 1. A synthetic view of the results presented in this paper. † marks the theorems
proved above. Due to the lack of space, we just claim the results concerning the general
balls of BALL(Σ).

Criterion GB(Σ) DFA(Σ) BALL(Σ)

Pac Inform. No
† Theo. 1 No Theo. 2 No

Pac Text No
† Theo. 3 (1) No

† Theo. 3 (2) No

Ipe Inform. No
† Theo. 8 (1) No Theo. 9 (1) No

Ipe Text Yes
† Theo. 6 (2) No Theo. 7 No

Mc Inform. Yes
† Theo. 8 (2) Yes

† Theo. 9 (2) Yes

Mc Text Yes
† Theo. 6 (1) No Theo. 7 No

Cs Inform. Yes
† Theo. 8 (3) Yes Theo. 9 (3) No

Cs Text Yes
† Theo. 6 (3) No Theo. 7 No

Mq (or Eq) No Theo. 4 (1) No Theo. 5 (2,3) No

Mq and Eq No Theo. 4 (1) Yes Theo. 5 (1) No

Cq
Edit

Yes Theo. 4 (2) No Theo. 5 (4) No

this case, the longest strings of Br(o), whose length is |o|+ r, which delimitate
the upper boarder of Br(o), are not polynomially related to the size of the ball
(|o|+log r). So the picture is the same as that of the non deterministic automata
for which one has to consider strings of exponential length in order to distinguish
two states [17,33]. Hence, studying the learnability of all the balls is a way to
explore the limits of the paradigms, reached when an algorithm cannot get round
of exponential strings anymore.

Finally, one can note that the good balls are not learnable from a polynomial
number of Mq and Eq, that is the case of the Dfa. As the balls are finite
languages, they are recognizable with Dfa. Thus a subclass of a learnable class
could be non learnable! We conjecture, following [5,2], that this is because the
size of the minimal Dfa recognizing a ball is exponential in the size of the ball.

References

1. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

2. Navarro, G.: A guided tour to approximate string matching. ACM computing sur-
veys 33(1), 31–88 (2001)

3. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Survey 33(3), 273–321 (2001)

4. Kohonen, T.: Median strings. Pattern Recognition Letters 3, 309–313 (1985)
5. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int.

Journal on Document Analysis and Recognition 5(1), 67–85 (2002)
6. Sagot, M.F., Wakabayashi, Y.: Pattern inference under many guises. In: Recent

Advances in Algorithms and Combinatorics, pp. 245–287. Springer, Heidelberg
(2003)

Learning Languages from Bounded Ressources 55

7. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

8. Angluin, D.: Queries and concept learning. Machine Learning Journal 2, 319–342
(1987)

9. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

10. Angluin, D.: Negative results for equivalence queries. Machine Learning Journal 5,
121–150 (1990)

11. Pitt, L.: Inductive inference, DFA’s, and computational complexity. In: Jantke,
K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)

12. Li, M., Vitanyi, P.: Learning simple concepts under simple distributions. Siam
Journal of Computing 20, 911–935 (1991)

13. Denis, F.: Learning regular languages from simple positive examples. Machine
Learning Journal 44(1), 37–66 (2001)

14. Parekh, R.J., Honavar, V.: On the relationship between models for learning in
helpful environments. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891,
pp. 207–220. Springer, Heidelberg (2000)

15. Haussler, D., Kearns, M.J., Littlestone, N., Warmuth, M.K.: Equivalence of models
for polynomial learnability. Information and Computation 95(2), 129–161 (1991)

16. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. In: 21st ACM Symposium on Theory of Computing (STOC
1989), pp. 433–444 (1989)

17. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning Journal 27, 125–138 (1997)

18. Wagner, R., Fisher, M.: The string-to-string correction problem. Journal of the
ACM 21, 168–178 (1974)

19. Papadimitriou, C.M.: Computational Complexity. Addison Wesley, New York
(1994)

20. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of
strings with correction queries. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 18–29. Springer, Heidelberg (2007)

21. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Control 39, 337–350 (1987)

22. Warmuth, M.: Towards representation independence in PAC-learning. In: Jantke,
K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 78–103. Springer, Heidelberg (1989)

23. Kearns, M., Vazirani, U.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

24. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. Jour-
nal of the ACM 35(4), 965–984 (1988)

25. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25, 322–336 (1977)

26. de la Higuera, C., Casacuberta, F.: Topology of strings: Median string is NP-
complete. Theoretical Computer Science 230, 39–48 (2000)

27. Pitt, L., Warmuth, M.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. Journal of the ACM 40(1), 95–142 (1993)

28. Angluin, D., Smith, C.: Inductive inference: theory and methods. ACM computing
surveys 15(3), 237–269 (1983)

29. Greenberg, R.I.: Bounds on the number of longest common subsequences. Technical
report, Loyola University (2003), http://arXiv.org/abs/cs/0301030v2

http://arXiv.org/abs/cs/0301030v2

56 C. de la Higuera, J.-C. Janodet, and F. Tantini

30. Greenberg, R.I.: Fast and simple computation of all longest common subsequences.
Technical report, Loyola University (2002),
http://arXiv.org/abs/cs.DS/0211001

31. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37, 302–320 (1978)

32. Oncina, J., Garćıa, P.: Identifying regular languages in polynomial time. In: Ad-
vances in Structural and Syntactic Pattern Recognition. Series in Machine Per-
ception and Artificial Intelligence, vol. 5, pp. 99–108. World Scientific, Singapore
(1992)

33. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSA. The-
oretical Computer Science 313(2), 267–294 (2004)

http://arXiv.org/abs/cs.DS/0211001

Relevant Representations for the Inference of
Rational Stochastic Tree Languages�

François Denis1, Édouard Gilbert2, Amaury Habrard1, Faïssal Ouardi1,
and Marc Tommasi2

1 Laboratoire d’Informatique Fondamentale, CNRS, Aix-Marseille Université
{francois.denis,amaury.habrard,faissal.ouardi}@lif.univ-mrs.fr

2 Laboratoire d’Informatique Fondamentale de Lille (L.I.F.L.), INRIA and
É.N.S. Cachan

{edouard.gilbert,marc.tommasi}@inria.fr

Abstract. Recently, an algorithm - DEES- was proposed for learning
rational stochastic tree languages. Given a sample of trees independently
and identically drawn according to a distribution defined by a rational
stochastic language, DEES outputs a linear representation of a rational
series which converges to the target. DEES can then be used to iden-
tify in the limit with probability one rational stochastic tree languages.
However, when DEES deals with finite samples, it often outputs a ra-
tional tree series which does not define a stochastic language. Moreover,
the linear representation can not be directly used as a generative model.
In this paper, we show that any representation of a rational stochastic
tree language can be transformed in a reduced normalised representation
that can be used to generate trees from the underlying distribution. We
also study some properties of consistency for rational stochastic tree lan-
guages and discuss their implication for the inference. We finally consider
the applicability of DEES to trees built over an unranked alphabet.

1 Introduction

In this paper, we consider the problem of learning probability distribution over
trees from a sample of trees independently and identically distributed (i.i.d.),
in a given class of models. In this context, the learning process has two main
objectives: Finding the correct structure of the representation and estimating
precisely the parameters of the model. Because we adopt a machine learning
standpoint, we restrict ourselves to classes of probabilistic languages that can
be somehow finitely presented. Probabilistic tree automata (pta) are a usual
representations for rational stochastic tree languages (rstl). In a pta, each rule
is equipped with a weight in [0, 1] and a per state normalisation is imposed.
Nonetheless, a first drawback is that it may be not decidable to know whether
a pta is consistent i.e. whether it represents a probability distribution on trees.

� This work was partially supported by the Atash project ANR-05-RNTL00102 and
the Marmota project ANR-05-MMSA-0016.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 57–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 F. Denis et al.

One difficulty comes from the fact that a rstl may be such that the average
size of trees may be undefined. A second drawback of pta is that they admit no
canonical representation. Thus, most of learning algorithms approaches based
on grammatical inference fail for the class of pta.

Recent approaches have proposed to work in a larger class of representation:
The class of rational stochastic tree languages that can be represented under a
linear form of a tree series. The models of this class can be equivalently repre-
senting by weighted tree automata with parameters in R (hence with weights
that can be negative and without any per state normalisation condition). This
class has two interesting properties: It has a high level of expressiveness since it
strictly includes the class of rstl and it admits a canonical form with a mini-
mal number of parameters. Based on these properties, linear representations of
rstl are a good candidate from a grammatical inference standpoint. A recent
algorithm, DEES, able to identify in the limit with probability one the class
of rational stochastic tree languages rstl was proposed in [1]. However, this
algorithm has two main drawbacks when working with finite samples. It often
outputs a rational tree series that does not define a stochastic language, and
the representation of the series can not be directly used as a generative model.
This comes from the fact that the canonical representation is more adapted for
finding the structure of the model and estimating the parameters. We do not ob-
tain a representation of a probability distribution that factorises into a product
of probabilities associated with each state. When we need a generative model,
we claim that we have to use another representation. Our first contribution is
to show that any canonical representation of a rational stochastic tree language
admits a normalised reduced representation of the same size which can be easily
used in a generative process. Then, we examine some conditions of consistency
for rational stochastic languages. Indeed, as for probabilistic context-free gram-
mars [2,3], the consistency can not be ensured only with syntactical properties.
We discuss then the influence of these conditions to the problem of inferring
rational stochastic tree languages. We finish by studying the applicability of our
approach to trees that are built from an unranked alphabet. Actually, a bijection
can be made between the unranked representation and a ranked one, allowing
us to apply our algorithm to the unranked case.

The paper is organized as follows. Definitions and notations are presented in
Section 2. Section 3 deals with the normalised reduced representation of rational
stochastic tree language. The consistency conditions are evoked in Section 4.
The paper terminates by Section 5 on unranked trees.

2 Preliminaries

In this section, we recall definitions of trees, (rational) tree series, weighted
automata and (rational) stochastic tree languages. We mainly follow notations
and definitions from [4] about trees and tree automata. Formal power tree series
have been introduced in [5] where the main results appear.

Relevant Representations for the Inference of RSTL 59

Trees and Contexts. Let F = F0 ∪F1 ∪ · · · ∪ Fp be a ranked alphabet where
the elements in Fm are the function symbols of rank m. Let X be a countable set
of variables. The set T (F ,X) is the smallest set satisfying: F0 ∪ X ⊆ T (F ,X),
for f ∈ Fm, m ≥ 1, and t1, . . . , tm ∈ T (F ,X), f(t1, . . . , tm) ∈ T (F ,X).

We call trees, elements in T (F , ∅) = T (F). For any tree t, let us denote by
|t|f the number of occurrences of the symbol f ∈ F in t and by |t|, the size∑

f∈F |t|f of t. The height of a tree t is defined by: height(t) = 0 if t ∈ F0 and
height(t) = 1 + max{height(ti)|i = 1..m} if t = f(t1, . . . , tm). We suppose given
a total order ≤ on T (F) which satisfies height(t) < height(s)⇒ t < s.

Contexts are elements c of Cn(F) ⊂ T (F ,X) where n distinct variables
$1, . . . $n appears exactly once in c. Let c be a context in Cn(F) and t1, . . . , tn
be trees. In the following, the notation c[$1 ← t1, . . . , $n ← tn] or simply
c[t1, . . . , tm] represents the tree that results from substituting the $i’s by the
ti’s in c. C1(F) is simply denoted by C(F). We say that a set A is prefixial
whenever for any c ∈ C(F) and any t ∈ T (F), c[t] ∈ A⇒ t ∈ A.

Formal Power Tree Series. A (formal power) tree series on T (F) is a mapping
r : T (F)→ R. The vector space of all tree series on T (F) is denoted by K〈〈F〉〉.

Let V be a finite dimensional vector space overR. We denote byL(V p; V) the set
of p-linear mappings from V p to V . Let L = ∪p≥0L(V p; V). We denote by V ∗ the
dual space of V , i.e. the vector space composed of all the linear forms defined on V .

A linear representation of T (F) is a couple (V, μ), where V is a finite dimen-
sional vector space over R, and where μ : F → L maps Fp into L(V p; V) for
each p ≥ 0. Thus for each f ∈ Fp, μ(f) : V p → V is p-linear. Function μ extends
uniquely to a morphism μ : T (F)→V by: μ(f(t1, . . . , tp))=μ(f)(μ(t1), . . . , μ(tp)).
Let VT (F) be the vector subspace of V spanned by μ(T (F)): (VT (F), μ) is a linear
representation of T (F).

Let r be a tree series over T (F), r is said to be recognizable if there exists a
triple (V, μ, λ), where (V, μ) is a linear representation of T (F), and λ : V → R

is a linear form, such that r(t) = λ(μ(t)) for all t in T (F). The triple (V, μ, λ) is
called a linear representation for r.

It has been shown in [6] that the notions of recognizable tree series and rational
tree series (i.e. tree series characterized by rational tree expressions) coincide.
From now on, we shall refer to them by using the term of rational tree series.

Definition 1. A stochastic tree language over T (F) is a tree series r ∈ R〈〈F〉〉
such that for any t ∈ T (F), 0 ≤ r(t) ≤ 1 and

∑
t∈T (F)

r(t) = 1. Let p be a stochastic

language, let c ∈ C(F) be such that there exists a tree t such that p(c[t]) 	= 0.
We define the stochastic language c−1p by c−1p(t) = p(c[t])∑

t′∈T (F)
p(c[t′]) .

A rational stochastic tree language (rstl) is a stochastic tree language which
admits a linear representation. The set of rational stochastic tree languages is
denoted by Srat(F).

60 F. Denis et al.

Weighted Tree Automata. A weighted tree automaton1(wta) over F is a
tuple A = (Q,F , τ, δ) where Q is a set of states, τ is a mapping from Q to R and
δ is a mapping from ∪m≥0Fm×Qm×Q to R. The mapping δ can be interpreted
as a set Δ of rules which can be written in a bottom-up or a top-down way:

f(q1, . . . , qm) w→ q ∈ Δ(or q
w→ f(q1, . . . , qm) ∈ Δ) iff δ(f, q1, . . . , qm, q) =

w ∧ w 	= 0.
The weight w of a rule r is denoted by w(r). For any q ∈ Q, we denote

by Δq the subset of δ composed of the (top-down) rules whose lhs is q and
by Δf,q the subset of Δq composed of rules containing the symbol f ∈ F in
the rhs. A series rq can be associated with any state q by: rq(f(t1, . . . , tn)) =∑

r∈Δq
w(r)

∏n
i=1 rqi(ti). Then the wta A computes the series r defined by:

r(t) =
∑

q∈Q τ(q)rq(t).
wta and linear representations are two equivalent ways to represent rational

series. For example, let (V, μ, λ) be a linear representation of the tree series r ∈
R〈〈F〉〉 and let B = {e1, . . . , en} be a basis of V . A wta A = (Q,F , λ, δ) can be
associated with (V, μ, λ, B) where Q = {e1, . . . , en}, and δ(f, ei1 , . . . , eim , ej) =
wj for any f ∈ Fm where μ(f)(ei1 , . . . , eim) =

∑
j wjej . Conversely, an equiva-

lent linear representation can be associated with any weighted tree automaton
(see Example 1 below).

Note here that a probabilistic tree automaton (pta) is a specific case of wta
A = (Q,F , τ, δ) satisfying the following conditions: (i) δ and τ take their values
in [0, 1], (ii)

∑
q∈Q τ(q) = 1, (iii) for any q ∈ Q,

∑
r∈Δq

w(r) = 1.
It can be shown that any pta computes a rational tree series r that satisfies

r(t) ≥ 0 for any tree t and
∑

t r(t) ≤ 1.
It can be shown that there exist rational stochastic tree languages that cannot

be computed by any probabilistic automaton (see [7] for an example in the case
of word stochastic languages).

Example 1. A wta representing a rational stochastic tree language. Let A =
(Q,F , τ, δ) be the wta defined by Q = {q1, q2}, F = {a, f(·, ·)}, τ(q1) =

2, τ(q2) = −1 and Δ = {q1
2/3→ a, q1

1/3→ f(q1, q1), q2
3/4→ a, q2

1/4→ f(q2, q2)}.
pq1 and pq2 are rstl, that the series p = 2pq1 − pq2 computed by A takes

only positive values. And since
∑

t p(t) = 1, p is an rstl. It admits the following
linear representation: (R2, μ, λ) where e1 = (1, 0) and e2 = (0, 1) is a basis of R2,
λ(e1) = 2, λ(e2) = −1, μ(a) = 2e1/3 + 3e2/4, μ(f)(e1, e1) = e1/3, μ(f)(e2, e2) =
e2/4 and μ(f)(ei, ej) = 0 if i 	= j.

2.1 Canonical Linear Representation of Rational Tree Series

We now define the canonical representation of a rational tree series.
Let c ∈ C(F). We define the linear mapping ċ : R〈〈F〉〉 → R〈〈F〉〉 by

ċ(r)(t) = r(c[t]) .

1 These automata are also referred to as multiplicity tree automata in the literature.

Relevant Representations for the Inference of RSTL 61

Let r ∈ R〈〈F〉〉. Let us denote by Wr the vector subspace of R〈〈F〉〉 spanned
by {ċr|c ∈ C(F)}. It can be shown that r is rational if and only if the dimension
of Wr is finite [1]. Let W ∗

r be the dual space of Wr, i.e. the set of all linear forms
on Wr. For any t ∈ T (F), let t ∈ W ∗

r be defined by: ∀s ∈Wr, t(s) = s(t). It can
be shown that there exist trees t1, . . . , tn such that {t1, . . . , tn} forms a basis of
W ∗

r . Let us define the linear representation (W ∗
r , μ, λ) as follows:

• for any f ∈ Fm, define μ(f)(ti1 , . . . , tim) = f(ti1 , . . . , tim).
• λ ∈ (W ∗

r)∗ = Wr by λ(t) = r(t).

Theorem 1. [1] (W ∗
r , ν, τ) is a linear representation of r which is called the

canonical linear representation of r. It can be embedded in any linear represen-
tation of r; in particular, its dimension is minimal.

Example 2. Consider the rational stochastic tree language p defined in Exam-
ple 1. It can easily be shown that p1(t) = 2|t|f +1

32|t|f +1 , p2(t) = 3|t|f +1

42|t|f +1 and p(t) =
25|t|f +4−33|t|f +2

32|t|f +1×42|t|f +1 . Thus, for any context c and any tree t:

t(ċp) = p(c[t]) =
25|t|f+5|c|f+4 − 33|t|f+3|c|f+2

32|t|f+2|c|f+1 × 42|t|f+2|c|f+1
.

Since p has a 2-dimensional linear representation, the dimension of W ∗
r is ≤ 2.

Let c0 = $ and c1 = f(a, $), we have:

a(ċ0p) =
7

3× 22
, a(ċ1p) = f(a, a)(c0) =

269
33 × 26

, and f(a, a)(ċ1p) =
9823

35 × 210
.

Since a(ċ0p) × f(a, a)(ċ1p) 	= a(ċ1p) × f(a, a)(ċ0p), a and f(a, a) are linearly
independent. Then, {a, f(a, a)} is a basis of W ∗

r . We define λ and μ by:

λ(a) = p(a) = 7
3×22 and λ(f(a, a)) = p(f(a, a)) = 269

33×26 and
μ(a) = a, μ(f)(a, a) = f(a, a),

μ(f)(a, f(a, a)) = μ(f)(f(a, a), a) = −54
24×34 a + 59

24×32 f(a, a),
μ(f)(f(a, a), f(a, a)) = −3186

28×36 a + 2617
28×34 f(a, a).

We can justify here why the canonical form of a stochastic language p may not
be relevant for generating trees according to p. Indeed, one can remark here that
μ(f(a, f(a, a))) = μ(f)(a, f(a, a)) = −54

24×34 a + 59
24×32 f(a, a). Thus, if we consider

the weights of trees according to a, f(a, f(a, a)) has a negative weight and then
a does not define by itself a stochastic language. As a consequence, the canonical
form does not have a relevant structure if one aims at using it according to a
generative model.

2.2 DEES

DEES is an inference algorithm which identifies any rational stochastic language
in the limit with probability one (see [1]). Let us show how DEES works on the

62 F. Denis et al.

previous example. Let S be a sample of trees independently drawn according to p
and let pS be the empirical distribution defined on T (F): pS(t) is the frequency
of t in S. For any confidence parameter δ, there exists ε > 0 such that with
probability at least 1− δ, |p(t)− pS(t)| ≤ ε for any tree t. Statistical tests, based
on this property, are used to accept or reject hypotheses of the form: t is a linear
combination of t1, . . . , tn. Parameters ε and δ can be chosen, depending on the
size of the sample S, such that with probability one, the correct hypothesis will
always be chosen from some sample size.

In order to find the basis of the canonical representation, the algorithm first
tests whether a and f(a, a) are linearly independent. With probability one, this
will be detected from some step: a and f(a, a) are elements of the canonical
basis. Then, the algorithm tests whether f(a, f(a, a)) is a linear combination of
a and f(a, a). As this is true, this will be detected with probability one from
some step. Therefore, f(a, f(a, a)) will not be added to the basis. And so on.
The algorithm terminates when it has checked that no more elements can be
added to the basis.

It can be proved that with probability one, there exists an integer N such
that for any sample S containing more than N examples, a basis of W ∗

p will
be identified from S. DEES will compute a linear representation (W ∗

p , μS , λS),
such that μS and λS converge respectively to μ and λ when S tends to infinity.

Hence, DEES identifies in the limit the canonical linear representation of any
rational tree stochastic language with probability one. However:

– Given the canonical linear representation of a stochastic language p does not
help to generate trees according to p.

– Moreover, the series output by DEES from some sample S can be not a
stochastic language. The possibility to transform it in a stochastic language
is then an important issue.

– The series output by DEES converges to the target p as the size of S in-
creases, but what is the rate of convergence?

We propose to address of all of these questions in the present paper.

3 Normalised Linear Representation for Rational
Stochastic Tree Languages

3.1 Normalised Representation

Let r be a rational stochastic tree language represented by a WTA (Q,F , τ, δ).
Tree series rq associated with each state in Q may not be stochastic tree lan-
guages. This is illustrated by Example 2. Trivially, the same remark can be made
for the equivalent linear representation of tree series, considering the series as-
sociated with every basis vector. However, as stated by the following theorem,
there exist equivalent representations, called normalised, where each tree series
associated with basis vectors are indeed stochastic tree languages.

Let δij be Kronecker symbols, δij = 1 if i = j and 0 otherwise.

Relevant Representations for the Inference of RSTL 63

Theorem 2. Let p be an rstl over T (F) and let (W ∗
p , μ, λ) be the canonical

linear representation of p. Then, W ∗
p admits a basis B = {e1, . . . , en} such that

each series pi defined by (V, μ, λi) where λi(ej) = δij is stochastic.

Proof. Let c1, . . . , cn ∈ C(F) such that {c−1
1 p, . . . , c−1

n p} is a basis of Wp. Let
{�1, . . . , �n} be a basis of W ∗

p such that �i(c−1
j p) = δij for 1 ≤ i, j ≤ n.

We show below that {�1, . . . , �n} is a normalised basis of W ∗. Let λ1, . . . , λn

be the linear forms defined on W ∗ by λi(�j) = δij . Let us show that for any
t ∈ T (F) and any 1 ≤ i ≤ n, λi(μ(t)) = c−1

i p(t).

Let {t1, . . . , tn} be a basis of W ∗
p and let ti =

n∑
j=1

γj
i �j for any 1 ≤ i ≤ n. We

have:

ti(c−1
j p) =

n∑

k=1

γk
i �k(c−1

j p) =
n∑

k=1

γk
i δkj = γj

i . (1)

Let t ∈ T (F) and t =
n∑

i=1

βiti, then:

t =
n∑

i=1

⎛

⎝βi

n∑

j=1

γj
i �j

⎞

⎠ =
n∑

j=1

(
n∑

i=1

βiγ
j
i

)
�j . (2)

Because (W ∗
p , μ, λ) is the canonical representation of p, we have μ(t) = t by

definition. Hence,

λj(μ(t)) = λj(t)
(2)
=

n∑

i=1

βiγ
j
i

(1)
=

n∑

i=1

βiti(c−1
j p)

= t(c−1
j p) since t =

n∑

i=1

βiti

= c−1
j p(t).

Hence, (W ∗
p , μ, λi) represents a stochastic language for 1 ≤ i ≤ n. �

Definition 2. Let A = (Q,F , τ, δ) be a wta. We say that A is in normalised
form if and only if (i)

∑
q∈Q τ(q) = 1, (ii) for any q ∈ Q,

∑
r∈Δq

w(r) = 1 and
(iii) for any q ∈ Q and any f ∈ F ,

∑
r∈Δq

w(r) ∈ [0, 1]. Moreover, we say that
A is in reduced normalised form if the series rq are linearly independent.

Any rational stochastic tree language can be represented by a normalised reduced
wta A = (Q,F , τ, δ) such that each rq defines a stochastic language. Note also
that any pta is in normalised form (but not necessarily in reduced normalised
form).

Example 3. Let us consider the rational stochastic tree language p presented
in the previous examples, we show how to compute a normalised wta that
computes it. Let c0 = $, c1 = f($, a) and let s0 = α0a+β0f(a, a) and s1 = α1a+

64 F. Denis et al.

β1f(a, a) where si(c−1
j p) = δij . Remarking that

∑
t ċ0p(t) = 1 and

∑
t ċ1p(t) =∑

t p(f(t, a)) = 2
∑

t p1(f(t, a)) −
∑

t p2(f(t, a)) = 37/144 one can check that
α0 = −9823

300 , α1 = 3228
25 , β0 = 9953

300 and β1 = −3108
25 .

Now, by expressing, a and f(a, a) in the basis s0, s1, we get the following set
of rules:

s0
7/12−→ a,

s0
−269/50−→ f(s0, s0),

s0
259/50−→ f(s0, s1),

s0
259/50−→ f(s1, s0),

s0
−1369/300−→ f(s1, s1),

s1
269/444−→ a,

s1
−3024/925−→ f(s0, s0),

s1
2664/925−→ f(s0, s1),

s1
2664/925−→ f(s1, s0),

s1
−23273/11100−→ f(s1, s1).

Let λ(s0) = 1 and λ(s1) = 0. It is easy to verify that this representation is in
normalised form.

3.2 A Generation Process

A generation process of trees can be done using normalized wta as given in
Algorithm 1. Each tree is built top-down. The process is different from the clas-
sical approach with pta since instead of drawing a transition rule to apply at
each step, we rather draw a symbol according to the distributions of the symbols
defined by the rules.

Comments of the steps numbered by (1), (2), (3) and (4) in Algorithm 1:

(1) Δgen contains n rules of the form qt
wi→ c[qi

1, . . . , q
i
m] where c is a linear

context over m variables and where 1 ≤ i ≤ n.
(2) It can be proved that

∑
f∈F αc

f,j = 1 for any 1 ≤ j ≤ m.
(3) The numbers αc

f,j define a probability distribution over Fj.
(4) There exists a unique tree t such that all the rules of Δgen are of the form

qt
wi→ t; t is the output of the algorithm.

4 Learning Rational Stochastic Tree Languages

We consider the question of learning a rational stochastic tree language (rstl)
p from an i.i.d. sample of trees drawn according to p. An rstl can be such that
the average size of trees generated from p is unbounded, i.e.

∑
t p(t)|t| = ∞.

For example, this is the case for the rstl defined by the pta whose rules are:

{q 1/2→ a, q
1/2→ f(q, q)}. To our knowledge, it is still unknown whether a pta

defines a rstl and it is much better to deal with the stronger notion of strongly
consistent stochastic language: A rstl p is strongly consistent if

∑
t |t|p(t) <∞.

Next section investigates some properties of strongly consistent rstl.

Relevant Representations for the Inference of RSTL 65

Data : An wta A = (Q, F , τ, δ) in normalised form
Result : A tree t ∈ T (F)

begin
Let qt be a new state ;
Let Δgen = {qt

τ(q)→ q|q ∈ Q} (1);
while the rhs of some rule of Δgen contains states do

Let m be the number of rules in Δgen and n be the number of states
in each the rules;
for 1 ≤ j ≤ m do

for any f ∈ F , let αc
f,j =

n∑
i=1

wi

∑
r∈Δ

qi
j

,f
w(r) (2);

draw randomly fj ∈ F according to αc
f,j (3);

let nj be the rank of fj ;
let c′ = c(f1($

1
1, . . . , $

n1
1), . . . , fm($1

m, . . . , $nm
m)) a linear context;

in Δgen, replace each rule qt
wi→ c[qi

1, . . . , q
i
m] by the rules

qt

wiwr1 ...wrm−→ c[f1(q
1
r1 , . . . , qn1

r1), . . . , fm(q1
rm

, . . . , qnm
rm

)] ;

where rj : qj

wrj→ fj(q
1
rj

, . . . , qn1
rj

) ∈ Δqi
j ,fj

, 1 ≤ j ≤ m, 1 ≤ i ≤ n;

Outputs the tree of Δgen (4);
end

Algorithm 1. Drawing a tree according to a rstl

4.1 Strongly Consistent Rational Stochastic Languages

Let A = (Q = {q1, . . . , qn},F , τ, δ) be a wta and let A = (aij)1≤i,j≤n be the
matrix defined by aij =

∑
r∈Δqi

nr(j)w(r) where nr(j) is the number of occurrences

of qj in the rhs of r.
We denote by pi the rational series defined from state qi and we let γi =∑

t∈T (F)

pi(t)|t| (γi may be undefined if the sum diverges), γ = (γ1, . . . , γn) and

B = (1, . . . , 1)t.

Proposition 1. Let us suppose that for any index i,∑
t∈T (F)

pi(t) = 1 and
∑

r∈Δqi

w(r) = 1. Then γ =
∑
n≥0

AnB.

Proof. The proof is detailed in [8].

The sum
∑
n≥0

AnB converges iff AnB converges to 0, which can be decided within

polynomial time.

Example 4. Consider the PTA defined by the rules {q 1−α→ a, q
α→ f(q, q)} and

τ(q) = 1: A = (2α) and AnB converges iff α < 1/2. The average size of trees
generated from these PTA is 1/(1 − 2α). When α = 1/3 (resp. 1/4), the PTA

66 F. Denis et al.

computes the stochastic language pq1 (resp. pq2) as previously defined in exam-
ple 1. Then, the average size of trees γ1 (resp. γ2) generated from pq1 (resp.
pq2) is 3 (resp. 2). One can deduce the average size of the stochastic language
p = 2pq1 − pq2 , γ = 2× γ1 − γ2 = 4.
Consider now the normalised form of p as presented in example 3.

The matrix A is
(
−2/5 37/30
−144/185 47/30

)
.

It is easy to verify that (I−A) is invertible and (I−A)−1 =
(
−17/5 37/5
−864/185 42/5

)
.

Thus (I −A)−1B =
(
4 690/185

)
. Following Prop. 1, the average size γ0 of trees

generated by c−1
0 p is 4 and the average size of trees generated by c−1

0 p is 690/185.
Since p = c−1

0 p the average tree size of p is 4.

We show below that when A is a reduced normalised representation of a strongly
consistent rational stochastic language, the spectral radius2 ρ(A) of A is < 1.
We need the following lemma :

Lemma 1. Let p1, . . . , pn be n independent stochastic languages. Then Λ =

{(α1, . . . , αn) ∈ Rn :
n∑

i=1

αipi is a stochastic language} is a compact convex

subset of Rn.

Proof. See [9] for a similar proof in the case of words.

Proposition 2. Let A = (Q = {q1, . . . , qn},F , τ, δ), a reduced normalised rep-
resentation of a strongly consistent rstl p such that each pqi is a stochastic
language and let A = (aij)1≤i,j≤n be the matrix defined as previously. Then the
spectral radius of A satisfies ρ(A) < 1.

Proof. The proof is detailed in [8].

Example 5. The matrix A of Example 4 admits two eigenvalues: 1
2 and 2

3 , then
ρ(A) = 2

3 < 1.

4.2 Effective Normalisation

Let p be a strongly consistent rstl and let B = {t1, . . . , tn} be the smallest (for
the order ≤ on T (F)) basis of the canonical linear representation (W ∗

p , μ, λ) of
p. The main result in [1] proves that with probability one, there exists a sample
size from which DEES outputs a linear representation (W ∗

p , μS , λS) whose basis
is B and such that μS and λS are arbitrarily close to μ and λ.

Theorem 2 states that there exists a normalised wta AS given its canonical
linear representation (W ∗

p , μ, λ). In this section we explain how to effectively
compute AS . Choosing a basis written as {ċ1p, . . . , ċnp} is easily done by re-
cursively enumerating every context, the main technical key point relies in the
ability to compute the sums

∑
t∈T (F) p(ci[t]) for a given rational series.

2 The spectral radius of a matrix is the maximum of the norms of its complex
eigenvalues.

Relevant Representations for the Inference of RSTL 67

Let s be the vector defined by s =
∑

t∈T (F) μ(t) =
∑

t∈T (F) t. The ith com-
ponent of s is

∑
t∈T (F) pi(t) =

∑
t∈T (F) p(ci[t]). Moreover, s is a solution of the

polynomial system: v = F (v) where F (v) =
∑

m

∑
f∈Fm

μ(f)(v, . . . , v). This
system is not analytically soluble in general. As a consequence, we approximate
s using with a direct propagative method.

Let E and Ek be the endomorphisms defined by:

E(v) =
∑

m

m∑

l=1

∑

f∈Fm

μ(f)(s, . . . , s︸ ︷︷ ︸
l−1

, v, s, . . . , s︸ ︷︷ ︸
m−l

)

Ek(v) =
∑

m

m∑

l=1

∑

f∈Fm

μ(f)(sk, . . . , sk︸ ︷︷ ︸
l−1

, v, s, . . . , s︸ ︷︷ ︸
m−l

).

A propagative method is proposed by Stolcke[10] in the case of probabilistic
context-free languages. Let T <k(F) be the set of trees of height lower than k.
The idea is to recursively compute the sequence sk =

∑
t∈T <k(F) t using the

recursion: s0 = 0 and sk+1 = F (sk). Obviously, (sk) converges towards s. Let us
study the convergence rate.

By applying the multi-linearity of μ(f), s − sk+1 can be decomposed in s −
sk+1 = F (s) − F (sk) = Ek(s − sk). Taking into account that for every tree t,
the ith component of t is p(ci[t]) ≥ 0, it is easily shown that for every k:

‖s− sk+1‖ = ‖
k∏

q=0

Eq(s− s0)‖ ≤ ‖Ek‖‖(s− s0)‖ .

By Gerland’s formula, we have ‖Ek‖ ∼ ρ(E)k and thus:

‖s− sk‖ = O(ρ(E)k‖s− s0‖) .

Let A be the matrix of E in the basis {c−1
1 p, . . . , c−1

n p}. It can be proved that
A is the same matrix as defined in Section 4.1. Thanks to Proposition 2 and
because we made the assumption the series is strongly consistent, we know that
ρ(E) = ρ(A) < 1.

When tested on the previous example, the propagative method achieved pre-
cision of 106 in approximately 30 iterations. In near future, we intend to study
the use of Newton’s method, which could at least theoretically achieve faster
convergence.

4.3 Learning a Strongly Consistent Rational Stochastic Language:
The Road Map

The normalised wta AS obtained at the end of the previous section computes
an rstl pS such that the spectral radius ρS of the matrix AS associated with AS

satisfies ρS < 1 which is a strong property. We have still some results to prove in
order to complete the learning process. We present them below as conjectures.

68 F. Denis et al.

Conjecture 1: It is possible to modify Algorithm 1 in order to be used to gen-
erate trees from a normalised wta (even when it does not define a stochastic
language). The modified algorithm stops (and outputs a tree) with probability
one, as soon as S is sufficiently large. Hence, it defines a stochastic language p̂.

Conjecture 2: with probability one,
∑

t |p(t)− p̂(t)| · |t| converges to 0 with the
size of S.

These two conjectures generalize results proved in the word case. Note that the
convergence type described in Conjecture 2 is stronger than L1-convergence.

5 Unranked Trees

In this section we consider trees where the rank constraint has been dropped:
Every symbol in unranked trees may have from 0 to an unbounded but finite
number of (ordered) children. Unranked trees are the common abstract repre-
sentation of semi-structured data like XML.

Let Σ be a finite set of symbols. The set T (Σ) of unranked trees is the
smallest set such that Σ ⊆ T (Σ), and f(t1, . . . , tm) ∈ T (Σ) provided f ∈ Σ
and t1, . . . , tm ∈ T (Σ). An algebraic definition of unranked trees can be given
by means of the extension operator @ ([4]). Basically, @ adds a new child at the
end of the list of children of an unranked tree: f @ t = f(t), f(t1, . . . , tn−1)@ tn =
f(t1, . . . , tn) .

The extension operator provides a unique recursive definition of any unranked
tree. It can be syntactically represented by a binary (ranked) tree over F = F0∪
F2 where F0 = Σ and F2 = {@}. Let us now define the mapping ext from T (Σ)
to T (F) by ext(f) = f and ext(f(t1, . . . , tn)) = @(ext(f(t1, . . . , tn−1)), ext(tn)).
One can show that the mapping ext is a bijection. Hedge automata [11] directly
act on unranked trees in T (Σ). Briefly, hedge automata rules are of the form
f(L)→ q where L is a word language on the alphabet of states. It has be shown
that hedge automata and ordinary tree automata on T (F) define the same class
of recognizable languages [12]. Extension from hedge automata to weighted hedge
automata (there referred to as unranked wta) is proposed in [13]. In unranked
wta rules are of the form f(L) w→ q where L is a weighted word language on the
alphabet of states.

Thanks to the ext mapping, each result presented in this paper can be inter-
preted in the case of unranked trees. Tree series on T (Σ) are simply defined via
tree series on T (F). This mapping also suggests a notion of rational unranked
tree series and stochastic languages.

Proposition 3. The class of rational unranked tree series represented via the
mapping ext coincide with the class of unranked tree series defined by unranked
wta.

More precisely, let be an unranked wta which represents a rational unranked
tree series ru. One can build in linear time a (ranked) wta which represents a

Relevant Representations for the Inference of RSTL 69

rational tree series rr such that ∀t ∈ T (Σ) ru(t) = rr(ext(t)). The converse is also
true but to compute the corresponding unranked wta, one needs to normalise
rules following the method given in Section 4.2.

The following example illustrates how one can build a weighted automaton
for unranked trees. Let us consider trees that represent nested lists built with
the commonly used symbols ul and li. Let us consider first a stochastic hedge
automaton with two states qul and qli. Final weights are given by F (qul) = 1
and F (qli) = 0. Rules are li(L1)

1→ qli and ul(L2)
1→ qul where

L1 q1

2/3

q2

1/3

q
L2 : q3 q4

1

q
q

The weight of a tree ul(li, li(ul(li))) is 23/36.
The corresponding automaton on the expression with the @ operator has 4

states {qli1 , qli2 , qul3 , qul4 }, τ(qul4) = 1 and the set of rules:
⎧
⎪⎨

⎪⎩

li 1→ qli1 , ul 1→ qul3 , @(qli1 , qul4) w1→ qli2 ,

@(qul3 , qli1) w2→ qul4 , @(qul3 , qli2) w3→ qul4 ,

@(qul4 , qli1) w4→ qul4 , @(qul4 , qli2) w5→ qul4

⎫
⎪⎬

⎪⎭

The weight w2 is the weight of adjoining a subtree in state qli1 to a tree in
state qul3 . The results gives a tree in state qul4 . It corresponds to the following
computation in the hedge automaton: exit from L1 with state qli1 , then apply the
rule li(L1)

1→ qli and finally follow the transition from qul3 to qul4 in L2. Hence
w2 = 2/3×1×1/3. Similarly w3 = 1/3×1×1/3, w4 = 2/3×1×2/3, w5 = 1/3×
1× 2/3 and w1 = 1× 1× 1. The binary tree associated with ul(li, li(ul(li)))
is @(@(ul, li), @(li, @(ul, li))). One can verify that its weight is also 23/36.

Hence, to learn rational unranked tree series, one can simply proceed in the
following way: apply ext to input trees and then apply DEES. Eventually, a
representation of an unranked wta where weights are estimated can possibly be
returned.

6 Conclusion

In this paper, we studied the problem of learning a rational stochastic tree lan-
guage p from an i.i.d. sample of trees drawn from p. An inference algorithm,
DEES, was previously proposed for this problem. Using this algorithm leads
to two main drawbacks: It often outputs linear representations that do not de-
fine stochastic languages and these representations can not be directly used to
generate trees from the underlying distribution. We addressed this problem by
showing that any rational stochastic tree language admits a normalised reduced
representation that can be used as a generative model. We have studied the

70 F. Denis et al.

notion of strongly consistent rational stochastic languages which corresponds to
the fact that the average size of trees generated from a rstl p is bounded. We
showed the relationship between this notion and the normalised reduced repre-
sentation of a rstl. We finally justified that the methods presented in this paper
can be directly applied to unranked trees.

The next step of this work is to prove the conjectures that was presented
for learning strongly consistent rational stochastic languages: First, a proba-
bility distribution p̂ can be extracted in order to generate trees from a nor-
malised WTA. Second, that

∑
t |p(t) − p̂(t)| · |t| convergences to zero with the

size of the learning sample. Note here that this condition is stronger than the
L1-convergence.

References

1. Denis, F., Habrard, A.: Learning rational stochastic tree languages. In: Hutter,
M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp.
242–256. Springer, Heidelberg (2007)

2. Booth, T., Thompson, R.: Applying probabilistic measures to abstract languages.
IEEE Transactions on Computers 22(5), 442–450 (1973)

3. Wetherell, C.S.: Probabilistic languages: A review and some open questions. ACM
Comput. Surv. 12(4), 361–379 (1980)

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007) (release
October 12, 2007), http://tata.gforge.inria.fr/

5. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theoretical
Computer Science 18, 115–148 (1982)

6. Ésik, Z., Kuich, W.: Formal tree series. Journal of Automata, Languages and Com-
binatorics 8(2), 219–285 (2003)

7. Denis, F., Esposito, Y.: Rational stochastic languages. Technical report, LIF -
Université de Provence (2006), http://hal.ccsd.cnrs.fr/ccsd-00019728

8. Denis, F., Gilbert, E., Habrard, A., Ouardi, F., Tommasi, M.: Relevant representa-
tions for the inference of rational stochastic tree languages. Technical report, LIF,
LIFL, and INRIA (2008), http://hal.archives-ouvertes.fr/hal-00293511/en/

9. Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Lugosi, G., Simon, H.U. (eds.) Learning theory. LNCS, pp. 274–288. Springer,
Heidelberg (2006)

10. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computional Linguistics 21(2), 165–201 (1995)

11. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets. Technical report, Hong Kong University The-
oretical Computer Science Center, Version 1 (2001)

12. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004)

13. Droste, M., Vogler, H.: Weighted logics for XML (manuscript, 2007),
http://www.orchid.inf.tu-dresden.de/gdp/monographs/r20.ps

http://tata.gforge.inria.fr/
http://hal.ccsd.cnrs.fr/ccsd-00019728
http://hal.archives-ouvertes.fr/hal-00293511/en/
http://www.orchid.inf.tu-dresden.de/gdp/monographs/r20.ps

Learning Commutative Regular Languages�

Antonio Cano Gómez and Gloria I. Álvarez

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia. Valencia (Spain)

Departamento de Ciencias e Ingenieŕıa de la Computación,
Pontificia Universidad Javeriana Cali, calle 18 No. 118-250 Cali, Colombia

{acano,galvarez}@dsic.upv.es

Abstract. In this article we study the inference of commutative reg-
ular languages. We first show that commutative regular languages are
not inferable from positive samples, and then we study the possible im-
provement of inference from positive and negative samples. We propose a
polynomial algorithm to infer commutative regular languages from posi-
tive and negative samples, and we show, from experimental results, that
far from being a theoretical algorithm, it produces very high recognition
rates in comparison with classical inference algorithms.

1 Introduction

Regular languages are not inferable from positive samples is a well known result
from Angluin [2]. This means that only inference from positive and negative
samples is allowed. Nevertheless, the most useful algorithms for learning lan-
guages from positive and negative samples are not enough efficient to be applied
in practice when looking at the recognition rate, mainly RPNI [11,10] and red-
blue [4,9]. In [1] has been introduced the idea of trying to learn some subclasses
of regular languages from positive and negative samples with the aim of im-
proving the efficiency of the learning process, either if the considered subclass
is not inferable from positive samples, the inference of those classes from posi-
tive and negative samples can be improved. In this article we study the class of
commutative regular languages proposing a new algorithm called CRPNI and
showing experimentally that CRPNI outperforms significantly recognition rates
obtained with classical inference algorithms like red-blue and RPNI. Despite the
algorithm given in this article follows the ideas of [1], actually both algorithms
are very different in concepts and implementation.

In Section 2 we give the most important definitions about words and languages.
We define in this sections the concepts of deterministic finite automata and Moore
machine, that would be slightly modified for the commutative case in section 3.

Section 3 is devoted to the inference of regular commutative languages. First,
we prove that commutative language are not inferable from positive samples,
� Work partially supported by Ministerio de Educación y Ciencia under project

TIN2007-60760.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 71–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 A. Cano Gómez and G.I. Álvarez

and then we give an algorithm for the inference of commutative regular lan-
guages from positive and negative samples. For this algorithm, first, we modify
the definition of deterministic finite automata and Moore machine defining com-
mutative deterministic finite automata and commutative Moore machine, these
models consider the fact that languages with which we are working are com-
mutative. We also prove that any commutative language can be recognised by a
commutative deterministic finite automata. Nevertheless, the minimal determin-
istic finite automata is not equivalent to the minimal commutative deterministic
finite automata. Finally we give our algorithm CRPNI, that is inspired in the
RPNI [11] algorithm and we show its convergence in the limit.

In section 4 we analyse experimental results obtained from our implementation
of the algorithm. We study two cases |Σ| = 2 and |Σ| = 3. In both cases we can
see a great improvement of the CRPNI recognition rates with respect to two of
the most used algorithms, namely redblue and RPNI.

2 Preliminaries

In this section we give the most important concepts used in this article. For
further details about these concepts, the reader is referred to [8], [11] and [12].
In this paper we will use Moore machines in order to define the algorithm but
also other machines like unbiased finite state automata [3] or the finite state
classifiers [6] could be used. It could be interesting whether an implementation
with those machines could improve the inference process.

2.1 Formal Languages and Automata

Throughout this paper if Σ denotes a finite alphabet, Σ∗ denotes the free monoid
generated by Σ with the concatenation as the internal law and λ as the neutral
element. A language L over Σ is a subset of Σ∗ and the elements of Σ∗ are
called words. Given x ∈ Σ∗, if x = uv with u, v ∈ Σ∗, then u (resp. v) is
called prefix (resp. suffix) of x. Given a language L ∈ Σ∗ we denote by Pre(L)
(Suf(L)) the set of prefixes (resp. suffixes) of all words in the language L. Given
a total order < on Σ we can define an order <lex on Σ∗ by setting for two words
u, v ∈ Σ∗, u <lex v if |u| < |v| or |u| = |v| and there exists x, y1, y2 ∈ Σ∗ such
that u = xay1 and xby2 with a < b. Given a word w on an alphabet Σ and
one letter a ∈ Σ, we denote by πa(w) the projection of w in a, for instance, if
w = abbcaa, then πa(w) = aaa. Given a language L we define the syntactic left
congruence as the left-congruence on Σ∗ defined as u ∼L v if and only if for any
x ∈ Σ∗, ux ∈ L⇔ vx ∈ L.

A deterministic finite automaton (DFA) is a 5-tupleA = (Q, Σ, δ, q0, F) where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
if the set of final states and δ is a partial function that maps Q×Σ in Q, which
can be easily extended to words. A word x is accepted by an automaton A if
δ(q0, x) ∈ F . The set of words accepted by A is denoted by L(A).

Learning Commutative Regular Languages 73

Given a language L, the minimal deterministic finite automaton of L is the
automaton A = (Q, Σ, δ, q0, F) where Q = {[x]∼L | x ∈ Σ∗}, δ([x]∼L , y) =
[xy]∼L for any x, y ∈ Σ∗, q0 = [λ]∼L , F = {[x]∼L | x ∈ L}.

A Moore machine is a 6-tupleM = (Q, Σ, Γ, δ, q0, Φ) where Σ (resp. Γ) is an
input (resp. output) alphabet, δ is a partial function that maps Q×Σ in Q, and
Φ is a function that maps Q in Γ called output function. The behaviour of M
is given by the function tM : Σ∗ → Γ defined as tM(x) = Φ(δ(q0, x)) for every
x ∈ Σ∗ such that δ(q0, x) is defined.

Given a Moore machine M = (Q, Σ, Γ, δ, q0, Φ) with Γ = {0, 1, ↑} we can
associate an automaton AM = (Q, Σ, δ, q0, F) where F = {q ∈ Q | Φ(q) = 1}.

Given two finite sets of words D+ and D−, we define the (D+, D−)-prefix
tree machine (PTM(D+, D−)) as the Moore machine having Γ = {0, 1, ↑},
Q = Pre(D+ ∪ D−), q0 = λ and δ(u, a) = ua if u, ua ∈ Q and a ∈ Σ. For
every state u, the value of the output function Φ associated to u is 1, 0 and ↑
(undefined) depending whether u belongs to D+, to D− or to the complementary
set of D+ ∪D−.

A Moore Machine M = (Q, Σ, Γ, ·, q0, Φ) is consistent with (D+, D−) if
for every x ∈ D+ we have Φ(δ(q0, x)) = 1 and for every x ∈ D− we have
Φ(δ(q0, x)) = 0.

2.2 Commutative Languages

Given two words u and v we say the they are commutatively equivalent if
u = a1a2 · · ·an with ai ∈ Σ for 1 ≤ i ≤, and there exist a permutation σ
on {1, 2, . . . , n} such that aσ(1)aσ(2) · · ·aσ(n) = v. We denote it by u ∼com v. For
instance, abca ∼com cbaa.

Given an alphabet Σ, a language L is commutative if and only if it is the
union of some ∼com-classes.

It seems to be some relation between planar languages and commutative lan-
guages [5] and their inference. An interesting work would be to compare the
inference algorithm described in [5] and the CRPNI described here.

In this article we are interested in commutative regular languages. In order
to describe the expressively of commutative regular languages we recall here a
result from [12].

Proposition 1. (Pin) For every alphabet Σ, the class of commutative languages
of Σ is the boolean algebra generated by the languages of the form K(a, r) =
u ∈ Σ∗ | |u|a = r, where r > 0 and a ∈ Σ, or L(a, k, pn) = {u ∈ Σ∗ | |u|a ≡ k
mod pn}, where 0 ≤ k < pn, p is prime, n > 0 and a ∈ Σ

Note that Proposition 1 show that the idea of inferring a language for each letter
and trying to infer the whole language from those using boolean operation is not
possible. For instance, L = {x ∈ Σ∗ | |x|a ≡ |x|b mod 2} is a commutative
language that can not be inferred in that way.

More equivalent definitions and proofs about commutative regular languages
can be found in [12] and [13].

74 A. Cano Gómez and G.I. Álvarez

We now introduce the concept of commutative deterministic finite automata.
Let Σ = {a1, a2, . . . , an} be an alphabet. We define a commutative deterministic
finite automaton (CDFA) on Σ as A = (Q, Σ, δ, q0, F), where Q = Qa1 ×Qa2 ×
· · · × Qan , q0 ∈ Q, F ⊆ Q, and δ((q1, . . . , qi, . . . , qn), ai) = (q1, . . . , δai(qi, ai),
. . . , qn) where δai is a function from Qai onto Qai for 1 ≤ i ≤ n.

Let Σ = {a1, a3, . . . , an} be an alphabet and let L be a commutative lan-
guage on Σ. We define define the minimal commutative automaton of L as
A = (Q, Σ, δ, q0, F), where Q = Qa1 × . . . × Qan being Qai =

⋃
m≤0[a

m
i]∼L

(note that this union is finite) for 1 ≤ i ≤ n, q0 = ([λ]∼L , . . . , [λ]∼L), F =
{(πa1(x), . . . , πan(x)) | x ∈ L} and δai([am

i]∼L , ai) = [am+1
i]∼L for 1 ≤ i ≤ n.

Proposition 2. For any regular commutative language L, the minimal commu-
tative deterministic automaton is well defined and accepts L.

Proof. Let Σ = {a1, . . . , an} and let L be a commutative regular language. Let
A = (Q, Σ, δ, q0, F) be the minimal commutative finite automaton L. First, let
x ∈ L, since L is commutative we have that πa1(x) πa2(x) · · · πan(x) ∈ L, then
we have, by the definition of δ that δ(q0, x) = δ(([λ]∼L , [λ]∼L , . . . , [λ]∼L), x)
= ([πa1 (x)]∼L , [πa2(x)]∼L , · · · , [πan(x)]∼L) and then by definition ([πa1(x)]∼L ,
[πa2(x)]∼L , · · · , [πan(x)]∼L) belongs to F , that is, x is accepted by A. Now, let
x be a word accepted by A, then by definition we have that δ(q0, x) = δ(([λ]∼L ,
[λ]∼L , . . . , [λ]∼L), x) = ([πa1(x)]∼L , [πa2(x)]∼L , · · · , [πan(x)]∼L) ∈ F . Now, by
the definition of F we have necessarily πa1(x)πa2 (x) · · · πan(x) ∈ L and since L
is commutative we also have x ∈ L.

Note that this proposition does not assure that the minimal automaton of a
given language L is a commutative deterministic finite automata. For instance,
for the language L = {x ∈ Σ∗ | |x|a = 0 or |x|b > 0} we have that the minimal
DFA and the minimal CDFA are not the same as shown in Figure 1.

The relationship between the size of the minimal DFA and the size of the
minimal CDFA for a given commutative regular language is a interesting question

λ a

b

λ, λ a, λ

λ, b a, b

a

b b

a

a, b

a

b b

a

a

b a, b

Fig. 1. The minimal DFA (on the left) and minimal CDFA (on the right) of the lan-
guage {x ∈ Σ∗ | |x|a = 0 or |x|b > 0}

Learning Commutative Regular Languages 75

that would require an special study. The size of the alphabet seems to be a factor
that would increase considerably the difference between both sizes.

We can also adapt the definition of Moore machine to the commutative case.
A commutative Moore machine is a 6-tuple M = (Q, Σ, Γ, δ, q0, Φ) where Σ

(resp. Γ) is an input (resp. output) alphabet, Q = Qa1×Qa2×· · ·×Qan , (where
all Qai for 1 ≤ i ≤ n are finite sets of states), q0 ∈ Q, δ((q1, . . . , qi, . . . , qn), ai) =
(q1, . . . , δai(qi, ai), . . . , qn) where δai is a function from Qai onto Qai for any
1 ≤ i ≤ n and Φ is a function that maps Q in Γ called output function. The
behaviour ofM is given by a partial function tM : Σ∗ → Γ defined as tM(x) =
for every x ∈ Σ∗ such that Φ(δ(q0, x)) is defined.

Given a commutative Moore machineM = (Q, Σ, Γ, δ, q0, Φ) with Γ ={0, 1, ↑}
we can associate a commutative automaton AM = (Q, Σ, δ, q0, F) where F =
{q ∈ Q | Φ(q) = 1}.

Given two finite sets of words D+ and D− with D+ ∩D− = ∅, we define the
(D+, D−)-commutative prefix acceptor machine (CPAM(D+, D−)) as the com-
mutative Moore machine having Γ = {0, 1, ↑}, Q = (πa1(x), πa2 (x), . . . , πan(x))
with x ∈ Pre(D+ ∪ D−), q0 = (λ, . . . , λ) and where δ((u1, . . . , ui, . . . , un), ai)
= (u1, . . . , uiai, . . . , un) if (u1, . . . , ui, . . . , un) , (u1, . . . , uiai, . . . , un) ∈ Q
and a ∈ Σ. For every state (u1, u2, . . . , un), the value of the output function Φ
associated to (u1, u2, . . . , un) is 1, 0 depending whether there exist x such that
πa1(x) = u1, πa2(x) = u2 , . . . , πan(x) = un and belonging to D+, or to D−. In
other case the value is ↑ (undefined).

A Moore machine M = (Q, Σ, Γ, δ, q0, Φ) is consistent with (D+, D−) if for
every x ∈ D+ and any y ∼com x we have Φ(δ(q0, y)) = 1 and for every x ∈ D−
and any y ∼com x we have Φ(δ(q0, y)) = 0.

3 Inference of Commutative Regular Languages

In this section we study the inference of commutative regular languages from
positive samples and from positive and negative samples.

Firstly, we show that commutative regular languages are not inferable from
positive samples, and so, no algorithm could be given for the inference.

Proposition 3. Commutative regular languages are not inferable from positive
samples.

Proof. In order to show that the family of regular commutative languages is not
inferable from positive samples, we take the family of languages F =

⋃
n≥0{ai |

i ≤ n}∪ a∗ where all these languages are commutative, and then F also is. Now
F is superfinite, then by a standard result of [7] we conclude that the class of
commutative languages is not inferable from positive samples.

Now, since any regular language is inferable from positive and negative samples,
we describe here a new algorithm which allows us to infer faster commutative
regular languages from positive and negatives samples.

76 A. Cano Gómez and G.I. Álvarez

3.1 Description of the Algorithm CRPNI

In this section we describe an inference algorithm from negative and positive
samples (see Algorithm 1) for commutative regular languages called commutative
regular positive negative inference (CRPNI).

The definition of this algorithm is quite close to the description of the RPNI
algorithm, being the main difference the sort of states we are working with.
The main differences between them resides in the definition of CPAM(D+, D−)
and PTM(D+, D−) and how the merge operation works as consequence of the
definition of the states. For instance, in algorithm 1 any couple of states (pa, qa)
belong necessarily Σa for some a ∈ Σ.

Algorithm 1. CRPNI (D+, D−)
1. M = CPAM(D+ ∪ D−)
2. Σ = alphabet(D+ ∪ D−)
3. listcomp = generateComparisonOrder(M,Σ)
4. while listcomp �= ∅ do
5. (pa, qa) = first(listComp) (with pa, qa ∈ Qa for some a ∈ Σ)
6. listcomp = listcomp\(pa, qa)
7. push(queue, (pa, qa))
8. M ′ = M ;
9. finish = false;

10. while ¬emptyset(queue) and ¬finish do
11. (pa, qa) = pop(queue)
12. if ¬merge(M,pa, qa) then
13. M = M ′

14. finish = true
15. else
16. queue = detectNoDeterminism(queue,M)
17. end if
18. end while
19. end while
20. Return M

The algorithm 1 considers all couples of elements in the order given by subrou-
tine generateComparisonOrder, that is, considering the pairs in ascending order
on the numerical consecutive and one different symbol each time; except possibly
at the end if just one symbol remains with pairs unprocessed. Once a couple is
chosen, the algorithm saves a copy of the current machine M and tries to merge
these elements into the states of the machine. Subroutine merge(M, pa, qa) (with
pa, qa ∈ Qa for some a ∈ Σ) merges pa, qa in Qa and consequently any two states
(p1, . . . , pa, . . . , pn) and (q1, . . . , qa, . . . , qn) in Q. If the merge is successful, M
changes and subroutine detectNoDeterminism looks for couples of elements that
should be merged in order to maintain determinism, these new pairs are added
to the queue. Merges continue until queue becomes empty, but if any merge
fails, the complete chain of merges is undone. When all the pairs are considered
algorithm finishes and the automaton associated with M is the answer proposed.

Learning Commutative Regular Languages 77

λ

a

b

λ b

a

a

b

b

Fig. 2. PTM(D+ ∪ D−) with Φ(λ) =↑, Φ(a) = 1 and Φ(b) = 0 (on the left), and the
resulting automaton from the RPNI algorithm for D+ = {a} and D− = {b} (on the
right)

λ, λ

a, λ

λ, b

a, b λ, λ λ, b

a

b

b

a

b

a a

Fig. 3. CPAM(D+ ∪ D−) with Φ(λ, λ) =↑, Φ(a, λ) = 1, Φ(λ, b) = 0 and Φ(a, b) =↑,
(on the left) and the resulting automaton from the CRPNI algorithm for D+ = {a}
and D− = {b} (on the right)

Note that the order for merging states plays a crucial role in the algorithm. In
our case, the order is always we compare any state with its predecessor by <lex

and anyone of this elements one by one, in other words, if we have Σ = {a, b},
the merging order would be aa with a, bb with b, aaa with a, . . .

Example 3.1. We show in Figures 2 and 3 , CPAM(D+∪D−), PTM(D+∪D−)
and the final result of the algorithms RPNI and CRPNI when we use them with
samples D+ = a and D− = b.

3.2 Convergence of CRPNI

Let Σ = {a1, a3, . . . , an} be an alphabet, let L be a commutative language on
Σ, and A = (Q, Σ, δ, q0, F) the minimal commutative automaton of L.

Now, in order to show that the algorithm converges, it suffices to give a
characteristic sample for the inference algorithm, and show than for it CRPNI
algorithm infer the minimal deterministic automaton.

For the definition of the characteristic sample we define for 1 ≤ i ≤ n and
qai ∈ Qai , the index I(qai) ≥ 0 such that [aI(qai)

i]∼L = qai and for any j ≤ 0
with [aj]∼L = qa1 , I(qai) ≤ j.

We define the characteristic sample D = D+ ∪D− as a sample satisfying the
following condition:

78 A. Cano Gómez and G.I. Álvarez

1. for 1 ≤ i ≤ n, for any, qai
1 , qai

2 ∈ Qa1 with qai
1 	= qai

2 , there exists x ∈ D+ and
x ∈ D− (or x ∈ D− and x ∈ D+) such that πai(x) ≥ I(qai

1), πai(y) ≥ I(qai
2),

|πai(x)| − I(qai
1) = |πai(y)| − I(qai

2) and for any 1 ≤ j ≤ n with i 	= j,
πaj (x) = πaj (y).

2. for 1 ≤ i ≤ n, for any, qai
1 , qai

2 ∈ Qa1 such that qai
2 	= δ(qai

1 , ai), there exists
x ∈ D+ and y ∈ D− (or x ∈ D− and y ∈ D+) such that πai(x) ≥ I(qai

1),
πai(y) ≥ I(qai

2), |πai(x)| − (I(qai
1) + 1) = |πai(y)| − I(qai

2) and for any 1 ≤
j ≤ n with i 	= j, πaj (x) = πaj (y).

3. for any (qa1 , . . . , qan) ∈ F there exists x ∈ D+ such that (qa1 , . . . , qan) =
([πa1(x)]∼L , . . . , [πan(x)]∼L).

Proposition 4. CRPNI converges for the characteristic sample.

Proof. Let again Σ = {a1, a3, . . . , an} be an alphabet, let L be a commutative lan-
guage on Σ, andA = (Q, Σ, δ, q0, F) the minimal commutative automaton of L.

In order to show that the algorithm converges we show that the automaton we
build at any moment is a subautomaton of the minimal commutative automaton.
As the automaton that we are building is determined by Qai and δai for 1 ≤ i ≤ n
and F ⊆ Qa1 × . . . × Qan , it suffices to see that these elements are as the
ones of the minimal commutative automaton in the part already learnt. We
denote by M = (Q′, Σ, Γ, δ′, q′0, Φ) the Moore machine that initially will be
equal to CPAM(D+ ∪D−) = (Q′′, Σ, Γ, δ′′, q′′0 , Φ′) and on which we will apply
the algorithm. For any l ≥ 0 and 1 ≤ i ≤ n such that al ∈ Q′′ we will denote by
[al]M the state of Q′ corresponding to all the states merged with al in M .

For 1 ≤ i ≤ n, we will denote by Kai ⊆ Qa1 (Kernel of ai) to the set of states
that have compared with all precedent states, and for Bai ⊆ Qa1 (Border of ai)
we will denote the set {qai ∈ Qai | there exists qai

2 such that δai(q
ai

2 , ai) = qai

and qai
2 ∈ K}.

Now, it suffices to show that states and transition in Kai belong to the mini-
mal commutative automaton, and that the final states of the learnt automaton
corresponds with the states of A.

For the states, let [aj
i]M , [ak

i]M ∈ Kai choosing j and k in such a way that
I([aj

i]∼L) = j and I([ak
i]∼L) = k with [aj

i]∼L 	= [ak
i]∼L , then by condition 1 of

the definition of the characteristic sample there exists x ∈ D+ and y ∈ D− (or
x ∈ D− and y ∈ D+) such that δ(([λ]M , . . . , [λ]M), x) = ([am1

1]M , . . . , [aj
ia

mi

i]M ,
. . . , [amn

n]M), δ(([λ]M , . . . , [λ]M), y) = ([am1
1]M , . . . , [ak

i ami

i]M , . . . , [amn
n]M) and

then necessarily merge(M, [aj
i]M , [ak

i]K) fails. So, by the order of merging we
have that all states in Kai are equivalent to some state of A.

For the transition, let [aj
i]M , [ak

i]M ∈ Kai choosing j and k in such a way that
I([aj

i]∼L) = j and I([ak
i]∼L) = k with [ak

i]∼L 	= δ([aj
i]∼L , ai), then by condition

2 of the definition of the characteristic sample there exists x ∈ D+ and y ∈ D−
(or x ∈ D+ and y ∈ D−) such that δ(([λ]M , . . . , [λ]M), x) = ([am1

1]M , . . . ,

[aj
ia

mi

i]M , . . . , [amn
n]M), and δ(([λ]M , . . . , [λ]M), y) = ([am1

1]M , . . . , [ak
i ami

i]M , . . .,

[amn
n]M) and then necessarily merge(M, [aj

i]M , [ak
i]K) fails. Again by the order

of merging we have that all transitions in Kai are equivalent transition of A.

Learning Commutative Regular Languages 79

Finally, since all states and transition in K forms a subautomaton of A, it suf-
fices to see that at the end of the algorithm by condition 3 of the definition of
the characteristic sample we have that for any (qa1 , . . . , qan) ∈ F there exists
x ∈ D+ such that for (π1(x), . . . , πn(x)) = ([qa1]M , . . . , [qan]M) which is equiva-
lent to ([qa1]∼L , . . . , [qan]]∼L) with Φ([qa1]M , . . . , [qan]M) = 1 and then the algo-
rithm identifies correctly F .

4 Experimental Results

The aim of this experimentation is to evaluate the performance of the CRPNI
algorithm strategy with respect to classical inference methods such as redblue
and RPNI when they are applied to the learning of regular commutative lan-
guages. We do not do an experiment of learning regular languages in general
because CRPNI-algorithm is not able to learn general regular languages, and
even the samples could be inconsistent, i.e. D+ = {ab} and D− = {ba} is an
inconsistent sample, and in those cases the algorithms should not work. The
criteria of comparison are the recognition rate on test samples and the average
size of the hypothesis generated, the size of a model is its number of states.

The target languages are generated randomly, taking care of guarantee their
complete commutativity between the symbols. The generation strategy consists
on choose random transitions from each state previously generated and with
each symbol. To control the difficulty degree of target languages is possible to
change the number of different states available to build the target automaton.
The experimentation consists of target languages on 2 and 3 symbols alphabet.

The corpus consist of several incremental sets of different samples, tagged for
each target language. The size of the training set varies from 10 samples to 500
samples. The test set consists of 1000 samples different from training ones.

Table 1 shows the results of the first experiment. In this case, three algorithms
are compared: RPNI, redblue and CRPNI. For each one were trained 200 regular
commutative regular target languages which states number range between 4 and
30 states, their average size is 11.52 states. The corpus contains incremental
training sets of 10, 20, 30, 40, 50, 100, 200, 300, 400 and 500 samples. The
identification of each experiment shows the size of the training set, the percentage
presented for each algorithm is the average of the recognition rate on the test
set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
2 shows the behaviour of the three algorithms. The average of the states number
for each of the 200 languages learned is presented.

The results on Table 1 and Table 2 shows a notorious improvement in recog-
nition rate using the CRPNI with respect to the reference algorithms RPNI and
redblue. With 100 training samples the new algorithm reaches more than 99%
of accuracy and the size of its hypothesis is like the competitors or even smaller.

Table 3 shows the results of the second experiment, which trains bigger com-
mutative regular target languages with two symbols alphabet. The states number
of the target languages varies between 4 and 60 states, the average size is 57.46
states. Three algorithms are compared: RPNI, redblue and our proposal. The

80 A. Cano Gómez and G.I. Álvarez

Table 1. Recognition rates of RPNI, redblue and new algorithm in the first experiment

id RPNI redblue CRPNI
t10 69.74% 67.77% 83.74%
t20 75.00% 70.22% 90.43%
t30 78.18% 75.36% 93.30%
t40 79.62% 77.60% 95.75%
t50 82.20% 80.30% 98.12%
100 87.71% 86.46% 99.69%
t200 91.49% 91.25% 99.89%
t300 94.38% 93.66% 99.95%
t400 95.23% 94.74% 99.96%
t500 95.70% 96.07% 99.97%

Table 2. Average states number of RPNI, redblue and new algorithm in first experi-
ment

id RPNI redblue CRPNI
t10 4.09 4.20 4.25
t20 5.65 5.97 6.59
t30 6.65 6.99 8.70
t40 7.69 7.85 9.53
t50 8.25 8.19 9.83
t100 10.21 9.87 10.34
t200 12.58 11.78 10.48
t300 12.69 12.61 10.55
t400 13.55 13.36 10.57
t500 14.79 13.52 10.58

Table 3. Recognition rates of RPNI, redblue and new algorithm in second experiment

id RPNI redblue CRPNI
t10 70.88% 70.92% 78.55%
t50 71.73% 71.12% 90.73%
t100 73.09% 72.99% 96.72%
t200 74.19% 74.64% 99.01%
t300 75.94% 76.48% 99.52%
t400 78.30% 78.96% 99.72%
t500 80.23% 81.05% 99.78%

corpus contains incremental training sets of 10, 50, 100, 200, 300, 400 and 500
samples. The identification of each experiment shows the size of the training set,
the percentage presented for each algorithm is the average of the recognition
rate on the test set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
4 shows the behaviour of the three algorithms. The average of the states number
for each of the 200 languages learned is presented.

Learning Commutative Regular Languages 81

Table 4. Average states number of RPNI, redblue and new algorithm in third experi-
ment

id RPNI redblue CRPNI
t10 4.12 4.16 5.59
t50 11.16 11.15 29.51
t100 17.35 16.56 40.7
t200 28.10 26.51 47.05
t300 37.26 34.21 49.15
t400 43.90 40.08 50.03
t500 50.14 45.11 50.45

Table 5. Recognition rates of RPNI and new algorithm in third experiment

id RPNI CRPNI
t10 52.38% 61.67%
t20 52.41% 69.29%
t30 52.85% 77.18%
t40 52.28% 82.96%
t50 52.97% 87.32%
t100 54.06% 96.38%
t200 57.58% 98.84%
t300 58.87% 99.48%
t400 59.80% 99.66%
t500 60.86% 99.77%

Second experiment shows, again, a clear superiority of CRPNI with respect to
the reference ones, almost 20 points are the quantitative difference between them
in recognition rate. Beside, the size of the hypothesis proposed becomes smaller
than those of the reference algorithms as the size of the training set grows.

Table 5 shows the results of the third experiment. In this case, a three symbols
alphabet is used. Two algorithms are compared: RPNI and our proposal; redBlue
is not reported because previous experiments showed similar behaviour between
RPNI and redblue. We trained 200 regular commutative regular target languages
which states number range between 6 and 90 states, the average size is 35.23
states. The corpus contains incremental training sets of 10, 20, 30, 40, 50, 100,
200, 300, 400 and 500 samples. The identification of each experiment shows the
size of the training set, the percentage presented for each algorithm is the average
of the recognition rate on the test set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
6 shows the behaviour of the algorithms. The average of the states number for
each of the 200 languages learned is presented.

In the third experiment the reference algorithm gets stick on a recognition
rate of 60% while CRPNI reaches a recognition rate higher than 99% with 300
training samples. The size of the hypothesis of the new algorithm stabilises from
50 training samples on while RPNI ones grows until the last training set.

82 A. Cano Gómez and G.I. Álvarez

Table 6. Average states number of RPNI and new algorithm in third experiment

id RPNI CRPNI
t10 4.60 8.09
t20 6.56 17.47
t30 8.31 26.24
t40 9.98 33.01
t50 11.41 36.14
t100 18.24 35.37
t200 28.57 35.69
t300 37.99 34.51
t400 46.11 34.58
t500 54.29 34.62

Comparing results with |Σ| = 2 and |Σ| = 3 it is noticeable the increase in
performance of CRPNI as soon as alphabet size grows. These results lead us to
think that CRPNI could behave even better with bigger alphabets.

Although this experiments are suitable to be improved to make them even
harder, this preliminary test is very promising about the utility of this new
algorithm for the inference of commutative regular languages, not only because
of the excellent recognition rates achieved but also because of the reasonable size
of the hypothesis obtained.

5 Conclusions

In this work we study the problem of inferring the class of regular commutative
languages. After showing that they are not inferable from positive data we show
that some improvement in its inferring from positive and negative samples can
be done. For this purpose we give the CRPNI (commutative regular positive
negative inference) algorithm. These properties lead us to define commutative
deterministic automata and commutative Moore machines for the algorithm.
Finally, by an experimentation we also show that CRPNI algorithm has an
excellent behaviour in practice. This shows that this kind of works can be useful
for real problems.

References

1. Ruiz, J., Cano, A., Garćıa, P.: Inferring subclasses of regular languages faster using
RPNI and forbidden configurations. In: Adriaans, P.W., Fernau, H., van Zaanen,
M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 28–36. Springer, Heidelberg
(2002)

2. Agluin, D.: Inductive inference of formal languages from positive data. Information
and Control 45(2), 117–135 (1980)

Learning Commutative Regular Languages 83

3. Alquézar, R., Sanfeliu, A.: Incremental grammatical inference from positive and
negative data using unbiased finite state automata. In: Shape, Structure and Pat-
tern Recogniton, Proc. Int. Workshop on Structural and Syntactic Pattern Recog-
nition, SSPR 1994, pp. 291–300. World Scientific, Singopore (1995)

4. Cichelo, O., Kremer, S.C.: Inducing grammars from sparce data sets: A survey of
algorithms and results. Journal of Machine Learning Research 4, 603–632 (2003)

5. Clark, A., Florêncio, C.C., Watkins, C., Serayet, M.: Planar languages and learn-
ability. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.)
ICGI 2006. LNCS (LNAI), vol. 4201, pp. 148–160. Springer, Heidelberg (2006)

6. Coste, F., Fredouille, D.: Efficient ambiguity detection in C-NFA. In: Oliveira, A.L.
(ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 25–38. Springer, Heidelberg (2000)

7. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

8. Hopcroft, J., Ullman, J.: Introduction to automata theory, languages and compu-
tation. Addison-Wesley, Reading (1980)

9. Pearlmutter, B.A., Lang, K.J., Price, R.A.: Results of the abbadingo one DFA
learning competition and a new evidence state merging algorithm. In: Honavar,
V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer,
Heidelberg (1998)

10. Lang, K.J.: Random dfa’s can be approximately learned from sparse uniform. In:
Proceedings of the Fifth Annual ACM Workshop on Computational Learning The-
ory, pp. 45–52 (1992)

11. Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In:
Pattern Recognition and Image Analysis (1992)

12. Pin, J.-E.: Varieties of formal languages. North Oxford, London (1986) (Traduction
of Variétés de langages formels)

13. Pin, J.-É.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of formal languages, ch. 10, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

Learning Left-to-Right and Right-to-Left

Iterative Languages

Jeffrey Heinz

University of Delaware, Newark DE 19716, USA
heinz@udel.edu

Abstract. The left-to-right and right-to-left iterative languages are pre-
viously unnoticed subclasses of the regular languages of infinite size that
are identifiable in the limit from positive data. Essentially, these language
classes are the ones obtained by merging final states in a prefix tree and
initial states in a suffix tree of the observed sample, respectively. Strik-
ingly, these classes are also transparently related to the zero-reversible
languages because some algorithms that learn them differ minimally from
the ZR algorithm given in Angluin (1982). Second, they are part of the
answer to the challenge provided by Muggleton (1990), who proposed
mapping the space of language classes obtainable by a general state-
merging algorithm IM1. Third, these classes are relevant to a hypothesis
of how children can acquire sound patterns of their language—in par-
ticular, the hypothesis that all phonotactic patterns found in natural
language are neighborhood-distinct (Heinz 2007).

1 Introduction

One motivation behind the learning paradigm known as identification in the
limit from positive data [1] is the observation that children encounter only pos-
itive examples of natural language [2]. Gold’s (1967) result that no class of
languages including all finite languages plus one infinite language is learnable
this way—and hence the regular, context-free, and context-sensitive languages
are not either—launched research to find learnable subclasses which crosscut the
Chomsky Hierarchy [3,4,5,6,7,8,9,10,11,12,13]. This approach is also justifiable
from a linguistic perspective because language typologists repeatedly observe
that the extensive variation that exists in natural languages appears to be lim-
ited, though stating exact universals is difficult [14,15,16].

One focus of the grammatical inference community is finding learnable classes
of languages which reach higher regions of the Chomsky Hierarchy [11,12,13].
This is partly because the most complex known natural language patterns are
at least mildly context-sensitive [17,18], and partly because of the technical
challenge. However, the hypothesis that all phonological patterns—i.e. sound
patterns—are regular is well-supported [19,20,21]. In other words, although sen-
tence well-formedness seems to necessitate mildly-context sensitive computations
over words, word well-formedness seems only to require regular computations

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 84–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Left-to-Right and Right-to-Left Iterative Languages 85

over individual sounds. Thus it remains an important open question what sub-
classes of the regular languages (if any) are identifiable in the limit from positive
data and which properly include word well-formedness patterns observed cross-
linguistically (see also [22]). This question is especially interesting in light of
acquisition research which indicates infants acquire many word well-formedness
patterns within one year of birth [23,24,25]; i.e. before they can talk.

This paper addresses this question by introducing and characterizing the left-
to-right iterative (LRI) and right-to-left iterative (RLI) languages, which are
relevant to natural language word well-formedness patterns (henceforth phono-
tactic patterns). Essentially, these language classes are the ones obtained by
merging final states in a prefix tree and initial states in a suffix tree of the
observed sample, respectively. They are interesting for at least four reasons.

First, [7] proposes a general state-merging algorithm IM1 for learning sub-
classes of the regular languages. Essentially, IM1 returns a nondeterministic
finite-state acceptor by merging states according to some state equivalence cri-
teria. To my knowledge, no systematic study of the language classes obtained in
this way has been undertaken. This paper contributes to this research program,
whose known results and open questions are summarized in §3. Second, this
work introduces the concept of head-canonical acceptor which is the smallest
reverse deterministic acceptor for a regular language (useful in understanding
RLI languages). Third, these two language classes are closely related to—but
incomparable with—the zero-reversible languages since algorithms that identify
them are essentially the same as algorithm ZR in [5] with one line removed.

Finally, LRI and RLI languages are relevant to phonotactic patterns. When
hundreds of phonotactic patterns are collected and placed in the Chomsky Hier-
archy, they all fall into the class of the regular languages [21]. More specifically,
they are Noncounting, a class known not to be identifiable in limit from positive
data [26,22]. [21] hypothesizes all phonotactic patterns belong to a smaller class
called neighborhood-distinct (defined in §3), which crosscuts the Subregular Hi-
erarchy. Neighborhood-distinctness is a complex property, making it difficult to
analyze. LRI and RLI languages are properly thought of as basic components
of this more complex class, and therefore this paper also makes a step towards
understanding neighborhood-distinctness.

This paper is organized as follows. §2 introduces notation and definitions. §3
discusses a general state-merging algorithm due to [7]. §4 presents the
neighborhood-distinct hypothesis. §5 characterizes the LRI languages in
automata- and language-theoretic terms and gives a procedure which identifies
this class in the limit from positive data, and §6 does the same for RLI languages.
§7 summarizes the contributions and open questions.

2 Preliminaries

This section establishes notation and basic definitions. A set π of nonempty
subsets of S is a partition of S iff the elements of π are pairwise disjoint and
their union equals S. Each block in π containing x ∈ S is denoted [x]π . A partition

86 J. Heinz

π refines another partition π′ iff every block of π’ is a union of blocks of π. If π is
a partition of a set S and S′ ⊆ S, then the restriction of π to S′ is the partition
π′ consisting of all sets B′ that are nonempty and are the intersection of S′ and
some block of π. The trivial partition is the unique partition where |π| = |S|.

2.1 Strings and Languages

Σ denotes a fixed finite set of symbols, the alphabet. Let Σn, Σ≤n, Σ∗ denote all
sequences over this alphabet of length n, of length less than or equal to n, and of
any finite length, respectively. For sequence s, range(s) is the set of elements in
s. λ denotes the empty string and |w| denotes the length of string w. The reverse
of string u is denoted ur. A string u is a prefix (suffix) of w iff there exists v in
Σ∗ such that w = uv (w = vu).

A language L is a subset of Σ∗. Lr = {ur : u ∈ L}. L1·L2 = {uv :
u ∈ L1 and v ∈ L2}. Like strings above, let L0 = {λ}, Ln+1 = Ln·L, and
L∗ =

⋃
n∈� Ln. Let L|k|, L≤|k| denote all strings in L with length exactly k

and length less than or equal to k, respectively. The length of a finite lan-
guage L is length(L) = Σw∈L|w|. The prefixes of language L are given by
Pref(L) = {u : ∃v so that uv ∈ L}. The suffixes of a language are defined
as Suff(L) = {u : ∃v so that vu ∈ L}. The tails of w given L, is denoted
by TL(w) = {u : wu ∈ L}. Also, the heads, of w given L, is denoted by
HL(w) = {u : uw ∈ L}. A language L naturally induces partitions πTL:
[u]πTL = [v]πT L iff TL(u) = TL(v) and πHL: [u]πHL = [v]πHL iff HL(u) = HL(v).
The Myhill-Nerode theorem states that a language is regular iff πTL is finite.

2.2 Identification in the Limit

A positive text S of a language L is an infinite sequence such that range(S) = L.
St denotes the first t elements of S. A learner φ is an algorithm which maps finite
sequences of words to grammars. The learner φ identifies a class of languages
L in the limit from positive data iff for all L ∈ L, for all positive texts S for L,
there is some i ∈ � such that for all j > i, φ(Sj) is a grammar recognizing L.
A language class with such a φ is identifiable in the limit from positive data. If
for each L ∈ L, there is a finite language SL ⊆ L such that for all other L′ ∈ L
which contain SL, L ⊆ L′, then L is identifiable in the limit from positive data
and SL is called a characteristic sample for L in L [4,5].

2.3 Finite State Acceptors

For a given Σ, a finite-state acceptor (FSA) is a quadruple A = (Q, I, F, δ)
such that Q is finite, I and F are subsets of Q and δ : Q × Σ → �

Q. δ is
extended recursively so that δ : �Q × Σ∗ → �Q. The language of an acceptor
A is L(A) = {w ∈ Σ∗ : δ(I, w) ∩ F 	= ∅}. Languages recognizable by FSAs
are regular. We assume familiarity with regular expressions, which also define
regular languages.1 [27] provides other well-known characterizations of this class.
1 See [34] for the regular expression notation used in this paper.

Learning Left-to-Right and Right-to-Left Iterative Languages 87

Consider two acceptors A = (Q, I, F, δ) and A′ = (Q′, I ′, F ′, δ′). Acceptors
A and A′ are equivalent iff L(A) = L(A′). A and A′ are isomorphic iff there is
a bijection h from Q to Q′ such that h(I) = I ′, h(F) = F ′, and for all q ∈ Q
and a ∈ Σ it is the case that h(δ(q, a)) = δ′(h(q), a). A′ is a subacceptor of A iff
Q′ ⊆ Q, I ′ ⊆ I, F ′ ⊆ F , and for every q′ ∈ Q′ and a ∈ Σ, δ′(q′, a) ⊆ δ(q′, a). It
follows that if A′ is a subacceptor of A then L(A′) ⊆ L(A). The reverse of A is
Ar = (Q, F, I, δr), where δr(q, a) = {q′ : q ∈ δ(q′, a)} for all a ∈ Σ, q ∈ Q.

An acceptor A = (Q, I, F, δ) is forward deterministic iff |I| ≤ 1 and each
q ∈ Q has at most one b-successor for all b ∈ Σ. A is reverse deterministic iff
|F | ≤ 1 and each q ∈ Q has at most one b-predecessor for all b ∈ Σ. An acceptor
which is both forward and reverse deterministic is called zero-reversible [5].

An acceptor is trimmed iff for all q ∈ Q, there are u, v ∈ Σ∗ such that
q ∈ δ(I, u) and δ(q, v)∩ F 	= ∅. An acceptor is cyclic iff it is trimmed and has at
least one loop. An acceptor which is not cyclic is acyclic. Two important acyclic
acceptors are prefix and suffix trees. The prefix (suffix) tree of a finite language
S is forward (backward) deterministic, and is defined below.

PT(S) ST(S)

Q = Pref(S)
I = {λ}
F = S

δ(u, a) = ua iff u, ua ∈ Q

Q = Suff(S)
I = S
F = {λ}

δ(au, a) = u iff u, ua ∈ Q

These acceptors are not mirror images of each other, though they are equivalent.
It is easy to show for any finite language S, PT r(S) is isomorphic to ST (Sr).

The tail-canonical acceptor for a regular language L is denoted AT (L) and
is defined below. Acceptors isomorphic to the tail-canonical acceptor are tail-
canonical. For a regular language L, a tail-canonical acceptor is the forward
deterministic acceptor with the fewest states.The head-canonical acceptor for
L is AH(L) is also defined below. Acceptors isomorphic to the head-canonical
acceptor are called head-canonical. A head-canonical acceptor is the acceptor
with the fewest states for a regular language L that is backward deterministic.

AT (L) AH(L)

Q = {TL(u) : u ∈ Pref(L)}
I = {TL(λ)}
F = {TL(w) : w ∈ L}

δ(TL(u), a) = TL(ua) iff u, ua ∈ Pref(L)

Q = {HL(u) : u ∈ Suff(L)}
I = {HL(w) : w ∈ L}
F = {HL(λ)}

δ(HL(au), a) = HL(u) iff u, au ∈ Suff(L)

Theorem 1 shows how one can obtain an equivalent head canonical acceptor
from a tail canonical one: reverse, determinize, minimize, and reverse again.

Theorem 1. Let L be a regular language. Then Ar
H(L) is isomorphic to AT (Lr).

The proof is omitted (see [21]), but the needed bijection is h(L) = Lr. Head
canonical acceptors allow another definition of zero-reversible languages: they
are those languages whose tail and head canonical acceptors are isomorphic.

The following notions are used in §§3-6. The k-leaders of a state q are denoted
Ik(q) = {u ∈ Σ≤k : ∃q′ ∈ Q such that q ∈ δ(q′, u)}. The k-followers of a state

88 J. Heinz

are denoted Ok(q) = {u ∈ Σ≤k : ∃q′ ∈ Q such that q ∈ δ(q′, u)}. (I and O
invoke incoming and outgoing, respectively.) The function final(q) = � if q ∈ F ,
else q. The function nonfinal(q) = �� if q 	∈ F , else q. The function start(q) = �

if q ∈ I, else q. The function nonstart(q) = �� if q 	∈ I, else q. For any q ∈ Q,
b ∈ Σ, the b-successors of q are δ(q, b) and the b-predecessors of q are δr(q, b).

For some acceptor A = (Q, I, F, δ), a sequence q0q1 . . . qk is a path in A iff for
all 0 ≤ i ≤ k − 1, there is a ∈ Σ such that qi+1 ∈ δ(qi, a). Paths q0q1 . . . qk such
that q0 = qk and for 1 ≤ i ≤ k− 1, qi 	= q0 are called loops. Let loops(A) denote
the set of loops in A. Also, if p = q0q1 . . . qk is a path then strings(p) = {u : u =
a0a1 . . . ak−1 where for all 0 ≤ i ≤ k − 1, qi+1 ∈ δ(qi, ai)}.

3 Partitioning Acceptors

Let A = (Q, I, F, δ) be any acceptor. Any partition π of Q, defines another
acceptor A/π = (Q′, I ′, F ′, δ′) defined as follows:

Q′ = {B : [q]π such that q ∈ Q}
I ′ = {B : [q]π such that q ∈ I}
F ′ = {B : [q]π such that q ∈ F}

δ′([q]π , a) = {[q′]π : q′ ∈ δ(q, a)}

For any acceptor A and π over the states of A it follows that if p ∈ δ(q, u) then
[p]π ∈ δ′([q]π, u). Hence L(A/π) includes all strings in L(A), possibly more.

Remark 1. For any A and π over Q, if p = q0 . . . qk is a path in A which is not
a loop and [q0]π = [qk]π then p′ = [q0]π . . . [qk]π is a new loop in A/π.

Remark 2. Consider PT (S) and any π over the states of PT , and consider any
state B in PT (S)/π. If |B| = 1 then I1(B) ≤ 1. In other words, states which are
not merged with others have at most one 1-leader. Similarly for any state B in
ST (S)/π, if |B| ≤ 1 then O1(B) ≤ 1.

It is also known that if a sample of words of some regular language L is sufficient—
that is if generated by AT (L) then every transition in AT (L) would be exercised—
then there exists some partition πT of PT (S) such that PT (S)/πT is isomorphic
to AT (L) [5]. Similarly, it follows that if generating S exercises every transition in
the head canonical acceptor, that there is some some partition πH of ST (S) such
that ST (S)/πH is isomorphic to AH(L).

The merging procedure above is independent of the decision of state-equiva-
lence. The latter aspect determines the generalization strategy of the learner,
and ultimately the class of languages that can be learned (if any). [7] proposes
a general state-merging algorithm IM1 based partly on this observation, and
functions f : Q → A, which naturally induce a partition πf over Q: for all
q1, q2 ∈ Q, [q1]πf

= [q2]πf
iff f(q1) = f(q2). IM1 computes PT (S)/πf .

Here IM1 is generalized to compute M(S)/πf , where M(S) is any well-defined
FSA recognizing the sample. This study limits M to prefix and suffix trees. It

Learning Left-to-Right and Right-to-Left Iterative Languages 89

follows that the class of languages obtained by an algorithm which computes
M(S)/πf depends not only on f but on M as well.

For example, if M = PT and f = Ik then the language class obtained is
the Locally (k + 1) Testable in the Strict Sense (LTSS) [6]. If only start states
are merged in the prefix tree (i.e M = PT and f = start), or only final states
in the suffix tree (M = ST and f = final), it is easy to see that Lfin is
the class of languages obtained (since no states are actually merged). In §§5-
6 it is shown that the left-to-right iterative languages (LRI) and right-to-left
iterative languages (RLI) are the language classes obtained by merging final
states in the prefix tree and start states in the suffix tree, respectively. Table
1 summarizes the known language classes identifiable in the limit from positive
data by varying parameters M and f . The fact that language classes of some cells
are the reverse of language classes of other cells reveals an underlying algebra,
whose exact properties await future discovery.

4 The Neighborhood-Distinct Hypothesis

Part of the motivation for filling in Table 1 comes from the hypothesis that all
natural language phonotactic patterns are 1-1 neighborhood-distinct [21]. The j-k
neighborhood of a state is the tuple

ndj
k(q) = (Ij(q), Ok(q), [q ∈ F], [q ∈ I])

For example, the 1-1 neighborhood of state 5 in Fig. 1 is ({g}, {h, i}, 0, 0). An
acceptor is j-k neighborhood-distinct iff every state has a unique j-k neighborhood.
The languages of such acceptors are called j-k neighborhood-distinct (j-k ND).

[21] shows three main classes of phonotactic patterns—patterns over adja-
cent segments, long distance patterns such as vowel and consonantal harmony,
and rhythmic patterns—are 1-1 ND. These patterns crosscut the Subregular Hi-
erarchy. For example, Navajo and Sarcee have sibilant harmony patterns [28].
In Navajo, this pattern is symmetric: the sibilant sound [s] may not precede [S]
(sounds s and sh, respectively) in a word, even if they are separated by arbitrarily
many other sounds, and vice versa. In Sarcee, the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]. The Navajo pattern is Locally
1-Testable since one can decide if a string obeys the sibilant harmony pattern by

Table 1. Language Classes Obtained by Merging States in Prefix and Suffix Trees

f PT (S)/πf ST (S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final LRI Lfin

start Lfin RLI

nonfinal ? {L∗
1 · L2 : L1, L2 ⊆ Σ1}

nonstart {L1· L∗
2 : L1, L2 ⊆ Σ1} ?

90 J. Heinz

checking whether [s] and [S] are both present in the string. This procedure does
not work for Sarcee since the order matters; hence it is Noncounting (also called
Locally Testable with Order [26]).2 These patterns are shown in Table 2 where
C represents any consonant except sibilants, s sibilants like [s], V any vowel, and
S sibilants like [S].

More examples comes from the different kinds of ways languages stress sylla-
bles in words [29]. In Sierra Miwok, main stress falls on the initial syllable if it is
‘heavy’, else on the peninitial syllable.3 Secondary stress falls on all other heavy
syllables. On the other hand, in Kwakwala, main stress falls on the leftmost
‘heavy’ syllable, but if there are none, on the final syllable. Patterns like Sierra
Miwok are called bounded and are mostly 3-LTSS. Patterns like Kwakwala are
called unbounded and Noncounting. Table 2 shows regular expressions for these
patterns. The symbols L and H indicate light and heavy syllables, and acute
and grave accents main and secondary stress, respectively. It is easy to verify
that the examples in Table 2 are all 1-1 ND by drawing acceptors for them.

Table 2. Phonotactic Patterns

Pattern Example Language Regular Expression

Symmetric Harmony Navajo (C+V+S)*+(C+V+s)*

Asymmetric Harmony Sarcee (C+V+S)*(C+V+s)*

Bounded Stress Sierra Miwok (LH́ + LĹ + H́)(H̀+L)*

Unbounded Stress Kwakwala (L*H́(H+L)*) + (L*L)

There is currently no language-theoretic characterization of the j-k ND class
due partly to its complexity. Also, [30,21,31] present an algorithm like IM1
which returns the intersection of the acceptors obtained by merging same-1-
1-neighborhood states in prefix and suffix trees of the observed sample. While
this algorithm appears to identify many 1-1 ND patterns (including almost all
attested phonotactic patterns), it does not identify the class.4 It remains an open
question exactly what class is identified by this procedure. The line of research
here aims to understand the primitive components that make up the neighbor-
hood (see Table 1). The idea is that this language class is some composition of
language classes obtained by simpler learners like the ones in Table 1 acting in
concert (cf. [33]). Classes LRI and RLI are a small step towards this goal since

2 [21] defines the precedence languages which contain long-distance harmony patterns.
This class is identifiable in the limit from positive data with a string extension
learner.

3 A heavy syllable is typically more sonorous than a light syllable. Languages may
make a heavy/light syllable distinction in different ways. See [29].

4 For fixed j-k, the j-k ND class is finite, and so there are many learners which can
learn this class [32]. However it is interesting to consider learners which generalize
on the basis of hypothesized universal properties of natural language patterns, see
[16] for discussion.

Learning Left-to-Right and Right-to-Left Iterative Languages 91

they relate to the indicator functions [q ∈ F] and [q ∈ I], which are boolean
compositions of the functions final, nonfinal and start, nonstart, respectively.

5 Left-to-Right Iterative Languages

LRI languages are defined as the intersection of the following two classes:

1. L1fd = {L : whenever u, v ∈ L, TL(u) = TL(v)}.
2. LLL∗fin = {L1·L∗

2 : L1, L2 ∈ Lfin}

LRI languages are so named because words fix some strings to the left edge and
then may iterate other strings rightward. As shown below, LRI languages are
exactly the ones recognizable by acceptors which are forward deterministic, have
at most one final state, and whose loops, if there are any, pass through the final
state, if there is one. A schematic is given in Fig. 1.

Additionally, LRI is identifiable in the limit by a learner which computes
PT (S)/πfinal. Although this acceptor is not necessarily deterministic, it has
one final state, all of its loops pass through this final state, and it can be made
deterministic without altering those properties or the language recognized.

0
1a

2
b

4

c

e

3

d

5
g

f

6

h

7

i

k
j

l

Fig. 1. Schematic of acceptors recognizing LRI languages

Call the class of languages recognized by acceptors which are forward deter-
ministic with at most one final state 1-final-deterministic and denote this class
with L1fd. The proof of Theorem 2 is straightforward and thus omitted.

Theorem 2. L is 1-final-deterministic iff whenever u, v ∈ L, TL(u) = TL(v).

Note that neither LLL∗fin nor L1fd are identifiable in the limit from positive
data. LLL∗fin contains all finite languages and at least one infinite language. As
for L1fd, a limit point proof [32] establishes this claim, which is sketched here.
Since {abc}, {abc, abbc}, {abc, abbc, abbbc}, . . . ab∗c all belong to L1fd, no learner
can identify this subset in the limit from positive data—and hence not L1fd.
Although neither LLL∗fin nor L1fd is identifiable in the limit, their intersection
(LRI) is. Below is an automata-theoretic characterization of LRI.

Theorem 3. L ∈ LRI iff (1) AT (L) = (Q, I, F, δ) is 1-final-deterministic and
(2) if L is infinite, then every loop in AT (L) passes through the final state, i.e.
F ⊆

⋂
p∈loops(A) range(p).

92 J. Heinz

Proof. Consider any L ∈ LRI. Both directions of (1) follow from Theorem 2.
Now assume L is infinite and let qf denote the unique final state. Note L = L1·L∗

2

where L1, L2 ∈ Lfin. Suppose there is a loop p = q0q1 . . . qkq0 in A such that
no qi = qf . Let v ∈ strings(p). Since AT (L) is trimmed, there are u, w such
that δ(I, u) = q0 and δ(q0, w) = qf . It follows that uv∗w ⊆ L. Since L = L1·L∗

2

and since p does not contain qf , either uv∗ ⊆ L1 or v∗w ⊆ L2. But this is
a contradiction, since L1, L2 ∈ Lfin. Thus every loop must pass through qf .
It remains to be shown that if all loops pass through the unique final state of
AT (L), that L = L1·L∗

2, L1, L2 ∈ Lfin. It can be shown that L1 is the language
recognized by the largest trimmed acyclic subacceptor of AT (L) and L2 is the
union of strings(p) for all loops p = qf q1 . . . qkqf . �
Remark 3. It follows if L ∈ LRI then the language of any subacceptor of AT (L)
is also left-to-right iterative.

Remark 4. In terms of regular expressions, it follows that a language L belongs
to LRI if L = (a0 + a1 + . . . an)(b0 + b1 + . . . bm)* for n, m ∈ �, ai, bi ∈ Σ∗ and
for all i, j, no ai (bi) is a proper prefix of aj (bj).

With Theorem 3 and Remark 4 it is easy to see that the stress pattern of Miwok
is in LRI, but not the other patterns in Table 2. LRI languages do not appear
to characterize phonotactic patterns in general, even though they are related to
them via the composition which constructs the neighborhood.

Also, it can be shown that LRI languages are incomparable with the ZR
languages. In Fig. 1 if j = i then the acceptor still accepts a language in LRI,
but it is no longer backward deterministic and therefore its language is not in
ZR. Similarly if instead we add a transition from state 1 to itself labeled g, then
the language of the acceptor belongs to ZR, but not LRI.

The next lemma illustrates how generalization takes place, and is used to
establish the fact that every language in LRI has a characteristic sample.

Lemma 1. Let L ∈ L1fd and let x, yi ∈ Σ∗ for 0 ≤ i ≤ k such that x, xyi ∈ L.
Then x(y1 + y2 + . . . + yk)∗ ⊆ L.

Proof. For some k ∈ �, let x, xy1, xy2, . . . xyk ∈ L. By induction on n, it is
shown x(y1 + y2 + . . . + yk)n ⊆ L. Clearly when n = 0, x ∈ L. Now assume for
some n ∈ �, if x, xy1, xy2, . . . xyk ∈ L then x(y1 +y2 + . . .+yk)n ⊆ L. It remains
to be shown that for all 1 ≤ i ≤ k, x(y1 + y2 + . . . + yk)nyi ⊆ L. For any w ∈ L,
yi ∈ TL(w) because x, xyi ∈ L and L ∈ L1fd so by Theorem 2, TL(w) = TL(x).
By the inductive hypothesis, for all w ∈ x(y1 + y2 + . . . + yk)n, w ∈ L and so
therefore wyi ∈ L. It follows that x(y1 + y2 + . . . + yn)n+1 ⊆ L. �
Theorem 4. For L ∈ LRI, there exists a characteristic sample SL.

Proof. For any L ∈ LRI, let L1, L2 ∈ Lfin such that L = L1·L∗
2. Then S =

L1∪L1·L2 is characteristic. Note S is finite. Let L′ ∈ LRI containing S. Consider
any w ∈ L. It is sufficient to show that w ∈ L′. Since w ∈ L and L ∈ LRI, there
is some k ∈ � such that w = xy1y2 . . . yk where x ∈ L1 and for any 1 ≤ i ≤ k,
yi ∈ L2. It is also the case that x, xyi ∈ S. Since S ⊆ L′, x(y1+y2+. . .+yk)∗ ⊆ L′

by Lemma 1. Clearly w ∈ x(y1 + y2 + . . . + yk)∗ and thus is in L′. �

Learning Left-to-Right and Right-to-Left Iterative Languages 93

As an example, if L = L1·L∗
2 is in LRI and L1 = {u, v} and L2 = {x, y, z}

then SL = {u, v, ux, uy, uz, vx, vy, vz}. Since a characteristic sample SL for any
L ∈ LRI exists, a learner guessing L after exposure to SL is picking the smallest
LRI language consistent with S.

For all L in LRI, the size of SL grows polynomially with respect to the size
of AT (L) (usually measured in states, see [35]). This is primarily because L =
L1·L2 where L1 and L2 are finite languages, and thus the size of AT (L) is in the
worst case approximates length(L1) + length(L2). Now the length of SL equals
(|L2|+1)length(L1)+ |L1|length(L2). Since for finite L, |L| ≤ length(L)+1, the
size of SL is bounded by a quadratic function over length(L1) and length(L2).

PT (S)/πfinal is not necessarily deterministic. We show that application of S-
UPDATE, an algorithm which merges states that are b-successors of some state,
returns an equivalent acceptor which is deterministic.

Algorithm 1. Pseudo-code for S-UPDATE (forward determinize)
Input: an acceptor A.
Output: a forward deterministic acceptor A′.
Initialization
Let A0 = (Q0, I0, F0, δ0), π0 the trivial partition of Q0, and i = 0.
Let LIST contain all pairs (q1, q2) such that q1 and q2 are distinct b-successors of
some q0 ∈ Q for all b ∈ Σ.
Merging
while LIST �= ∅ do

Remove some element (q1, q2) from LIST.
Let πi+1 be the one obtained by merging blocks [q1]πi and [q2]πi

For all [q], [r], [s] in πi+1, b ∈ Σ, add (r, s) to LIST iff [r] and [s] are distinct
b-successors to [q].
Increase i by one.

end while
Termination: Let f = i and output the acceptor A0/πf .

In Fig. 1, for example, if h = i then S-UPDATE removes this nondeterminism
by merging states 6 and 7. Note this merge does not alter the relevant character
of the acceptor or the language recognized by the acceptor. If merging two states
creates additional nondeterminism (e.g. l = k in Fig. 1), then the b-successors
of the source of non-determinism are added to LIST.

Theorem 5. Let S be any finite sample. Then L(PT (S)/πfinal) ∈ LRI.

Proof. Let A = PT (S)/πfinal. Let A′ be the acceptor obtained by submitting A
to S-UPDATE which removes sources of nondeterminism by merging states. It
is sufficient to show L(A′) ∈ LRI and L(A′) = L(A). The proof is by induction.
The assumptions here are inductive hypothesis. Assume there is a partition of
πi such that A/πi = (Qi, Ii, Fi, δi) where

1. there is only one final state [qf]πi ,
2. all loops in A pass through [qf]/πi,

94 J. Heinz

3. no state other than [qf]πi has more than one 1-leader,
4. L(A/πi) = L(A).
5. if there exist distinct q0, q1, q2 ∈ Qi, and b ∈ Σ such that [q1]πi and [q2]πi

are b-successors to [q0]πi , then any path connecting [q1]πi to [q2]πi (or vice
versa) goes through [q0]πi

Note if the conditional in (5) is false and (1-5) holds, then L(A/πi) is determin-
istic and hence A/πi belongs to LRI.

If the conditional in (5) is true, we show the acceptor obtained by merging
[q1]πi and [q2]πi eliminates this nondeterminism but maintains properties (1-
4). Let πi+1 obtain by merging [q1]πi and [q2]πi . Since πi has only one final
state, πi+1 must as well (1). If [q1]πi 	= [qf]πi and [q2]πi 	= [qf]πi then it follows
that the 1-leaders of [q1]πi is {b}, as it is for for [q2]πi . Therefore [q1]πi+1 =
[q2]πi+1 also has one 1-leader, namely {b}. On the other hand, if either [q1]πi or
[q1]πi equals [qf]πi then the b-successors of [qf]πi+1 = [qf]πi . In any situation, it
follows that no state other than [qf]πi+1 has more than one 1-leader (3). Thus
merging [q1]/πi and [q2]/πi creates no loops that do not go through [qf]/πi+1.
It follows that all loops in A/πi+1 pass through [qf]/πi+1 (2). Finally it follows
that L(A/πi+1) = L(A/πi) since any path connecting [q1]πi and [q2]πi (or vice
versa) goes through [q0]πi (4). Thus this merging eliminates the nondeterminism
at [q0]πi but maintains properties (1-4).

The base of the induction is established with π0 the trivial partition of A.
Since only final states are merged in PT (S), A contains only 1 final state (1).
Also, since PT (S) is acyclic, all loops in A pass through qf as any loops are the
result of merging states (Remark 1) (2). No state other than qf has more than
one 1-leader (Remark 2) (3). Also, clearly L(A/π0) = L(A) (4). This completes
the induction and so the final partition obtained by S-UPDATE πf is such that
L(A) = L(A/πf) ∈ LRI. �

Supplementing PT (S)/πfinal with Algorithm 1 provides an algorithm almost
identical to the algorithm ZR in [5]. In ZR, pairs of states are placed on LIST if
they are to be merged. LIST is initialized to include all final states, and pairs of
states are added if they are a source of non-forward-determinism or non-reverse-
determinism. Adding S-UPDATE to the computation of PT (S)/πfinal is exactly
the same except there is no procedure for updating LIST when two blocks share
the same b-predecessors (i.e. reverse-determinism is not enforced). Because it
does strictly less than ZR, which is tractable, supplementing PT (S)/πfinal with
Algorithm 1 is also tractable.

The lemma and theorems below establish that a learner which computes
PT (S)/πfinal at each point in the text identifies LRI in the limit.

Lemma 2. Let S be any nonempty positive sample, PT (S) the prefix tree for S,
and πf the final partition found by applying Algorithm 1 to PT (S)/πfinal. Then
πf is the finest partition π such that (PT (S)/πfinal)/πf is LRI.

Proof. The proof (by induction) is essentially identical to the second part of
Lemma 25 in [5]. �

Learning Left-to-Right and Right-to-Left Iterative Languages 95

Theorem 6. Let S be any nonempty finite sample. Then L(PT (S)/πfinal) is
the smallest language in LRI which contains S.

Proof. Theorem 5 establishes that L(PT (S)/πfinal) ∈ LRI. Let L be any LRI
language containing S and let π be the restriction of the partition πLto the ele-
ments of Pref(S). Lemma 1 shows that PT (S)/π is isomorphic to a subacceptor
of AT (L), and it follows that L(PT (S)/π) is contained in L. Theorem 3 shows
that AT (L) is LRI, and thus PT (S)/π is LRI, by Remark 3. By Lemma 2, πf

therefore refines π. Hence, L(PT (S)/π) is contained in L, and L(PT (S)/πfinal)
is the smallest LRI language containing S. �

Theorem 7. LRI is identifiable in the limit from positive data.

Proof. Let φ(t) = PT (St)/πfinal. By Theorem 4, L contains a characteristic
sample S0. For any text T for L ∈ LRI, there is a i such that S0 ⊆ range(Ti). For
n ≥ i, L(PT (Ti)/πf) is the smallest LRI language containing Ti by Theorems 5
and 6. Since Ti contains characteristic S0, this is L. Thus φ converges to L. �

6 Right-to-Left Iterative Languages

RLI languages are defined as the intersection of the one-start-reverse determin-
istic languages (L1srd) and the reverse of LLL∗fin:

1. L1srd = {L : wheneveru, v ∈ L, HL(u) = HL(v)}.
2. LL∗Lfin = {L∗

1·L2 : L1, L2 ∈ Lfin}

RLI languages are the reverse of languages in LRI. RLI languages are exactly
the ones recognizable by acceptors which are reverse deterministic, have at most
one start state, and whose loops, if there are any, pass through the start state,
if there is one. A schematic is obtained by reversing the acceptor in Fig. 1.
RLI is is identifiable in the limit from a process which essentially merges initial
states in suffix trees. The characteristic sample for language L∗

1·L2 ∈ RLI is
L1·L2 ∪L2. The theorems establishing these results parallel exactly those of §5.
Simply subsitute ST (S), start, AH(L), b-predecessors, P-UPDATE and so on for
PT (S), f inal, AT (L), b-successors, and S-UPDATE, respectively. (P-UPDATE
eliminates reverse determinisim by merging states with the same b-predecessors.)

Finally, [10] introduces a family of function-distinguishable language classes,
of which ZR is one such class. It would be interesting to relate the results here
to the ones obtained in that work.

7 Conclusion

LRI and RLI languages are previously unnoticed language classes which are
infinite in size, identifiable in the limit from positive data, closely related to
the zero-reversible languages, and relevant to a hypothesis regarding a universal
property of phonotactic patterns. Understanding these classes not only begins

96 J. Heinz

to shed light on the neighborhood-distinct hypothesis, but also on the algebra
underlying the state-merging operations, the reverse operator, prefix and suffix
trees, and tail and head canonical acceptors. I hope this algebra is soon made
clear, that the question marks in Table 1 are soon filled, and that future re-
search investigates complex functions, like the neighborhood function, which are
defined compositionally in terms of simpler functions. Finally, the day is not far
off for three communities with overlapping interests to come together to develop
a successful research program: the grammatical inference community which un-
derstands how different kinds of logically possible patterns could be learned,
linguists who are familiar with natural language patterns, and acquisitionists
who are experimenting with models of how children acquire grammar.

References

1. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

2. Marcus, G.: Negative evidence in language acquisition. Cognition 46, 53–85 (1993)
3. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer

and System Sciences 21, 46–62 (1980)
4. Angluin, D.: Inductive inference of formal languages from positive data. Informa-

tion Control 45, 117–135 (1980)
5. Angluin, D.: Inference of reversible languages. Journal for the Association of Com-

puting Machinery 29(3), 741–765 (1982)
6. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict

sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, pp. 325–
338 (1990)

7. Muggleton, S.: Inductive Acquisition of Expert Knowledge. Addison-Wesley, Read-
ing (1990)

8. Kanazawa, M.: Identification in the limit of categorical grammars. Journal of Logic,
Language, and Information 5, 115–155 (1996)

9. Denis, F., Lemay, A., Terlutte, A.: Some classes of regular languages identifiable
in the limit from positive data. In: Adriaans, P.W., Fernau, H., van Zaanen, M.
(eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 63–76. Springer, Heidelberg (2002)

10. Fernau, H.: Identification of function distinguishable languages. Theoretical Com-
puter Science 290, 1679–1711 (2003)

11. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298(1), 179–206 (2003)

12. Oates, T., Armstrong, T., Bonache, L.B.: Inferring grammars for mildly context-
sensitive languages in polynomial-time. In: Sakakibara, Y., Kobayashi, S., Sato, K.,
Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 137–147.
Springer, Heidelberg (2006)

13. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

14. Greenberg, J.: Some universals of grammar with particular reference to the or-
der of meaningful elements. In: Universals of Language, pp. 73–113. MIT Press,
Cambridge (1963)

15. Mairal, R., Gil, J. (eds.): Linguistic Universals. Cambridge University Press, Cam-
bridge (2006)

Learning Left-to-Right and Right-to-Left Iterative Languages 97

16. Stabler, E.P.: Computational models of language universals: Expressiveness, learn-
ability and consequences. In: Cornell Symposium on Language Universals (2007)

17. Shieber, S.: Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8, 333–343 (1985)

18. Kobele, G.: Generating Copies: An Investigation into Structural Identity in Lan-
guage and Grammar. PhD thesis, University of California, Los Angeles (2006)

19. Johnson, C.D.: Formal Aspects of Phonological Description. Mouton, The Hague
(1972)

20. Kaplan, R., Kay, M.: Regular models of phonological rule systems. Computational
Linguistics 20(3), 331–378 (1994)

21. Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University
of California, Los Angeles (2007)

22. Pullum, G., Rogers, J.: Aural pattern recognition experiments and the subregu-
lar hierarchy. In: Kracht, M. (ed.) Proceedings of 10th Mathematics of Language
Conference, pp. 1–7. University of California, Los Angeles (2007)

23. Jusczyk, P., Cutler, A., Redanz, N.: Infants’ preference for the predominant stress
patterns of english words. Child Development 64, 675–687 (1993)

24. Jusczyk, P., Luce, P., Charles-Luce, J.: Infants’ sensitivity to phonotactic patterns
in the native language. Journal of Memory and Language 33, 630–645 (1994)

25. Mattys, S., Jusczyk, P.: Phonotactic cues for segmentation of fluent speech by
infants. Cognition 78, 91–121 (2001)

26. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

27. Kracht, M.: The Mathematics of Language. Mouton de Gruyter, Berlin (2003)
28. Hansson, G.: Theoretical and typological issues in consonant harmony. PhD thesis,

University of California, Berkeley (2001)
29. Hayes, B.: Metrical Stress Theory. Chicago University Press (1995)
30. Heinz, J.: Learning quantity insensitive stress systems via local inference. In: Pro-

ceedings of the Eighth Meeting of the ACL Special Interest Group in Computa-
tional Phonology at HLT-NAACL, New York City, USA, pp. 21–30 (2006)

31. Heinz, J.: On the role of locality in learning stress patterns. Phonology (to appear)
32. Jain, S., Osherson, D., Royer, J.S., Sharma, A.: Systems That Learn: An Introduc-

tion to Learning Theory, 2nd edn. The MIT Press, Cambridge (1999)
33. Case, J., Moelius, S.: Parallelism increases iterative learning power. In: Hutter, M.,

Servedio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 49–63.
Springer, Heidelberg (2007)

34. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

35. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–138 (1997)

Learning Bounded Unions of Noetherian Closed

Set Systems Via Characteristic Sets

Yuuichi Kameda1, Hiroo Tokunaga1, and Akihiro Yamamoto2

1 Department of Mathematics and Information Sciences
Graduate School of Science and Engineering,

Tokyo Metropolitan University
1-1 Minami-Ohsawa, Hachioji-shi 192-0397 Japan

tokunaga@tmu.ac.jp, kameda-yuuiti@ed.tmu.ac.jp
2 Graduate School of Informatics, Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto 606-850 Japan

akihiro@i.kyoto-u.ac.jp

Abstract. In this paper, we study a learning procedure from positive
data for bounded unions of certain class of languages. Our key tools
are the notion of characteristic sets and hypergraphs. We generate hy-
pergraphs from given positive data and exploit them in order to find
characteristic sets.

1 Introduction

In this paper, we study a learning procedure from positive data for a certain class
of languages. In the following, “learning” always means “learning from positive
data.” The class of languages we consider is so called a closed set system (see
§2 for its definition). In [4], we studied inferability of a closed set system in
order to understand relations between the class of ideals of the polynomial ring
and inferability from positive data. The polynomial ring is a fundamental object
in algebra, and Hilbert’s basis theorem about the finite generation of its ideals
has been historically important. In [5], Hayashi pointed out that if we consider
ideals of the polynomial ring as formal languages, the statement of Hilbert’s basis
theorem can be understood as inferability from positive data. In fact, Stephan
and Ventsov [9] showed that a finite basis of any ideal of a commutative ring
is regarded as a finite tell-tale. In [4], we introduced a notion of a Noetherian
closed set system and proved that a closed set system L has finite elasticity if
and only if it is Noetherian. Hence by the result of Wright et al. (Theorem 2.4
in §2), the class of bounded union ∪≤kL also has finite elasticity. From the proof
of Theorem 2.4, however, we do not know how its learning procedure looks like.
On the other hand, Kobayashi introduced the notion of a characteristic set in
[7] and proved that (i) if the class L has finite elasticity, then every language
in L has a characteristic set and (ii) L is inferable from positive data if every
language in L has a characteristic set. Our goal of this note is to give a learning

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 98–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Bounded Unions of Noetherian Closed Set Systems 99

procedure for bounded unions of certain class of Noetherian closed set systems
by using characteristic sets.

The contents of this paper is as follows. In §2, we summarize some facts on
inferablity from positive data and closed set systems. In §3, we give a learning
procedure of bounded unions of a Noetherian closed set system under certain
settings as follows:

(i) Given a closed set L ∈ L and its characteristic set F , there exists an
algorithm to compute a characteristic set of L in ∪≤kL from F .

(ii) ∪≤kL is compact (See §2 for its definition).

Our procedure is given by generating a certain hypergraph, which is main
feature of our result. In §§4 and 5, we apply our procedure to bounded unions of
the class of ideals of the polynomial ring and tree pattern languages, respectively.

2 Preliminaries

2.1 Inferability from Positive Data

In this article, a language L is a subset of some countable set U such that L
is expressed L(G) by some finite expression G. We call this finite expression a
hypothesis. A set of all hypotheses H is called a hypothesis space. Let L be the
set of all languages {L(G) | G ∈ H}. We assume that L is uniformly recursive,
that is, there is a recursive function f(w, G) such that f(w, G) = 1 iff w ∈ L(G)
for every w ∈ U and G ∈ H.

A positive data (or positive presentation) of L ∈ L is an infinite sequence
σ : s1, s2, . . . of elements of L such that L = {s1, s2, . . .}. An inference algorithm
M is that:

• M receives incrementally an elements of a positive data σ of a language,
• M outputs a hypothesis Gn ∈ H when M receives n-th element of σ.

L is inferable in the limit from positive data if there exists an inference algorithm
M satisfies that for all L ∈ L and an arbitrary positive data of L, the output
sequence of M converges to a hypothesis G such that L(G) = L.

A finite tell-tale of L ∈ L is a finite subset S of L such that L is a minimal
in the class {L′ ∈ L | S ⊂ L′} with respect to set inclusion. If L is minimum,
S is called a characteristic set of L. Note that the idea of characteristic set is
essentially the same as that of test set in [6].

Theorem 2.1. ([1]) L is inferable in the limit from positive data if and only
if there exists a procedure to enumerate elements of a finite tell-tale of every
L ∈ L.

Theorem 2.2. ([7]) If every L ∈ L has a characteristic set, then L is inferable
from positive data.

100 Y. Kameda, H. Tokunaga, and A. Yamamoto

We say that (i) L has finite thickness if the set {L ∈ L | w ∈ L} is finite for
any w ∈ U and (ii) L has infinite elasticity if there exists an infinite sequence
w0, w1, . . . of elements of U and infinite sequence L1, L2, . . . of languages such
that {w0, . . . , wn−1} ⊂ Ln but wn /∈ Ln. We say that L has finite elasticity if it
does not have infinite elasticity.

Theorem 2.3. ([7],[8]) (1) If L has finite elasticity, then every L in L has a
characteristic set.
(2) If L has finite thickness, then L has finite elasticity.

We define a class of the union of languages as follows:

L ∪ L′ = {L1 ∪ L2 | L1 ∈ L, L2 ∈ L′},
∪≤kL = {L1 ∪ . . . ∪ Lm | m ≤ k, Li ∈ L (i = 1, . . . , m)}.

It is known that

Theorem 2.4. ([12]) If L and L′ have finite elasticity, then L ∪ L′ has finite
elasticity.

It immediately follows that, if L has finite elasticity, then ∪≤kL also has. There-
fore, by Theorems 2.2 and 2.3, we have:

Corollary 2.1. If L has finite elasticity, then ∪≤kL is inferable from positive
data.

Definition 2.1. ∪≤kL is said to be compact if it satisfies the following condi-
tion:
For each m ≤ k and L, Li ∈ L (i = 1, . . . , m), if L ⊂ L1 ∪ . . . ∪ Lm, then there
exists i0 such that L ⊂ Li0 .

2.2 Closed Set System

Let 2U be the power set of U . A mapping C : 2U → 2U is called a closure
operator if C satisfies:
(CO1) X ⊂ C(X),
(CO2) C(C(X)) = C(X), and
(CO3) X ⊂ Y ⇒ C(X) ⊂ C(Y),
where X and Y are arbitrary subsets of U . A set X ⊂ U is called closed if
X = C(X). A closed set system C is the class of all closed sets of a closure
operator.

Remark 2.1. In a closed set system, the intersection of arbitrary number of
closed sets is closed, but the union of closed sets is not necessarily closed.

In the following, we regard C as a class of languages and assume that it is
recursive. If a closed set X ∈ C is represented X = C(Y) for some finite set
Y ⊂ U , X is called a finitely generated closed set.

Learning Bounded Unions of Noetherian Closed Set Systems 101

Lemma 2.1. ([4]) Let X = C(Y) be a closed set. The followings are equivalent:
1. Y is finite,
2. Y is a finite tell-tale of X, and
3. Y is a characteristic set of X.

An immediate consequence of Lemma 2.1 and Theorem 2.1 is as follows:

Corollary 2.2. C is inferable from positive data if and only if every closed set
is finitely generated.

A closed set system C is Noetherian if it contains no infinite strictly ascending
chain of closed sets. This condition is equivalent to finite elasticity [4, Theorem
7]. Hence it follows that:

Corollary 2.3. A Noetherian closed set system is inferable from positive data.

3 Main Result

As for inferability of closed set systems from positive data, we refer to [4], and
use result there freely.

Let L be a Noetherian closed set systems over some set U and C denote its
closure operator. By [4, Theorem 7], L has finite elasticity and it implies that
the class ∪≤kL also has finite elasticity. In particular, by [4, §3], any element
L of L is of the form L = C(F) for a finite subset F of U . In this section, we
consider learning procedure for ∪≤kL.

Remark 3.1. For an element L1 ∪ . . . ∪ Lm ∈ ∪≤kL, we assume that Li 	⊆ Lj

for any i, j(i 	= j).

Let F be a finite subset of U . F is a characteristic set of C(F) in L. Since C(F)
is also a member of ∪≤kL, C(F) has a characteristic set in ∪≤kL, and we denote
it by χ(C(F),∪≤kL) (we may assume that F ⊆ χ(C(F),∪≤kL)). Throughout
this section, we assume the following:

(∗) There exists an algorithm to compute χ(C(F),∪≤kL) from F .

In §§4 and 5, we give examples of Noetherian closed set systems satisfying (∗).
Let L1 ∪ . . . ∪ Lm ∈ ∪≤kL and let σ : f1, f2, . . . , fn, . . . be a positive data of

L1 ∪ . . .∪Lm. We inductively define a hypergraph denoted by Gn having the set
of vertices V (Gn) = {f1, . . . , fn} as follows:

Inductive definition of Gn

Let V (•) and HE(•) denote the set of vertices and hyperedges of a hypergraph
•, respectively.

For n = 1, we put

V (G1) = {f1}, HE(G1) = {{f1}}.

102 Y. Kameda, H. Tokunaga, and A. Yamamoto

Suppose that Gn is already given and fn+1 is presented. We construct Gn+1 in
the following way:

Procedure 1: Construction of Gn+1 from Gn;
Input: fn+1 and Gn;
Output: a hypergraph Gn+1;
begin
1. put V = V (Gn) ∪ {fn+1} and HE = HE(Gn);
2. for each subset F ⊂ V such that fn+1 ∈ F and �(F) ≥ 2 do begin
3. let E = χ(C(F),∪≤kL);
4. if E ⊂ V then begin
5. for each element E of HE do
6. if E ⊂ E then remove E from HE;
7. add E to HE;
8. end;
9. end;
10. if there is no E ∈ HE such that fn+1 ∈ E then add {fn+1} to HE;
11. return Gn+1 = (V, HE);
end.

Note that {fn+1} is a characteristic set of C({fn+1}) in ∪≤kL.
We are now in a position to give our learning procedure:

Procedure 2: Learning ∪≤kL;
Input: a positive presentation σ : f1, f2, . . . , fn, . . . for L1 ∪ . . . ∪ Lm;
Output: a sequence of at most k-tuples of characteristic sets

(χ(1)
1 , . . . , χ

(1)
m1), (χ(2)

1 , . . . , χ
(2)
m2), . . . ;

begin
1. S = ∅; /*Possible candidates for characteristic sets*/
2. Put n = 1;
3. repeat
4. construct the hypergraph Gn for f1, f2, . . . , fn;
5. put S = HE(Gn);
6. choose at most k maximal elements from S with respect to the

order as below;
7. output (at most) k-tuple in 6;
8. add 1 to n;
9. forever;
end.

We define an ordering on S as follows:

χ1 < χ2 ⇔ C(χ1) � C(χ2)
ELSE C(χ1)=C(χ2) and χ1≺χ2 under a certain suitable ordering ≺.

Learning Bounded Unions of Noetherian Closed Set Systems 103

The ordering ≺ does not affect the validity of Procedure 2, so we can adopt a
convenient ordering (for example, the order of appearance in S.)

Remark 3.2. Note that C(χ(n)
i) 	⊆ C(χ(n)

j) for any i, j (i 	= j).

Now our theorem is the following:

Theorem 3.1. Suppose that ∪≤kL is compact. ∪≤kL is identifiable in the limit
from positive data via Procedure 2.

We need some lemmas to prove Theorem 3.1.

Lemma 3.1. Let E be an arbitrary hyperedge of Gn. Then C(E) ⊂ L1∪ . . .∪Lm.
Moreover, if L is compact, then there exists Li such that C(E) ⊆ Li.

Proof. By our construction of Gn, there exists F ⊆ V (Gn) such that E =
χ(C(F),∪≤kL). Since E ⊂ C(F), C(E) ⊆ C(C(F)) = C(F). On the other hand,
E is also a characteristic set of C(F) in L, C(E) ⊇ C(F), i.e., C(E) = C(F).
Moreover, since E is a characteristic set of C(F) in L≤k, C(F) ⊆ L1 ∪ . . .∪Lm.
The second statement is immediate from the definition of compactness.

Lemma 3.2. Suppose that ∪≤kL is compact. (1) Let L1, . . . , Lm be distinct
members of L. If Li 	⊂ Lj for all i, j(i 	= j), then Li 	⊂ ∪m

j=1,j �=iLj. (2) Let
M ∈ L and let L1, . . . , Lm be as above. If M ⊆ L1 ∪ . . . ∪ Lm and Li ⊆ M for
some i, then Li = M .

Proof. (1) If Li ⊂ ∪m
j=1,j �=iLj, then Li ⊆ Lj0 for some j0 by compactness. This

contradicts to our assumption. (2) By compactness, there exists Lj0 such that
M ⊆ Lj0 . Hence Li ⊆M ⊆ Lj0 . By our assumption, Li = Lj0 .

Proof of Theorem 3.1. Let L1 ∪ . . . ∪ Lm be an arbitrary element in ∪≤kL.
Suppose that Li = C(Fi), where Fi is a finite subset of Li. Since Fi can be
considered as χ(Li,L), at a certain finite step N0, all elements of Fi are pre-
sented. Therefore, at a certain step N after the step N0, one can assume that all
elements of χ(C(Fi),∪≤kL) for i = 1, . . . , m are presented. Let E1,N , . . . , EmN ,N

be hyperedges of GN as in Output of Procedure 2. By construction, each Ej,N is
a characteristic set of closed set C(Ej,N) contained in L1 ∪ . . . ∪ Lm. Note that
C(Ei,N) 	⊆ C(Ej,N) for any i, j(i 	= j) by Remark 3.2.

Claim. For each χ(C(Fi),∪≤kL), there exists a unique Eji,N of HE(GN) with
C(Fi) = C(Eji,N).

By our construction of GN , χ(C(Fi),∪≤kL) is either added as a hyperedge or
contained in a hyperedge added at a certain step. Hence there exists a hy-
peredge Ei of GN such that χ(C(Fi),∪≤kL) ⊆ Ei for each i. Since C(Fi) =
C(χ(C(Fi),∪≤kL)) ⊆ C(Ei), C(Ei) = C(Fi) by Lemmas 3.1 and 3.2(2). As
Li = C(Ei) is a maximal element of L contained in L1 ∪ . . .∪Lm, there exists a

104 Y. Kameda, H. Tokunaga, and A. Yamamoto

hyperedge Ej,N such that Li = C(Fi) = C(Ej,N) (Note that Ej,N is not necessar-
ily equal to Ei). Suppose that there exist two distinct Ej1,N and Ej2,N such that
χ(C(Fi),∪≤kL) ⊆ Ejl

(l = 1, 2). Then C(Fi) = C(χ(C(Fi),∪≤kL)) ⊆ C(Ejl
)

(l = 1, 2). By Lemma 3.2, C(Fi) = C(Ej1,N) = C(Ej2,N), but this contradicts to
our assumption.

We finally show that mN = m. By Claim, mN ≥ m. If mN > m, then there
exists Ej0,N such that (i) C(Ej0,N) 	= Li for i = 1, . . . , m and (ii) C(Ej0,N) ⊂
L1 ∪ . . . ∪ Lm. But these condition implies that C(Ej0,N) ⊂ C(Eji,N) for some
ji. This contradicts to our choice of Ei,N (i = 1, . . . , mN).

Remark 3.3. Note that the hypotheses in our algorithm are not necessarily
consistent. However, one can modify them into consistent ones without difficulty.

4 Learning Bounded Set Unions of Polynomial Ideals

We denote the set of polynomials of n variables with Q-coefficients by
Q[x1, . . . , xn]. A subset I of Q[x1, . . . , xn] is called an ideal if it satisfies the
following:

• For each f, g ∈ I, f ± g ∈ I.
• For each f ∈ I and h ∈ Q[x1, . . . , xn], hf ∈ I.

We denote the set of all ideals by I. For a finite subset F = {f1, . . . , fr} ⊂
Q[x1, . . . , xn], we define the ideal generated by f1, . . . , fr, which is denoted by
〈f1, . . . , fr〉 or 〈F 〉, as follows:

〈F 〉 :=
{ r∑

i=1

hifi | hi ∈ Q[x1, . . . , xn]
}
.

Note that the correspondence F �→ 〈F 〉 defines a closure operator on
Q[x1, . . . , xn]. By Hilbert’s basis theorem for polynomial ideals, we have the
following: for each I ∈ I, there exists a finite set F such that I = 〈F 〉. An
interpretation of this statement from machine learning view point is that “I has
a finite elasticity.” Hence, I is a Noetherian closed set system with the closure
operator F �→ 〈F 〉. Furthermore, the existence of a reduced Groebner basis for
given I in theory of Groebner basis says that one can take the set of reduced
Groebner bases as a hypothesis space of I.

The following lemma is a special case of [10, Theorem 9]. This lemma implies
that ∪≤kI satisfies the condition (∗).

Lemma 4.1. Let I ∈ I. A characteristic set χ(I,∪≤kI) can be constructed if
the reduced Groebner basis G = {g1, . . . , gr} of I is given.

Remark 4.1. For instance we have an example of χ(I,∪≤kI) as follows:

hi = g1 + cig2 + . . . + cr−1
i gr (i = 1, . . . , M)

Learning Bounded Unions of Noetherian Closed Set Systems 105

where M = k(r− 1)+ 1 and ci’s are distinct elements of Q. Note that no hi will
vanish since {g1, . . . , gr} is the reduced Groebner basis.

Remark 4.2. This lemma also implies that ∪≤kI is compact: suppose that
I = 〈g1, . . . , gr〉 is contained in I1 ∪ . . . ∪ Im. Let M = m(r − 1) + 1 and take
h1, . . . , hM as above. By the pigeon-hole principle, there exists some j such that
Ij includes at least r of hi’s. This means I ⊂ Ij .

According to above arguments, we have:

Theorem 4.1. ∪≤kI is identifiable in the limit from positive data via Proce-
dure 2.

Example 4.1. Let us consider learning 〈x2, y3〉∪〈x3 , y2〉 ∈ ∪≤2I. Let a positive
presentation σ be x2, y3, y2, x2 + y3, x3, x3 + y2, By the argument of §3 of
[10], we can take a characteristic set χ(〈f, g〉,∪≤2I) = {f, g, f + g} for distinct
polynomials f and g. The hyperedges of hypergraphs constructed by Procedure
1 are as follows:

HE1 = {{x2}},
HE2 = {{x2}, {y3}},
HE3 = {{x2}, {y3}, {y2}},
HE4 = {{x2, y3, x2 + y3}, {y2}},
HE5 = {{x2, y3, x2 + y3}, {y2}, {x3}},
HE6 = {{x2, y3, x2 + y3}, {y2, x3, x3 + y2}}.

Hence Procedure 2 learns 〈x2, y3〉 ∪ 〈x3, y2〉 when n = 6.

5 Learning Bounded Unions of Tree Pattern Languages

In [3], Arimura et al. studied learnability of bounded union of tree pattern lan-
guages. However, they did not seem to use characteristic sets explicitly. We here
give a procedure learning bounded unions of tree pattern languages by using our
result in §3. Let Σ be a finite set and V be a countable set disjoint from Σ. The
elements of Σ and V are called symbols and variables, respectively. We assume
that there is a mapping rank that maps an element of Σ to a non-negative in-
tegers. We define the rank of elements of V to be zero. A tree pattern p over Σ
is a tree satisfying following properties:

• p has the root.
• p is directed.
• p is ordered.
• Each node of p is labeled by elements of Σ ∪ V .
• The number of children of each node is equal to the rank of the label of the
node.

A tree over Σ is a tree pattern over Σ that has no nodes labeled by an
element of V . T PΣ and TΣ denote the set of all tree patterns and all trees over
Σ, respectively.

106 Y. Kameda, H. Tokunaga, and A. Yamamoto

A substitution is a mapping θ from V to T PΣ . pθ denotes the tree pattern
obtained from applying a substitution θ to p. We define a relation on T PΣ as
follows: p � q ⇔ there exists a substitution θ such that p = qθ. We denote p ≡ q
if p � q and q � p, and call that p and q are equivalent. Note that p ≡ q if and
only if p = qθ for some renaming θ of variables.

Lemma 5.1. (1) If p � q and q � r, then p � r.
(2) Let |p| be the number of nodes of p. If p � q, then |p| ≥ |q|.
(3) For any p ∈ T PΣ, there are finitely many q ∈ T PΣ such that p � q.

Lemma 5.2. For any subset S 	= ∅ of T PΣ, there exists an element lca(S) of
T PΣ such that:

(i) p � lca(S) for any p ∈ S,
(ii) if p � r for any p ∈ S, then lca(S) � r.

lca(S) is uniquely determined up to equivalence. It is called the least common
anti-instance of S. If S is finite, then lca(S) can be computed in polynomial
time [8].

A tree pattern language defined by p is the set L(p) = {t ∈ TΣ | t � p}. We
denote the set of all tree pattern languages {L(p) | p ∈ T PΣ} by T PL(Σ, V).
We may omit (Σ, V) if it is clear from the context.

Lemma 5.3. (1) p � q ⇔ L(p) ⊂ L(q) for any p, q ∈ T PΣ.
(2) L(t) = {t} for any t ∈ TΣ.
(3) lca(t1, t2) � p for any p ∈ T PΣ and t1, t2 ∈ L(p).

In general, the class T PL itself may be not a closed set system. Hence we
introduce a closed set system C over T PL.
For S ⊂ T PΣ , we define C(S) = {p ∈ T PΣ | p � lca(S)}. Note that C(S) =
C(lca(S)).

Lemma 5.4. C is a closure operator on T PΣ.

Proof. (CO1) Obvious by the definition of lca. (CO2) In general, lca(C(S)) =
lca(S) holds. Thus C(C(S)) = C(lca(C(S))) = C(lca(S)) = C(S). (CO3)
Suppose S1 ⊂ S2 ⊂ T PΣ . Clearly, lca(S1) � lca(S2). Lemma 5.1(1) implies
C(S1) = C(lca(S1)) ⊂ C(lca(S2)) = C(S2).

C denotes the closed set system defined by C. The following lemma indicates a
fundamental relation between T PL and C.

Lemma 5.5. For every p ∈ T PΣ, L(p) = C(p) ∩ TΣ.

Lemma 5.6. (1) T PL and C have finite elasticity.
(2) If �(Σ) > k, ∪≤kT PL is compact.
(3) ∪≤kC is compact.

Learning Bounded Unions of Noetherian Closed Set Systems 107

Proof. (1) For any fixed k ∈ N, the set {p ∈ T PΣ | |p| ≤ k} is finite up to
equivalence. This fact and Lemma 5.1(2) imply that, for any p ∈ T PΣ , there
are finitely many q ∈ T PΣ such that p � q. This means that T PL and C have
finite thickness. Therefore, they have finite elasticity by Theorem 2.3.
(2) See [2].
(3) Suppose that C(p) ⊂ C(p1) ∪ . . . ∪ C(pm) (m ≤ k). Since p ∈ C(p), there
exists i0 such that p ∈ C(pi0). Hence C(p) ⊂ C(pi0).

Let Σ0 = {a ∈ Σ | rank(a) = 0} and Σ+ = {f ∈ Σ | rank(f) > 0}. In the
following, we assume that neither Σ0 nor Σ+ is empty.

Lemma 5.7. (1) For every p ∈ T PΣ, there exists a characteristic set χ(L(p),
T PL) consisting of at most two elements.
(2) For every S ⊂ T PΣ, there exists a characteristic set χ(C(S), C) consisting
of one element.

Lemma 5.8. (1) Suppose �(Σ+) ≥ k. For every p ∈ T PΣ, there exists a char-
acteristic set χ(L(p),∪≤kT PL) consisting of at most k + 1 elements. (In fact,
there exists a set {t1, . . . , tk+1} ⊂ TΣ such that lca(ti, tj) = p for each i 	= j. See
[11] for detail.)
(2) For every S ⊂ T PΣ, there exists a characteristic set χ(C(S),∪≤kC) consist-
ing of one element.

Lemma 5.8(2) makes algorithm learning ∪≤kC much simpler.

Procedure 3: Learning ∪≤kC;
Input: a positive presentation σ : q1, q2, . . . , qn, . . . for

C(p1) ∪ . . . ∪ C(pm);
Output: a sequence of at most k-tuples of tree patterns

(r(1)
1 , . . . , r

(1)
m1), (r

(2)
1 , . . . , r

(2)
m2), . . . ;

begin
1. S = ∅; /*The set to memorize a given sequence of q1, . . . , qn*/
2. put n = 1;
3. repeat
4. add qn to S;
5. choose at most k maximal elements from S with respect to �

up to equivalence;
6. output (at most) k-tuple in 5;
7. add 1 to n;
8. forever
end.

We assume �(Σ+) ≥ k in order to make Lemma 5.8(1) holds. By using Pro-
cedure 3, ∪≤kT PL is inferred as follows:

108 Y. Kameda, H. Tokunaga, and A. Yamamoto

Procedure 4: Learning ∪≤kT PL;
Input: a positive presentation σ : t1, t2, . . . , tn, . . . for

L(p1) ∪ . . . ∪ L(pm);
Output: a sequence of at most k-tuples of tree patterns

(q(1)
1 , . . . , q

(1)
m1), (q

(2)
1 , . . . , q

(2)
m2), . . . ;

begin
1. generate “positive data” of C(p1) ∪ . . . ∪ C(pm) from σ;
2. run Procedure 3 by “positive data” generated in 1;
3. output the output of 2;
end.
Generation of “positive data” (GPD);
4. S = ∅; /*The set to memorize a given sequence of t1, . . . , tn*/
5. put n = 1;
6. repeat
7. add tn to S;
8. output tn;
9. for each subset F of S with tn ∈ F and �(F) = k + 1 do
10. if lca(ti, tj) = lca(F) for all ti, tj ∈ F (i 	= j) then
11. output lca(F);
12. add 1 to n;
13. forever;
end.

Theorem 5.1. ∪≤kT PL is identifiable in the limit from positive data via Pro-
cedure 4.

Proof. It suffices to show that GPD generates a positive data for A = C(p1) ∪
. . . ∪ C(pm). Let p be an arbitrary element of A. If p ∈ TΣ , then p ∈ A ∩ TΣ =
L(p1) ∪ . . . ∪ L(pm), so there exists a number j such that tj = p. Thus, p is
enumerated by step 8 of Procedure 4. If not, then there exists a set F that
satisfies the condition of step 11 by Lemma 5.8(1). Let n0 be the least n sat-
isfying {t1, . . . , tn} ⊃ F . It is clear that p is enumerated at Step 11 when n = n0.

We end this section by giving an example.

Example 5.1. Suppose Σ = {a, b, f, g}, rank(a) = rank(b) = 0, rank(f) =
2, rank(g) = 1, and x, y ∈ V . Let us consider learning L(f(a, x)) ∪ L(f(x, b)) ∈
∪≤2T PL. Let a positive presentation σ be as follows:

t1 = f(a, a), t2 = f(a, f(a, b)), t3 = f(b, b),
t4 = f(a, g(a)), t5 = f(a, b), t6 = f(g(a), b), . . .

This time Procedure 4 learns L(f(a, x)) ∪ L(f(x, b)) as follows:

•n = 1 : GPD outputs t1 and Procedure 4 outputs (t1).
•n = 2 : GPD outputs t2 and Procedure 4 outputs (t1, t2).

Learning Bounded Unions of Noetherian Closed Set Systems 109

•n = 3 : lca(t1, t2) = f(a, x), lca(t1, t3) = f(x, x), lca(t2, t3) = f(x, y). Hence
GPD outputs only t3. Procedure 4 chooses two larger elements from {t1, t2, t3}
and output them.
•n = 4 : Since lca(t1, t2) = lca(t1, t4) = lca(t2, t4) = f(a, x), GPD outputs t4
and f(a, x). Procedure 4 outputs two maximal elements of {t1, . . . , t4, f(a, x)},
that is, f(a, x) and t3.
•n = 5 : Since lca(t1, t5) = lca(t2, t5) = lca(t4, t5) = f(a, x), GPD outputs t5
and f(a, x). Procedure 4 outputs f(a, x) and the larger element of {t3, t5}.
•n = 6 : Since lca(t3, t5) = lca(t3, t6) = lca(t5, t6) = f(x, b), GPD outputs t6
and f(x, b). Procedure 4 outputs (f(a, x), f(x, b)).

6 Conclusions

We have seen that the notion of characteristic set and its computability play
important role to give a learning procedure of bounded unions of Noetherian
closed set systems. The existence of characteristic set has not been used to
give a concrete learning procedure. This is probably because the existence of
a characteristic set for each language is weaker condition than finite thickness
or finite elasticity. Also both finite thickness and finite elasticity are properties
concerning family of language, while the existence of a characteristic set just
depends on each language. The point of our paper is to put emphasis on a
characteristic set and to show that it is useful for certain classes of languages.

Acknowledgment

This research is partially supported by Grant-in-Aid 19300046 from JSPS. The
second author is partially supported by K18-XI-234 from Kayamori Foundation
of Informational Science Advancement.

References

1. Angluin, D.: Inductive Inference of Formal Languages from Positive Data. Infor-
mation and Control 45, 117–135 (1980)

2. Arimura, H., Shinohara, T., Otsuki, S.: Polynomial Time Inference of Unions of
Tree Pattern, Languages. In: Proc. the 2nd Workshop on Algorithmic Learning
Theory (ALT 1991), pp. 105–114 (1991)

3. Arimura, H., Shinohara, T., Otsuki, S.: A Polynomial Time Algorithm for Finding
Finite Unions of Tree Patterns. In: Brewka, G., Jantke, K.P., Schmitt, P.H. (eds.)
NIL 1991. LNCS, vol. 659, pp. 118–131. Springer, Heidelberg (1993)

4. de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of Closed
Set Systems From Positive Data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi,
A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg
(2007)

5. Hayashi, S.: Mathematics Based on Learning. In: Cesa-Bianchi, N., Numao, M.,
Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 7–21. Springer, Hei-
delberg (2002)

110 Y. Kameda, H. Tokunaga, and A. Yamamoto

6. Kapur, S., Bilardi, G.: On uniform learnability of language families. Information
Processing Letters 44, 35–38 (1992)

7. Kobayashi, S.: Approximate Identification, Finite Elasticity and Lattice Structure
of Hypothesis Space, Technical Report, CSIM 1996-2004, Dept. of Compt. Sci. and
Inform. Math., Univ. of Electro-Communications (1996)

8. Lassez, J.L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J.
(ed.) Foundations of Deductive Databases and Logic Programming, pp. 587–626.
Morgan-Kaufman, San Francisco (1988)

9. Stephan, F., Ventsov, Y.: Learning Algebraic Structures from Text. Theoretical
Computer Science 268, 221–273 (2001)

10. Takamatsu, I., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Computing Charac-
teristic Sets of Bounded Unions of Polynomial Ideals. In: Satoh, K., Inokuchi, A.,
Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 318–329.
Springer, Heidelberg (2008)

11. Tokunaga, H., Yamamoto, A.: Inductive Inference of Bounded Unions of Languages
with Complete Characteristic Sets (in Japanese), SIG-FPAI-A703-01, 01-08 (2008)

12. Wright, K.: Identification of Unions of Languages Drawn from an Identifiable Class.
In: Proc. of COLT 1989, pp. 328–388. Morgan-Kaufman, San Francisco (1989)

A Learning Algorithm for Multi-dimensional

Trees, or: Learning Beyond Context-Freeness

Anna Kasprzik

University of Trier

Abstract. We generalize a learning algorithm by Drewes and Högberg
[1] for regular tree languages based on a learning model proposed by An-
gluin [2] to recognizable tree languages of arbitrarily many dimensions,
so-called multi-dimensional trees. Trees over multi-dimensional tree do-
mains have been defined by Rogers [3,4]. However, since the algorithm
by Drewes and Högberg relies on classical finite state automata, these
structures have to be represented in another form to make them a suit-
able input for the algorithm: We give a new representation for multi-
dimensional trees which establishes them as a direct generalization of
classical trees over a partitioned alphabet, and show that with this nota-
tion Drewes’ and Högberg’s algorithm is able to learn tree languages of
arbitrarily many dimensions. Via the correspondence between trees and
string languages (“yield operation”) this is equivalent to the statement
that this way even some string language classes beyond context-freeness
have become learnable with respect to Angluin’s learning model as well.

Keywords: MAT learning, multi-dimensional trees, finite-state.

1 Introduction

In the area of grammatical inference the problem of how to algorithmically infer
(or “learn”) a description of a formal language (e.g., a grammar or an automa-
ton) on the basis of given examples or other information on that language is
considered. Several learning models have been formulated, and based on those
quite an amount of learning algorithms (mainly for regular languages or sub-
classes thereof) have been developed. In one of those models, proposed by An-
gluin [2] along with a P-time learning algorithm L∗ for regular string languages,
the “learner” is helped by a “minimally adequate teacher” (MAT) who can an-
swer two types of queries, namely if a given word is or is not a member of the
language U to be learned, and, for some finite-state automaton A, if A correctly
recognizes U . If not, the teacher will return a counterexample. The algorithm L∗

has been adapted by Sakakibara [5] to skeletal regular tree languages (regular
sets of trees with unlabeled inner nodes) and then generalized by Drewes and
Högberg [1] to regular tree languages throughout. As regular tree languages are
a well-known generalization of regular string languages, this is a logical step.

We will generalize Drewes’ and Högberg’s algorithm even further to recog-
nizable tree languages of arbitrarily many dimensions (sets of so-called multi-
dimensional trees). Trees based on multi-dimensional tree domains have been

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 111–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 A. Kasprzik

defined by Rogers [3,4], along with finite-state automata for these trees. Labeled
one-dimensional trees correspond to strings, and the automata recognizing them
are equivalent to classical finite-state automata. The automata recognizing la-
beled two-dimensional trees are equivalent to classical finite-state tree automata.

Every multi-dimensional tree language has a set of strings – the string yields
of its elements – associated with it which is obtained by reducing the number
of dimensions of the trees step by step, down to the first, only retaining the
outermost nodes and their connecting structure in each step (see [3] or Sub-
section 3.2 for a definition). As is well known, the sets of string yields of the
languages recognized by (two-dimensional) finite-state tree automata coincide
with the class of context-free languages. The sets obtained when reducing the
number of dimensions of recognizable three-dimensional tree languages by one
have an interesting linguistic aspect: They correspond exactly to the sets of trees
generated by (non-strict) Tree Adjoining Grammars (see [3,4]), a special kind
of tree formalism in which trees are built via adjunction, an operation which
can be seen as a particular form of context-free tree rewriting. TAGs have been
developed by Joshi [6] in connection with studies on the formal treatment of nat-
ural languages. Joshi [6] claimed the least class of formal languages containing
all natural languages to be situated between the context-free and the context-
sensitive languages in the Chomsky Hierarchy, and named it the class of mildly
context-sensitive languages. The string sets associated with TAGs fulfil all nec-
essary conditions for this class. TAGs are considered the standard model for
mild context-sensitivity and are the foundation of a considerable amount of cur-
rent work in applied computational linguistics. Rogers [4] conjectures that there
might also be some linguistic phenomena that can best be handled via structures
of more than three dimensions, and gives an amelioration of the standard TAG
account of modifiers using four dimensions (see [3]).

The classes of sets of string yields associated with the recognizable multi-
dimensional tree languages ordered by the number of dimensions form a (proper)
infinite hierarchy properly contained in the context-sensitive class, with the
classes of context-free languages (sets of string yields of two-dimensional tree
sets) and the string languages associated with TAGs (sets of string yields of
three-dimensional tree sets) as the first two steps. According to Rogers [3,4],
this hierarchy coincides with Weir’s Control Language Hierarchy [7].

It is a consequence of these correspondencies that by processing recognizable
higher-dimensional descriptions of non-regular string languages instead of the
string sets themselves, finite-state methods become applicable again (see [9,8]).
Thus, just as by adapting Angluin’s learning algorithm for regular string lan-
guages [2] to (skeletal) regular tree languages [5,1] context-free string languages
have been made MAT-learnable, generalizing the adapted algorithm to recog-
nizable tree languages of arbitrarily many dimensions and then recurring to the
concept of yield can make even string language classes beyond context-freeness
learnable under Angluin’s MAT learning model as well.

As the learning algorithm by Drewes and Högberg [1] is based on classical
finite-state tree automata and consequently on the concept of trees as terms

A Learning Algorithm for Multi-dimensional Trees 113

over a partitioned alphabet, but Rogers’ definition of multi-dimensional trees is
based on tree domains, the algorithm cannot be used on these structures without
representing them in another form. We will give a new term-like representation
for multi-dimensional trees, which was introduced in [9] and which establishes
them as a direct generalization of classical trees, along with an adapted definition
of finite-state automata and of the yield operation, and show that this innovation
enables Drewes’ and Högberg’s algorithm to learn languages of trees of arbitrarily
many dimensions by proving that despite the modified input all its essential
properties (including the ability to yield the desired output) stay preserved.

2 A Learning Algorithm for Regular Tree Languages

In this section, we are going to describe the learner for trees by Drewes and
Högberg [1]. First of all, we need some basic notions about trees.

A ranked alphabet is a finite set of symbols, each associated with a rank n ∈
N (including 0). By Σn we denote the set of all symbols in Σ with rank n.
Traditionally, every symbol is associated with a single rank only, but it is just
as possible to admit several ranks for one symbol (see for example [5]), as long
as there is a maximal admissible rank and the alphabet stays finite.

The set TΣ of all trees over Σ is defined inductively as the smallest set of
expressions such that f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and all t1, . . . , tn ∈ TΣ .
t1, . . . , tn are the direct subtrees of the tree. The set subtrees(t) consists of t
itself and all subtrees of its direct subtrees. Given a set T of trees, Σ(T) denotes
the set of all trees of the form f [t1, . . . , tn] such that f ∈ Σn for some n and
t1, . . . , tn ∈ T . A subset of TΣ is called a tree language.

Let � be a special symbol of rank 0. A tree c ∈ TΣ∪{�} in which � occurs
exactly once is a context, the set of all contexts over Σ is denoted by CΣ . For
c ∈ CΣ and s ∈ TΣ , c[[s]] denotes the tree obtained by substituting s for � in c.
depth(c) is the length of the path from the root to �.

A (total, deterministic) bottom-up finite-state tree automaton (fta)
A = (Σ, Q, δ, F) has a ranked input alphabet Σ, finite state set Q, transi-
tion function δ assigning to every f ∈ Σn and all q1, . . . , qn ∈ Q a state
δ(q1 · · · qn, f) ∈ Q, and accepting state set F ⊆ Q. δ extends to trees: δ : TΣ −→
Q is defined such that if t = f [t1, . . . , tn] ∈ TΣ then δ(t) = δ(δ(t1) · · · δ(tn), f).
The set of trees accepted by A is L(A) = {t ∈ TΣ |δ(t) ∈ F} (a regular tree
language).

It is well known that the Myhill-Nerode theorem carries over to regular tree
languages: Let L ⊆ TΣ. Given two trees s, s′ ∈ TΣ , let s ∼L s′ iff for every
c ∈ CΣ , either both of c[[s]] and c[[s′]] are in L or none of them is. Obviously,
∼L is an equivalence relation on TΣ. The equivalence class containing s ∈ TΣ

is denoted by [s]L. The index of L equals |{[s]L|s ∈ TΣ}|. The Myhill-Nerode
theorem states that L is a regular tree language iff L is of finite index iff L is
the union of all equivalence classes [s]L with s ∈ L. It follows from this that for
every fta A, L(A) is of finite index. Conversely, if a tree language is of finite
index, we can easily build an fta AL recognizing L, with the states being the

114 A. Kasprzik

equivalence classes of L, F = {[s]L|s ∈ L}, and, given some f ∈ Σk and states
[s1]L, . . . , [sk]L, δL([s1]L, . . . , [sk]L, f) = [f [s1, . . . , sk]]L. Moreover, this fta is the
unique minimal fta recognizing L, up to a bijective renaming of states.

As indicated before, Drewes and Högberg [1] have designed a learning algo-
rithm for regular tree languages, based on the one for strings by Angluin [2]. As
strings can be seen as special trees over an alphabet containing only symbols
of rank 1 or 0 (ε being the only constant – the string abc is then noted as the
expression c(b(a(ε))), for example), this algorithm represents a generalization.

The aim of the learner is to construct an fta recognizing an unknown regular
tree language U ⊆ TΣ. He is helped by a teacher able to perform two tasks:
The teacher can check whether t ∈ U for some t ∈ TΣ, and, given an fta A,
can return a counterexample(A) ∈ (U \ L(A)) ∪ (L(A) \ U). At any stage of
the computation, the learner maintains two sets S ⊆ TΣ and C ⊆ CΣ satisfying
certain conditions. Intuitively, one may imagine him building a table whose rows
are indexed by the elements of S ∪Σ(S) and the columns by the elements of C.
The cell in row s and column c indicates whether c[[s]] ∈ U .

Definition 1. The pair (S, C) (S ⊆ TΣ, C ⊆ CΣ finite, C non-empty) is called
an observation table if the following conditions hold:

– For every tree f [s1, . . . , sn]: s1, . . . , sn ∈ S as well – S is subtree-closed, and
– for every context c0 of the form c[[f [s1, . . . , si−1, �, si+1, . . . , sn]]] ∈ C: c ∈ C

and s1, . . . , si−1, si+1, . . . , sn ∈ S – we say that C is generalization-closed.

The elements of S can be seen as candidates for representatives of the equiva-
lence classes of ∼U , and the elements of C can be seen as witnesses that these
representatives do indeed belong to different equivalence classes.

Given an observation table T = (S, C) and a tree s ∈ S ∪Σ(S), the observed
behaviour of s is denoted by obsT (s) (formally, obsT (s) denotes the function
obs : C −→ {1, 0} such that obs(c) = 1 iff c[[s]] ∈ U for all c ∈ C).

Definition 2. Observation table T = (S, C) is closed if obsT (Σ(S)) ⊆ obsT (S),
and consistent if, for all f ∈ Σn and all s1, . . . , sn, s′1, . . . , s

′
n ∈ S, if obsT (si) =

obsT (s′i) for all i with 1 ≤ i ≤ n then obsT (f [s1, . . . , sn]) = obsT (f [s′1, . . . , s
′
n]).

These two properties are essential when building a candidate for the desired
automaton: From a closed and consistent observation table T = (S, C) one can
synthesize an fta AT whose set of states is QT = {obsT (s)|s ∈ S}, the set of
accepting states is FT = {obsT (s)|s ∈ S∩U}, and δT (obsT (s1) · · · obsT (sn), f) =
obsT (f [s1, . . . , sn]) for all f ∈ Σn and s1, . . . , sn ∈ S. Drewes and Högberg [1]
formulate the following lemma, adapted from a corresponding one in [2]:

Lemma 1. Let T = (S, C) be a closed and consistent observation table. Then

– δ(s) = obsT (s) for all s ∈ S ∪Σ(S), and
– for all s ∈ S ∪Σ(S) and all c ∈ C, AT accepts c[[s]] iff c[[s]] ∈ U . AT is the

unique minimal fta with this property (up to a bijective renaming of states).

We prove a similar lemma for our generalized learning algorithm in Section 4.

A Learning Algorithm for Multi-dimensional Trees 115

The algorithm by Drewes and Högberg [1] can be seen below. I is the index
of U .1 The learner starts with a table T1 = ({a}, {�}) (for some a ∈ Σ0). The
procedure CLOSURE adds suitable candidates to S as long as T is not closed (which
corresponds to asking the teacher membership queries for these candidates and
noting the result in the table). The procedure RESOLVE adds elements to C as long
as T is not consistent. The procedure EXTEND synthesizes an fta from the current
observation table (assume that an operation synthesize(T) just exists) and asks
the teacher for a counterexample. If the counterexample is unnecessarily large it
is “pruned” via the procedure EXTRACT, which is an amelioration introduced by
Drewes and Högberg [1] with respect to the original learner for strings by Angluin
[2]. The counterexample is then added to the table, with its membership status.

T = (S, C) := ({a}, {�}) for some arbitrary a ∈ Σ0;
while | {obsT (s) | s ∈ S} | < I do

if T is not closed then T := CLOSURE(T)
else if T is not consistent then T := RESOLVE(T)
else T := EXTEND(T)

end while;
return AT ;

procedure CLOSURE(T) where T = (S, C)
find s ∈ Σ(S) such that obsT (s) /∈ obsT (S);
return (S ∪ {s}, C);

procedure RESOLVE(T) where T = (S, C)
find c[[s]], c[[s′]] ∈ Σ(S) where s, s′ ∈ S and depth(c) = 1 such that

obsT (c[[s]]) 	= obsT (c[[s′]]) and obsT (s) = obsT (s′);
find t, t′ ∈ S such that

obsT (t) = obsT (c[[s]]) and obsT (t′) = obsT (c[[s′]]);
find c′ ∈ C such that obsT (t)(c′) 	= obsT (t′)(c′);
return (S, C ∪ {c′[[c]]});

procedure EXTEND(T) where T = (S, C)
AT := synthesize(T);
return EXTRACT(T, counterexample(AT));

procedure EXTRACT(T, t) where T = (S, C)
choose c ∈ CΣ and s ∈ subtrees(t) ∩ (Σ(S) \ S) such that t = c[[s]];
if there exists s′ ∈ S such that

obsT (s′) = obsT (s) and t ∈ U ⇔ c[[s′]] ∈ U then
return EXTRACT(T, c[[s′]]);

else return (S ∪ {s}, C)
end if;

1 In [1] I is used as termination criterion. This does not affect the computation as such
– they prove that the algorithm returns the desired automaton in time, i.e., it never
halts without result because of that criterion alone – and is therefore equivalent to
assuming that the teacher, when asked for a counterexample, first checks if A = AU .

116 A. Kasprzik

Let Tl = (Sl, Cl) be the table obtained after l−1 steps. Note that according to
Drewes and Högberg [1] (and as is easy to see) the procedures CLOSURE, RESOLVE,
and EXTEND all guarantee that each constructed observation table satisfies the
following conditions: (A) Tl is indeed an observation table, (B) for all distinct
trees s, s′ ∈ Sl, s �U s′, (C) |Sl|+ |Cl| = l + 1, and (D) |Cl| ≤ |obsTl

(Sl)|.
Drewes and Högberg [1] prove that their algorithm always terminates after

less than 2I loop executions and returns the desired fta (see [1] for the proof).

3 Multi-dimensional Trees and Automata

3.1 Multi-dimensional Trees as Defined by Rogers [3,4]

Starting from the tree definition based on two-dimensional tree domains, Rogers
generalizes both downwards (to strings and points) and upwards and defines la-
beled multi-dimensional trees over a hierarchy of multi-dimensional tree domains:

Definition 3 (Rogers [3,4]). Let d1 be the class of all dth-order sequences of
1s: 01 := {1}, and n+11 is the smallest set satisfying (i) 〈〉 ∈ n+11, and (ii) if
〈x1, . . . , xl〉 ∈ n+11 and y ∈ n1, then 〈x1, . . . , xl, y〉 ∈ n+11. Let T0 := {∅, {1}}
(point domains). A (d+1)-dimensional tree domain is a set of hereditarily prefix
closed (d + 1)st-order sequences of 1s, i.e., T ∈ Td+1 iff

– T ⊆ d+11,
– ∀s, t ∈ d+11 : s · t ∈ T⇒ s ∈ T,
– ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ Td.

A Σ-labeled Td (d-dimensional tree) is a pair 〈T, τ〉) where T is a d-dimensional
tree domain and τ : T −→ Σ is an assignment of labels in the (non-partitioned)
alphabet Σ to nodes in T . We will denote the class of all Σ-labeled Td as Td

Σ.

Every d-dimensional tree can be conceived to be built up from one or more
d-dimensional local trees, that is, trees of depth at most one in their major di-
mension. Each of these smaller trees consists of a root and an arbitrarily large
(d − 1)-dimensional “child tree” consisting of the root’s children (a formal def-
inition of the set T

d,loc
Σ of all local trees over some alphabet Σ would be for

example T
d,loc
Σ = {〈T, τ〉|〈T, τ〉 is a Σ-labeled Td, and ∀s ∈ T : |s| ≤ 1}). Local

strings (i.e., one-dimensional trees), for example, consist of a root and a point as
its child tree. Local two-dimensional trees consist of a root and a string. Local
three-dimensional trees would have a pyramidal form, with a two-dimensional
tree as its base. There are also trivial local trees (consisting of a single root), and
even empty ones. Composite trees can be built from local ones by identifying the
root of one local tree with a node in the child tree of another (and adapting the
addresses in order to incorporate them into the newly created tree domain). Fig-
ure 1 shows examples of local and composite trees for the first four steps of the
hierarchy (only some composite trees are labeled, and in the three-dimensional
case, only the addresses of nodes that do not appear in the rightmost local tree
as well are given, for clarity. εd denotes an empty sequence of order d).

A Learning Algorithm for Multi-dimensional Trees 117

(l
ab

el
ed

)
co

m
po

si
te

1

-

ε1 〈1〉

ε1
a

b
c

d
ε 1

〈1
〉

〈1
,1

〉
〈1

,1
,1

〉

ε2

ε2

〈ε1〉
〈〈1〉〉

ε2

〈ε1〉

lo
ca

l

2

〈〈〈1, 1〉〉, 〈ε1〉〉

ε3

〈ε2〉

r

a

b

d

e

c

f

g

k

j

h

i

〈〈〈1〉〉, 〈ε1〉〉
〈〈〈1〉〉, 〈〈1〉〉〉

〈〈〈1, 1〉〉, ε2〉
〈〈〈1〉〉, ε2〉

ε3

〈ε2〉

〈〈〈1〉〉〉

〈〈ε1〉〉

〈〈〈1〉〉〉
〈〈ε1〉〉

〈ε2〉

ε3

〈〈〈1〉, ε1〉〉 〈〈〈1〉, 〈1〉〉〉

〈〈〈1, 1〉〉〉

〈〈1〉, 〈1〉〉〈〈1〉, ε1〉

ε2

〈ε1〉 〈〈1, 1〉〉〈〈1〉〉

0 1 3

Fig. 1. Local and composite trees for d = 0, 1, 2, 3

Definition 4 (Rogers [4]). A Td automaton with finite state set Q and (non-
ranked) alphabet Σ is a finite set of triples Ad ⊆ Σ ×Q× Td−1

Q .

The interpretation of a triple 〈σ, q, T 〉 ∈ Ad is that if a node of a Td is labeled
with σ and T encodes the assignment of states to its children, that node may
be assigned state q. A run of a Td automaton on a Σ-labeled Td T = 〈T, τ〉 is
a mapping r : T −→ Q in which each assignment is licensed by Ad. Note that
a maximal node (wrt the major dimension, i.e., a leaf) labeled with σ may be
assigned state q only if there is a triple 〈σ, q, ∅〉 ∈ Ad. If F ∈ Q is the set of
accepting states, then the set of (finite) Σ-labeled Td recognized by Ad is that
set for which there is a run of Ad that assigns the root a state in F .

T1 automata correspond to finite-state automata for strings, they recognize
the regular languages. T2 automata correspond to (non-deterministic) finite-
state automata for trees, i.e., they recognize the regular tree languages, the
associated string sets of which are the context-free languages. For d ≥ 3, Td
automata recognize languages of d-dimensional trees whose sets of string yields
are situated between the classes of context-free and context-sensitive languages
in the Chomsky Hierarchy, where for every d the class of string yields of the
d-dimensional tree languages is properly contained in the next (i.e., for d + 1).

3.2 Multi-dimensional Trees as Terms

In this subsection we will give a representation for multi-dimensional trees (first
defined in [9]) which establishes them as a direct generalization of the one on

118 A. Kasprzik

which (classical) finite-state tree automata are based, i.e., one that allows multi-
dimensional trees to be noted as expressions over a partitioned alphabet.

We use finite d-dimensional tree labeling alphabets Σd where each symbol
f ∈ Σd is associated with at least one unlabeled (d − 1)-dimensional tree t
specifying the admissible child structure for a root labeled with f (note that as
before it is just as possible to associate several, albeit finitely many, admissible
child structure trees with one symbol). t can be given in any form suitable
for trees, as long as it is compatible with the existence of an empty tree. For
consistency’s sake we will use the definition of multi-dimensional trees given
below and write t as an expression over a special kind of “alphabet” containing
just one symbol ρ for which any child structure is admissible.

Let Σd
t for d ≥ 1 be the set of all symbols associated with t and Σ0 a set of

constant symbols. The set of all d-dimensional trees TΣd can then be defined:

Definition 5. Let εd be the empty d-dimensional tree. Then

– TΣ0 := {ε0} ∪Σ0, and
– for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and f [t1, . . . , tn]t ∈ TΣd

for every f ∈ Σd
t , n the number of nodes in t, t1, . . . , tn ∈ TΣd and t1, . . . , tn

are rooted breadth-first in that order2 at the nodes of t.

Multi-dimensional trees in this notation can be translated one-to-one into trees
in Rogers’ notation and vice versa – see [9] for the translation and proof.

For tp = f [t1, . . . , tn]t with f ∈ Σd
t , t1, . . . , tn are the direct subtrees of tp,

subtrees(t) is defined as in Section 2. Also, for some fixed d, let � be a special
symbol associated with εd−1 (i.e., a leaf label). A tree c ∈ TΣd∪{�} in which �
occurs exactly once is still called a context, the set of contexts over Σd is CΣd .
c[[s]] for c ∈ CΣd and s ∈ TΣd is defined via substitution as before.

We can represent d-dimensional automata as a direct generalization of fta’s:

Definition 6. A (total, deterministic) finite-state d-dimensional tree automaton
is a quadruple Ad = (Σd, Q, δ, F) with input alphabet Σd, finite state set Q, set of
accepting states F ⊆ Q and transition function δ with with δ(t(q1, . . . , qn), f) ∈ Q
for every f ∈ Σd

t where t(q1, . . . , qn) encodes the assignment of states to the
nodes of t (i.e., t(q1, . . . , qn) is isomorphic to t and its nodes are labeled with
q1, . . . , qn breadth-first in that order if Q is taken as a partitioned alphabet in
which every element is associated with all the child structures it occurs with in δ).
The transition function extends to d-dimensional trees: δ : TΣd −→ Q is defined
such that if tp = f [t1, . . . , tn]t ∈ TΣd then δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f). The
set of trees accepted by Ad is L(Ad) = {tp ∈ TΣd |δ(tp) ∈ F}.

The equivalence between this definition and the one by Rogers [4] is easy to
see. For two corresponding automata Ad = (Σd, Q, δ, F) and Ad

R ⊆ ΣR ×QR ×
Td−1

QR
(accepting state set FR) in the two notations the sets of states Q and

QR, and F and FR coincide, the construction of ΣR from Σd is trivial, and
Σd is constructed from Ad

R as follows: f ∈ Σd
t for all triples 〈f, q, t0〉 ∈ Ad

R,

2 This is an ad hoc settlement, any other spatial arrangement would do as well.

A Learning Algorithm for Multi-dimensional Trees 119

r

a

d
c

e
f

j
g

i
k

a

b

g j

k
i

b

h

h

e
f

Fig. 2. Ambiguity in the yield for d ≥ 3 (resolved by marked splicing points)

where t ∈ T{ρ}d−1 is isomorphic to t0. Most importantly, there is a one-to-one
correspondence between the elements of Ad

R and δ: Every triple 〈f, q, t0〉 ∈ Ad
R

can be translated to an assignment δ(Ψ(t0), f) = q of Ad, and every assignment
δ(t(q1, . . . , qn), f) = q of Ad to a triple 〈f, q, Φ(t(q1, . . . , qn))〉 ∈ Ad

R, where Φ
and Ψ are translations from one notation into the other (see [9] for a definition).
From this and from the identical state sets it follows that L(Ad

R) = Ψ(L(Ad))
and L(Ad) = Φ(L(Ad

R)).
Finally, we give a definition of the yield operation for multi-dimensional trees

in the new notation. As for d ≥ 3 the yield is not unambiguous (see Figure 2),
the structures have to be enriched with additional information. Assume that, for
d ≥ 2, in every tree tp ∈ TΣd every labeling symbol f ∈ Σd is indexed with a
set S ⊆ {2, . . . , d}. If x ∈ S then we call a node labeled by fS a foot node for
the (x− 1)-dimensional yield of tp. For every subtree tq of tp the distribution of
these foot nodes must fulfil certain conditions:

(1) If tq has depth 0 the index set in its root label must contain d, otherwise
tq = fS [t1, . . . , tn]t with f ∈ Σd

t , S ⊆ {2, . . . , d}, and t1, . . . , tn ∈ TΣd must
have exactly one direct subtree ti ∈ {t1, . . . , tn} whose root labeling symbol
is indexed with a set containing d and this subtree is attached to a leaf in t.
In both cases, we will refer to that root as the d-dimensional foot node of tq.

(2) The foot nodes are distributed in such a way that for every n-dimensional
yield of tp with n < d, condition (1) is fulfilled as well.

For d ≥ 2, the (d− 1)-dimensional yield of a tree tp ∈ TΣd is defined as

ydd−1(tp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εd−1 for tp = εd,
aS for tp = aS with a ∈ Σd

εd−1 and S ⊆ {2, . . . , d},
optp(t1) for tp = fS [t1, . . . , tn]t with t1, . . . , tn ∈ TΣd , f ∈ Σd

t ,
t 	= εd−1, and S ⊆ {2, . . . , d},

where optp(ti) for ti ∈ {t1, . . . , tn} is defined as the (d − 1)-dimensional tree
that is obtained by replacing the d-dimensional foot node of ti in ydd−1(ti)
by eR[optp(tj), . . . , optp(tk)]tx , where eR with e ∈ Σd and R ⊆ {2, . . . , d} is the

120 A. Kasprzik

label of the foot node, tx is the (d − 2)-dimensional child structure of the node
at which ti is attached in t and tj , . . . , tk are the direct subtrees of tp that are
attached (breadth-first in that order) at the nodes of tx. The result ydd−1(tp)
is a (d − 1)-dimensional tree over an alphabet Σd−1 containing at least all the
node labels in ydd−1(tp), each associated at least with the child structures it
occurs with. Obviously, the string yield of a d-dimensional tree for d ≥ 2 can be
obtained by taking the (d− 1)-dimensional yield d− 1 times.

Example 1 defines an automaton A3
ww recognizing a three-dimensional tree

language whose set of string yields yd1(L(A3
ww)) is Lww = {ww|w ∈ {a, b}+}:

Example 1. A3
ww = (Σ3, {qa, qb, qg, qy, qz, qf , qx}, δ, {qf}) where Σ3 = {a, b, f, g,

h{3}} with a, b, f, g, h{3} ∈ Σ3
ε2 and f ∈ Σ3

t1 for t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0]ρ[]ε0]ρ[ρ[]ε0]ρ

and f ∈ Σ3
t2 for t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1]ρ[ρ[]ε0]ρ]ρ[ρ[]ε0]ρ . (Note that in Σ3 only

index sets containing 3 have been given, as the distribution of foot nodes for the
string yield is never ambiguous). δ is defined as follows:

δ(ε2, a) = qa δ(t1(qg, qa, qz, qa)) = qf

δ(ε2, b) = qb δ(t1(qg, qb, qz, qb)) = qf

δ(ε2, f) = qz δ(t2(qg, qa, qz, qy, qa)) = qz

δ(ε2, g) = qg δ(t2(qg, qb, qz, qy, qb)) = qz

δ(ε2, h{3}) = qy

and δ(t0, x) = qx for all other admissible t0 and all symbols x ∈ Σ3. Figure
3 shows t1 and t2, three trees ta, tb, tc ∈ L(A3

ww) in the middle, and the two-
dimensional yield for tc, whose one-dimensional yield is the string abab.

With the slightly adapted definitions of contexts and automata, the Myhill-
Nerode theorem (see Section 2) carries over quite naturally to multi-dimensional
trees, and consequently, for every recognizable d-dimensional tree language L
there exists a unique minimal automaton Ad

L recognizing L. It is this fact
that enables us to give a learning algorithm for languages of trees of arbitrar-
ily many dimensions based on the same principle as the one by Drewes and
Högberg [1].

ρ

ρ

ρ ρ

ρ

t2

ρ

ρρ

ρ

t1 f

f

g

b

b
g

f

b

f

f

g

a

a

g

a

b

a

f
f

a

g

ba

f

b

g

ta tb

tc

h{3}

h

Fig. 3. Example 1

A Learning Algorithm for Multi-dimensional Trees 121

4 The Learner for Multi-dimensional Tree Languages

We will now generalize the learning algorithm for regular tree languages by
Drewes and Högberg [1] to recognizable tree languages of arbitrarily many di-
mensions. The necessary concepts for the learning algorithm can be adapted in
an obvious way (assume that t has n nodes):

– Subtree-closed: For every tree f [t1, . . . , tn]t ∈ S: t1, . . . , tn ∈ S.
– Generalization-closed: For every context of the form c[[f [t1, . . . , ti−1, �, ti+1,

. . . , tn]t]], c is in C as well and t1, . . . , ti−1, ti+1, . . . , tn are in S.
– Σd(S) denotes the set of all trees of the form f [t1, . . . , tn]t such that f ∈ Σd

t

for some t and t1, . . . , tn ∈ S.
– Closed (for an observation table T): T is closed if obsT (Σd(S)) ⊆ obsT (S).
– Consistent (for an observation table T): For all f ∈ Σd

t and all s1, . . . , sn,
s′1, . . . , s

′
n ∈ S, if obsT (si) = obsT (s′i) for all i with 1 ≤ i ≤ n then

obsT (f [s1, . . . , sn]t) = obsT (f [s′1, . . . , s′n]t).

From a closed and consistent observation table T = (S, C) one can derive a
d-dimensional tree automaton Ad

T whose set of states is QT = {obsT (s)|s ∈ S},
the set of accepting states is FT = {obsT (s)|s ∈ S ∩ U}, and δT (t(obsT (s1), . . . ,
obsT (sn)), f) = obsT (f [s1, . . . , sn]t) for all f ∈ Σd

t and s1, . . . , sn ∈ S.
With this settled, the learning algorithm for recognizable d-dimensional tree

languages (not containing the empty tree, and for some d ≥ 1, since TΣ0 is
finite, i.e., trivial to learn) is very easy to formulate; in fact, it is identical to the
one given in Section 2 (just change Σ(S) to Σd(S) throughout and start with
T = ({a}, {�}) for some arbitrary a ∈ Σd

εd−1). We will prove that the validity
of Lemma 1, repeated below in a slightly adapted form as Lemma 2, hasn’t
been changed by our generalization to trees of arbitrarily many dimensions. The
proofs are inspired by the corresponding ones in [2].

Lemma 2. Let T = (S, C) be a closed, consistent observation table. Then

(a) δT (tp) = obsT (tp) for all tp ∈ S ∪Σd(S),
(b) for all tp ∈ S∪Σd(S) and all contexts c ∈ C, Ad

T accepts c[[tp]] iff c[[tp]] ∈ U ,
(c) Ad

T is the unique minimal automaton with property (b).

Proofs. (a) is proved by induction via the definitions of δ and δT : It certainly holds
for all a ∈ Σd

εd−1∩S (trees consisting of one node in S), as δT (a) = δT (εd−1, a) =
obsT (a). Now let tp = f [s1, . . . , sn]t for an arbitrary f ∈ Σd

t and s1, . . . , sn ∈
S ∪ Σd(S). As tp ∈ S ∪ Σd(S), s1, . . . , sn must be in S (which is clear for
tp ∈ Σd(S) – for tp ∈ S recall that S is subtree-closed). If (a) holds for s1, . . . , sn

then it also holds for tp, as δT (f [s1, . . . , sn]t) = δT (t(δT (s1), . . . , δT (sn)), f) =
δT (t(obsT (s1), . . . , obsT (sn)), f) = obsT (f [s1, . . . , sn]t). �
(b) is proved by induction over the depth of the contexts in C. For c = � and
all tp ∈ S ∪Σd(S), δT (c[[tp]]) = δT (tp) = obsT (tp) by (a). tp is either in S or in
Σd(S). Case 1, tp ∈ S: δT (tp) ∈ F ⇔ obsT (tp) ∈ F ⇔ obsT (tp) ∈ {obsT (s)|s ∈
S ∩U} ⇔ tp ∈ S ∩U ⇔ tp ∈ U . Case 2, tp ∈ Σd(S): As T is closed, there exists

122 A. Kasprzik

tq ∈ S with obsT (tp) = obsT (tq), and thus δT (tp) = δT (tq) (and the rest of the
argument runs as in Case 1). This proves (b) for c = �.

Assume that c ∈ C is of depth k +1, and (b) holds for all contexts in C up to
depth k and all tp ∈ S∪Σd(S). As C is generalization-closed, there exists c2 ∈ C
of depth k and s1, . . . , sn ∈ S such that c = c2[[f [s1, . . . , si−1, �, si+1, . . . , sn]t]]
for some f ∈ Σd

t . (b) holds for c2: δT (c2[[tp]]) ∈ F ⇔ c2[[tp]] ∈ U for all tp ∈
S∪Σd(S). As T is closed, there exists tq ∈ S with δT (tp) = obsT (tp) = obsT (tq) =
δT (tq). Obviously, f [s1, . . . , si−1, tq, si+1, . . . , sn]t is in Σd(S). With δT (tq) =
δT (tp) and T consistent, δT (c2[[f [s1, .., si−1, tq, si+1, .., sn]t]]) = δT (c2[[f [s1, ..,
si−1, tp, si+1, .., sn]t]]) ∈ F ⇔ c2[[f [s1, . . . , si−1, tp, si+1, . . . , sn]t]] ∈ U ⇔ c[[tp]]
∈ U , which proves (b) for all c ∈ C and all tp ∈ S ∪Σd(S). �
(c) is equivalent to the claim that any automaton Ad′ = (Σd, Q′, δ′, F ′) con-
sistent with T with as many or fewer states than Ad

T is isomorphic to Ad
T .

Let Ad
T have n states. Define, for each q′ ∈ Q′, obsT (q′) as the finite function

g : C −→ {0, 1} such that g(c) = 1 iff δ′(c[[q′]]) ∈ F ′, where δ′(c[[q′]]) = δ′(c[[t]])
for all t with δ′(t) = q′. Since Ad′ is consistent with T , for each tp ∈ S ∪Σd(S)
and each c ∈ C, δ′(c[[tp]]) ∈ F ′ iff obsT (tp)(c) = 1, which also means that
δ′(c[[δ′(tp)]]) ∈ F ′ iff obsT (tp)(c) = 1, so obsT (δ′(tp)) = obsT (tp). As tp ranges
over all of S, obsT (δ′(tp)) ranges over all of Q, so Ad′ must have n states.

Thus, for each tp ∈ S there is a unique q′ ∈ Q′ such that obsT (tp) =
obsT (q′), namely δ′(tp). Define for each tp ∈ S, φ(obsT (tp)) = δ′(tp). This
mapping is bijective. We must verify that it preserves δ and maps F to F ′.
For s1, . . . , sn ∈ S and f ∈ Σd

t , let tp ∈ S such that obsT (f [s1, . . . , sn]t) =
obsT (tp). Then φ(δ(t(obsT (s1), . . . , obsT (sn)), f)) = φ(obsT (f [s1, . . . , sn]t)) =
φ(obsT (tp)) = δ′(tp), and δ′(t(φ(obsT (s1)), . . . , φ(obsT (sn))), f) = δ′(t(δ′(s1),
. . . , δ′(sn)), f) = δ′(f [s1, . . . , sn]t). Since obsT (δ′(tp)) = obsT (δ′(f [s1, . . . , sn]t)),
δ′(tp) and δ′(f [s1, . . . , sn]t) must be the same state of Ad′, we can conclude that
φ(δ(t[obsT (s1), . . . , obsT (sn)], f)) = δ′(t[φ(obsT (s1)), . . . , φ(obsT (sn))], f) for all
s1, . . . , sn ∈ S and f ∈ Σd

t . To complete the proof we must see that φ maps F to
F ′: This is clear since if obsT (tp) ∈ F then tp ∈ U for all tp ∈ S, so as φ(obsT (tp))
is mapped to a state q′ with obsT (q′) = obsT (tp), q′ must be in F . Conversely,
if obsT (tp) is mapped to a state q′ ∈ F ′, then since obsT (q′) = obsT (tp), tp ∈ U ,
so obsT (tp) ∈ F . φ is indeed an isomorphism, and (c) is proved. �
Theorem 1. The learner returns Ad

U after less than 2I loop executions.

The proof stays as in [1]: According to property (D) of the obtained observation
tables there cannot be more contexts in Cl than trees in Sl, for all l. Since (C)
states that |Cl| + |Sl| = l + 1, this means |Sl| > l/2. We also know that the
learner halts when Sl has I elements (by (B)), so it will halt before l = 2I.

Let Ad
Tm

be the returned automaton. Tm is a closed, consistent observation
table and Ad

Tm
is the unique minimal automaton such that, for all s ∈ Sm and

c ∈ Cm, c[[s]] ∈ L(Ad
Tm

) iff c[[s]] ∈ U (Lemma 2(b)). However, Ad
U has the same

property and as many states, so Ad
Tm

= Ad
U up to a bijective state renaming. �

We sketch a run of the algorithm for the language L(A3
ww) from Example 1.

A Learning Algorithm for Multi-dimensional Trees 123

Example 2. The learner starts with T1 = ({a}, {�}), and obsT (a) = 0. T1

is closed and consistent, so the learner proposes AT1 , which accepts nothing,
and gets the counterexample tb = f [g, b, f, b]t1 (see Figure 3), from which the
procedure EXTRACT derives T2. T2 is closed, but not consistent (for example,
obsT (a) = 0 and obsT (b) = 0, but obsT (c[[a]]) = 0 and obsT (c[[b]]) = 1 for
c = f [g, b, f, �]t1). Several invocations of RESOLVE yield T3, from which the
learner synthesizes an automaton AT3 with five states and one accepting state
obsT (tb), and gets the counterexample tc = f [g, a, f [g, b, f, h{3}, b]t2 , a]t1 (see
Figure 3). The procedure EXTRACT adds two more rows to T3, and RESOLVE an-
other column, yielding T4, which is closed and consistent. AT4 has I = 7 states
(which is the termination criterion, see Section 2) and recognizes L(A3

ww).

T2 �
a 0
b 0
f 0
g 0
tb 1

T3 � c1 c2 c3

a 0 0 0 0
b 0 1 0 0
f 0 0 1 0
g 0 0 0 1
tb 1 0 0 0

T4 � c1 c2 c3 c4

a 0 0 0 0 0
b 0 1 0 0 0
f 0 0 1 0 0
g 0 0 0 1 0
tb 1 0 0 0 0

h{3} 0 0 0 0 1
tc 1 0 1 0 0

tb = f [g, b, f, b]t1
tc = f [g, a, f [g, b, f, h{3}, b]t2 , a]t1
t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0]ρ[]ε0]ρ[ρ[]ε0]ρ

t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1]ρ[ρ[]ε0]ρ]ρ[ρ[]ε0]ρ

c1 = f [g, b, f, �]t1
c2 = f [g, b, �, b]t1
c3 = f [�, b, f, b]t1
c4 = f [g, a, f [g, b, f, �, b]t2, a]t1

We have shown that the algorithm by Drewes and Högberg [1] can be used in
an almost unchanged form to learn multi-dimensional trees in the new notation
introduced in Subsection 3.2. This is tantamount to the claim that the algorithm
is also able to learn even string languages that lie beyond the context-free class,
provided that the learned multi-dimensional tree languages are enriched with the
information that is needed in order to take the yields. Probably the easiest way
to do this is to integrate the index sets directly into the alphabet (as has been
done in Example 1), i.e., to multiply the symbols of the alphabet by the power
set of Sd = {2, ..., n} for d ≥ 2. String languages situated beyond the regular
class can then be learned in a two-step approach by first letting the algorithm
learn a higher-dimensional representation of the language and then taking the
string yields of the set that is recognized by the resulting automaton.

5 Conclusion

Generalizing the MAT learning algorithm L∗ to regular tree languages of arbi-
trarily many dimensions is only a first step to a more thorough understanding of
the interaction between grammatical inference and formal language theory. The
next steps would be to find L∗-like learning algorithms for finite-state recogniz-
able languages of all kinds of objects, such as for example graphs or pictures, or
take existing ones, such as the learning algorithm Lω for ω-regular string lan-
guages [10], and try to integrate these often very similar looking algorithms into
a single one that can process as many different types of inputs as possible. The
same can then be attempted for other learning models and algorithms.

Ultimately, it is our goal to understand which general mathematical properties
of formal language classes of all kinds of suitable objects underlie algorithmical

124 A. Kasprzik

learnability (under a certain model). Are they best captured in terms of universal
algebra, or mathematical logics? At least for the class of regular languages,
which up until now is the most explored formal language class in the area of
grammatical inference, there is some evidence pointing to universal algebra as a
convenient foundation, such as the Myhill-Nerode theorem or the fact that finite-
state automata can be best defined for objects with term-like representations.
Since we do not want to restrict ourselves to string or tree languages, this opens
up another interesting question: What are the exact properties (if they can be
formulated at all) that characterize the term of “regularity” in general?

To come back to the results of our paper: Possibly the finding that recogniz-
able three-dimensional tree languages are learnable and the fact that these are
connected to the linguistically inspired grammar formalism TAG can bring about
more research and consequently more knowledge about natural language learn-
ing as well. The connection between formal learnability and human language
acquisition is an ample field of speculations which are yet to be verified.

Another goal for the near future would be to try and implement the results of
this paper. As an implementation for the algorithm by Drewes and Högberg [1]
already exists, this should not be too hard to accomplish. Such a project might
also be an impulse to reflect further on complexity issues (see also [1,11]).

References

1. Drewes, F., Högberg, J.: Learning a Regular Tree Language from a Teacher. In:
Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279–291. Springer, Hei-
delberg (2003)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Rogers, J.: Syntactic Structures as Multi-dimensional Trees. Research on Language
and Computation 1, 265–305 (2003)

4. Rogers, J.: wMSO Theories as Grammar Formalisms. TCS 293, 291–320 (2003)
5. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial

time. Theoretical Computer Science 76(2–3), 223–242 (1990)
6. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to

provide reasonable structural description. In: Dowty, D., Karttunen, L., Zwicky, A.
(eds.) Natural Language Processing. Cambridge University Press, Cambridge (1985)

7. Weir, D.J.: A geometric hierarchy beyond context-free languages. Theoretical Com-
puter Science 104(2), 235–261 (1992)

8. Kasprzik, A.: Two Equivalent Regularizations of Tree Adjoining Grammars. Tech-
nical Report 08-1, University of Trier (2008),
urts117.uni-trier.de/cms/index.php?id=15939

9. Kasprzik, A.: Making Finite-State Methods Applicable to Languages Beyond
Context-Freeness via Multi-dimensional Trees. Technical Report 08-3, University
of Trier (2008), urts117.uni-trier.de/cms/index.php?id=15939

10. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. In: Proc. 4th
Annual Workshop on Comp. Learning Th., pp. 128–136. Morgan Kaufmann, San
Francisco (1991)

11. Drewes, F., Högberg, J.: Query Learning of Regular Tree Languages: How to Avoid
Dead States. Theory of Computing Systems 40(2), 163–185 (2007)

urts117.uni-trier.de/cms/index.php?id=15939
urts117.uni-trier.de/cms/index.php?id=15939

On Learning Regular Expressions and Patterns

Via Membership and Correction Queries

Efim Kinber

Department of Computer Science, Sacred Heart University, Fairfield, CT 06825-1000,
U.S.A.

kinbere@sacredheart.edu

Abstract. Based on the ideas suggested in [5], the following model for
learning from a variant of correction queries to an oracle is proposed:
being asked a membership query, the oracle, in the case of negative an-
swer, returns also a correction – a positive datum (that has not been
seen in the learning process yet) with the smallest edit distance from the
queried string. Polynomial-time algorithms for learning a class of regular
expressions from one such query and membership queries and learning
pattern languages from queries of this type are proposed and discussed.

1 Introduction

In this paper, we propose and discuss some algorithms for learning pattern lan-
guages and a class of regular expressions from positive data. There exist dif-
ferent models for learning languages from examples, in particular, the popular
Gold’s model [9] for learning languages in the limit from a stream of all pos-
itive examples, Angluin’s model [3,4] for learning languages from queries to a
teacher (oracle), and Valiant’s PAC learning model [18]. In this paper, we follow
the Angluin’s query model representing learning process as an interactive ses-
sion between a learner and a teacher. Specifically, the learner asks the teacher
queries of a certain type, and the teacher returns correct answers to the queries.
After a finite number of queries, the learner must output a correct description of
the target language. This description of the target language must be within cer-
tain general class chosen by the teacher and known to the learner (for example,
regular expressions, patterns, DFAs, an acceptable numbering of all recursively
enumerable sets, etc.)

Over the years, capabilities of different types of queries for various classes
of target languages have been explored within the framework of the Angluin’s
query model. In particular, in her seminal paper [3], D. Angluin presented a
polynomial-time algorithm using membership and equivalence queries and learn-
ing (minimal) deterministic finite automata. Since then, query model has been
used for studies of learning various classes of target concepts via membership,
equivalence, subset, superset and disjointness queries. Among the classes of tar-
get concepts, context-free grammars ([14]), non-deterministic finite automata
([19]), regular tree languages ([17]), and some others have been used.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 125–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 E. Kinber

Using the general framework of the Angluin’s query model, L. Becerra-Bonache,
A. H. Dediu, and C. Tı̂rnăucă introduced in [5] a new type of queries - so called
correction queries. A correction query is a modification of the most popular and
most natural type of queries defined by D. Angluin - membership queries. While
in response to a membership query, a teacher just answers ‘yes’ or ‘no’, respond-
ing to a correction query, the teacher, in case the answer is negative (and, thus,
the queried string is not in the target language), provides also a shortest extension
of the queried example (string) belonging to the target language. This approach
to modeling learning processes stems from the following observation discussed, in
particular, in [13]: while learning a language, in addition to overt explicit negative
evidence (when a parent points out that a certain statement by a child is gram-
matically incorrect), a child often receives also covert explicit evidence in form of
corrected or rephrased utterances. The choice of correction in form of a shortest
extension of a wrong queried string in [5] and some other works following this line
of research (e.g. [16]) has been dictated by the nature of classes of languages being
learned. For example, C. Tı̂rnăucă and T. Knuutila in [16] consider learning so-
called k-reversible regular languages (introduced and shown to be learnable in the
limit within the Gold’s learning model by D. Angluin in [2]). For these languages,
where a prefix of a string in a language defines the set of all extensions belonging
to the language, an extension of an incorrect string seems to be the most natural
type of a “closest” correction. They also apply this model to learning pattern lan-
guages. In [6], the authors propose a different type of corrections: the correction
string is “closest” to the queried one in terms of shortest edit distance; they do not
impose any other restrictions on the correction string.

In this paper, we consider learning the class of patterns (introduced by D.
Angluin in [1]) and a class of regular expressions using membership queries and
a type of correction queries similar, but somewhat different from the one in [6],
which is more suitable to the nature of main operations forming strings in the
corresponding target languages. Namely, for our class of regular expressions, the
main operation forming strings in corresponding languages will be looping, while
in patterns such operation is substitution of variables by strings. Accordingly, for
the concept classes under consideration in this paper, we consider the following
type of correction queries: if the queried string is not in the target language, then
the teacher returns the positive example with a smallest edit distance from the
queried string and previously not used in the learning process (the requirement
of correction being not previously used in the learning process is not a part of
the learning model in [6]). For our class of regular expressions, we use one such
query to get the shortest string in the target language, and then use membership
queries. For learning patterns, we use correction queries only. Within this frame-
work, we suggest polynomial-time algorithms for learning respective classes of
concepts.

Learning pattern languages has been a subject of intensive study since the
introduction of this concept by D. Angluin in 1979. A comprehensive survey
of results in this area, including some interesting practical applications, can be
found in [15].

On Learning Regular Expressions and Patterns 127

While there is a significant body of work on polynomial-time learning of de-
terministic finite automata, relatively little has been done on learning regular
expressions (practically all articles on this subject are listed in [10]), whereas
regular expressions are often more suitable for specifying regular languages by
human beings than, say, DFAs ([10]) and more suitable for representing various
learning tasks (see, for example, [7] and [8] where learning algorithms for regu-
lar expressions have been designed for inference of Document Type Descriptions
and XML Schema Definitions). Thus, we hope that this work will contribute to
a better understanding of how regular expressions can be efficiently learned.

2 Notation and Preliminaries

Let Σ be a finite alphabet. Σ∗ denotes the set of all finite strings (words) over
Σ. A language is any subset of Σ∗. The length of a string w is denoted by |w|.
uv denotes the concatenation of the strings u and v. Let ε be a character not
belonging to Σ. Given any two strings u and v, the Levenshtein edit distance
d(u, v) is defined as the minimum number of operations needed to transform one
string to another, where an operation is insertion, deletion, or substitution of a
single character.

By a substring of a string w, we will understand any string u such that
w = vux for some strings v and x. For any string v and any number k, let
vk denote the concatenation of k copies of v.

Let w = a1a2 . . . ak be a string. Any string aiai+1 . . . aka1a2 . . . ai−1 is called
a circular shift of w. For any string v, the regular expression (v)+ will be called
a loop, and the string v will be called the body of this loop.

3 Learning Via Queries

The classes of languages considered in this paper are examples of so-called in-
dexable classes of recursive languages over Σ∗. A class of recursive languages L
is an indexable class if there exists an effective numbering Li, i = 0, 1, 2, 3, . . .
of all the languages in L such that membership in these languages is uniformly
decidable (in other words, there is a recursive function that, for any w ∈ Σ∗, and
any index i, outputs 1 if w ∈ Li and 0, otherwise). We consider the following
model of learning of an indexed class L: a learner M is an algorithmic device
that has access to an oracle that truthfully answers queries of a certain type.
Having received an answer for its query, the learner M either generates a new
query to the oracle, or returns a conjecture, an index of a language in L, and
halts. If the conjecture, say i, is an index of the target language L, then we say
that M learns the target language L. We say that M learns the class L if M
learns every language in this class. Obviously, for every language in a learnable
class, the learner M asks a finite number of queries.

In this paper, we will consider the following types of queries:

Membership queries. The learner asks if a string w belongs to the target
language and gets the answer “yes” or “no”.

128 E. Kinber

Correction queries. The learner asks if a string w belongs to the target lan-
guage L. If the answer is negative, the teacher (oracle) returns also a correction
- a string v ∈ L\A such that

|v| = |w| and d(v, w) = min{d(u, w)|u ∈ L, u /∈ A}

where A is the (finite) set of all strings for which the learner has received the
answer “yes” on the previous steps and all the correction strings received by
the learner on the previous steps (in other words, the oracle never returns posi-
tive examples of the target language seen on the previous steps of the learning
process). If no such string v exists, the teacher returns a shortest string of the
length different from |w| such that d(v, w) = min{d(u, w)|u ∈ L and u /∈ A}. (In
other words, preference is always given to correction strings of the same length,
if any). If no such string v exists, the teacher returns ε /∈ Σ. We will also assume
that, among the correction strings of the same length, the teacher always chooses
the smallest one in the lexicographic order (for patterns, we will consider learn-
ing via correction queries for the languages over the binary alphabet Σ = {0, 1}
only, and will assume that 0 < 1, and empty character < 0).

The learning algorithms presented in the next two sections will have running
times polynomial in the length of the shortest string in the target language (or,
in the length of the target expression).

4 Learning a Class of Regular Expressions

We consider the following regular expressions over the alphabet Σ:

u1(v1)+u2(v2)+ . . . un(vn)+un+1,

where ui, vi, i = 1, 2, . . . , n are strings over Σ (at least one of them must be
nonempty). Thus, all loops must be used at least once, unions are not used, and
the loop depth is 1 (similar regular expressions for a different learning task were
considered in [11]).

An example of such an expression is:

a(aa)+bccd(cd)+ddabb+b(abb)+.

A regular expression α in our class is called left-aligned if, for any string
v ∈ Σ+, there are no segments vm1(u1)+vm2(u2)+vmk(uk)+ in α, where each
ui, i = 1, 2, . . . , k is vr for some r, and at least one mj > 1. For instance, the
above example of the regular expression is not left-aligned, and it is equivalent
to the (unique) left-aligned expression (aa)+abc(cd)+cddab+bb(abb)+.

In other words, in left-aligned expressions, all loops are shifted to the left
as much as possible. We will limit expressions in our class to just left-aligned
expressions. We will also assume that if, in an expression α in our class, there is
a subexpression-loop β = (vk)+ for some (shortest possible) string v and some
k, then there is no (vm)+ neighboring β on the left or on the right in α. For
example, subexpressions ((ab)3)+((ab)5)+ are not allowed.

On Learning Regular Expressions and Patterns 129

Let R1+ denote the class of regular expressions satisfying the above condi-
tions. For any expression α in this class, let L(α) denote language defined by α.
We will also use R1+ to denote the class of corresponding languages.

We will often use shifting of loops in regular expressions. Sometimes, in our
algorithm, we will use shifting individual loops to the right as much as possible,
right-aligning them (and, obviously, preserving equivalence). For example, in the
left-aligned expression (a)+a(ab)+ababa(b)+b, right-aligning the loop (ab)+ will
result in the expression (a)+aababab(ab)+b+ (note that the loop (b)+ has also
been shifted to the right as the result of right-aligning the loop in question).

4.1 The Learning Algorithm for R1+

We now present an algorithm that learns any language in R1+ using one correc-
tion query and membership queries. The algorithm will always output a (unique)
left-aligned expression representing the target language.

To make our presentation of the algorithm clear, we will begin with an ex-
ample (the example uses a two-letter alphabet Σ, however, the algorithm works
for expressions over arbitrary finite Σ). Consider the following (left-aligned) ex-
pression in R1+:

a+a(ab)+ab+(ab)+ab+a(bb)+.

Let L denote the target language. On the very first (special) step of the algo-
rithm, ask the correction query for the empty string. Obviously, the teacher will
return the shortest string w = aaabababababb. Now we switch to the main part
of the algorithm. On its first phase, the algorithm tries to find all one-letter
loops. It finds all the longest one-letter substrings, listing them in the order they
are found in the string w - in our case, they are aaa, b, a, b, a, b, a, b, a, bb. Then,
for each block, it determines if there are loops associated with it. First, query
‘aaaabababababb ∈ L?’ (using one extra a in the first block). As the answer
is ‘yes’, transform w to a+aabababababb. Using similar queries, the algorithm
arrives to to the expression r1 = a+aabab+abab+abb.

Now the algorithm attempts to find all two and more-letter loops. First, the al-
gorithm finds all two-letter loops. As we already have the loop a+, the algorithm
does not attempt to construct the loop (aa)+. Thus, the algorithm will try all
three strings ab and the tail bb of r1 . First, it will query ‘aaabababbabababb ∈ L?’.
Obviously, the answer is ‘yes’. Note that the first substring abb in the queried
string can be contributed only by (already found) subexpression ab+, and, thus,
the first substring abab must have been contributed by the loop (ab)+ before the
subexpression ab+. Note also that the (obvious) query ‘aaababababababb ∈ L?’
(simply using the first substring ab twice) would not work, as the substring
abababab after the prefix aa could have been contributed by the subexpression
abab+(ab)+ containing the loop (ab)+ after the subexpression ab+. Given the
answer ‘yes’, the algorithm conjectures the expression a+a(ab)+ab+abab+abb,
and queries ‘aaababbabababbabb ∈ L?’ to find out if the substring ab after the
first loop b+ is the body of a loop. The answer is ‘yes’. Note that, again, the first
and the second substrings abb could have been contributed only by the (already

130 E. Kinber

found) subexpressions ab+, and, thus, the substring abab has been contributed
by the loop (ab)+ between them. Thus, our next (intermediate) conjecture is
a+a(ab)+ab+(ab)+ab+abb. Now, using the query ‘aabababababbababb ∈ L?’, the
algorithm will try to determine if the last substring ab in w is the body of a loop.
The answer is negative, and the last query ‘aaabababababbbb ∈ L’? will find the
last two-letter loop (bb)+. Then the algorithm, in a similar way, will determine
that there are no three- or more letter loops, and output the correct expression.

Now we present a formal description of the learning algorithm.

Algorithm
Let L denote the target language.

On the Phase 1, query empty string. Let w be the correction string (obviously,
the shortest one in the target language). Now, for any substring v in w, let wl(v)
and wr(v) denote the strings such that w = wl(v)vwr(v).

PHASE 2 (It uses membership queries only):
On the STEP 1, inserting one extra character a at the end of each (maximal)

substring aa . . . a in w (same for b), and making a query for the corresponding
string (of the length |w| + 1), if the answer is ‘yes’, replace the first character
of the substring by the loop (a)+ (keeping the resulting exression, denoted r1,
left-aligned).

If there are no substrings of the type ab (after, possibly, shifting a loop (b)+

to the right) in r1, then terminate and output r1 as the target expression. Oth-
erwise, go to STEP 2.

STEP n: Let r = rn−1 be the regular expression obtained on the
step n− 1. By induction, we assume that r is left-aligned. Let

r = (α1)+β1(α2)+β2 . . . (αk)+βk

for some k and some α, β ∈ Σ∗.
On each iteration j of the FOR loop below, the algorithm will be constructing

loops between (possibly shifted to the right on the previous iteration) the loop
α+

j and the right-aligned loop α+
j+1. Let r0 = r.

FOR j = 1, 2, . . . k:

Step j:
Let t be the expression obtained from rj−1 (the expression from j−1 iteration

of the FOR-loop) and by right-aligning α+
j+1 as much as possible.

Let u be the substring in t between the loop preceding α+
j+1 and α+

j+1. If
|u| < n (thus, there is not enough space for another loop between two
neighboring loops), then let rj = rj−1 and go to the next iteration of the
FOR loop. Otherwise, let u = a1a2 . . . ap for a1, a2, . . . , ap ∈ Σ.

In the WHILE loop below, the algorithm will attempt to construct loops
based on the substrings in u (with the length of the body n), thus trans-
forming t. Let Tail = u.

WHILE (|Tail| ≥ n) DO
Let x be the prefix of Tail with the length |x| = n. Let x = vi for

some (shortest) v. If x is preceded in t by the loop (vk)+ for some k,

On Learning Regular Expressions and Patterns 131

then remove from the Tail the shortest prefix such that the prefix
of the length n of the remaining string is neither x nor (z)i for some
circular shift z of v. Let Tail be the remaining string. (For example,
if n = 4, Tail is ababababcccc and preceded in t by (ab)+, then Tail
is set to babcccc; if ababababacccc is preceded by the same loop, then
Tail is set to abacccc). Go to the top of the WHILE loop.

If x is not preceded by any such (vk)+, then the goal is to determine if
x is the body of a loop in the target expression. Let z be the longest
extension of x in Tail equal to vk for some k.

Consider all loops (γ)+ to the right from z in the expression t. Let t′

denote the expression obtained from t by substituting each loop (γ)+

by the string γ. Let z′ be the longest extension of z in t′, of which z
is a prefix, such that z′ = vm for some m. Now substitute all loops
(δ)+ to the left from Tail in t by δ, and let t′′ be the corresponding
expression obtained from t. Let z′′ be the longest substring in t′′

extending Tail to the left such that z′′ = vm for some m.
Now the following cases are possible:
Case 1: z′ = z and z′′ = z. Query ‘wl(x)xxwr(x) ∈ L?’.
Case 2: |z′| > |z| and z′′ = z. Then, there is a substring γ in wr(x),

which is the body of the leftmost loop (γ)+ mentioned above. Re-
place this γ in wr(x) by γγ, and let w′ be the string obtained from
wr(x). Query ‘wl(x)xxw′ ∈ L?’.

Case 3: z′ = z and |z′′| > |z|. Then, there is a substring δ in wl(x)
which is the body of the rightmost loop (δ)+ mentioned above. Re-
place this δ in wl(x) by δδ, and let w′′ be the string obtained from
wl(x). Query ‘w′′xxwr(x) ∈ L?’.

Case 4: |z′| > |z| and |z′′| > |z|. Then, as in cases 2 and 3, replace γ
by γγ in wr(x), getting w′, and replace δ by δδ in wl(x), getting w′′.
Now query ‘w′′xxw′ ∈ L?’.

In all four cases, if the answer is ‘yes’, substitute x in t by (x)+, remove
the prefix x from Tail, and go to the top of the loop. If the answer is
‘no’, then remove from Tail the longest prefix (x)iy, where x = yz
for some y and z, so that the prefix of the remaining string is not
zy (for example, if x = abb and Tail is abbabbabbaccc, then the Tail
becomes baccc, rather than bbaccc); go to the top of WHILE loop.

EndWhile
Left-align all loops in the current expression t. Set rj = t. End step j.

END STEP n.
Return rk for k = |w| as the target expression.

4.2 Correctness of the Algorithm

Correctness of the algorithm is proved by induction. By induction, let us assume
that all loops that have been created before some iteration of the WHILE loop on
Step j of the FOR loop on STEP n are correct. Now, we will show that, on the

132 E. Kinber

given interation of the WHILE loop, either a new loop cannot be created, or, if it
is created, it is correct. Consider the prefix x of Tail of the length n (as defined
in the WHILE loop). As defined in the WHILE loop, let x = vi for the shortest
possible v and some i. Consider the case when the loop to the left from x in the
current expression t is (vk)+ for some k. Then x cannot be the body of a loop in
the target expression, and Tail is reduced appropriately (so that copies of x or its
circular shifts following the given x would not be tested as bodies of possible loops
later). In all four Cases (as defined in the WHILE loop), if the answer is ‘no’, then
x obviously cannot be the body of a loop. Now, we will assume that the answer is
‘yes’. In the Case 1, the second x in the query can be contributed to the string only
by the loop corresponding to the first x (as the target expression is left-aligned).
Now consider the remaining three cases and the strings γ and δ as defined in the
WHILE loop. In the Case 2, γ (the body of the leftmost loop to the right from x)
cannot be equal to any ve or ye for some circular shift y of v, as, otherwise, the
corresponding loop would have been shifted to the left from x (note that every
expression t in the loop WHILE is left-aligned). Thus, neither the string with the
prefix x obtained when u is extended by substituting γ by γγ, nor any its extension
to the right in t can be equal to vp for any p. Therefore, if the answer to the query
in Case 2 using xx is ‘yes’, the second x can be contributed by neither the loop
(γ)+, nor a loop to the right from it in the target expression. Now, in the Case 3,
δ (the body of the rightmost loop to the left from x) cannot be equal to ve (or its
cicular shift), since, otherwise, x could not be a prefix of Tail. Thus, if the answer
to the query in this case is ‘yes’, the second x cannot be contributed by the loop
(δ)+ or a loop to the left from it, and, similarly, by neither (γ)+, nor (δ)+, nor
loops to the right from the former, or to the left from the latter, respectively, in
the Case 4.

4.3 Complexity of the Learning Algorithm

The total number of queries asked is obviously O(n3), as on each step of the
WHILE loop, the algorithm makes just one query. On each step of the WHILE
loop, the algorithm performs some work that requires time O(n2). Thus, overall
complexity of the algorithm is O(n5).

4.4 Modifications of the Class R1+

It would be interesting to explore if some modifications of the class R1+ were
learnable in polynomial time. One such modification is the class R1 that contains
loops (v)∗ rather than (v)+. However, this class may be too hard to learn in poly-
nomial time. A modification of this class, R2, would contain only those loops (v)∗

where the body v did not contain any repetitions (for example, v = abb would
not be allowed). We can exhibit a polynomial-time learning algorithm using one
correction query and membership queries for the following limited version R21

of R2: one-letter loops are allowed only, and there is a nonempty string between
any two loops. An example of such a regular expression is a∗aab∗ac∗ca∗aa. R21

is a subclass of the class of regular expressions considered in [10] (where unions

On Learning Regular Expressions and Patterns 133

are allowed), however, the algorithm in [10] learns regular expressions in the
limit, while in our model, the first conjecture must be correct. We omit details
due to limitations on the size of the paper.

Another approach to learning modifications of R1+ containing loops (v)∗

would involve variants of correction queries, or both membership and correc-
tion queries.

In, probably, the most recent paper on learing regular expressions [8], the
authors define an interesting (and practically useful) class of regular exressions
and design polyomial-time algorithms for inference of the expressions in this
class from positive data. All expressions in [8] must be deterministic (or one-
unambiguous) and cannot have more than a uniformly bounded number of occur-
rences of each alphabet symbol. Our class R1+ does not have these restrictions.

5 Learning Pattern Languages Via Correction Queries

Learning patterns has been a subject of intensive study since their introduction
by D. Angluin in [1]. A pattern π over a finite (in our case - binary) alphabet Σ
and a countable infinite set X = {x1, x2, . . .} of variables is a (nonempty) string
in (Σ∪X)∗. An example of a pattern is x1x1x201x1x30. The (non-erasable) pat-
tern language L(π) consists of all strings obtained by substituting the variables
in the pattern π by arbitrary strings in Σ+. For example, substituting x1 by 01,
x2 by 00, and x3 by 1 in the above example, we get the string 010100010110.

Different authors used different paradigms of learning to study learnability of
the class of pattern languages. Among the latest works on this topic, is the paper
[16], where patterns are being efficiently learnt from correction queries, and, in
case of the answer ‘no’, the teacher returns the shortest extension u of the queried
string v belonging to the target language. Unlike their approach, our algorithm
for learning pattern languages uses the type of queries introduced in Section 3.

5.1 The Learning Algorithm

Let L be the target language. First, we present our algorithm on two examples.
Our first example is the pattern π = x101x2x3x3x3x3x3x3x3x4x4x4x5x5x5. Let
π(r), 1 ≤ r ≤ |π|, denote the r-th character in π (either a variable, or a constant).

First, query the empty string. The oracle will obviously return the correction
string w = 001014 (of total length 17). Now query ‘117 ∈ L?’ . The answer
is ‘no’, and the oracle returns the correction string 10115. Now we know that
π(2) = 0, π(3) = 1, and all other π(r) are variables. Our goal now is to find
these variables. First, query ‘101014 ∈ L?’, trying 1 for the first position. The
answer is ‘yes’. The algorithm sets π(1) = x1. Now, query ‘0011013 ∈ L?’,
trying 1 for the fourth position. The answer is ‘yes’, and the algorithm sets
π(4) = x2. Now, query ‘00101012 ∈ L?’, trying 1 for the 5-th position. The
answer is ‘no’, and the correction string is 1011013 (note that strings 101014 and
0011013 are closer to the queried string, however, both of them have already
been used). Now query ‘10111013 ∈ L?’, trying 1 for the 5-th position again.

134 E. Kinber

The answer is ‘no’ again, and this time the (smallest in lexicographic order)
correction string is 1011010111. As the tail 111 has never appeared, the algorithm
sets π(15) = π(16) = π(17) = x3 (the numbers of variables in the output of the
algorithm can obviously be different from the ones in the original pattern). Now,
query ‘1011109111 ∈ L?’, trying 1 for the 5-th position once again. This time
the correction string is 10111111111000111, and the algorithm sets π(r) = x4 for
5 ≤ r ≤ 11. Now, it queries ‘00108100000 ∈ L?’, trying 1 for the 12-th position.
The answer is ‘no’ and the correction string is 00108111000. The algorithm sets
π(12) = π(13) = π(14) = x5. As all variables have been found, the algorithm
returns π as the target pattern.

Our next example is the pattern π = 10x1x1. Using first two queries (and
getting correction strings 1000 and, respectively, 1011), the algorithm will find
constant characters 1 and 0. Then it will query ‘1010 ∈ L?’. The answer is ‘no’,
but the oracle must return a string u with the length |u| > 4, as all the strings
in L of the length 4 (in particular, 1011) have already been seen. In this case,
the algorithm sets π(r) = x1 for r ∈ {3, 4} and terminates.

Now we give a description of the learning algorithm.

Algorithm
Query if the empty string is in L. The teacher will return a string w = a1a2 . . . an.
Note that all characters 1 in this string must be constants, while all values 0 are
either constants, or correspond to occurrences of variables, as the string w must
be the smallest in the lexicographic order among all the shortest strings (of the
length n) in the target language. If there are no 0 in w, the algorithm returns
the result 1n and terminates.

Otherwise, first consider the special case of w = 0. Query ‘1 ∈ L?’. If ‘yes’
then set π = x1, if ‘no’, set π = 0 and terminate the algorithm.

Now consider the case |w| > 1. Our goal is to determine which characters
ai must be replaced by variables, and which are constants 0 (constants 1 have
already been determined). Query ‘1n ∈ L?’. If the answer is ‘no’ (thus, the target
pattern contains some constants 0) , let u = b1b2 . . . bn be the correction string
returned (note that it will have the same length n as the queried string). If the
answer is ‘yes’, let br = 1, 1 ≤ r ≤ n.

Now the algorithm enters the FOR loop executed for j = 1, 2, . . . n. In this
loop, let πi denote the pattern output at the end of the step i. In πi, let πi(j)
denote the symbol on the j-th position in πi (either a variable, or a constant).
For all j ∈ {1, 2, . . . , n}, we set π0(j) = 1 if aj = 1, and π0(j) = 0, otherwise.

Now we describe the step j of the loop. Let π = πj−1. If either π(j) = 1, or
π(j) = bj = 0, or π(j) is a variable, then the corresponding symbol in the target
pattern is a constant or an already found variable. Thus, set πj = π and go to
the step j + 1 of the loop (or terminate if j = n).

Otherwise, we have π(j) = 0 and bj = 1. This means that there must be a
variable on the position j in the target pattern. If all symbols π(r) for r > j
are already variables or constants 1, then just set πj(j) to a new variable, set
πj(r) = π(r) for all r 	= j and terminate the loop. Otherwise, let α be the string
obtained from π by substituting π(j) by 1 and all occurrences of variables by 0.

On Learning Regular Expressions and Patterns 135

Query ‘α ∈ L?’ (note that α contains at least one symbol 0 on a position s > j
where bs = 1, and, thus, it is not u or 1n seen before). If the answer is ‘yes’, then
set πj(j) to a new variable, set πj(r) = π(r) for all other r and go to step j + 1.

If the answer is ‘no’ (this means that there must be other occurrences of the
same variable as on the position j in the target pattern), then let β be the
correction string. If |β| > n (thus, all corrections of the length n have already
been seen), then set πj(j) and all other πj(r) for r such that π(r) = 0 and br = 1
to a new variable (same for all such r) and terminate the algorithm.

Otherwise, let β = c1c2 . . . cn. The algorithm enters the following WHILE loop
that runs until cj in the last correction stringβ becomes 1.On each step of this loop,

(1) set all πj(r) for r such that π(r) = 0 and cr = 1 to a new variable; if
cj = 1, terminate the WHILE loop.

(2) replace cj by 1 in β, and let γ be the modified string; query ‘γ ∈ L?’
(note that the answer is ‘no’ - otherwise, the answer ‘yes’ would have been given
earlier). Let β be the correction string. If |β| > n, then, as in the corresponding
case above, substitute all π(r) = 0 for which br = 1 by a new variable and
terminate the algorithm. Otherwise, let β = c1c2 . . . cn. Return to the top of
WHILE loop.

Once the loop WHILE has terminated, go to step j + 1 of the FOR loop.
Return the pattern πj created on the last executed STEP j of the FOR loop.

5.2 Correctness of the Algorithm

By induction on j, let us assume that the initial segment πj−1(r), r ≤ j − 1, of
πj−1 and all variables and constants 1 among πj−1(r) for r > j of the target
pattern being constructed, have been constructed correctly. Now, we will show
that the same is true for πj .

Obviously, the only interesting case is when α is queried as described in the
algorithm. Note that this α has not been used yet in the learning process: the
only strings used before in the learning process and having 1 on the position j
were 1n and, possibly, the correction string u (containing 1-s for all variables),
however, as it is pointed out in the description of the algorithm, α is neither u,
nor 1n. If the answer is ‘yes’, then substituting just πj−1(j) = 0 by the single
occurrence of a new variable is obviously correct. Now suppose the answer is
‘no’. Then there must be some new variable (not used before), say x, on the
position j, however, there are some other occurrences of this variable in the
target pattern, and we don’t know them yet. Now, suppose the correction string
β has the length greater than n. If some 0 on a position r > j in πj−1 for which
br = 1 is not a value of x, then the oracle should have returned some string
β ∈ L with 1 on the position j and 0 on the position r, as such a string has not
been seen yet. However, it returned a longer string. Therefore, all values 0 on
the positions > j in πj−1 where br = 1 are values of the same variable x and,
thus, πj is the correct (final) target pattern.

If |β| ≤ n, then the algorithm enters the WHILE loop. In the case (1), the algo-
rithm observes the correction string, where some already existing variables have
been replaced by 1, and, possibly 0-s on the positions > j in π; as the correction

136 E. Kinber

string is at the shortest distance from the queried one, all these replaced 0-s (if
any) must be the values of the same variable. Thus, the algorithm is obviously
correct, having replaced all cr in question by occurrences of a new variable.

In the case (2), if |β| > n, then the analysis is as above. Otherwise, the
algorithm returns to the case (1) with the new correction string.

Now note that, on some iteration of the WHILE loop, the oracle must return
either a correction string β with |β| = n and cj = 1 (as cj is a value of a variable,
and, since oracle each time returns a string of the length n not seen yet, some
correction string of the length n must have cj = 1), or with |β| > n. Thus
WHILE loop always terminates, whenever entered.

Therefore, the algorithm correctly learns the target pattern π.

5.3 Complexity

The WHILE loop runs at most O(n) times, as every correction string contains
more characters 1 than the one on the previous step. Creating (possibly) a new
vaiable in the body of this loop requires time O(n). Thus, the total running time
of the algorithm comes to at most O(n3). The total number of queries in the
WHILE loop is O(n), and, thus, the total number of queries is O(n2).

5.4 Discussion

Two distinctive features of the oracle in our model are that a) it returns a correc-
tion not previously seen, and b) it gives preference to corrections of the size equal
to the size of the queried string. Both of them are important for the success of our
algorithm. If the oracle may return previously seen corrections, then, in many
cases, it will keep providing the string that has been utilized, and the learner
will not be able to get necessary information about unknown variables. Also,
corrections of arbitrary length (even closest to the queried string) are of little
help (if a returned string is longer than the pattern being constructed, our algo-
rithm just uses this fact to finish its work, but not the correction string itself).
The fact that positive examples of arbitary length are not helpful for learning
patterns when the shortest string in the target language becomes available, was
noticed (and successfully utilized) yet in [12], where the learning algorithm, while
learning patterns in the limit from all positive data, simply ignores all examples
longer than the shortest positive example seen so far. Our algorithm is similar to
the algorithm in [12] in this respect - however, it gets (and, accordingly, utilizes)
input data differently.

It is possible to slightly modify our query model, leaving the learning algorithm
intact. Instead of using requirement of selecting lexicographically smallest correc-
tion string,we coulduse correction strings that contain largestnumberof0-s among
the ones at the shortest edit distance from the queried string (still giving preference
to correction strings of the length equal to the length of the queried string).

As it was shown in [16], patterns cannot be learned in polynomial time
using membership queries. Thus, corrections are essential for polynomial-time
learnability.

On Learning Regular Expressions and Patterns 137

There are multiple ways of relaxing constraints of our query model. First,
within the framework of the given model, it would be interesting to find out if
polynomial-time learnability can be preserved for patterns over arbitrary alpha-
bets Σ. Another interesting question is if the requirement of preference given
to correction strings smallest in the lexicographic order (or containing largest
number of 0-s) can be lifted. Yet another interesting case would be when a cor-
rection string were just at the shortest edit distance from the queried one -
without any other constraints. However, we conjecture that a polynomial time
algorithm could not exist in this case. One more interesting open problem is to
find out if polynomial-time learning of patterns is possible while dropping the
requirement that correction string must be selected among those not seen so far
in the learning process (in this case, selection of the correction string will not
depend on the learning algorithm, and the teacher will not need to remember
which strings have been used in the learning process). Yet another interesting
open problem is whether, within the framework of our model, polynomial-time
algorithms exist for patterns over alphabets of the size 3 or more.

Acknowledgments. The author is grateful to C. Tı̂rnăucă for a useful discus-
sion and to anonymous referees for several helpful comments and suggestions.

References

1. Angluin, D.: Finding Patterns Common to a Set of Strings (extended abstract).
In: 11th Annual ACM Symposium on Theory of Computing, pp. 130–141. ACM
Press, New York (1979)

2. Angluin, D.: Inference of Reversible Languages. Journal of the ACM 29(3), 741–765
(1982)

3. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

4. Angluin, D.: Queries and Concept Learning. Machine Learning 2, 319–342 (1988)
5. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from Correction

and Equivalence Queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino,
T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,
Heidelberg (2006)

6. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning Balls of
Strings with Correction Queries. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 18–29. Springer, Heidelberg (2007)

7. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of Concise DTDs from
XML Data. In: 32nd International Conference on Very Large Data Bases VLDB
(2006)

8. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning Deterministic Reg-
ular Expressions for the Inference of Schemas from XML Data. In: WWW Confer-
ence 2008, Beijing, China, pp. 825–836 (2008)

9. Gold, E.M.: Language Identification in the Limit. Information and Control 10,
447–474 (1967)

138 E. Kinber

10. Fernau, H.: Algorithms for Learning Regular Expressions. In: Jain, S., Simon, H.U.,
Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 297–311. Springer,
Heidelberg (2005)

11. Kinber, E.: Learning a Class of Regular Expressions via Restricted Subset Queries.
In: Jantke, K.P. (ed.) AII 1992. LNCS, vol. 642, pp. 232–243. Springer, Heidelberg
(1992)

12. Lange, S., Wiehagen, R.: Polynomial-time Inference of Arbitrary Pattern Lan-
guages. New Generation Computing 8(4), 361–370 (1991)

13. Rohde, D.L.T., Plaut, D.C.: Language Acquisition in the Absence of Explicit Neg-
ative Evidence: How Important Is Starting Small? Cognition 72, 67–109 (1999)

14. Sakakibara, Y.: Learning Context-free Grammars from Structural Data in Polyno-
mial Time. Theoretical Computer Science 76, 223–242 (1990)

15. Shinohara, T., Arikawa, S.: Pattern Inference. In: Lange, S., Jantke, K.P. (eds.)
GOSLER 1994. LNCS, vol. 961, pp. 259–291. Springer, Heidelberg (1995)

16. T̂ırnăucă, C., Knuutila, T.: Polynomial Time Algorithms for Learning k-reversible
Languages and Pattern Languages with Correction Queries. In: Hutter, M., Serve-
dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 264–276.
Springer, Heidelberg (2007)

17. T̂ırnăucă, C.I., T̂ırnăucă, C.: Learning Regular Tree Languages from Correction
and Equivalence Queries. Journal of Automata, Languages and Combinatorics 12
(2007)

18. Valiant, L.G.: A Theory of the Learnable. Communications of the ACM 27(11),
1134–1142 (1984)

19. Yokomori, T.: Learning Non-deterministic Finite Automata from Queries and
Counterexamples. Machine Intelligence 13, 169–189 (1994)

State-Merging DFA Induction Algorithms with
Mandatory Merge Constraints

Bernard Lambeau1, Christophe Damas1, and Pierre Dupont1,2

1 Department of Computing Science and Engineering (INGI)�

Université catholique de Louvain
Place Sainte Barbe, 2

B-1348 Louvain-la-Neuve - Belgium
{bernard.lambeau, christophe.damas,

pierre.dupont}@uclouvain.be
2 UCL Machine Learning Group

http://www.ucl.ac.be/mlg/

Abstract. Standard state-merging DFA induction algorithms, such as RPNI or
Blue-Fringe, aim at inferring a regular language from positive and negative
strings. In particular, the negative information prevents merging incompatible
states: merging those states would lead to produce an inconsistent DFA. Whenever
available, domain knowledge can also be used to extend the set of incompatible
states. We introduce here mandatory merge constraints, which form the logical
counterpart to the usual incompatibility constraints. We show how state-merging
algorithms can benefit from these new constraints. Experiments following the
Abbadingo contest protocol illustrate the interest of using mandatory merge con-
straints. As a side effect, this paper also points out an interesting property of state-
merging techniques: they can be extended to take any pair of DFAs as inputs rather
than simple strings.

1 Introduction

Deterministic Finite Automaton (DFA) induction is a popular technique to infer a regu-
lar language from positive and negative strings defined over a finite alphabet Σ. Several
state-merging algorithms have been proposed to tackle this task, including RPNI [1],
EDSM and Blue-Fringe (also known as redBlue) [2]. These algorithms start from a tree-
shaped automaton, the so-called prefix tree acceptor (PTA), that accepts the positive
sample S+ only, and successively merge states to generalize the induced language. The
order in which pairs of states are considered for merging is the key difference between
the respective algorithms. In all cases, the generalization is controlled by the negative
sample S− to prevent merging incompatible states. Merging those states would lead to
build an inconsistent machine, that is a DFA which accepts at least one negative string.

The availability of negative information is theoretically motivated since positive and
negative samples are required to identify in the limit any super-finite class of languages,
including the regular language class [3]. The convergence proof of RPNI, for instance,

� This work is partially supported by the Regional Government of Wallonia (Gisele project, RW
Conv. 616425).

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 139–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 B. Lambeau, C. Damas, and P. Dupont

is related to the definition of a characteristic sample. When RPNI receives as input such
a sample, it is guaranteed to output the target machine, that is, the canonical automaton
of the target language. Such a characteristic sample includes O(n2) negative strings,
where n denotes the number of states of the target machine.

When few negative strings are available, one can rely on another kind of knowledge,
typically provided by the application domain. For example, when some additional in-
formation is available about incompatibilities between states of the initial automaton,
state merging algorithms can easily be extended to avoid merging states that are known
to be incompatible [4,5]. This technique, sometimes referred to as state coloring, may
be seen as incompatibility constraints on the induction algorithm.

Our previous work applies grammatical inference to the Requirements Engineering
(RE) domain [6]. In such an applicative context, domain-specific information, repre-
sented as incompatibility constraints, can be used in conjunction with negative strings
to avoid poor generalizations while reducing the induction search space. In the same
work, we introduced the QSM algorithm, an active learning extension to RPNI or Blue-
Fringe with membership queries [7]. These queries are generated during the induction
process and provide additional positive and negative strings, overcoming the limitations
of an initially sparse learning sample.

The present work introduces a new kind of constraints, called mandatory merge con-
straints. They form the logical counterpart to the incompatibility constraints. This pa-
per investigates this kind of constraints and how to extend state-merging algorithms to
handle them. The extended algorithm, called MSM, has been evaluated using an ex-
perimental protocol inspired by the Abbadingo competition [2]. We show experimen-
tally that MSM converges faster than existing algorithms. This result is actually quite
straightforward since MSM uses a richer information as input. However, two additional
observations are arguably the actual contributions of this work.

Firstly, DFA induction algorithms using state-merging typically include a recursive
merging process to reduce the non-determinism of temporary solutions. Such a merg-
ing for determinization process is often implemented assuming a tree invariant prop-
erty. This property states that, when considering two states to be merged, at least one of
them is the root of a tree. Such a property, which holds for RPNI and Blue-Fringe, but
interestingly not for EDSM, is a sufficient condition for the determinization process to
be finite. We argue here that, even though it is convenient, the tree invariant property is
not required as the determinization process stops by itself. The important consequence
of this observation is that the initial automaton to be considered no longer needs to be
a tree representing a finite sample. Hence MSM naturally gives rise to the Automa-
ton State Merging (ASM) algorithm, that is a state-merging induction algorithm which
takes as input a positive regular language represented by a DFA A+ and a negative
sample S−, and outputs a regular language L with L(A+) ⊆ L ⊆ Σ∗ \ S−. Secondly,
we discuss a natural extension to ASM which takes as input a positive DFA A+ and a
“negative” DFA A− and returns a regular language L with L(A+) ⊆ L ⊆ Σ∗ \L(A−).
The initialization of this extended algorithm would immediately detect an inconsistency
whenever L(A+) ∩ L(A−) 	= ∅.

The rest of this paper is structured as follows. Section 2 briefly reviews the Require-
ment Engineering application context which originally motivated the present work.

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 141

Section 3 reviews the DFA state-merging induction algorithms and the use of incompat-
ibility constraints. Section 4 introduces mandatory merge constraints and describes the
MSM algorithm. Section 5 presents the experimental protocol and the results obtained
using MSM on synthetic data and on a RE case study. The ASM algorithm to deal with
positive and negative automata as inputs is discussed in section 6. Our conclusions and
future works are presented in section 7.

2 The Synthesis of Software Behavior Models Seen as a DFA
Induction Problem

It has been claimed that the hardest part in building a software system is deciding pre-
cisely what the system should do. This is the general objective of Requirements Engi-
neering (RE). Automating parts of this process can be addressed by learning behavior
models from scenarios of interactions between the software-to-be and its environment.
Indeed, scenarios can be represented as strings over an alphabet of possible events and
they can be generalized to form a language of acceptable behaviors. Whenever behav-
iors are modeled by finite-state machines, the problem becomes equivalent to automaton
induction from positive and negative strings.

Scenarios are typical examples of system usage provided by an end-user involved in
the requirements elicitation process. A simple message sequence chart (MSC) formal-
ism is used for representing scenarios. A MSC is composed of vertical lines representing
time-lines associated with agent instances, and horizontal arrows representing interac-
tions among such agents. Figure 1 depicts some scenarios for a simple train system.
The system is composed of four agents: a train controller, train motor and doors, and a
passenger. For example, the scenario “Start/Stop” expresses that the train controller can
start the train and then stop the train from the initial state.

Related works on RE are described in [7]. The technique proposed in the present
paper allows one to inductively synthesize behavior models from positive and negative
scenarios while taking into account their flowcharting in a high-level Message Sequence
Chart (hMSC). A hMSC is a directed graph where each node references a scenario.
Edges indicate the acceptable flowcharting of these scenarios, allowing the end-user to
reuse scenarios within a specification and to introduce sequences, loops, and alterna-
tives. Figure 1 presents an example of scenario flowcharting for the train example. An
induction approach for behavior synthesis is relevant because a PTA can easily be de-

Fig. 1. Some scenarios for a simple train system and their flowcharting in a hMSC (center)

142 B. Lambeau, C. Damas, and P. Dupont

x

start

open

x
stop

alarm

x
close

emergency stop emergency open

Fig. 2. A labeled Prefix Tree Acceptor generated for the train system

rived from the positive and negative scenarios: the transitions drawn as solid lines form
a spanning tree of the hMSC resulting in the initial PTA of Figure 2. Moreover, the
hMSC provides additional information that must be used during the induction process:
dashed lines allow one to identify equivalent system states. A label is associated to
those equivalent states in the PTA (x in the example). The MSM algorithm introduced
in section 4 ensures that they will be merged by the induction process.

3 State-Merging DFA Induction with Incompatibility Constraints

This section briefly reviews the DFA induction problem using state-merging algorithms
and incompatibility constraints. The concept of quotient automaton, strongly related
with state-merging, is introduced in section 3.1. Section 3.2 presents a family of state-
merging algorithms, RPNI being one representative example. Section 3.3 describes one
efficient way to handle incompatibility constraints in such algorithms.

3.1 State-Merging and Quotient Automaton

State-merging DFA induction algorithms, such as RPNI, start from an initial automaton
called a prefix tree acceptor PTA(S+). It is the largest trimmed DFA accepting exactly
S+ (see the automaton on the left of Fig. 3). The generalization operation obtained by
merging states is defined through the concept of quotient automaton, relative to a par-
tition π of the state set of the original atomaton. States belonging to the same subset,
or block, of π are merged in the quotient automaton (see the automaton on the right of
Fig. 3). Any accepting path in the PTA is also an accepting path in PTA/π. As a quo-
tient automaton corresponds to a particular partition, the set of possible generalizations
which can be obtained by merging states of an automaton A can be searched through
a lattice of partitions Lat(A) [8].

Fig. 3. (left) PTA(S+) with S+ = {λ, a, bb, bba, baab} and λ denoting the empty string;
(right) a quotient automaton A = PTA/π where π = {{0}, {1}, {2, 4}, {3, 6}, {5}, {7}}.
Accepting states are represented as doubly circled nodes.

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 143

3.2 State-Merging DFA Induction Algorithms

RPNI is a very well known DFA induction algorithm [1]. It can be seen as a particular case
of the state-merging algorithm described in Algorithm 1. It takes a positive and a negative
sample as input. The first step constructs the PTA1. An initial partition is initialized and
successively updated by the main loop of the algorithm. At each step of this loop, two
blocks of the partition are selected as candidate for merging. These partition blocks pre-
cisely define the states of the quotient automaton PTA/π. In other words, each step can
be interpreted as merging two states of a quotient automaton, which forms an intermediate
solution of the algorithm. When compatible with the negative sample, this intermediate
solution is kept for the next step, otherwise it is simply discarded. The algorithm continues
by selecting other blocks to merge, until no more state pairs can be considered.

Algorithm 1. A state-merging DFA induction algorithm

Algorithm STATE-MERGING DFA INDUCTION ALGORITHM

Input: A positive and negative sample (S+, S−)

Output: A DFA A consistent with (S+, S−)

// Compute a PTA, let N denote the number of its states
PTA ← Initialize(S+, S−); π ← {{0}, {1}, ..., {N − 1}}
// Main state-merging loop
while (Bi, Bj) ← ChoosePair(π) do

πnew ← Merge(π, Bi, Bj)
if Compatible(PTA/πnew, S−) then

π ← πnew

return PTA/π

// This function merges two blocks and removes non-determinism recursively
Merge(π, Bi, Bj) begin

π ← π\{Bi, Bj} ∪ {Bi ∪ Bj}
while (Bk, Bl) ← FindNonDeterminism(π,Bi, Bj) do

π ← Merge(π, Bk, Bl)

return π

end

The pseudo code of the Merge function is shown below the main loop. The first line
simply updates the partition π by effectively merging the two block arguments. Merging
two blocks Bi and Bj may lead to a non-deterministic quotient automaton; the partition
is then recursively updated in order to reduce the non-determinism.

The ChoosePair function determines which pairs of blocks to consider for merg-
ing. In the particular case of the RPNI algorithm, it relies on the standard lexicographi-
cal order on strings. The Blue-Fringe algorithm uses an heuristic approach according to
the order in which state pairs are chosen, while identifying as soon as possible the states
which are incompatible with all their predecessors [2]. For both algorithms, the block
Bi in the main loop and, by extension, the block Bk in the Merge function, are always
the roots of a tree. This is the tree invariant property already mentioned in section 1.
This property also helps implementing particularly simple and fast algorithms [2].

1 The reason why the PTA is built using S+ as well as S− results from a variant motivated in
section 3.3.

144 B. Lambeau, C. Damas, and P. Dupont

0

1a

2
b

3
b

4
a

5

b
6

a
8

b

7
a

Fig. 4. Augmented PTA from the sample (S+, S−) = ({λ, a, bb, bba, baab}, {ab, b}). The pos-
itive sample can be represented by the PTA illustrated on the left of Fig.3. This PTA can be
augmented by the negative sample, by coloring states reached by a negative string as black. Ac-
cepting states (of positive strings) are filled in grey in this figure.

3.3 Handling Incompatibility Constraints

Negative strings play a crucial role in automaton induction algorithms, as they are used
to avoid merging incompatible PTA states. When few negative strings are provided in
the initial sample S−, alternative sources of knowledge can be used to play a similar
role. In particular, knowledge about incompatibilities between states of the PTA can
easily be incorporated in the induction process as coloring constraints. As the negative
sample S− can itself be encoded as such constraints, we used this particular example to
illustrate the technique in Fig. 4.

To ensure that the solution returned by the induction algorithm correctly rejects S−,
it suffices to avoid merging black and grey states of the PTA. In other words black
and grey states form incompatible pairs. This black/grey coloring can be captured by
a partial function fcol(Q) → {grey, black}, where Q is the set of PTA states. A
quotient automaton PTA/π respects the coloring constraint if, ∀q1, q2 ∈ Q such that
fcol(q1) 	= fcol(q2) and both are defined, if q1 ∈ Bi and q2 ∈ Bj then Bi 	= Bj . In
other words, each block B may contain any number of uncolored states (4 and 6 in our
example) but grey and black states must be kept separate from each other. Checking
the constraints can be efficiently performed in the Merge function. The Compatible
function in the main loop can thus be replaced by a compatibility test between merged
blocks in the Merge function. This algorithm is able to detect inadequate solutions
during the determinization procedure itself, speeding up the induction process. This
improvement is illustrated in section 4 where the MSM algorithm is introduced. More
details about this state coloring technique can be found in [5] and examples of RE
domain-specific information in [7]. Domain knowledge represented as incompatibility
constraints has also been used for subsequential transducer learning [9].

4 State-Merging with Mandatory Merge Constraints

Section 2 explains why mandatory merge constraints arise in our RE application con-
text. We present here, the MSM (Mandatory State Merging) algorithm, a straightfor-
ward adaptation of Algorithm 1 to deal with such constraints.

Mandatory merge constraints are the logical counterpart to the incompatibility con-
straints. It is interesting to elaborate briefly on the logical differences between them.
Consider for example the PTA of Fig. 4. Grey and black states are known to be incom-
patible: merging them would lead to a solution that accepts at least one negative string.

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 145

In addition, we assume that some domain-specific knowledge allows the user to state
that q2 and q6 in this PTA do in fact represent the same state in the target machine.
In our application domain, this kind of knowledge takes the following form: “From the
initial state, the software accepts exactly the same future behaviors after the occurrence
of event b (state 2) and the sequence of events baa (state 6)”. By virtue of the mapping
between states of a canonical DFA and residual languages (the “future behaviors” in
our example), these states must be merged by the induction process: not merging them
will lead to a solution that does not respect this positive domain knowledge.

Capturing mandatory merge constraints uses a similar mechanism to state coloring,
this one being called state labeling. Formally, we introduce a partial labeling func-
tion flab(Q) → {r, s, t, ...}, where Q is the set of PTA states and r, s, t are labels.
States with the same label must be merged by the induction process. In our example,
the fact that states q2 and q6 must be merged is captured by flab(q2) = flab(q6). A
quotient automaton PTA/π respects the labeling constraints if, ∀q1, q2 ∈ Q such that
flab(q1) = flab(q2) and both are defined, if q1 ∈ Bi and q2 ∈ Bj then Bi = Bj .

Given a particular partial coloring function fcol and a particular partial labeling func-
tion flab, their influence on the induction process is the following. States with different
colors may not be merged, while states with the same color may be merged. States
with different labels may be merged, while states with the same label must be merged.
It is worth stressing that the labeling information does not replace the negative knowl-
edge, which is included in the coloring constraints. In the extreme case where all states
are correctly labeled but no incompatibility constraints (hence no negative examples)
are present, all states can, and actually will, be merged. In short, labeling and coloring
information help together to achieve a good generalization accuracy.

The apparent symmetry between the two types of constraints is however not reflected
in the merging process. Coloring (or incompatibility) constraints must be enforced at
each step of the algorithm while the labeling (or mandatory) constraints need not be.
Indeed, if any intermediate solution violates the coloring constraint, it will also be vi-
olated by any quotient automaton of this intermediate solution. In other words, when
such a constraint is violated no more path exists in the search space to an adequate
solution. This is the reason why intermediate solutions are checked at each step of the
algorithm and discarded if required.

In contrast, an intermediate solution not respecting a labeling constraint does not im-
ply that a quotient automaton of this solution would not. A trivial example of this fact
is the PTA itself: in our example, states q2 and q6 must be merged while not being
originally in the same block, thus initially violating the labeling constraint. Under the
hypothesis that labeling and coloring constraints are consistent with each other, some
quotient automaton of the PTA may however be consistent with all constraints. Dy-
namically checking whether an intermediate solution PTA/π not satisfying a labeling
(or mandatory merge) constraint, can indeed lead to a consistent automaton looks to be
a difficult task. The MSM algorithm described below adopts a straightforward approach
to satisfy labeling constraints without the need for such a dynamic check.

MSM (see Algorithm 2) is a state-merging induction algorithm ensuring that both
kinds of constraints are satisfied. As motivated in section 3.3, incompatibility con-
straints between states provided by the state coloring (including those provided by the

146 B. Lambeau, C. Damas, and P. Dupont

negative sample) are checked in the Merge function instead of the main loop; an excep-
tion mechanism can be used to handle incompatibility notifications. Secondly, all blocks
that must be merged according to the labeling information are merged immediately, that
is, before entering the main loop. The FindSameBlocks function identifies pairs of
blocks in π having the same label. These blocks are merged using the Merge func-
tion. This ensures that potential non-determinism is actually reduced. If coloring and
labeling constraints are inconsistent, the avoid exception is not caught by the algorithm
and typically raised to the user. If successful, the first while loop produces a quotient
automaton PTA/π respecting both coloring and labeling constraints. The partition π
is then further updated by the usual state-merging loop. While this loop takes care of
respecting coloring constraints, the labeling constraints could simply not be violated
anymore. Indeed, after the initial phase, states that must be merged are necessarily in
the same blocks of π and those states will remain merged forever.

Algorithm 2. MSM, a DFA induction algorithm that satisfies incompatibility (col-
oring) and mandatory merge (labeling) constraints

Algorithm MSM
Input: A non-empty initial positive and negative sample (S+, S−)

Input: Labeling and coloring constraints

Output: A DFA A consistent with (S+, S−) and all constraints

// Compute a PTA, let N denote the number of its states
PTA ← Initialize(S+, S−); π ← {{0}, {1}, ..., {N − 1}}
// Merge all states according to labeling constraints
while (Bi, Bj) ← FindSameBlocks(π) do

π ← Merge(π, Bk, Bl)

// Main state-merging loop
while (Bi, Bj) ← ChoosePair(π) do

try
π ← Merge(π, Bi, Bj)

catch avoid
// next state pair to consider

return PTA/π

// This function merges two blocks and removes non-determinism recursively
// while checking coloring constraints
Merge(π, Bi, Bj) begin

if Incompatible(Bi, Bj) then
raise avoid

π ← π\{Bi, Bj} ∪ {Bi ∪ Bj}
while (Bk, Bl) ← FindNonDeterminism(π,Bi, Bj) do

π ← Merge(π, Bk, Bl)

return π

end

The implementation of MSM looks a priori straightforward. Starting from the PTA,
a DFA A is built by merging all states that must be merged. Next, the main state-merging
loop is executed from A. It is however worth stressing that the tree invariant property
does not hold in MSM. This observation may require to significantly review the actual
implementation of this algorithm. Interestingly, the main merging loop and the Merge

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 147

Fig. 5. Recursive determinization process. States {3} and {0} of an arbitrary DFA are merged,
which causes a non-determinism on letter b from state {0,3}. The destination states {2} and {4}
are subsequently merged to reduce the non-determinism.

function can be implemented without the tree invariant property because the recursive
determinization process stops naturally on the first DFA encountered. This observation
allows one to start from an arbitrary DFA and, as soon as non-determinism occurs, to
reduce it. Figure 5 gives an example of such a recursive operation.

5 Evaluation

MSM has been evaluated on synthetic data as well as on the RE train case study briefly
introduced in section 2. Sections 5.1 and 5.2 discuss the respective results of these
experiments.

5.1 Experiments on Synthetic Data

To evaluate MSM on synthetic data, we used an experimentation protocol inspired from
the Abbadingo contest [2]. In our current implementation, MSM is equivalent to RPNI
when no mandatory merged constraints are present. In other words, the merging order
is exactly the one of RPNI if no labeling constraints are considered. In this context,
the objective of this evaluation is mostly to quantify the proportion of domain-specific
information required to get better generalization results. The experimentation protocol
that we used to achieve this objective is outlined below.

Experiments are made on randomly generated target DFAs with 32 and 64 states
and an alphabet of 2 letters. Accepting states are chosen randomly by flipping a fair
coin. These automata are trimmed to remove unreachable states and minimized to ob-
tain canonical target machines. The number of states of a DFA generated using this
procedure is approximately 3/5 of the requested size, which has been increased ac-
cordingly. As in Abbadingo, if the depth of the resulting automaton is not equal to
p = 2 ∗ log2(n)− 2, it is simply discarded.

A learning and testing set for a target DFA with n states consists of n2 randomly
generated strings. These strings are generated using a uniform distribution over the
collection of all binary strings of length [0, p + 5]. This set is randomly divided into
two samples of the same size: a learning sample on which MSM is run and a testing
sample used to measure the adequacy of the resulting solution. Strings of the learning
sampled are labeled as positive or negative according to the target DFA. MSM is run on
increasing proportions of the learning sample.

148 B. Lambeau, C. Damas, and P. Dupont

Fig. 6. Classification accuracy for RPNI, Blue-Fringe and MSM

In order to simulate domain-specific information leading to mandatory merge con-
straints, unique labels are associated to randomly chosen states of the target DFA. In-
creasing proportions of the number of states labeled in this way have been used: 5%,
10%, 20% and 100%. States of the PTA used by MSM are labeled by jointly visiting
it with the target DFA and reporting encountered labels. This labeling constrains the
induction process as explained in section 4.

Figure 6 reports the proportion of independent test samples correctly classified while
increasing the learning sample. Curves in this plots correspond to executions of RPNI,
Blue-Fringe and MSM with different labeling proportions. Each point in these plots is
the average value computed over 200 independent runs. MSM overcomes RPNI on all
executions, which was actually expected, but illustrates experimentally that forcing to
merge initially some (correctly labeled!) states does not prevent from converging. 5% of
labeling information is comparable, from the point of view of the generalization accuracy,
to the use of the Blue-Fringe heuristic for selecting state pairs to be merged. Beyond this
proportion, the accuracy continues to increase. Interestingly, it is already visible when
the sample is sparse. This fact is particularly helpful in our RE context, where learning
sample is initially provided by an end-user. Moreover, it is worth noting that, as pointed
out in section 4, the identification of the target does not reduce to a trivial problem even
with 100% of labeling information when only few negative examples are available.

Although not yet implemented, we are confident that using mandatory merge con-
straints would also improve the generalization accuracy of the Blue-Fringe and QSM
algorithms (the interested reader may refer to [7] for an experimental comparison be-
tween RPNI, Blue-Fringe and QSM without labeling constraints).

5.2 Experiments on a RE Case Study

An accuracy gain is also expected when using MSM for behavior model synthesis. In
order to quantify this gain, the algorithm has been evaluated on an extended version
of the train system introduced in section 2. In this respect, the evaluation protocol is
slightly different from the one presented in the previous section: the target model of

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 149

the train system has been built manually as a DFA of 18 states with an alphabet of size
10 (see Figure 7). A typical collection of scenarios has also been built for the system
and represented as an augmented PTA: 9 positive and 5 negative strings for a total of
55 states.

Mandatory merge constraints are defined by labeling pairs of equivalent PTA states.
These pairs are chosen following a “loop identification” heuristic, representative of the
way such a specification is incrementally built by an end-user using an hMSC. For
instance, opening then closing the doors from the initial state (without any intermediate
event) naturally returns in the initial state (see the loop between states 0 and 2 in Figure 7
and the way this loop is easily represented in the hMSC of Figure 1). However, some
loops are less natural to identify from the scenarios: the sequence of events (leaving,
high, approaching, low, atstation) form a loop starting from state 3 for example.
Equivalent state pairs of the PTA identified in this way have been classified in four
categories, following the expected difficulty for an end-user of discovering them in
the scenarios. MSM has been evaluated on increasing proportion of mandatory merge
constraints, following this classification.

0 1
alarm

2
open

3

start

open

close

stop
4alarm

5

leaving

stop

6alarm

7approaching

8
high

9
stop

16
stop

atstation

12

alarm
13

stop

low
10

alarm

11approaching

start

low

low

18
alarm 14

stop

start

15
open

close

17
open

close

low

Fig. 7. Target model of the train system

Table 1. Classification accu-
racy obtained with different se-
tups on the train case study. The
number of labeling constraints
|lab| refers to the number of
PTA states pairs declared to be
equivalent.

Algorithm |lab| Accuracy

RPNI - 0.55
BlueFringe - 0.83
MSM 0 0.55

3 0.71
6 0.73

10 0.88
15 0.90

Table 1 compares the accuracy of the DFA induced using RPNI and BlueFringe as
well as MSM with an increasing number of mandatory merge constraints. The reported
accuracy is the average classification rate computed over 10 independent test samples,
each one containing 80 (positive or negative) strings. The results confirm what has
been observed on synthetic data. Increasing the number of mandatory merge constraints
(that is, enriching the hMSC with additional transitions) leads to a better accuracy,
outperforming BlueFringe when such information is rich enough. The results also show
that no algorithm has been able to identify perfectly the target DFA on such sparse
samples. It is worth noting that, for the need of this evaluation, only few sources of
negative information have been used while such sources do exist in this application
domain [7]. Further improvements could also be obtained by using mandatory merge
constraints with the BlueFringe search order.

150 B. Lambeau, C. Damas, and P. Dupont

6 DFA Induction from Positive and Negative DFAs (Deterministic
Finite Automata) as Inputs

Relaxing the tree invariant property has additional benefits which we discuss in this
section. The main state-merging loop of MSM (see Algorithm 2) actually generalizes a
language represented by an arbitrary DFA, under the control of all negative knowledge
represented as incompatibility constraints. It is possible to factor out the state-merging
loop from MSM as a new algorithm ASM (for Automaton State Merging), which gen-
eralizes a positive DFA A+ taken as input, under the control of a negative sample S−,
ignoring here other incompatibility constraints for the simplicity of the discussion. The
pseudo-code of ASM is given in Algorithm 3.

Algorithm 3. ASM, a DFA induction
algorithm that generalizes a positive
DFA A+ under the control of a negative
sample S−

Algorithm ASM
Input: A positive DFA A+ and a negative sample

S−

Output: A DFA A consistent with (A+, S−)

// Augment the automaton A+ with states

// marked/added from S−

M ← Augment(A+, S−)

// Compute the natural order on M

π ← NatOrder(M)

// Main state-merging loop

π ← Generalize(π)

return M/π

The first step of this algorithm aug-
ments A+ with the negative sample S−
in a way similar to the augmentation of a
PTA(S+). Each negative string can be
decomposed as uv, where u is the longest
prefix already present in A+ and reaches a
state q, and v is the suffix of this negative
string. When v is empty, q is marked as a
negatively accepting (= black) state if not
yet marked as positively accepting; if q
is already a positively accepting (= grey)
state, an inconsistency error between A+

and S− is reported to the user. When v
is not empty, a new branch rooted at q is
added to the automaton, ending in a new
negatively accepting state.

The function NatOrder computes the
natural order of the states of M using a
breadth first search of the states and num-
bering each of them when encountered.

The search ends when each state has been reached. We assume here for simplicity
that this function returns the trivial partition π with each state in its own block, the
blocks being naturally ordered. The Generalize function corresponds to the main
state-merging loop and returns the updated partition.

ASM is the actual algorithm we use for the synthesis of behavior models in our RE
application domain. Unfolding the hMSC as a labeled PTA is in fact not required and
one can directly generalize, using ASM, the automaton that would be produced from
the hMSC by the deductive technique of [10].

The ASM algorithm itself may be further extended. Indeed, the extension which
consists in replacing finite positive string S+ by a regular language represented as a
DFA A+, can also be applied to the negative sample. This lead to an induction algo-
rithm ASM∗, which takes as input both a positive DFA A+ and a negative DFA A−.
In ASM∗, the Augment function produces the composition of A+ and A− as a col-
ored automaton M . More precisely, the state space of M is the product of the states
of A+ and A− (extended whenever necessary to be complete DFAs). A state of M is

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 151

positively accepting if the corresponding state is accepting in A+. Similarly, it is neg-
atively accepting if the corresponding state in A− is accepting. If both conditions hold
at the same time for at least one state of M , an inconsistency error between A+ and
A− is reported to the user. Figure 8 illustrates this composition mechanism on a simple
example. The natural order is computed on M . The main state-merging loop is then
executed while checking for the coloring constraints as usual in the recursive Merge
function.

There could be no need to compute explicitly the product automaton M since the
associated coloring constraints, which follow from the common prefixes between A+

and A−, can be computed and updated dynamically, as nicely shown in [5]. We believe
however that it is useful to consider such a product automaton for defining the state
ordering relation computed in NatOrder. Doing so, the prefixes of the negative strings
in L(A−), including possibly some prefixes that do not belong to L(A−) themselves,
can be used to define the search order. In this sense, strict prefixes of positive and
negative strings are considered in the same way. This is indeed the natural extension
to the augmented PTA(S+, S−) used to define the search order in the Blue-Fringe
algorithm. We also note that [5] generalizes those ideas to non-deterministic automata.
However the authors do not stress the possibility to start the whole induction process
from both a positive and a negative automaton, as a consequence of relaxing the tree
invariant property.

Fig. 8. Composition of A+ (left) and A− (middle) to get a product automaton M (right) with
coloring constraints

Finally, it is worth noting that RPNI2, the incremental version of the RPNI algo-
rithm introduced in [11], unfolds the current DFA when a new negative example is
received and wrongly accepted by the current machine. The unfolded DFA is subse-
quently merged following a different path in the search space. As such, RPNI2 is al-
ready able to restart the generalization process from a DFA not restricted to be a tree.
However the tree invariant property is satisfied in RPNI2 since the unfolding is guaran-
teed to go back to a temporary solution that RPNI would have considered if run on the
updated samples.

7 Conclusion and Future Work

Coloring constraints are classically used in automaton induction techniques to control
the state merging process while generalizing the positive sample. Such coloring con-
straints define which states are incompatible, that is, cannot be merged without giving
rise to an inconsistent machine. We introduce here mandatory merge constraints, imple-
mented using a partial labeling function, as the logical counterpart to the incompatibility

152 B. Lambeau, C. Damas, and P. Dupont

constraints. We propose the MSM algorithm, a natural extension to state-merging algo-
rithms such as RPNI or Blue-Fringe, that can deal both with coloring and labeling con-
straints. We present experimental comparisons between MSM, RPNI and Blue-Fringe
following a protocol inspired by the Abbadingo competition.

The MSM extension looks straightforward from an algorithmic point of view but it
actually relaxes the tree invariant property. This property states that, among two states
considered for merging, at least one is always the root of a tree-shaped (sub-)automaton.
The tree invariant property is often assumed in DFA induction algorithms when recur-
sively merging pairs of states to reduce non-determinism. However such a merging for
determinization process naturally stops by itself and the tree invariant property is thus
not required. As a consequence, the MSM algorithm gives rise to the ASM algorithm
that takes a DFA A+ and a negative sample S− as inputs. ASM is the actual induction
algorithm we use in our Requirements Engineering application domain which moti-
vated, in the first place, the definition of mandatory merge constraints. We also describe
the ASM∗ algorithm, which further extends ASM, and takes as input both a positive
and a negative DFA.

Our future work includes several points. Our current implementation of MSM, and
hence of ASM, relies on the RPNI search order. MSM and ASM can also be adapted to
the Blue-Fringe strategy typically with the EDSM scoring function to adapt the search
order. Doing so would only require to compute the scoring function between state pairs
as a side product of the recursive merging operation applied here on general graphs. In
this regard, the implementation would be similar to the original EDSM algorithm (i.e.
without the Blue-Fringe strategy) but with coloring and labeling constraints. A further
step is to extend the QSM algorithm [7] to add the active learning feature.

ASM∗ raises interesting theoretical questions since inferring from a positive and a
negative DFA no longer fits exactly in the identification in the limit framework. The de-
finition of a characteristic sample would need to be adapted as well as the experimental
protocol.

References

1. Oncina, J., García, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.)
Advances in Structural and Syntactic Pattern Recognition. Series in Machine Perception and
Artificial Intelligence, vol. 5, pp. 99–108. World Scientific, Singapore (1992)

2. Lang, K., Pearlmutter, B., Price, R.: Results of the abbadingo one DFA learning competition
and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.)
ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)

3. Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474
(1967)

4. Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce the DFA
induction search tree. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI),
vol. 1433, pp. 199–210. Springer, Heidelberg (1998)

5. Coste, F., Fredouille, D., Kermorvant, C., de la Higuera, C.: Introducing domain and typing
bias in automata inference. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI),
vol. 3264, pp. 115–126. Springer, Heidelberg (2004)

State-Merging DFA Induction Algorithms with Mandatory Merge Constraints 153

6. Damas, C., Lambeau, B., Dupont, P., van Lamsweerde, A.: Generating annotated behavior
models from end-user scenarios. IEEE Transactions on Software Engineering 31(12), 1056–
1073 (2005)

7. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algorithm and its ap-
plication to software behavior model induction. Applied Artificial Intelligence 22, 77–115
(2008)

8. Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference? In: Car-
rasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37. Springer, Heidelberg
(1994)

9. Oncina, J., Varó, M.A.: Using domain information during the learning of a subsequential
transducer. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 301–
312. Springer, Heidelberg (1996)

10. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavorial models from scenarios. IEEE
Transactions on Software Engineering 29(2), 99–115 (2003)

11. Dupont, P.: Incremental regular inference. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996.
LNCS, vol. 1147, pp. 222–237. Springer, Heidelberg (1996)

Using Multiplicity Automata to Identify

Transducer Relations from Membership and
Equivalence Queries

Jose Oncina

Dept. Lenguajes y Sistemas Informáticos
Universidad de Alicante, Spain

oncina@dlsi.ua.es

Abstract. Multiplicity Automata are devices that implement functions
from a string space to a field. Usually the real number’s field is used.
From a learning point of view there exists some algorithms that are able
to identify any multiplicity automaton from membership and equivalence
queries.

In this work we realize that those algorithms can also be used if the
algebraic structure of a field is relaxed to a divisive ring structure, that
is, the commutativity of the product operation is dropped.

Moreover, we define an algebraic structure, which is an extension of
the string monoid, that allows the identification of any transduction that
can be realized by finite state machines without empty-transitions.

1 Introduction

In the same way a language is defined as a subset (usually infinite) of strings,
a transducer can be defined as a subset of pairs or strings. The first string is
interpreted as the input string and the second as the output string, i.e. in a
translation task the pair (“to be”,“ser”) can represent that the English verb “to
be” can be translate to Spanish by the verb “ser”.

One of the biggest classes of transductions that are known to be identifiable
are the subsequential functions. Those functions can be describe as the set of the
transductions that can be implemented by deterministic finite state machines in
which the arcs and the states are labeled with strings of the output string space.
The translation of a string is the concatenation of the strings in the labels of
the arcs and the final state used in the parsing of the string (note that since the
automaton is deterministic there is at most one path).

In this work we are interested in learning transducers in the exact learning
model. In this model, proposed by Angluin in 1988 [Ang88], the learner is allowed
to actively search information by asking queries to a teacher. Two types of queries
are allowed:

– membership queries. When the learner can ask for the translation of some
sentence.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 154–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Multiplicity Automata to Identify Transducer Relations 155

– equivalence query. When the learner thinks it has a suitable hypothesis,
it can ask the teacher if it is correct. If the model is correct the teacher
answers YES and the process stops. If it is incorrect, the teacher answers
with a counter example.

In 1996 Vilar [Vil96] proposed an algorithm to efficiently identify any subsequen-
tial transducer in this model.

The most important drawback of the subsequential functions is that they can
not cope with ambiguities. For example, the verb “to be” can also be translated
to Spanish by the verb “estar”, but subsequential functions, as they are based
on deterministic machines, are unable to give several options.

In this work we are going to describe a class of transductions that includes
properly the subsequential functions and permits the expression of ambiguous
transductions. This class includes all the transductions that can be performed
by non deterministic ε-free automata where the edges and the states can have
several labels.

The proposed algorithm is a reinterpretation of an algorithm to identify Mul-
tiplicity Automata (MA) [BBB+00] in the exact learning framework. Usually
MA implement string to real functions. MA are very similar to stochastic au-
tomata where there are no restrictions to force the function to be a distribution
probability. They can be described as a non deterministic automata with labels
in the edges and states (usually real numbers). The value assigned to a string is
the sum over all possible parses of the string of the product of the labels in the
edges and the final state used in each parse.

Our idea relays in substituting the field of the real numbers (with its mul-
tiplication and addition) that is usually used in MA by an alphabet with the
concatenation playing the role of the multiplication and the inclusion in a mul-
tiset playing the role of the addition. Note that the commutativity is lost when
replacing the product of reals by the concatenation of strings. That means we
are not longer working in a field but, with some extensions described later, in a
divisive ring. It is easy to check that, in the demonstration of the properties of
his algorithm, Beimel et al did not use the commutativity of the product, and
therefore, their results remains valid in the case of divisive rings.

2 Notation

2.1 String Expressions

Let Σ = {a, b, . . .} be a finite set or Alphabet. The set of string expressions over
Σ (E(Σ)) is defined as follows:

– ε ∈ E(Σ) and ∅ ∈ E(Σ)
– let a ∈ Σ ⇒ a ∈ E(Σ)
– let x ∈ E(Σ)⇒ −x ∈ E(Σ)
– let x ∈ E(Σ)⇒ x−1 ∈ E(Σ)
– let x, y ∈ E(Σ)⇒ x + y ∈ E(Σ)
– let x, y ∈ E(Σ)⇒ x · y ∈ E(Σ)

156 J. Oncina

Let x, y, z ∈ E(Σ), we define the following relation of equivalence:

– (x · y) · z ≡ x · (y · z) product associativity
– (x + y) + z ≡ x + (y + z) addition associativity
– x + y ≡ y + x addition commutativity
– x · (y + z) ≡ x · y + x · z product distributivity
– x + ∅ ≡ ∅+ x ≡ x addition neutral element
– x · ε ≡ ε · x ≡ x product neutral element
– x + (−x) ≡ ∅ addition inverses
– x · x−1 ≡ ε product inverses

Let we call [Σ] the collection of the equivalence classes in E(Σ). Then ([Σ], +, ·),
in abstract algebra, has a structure of divisive ring, that is, a field where the prod-
uct operator is not commutative.

The product is interpreted as the usual concatenation of strings (this is the
reason to avoid the commutativity) where ε (the neutral element) represents the
null string. The set has been enriched with concatenation symmetric elements,
then it is expected to have strings like ab−1a. We can think in this strings as
“intermediate” results. It should be assured that, at the end of all the computa-
tions, no strings with “special symbols” appears. In the sequel, we use the usual
juxtaposition notation (xy instead of x · y).

The addition is interpreted as a multiset inclusion. Then the expression x+ y
represents a multiset with two elements, x and y, x + x + x is a multiset with
three elements (that are equal), x+y +−y a multiset with just one element (the
x) since y − y ≡ ∅ and y + ∅ ≡ y.

2.2 Multiplicity Automata

Definition 1 (Multiplicity Automata). Let Σ be an alphabet and let K be
a ring. A Multiplicity Automaton (MA) is a 3-tuple (λ, μ, γ) such that:

– λ ∈ K1×n (a 1× n matrix with values in K)
– γ ∈ Kn×1 matrix (a n× 1 matrix with values in K)
– μ is morphism of monoids μ : Σ∗ → Kn×n (return a n× n matrix)

That is, μ(λ) = I (the unit matrix), and ∀x, y ∈ Σ∗, μ(xy) = μ(x)μ(y). Then, μ
can be represented as a set of |Σ| Kn×n matrices.

Let α = (λ, μ, γ) be a multiplicity automaton, we can define the function
performed by α as fα : Σ∗ → K such that:

fα(x) = λμ(x)γ

A Multiplicity automata α = (λ, μ, γ) can also be interpreted as a weighted
non deterministic automata with n states. Where λi is the weight of beginning
in state qi, [μ(a)]i,j is the weight of the arc that goes from state qi to state qj

with the symbol a and γi is the weight of ending in state qi. The weight of a path
is computed as the product of the weight of the start state times the weights of
the arcs used in its parsing times the weight of the ending state. The weight of

Using Multiplicity Automata to Identify Transducer Relations 157

a string is the sum of the weights of all the possible paths of the string in the
automaton.

It is easy to see that any multiplicity automata function can be implemented
by a multiplicity automaton with only one initial state and with at most one
more state than the original. Then, without loss of generality, the vector λ in
the definition can be fixed to a vector such that λ1 = ε and λi = ∅, 1 < i ≤ n.

In our case instead of a generic ring we are going to use the divisive ring of
the string expressions.

Example 1. Let Σi = {a} and Σo = {0, 1} be respectively the input and output
alphabets, let f : Σ∗

i → [Σo] be a function such that:

f(an) =

{
0n if n is odd
1n if n is even

(1)

It is easy to see that the MA depicted in figure 1 realizes this function.

q1

εstart

q2

ε

q3

∅

q4

∅

q5

ε

a|0

a|1

a|0

a|1

a|0

a|1

Fig. 1. MA for function in equation 3

Example 2. The matrix representation of the automaton in figure 1 is:

λ =
(
ε ∅ ∅ ∅ ∅

)
μa =

⎛

⎜⎜⎜⎜⎝

∅ 0 1 ∅ ∅
∅ ∅ ∅ 0 ∅
∅ ∅ ∅ ∅ 1
∅ 0 ∅ ∅ ∅
∅ ∅ 1 ∅ ∅

⎞

⎟⎟⎟⎟⎠
F =

⎛

⎜⎜⎜⎜⎝

ε
ε
∅
∅
ε

⎞

⎟⎟⎟⎟⎠
(2)

Example 3. It is not very difficult to see that the function in equation 3 can also
be realized by the MA automaton in figure 2.

It is easy to see that any transducer based on a non deterministic ε-free automa-
ton with a finite number of strings in the edges or states can be represented as
a MA over the string expressions divisive ring.

Let we see an example to illustrate that.

158 J. Oncina

q1

εstart
q2

0

q3

11

q4

000

a|ε a|ε a|ε

a|14 − (04 − 14)(02 − 12)−112

a|(04 − 14)(02 − 12)−1

Fig. 2. A minimum size automaton that realizes equation 1 function

Example 4. Let Σi = {a} and Σo = {0} be respectively the input and output
alphabets, let f : Σ∗

i → [Σo] be a function such that:

f(an) =
n∑

i=0

0i (3)

That is:

f(ε) = ε (≡ {ε})
f(a) = ε + 0 (≡ {ε, 0})

f(aa) = ε + 0 + 00 (≡ {ε, 0, 00})
. . .

It is easy to see that the MA depicted in figure 3 realizes this function.

q0

εstart
q1

ε + 0

a|ε

a|ε + 0

a| − 0

Fig. 3. MA for function in equation 3

2.3 Hankel Matrix

The MA inference algorithm that we are going to use relies on some properties of
the Hankel matrix. Although the following definitions and theorems are stated
for fields we can realize the the commutativity of the product is never used and
then, they still valid for divisive rings. Part of the following material can be
found in some Beimel et al papers [BBB+96] [BBB+00], we just transliterate it
for divisive rings to make the paper more self content.

Using Multiplicity Automata to Identify Transducer Relations 159

Let D be a divisive ring (A field where the product is not commutative), Σ
be an alphabet, ε be the empty string, and f : Σ∗ → D be a function. The
Hankel matrix of the function f is an infinite matrix F where each of its rows
and columns are indexed by strings in Σ∗. The (x, y) entry of F contains the
value f(xy) ∈ D

We use Fx to denote the xth row of F . The (x, y) entry of F may be therefore
denoted as Fx(y) or as Fx,y.

Example 5. The Hankel matrix of the function in equation 1 is:

F =

⎛

⎜⎜⎜⎜⎜⎜⎝

ε 0 11 000 1111 . . .
0 11 000 1111 00000 . . .
11 000 1111 00000 111111 . . .
000 1111 00000 111111 0000000 . . .
1111 00000 111111 0000000 11111111 . . .
.

⎞

⎟⎟⎟⎟⎟⎟⎠
(4)

The following theorem of Carlyle and Paz [CP71] and Fliess [Fli74] is a funda-
mental theorem from the theory of formal series. Although it was stated for field
it is easy to check that is is also valid for divisive rings as we state here.

Theorem 1. Let f : Σ∗ → D such that f 	≡ 0 and let F be the corresponding
Hankel matrix. Then, the size r of the smallest MA α such that fα ≡ f satisfies
r = rank(F) (over the divisive ring D)1

The importance of the theorem is double: first, it relates the size of the minimal
automaton for f to the rank of its Hankel matrix. And second, the proof is
constructive. It gives a way to build a MA from any finite rank Hankel Matrix.

Given a function f : Σ∗ → D such that the corresponding matrix F has finite
rank r, let Fx1 , Fx2 , . . . , Fxr be r linearly independent rows of F (i.e. a basis)
corresponding to strings x1, x2, . . . , xr. (since f 	≡ 0, it holds that Fε 	= 0, then
Fε can always be an element of the basis. Then, we take x1 = ε).

Then the MA α = (λ, μ, γ) that realizes the function fα is:

– λ = (ε, ∅, . . . , ∅).
– γ = (f(x1), . . . , f(xr))t.
– for every a ∈ Σ, define the ith row of the matrix μ(a) as the (unique) coeffi-

cients of the row Fxia when expressed as a linear combination of Fx1 , . . . , Fxr .
That is,

Fxia =
r∑

j=1

[μ(a)]i,jFxj (5)

Example 6. It can be show that Fε, Fa, Faa and Faaa in the Hankel matrix of
equation 4 forms a basis.

We are going to show that Faaaa can be expressed as a linear combination of
Fε, Fa, Faa and Faaa.
1 The demonstration of the theorem can also be found in [BBB+96] [BBB+00].

160 J. Oncina

That is we have to solve the system of equations:

α1 +α20 +α312 +α403 = 14

α10 +α212 +α303 +α414 = 05

α112 +α203 +α314 +α405 = 16

α103 +α214 +α305 +α416 = 07

It is straight forward to use the Gauss method to solve the system (paying
attention to not use the product commutativity) and find the solution:

α4 = ∅
α2 = ∅
α3 = (04 − 14)(02 − 12)−1

α1 = 14 − (04 − 14)(02 − 12)−112

Observe that these are the values that were used to depict the MA in figure 2.

3 The Beimel et al Algorithm

The algorithm works using a finite version of the Hankel matrix F̂ . Let X and
Y be two sets where the indexes of the finite version of the Hankel matrix are
stored.

The algorithm works as follows:

1. X = {x1 = ε}, Y = {y1 = ε} and � = 1
2. Build a MA α = (λ, μ, γ) using theorem 1
3. Ask an equivalence query.

If the answer is YES halt with output α.
Otherwise, let z be the counterexample.
(a) Find (using membership queries) a string wa which is a prefix of z such

that:
i. F̂w =

∑�
i=1[λμ(w)]iF̂xia; but

ii. there exists a y such that: F̂wa 	=
∑�

i=1[λμ(w)]iF̂xia(y)
(b) X = X ∪ {x�+1 = w}, Y = {y�+1 = ay}, � = � + 1
GO TO step 2

Beimel et al showed that the algorithm works in O((|Σi| + m)rM(r)) time
using r equivalence queries and O((|Σi|+ log m)r2) membership queries. Where
Σi is the input alphabet, r is the rank of the Hankel matrix, M(r) is the com-
plexity of multiplying two r × r matrices (O(r2.376)) and m is the length of the
longest counter example.

Once more, it can be checked in the work of Beimel et al that the commuta-
tivity of the product is not used and then, the algorithm still valid in divisive
rings.

Note that in our case, the equivalence query should return a string expression
describing all the possible output strings and the counter example of an equiva-
lence query should return a pair (string, string expression) such that the string
expression is a description of all the possible transduction of the input string.

Using Multiplicity Automata to Identify Transducer Relations 161

q0

εstart

a|ε + 0 f(ε) = ε

f(a) = ε + 0

f(aa) = (ε + 0)(ε + 0) = ε + 0 + 0 + 00

· · ·

Fig. 4. MA that does no realize function in equation 3

Example 7. Let we try to find a transducer for the function in equation 3:
In such case we need 2 states and the system to solve is:

α1ε +α2(ε + 0) = ε + 0 + 02

α1(ε + 0) +α2(ε + 0 + 02) = ε + 0 + 02 + 03

The solution is:

α1 = −0 α2 = ε + 0

And the transducer in figure 2 is obtained.
Note that the transducer in figure 4 does not produces the transduction of

equation 3 since some of the output strings have a different number of repetitions
(multiplicity).

4 Conclusions and Open Questions

This work shows how to use an algorithm devised to learn multiplicity automata
from membership and equivalence queries to identify transducer relations.

The proposed method can identify the class of transductions than can be
expressed as finite state (and arc) machines with no ε transitions.

As this is a first step to deal with ambiguous transductions it remains many
problems to solve in order to be able to apply similar technique in more realistic
situations:

– The way the membership and equivalence queries should be answered is too
demanding. Information about all the transductions for the involved input
string should be provided. Can we still be able to learn if only information
about just one transduction is provided in each query?

– Since the method assures the identification, if the target function does not
produces strings with inverse symbols, neither the produced function will
do. But it can produce a complex string expression that, when simplified, is
just a plain string (as happens in the MA in figure 2). Does it exist a general
method to simplify and compare string expressions? Does it exist a method to
know if a multiplicity automaton produces only plain strings? If we compare
automata in figures 1 and 2, obviously the first one is more understandable
than the second one. Does it exist a method to remove complex expressions
is arcs and states, possibly adding more states?

162 J. Oncina

– The multiplicity is important in learning. Automata in figures 3 and 4 show
that, when the multiplicity doesn’t care, smaller automata can be obtained.
How much can this reduction be? Any learnable function remains learnable
if the multiplicity is not taken into account?

References

[Ang88] Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342
(1988)

[BBB+96] Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.:
On the applications of multiplicity automata in learning. In: IEEE Sym-
posium on Foundations of Computer Science, pp. 349–358 (1996)

[BBB+00] Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.:
Learning functions represented as multiplicity automata. J. ACM 47(3),
506–530 (2000)

[CP71] Carlyle, J.W., Paz, A.: Realizations by stochastic finite automaton. J. Com-
put. Syst. Sci. 5, 26–40 (1971)

[Fli74] Fliess, M.: Matrices de hankel. J. Math. Pures Appl. 53, 197–222 (1974)
(Erratum in vol. 54, 1975)

[Vil96] Vilar, J.M.: Query learning of subsequential transducers. In: Miclet, L.,
de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 72–83. Springer,
Heidelberg (1996)

Towards Feasible PAC-Learning of Probabilistic

Deterministic Finite Automata�

Jorge Castro and Ricard Gavaldà

Departament de Llenguatges i Sistemes Informàtics
LARCA Research Group

Universitat Politècnica de Catalunya, Barcelona
{castro,gavalda}@lsi.upc.edu

Abstract. We present an improvement of an algorithm due to Clark and
Thollard (Journal of Machine Learning Research, 2004) for PAC-learning
distributions generated by Probabilistic Deterministic Finite Automata
(PDFA). Our algorithm is an attempt to keep the rigorous guarantees
of the original one but use sample sizes that are not as astronomical
as predicted by the theory. We prove that indeed our algorithm PAC-
learns in a stronger sense than the Clark-Thollard. We also perform
very preliminary experiments: We show that on a few small targets (8-
10 states) it requires only hundreds of examples to identify the target.
We also test the algorithm on a web logfile recording about a hundred
thousand sessions from an ecommerce site, from which it is able to extract
some nontrivial structure in the form of a PDFA with 30-50 states. An
additional feature, in fact partly explaining the reduction in sample size,
is that our algorithm does not need as input any information about the
distinguishability of the target.

1 Introduction

1.1 Context

Probabilistic Finite-State Automata (PFA) are thoroughly studied objects, both
because of its inherent theoretical interest and their applications. Probabilistic
Deterministic Finite-State Automata (PDFA) are a robust and natural subclass
of PFA: See [6] for a study of the relations among these models, as well as HMM
and POMDP.

These devices generate distributions on strings, and learning to approximate
them from a sample is one of the central associated problems. A good number of
algorithms have been proposed to infer PDFA. Some of them are only empirically
evaluated while, for others, convergence in the limit to the target PDFA can be
proven; see among others [1, 4, 2, 15, 11].

� Research supported in part by the EU PASCAL2 Network of Excellence and by
the Spanish Ministry of Education and Science under projects MOISES-TA and
TRANGRAM.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 163–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

164 J. Castro and R. Gavaldà

In the more demanding PAC model, some evidence that learning PDFA is
hard was provided by Kearns et al. [10]. More precisely, it is shown in [10] that
assuming that noisy parities are hard to PAC-learn, distributions generated by
2-letter PDFA cannot be PAC-learned in time polynomial in n, 1/ε, and 1/δ,
where from now on n denotes an upper bound on the number of states in the
target machine, and ε and δ are the usual accuracy and confidence parameters
in the PAC framework.

On the other hand, Ron et al. [13] gave an algorithm to PAC learn
acyclic PDFA if polynomiality is measured in an additional parameter, the
distinguishability of the target states - which we will denote as μ from now
on. This formalized the observation, present already e.g. in [2], that one of the
reasons that made some PDFA hard to learn was the presence of states with
very similar suffix distributions. Clark and Thollard [3] showed how to extend
this result to cyclic PDFA if still another parameter, the expected length of the
generated strings L is taken into account. Their work is the culmination of a line
of research, in the sense of identifying a set of parameters that make polynomial-
time learning possible. We will state their result precisely in Section 2.

A number of papers have since presented variations or extensions of Clark
and Thollard’s algorithm (for brevity, called the C-T algorithm from now on).
The related paper [14] by the same authors presents a more algorithmic view
of the same ideas, with emphasis on the structure identification part. Palmer
and Goldberg [12] showed the analogous result for learning with respect to the
variation (L1) distance rather than the KL-distance as C-T. Guttman et al [9]
showed that the class of μ2-distinguishable PDFA is also learnable with respect
to the KL-distance; C-T uses the easier μ∞-distinguishability measure. See also
the related results in Guttman’s thesis [8]. Denis et al [5] gave a quite deep
PAC-style result for the full class of PFA, although the parameters in which the
algorithm is polynomial are not completely identified there. Gavaldà et al. [7]
give another variation of C-T that adapts to the complexity of the target, in
the sense that it may stop earlier than the worst-case bound if convergence is
achieved.

While the Clark-Thollard result proves polynomial-time learnability of PDFA,
the actual polynomial is huge for interesting parameter values. For example, it
is in the order of 1024 for |Σ| = 2, n = L = 6, and ε = δ = μ = 0.1. For
values similar to these ones, the algorithm in [7] uses sample sizes in the order of
105 in their experiments. On the other hand, these algorithms do not look that
different from other state-merging algorithms in the literature, which often do
pretty well in practice with much smaller samples.

We believe that it is an interesting question whether these huge numbers
are unavoidable if PAC-like guarantees are required or whether one can design
algorithms with guaranteed polynomiality in well-defined parameters that have
use realistic sample sizes; or, let us say, about as realistic as those of the
algorithms which have been validated empirically only. It is important to note
that we discuss algorithms having no prior knowledge about the structure of the
state space; otherwise, the problem is much simpler.

Towards Feasible PAC-Learning of PDFA 165

1.2 Our Results

Our initial intention in this work was to produce an algorithm that does not
ask for a bound on the distinguishability μ of the target PDFA. This value is in
practice very hard to guess, and basically only trial-and-error can be used. As
the work progressed, we incorporated other optimizations, all of which can still
be rigorously justified. Yet, our algorithm is as easy to describe, if not more,
than the original C-T algorithm.

We show that our algorithm PAC-learns in the same sense as that the C-
T algorithm. In fact it learns with respect to a more demanding notion of
distinguishability than the L∞-distance as C-T, which we call prefL∞-distance.
This proof is the core of the paper.

While all our improvements are technical rather than conceptual, their
combination could lead to dramatic experimental speedups. We describe a few
experiments with an implementation of our algorithm that, we admit, are still
far from being “an experimental evaluation”. We first use the example PFAs
in [7], having 10 states each, for which the algorithm in [7] required about 4 ·105

examples to converge. Our algorithm identifies the structure of the PDFAs and
achieves low error with about 200-500 examples, i.e., a reduction by a factor of
1000 w.r.t. [7]. An additional example taken from [2] produces similar results.

We perform an additional experiment on a large dataset: a weblog of a high-
traffic Spanish online travel agent, recording about 120,000 user sessions. Each
session can be modelled as a string over an alphabet of size about 90, and average
length about 12. On this dataset, our algorithm is able to identify some nontrivial
structure: it extracts PDFA with 30-50 states that are certainly quite different
from trees. We are currently in touch with the company to assess whether the
patterns embodied in the PDFA make sense to local experts.

To finish this section, let us remark an important difference of our algorithm
with C-T, of a high-level rather than purely technical nature: The C-T algorithm
receives a number of parameters of the target as input, computes the worst-case
number of examples required for those parameters, and asks for the full sample
of that size upfront. Rather, we place ourselves in the more common situation
where we have a given, fixed sample and we have to extract as much information
as possible from it. Our main theorem then says that the algorithm PAC-learns
provided this sample is large enough with respect to the target’s parameters
(some of which, such as μ, are unknown; we are currently working on removing
the need to have the other parameters as inputs).

2 Preliminaries

We essentially follow notation in [3]. A PDFA A is a tuple 〈Q, Σ, τ, γ, ξ, q0〉 where
Q is a finite set of states, Σ is the alphabet, τ : Q× Σ −→ Q is the transition
function, γ : Q × (Σ ∪ {ξ}) −→ [0, 1] defines the probability of emitting each
symbol from each state (γ(q, σ) = 0 when σ ∈ Σ and τ(q, σ) is not defined), ξ
is a special symbol not in Σ reserved to mark the end of a string, and q0 ∈ Q is
the initial state. Transition function τ is extended to Q×Σ� in the usual way.

166 J. Castro and R. Gavaldà

Given an observation string xξ = σ0 . . . σkξ emitted by a known PDFA A,
the state at each step can be tracked by starting from the initial state q0

and following the labelled transitions according to x until reaching last symbol
ξ. Also, the probability of generating a given string xξ from state q can be
calculated recursively as follows: if x is the empty word λ the probability is
γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with k ≥ 0 and γ(q, σ0σ1 . . . σkξ) =
γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ).

The probability of state q in PDFA A is defined as the sum of values γ(q0, xξ),
where x ranges over the set of strings in Σ� that traverse q.

Assuming every state of A has non-zero probability of generating some string,
one can define for each state q a probability distribution DA

q on Σ�: For each
x, probability DA

q (x) is γ(q, xξ). The one corresponding to the initial state DA
q0

is called the distribution defined by A, written DA in short. When there is no
ambiguity, we will omit superindex A.

Given a multiset S of strings from Σ� we denote by S(x) the multiplicity of x
in S, write |S| =

∑
x∈Σ� S(x) and for every σ ∈ Σ define S(σ) =

∑
x∈Σ� S(σx).

To resolve the ambiguity of this notation on strings of length 1, we will always use
greek letters to mean elements of Σ, and latin letters for strings. We also denote
by S(ξ) the multiplicity of the empty word, S(λ). To each multiset S corresponds
an empirical distribution Ŝ defined in the usual way, Ŝ(x) = S(x)/|S|. Finally,
prefixes(S) denotes the multiset of prefixes of strings in S.

We consider several measures of divergence between distributions. Let D1 and
D2 be probability distributions on Σ�. The Kullback–Leibler divergence, KL for
short, is defined as

KL(D1, D2) =
∑

x

D1(x) log
D1(x)
D2(x)

.

The L∞ supremum distance is

L∞(D1, D2) = max
x∈Σ�

|D1(x)−D2(x)|.

Finally, we also use the supremum distance on prefixes (introduced here, as far
as we know):

prefL∞(D1, D2) = max
x∈Σ�

|D1(xΣ�)−D2(xΣ�)|.

Definition 1. We say distributions D1 and D2 are μ-distinguishable when
μ ≤ max{L∞(D1, D2), prefL∞(D1, D2)}. A PDFA A is μ-distinguishable when
for each pair of states q1 and q2 their corresponding distributions Dq1 and Dq2

are μ-distinguishable.

Observe that prefL∞(Dq1 , Dq2) ≥ μ iff there is any x ∈ Σ� such that
|γ(q1, x)−γ(q2, x)| ≥ μ. By definition, our measure of distinguishability is never
smaller than the usual L∞-distinguishability in the literature [3, 12].

Towards Feasible PAC-Learning of PDFA 167

3 Description of the Algorithm

We show below a learning algorithm for PDFAs that has as input parameters the
alphabet size |Σ|, an upper bound L on the expected length of strings emitted
from any state of the target (alternatively, a bound on the expected length of
strings from the initial state and a bound on the variance), an upper bound
n on the number of states of the target, and the confidence (δ) and precision
(ε) parameters. In contrast with the C-T algorithm, it does not need as input
parameter the distinguishability μ of the target.

According to [3], a PAC learner for the class of PDFA can be easily obtained
from a polynomial-time algorithm, so-called Learner from now on, satisfying
the requirements listed below; we follow their notation.

1. Learner returns (with high probability) a graph G isomorphic to a subgraph
of the target PDFA A. This means that there is a bijection Φ from a subset
of states of A to all nodes of G such that 1) Φ(q0) = v0 (where q0, v0 are
the initial states of A and G, respectively) and 2) if τG(v, σ) = w then
τ(Φ−1(v), σ) = Φ−1(w).

2. The states in A whose probability is greater than ε2/(L + 1), which we call
frequent states, have a representative in G. That is Φ is defined on frequent
states.

3. If q is a frequent state in A and σ ∈ Σ is such that γ(q, σ) > ε5 (we say (q, σ)
is a frequent transition) then τG(Φ(q), σ) exists and it equals Φ(τ(q, σ)).

4. A multiset Sv is attached to every node v in the graph. If v represents a
frequent target state q (i.e., Φ(q) = v where q is frequent), then for every
σ ∈ Σ ∪ {ξ}, it holds |Sv(σ)/|Sv| − γ(q, σ)| < ε1. A multiset holding this
property is said to be ε1-good.

Numbers ε1, ε2 and ε5 above and auxiliar quantities ε0 and δ0 that we use later
are defined as follows. Note that they do not depend on μ.

ε1 =
ε2

16(|Σ|+ 1)(L + 1)2

ε2 =
ε

4n(n + 1)L(L + 1) log(4(L + 1)(|Σ|+ 1)/ε)

ε5 =
ε

4|Σ|(n + 1)L(L + 1) log(4(L + 1)(|Σ|+ 1)/ε)

ε0 =
ε2ε5

n|Σ|(L + 1)

δ0 =
δ

n2|Σ|+ 3n|Σ|+ n

From a such graph G a PDFA hypothesis H can be easily built having a small KL
divergence with respect to A. This is described in the paragraphs “Completing
the Graph” and “Estimating Probabilities” in [3], page 480. Basically, it is
enough to complete the graph when necessary by introducing a new node, the

168 J. Castro and R. Gavaldà

ground node, representing all the low frequency states and new transitions to the
ground node. Finally, a smoothing scheme is performed in order to estimate the
transition probabilities.

The proof that an algorithm Learner with these properties, plus this
additional graph completion and probability estimation step, is a PAC-learner
is essentially the contents of Sections 4.3, 4.4 and 5 in [3]. It does not involve
distinguishability at all, so we can apply it in our setting even if we have changed
our measure of distinguishability.

Our learning algorithm takes as inputs the parameters listed above and a
sample from the target machine containing N examples. Learner performs at
most n|Σ|+1 learning stages, each one making a pass over all training examples
and guaranteed to add one transition to the graph G it is building.

At the beginning of each stage, Learner has a graph G that summarizes our
current knowledge of the target A. Nodes and edges in G represent, respectively,
states and transitions of the target A. We call safe nodes the nodes of G, as they
are inductively guaranteed (with probability at least 1− δ0) as stand for distinct
states of A, with transitions among them as in A. Safe nodes are denoted by
strings in Σ�.

Attached to each safe node v there is a multiset Sv that keeps information
about the distribution on the target state represented by v. The algorithm starts
with a trivial graph G consisting of a single node v0 = λ representing the initial
state q0 of the target, whose attached multiset is formed by all the available
examples.

When a new stage starts, the learner adds a candidate node u = vuσ for each
(safe) node vu of G and each σ ∈ Σ such that τG(vu, σ) is undefined. Candidate
nodes gather information about transitions of A leading from states that have
already a safe representative in G but not having yet an edge counterpart in G.
Attached to each candidate node u there is also a multiset Su, initially empty.
The learner also keeps, for each candidate node u, a list Lu of safe nodes that
have not been yet distinguished (proved different) from u. Initially Lu contains
all nodes in G.

For each training example xξ = σ0 . . . σi−1σiσi+1 . . . σkξ in the dataset,
Learner traverses the graph matching each observation σi to a state until either
(1) all observations in x have been exhausted or (2) a transition to a candidate
node is reached. This occurs when all transitions up to σi−1 are defined and lead
to a safe node w, but there is no edge out of w labeled by σi. In this case, we add
the suffix σi+1 . . . σk to the multiset Su of candidate node u = wσi and, before
processing a new example, we consider all pairs (u, v) where safe node v belongs
to Lu. For each such pair, we call function Test Distinct(u, v) described in
Figure 1. If the test returns “distinct”, we assume that u and v reach distinct
states in the target and we remove v from Lu.

A candidate node becomes important when |Su| exceeds ε0N/2. Every time
that there is an important candidate node u = vuσ whose associated set Lu is
empty, u is promoted to a new safe node (G gets a new node labelled with u),
u is not anymore a candidate node, and an edge from vu to u labeled by σ is

Towards Feasible PAC-Learning of PDFA 169

added to G. The multiset Su is attached to the new safe node, u is included in
the list Lu′ of all remaining candidate nodes u′, and the phase continues.

If all training examples are processed without the condition above occurring,
the algorithm checks whether there are any important candidate nodes left. If
none remains, Learner returns G and stops. Otherwise, it closes the phase as
follows: It chooses the important candidate u = vuσ and the safe node v ∈ Lu

having smallest distinguishability on the empirical distributions (samples), and
identifies them, by adding to G an edge from vu to v labeled by σ.

Finally, the phase ends by erasing all the candidate nodes and another phase
starts.

function Test Distinct(u, v)
//u is a candidate node; v is safe
mu ← |Su|; su ← | prefixes(Su)|;
mv ← |Sv|; su ← | prefixes(Sv)|;

tu,v ←
(

2
min(mu,mv) ln 4m2

u(su+sv)π2

3δ0

)1/2

d← max
(
L∞(Ŝu, Ŝv), prefL∞(Ŝu, Ŝv)

)

if d > tu,v then return “distinct”
else return “not clear”

Fig. 1. The state-distinctness test

4 Analysis

In this section we show that algorithm Learner satisfies conditions (1)-(4) before,
and therefore can be turned into a PAC-learner for PDFA.

The following two lemmas describe the behavior of Test Distinct. Here
Du (respectively, Dv) denotes the target distribution on state q = τ(q0, u)
(q = τ(q0, v)).

Lemma 2. If Du = Dv function Test Distinct(u, v) returns “not clear” with
probability 1− 6δ0/(π2m2

u).

Proof. Let D = Du(= Dv). Function Test Distinct returns “different” when
there exists a string x such that |Ŝu(xΣ�)− Ŝv(xΣ�)| > tu,v or |Ŝu(x)− Ŝv(x)| >
tu,v. First, we bound the probability of the event prefL∞(Ŝu, Ŝv) > tu,v. To avoid
summing over infinitely many x, consider Su ∪Sv ordered, say lexicographically.
Then the event above is equivalently to saying “there is an index i in this
ordering such that some prefix of the ith string in Su ∪ Sv in this ordering,
call it x, satisfies the condition above”. (This is another way of saying that only
x’s appearing in prefixes(Su ∪ Sv) can make the inequality true, since all others
have Ŝu(xΣ�) = Ŝv(xΣ�) = 0.) Therefore, its probability is bounded above by
the maximum of (su + sv) Pr[|Ŝu(xΣ�)− Ŝv(xΣ�)| > tu,v] over all strings x. By
the triangle inequality, this is at most

(su +sv)
(
Pr[|Ŝu(xΣ�)−D(xΣ�)| > tu,v/2] + Pr[|Ŝv(x)−D(xΣ�)| > tu,v/2]

)
.

170 J. Castro and R. Gavaldà

Since E[Ŝu(xΣ�)] = E[Ŝv(xΣ�)] = D(xΣ�), by Hoeffding’s inequality this is at
most

(su + sv)(2 exp(−2(t2u,v/4) mu) + 2 exp(−2(t2u,v/4) mu))

≤ 4(su + sv) exp(−(t2u,v/2) min(mu, mv)),

which is 3δ0/(π2m2
u) by definition of tu,v.

A similar reasoning also shows that the probability of the event L∞(Ŝu, Ŝv) >
tu,v is at most 3δ0/(π2m2

u) and we are done.

Lemma 3. If Du and Dv are μ-distinguishable and min(mu, mv) ≥ 8
μ2 ln

8(mu+mv)m2
uLπ2

3δ2
0

then Test Distinct(u, v) returns “different” with probability
1− δ0.

Proof. We first bound the size of prefixes(Su ∪ Sv). Clearly, its expected size
is at most L|Su ∪ Sv|. Then, by Markov’s inequality, Pr[| prefixes(Su ∪ Sv)| ≥
2
δ0
· L|Su ∪ Sv|] is less than δ0/2. Therefore, we have with probability at least

1− δ0/2 that su + sv ≤ 2(mu + mv)L/δ0.
Now assume there is a string x witnessing that prefL∞(Du, Dv) > μ (otherwise

some x is a witness for L∞(Du, Dv) > μ and we argue in a similar way), i.e. a string
such that |Du(xΣ�)−Dv(xΣ�)| > μ. If min(mu, mv) ≥ 8

μ2 ln 8(mu+mv)m2
uLπ2

3δ2
0

, by
the argument above with high probability we have tu,v ≤ μ/2 and the proba-
bility of returning “different” is at least the probability of the event |Ŝu(xΣ�) −
Ŝv(xΣ�)| > μ/2. The hypothesis on x and the triangle inequality shows that
probability of the complementary event |Ŝu(xΣ�) − Ŝv(xΣ�)| ≤ μ/2 is at most
Pr[|Ŝu(xΣ�) − Du(xΣ�)| > μ/4] + Pr[|Ŝv(xΣ�) − Dv(xΣ�)| > μ/4]. By the
Hoeffding bound, this sum is less than δ0/2, and we are done.

Lemmas 4–8 below share the hypothesis the current G is isomorphic to a
subgraph of A and deal with one fixed stage of the learning algorithm.
Probabilities are taken over samples.

Lemma 4. Let u be a candidate node. If u is promoted to safe (in this stage)
then, with probability 1− δ0, node u corresponds to a new target state, i.e., one
not represented in the current graph G.

Proof. We show that a candidate node u representing the same target state
than a safe state v has very small probability of being promoted. By Lemma 2
at any specific call to Test Distinct(u, v), the function returns the wrong value
“different” with probability at most 6δ0/(π2m2

u). The test is called once for every
example included in Su, so the value of mu increases by 1 at each consecutive
call within the stage. Therefore, the probability that safe node v is ruled out
from Lu is at most ∑

mu≥1

6δ0/(π2 m2
u) = δ0

Lemma 5. Let u be a candidate node, and let μ be the distinguishability of the
target. If N is greater than 16

ε0μ2 (3e ln 48
ε0μ2 + ln 16Lπ2

3δ2
0

) with probability 1−nδ0, if

Towards Feasible PAC-Learning of PDFA 171

candidate node u is merged with a safe node v then, strings u and v end in the
same state in the target.

Proof. Assume candidate u is merged with safe node v. Necessarily u is
important and N ≥ mu > ε0N/2. As v is safe it also holds mv > ε0N/2. It is
also clear that mu + mv ≤ 2N . From these values of mu, mv and the hypothesis
on N , it can be checked that min(mu, mv) satisfies requirement in Lemma 3. So,
if they were representatives of different target states, safe v would remain in Lu

with probability at most δ0.

Lemma 6. Assume that, after processing all examples, graph G has no safe node
v representing a frequent state q of A. If N > 8(L+1)

ε2
ln 1

δ0
then, with probability

1− δ0, the learner will not finish yet.

Lemma 7. Assume that, after processing all examples, graph G has no edge
representing a frequent transition (q, σ) in A. If N > 8(L+1)

ε2ε5
ln 1

δ0
then with

probability 1 − δ0, some candidate is important and the learner will not
finish yet.

Lemma 8. Let u be a candidate node. If the number N of training examples
is greater than 1

ε0ε21
ln 2(|Σ|+1)

δ0
and u is promoted to safe then, with probability

1− δ0, multiset Su is ε1-good.

Let N0 be max
(

16
ε0μ2 (3e ln 48

ε0μ2 + ln 16Lπ2

3δ2
0

), 8
ε0ε21

ln 2(|Σ|+1)
δ0

)
. A straightforward

induction shows the main theorem:

Theorem 9. If N > N0, with probability 1 − δ Learner returns a graph G
satisfying requirements (1)–(4) listed above.

As explained already, the second phase of the learning algorithm takes the graph
G, completes it if necessary, and sets the transition probabilities according to their
empirical distribution. An additional smoothing is performed, as described in [3].
We do not describe it here, but state that the resulting PDFA will approximate
the target in the KL distance, as can be deduced from the proof in [3].

5 Experiments

5.1 Small Targets

Our first experiments used the two automata tested by Gavaldà et al. [7],
shown in Figure 2. The one on the left is a (nondeterministic) HMM repeatedly
generating strings in {abb, aaa, bba} with different probabilities. The one on the
right is the “cheese maze”: at each state (or square), an observation (a letter in
{1, 2, 3}) indicates the number of walls around that state, with the exception of
s10 where the automaton terminates. They have thus 10 states each. We have
additionally used the Reber grammar automaton, with 8 states, discussed in [2]
and shown in Figure 3.

172 J. Castro and R. Gavaldà

Fig. 2. Example PFAs from [7]

Fig. 3. The Reber grammar; plot taken from [2]

For each of these automata, and different values of N , we generated 10
examples of size N from the target, and run our algorithm on these examples.
In all experiments we used δ = 0.05 and the (known) number of target states
for n. For the Reber grammar, the full structure of the automaton was identified
about half the times with N = 100, but systematically identified when N = 200,
at which point transition probabilities were correct within (absolute) 5%. For
N = 1000, transition probabilities were correct within 1%. For the cheese maze
automaton, at N = 300 the structure was found 9 out of 10 times, with transition
probabilities correct up to 2%. For N = 1000, the structure was correctly found
in all trials. Interestingly, when the program was changed to use only L∞-, rather
than prefL∞-distinguishability, the point at which the structure is identified
more than 50% of the times was around N = 1300. That is, using prefL∞ did
help in this case. Results were similar for the HMM on the left of Figure 2.

5.2 An Experiment with a Real, Large Dataset

As a larger test, we used a web logfile recording sessions from a high-traffic
Spanish online travel agency, selling flights, hotel stays, car rentals, and theater
tickets. Each entry in the logfile records a user request to the company’s web
to initiate some action. The local experts distinguish 91 types of requests or

Towards Feasible PAC-Learning of PDFA 173

Sample # states L1 distance

40k 35 .582
50k 36 .546
60k 39 .518
70k 42 .516
80k 45 .480
100k 54 .439

Fig. 4. Results on the online travel agency dataset

tags; some examples could be “search flight”, “search hotel”, “book flight”,
“credit card info”, “home”, “register”, “help”, etc. We preprocessed the logfile
transforming each request into a tag identifier and grouping clicks from the
same user into sessions. Therefore each session can be viewed as a string over
a 91-letter alphabet. The median and average of session length are 4 and 11.9,
excluding 1-click sessions, and we had 120,000 sessions to work with.

We ran our algorithm on subsets of several sizes N of this dataset. Since
human web users cannot be perfectly modelled by PDFA, one should not expect
high accuracy. Still, there are certainly patterns that users tend to follow, so it
was worth checking whether any structure is found.

We tried N = 40, 000 to N = 100, 000 in multiples of 10, 000. Figure 4
presents, for each N , the size of the resulting PDFA and the L1-distance from
the dataset to a randomly generated sample of size 100, 000 from the output
machine.

Note that the L1 distance can have value up to 2. (In fact, we tried generating
several independent samples of size 100k from the PDFA obtained with the 100k
sample and computing their L1 mutual distance. The results were around 0.39
even though they came from the same machine, so this value is really the baseline
once sample size has been fixed to 100k.) The table shows that convergence to
a fixed machine did not occur, which is no surprise. On the other hand, the
resulting machines were not at all tree-like PDFAs that occur when no states
can be merged: most safe states did absorb candidate states at some point. Given
the alphabet size (91) and number of states (≥ 30), depicting and understanding
them is not immediate.

Note that we have not discussed the values of ε and L used in the experiments.
In fact, our implementation does not use them: they are used only to determine
when a state is important. In particular, observe that ε and L are not used in
the state distinctness test. The implementation keeps merging candidate states
as long as there is any left at the end of the stage, hence every candidate state
is eventually merged. We believe that it is possible to prove that this variant is
still a PAC learner, since non-important states, after smoothing, by definition
do not contribute much to the KL distance. We believe it is also possible to
remove the need for an upper bound on n without significantly increasing sample
size in practice; this would give a PAC-learning whose only parameter is the
confidence δ.

174 J. Castro and R. Gavaldà

6 Conclusions

We believe that these first experiments, as preliminary as they are, show that
maybe one cannot rule out the existence of a provably-PAC learner that has
reasonable sample sizes in practice. More systematic experimentation, as well as
improving of our slow, quick-and-dirty implementation, is work in progress.

References

[1] Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: ICGI, pp. 139–152 (1994)

[2] Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from
stochastic samples in polynomial time. ITA 33(1), 1–20 (1999)

[3] Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. Journal of Machine Learning Research 5, 473–497 (2004)

[4] de la Higuera, C., Oncina, J., Vidal, E.: Identification of DFA: data-dependent vs
data-independent algorithms. In: ICGI, pp. 313–325 (1996)

[5] Denis, F., Esposito, Y., Habrard, A.: Learning rational stochastic languages. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 274–288.
Springer, Heidelberg (2006)

[6] Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition 38, 1349–1371 (2005)

[7] Gavaldà, R., Keller, P.W., Pineau, J., Precup, D.: PAC-learning of Markov models
with hidden state. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML
2006. LNCS (LNAI), vol. 4212, pp. 150–161. Springer, Heidelberg (2006)

[8] Guttman, O.: Probabilistic Automata Distributions over Sequences. Ph.D. thesis,
The Australian National University (September 2006)

[9] Guttman, O., Vishwanathan, S.V.N., Williamson, R.C.: Learnability of proba-
bilistic automata via oracles. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT
2005. LNCS (LNAI), vol. 3734, pp. 171–182. Springer, Heidelberg (2005)

[10] Kearns, M.J., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On
the learnability of discrete distributions. In: STOC, pp. 273–282 (1994)

[11] Kermorvant, C., Dupont, P.: Stochastic grammatical inference with multinomial
tests. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS
(LNAI), vol. 2484, pp. 149–160. Springer, Heidelberg (2002)

[12] Palmer, N., Goldberg, P.W.: PAC-learnability of probabilistic deterministic finite
state automata in terms of variation distance. In: Jain, S., Simon, H.U., Tomita,
E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 157–170. Springer, Heidelberg
(2005)

[13] Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic
probabilistic finite automata. J. Comput. Syst. Sci. 56(2), 133–152 (1998)

[14] Thollard, F., Clark, A.: Learning stochastic deterministic regular languages. In:
Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp.
248–259. Springer, Heidelberg (2004)

[15] Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In: ICML, pp. 975–982 (2000)

Learning Context-Sensitive Languages from

Linear Structural Information�

José M. Sempere

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

jsempere@dsic.upv.es

Abstract. In this work we propose a method to infer context-sensitive
languages from positive structural examples produced by linear gram-
mars. Our approach is based on a representation theorem induced by two
operations over strings: duplication and reversal. The inference method
produces an acceptor device which is an unconventional model of compu-
tation based on biomolecules (DNA computing). We prove that a subclass
of context-sensitive languages can be inferred by using the representation
result in combination with reductions from linear languages to k-testable
in the strict sense regular languages.

Keywords: context-sensitive languages, Watson-Crick finite automata,
linear languages, k-testable languages, identifiability from positive struc-
tural data.

1 Introduction

In the recent times, an unconventional theory of computation based on some
biomolecules behavior has been proposed as the research area of DNA compu-
ting [9]. In a wide point of view, DNA computing deals with the capacities of
DNA molecules to make (universal) computations. So, different models have been
proposed in the framework of the formal language theory with some ingredients
of the DNA features in order to process strings. We can mention Watson-Crick
finite automata, sticker systems, splicing systems, Insertion-Deletion systems,
among others. A profound study of these new models has pointed out its capacity
to characterize language classes from Chomsky’s hierarchy and new language
classes which are related to the previous ones. In addition, these new models
have provided a new look to the formal language theory in the sense that they
have provided new operations over strings (splicing, duplication, twin shuffles,
etc.) and new representations for the languages (i.e. circular strings or double
strings). A comprehensive reference in this field is [9].

In this work, we will work with a DNA based computing model, the Watson-
Crick finite automaton (WKFA) [3]. It has been proved that this model is able

� Work supported by the Spanish Ministerio de Educación y Ciencia under project
TIN2007-60769.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 175–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 J.M. Sempere

to recognize context-sensitive languages. In addition, the languages accepted by
WKFA can be obtained as the intersection between linear languages and even
linear ones. So, given that these language families have been widely studied in the
framework of Grammatical Inference we can take some advantages of previous
results in order to learn efficiently some language classes which are characterized
by restricted versions of WKFA. Observe that this approach enables the inference
of new language classes which contains non-trivial context-sensitive languages.

The structure of this work is as follows: First we will give basic definitions and
we will fix the notation related to formal language theory and some aspects of
DNA computing used in the sequel. In section 3, we will propose an algorithm to
learn language classes characterized by some restricted versions of the WKFA.
We will prove the identifiability in the limit of these new classes based on the
reducibility of this problem to previously solved ones. We will generalize our
results by providing a learning scheme for different language classes. Finally, we
will show our conclusions and we will provide some future research guidelines.

2 Basic Concepts and Notation

In this section, we will provide some concepts from formal language theory and
DNA computing models. We suggest the books [9] and [10] to the reader.

Formal Languages

An alphabet Σ is a finite non-empty set of elements named symbols. A string de-
fined over Σ is a finite ordered sequence of symbols from Σ. The infinite set of all
the strings defined over Σ will be denoted by Σ∗. Given a string x ∈ Σ∗ we will
denote its length by |x|. The set of strings defined over Σ with length equals to
(less than) k will be denoted by Σk (Σ≤k). The empty string will be denoted by
λ and Σ+ will denote Σ∗−{λ}. Given a string x we will denote by xr the reversal
string of x. A language L defined over Σ is a set of strings from Σ∗.

A grammar is a construct G = (N, Σ, P, S) where N and Σ are the alphabets
of auxiliary and terminal symbols with N ∩ Σ = ∅, S ∈ N is the axiom of the
grammar and P is a finite set of productions in the form α → β. We will say
that w1 directly derives to w2, and we will denote it by w1 ⇒

G
w2 if w1 = uαv,

w2 = uβv and α → β ∈ P . We will denote by ∗⇒
G

the reflexive and transitive

closure of ⇒
G

. The language of the grammar is denoted by L(G) and it is the set

of terminal strings that can be obtained from S by applying symbol substitutions
according to P . So, L(G) = {w ∈ Σ∗ : S

∗⇒
G

w}.
We will say that a grammar G = (N, Σ, P, S) is right linear (regular) if every

production in P is in the form A → uB or A → w with A, B ∈ N and u, w ∈
Σ∗. The class of languages generated by right linear grammars is the class of
regular languages and will be denoted by REG. We will say that a grammar
G = (N, Σ, P, S) is linear if every production in P is in the form A → uBv or
A → w with A, B ∈ N and u, v, w ∈ Σ∗. The class of languages generated by

Learning Context-Sensitive Languages from Linear Structural Information 177

linear grammars will be denoted by LIN . We will say that a grammar G =
(N, Σ, P, S) is even linear if every production in P is in the form A → uBv
or A → w with A, B ∈ N , u, v, w ∈ Σ∗ and |u| = |v|. The class of languages
generated by even linear grammars will be denoted by ELIN . We will say that
a grammar G = (N, Σ, P, S) is context-free if every production in P is in the
form A → w with A ∈ N and w ∈ (Σ ∪N)∗. The class of languages generated
by context-free grammars will be denoted by CF .

A context-sensitive grammar is a grammar G = (N, Σ, P, S) where every
production in P is in the form αAβ → αωβ with α, β ∈ (N ∪ Σ)∗, ω ∈ (N ∪
Σ)+ and A ∈ N . If S → λ then S does not appear in the right side of any
other production in P . The class of the languages generated by context-sensitive
grammars will be denoted by CS. A well-known result from formal language
theory is the inclusions REG ⊂ ELIN ⊂ LIN ⊂ CF ⊂ CS.

A homomorphism h is defined as a mapping h : Σ → Γ ∗ where Σ and Γ
are alphabets. We can extend the definition of homomorphisms over strings as
h(λ) = λ and h(ax) = h(a)h(x) with a ∈ Σ and x ∈ Σ∗. The homomorphism
over a language L ⊆ Σ∗ is defined as h(L) = {h(x) : x ∈ L}.

Stickers, Molecules and Watson-Crick Finite Automata

Given an alphabet Σ = {a1, · · · , an}, we will use the symmetric (and injective)
relation of complementarity ρ ⊆ Σ ×Σ. For any string x ∈ Σ∗, we will denote
by ρ(x) the string obtained by substituting the symbol a in x by the symbol b
such that (a, b) ∈ ρ (remember that ρ is injective) with ρ(λ) = λ.

Given an alphabet Σ, a sticker over Σ will be the pair (x, y) such that x =
x1vx2, y = y1wy2 with x, y ∈ Σ∗ and ρ(v) = w. The sticker (x, y) will be denoted

by
(

x
y

)
. A sticker

(
x
y

)
will be a molecule if |x| = |y| and ρ(x) = y, and it will be

denoted by
[
x
y

]
. Obviously, any sticker

(
x
y

)
or molecule

[
x
y

]
can be represented

by x#yr where # /∈ Σ.
There have been different computational models and generating devices that

use stickers and molecules to define formal languages. We will fix our attention
to the acceptor models named Watson-Crick finite automata. A Watson-Crick
finite automaton (WKFA) [3] is a good example of how DNA biological proper-
ties can be adapted to propose computation models in the framework of DNA
computing. WK finite automata work with double strings inspired by double-
stranded molecules with a complementary relation between elements, that is,
the classical complementary relation between DNA nucleotides A-T and C-G.
So, a WK finite automaton has an input double tape which is organized into
upper and lower cells, it has two tape heads that access to the upper and lower
cells and that can move independently and a finite control which holds a state
of the machine during its computation. In addition, the automaton has a transi-
tion function that guides the movements of the machine. The machine works as
follows: initially a sticker or molecule is placed in the double tape (i.e. the lower
strand in the lower tape and the upper strand in the upper tape), the tape heads

178 J.M. Sempere

are placed at the beginning of the tape (i.e. pointing out to the first symbol of
every tape) and the finite control holds an initial state. Then, the machine starts
to apply the transition function which is nondeterministic. Every time that the
machine applies a transition then the state in the finite control changes and the
tape heads advance one cell to the right or stay at the same cell independently
(i.e. maybe a transition only moves the upper head or only the lower head or it
can move both heads). The machine stops when no transition can be applied or
the input sticker or molecule have been completely processed. Observe that, in
this case, the machine can halt into an acceptation state. The criterium which is
imposed to accept a sticker is that it has been completely processed, the machine
has stopped within an acceptation state and the sticker is a molecule.

Formally, an arbitrary WK finite automaton is defined by the tuple M =
(V, ρ, Q, s0, F, δ), where Q and V are disjoint alphabets (states and symbols), s0

is the initial state, F ⊆ Q is a set of final states and the finitely defined function

δ : Q×
(

V ∗

V ∗

)
→ P(Q) (which denotes the power set of Q, that is the set of all

possible subsets of Q). Furthermore, we can impose a normal form such that for

every transition q ∈ δ(q,
(

x1

x2

)
) then |x1x2| = 1. This normal form defines the

so called 1-limited WK finite automata and they were proved to be equivalent
to arbitrary ones [3].

An instantaneous description of the WK finite automaton will be denoted by(
x1

y1

)
q

(
x2

y2

)
, where

(
x1

y1

)
is the part of the sticker which has been processed,

q is the state of the finite control and
(

x2

y2

)
is the rest of the sticker to be

processed. We can relate instantaneous descriptions as follows:
(

x1

y1

)
q

(
x2

y2

)
⇒

(
x1v1

y1w1

)
p

(
v2

w2

)
if x2 = v1v2, y2 = w1w2 and p ∈ δ(q,

(
v1

w1

)
. We will denote the

reflexive and transitive closure of ⇒ by ∗⇒.
Given an arbitrary WK finite automaton M = (V, ρ, Q, s0, F, δ), the language

of molecules accepted by M will be defined by the set Lm(M) = {
[
x
y

]
: s0

[
x
y

]
∗⇒

[
x
y

]
p with p ∈ F}. The upper strand language accepted by M will be defined

by the set Lu(M) = {x : s0

[
x
y

]
∗⇒
[
x
y

]
p with p ∈ F}. The family of upper

languages accepted by arbitrary Watson-Crick finite automata will be denoted
by AWKu, and it has been proved that AWKu ⊂ CS. That is, WKFA accept
context-sensitive languages in the upper strand. In addition, it has been proved
that context-free languages and AWKu are disjoint classes of languages [7].

In a previous work, we proved that the languages accepted by arbitrary WKFA
can be represented by operations over linear and even linear languages [13]. The
main theorem that supports this statement is the following

Learning Context-Sensitive Languages from Linear Structural Information 179

Theorem 1. (Sempere, [13]) Let M = (V, ρ, Q, s0, F, δ) be an arbitrary Watson-
Crick finite automaton. Then, there exists a linear language L1 and an even
linear language L2 such that Lm(M) = L1 ∩ L2.

In [13], we provided an algorithm to construct a linear grammar G1 such that
L(G1) = L1 and an even linear grammar G2 such that L(G2) = L2. It works
as follows: First, we can construct the grammar G1 = (N, V ∪ {#}, P, s0) where
N = Q, s0 is the axiom of the grammar and P is defined as follows

– If q ∈ F then q → # ∈ P

– If p ∈ δ(q,
(

x1

x2

)
) then q → x1 p xr

2 ∈ P .

The language L2 can be defined by the grammar G2 = ({S}, V ∪ {#}, P, S)
where P is defined as follows

– S → # ∈ P

– For every pair of symbols a, b ∈ V , such that (a, b) ∈ ρ, S → aSb ∈ P

In order to characterize the upper strand language we provided the following
result

Corollary 1. (Sempere, [13]) Let M = (V, ρ, Q, s0, F, δ) be an arbitrary WK
finite automaton. Then Lu(M) can be expressed as g(h−1(L1 ∩L2)∩R) with L1

being a linear language, L2 an even linear language, R a regular language and g
and h two morphisms.

Observe that the last result can be obtained by using a morphism h : V ∪
V ′ ∪ {#} → V ∪ {#}, defined as h(a) = h(a′) = a for every a ∈ V where
V ′ = {a′ : a ∈ V }, and h(#) = #. Then, R = V ∗#V ′∗ and g is a morphism
defined as g(#) = λ, g(a) = a and g(a′) = λ for every a ∈ V and every a′ ∈ V ′.

Example 1. Let M = (V, ρ, Q, q0, F, δ) be a WKFA where V = {a, b, c}, ρ =
{(a, a), (b, b), (c, c)}, F = {qf} and δ is defined as follows:

δ(q0,

(
a
λ

)
) = {qa} δ(qa,

(
a
λ

)
) = {qa} δ(qa,

(
b
a

)
) = {qb}

δ(qb,

(
b
a

)
) = {qb} δ(qb,

(
c
b

)
) = {qc} δ(qc,

(
c
b

)
) = {qc}

δ(qc,

(
λ
c

)
) = {qf} δ(qf ,

(
λ
c

)
) = {qf}

It can be easily proved that Lu(M) = {anbncn : n ≥ 1}. Then the corresponding
linear grammar associated with M is the following one, which we will name G1:

q0 → aqa qa → aqa | bqba qb → bqba | cqcb
qc → cqcb | qfc qf → qfc | #

180 J.M. Sempere

The even linear grammar associated with ρ is trivially defined by the rules
S → aSa | bSb | cSc | # which we will name G2. Observe that Lm(M) = L(G1)∩
L(G2) while the language Lu(M) is obtained from the strings in L(G1)∩L(G2)
by taking only the complete prefixes up to the # symbol. This last operation
can be performed by applying Corollary 1.

From the previous results, it can be proved that upper strand languages accepted
by WKFA can be reduced to regular languages. So, we introduced in the WKFA
model well-known features such as k-testability [14] and reversibility [15]. In
addition, we establish a way to obtain regular-like expressions from WKFA [16].

Local Testability

Here, we will introduce the definition of local testability and local testability
in the strict sense. For any string x ∈ Σ∗ and any integer value k > 0, the
testability vector vk(x) is defined by the tuple (ik(x), tk(x), fk(x)) where

ik(x) =
{

x, if |x| < k
u : x = uv, |u| = k − 1 if |x| ≥ k

fk(x) =
{

x, if |x| < k
v : x = uv, |v| = k − 1 if |x| ≥ k

tk(x) = {v : x = uvw, u, w ∈ Σ∗ ∧ |v| = k}

We will define the equivalence relation ≡k in Σ∗ ×Σ∗ as x ≡k y iff vk(x) =
vk(y). It has been proved in [6] that ≡k is a finite index relation and that ≡k

covers ≡k+1.
So, we will say that any language L is k-testable iff it is defined as the union of

some equivalence classes of ≡k. In addition, L is local testable iff it is k-testable
for any integer value k > 0. The family of k-testable languages will be denoted
by k − LT while LT will denote the class of testable languages.

A different kind of testability is the so called testability in the strict sense
which was again proposed in [6]. Here, for any alphabet Σ we will take the sets
Ik, Fk ⊆ Σ≤k−1 and Tk ⊆ Σk. Then, a language L is said to be k-testable in the
strict sense if the following equation holds

L ∩Σk−1Σ∗ = (IkΣ∗) ∩ (Σ∗Fk)− (Σ∗TkΣ∗).

Observe that, according to the last equation, any word in L with length greater
than or equals to k − 1 begins with a segment in Ik, ends with a segment in Fk

and has no segment from Tk. Any language L is locally testable in the strict
sense iff it is k-testable in the strict sense for any k > 0. The family of k-testable
languages in the strict sense will be denoted by k − LT SS while LT SS will
denote the class of locally testable languages in the strict sense.

It has been proved that k − LT is the boolean closure of k − LT SS [22]. In
addition, both classes k − LT and k − LT SS are subclasses of REG.

Learning Context-Sensitive Languages from Linear Structural Information 181

3 Learning Watson-Crick Finite Automata from Positive
Structural Data

In order to learn formal languages accepted by (restricted) WKFA we will use two
operations to represent such languages: duplication and reversal. Once we fix this
representation for formal languages, we can infer restricted versions of WKFA
in order to recognize languages in the upper strand. Our method is a reduction
technique based on the linear and even-linear languages used in Theorem 1 and
Corollary 1. Observe, that a similar approach was employed in [8] where the
authors reduced languages accepted by WKFA to regular languages by using a
technique which is different from the one in [13].

The relation of complementarity that we will use is the trivial identity re-
lation. That is, (∀a ∈ Σ) (a, a) ∈ ρ. The duplication of a string is defined
as duplicate(x) = x#xr . The extension over a set S is trivially defined as
duplicate(S) = {duplicate(x) : x ∈ S}. Observe that this is a linear time
operation.

Our main task is to learn unknown linear languages from the strings obtained
by duplication. Here, we can adopt different solutions in order to carry out
the learning task. First, we can use learning algorithms for subclasses of linear
languages as in [1,2,5]. Another option could be the use of structural information
as in [5]. Observe that the use of structural information has been widely accepted
as an information protocol since Sakakibara’s works about learning context-free
languages [11,12]. We will use structural information in this work in order to
avoid the use of complete data (negative and positive strings). Nevertheless,
the use of any algorithm to infer linear languages from different information
protocols could be easily introduced in our learning scheme.

So, the information given to the learning algorithm will not be the duplicated
strings but the structural information associated with them, according to an
unknown WKFA.

Observe that the structural information from linear grammars allows the
transformation to even linear ones as was shown in a previous work [17]. We
can introduce the reduction in a formal manner as follows: Let us take the linear
structured string w defined over the alphabet Σ, then we can obtain an even
linear structure from w by applying the function ell(w) with the following rules

1. ell((λ)) = λ
2. ell((a)) = a for every a ∈ Σ
3. ell((a(x))) = a · ell((x)) · ∗ for every a ∈ Σ and x a structural string over Σ
4. ell(((x)a)) = ∗ · ell((x)) · a for every a ∈ Σ and x a structural string over Σ

The last transformation can be easily extended over sets of structural strings.
The even linear languages can be reduced to regular ones by using control

sets as was proved in [21]. In addition, a different solution was proposed in [18]
by using the σ reduction over strings in Σ∗ that we will define as follows:

1. σ(axb) = [ab]σ(x) with a, b ∈ Σ and x ∈ Σ∗

2. σ(a) = [a] with a ∈ Σ ∪ {λ}

182 J.M. Sempere

It has been proved that if L is an even linear language then σ(L) is regular [18].
From the last reduction, we proposed a learning algorithm in [19] that could
learn even linear languages with k-testability based on a previous algorithm to
learn k-testable languages in the strict sense from only positive data proposed
by Garćıa et al. [4]. We will refer to that algorithm as KTSS.

In [14], we defined WKFA with local testability (in the strict sense). The basic
concept is that the finite automaton obtained from the WK finite automaton by
using the ell(·) and the σ operations defines a regular language. So, if the ob-
tained regular language is locally testable (in the strict sense) then, the molecule
language accepted by the WK finite automaton will be locally testable (in the
strict sense) in a wide sense. The class of languages accepted by k-testable (in
the strict sense) WKFA in the upper strand will be denoted by AWKKLT (SS)

u .
Finally, you can observe that the σ reduction and the structural transforma-

tion ell(·) that we have proposed before can be easily reversed in order to obtain
the initial language.

Now, we can mix up all these operations in order to learn a restricted sub-
class of WKFA which are still able of recognizing non-trivial context-sensitive
languages. The proposed algorithm is shown as Algorithm 1.

Algorithm 1. An algorithm to learn AWKKLT SS
u languages from structural

information
Input: A finite sample of linear structural duplicated strings S defined over Σ
Output: A WKFA A such that S+ ⊆ Lu(A)
Method:

1. Sell = ell(S)
2. Sσ = σ(Sell)
3. Ar=KTSS(Sσ)
4. Gell = σ−1(Ar)
5. Glin = ell−1(Gell)
6. A = AFWK(Glin) where ρ = {(a, a) : a ∈ Σ}
7. Return(A)

EndMethod.

The proposed algorithm is able to infer WKFA from positive structural infor-
mation sample only. The restrictions over the learned WKFA are the following:

1. The linear grammar associated with the WK finite automaton generates
structured strings according to S

2. The set S+ is associated to the set S. Here, S+ is defined by the strings
obtained from S by taking only the upper strand (as an application of
Corollary 1).

3. The grammar obtained by reducing the corresponding linear grammar of
the WK finite automaton to the regular one is k-testable in the strict sense.
Alternatively, we can say that the WK finite automaton is k-testable in the
strict sense as shown in [14].

Learning Context-Sensitive Languages from Linear Structural Information 183

4. The operation A = AFWK(Glin) takes a linear grammar and obtains a WK
finite automaton by applying the Theorem 1.

We can easily prove that there exists context-sensitive languages which are
not context-free and that can be accepted in the upper strand by a WK finite
automaton with the previous restrictions.

Example 2. Let us take the language L = {anbncn : n ≥ 1}which can be accepted
by the WK finite automaton shown in the Example 1. A positive structural infor-
mation associated with the WK finite automaton could be the following

S = {(a(b(c((#)c)b)a)), (a(a(b(b(c(c(((#)c)c)b)b)a)a)))}
Then, by transforming the linear structures in even linear ones we obtain

Sell = {abc ∗#cba∗, aabbcc ∗ ∗#ccbbaa ∗ ∗}
Then, by applying the σ transformation to Sell we obtain

Sσ = {[a∗][ba][cb][∗c][#], [a∗][a∗][ba][ba][cb][cb][∗c][∗c][#]}
A k-testable language in the strict sense inferred from the previous sample,

with k = 2, by applying the learning algorithm KTSS, is the following one

From the last finite automaton we can obtain an even linear grammar by
applying the σ−1 transformation. The corresponding even linear grammar is the
following

S → aA∗ A→ aA∗ | bBa B → bBa | cCb
C → cCb | ∗Dc D → ∗Dc | #

From the last even linear grammar we can obtain a linear one, by applying
the homomorphism g(a) = a, g(b) = b g(c) = c, g(#) = # and g(∗) = λ. The
linear grammar obtained from g is the following one

S → aA A→ aA | bBa B → bBa | cCb
C → cCb | Dc D → Dc | #

Observe that the WK finite automaton associated with the previous grammar
is the one shown in the Example 1. In addition, the complementarity relation
is obtained again from the input sample as ρ = {(a, a), (b, b), (c, c)}. So, L ∈
AWKKLT SS

u .

184 J.M. Sempere

The efficiency of the proposed method is shown in the following result.

Proposition 1. The proposed Algorithm 1 runs in polynomial time with the size
of the input sample S.

Proof. It can be trivially proved that the Algorithm 1 runs in polynomial time.
The structural transformation ell(·) is linear with the size of the string. The
application of the σ transformation is linear again. The application of the algo-
rithm KTSS is polynomial time [4]. All the operations used to obtain the WK
finite automaton are polynomial time given to the fact that they are the appli-
cation of the σ−1 and the ell−1(·) operations. �

Finally, the identifiability of a non-trivial context-sensitive language class in the
limit is shown as follows

Proposition 2. AWKKLT SS
u is identifiable in the limit from only positive struc-

tural information.

Proof. The identification in the limit comes from the convergence result of the
algorithm KTSS exposed in [4]. So, if we apply the Algorithm 1, the identifiability
in the limit of the class AWKKLT SS

u is guaranteed. �

Generalizing the Learning Scheme

In the Algorithm 1, we have used the learning algorithm for k-testable languages
in the strict sense, KTSS. Nevertheless, any learning algorithm for a given subclass
of regular languages could be fruitful in proposing new learning algorithms for
different restrictions of WKFA. So, a generalization of Algorithm 1 is proposed
as Algorithm 2 which is a learning scheme to take advantages of the previously
proposed reductions from WKFA to regular languages.

In the Algorithm 2, the method LearningRegPos refers to any learning algo-
rithm that works with only positive data and obtains a finite automaton or a rep-
resentation for a regular language. Observe that the learning algorithms referred

Algorithm 2. An algorithm to learn different families of AWKu languages from
structural information
Input: A finite sample of linear structural duplicated strings S defined over Σ
Output: A WKFA A such that S+ ⊆ Lu(A)
Method:

1. Sell = ell(S)
2. Sσ = σ(Sell)
3. Ar=LearningRegPos(Sσ)
4. Gell = σ−1(Ar)
5. Glin = ell−1(Gell)
6. A = AFWK(Glin) where ρ = {(a, a) : a ∈ Σ}
7. Return(A)

EndMethod.

Learning Context-Sensitive Languages from Linear Structural Information 185

as LearningRegPos, characterize different subclasses of regular languages (i.e. k-
reversible, terminal distinguishable, function distinguishable in general, different
(positive) varieties of regular languages, etc.). Furthermore, if we change the
information protocol, and we provide positive structural information together
with negative data as input, then we can apply other learning algorithms that
work with complete data to infer regular languages.

4 Conclusions and Future Work

We have proposed an efficient method to infer a subclass of context-sensitive lan-
guages from linear structured positive strings. The method uses a computational
device that has been previously defined in the framework of DNA computing.
We think that this emerging area provides models, operations and new looks for
the proposal of new learning algorithm that would enrich the map of efficiently
learnable languages.

In this work, we have used structural positive information for the inference
of restricted WKFA which are able of recognize non-trivial context-sensitive
languages. It is an open question whether the use of different learning algorithms
for some subclasses of regular languages still holds the inclusion of non-trivial
context-sensitive languages in the upper strand or not. Actually, this issue is
under study.

Another work that we are carrying out in the present is the application of
this method to the processing of biosequences. Observe that in this framework
the use of duplication strings comes in a natural way (i.e. DNA strings) and the
availability of structural information comes from the domain task in an easy way
(i.e. location of promoters, genes, motifs, etc.).

References

1. Calera-Rubio, J., Oncina, J.: Identifying Left-Right Deterministic Linear Lan-
guages. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI),
vol. 3264, pp. 283–284. Springer, Heidelberg (2004)

2. de la Higuera, C., Oncina, J.: Inferring Deterministic Linear Languages. In: Kivi-
nen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200.
Springer, Heidelberg (2002)

3. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Watson-Crick finite automata.
In: Proceedings of DNA Based Computers III DIMACS Workshop (June 1997),
pp. 297–327. The American Mathematical Society (1999)

4. Garćıa, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict
sense. In: Proceedings of the First International Workshop on Algorithmic Learning
Theory. Japanese Society for Artificial Intelligence, pp. 325–338 (1990)

5. Laxminarayana, J.A., Sempere, J.M., Nagaraja, G.: Learning Distinguishable Lin-
ear Grammars from Positive Data. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI
2004. LNCS (LNAI), vol. 3264, pp. 279–280. Springer, Heidelberg (2004)

6. McNaughton, R., Papert, S.: Counter-free automata. MIT Press, Cambridge (1971)

186 J.M. Sempere

7. Okawa, S., Hirose, S.: The Relations among Watson-Crick Automata and Their
Relations to Context-Free Languages. IEICE Transactions on Information and Sys-
tems E89-D(10), 2591–2599 (2006)

8. Onodera, K., Yokomori, T.: Doubler and linearizer: an approach toward unified
theory for molecular computing based on DNA complementarity. Natural Com-
puting 7, 125–143 (2008)

9. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New computing
paradigms. Springer, Heidelberg (1998)

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1.
Springer, Heidelberg (1997)

11. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science 76(2-3), 223–242 (1990)

12. Sakakibara, Y.: Efficient learning of context-free grammars from positive structural
examples. Information and Computation 97(1), 23–60 (1992)

13. Sempere, J.M.: A representation theorem for languages accepted by Watson-Crick
finite automata. Bulletin of the EATCS 83, 187–191 (2004)

14. Sempere, J.M.: On Local Testability in Watson-Crick Finite Automata. In: Vaszil,
G. (ed.) Proceedings of the International Workshop on Automata for Cellular and
Molecular Computing, pp. 120–128 (2007)

15. Sempere, J.M.: Exploring regular reversibility in Watson-Crick finite automata. In:
Proceedings of the 13th International Symposium on Artificial Life and Robotics,
pp. 505–509. AROB (2008)

16. Sempere, J.M.: Sticker expressions. In: Goel, A., Simmel, F.C., Sosik, P. (eds.)
Proceedings of the 14th International Meeting on DNA Computing, pp. 200–201
(2008)

17. Sempere, J.M., Fos, A.: Learning Linear Grammars from Structural Information.
In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 126–133.
Springer, Heidelberg (1996)

18. Sempere, J.M., Garćıa, P.: A Characterization of Even Linear Languages and its
Application to the Learning Problem. In: Carrasco, R.C., Oncina, J. (eds.) ICGI
1994. LNCS, vol. 862, pp. 38–44. Springer, Heidelberg (1994)

19. Sempere, J.M., Garćıa, P.: Learning Locally Testable Even Linear Languages from
Positive Data. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002.
LNCS (LNAI), vol. 2484, pp. 225–236. Springer, Heidelberg (2002)

20. Sempere, J.M., Nagaraja, G.: Learning a Subclass of Linear Languages from Posi-
tive Structural Information. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS
(LNAI), vol. 1433, pp. 162–174. Springer, Heidelberg (1998)

21. Takada, Y.: Grammatical inference for even linear languages based on control sets.
Information Processing Letters 28(4), 193–199 (1988)

22. Zalcstein, Y.: Locally Testable Languages. Journal of Computer and System Sci-
ences 6, 151–167 (1972)

Polynomial Time Probabilistic Learning of a

Subclass of Linear Languages with Queries

Yasuhiro Tajima and Yoshiyuki Kotani

Department of Computer and Information Sciences,
Tokyo University of Agriculture and Technology,

Naka-chou 2-24-16, Koganei, Tokyo, 184-8588, Japan
{ytajima,kotani}@cc.tuat.ac.jp

Abstract. We show a probabilistic learnability of a subclass of linear
languages with queries. Learning via queries is an important problem in
grammatical inference but the power of queries to probabilistic learn-
ability is not clear yet. In probabilistic learning model, PAC (Probably
Approximately Correct) criterion is an important one and many results
have been shown in this model. Angluin has shown the ability of replace-
ment from equivalence queries to random examples in PAC criterion but
there are also many hardness results. We have shown that the class of
simple deterministic languages is polynomial time learnable from mem-
bership queries and a representative sample. Also, we have shown that
a representative sample can be constructed from polynomial number of
random examples with the confidence probability. In this paper, we newly
define a subclass of linear languages called strict deterministic linear lan-
guages and show the probabilistic learnability with membership queries
in polynomial time. This learnability is derived from an exact learning
algorithm for this subclass with membership queries, equivalence queries
and a representative sample.

Keywords: learning via queries, linear language, PAC learning, repre-
sentative sample.

1 Introduction

Learning via queries is an important problem in grammatical inference started
from Angluin’s work[2]. Many results about learning via queries have been shown
for various language classes. A model which uses membership queries and equiv-
alence queries is called MAT (Minimally Adequate Teacher) model and regular
languages are polynomial time learnable from MAT[2]. This result is extend to
some subclasses of linear languages[9].

Learning via queries and some additional information is studied about regular
languages. In [1], a representative sample or a live-complete set is useful for poly-
nomial time learning with membership queries. With this setting, a learnability
of simple deterministic languages has been shown[8].

On the other hand, PAC (Probably Approximately Correct) learning model[10]
is one of the most important probabilistic learning model. Learning of probabilis-
tic deterministic finite automata[3] is studied but there are not many results about

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 187–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 Y. Tajima and Y. Kotani

PAC model in grammatical inference. It has been shown that equivalence query
can be replaced by polynomial number of random examples in PAC criterion[2],
but the power of queries to probabilistic learnability is not clear yet.

In this paper, we show a probabilistic learnability of a subclass of linear lan-
guages with membership queries. This language class called strict deterministic
linear languages is newly defined and it is unambiguous and incomparable to the
class of simple deterministic languages. The probabilistic learnability is derived
from an exact learning algorithm for this subclass with membership queries,
equivalence queries and a representative sample. Where a representative sam-
ple can be constructed from polynomial number of random example with the
confidence probability. For the class of linear languages, an equivalence problem
is unsolvable[5], and an equivalence problem in our newly defined languages is
unknown, thus our exact learning algorithm uses powerful queries. Nevertheless,
from the result of conversion from equivalence query to random examples, we
can obtain a probabilistic learning algorithm of this language class.

2 Preliminaries

A context-free grammar (CFG for short) is a 4-tuple G = (N,Σ , P, S) where N
is a finite set of nonterminals, Σ is a finite set of terminals, P is a finite set of
rewriting rules (rules for short) and S ∈ N is the start symbol. Let ε be the word
whose length is 0. If there exists no rule of the form A→ ε for any A(= S) ∈ N ,
then G is called ε-free. In this paper, we assume that every CFG is ε-free.

The length of β is denoted by |β| if β is a string and for a set W , |W | denotes
the cardinality of W . For W ⊂ Σ∗ and u ∈ Σ∗, we define u\W = {v ∈ Σ∗|uv ∈
W} and W/u = {v ∈ Σ∗|vu ∈W}.

Let A→ β be in P where A ∈ N and β ∈ (Σ∪N)∗. Then γAγ′⇒
G

γβγ′ denotes

the derivation from γAγ′ to γβγ′ in G where γ, γ′ ∈ (N ∪ Σ)∗. We define ∗⇒
G

to

be the reflexive and transitive closure of ⇒
G

. When it is not necessary to specify

the grammar G, α⇒ α′ and α
∗⇒β stand for α⇒

G
α′ and α

∗⇒
G

β, respectively. A

word generated from γ ∈ (N ∪ Σ)∗ by G is w ∈ Σ∗ such that γ
∗⇒
G

w and the

language generated from γ by G is denoted by LG(γ) = {w ∈ Σ∗ | γ ∗⇒
G

w}. A

word generated from S by G for the start symbol S is called a word generated by
G and the language generated by G is denoted by L(G) = LG(S). A nonterminal
A ∈ N is said to be reachable if S

∗⇒
G

uAw for some u, w ∈ Σ∗. and a nonterminal

D ∈ N is said to be live if LG(D) 	= ∅.
A CFG G = (N,Σ , P, S) is a linear grammar if every rule in P is of the

form A → uV w or A → a where A ∈ N , a ∈ Σ , u, w ∈ Σ∗ and uv 	= ε. For
every linear grammar G, there exists a grammar G′ = (N ′,Σ , P ′, S′) such that
L(G) = L(G′) and every rule in G is of the form A → aBc, A → aB, A → Ba
or A→ a where A, B ∈ N and a, c ∈ Σ .

Polynomial Time Probabilistic Learning 189

3 Our Target Language

We newly define a normal form of a linear grammar. A linear grammar G =
(N,Σ , P, S) is an RL-linear grammar iff the followings hold.

1. Every rule in P is of the form A → aB, A → Ba or A → a for A, B ∈ N
and a ∈ Σ .

2. If A→ aB and A→ aC are in P then B = C for A, B, C ∈ N and a ∈ Σ .
3. If A→ Ba and A→ Ca are in P then B = C for A, B, C ∈ N and a ∈ Σ .

Theorem 1. For any linear grammar G = (N,Σ , P, S), there exists an RL-
linear grammar G′ = (N ′,Σ , P ′, S′) such that L(G) = L(G′).

Proof. We suppose that every rule in P is of the form A → aBc, A → aB,
A → Ba or A → a for A, B ∈ N and a, c ∈ Σ . We can make G′ from G by the
following two step conversion. Let N ′ = N, P ′ = P, S′ = S.

1. For every rule of the form A → aBc in P ′, replace it by A → aB′ and
B′ → Bc where B′ is a new nonterminal in N ′. After this conversion, every
rule in P ′ is of the form A→ aB, A→ Ba or A→ a.

2. Delete nondeterminism in P ′. Let BodyR(A, a) = {B ∈ N ′|A → aB ∈ P ′}
and BodyL(A, a) = {B ∈ N ′|A→ Ba ∈ P ′} for A ∈ N ′ and a ∈ Σ .
For every pair of A ∈ N ′ and a ∈ Σ such that |BodyR(A, a)| ≥ 2 (or
|BodyL(A, a)| ≥ 2), delete all rules of the form A → aB (or A → Ba) in
P ′, then add A → a · Z(BodyR(A, a)) (or A → Z(BodyL(A, a)) · a) where
Z(BodyR(A, a)) (or Z(BodyL(A, a))) is a new nonterminal.
In addition, for every b ∈ Σ and every new nonterminal Z(Q)(Q ⊆ N ′), add

Z(Q)→ bZ(U), if U 	= ∅,

Z(Q)→ Z(V)b, if V 	= ∅,
and Z(Q)→ c to P ′ where

U = {C ∈ N |D ∈ Q, D → bC ∈ P},

V = {C ∈ N |D ∈ Q, D→ Cb ∈ P},
c ∈ {d ∈ Σ |D ∈ Q, D → d ∈ P}.

If a new nonterminal Z(Q) for some Q ⊆ N ′ newly appears then repeat this
step.

Then, delete all non-reachable or non-live nonterminals in N ′. Now, every rule
A→ β ∈ P ′, we can derive A

∗⇒
G′

β. It implies that G′ is equivalent to G. Moreover,

G′ is an RL-linear grammar. �
We assume that every linear grammar in this paper is in RL-linear. It is impor-
tant for grammatical inference that the grammar is unambiguous or not. If the
target language is ambiguous then membership query is not powerful because
it would not check the membership about nonterminals. We define the follow-
ing subclass of linear grammars which is unambiguous. Learning the subclass of
linear languages generated by the grammars is our goal.

190 Y. Tajima and Y. Kotani

Definition 1. An RL-linear grammar G = (N,Σ , P, S) is a strict determinis-
tic linear grammar if the followings holds.

– If A→ aB is in P for A, B ∈ N and a ∈ Σ then every rule whose left-hand
side is A is of the form A→ bC for some C ∈ N and b ∈ Σ.

– If A→ Ba is in P for A, B ∈ N and a ∈ Σ then every rule whose left-hand
side is A is of the form A→ Cb for some C ∈ N and b ∈ Σ.

Thus, for every A ∈ N , there are only right linear rules or only left linear rules
whose left-hand side is A ∈ N .

For example, the following grammar is a strict deterministic linear grammar.

G = (N,Σ , P, S) (1)
N = {S, A, B, C, D, E}
Σ = {a, b, c}
P = {S → aA,

A→ Bb, A→ Cc, A→ b, A→ c,

B → aD, D → Bb, D → b,

C → aE, E → Cc, E → c }

This grammar generates aibi ∪ aici (i ≥ 1) which can not be generated by
regular grammars or LL(1).

We denote the language class which generated by strict deterministic linear
grammars by strict-det. A strict deterministic linear grammar G satisfies that

S
∗⇒
G

uAv ⇐⇒ u\L(G)/v = LG(A)

for any nonterminal A and u, v ∈ Σ∗. In [7], some subclasses of deterministic
linear languages and learnability are studied.

Definition 2. A deterministic linear language (DL) is represented by a linear
grammar G = (N,Σ , P, S) such that

– all rules are of the form A→ aBu or A→ ε, and
– if both of A→ aBu and A→ aCv are in P then B = C and u = v,

here A, B, C ∈ N , a ∈ Σ and u, v ∈ Σ∗.

It is shown that DL is identifiable in the limit from polynomial time and data[7].

Theorem 2. DL ⊂ strict-det.

Proof. The language aibi ∪ aici (i ≥ 1) which is generated by the grammar in
Example (1) is strict-det, but it is not in DL[7].

Suppose that G = (N,Σ , P, S) is a linear grammar such that L(G) is in DL.
We can make a strict deterministic linear grammar G′ = (N ′,Σ , P ′, S′) from G
as follows.

Polynomial Time Probabilistic Learning 191

1. Let N ′ = N, P ′ = P, S′ = S.
2. Suppose that A → ε is in P . Then, delete A → ε from P ′ and for all rules

B → aAu in P where u ∈ Σ∗, a ∈ Σ and B ∈ N , add B → aZu to P ′ where
Zu is a new nonterminal in N ′. Then add

Zb1b2···bn → Zb1b2···bn−1bn (n = 2, 3, · · · |u|)

and Zb1 → b1 to P ′ where u = b1b2 · · · bn, bi ∈ Σ (i = 1, · · · , n).
3. Let A, B ∈ N ′ and a, bi ∈ Σ . Replace every rule A → aBb1b2 · · · bn in P ′

with
A→ aZBb1b2···bn

where ZBb1b2···bn is a new nonterminal, then add

ZBb1b2···bn → ZBb1b2···bn−1bn,

ZBb1b2···bn−1 → ZBb1b2···bn−2bn−1,

ZBb1b2···bn−2 → ZBb1b2···bn−3bn−2,

...

ZBb1 → Bb1

to P ′ with these new nonterminals.
4. Delete nondeterminism in P ′ with the same method in Theorem1.

Now, L(G′) is in strict-det and L(G′) = L(G).
�

4 Queries and Probabilistic Learning

Two types of queries are important for grammatical inference since Angluin’s
work[2]. Let Lt ∈strict-det be the target language, and Gt(Nt,Σ , Pt, St) be a
strict deterministic linear grammar such that L(Gt) = Lt. Throughout this pa-
per, we call the class of grammars which can generate the target language target
grammars. The class of grammars by whom the learner outputs a hypothesis is
called hypothesis grammars.

Membership query. For w ∈ Σ∗ as input, “yes” is responded if w ∈ Lt and
“no” is responded otherwise. MEMBER(w) = 1 denotes that the member-
ship query for w ∈ Σ∗ responds “yes”, and MEMBER(w) = 0 denotes that
the query responds “no.”

Equivalence query. For a hypothesis grammar Gh as input, “yes” is responded
if L(Gh) = Lt and “no” is responded otherwise. In addition, the learner can
obtain a counterexample v ∈ (Lt −L(Gh)) ∪ (L(Gh)−Lt) if the response is
“no.”

A learning algorithm which outputs a hypothesis Gh such that Lt = L(Gh)
is called an exact learning algorithm. A learning algorithm which uses mem-
bership queries and equivalence queries and which outputs a hypothesis with
“yes” response of an equivalence query is called an exact learning algorithm
with queries.

192 Y. Tajima and Y. Kotani

Membership queries are useful for checking whether a word can be generated
by a nonterminal or not. The result of a membership query for uxv means
whether x ∈ LGt(A) or not for A ∈ Nt if target grammars hold that

u\Lt/v = LGt(A)⇔ St
∗⇒uAv

∗⇒uwv

for u, v, w ∈ Σ∗.
We define probabilistic learning with queries as follows.

Definition 3. Let D be a distribution on Σ∗. The probability for w ∈ Σ∗ is
denoted by PrD(w) and PrD(T) =

∑
w∈T PrD(w) for a set T ⊂ Σ∗. A random

example is a pair of a word w ∈ Σ∗ drawn according to D and the sign whether
w ∈ Lt or not.

For any distribution D on Σ∗, if a learning algorithm outputs a hypothesis
Gh such that

Pr(PrD((Lt − L(Gh)) ∪ (L(Gh)− Lt)) ≤ ε) ≥ 1− δ

for given 0 < ε ≤ 1 and 0 < δ ≤ 1, then the learning algorithm is a probabilistic
learning algorithm.

In addition, a probabilistic learning algorithm which uses membership queries
in it is called a probabilistic learning algorithm with queries.

We define that a language class is probabilistic learnable with queries if there ex-
ists a probabilistic learning algorithm with queries for the language class. Then,
our goal is to show that strict-det is polynomial time probabilistic learnable
with queries.

Equivalence queries in an exact learning algorithm can be replaced by poly-
nomial number of random examples.

Theorem 3 (Angluin(1987)). A learning algorithm which uses equivalence
queries can be converted to a probabilistic learning algorithm without equivalence
queries. In the converted algorithm, ni random examples are needed instead of
i-th equivalence query in the original algorithm where

ni =
1
ε

(
ln

1
δ

+ (ln 2)(i + 1)
)

.

In other words, we can construct a wrapper algorithm which includes an exact
learning algorithm with equivalence queries. When an equivalence query is asked
by the included algorithm, the wrapper simulates the equivalence oracle with ni

random examples. Thus, the wrapper algorithm works as a probabilistic learning
algorithm from outside viewpoints.

We note that this theorem shows the one-way conversion from equivalence
queries to random examples. We can not declare the exact learnability from
equivalence queries and membership queries if there exists a probabilistic learn-
ing algorithm with queries.

Polynomial Time Probabilistic Learning 193

5 A Representative Sample

We define a representative sample which is a set of positive examples and it covers
every rule usage. A representative sample is introduced in [1] to show the polyno-
mial time learnability of regular sets from membership queries and it. For a strict
deterministic linear grammar, we define a representative sample as follows.

Definition 4. A word set R ⊂ Σ∗ is a representative sample for a strict deter-
ministic linear grammar Gt if there exists w ∈ R for every rule A → β in Pt

such that
St

∗⇒uAv ⇒ uβv
∗⇒w

where u, v ∈ Σ∗.

Nevertheless, we can easily construct a representative sample for a strict deter-
ministic linear grammar, it is difficult to determine whether a set W ⊂ Σ∗ is a
representative sample or not for a language in strict-det. Thus, in our learn-
ing model, the teacher would need a strict deterministic linear grammar which
generates the target language to construct a representative sample of it.

A representative sample also can be replaced by polynomial number of
examples.

Definition 5. Let D be a distribution on Σ∗, and Gt be a strict deterministic
linear grammar. For a rule A→ β in Pt, we define

p(A→ β) =
∑

St

∗⇒
Gt

uAv⇒uβv
∗⇒

Gt

w

PrD(w).

Theorem 4 (Tajima et al.(2004)). Let d = min{p(A → β)|A → β ∈ Pt}.
Then, m random examples contains a representative sample for Gt where

m >
1
d

ln
(
|Pt|
δ

)
.

From this theorem, we can make a probabilistic learning algorithm with queries
from an exact learning algorithm which uses membership queries, and a repre-
sentative sample.

Combining Theorem 3 and 4, we can construct a wrapper algorithm Aw such
that

– Aw uses random examples and membership queries,
– Aw includes an exact learning algorithm which uses membership queries,

equivalence queries and a representative sample, and
– Aw works as a probabilistic learning algorithm with queries.

Fig.1 is the overview of the wrapper algorithm.
Teachability[4] is one of the most important study on a special examples and

learnability. When we think about the teachability on grammatical inference, iden-
tification in the limit from polynomial time and data[7] is a suitable model. The

194 Y. Tajima and Y. Kotani

wrapper
algorithm

exact learning
algorithm

hypothesis Gnegative
examples

positive
examples

m-random
examples

n -random
examples

i

representative
sample

membership
query

equivalence
query

yes/no +
counterexample

query

response

Are n -examples
consistent with L(G)?

i

example
oracle

membership
oracle

Fig. 1. The wrapper algorithm for probabilistic learning

learner can use a superset of special examples which helps the learning in these
models.

In contrast, our learning model needs queries after a representative sample is
given. Thus, we can not directly conclude that a language class which is prob-
abilistic learnable with queries is also polynomial time teachable. The relation
between our model and teachability is still unknown.

6 The Learning Algorithm

We show an exact learning algorithm for a strict deterministic linear language
from membership queries, equivalence queries and a representative sample. It
is unknown whether an equivalence problem of strict deterministic grammars
is solvable or not. Nevertheless, polynomial number of random examples can
substitute for both of equivalence queries and a representative sample. Thus,
we can obtain a probabilistic learning algorithm with queries. This learning
algorithm is a modification of our previous algorithm[8].

[Nonterminals construction.] If a representative sample R is given, there exists
a 3-tuple (uA, vA, wA) ∈ Σ∗×Σ+×Σ∗ for every A ∈ Nt such that uAvAwA ∈ R

and St
∗⇒

Gt

uAAwA
∗⇒

Gt

uAvAwA. Thus, the following set Mh of 3-tuples is a set of

candidates for nonterminals in hypothesis.

Mh = {(u, v, w) ∈ Σ∗ × Σ+ × Σ∗|uvw ∈ R}

Polynomial Time Probabilistic Learning 195

We define an equivalence class on Mh with a test word set T ⊂ Σ∗. This
is a similar process of making an observation table in [2]. At the start of the
learning algorithm, T = Σ . For (u1, v1, w1) ∈ R and (u2, v2, w2) ∈ R, we define
the equivalence relation T= by

(u1, v1, w1)
T=(u2, v2, w2)⇔MEMBER(u1xw1) = MEMBER(u2xw2)

for any x ∈ T .
The equivalence class for (u, v, w) ∈Mh is denoted by A((u, v, w), T=) and the

classification derived by T= on Mh is denoted by Nh = Mh/
T=.

Obviously, for any w1, w2 ∈ T , it holds that

(ε, w1, ε)
T=(ε, w2, ε).

Thus, these (ε, w1, ε) and (ε, w2, ε) are in the same equivalence class.

[Rules construction] Next, candidates Qh of production rules is made. For every
(u, avb, w) ∈Mh and (u, a, v) ∈Mh here a, b ∈ Σ , u, v, w ∈ Σ∗, we add

A((u, avb, w), T=)→ aA((ua, vb, w), T=) if (ua, vb, w) ∈Mh,

A((u, avb, w), T=)→ A((u, av, bw), T=)b if (u, av, bw) ∈Mh, and

A((u, a, w), T=)→ a

to Qh.
Next, we delete inappropriate rules from Qh. Let A → β be in Qh. If there

exists t ∈ T which is an evidence such that A can derive t but β can not derive
it or vice versa, then A → β must be deleted. In other words, a rule A → β
is inappropriate if A → β conflicts with results of the observation on T . The
deletion procedure is as follows.

1. Delete A((u, av, w), T=)→ aA((ua, v, w), T=) from Qh if there exist

(x1, y1, z1) ∈ A((u, av, w), T=), (x2, y2, z2) ∈ A((ua, v, w), T=)and ay ∈ T

such that

MEMBER(x1 · ay · z1) 	= MEMBER(x2a · y · z2).

2. Delete A((u, va, w), T=)→ A((u, v, aw), T=)a from Qh if there exist

(x1, y1, z1) ∈ A((u, va, w), T=), (x2, y2, z2) ∈ A((u, v, aw), T=)and ya ∈ T

such that

MEMBER(x1 · ya · z1) 	= MEMBER(x2 · y · az2).

196 Y. Tajima and Y. Kotani

After this deletion, if there is an inappropriate nonterminal B ∈ Nh such that
B can not derive t ∈ T but MEMBER(utw) = 1 where (u, v, w) ∈ B, then
we delete such nonterminals at the next step. In addition, since a hypothesis
should be a strict deterministic linear grammar, we must delete all rules which
are of the form A → aB for A, B ∈ Nh and a ∈ Σ if there exists b ∈ Σ such
that A → bC is not in Qh but MEMBER(ubxw) = 1. These deletions can be
written as follows.

3. Let B ∈ Nh and a ∈ Σ . Suppose that B → aC is not in Qh for any C ∈ Nh.
If there exist

at ∈ T, t ∈ Σ∗and (u, v, w) ∈ B

such that
MEMBER(u · at · w) = 1

then delete all rules of B → bD for every b ∈ Σ and every D ∈ Nh.
4. Let B ∈ Nh and a ∈ Σ . Suppose that B → Ca is not in Qh for any C ∈ Nh.

If there exist
ta ∈ T, t ∈ Σ∗and (u, v, w) ∈ B

such that
MEMBER(u · ta · w) = 1

then delete all rules of B → Db for every b ∈ Σ and every D ∈ Nh.
5. Repeat back to 3. |R| times.
6. Delete all nonterminals which are not live or not reachable.

We define Sh = A((ε, w, ε), T=).
With this process, every nonterminal A((u, v, w), T=) ∈ Nh can derive x ∈ T

such that MEMBER(uxw) = 1 by a linear grammar G = (Nh,Σ , Qh, Sh).

[Make a hypothesis] Now, G = (Nh,Σ , Qh, Sh) is a RL-linear grammar but
is not strict deterministic linear grammar. The hypothesis Gh is constructed as
follows.

1. Let Ph = {A→ a|A ∈ Nh, a ∈ Σ , A→ a ∈ Qh}.
2. Assign the type of rule to every nonterminal A ∈ Nh. If there are both form

of rules such that A → aB and A → Bb where a, b ∈ Σ in Qh then assign
“Left” or “Right” to A randomly. Otherwise, (if A has only left or right
linear rules,) assign the type to A.

3. For every A ∈ Nh and every a ∈ Σ , chose a rule randomly which is of the
form A → aB if A is assigned “Right” or A → Ba if A is assigned “Left”,
then add the rule to Ph.

Now, G = (Nh,Σ , Ph, Sh) is a strict deterministic linear grammar and make an
equivalence query for Gh. If a counterexample w is responded then update T by

T := T ∪ {y ∈ Σ+|x, z ∈ Σ∗, xyz = w}.

Fig.2 is the whole learning algorithm.

Polynomial Time Probabilistic Learning 197

INPUT: a representative sample R;
OUTPUT: correct hypothesis Gh;
begin

Mh := {(u, v, w) ∈ Σ∗ × Σ+ × Σ∗|uvw ∈ R};
T := Σ ;
finish := 0;
while (finish == 0)
begin

make Nh of nonterminals with the equivalence relation
T
=;

make Qh of rules and delete inappropriate rules;
make a hypothesis Gh = (Nh,Σ , Ph, Sh);
if (equivalence query for Gh responds “yes”)
then

output Gh, and finish := 1;
else

let w ∈ Σ∗ be the counterexample;
T := T ∪ {y ∈ Σ+|x, z ∈ Σ∗, xyz = w};

endif
end

end.

Fig. 2. The exact learning algorithm with queries and a representative sample

Now, we show the correctness of the learning algorithm in Fig.2 and its time
complexity. If the algorithm terminates then the correctness of the hypothesis is
clear because of the definition of equivalence query. We are concerned with the
time complexity of it.

Lemma 1. The learning algorithm in Fig.2 terminates in polynomial time of
|Nt|, |Σ |, |Pt|, |R| and max{|w||w ∈ R} where R is the given representative
sample.

Proof. Let l = max{|w||w ∈ R}. Obviously, |Mh| ≤ l(l+1)
2 |R| holds, thus |Nh| ≤

l(l+1)
2 |R| also holds. For (u, avb, w) ∈ Mh, u, v, w ∈ Σ∗ and a, b ∈ Σ , there are

at most 2 rules added to Qh such that

A((u, avb, w), T=)→ aA((ua, vb, w), T=)

and
A((u, avb, w), T=)→ A((u, av, bw), T=)b

and A((u, a, w), T=) → a is added to Qh for (u, a, w) ∈ Mh. Thus, |Qh| < 2|Mh|
and |Ph| ≤ |Qh| hold.

Throughout the learning algorithm, Mh is not increased. It implies that
|Nh|, |Qh|, |Ph| are bounded by a polynomial during the learning.

Assume that a counterexample w is responded by an equivalence query. Since

T is monotone increasing, (u1, v1, w1)
T

	=(u2, v2, w2) holds once, they are never

198 Y. Tajima and Y. Kotani

contained in the same equivalence class. It implies that |Qh| is also monotone
decreasing if Nh is not changed by w.

We can claim that if a counterexample w is given, either of the following holds.

– |Qh| decreases.
– |Nh| increases.

On the other hand, assume that (u, avb, w) ∈ Mh and (ua, vb, w) ∈ Mh cor-
respond to a nonterminal A ∈ Nt and B ∈ Nt in the target grammar Gt,
respectively, i.e. it holds that

S
∗⇒

Gt

uAw⇒
Gt

uaBw
∗⇒

Gt

uavbw

for (u, avb, w) ∈Mh and (ua, vb, w) ∈Mh. Then, the rule

A((u, avb, w), T=)→ aA((ua, vb, w), T=)

is never deleted from Qh. Thus, Qh contains at least |Pt| rules. We can conclude
the polynomial time termination of the learning algorithm. �
We have the main theorem.

Theorem 5. strict-det is polynomial time exact learnable from membership
queries, equivalence queries and a representative sample.

Proof. It is clear from Lemma1 and the learning algorithm in Fig.2. �
Theorem 6. strict-det is polynomial time probabilistic learnable with queries.

Proof. From Theorems3 and 4, we can replace both of equivalence queries and
a representative sample by polynomial number of random examples. Then, the
learning algorithm becomes a probabilistic learning algorithm with queries. Ob-
viously, its time complexity is bounded by a polynomial of |Nt|, |Σ |, |Pt|, |R|
and max{|w||w ∈ R}. �

7 Conclusions

We have shown that strict-det is probabilistic learnable in polynomial time
with membership queries. This result is derived from the polynomial time exact
learning algorithm of strict-det from equivalence queries, membership queries
and a representative sample. We can show the power of a representative sample
in learning via queries but there are some problems for the future. In the study
of teachability, a learning algorithm with example based queries can derive the
teachability by making a teaching set contains enough many words to simulate
the learning algorithm[4]. On the other hand, a representative sample can not
be constructed from example based queries, thus it is hard to derive some teach-
ability from our result. Thus, study of teachability and a representative sample
is one of future works.

In [6], it has been shown that characteristic samples are important in the
learning from positive and negative examples. Relation between a representative
sample and characteristic sample is another future work.

Polynomial Time Probabilistic Learning 199

References

1. Angluin, D.: A note on the number of queries needed to identify regular languages.
Info. & Contr. 51, 76–87 (1981)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Info. &
Comp. 75, 87–106 (1987)

3. Clark, A., Thollard, F.: PAC-learnability of probabilistic deterministic finite state
automata. J. of Machine Learning Research 5, 473–497 (2004)

4. Goldman, S.A., Mathias, H.D.: Teaching a smarter learner. J. of Comp. & Sys.
Sci. 52, 255–267 (1996)

5. Harrison, M.A.: Introduction to formal language theory. Addison-Wesley, Reading
(1978)

6. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–138 (1997)

7. de la Higuera, C., Oncina, J.: Inferring deterministic linear languages. In: Kivinen,
J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer,
Heidelberg (2002)

8. Tajima, Y., Tomita, E., Wakatsuki, M., Terada, M.: Polynomial time learning of
simple deterministic languages via queries and a representative sample. Theor.
Comp. Sci. 329, 203–221 (2004)

9. Takada, Y.: A hierarchy of language families learnable by regular language learning.
Info. & Comp. 123, 138–145 (1995)

10. Valiant, L.G.: A theory of the learnable. Comm. of the ACM 27, 1134–1142 (1984)

How to Split Recursive Automata�

Isabelle Tellier

LIFL - Inria Lille Nord Europe
university of Lille

isabelle.tellier@univ-lille3.fr

In this paper, we interpret in terms of operations applying on extended finite
state automata some algorithms that have been specified on categorial grammars
to learn subclasses of context-free languages. The algorithms considered imple-
ment specialization strategies. This new perspective also helps to understand how
it is possible to control the combinatorial explosion that specialization techniques
have to face, thanks to a typing approach.

1 Introduction

There are often several ways to represent a language: it is well known that every
regular language can be specified either by a regular grammar or by a deter-
ministic finite state automaton. Context-free languages can also be specified by
different kinds of devices. In recent previous papers [17,18], we have shown that
some classes of categorial grammars (CGs in the following), generating context-
free languages, could easily be represented by a family of extended automata
called recursive automata (RA). This translation allowed to exhibit connexions
between two previously distinct approaches of grammatical inference from posi-
tive examples: the one used in [3,13,14] to learn CGs, and the one used to learn
regular grammars represented by finite state automata [1,10]. This was possible
because both employ a generalization strategy. In particular, the generalization
operators used in both contexts were shown to be similar.

Now, we want to apply the same process for specialization strategies from pos-
itive examples. In such strategies, the initial hypothesis is too general a grammar
(or set of grammars) and each example is considered as a constraint which re-
stricts the search space, until it is reduced to the target grammar. We show here
that the translation of CGs into RA, which has helped to better understand the
family of generalization strategies, can also help to better understand the family
of specialization strategies. As a matter of fact, although barely used, special-
ization approaches have been proposed independently in both backgrounds: to
learn subclasses of CGs in the one hand [16], and to learn regular grammars rep-
resented by finite state automata in the other hand [11]. A first move towards
that direction has been briefly proposed in [19], but limited to unidirectional
CGs. In this paper, we generalize the approach to its full generality.

To reach this aim, we first need to recall in section 2 how to transform a
CG into a RA preserving the structures produced, in both unidirectional and
� This work was partly supported by the ANR MDCO “CroTal”.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 200–212, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How to Split Recursive Automata 201

bidirectional cases. In section 3, we first briefly present the specialization strategy
described by Moreau in [16], allowing to learn rigid CGs from positive examples.
We then explain how it relates to the specialization strategy proposed by Fre-
douille and Miclet in [11], which targets regular languages represented by finite
state automata. We show that Moreau’s algorithm can be interpreted as some
kind of well founded “state splitting” strategy applying on RA. Finaly, the whole
picture is completed in section 4, by a new interpretation of yet another already
known algorithm allowing to learn CGs from sentences enriched by lexical types
[8,7]. It appears to be an efficiently controled specialization approach.

This paper thus proposes neither any new algorithm or result, nor any exper-
iment, but it suggests a new stimulating look on already known strategies.

2 From Categorial Grammars to Recursive Automata

2.1 Basic Definitions of Categorial Grammars

Definition 1 (Categories, Categorial Grammars and their Language).
Let B be a set (at most countable) of basic categories containing a distinguished
category S ∈ B, called the axiom. Cat(B) is the smallest set such that B ⊂ Cat(B)
and for any A, B ∈ Cat(B): A/B ∈ Cat(B) and B\A ∈ Cat(B). Unidirectional
variants allow only one of these operators (either / or \) but not both. For every
finite vocabulary Σ and for every set B containing S, a categorial grammar (or
CG) is a finite relation G over Σ ×Cat(B). We note 〈v, C〉 ∈ G the assignment
of the category C ∈ Cat(B) to the element of the vocabulary v ∈ Σ. The syntactic
rules of a CG take the form of two rewriting schemes: ∀A, B ∈ Cat(B)

– FA (Forward Application) : A/B B → A

– BA (Backward Application) : B B\A→ A

Unidirectional CGs make use of only one of these rules (either FA or BA) but
not of both. The language generated (or recognized) by a CG G is:
L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈ {1, . . . , n}, ∃Ci ∈ Cat(B) such that 〈vi, Ci〉 ∈
G and C1 . . . Cn →∗ S},
where →∗ is the reflexive and transitive closure of the relation →, defined by
FA and BA schemes. For every w ∈ L(G), a syntactic analysis structure can
be produced, taking the form of a binary-branching tree whose leaf nodes are
assignments of G and whose internal nodes are labelled either by FA or BA and
by a category (see Figure 1).

Example 1 (a simple CG). CGs have mainly been used to represent natural lan-
guage syntax, as illustrated by this example. Let B = {S, T, CN} where T stands
for “term” and CN for “common noun”, Σ = {John, runs, a, man, fast} and G =
{〈John, T 〉,〈runs, T \S〉, 〈man, CN〉, 〈a, (S/(T \S))/CN〉, 〈fast, ((T \S)\(T\S))〉}.
This over-simple CG recognizes sentences like “John runs” or “a man runs fast”
with the syntactic analysis structures of Figure 1.

202 I. Tellier

S
BA

T
John

T\S
runs

S
FA

S/(T\S)
FA

(S/(T\S))/CN
a

CN
man

T\S
BA

T\S
runs

(T\S)\(T\S)
fast

Fig. 1. Syntactic analysis structures produced by a CG

2.2 Recursive Automata and Their Language

Definition 2 (Recursive Automaton). A recursive automaton R is a 5-
tuple R = 〈Q, Σ, γ, q0, F 〉 with Q a the finite set of states, Σ a finite vocabulary,
q0 ∈ Q a (unique) initial state and F ∈ Q a (unique) final state. γ is the
transition function of R, defined from Q× (Σ ∪Q) to 2Q.

We restrict ourselves here to recursive automata (RA in the following) with
unique initial and final states, but it is not a crucial choice. The only important
difference between this definition and the usual definition of finite state automata
is that, in a RA, it is possible to label a transition either by an element of Σ or
by an element of Q. To use a transition labelled by a state, you have to produce
a string belonging to the language of this state. RA can thus be considered as
special cases of “recursive transition networks” or RTRs [20]. But, depending on
the notion of “state language” used, there exist in fact two distinct notions of
RA which will be called, for reasons that will become clear soon, RAFA and
RABA. In a RAFA, the language LFA(q) associated with the state q ∈ Q is the
set of strings starting from q and reaching the final state F , whereas in a RABA,
LBA(q) is the set of strings starting from the initial state q0 and reaching q.

Definition 3 (Language Recognized by a RA). Let R = 〈Q, Σ, γ, q0, F 〉 be
a RAFA (resp. a RABA). For every q ∈ Q we define the language LFA(q) (resp.
LBA(q)) associated with q as the smallest set satisfying:

– ε ∈ LFA(F) (resp. ε ∈ LBA(q0));
– if there exists a transition labelled by a ∈ Σ between q and q′ ∈ Q, i.e.

q′ ∈ γ(q, a) then: a.LFA(q′) ⊆ LFA(q) (resp. LBA(q).a ⊆ LBA(q′));
– if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q, i.e. q′ ∈

γ(q, r) then: LFA(r).LFA(q′) ⊆ LFA(q) (resp. LBA(q).LBA(r) ⊆ LBA(q′)).

The language LFA(R) of the RAFA (resp. the language LBA(R) of the RABA)
is defined by: LFA(R) = LFA(q0) (resp. LBA(R) = LBA(F)).

For a state q ∈ Q such that q 	= F (resp. q 	= q0), the definition of LFA(q) (resp.
of LBA(q)) may be recursive: when it exists, it is a smallest fix-point. A real
recursion occurs when, in a RAFA, there exists a path starting from a state q,

How to Split Recursive Automata 203

using a transition labelled by q and reaching F (resp., in a RABA, when there
exists a path starting from q0, using a transition labelled by q and reaching the
state q). Unlike finite state automata, RA are not limited to producing flat trees,
because recursive transitions allow a real branching. We have shown in [19] that
RAFA and RABA are respectively linked with the two possible unidirectional
CGs. This property, which justifies their name, is detailed in the following.

2.3 From Unidirectional CGs to RA

Each one of the two families of unidirectional CGs can produce any ε-free
context-free language [2]. Here, we show that every FA-unidirectional (resp. BA-
unidirectional) CG can be easily transformed into a strongly equivalent RAFA

(resp. RABA), i.e. generating the same structural descriptions [19]. The process,
for a given FA-unidirectional (resp. BA-unidirectional) CG G, is the following :

– the vocabulary Σ of the RA is the same as the one of G.
– let N be the set of every subcategory of a category assigned to a member of

the vocabulary in G (a category is a subcategory of itself). The set of states
for the RAFA (resp. RABA) to be built is N ∪{F} with F /∈ N (resp. N ∪{I}
with I /∈ N). The initial state is S (resp. I), the final one is F (resp. S).

– for every C ∈ N , define a transition labelled by C between the states C and
F (resp. between I ans C), i.e. F ∈ γ(C, C) (resp. C ∈ γ(I, C)).

– for every A/B ∈ N (resp. A\B ∈ N), define a transition labelled by A/B
(resp. A\B) between the states A and B, that is: B ∈ γ(A, A/B) (resp.
B ∈ γ(A, A\B)).

– for every 〈v, ,〉C ∈ G, add a transition labelled by v between the state C and
F , i.e. F ∈ γ(C, v) (resp. add a transition between I and C labelled by v,
i.e. C ∈ γ(I, v)).

2.4 Mutually Recursive Automata

Both families of unidirectional CGs have the expressivity of ε-free context-free
languages at the string level, but bidirectional CGs are useful for linguistic pur-
poses, because of the structures they produce, and particularly the labels FA or
BA assigned to each internal node. It is thus natural to try to extend our notion
of RA to the general case of bidirectional CGs, where both FA and BA rules
are used. As we have seen, it is possible to represent the use of FA rules in a
RAFA and the use of BA rules in a RABA. So, we propose to represent a (bidi-
rectional) CG by a pair of mutually recursive automata (MRA in the following):
one element of the pair is a RAFA, the other one is a RABA. For a syntactic
analysis that uses both FA and BA rules, mutual calls between the two RA will
be necessary. After an introducing example, we provide a general definition of
MRA and give some of their properties.

Example 2 (Example of a MRA). Let us translate the CG G given in Example
1 into a MRA (cf. Figure 2). The states of each of these RA correspond to
every possible subcategory of a category assigned by G to a element of the

204 I. Tellier

T

S T\S F (T\S)\(T\S)

S/(T\S) CN

S/(T\S)

T

T\S
(T\S)\(T\S)

(S/(T\S))/CN

CN (T\S)\(T\S)

I T S

(S/(T\S))/CN T\S

T T\S

T\S(S/(T\S)/CN

(T\S)\(T\S)

(T\S)\(T\S)

Fig. 2. A pair of mutually recursive automata: the RAF A and the RABA

vocabulary, plus a final state F in the RAFA (above), and an initial state I in the
RABA (under). The transitions have been designed exactly as explained before.
Then, each RA has been simplified for readability (some un-necessary states and
transitions are deleted), but not as much as possible: here, we have chosen to
preserve the representation of all the final vocabulary Σ in both automata.

Definition 4 (MRA and their Language). A pair of mutually recur-
sive automata (or MRA) is a pair M = (RFA, RBA) where RFA = 〈Q ∪
{F}, Σ, γFA, SFA, F 〉 is a RAFA and RBA = 〈Q ∪ {I}, Σ, γBA, I, SBA〉 is a
RABA sharing the same vocabulary Σ and the same set of state names Q except
for the final state of the RAFA (F /∈ Q) and for the initial state of the RABA

(I /∈ Q). We consider ε ∈ LFA(I) and ε ∈ LBA(F) and for every state q ∈ Q,
the language LM (q) of the state q in M is the smallest set such that:

– LFA(q) ∪ LBA(q) ⊆ LM (q)
– if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q in RFA

(resp. in RBA), i.e. q′ ∈ γFA(q, r) (resp. q′∈ γBA(q, r)) then: LM (r).LFA(q′)
⊆ LFA(q) (resp. LBA(q).LM (r) ⊆ LBA(q′)).

We define the language of the MRA as: L(M) = LM (SFA) ∪ LM (SBA).

How to Split Recursive Automata 205

For every CG G, there exists a MRA M = (RFA, RBA) strongly equivalent with
G, i.e. generating the same structures.

3 Learning by Specialization

3.1 Learning Rigid CG from Positive Examples

A rigid CG is a CG in which every v ∈ Σ is assigned at most one category.
Kanazawa has proved [13,14] that the set of every (bidirectional) rigid CG
is learnable in the limit (i.e. in the sense of [12]) from positive examples, i.e.
from sentences. Two distinct learning algorithms are now available for this pur-
pose. The best known is Kanazawa’s, derived from “BP” (proposed earlier by
Buszkowski and Penn [3]) and is a classical generalization strategy. The other
one, called RGPL (Rigid Grammar Partial Learning) is described by Moreau
in [16]. It is this second algorithm that we will concentrate on here. Although
its author did not present it this way, we show that it is in fact a specialization
strategy.

Let us first illustrate how it works on a simple example. We suppose that the
available set of positive examples is {“John runs”, “a man runs fast”}. At its first
step, the algorithm assigns to each member of the vocabulary used at least once
in the examples a distinct variable. This initial assignment is thus here:

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}.
Even if a word is used several times in the examples, only one variable is intro-
duced because the target grammar is rigid. In fact, A implicitely specifies a set
of grammars: the set of rigid CGs built on the used vocabulary. As a matter of
fact, every such rigid CG G can be obtained by applying a substitution σ from
the set of variables to a set of categories to A such that:

G = σ(A) = {〈v, σ(C)〉|〈v, C〉 ∈ A}
The substitution σ has only the effect of renaming the variables into categories.

Of course, A can also be represented by a MRA M = (RFA, RBA). In this
MRA, RFA (resp.RBA) has {x1, x2, x3, x4, x5, F} (resp. {I, x1, x2, x3, x4, x5}) as
set of states, and each state xi for 1 ≤ i ≤ 5 is connected to F (resp. I is
connected to xi) by a transition labelled by the corresponding word (another
transition labelled by xi should be added but it is useless at this point). As S
appears nowhere in this MRA, the language it recognizes is empty. But it is a
compact way to represent the whole class of rigid CGs built on Σ.

Then, each sentence is syntactically parsed with the assigments in A, by a
CYK-like algorithm. The only two possible ways to parse “John runs” are :

– either to replace x1 by S/x2: then a FA rule can be applied
– either to replace x2 by x1\S: then a BA rule can be applied

These kinds of substitutions express a constraint that the variables (x1 or x2)
must satisfy: A must thus be updated to a disjunction of sets of assignments,
each subset corresponding to a subclass of rigid CGs. A simpler way to store the

206 I. Tellier

current subsets of possible solutions is to store the set of possible substitutions
that can be applied to A. In our case, this set is made of {σ1, σ2}, with σ1(x1) =
S/x2 and is equal to the identical function elsewhere, and σ2(x2) = x1\S and
is equal to the identical function elsewhere. σ1(A), as well as σ2(A), can be
represented by a MRA derived from the previous one. This time, both MRA
recognize exactly the sentence “John runs”.

To parse “a man runs fast”, many more solutions are possible. The maximum
theoretical number is 5 ∗ 23 = 40 because there are 5 possible binary branching
trees with 4 leaves (this can be computed in the general case by the Catalan
number), and each of them has 3 internal nodes which can receive either a FA
or a BA label. This makes 40 ∗ 2 = 80 theoretical possible substitutions by
combining the constraints obtained from both sentences (the combinaison is a
classical composition of functions). But, among them, some are contradictory:
as the target grammar is rigid, the unique category assigned to the word “runs”
cannot be of the form xi/xj and xk\xl at the same time. We thus see where the
initial class plays a role in the learning strategy.

It is easy to see that the main problem with this algorithm is the combinato-
rial explosion it has to face, especially when examples do not share any common
word. This is not surprising, since the problem of learning rigid CGs from sen-
tences is known to be NP-hard [4].To limit this explosion, Moreau proposes to
exploit as much initial knowledge as possible, in the form of an initial grammar,
that is, initially known categories for some usual words (for example the lexical
ones) which cannot be renamed, as it is the case for the variable categories.

Furthermore, there is no guarantee at all that this strategy always converges
to a unique solution. In theory, to fulfill the requirements of learnabiblity in the
limit, when several possible compatible grammars are available, inclusion tests
should be performed to select the one generating the “smallest” language. This
problem also occurred with Kanazawa’s algorithm, when applied to sentences.

3.2 State Merges and State Splits

The previous strategy can now be interpreted in terms of operations applying
on MRA. As we have seen, at every step of this algorithm, the search space
is a disjunction of sets of assignments of the form σ(A) for some substitution
σ, and each of them can be represented by a MRA. The MRA corresponding
with A recognizes no sentence. But, as soon as at least one example has been
treated (and, thus, the category S been introduced), σ(A) specifies a set of CGs
recognizing at least this example. What is the effect of a constraint on a MRA ?

The constraints always take the form: xk = xl, where xk and xl are already
introduced variables or equal to S, or xk = Xm/Xn or xk = Xm\Xn , with Xm

and Xn any category built on the set of every variable union S.

– the effect of a constraint of the form xk = xl on a MRA is a state merge in
both the RAFA and the RABA of the MRA. As, in MRA, xk can also be
used as transition labels, corresponding transition merges can also occur.

– the effect of a constraint of the form xk = Xm/Xn (resp. Xm\Xn) can be
decomposed into four steps:

How to Split Recursive Automata 207

1. Xm/Xn (resp. Xm\Xn) replaces xk everywhere in the MRA;
2. every subcategory of Xm and Xn (including themselves) not already

identified (i.e. not already a sub-category of the previous set of assign-
ments) becomes a new state in both RA: in the RAFA, it is linked to the
state F (resp. in the RABA from the state I) by a transition labelled by
its name;

3. in the RAFA (resp. in the RABA), a new transition labelled by Xm/Xn

(resp. Xm\Xn) links the states Xm and Xn, and the same occurs for
every newly identified subcategory;

4. the states and transitions of the same name are merged in each RA.

This operation can now be compared to the “state splitting strategy” proposed
by Fredouille and Miclet in [11] to learn regular languages represented by finite
state automata by specialization. For example, the constraint x1 = S/x2 has
the effect of splitting the state x1 into two new states: S and x2. Then, as a
state named x2 already exists, the new one is merged with the previous one.
But our specialization operation is more general than Fredouille and Miclet’s,
because of the recursive nature of the automata on which it applies. Furthermore,
their algorithm was a specialization strategy at the language level : their initial
hypothesis was the most general regular language Σ∗ and constraints were used
to specialize the language. Moreau’s algorithm is a specialization strategy at the
set of grammars level : its initial hypothesis is the set of possible grammars, and
the examples are used to introduce constraints that reduce this set to subsets.
The corresponding MRA represents a set of grammars and not only a specific
language. For these reasons, our approach cannot be easily adapted to usual
finite state automata. But we believe that our state splitting operator is better
founded than the previous one, because it is the formal counterpart of well-
defined substitutions.

4 Learning from Typed Examples Revisited

We now show that the algorithm proposed in [8,7] to learn CGs from typed
examples can be considered as a specialization strategy where state splits and
state merges are controlled by a typing approach.

4.1 Learning from Semantically Typed Examples

The idea of learning CGs from typed examples was first introduced in [8]. The
types considered in this work are borrowed from Montague’s theory [6]: they are
lexicalized terms derived from syntactic categories by a morphism, and coincide
with the type of the logical formula that translates the associated word. Learning
from typed examples is cognitively relevant because types can be interpreted as
semantic information available in the environment or previously learned. In this
section, we briefly recall this notion in a general fashion and give the conditions
under which they can help learning.

208 I. Tellier

The notion of types useful for learning CGs is based on:

– a finite set τ of basic types among which is a distinguished type t ∈ τ
standing for “truth values”: usually, this set is τ = {e, t} where e ∈ τ is the
type of “entities”. Montague also used a type s for “intensions” that will not
be used in the following;

– the set Types(τ) of every type is the smallest set such that τ ⊂ Types(τ)
and for every type α, β ∈ Types(τ), 〈α, β〉 ∈ Types(τ). 〈α, β〉 is the type of
functions that require an argument of type α and provide a result of type β.

Types in Types(τ) are useful for learning a CG only if they are connected
with its syntactic categories in Cat(B). More precisely, the necessary condition
to be fulfilled is that there exists a homomorphism h such that:

– for every basic category C ∈ B, h(C) is defined and belongs to Types(τ).
The distinguished category S ∈ B is associated with the distinguished type
t ∈ τ : h(S) = t.

– for every other category in Cat(B) of the form A/B or A\B, we have:
h(A/B) = h(B\A) = 〈h(B), h(A)〉.

Example 3 (classical semantic types for natural languages). Let τ = {e, t}. The
words of the grammar defined in Example 1 receive the following semantic types:

– “John” can be considered as an entity of type e;
– “runs” and “man” are one-place predicates; their type is: 〈e, t〉;
– “fast” is a “one-place-predicate modifier”, i.e. it transforms a predicate of arity

one into another one of the same arity: it thus has the type 〈〈e, t〉, 〈e, t〉〉;
– finaly, if we follow Montague’s intuition about the “proper treatment of quan-

tification” [6], the determiner “a” has the most complex type: 〈〈e, t〉, 〈〈e, t〉, t〉〉.

The corresponding homomorphism h is defined by: h(S) = t, h(T) = e, h(CN) =
〈e, t〉. As required, if 〈v, C〉 ∈ G, the semantic type of v is h(C).

4.2 How Types Help to Control State Splits and State Merges

Learning from typed examples means learning from sentences where each ele-
ment of the vocabulary v ∈ Σ, which should be assigned C ∈ Cat(B) by the
target grammar G to analyse this sentence, is provided with the corresponding
type h(C) ∈ Types(τ). As we will see, the learning strategy proposed in [8,7] can
also be interpreted in terms of operations applying on MRA. We illustrate this
algorithm on our example. The input data are now of the form:

John runs
e 〈e, t〉
e x1〈e, t〉

a man runs fast
〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉

How to Split Recursive Automata 209

In these typed examples, the third line is the result of a simple pre-treatment
which consists in introducing variables in front of every “functional type”. The
variables are all distinct, except when the same couple “word, type” occurs (as it
is the case here for the couple “runs, 〈e, t〉”). These variables will eventually take
the value “/” or “\” during the learning process. The initial set of assignements
is, this time:

A = {〈John, e〉, 〈runs, x1〈e, t〉〉, 〈a, x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉〉, 〈man, x6〈e, t〉〉,
〈fast, x7〈x8〈e, t〉, x9〈e, t〉〉〉}.

As previously, A implicitely specifies a set of grammars. This set is much
larger than the one of rigid CGs: it is the set of CGs which can assign an
arbitrary number of distinct categories to each word (so, it intersects every class
of k-valued CGs), but for which there exists a homomorphism such that every
distinct category assigned to the same word gives rise to a distinct type. In
formal terms, it is such that there exists a homomorphism h satisfying:

∀〈v, C1〉, 〈v, C2〉 ∈ G, h(C1) = h(C2) =⇒ C1 = C2.

We have shown [9] that for every ε-free context-free language, it is possible to
define a CG generating this language, a set of types and a homomorphism such
that this property is satisfied. This new target class is learnable in the limit from
typed examples [8,7].

As previously, A can also be represented by a MRA. But the information
carried by the types is much richer than the one carried by the basic variables
Moreau used: types can be interpreted as some kind of maximal bound on the
possible categories they replace; they display all their potential renaming.

The learning algorithm applies as in section 3.1: it consists in trying to parse
each sentence with the rules FA and BA adapted to types so as to reach the
type t at the root, by defining constraints on the variables (see [7] for details).
The only possible type-compatible way to parse the first typed example “John
runs” is to have: x1 = \, meaning that only a BA rule is compatible with the
type assignments. “runs” should thus finaly receive the category e\t. This time,
there is only one type-compatible way to parse “a man runs fast”: this parse
(isomorphic to the one in Figure 1) is shown on Figure 3. Both typed examples
lead to the following (unique) set of constraints: x2 = /, x3 = x6, x7 = \,
x8 = x1 = \, x4 = /, x5 = x9.

The set of assignments is thus updated to:

A = {〈John, e〉, 〈runs, \〈e, t〉〉, 〈a, /〈x3〈e, t〉, /〈x5〈e, t〉, t〉〉〉, 〈man, x3〈e, t〉〉,
〈fast, \〈\〈e, t〉, x5〈e, t〉〉〉}.

If we apply the process of section 2.4 to this set (after re-ordering the types
to make them similar to syntactic categories and t playing the role of S), we
obtain the MRA of Figure 4. In this example, with only two typed examples, we
obtain a unique MRA which is nearly isomorphic to the target one.

In this context, the constraints take the form xi = xj , xi = / or xi = \ and
give rise to the same transformations as the one detailed in section 3.2. It could
seem that the first kind corresponds to a state merge and the other two to a

210 I. Tellier

t
FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉
FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉
a

x6〈e, t〉
man

x9〈e, t〉
BA : x7 = \

x8 = x1

x1〈e, t〉
runs

x7〈x8〈e, t〉, x9〈e, t〉〉
fast

Fig. 3. Parse tree for a typed example

e\t e

t x5〈e, t〉 F (e\t)\x5〈e, t〉

t/x5〈e, t〉 x3〈e, t〉

t/(x5〈e, t〉)

Johne

x5〈e, t〉

e\t

runs

(e\t)\(x5〈e, t〉)

fast

a

(t/x5〈e, t〉)/x3〈e, t〉

man x3〈e, t〉

x3〈e, t〉 (e\t)\x5〈e, t〉

I e t

(t/(x5〈e, t〉))/x3〈e, t〉 e\t x5〈e, t〉

man

x3〈e, t〉

e

John

e\t

runs

runs

e\t

a

(t/x5〈e, t〉)/x3〈e, t〉

fast

(e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast

Fig. 4. MRA for type assignments

state split, but the situation is a bit more complex. In our example, to reach the
target, only one constraint is missing: x5 = \. The typed example corresponding
to the sentence “John runs fast” would provide this constraint. Its first effect on

How to Split Recursive Automata 211

vocabulary Moreau’s initial target category pre-treated
assigment initial assignment types

John x1 T e

a x2 (S/(T\S)/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉
man x3 CN x6〈e, t〉
runs x4 T\S x1〈e, t〉
fast x5 (T\S)\(T\S) x7〈x8〈e, t〉, x9〈e, t〉〉

Fig. 5. Tabular showing the starting points and target of the two algorithms

the MRA would be to rename the state x5〈e, t〉 both in the RAFA and in the
RABA by \〈e, t〉, that is e\t. But, doing so, this state becomes identical to an
already existing one and then must be merged to it.

The table of Figure 5 explains why types help the algorithm to avoid a com-
binatorial explosion and to converge quicker. We have seen that there always
exists a homomorphism σ between column 2 and column 3, which is the target
of the learning process. Hypotheses about types ensure that there also exists
a homomorphism h between column 3 and column 4. This situation is similar
to the one described in [15], and analyzed in [5]. The two learning algorithms
presented here are both specialization strategies at the set of grammars level,
but their initial hypothesis is either a lower bound or an upper bound of the set
of categories of the target grammar. Types are efficient because they allow to
control the possible renamings.

5 Conclusion

In grammatical inference from positive examples, two sources of information
are usually available: the target class and the set of examples. Generalization
techniques use the examples to generate a “most specific grammar” compatible
with them (the prefix tree automaton in the case of regular languages), and then
use the target class to generalize it. Specialization techniques do the contrary:
the class is the starting point and the examples help to specialize it.

In this paper, we propose a new perspective on these techniques. First, we
see that disjunctions of MRA are able to represent the search space of such
learning algorithms. Second, we show that the algorithm to learn CGs from
typed examples proposed in [8,7] introduces type control into the process. The
initial semantic types associated with the elements of the vocabulary specify
some kind of maximal bound on the possible renamings, allowing to limit the
combinatorial explosion of solutions.

References

1. Angluin, D.: Inference of Reversible Languages. Journal of the ACM 3, 741–765
(1982)

2. Bar Hillel, Y., Gaifman, C., Shamir, E.: On Categorial and Phrase Structure Gram-
mars. Bulletin of the Research Council of Israel 9F (1960)

212 I. Tellier

3. Buszkowki, W., Penn, G.: Categorial grammars determined from linguistic data by
unification, newblock. Studia Logica, 431–454 (1990)

4. Costa-Florencio, C.: Consistent Identification in the Limit of Rigid Grammars from
Strings Is NP-hard. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI
2002. LNCS (LNAI), vol. 2484, pp. 49–62. Springer, Heidelberg (2002)

5. Coste, F., Fredouille, D., Kermovant, C., de la Higuera, C.: Introducing domain
and typing bias in automata inference. In: Paliouras, G., Sakakibara, Y. (eds.)
ICGI 2004. LNCS (LNAI), vol. 3264, pp. 115–126. Springer, Heidelberg (2004)

6. Dowty, D., Wall, R.E., Peters, S.: Introduction to Montague Semantics. Linguistics
and Philosophy, Reidel (1981)

7. Dudau-Sofronie, D.: Apprentissage de grammaires catégorielles pour simuler
l’acquisition du langage naturel á l’aide d’informations sémantiques, thése
d’informatique, université Lille3 (2004)

8. Dudau-Sofronie, D., Tellier, I., Tommasi, M.: Learning categorial grammars from
semantic types. In: Proceedings of the 13th Amsterdam Colloquium, pp. 79–84
(2001)

9. Dudau-Sofronie, D., Tellier, I., Tommasi, M.: A Learnable Class of CCGs from
Typed Examples. In: Proceedings of the 8th conference on Formal Grammars, pp.
77–88 (2003)

10. Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular infer-
ence. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37.
Springer, Heidelberg (1994)

11. Fredouille, D., Miclet, L.: Experiences sur l’inference de langage par specialisation.
In: Proceedings of CAP 2000, pp. 117–130 (2000)

12. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

13. Kanazawa, M.: Identification in the limit of categorial grammars. Journal of Logic,
Language and Information 5(2), 115–155 (1996)

14. Kanazawa, M.: Learnable Classes of Categorial Grammars. CSLI Publications
(1998)

15. Kermovant, C., de la Higuera, C.: Learning language with help. In: Adriaans, P.W.,
Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 161–
173. Springer, Heidelberg (2002)

16. Moreau, E.: Apprentissage partiel de grammaires lexicalisées. TAL 45(3), 71–102
(2004)

17. Tellier, I.: When categorial grammars meet regular grammatical inference. In:
Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS
(LNAI), vol. 3492, pp. 301–316. Springer, Heidelberg (2005)

18. Tellier, I.: Learning recursive automata from positive examples. In: Revue
d’Intelligence Artificielle. New Methods in Machine Learning(20/2006), pp. 775–
804 (2006)

19. Tellier, I.: Grammatical inference by specialization as a state splitting strategy. In:
Proceedings of the 16th Amsterdam Colloquium, pp. 223–228 (2007)

20. Woods, W.A.: Transition Network Grammars of Natural Language Analysis. Com-
munication of the ACM 13, 591–606 (1970)

A Note on the Relationship between

Different Types of Correction Queries�

Cristina Tı̂rnăucă

Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
cristina.bibire@estudiants.urv.es

http://www.grlmc.com

Abstract. The adult-child interaction which takes place during the
child’s language acquisition process has been the inspiration for Angluin’s
teacher-learner model [1], the forerunner of today’s active learning field.
But the initial types of queries have some drawbacks: equivalence queries
are both unrealistic and computationally costly; membership queries, on
the other hand, are not informative enough, not being able to capture
the feedback received by the child when he or she makes mistakes. This
is why a new type of query (called correction query), weaker than the
first one and more informative than the second, appeared. While in the
case of natural languages it is well understood what correcting means,
in formal language theory different objects may require different types
of corrections. Therefore, several types of correction queries have been
introduced so far. In this paper we investigate the relations existing be-
tween different models of correction queries, as well as their connection
to other well-known Gold-style and query learning models. The study
comprises results obtained in the general case when time complexity is-
sues are ignored, and in the restricted case when efficiency constraints
are imposed.

Keywords: query learning, Gold-style learning, correction query.

1 Introduction

The way children learn their mother language is an amazing process. They receive
examples of words in the vocabulary and sentences in that language, and after
some transitory period - in which they still make mistakes and are corrected by
adults - they are suddenly able to express themselves fluently and errorless.

It has been argued that the formal model that best describes the child-adult
interaction within the process of child acquiring his or her native language is
the query learning model [1]. The most investigated types of queries, and in the

� This work was possible thanks to the FPU Fellowships AP2004-6968 from the Span-
ish Ministry of Education and Science.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 213–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.grlmc.com

214 C. T̂ırnăucă

same time the first introduced, are membership queries (MQs) and equivalence
queries (EQs).

There are quite a few reasons though for which people working in grammati-
cal inference, and especially in active learning, have been trying to find effective
query learning algorithms that avoid the use of EQs. First of all, EQs are com-
putationally costly. Secondly, they are quite unnatural for a real-life setting: no
child would ever ask his mother if the current hypothesis represents the correct
grammar of the language. Finally, it might happen that the teacher does not
even have a grammar for the target language - take, for example, the case of
native speakers that did not ever studied grammar.

On the other hand, when answering a MQ in the negative way, no other
information is provided by the teacher. Inspired by the way adults guide the
process of children’s language acquisition by correcting them when necessary,
the authors of [2] propose a modified version of MQs, called correction query
(CQ), that incorporates this idea. More precisely, the difference consists in the
fact that for strings not belonging to the target language, the teacher must
provide the learner with a correction.

Whereas in a real-life setting correcting an ungrammatical utterance is done,
most of the times, by replacing the error with a correct (sequence of) word(s),
if the target is a formal language, then one needs to adapt the type of correc-
tion to best suit the particularities of that language class. And indeed, since
their introduction, several types of corrections have been proposed in order to
learn different objects: prefix correction queries [2] and length bounded correc-
tion queries [3] for deterministic finite automata, edit distance based correction
queries for balls of strings [4], regular expressions and pattern languages [5], the
nearest positive example [6] for sets of positive integers, and structural correction
queries for regular tree languages [7].

Intuitively, this new type of query can be placed somewhere between MQs
and EQs. But what exactly can we learn with CQs, and what can be done in
polynomial time? These are the questions whose answers constitute the object
of the present paper. The first steps in this research direction have been done
already: Tı̂rnăucă and Kobayashi [8] investigate the relations existing between
the model of learning with prefix correction queries (PCQs) and other well-known
Gold-style and query learning models when time complexity issues are neglected
(they show, among other things, that learning with PCQs is strictly less powerful
than learning with EQs, and more powerful than the model of learning with
MQs). Moreover, this study is continued in [9] by imposing efficiency constraints.

In this paper we focus on the identification of formal languages ranging over
indexable classes of non-empty recursive languages as target concepts when the
learner is allowed to ask one of the other two types of CQs: length bounded
correction queries (LBCQs) and edit distance correction queries (EDCQs).

The article is organized as follows. Preliminary notions are presented in Sec-
tion 2. In the third section we show that when we neglect time complexity issues,
learning with LBCQs or EDCQs is basically the same as learning with MQs. In
Section 4 we concentrate on polynomial time algorithms and we present the

A Note on the Relationship between Different Types of Correction Queries 215

relations between different models of learning with CQs. We conclude with fur-
ther remarks and future work topics in Section 5.

2 Preliminaries

Let Σ be a finite set of symbols called alphabet, and Σ∗ the set of strings over Σ.
A language L over Σ is a subset of Σ∗. The elements of L are called strings. Let
u, v, w be strings in Σ∗ and |w| be the length of the string w. λ is a special string
called the empty string and has length 0. We denote by uv the concatenation of
the strings u and v. If w = uv for some u, v in Σ∗, then u is a prefix of w and v
is a suffix of w. By TailL(u) we denote the set {v | uv ∈ L}.

Assume that Σ is a totally ordered set, and let ≺L be the lexicographical
order on Σ∗. Then, the lex-length order ≺ on Σ∗ is defined by: u ≺ v if either
|u| < |v|, or else |u| = |v| and u ≺L v. In other words, strings are compared first
according to length and then lexicographically. In the rest of the paper strings
are always compared with respect to the lex-length order.

The edit distance between two strings w and w′, denoted d(w, w′) in the
sequel, is the minimum number of edit operations needed to transform w into w′

and can be computed in O(|w| · |w′|) time by dynamic programming [10]. The
edit operations are either (1) deletion: w = uav and w′ = uv, or (2) insertion:
w = uv and w′ = uav, or (3) substitution: w = uav and w′ = ubv, where
u, v ∈ Σ∗, a, b ∈ Σ and a 	= b.

2.1 Learning Models

An indexed family (or indexable class) Let C = (Li)i≥1 is a recursive enumeration
of non-empty languages such that membership in Li is uniformly decidable for
all i ≥ 1, i.e., there is a computable function that, for any w ∈ Σ∗ and i ≥ 1,
returns 1 if w ∈ Li, and 0 otherwise.

Gold-Style Learning. An inductive inference machine (IIM) Alg is an algo-
rithmic device that reads longer and longer initial segments σ of a text (infor-
mant), and outputs numbers as its hypotheses. Given a text (an informant) σ for
a language L ∈ C, Alg learns L from σ if the sequence of hypotheses output by
Alg , when fed σ, stabilizes on a number i with Li = L. We say that Alg learns
C from text (informant) if it identifies each L ∈ C from every corresponding text
(informant). A slightly modified version of the learning in the limit model is the
so-called model of conservative learning (see [12,13] for more details). A conser-
vative IIM is only allowed to change its mind in case its actual guess contradicts
the data seen so far.

We denote by LimTxt (LimInf) the collection of all indexable classes C for
which there is an IIM Alg such that Alg identifies C from text (informant). One
can similarly define ConsvTxt and ConsvInf for which the inference machines
should be conservative IIMs.

Although an IIM is allowed to change its mind finitely many times before
returning its final and correct hypothesis, in general it is not decidable whether

216 C. T̂ırnăucă

or not it has already output its final hypothesis. In case that for a given indexable
class C, there exists an IIM Alg such that given any language L ∈ C and any
text (or informant) for L, the first hypothesis i output by Alg is already correct
(i.e., Li = L), we say that Alg finitely identifies C (see [14]). The corresponding
models FinTxt and FinInf are defined as above.

Query Learning. In this model a learner has access to an oracle or a teacher
that truthfully answers queries of a specified kind. Conform [15], a query learner
Alg is an algorithmic device that, depending on the reply of the previous queries,
either computes a new query, or returns a hypothesis and halts. More formally, let
C be an indexable class and L an arbitrary language in C. The query learner Alg
learns L using some type of queries if it eventually halts and its only hypothesis,
say i, correctly describes L (i.e., Li = L). So, Alg returns its unique and correct
guess i after only finitely many queries. Moreover, Alg learns the class C using
some type of queries if it learns every language of that class using queries of the
specified type.

Apart from the well-known membership and equivalence queries, in this paper
we investigate three types of correction queries. Let L be a language over the
alphabet Σ and w a string in Σ∗.

– Prefix correction queries (Becerra, Dediu, Tı̂rnăucă [2])
The prefix correcting string of w with respect to L, denoted CL(w), is

CL(w) =
{

min{v | v ∈ TailL(w)}, if TailL(w) 	= ∅
Θ, otherwise.

Hence, CL is a function from Σ∗ to Σ∗ ∪ {Θ}. Note that CL(w) is λ if and
only if w ∈ L, and CL(w) equals Θ if and only if w is not the prefix of any
of the strings in L.

– Length bounded correction queries (Tı̂rnăucă [3])
Let us fix an integer l. The l-bounded correction of w with respect to L,
denoted Cl

L(w), is

Cl
L(w) = {v ∈ TailL(w) | |v| ≤ l}.

So, Cl
L is a function from Σ∗ to P(Σ∗). Note that λ ∈ Cl

L(w) if and only if
w ∈ L.

– Edit distance correction queries (Becerra et al. [4])
The edit distance correction of w with respect to L, denoted EdcL(w), is

EdcL(w) =
{

Yes, if w ∈ L
one string of {w′ ∈ L | d(w, w′) is minimum}, if w 	∈ L.

The collection of all indexable classes C for which there is a query learner Alg
such that Alg learns C using MQs is denoted by MemQ . EquQ , PCorQ , lBCorQ
and EditCorQ are defined similarly for the models of learning with EQs, PCQs,
l-bounded correction queries (lBCQs) and EDCQs, respectively.

There is a strong relation between query learning models and Gold-style learn-
ing models. The following strict hierarchy holds [15]:

FinTxt ⊂ FinInf = MemQ ⊂ ConsvTxt ⊂ LimTxt ⊂ LimInf = EquQ .

A Note on the Relationship between Different Types of Correction Queries 217

3 Learning with Correction Queries

In [8], necessary and sufficient conditions for a language class to be learnable with
PCQs are given, facilitating a comparison between the model of learning with
PCQs and other well-known learning models. The results can be summarized as
follows:

– MemQ is strictly included in PCorQ ,
– PCorQ and ConsvTxt are incomparable, and
– PCorQ is strictly included in LimTxt .

We continue this study for LBCQs and EDCQs.

3.1 Learning with Length Bounded Correction Queries

Note that in the case of DFAs, returning the answer to a PCQ can be easily
done in polynomial time. However, when the target concept ranges over arbi-
trary recursive languages, the answer to a PCQ might be very long or not even
computable (given a recursive language L and a string w, one cannot decide,
in general, if w is a prefix of a string in L). A possible solution to avoid very
long (or infinite) searches is to restrict the search space to only short enough
suffixes. So, let us consider the model in which the learner must identify the
target language after asking a finite number of lBCQs for a fixed integer l ≥ 0.

Since any 0BCQ can be simulated by a MQ and the other way around, it is
clear that when l = 0, learning with lBCQs is equivalent to learning with MQs.
It is though less straightforward that the same property holds for an arbitrary
l. We show in the sequel that for any l, a language class is learnable with MQs
if and only if it is learnable with lBCQs.

Theorem 1. For any l ≥ 0, lBCorQ = MemQ.

Proof. Since for any language L and any string w in Σ∗, if we know the answer
to Cl

L(w) we also know if the string w is in L or not, it is clear that lBCorQ
includes MemQ . Hence, we have to show only that lBCorQ ⊆ MemQ .

Let us consider a language class C in lBCorQ , and let Alg be an l-bounded
correction query learner for C. We modify Alg such that instead of submitting an
lBCQ for a given string w, to submit MQs for all the strings wu with u ∈ Σ≤l.
The learner will use this information to construct the answer for Cl

L(w) (recall
that Cl

L(w) = {u ∈ Σ≤l | wu ∈ L}). Clearly, this modified version of Alg is a
query learner algorithm that learns C using MQs. �
This theorem is basically saying that having an oracle that can return at once
the answers for more than one MQ (one lBCQ contains the answer for 1+ |Σ|+
. . .+|Σ|l MQs) does not increase the learnability power of the model (that is, the
learning with MQs model). The result was somehow expected if we recall that
time complexity issues are neglected in our analysis. Moreover, this allows us to
talk about the model of learning with LBCQs in general, without specifying a
given length bound. Therefore, we can talk about LBCorQ , the collection of all
language classes C for which there exists an l ≥ 0 and a query learner Alg such
that Alg learns C using a finite number of l-bounded correction queries.

218 C. T̂ırnăucă

3.2 Learning with Edit Distance Correction Queries

Let us now investigate the model of learning with EDCQs. It is clear that any
oracle answering EDCQs would implicitly give us the answer for the correspond-
ing MQ, so EditCorQ trivially includes MemQ . In fact, the two learning models
are equivalent:

Theorem 2. EditCorQ = MemQ.

Proof. Let us first show that having an MQ oracle allows us to compute the
answer to an EDCQ using a finite number of MQs. Indeed, given a non-empty
recursive language L and a string w in Σ∗, the following algorithm computes
the value of EdcL(w) by asking only MQs.

Algorithm 1. An algorithm that computes EdcL(w) with an MQ oracle
1: input: L, w
2: ask the oracle if w is in L
3: if the answer is Yes then
4: output Yes
5: else
6: while TRUE do
7: i := 1
8: for all u such that d(w, u) = i do
9: ask the oracle if u is in L

10: if the answer is Yes then
11: output u and halt
12: end if
13: end for
14: i := i + 1
15: end while
16: end if

Clearly, Algorithm 1 terminates by outputting a string u ∈ L such that there
is no v ∈ L with d(w, v) < d(w, u). Note that for a given w ∈ Σ∗ and i ∈ IN
there are only a finite number of strings v ∈ Σ∗ such that d(w, v) = i, and there
exists an algorithm who can generate all these strings (remember that we are not
concerned with the complexity of the resulting algorithm - the only requirement
is to return the answer after finite steps).

Now, if we take C to be a language class in EditCorQ , then there exists an
algorithm Alg that learns C using EDCQs. Alg can be modified to use the MQ
oracle instead of the EDCQ oracle to get the necessary answers as described
above. We obtained an algorithm that learns C using MQs only, so EditCorQ ⊆
MemQ which concludes our proof. �

3.3 The Global Picture

A complete picture displaying the relations between all discussed versions of
query learning and Gold-style learning is obtained (see Figure 1).

A Note on the Relationship between Different Types of Correction Queries 219

Fig. 1. A hierarchy of Gold-style and query learning models

As we have already mentioned, the results in this section are all about learning
with queries where we do not take into account time complexity issues. So, what
happens if we restrict to polynomial time learning? We will answer this question
in the next section.

4 Polynomial Time Learning with Correction Queries

Although from a theoretical point of view it is important to know which lan-
guage classes are inferable in finite time steps (see the proof of Proposition 3 for
a relevant example), what matters in practice is the efficiency of the algorithms.
In this section we investigate the relations between different types of CQs when
complexity issues are taken into consideration. We will see that there are situa-
tions when, although two query types are equally powerful in the general case,
the equality is not preserved under efficiency constraints. So far we know that
learning with MQs is a strictly weaker model than learning with PCQs for both
finite time algorithms [8] and polynomial ones [9]. We show by an example why
one can not automatically generalize a result obtained in the general case to the
restricted model of polynomial time learning.

Let us first recall that learning with EQs is strictly more powerful than learn-
ing with PCQs when ignoring time complexity: PCorQ is strictly included in
LimTxt [8], and LimTxt is strictly included in EquQ [15]. Nevertheless, there
exists a class of languages, namely the zero-reversible languages, that is poly-
nomially learnable with PCQs [9] and not identifiable in polynomial time with
EQs [16].

For a better comprehension of our results, let us introduce some notations. Let
C = (Li)i≥1 be an indexable class. We denote by PolMemQ the collection of all
indexable classes C for which there exists a polynomial p(·) and an algorithm Alg

220 C. T̂ırnăucă

that learns any language L in C in time O(p(size(L))) by asking a finite number
of MQs. Similarly, PolPCorQ , Pol lBCorQ and PolEditCorQ are defined for the
models of learning with PCQs, lBCQs and EDCQs, respectively.

4.1 Polynomial Time Learning with LBCQs

Let us first recall that there is basically no difference between a 0-BCQ and
an MQ, so Pol0BCorQ = PolMemQ . Now, if we take l to be a fixed positive
integer, then the following property holds.

Proposition 1. Pol(l-1)BCorQ = Pol lBCorQ for any l ≥ 1.

Proof. Since one can easily extract the answer to an (l − 1)BCQ from the cor-
responding lBCQ, it is clear that Pol(l-1)BCorQ is included in Pol lBCorQ . Let
us now show that the other inclusion holds as well. Let C be an indexed family
of languages in Pol lBCorQ and Alg a polynomial time algorithm that learns C
with lBCQs. Note that for any language L over Σ, any w ∈ Σ∗ and any l ≥ 1,

Cl
L(w) = {u ∈ Σ≤l | wu ∈ L}

= {u ∈ Σ≤l−1 | wu ∈ L} ∪ {au | a ∈ Σ, u ∈ Σl−1 and wau ∈ L}
= Cl−1

L (w) ∪ {au | a ∈ Σ, u ∈ Cl−1
L (wa)}

= Cl−1
L (w) ∪

⋃
a∈Σ aCl−1

L (wa).
So, one can modify Alg such that instead of asking an lBCQ for the string

w, to ask a finite number of (l − 1)BCQs (|Σ|+ 1 queries to be precise) for the
strings wa with a in {λ}∪Σ. Clearly, the modified algorithm is still polynomial.
Hence, Pol(l-1)BCorQ equals Pol lBCorQ .

We draw the conclusion that Pol lBCorQ = PolMemQ for any l ≥ 0, and hence,
we can talk about the model of polynomial learning with LBCQs in general, with-
out specifying the length bound (we denote by PolLBCorQ the collection of all
language classes C for which there exists an l ≥ 0 such that C is in Pol lBCorQ).
So, having the possibility to get answers for more than one MQ at once does not
add any more learning power, even if we impose time restrictions.

4.2 Polynomial Time Learning with EDCQs

We continue the analysis done in Section 3.2 about the power of learning with
EDCQs, this time by taking into account time complexity issues. We have seen
that what happens in the general model does not necessary carry on to the
polynomially bounded model. Let us recall the already known results:

– MemQ � PCorQ [8] and PolMemQ � PolPCorQ [9],
– PCorQ � EquQ [8] but PolPCorQ 	⊆ PolEquQ (see page 8 above, lines 5-8),
– MemQ = LBCorQ and PolMemQ = PolLBCorQ ,
– EditCorQ = MemQ .

We show that in the case of EDCQs, the equality is not preserved.

Proposition 2. PolMemQ � PolEditCorQ.

A Note on the Relationship between Different Types of Correction Queries 221

Proof. Recall that EdcL(w) is Yes if and only if w belongs to L. Assume that
C is a language class in PolMemQ and let Alg be a polynomial time algorithm
that learns every L of C after asking a finite number of MQs. Obviously, the
number of MQs asked while Alg is running with input L is also bounded by a
polynomial, let us say p(n), where n is the size of the target language L. If we
modify Alg so that instead of asking the oracle a MQ for the string w, to ask an
EDCQ for the same string, we obtain another algorithm Alg′ which learns C with
EDCQs (it just uses the information received from asking EDCQs to determine
whether or not the given string is in the target language). The only thing left to
be shown is that Alg′ is still polynomial. But this is clear if we notice that Alg′

performs at most p(n) more operations than Alg (for each queried string w it
compares EdcL(w) with Yes). Since Alg′ is a polynomial time algorithm that
learns C using EDCQs, we obtain that C is in PolEditCorQ .

Moreover, if S = (Lw)w∈Σ∗ is the class of singleton languages Lw = {w} over
the alphabet Σ, then S can be used as a separating language class:

– S 	∈ PolMemQ since any algorithm that learns S using MQs might need to
ask |Σ|+ |Σ|2 + . . . + |Σ||w| MQs in the worst case when running on input
language Lw;

– S ∈ PolEditCorQ since there exists a very simple EDCQ algorithm for this
class. Indeed, it is enough to ask one EDCQ for an arbitrarily chosen string
w. The algorithm just outputs w, if the oracle’s answer is Yes, and w′ if
the answer returned by the oracle is the string w′. The algorithm described
above is clearly polynomial in the size of the target language. �

So learning with EDCQs is strictly more powerful than leaning with MQs when
we restrict to efficient algorithms.

4.3 The Global Picture

In the end of the previous section we exhibited a complete picture of the relations
existing between several models of learning with CQs and other learning models.
We have seen that when we neglect time complexity issues learning with LBCQs
and EDCQs is basically the same as learning with MQs, whereas PCQs are the
only ones adding some power to the model.

When we restrict to polynomial time algorithms, things are changing. And
although having an LBCQs oracle does still not improve on the learnability
power with respect to the MQ learning model, an EDCQ oracle or a PCQ oracle
does. It is less clear what relation is between learning with EDCQs and learning
with PCQs when we restrict to efficient algorithms.

Let us first notice that the class of singleton languages is in PolPCorQ ∩
PolEditCorQ . Moreover, we argue that there are languages polynomial time
learnable with PCQs for which there is no efficient EDCQ algorithm.

Proposition 3. PolPCorQ\PolEditCorQ 	= ∅.

Proof. From [9] we know that the class of k-reversible languages is in PolPCorQ
and not in MemQ . But MemQ = EditCorQ by Theorem 2 (recall we mentioned

222 C. T̂ırnăucă

that sometimes theoretical results like this one might be useful), so k-reversible
languages are not identifiable in finite time steps with EDCQs, and hence, they
can not be polynomial time learnable with EDCQs either. �
To complete the picture, we would like to be able to say if there are language
classes polynomial time learnable with EDCQs for which there is no efficient
PCQ algorithm. We conjecture that the two classes PolEditCorQ and PolPCorQ
are incomparable (see Figure 2).

Fig. 2. Different types of correction queries

Our candidate for showing that PolEditCorQ\PolPCorQ 	= ∅ is a subset of
the class BΣ = (Br(w))w∈Σ∗,r∈IR, where Br(w) = {v ∈ Σ∗ | d(v, w) ≤ r} is
a ball of center w and radius r. The authors of [4] show that for the so-called
q-good balls (the balls Br(w) for which there exists a polynomial q(·) such that
the radius r is no longer than q(|w|)), there exists an EDCQ algorithm which
runs in polynomial time in the size of (the representation of) the language. So,
what is left to be shown is that PCQs are not very useful in the process of leaning
this particular class.

A slightly different type of EDCQ is used in [5] for learning the class of pattern
languages: if the queried string is not in the target language, then the oracle
returns the positive example with a smallest distance from the queried string
and previously not used in the learning process. Moreover, preference is given to
correcting strings of the same length, if any, and among those having the same
length, the smallest one with respect to the lexicographical order is returned.
Kinber describes in [5] an efficient algorithm that learns any pattern language
with this modified type of EDCQ. We strongly believe that this requirement
(i.e., that the oracle must not return as a correction any of the strings which
appeared before) is actually mandatory, that is, there is no algorithm which can
learn the class of pattern languages with regular EDCQs. We leave this as an
open problem.

A Note on the Relationship between Different Types of Correction Queries 223

Acknowledgements

Special thanks to Colin de la Higuera for valuable advices, and to the anonymous
reviewers for their remarks and suggestions.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

2. Becerra-Bonache, L., Dediu, A.H., T̂ırnăucă, C.: Learning DFA from correction
and equivalence queries. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T.,
Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 281–292. Springer,
Heidelberg (2006)

3. T̂ırnăucă, C.: Learning reversible languages from correction queries only,
http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/
publications.htm

4. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of
strings with correction queries. In: Kok, J.N., Koronacki, J., Lopez de Mantaras,
R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI),
vol. 4701, pp. 18–29. Springer, Heidelberg (2007)

5. Kinber, E.: On learning regular expressions and patterns via membership and cor-
rection queries (manuscript, 2008)

6. Jain, S., Kinber, E.B.: One-shot learners using negative counterexamples and near-
est positive examples. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT
2007. LNCS (LNAI), vol. 4754, pp. 257–271. Springer, Heidelberg (2007)

7. T̂ırnăucă, C.I., T̂ırnăucă, C.: Learning regular tree languages from correction and
equivalence queries. Journal of Automata, Languages and Combinatorics 12(4),
501–524 (2007)

8. T̂ırnăucă, C., Kobayashi, S.: A characterization of the language classes learnable
with correction queries. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 398–407. Springer, Heidelberg (2007)

9. T̂ırnăucă, C., Knuutila, T.: Polynomial time algorithms for learning k-reversible
languages and pattern languages with correction queries. In: Hutter, M., Serve-
dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 272–284.
Springer, Heidelberg (2007)

10. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
ACM 21(1), 168–173 (1974)

11. Angluin, D.: Inference of reversible languages. Journal of the ACM 29(3), 741–765
(1982)

12. Zeugmann, T., Lange, S., Kapur, S.: Characterizations of monotonic and dual mono-
tonic language learning. Information and Computation 120(2), 155–173 (1995)

13. Zeugmann, T.: Inductive inference and language learning. In: Cai, J.-Y., Cooper,
S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 464–473. Springer, Heidelberg
(2006)

14. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

15. Lange, S., Zilles, S.: Formal language identification: query learning vs. Gold-style
learning. Information Processing Letters 91(6), 285–292 (2004)

16. Angluin, D.: Negative results for equivalence queries. Machine Learning 5(2), 121–
150 (1990)

http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/publications.htm
http://grlmc-dfilrom.urv.cat/grlmc/PersonalPages/cristina/publications.htm

Unsupervised Learning of Probabilistic

Context-Free Grammar Using Iterative
Biclustering

Kewei Tu and Vasant Honavar

Department of Computer Science,
Iowa State University, Ames, IA 50011, USA

{tukw,honavar}@cs.iastate.edu

Abstract. This paper presents PCFG-BCL, an unsupervised algorithm
that learns a probabilistic context-free grammar (PCFG) from positive
samples. The algorithm acquires rules of an unknown PCFG through it-
erative biclustering of bigrams in the training corpus. Our analysis shows
that this procedure uses a greedy approach to adding rules such that each
set of rules that is added to the grammar results in the largest increase
in the posterior of the grammar given the training corpus. Results of
our experiments on several benchmark datasets show that PCFG-BCL
is competitive with existing methods for unsupervised CFG learning.

1 Introduction

Context-free grammars (CFG) constitute an important class of grammars, with
a broad range of applications including programming languages, natural lan-
guage processing, and bioinformatics, among others. A probabilistic context-free
grammar (PCFG) is a CFG with probabilities assigned to grammar rules, which
can better accommodate the ambiguity and the need for robustness in real-world
applications. Hence, the problem of learning a PCFG from data (typically, pos-
itive samples generated by the target grammar) is an important problem in
grammar induction and machine learning. Several methods for learning (P)CFG
from positive data have been proposed. Some rely on different heuristics to itera-
tively construct an approximation of the unknown CFG [1,2,3,4,5]; others search
for a PCFG that has the largest posterior given the training corpus [6,7,8,9].

In this paper we propose PCFG-BCL, a new unsupervised algorithm that
learns a PCFG from a positive corpus. The proposed algorithm uses (distribu-
tional) biclustering to group symbols into non-terminals. This is a more natural
and robust alternative to the more widely used substitutability heuristic or distri-
butional clustering, especially in the presence of ambiguity, e.g., when a symbol
can be reduced to different nonterminals in different contexts, or when a context
can contain symbols of different nonterminals, as illustrated in [1]. PCFG-BCL
can be understood within a Bayesian structure search framework. Specifically,
it uses a greedy approach to adding rules to a partially constructed grammar,
choosing at each step a set of rules that yields the largest possible increase in

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 224–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Unsupervised Learning of PCFG Using Iterative Biclustering 225

the posterior of the grammar given the training corpus. The Bayesian framework
also supports an ensemble approach to PCFG learning by effectively combining
multiple candidate grammars. Results of our experiments on several benchmark
datasets show that the proposed algorithm is competitive with other methods
for learning CFG from positive samples.

The rest of the paper is organized as follows. Section 2 introduces the repre-
sentation of PCFG used in PCFG-BCL. Section 3 describes the key ideas behind
PCFG-BCL. Section 4 presents the complete algorithm and some implementa-
tion details. Section 5 presents the results of experiments. Section 6 concludes
with a summary and a brief discussion of related work.

2 Grammar Representation

It is well-known that any CFG can be transformed into the Chomsky normal
form (CNF), which only has two types of rules: A → BC or A → a. Because a
PCFG is simply a CFG with a probability associated with each rule, it is easy
to transform a PCFG into a probabilistic version of CNF.

To simplify the explanation of our algorithm, we make use of the fact that a
CNF grammar can be represented in an AND-OR form containing three types
of symbols, i.e., AND, OR, and terminals. An AND symbol appears on the left-
hand side of exactly one grammar rule, and on the right-hand side of that rule
there are exactly two OR symbols. An OR symbol appears on the left-hand side
of one or more rules, each of which has only one symbol on the right-hand side,
either an AND symbol or a terminal. A multinomial distribution can be assigned
to the set of rules of an OR symbol, defining the probability of each rule being
chosen. An example is shown below (with rules probabilities in the parentheses).

CNF The AND-OR Form
S → a (0.4) | AB (0.6) ORS → a (0.4) | ANDAB (0.6)
A → a (1.0) ANDAB → ORAORB

B → b1 (0.2) | b2 (0.5) | b3 (0.3) ORA → a (1.0)
ORB → b1 (0.2) | b2 (0.5) | b3 (0.3)

It is easy to show that a CNF grammar in the AND-OR form can be divided
into a set of AND-OR groups plus the start rules (rules with the start symbol on
the left-hand side). Each AND-OR group contains an AND symbol N , two OR
symbols A and B such that N → AB, and all the grammar rules that have one
of these three symbols on the left-hand side. In the above example, there is one
such AND-OR group, i.e., ANDAB, ORA, ORB and the corresponding rules (the
last three lines). Note that there is a bijection between the AND symbols and
the groups; but an OR symbol may appear in multiple groups. We may simply
make identical copies of such OR symbols to eliminate overlap between groups.

3 Main Ideas

PCFG-BCL is designed to learn a PCFG using its CNF representation in the
AND-OR form. Sentences in the training corpus are assumed to be sampled from

226 K. Tu and V. Honavar

an unknown PCFG under the i.i.d. (independent and identically distributed)
assumption.

Starting from only terminals, PCFG-BCL iteratively adds new symbols and
rules to the grammar. At each iteration, it first learns a new AND-OR group
by biclustering, as explained in Section 3.1. Once a group is learned, it tries to
find rules that attach the newly learned AND symbol to existing OR symbols,
as discussed in Section 3.2. This second step is needed because the first step
alone is not sufficient for learning such rules. In both steps, once a new set of
rules are learned, the corpus is reduced using the new rules, so that subsequent
learning can be carried out on top of the existing learning result. These two
steps are repeated until no further rule can be learned. Then start rules are
added to the learned grammar in a postprocessing step (Section 3.3). Since any
CNF grammar can be represented in the form of a set of AND-OR groups and a
set of start rules, these three steps are capable, in principle, of constructing any
CNF grammar.

We will show later that the first two steps of PCFG-BCL outlined above
attempt to find rules that yield the greatest increase in the posterior probability
of the grammar given the training corpus. Thus, PCFG-BCL performs a local
search over the space of grammars using the posterior as the objective function.

3.1 Learning a New AND-OR Group by Biclustering

Intuition. In order to show what it means to learn a new AND-OR group, it
is helpful to construct a table T , where each row or column represents a symbol
appearing in the corpus, and the cell at row x and column y records the number
of times the pair xy appears in the corpus. Because the corpus might have been
partially reduced in previous iterations, a row or column in T may represent
either a terminal or a nonterminal.

Since we assume the corpus is generated by a CNF grammar, there must be
some symbol pairs in the corpus that are generated from AND symbols of the
target grammar. Let N be such an AND symbol, and let A, B be the two OR
symbols such that N → AB. The set {x|A → x} corresponds to a set of rows
in the table T , and the set {y|B → y} corresponds to a set of columns in T .
Therefore, the AND-OR group that contains N , A and B is represented by a
bicluster [10] (i.e., a submatrix) in T , and each pair xy in this bicluster can be
reduced to N . See Fig.1 (a), (b) for an example, where the AND-OR group
shown in Fig.1(a) corresponds to the bicluster shown in Fig.1(b).

Further, since we assume the target grammar is a PCFG, we have two multino-
mial distributions defined on A and B respectively that independently determine
the symbols generated from A and B. Because the corpus is assumed to be gen-
erated by this PCFG, it is easy to prove that the resulting bicluster must be
multiplicatively coherent [10], i.e., it satisfies the following condition:

aik

ajk
=

ail

ajl
for any two rows i, j and two columns k, l (1)

where axy is the cell value at row x (x = i, j) and column y (y = k, l).

Unsupervised Learning of PCFG Using Iterative Biclustering 227

ANDNP → ORDetORN

ORDet → the(0.67) | a(0.33)

ORN → circle(0.2)
| triangle(0.3) | square(0.5)

(a) An AND-OR group (with
rule probabilities in the paren-
theses)

(b) A part of the table T and the bicluster that
represents the AND-OR group. Zero cells are left
blank.

(c) A part of the expression-context matrix of the bicluster

Fig. 1. Example: a bicluster and its expression-context matrix

Given a bicluster in T , we can construct an expression-context matrix, in
which the rows represent the set of symbol pairs (expressions) in the bicluster,
the columns represent all the contexts in which these symbol pairs appear, and
the value in each cell denotes the number of times the corresponding expression-
context combination appears in the corpus (see Fig.1(c) for an example). Be-
cause the target grammar is context-free, if a bicluster represents an AND-OR
group of the target grammar, then the choice of the symbol pair is independent
of its context and thus the resulting expression-context matrix should also be
multiplicatively coherent, i.e., it must satisfy Eq.1.

The preceding discussion suggests an intuitive approach to learning a new
AND-OR group: first find a bicluster of T that is multiplicatively coherent and
has a multiplicatively coherent expression-context matrix, and then construct
an AND-OR group from it. The probabilities associated with the grammar rules
can be estimated from the statistics of the bicluster. For example, if we find
that the bicluster shown in Fig.1(b) and its expression-context matrix shown in
Fig.1(c) are both multiplicatively coherent, we can learn an AND-OR group as
shown in Fig.1(a).

Probabilistic Analysis. We now present an analysis of the intuitive idea out-
lined above within a probabilistic framework. Consider a trivial initial grammar
where the start symbol directly generates each sentence of the corpus with equal
probability. We can calculate how the likelihood of the corpus given the grammar

228 K. Tu and V. Honavar

is changed by extracting a bicluster and learning a new AND-OR group as de-
scribed above.

Suppose we extract a bicluster BC and add to the grammar an AND-OR
group with an AND symbol N and two OR symbols A and B. Suppose there
is a sentence d containing a symbol pair xy that is in BC. First, since xy is
reduced to N after this learning process, the likelihood of d is reduced by a
factor of P (N → xy|N) = P (A → x|A) × P (B → y|B). Second, the reduction
may make some other sentences in the corpus become identical to d, resulting in
a corresponding increase in the likelihood. Suppose the sentence d is represented
by row p and column q in the expression-context matrix of BC, then this second
factor is exactly the ratio of the sum of column q to the value of cell pq, because
before the reduction only those sentences represented by cell pq are equivalent to
d, and after the reduction the sentences in the entire column become equivalent
(the same context plus the same expression N).

Let LG(BC) be the likelihood gain resulting from extraction of BC; let Gk

and Gk+1 be the grammars before and after extraction of BC, D be the training
corpus; in the bicluster BC, let A denote the set of rows, B the set of columns,
rx the sum of entries in row x, cy the sum of entries in column y, s the sum
over all the entries in BC, and axy the value of cell xy; in the expression-context
matrix of BC, let EC-row denote the set of rows, EC-col the set of columns, r′p
the sum of entries in row p, c′q the sum of entries in column q, s′ the sum of all
the entries in the matrix, and EC(p, q) or a′

pq the value of cell pq. With a little
abuse of notation we denote the context of a symbol pair xy in a sentence d by
d−“xy”. We can now calculate the likelihood gain as follows:

LG(BC)=
P (D|Gk+1)
P (D|Gk)

=
∏

d∈D

P (d|Gk+1)
P (d|Gk)

=
∏

x∈A, y∈B, xy appears in d∈D

P (x|A)P (y|B)

∑
p∈EC-row EC(p, d− “xy”)
EC(“xy”, d− “xy”)

=
∏

x∈A

P (x|A)rx

∏

y∈B

P (y|B)cy

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq

It can be shown that, the likelihood gain is maximized by setting:

P (x|A) =
rx

s
P (y|B) =

cy

s

Substituting this into the likelihood gain formula, we get

max
Pr

LG(BC) =
∏

x∈A

(rx

s

)rx ∏

y∈B

(cy

s

)cy

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq

=

∏
x∈A rx

rx
∏

y∈B cy
cy

s2s
×

∏
q∈EC-col c

′
q
c′

q

∏
p∈EC-row
q∈EC-col

a′
pq

a′
pq

Unsupervised Learning of PCFG Using Iterative Biclustering 229

where Pr represents the set of grammar rule probabilities. Notice that s = s′ and
axy = r′p (where row p of the expression-context matrix represents the symbol
pair xy). Thus we have

max
Pr

LG(BC) =

∏
x∈A rx

rx
∏

y∈B cy
cy

ss
∏

x∈A
y∈B

axy
axy

×
∏

p∈EC-row r′p
r′

p
∏

q∈EC-col c
′
q
c′

q

s′s
′ ∏

p∈EC-row
q∈EC-col

a′
pq

a′
pq

The two factors in the righthand side are of the same form, one for the bicluster
and one for the expression-context matrix. This form of formula actually mea-
sures the multiplicative coherence of the underlying matrix (in a slightly different
way from Eq.18 of [10]), which is maximized when the matrix is perfectly coher-
ent. Therefore, we see that when extracting a bicluster (with the new grammar
rule probabilities set to the optimal values), the likelihood gain is the product of
the multiplicative coherence of the bicluster and its expression-context matrix,
and that the maximal gain in likelihood is obtained when both the bicluster and
its expression-context matrix are perfectly multiplicatively coherent. This vali-
dates the intuitive approach in the previous subsection. More derivation details
can be found in the appendix in [11].

It must be noted however, in learning from data, simply maximizing the like-
lihood can result in a learned model that overfits the training data and hence
generalizes poorly on data unseen during training. In our setting, maximizing the
likelihood is equivalent to finding the most coherent biclusters. This can result in
a proliferation of small biclusters and hence grammar rules that encode highly
specific patterns appearing in the training corpus. Hence learning algorithms
typically have to trade off the complexity of the model against the quality of fit
on the training data. We achieve this by choosing the prior P (G) = 2−DL(G)

over the set of candidate grammars, where DL(G) is the description length of the
grammar G. This prior penalizes more complex grammars, as complex grammars
are more likely to overfit the training corpus.

Formally, the logarithm of the gain in posterior as a result of extracting an
AND-OR group from a bicluster and updating the grammar from Gk to Gk+1

(assuming the probabilities associated with the grammar rules are set to their
optimal values) is given by:

max
Pr

LPG(BC) = max
Pr

log
P (Gk+1|D)
P (Gk|D)

=

⎛

⎝
∑

x∈A

rx log rx +
∑

y∈B

cy log cy − s log s−
∑

x∈A,y∈B

axy log axy

⎞

⎠

+

⎛

⎜⎝
∑

p∈EC-row

r′p log r′p +
∑

q∈EC-col

c′q log c′q − s′ log s′ −
∑

p∈EC-row
q∈EC-col

a′
pq log a′

pq

⎞

⎟⎠

+ α

⎛

⎝4
∑

x∈A,y∈B

axy − 2|A| − 2|B| − 8

⎞

⎠ (2)

230 K. Tu and V. Honavar

where LPG(BC) denotes the logarithmic posterior gain resulting from extrac-
tion of the bicluster BC; α is a parameter in the prior that specifies how much
the prior favors compact grammars, and hence it controls the tradeoff between
the complexity of the learned grammar and the quality of fit on the training
corpus. Note that the first two terms in this formula correspond to the gain in
log likelihood (as shown earlier). The third term is the logarithmic prior gain,
biasing the algorithm to favor large biclusters and hence compact grammars (see
the appendix in [11] for details).

3.2 Attaching a New AND Symbol under Existing OR Symbols

Intuition. For a new AND symbol N learned in the first step, there may exist
one or more OR symbols in the current partially learned grammar, such that
for each of them (denoted by O), there is a rule O→ N in the target grammar.
Such rules cannot be acquired by extracting biclusters as described above: When
O is introduced into the grammar, N simply does not exist in the table T , and
when N is introduced, it only appears in a rule of the form N → AB. Hence, we
need a strategy for discovering such OR symbols and adding the corresponding
rules to the grammar. Note that, if there are recursive rules in the grammar,
they are learned in this step. This is because the first step establishes a partial
order among the symbols, and only by this step can we connect nonterminals to
form cycles and thus introduce recursions into the grammar.

Consider an OR symbol O that was introduced into the grammar as part of
an AND-OR group obtained by extracting a bicluster BC. Let M be the AND
symbol and P the other OR symbol in the group, such that M → OP . So O
corresponds to the set of rows and P corresponds to the set of columns of BC.

If O → N , and if we add to BC a new row for N , where each cell records
the number of appearances of Nx (for all x s.t. P → x) in the corpus, then
the expanded bicluster should be multiplicatively coherent, for the same reason
that BC was multiplicatively coherent. The new row N in BC results in a
set of new rows in the expression-context matrix. This expanded expression-
context matrix should be multiplicatively coherent for the same reason that the
expression-context matrix of BC was multiplicatively coherent. The situation is
similar when we have M → PO instead of M → OP (thus a new column is
added to BC when adding the rule O → N). An example is shown in Fig.2.

Thus, if we can find an OR symbol O such that the expanded bicluster and
the corresponding expanded expression-context matrix are both multiplicatively
coherent, we should add the rule O → N to the grammar.

Probabilistic Analysis. The effect of attaching a new AND symbol under
existing OR symbols can be understood within a probabilistic framework. Let
B̃C be a derived bicluster, which has the same rows and columns as BC, but
the values in its cells correspond to the expected numbers of appearances of the
symbol pairs when applying the current grammar to expand the current partially
reduced corpus. B̃C can be constructed by traversing all the AND symbols that
M can be directly or indirectly reduced to in the current grammar. B̃C is close to

Unsupervised Learning of PCFG Using Iterative Biclustering 231

AND → OR1OR2

OR1 → big (0.6) | old (0.4)
OR2 → dog (0.6) | cat (0.4)

New rule: OR2 → AND

(a) An existing AND-OR group
and a proposed new rule

(b) The bicluster and its expan-
sion (a new column)

(c) The expression-context matrix and its expansion

Fig. 2. An example of adding a new rule that attaches a new AND under an existing
OR. Here the new AND is attached under one of its own OR symbols, forming a
self-recursion.

BC if for all the AND symbols involved in the construction, their corresponding
biclusters and expression-context matrices are approximately multiplicatively
coherent, a condition that is ensured in our algorithm. Let B̃C

′
be the expanded

derived bicluster that contains both B̃C and the new row or column for N . It
can be shown that the likelihood gain of adding O → N is approximately the
likelihood gain of extracting B̃C

′
, which, as shown in Section 3.1, is equal to

the product of the multiplicative coherence of B̃C
′

and its expression-context
matrix (when the optimal new rule probabilities are assigned that maximize
the likelihood gain). Thus it validates the intuitive approach in the previous
subsection. See the appendix in [11] for details.

As before, we need to incorporate the effect of the prior into the above analysis.
So we search for existing OR symbols that result in maximal posterior gains
exceeding a user-specified threshold. The maximal posterior gain is approximated
by the following formula.

max
Pr

log
P (Gk+1|D)
P (Gk|D)

≈ max
Pr

LPG(B̃C
′
)−max

Pr

LPG(B̃C) (3)

where Pr is the set of new grammar rule probabilities, Gk and Gk+1 is the
grammar before and after adding the new rule, D is the training corpus, LPG()
is defined in Eq.2. Please see the appendix in [11] for the details.

232 K. Tu and V. Honavar

3.3 Postprocessing

The two steps described above are repeated until no further rule can be learned.
Since we reduce the corpus after each step, in an ideal scenario, upon termination
of this process the corpus is fully reduced, i.e., each sentence is represented by
a single symbol, either an AND symbol or a terminal. However, in practice
there may still exist sentences in the corpus containing more than one symbol,
either because we have applied the wrong grammar rules to reduce them, or
because we have failed to learn the correct rules that are needed to reduce
them.

At this stage, the learned grammar is almost complete, and we only need to
add the start symbol S (which is an OR symbol) and start rules. We traverse the
whole corpus: In the case of a fully reduced sentence that is reduced to a symbol
x, we add S → x to the grammar if such a rule is not already in the grammar
(the probability associated with the rule can be estimated by the fraction of
sentences in the corpus that are reduced to x). In the case of a sentence that is
not fully reduced, we can re-parse it using the learned grammar and attempt to
fully reduce it, or we can simply discard it as if it was the result of noise in the
training corpus.

4 Algorithm and Implementation

The complete algorithm is presented in Algorithm 1, and the three steps are
shown in Algorithm 2 to 4 respectively. Algorithm 2 describes the “learning
by biclustering” step (Section 3.1). Algorithm 3 describes the “attaching” step
(Section 3.2), where we use a greedy solution, i.e., whenever we find a good
enough OR symbol, we learn the corresponding new rule. In both Algorithm 2
and 3, a valid bicluster refers to a bicluster where the multiplicative coherence of
the bicluster and that of its expression-context matrix both exceed a threshold
δ. This corresponds to the heuristic discussed in the “intuition” subsections in
Section 3, and it is used here as an additional constraint in the posterior-guided
search. Algorithm 4 describes the postprocessing step (Section 3.3), wherein to
keep things simple, sentences not fully reduced are discarded.

Algorithm 1. PCFG-BCL: PCFG Learning by Iterative Biclustering
Input: a corpus C
Output: a CNF grammar in the AND-OR form
1. create an empty grammar G
2. create a table T of the number of appearances of each symbol pair in C
3. repeat
4. G, C, T , N ⇐ LearningByBiclustering(G, C, T)
5. G, C, T ⇐ Attaching(N , G, C, T)
6. until no further rule can be learned
7. G ⇐ Postprocessing(G, C)
8. return G

Unsupervised Learning of PCFG Using Iterative Biclustering 233

Algorithm 2. LearningByBiclustering(G, C, T)
Input: the grammar G, the corpus C, the table T
Output: the updated G, C, T ; the new AND symbol N
1. find the valid bicluster Bc in T that leads to the maximal posterior gain (Eq.2)
2. create an AND symbol N and two OR symbols A, B
3. for all row x of Bc do
4. add A → x to G, with the row sum as the rule weight
5. for all column y of Bc do
6. add B → y to G, with the column sum as the rule weight
7. add N → AB to G
8. in C, reduce all the appearances of all the symbol pairs in Bc to N
9. update T according to the reduction

10. return G, C, T , N

Algorithm 3. Attaching(N , G, C, T)
Input: an AND symbol N , the grammar G, the corpus C, the table T
Output: the updated G, C, T
1. for each OR symbol O in G do
2. if O leads to a valid expanded bicluster as well as a posterior gain (Eq.3) larger

than a threshold then
3. add O → N to G
4. maximally reduce all the related sentences in C
5. update T according to the reduction
6. return G, C, T

4.1 Implementation Issues

In the “learning by biclustering” step we need to find the bicluster in T that
leads to the maximal posterior gain. However, finding the optimal bicluster is
computationally intractable [10]. In our current implementation, we use stochas-
tic hill-climbing to find only a fixed number of biclusters, from which the one
with the highest posterior gain is chosen. This method is not guaranteed to find
the optimal bicluster when there are more biclusters in the table than the fixed
number of biclusters considered. In practice, however, we find that if there are
many biclusters, often it is the case that several of them are more or less equally
optimal and our implementation is very likely to find one of them.

Algorithm 4. Postprocessing(G, C)
Input: the grammar G, the corpus C
Output: the updated G
1. create an OR symbol S
2. for each sentence s in C do
3. if s is fully reduced to a single symbol x then
4. add S → x to G, or if the rule already exists, increase its weight by 1
5. return G

234 K. Tu and V. Honavar

Constructing the expression-context matrix becomes time-consuming when
the average context length is long. Moreover, when the training corpus is not
large enough, long contexts often result in rather sparse expression-context ma-
trices. Hence, in our implementation we only check context of a fixed size (by
default, only the immediate left and immediate right neighbors). It can be shown
that this choice leads to a matrix whose coherence is no lower than that of the
true expression-context matrix, and hence may overestimate the posterior gain.

4.2 Grammar Selection and Averaging

Because we use stochastic hill-climbing with random start points to do biclus-
tering, our current implementation can produce different grammars in different
runs. Since we calculate the posterior gain in each step of the algorithm, for each
learned grammar an overall posterior gain can be obtained, which is proportional
to the actual posterior. We can use the posterior gain to evaluate different gram-
mars and perform model selection or model averaging, which usually leads to
better performance than using a single grammar.

To perform model selection, we run the algorithm multiple times and return
the grammar that has the largest posterior gain. To perform model averaging, we
run the algorithm multiple times and obtain a set of learned grammars. Given
a sentence to be parsed, in the spirit of Bayesian model averaging, we parse the
sentence using each of the grammars and use a weighted vote to accept or reject
it, where the weight of each grammar is its posterior gain. To generate a new
sentence, we select a grammar in the set with the probability proportional to its
weight, and generate a sentence using that grammar; then we parse the sentence
as described above, and output it if it’s accepted, or start over if it is rejected.

5 Experiments

A set of PCFGs obtained from available artificial, English-like CFGs were used in
our evaluation, as listed in the table below. The CFGs were converted into CNF
with uniform probabilities assigned to the grammar rules. Training corpora were
then generated from the resulting grammars. We compared PCFG-BCL with
EMILE [1] and ADIOS [5]. Both EMILE and ADIOS produce a CFG from a
training corpus, so we again assigned uniform distributions to the rules of the
learned CFG in order to evaluate them.

Grammar Name Size (in CNF) Recursion Source

Num-agr 19 Terminals, 15 Nonterminals, 30 Rules No Boogie[12]

Langley1 9 Terminals, 9 Nonterminals, 18 Rules Yes Boogie[12]

Langley2 8 Terminals, 9 Nonterminals, 14 Rules Yes Boogie[12]

Emile2k 29 Terminals, 15 Nonterminals, 42 Rules Yes EMILE[1]

TA1 47 Terminals, 66 Nonterminals, 113 Rules Yes ADIOS[5]

We evaluated our algorithm by comparing the learned grammar with the
target grammar on the basis of weak generative capacity. That is, we compare

Unsupervised Learning of PCFG Using Iterative Biclustering 235

the language of the learned grammar with that of the target grammar in terms
of precision (the percentage of sentences generated by the learned grammar
that are accepted by the target grammar), recall (the percentage of sentences
generated by the target grammar that are accepted by the learned grammar),
and F-score (the harmonic mean of precision and recall). To estimate precision
and recall, 200 sentences were generated using either the learned grammar or the
target grammar (as the case may be), and then parsed by the other grammar.

To ensure a fair comparison, we tuned the parameters of PCFG-BCL, EMILE
and ADIOS on a separate dataset before running the evaluation experiments.
Table 1 shows the experimental results. Each table cell shows the mean and
standard deviation of performance estimates from 50 independent runs. In each
run, each algorithm produced a single grammar as the output.

The results summarized in Table 1 show that PCFG-BCL outperformed both
EMILE and ADIOS, on each of the test grammars, and by substantial margins
on several of them. Moreover, in a majority of the tests, the standard deviations
of the performance estimates of PCFG-BCL were lower than those of EMILE and
ADIOS, suggesting that PCFG-BCL is more stable than the other two methods.
It should be noted however, that neither EMILE nor ADIOS assume the training
corpus to be generated from a PCFG, and thus they do not make full use of the
distributional information in the training corpus. This might explain in part the
superior performance of PCFG-BCL relative to EMILE and ADIOS.

We also examined the effect of grammar selection and grammar averaging (see
Section 4.2), on the four datasets where PCFG-BCL did not achieve a perfect F-
score on its own. In each case, we ran the algorithm for 10 times and then used
the resulting grammars to perform grammar selection or grammar averaging
as described in Section 4.2. The results (data not shown) show that grammar
selection improved the F-score by 1.5% on average, and the largest increase of
4.4% was obtained on the TA1-200 data; grammar averaging improved the F-
score by 3.2% on average, and the largest increase of 9.3% was obtained also on
the TA1-200 data. In addition, both grammar selection and averaging reduced
the standard deviations of the performance estimates.

Table 1. Experimental results. The training corpus sizes are indicated in the paren-
theses after the grammar names. P=Precision, R=Recall, F=F-score. The numbers in
the table denote the performance estimates averaged over 50 trials, with the standard
deviations in parentheses.

Grammar
Name

PCFG-BCL EMILE ADIOS
P R F P R F P R F

Num-agr (100) 100 (0) 100 (0) 100 (0) 50 (4) 100 (0) 67 (3) 100 (0) 92 (6) 96 (3)

Langley1 (100) 100 (0) 100 (0) 100 (0) 100 (0) 99 (1) 99 (1) 99 (3) 94 (4) 96 (2)

Langley2 (100) 98 (2) 100 (0) 99 (1) 96 (3) 39 (7) 55 (7) 76 (21) 78 (14) 75 (14)

Emile2k (200) 85 (3) 90 (2) 87 (2) 75 (12) 68 (4) 71 (6) 80 (0) 65 (4) 71 (3)

Emile2k (1000) 100 (0) 100 (0) 100 (0) 76 (7) 85 (8) 80 (6) 75 (3) 98 (3) 85 (3)

TA1 (200) 82 (7) 73 (5) 77 (5) 77 (3) 14 (3) 23 (4) 77 (24) 55 (12) 62 (14)

TA1 (2000) 95 (6) 100 (1) 97 (3) 98 (5) 48 (4) 64 (4) 50 (22) 92 (4) 62 (17)

236 K. Tu and V. Honavar

6 Summary and Discussion

6.1 Related Work

Several algorithms for unsupervised learning of CFG from only positive samples
are available in the literature. EMILE [1] uses a simpler form of biclustering to
create new nonterminals. It performs biclustering on an initial table constructed
from the unreduced corpus, finding rules with only terminals on the right-hand
side; and then it turns to the substitutability heuristic to find high-level rules.
In contrast, PCFG-BCL performs iterative biclustering that finds both kinds
of rules. ABL [2] employs the substitutability heuristic to group possible con-
stituents to nonterminals. Clark’s algorithm [4] uses the “substitution-graph”
heuristic or distributional clustering [3] to induce new nonterminals and rules.
These techniques could be less robust than the biclustering method, especially
in the presence of ambiguity as discussed in Section 1 and also in [1]. Both ABL
and Clark’s method rely on some heuristic criterion to filter non-constituents,
whereas PCFG-BCL automatically identifies constituents as a byproduct of
learning new rules from biclusters that maximize the posterior gain. ADIOS
[5] uses a probabilistic criterion to learn “patterns” (AND symbols) and the
substitutability heuristic to learn “equivalence classes” (OR symbols). In com-
parison, our algorithm learns the two kinds of symbols simultaneously in a more
unified manner.

The inside-outside algorithm [13,14], one of the earliest algorithms for learning
PCFG, assumes a fixed, usually fully connected grammar structure and tries
to maximize the likelihood, making it very likely to overfit the training corpus.
Subsequent work has adopted the Bayesian framework to maximize the posterior
of the learned grammar given the corpus [6,7], and has incorporated grammar
structure search [6,8]. Our choice of prior over the set of candidate grammars
is inspired by [6]. However, compared with the approach used in [6], PCFG-
BCL adds more grammar rules at each step without sacrificing completeness
(the ability to find any CFG); and the posterior re-estimation in PCFG-BCL is
more straightforward and efficient (by using Eq.2 and 3). An interesting recent
proposal within the Bayesian framework [9] involves maximizing the posterior
using a non-parametric model. Although there is no structure search, the prior
used tends to concentrate the probability mass on a small number of rules,
thereby biasing the learning in favor of compact grammars.

Some unsupervised methods [15,16] for learning grammatical structures other
than CFG with the goal of parsing natural language sentences also employ some
techniques similar to those used in CFG learning.

6.2 Summary and Future Work

We have presented PCFG-BCL, an unsupervised algorithm that learns a prob-
abilistic context-free grammar (PCFG) from positive samples. The algorithm
acquires rules of an unknown PCFG through iterative biclustering of bigrams in
the training corpus. Results of our experiments on several benchmark datasets

Unsupervised Learning of PCFG Using Iterative Biclustering 237

show that PCFG-BCL is competitive with the state of the art methods for
learning CFG from positive samples. Work in progress is aimed at improving
PCFG-BCL e.g., by exploring alternative strategies for optimizing the objective
function, and more systematic empirical evaluation of PCFG-BCL on real-world
applications (e.g., induction of grammars from natural language corpora) with
respect to both weak and strong generative capacity.

References

1. Adriaans, P., Trautwein, M., Vervoort, M.: Towards high speed grammar induction
on large text corpora. In: Jeffery, K.G., Hlaváč, V., Wiedermann, J. (eds.) SOFSEM
2000. LNCS, vol. 1963. Springer, Heidelberg (2000)

2. van Zaanen, M.: Abl: Alignment-based learning. In: COLING (2000)
3. Clark, A.: Unsupervised induction of stochastic context-free grammars using dis-

tributional clustering. In: Proceedings of CoNLL (2001)
4. Clark, A.: Learning deterministic context free grammars: The omphalos competi-

tion. Machine Learning 66 (2007)
5. Solan, Z., Horn, D., Ruppin, E., Edelman, S.: Unsupervised learning of natural

languages. Proc. Natl. Acad. Sci. 102(33), 11629–11634 (2005)
6. Chen, S.F.: Bayesian grammar induction for language modeling. In: Proceedings

of the 33rd annual meeting on Association for Computational Linguistics (1995)
7. Kurihara, K., Sato, T.: An application of the variational bayesian approach to

probabilistic contextfree grammars. In: IJCNLP 2004 Workshop beyond shallow
analyses (2004)

8. Kurihara, K., Sato, T.: Variational bayesian grammar induction for natural lan-
guage. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.)
ICGI 2006. LNCS (LNAI), vol. 4201, pp. 84–96. Springer, Heidelberg (2006)

9. Liang, P., Petrov, S., Jordan, M.I., Klein, D.: The infinite pcfg using hierarchical
dirichlet processes. In: Proceedings of EMNLP-CoNLL, pp. 688–697 (2007)

10. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
A survey. IEEE/ACM Trans. on Comp. Biol. and Bioinformatics 1(1), 24–45 (2004)

11. Tu, K., Honavar, V.: Unsupervised learning of probabilistic context-free grammar
using iterative biclustering (extended version). Technical Report 572, Computer
Science, Iowa State University (2008), http://archives.cs.iastate.edu/

12. Stolcke, A.: Boogie (1993),
ftp://ftp.icsi.berkeley.edu/pub/ai/stolcke/software/boogie.shar.z

13. Baker, J.K.: Trainable grammars for speech recognition. In: Speech Communication
Papers for the 97th Meeting of the Acoustical Society of America (1979)

14. Lari, K., Young, S.: The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language 4, 35–36 (1990)

15. Klein, D., Manning, C.D.: Corpus-based induction of syntactic structure: Models
of dependency and constituency. In: Proceedings of ACL (2004)

16. Bod, R.: An all-subtrees approach to unsupervised parsing. In: Proceedings of ACL
(2006)

http://archives.cs.iastate.edu/
ftp://ftp.icsi.berkeley.edu/pub/ai/stolcke/software/boogie.shar.z

Polynomial Distinguishability of Timed

Automata

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen

Delft University of Technology
{S.E.Verwer,M.M.deWeerdt,C.Witteveen}@tudelft.nl

Abstract. We study the complexity of identifying (learning) timed au-
tomata in the limit from data. Timed automata are finite state models
that model time explicitly, i.e., using numbers. Because timed automata
use numbers to represent time, they can be exponentially more compact
than models that model time implicitly, i.e., using states.

We show three results that are essential in order to exactly determine
when timed automata are efficiently identifiable in the limit. First, we
show that polynomial distinguishability is a necessary condition for effi-
cient identifiability in the limit. Second, we prove that deterministic time
automata with two or more clocks are not polynomially distinguishable.
As a consequence, they are not efficiently identifiable. Last but not least,
we prove that deterministic timed automata with one clock are poly-
nomially distinguishable, which makes them very likely to be efficiently
identifiable in the limit.

1 Introduction

Timed automata [1] (TAs) are finite state models that model time explicitly, i.e.,
using numbers. They can be used to model and reason about real-time systems,
see e.g. [2]. In practice, it can be very difficult to construct such an automaton
by hand, for instance because expert knowledge is unavailable or hard to obtain.
That is why we are interested in automatically identifying such models from data.
In this paper, we prove several theorems regarding the complexity of identifying
TAs from data.

Often this data is obtained using sensors. This results in a time series of sys-
tem states: every millisecond the state of (or event occurring in) the system is
measured and recorded. From such timed data, we could have opted to iden-
tify a model that models time implicitly, i.e., using states. Examples of such
models are the deterministic finite state automaton (DFA), see e.g. [3], and the
hidden Markov model (HMM) [4]. Our main reason for modeling time explicitly
is that modeling time implicitly results in an exponential blow-up of the model
size: numbers use a binary representation of time while states use a unary rep-
resentation of time. Because of this, we believe that if the data contains timed
properties, i.e., it can be modeled efficiently using a timed automaton, then it is
less efficient and much more difficult to identify an untimed model correctly from

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 238–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Polynomial Distinguishability of Timed Automata 239

this data. In previous work [5], we have experimentally compared a state merg-
ing and transition splitting algorithm for identifying a simple timed automaton
with the evidence driven state merging method (EDSM) [6] for identifying DFAs
on such data. While EDSM has been the most successful method for identifying
DFAs from untimed data, on timed data it performed worse than our algorithm.

In contrast to DFAs and HMMs, the identification problem for TAs has not
been well-studied. We are only aware of studies on the related problem of the
identification of event-recording automata (ERAs) [7]. For example, it has been
shown that ERAs are identifiable in the query learning framework [8]. However,
the used query learning algorithm requires an exponential amount of queries,
and is hence inefficient in the amount of data it requires. Naturally, we would
like our identification process to be efficient. This is difficult due to the fact
the identification problem for DFAs is NP-complete [9]. This property easily
generalizes to the problem of identifying a TA (by setting all time values to
0). Thus, unless P = NP , a TA cannot be identified efficiently. Even more
troublesome is the fact that the DFA identification problem cannot even be
approximated within any polynomial [10]. Hence (since this also generalizes),
the TA identification problem is also inapproximable.

These two facts make the prospects of finding an efficient identification process
for TAs look very bleak. However, both of these results rely on there being a fixed
input for the identification problem (encoding a hard problem). While in normal
decision problems this is very natural, in an identification problem the amount
of input data is somewhat arbitrary: more data can be sampled if necessary.
Therefore, it makes sense to study the behavior of an identification process
when is it given more and more data (no longer encoding the hard problem).
The framework that studies this behavior is called identification in the limit [11].
This framework can be summarized as follows. Let C be a class of languages (for
example the regular languages, modeled by DFAs). When given an increasing
amount of examples from some language L ∈ C, a limit identification algorithm
for C should at some point converge to L. If there exists such an algorithm
A, the class C is said to be identifiable in the limit. If a polynomial amount of
examples in the size of the smallest model for L is sufficient for convergence of A,
C is said to be identifiable in the limit from polynomial data. If A requires time
polynomial in the size of the examples, C is said to be identifiable in polynomial
time. If both these statements hold, then C is identifiable from polynomial time
and data, i.e efficiently identifiable in the limit.

DFAs have been shown to be efficiently identifiable in the limit using a state
merging method [12]. Also, it has been shown that non-deterministic finite au-
tomata (NFAs) are not efficiently identifiable in the limit [13]. This again gener-
alizes to the problem of identifying a non-deterministic TA. Therefore, we only
consider the identification problem for deterministic timed automata (DTAs).
Our goal is to determine exactly when DTAs are efficiently identifiable in the
limit and data. In this paper, we show the following results in order to achieve
this goal:

240 S. Verwer, M. de Weerdt, and C. Witteveen

– Polynomial distinguishability (Definition 6) is a necessary condition for effi-
cient identifiability in the limit (Lemma 1).

– DTAs with two or more clocks are not polynomially distinguishable (Propo-
sition 2). Hence, they are not efficiently identifiable (Corollary 1).

– DTAs with one clock (1-DTAs) are polynomially distinguishable (Theorem 5).

The fact that 1-DTAs are polynomially distinguishable is based on a central
lemma regarding their modeling power (Lemma 2). These results tell us that
1-DTAs seem to be a good model for identifying a timed system.

The paper is organized as follows. In order to prove our results, we start
with a brief introduction to DTAs (Section 2), and a formal explanation of
efficient identifiability in the limit (Section 3). We then prove that DTAs are not
(Section 4), and that 1-DTAs are (Section 5) polynomially distinguishable. We
end our paper with a discussion regarding the obtained results (Section 6).

2 Timed Automata

An timed automaton (TA) [1] is an automaton that accepts (or generates) strings
with event-time value pairs, called timed strings. A finite timed string τ over a
finite set of symbols Σ is a sequence (a1, t1)(a2, t2) . . . (an, tn) of symbol-time
value pairs (ai, ti) ∈ Σ ×N.1 We use τi to denote the prefix of length i of τ , i.e.,
τi = (a1, t1) . . . (ai, ti). Every time value ti in a timed string represents the time
until the occurrence of symbol ai since the occurrence of the previous symbol
ai−1. We define the length of a timed string τ , denoted |τ |, as the number of
symbol-time value pairs in τ , i.e., |τ | = n.

In TAs, timing conditions are added using a finite set X of clocks and one
clock guard on every transition. These clocks may have different valuations, but
all move at the same speed. A valuation v is a mapping from X to N, returning
the value of a clock x ∈ X . We can add or subtract constants or other valuations
to or from a valuation: if v = v′ + t then ∀x ∈ X : v(x) = v′(x) + t, and if
v = v′ + v′′ then ∀x ∈ X : v(x) = v′(x) + v′′(x). Every transition δ in a TA
is associated with a set of clocks R. When a transition δ occurs (or fires), the
values of all the clocks in R are set to 0, i.e., ∀x ∈ R : v(x) := 0. The values of
all other clocks remain the same. We say that δ resets x if x ∈ R. In this way,
clocks are used to record the time since the occurrence of some specific event.
Clock guards are then used to change the behavior of the TA depending on the
value of clocks. A clock guard g is a boolean constraint defined by the grammar:
g := x ≤ c | x ≥ c | g ∧ g, where x ∈ X is a clock, and c ∈ N is a constant.2

A valuation v is said to satisfy a clock guard g, denoted v ∈ g, if for each clock
x ∈ X , whenever each occurrence of x in g is replaced by v(x) the resulting
statement is true. A timed automaton is defined as follows:
1 Sometimes R is used as a time domain for TAs. However, for identification of TAs

N is sufficient since in practice we always measure time using finite precision.
2 Since we use the natural numbers to represent time open (x < c) and closed (x ≤ c)

timed automata are equivalent.

Polynomial Distinguishability of Timed Automata 241

1 2 3

a
reset x

a
reset y

b
x 4 y 5

4

a
reset x

b
reset x

Fig. 1. A timed automaton. The start state (state 1) is denoted by an arrow pointing
to it from nowhere. The final state (state 4) has two circles instead of one. The arrows
represent transitions. The labels, clock guards, and clock resets are specified for every
transition. When no guard is specified it means that the guard is always satisfied.

Definition 1. A timed automaton (TA) is a tuple A = 〈Q, X, Σ, Δ, q0, F 〉,
where Q is a finite set of states, X is a finite set of clocks, Σ is a finite set of
symbols, Δ is a finite set of transitions, q0 is the start state, and F ⊆ Q is a set
of final states.

A transition δ ∈ Δ is a tuple 〈q, q′, a, g, R〉, where q, q′ ∈ Q are the source and
target states, a ∈ Σ is a symbol called the transition label, g is a clock guard,
and R ⊆ X is the set of clock resets.

The final states are also known as accepting states. The non-final states (q ∈
Q \ F) are known as rejecting states. Figure 1 shows an example of a TA. The
behavior of a TA and the way it depends on time values is defined by what is
called a run of a TA:

Definition 2. A finite run of a TA A = 〈Q, X, Σ, Δ, q0, F 〉 over a (finite) timed
string τ = (a1, t1) . . . (an, tn) is a finite sequence

(q0, v0)
t1−→ (q0, v0 + t1)

a1−→ (q1, v1)
t2−→ (q1, v1 + t2)

a2−→ (q2, v2) . . .

. . . (qn−1, vn−1)
tn−→ (qn−1, vn−1 + tn) an−→ (qn, vn)

such that for all 1 ≤ i ≤ n : qi ∈ Q, there exists a transition δ =
〈qi−1, qi, ai, g, R〉 ∈ Δ such that vi−1 + ti ∈ g, and for all x ∈ X : v0(x) = 0, and
vi(x) := 0 if x ∈ R, vi(x) := vi−1(x) + ti otherwise.

We call a pair (q, v) of a state and a valuation a timed state. In a run the sub-
sequence (qi, vi + t)

ai+1−→ (qi+1, vi+1) represents a state transition like in a finite
automaton without time. In addition to these, a TA makes time transitions rep-
resented by (qi, vi)

ti+1−→ (qi, vi + ti+1). A time transition of t time units increases
the value of all clocks of the TA by t. One can view such a transition as moving
from one timed state (q, v) to another timed state (q, v+t) while remaining in the
same untimed state q. We say that a timed string τ reaches a timed state (q, v)

in a TA A if there exist two time values t ≤ t′ such that (q, v′) t′
−→ (q, v′ + t′)

occurs somewhere in the run of A over τ and v = v′ + t. If a timed string reaches
a timed state (q, v) in A for some valuation v, it also reaches the untimed state
q in A. A timed string ends in the last (timed) state it reaches, i.e., (qn, vn)

242 S. Verwer, M. de Weerdt, and C. Witteveen

(or qn). A timed string τ is accepted by a TA A if τ ends in a final state qf ∈ F .
The set of all strings τ that are accepted by A is called the language L(A) of A.

Example 1. Consider the TA A of Fig. 1. The run of A over the timed string
τ = (a, 5)(a, 6)(a, 2)(b, 3) is given by: (1, (0, 0)) 5−→ (1, (5, 5)) a−→ (2, (0, 5)) 6−→
(2, (3, 8)) a−→ (3, (3, 0)) 2−→ (3, (5, 2)) a−→ (3, (0, 2)) 3−→ (3, (3, 5)) b−→
(4, (3, 5)), where a timed state (q, v) is written as (i, (j, k)) meaning that: q
is the state labeled with i, v(x) = i, and v(y) = j. Since state 4 is a final state, it
holds that τ ∈ L(A). Note that a run cannot reach state 4 directly after reaching
state 3 from state 2: the value of x is greater or equal to the value of y and the
guard of the transition to state 4 requires it to be less then the value of y.

In this paper we only consider deterministic timed automata. A TA A is called
deterministic (DTA) if for each possible timed string τ there exists at most one
run of A over τ . We only consider DTAs because non-deterministic TAs cannot
be identified efficiently in the limit due to the fact that untimed non-deterministic
automata are not efficiently identifiable in the limit [13].

3 Efficient Identification in the Limit

An identification process tries to find (learn) a model that explains a set of obser-
vations (data). The ultimate goal of such a process is to find a model equivalent
to the actual concept that was responsible for producing the observations, called
the target concept. In our case, we try to find a DTA model A that is equivalent
to a target language Lt, i.e., L(A) = Lt. If this is the case, we say that Lt is
identified correctly. We try to find this model using labeled data: an input sample
S is a pair of finite sets of positive examples S+ ⊆ Lt and negative examples
S− ⊆ Lc

t = {τ | τ 	∈ Lt}. We modify the non-strict set inclusion operators for
input samples such that they operate on the positive and negative examples
separately, for example if S = (S+, S−) and S′ = (S′

+, S′
−) then S ⊆ S′ means

S+ ⊆ S′
+ and S− ⊆ S′

−.
An identification process is called efficient in the limit (from polynomial time

and data) if the time and data it needs to converge to the target concept are both
polynomial in the size of the target concept. Efficient identifiability in the limit
can be proved by showing the existence of polynomial characteristic sets [13].

Definition 3. A characteristic set Scs of a target language Lt for an identifica-
tion algorithm A is an input sample {S+ ∈ Lt, S− ∈ Lc

t} such that:

– given Scs as input, algorithm A identifies Lt correctly, i.e., A returns an
automaton A such that L(A) = Lt,

– and given any input sample S′ ⊇ Scs as input, algorithm A still identifies Lt

correctly.3

3 This requirement is necessary to avoid collusion: otherwise it is possible to encode
Lt in S′ making identification a trivial task.

Polynomial Distinguishability of Timed Automata 243

1

4

3
b

x 1, reset y

d

x 2n y 1
2

a
reset x

c
y 1, reset y

4

Fig. 2. In order to reach state 4, we require a string of exponential length (2n). However,
due to the binary encoding of clock guards, the DTA is of size polynomial in n.

Definition 4. A class of automata C is efficiently identifiable in the limit if
there exist two polynomials p and q and an algorithm A such that:

– given an input sample of size n, A runs in time bounded by p(n),
– and for every target language Lt = L(A), A ∈ C, there exists a characteristic

set Scs of Lt for A of size bounded by q(|A|).

4 Timed Automata Are Not Efficiently Identifiable

DTAs are not efficiently identifiable in the limit. The reason is that in order to
reach some parts of a DTA, one may need a timed string of exponential length.
We give an example of this in Fig. 2. Formally, this example can be used to show
that in general DTAs are not polynomially reachable:

Definition 5. We call a class of automata C polynomially reachable if there
exists a polynomial function p, such that for any reachable state q from any
A ∈ C, there exists a string τ , with |τ | ≤ p(|A|), such that τ reaches q in A.

Proposition 1. The class of DTAs is not polynomially reachable.

Proof. Let C∗ = {An | n ≥ 1} denote the (infinite) class of DTAs defined by
Fig. 2. In any DTA An ∈ C∗, state q = 4 can be reached only if both x ≥ 2n

and y ≤ 1 are satisfied. Moreover, x ≤ 1 is satisfied when y is reset for the first
time, and later y can be reset only if y ≤ 1 is satisfied. Therefore, in order to
satisfy both y ≤ 1 and x ≥ 2n, y has to be reset 2n times. Hence, the shortest
string τ that reaches state q = 4 is of length 2n. However, since the clock guards
are encoded in binary, the size of An is only polynomial in n. Thus, there exists
no polynomial function p such that τ ≤ p(|An|). Since every An ∈ C∗ is a DTA,
DTAs are not polynomially reachable.

The non-polynomial reachability of DTAs implies non-polynomial distinguisha-
bility of DTAs:

Definition 6. We call a class of automata C polynomially distinguishable if
there exists a polynomial function p, such that for any two automata A,A′ ∈ C
such that L(A) 	= L(A′), there exists a string τ ∈ L(A) * L(A′), such that
|τ | ≤ p(|A|+ |A′|).

244 S. Verwer, M. de Weerdt, and C. Witteveen

Proposition 2. The class of DTAs is not polynomially distinguishable.

Proof. DTAs are not polynomially reachable, hence there exists no polyno-
mial function p such that for every state q of any DTA A, the length of the
shortest timed string τ that reaches q in A is bounded by p(|A|). So, there
is a DTA A with a state q for which the length of τ cannot be polynomially
bounded by p(|A|). Given this A = 〈Q, X, Σ, Δ, q0, F 〉, construct two DTAs
A1 = 〈Q, X, Σ, Δ, q0, {q}〉 and A2 = 〈Q, X, Σ, Δ, q0, ∅〉. By definition of A1 and
A2, τ is the shortest string such that τ ∈ L(A1)* L(A2). Since |A1| + |A2| ≤
2×|A|, there exists no polynomial function p such that the length of τ is bounded
by p(|A1|+ |A2|). Hence the class of DTAs is not polynomially distinguishable.

It is fairly straightforward to show that polynomial distinguishability is a nec-
essary requirement for efficient identifiability:

Lemma 1. If a class of automata C is efficiently identifiable, then C is polyno-
mially distinguishable.

Proof. Suppose a class of automata C is efficiently identifiable, but not polyno-
mially distinguishable. Thus, there exists no polynomial function p such that for
any two automata A,A′ ∈ C (with L(A) 	= L(A′)) the length of the shortest
timed string τ ∈ L(A)* L(A′) is bounded by p(|A| + |A′|). Let A and A′ be
two automata for which such a function p does not exist and let Scs and S′

cs

be their polynomial characteristic sets. Let S = Scs ∪ S′
cs be the input sample

for the identification algorithm A for C from Definition 4. Since C is not poly-
nomially distinguishable, neither Scs or S′

cs contains an example τ such that
τ ∈ L(A) and τ 	∈ L(A′), or vice versa (because no distinguishing string is of
polynomial length). Hence, S = (S+, S−) is such that S+ ⊆ L(A), S+ ⊆ L(A′),
S− ⊆ L(A)C, and S− ⊆ L(A)C. The second requirement of Definition 3 now
requires that A returns both A and A′, a contradiction.

This leads to the main result of this section:

Theorem 1. DTAs cannot be identified efficiently.

Proof. By Proposition 2 and Lemma 1.

Or more specifically:

Corollary 1. DTAs with two or more clocks cannot be identified efficiently.

Proof. The corollary follows from the fact that the argument of Proposition 1
only requires a DTA with two clocks.

This result seems to shatter all hope of ever finding an efficient algorithm for
identifying DTAs. Instead of identifying general DTAs, we therefore would like
to focus on subclasses of DTAs that are efficiently identifiable.

Polynomial Distinguishability of Timed Automata 245

5 Polynomially Distinguishable Timed Automata

In the previous section we showed DTAs not to be efficiently identifiable in
general. The proof for this result was based on the fact that DTAs are not
polynomially distinguishable. Since polynomial distinguishability is a necessary
requirement for efficient identifiability, we are interested in classes of DTAs that
are polynomially distinguishable. In this section, we show that DTAs with a
single clock are polynomially distinguishable.

A one-clock DTA (1-DTA) is a DTA that contains exactly one clock, i.e.,
|X | = 1. Our proof that 1-DTAs are polynomially distinguishable is based on
the following observation:

– If a timed string τ reaches some timed state (q, v) in a 1-DTA A, then all
timed states (q, v′) with v′(x) ≥ v(x) can be reached in A.

This holds because when a timed string reaches (q, v) it could have made a
bigger time transition to reach all bigger valuations. This property is specific
to 1-DTAs: a DTA with multiple clocks can wait in q, but only those bigger
valuations can be reached where the difference between the clocks remains the
same. It is this property of 1-DTAs that allows us to polynomially bound the
length of a timed string that distinguishes between two 1-DTAs. We first use
this property to show that 1-DTAs are polynomially reachable. We then use a
similar argument to show the polynomial distinguishability of 1-DTAs.

Proposition 3. 1-DTAs are polynomially reachable.

Proof. Given a 1-DTA A = 〈Q, {x}, Σ, Δ, q0, F 〉, let τ = (a1, t1) . . . (an, tn) be a
shortest timed string such that τ reaches some state qn ∈ Q. Suppose that some
prefix τi = (a1, t1) . . . (ai, ti) of τ ends in some timed state (q, v). Then for any
j > i, τj cannot end in (q, v′) if v(x) ≤ v′(x). If this were the case, τi instead of
τj could be used to reach (q, v′), and hence a shorter timed string could be used
to reach qn, resulting in a contradiction. Thus, for some index j > i, if τj also
ends in q, then x has to be reset between index i and j in τ . In other words,
there exists some index i < k ≤ j and a state q′ 	= q such that τk ends in (q′, v0),
where v0(x) = 0. It follows that, if x is reset at index i (τi ends in (q, v0)), there
cannot exist any index j > i such that τj ends in q. Hence:

– For every state q ∈ Q, the number of prefixes of τ that end in q is bounded
by the number of times x is reset by τ .

– For every state q′ ∈ Q, there exists at most one index i such that τi ends in
(q′, v0). In other words, x is reset by τ at most |Q| times.

Consequently, each state is visited at most |Q| times by the run of A on τ . Thus,
the length of a shortest timed string τ that reaches qn is bounded by |Q| ∗ |Q|,
which is polynomial in the size of A.

Given that 1-DTAs are polynomially reachable, one would guess that it should
be easy to prove the polynomial distinguishability of 1-DTAs. However, this is
not the case. The main problem is that when considering the difference between

246 S. Verwer, M. de Weerdt, and C. Witteveen

two 1-DTAs, we effectively have access to two clocks instead of one. Note that,
although we have access to two clocks, there are no clock guards that bound
both clock values. Because of this, we cannot construct DTAs such as the one
in Fig. 2. Our proof for the polynomial distinguishability of 1-DTAs follows the
same line of reasoning as our proof of Proposition 3, although it is much more
complicated to bound the amount of times x is reset. We have split the proof
of this bound into several proofs of smaller propositions and lemmas. The main
theorem follows from combining these propositions and lemmas.

For the remainder of this section, let A1 = 〈Q1, {x1}, Σ1, Δ1, q1,0, F1〉 and
A2 = 〈Q2, {x2}, Σ2, Δ2, q2,0, F2〉 be two 1-DTAs. Let τ = (a1, t1) . . . (an, tn)
be a shortest string that distinguishes between these 1-DTAs, i.e., τ ∈ L(A1),
τ 	∈ L(A2), or vice versa, and the size of τ is minimal amongst all such timed
strings. The combined run of A1 and A2 over τ is the sequence:

〈q1,0, v1,0, q2,0, v2,0〉
t1−→ 〈q1,0, v1,0 + t1, q2,0, v2,0 + t1〉 . . .

. . . 〈q1,n−1, v1,n−1 + tn, q2,n−1, v2,n−1 + tn〉
an−→ 〈q1,n, v1,n, q2,n, v2,n〉

where (q1,0, v1,0)
t1−→ (q1,0, v1,0 + t1) . . . (q1,n−1, v1,n−1 + tn) an−→ (q1,n, v1,n) is the

run of A1 over τ and (q2,0, v2,0)
t1−→ (q2,0, v2,0 + t1) . . . (q2,n−1, v2,n−1 + tn) an−→

(q2,n, v2,n) is the run of A2 over τ . All the definitions of properties of runs
are easily adapted to properties of combined runs. We now use the notion of a
combined run to show the following:

Proposition 4. The length of τ is bounded by a polynomial in the size of A1,
the size of A2, and the number of times x1 or x2 is reset by τ .

Proof. Suppose that for some index 1 ≤ i ≤ n, τi ends in 〈q1, v1, q2, v2〉. Using
the same argument used in the proof of Proposition 3, one can show that for
every j > i and for some v′1 and v′2, if τj ends in 〈q1, v

′
1, q2, v

′
2〉, then there exists

an index i < k ≤ j such that τk ends in (q′1, v1,0) in A1 for some q′1 ∈ Q1, or
in (q′2, v2,0) in A2 for some q′2 ∈ Q2. Thus, for every combined state (q1, q2) ∈
Q1×Q2, the number of prefixes of τ that end in (q1, q2) is bounded by the number
of times r that τ resets either x1 or x2. Hence the length of τ is bounded by
|Q1| ∗ |Q2| ∗ r, which is polynomial in r and in the sizes of A1 and A2.

We want to bound the number of clock resets in the combined run of a shortest
distinguishing string τ . In order to do so, we first prove a restriction on the
possible clock valuations in a combined state (q1, q2) that is reached directly
after one clock x1 has been reset. In Proposition 3, there was exactly one possible
valuation, namely v(x) = 0. But since we now have an additional clock x2, this
restriction no longer holds. We can show, however, that after the second time
(q1, q2) is reached by τ directly after resetting x1, the valuation of x2 has to be
decreasing with respect to the previous times τ reached (q1, q2):

Lemma 2. If there exists (at least) three indexes 1 ≤ i < j < k ≤ n such
that τi ends in 〈q1, v1,0, q2, v2,i〉, τj ends in 〈q1, v1,0, q2, v2,j〉, and τk ends in
〈q1, v1,0, q2, v2,k〉, then the valuation of x2 has to be decreasing, i.e., it has to be
the case that v2,i(x2) > v2,k(x2) and v2,j(x2) > v2,k(x2).

Polynomial Distinguishability of Timed Automata 247

Proof. Without loss of generality we assume that τ ∈ L(A1), and consequently
τ 	∈ L(A2). Let l = k + 1, and let τ−l = (al+1, tl+1) . . . (an, tn) denote the
suffix of τ starting at index l + 1, i.e., τ = τk(al, tl)τ−l. Assume for the sake
of contradiction that the valuations v2,i, v2,j , and v2,k are such that v2,i(x2) <
v2,j(x2) < v2,k(x2) (the argument below can be repeated for the case when
v2,j(x2) < v2,i(x2) < v2,k(x2)). Let d1 and d2 denote the differences in clock
values of x2 between the first and second, and second and third time (q1, q2) is
reached by τ , i.e., d1 = v2,j(x2)− v2,i(x2) and d2 = v2,k(x2)− v2,j(x2).

We are now going to make some observations about the acceptance property
of the runs of A1 and A2 over τ . But, instead of following the path specified by
τ , we are going to make a time transition in (q1, q2) and then only run the final
part of τ . Under our assumption, this is possible because we assume that (q1, q2)
is reached (at least) three times, and each time the valuation of x2 is increasing.
Hence, in A2 we can reach the timed state that is reached the last time (q1, q2)
is visited (at index k) by making a time transition. Because we reach the same
timed state and the subsequent run is identical, the acceptance property has to
remain the same. We know that τ = τk(al, tl)τ−l 	∈ L(A2). Hence, it has to hold
that τj(al, tl +d2)τ−l 	∈ L(A2) and that τi(al, tl +d1 +d2)τ−l 	∈ L(A2). Similarly,
since τ ∈ L(A1), and since τi, τj , and τk all end in the same timed state (q1, v1,0)
in A1, it holds that τi(al, tl)τ−l ∈ L(A1) and that τj(al, tl)τ−l ∈ L(A1). Lets put
this type of information in a table (+ denotes true, and − denotes false):

value of t 0 d1 d2 (d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) +
τi(al, tl + t)τ−l ∈ L(A2) −
τj(al, tl + t)τ−l ∈ L(A1) +
τj(al, tl + t)τ−l ∈ L(A2) −

Since τ is a shortest distinguishing string, it cannot be that both τi(al, tl+t)τ−l ∈
L(A1) and τi(al, tl + t)τ−l 	∈ L(A2) (or vice versa) hold for for some t ∈ N.
Otherwise, τi(al, tl + t)τ−l would be a shorter distinguishing string for A1 and
A2. This also holds if we replace i by j. Furthermore, since τi ends in the same
timed state as τj in A2, it holds that for all t ∈ N: τi(al, tl + t)τ−l ∈ L(A2) if
and only if τj(al, tl + t)τ−l ∈ L(A2). The table thus becomes:

value of t 0 d1 d2 (d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) + − −
τi(al, tl + t)τ−l ∈ L(A2) + − −
τj(al, tl + t)τ−l ∈ L(A1) + − −
τj(al, tl + t)τ−l ∈ L(A2) + − −

Now, since τi(al, tl + d1) ends in the same timed state as τj(al, tl) in A1, it
holds that τi(al, tl + d1)τ−l ∈ L(A1) if and only if τj(al, tl)τ−l ∈ L(A1) (they
reach the same timed state and then their subsequent runs are identical). More
generally, for any time value t ∈ N, τi(al, tl + d1 + t)τ−l ∈ L(A1) if and only if
τj(al, tl + t)τ−l ∈ L(A1). Hence we can extend the table in the following way:

248 S. Verwer, M. de Weerdt, and C. Witteveen

value of t 0 d1 d2 (d1 + d2) 2d1 (2d1 + d2) 3d1 (3d1 + d2)
τi(al, tl + t)τ−l ∈ L(A1) + + − − + − + −
τi(al, tl + t)τ−l ∈ L(A2) + + − − + − + −
τj(al, tl + t)τ−l ∈ L(A1) + + − − + − + −
τj(al, tl + t)τ−l ∈ L(A2) + + − − + − + −
This extention can be continued infinitely. Thus, for any value n ∈ N it holds
that τi(al, tl + n ∗ d1)τ−l ∈ L(A1) and τi(al, tl + n ∗ d1 + d2)τ−l 	∈ L(A1). This
can only be the case if a different transition is fired for each of these |N| different
values for x. Consequently, A should contain an infinite amount of transitions,
and hence A is not a 1-DTA, a contradiction.

We have just shown that if τ reaches some combined state (q1, q2) twice directly
after a reset of x1 (i.e., 〈q1, v1,0, q2, v〉 is reached at least twice for some v), then
the valuation of x2 has to be decreasing with respect to the previous time it
reached (q1, q2). Without loss of generality we assume that x1 has already been
reset at least twice at previous indexes just before reaching (q1, q2). This can be
used to show that if τ reaches (q1, q2) again then:

– x2 is reset before again reaching (q1, q2) and resetting x1, and
– on the path from (q1, q2) to (q1, q2), there has to exist at least one transition

that cannot be satisfied by a valuation smaller than the one reached by τ .

The first statement follows from the observation that the valuation of x2 has to
be decreasing. The second statement holds because if there is no such transition,
then a timed string τ ′ exists that reaches a smaller valuation of x2 than τ when it
reaches (q1, q2) again. By the argument of Lemma 2, it cannot be the case that a
non-shortest distinguishing reaches a smaller valuation than τ . Hence this either
leads to a contradiction or τ ′ is a shortest distinguishing string. In this case the
statement holds for the shortest distinguishing string τ ′. Formally:

Corollary 2. If for some index i, τi ends in (q1, q2) directly after a reset of x1,
and if there exists an index j > i such that τj ends in (q1, q2) directly after a
reset of x1, then there exists an index i < k ≤ j such that τk ends in (q2,k, v2,0).

Proof. By Lemma 2, it holds that v2,i(x2) > v2,j(x2). The value of x2 can only
decrease if it is reset. Hence, there exists an index i < k ≤ j at which x2 is reset.

Corollary 3. If for some index i, τi ends in (q1, q2) directly after a reset of
x1, and if there exists another index j > i such that τj ends in (q1, q2) directly
after a reset of x1, then there exists an index i < l ≤ j such that τl ends
in 〈q1,l, v1,l, q2,l, v2,l〉, where either v1,l or v2,l is the minimum clock valuation
satisfying the last transition fired by τl in A1 or A2, respectively.

Proof. Suppose there exists no such index l. In this case, we can subtract 1 from
a time value occurring in τj to create a timed string τ ′

j that follows the same path
as τj , but ends in 〈q1, v1,0, q2, v2,j − 1〉 instead of 〈q1, v1,0, q2, v2,j〉. Without loss
of generality τ ′

j is not a shortest distinguishing string (otherwise the corollary
also holds). We know that τ ′

j reaches a smaller valuation than τl, i.e., it holds
that v2,j(x2) < v2,j(x2). Hence τ ′

j can be used to reach a contradiction using the
argument of Lemma 2.

Polynomial Distinguishability of Timed Automata 249

We now use these these two properties of τ to polynomially bound the number
of different ways in which x2 can be reset by τ before reaching (q1, q2). By Corol-
lary 2, this also polynomially bounds the amount of resets of x1. In combination
with Proposition 4 this proves that 1-DTAs are polynomially distinguishable.

Lemma 3. The number of times x2 is reset by τ before reaching a combined
state (q1, q2) directly after a reset of x1 is bounded by a polynomial in the sizes
of A1 and A2

Proof. Suppose x1 is reset at index 1 ≤ i ≤ n just before reaching (q1, q2), i.e.,
τi ends in 〈q1, v1,0, q2, v2,i〉. Thus, by Lemma 2, v2,i is decreasing with respect
to previous indexes. By Corollary 2, we know that x2 has reset before index
i. Let k < i be the largest index before i where x2 is reset. By Lemma 2, we
know that v1,k is decreasing with respect to previous indexes. We also know, by
Corollary 3, that there exists an index l such that the last transition that is fired
τl in either A1 or A2 has a clock guard g1 or g2 such that the minimal valuation
that satisfies g1 or g2 is v1,l or v2,l, respectively. Let us consider these two cases.

Suppose v1,l is the minimal valuation that satisfies g1. Since v1,k is decreasing,
and x1 is not reset between index k and l, it has to be the case that v1,l is
decreasing. Hence, if at later indexes i < m < o it again occurs that: x1 is reset
at index o just before reaching (q1, q2), m is the largest index before o where x2

is reset, and τm ends in the same combined state as τk, then there can be no
index p such that v1,p satisfies g1. Thus, if the same combined state (q′1, q

′
2) is

used to reset x2 before reaching (q1, q2) and resetting x1, there exists at least one
transition in A1 that can no longer be fired on the path from (q′1, q′2) to (q1, q2).
Hence, there are at most |Q1| ∗ |Q2| ∗ |Δ1| ways in which this can occur in τ .

Suppose v2,l is the minimal valuation that satisfies g2. Since v2,i is decreasing,
and x2 is not reset between index l and i, it has to be the case that v2,l is
decreasing. Hence if at some later index i < o it occurs again that x1 is reset at
index o just before reaching (q1, q2), then there can be no index p such that v2,p

satisfies g2. Hence, there are at most |Δ2| ways in which this can occur.
In conclusion, the number of times that x2 can be reset by τ before reaching

(q1, q2) directly after a reset of x1 is bounded by (|Q1| ∗ |Q2| ∗ |Δ1|+ |Δ2|), which
is polynomial in the sizes of A1 and A2.

We are now ready to show the main result of this section:

Theorem 2. 1-DTAs are polynomially distinguishable.

Proof. By Lemma 2, after the second time a combined state (q1, q2) is reached by
τ after resetting x1, it can only be reached again if x2 is reset. By Lemma 3, the
total number of different ways in which x2 can be reset before reaching (q1, q2)
and resetting x1 is bounded by a polynomial p in |A1| + |A2|. Hence the total
number of times a combined state (q1, q2) can be reached by τ directly after
resetting x1 is bounded by |Q1| ∗ |Q2| ∗p(|A1|+ |A2|). This is polynomial in |A1|
and |A2|. By symmetry, this also holds for combined states that are reached
directly after resetting x2. Hence, the total numer of resets of either x1 or x2 by
τ is bounded by a polynomial in |A1|+ |A2|. Since, by Proposition 4, the length
of τ is bounded by this number, 1-DTAs are polynomially distinguishable.

250 S. Verwer, M. de Weerdt, and C. Witteveen

6 Discussion and Conclusions

In this paper we have shown that deterministic timed automata (DTAs) cannot
be identified efficiently in the limit (Theorem 1). Moreover, this even holds if the
class of DTAs is only allowed access to two clocks (Corollary 1). Furthermore,
we have shown that DTAs with a single clock (1-DTAs) are polynomially distin-
guishable (see Definition 6 and Theorem 5). Polynomial distinguishability is a
necessary condition for efficient identifiability in the limit (Lemma 1). Therefore,
it is an important step for proving the efficient identifiability of 1-DTAs.

It is possible to construct for every DTA a DFA that accepts the same lan-
guage. However, this DFA is exponentially larger than the original DTA. There-
fore, it is not unexpected that DTAs cannot be identified efficiently. For 1-DTAs,
the standard method of creating a DFA that accepts the same language (i.e.,
the region construction [1]) still results in an exponential blowup of the amount
of states. Therefore, one may guess that 1-DTAs can not be identified efficiently.
Surprisingly, however, in this paper we have shown that 1-DTAs are polynomially
distinguishable, which makes them very likely to be efficiently identifiable.

Currently, we are writing an algorithm that we intend to use to prove effi-
cient identifiability based on the results in this paper. The idea is to write a
state merging and transition splitting algorithm like our algorithm for identify-
ing simple TAs (see [5]) that uses polynomial distinguishing strings to ensure
the correct identification of 1-DTAs. This is similar to the way state merging
was used to show the efficient identifiability of DFAs (see [12]).

Besides allowing us to write such an algorithm, the results in this paper have
several other important consequences and/or possible applications. We now give
a few examples of consequences and applications.

The fact that 1-DTAs are polynomially distinguishable relies on an important
lemma regarding their modeling power (Lemma 2). We believe this lemma has
consequences beyond the scope of the 1-DTA identification problem. For exam-
ple, when model checking a system of two 1-DTAs, the search space may be
reduced by restricting the search to smaller valuations in combined states.

The efficiency results have important consequences for anyone interested in
identifying timed systems (and TAs in particular). Most importantly, they tell
us that 1-DTAs seem to be a good model for identifying a timed system. Fur-
thermore, they show that anyone who needs to identify a DTA with two or more
clocks should either be satisfied with sometimes requiring an exponential amount
of data, or he or she has to find some other method to deal with this problem.
This also holds for other learning frameworks.

For instance, in related work, a query learning algorithm is described for iden-
tifying event recording automata (ERAs) [8]. An important property of ERAs
is that they are determinizable [7]. This property ensures that the language in-
clusion problem is decidable for determinizable TAs. Since language inclusion is
relevant for identification, this seems to indicate that ERAs are a class of au-
tomata that are well-suited for identification. However, a class of automata can
only be identified efficiently from queries if it is also efficiently identifiable in the
limit from data [14]. Thus, our results show that ERAs can never be identified

Polynomial Distinguishability of Timed Automata 251

efficiently since an ERA has access to multiple clocks. We believe it would be
interesting, and very valuable for real-world applications, to adapt the timed
query learning algorithm to the class of 1-DTAs. Our results indicate that this
may result in an efficient query learning algorithm for timed systems.

Acknowledgement. We would like to thank Pieter Adriaans for the helpful com-
ments on an early draft of this paper. This research has been supported and
funded by the Dutch Ministry of Economic Affairs under the SENTER program,
project IS041022 Real-Time Optimalisatie Motor Management.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126, 183–235 (1994)

2. Larsen, K.G., Petterson, P., Yi, W.: Uppaal in a nutschell. International journal
on software tools for technology transfer 1(1-2), 134–152 (1997)

3. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing (1997)
4. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in

speech recognition. Proceedings of the IEEE 77 (1989)
5. Verwer, S., de Weerdt, M., Witteveen, C.: An algorithm for learning real-time

automata. In: Benelearn, pp. 128–135 (2007)
6. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA

learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433. Springer,
Heidelberg (1998)

7. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theoretical Computer Science 211(1), 253–273 (1999)

8. Grinchtein, O., Jonsson, B., Petterson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006.
LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

9. Gold, E.M.: Complexity of automaton identification from given data. Information
and Control 37(3), 302–320 (1978)

10. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be ap-
proximated within any polynomial. Journal of the ACM 40(1), 95–142 (1993)

11. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

12. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time.
In: Pattern Recognition and Image Analysis. Series in Machine Perception and
Artificial Intelligence, vol. 1, pp. 49–61. World Scientific, Singapore (1992)

13. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27 (1997)

14. Parekh, R., Hanovar, V.G.: On the relationship between models for learning in
helpful environments. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891,
pp. 207–220. Springer, Heidelberg (2000)

Evaluation and Comparison of Inferred Regular

Grammars�

Neil Walkinshaw, Kirill Bogdanov, and Ken Johnson

The Department of Computer Science, The University of Sheffield, Regent Court, 211
Portobello, S1 4DP Sheffield, U.K.

{n.walkinshaw,k.bogdanov,csken}@dcs.shef.ac.uk

Abstract. The accuracy of an inferred grammar is commonly computed
by measuring the percentage of sequences that are correctly classified
from a random sample of sequences produced by the target grammar.
This approach is problematic because (a) it is unlikely that a random
sample of sequences will adequately test the grammar and (b) the use of
a single probability value provides little insight into the extent to which
a grammar is (in-)accurate. This paper addresses these two problems by
proposing the use of established model-based testing techniques from the
field of software engineering to systematically generate test sets, along
with the use of the Precision and Recall measure from the field of in-
formation retrieval to concisely represent the accuracy of the inferred
machine.

Keywords: Evaluation, State-Merging, Model-Based Testing, Precision
and Recall, FSM Testing.

1 Introduction

Inferring an unknown regular grammar from a sample of valid and invalid sen-
tences is a well-established problem [13]. In practice it is often difficult to collect
a representative sample of valid and invalid sentences that suitably encapsulates
every required behavior of the target grammar. This has spurred the develop-
ment of inductive approaches [19,16], which can produce a reasonable inferred
grammar even if the provided set of sentences is only a sparse sample.

The ability to reliably measure the accuracy of an inferred grammar is funda-
mental to the evaluation of a technique as a whole. Conventionally, the accuracy
of a grammar is evaluated by generating a random ‘test’ sample from the target
grammar, and counting the proportion of tests that are correctly classified by
the inferred grammar.

In this paper we point out that the standard evaluation techniques of regular
grammars can present a skewed perspective of their accuracy. We outline the
two main challenges and propose the use of software engineering and information
retrieval methods to tackle them.
� This work has been funded by the AutoAbstract EPSRC grant EP/C511883/1.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 252–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evaluation and Comparison of Inferred Regular Grammars 253

1. Generating a representative test sample: Certain aspects of the gram-
mar (a) can be difficult to exercise with random tests, but (b) represent key lan-
guage features. To address this problem we propose the use of test-generation
techniques from the field of model-based testing [17] in software-engineering.
Many conformance testing algorithms have been designed to establish with cer-
tainty if an implementation of a software system conforms to a known speci-
fication of the system. Both implementation and specification are modeled by
deterministic finite automata, and so it becomes straightforward to apply these
techniques for the sake of establishing the accuracy of inferred grammars.
2. Measuring the accuracy of the inferred grammar: Conventionally, an
inferred grammar is evaluated by measuring the proportion of correctly classified
sentences. However, this provides little insight into grammar properties that are
of interest such as exactness or completeness.

Instead of the traditional single value to quantify machine accuracy, this paper
illustrates the use of precision and recall [24], a well understood measure from the
field of information retrieval. This can be visualised in an accessible manner, and
can be used to establish to what extent the approach over / under generalises.
We show how this correlates with Dupont’s lattice-based representation [10] of
the regular inference search space.

The format of the paper is as follows. Section 2 introduces the regular infer-
ence problem, and shows how inferred grammars are conventionally evaluated.
Section 3 describes state machine testing techniques. Precision and recall are de-
scribed in Section 4 with their relation to an established lattice-based inference
search space shown in Section 5. Section 6 contains a small case study. Related
work and conclusions can be found in Sections 7 and 8 respectively.

2 Regular Inference and the Evaluation of Inferred
Grammars

This section provides a brief background to the challenge of regular inference,
followed by a description of the conventional evaluation approach along with
its pitfalls. First, we list some basic definitions and set our notation based on
Dupont et al. [9,10]. A deterministic finite automaton (DFA) is a 5-tuple A =
(Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite alphabet, δ :
Q×Σ → Q is a partial function, q0 ∈ Q is the initial state and F ⊆ Q is the set
of accepting states. We say a sequence s ∈ Σ∗ is accepted by A if there is a path
from the initial state q0 to an accepting state q. In symbols, q0

s→ q, for q ∈ F .
Throughout this paper, we only consider a special type of DFA where all states
are accepting states. A labelled transition system (LTS) A is a DFA whenever
F = Q. The consequence of this is that for any sequence accepted by an LTS, all
prefixes of that sequence are also accepted. That is, every LTS is prefix closed.

A grammar is a set of rules which specify a subset L, called a language, from
the set Σ∗ of all possible sequences of characters in Σ. We use deterministic
finite automata to represent regular grammars and write A(L) to denote a DFA
A which produces the language L. When referring to two or more languages, we

254 N. Walkinshaw, K. Bogdanov, and K. Johnson

denote the language produced by the DFA A as LA; when no ambiguities arise,
the subscript is omitted. We define the concatenation LALA′ of two languages
LA and LA′ to be the set {ls | l ∈ LA, s ∈ LA′}. For a state q ∈ Q define
LA(q) = {s ∈ Σ∗ | q

s→ qf for some qf ∈ Q} to be the language accepted
by A in q.

Given sample sets of valid sequences which are in L and optionally invalid
sequences that are not in L, the regular grammar inference problem is to identify
a regular grammar which defines L, using the samples. That is, given S+ ⊆ L
and S− such that S− ∩ L = ∅, construct a DFA A(L) = (Q, Σ, δ, q0, F) where
for each l ∈ L there exists a q ∈ Q such that q0

l→ q, and for all s ∈ S− there is
no such a path.

The DFA A is a prefix tree acceptor (PTA) [20,22] of S+ if each sequence in
S+ has a unique path from the start state to an accepting state, with common
prefixes sharing the same path. If a set S− is available, it is trivial to augment
the PTA to include them, preventing false merges (below) from occurring. This
is conventionally referred to as the augmented prefix tree acceptor (APTA).

State merging techniques take a PTA or APTA as input, and proceed to
merge states that are deemed to be equivalent. Ultimately they aim to converge
on the most general machine that is consistent with the given samples. We recall
a partition π maps a set Q to a disjoint family of subsets whose union is Q.
For q ∈ Q, π(q) is the unique subset containing q; when states are merged, they
are placed in the same subset π(q). Let A = (QA, Σ, δA, qA, FA) be a DFA. A
quotient automaton [10] A/π = (QA/π, Σ, δA/π, qA/π, FA/π) is derived from A
with respect to a partition π as follows. The set of states QA/π is defined as
QA/π = {π(q) | q ∈ QA} and the set of final states FA/π as FA/π = {π(q) |
q ∈ FA}. Let Q, Q′ ∈ π(QA) and a ∈ Σ. Define the transition function δA/π :
QA/π × Σ → QA/π as δA/π(Q, a) = Q′ if, and only if, there exists q ∈ Q and
q′ ∈ Q′ such that δA(q, a) = q′, for a ∈ Σ. The initial state qA/π is the set
qA/π = π(qA). As a consequence of state merging, any path that is accepted in
A is also accepted in A/π. In fact, A/π is a generalization of A where LA ⊆ LA/π.

Given a DFA A, the set S+ is structurally complete with respect to A if it
covers every transition in A. If one uses a PTA built from such an S+ and
there is sufficient information to prevent an incorrect merge from occurring,
the state merging process can be guaranteed to correctly converge at A(L).
In other words, then there exists a partitioning π such that the quotient au-
tomaton PTA/π = A(L) [10]. This requirement is however unrealistic for most
real-world applications; if the target machine is unknown it is often difficult to
guarantee structural completeness, and if the target automaton is nontrivial, a
complete set of samples can simply be too large to obtain or difficult to identify.
In practice, techniques need to be able to infer fairly accurate grammars given
only sparse samples. Spurred on by several competitions, a number of promising
state-merging techniques have emerged [16,9]. The ability of these approaches
to infer reasonably accurate grammars from sparse samples, coupled with the
scalability of these techniques, renders them particularly appealing for many
practical applications.

Evaluation and Comparison of Inferred Regular Grammars 255

Grammar inference techniques are evaluated in terms of their accuracy at
classifying a test sample of sequences [15,16,4,9]. The set of test sequences (re-
ferred to as a test set) is usually compiled by tracing a selection of random paths
over the target machine, ensuring that they are evenly split between sequences
that should be rejected and accepted, as well as ensuring that their lengths fit a
uniform distribution. The accuracy is then measured as the proportion of test se-
quences that are correctly classified as either accepted or rejected by the inferred
grammar.

This approach to evaluation is however problematic for two reasons. The va-
lidity of the accuracy metric is entirely dependent upon a test set that is rep-
resentative of the target machine, and this is often improbable if the test set
generation process is essentially random. The second reason is that, even if a
representative test set is found, a single value provides very few insights into
what might make one approach to grammar inference superior / inferior to an-
other. These two problems are elaborated below.

Obtaining a test set that is ‘representative’ of the target grammar is very
challenging. Usually, the language of the target machine will contain an infinite
number of possible valid (and invalid) sequences, but it is not sufficient to simply
pick a random sample for the sake of testing. Grammars that correspond to a
large DFA with a large alphabet have a low observability: certain aspects are
much less likely to appear in a random sequence than others. Bongard and
Lipson [4] use the example of the Tomita 1 language [21], that only produces
a positive classification for a binary string 2.4% of the time. As demonstrated
in Lang’s experiments with random DFAs [15], the size of a random test set
that approximately infers a grammar invariably has to increase by orders of
magnitude as the size of the target machine increases.

Alongside the problem of identifying a suitable test set, there is also the
problem of how to interpret the final accuracy result - a single value provides
very few qualitative insights into the resulting grammar. Assuming, for example,
that we can confidently assert that a DFA has an accuracy of 70%. Does this
mean that it is more likely to falsely classify a string that should be accepted or
rejected? If we wanted to improve its accuracy, would we need to make it more
general or more specific?

3 Model-Based Test Generation

The challenge of identifying a test set that reliably covers every behavior of
some specification DFA is nontrivial. Random sets of strings may easily explore
specific aspects of the machine much more thoroughly than others, and hence
may result in a skewed accuracy measurement. How do we identify a finite set
of strings that can be used to evaluate the accuracy of the hypothesis machine?

This problem has been considered in the area of model-based software testing
where the focus is to check by testing whether an implementation is similar to
a model. Testing uses a model (reflecting the intended behavior) and generates
test sequences from it. If an implementation produces a different result to a

256 N. Walkinshaw, K. Bogdanov, and K. Johnson

model on any of those sequences, such an implementation is considered faulty;
otherwise, one may wish to have a confidence that an implementation is similar
to a model. The extent of such a similarity depends on the specific testing method
used to generate test sequences and on the properties of both a model and an
implementation. In the context of this paper, the aim is to compare two DFAs,
the hypothesis and the target. For this reason, the focus is on testing methods
which can demonstrate an equivalence between languages accepted by the two
DFAs rather than, for instance, whether one language contains another one.

The problem of checking whether two DFAs are accepting the same language
by experiment cannot be solved in the most general case — since a test set has
to be finite, it is always possible for an implementation DFA to contain more
states than could be explored with a chosen test set and those extra states may
have undesired behavior. For this reason, all DFA testing methods assume that
it is possible to estimate the maximal number of states in an implementation, in
advance. In addition, an alphabet of an implementation is usually assumed to
be known. Finally, both machines are expected to be deterministic, minimal and
feature a reliable reset (a special input which brings them to their respective ini-
tial states, not usually shown on a transition diagram); this simplifies testing and
holds in the case considered in this paper. State-based testing methods system-
atically explore the (unknown) transition structure of an implementation DFA,
comparing it to the model. From every state which is included in a model, they
attempt every symbol in an alphabet. This verifies that all transitions absent in
a model are also absent in an implementation; symbols which label transitions
in a model are followed with specific sequences to verify target states of those
transitions. This way, every state and every transition in a model are checked
in an implementation. Target state verification is based on an assumption that
all states in a model are different, i.e. they accept different languages. For this
reason, for every pair of states, it is possible to choose a sequence which dis-
tinguishes between them and a set of such sequences (called a characterisation
set below) can be used to check that an implementation has reached the ex-
pected states. The testing method used in this paper is the implementation by
the authors of the original Vasilevski/Chow W-Method [6].

Construction of a test set using the W-Method is briefly described follow-
ing [3]. For an implementation DFA A = (Q, Σ, δ, q0, F) and a model DFA S,
the W-Method constructs Y ⊆ Σ∗ such that (LA ∩ Y = LS ∩ Y) ⇒ LA = LS .
Such a set is called a test set of A. A state cover C is a prefix-closed subset of
Σ∗ containing all sequences of inputs needed to visit every state of a DFA from
the initial state; in symbols, ε ∈ C and for all states q ∈ Q \ {q0} there exists
a c ∈ C such that δ(q0, c) = q. For a subset W ⊆ Σ∗ the states q1, q2 ∈ Q are
called W -distinguishable if (LA(q1) ∩W) 	= (LA(q2) ∩W). We call W a char-
acterisation set [12] of A if any two distinct states of A are W -distinguishable.
Given an estimate k as to how many more states an implementation may have
compared to a model, a test set Y = C({ε} ∪Σ ∪ · · · ∪Σk+1)W .

There is a clear overlap between the two fields of conformance testing
and grammar (DFA) inference, because tests generated from a model can be

Evaluation and Comparison of Inferred Regular Grammars 257

interpreted as membership queries to be answered by a hidden implementation
machine to establish whether the two are equivalent. Several software engineer-
ing researchers have previously explored the relationship between the two areas
[2,14], and the use of conformance testing algorithms for answering equivalence
queries posed by Angluin’s L∗ algorithm.

4 Evaluating Accuracy with Precision and Recall

Grammar inference techniques, and classifiers in general, are commonly evalu-
ated in terms of the probability that they will return a correct response [16,9,4].
This measure is often suitable as a coarse summary of classifier behavior, but
provides a user with very little insight into any particular strengths / weaknesses
of the technique. A single accuracy figure can give no insight into questions such
as (a) whether a hypothesis machine over/under generalised and (b) whether a
hypothesis language contains too many false positives or negatives.

4.1 Precision and Recall in Grammar Inference

Precision and recall [24] is a more descriptive measure, because it quantifies the
similarity of two objects with two variables instead of one – precision (exactness)
and recall (completeness). Originally from the domain of information retrieval,
it is used to measure the overlap between what has been retrieved and what is
relevant.

The conventional precision-recall evaluation process works by trying to estab-
lish the “overlap” between an inferred model and its target. This is achieved
by computing random samples from the inferred and target models, and adding
sequences to the RET and REL sets depending on how they are classified. This
classification is illustrated in the table below; if a sequence (from either machine)
is accepted by both machines, it is added to both RET and REL sets, if the
string is accepted only by the inferred machine, then it is added to RET etc.
The final RET and REL sets are then used to compute precision and recall as
follows: precision is computed by |REL∩RET |

|RET | and recall by |REL∩RET |
|REL| . Preci-

sion and recall have been used in the past to measure the accuracy of inferred
models in both the domains of software engineering and grammar inference. As
an example, in software engineering, Lo et al. [18] use it to establish the ac-
curacy of reverse-engineered software specifications. In grammar inference, Tu
and Hanovar [23] use it to measure the accuracy of their context-free grammar
inference technique. The two variables reflect complementary aspects of the in-
ferred model, and are more descriptive as a result, helping to answer the above
questions that arise with the use of a single “accuracy” measure.

H Machine (Hypothesis) S Machine (Specification) RET REL

accept accept × ×
accept reject ×
reject accept ×
reject reject

258 N. Walkinshaw, K. Bogdanov, and K. Johnson

Unfortunately, obtaining reliable precision and recall scores when comparing
DFAs is not straightforward. The conventional approach has two flaws that can
undermine confidence in the results:

1. Sampling: It relies on the assumption that the random positive samples
computed for each of the machines are thorough enough to capture the differ-
ences between the two machines. This approach will only identify disagreements
between the machines that are easy to reach with random sequences, and will
ignore those that are less likely to be exercised. There is also the danger that the
sample will simply represent the training sample, which is often also a random
sample from the target machine. Ultimately, any measure of accuracy that is
computed from samples that are constructed in this way is at best indicative of
the correspondence between two machines, and risks being misleading.
2. Measuring: The computation of RET and REL sets (as shown in the ta-
ble above) is biased towards the accepting behavior of the two machines. As
noted above, conventional samples do not include invalid sequences, but even if
they did, they would not be accounted for according to the scheme in the table
above. If both machines correctly reject a sequence, this would not be incorpo-
rated into the computation of precision and recall. In the context of grammar
inference, it is as important to evaluate an inferred grammar in terms of the
sequences it rejects as well as the sequences it accepts. Hence, approaches that
do not use precision and recall (using the conventional single-valued approach)
[9] tend to ensure that test samples are evenly split into sets of valid and invalid
sequences.

A naive solution to the two problems would be to (a) evenly construct a sample
from both valid and invalid sequences, and (b) add invalid sequences to both
RET and REL when the two machines are in agreement about their rejection.
This will however still bias the results, because the sampling emphasises those
parts of the machine that are easy to reach. There is also the problem that
the split between valid and invalid sequences is in effect arbitrary; an even split
is making the unlikely assumption that the language of the machine is evenly
balanced in terms of its valid and invalid sequences.

4.2 Authoritative Measurement of Precision and Recall by
Conformance Testing

One apparent solution to the sampling problem mentioned above is to apply
conformance testing techniques (see Section 3). For a given DFA, techniques
such as the W-Method will produce a finite set of sequences that is not overly
biased towards any particular part of the machine. The conventional approach
discussed above generates a composite set of random samples from both the
inferred and the target machine, in the hope that this will highlight the differ-
ences between the two machines. Instead, using model-based testing techniques,
it is only necessary to generate one test set from the target machine. This is
guaranteed to highlight every discrepency between the two machines.

Evaluation and Comparison of Inferred Regular Grammars 259

Although test sets that are generated by techniques such as the W-Method
are comprehensive, they do have two characteristics that should be noted when
applied for the sake of evaluating inferred grammars,

1. Scale: The test set is usually very large. With software and hardware systems,
depending on the latency of the system under test, each test execution incurs a
cost that can in practice render the execution of a complete test set infeasible.
Large test sets are much less of an issue when they are used to evaluate the
accuracy of hypothesis grammars. The time taken by test execution is reduced
by many orders of magnitude if it merely consists of traversing a path in a
graph that is stored in memory. For this reason, this work does not use more
efficient testing methods such as Wp and HSI which use a subset of distinguishing
sequences depending on a state to be checked (although these methods could just
as well be applied).
2. Partial inclusion of training set: The test set invariably incorporates a
proportion of the training set, which could be seen to bias the results. A certain
overlap between the training and test set is inevitable – the prefixes of invalid
sequences are valid ones, many of which are a necessary part of a rigorous test
set. This overlap can be problematic when the training and test set are both
sampled from the same distribution of sequences in the target language; in this
context test sequences are meant to test how well the classifier generalises from
the training set, and this does not happen if training sequences appear in the
test set. However, by generating the test set with a test set generation algorithm,
the test set is no longer testing the generalisation of the classifier, but instead
serves to produce an absolute measure of difference between the inferred and the
target grammars.

Although conformance testing solves the sampling problem, there still remains
the challenge of using these tests to accurately measure precision and recall. As
mentioned earlier, the conventional approach used to work out the values of
RET and REL relies on the assumption that the set of samples contains an
equal number of valid and invalid sequences. However, in the case of the W-
Method, the vast majority of the tests test for invalid behavior (making sure
that the machine does not have extra transitions). This is a property of models
of software where an alphabet is a set of commands and from each state only a
small subset of those commands can be executed. Numerous invalid sequences
can result in skewed precision and recall results: even if the inferred machine
does not accept any of the sequences it should, if it correctly rejects most of the
invalid sequences, the precision and recall will be disproportionately high.

This problem is addressed by refining the conventional scoring approach to
distinguish between accepting and rejecting behavior. Instead of computing a
single precision and recall pair, we compute one that describes the accuracy of
the hypothesis machine H in terms of the set of traces it should accept, and the
other in terms of the set of traces it should reject. For this reason, we divide
RET and REL into RET +, RET−, REL+ and REL−. Test sequences can thus
be categorised according to the table below.

260 N. Walkinshaw, K. Bogdanov, and K. Johnson

H Machine (Hypothesis) S Machine (Specification) RET + REL+ RET− REL−

accept accept × ×
accept reject × ×
reject accept × ×
reject reject × ×

If a sequence is accepted by H but should in fact be rejected, it is added to
RET + and REL− as shown in Row 2. Thus, precision+ = |REL+∩RET+|

|RET+| and

recall+ = |REL+∩RET+|
|REL+| , and the same approach is used to compute the negative

precision and recall from RET− and REL−. The above definitions of positive
and negative precision and recall can be interpreted as follows: precision+: high
value means that the positive sequences represented by the hypothesis machine
are largely correct; recall+: high value means that the set of positive sequences
represented by the hypothesis machine is largely complete; precision−: high
value means that the negative sequences represented by the hypothesis machine
are largely correct; recall−: high value means that the set of negative sequences
represented by the hypothesis machine is largely complete.

5 Relationship between Precision, Recall and the
State-Merging Search Space

Precision and recall are more suitable for characterising the success of state merg-
ing sequences than the traditional single-valued accuracy approach. By adopting
the precision and recall metrics introduced in Section 4.1, it is possible to de-
termine with greater certainty whether a particular merge improves machine
accuracy or not. This is best illustrated with the lattice-based characterisation
of the state-merging search space.

Inference techniques invariably involve searching a potentially very large space
of hypotheses in order to arrive at some result. The representation of this space
is key to their efficiency. A representation might, for example, indicate that the
selection of one hypothesis would rule out the subsequent selection of another
(potentially more suitable) hypothesis. This sort of information can be very
valuable during the inference process.

In regular inference hypotheses are commonly related to each other in terms
of their respective generality [1]. A grammar B is more general than A if B is
the quotient of a merge (Section 2) in A. In symbols, let A = (QA, Σ, δA, qA, FA)
be a DFA and P (A) denote the set of all partitions of the state space QA of A.
We define a partial order on P (A), as described in [10]: let π1 ∈ P (A) such that
π1(QA) = {Q1, . . . , Qr}. Define π2 = {Qj ∪Qk}∪π1/{Qj, Qk}, 1 ≤ j, k ≤ r, j 	=
k. We say that π2 derives from π1, denoted π2 ≥ π1. This derivation operation
on partitions defines a partial ordering on the set P (A).

A useful metric for the evaluation of a hypothesis machine should also be
useful as a guide for the search process. In terms of the lattice search-space

Evaluation and Comparison of Inferred Regular Grammars 261

Fig. 1. Lattice-based search space

(Figure 1), it should be possible to tell whether a given solution is too general
or too specific, to direct the search. From this perspective the traditional single-
valued accuracy score can be highly misleading. For example, given a test set
where half of the sequences should be valid, and half invalid, the universal DFA
at the top of the lattice would result in a score of about 50% (despite the fact
that the machine is grossly overgeneralised). Conversely, it is possible that the
PTA at the bottom of the lattice produces a similar score, by correctly rejecting
most of the negative tests, but also incorrectly rejecting most of the positive
tests. During the merging process, the score could fluctuate, but not necessarily
provide any guidance — there is thus no relationship between a path through
the search-space, and a definite increase or decrease in accuracy.

When adopting precision and recall, there is a more direct relationship with
the search-space. In the figure above we depict values of precision and recall
using bars of different width. The structurally complete PTA at the bottom of the
figure is the starting point of the merging process. In the course of merging states
(reflected by a path through the lattice of partitions of states of the initial PTA)
one aims to increase Recall+ and Precision− without compromising Precision+

and Recall−. If the process of generalisation goes too far, the overly-general
outcome has low positive recall and negative precision, but the high positive
precision and negative recall.

For any pair of hypothesis πA, πB in the lattice where πB ≥ πA, we can state
the following: Precision+(πB) ≤ Precision+(πA), Recall+(πB) ≥ Recall+(πA),
Precision−(πB) ≥ Precision−(πA), and Recall−(πB) ≤ Recall−(πA).

6 Case Study: Effect of DFA Generalisation on Accuracy

In this section we use a small case study to illustrate how the precision and
recall measures, paired with a model-based test set generation strategy can pro-
vide more accurate and detailed quantitative insights into the performance of
inference algorithms. The purpose of this case study is to illustrate the utility
of our proposed evaluation technique (as opposed to the efficacy of any specific
state-merging algorithms). Although the case study subject is quite specific, it
is probable that the extra insights garnered from combining precision and recall

262 N. Walkinshaw, K. Bogdanov, and K. Johnson

with model-based test sets would apply to most evaluations of regular inference
techniques.

As a basis for the case study, we compare the performance of two variants of
the well-known EDSM merging algorithm [16] at inferring a randomly generated
grammar. The EDSM algorithm selects suitable state merges by assigning a score
for every pair of states (we use the Blue-Fringe algorithm [16] to select these
pairs). The first variant merges states where the score ≥ 1, and the second one
merges states where the score ≥ 2. The target grammar is randomly generated;
its DFA has 50 states, and has an alphabet of 1001.

The training set is generated in the traditional way by tracing a selection
of random paths across the target machine. We chose a small sample size to
emphasise the performance of the algorithms with respect to sparse samples.
The sample is composed of 50 valid and 50 invalid sequences. The length of
each path is a random number between 2 and n + 5, where n is the diameter of
the target DFA. For each variant of the inference algorithm, the accuracy was
charted for every iteration (state-merge), using both the traditional single-valued
measurement, and the precision and recall approach proposed in this paper. The
results are shown in Figure 2, with the left chart showing results for the case
of merge threshold ≥ 1, middle chart showing the results for merge threshold
≥ 2. The single-value accuracy (black line) was established by using a test set
consisting of random traces over the target grammar, whereas the test set for
the precision and recall scores was generated using the W-Method.

0 20 40 60 80 100 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

%

0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Recall+

P
re

ci
si

on
+

score >= 1
score >=2

Fig. 2. Traditional Accuracy vs. Precision-Recall measurements at each iteration of a
state merging algorithm, for two variants of the EDSM algorithm

In both charts, the single-valued accuracy score has a similar shape. It starts
at zero, and finshes at a score of about 40-50% accuracy. With a higher merge
threshold it is slightly steeper, suggesting that it produces more accurate results
early-on in the state-merging process. In isolation, the single-valued accuracy
line in both charts suggests that the state merging process is moving towards
1 A GraphML file containing the target DFA can be downloaded from
http://www.dcs.shef.ac.uk/~nw/Files/icgiExample.xml The source code for the
W-Method and comparison of two DFAs is part of a larger framework developed by
the authors, available from http://statechum.sourceforge.net/.

Evaluation and Comparison of Inferred Regular Grammars 263

an increasingly accurate result. This is however somewhat deceptive. Looking at
the precision and recall scores, it becomes apparent that, although the positive
recall is increasing, the positive precision is substantially reduced as the merging
continues. This is clearest in the left chart around the 58th iteration, a merge
happens that reduces the positive precision by about 10%, whereas at the same
point the accuracy score increases sharply.

For the sake of illustration, the purpose of this study is to investigate the per-
formance difference in the EDSM algorithm for different thresholds. The single-
valued measure gives little insight in this respect. The precision and recall scores
on the other hand are much more descriptive. They show that the difference in
accuracy between the two versions is due to a combined improvement in positive
precision and negative recall. In practice this means that with a lower merging
threshold the resulting DFA accepts too many false positives and negatives. On
the left chart, the positive precision drops by about 70% throughout the inference
process, whereas in the middle chart it only drops by about 40%. The negative
recall drops by about 20% in the left chart, it stays around 95% in the second one.

Finally, precision and recall can be visualised together, to provide an over-
all summary of the accuracy of a particular search technique. For the sake of
simplicity, we omit the rejecting behavior in this case, where there is only a
small trade off between precision and recall. The rightmost chart in Figure 2
plots the positive precision versus the positive recall for the two EDSM vari-
ants, as measured using the W-Method test set. These plots [24] clearly depict
the performance increase for the higher score threshold, where the precision is
compromised to a much lesser extent as the recall increases.

7 Related Work

The problem of measuring the accuracy of learner hypotheses forms the basis
of a substantial amount of discussion in machine learning literature. Receiver
Operator Characteristic (ROC) curves have emerged as a useful solution to
this problem [5]. These make explicit the relationship between the number of
true-positives and false-positives and are closely related to precision and recall.
However, if the data set upon which the curve is built is skewed (which is usually
the case with grammar inference data sets), precision and recall is a preferable
measure [7]. To the best of the authors’ knowledge, precision and recall have not
been applied in the context of regular grammar inference.

Competitions, most notably the Abbadingo competition [16], have played a
major role in driving the development of new inference techniques. These are
usually operated by setting up a server that randomly generates a (hidden) target
DFA, along with an accompanying random training and test set. Conventionally,
a winning inference technique has to be able to produce a hypothesis DFA that
produces an accuracy score of 99%. As we have shown, depending on the test set
and the target machine, this accuracy score can be misleading. In the context of
such a competition, this has the potential to result in the selection of inference
techniques that might not fare as well if the criterion for success was that the

264 N. Walkinshaw, K. Bogdanov, and K. Johnson

resulting machine should produce high precision and recall scores, and if the test
set was generated systematically as opposed to randomly.

The lattice-based representation of search-space (and its relation with preci-
sion and recall) is particularly relevant to heuristic grammar inference techniques
that depend upon a notion of “fitness”. As an example, Dupont’s GIG method
[8] uses a genetic algorithm to search the lattice of automata, where one search
result is considered to be “fitter” than another if it has fewer states and misclas-
sifies fewer strings in S−. If we assume that part of the (unused) training sample
can be used as a more complete test set, then it becomes possible to work out
the positive and negative precision and recall for each automaton. This measure
could then be used as a more fine-grained fitness function and could form a
suitable basis for a multi-objective search-based inference algorithm [11].

8 Conclusions

Due to the fact that most target machines are inherently unbalanced, the con-
ventional use of evenly-split random traces in the target machine as test sets
is insufficient, and can provide a skewed view of the accuracy of the final ma-
chine. The use of a single value to summarise this accuracy is too simplistic, and
does not provide enough of an insight into why a particular inference algorithm
becomes inaccurate. In this paper we have shown how the use of precision and
recall, combined with a systematic test set generation strategy, can be used to
evaluate inferred grammars in an authoritative manner.

We distinguish between the precision and recall for rejecting and accepting
behavior of the inferred machine because the target machine is usually unbal-
anced. This provides a more detailed means for evaluating machines and makes
it easier to see whether a hypothesis machine has been under or over generalised.
We have also shown how this means of evaluation links in with the established
lattice-based view of the inference search space.

References

1. Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. Computing
Surveys 15(3), 237–269 (1983)

2. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
correspondence between conformance testing and regular inference. In: Cerioli, M.
(ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)

3. Bogdanov, K., Holcombe, M., Ipate, F., Seed, L., Vanak, S.: Testing methods for
X-Machines: A review. Formal Aspects of Computer Science 18, 3–30 (2006)

4. Bongard, J., Lipson, H.: Active coevolutionary learning of deterministic finite au-
tomata. Journal of Machine Learning Research 6, 1651–1678 (2005)

5. Bradley, A.: The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

6. Chow, T.: Testing Software Design Modelled by Finite State Machines. IEEE
Transactions on Software Engineering 4(3), 178–187 (1978)

Evaluation and Comparison of Inferred Regular Grammars 265

7. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: ICML. ACM International Conference Proceeding Series, vol. 148, pp. 233–240.
ACM, New York (2006)

8. Dupont, P.: Regular grammatical inference from positive and negative samples by
genetic search: the GIG method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994.
LNCS, vol. 862, pp. 236–245. Springer, Heidelberg (1994)

9. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algorithm
and its application to software behavior model induction. Applied Artificial Intel-
ligence 22, 77–115 (2008)

10. Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular infer-
ence? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37.
Springer, Heidelberg (1994)

11. Fonseca, C., Fleming, P.: An overview of evolutionary algorithms in multiobjective
optimization. Evolutionary Computation 3(1), 1–16 (1995)

12. Gill, A.: Introduction to the Theory of Finite State Machines. McGraw-Hill, New
York (1962)

13. Gold, E.: Language identification in the limit. Information and Control 10, 447–474
(1967)

14. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic Journal of
the IGPL 14(5), 729–744 (2006)

15. Lang, K.: Random DFA’s can be approximately learned from sparse uniform ex-
amples. In: COLT, pp. 45–52 (1992)

16. Lang, K., Pearlmutter, B., Price, R.: Results of the Abbadingo One DFA learn-
ing competition and a new evidence-driven state merging algorithm. In: Honavar,
V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer,
Heidelberg (1998)

17. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines
- A Survey. Proceedings of the IEEE 84, 1090–1126 (1996)

18. Lo, D., Khoo, S.: QUARK: Empirical assessment of automaton-based specification
miners. In: WCRE, pp. 51–60. IEEE Computer Society, Los Alamitos (2006)

19. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In:
Pérez de la Blanca, N., Sanfeliu, A., Vidal, E. (eds.) Pattern Recognition and Image
Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61.
World Scientific, Singapore (1992)

20. Parekh, R., Honavar, V.: Grammar Inference, Automata Induction, and Language
Acquisition, ch. 29. Marcel Dekker, USA (2000)

21. Tomita, M.: Dynamic construction of finite-state automata from examples using
hill-climbing. In: Proceedings of the Fourth Annual Cognitive Science Conference,
Ann Arbor, Mi, pp. 105–108 (1982)

22. Trakhtenbrot, B., Barzdin, Y.: Finite Automata, Behavior and Synthesis. North
Holland, Amsterdam (1973)

23. Tu, K., Honavar, V.: Unsupervised learning of probabilistic context-free grammar
using iterative biclustering. Technical Report 00000572, Dept. Computer Science,
Iowa State University (May 2008)

24. van Rijsbergen, C.J.: Information Retrieval. Butterworth-Heineman, Newton
(1979)

Identification in the Limit of k, l-Substitutable

Context-Free Languages

Ryo Yoshinaka

Graduate School of Information Science and Technology, Hokkaido University,
North-14 West-9, Sapporo, Japan

ry@ist.hokudai.ac.jp

Abstract. Recently Clark and Eyraud (2005, 2007) have shown that
substitutable context-free languages are polynomial-time identifiable in
the limit from positive data. Substitutability in context-free languages
can be thought of as the analogue of reversibility in regular languages.
While reversible languages admit a hierarchy, namely k-reversible regu-
lar languages for each nonnegative integer k, Clark and Eyraud targeted
the subclass of context-free languages that corresponds to zero-reversible
regular languages only. Following Clark and Eyraud’s proposal, this pa-
per introduces a hierarchy of substitutable context-free languages as the
analogue of that of k-reversible regular languages and shows that each
class in the hierarchy is also polynomial-time identifiable in the limit
from positive data.

1 Introduction

Efficient learning of context-free languages is a topical issue on grammatical
inference (see e.g. de la Higuera [12], Lee [18]), but not many techniques are
known to be applicable to identification in the limit from positive data of non-
regular subclasses of context-free languages, in comparison with subclasses of
regular languages (see e.g. Lange et al. [17]). Recently Clark and Eyraud [6, 7]
have shown that substitutable context-free languages are polynomial-time iden-
tifiable in the limit from positive data. Their work is remarkable among other
achievements on learning context-free languages in several regards. One is the ef-
ficiency of the learning algorithm. Their algorithm for substitutable context-free
languages runs in time polynomial in the size of the given data and it admits a
set of positive examples of polynomial cardinality in the description size of the
target grammar on which the conjecture converges to the target language. The
second virtue is that the notion of substitutability can explain an aspect of nat-
ural language phenomena, which meets the very first motivation of grammatical
inference [9]. A language L is said to be substitutable if and only if

x1y1z1, x1y2z1, x2y1z2 ∈ L implies x2y2z2 ∈ L

for any strings x1, y1, z1, x2, y2, z2. From the point of view of formal language
theory, substitutability of context-free languages can be thought of as the ex-
act analogue of zero-reversibility in regular languages. Angluin [1] introduced

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 266–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Identification in the Limit of k, l-Substitutable Context-Free Languages 267

the hierarchy of k-reversible languages for nonnegative integers k and showed
polynomial-time learnability of k-reversible regular languages.1 A language L is
k-reversible if and only if

x1vy1, x1vy2, x2vy1 ∈ L implies x2vy2 ∈ L

where the length of v is k. As the literature has paid much attention to reversible
regular languages and their variants and obtained many fruitful results (e.g., [2,
14,16,15,13,19,21,23]), the close relation of substitutable context-free languages
to reversible regular languages also seems an advantage of their study. In fact
Clark and Eyraud [7] suggested that one may define for context-free languages
the exact analogue of k-reversibility in regular languages and that such classes
would be still polynomial-time identifiable in the limit from positive data. This
paper answers to those expectations in the affirmative. We call a language L
k, l-substitutable if and only if

x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L

where the length of v is k and that of u is l. This paper proves that k, l-
substitutable context-free languages are identifiable in the limit from positive
data by a polynomial-time algorithm that is a natural generalization of Clark
and Eyraud’s one.

2 Definitions

We start by some standard notation, most of which follows Clark and Eyraud [7].
Let Σ be a non-empty finite set. |Σ| denotes its cardinality. If x is a finite sequence
consisting of elements of Σ, it is called a string (over Σ) and |x| denotes its length.
λ is the empty string. Σ∗ denotes the set of all strings over Σ, Σ+ = Σ∗ − {λ},
Σk = { x ∈ Σ∗ | |x| = k }, Σ≤k = { x ∈ Σ∗ | |x| ≤ k } and Σ<k = Σ≤k − Σk.
For x ∈ Σ∗ and a ∈ Σ, |x|a denotes the number of occurrences of a in x. Any
subset of Σ∗ is called a language (over Σ). If L is a finite language over Σ, its size
is defined as ‖L‖ =

∑
w∈L |w|. We shall assume an order ≺ or � on Σ which we

shall extend to Σ∗ in the canonical way by saying that u ≺ v if either |u| < |v| or
|u| = |v| and u is lexicographically before v.

A context-free grammar (cfg) is denoted by a quadruple G = 〈Σ, V, P, S〉,
where Σ is the finite set of terminal symbols, V , disjoint from Σ, is the finite set
of nonterminal symbols, P is the finite set of production rules and S ∈ N is the
start symbol. A production rule in P has the form A → β for some A ∈ V and
β ∈ (Σ ∪ V)+. If A → β ∈ P , we write αAγ ⇒G αβγ for any α, γ ∈ (Σ ∪ V)∗.
⇒+

G is the transitive closure of⇒G and⇒∗
G is the reflexive and transitive closure

of ⇒G. The subscript G of ⇒G is omitted if it is understood from the context.
The context-free language (cfl) L(G) generated by G is the set L(G, S), where
L(G, α) = {w ∈ Σ∗ | α

∗⇒ w } for α ∈ (Σ ∪ V)∗. Two grammars G1 and
1 Angluin defined k-reversible languages as a subclass of regular languages, while this

paper calls any language satisfying k-reversibility a k-reversible language.

268 R. Yoshinaka

G2 are equivalent iff L(G1) = L(G2). The description size of G is defined as
‖G‖ =

∑
A→β∈P (|Aβ|). A symbol A ∈ Σ ∪ V is useless in G if there are no

x, y, z ∈ Σ∗ such that S
∗⇒ xAz

∗⇒ xyz. A cfg G is reduced iff every A ∈ Σ ∪ V
is not useless. We assume all grammars to be reduced in this paper. Note that
we do not allow empty right hand side to production rules, and thus any cfls
dealt with in this paper are λ-free.

In the following, terminal symbols will be indicated by a, b, c, . . . , nonterminal
symbols by A, B, strings over Σ by u, v, . . . , z, and strings over (Σ ∪ V)∗ by
α, β, γ, δ.

We now define our learning criterion. This is identification in the limit from
text (or equivalently from positive data) as defined by Gold [9]. Let R be any
recursive set of finite descriptions, say cfgs, and L be a function from R to
non-empty languages over Σ. A learning algorithm A on R, is an algorithm that
computes a function from finite sequences of strings w1, . . . , wn ∈ Σ∗ to R. We
define a presentation of a language L to be an infinite sequence of elements
(called positive examples) of L such that every element of L occurs at least
once. Given a presentation, we can consider the sequence of hypotheses that the
algorithm produces, writing Rn = A(w1, . . . , wn) for the nth such hypothesis.
The algorithm A is said to identify the class L of languages in the limit from
positive data if for every L ∈ L, for every presentation of L, there is an integer
n0 such that for all n > n0, Rn = Rn0 and L = L(Rn0). For R′ ⊆ R satisfying
that L = {L(R) | R ∈ R′ }, one also says A identifies R′ in the limit from
positive data. For convenience, we often allow the learner to refer to the previous
hypothesis Rn for computing Rn+1 in addition to w1, . . . , wn+1. Obviously this
relaxation does not effect the learnability of language classes. Moreover, learning
algorithms in this paper compute hypotheses from a set of positive examples by
identifying a sequence with the set consisting of the elements of the sequence.

We further require that the algorithm needs only polynomially bounded
amounts of data and computation. De la Higuera’s proposal is to measure the
efficiency by a set of examples on which the learner converges to a representation
of the target language [11].

Definition 1 (de la Higuera [11]). A representation class R is identifiable in
the limit from positive data with polynomial time and data if and only if there
exist two polynomials p and q and an algorithm A such that

1. Given a set S of positive examples of size ‖S‖ = m, A returns a hypothesis
in time p(m),

2. For each representation R ∈ R of size n, there exists a characteristic set CS
of size less than q(n) such that if CS ⊆ S, A returns a representation R0

such that L(R) = L(R0).

The first condition (polynomial updating time) is widely accepted as a neces-
sary condition for efficient learning. On the other hand, the second condition is
somehow unsuitable as a model for efficient learning of cfgs, as this definition
was initially designed for learning of regular languages. Even in a very restricted

Identification in the Limit of k, l-Substitutable Context-Free Languages 269

kind of cfgs2, like very simple grammars [25], the length of a shortest string in
the language cannot be bounded by any polynomial in the size of a grammar.
At present there is no consensus on the most appropriate modification of this
criterion for learning of cfgs. Several ideas have been formulated to tackle this
problem. Carme et al. [4] count the cardinality |CS| of a characteristic set in-
stead of the size ‖CS‖. Wakatsuki and Tomita [24] have proposed to measure the
complexity of an algorithm dealing with cfgs by another parameter τG, called
thickness, defined by

τG = max{ |ω(A)| | A ∈ V } where ω(A) = min{w ∈ Σ∗ | A ∗⇒
G

w }

where “min” is with respect to ≺. We will show that our learning algorithm
for k, l-substitutable context-free languages admits a characteristic set whose
cardinality is bounded by a polynomial in the size of the target grammar and
whose size is bounded by a polynomial in the thickness and the size of the target
grammar.

We would like to remark that the notion of characteristic sets by de la
Higuera [11] differs from that of characteristic samples by Angluin [1]. Let K be
a finite subset of a language L and L a class of languages. We say that K is a
characteristic sample of L with respect to L if it holds that

K ⊆ L′ iff L ⊆ L′

for any L′ ∈ L. The definition of a characteristic sample does not depend on any
specific learning algorithm.

3 k, l-Substitutable Languages

Definition 2 (k, l-substitutability). Let k and l be nonnegative integers. A
language L is said to be k, l-substitutable if and only if for any x1, y1, z1, x2, y2,
z2 ∈ Σ∗, v ∈ Σk, u ∈ Σl such that vy1u, vy2u 	= λ,

x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L implies x2vy2uz2 ∈ L.

The notion of substitutability by Clark and Eyraud [7] is exactly 0, 0-substi-
tutability in this paper and the condition vy1u, vy2u 	= λ is essential only when
k = l = 0 (otherwise trivially vy1u, vy2u 	= λ holds). k, l-substitutability says
nothing about strings of length shorter than k + l. L ∪ {w} is k, l-substitutable
if and only if L− {w} is for any L ⊆ Σ∗, w ∈ Σ<k+l and integers k and l.

It is obvious that if a language is k, l-substitutable, then it is m, n-substi-
tutable for any m ≥ k and n ≥ l. It is easy to see that the hierarchy is strict.
For each k, l ∈ N, there is a k, l-substitutable regular language that is m, n-
substitutable if and only if m ≥ k and n ≥ l. If a language is k, 0-substitutable or
0, k-substitutable, then it is k-reversible. Recall that a language L is k-reversible
if and only if for any x1, y1, x2, y2 ∈ Σ∗ and v ∈ Σk, x1vy1, x1vy2, x2vy1 ∈ L
implies x2vy2 ∈ L [1].
2 One exception is subclasses of linear grammars.

270 R. Yoshinaka

Proposition 1. k, l-substitutable languages are not closed under intersection
with regular sets, union, concatenation, complement, Kleene closure (+, ∗), λ-
free homomorphism, inverse homomorphism. k, l-substitutable languages are
closed under reversal if and only if k = l. k, l-substitutable languages are closed
under intersection and λ-free inverse homomorphism.

Proof. Let us say that a pair of strings (called a context) 〈x, z〉 is applicable to
y in L if and only if xyz ∈ L.

Intersection with regular sets: Let L0 = ae∗ce∗a∪ae∗de∗a∪ be∗ce∗b and
L1 = L0∪be∗de∗b. L0 is regular and L1 is 0, 0-substitutable. Clearly L1∩L0 = L0

is not k, l-substitutable for any k, l. The context 〈a, a〉 is applicable to ekcel and
ekdel in L0, but 〈b, b〉 is applicable only to ekcel.

Union: Let L2 = ae∗ce∗a ∪ ae∗de∗a and L3 = be∗ce∗b. L2 and L3 are both
0, 0-substitutable, but the union L2 ∪ L3 = L0 is not k, l-substitutable for
any k, l.

Concatenation: Languages L4 = ae∗c ∪ ae∗d ∪ b and L5 = e∗a ∪ e∗ce∗b
are 0, 0-substitutable. The concatenation L4L5 is not k, l-substitutable for any
k, l, because 〈a, a〉 is applicable to ekcel and ekdel, but 〈b, b〉 is applicable only
to ekcel.

Complement: L6 = a∗b is 0, 0-substitutable, but the complement L6 is not
k, l-substitutable for any k, l, because while 〈b, λ〉 is applicable to both akaal

and akbal in L6, 〈λ, b〉 is applicable only to akbal.

Kleene closure: L7 = { anban | n ≥ 0 } is 0, 0-substitutable, but neither
L+

7 nor L∗
7 is k, l-substitutable. Let m = max{k, l}. The context 〈am, am+1〉 is

applicable to ba2m+1b and bambam+1b in L+
7 , but 〈am+1, am〉 is applicable only

to ba2m+1b in L∗
7.

λ-free homomorphism: L8 = ae∗ce∗a∪be∗ce∗b∪fe∗de∗f is 0, 0-substi-tutable.
Let h be the homomorphism that is almost the identify but h(f) = a, i.e.,
h(a) = a, h(b) = b, h(c) = c, h(d) = d, h(e) = e, h(f) = a. h(L8) = L0 is not
k, l-substitutable.

Inverse homomorphism: L6 = a∗b is 0, 0-substitutable. Let h be such that
h(a) = a, h(b) = b, h(e) = λ. h−1(L6) is not k, l-substitutable, because 〈λ, b〉 is
applicable to both ekeel and ekael in h−1(L6), but 〈b, λ〉 is applicable only to
ekeel.

Reversal: If L is k, l-substitutable, its reversal LR is trivially l, k-substi-tutable.
It is enough to show that k, l-substitutable languages are not closed under re-
versal for k > l ≥ 0. L9 = ek−1ce∗ ∪ ek−1de∗ ∪ aek−1ce∗a is k, 0-substitutable,
but its reversal LR

9 is not l, m-substitutable for any m < k and l. In LR
9 , 〈λ, λ〉 is

applicable to both elcek−1 and eldek−1, but 〈a, a〉 is applicable only to elcek−1.

Intersection: Let L and L′ be k, l-substitutable. If x1vy1uz1, x1vy2uz1,
x2vy1uz2 ∈ L ∩ L′ for some v ∈ Σk, u ∈ Σl and vy1u, vy2u ∈ Σ+, then those
are in both L and L′. Since L and L′ are k, l-substitutable, x2vy2uz2 is in both
L and L′ and thus in L ∩ L′.

Identification in the Limit of k, l-Substitutable Context-Free Languages 271

λ-free inverse homomorphism: Let L be a k, l-substitutable language and
h a λ-free homomorphism. We denote h(w) by w for readability. If x1vy1uz1,
x1vy2uz1, x2vy1uz2 ∈ h−1(L) for some v ∈ Σk, u ∈ Σl and vy1u, vy2u ∈ Σ+,
then x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L. Since L is k, l-substitutable and |v| ≥
|v| = k, |u| ≥ |u| = l, |vy1u|, |vy2u| ≥ 1, we have x2vy2uz2 ∈ L. This entails that
x2vy2uz2 ∈ h−1(L). �

We are particularly concerned with k, l-substitutable context-free languages (k, l-
scfls) in this paper. As Clark and Eyraud [7] conjecture that all 0, 0-scfls are
nts languages (see [22, 3] for the definition and properties of nts languages),
we conjecture all k, l-scfls are nts too. The simple nts example { anbn | n ≥
1 } presented by Clark and Eyraud as a non-0, 0-substitutable language is 1, 1-
substitutable. The class of very simple languages is also an important subclass
of cfls due to the efficient identifiability in the limit from positive data [25,26].
Clark and Eyraud show that the class of very simple languages and that of 0, 0-
scfls are incomparable. It is also the case for k, l-scfls. The language generated
by the very simple grammar G consisting of two rules S → aSS and S → b is
not k, l-substitutable for any k, l.

We note that Proposition 1 holds of classes of k, l-scfls except that k, l-scfls
are not closed under intersection.

4 Learning Algorithm for k, l-Substitutable Context-Free
Languages

Let us arbitrarily fix nonnegative integers k and l. Our learning target is the
class of all k, l-substitutable context-free languages (k, l-scfls). However we do
not yet have any grammatical characterization of this class. For mathematical
completeness, yet we have to define our learning target by saying that our tar-
get representations are cfgs generating k, l-substitutable languages, though this
property is not decidable. We remark that the class {L | L is a k, l-scfl for
some k, l ∈ N } is not identifiable in the limit from positive data, because this
class is superfinite modulo λ, that is, it contains at least one infinite language
and all the finite languages that do not contain λ. Obviously the absence of λ
does not effect Gold’s theorem [9] that any superfinite class is not identifiable in
the limit from positive data.

Our learning algorithm for k, l-scfls is a natural generalization of Clark and
Eyraud’s original algorithm for 0, 0-scfls [7]. However we omit the procedure
in the original algorithm that constructs “the substitution graph” where poten-
tial nonterminal symbols that generate the same languages are merged. Though
the procedure is important for making the output grammar more compact, we
present a simpler learning algorithm and a simpler proof for the learnability
instead.

Algorithm 1 is our learning algorithm k, l-SGL (k, l-Substitutable Grammar
Learner) for learning k, l-scfls. If the new positive example is generated by the
previous hypothesis by k, l-SGL, it keeps the hypothesis. Otherwise, let K be

272 R. Yoshinaka

the set of positive examples given so far. k, l-SGL computes the following cfg

Ĝ = 〈Σ, VK , PK , S〉 defined by

VK = { [y] | xyz ∈ K, y 	= λ } ∪ {S},
PK = { [vyu]→ [vy′u] | xvyuz, xvy′uz ∈ K, |v| = k, |u| = l, vyu, vy′u 	= λ }

∪ {S → [w] | w ∈ K }
∪ { [xy]→ [x][y] | [xy], [x], [y] ∈ VK }
∪ { [a]→ a | a ∈ Σ }.

We note that k, l-SGL is specific to fixed nonnegative integers k and l. In other
words, k and l are known to k, l-SGL a priori.

Algorithm 1. k, l-SGL
Data: A sequence of strings w1, w2, . . .
Result: A sequence of cfgs G1, G2, . . .
let Ĝ = cfg generating the empty language;
for n = 1, 2, . . . do

read the next string wn;
if wn �∈ L(G) then

let Ĝ = 〈Σ, VK , PK , S〉 where K = {w1, . . . , wn};
end if
output Ĝ;

end for

This section will establish the following main theorem of this paper.

Theorem 1. The learning algorithm k, l-SGL identifies k, l-scfls in the limit
from positive data with polynomial updating time. k, l-SGL admits a character-
istic set KG of polynomial cardinality in ‖G‖ and of polynomial size in ‖G‖τG

for the target grammar G.

4.1 Proof That Hypothesized Language Is Not Too Large

First of all we shall show that k, l-SGL never hypothesizes too large a language.

Lemma 1. If K is a finite subset of a k, l-substitutable language L, thenL(Ĝ) ⊆ L.

Proof. Let (·) be the homomorphism from (Σ ∪ VK − {S})∗ to Σ∗ such that
a = a for all a ∈ Σ and [w] = w for all [w] ∈ VK − {S}. We prove by induction
on the length of derivation that S ⇒+

Ĝ
α ∈ (Σ ∪ VK − {S})∗ implies α ∈ L.

Suppose that the last rule used in the derivation is of the form S → [w]. Then
[w] = w ∈ K ⊆ L by definition. Suppose that S ⇒+

Ĝ
αBγ ⇒ αβγ for some

rule B → β with B 	= S. The only nontrivial case is when B = [vyu] and
β = [vy′u] for some v ∈ Σk, u ∈ Σl and y, y′ ∈ Σ∗. In this case, there are
x, z ∈ Σ∗ such that xvyuz, xvy′uz ∈ K ⊆ L by the definition of Ĝ. By induction
hypothesis, we have αBγ = αvyuγ ∈ L. Since L is k, l-substitutable, this entails
that αvy′uγ = αβγ ∈ L. �

Identification in the Limit of k, l-Substitutable Context-Free Languages 273

For some finite language K, Ĝ does not define a k, l-substitutable language.

Example 1. Let k = l = 0 and K = { a, ab, abbc }. Because a and ab occur in
the same context 〈λ, λ〉, if L is a 0, 0-substitutable language including K, then
L is closed under substituting a for ab and we have abc, ac ∈ L by abbc ∈ L.
On the other hand, the output grammar Ĝ by the algorithm for the input K is
equivalent to the grammar G consisting of the following rules:

S → A, A→ a | AB | ABc, B → b | BBc.

We have ac ∈ L− L(G). That is, L(Ĝ) is not 0, 0-substitutable.

Actually the least 0, 0-substitutable language including K of the above example
is a{b, c}∗, which is indeed context-free and thus in the target class of our al-
gorithm 0, 0-SGL. This means that even if a characteristic sample (in Angluin’s
sense [1]) of the target 0, 0-scfl is given, our and Clark and Eyraud’s learning
algorithms do not necessarily converge to the target language.

4.2 Proof That Hypothesized Language Is Large Enough

To prove that the hypothesized language is large enough, we first need to define a
characteristic set, that is to say a subset of a target language L∗ which will ensure
that the algorithm k, l-SGL will output a grammar Ĝ such that L(Ĝ) = L∗.
We define a characteristic set in terms of a cfg in the following normal form,
while we do not yet have any grammatical characterization on cfgs generating
k, l-substitutable languages. Because Clark and Eyraud have already given a
characteristic set of 0, 0-scfls for their algorithm and it works for our algorithm
0, 0-SGL, which is essentially the same as theirs, hereafter (including the next
subsection) we target k, l-scfls with 〈k, l〉 	= 〈0, 0〉.
Definition 3. Let k and l be nonnegative integers such that at least one of
them is not zero. We say that a cfg G = 〈Σ, V, P, S〉 is in k, l-Gnf if every
production has the form A → w for some w ∈ Σ≤k+l − {λ} or A → xαz for
some x ∈ Σk, z ∈ Σl and α ∈ V +.

The notion of k, l-Gnf is a generalization of Greibach normal form [10] and
double Greibach normal form [20, 8]. Standard Greibach normal form is 1, 0-
Gnf and double Greibach normal form is 1, 1-Gnf.

Lemma 2. Let k and l be nonnegative integers such that at least one of them
is not zero. For any cfg G, there is an equivalent cfg G′ = 〈Σ, V ′, P ′, S′〉 in
k, l-Gnf such that P ′ ⊆ V ′ × (Σ≤k+l ∪ ΣkV ′≤7(k+l)Σl), ‖G′‖ is polynomial in
‖G‖ and τG′ is polynomial in ‖G‖τG.

Proof. Case 1. k, l 	= 0. We would like to refer the reader to Engelfriet’s conver-
sion to double Greibach normal form of cfgs [8]. Observing his proof, one can
see that every cfg in Chomsky normal form can be converted into an equivalent
cfg whose productions have one of the following forms:

A→ a or A→ aαb

274 R. Yoshinaka

for some A ∈ V , a, b ∈ Σ and α ∈ V ≤7. Moreover, the size of the obtained gram-
mar by his conversion is bounded by a polynomial in the size of the original gram-
mar. Together with the well-known fact that any cfg can be transformed into
Chomsky normal form of polynomial size, we may assume that G = 〈Σ, V, P, S〉
satisfies P ⊆ V × (Σ ∪ΣV ≤7Σ) without loss of generality.

Here we introduce a subrelation �of ⇒G. We write α �β if either

– α = xAδ and β = xγδ for some x ∈ Σ<k, A→ γ ∈ P and δ ∈ (Σ ∪ V)∗,
– α = δAx and β = δγx for some x ∈ Σ<l, A→ γ ∈ P and δ ∈ (Σ ∪ V)∗.

Let us define a cfg G′ = 〈Σ, V, P ′, S〉 with

P ′ = {A→ α | A
+

�α ∈ Σ+ ∪ (Σk(Σ ∪ V)∗Σl) }

where
+

�is the transitive closure of �. Some productions in P ′ may violate
the condition of k, l-Gnf, as some terminal symbols occur in α in a rule of
the form A → xαz with x ∈ Σk and z ∈ Σl. A solution is trivial. For each
terminal symbol a ∈ Σ, let us introduce a new nonterminal symbol Na and
a new production Na → a. Then we replace violating occurrences of terminal
symbols a in productions by Na. It is easy to see that L(G′) = L(G).

We evaluate the size of G′. Because G is in 1, 1-Gnf, if α �β and α ∈ Σm(Σ∪
V)∗Σn, then either β ∈ Σm+1(Σ ∪ V)∗Σn or β ∈ Σm(Σ ∪ V)∗Σn+1. Therefore,
when A has n derivation steps induced by �, i.e., A �α1 �. . . �αn, we have
n < k + l (note α1 ∈ ΣV +Σ ∪Σ+). Because the maximum length of production
rules in P is at most 9, α �β implies |β| ≤ |α| + 8. Thus if A �+ α, then
|α| ≤ 1 + 8(k + l − 1) = 8(k + l)− 7. If α = vα′u for some v ∈ Σk and u ∈ Σl,
then |α′| ≤ 7(k + l − 1). Moreover we see that |P ′| ≤ |P |k+l−1 + |Σ|. We have
‖G′‖ ≤ (8(k + l)− 7)(|P |k+l−1 + |Σ|) ∈ O(|P |k+l−1).

Moreover, it is not hard to see that when Engelfriet’s conversion is applied to
a cfg in Chomsky normal form obtained from a general cfg G′′ by a reasonable
method, then the thickness τG of the resultant grammar G in 1, 1-Gnf is bounded
by a polynomial in ‖G′′‖τG′′ . By the fact τG′ = τG, we get the lemma.

Case 2. k > 0 and l = 0. Apply the similar conversion to Case 1 to cfg G
in Greibach normal form such that P ⊆ V ×ΣV ≤2.

Case 3. k = 0 and l > 0. This case is just symmetric to Case 2. �

It is easy to get rid of useless nonterminals in G′ obtained by the above method
if any.

Now we define a characteristic set KG of a k, l-scfl in terms of a reduced
cfg G = 〈Σ, V, P, S〉 in k, l-Gnf generating it as follows, where “min” is with
respect to ≺, which is extended from Σ∗ to Σ∗ ×Σ∗ in some reasonable way:

ω(α) = min{w ∈ Σ∗ | α ∗⇒
G

w } for α ∈ (Σ ∪ V)∗,

χ(A) = min{ 〈x, z〉 ∈ Σ∗ ×Σ∗ | S ∗⇒
G

xAz } for A ∈ V,

Identification in the Limit of k, l-Substitutable Context-Free Languages 275

KA = { vw1 . . . wnu ∈ Σ∗ | A→ vB1 . . . Bnu, Bi → βi ∈ P, wi = ω(βi) }
∪ { y ∈ Σ∗ | A→ y ∈ P } for A ∈ V,

KG = { xyz ∈ Σ∗ | χ(A) = 〈x, z〉, y ∈ KA, A ∈ V }.

The following trivial lemma is implicitly used in the proof of Lemma 4.

Lemma 3. KA ⊆ L(G, A) and KS ⊆ KG ⊆ L(G). KG is finite.
Let k, l-SGL compute Ĝ = 〈Σ, VK , PK , S〉 from K such that KG ⊆ K ⊆ L(G).

Then for any w ∈ KA, [w] ∈ VK . If [w1 . . . wm] ∈ VK with w1, . . . , wm ∈ Σ+,
then [w1 . . . wm]⇒∗

Ĝ
[w1] . . . [wm] ∗⇒ w1 . . . wm.

Lemma 4. Suppose that the algorithm outputs Ĝ for the input K including KG.
Then L(G) ⊆ L(Ĝ).

Proof. We first show that if A → vB1 . . . Bnu ∈ P with v ∈ Σk, u ∈ Σl and
wi ∈ KBi , then there is w ∈ KA such that [w] ⇒∗

Ĝ
v[w1] . . . [wn]u. Let βi be

such that Bi ⇒G βi
∗⇒ wi and

I = { i | wi 	= ω(βi), 1 ≤ i ≤ n }.

For each i ∈ I, we have βi ∈ ΣkV +Σl. Thus there are vi ∈ Σk, ui ∈ Σl and
yi, y

′
i ∈ Σ∗ such that wi = viyiui and ω(βi) = viy

′
iui. The fact ω(βi), wi ∈ KBi

entails that xiviy
′
iuizi, xiviyiuizi ∈ KG where 〈xi, zi〉 = χ(Bi). By definition, Ĝ

has rule [ω(βi)]→ [wi] ∈ PK . We have vω(β1) . . . ω(βn)u ∈ KA and

[vω(β1) . . . ω(βn)u] ∗⇒̂
G

v[ω(β1)] . . . [ω(βn)]u ∗⇒ v[w1] . . . [wn]u.

By using this claim inductively, we see that for any A ⇒∗
G w ∈ Σ∗, there is

w′ ∈ KA such that [w′]⇒∗
Ĝ

w. Since Ĝ has rule S → [w′] ∈ PK for any w′ ∈ KS ,
we obtain the lemma. �

Clark and Eyraud [7] define a characteristic set of 0, 0-scfls L(G) by

CS(G) = { xyz | A→ β ∈ P, 〈x, z〉 ∈ χ(A), y = ω(β) },

where G is not assumed to be in any special form. This set CS(G) is more
compact than KG. However, CS(G) can be too small as a characteristic set
of a k, l-scfl in general. Let G be a cfg in 1, 0-Gnf consisting of production
rules S → aSC, S → b and C → c. Then L(G) = { anbcn | n ≥ 0 } is 1, 0-
substitutable. On the other hand, CS(G) = { b, abc } is also 1, 0-substitutable,
and thus CS(G) cannot be a characteristic set of L(G) for any algorithm learning
1, 0-scfls.

4.3 Polynomial Time and Data

Now we discuss the efficiency of our learning algorithm k, l-SGL. Though the
class of k, l-scfls is not identifiable in the limit from positive data with poly-
nomial time and data in de la Higuera’s sense (Definition 1), k, l-SGL satisfies

276 R. Yoshinaka

de la Higuera’s definition if we accept the thickness τG of the target grammar
as a fundamental parameter (Lemma 7). Besides, k, l-SGL identifies k, l-scfls
in the limit from positive data with polynomial time and data in Carme et
al.’s sense [4], i.e., k, l-SGL admits a characteristic set of polynomial cardinality
(Lemma 6). Although we have no grammatical characterization of k, l-scfls,
Lemma 2 justifies evaluating the characteristic set KG where G is in k, l-Gnf

such that P ⊆ V × (Σ≤k+l ∪ΣkV ≤7(k+l)Σl).

Lemma 5. Computation of Ĝ from a finite language K is done in polynomial
time in the description size of K.

Proof. Let �K = max{ |w| | w ∈ K }. For fixed w, w′ ∈ K, the cost for enumer-
ating all pairs vyu and vy′u such that w = xvyuz, w′ = xvy′uz, |v| = k, |u| = l,
vyu, vy′u 	= λ for some x, z ∈ Σ∗ is bounded by O(�2

K). Thus computing all the
rules of the form [vyu]→ [vy′u] takes O(|K|2�2

K) time. Computing all the rules
of the form S → [w] for w ∈ K takes O(‖K‖) time. For each [w] ∈ VK , there are
(|w|−1) pairs 〈x, y〉 such that w = xy and x, y 	= λ. Thus computing all the rules
of the form [xy] → [x][y] takes O(|VK |�K) time. Together with �K , |K| ≤ ‖K‖
and |VK | ≤ ‖K‖2, totally the algorithm updates its hypothesis in O(‖K‖4) time.

�

Therefore, k, l-SGL updates its hypothesis quickly even for large k and l. How-
ever, the amount of data for letting k, l-SGL converge increases depending on k
and l. For instance, to learn the k, l-scfl Σ≤k+l − {λ}, the learner requires all
elements of Σ≤k+l − {λ} to be given as positive examples, because any subset
of Σ≤k+l − {λ} is also a k, l-scfl.

Lemma 6. |KG| is bounded by a polynomial in ‖G‖.

Proof. Let n = max{ |β| | A → xβz ∈ P with |x| = k, |z| = l }. Then we have
|KG| ≤ |P |n+1. By Lemma 2, we have n ≤ 7(k + l) (constant). |KG| is bounded
by a polynomial. �

Lemma 7. The description size of ‖KG‖ is bounded by a polynomial in ‖G‖
and τG.

Proof. By Lemma 6, it is enough to prove that the length of each element in
KG is bounded by a polynomial in ‖G‖ and τG. Suppose that xyz ∈ KG where
χ(A) = 〈x, z〉 and y ∈ KA for A ∈ V . We have a derivation

A0 ⇒
G

α1A1γ1 ⇒ · · · ⇒ α1 . . . αmAmγm . . . γ1
∗⇒ xAmz

where A0 = S, Ai−1 → αiAiγi for i = 1, . . . , m, Am = A, x = ω(α1 . . . αm)
and z = ω(γm . . . γ1). We see Ai 	= Aj if i 	= j by the definition of χ(A).
Thus |α1 . . . αmγm . . . γ1| ≤ ‖G‖ and |xz| ≤ ‖G‖τG. If y ∈ KA, then either
A → y ∈ P , or there are productions A → vB1 . . . Bnu ∈ P , Bi → βi ∈ P for
i = 1, . . . , n and y = vω(β1 . . . βn)u. Let p = k + l (constant). By Lemma 2,
we have n ≤ 7p and βi ∈ Σ≤p ∪ ΣkV ≤7pΣl. Therefore |ω(βi)| ≤ p + 7pτG and
|y| ≤ p + 7p(p + 7pτG) ∈ O(τG). All in all we have |xyz| ∈ O(‖G‖τG). �

Identification in the Limit of k, l-Substitutable Context-Free Languages 277

5 Discussion

Following the proposal given by Clark and Eyraud [7], this paper gave a formal
definition of a hierarchy of substitutable languages by generalizing the origi-
nal notion of substitutability and showed that each class of context-free lan-
guages in the hierarchy is polynomial-time identifiable in the limit from positive
data. While this generalization can be thought of as the exact analogue of k-
reversibility introduced by Angluin [1], some properties that hold of k-reversible
regular languages do not hold of k, l-scfls, or are not known to hold of k, l-scfls.

One is a grammatical characterization of k, l-scfls, as already pointed out
by Clark and Eyraud. The original definition of k-reversible languages is given
in terms of finite state automata and the syntactic characterization of them is a
theorem [1].

Kobayashi and Yokomori [14] have shown that the least k-reversible language
including a finite language is always regular. In fact Angluin’s learning algo-
rithm always hypothesizes the least k-reversible regular language including the
given data. On the other hand, the least 0, 0-substitutable language including
{abc, acb, bac, bca, aabbcc} is MIX = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c }, which
is known to be non-context-free.3 Moreover, MIX does not have a least 0, 0-scfl

including it. L1 = {w ∈ {a, b, c}+ | |w|a = |w|b } and L2 = {w ∈ {a, b, c}+ |
|w|a = |w|c } are 0, 0-scfls and MIX = L1 ∩ L2. This shows that some set of
positive examples does not admit a least consistent 0, 0-scfl.

The literature has established many results on reversible regular languages
and their variants (e.g., [2, 14, 16, 15, 13, 19, 21, 23]). It would be interesting to
investigate whether or not analogous results hold of k, l-scfls.

Clark and Eyraud’s algorithm SGL for 0, 0-scfls [7] bases Clark’s pac learn-
ing algorithm for unambiguous nts languages [5]. Though some unambiguous
nts languages are not 0, 0-substitutable, taking into account the difference of
context distributions of substrings, he successes learning non-0, 0-scfls using
SGL. Our learning algorithm k, l-SGL is more powerful than SGL for k, l > 0,
but we still conjecture all k, l-scfls are nts. It is doubtful whether an applica-
tion of Clark’s method to k, l-SGL could enable a pac learning algorithm that
is more efficient or more powerful.

Acknowledgement

The author is deeply grateful to Rémi Eyraud, Alexander Clark and Thomas
Zeugmann for their valuable comments and advice. He also appreciates the
anonymous reviewers for their helpful comments and suggestions.

This work was supported by Grant-in-Aid for Young Scientists (B-20700124)
and a grant from the Global COE Program, “Center for Next-Generation Informa-
tion Technology based on Knowledge Discovery and Knowledge Federation”, from
the Ministry of Education, Culture, Sports, Science and Technology of Japan.
3 It is Eyraud and Clark who gave the author a critical clue to find this example in

personal communication.

278 R. Yoshinaka

References

1. Angluin, D.: Inference of reversible languages. Journal of the Association for Com-
puting Machinery 29(3), 741–765 (1982)

2. Angluin, D.: Negative results for equivalence queries. Machine Learning 5, 121–150
(1990)

3. Boasson, L., Sénizergues, G.: NTS languages are deterministic and congruential.
Journal of Computer and System Sciences 31(3), 332–342 (1985)

4. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node select-
ing tree transducer. Machine Learning 66(1), 33–67 (2007)

5. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

6. Clark, A., Eyraud, R.: Identification in the limit of substitutable context-free lan-
guages. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI),
vol. 3734, pp. 283–296. Springer, Heidelberg (2005)

7. Clark, A., Eyraud, R.: Polynomial identification in the limit of context-free substi-
tutable languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

8. Engelfriet, J.: An elementary proof of double Greibach normal form. Information
Processing Letters 44(6), 291–293 (1992)

9. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

10. Greibach, S.A.: A new normal-form theorem for context-free phrase structure gram-
mars. Journal of the Association for Computing Machinery 12(1), 42–52 (1965)

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27, 125–138 (1997)

12. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nition 38(9), 332–1348 (2005)

13. Kobayashi, S.: Iterated transductions and efficient learning from positive data: A
unifying view. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp.
157–170. Springer, Heidelberg (2000)

14. Kobayashi, S., Yokomori, T.: On approximately identifying concept classes in the
limit. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS,
vol. 997, pp. 298–312. Springer, Heidelberg (1995)

15. Kobayashi, S., Yokomori, T.: Identifiability of subspaces and homomorphic im-
ages of zero-reversible languages. In: Li, M., Maruoka, A. (eds.) ALT 1997. LNCS,
vol. 1316, pp. 48–61. Springer, Heidelberg (1997)

16. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with re-
versible languages. Theoretical Computer Science 174(1-2), 251–257 (1997)

17. Lange, S., Zeugmann, T., Zilles, S.: Learning indexed families of recursive languages
from positive data: A survey. Theoretical Computer Science 397(1-3), 194–232
(2008)

18. Lee, L.: Learning of context-free languages: A survey of the literature. Technical
Report TR-12-96, Harvard University (1996),
ftp://deas-ftp.harvard.edu/techreports/tr-12-96.ps.gz

19. Mäkinen, E.: On inferring zero-reversible languages. Acta Cybernetica 14(3), 479–
484 (2000)

20. Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars.
Journal of ACM 14(3), 501–507 (1967)

ftp://deas-ftp.harvard.edu/techreports/tr-12-96.ps.gz

Identification in the Limit of k, l-Substitutable Context-Free Languages 279

21. Sempere, J.M.: Learning reversible languages with terminal distinguishability. In:
Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006.
LNCS (LNAI), vol. 4201, pp. 354–355. Springer, Heidelberg (2006)

22. Sénizergues, G.: The equivalence and inclusion problems for NTS languages. Jour-
nal of Computer and System Sciences 31(3), 303–331 (1985)

23. T̂ırnauca, C., Knuutila, T.: Polynomial time algorithms for learning k-reversible
languages and pattern languages with correction queries. In: Hutter, M., Serve-
dio, R.A., Takimoto, E. (eds.) ALT 2007. LNCS (LNAI), vol. 4754, pp. 272–284.
Springer, Heidelberg (2007)

24. Wakatsuki, M., Tomita, E.: A fast algorithm for checking the inclusion for very
simple deterministic pushdown automata. IEICE transactions on information and
systems E76-D(10), 1224–1233 (1993)

25. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298, 179–206 (2003)

26. Yokomori, T.: Erratum to Polynomial-time identification of very simple grammars
from positive data. Theoret. Comput. Sci. 298, 179–206 (2003); Theoretical Com-
puter Science 377(1-3), 282–283 (2007)

Learning Subclasses of Pure Pattern Languages

P.J. Abisha1, D.G. Thomas1, and Sindhu J. Kumaar2

1 Department of Mathematics, Madras Christian College, Chennai - 600 059
2 Department of Mathematics, Crescent Engineering College, Chennai - 600 048

sindhujkumaar@yahoo.co.in

Abstract. Pattern language learning algorithms within the inductive
inference model and query learning setting have been of great interest.
In this paper, we study the problem of learning pure pattern languages
using queries and examples.

1 Introduction

Inductive inference introduced by Gold [6], is a model that treats as an infinite
process, which identifies the unknown concept in the limit. Inferring a pattern
common to all words in a given sample is a typical instance of inductive infer-
ence. Motivated by the study of Angluin [2], a generative device called pattern
grammar is defined by Dassow et al. [5]. In [1], a new generative device called the
pure pattern grammar is defined. We do not specify variables, instead constants
themselves are replaced by axioms initially and the process is continued with the
current set of words to get the associated language. As the study of pattern lan-
guages is motivated by the inference problem and there are algorithms to learn
subclasses of pure languages, it is of interest to analyze the inference problem
for pure pattern languages. Here we give algorithms to learn two subclasses of
the family of pure pattern languages using queries.

2 Pure Pattern Grammars

Definition 1. A pure pattern grammar is a triple G = (Σ, A, P) where Σ is an
alphabet, A ⊆ Σ∗ is a finite set of elements of Σ∗ called axioms and P is a finite
subset of Σ+ called the set of patterns. For a set P and a language L ⊆ Σ∗,
let P (L) be the set of strings obtained by replacing, uniformly and in parallel
each letter of the patterns in P , by strings in L, occurrences of the same letter
of a pattern in a particular step being replaced by the same string. The language
(PPL) generated by G, denoted by L(G), is the smallest L ⊆ Σ∗ for which we
have P ⊆ L, A ⊆ L and P (L) ⊆ L. Here L(G) = P ∪A∪P (A)∪P (P (A))∪

Proposition 1. (i) Any finite set F with at least one word p of length 1 is a
pure pattern language, (ii) The families of pure context free languages (PCF),
context free languages (CFL), regular languages (RL) are incomparable with the
family of pure pattern languages (PPL). The family of pure pattern languages
generated by grammars with a single pattern is strictly included in the family of
deterministic tabled 0L languages.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 280–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Subclasses of Pure Pattern Languages 281

3 Learning a Subclass of PPL

We now give a polynomial time algorithm to learn a subclass of PPL using the
restricted subset queries and restricted superset queries. The inclusion problem
for this class is decidable, as the difference between the pattern languages with
a single pattern over only variables and the pure pattern languages of this class
lies mainly in the patterns. The technique of the algorithm is as follows: First,
the pattern is learnt using restricted superset queries and then the axioms are
learnt using restricted subset queries. We assume that length of the pattern is
known (fixed), say ‘n’ and the length of the longest axioms is known, say ‘m’.
If Σ = {a1, a2, . . . , ak} is the known alphabet of the language to be learnt then
the axiom set A is a subset of all words over Σ of length i, 1 ≤ i ≤ m. The
words in Σn are lexicographically arranged and restricted superset queries for(

Σ,

m⋃

i=0

Σi, pi

)
where pi ∈ Σn are made. If the answer is yes, pi is the pattern

p; otherwise repeat the same procedure for the next word in Σn. Now, to learn
axiom set A, initially fix A = φ. Arrange the words in Σi, i = 0 to m, according to
increasing order of length and among the words of equal length lexicographically.
Let them be w1, w2, . . . , ws. At the tth step, ask the restricted subset query for
(Σ, A∪{wt}, p). If the answer is ‘yes’, increment A to A∪ {wt}. If the answer is
‘no’, A is not incremented. The output at the last step is the required PPG.

Algorithm
Input: An alphabet Σ = {a1, a2, . . . , ak}, m = max{|xi| : xi ∈ A}, n = |p|

Words p1, p2, . . . , pr from Σn arranged lexicographically.
Words w1, w2, . . . , ws are given in the increasing length order, among
words of equal length according to lexicographic order.

Output: G = (Σ, A, p)
begin

for t = 1 to r do
begin

ask restricted superset query for

(
Σ,

m⋃

i=0

Σi, pt

)

If ‘yes’ then output p = pt

else t = t + 1
end

A = φ
for t = 1 to s do
begin

ask restricted subset query for G = (Σ, A ∪ {wt}, p)
If ‘yes’ then A = A ∪ {wt} and t = t + 1

else output G
end

end

282 P.J. Abisha, D.G. Thomas, and S.J. Kumaar

4 Learning Another Subclass of PPL

In the MAT learning [3], the teacher / oracle can answer membership query and
equivalence query. We consider any subclass of PPL for which membership and
equivalence queries are decidable. In addition, we require that, the axiom set
A is a code [4]. However, the PPG need not have only a single pattern. The
algorithm to learn a pure pattern language L(G) from the above subclass works
as follows:

The fixed alphabet Σ of cardinality k and the axiom set A whose cardinality
is greater than or equal to k are the inputs to the algorithm. Let the target PPG
be G = (Σ, A, P). Initially, when j = 0, the pattern set Pj is assumed to be
empty by the algorithm. The learner asks the oracle, first the equivalence query
for L(G) and L(Gj) where Gj = (Σ, A, Pj). We have either L(Gj) ⊂ L(G) or
L(Gj) = L(G). If the answer is positive, we obtain an equivalent grammar Gj

of the target grammar. Otherwise, a positive sample word x ∈ L(G) − L(Gj)
is returned. If x 	∈ A+. Then Pj+1 = Pj ∪ {x} and Gj+1 = (Σ, A, Pj+1). If
x ∈ A+, then the learner factorises x over A. It should be noted that this can be
done in linear time by Sardinas-Patterson algorithm [4]. Let x = x1x2x3 . . . xm,
xi ∈ A. The learner finds the minimal prefix of x which belongs to L(G). It
is denoted by min(x) and this is found by asking membership query to the
oracle. Let min(x) = w = x1x2 . . . xr and bagmin(x) = {x′

1x
′
2 . . . x′

s} where x′
j

(1 ≤ j ≤ s) are distinct and {x1, x2, . . . , xr} = {x′
1, x

′
2, . . . , x

′
s}. It should be

noted that the number of distinct elements in bagmin(x) is less than or equal
to number of elements in A. Let {f1, f2, . . . , fn} be the set of all 1-1 morphisms
from bagmin(x) to Σ. There is atmost k! such morphisms (i.e.,) n ≤ k!. The
learner asks membership query for fq(min(x)) (q = 1, 2, . . . , n). If the answer is
positive the learner updates the pattern set Pj to Pj+1 = Pj ∪{fq(min(x))} and
asks the equivalence query for L(G) and L(Gj+1), where Gj+1 = (Σ, A, Pj+1).
This process is repeated until we get a PPG equivalent to G.

References

1. Abisha, P.J., Subramanian, K.G., Thomas, D.G.: Pure Pattern Grammars. In: Pro-
ceedings of International Workshop on Grammar Systems, Austria, pp. 253–262
(2000)

2. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and
System Sciences 21, 46–62 (1980)

3. Angluin, D.: Learning regular sets from queries and counter examples. Information
and Computation 75, 87–106 (1987)

4. Berstel, J., Perrin, D.: The Theory of Codes. Academic Press, New York (1985)
5. Dassow, J., Paun, G., Salomaa, A.: Grammars based on patterns. International

Journal of Foundations of Computer Science 4, 1–14 (1993)
6. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–

474 (1967)

Which Came First, the Grammar or the

Lexicon?

Tom Armstrong1 and Tim Oates2

1 Wheaton College
Norton, MA 02766 USA

armstrong tom@wheatoncollege.edu
2 University of Maryland Baltimore County

Baltimore, MD 21250 USA
oates@cs.umbc.edu

Abstract. Computational approaches to learning aspects of language
typically reduce the problem to learning syntax alone, or learning a lex-
icon alone. These simplifications have led to disconnected solutions and
some unreasonable assumptions about inputs to their algorithms. In this
paper, we present an approach that exploits a grammar learning algo-
rithm to learn its own alphabet, or lexicon. We present empirical results
and categorize the successes and types of errors lexical acquisition ap-
proaches encounter.

Keywords: lexical learning, applications of grammars, natural language
learning.

1 Introduction

Many grammar learning algorithms derive inspiration from the distinctly human
ability to learn language. While children are facile at learning an alphabet (i.e.,
words in the language composed on phonemes) and constructing a generative
grammar using that alphabet, our computational approaches are often brittle
and prone to make unrecoverable errors. Learning grammars is an intractable
problem unless, for one, concessions are made regarding the input, and having
complete knowledge of the language’s alphabet is a common assumption. For
example, most algorithms expect an input like the cat hates the dog, and not an
input like thecathatesthedog.

This paper explores the utility of including higher-level structural informa-
tion (in the form of a learned grammar) in the unsupervised learning of a lex-
icon. We remove the assumption that the grammar learning algorithms have
perfectly segmented input data. We discuss this learning task in terms of the
lexical-syntactic interface [1] where two learning tasks (i.e., lexical acquisition
and grammar learning) are bootstrapped together. Here we extend our approach
through experimentation with additional lexical data.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 283–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 T. Armstrong and T. Oates

2 Lexical-Syntactic Interface

The lexical-syntactic interface is the interplay between the learning tasks of
lexical acquisition and grammar induction. A typical lexicon learning algorithm
begins with a stream of categorical data or a set of strings, and its goal is to
induce an inventory of lexical items. A typical grammar induction algorithm
begins with a set of strings, and its goal is to learn a generative structural model
like the RPNI example above. While lexical learning is done without any regard
for structural information, grammar induction assumes a known lexicon and
correctly segmented input strings. In the lexical-syntactic interface, we exploit
the structure inherent in the sequences of words and inside of words.

GramLex is the algorithmic instantiation of the lexical-syntactic interface in
the form of a bootstrap algorithm [1]. We detailed the specific algorithmic com-
ponents of the interface and presented experimental results on a variety of bench-
mark languages. The grammar learning community has a series of benchmark
languages for comparing learning algorithms: L1 through L15 (Canonical deter-
ministic finite automata and data are available from http://www.irisa.fr/
symbiose/people/coste/gi benchs.html) [2,3].

0

1
a

3

b

c

2

a

c
b

Fig. 1. Target Machine Topology

Let us look at an example of L15 with a random lexicon where GramLex
learns a lexicon using a grammar learning algorithm. Using the three words a =
ow r ih n jh (orange), b = p er p ax l (purple), and c = r ey z ih n z (raisins)
in L15, we begin with Σ (the alphabet) and Γ (the initial lexicon) = {λ, ow,
r, ih, n, jh, p, er, ax, l, ey, z}. Given a characteristic sample for this language,
GramLex returns the automaton in Figure 1.

3 Experiments

While the grammar learning community has made an effort to evaluate algo-
rithms empirically, it is less obvious that the lexicon learning community has
done the same. Proper evaluation of our lexical and grammatical bootstrap is a
challenge with respect to the lexicon we select. To begin, we choose a random
collection of words found in the SWITCHBOARD corpus. Using the human-
annotated phonetic transcriptions for each word, we provide the sequence of

http://www.irisa.fr/symbiose/people/coste/gi_benchs.html
http://www.irisa.fr/symbiose/people/coste/gi_benchs.html

Which Came First, the Grammar or the Lexicon? 285

phonemes for each word (an ARPAbet symbol for each phoneme) to the boot-
strap in place of the standard alphabet in the characteristic sample. We run our
bootstrap algorithm and analyze the resulting learned machine. The words vary
in length from a maximum length of 15 phonemes (e.g., eh k s t r ow r d ih n
eh r ax l iy or extraordinarily) to a minimum length of 2 phonemes (e.g., m ey
or my) and collectively had a mean length of about 7 phonemes. Here we report
the results on a trial of 50 randomly selected lexicons and the language L15. Of
the 50 trials, 39 learned the correct lexicon and the correct grammar.

The remaining 11 trials that did not completely learn the lexicon or the gram-
mar are categorized into four distinct classes of errors. Class 1 errors (2/11) are
trials where we correctly learn the lexicon, but not the correct grammar. Class 2
errors (2/11) are trials where we correctly learn the automaton (with one caveat),
and we correctly learn the lexicon (with one caveat). That is, the grammar accept
all of the strings in the language, but also accepts a special overgeneralize-type
string. Class 3 errors (5/11) are trials that fail to learn the entire lexicon and
overgeneralize beyond the surface equivalence found in class 2 errors. While the
machine contains some correct structure, the resulting machines further and fur-
ther fail the looks good test. Class 4 errors (2/11) are the most egregious in terms
of incorrectly learned structure and incorrect lexical items.

4 Conclusion and Future Work

In this paper, we presented an extension to our novel framework for bootstrap-
ping the acquisition of a lexicon and learning a grammar. Prior work on lexical
acquisition has ignored how those terms are used from a syntactic point of view,
and grammar learning approaches typically require perfectly formed inputs to
guarantee any learning result. This work demonstrates the viability of learning
both tasks in tandem for a rich diversity of languages and lexicons.

Future work will proceed in two directions. First, we will focus on futher
defining the boundaries between the learnable and the pathological for certain
lexicons. Second, we will expand the class of languages we are interested in
learning. Context-free grammars and natural languages may provide even more
structure to guide lexicon learning and, in fact, make learning easier.

References

1. Armstrong, T., Oates, T.: Learning in the lexical-grammatical interface. In: FLAIRS
Conference. AAAI Press, Menlo Park (2008)

2. Tomita, M.: Dynamic construction of finite automata from examples using hill climb-
ing. In: Proceedings of the 4th Annual Cognitive Science Conference, pp. 105–108
(1982)

3. Dupont, P.: Regular grammatical inference from positive and negative samples by
genetic search: the gig method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994.
LNCS, vol. 862, pp. 236–245. Springer, Heidelberg (1994)

Learning Node Label Controlled Graph

Grammars
(Extended Abstract)

Christophe Costa Florêncio

Department of Computer Science, K.U. Leuven, Leuven, Belgium
Tel.: +32.(0)16327863; Fax: +32.(0)16327996
Chris.CostaFlorencio@cs.kuleuven.be

1 Introduction

Within the data mining community there has been a lot of interest in mining
and learning from graphs (see [1] for a recent overview). Most work in this
area has has focussed on finding algorithms that help solve real-world problems.
Although useful and interesting results have been obtained, more fundamental
issues like learnability properties have hardly been adressed yet. This kind of
work also tends not to be grounded in graph grammar theory, even though some
approaches aim at inducing grammars from collections of graphs.

This paper is intended as a step towards an approach that is more theoretically
sound. We present results concerning learnable classes of graph grammars.

2 Graph Grammars

Many approaches to representing graph languages exist, the present paper is
restricted to the popular node label controlled (NLC) grammars. These consist
of production rules with a non-terminal label at the left-hand side (lhs) of a
rule, and on the right-hand side (rhs) a graph called the daughter graph, and
an embedding relation. The daughter graph has its nodes labelled with both
terminal and non-terminal labels.

Generation of a graph starts with the axiom, a node labelled with the start
non-terminal symbol. Rules from the grammar are applied such that non-terminal
nodes are replaced by daughter graphs, which are connected to the host graph ac-
cording to the embedding relations. The graph language generated by a grammar
consists of all graphs thus obtained that have terminal labels exclusively.

The embedding relation specifies how the daughter graph is connected by
considering just the neighbourhood of the replaced node. For each vertex in the
daughter graph, the embedding relation specifies either ’empty’ or a node label.
All nodes in the neighbourhood with the label will be connected to that vertex.

We assume that all rules in all grammars are productive, i.e., do not contain
useless symbols, and that unit- and ε-productions are absent. We also assume
that every rule contains at least one terminal (cf lexicalized TAG, for example).

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 286–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Learning Node Label Controlled Graph Grammars 287

Note that for many classes of graph grammar the generating grammar does
not necessarily function as a parser as well. The reason is that, as part of a
derivation step, the edges incident on the node to be replaced are removed, and
the daughter graph that is inserted is connected in a pre-determined way. In
this setting, there is no way to recover the removed edges. This may however be
required for deciding membership of some given graph.

A number of restricted subclasses of NLC grammars can be found in the
literature, we will focus on Boundary NLC (B -NLC), which disallows edges
between non-terminal vertices in the rhs. This is the most expressive class of
NLC grammars known for which parsers can effectively be obtained.

The graph language generated by grammar G will be denoted GL(G), the
derivation language generated by grammar G will be denoted DL(G).

Informally speaking, a derivation tree for a graph and graph grammar is a
tree that reflects the generation process from grammar to derived graph, i.e., the
nodes correspond to the applications of rewrite rules. We define them so that
the nodes are labelled with the daughter graphs of their corresponding rules.
The daughters of any node in the tree correspond to the rewritings applied to
the non-terminals in the rhs. The number of daughters is exactly the number of
non-terminals, that is, these rules are considered to all be applied in one step.

In the case of a rule that has no non-terminals in the rhs (a terminal rule), the
corresponding node is a leaf. In the present context, the embedding relations can
be safely ignored, we thus leave these out of the derivation tree representation.

3 Learnability

We are interested in learnability in the technical sense of identification in the
limit ([2]). In this paradigm a class of languages is considered learnable just
if there exists an algorithm over sequences of input data that converges on a
correct hypothesis after a finite number of presentations. It is assumed that all
data is presented eventually. A sufficient condition for a class to be identifiable
in the limit ([3]) is being r.e., consisting of just recursive languages and having
the property of infinite elasticity:

Definition 1. Infinite elasticity[3, 4]
A class L of languages is said to have infinite elasticity if there exists an infinite
sequence 〈sn〉n∈N of sentences and an infinite sequence 〈Ln〉n∈N of languages in
L such that for all n ∈ N, sn 	∈ Ln, and {s0, . . . , sn} ⊆ Ln+1.

A class L of languages is said to have finite elasticity if it does not have
infinite elasticity.

So, one way of proving learnability of a class is demonstrating it has finite elas-
ticity and to extend the class by exploiting a closure property. The following
theorem, from [5], is useful when the relation between language element and
possible derivation is finite-valued. It is generally easier to prove finite elasticity
of a class of derivation languages than of a class of string languages.

288 C. Costa Florêncio

Let Σ and Υ be two alphabets, a relation R ⊆ Σ∗ × Υ ∗ is said to be finite-
valued just if for every s ∈ Σ∗, there are at most finitely many u ∈ Υ ∗ such
that Rsu. If M is a language over Υ , define a language R−1[M] over Σ by
R−1[M] = {s | ∃u(Rsu ∧ u ∈M)}.

Theorem 2. Let M be a class of languages over Υ that has finite elasticity,
and let R ⊆ Σ∗ × Υ ∗ be a finite-valued relation. Then L = {R−1[M] |M ∈ M}
also has finite elasticity.

In order to obtain learnable subclasses of B -NLC , additional restrictions need
to be imposed. Let k be an upper bound on the number of occurences of any
terminal, and let k-B -NLC denote the class of all B -NLC grammars with k
as such a bound. This bound implies a bound on the number of occurences of
distinct non-terminal parts of daughter graphs. Since we assume a fixed alphabet
and terminals in all rules, a bound on the number of rules in the grammar is
implied, which implies a bound on the number of non-terminals.

Proposition 3. For k = 1, DL(Gk-B-NLC) has finite elasticity.

Proof. Sketch: Assume that this class has infinite elasticity with trees t1, . . . and
derivation languages D1, . . ., with corresponding grammars G1, For any i,
the set G′′

i of grammars in the class that generate a minimal derivation language
and are consistent with t1 . . . ti−1 is of finite cardinality. The grammar Gi must
be such that it is a superset of some such grammar, with a substitution applied
to it. There are just a finite number of such substitutions for each G′, so after p
there can only occur a finite number of different grammars. Since ti 	∈ DL(Gi)
and {t1, . . . ti−1} ⊆ DL(Gi), each of these grammars can only occur a finite
number of times in the sequence. Thus, the whole sequence G1, . . ., and thus the
whole sequence D1, . . ., must be of finite length. �

Applying Theorem 2 twice, this result can be generalized to k > 1, and then from
derivation- to graph language. It then follows that For any k, GL(Gk-B-NLC) is
learnable from positive data (graphs) by a consistent and conservative learner.

References

[1] Cook, D.J., Holder, L.B. (eds.): Mining Graph Data. John Wiley & Sons, Chichester
(2006)

[2] Gold, E.M.: Language identification in the limit. Information and Control 10, 447–
474 (1967)

[3] Wright, K.: Identification of unions of languages drawn from an identifiable class.
In: The 1989 Workshop on Computational Learning Theory, pp. 328–333. Morgan
Kaufmann, San Mateo (1989)

[4] Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
Corrigendum to identification of unions. In: The Fourth Workshop on Computa-
tional Learning Theory. Morgan Kaufmann, San Mateo (1991)

[5] Kanazawa, M.: A note on language classes with finite elasticity. Technical Report
CS-R9471, CWI, Amsterdam (1994)

Inference of Uniquely Terminating EML

S. Kannamma1, D.G. Thomas2, and K. Rangarajan2

1 S.D.N.B. Vaishnav College for Women, Chennai - 600 044
2 Madras Christian College, Chennai - 600 059

dgthomasmcc@yahoo.com

1 Introduction

In [3], we have provided an algorithm to infer a few subclasses of linear languages
through labeled extended Petri nets. The family of equal matrix languages [6]
meets both the families of context sensitive languages and context-free languages.
In this paper, we prove that an equal matrix language is a Petri net language. We
construct labeled extended Petri nets to infer uniquely terminating code k-equal
matrix languages (utCk-EMLs), a subclass of EMLs. A similar algorithm can be
employed to construct a labeled Petri net which generates a uniquely terminating
regular language [4]. This algorithm can be modified to infer a given uniquely
terminating code regular language [2] through a labeled extended Petri net.

2 Algorithm to Infer Uniquely Terminating Languages

For the notions of a Petri net language and an equal matrix language we refer to
[5,6]. A code k-equal matrix language and uniquely terminating code k-equal ma-
trix language can be defined similar to code regular language [1] and uniquely ter-
minating code regular language [2] respectively. We can show the following results.

Theorem 1. An equal matrix language (EML) is a Petri net language.

Corollary 1. A code k-equal matrix language (Ck-EML) is a Petri net
language.

We present an algorithm to infer a uniquely terminating code k - equal matrix
language from positive data. This algorithm first develops a trie structure. It then
gives rules to construct a labeled extended Petri net with its transitions labeled
as code words over the given alphabet which generates the required language.

A set of sample words {w1, w2, . . . , wn} from a uniquely terminating code k-
equal matrix language and the code set K are given as inputs to the inference
algorithm. The following is the procedure to construct a labeled extended Petri
net with the transitions labeled with code words from K generating the required
utCk - EML.

Algorithm PN - utCk - EML

1. For each word in the sample do

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 289–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

290 S. Kannamma, D.G. Thomas, and K. Rangarajan

1a. Factorise the word using the code set K and partition into k-equal parts
as xi = α1α2 . . . αk, αi ∈ K+.

1b. If the αi’s are of the form α1 = u1u2 . . . un; α2 = v1v2 . . . vn; . . .;
αk = w1w2 . . . wn, form the k-tuples (u1, v1, . . . , w1), (u2, v2, . . . , w2), . . .,
(un, vn, . . . , wn) and store them as labels of nodes in the trie structure
and label the root node as a k-tuple of nonterminals, say (A1, A2, . . . , Ak);
(un, vn, . . . , wn), is the label of terminal node. Insert associated k-tuple
nonterminals to the new nodes other than the terminal nodes.

1c. If there are nodes having children which are equally labeled final nodes,
then merge the associated nonterminals of these nodes.

2. The construction of the resulting labeled extended Petri net is given as an
output from the trie structure.
2a. If S has a child, a node labeled by the k-tuple (uj , vj , . . . , wj) with asso-

ciated nonterminal (B1, B2, . . . , Bk), then make places ps = A1, B1, A2,
B2, . . ., Ak, Bk with a single token in ps and no tokens in other places
and make transitions respectively labeled as uj, vj , . . . , wj and the flow
relation as shown below:

Structure in trie

Structure in Petri net

S

A1 = ps uj vj wjB1 B2 BkA2 Ak

(A1, A2, . . . , Ak)

(B1, B2, . . . , Bk)(uj , vj , . . . , wj)

Remark: If S is not the parent node, then, the procedure mentioned
above holds good with the only condition that none of the places intro-
duced have tokens in them.

2b. If the node associated with S has a child which is a final node labeled
(un, vn, . . . , wn), then make places ps = A1, A2, . . . , Ak and pf , where, pf

is a final place, with a single token in ps = A1 and no tokens elsewhere,
as shown below:

Structure in Petri netStructure in trie

S

wnAk pf

A1 = ps un A2 vn A3

(A1, A2, . . . , Ak)

(un, vn, . . . , wn)

2c. If a node labeled by the k-tuple (uj, vj , . . . , wj) has a nonterminal
(A1, A2, . . . , Ak) associated with it and if (A1, A2, . . . , Ak) is again the
nonterminal associated with its parent, then make places A1, A2, . . . , Ak

and p1, p2, . . . , pk−1; make transitions with labels as the words
uj , vj , . . . , wj ; the flow relation connecting these places and transitions
is shown below:

Inference of Uniquely Terminating EML 291

Structure in trie Structure in Petri net

(A1, A2, . . . , Ak)

(A1, A2, . . . , Ak)
(uj, vj , . . . , wj)

(ui, vi, . . . , wi)

A1 AkA2

uj vj wj

p1 pk−1

2d. If the trie structure leading to a final node is a chain, the corresponding
structure of the labeled extended Petri net is shown below:

Structure in Petri netStructure in trie

(A1, A2, . . . , Ak)

(B1, B2, . . . , Bk)

(un, vn, . . . , wn)

(ui, vi, . . . , wi)

(uj , vj , . . . , wj)

A1 uj

B1

vn A3

un

vj

A2

B2

Ak Bkwj wn pf

The initial marking of the constructed Petri net is with one token in ps and
no tokens in other places and the final marking is with one token in pf and no
tokens in other places. The language generated by this Petri net is the utCk -
EML inferred in a sequence of conjectures.

References

1. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: Learning code regular and code
linear languages. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147,
pp. 211–221. Springer, Heidelberg (1996)

2. Emerald, J.D., Subramanian, K.G., Thomas, D.G.: A note on inferring uniquely
terminating code languages. Information Processing Letters 70, 217–222 (1999)

3. Kannamma, S., Thomas, D.G., Rangarajan, K.: On inference of uniquely terminat-
ing linear languages. In: Thangavel, K., Balasubramaniam, P. (eds.) Computing and
Mathematical Modeling, pp. 291–298. Narosa Publishing House (2006)

4. Makinen, E.: Inferring uniquely terminating regular languages from positive data.
Information Processing Letters 62, 57–60 (1997)

5. Peterson, J.L.: Petri net theory and modeling of systems. Prentice Hall, Englewood
Cliffs (1981)

6. Siromoney, R.: On equal matrix languages. Information and control 14, 135–151
(1969)

Estimating Graph Parameters Using Graph

Grammars

Sourav Mukherjee1 and Tim Oates2

1 Department of Computer Science,
University of Maryland, Baltimore County, USA

Phone: +1-410-455-8790
sourav1@umbc.edu

2 Department of Computer Science,
University of Maryland, Baltimore County, USA

oates@cs.umbc.edu

Stochastic graph grammars are probabilistic models suitable for modeling rela-
tional data, complex organic molecules, social networks, and various other data
distributions [1]. In this paper, we demonstrate that such grammars can be used
to reveal useful information about the underlying distribution. In particular,
we demonstrate techniques for estimating the expected number of nodes, the
expected number of edges, and the expected average node degree, in a graph
sampled from the distribution. These estimation techniques use the underlying
grammar, and hence do not require sampling. Experimental results indicate that
our estimation techniques are reasonably accurate.

We use the notation G = (V, E) to refer to a graph with V being the set of
vertices, and E being the set of edges.

Definition 1. Let G = (V, E) be a graph. A hyperedge is an ordered subset
of its vertices V . Alternatively, a hyperedge of degree n can be thought of as a
mapping H : {1, 2, ..., n} → V . A hypergraph is a graph that can, in addition to
edges, also have hyperedges.

Definition 2. A (hyperedge replacement) stochastic context-free graph gram-
mar (SCFGG) is defined as a tuple (S, N, T, P, p) where:

– N is the set of non-terminal symbols,
– T is the set of terminal symbols, disjoint from N,
– S ∈ N is a special non-terminal called the start symbol,
– P is a set of productions,
– p is a probability function defined on the set of productions, such that the sum

of the probabilities of all productions with the same left hand side equals 1.

In a hyperedge replacement SCFGG, terminals are used to denote graphs without
hyperedges, while non-terminals are used to label hyperedges. A production is an
ordered pair (H, α), written as H → α, where H is a non-terminal and α is a
hypergraph.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 292–294, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Estimating Graph Parameters Using Graph Grammars 293

A SCFGG can be viewed as a generative model: we start with the start symbol
S, and at each step, we replace any non-terminal H with a graph α such that
there is a production H → α. This process is continued until we arrive at a
graph that has no non-terminal symbols. When a hyperedge H in a graph G is
replaced using the production H → α, G is called the host-graph, and α is called
the subgraph.

We now present techniques for estimating the expected number of vertices
and nodes in a graph sampled from a distribution, given the grammar for the
distribution. We define the following notation, which will aid the subsequent
discussion. For any non-terminal Z, let us assume that there are NZ produc-
tion rules with Z on the left hand side, with probabilities pZ,1, pZ,2, ..., pZ,NZ ,
satisfying

∑NZ

j=1 pZ,j = 1. Let the jth such production be of the form Z → αj

where αj is a graph with vZ,j vertices, aZ,j edges and hZ,j hyper-edges, labeled
Zj,1, Zj,2, ..., Zj,hZ,j . Note that these non-terminals do not have to be all dis-
tinct; they may even be the same as Z. Finally, let DZ denote the degree of the
non-terminal Z.

For any non-terminal Z, let nZ represent the expected number of nodes in
any graph obtained by expanding Z. Then the equation for nZ is given by:

nZ =
NZ∑

j=1

pZ,j(vZ,j +
hZ,j∑

k=1

(nZj,k
−DZj,k

)) (1)

Thus we see that for each non-terminal Z in the grammar, we will have a single
linear equation, leading to a system to linear equations with the same number
of equations as the number of non-terminals.

We now develop a system of linear equations for estimating the expected num-
ber of edges eZ in a graph, obtained from any non-terminal Z in the grammar.
The problem of estimating the expected number of edges is different from that
of estimating the expected number of nodes, in that unlike nodes, edges are not
glued together when a subgraph is embedded inside a host-graph. The equation
for eZ is given by:

eZ =
NZ∑

j=1

pZ,j(aZ,j +
hZ,j∑

k=1

eZj,k
) (2)

Once again, we see that for each non-terminal Z in the grammar, we will have
a single linear equation, leading to a system of linear-equations with the same
number of equations as the number of non-terminals.

Next we present two techniques, the Näıve Degree Estimator and the Linear
Degree Estimator for estimating the average node degree of a graph generated
from a given grammar. The average degree d̄ of a node in a graph G = (V, E) is
defined as d̄ = 1

|V |
∑

v∈V d(v).We also know that d̄ = 2|E|
|V | . We will refer to this

result as the Handshaking Lemma [2].

294 S. Mukherjee and T. Oates

Given a non-terminal Z, let d̄Z denote the expected value of the average
degree of a node, of any graph obtained from Z. Then, we can estimate d̄Z as:

d̄Z ≈
2eZ

nZ
(3)

Of course, Equation 3 is only an approximate estimate, because the number of
nodes and the number of edges are not, in general, independent. We now present
a more accurate estimator.

Let, for a non-terminal Z, d̄Z indicate the expected average node degree of
any graph derived from the non-terminal symbol Z. Recall that the average is
computed over all nodes in a graph, and the expectation is computed over the
distribution of the graphs. Then, the expected number of nodes in the graph αj

is given by

nZ,j =
hZ,j∑

k=1

(nZj,k
−DZj,k

) + vZ,j (4)

Let us number the vertices in αj as 1, 2, ..., vZ,j and let for vertex l(1 ≤ l ≤ vZ,j),
al be the number of terminal edges incident on that vertex. Then the expression
for the expected average number of nodes is given by:

d̄Z −
NZ∑

j=1

hZ,j∑

k=1

pZ,j

nZ,j
d̄Zj,k

=
Nz∑

j=1

vZ,j∑

l=1

pZ,j

nZ,j
al (5)

Thus, we get a linear equation for every non-terminal Z in the grammar. By
solving this linear system, we can arrive at an estimate of the expected average
node degree.

Graph grammars are useful probabilistic models for distributions over graphs
because they are compact, hierarchical, and amenable to interpretation by do-
main experts. However, in this paper, we have demonstrated that the utility of
graph grammars goes beyond elucidation of structure and generation of samples.
We have presented grammar-based techniques to estimate the expected number
of nodes, the expected number of edges, and the expected average node degree
in a graph generated by the grammar. We have also presented a characterization
of grammars that can produce graphs that are not connected. Future directions
include exploring the characterization of grammars the generate planar graphs,
and applying these results to real-life domains such as relational databases, or-
ganic molecules, and social networks.

References

1. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

2. West, D.B.: Introduction to Graph Theory, 2nd edn. Prenctice Hall, Upper Saddle
River (2001)

Learning of Regular ω-Tree Languages

M. Jayasrirani1, M.H. Begam1, and D.G. Thomas2

1 Arignar Anna Government Arts College, Walajapet
2 Madras Christian College, Chennai - 600 059

dgthomasmcc@yahoo.com

Abstract. We introduce two subclasses of regular ω-tree languages called
local ω-tree languages and Buchi local ω-tree languages. Automata char-
acterization for these ω-tree languages is given. For these subclasses and
ω-regular tree languages learning algorithms are given.

1 Introduction

The theory of tree automata and tree languages emerged in the middle of 1960s.
Saoudi et al. [2] have considered infinite trees (ω-trees), recognizable ω-tree lan-
guages and regular ω-tree languages. Infinite trees are useful to decide second
order theories. In this paper local ω-tree languages and Buchi local ω-tree lan-
guages are defined and automata characterization for ω-regular tree languages in
terms of local ω-tree languages and Buchi local ω-tree languages is given. There
is no learning algorithm so far in the literature for the local ω-tree languages,
Buchi local ω-tree languages and regular ω-tree languages. We give learning al-
gorithms for these classes of ω-tree languages. Our approach is similar to the
one given in [3].

2 Definitions and Results

Definitions concerning trees, root of a tree, frontier of a tree, forks of a tree,
infinite trees, automata on infinite trees and ultimately periodic infinite trees
can be found in [1,2].
TΣ stands for the set of all finite trees over Σ.
T ω

Σ stands for the set of all infinite trees over Σ.
root(t) stands for root of a tree t.
fork(t) stands for fork of a tree t.
fork(Σ) stands for the set of all forks of Σ-trees.
Frfork(t) stands for the set of all forks of a tree t that end with frontiers of t.

Definition 1. A ω-tree language L ⊆ T ω
Σ is called a local ω-tree language if there

exists a pair S = {R, E} (called a local system) where R ⊆ Σ and E ⊆ fork(Σ)
such that

L = {t ∈ T ω
Σ : root(t) ∈ R, fork(t) ⊆ E}

The elements in fork(Σ) occur infinitely many times. In this case we write
L = Lω(R, E). The set of all local ω-tree languages is denoted by Lω.
L = {a(bω, cω), a(cω , bω)} is a local ω-tree language.

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 295–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

296 M. Jayasrirani, M.H. Begam, and D.G. Thomas

Definition 2. A Buchi local system over Σ is an ordered triple
S = {R, E, E′}where R ⊆ Σ, E ⊆ fork(Σ) and E′ ⊆ E. We denote Lω(R, E, E′)
a Buchi local ω-tree language defined as

L′(R, E, E′) = {t ∈ TΣ : root(t) ∈ R, fork(t) ⊆ E, inf fork(t) ∩ E′ 	= φ}
where inffork(t) is the set of elements in fork(t) which occur infinitely many
times in t. An ω-tree language L ⊆ T ω

Σ is called a Buchi local ω-tree language if
there exists a Buchi local system such that L = Lω(R, E, E′). The set of all Buchi
local ω-tree languages is denoted by Lω

BE . L = {a(bω, cω), a(cω, bω)} is a Buchi
local ω-tree language.

Theorem 1. Every regular ω-tree language (recognizable ω-tree language) is an
alphabetic homomorphic image of a Buchi local (local) ω-tree language.

We can give construction procedures for deterministic Buchi k-ary ω-tree au-
tomaton M such that L = Lω(M) where L is a local (Buchi local) ω-tree
language.

3 Learning Buchi Local ω-Tree Languages

Definition 3. Let L ∈ Lω
BE be such that L = Lω(S) for some Buchi local system

S = (R, E, E′) over an alphabet Σ. S is said to be minimal for L, if for any
other Buchi local system S1 = (R1, E1, E

′
1) over Σ with L = Lω(S1) we have

R ⊆ R1, E ⊆ E1 and E′ ⊆ E′
1.

Definition 4. Let K be a finite sample of ultimately periodic infinite trees. Let
RK = root(K) = {root(t) : t ∈ K}, EK = fork(K) = ∪t∈Kfork(t)

E′
K = ∪a(bω ,cω)Frfork(t)

SK = (RK , EK , E′
K) is called a Buchi local system associated with K and

L = Lω(SK) is called Buchi local ω-tree language associated with K.

Theorem 2. If K, K ′ are finite samples of ultimately periodic ω-trees of T ω
Σ

then
1. K ⊆ Lω(SK)
2. K ⊆ K ′ implies Lω(SK) ⊆ Lω(SK′)
3. L ∈ Lω

BE with K ⊆ L implies Lω(SK) ⊆ L

Definition 5. Let L be a local (Buchi local) ω-tree language. A finite subset F
of T ω

Σ is called a characteristic sample for L if L is the smallest local (Buchi
local) ω-tree language containing F .

Theorem 3. If F is the characteristic sample for a local (Buchi local) ω-tree
language and F ⊆ K ⊆ L then L = Lω(SK).

Theorem 4. There effectively exists a characteristic sample for any local (Buchi
local) ω-tree language.

Theorem 5. Given an unknown local (Buchi local) ω-tree language we give an
algorithm that learns in the limit from positive data, a local system (Buchi local
system) SF such that Lω(SF) = L.

Learning of Regular ω-Tree Languages 297

4 Learning Regular ω-Tree Languages

In this section we give a learning algorithm for regular ω-tree languages from
positive data and restricted superset queries.

If L is a regular ω-tree language over Σ and if L is recognized by a Buchi k-
ary ω-tree automaton M =< Q, Σ, δ, q0, F > then by theorem 1 there is a Buchi
local ω-tree language U over Ω and a strictly alphabetic morphism h : Ω → Σ
such that h(U) = L. Consider an ultimately periodic infinite tree a(bω, cω) in U .
Let t = a(b(b, b), c(c, c)) where a, b, c ∈ Σ. Let g(t) = (f, q) < (d1, q1), (d2, q2) >
where di = root of (ti) (i = 1, 2, ti are the subtrees of t) be a tree over Ω. i.e.,

(f, q)

(d2, q2)(d1, q1)

g(t) =

The tree g(t) is said to be a good tree for t if d1, d2 are the children of f .
Let G(t) be the set of all good trees in h−1(t) for t. If HU is a characteristic
sample for U , then there exists a finite set of positive data SL of L such that
HU ⊆ h−1(SL).

We provide a learning algorithm for regular ω-tree languages from positive
data and restricted superset queries.

Theorem 6. Given an unknown regular (recognizable) ω-tree language L, we
can give algorithm that effectively learns from positive data and restricted super-
set queries, a Buchi local (local) system S such that L = h(Lω(S)).

References

1. Gecseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3,
pp. 1–68. Springer, Heidelberg (1997)

2. Saoudi, A.: Rational and recognizable infinite tree sets. In: Tree Automata and
Languages, pp. 225–234. Elsevier Science, Amsterdam (1992)

3. Saoudi, A., Yokomori, T.: Learning local and recognizable ω-languages and Monadic
Logic Programs. In: Proc. EuroColt, 1993, pp. 157–169. Oxford Univ. Press, Oxford
(1994)

Inducing Regular Languages Using

Grammar-Based Classifier System

Olgierd Unold

Institute of Computer Engineering, Control and Robotics,
Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

olgierd.unold@pwr.wroc.pl
http://olgierd.unold.staff.iiar.pwr.wroc.pl/

Abstract. This paper takes up the topic of a task of training Grammar-
based Classifier System (GCS) to regular grammars from data. GCS is
a new model of Learning Classifier Systems in which the population of
classifiers has a form of a context-free grammar rule set in a Chomsky
Normal Form. Near-optimal solutions or better than reported in the lit-
erature were obtained.

Keywords: Grammatical Inference, Learning Classifier Systems, FSA
Induction.

1 Introduction

In this paper, we are interested in inducing a grammar that accepts a regular
language (RL) given a finite number of positive and negative examples drawn
from that language. The approaches to learning RL or equivalent Determinis-
tic Finite Automata (DFA) base mainly on evolutionary algorithms, recurrent
neural network or combination of these two methods. It has been proved that
RL/DFA induction is a hard task by a number of criteria.

This paper addresses RL induction using Grammar-based Classifier System
(GCS) [5] - a new model of Learning Classifier System (LCS). LCS is machine
learning paradigm introduced by Holland [2]. It exploits evolutionary computa-
tion and reinforcement learning to develop a set of condition-action rules (the
classifiers) which represent a target task that the system has learned from on-
line experience. Although there are some approaches to handle with context-free
grammar (CFG), there is no one work on inducing RLs with LCSs.

GCS [5] evolves population of classifiers in a form of a CFG rule set, each
rule in a Chomsky Normal Form (CNF). CNF allows only production rules in
the form of A → a or A → BC, where A, B, C are the non-terminal symbols
and a is a terminal symbol. The first rule is an instance of terminal rewriting
rule not affected by the genetic algorithm (GA), and generated automatically as
the system meets unknown terminal symbol. Left hand side of the rule plays a
role of classifier’s action while the right side a classifier’s condition. All classifiers
form a population (one CFG) of evolving individuals. Environment of classifier
system is made up by an array of Cocke-Younger-Kasami parser. GCS matches

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 298–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://olgierd.unold.staff.iiar.pwr.wroc.pl/

Inducing Regular Languages Using Grammar-Based Classifier System 299

the rules according to the current environmental state (state of parsing) and
generates an action/actions pushing the parsing process toward the complete
derivation of the sentence analyzed. Apart from the GA, the covering procedure
explores the space searching for new, better productions. We refer the reader to
[5] for more details of GCS.

2 Regular Language Induction Using GCS

The datasets most commonly used in DFA learning is Tomita sets. In this paper
GCS will be compared against the evolutionary methods proposed by Lucas and
Reynolds [3] and Luke et al. [4]. Both methods present one of the best-known
results in the area of RL/DFA induction. All of compared evolutionary methods
will assume the same training and test sets. Some comparisions will be made also
to EDSM method [1], the current most powerful passive approach to DFAs infer-
ence. Fifty independent experiments were performed, evolution on each training
corpus ran for 5,000 generations, with the following GCS parameters: number
of nonterminal symbols 19, number of terminal symbols 7, crossover probabil-
ity 0.2, mutation probability 0.8, population consisted of maximal 40 classifiers
where 30 of them were created randomly in the first generation, crowding factor
18, crowding size 3. The approach presented in [4] (denoted by GP) applies gene
regulation to evolve DFA. In this approach genes are states in the automaton,
and a gene-regulation-like mechanism determines state transitions. Each gene
has Boolean value indicating whether or not it was an accepting state. The main
results are summarized in Table 1. For compared methods induction of L3 lan-
guage appeared to be hard task. Both in GP and in GCS only the one run over
50 successfully finished. But GP found the solution in 12450 iterations, whereas
GCS in only 666 steps. For the same language GCS correctly classified all of the
unseen examples, while GP achieved 66%. As to an indicator nGen, GP was not
able correctly classified unseen strings for any language from the tested corpora,
while GCS induced a grammar fully general to the language in 4 cases. It is inter-
esting to compare the results of induction for L5 language. GP approach could
not find the proper grammar (DFA) for any run, while GCS found the solution in
all runs, on average in 201 steps. While learning L1 and L2 languages, GP found
the proper grammars not in all runs, whereas for GCS this task appeared to be
trivial (100% nGen, 50/50 nSuccess, and nEvals 2 steps) Table 1 shows also the
cost of induction (an indicator nEvals) for the methods Plain, Smart (Sm), and
nSmart (nSm) taken from [3], GP approach, and GCS. Lucas i Reynolds [3] used
different method to evolving DFA. In contrary to [4], only transition matrix was
evolved, supported by a simple deterministic procedure to optimally assign state
labels. This approach is based on evolutionary strategy (1+1). Three versions
of induction algorithm were prepared: an approach in which both the transi-
tion matrix and the state label vector evolve (Plain), so-called Smart method
evolving only the transition matrix and the number of the states was fixed and
equal to 10, and finally nSmart method in which the number of the DFA states
is equal to the size of minimal automata. GCS obtained the best results for the

300 O. Unold

Table 1. Comparison of GCS with different evolutionary methods and non-
evolutionary EDSM. For each learning corpus, the table shows the target language,
and three sets of results. The first indicator nSuccess is the number of runs with suc-
cess gained by GCS within 50 experiments and compared approach. The second one
nGen is the percentage of all unseen strings correctly classified, and the last one nEvals
indicates the average number of generations needed to reach the 100% fitness.

Lang. nSuccess nGen nEvals
GP GCS GP GCS Sm nSm EDSM GP GCS Plain Sm nSm

L1 31/50 50/50 88.4 100 81.8 100 52.4 30 2 107 25 15

L2 7/50 50/50 84.0 100 88.8 95.5 91.8 1010 2 186 37 40

L3 1/50 1/50 66.3 100 71.8 90.8 86.1 12450 666 1809 237 833

L4 3/50 24/50 65.3 100 61.1 100 100 7870 2455 1453 177 654

L5 0/50 50/50 68.7 92.4 65.9 100 100 13670 201 1059 195 734

L6 47/50 49/50 95.9 96.9 61.9 100 100 2580 1471 734 93 82

L7 1/50 11/50 67.7 92.0 62.6 82.9 71.9 11320 2902 1243 188 1377

L1 and L2 languages among comparable methods. The result 201 steps for L5
is comparable with the best result of 195 reached by nSmart. Although GCS
reached similar result for language L3 as the best method (666 for GCS, and
237 for Smart), it is hard to compare for this language these methods, because
of low value of nSuccess for GCS - only one run over 50 finished with success.
For the languages L4, L6, and L7 fixed-size structured methods (Plain, Smart,
and nSmart) achieved better results than variable-size methods (GP and GCS).
Finally, Table 1 shows the percentage of all unseen strings correctly classified (an
indicator nGen) for the methods Smart, nSmart, EDSM, GP, and GCS. Recall
that the EDSM, as a heuristic and non-evolutionary method, was single-time
executed during learning phase. Model GCS achieved the best results from all
tested approaches for L1, L2, L3, and L7 languages. For the language L4 the
same 100% accuracy was obtained by proposed method, nSmart, and EDSM.
For the L5 and L6 languages GCS obtained the second result, higher than 90%.

References

1. Cicchello, O., Kremer, S.C.: Beyond EDSM. In: Adriaans, P.W., Fernau, H., van Za-
anen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 37–48. Springer, Heidelberg
(2002)

2. Holland, J.: Escaping Brittleness: The possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In: Michalski, R.S., et al. (eds.)
Machine Learning, an Artificial Intelligence Approach, vol. II, pp. 593–623. Morgan
Kaufmann, San Francisco (1986)

3. Lucas, S., Reynolds, T.J.: Learning DFA: Evolution versus Evidence Driven State
Merging. In: Proc. Congress Evolutionary Computation, pp. 351–358 (2003)

4. Luke, S., Hamahashi, S., Kitano, H.: ‘Genetic’ Programming. In: Banzhaf, W., et
al. (eds.) Proc. Genetic and Evolutionary Computation Conf., pp. 1098–1105 (1999)

5. Unold, O.: Context-free grammar induction with grammar-based classifier system.
Archives of Control Science 15 (LI)(4), 681–690 (2005)

Problems with Evaluation of Unsupervised

Empirical Grammatical Inference Systems

Menno van Zaanen and Jeroen Geertzen

Dept. of Communication & Information Sciences
Tilburg University

Tilburg, The Netherlands
{mvzaanen,j.geertzen}@uvt.nl

Abstract. Empirical grammatical inference systems are practical sys-
tems that learn structure from sequences, in contrast to theoretical gram-
matical inference systems, which prove learnability of certain classes of
grammars. All current empirical grammatical inference evaluation meth-
ods are problematic, i.e. dependency on language experts, appropriate-
ness and quality of an underlying grammar of the data, and influence of
the parameters of the evaluation metrics. Here, we propose a modifica-
tion of an evaluation method to reduce the ambiguity of results.

1 Introduction

Grammatical inference (GI) can be described as the inference or induction of
structure from sequences of symbols. We distinguish three sub-fields in the field
of grammatical inference: formal GI, empirical GI, and applied GI [1].

Formal GI investigates which classes of grammars can be learned within cer-
tain bounds of algorithmic complexity and gives mathematical proofs for this.
Empirical GI develops practical systems learning grammars. Often, the under-
lying (class of the) grammar is unknown. Applied GI is a collection of research
that explores or employs GI as a step towards another research goal.

Here, we will review the evaluation methods that are available for measuring
the performance of empirical GI systems. The sub-field of empirical GI does not
allow formal proofs and allows for generic evaluation techniques.

2 Current Evaluation Approaches

Evaluation of GI systems is carried out by applying the system to unstructured
data, and evaluating its output. The different methods can be divided into four
groups: looks-good-to-me approaches analyze the output of GI systems manu-
ally. Rebuilding a-priori known grammars use, often small, “toy” grammars to
generate sequences, which are used as input for the GI system. The output of
the system is then compared against the original grammar. The language mem-
bership method measures the ability to classify sequences based on language
membership. This measures language equivalence (weak equivalence). The per-
formance in this method is expressed by two metrics: precision, which showsthe

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 301–303, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 M. van Zaanen and J. Geertzen

effectiveness to decide whether a sequence is in the language or not and re-
call, which measures coverage. Finally, comparison against a treebank uses a
treebank, a collection of sequences with their derivation, as a “gold standard”.
The plain sequences (generated by removing the structure from the treebank se-
quences) are used as input and the output of the GI system is compared against
the original structure. [2, 3]

3 Problems with Current Approaches

All evaluation methods have their problems. The looks-good-to-me approach is
highly subjective. Evaluation performed by the GI system designer is biased and
even for external experts it is hard to maintain consistency between systems.

Rebuilding known grammars resolves the dependency on experts and biased
results, but only small grammars can be tested and scalability is not taken into
account. Also, the grammars can be tuned to generate positive results.

The language membership methods depend heavily on several design choices.
There are different ways to select negative sequences, which has an impact on
the results. Similarly, the recall metric requires a sequence generation method,
which may also have a large influence.

The compare against treebank approach is unbiased with respect to the eval-
uator and is scalable. However, it still has settings that have a significant impact.
This will be discussed in the next section.

The compare against treebank and language membership methods have most
potential. However, the problems of the language membership approach require
more research, so we will concentrate on the compare against treebank approach.

4 Evaluating Compare against Treebank

The compare against treebank method uses precision (correctness) and recall
(completeness) on tree structures (PARSEVAL [4]) as metrics.

The learned structure is compared against the gold standard, which may con-
tain “trivial” structure. Examples are structures spanning the entire sequence
or only a single word. This structure has a impact on the evaluation.

We applied the Alignment-Based Learning system [2] to the ATIS treebank,
taken from the Penn Treebank [5] and varied the amount of trivial structure
to get an indication of its impact on the evaluation scores. The first column in
Table 1 shows the scores on all structure. Columns that are marked with −e
discard empty brackets, −s discards brackets spanning the full sentence, and
−w discards spans containing a single word only.

Both the micro-average, where counts of correct brackets over the entire tree-
bank are collated, and the macro-average scores are calculated. Micro-averaging
is better in showing actual performance by taking bracket distribution per sen-
tence into account.

The difference between macro- and micro-averaging is substantial and there
are major differences with varying amounts of trivial structure. We propose to

Problems with Evaluation of Unsupervised Empirical GI Systems 303

Table 1. Results of Alignment-Based Learning using different evaluation parameters

-e -s -w -e-s -e-w -s-w -e-s-w

Macro Recall 56.18 56.18 55.73 49.19 55.73 49.19 46.79 46.79
Macro Precision 51.13 80.57 51.07 26.26 81.75 58.24 25.40 58.57
Macro F-Score 53.53 66.20 53.30 34.24 66.28 53.33 32.92 52.02
Micro Recall 49.31 49.31 49.00 40.67 49.00 40.67 39.69 39.69
Micro Precision 51.00 79.67 51.15 25.27 80.61 56.13 25.05 57.22
Micro F-Score 50.14 60.91 50.05 31.17 60.95 47.17 30.72 46.87

use the micro-averaged PARSEVAL metrics without trivial structure. This is
the most strict evaluation, which, in this case, results in an F-score of 46.87.

5 Conclusion

We reviewed empirical GI evaluation approaches, which all have problems. The
compare against treebank approach is most promising, but it is essential to de-
fine the exact settings of the evaluation as they have a major impact in the actual
results. We propose to remove all trivial structure and use micro-averaged PAR-
SEVAL metrics. Most published results are difficult to compare and interpret,
because the exact evaluation settings are unknown.

References

[1] Adriaans, P.W., van Zaanen, M.M.: Computational grammatical inference. In:
Holmes, D.E., Jain, L.C. (eds.) Innovations in Machine Learning. Studies in Fuzzi-
ness and Soft Computing, ch. 7, vol. 194. Springer, Berlin (2006)

[2] van Zaanen, M.: Bootstrapping Structure into Language: Alignment-Based Learn-
ing. PhD thesis, University of Leeds, Leeds, UK (January 2002)

[3] van Zaanen, M., Roberts, A., Atwell, E.: A multilingual parallel parsed corpus as
gold standard for grammatical inference evaluation. In: Kranias, L., Calzolari, N.,
Thurmair, G., Wilks, Y., Hovy, E., Magnusdottir, G., Samiotou, A., Choukri, K.
(eds.) Proceedings of the Workshop: The Amazing Utility of Parallel and Compa-
rable Corpora, Lisbon, Portugal, pp. 58–61 (May 2004)

[4] Black, E., Abney, S., Flickinger, D., Gdaniec, C., Grishman, R., Harrison, P., Hin-
dle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos,
S., Santorini, B., Strzalkowski, T.: A procedure for quantitatively comparing the
syntactic coverage of English grammars. In: Proceedings of a Workshop—Speech
and Natural Language, February 19–22, pp. 306–311 (1991)

[5] Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of English: the Penn treebank. Computational Linguistics 19(2), 313–330 (1993)

Author Index

Abisha, P.J. 280
Álvarez, Gloria I. 71
Angluin, Dana 1
Armstrong, Tom 283

Becerra-Bonache, Leonor 1
Begam, M.H. 295
Bogdanov, Kirill 252

Cano Gómez, Antonio 71
Castro, Jorge 163
Champavère, Jérôme 15
Clark, Alexander 29
Costa Florêncio, Christophe 286

Damas, Christophe 139
de la Higuera, Colin 43
de Weerdt, Mathijs 238
Denis, François 57
Dupont, Pierre 139

Eyraud, Rémi 29

Gavaldà, Ricard 163
Geertzen, Jeroen 301
Gilbert, Édouard 57
Gilleron, Rémi 15

Habrard, Amaury 29, 57
Heinz, Jeffrey 84
Honavar, Vasant 224

Janodet, Jean-Christophe 43
Jayasrirani, M. 295
Johnson, Ken 252

Kameda, Yuuichi 98
Kannamma, S. 289
Kasprzik, Anna 111

Kinber, Efim 125
Kotani, Yoshiyuki 187
Kumaar, Sindhu J. 280

Lambeau, Bernard 139
Lemay, Aurélien 15

Mukherjee, Sourav 292

Niehren, Joachim 15

Oates, Tim 283, 292
Oncina, Jose 154
Ouardi, Fäıssal 57

Rangarajan, K. 289

Sempere, José M. 175

Tajima, Yasuhiro 187
Tantini, Frédéric 43
Tellier, Isabelle 200
Thomas, D.G. 280, 289, 295
T̂ırnăucă, Cristina 213
Tokunaga, Hiroo 98
Tommasi, Marc 57
Tu, Kewei 224

Unold, Olgierd 298

van Zaanen, Menno 301
Verwer, Sicco 238

Walkinshaw, Neil 252
Witteveen, Cees 238

Yamamoto, Akihiro 98
Yoshinaka, Ryo 266

	Title Page
	Preface
	Organization
	Table of Contents
	Learning Meaning Before Syntax
	Introduction
	A Model of Meaning and Denotation
	Strategies for Learning Meanings
	The Learning Algorithm
	Discussion and Future Work
	References

	Schema-Guided Induction of Monadic Queries
	Introduction
	Schemas, Tree Automata, and Inclusion Checking
	Schema-Guided pNSTTs for Monadic Queries
	Schema-Guided Learning
	Experimental Results
	References

	A Polynomial Algorithm for the Inference of Context Free Languages
	Introduction
	Basic Definitions
	Binary Feature Grammars
	BFGs and CFGs
	Contextual Binary Feature Grammars

	Inference
	Fiducial Feature Sets and Finite Context Property
	Kernel and Finite Kernel Property

	Algorithm
	Discussion
	References

	Learning Languages from Bounded Resources: The Case of the DFA and the Balls of Strings
	Introduction
	Definitions
	PAC-Learnability
	Query Learning
	Polynomial Identification in the Limit
	Polynomial Identification from Text
	Polynomial Identification from Informant

	Conclusion
	References

	Relevant Representations for the Inference of Rational Stochastic Tree Languages
	Introduction
	Preliminaries
	Canonical Linear Representation of Rational Tree Series
	DEES

	Normalised Linear Representation for Rational Stochastic Tree Languages
	Normalised Representation
	A Generation Process

	Learning Rational Stochastic Tree Languages
	Strongly Consistent Rational Stochastic Languages
	Effective Normalisation
	Learning a Strongly Consistent Rational Stochastic Language: The Road Map

	Unranked Trees
	Conclusion
	References

	Learning Commutative Regular Languages
	Introduction
	Preliminaries
	Formal Languages and Automata
	Commutative Languages

	Inference of Commutative Regular Languages
	Description of the Algorithm CRPNI
	Convergence of CRPNI

	Experimental Results
	Conclusions
	References

	Learning Left-to-Right and Right-to-Left Iterative Languages
	Introduction
	Preliminaries
	Strings and Languages
	Identification in the Limit
	Finite State Acceptors

	Partitioning Acceptors
	The Neighborhood-Distinct Hypothesis
	Left-to-Right Iterative Languages
	Right-to-Left Iterative Languages
	Conclusion
	References

	Learning Bounded Unions of Noetherian Closed Set Systems Via Characteristic Sets
	Introduction
	Preliminaries
	Inferability from Positive Data
	Closed Set System

	Main Result
	Learning Bounded Set Unions of Polynomial Ideals
	Learning Bounded Unions of Tree Pattern Languages
	Conclusions
	References

	A Learning Algorithm for Multi-dimensional Trees, or: Learning Beyond Context-Freeness
	Introduction
	A Learning Algorithm for Regular Tree Languages
	Multi-dimensional Trees and Automata
	Multi-dimensional Trees as Defined by Rogers [3,4]
	Multi-dimensional Trees as Terms

	The Learner for Multi-dimensional Tree Languages
	Conclusion
	References

	On Learning Regular Expressions and Patterns Via Membership and Correction Queries
	Introduction
	Notation and Preliminaries
	Learning Via Queries
	Learning a Class of Regular Expressions
	The Learning Algorithm for $R1^+$
	Correctness of the Algorithm
	Complexity of the Learning Algorithm
	Modifications of the Class $\R1^+$

	Learning Pattern Languages Via Correction Queries
	The Learning Algorithm
	Correctness of the Algorithm
	Complexity
	Discussion

	References

	State-Merging DFA Induction Algorithms with Mandatory Merge Constraints
	Introduction
	The Synthesis of Software Behavior Models Seen as a DFA Induction Problem
	State-Merging DFA Induction with Incompatibility Constraints
	State-Merging and Quotient Automaton
	State-Merging DFA Induction Algorithms
	Handling Incompatibility Constraints

	State-Merging with Mandatory Merge Constraints
	Evaluation
	Experiments on Synthetic Data
	Experiments on a RE Case Study

	DFA Induction from Positive and Negative DFAs (Deterministic Finite Automata) as Inputs
	Conclusion and Future Work
	References

	Using Multiplicity Automata to Identify Transducer Relations from Membership and Equivalence Queries
	Introduction
	Notation
	String Expressions
	Multiplicity Automata
	Hankel Matrix

	The Beimel et al Algorithm
	Conclusions and Open Questions
	References

	Towards Feasible PAC-Learning of Probabilistic Deterministic Finite Automata
	Introduction
	Context
	Our Results

	Preliminaries
	Description of the Algorithm
	Analysis
	Experiments
	Small Targets
	An Experiment with a Real, Large Dataset

	Conclusions
	References

	Learning Context-Sensitive Languages from Linear Structural Information
	Introduction
	Basic Concepts and Notation
	Learning Watson-Crick Finite Automata from Positive Structural Data
	Conclusions and Future Work
	References

	Polynomial Time Probabilistic Learning of a Subclass of Linear Languages with Queries
	Introduction
	Preliminaries
	Our Target Language
	Queries and Probabilistic Learning
	A Representative Sample
	The Learning Algorithm
	Conclusions
	References

	How to Split Recursive Automata
	Introduction
	From Categorial Grammars to Recursive Automata
	Basic Definitions of Categorial Grammars
	Recursive Automata and Their Language
	From Unidirectional CGs to RA
	Mutually Recursive Automata

	Learning by Specialization
	Learning Rigid CG from Positive Examples
	State Merges and State Splits

	Learning from Typed Examples Revisited
	Learning from Semantically Typed Examples
	How Types Help to Control State Splits and State Merges

	Conclusion
	References

	A Note on the Relationship between Different Types of Correction Queries
	Introduction
	Preliminaries
	Learning Models

	Learning with Correction Queries
	Learning with Length Bounded Correction Queries
	Learning with Edit Distance Correction Queries
	The Global Picture

	Polynomial Time Learning with Correction Queries
	Polynomial Time Learning with LBCQs
	Polynomial Time Learning with EDCQs
	The Global Picture

	References

	Unsupervised Learning of Probabilistic Context-Free Grammar Using Iterative Biclustering
	Introduction
	Grammar Representation
	Main Ideas
	Learning a New AND-OR Group by Biclustering
	Attaching a New AND Symbol under Existing OR Symbols
	Postprocessing

	Algorithm and Implementation
	Implementation Issues
	Grammar Selection and Averaging

	Experiments
	Summary and Discussion
	Related Work
	Summary and Future Work

	References

	Polynomial Distinguishability of Timed Automata
	Introduction
	Timed Automata
	Efficient Identification in the Limit
	Timed Automata Are Not Efficiently Identifiable
	Polynomially Distinguishable Timed Automata
	Discussion and Conclusions
	References

	Evaluation and Comparison of Inferred Regular Grammars
	Introduction
	Regular Inference and the Evaluation of Inferred Grammars
	Model-Based Test Generation
	Evaluating Accuracy with Precision and Recall
	Precision and Recall in Grammar Inference
	Authoritative Measurement of Precision and Recall by Conformance Testing

	Relationship between Precision, Recall and the State-Merging Search Space
	Case Study: Effect of DFA Generalisation on Accuracy
	Related Work
	Conclusions
	References

	Identification in the Limit of \k, \l-Substitutable Context-Free Languages
	Introduction
	Definitions
	\k, \l-Substitutable Languages
	Learning Algorithm for k, l-Substitutable Context-Free Languages
	Proof That Hypothesized Language Is Not Too Large
	Proof That Hypothesized Language Is Large Enough
	Polynomial Time and Data

	Discussion
	References

	Learning Subclasses of Pure Pattern Languages
	Introduction
	Pure Pattern Grammars
	Learning a Subclass of PPL
	Learning Another Subclass of PPL
	References

	Which Came First, the Grammar or the Lexicon?
	Introduction
	Lexical-Syntactic Interface
	Experiments
	Conclusion and Future Work
	References

	Learning Node Label Controlled Graph Grammars
	Introduction
	Graph Grammars
	Learnability
	References

	Inference of Uniquely Terminating EML
	Introduction
	Algorithm to Infer Uniquely Terminating Languages
	References

	Estimating Graph Parameters Using Graph Grammars
	References

	Learning of Regular ω-Tree Languages
	Introduction
	Definitions and Results
	Learning Buchi Local ω-Tree Languages
	Learning Regular ω-Tree Languages
	References

	Inducing Regular Languages Using Grammar-Based Classifier System
	Introduction
	Regular Language Induction Using GCS
	References

	Problems with Evaluation of Unsupervised Empirical Grammatical Inference Systems
	Introduction
	Current Evaluation Approaches
	Problems with Current Approaches
	Evaluating Compare against Treebank
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

