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Preface

Originally, managing uncertainty and inconsistency has especially been explored
in the field of artificial intelligence. During recent years, particularly with the
availability of massive amounts of data in different repositories and the possibility
of integrating and exploiting these data, technologies for managing uncertainty
and inconsistency have started to play a key role in databases and the Web. Some
of the most prominent of these technologies are probably the ranking algorithms
behind Web search engines. Techniques for handling uncertainty and inconsis-
tency are expected to play a similarly important role in the Semantic Web.

The annual International Conference on Scalable Uncertainty Management
(SUM) has grown out of this very large interest on managing uncertainty and in-
consistency in databases, the Web, the Semantic Web, and artificial intelligence.
The conference aims at bringing together all those interested in the management
of large volumes of uncertainty and inconsistency in these areas. The First In-
ternational Conference on Scalable Uncertainty Management (SUM 2007) was
held in Washington DC, USA, October 10–12, 2007.

This volume contains the papers presented at the Second International Con-
ference on Scalable Uncertainty Management (SUM 2008), which was held in
Naples, Italy, October 1–3, 2008. It contains 27 technical papers, which were
selected out of 42 submitted papers in a rigorous reviewing process, where each
paper was reviewed by at least three Program Committee members. The volume
also contains extended abstracts of the three invited tutorials/talks.

We wish to thank all authors who submitted papers and all conference par-
ticipants for fruitful discussions. We are grateful to Jan Chomicki, Prabhakar
Raghavan, and Dan Suciu for their invited tutorials/talks at the conference. We
would like to thank the Program Committee members and external referees for
their timely expertise in carefully reviewing the submissions. Special thanks also
to Antonio Picariello and his team from the University of Naples “Federico II” for
the organization of the conference and wonderful days in Naples. Many thanks
also to the developers of the EasyChair Conference System, which we used for
the reviewing process and the preparation of this volume.

October 2008 Sergio Greco
Thomas Lukasiewicz
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Consistent Query Answering: The First Ten

Years�

Jan Chomicki

Dept. of Computer Science and Engineering
University at Buffalo

Buffalo, NY 14260-2000
chomicki@cse.buffalo.edu

Usually, the data in a database instance is supposed to be consistent and satisfy
the database integrity constraints. However, it is quite common for the two to
diverge. The data may fail to satisfy the constraints for various reasons: it may
be erroneous, out of date, or come from mutually inconsistent sources.

In order to deal with inconsistency in a flexible manner, database research
and practice have developed different approaches: prevention (usual constraint
enforcement), active rules, isolation of inconsistent data, exceptions etc.

A separate class of responses to inconsistency is based on the notion of repair:
a consistent instance minimally different from the original one. Such repairs can
be materialized [1] or virtual. Virtual repairing, which is usually called consistent
query answering (CQA) [2], does not change the database but rather returns
query answers true in all repairs (consistent query answers).

Note the similarity of the notion of consistent query answers to that of sure
or certain answers studied in the context of incomplete databases [3,4]. The area
of consistent query answering has been surveyed in [5,6,7].

In this tutorial, we present a comprehensive survey of CQA, focusing on the
following issues:

Formal semantics. Many different notions of repair have been identified, using
different repair dimensions that include:

– Tuple- vs. attribute-based repairs: tuple-based repairs [2,8,9,10] are con-
structed using tuple insertions and/or deletions, while attribute-based re-
pairs [11,12,13] allow the modification of individual attribute values.

– Set vs. cardinality repairs: in the first case it is the set of operations that is
minimized [2], and in the second, the cardinality of the set [10].

Computational approaches. Three main computational approaches to CQA have
been proposed. In query rewriting [2,14,15], the given query is rewritten in-
dependently of the database to return only consistent answers. Alternatively,
a space-efficient representation of all repairs may be constructed and used to
compute consistent answers [16]. Finally, repairs may be specified using logic
programs [17,18,19,9] and consistent query answers computed using logic pro-
gramming systems like dlv [20]. All of those approaches have been implemented
in prototype systems.

� Research supported by NSF grant IIS-0119186.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 1–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Chomicki

Computational complexity analysis. Clearly, the complexity of CQA depends
on the classes of queries and constraints under consideration, as well as on the
repair semantics. This issue has been extensively studied [21,8,22,14,10,23].

Future directions. Future work should lead, among others, to practical appli-
cations of CQA, tighter relationship with data integration and cleaning, further
refinement of the computational approaches, and a better understanding of the
scope of applicability of different repair semantics. New classes of queries and
integrity constraints [24,25] should also be considered.

Most of the work on CQA has focused on the relational model but propos-
als for XML databases exist too [26,27]. Despite a variety of notions of repair,
consistent query answers are usually defined as answers true in every repair.
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Heavy Tails and Web Models

(Abstract)

Prabhakar Raghavan

Yahoo! Research

Abstract. The literature is rich with (re)discoveries of power law phe-
nomena; this is especially true of observations of link and traffic behavior
on the Web. We survey the origins of these phenomena and several (yet
incomplete) attempts to model them. We then present a number of open
problems in Web research arising from these observations.
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Managing Probabilistic Data with MystiQ:

The Can-Do, the Could-Do, and the Can’t-Do�

Christopher Re and Dan Suciu

University of Washington

1 Introduction

MystiQ is a system that allows users to define a probabilistic database, then
to evaluate SQL queries over this database. MystiQ is a middleware: the data
itself is stored in a standard relational database system, and MystiQ is pro-
viding the probabilistic semantics. The advantage of a middleware over a re-
implementation from scratch is that it can leverage the infrastructure of an
existing database engine, e.g. indexes, query evaluation, query optimization,
etc. Furthermore, MystiQ attempts to perform most of the probabilistic infer-
ence inside the relational database engine. MystiQ is currently available from
mystiq.cs.washington.edu.

The MystiQ system resulted from research on probabilistic databases at the
University of Washington [8, 10, 11, 13, 14, 23]. Some of these research results
have been fully incorporated in MystiQ, like the query evaluation techniques that
allow it to evaluate SELECT-FROM-WHERE-GROUPBY queries over large
probabilistic databases: this is what MystiQ can do. Other results are not im-
plemented in the system, but they could either be implemented in some future
version after only minor extensions, or can be used even today by a database
administrator to perform certain data management tasks manually; an example
are the techniques for representing materialized views over probabilistic data.
This is what MystiQ could do. Finally, other research results require more work
before they can be implemented in a system. For example, our evaluation tech-
niques for queries with a HAVING clause applies only to safe queries; for another
example, we currently don’t know of a good approach to extend safe queries and
safe plans to queries with self-joins. This is what MystiQ can’t do.

In this paper we give a gentle introduction into the MystiQ system, and
describe the associated research that is used, or could be used, or is not yet
ready to be used in MystiQ.

Related Work. Our research has focused primarily on SQL query evaluation
and on views. Other groups have studied different aspects of probabilistic or
incomplete databases. The Trio project [6, 7, 15, 29] focused on the study of
lineage in incomplete databases. The MayBMS project has focused on represen-
tation problems, query language design, and query evaluation [2, 3, 4, 20]. Other

� Supported in part by NSF grants IIS-0415193, IIS-0627585, IIS-0513877, IIS-
0428168, and a gift from Microsoft.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 5–18, 2008.
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6 C. Re and D. Suciu

groups have studied correlations in probabilistic databases [27], continuous ran-
dom variables [9], and complex probabilistic models with native Monte Carlo
simulations [16]. Earlier work include [5] and the ProbView system [21].

2 The Data and Query Model

2.1 Tables and Events

To use MystiQ, one must start from a relational database, created on a relational
database management system; in our work we used mostly postgres or SQL
Server, but any RDBMS with a JDBC conection can be used instead. Upon
starting MystiQ the user needs to provide the information to connect to the
database, and the name of a configuration file that specifies how to interpret the
tables in the database as probabilistic events.

The configuration file consists of three kinds of statements:

STATEMENT ::= TABLE table-name(attributes)
| CREATE EVENT event-name(attributes1)

[CHOICE (attributes2)]
ON table-name(prob-expression)

| CREATE VIEW event-name AS
SELECT ...
FROM ...
WHERE ...

The TABLE statements describe the schema of the relational database: while
this is redundant, since MystiQ could obtain it directly from the database, in
the current implementation MystiQ requires the schema to be given in the con-
figuration file. Only the attribute names need to be listed, not their types.

A CREATE EVENT statement defines a probabilistic table, called event, from
a table in the database. Here table-name is a relation in the database, while
event-name is the probabilistic relation defined by this statement. The schema of
the probabilistic table is the same as that of the deterministic table from which it
is derived, and its semantics is a set of possible worlds: each subset of table-name
is a possible world for event-name. In each possible world, attributes1 are a
key: they are called the event key. When present, attributes2 are called the
choice attributes. MystiQ requires that attributes1∪attributes2 contain the
primary key of table-name. Finally, prob-expression is an expression, possibly
involving attributes of table-name, defining the marginal probability of a tuple
in event-name.

By definition, tuples with distinct values of the event keys are independent
probabilistic events, and tuples with the same event keys but distinct values
choice attributes are disjoint (or exclusive) probabilistic events. Under this as-
sumption the marginal tuple probabilities uniquely define the probability of each
possible world; we refer the reader to [14] for additional details.
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In the CREATE EVENT statement table-name can also be a probabilistic
table; in that case no choice attributes are allowed. We will illustrate this in
Section 4.

The CREATE VIEW statement is identical to that in SQL, except that the
FROM clause may use both events and deterministic relations. We describe
views in Sec. 4.

For a simple illustration, suppose we have a database or products, where the
colors are uncertain:

Product:

Name Color Prob
Gizmo Green 0.3
Gizmo Blue 0.5
Gizmo Red 0.2
Gadget Blue 0.1
Gadget Black 0.9

This is a standard deterministic relation, there is no probabilistic semantics yet.
The attribute Prob represents our confidence in that product’s color. In order
to turn this table into a probabilistic relation, we define the configuration file:

TABLE Product(Name, Color, Prob)
CREATE EVENT ProductUniqueColor(Name) CHOICE(Color) ON Product(Prob)

In the new relation ProductUniqueColor is probabilistic, and Name is its key.
Its semantics are all the possible subsets of Product, and each such subset has
a certain probability. For example the instance1:

ProductUniqueColor:

Name Color
Gizmo Blue
Gadget Blue

has probability 0.5∗0.1 = 0.05. There are 6 possible worlds, because Name must
be a key.

Alternatively, we can interpret the uncertainty about the Color in Product
differently, namely as saying that any product may have multiple colors, but it
is uncertain which colors are present. Then we define another event:

CREATE EVENT ProductMultipleColors(Name, Color) ON Product(Prob)

Now every subset of Product is a possible world, and there are 32 possible
worlds. The world above (with two tuples) is still a possible world, but now it
has probability (1− 0.3)∗0.5∗(1− 0.2)∗0.1∗(1− 0.9) = 0.0028.

As a last example, we can make each of the 32 possible worlds equally likely
(with probability 1.0/32) by defining the event:
1 Strictly speaking Prob should also be an attribute of ProductUniqueColor, but we

omit it since we only need it to define the probabilities of the possible worlds.
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CREATE EVENT ProductUniform(Name, Color) ON Product(1.0/32)

In MystiQ we can define several probabilistic tables from the same deterministic
table, and the system treats them as independent probabilistic tables.

2.2 Queries

MystiQ currently supports SELECT-FROM-WHERE-GROUPBY with aggre-
gates in the SELECT clause. The FROM clause may mention both deterministic
relations, and probabilistic relations. Nested queries are permitted, but these
may only refer to deterministic relations (i.e. no event names). MystiQ returns
a list of tuple answers together with their marginal probabilities and computes
expected values for the aggregate functions (if any are present). The answers
are always ranked by their marginal probabilities, and only the top k answers
are returned to the user, where k is either specified in the query or is a system
parameter.

We illustrate queries with three examples. The following returns all products
that are not red:

Q1 = SELECT DISTINCT Name FROM ProductUniqueColor WHERE Color!=’red’

The answer is:
Name Probability
Gadget 1.0
Gizmo 0.8

Thus, the user learns that Gadget is certainly not red, since its probability is
1.0. Gizmo is not red with probability 0.8. The system returns only the marginal
tuple probabilities in the answer, here 1.0 and 0.8, and does not retain any
correlations between the tuples2: in order to retain the tuple correlations (which
are needed, for example, in order to run another SQL query on the answer) one
has to define a view, see Sec. 4.

The tuples are ranked in decreasing order of their probability. It is very impor-
tant to rank answers when processing uncertain data, because the uncertainties
will often cause many false positives in the answer. We want to return to the user
the tuples with a higher probability first, and spare him the effort to examine
tuples with small probabilities. MystiQ ranks the answers, and computes only
the top k.

Note the importance of including DISTINCT in this query. If we run the same
query without DISTINCT, then the answer is:

Name Probability
Gadget 0.9
Gizmo 0.5
Gizmo 0.3
Gadget 0.1

2 The tuples in the answer of Q1 are independent; the tuples in the answers of Q2 and
Q3 are correlated in non-trivial ways.
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It is much harder for the user to see here that Gadget is guaranteed to be a
correct answer, or to get a sense of which are the most likely products to not be
red.

For the second query, we assume to have another probabilistic table, called
LikesMultipleColor, which lists for every customer, color pair the probability
that the customer likes that color:

TABLE Customer(custID, Color, Prob)
CREATE EVENT LikesMultipleColors(custID, Color) on Customer(Prob)

In a possible world, a customer may like multiple colors. The query below finds
all customers to which we could sell products whose colors they like:

Q2 = SELECT DISTINCT y.custID
FROM ProductUniqueColor x, LikesMultipleColors y
WHERE x.Color = y.Color

Our third query illustrates aggregates, which are interpreted as expected values.
The query computes for each color the number of products that have that color:

Q3 = SELECT Color, count(*) FROM ProductUniqueColor GROUP BY Color

and the answer is:

Color Count Probability
Black 0.9 0.9
Blue 0.6 0.55
Green 0.3 0.3
Red 0.2 0.2

3 Query Evaluation

3.1 Can Do: Safe and Unsafe Queries

MystiQ uses two algorithms for query evaluation: an efficient algorithm that
works only for safe queries, and a more expensive algorithm that works for all
queries.

First, if the query is safe, then MystiQ computes a safe plan and rewrites
the plan into a new SQL query called the extensive query. It then evaluates
the extensive query on the database engine. The answers of the extensive query
already contain the correct probabilities, and are sorted in decreasing order of
these probabilities: MystiQ simply cuts this set after the top k answers. For
example, the query Q1 is safe, and the extensive query simply sums for each
product the probabilities of all entries that are not red. The treatment of safe
queries is fully described in [10] (this contains a system’s perspective) and in [14]
(this contains a complete, theoretical treatment).

Second, if the query is unsafe then MystiQ generates a much simpler SQL
query that simply fetches and joins all relevant tuples from the database. Once
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these tuples are read, they are grouped by their output attributes, and MystiQ
computes the probability of each output tuple using Luby and Karp’s Monte
Carlo simulation algorithm [23]. For example, the query Q2 is unsafe (in fact,
it’s data complexity is #P hard because it is essentially h2 in [14]).

Safe queries run very fast, mostly at the same speed as a normal SQL query
on a relational database. Unsafe queries, by contrast, are about two orders of
magnitude slower. Thus, it is very important for MystiQ to identify if a query
is safe, and run the much faster algorithm. In a trivial case, if all relations in
the FROM clause are deterministic, then the query is automatically safe: this
query is simply passed through to the database system. Another trivial case is
when the query does not have DISTINCT or GROUP BY, then it is also safe;
however, as we saw above, queries over uncertain data are likely to have the
DISTINCT clause.

3.2 Can Do: Optimize

MystiQ uses two optimizations for unsafe queries. First, it tries to identify sub-
queries that are both safe, and whose answers consists of independent or disjoint
tuples; they are called super-safe subqueries. These subqueries can both be eval-
uated with a safe plan, and their results can be used as any other probabilistic
table.

The second optimization is much more important and consists of an aggressive
exploitation of the top-k query answering paradigm. MystiQ attempts to perform
the Monte Carlo simulation only for the top k tuples, which are the only tuples
that need to be returned to the user: there are many more tuples in the answer,
and restricting the simulation to only the top k results in significant performance
improvement. But this is a chicken and egg problem: MystiQ doesn’t know which
of the candidate answer tuples are the top k until it has run the Monte Carlo
simulation on all answers and ranked them by their probability. The solution to
this problem is described in [23] and is called multisimulation.

3.3 Could Do: More Aggregates, NOT Exists

MystiQ supports only sum and count. It also supports avg, but it interprets it
as the ratio of sum and count. This is not the correct semantics of avg: a correct
treatment of avg is more difficult, see [17]. MystiQ could support min and max:
they require only minor extensions to the current MystiQ system, but they are
not implemented at the time of writing.

Some applications, such as management of RFID data, require SQL queries
with NOT EXISTS predicates. We have investigated evaluation algorithms for
queries with one level of NOT EXISTS predicates in [28], and described an
evaluation algorithm that could be fully integrated in MystiQ. Our algorithm is
exponential in the number of NOT EXISTS predicates; some optimizations are
likely required in order to make this approach more practical.
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3.4 Can’t Do: Queries with a HAVING Clause, and Queries with
Selfjoins

Queries with a HAVING clause are very important in decision support. For
example, a manager wants to retrieve all products having at least 50 customers
interested in that product. In the setting of a probabilistic database this means
that we need to compute, for a given product, the probability that at least
50 customers are interested in that product. This is different from, and harder
than computing the expected number of customers interested in a given product.
Motivated by the need to support HAVING queries, we have studied this problem
in [24]. We have described an efficient algorithm to evaluate queries with a
HAVING clause, but only if its skeleton (i.e. the query obtained by removing
the HAVING clause) is safe. If the query is unsafe, then we currently do not
know how to evaluate a query with a HAVING clause, in similar fashion to the
Monte Carlo simulation approach3.

We say that a query has a self join if the same event name occurs twice in
the FROM clause. MystiQ treats such queries automatically as unsafe queries.
However, not all queries with self-joins are hard, and in fact some quite sim-
ple and natural queries with self-joins are in PTIME. Motivated by the need
to extend MystiQ to handle efficiently queries with self joins, we have con-
ducted a theoretical study in [12], and we have described a PTIME algorithm
for a large class of queries with self-joins. Unfortunately, this algorithm has
two limitation. First, it was developed only for probabilistic tables with in-
dependent tuples4: there are currently no efficient algorithms known for eval-
uating queries with self-joins over disjoint-independent databases. Second, the
PTIME algorithm seems to be quite different from the safe plans used by MystiQ:
more research is needed in order to adapt those PTIME algorithms to a query
processor.

4 Views

In addition to views created on the relational database (which MystiQ treats as
any regular deterministic table), MystiQ allows users to define views over events.
These are an important tool in managing probabilistic data, and we discuss them
here to some extend.

4.1 Can Do: Virtual Views

MystiQ allows users to define views over events; the result is a new event. For ex-
ample, the view below defines an event called Recommendations, which contains
pairs customer, product where the customer likes the product’s color.

3 A naive Monte Carlo algorithm can be used, but it will run in exponential time to
achieve a given precision, unlike Luby and Karp’s algorithms that runs in polynomial
time to achieve a fixed precision.

4 These are CREATE EVENT statements without the CHOICE clause.
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CREATE VIEW Recommendations
SELECT DISTINCT x.custID, y.Name
FROM LikesMultipleColors x, ProductUniqueColor y
WHERE x.Color = y.Color

Views in MystiQ have a compositional semantics when used in another SQL
query. In particular this means that the correlations between the tuples in the
view are accounted for. For that, MystiQ supports only virtual views, and ex-
pands the view definition when it is used in another SQL query. For example if
a SQL query uses Recommendation in the FROM clause, then MystiQ simply
expands the view definition in the query, and this is by definition compositional
semantics.

Note that materializing the view makes it much harder to ensure composi-
tional semantics. It is not sufficient to materialize Recommendations in a table
that stores the marginal probability of each tuple, because we need to also repre-
sent somehow the correlations between tuples. By contrast, when we run a query
in MystiQ we only retrieve the marginal probabilities. Thus, in MystiQ views
and queries are different: views are used for their compositional semantics, while
queries are used to retrieve the marginal probabilities.

Views are important in probabilistic databases for two reasons.
First, by adding views to disjoint-independent probabilistic databases one

obtains a complete representation system. In notation:

Disjoint-independent-Probabilistic-DBs + Views = Complete-Representation

We proved this in [14, 22] using a simple, constructive proof that is quite useful
in practice. Our result is similar to other results in the literature. For example
Benjelloun et al. [7] show that a lineage system consisting essentially of DNF
formulas also forms a complete representation system, and a similar result was
shown by Antova et al. [3]. Our particular formulation of the result empha-
sizes the role of views in achieving completeness. This, we feel, is important for
practical applications, since views are already used widely in data management.

We illustrate now the completeness result with a simple example. Suppose that
we have a probabilistic table ProductColorComplex with exactly three possible
worlds:

Name Color
Gizmo Green
Gizmo Blue
Gadget Black

Name Color
Gizmo Blue
Gadget Black

Name Color
Gizmo Red
Gadget Blue

and their probabilities are 0.2, 0.3, 0.5. Note that the tuples are no longer disjoint
or independent, hence these possible worlds cannot be specified by a CREATE
EVENT statement. Instead, in MystiQ the user would create the following two
deterministic tables:
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ProductWorld:
Name Color WID
Gizmo Green W1
Gizmo Blue W1
Gadget Black W1
Gizmo Blue W2
Gadget Black W2
Name Color W3
Gizmo Red W3
Gadget Blue W3

World:
WID Prob
W1 0.2
W2 0.3
W3 0.5

then define the following events:

CREATE EVENT PossWorld( ) CHOICE(WID) on World(Prob)
CREATE View ProductColorComplex AS

SELECT DISTINCT Name, Color
FROM ProductWorld x, PossWorld y
WHERE x.WID = y.WID

The possible worlds of ProductColorComplex are exactly the three worlds above
(because the possible worlds of PossWorld are {W1}, {W2}, and {W3}), and their
probabilities are also identical.

The second reason why views are important is that they can be used to express
rules with confidences. For example, consider the following rule, derived from the
Calo project [1]:

IsAbout(e, p) :- EmailFrom(e, u), WorksOn(u, p) CONFIDENCE = 0.8

The purpose of the rule is to predict if an email is about a project. The rule says
that if the email is from a user u, and u works on a project, then that email is
about that project with confidence 0.8. This can be expressed in MystiQ as:

CREATE VIEW V AS
SELECT DISTINCT x.Email, y.Project
FROM EmailFrom x, WorksOn y
WHERE x.Sender = y.Person

CREATE EVENT IsAbout(Email, Project) ON V(0.8)

If EmailFrom and WorksOn are deterministic tables, then V is also deterministic
and IsAbout is a tuple-independent relation where each tuple has probability 0.8.
If EmailFrom or WorksOn are probabilistic tables, then V is also a probabilistic
table. The new event IsAbout decreases the marginal probability of each tuple
by 0.8, while maintaining any correlations between the tuples in V.

4.2 Could Do: Representable Materialized Views

Views are as important for managing uncertain data as they are for managing
traditional data. Virtual views are easy to implement, but result in poor query
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performance. After view expansion the new query is larger than the original
query; if a query was safe, it may no longer be safe after view expansion. To im-
prove the query performance on probabilistic views we need to materialize them.
By a materialized probabilistic view we mean a table in a relational database that
stores for each tuple its marginal probability, and represents in some way the
correlations between the tuples in that relation. Lineage [7] has been developed
precisely with this goal: to represent how tuples were derived and, thus, to cap-
ture all their possible correlations. However, materializing views with lineage
only postpones and exacerbates the query evaluation problem. We need a tech-
nique that allows us to materialize the view and benefit from having performed
the computations offline.

Motivated by this need we have studied the problem of materializing proba-
bilistic views in [25, 26], using two approaches. The first approach was to derive
automatically a full, or a partial representation of the view.

A partial representation of a view consists of two sets of attributes called key
attributes, and the choice attributes: the set of attributes that are neither key nor
choice are called unknown attributes. The partial representation is correct if any
two tuples that have distinct values of the key attributes are independent, and
any two tuples that have the same values for the key and unknown attributes
and have distinct values for the choice attributes are disjoint (i.e. exclusive). In
addition, when all attributes are known (i.e. are either key or choice attributes)
then we say that the representation is full. Essentially, a fully representable view
is like a probabilistic database defined by a CREATE EVENT statement, and
therefore can be used during query processing without any further extensions.

We have shown that any view defined by a SQL query has a canonical partial
representation, which is maximal in the sense that the sets of key and choice
attributes are as large as possible. Note that any view admits a trivial represen-
tation, where all attributes are unknown, but this is useless in practice because
it makes no claims about tuples being disjoint or independent. The canonical
representation is the best one can get for this view definition. If a full represen-
tation exists then it is also canonical, since we cannot further increase the set of
key or choice attributes.

MystiQ currently has no support for materialized views. If the view has a
full representation, then the database administrator can materialize it on the
database server (using MystiQ to compute the probabilities) and then define in
the configuration file as a CREATE EVENT; MystiQ can then use it as a regular
probabilistic table.

If the view has only a partial representation, then MystiQ could still use the
materialized view to answer some queries, while for others it would have to fall
back on view expansion: however this part is not implemented at the time of
writing. For example the query may join two tuples in the view that agree on
the key attributes, and disagree on the unknown attributes: we cannot compute
the probability of the joined tuple because we don’t know the correlations be-
tween these two tuples. To support such views, Mystiq would have to keep extra
correlation information.
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4.3 Could Do: Sufficient Lineage

Any probabilistic view can be stored faithfully by storing the complete lineage
for each tuple in the output of the view, that is every derivation for that tuple
in the database. This approach reduces the cost of processing the joins in the
view, but does not reduce the complexity of the probabilistic portion of query
processing, which is often the dominant cost. However, many applications can
tolerate approximate query results. For example, in information extraction ap-
plications the probabilities are usually set heuristically and so there is very little
real difference between a a tuple with probability of 0.99 and one that returns
0.995. Intuitively, to compute probabilities approximately, it is unnecessary to
keep all possible derivations, just the most important ones. Figuring out which
tuples are most important for a tuple, is the technical development underlying
approximate lineage [26].

One form of approximate lineage is sufficient lineage, where instead of storing
the complete lineage, we store only a subset of the lineage. Of course, this intro-
duces some error in the database and so our goal is to construct such lineage to
guarantee small error. An interesting property of sufficient lineage is that any
conjunctive query (SFW query) returns a probability value that is a lower bound
of the true probability (without approximation). Further, sufficient lineage takes
up space that is orders of magnitude smaller than a complete approach, even for
very low error tolerance. The reduced size enables query processing and other
data exploration tasks to proceed much more efficiently. Most importantly for
Mystiq, sufficient lineage is syntactically identical to standard lineage and so can
be used directly.

4.4 Can’t Do: Polynomial Lineage

Although sufficient lineage may provide large amounts of compression, it is often
possible to get better compression ratios using polynomial lineage. The essential
idea of polynomial lineage is to transform the lineage functions into a polynomial
and then use techniques from analysis, such as Fourier transforms and Taylor
series, to approximate the resulting polynomial. While we show how to use this
representation to process queries, the representation of these functions is quite
different than the lineage functions used in Mystiq.

5 Constraints

Database constraints are a promising technique for managing uncertain data.
The hope is that by specifying application specific constraints the database ad-
ministrator can reduce the set of worlds to only those that “make sense” in that
particular application. A common example of constraints are key constraints: in
fact the CREATE EVENT statement already incorporates one key constraint
for every probabilistic table. However, multiple, overlapping constraints require
significant extensions.
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5.1 Could Do: Hard Constraints

A hard constraint is an assertion must hold in all possible worlds: in other words,
the worlds that fail the constraint are removed from the set of possible worlds.
Hard constraints are dealt with by conditioning: that is, if B is the statement
that the constraint holds (on a possible world), the probability of a boolean
query Q in the presence of the constraint is P (Q|B) = P (QB)/P (B). This ob-
servation was used by Koch and Olteanu in [20] to incorporate hard constraints
in MayBMS. The challenge in this approach is computing the constraint proba-
bilities efficiently, i.e. P (B) and P (QB). In the case of functional dependencies,
B is the negation of a conjunctive query; in more complicated settings it may
be a more general formula. MystiQ currently does not support hard constraints.

5.2 Can’t Do: Soft Constraints

A soft constraint is an assertion is increases the probability of the worlds where
it holds, and decreases the probability of worlds where it doesn’t hold. This
semantics is especially appropriate is the constraint is learned automatically
from training data. For example the machine learning module may identify a
set of attributes that are a soft key: some violations exists, but otherwise the
attributes form a key.

Motivated by the need to incorporate in MystiQ constraints learned automat-
ically from the data, we have studied soft key constraints in [18]. The natural
semantics for soft keys is given by a Markov Network of a special kind, where the
potential of a world depends on the number of violations to the key constraint.
We were especially interested in the case when multiple soft keys exists for the
same table, and have defined a class of safe queries for a given set of soft key
constraints. However, we currently don’t know how to evaluate unsafe queries,
nor how to extend the query evaluation algorithms to other kinds of constraints.
MystiQ does not currently support soft constraints of any kind.

6 Discussions

The goal of MystiQ is to serve as proof of concept: we proved that it is pos-
sible to evaluate SQL queries on large probabilistic databases, with high per-
formance (for safe queries), or with tolerable performance (for unsafe queries).
For safe queries, the main performance bottleneck is the relational database en-
gine, which needs to support complex, nested SQL queries: we found here that
commercial database systems (like SQL Server) perform much better than free
systems (like postgres). For unsafe queries, the main performance bottleneck is
the inner loop of MystiQ’s Monte Carlo simulation. Here we learned two lessons.
The first is a project management lesson. Our initial prototype (done by the
first author), which was used to report the experiments in [22], was written in
C++ and deployed a number of C++ programming hacks to boost performance
of the most critical Monte Carlo simulation steps: as a result the system had
a very high performance. Subsequently, we used the funds from a small grant
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to hire a programmer and re-implement MystiQ in Java (for portability). We
instructed him to emphasize features, the user interface, and completeness over
performance. The initial performance of the Java code for the multisimulation
was so poor that we had to replace the inner loop with our initial C++ code.
This increased the performance to reasonable level, without matching that of our
earlier prototype. The second lesson we learned is that the Monte Carlo simula-
tion problem is far from being well understood. MystiQ has a friendly graphical
interface that allows us to view the progress of the multisimulation and see the
progress of the confidence bounds for all candidate tuples. By examining this
progress it becomes quickly obvious that the top k tuples and their rankings
converge much faster than the bounds given by Luby and Karp’s formula [19].
While the formula is theoretically tight, observing the progress of MystiQ’s mul-
tisimulation algorithm suggest that further improvements or optimizations are
possible, either by stopping the current simulation earlier, or by using some other
simulation algorithm.
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Abstract. Frequent Itemset Mining (FIM) problem has been extensively
tackled in the context of perfect data. However, real applications showed
that data are often imperfect (incomplete and/or uncertain) which leads to
the need of FIM algorithms that process imperfect databases. In this paper
we propose a new algorithm for mining frequent itemsets from databases
including exactly one evidential attribute. An evidential attribute is an at-
tribute that could have uncertain values modelled via the evidence theory,
i.e., a basic belief assignment. We introduce in this paper a variant of the
structure Belief Itemset Tree (BIT) for mining frequent itemsets from ev-
idential data and we lead some experiments that showed efficiency of our
mining algorithm compared to the existing ones.

1 Introduction

Most of frequent itemset mining algorithms process perfect databases ([2], [9] and
[13]) and do not take into account data imperfections in real-world applications.
Indeed, real-world applications suffer from data incompleteness and uncertainty.
For example, medical systems that store physician diagnosis [11] or detection
systems that are based on sensors [16] may generate imperfect data. That is why
recently, some works focused on the problem of frequent itemset mining (FIM)
from imperfect databases. In most of such works, mined data are probabilistic ([5]
and [12]), possibilistic [8] or fuzzy ([4], [7] and [17]). In spite of evidence theory
[14] importance, there is a lack of works on FIM from evidential databases.
Evidential databases allow storage of uncertain data where at least one attribute
could have a basic belief assignment. Evidence theory is a generalized theory
for modelling data uncertainty. Thus, an algorithm that mines frequent itemsets
from evidential data, could also mine frequent itemsets from probabilistic and
possibilistic data. In the literature, only the works of [3] and [10] tackled FIM
problem from evidential databases.

In this paper, we present an efficient algorithm for mining frequent itemsets
from databases that include one evidential attribute. Our proposed algorithm,
the algorithm of [10] and the one of [3] mine exactly the same frequent itemsets
since the three methods are exact and based on the same uncertain FIM model,
i.e., the evidential one. Our new algorithm is based on a variant of the data
structure used in [10] called belief itemset tree (BIT) and its advantage is that
the first scan of the tree allows us to generate until 50% of the final resulting set of
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frequent itemsets. Thus, the remainder of the frequent itemsets are incrementally
computed which makes our method more efficient. We performed FIM operations
using the three algorithms over synthetic databases and experimental results
showed that our solution is more efficient than the other ones.

The remainder of the paper is organized as follows: Section 2 introduces the
evidence theory. Section 3 presents the evidential databases. In section 4, we
recall the problem of Association Rule Mining (ARM) in perfect databases, and
then we present frequent evidential itemset mining and our algorithm in Section
5. Section 6 shows experimentation results and discusses some observations.
Finally, in Section 7, we conclude our work and present some perspectives.

2 Evidence Theory

2.1 Basic Concepts

Evidence theory, also called Dempster-Shafer (DS) theory or belief function the-
ory, was introduced in [6]. It was mathematically formalized in [14]. DS theory
is often described as a generalization of the Bayesian theory since it manipulates
events that are not necessarily exclusive. We present here formal concepts of
this theory. Let Θ = {θ1, θ2, ..., θn} be a finite non empty set of all elementary
exhaustive and mutually exclusive events related to a given problem. Θ is called
frame of discernment of the given problem. The basic belief assignment (bba)
is defined on the set of all subsets of Θ, namely 2Θ. The bba m is the function
m : 2Θ → [0, 1] that satisfies: m(∅) = 0 and

∑
X⊆Θ m(X) = 1 The mass function

(m) allows someone to affect a partial belief value to a subset of Θ. Thus, m(X)
represents belief value placed exactly in the subset X and non distributed to
subsets of X. Subsets of Θ with masses strictly positive are called focal elements
of the bba m, focal elements set is denoted by F . The triplet {Θ,F,m} is called
a body of evidence and denoted by BoE. The belief function (bel) is defined and
computed from the bba function m. X being an event, bel(X) reflects total belief
committed to X , i.e., total mass for all subsets of X .

bel(X) =
∑

Y ⊆X

m(Y )

The plausibility function (pl) quantifies amount of belief that could be given to
a subset X of Θ. It is the sum of all masses of subsets Y that are compatible
with X .

pl(X) =
∑

Y ∩X �=∅
m(Y )

2.2 Conjunctive Rule of Combination

Let m1 and m2 be two bba’s defined on the same frame of discernment Θ and
provided by two ’independent’ BoE’s. The conjunctive rule of combination [15]
is applicable when both sources of information (of combined bba’s) are fully
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reliable. Conjunctive rule of combination is naturally applicable to more than
two bba’s.

m1 ∩©m2(Z) =
∑

X,Y ⊆Θ:X∩Y =Z

m1(X)×m2(Y )

3 Evidential Database

3.1 Definition

An evidential database, also called DS database or belief database stores data
that could be perfect or imperfect. It allows users to set null (missing) values
and also uncertain values. Uncertainty in such database is expressed via evidence
theory presented in section 2.1. An evidential database, denoted by EDB, is
defined as follows: It is a database with n attributes and d lines. Each attribute
i (1 ≤ i ≤ n) has a domain Di of discrete values. Among the n attributes, there
is a one denoted by k that can store uncertain values. Each cell of the attribute
k contains evidential values Vkj which is a bba defined as follows:

Definition 1 (Evidential value). Let Vkj be an evidential value of attribute
k and line j. Vkj is a BoE defined by a frame of discernment Dk, a set of focal
elements F and mass function mkj defined as follows:

mkj : 2Dk → [0, 1] with:

mkj(∅) = 0 and
∑

x⊆Dk

mkj(x) = 1

3.2 Data Imperfections

Evidential databases process different kinds of data imperfections thanks to evi-
dence theory. Indeed, such theory represents perfect information when evidential
value BoE includes only one focal element that is singleton with mass equal to
one. For example, in the following evidential database (see table 1), the eviden-
tial attribute is C. C could have a unique and certain value such as C3; that is
a perfect information. Probabilistic information represented by evidential value
with several focal elements that are singleton. In our database example, values
of attribute C in the second line are probabilistic. Possibilistic information can
be also represented since possibility distribution could be converted into valid
BoE. In our example, values of attribute C in the first line are possibilistic
with π(C1) = 0.8 and π(C2) = 1 (we recall that function π in possibility the-
ory corresponds to pl in evidence one). Missing information corresponds to a
BoE with only one focal element that includes all attribute domain DC values
with mass equal to one. For example, if the value of attribute C is missing for
one line, then evidential value will be composed of only one focal element that
is the whole of the set of DC with m(DC) = 1. Finally any evidential information
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Table 1. Evidential database example

id A B C

1 A1 B1 C2(0.2)
{C1, C2}(0.8)

2 A2 B1 C1(0.3)
C2(0.7)

3 A2 B1 {C1, C2, C3}
4 A1 B1 C2(0.5)

{C1, C3}(0.5)

could be represented. In our example, the value of C in the fourth line is an
evidential information, that is neither perfect, nor probabilistic, nor possibilistic
nor missing one.

In the next section, we recall briefly ARM problem in perfect databases before
presenting the same problem in the context of imperfect databases that contain
one evidential attribute.

4 Association Rule Mining from Perfect Databases

ARM problem has been introduced in [1] and has received a lot of attention
thanks to its applicability in several fields. ARM problem is defined as follows:
Let I={i1,i2,. . . ,in} be a set of n items. Let DB be a perfect database of D
transactions with scheme < tid, items >. Each transaction is identified by a
transaction identifier tid and is included in I (items). An association rule is
X → Y with X,Y ⊆ I, X 	= ∅ and X ∩ Y = ∅. Support of the association rule
X → Y is the occurrence number of Z = X ∪ Y in DB denoted by support(Z).
Its confidence is the ratio support(Z)/support(X). Given a support threshold
minsupp and a confidence threshold minconf , ARM problem consists in com-
puting association rules with supports exceeding minsupp% and confidences ex-
ceeding minconf%. An itemset is a set of items, it is said to be frequent in DB
if its support exceeds minsupp%. ARM problem is divided into two subproblems:

1. Frequent itemsets generation.
2. Association rules computation from frequent itemsets.

The whole of the association rule problem is often reduced to frequent itemset
mining, because once frequent itemsets are generated, association rules compu-
tation becomes a straightforward problem that is less costly compared to the
first subproblem [2]. In our work we focus only on FIM step.

5 Frequent Itemset Mining from Evidential Databases

This section is an adaptation of the model of FIM from perfect databases to im-
perfect ones. Item and itemset notions are modified to support evidential values,
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support notion is also modified to take into account masses placed on eviden-
tial information which produces more accurate association. The preliminaries of
frequent evidential itemsets mining model ([10] and [3]) are the following:

5.1 Preliminaries

Definition 2 (Evidential Item). An evidential item denoted by ivk is one
focal element in a body of evidence Vkj corresponding to the evidential attribute
k. Thus it is defined as a subset of Dk (ivk ∈ 2Dk).

Example 1. In our database example (Table 1), C1 is an item, {C1, C2} too.

Definition 3 (Evidential Itemset). An evidential itemset is a set of eviden-
tial items that correspond to different attributes domains. Formally, evidential
itemset X is defined as:

X ∈
∏

i�=k Di ∪ 2Dk

Example 2. The itemset A1A3 is not a valid evidential itemset because the
two items correspond to the same attribute A. However, the evidential item-
set A1B2{C1, C2} is a valid one.

We also define inclusion operator for evidential itemsets.

Definition 4 (Evidential Itemset Inclusion). Let X and Y be two evidential
itemsets. The ith items of X and Y are respectively denoted by iX and iY .

X ⊆ Y if and only if: ∀iX ∈ X, iX ⊆ iY

Example 3. The itemset A1B2{C1, C2} includes the itemset A1B2C1.

Now, we define the line body of evidence thanks to conjunctive rule of combination.
A line body of evidence is computed from evidential values composing the line:

Definition 5 (Line BoE). The frame of discernment of a line BoE is the
cross product of all attributes domains denoted by Θ =

∏
i�=k Di ∪ 2Dk . Focal

elements are included in Θ, and thus vectors of the form X = {x1, x2, . . . , xn}
where xi ∈ Di for i 	= k and xk ⊆ Dk. The mass of a vector X in a line j is
computed by conjunctive rule of combination of the bba’s evidential values. In
this definition, we assume that perfect attributes (i 	= k) are evidential ones and
correspond to BoEs with only one focal element having masses equal to one.

mj : Θ → [0, 1]

mj(∅) = 0

mj(X) = ∩©i≤nmij(X) =
∏

ivi∈X

mij(ivi)
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Example 4. To illustrate this late definition, we present here the first line body
of evidence in our database example (Table 1). The frame of discernment is Θ
which is the cross product of all attributes domains and the frame of discernment
of the whole of the bodies of evidence of the database lines. Focal elements are
combinations of all evidential items in the line, and thus the BoE of the first line
contains two focal elements A1B1C2 with mass equal to 0.2 and A1B1{C1, C2}
with mass equal to 0.8.

Now, we introduce the notion of evidential database body of evidence which is
induced from the line body of evidence notion since database is a set of lines.

Definition 6 (Evidential Database BoE). Body of evidence of the evidential
database EDB is defined on the frame of discernment Θ, the set of focal elements
is composed of all possible evidential itemsets existing in the database and the
mass function mEDB is defined as follows: Let X be an evidential itemset and
d be the size of EDB:

mDB : Θ → [0, 1] with mDB(X) =
1
d

d∑
j=1

mj(X)

Belief and Plausibility functions are naturally defined as follows:

BelDB(X) =
∑

Y ⊆X

mDB(Y )

PlDB(X) =
∑

Y ∩X �=∅
mDB(Y )

Example 5. In our database (Table 1) the mass of the itemset A1B1{C1, C2} is
the sum of its line masses in the database divided by the size of the latter (equal
to 4); so mDB(A1B1{C1, C2}) = 0.2. Its belief in the database is the sum of all
database masses of evidential itemsets that are included in, which are A1B1C2

and A1B1{C1, C2} so BelBD(A1B1{C1, C2}) = 0.375.

The mass of an evidential itemset X in evidential database EDB is the partial be-
lief attributed to X . The total belief of X is the sum of masses of evidential item-
sets Y included in X corresponding to belief of X in database body of evidence.
Thus the support of X in EDB is simply its belief in EDB’s body of evidence.

5.2 Frequent Evidential Itemset Mining Algorithm

In this section, we present our method for mining frequent itemsets from
database under a support threshold denoted by minsupp. Let EDB be an evi-
dential database, X be an evidential itemset and Θ be the cross product of all
attribute domains. F is the set of frequent evidential itemsets in EDB under the
user-defined support threshold minsupp. Our goal is to extract the set F that is
formally defined as follows:

F = {X ⊆ Θ/support(X) ≥ minsupp}
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Our algorithm proceeds in two major steps. In the first one we generate a data
structure that stores the evidential database; it is a variant of the Belief Itemset
Tree (BIT) introduced in [10]. Then, we scan this data structure to generate
frequent evidential itemsets. These two major steps are described in detail in
the following:

Construction of the Belief Itemset Tree
Belief Itemset Tree (BIT) is a data structure introduced in [10] to store an
evidential database in a compressed way. A BIT contains n + 1 hierarchical
levels. The root contains a null value, and each level contains the values of one
attribute. The BIT is constructed by inserting focal elements of the database
BoE one by one where each focal element corresponds to a different path. A
node is labelled by an item and contains mass and belief information. Mass and
belief information concern the itemset composed by all items of the path from
the root until the node (item) in question.

Example 6. The following figure is the BIT corresponding to our database exam-
ple. We note that we have six focal elements in our databaseBoE that areA1B1C2,
A1B1{C1, C2}, A2B1C1,A2B1C2,A2B1{C1, C2, C3} and A1B1{C1, C3}.

Note that the levels order in the BIT (B, A and C) does not correspond to
the attributes order (A, B and C) given in table 1. Indeed, we provide two
changes to the original construction process of the BIT in [10]. The first one
consists in specifying the sequence of attributes before the construction of the
BIT. Attributes are ordered ascending by the size of their domains, and the
evidential attribute (in our example C) is always the last one in the sequence. In
our example, we start with the attribute B because it has the smallest domain
size. We choose this method to minimize as far as possible the size of our data
structure and so to consume as the least as possible computer memory. In our

Fig. 1. BIT of our database example
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Table 2. Objects and methods description

Object/Method Description

Item Object composed of the label of the item, a mass
value and a support value.

Node Object composed of two arrays. The first one, denoted
by value, includes indexed items and the second one,
denoted by child includes indexed nodes. It is also
composed of mass and support values.

Record Object composed of an array of items and the mass
of the record in the database.

Extract(S as Set,k as Integer) This is a function that returns the set containing all
itemsets of size k included into S.

Apriori Gen(S as Set) It is the famous candidate generation function of
Apriori [2]. It generates the set of candidates itemsets
of size k from the set of frequent ones of size k − 1.

example, if we try to start with the attribute A instead of B, the size of the tree
would be more large that in figure 1.

The second optimization consists in introducing the information support in
each node. This information will be computed on the fly when inserting the
database records and will speed up the frequent itemsets search in the second
step of our process.

The algorithm 1 is the pseudo-code of inserting a record in the belief itemset
tree. Table 2 contains a description of the objects and the methods used in the
next algorithms.

Algorithm 1. InsertRecord(in rec as record, in k as integer, in BIT as Node)

01 If k < n + 1 Then /*Processing the non-last levels*/

02 If BIT.value includes rec(k) in position p Then

03 Increment BIT.value(p).mass and BIT.value(p).support by rec.mass

04 Else

05 Add the item rec(k) in BIT.value with its mass

06 Add an empty Node to BIT.child

07 Affect to p the last position of the array BIT.value /*And so, the position of rec(k)

— in BIT.value*/

08 End if

09 InsertRecord(rec,k+1,BIT.child(p))

10 Else /*Handling an evidential value, and so a leaf of the tree*/

11 If BIT.value includes rec(k) in position p Then

12 Increment BIT.value(p).mass and BIT.value(p).support by rec.mass

13 Elsif BIT.value(k) includes items that are supersets of rec(k) Then

14 Increment supports of these items by rec(k).mass

15 End If

16 For each item i in BIT.value loop
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17 If i is a subset of rec(k) Then

18 Increment BIT.value(p).support by i.mass

19 End If

20 End Loop

21 End

The algorithm 1 inserts only one record in the tree, to construct the whole of the
belief itemset tree, we iterate the procedure InsertRecord for each record in the
database EDB. Once we obtain the belief itemset tree, we pass to the second ma-
jor step of our process which is the generation of frequent itemsets from the BIT.

Generation of Frequent Itemsets from the BIT
In this section we describe our FIM method from the data structure BIT. This
operation is also performed in two steps. In the first one, we scan the BIT only
one time to extract a set of maximal frequent itemsets. Indeed, we explore the
whole of the paths of the tree. A path is considered as a maximal frequent
itemset if we reach a node with a support less than the threshold minsupp (like
the path B1A1 if we assume that minsupp = 0.5) or the leaf (like the path
B1A2{C1, C2, C3} for the same threshold). Then, once we have a set of maximal
frequent itemsets, we generate all subsets of them, that are also frequent item-
sets since support function is anti-monotone [2], i.e., if an itemset X is frequent,
then all itemsets Y ⊆ X are also frequent.

Example 7. Assume the support threshold minsupp = 0.3. In our BIT exam-
ple, we extract maximal frequent itemsets by scanning in depth our tree. The
stored paths we store are delimited either by a node with a support less than
minsupp, either by a leaf. Thus, maximal frequent itemsets that are generated
are: B1A2{C1, C2, C3}, B1A2, B1A1{C1, C2} and B1A1. In addition, all subsets
of these itemsets are frequent: B1, A1, A2, {C1, C2, C3}, {C1, C2}, B1{C1, C2},
A2{C1, C2, C3}, B1{C1, C2, C3} and A1{C1, C2}. Note that one scan of the BIT
has allowed us to extract a significant part of the final result F of the whole of
the frequent itemsets in EDB under minsupp.

Algorithm 2. GenerateMax(in BIT as Node, in minsupp as Real, out MF as Set)

01 For each item i in BIT.value Loop

02 If i.support >= minsupp and BIT.child not Null Then

03 GenerateMax(N.child, minsupp, MF )

04 Else

05 MF = MF ∪ Path

06 End if

07 End Loop

08 End
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The algorithm 2 is the pseudo-code of the procedure that extracts maximal
frequent itemsets from a belief itemset tree in the set MF .

Once the set MF (of Maximal Frequent itemsets) is extracted, we generate
all subsets of the elements of MF since they are frequent too. These subsets
are added to the set MF . Now, the second operation consists in completing
the set MF to obtain the set F of all frequent itemsets. For this purpose, we
use the same technique of [3] and [10]. But in our method, the difference is we
have in memory the set MF which stores a considerable part of F . In fact,
MF allows us to prune the search space and to save much time in comparison
with the other two algorithms. Note that our experiments on different synthetic
databases showed that MF constitutes until 50% of the final result set F while
its computation is at the most 20% of the execution time of the algorithms [3]
and [10].

The algorithm 3 is the pseudo-code of our main procedure that completes the
set MF to obtain the set F . Figure 2 is a simplified description of the overall
process of the algorithm.

Algorithm 3. GenerateFrequent(in BIT as Node, in minsupp as Real, out F as Array

of Set)

01 GenerateMax(BIT, minsupp, MF )

02 k = 1

03 For each item i in BIT

04 If Extract(MF,1) does not include i Then

05 Compute support of i in BIT

06 If i.suport >= minsupp Then

07 F (1) = F (1) ∪ i

08 End If

09 End If

10 End Loop

11 Do While F (k) �= ∅ Loop

12 C = Apriori Gen(F (k))

13 k=k+1

14 C = C \ Extract(MF, k) /*The search space is pruned here. This is the gain

-- compared to the algorithms of [3] and [10]*/

15 Compute supports of all itemsets of C in BIT

16 Remove infrequent itemsets according to minsupp from the set C

17 F (k) = C

18 C = ∅
19 Loop

20 F = F ∪ MF

21 End

In the next section, we present the experimentations that we led to evaluate
the performance of our algorithm.
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Fig. 2. A simplified description of our solution process

6 Experimentations

To assess our method performance, we implemented our proposed algorithm
and the algorithms of [3] and [10] to compare them. Then we generated several
synthetic databases with various values of these parameters : D (database size),
I (number of items in all attributes domains), C (number of attributes) and %U
(percentage of records including evidential values). We present here only tests
led on the database D = 5000, I = 800, C = 5 and %U = 10.

Figure 3 is a comparison between algorithms performances. It shows that our
solution is taking a considerable advantage from the set MF computed in the
first scan of the database. MF fast computation makes the second part of our
process faster, since the set of candidate itemsets is significantly pruned. Note
that in figure 3 our solution, the one of [3] and the one of [10] are respectively
denoted by 1, 2 and 3.

To show the important contribution of the first scan, we led an experimen-
tation on the same synthetic database to compute the percentage of generated
maximal frequent itemsets (MF ) in relation to the whole of the frequent item-
sets (F ). Table 3 presents some mining operations performed by our algorithm

Fig. 3. Comparison between algorithms performances
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Table 3. Performance of the first scan of the BIT

minsupp Size ratio Time ratio

5% 25% 3%

7% 27% 10%

10% 35% 9%

12% 50% 7%

Fig. 4. Performance of the algorithms in the context of dense and sparse databases

for a range of support thresholds. For each mining operation, we compute the
size ratio that is (size of MF )/(size of F ) and also the time ratio that is
(time of MF computation)/(time of F computation). The results show that the
procedure GenerateMax is a main advantage in the whole of F ’s computation
process since it generates an important part of the final result in so short time.

We also performed two experimentations to assess the behavior of our al-
gorithm in the context of dense and sparse data. We generated two synthetic
databases with the same values for D = 5000, C = 5 and %U = 10 but with
different values for I that are I = 2000 to get a sparse database and I = 50 to
get a dense database. We recall that sparse databases contain a great number of
itemsets that are scattered in the records, while dense databases contain a more
little number of itemsets. For example, the search space in the first synthetic
database has a size of more than 22000 different itemsets while in the second one
it reaches only 250.

The experimentations presented in Figure 4 showed that our algorithm is more
efficient in the case of dense data than in the case of sparse data. Indeed, the
BIT is more large as the database is more sparse and that makes the algorithm
less efficient since there will be more paths to explore. Note that the number of
paths in the BIT is exactly the number of different itemsets in the database.

7 Conclusion

In this paper we propose a frequent itemsets mining algorithm in context of
databases that include exactly one evidential attribute. This kind of databases
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provides a large field of uncertainty expression to end-user since they allow stor-
age of probabilistic, possibilistic, evidential information and even missing values.
Our solution uses a variant of the belief itemset tree introduced in [10]. Our main
contribution is the computation of an important part of the final set F of fre-
quent itemsets (from 25% until 50%) in a little interval of time compared to
the whole of the time consumed by the mining operation (from 3% until 10%).
This fast computation of a considerable part of the set F gives to our solution
a significant advantage and makes it more efficient than existing algorithms for
mining evidential data ([3] and [10]).

Our work could be extended by plausible pattern mining, since mined itemsets
in our model are credible, but we have no information about their plausibilities.
In other words, it will be interesting if we compute plausibilities of frequent
(credible) evidential itemsets. We can even find infrequent itemsets that are
more plausible than frequent ones. A survey of this measurement will be inter-
esting. Finally, the maintenance of frequent itemsets in imperfect databases is
practically a non-explored field. Maintenance of frequent itemsets is useful in
the context of dynamic databases, i.e., databases that are frequently updated.
The data structure used in this algorithm is highly updatable which constitutes
a good base to tackle the problem.
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Abstract. In many multi-agent systems, the user has to decide whether
he (or she) sufficiently trusts a certain agent to achieve a certain goal. To
help users to make such decisions, an increasing number of trust systems
have been developed. By trust system, we mean a system that gathers
information about an agent and evaluates its trustworthiness from this
information. The aim of the present paper is to develop new trust systems
that overcome limitations of existing ones. This is a challenging problem
that raises questions such as: how trustworthiness may be represented,
and from which information it may be estimated? We assume that a set
of grades describing the past performances of the agent is given. With
this common basis, two approaches are proposed. In the first one, the aim
is to construct an interval that summarizes the grades. Such an interval
gives a good account of the trustworthiness of the agent. We establish
axioms that should be satisfied by summarizing methods, devise a par-
ticular method based on pulling, and check that it satisfies the axioms,
which provides theoretical justifications for it. In the second approach,
which is more briefly presented, a level of trust as the certainty that a
future grade will be good, and a level of distrust as the fear that a future
grade may be bad, are computed on the basis of the past grades. This
approach is based on possibility theory and provides, thanks to the two
levels, another view of trustworthiness, as well as summarizing intervals.

Keywords: Trust, distrust, intervals, possibility theory.

1 Introduction

In many multi-agent systems, especially in the field of e-commerce, the user has
a lot of decisions to make about the agents. For example, he (or she) has to
decide whether he believes that an agent is more trustworthy than another, or
whether an agent is sufficiently trustworthy is the absolute sense. This is the
case for example in the famous auction system Ebay. Indeed, a buyer has to
compare sellers and to decide whether he sufficiently trusts them to be honest
and competent. In order to help users to make such decisions, an increasing
number of trust systems have been developed, see e.g. [SS05] for a review.
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By trust system, we mean a system composed of two parts. First, an environ-
ment in which an agent called the trustee may be put as well as a certain kind
of information about it. And second, a method which (in any possible situation)
constructs from this information an object giving a good account of the trust-
worthiness of the trustee. This object is meant to provide trustors with some
help to make decisions about trustees.

For example, Ebay is equipped with a system that takes a seller, collects the
grades buyers gave to him, and attributes to him a certain number of “stars” on
the basis of these grades. This number indicates how reliable the seller is, and
provides buyers with a new criterion for judging and comparing sellers.

The aim of the present paper is to develop new trust systems which overcome
limitations of existing ones. This is a challenging problem that raises questions
such as: how trustworthiness may be represented, and from which information
it may be estimated? We assume that a set of grades describing the past per-
formances of the trustee is given. By convention, the value of a grade is a real
number between 0 and 1. Each grade describes how perfectly the trustee achieved
some past goal. Naturally, 0 means that it did not at all achieved it, whilst 1
means on the contrary that it achieved it perfectly.

With this common basis, two approaches are proposed. In the first one, the
aim is to construct a summarizing interval, that is, an interval which necessarily
describes the past behavior of the trustee with less accuracy than the grades,
but gives a good account of the essential parts of this behavior. Such an interval
constitutes a concise representation of the trustworthiness of the trustee. An
advantage is that it is simpler than a set of grades. Therefore, it provides a new
criterion for judging and comparing trustees, that is, a trustor may use it to
evaluate its trust (or distrust) in the trustee, and thus to take decisions.

First, we establish intuitive and desirable properties, called axioms, which
should be satisfied by summarizing methods. Next, we devise a particular method
based on the idea that “strong” groups of grades have the strength to pull the
bounds of the interval towards themselves. And finally, we check that our method
satisfies the axioms, which provides theoretical justifications for it.

In certain cases, the user needs a trust interval rather than a summarizing
one. By trust interval, we mean an interval such that it is rational to believe
(on the basis of the past grades) that the future grades will essentially fall on it.
We think that we get such an interval if we take a summarizing one and add an
adequate margin of error. We provide a method for constructing such a margin.
It is based on the fusion of the summarizing interval and the interval [0, 1].

In the second approach, which is more briefly presented, the idea is to compute
a level of trust as the certainty (on the basis of the past grades) that a future
grade will be good, and a level of distrust as the fear that a future grade may
be bad. These two levels provide another representation of the trustworthiness
of the trustee. This approach is based on possibility theory, that is, we view
the grades as a basis for building an histogram, which is then transformed into
a possibility distribution, which in turn provides a basis for computing levels
of trust and distrust. Moreover, the possibility distribution so obtained may
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also be summarized under the form of a crisp interval by computing lower and
upper expected values. This may be viewed as another way to build summarizing
intervals. Besides, partial and complete orders are also proposed for comparing
directly histograms of grade values, from a trustworthiness point of view.

The rest of the paper is structured as follows. In Section 2, we discuss different
research trends on the problem of evaluating trustworthiness, and we highlight
some advantages of our approaches. In Section 3, we present the first one, that is,
in Section 3.1, we establish six axioms for summarizing methods, in Section 3.2,
we develop a method based on pulling and prove that it satisfies the axioms, and
in Section 3.3, we show how summarizing intervals may be used to construct trust
intervals. Next, in Section 4, we turn to the second approach. We begin with
histograms of grade values, introduce ordering relations between them, build
possibility distributions from them, and finally obtain from these distributions
levels of trust and distrust, as well as summarizing intervals.

2 Trust Evaluation: Different Research Trends

The problem of evaluating trustworthiness may be considered from many view-
points. First of all, there are different kinds of representation formats. For exam-
ple, trustworthiness may be represented by a number, a pair of numbers (usually
one for trust and one for distrust), an interval, or even a fuzzy interval. In addi-
tion, the same representation format may have different understandings.

For example, in some approaches (e.g. [JK98] and [ZdSM05]), an agent is
either trustworthy or not, and the authors manipulate a number which indicates
the probability or the belief that it is trustworthy. In other approaches (e.g.
[dCdS06]), an agent is trustworthy to a certain degree, and the authors work
with a number that indicates to which degree. But, the probability of being
trustworthy is certainly not the same thing as a degree of trustworthiness.

Other approaches motivate interval-based representation of trustworthiness by
the poorness of the information available, e.g. [Pra07]. This view is compatible
with the understanding that trustworthiness is binary and the probability of
being trustworthy is imprecise. Similarly, it is compatible with the understanding
that trustworthiness is graded and the degree of trustworthiness is ill-known.

Another facet of the problem is that it may refer to quite different types of in-
put data. For example, these data may take the form of opinions of agents about
others, e.g. [AMT05], [WJI04], and [MDB06]. This is also the case in [TB04]
and [TLU06], where trust evaluation is based on direct opinions, that is, opin-
ions obtained from past interactions. Then, indirect opinions are computed by
chaining and combining direct ones, either by means of inference rules [TLU06]
or by path semirings [TB04]. Both approaches associate an uncertainty estimate
to their trust values. Another option is to view trust assessment as a matter of
argumentation, that is, the idea is to balance arguments in favor of deciding to
trust an agent with arguments against this choice [Pra07].

In this paper, we evaluate trustworthiness from past performances, which has
been rather neglected in the literature. Although purely statistical methods may
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be considered if enough data are available, we investigate other roads here since
data are not necessarily numerous in practice. In e-commerce, there are systems
(e.g. Ebay) where agents receive simple rates (e.g. good, bad, or neutral), and
their trustworthiness, represented by a number, is evaluated in a rudimentary
way from these rates. By our interval-based approaches, we try to exploit the
rates in a deeper way. In addition, a number does not give many indications of
how the rates are scattered, while an interval does.

3 Trustworthiness as a Summarizing Interval

3.1 Axioms

In this section, we provide desirable properties for summarizing methods.

Definition 1. A grade structure G is an ordered pair 〈G, v〉, where G is a non-
empty and finite set of grades and v is a function from a superset of G to the
interval [0, 1] (of real numbers). We call v(g) the value of g.

A summarizing method I is a function which transforms any grade structure
into a sub-interval of [0, 1].

The reader may wonder why we allow the domain of v to be a superset of G,
while G would be sufficient. The reason is simply that it helps to increase the
readability of certain definitions and proofs. For all x ∈ [0, 1], we denote by
weiG(x) the “weight” of x in G, that is, weiG(x) = |{g ∈ G : v(g) = x}|. When
the context is clear we may drop the subscript G . The same goes for all notations.

We turn to a first obvious property. If two structures lead to the same values
and to the same weights, then of course they should lead to the same interval.

Definition 2. Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade structures. We
say that G and G′ are equivalent (in symbols G ≡ G′) iff v(G) = v′(G′) and
∀ x ∈ v(G), weiG(x) = weiG′(x).

A summarizing method I respects equivalence iff for all grade structures G
and G′, if G ≡ G′, then I(G) = I(G′).

Another obvious property is that the summarizing interval should not exceed
the limits of the zone in which the grades are located.

Definition 3. A summarizing method I respects confinement iff for all grade
structure G, I(G) ⊆ [min(v(G)),max(v(G))].

Next, assume that the grades are regularly scattered over some distance. Then,
the summarizing interval should cover exactly this distance.

Definition 4. A grade structure G is regular iff:
− ∃ r, s ∈ R, ∃ n ∈ N, v(G) = {r, r + s, r + 2s, . . . , r + ns}
− ∀ x, y ∈ v(G), wei(x) = wei(y)

A summarizing method I respects regularity iff for all regular grade structure
G, I(G) = [min(v(G)),max(v(G))].
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The next property says the following: if the grades are symmetric with respect to
some axis, then so should be the summarizing interval. Let x, a ∈ R. We denote
by mira(x) is the mirror image of x with respect to a, that is, mira(x) = 2a−x.

Definition 5. A grade structure G is symmetric with respect to a ∈ R iff for all
x ∈ v(G), mir(x) ∈ v(G) and wei(x) = wei(mir(x)).

A summarizing method I respects symmetry iff for all grade structure G and
∀ a ∈ R, if G is symmetric with respect to a, then mir(minI(G)) = maxI(G).

Note that we sometimes write minX , vX , etc. instead of min(X), v(X), etc. in
order to increase readability. We denote by meanG the mean of the grades of G
and by cenG the center of the zone in which they are located, that is, cenG is the
middle of [min(v(G)),max(v(G))].

Assume that mean is to the right of cen. Then, intuitively, G is leaning to the
right. The summarizing interval should reflect this asymmetry, that is, it should
“forget” at least a bit the grades on the extreme left. The same goes when G is
leaning to the left.

Definition 6. A method I respects leaning iff for all grade structure G,
− if cen < mean, then min(v(G)) < minI(G)
− if mean < cen, then maxI(G) < max(v(G))

Finally, take a grade structure G, add new grades to the right, and call G′ the
structure so obtained. Then, the bounds of I(G′) should be at least as to the right
as those of I(G). In addition, if some new grades are strictly more to the right
than the old ones, then the right bound of I(G′) should be strictly more to the
right than that of I(G). The same goes with left.

Definition 7. Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade structures.
We denote by �r the relation such that

G �r G′ iff G′ = G ∪H, v|G = v′|G, and ∀ g ∈ G, ∀ h ∈ H, v′(g) ≤ v′(h)

We denote by ≺r the relation such that

G ≺r G′ iff G �r G′ and ∃ g′ ∈ G′, ∀ g ∈ G, v(g) < v′(g′)

The definitions of �l and ≺l are obtained by replacing ≤ by ≥, and < by >.

Intuitively, G �r G′ means that G′ can be obtained from G by adding new grades
to the right, and G ≺r G′ means that some new grades are strictly more to the
right than the old ones. Note that v|G denotes the restriction of v to G.

Definition 8. A method I is coherent iff for all grade structures G and G′,
− if G �r G′, then minI(G) ≤ minI(G′) and maxI(G) ≤ maxI(G′)
− if G ≺r G′, then maxI(G) < maxI(G′)
− if G �l G′, then minI(G′) ≤ minI(G) and maxI(G′) ≤ maxI(G)
− if G ≺l G′, then minI(G′) < minI(G)
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3.2 A Summarizing Method Based on Pulling

Assume a grade structure G is given. It can be visualized as a set of points above
the real interval [0, 1], each point being located above its value. For example, the
structure G0 consisting of 0, 0.4, 0.4, 1, and 1 can be visualized as follows:

We are now going to construct an interval Ip(G) that summarizes G. Initially,
Ip(G) is the smallest interval that contains the values of all points, which seems
natural. Next, the idea is to look for “strong” groups of points, that is, groups
able to pull the bounds of Ip(G) towards themselves, despite the resistance of
certain points. Finally, we move each bound of Ip(G) to the farthest value x such
that there exists a group able to pull it to x.

Here is a first simple way to find a group able to pull the left bound of Ip(G)
(the case of the right bound is similar). Suppose that the arithmetic mean m
of the grades is to the right of the center c of Ip(G). In our opinion, this means
that the points above the right half of Ip(G) constitute a group S able to pull
the left bound towards the right. The more m is far from c, the more S is able
to give it a hard pull. More precisely, S can pull the left bound “until c reaches
m”, that is, it can pull it to the value x such that if the left bound was equal to
x, then c would be equal to m. For example, in G0, the two 1’s are able to pull
the left bound of Ip(G0) to 0.12.

We turn to a more general way to find a group able to pull the left bound of
Ip(G). Take some limit l, ignore the points of G to the right of l, and let G′ be
the grade structure so obtained. Next, let Ip(G′) be the smallest interval which
contains the values of all grades of G′, and, as before, let us look for a group able
to pull the left bound of Ip(G′). If we find such a group, then it is able to pull
the left bound of Ip(G) as well.

Indeed, suppose the mean m′ of the grades of G′ is to the right of the center
c′ of Ip(G′). Then, the points above the right half of Ip(G′) constitute a group S′

able to pull the left bound of Ip(G′) until c′ reaches m′. But, if a group of points
can pull the left bound towards the right in a certain context, then of course
it can do the same thing in any context obtained by adding new points to the
right of this group. This reflects the intuition that he who can do more can do
less. Consequently, since, in G′, S′ can pull the left bound of Ip(G′) to a certain
value x, it follows that, in G, S′ can pull the left bound of Ip(G) to x as well.

For example, let G′
0 be the structure obtained from G0 by removing the two 1’s.

Then, in G′
0, the two 0.4’s can pull the left bound of Ip(G′

0) to 0.133. Therefore,
in G0, the two 0.4’s can pull the left bound of Ip(G0) to the same value.
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Consequently, in G0, there are two groups able to pull the left bound of Ip(G0),
namely the two 1’s (to 0.12) and the two 0.4’s (to 0.133). It turns out that the
second group is able to pull the left bound to a farther value than the first one.
This may seem surprising since the first group is farther than the second one, but
actually this is normal. Indeed, the two 1’s are farther but they face a stronger
resistance to pulling, that is, when pulling they are opposed to 0, 0.4, and 0.4,
while the two 0.4’s are only opposed to 0.

To summarize, we begin with the smallest interval Ip(G) which contains the
values of all grades of G, then we identify the groups of grades able to pull the
left bound of Ip(G), and finally we move it to the farthest value x such that there
exists a group able to pull it to x. The same goes for the right bound.

For example, here is in the final analysis the interval Ip(G0) obtained from G0

by the pulling method (it is represented by the grey bar). Note that, according
to our method, no group is able to pull the right bound of Ip(G0).

Definition 9. Let G = 〈G, v〉 be a grade structure. We denote by Is
p(G) the

interval that superficially summarizes G according to the pulling method, that is,
the interval obtained by this method when no limit l is considered. More formally,

Is
p(G) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[min(vG), max(vG)] if cen = mean

[mirmean(max(vG)), max(vG)] if cen < mean

[min(vG), mirmean(min(vG))] if mean < cen

A set L is a left part of G iff ∃ l ∈ R, L = {g ∈ G : v(g) ≤ l}. Similarly, a set
R is a right part of G iff ∃ l ∈ R, R = {g ∈ G : l ≤ v(g)}. We denote by L(G)
(resp. R(G)) the set of all non-empty left (resp. right) parts of G.

Definition 10. Let G = 〈G, v〉 be a grade structure. We denote by Ip(G) the
interval that summarizes G according to the pulling method, that is,

Ip(G) = [max{minIs
p〈L, v〉 : L ∈ L(G)}, min{maxIs

p〈R, v〉 : R ∈ R(G)}]

Here are some additional examples to give the reader a better idea how Ip be-
haves. We scattered five grades regularly over some distance. Then, as desired,
the interval obtained by the pulling method covers exactly the five grades.
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Next, suppose that we bring closer together the three grades which are closest
to the middle, while keeping a symmetric situation. Then, the newly formed
concentration of grades makes us forget a bit the two extreme grades.

If we do the same thing, but without keeping a symmetric situation, then the
concentration of grades makes us forget an extreme grade more than the other.

More formally, the summarizing method based on pulling satisfies all axioms
introduced in Section 3.1.

Proposition 1. The summarizing method Ip based on pulling satisfies equiva-
lence, confinement, regularity, symmetry, leaning, and coherence.

Proof. Equivalence, confinement, regularity, and leaning are easy.

Proof for symmetry. Assume G = 〈G, v〉 is symmetric with respect to a ∈ [0, 1].
We show later that:
(0) ∀ L ∈ L(G), ∃R ∈ R(G), mir(minIs

p〈L, v〉) = maxIs
p〈R, v〉

(1) ∀R ∈ R(G), ∃ L ∈ L(G), mir(maxIs
p〈R, v〉) = minIs

p〈L, v〉
By definition, ∃ L ∈ L(G), minIp(G) = minIs

p〈L, v〉.
By (0), ∃R ∈ R(G), mir(minIs

p〈L, v〉) = maxIs
p〈R, v〉.

Therefore, maxIp(G) ≤ maxIs
p〈R, v〉 = mir(minIp(G)).

We show mir(minIp(G)) ≤ maxIp(G).
Suppose maxIp(G) < mir(minIp(G)).
By definition, ∃R ∈ R(G), maxIp(G) = maxIs

p〈R, v〉.
Thus, by (1), ∃ L ∈ L(G), mir(maxIs

p〈R, v〉) = minIs
p〈L, v〉.

Thus, minIp(G) = mir(mir(minIp(G))) < mir(maxIp(G)) = mir(maxIs
p〈R, v〉)

= minIs
p〈L, v〉, which is impossible.

Proof of (0) ((1) is similar). Let L ∈ L(G). Then, ∃l ∈ R, L = {g ∈ G : v(g) ≤ l}.
Let R = {g ∈ G : mir(l) ≤ v(g)}. We show mir(v(L)) = v(R).

“⊆”. Let y ∈ mir(v(L)). Then, ∃ x ∈ v(L), y = mir(x). But, x ≤ l.
Thus, mir(l) ≤ y. In addition, by symmetry, ∃ g ∈ G, v(g) = y.
But, g ∈ R. Therefore, y ∈ v(R).
“⊇”. Let x ∈ v(R). Then, mir(l) ≤ x. Thus, mir(x) ≤ mir(mir(l)) = l.
By symmetry, ∃ g ∈ G, v(g) = mir(x). But, g ∈ L. Thus, mir(x) ∈ v(L).
Therefore, x = mir(mir(x)) ∈ mir(v(L)).

In addition, L 	= ∅. Thus, R 	= ∅. Therefore, R ∈ R(G).
Let c, m, min, max be shorthands for cen〈L,v〉, mean〈L,v〉, min(v(L)), max(v(L)).
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We show mir(c) = cen〈R,v〉.
By definition, −−−→c min +−−−→c max = −→0 . But ∀ x, y ∈ R,

−→
xy =

−−−−−−−−−→
mir(y)mir(x).

Therefore,
−−−−−−−−−−−→
mir(min)mir(c) +

−−−−−−−−−−−→
mir(max) mir(c) = −→0 .

But, mir(v(L))=v(R). So, mir(min)=max(v(R)) and mir(max) = min(v(R)).
Thus,

−−−−−−−−−−−−→
max(v(R))mir(c) +

−−−−−−−−−−−−→
min(v(R))mir(c) = −→0 . So, mir(c) = cen〈R,v〉.

We show mir(m) = mean〈R,v〉.
By definition,

∑
x∈v(L) wei(x)−−→m x = −→0 . Therefore,∑

x∈v(L) wei(x)
−−−−−−−−−−→
mir(x)mir(m) =

∑
x∈v(L) wei(mir(x))

−−−−−−−−−−→
mir(x)mir(m) = −→0 .

Consequently,
∑

y∈v(R) wei(y)
−−−−−−→
y mir(m) = −→0 . Thus, mir(m) = mean〈R,v〉.

Finally, we show mira(minIs
p〈L, v〉) = maxIs

p〈R, v〉.
Case 1: c ≤ m. Then, minIs

p〈L, v〉 = mirm(max) and mira(m) ≤ mira(c).
Therefore, maxIs

p〈R, v〉 = mirmira(m)(min(vR)) = mirmira(m)(mira(max))
= mira(mirm(max)).
Case 2: m < c. Then, minIs

p〈L, v〉 = min and mira(c) < mira(m).
Thus, maxIs

p〈R, v〉 = max(v(R)) = mira(min).

Proof for coherence. Let G = 〈G, v〉 and G′ = 〈G′, v′〉 be two grade structure.
Suppose G �r G′. We show minIp(G) ≤ minIp(G′).

There exists L ∈ L(G) such that minIp(G) = minIs
p〈L, v〉.

Let L′ = {g ∈ G′ : v′(g) ≤ max(vL)}. Then, L′ ∈ L(G′).
Let m, m′, c, c′ be shorthands for mean〈L,v〉, mean〈L′,v′〉, cen〈L,v〉, cen〈L′,v′〉.
Then, min(vL) = min(v′L′), max(vL) = max(v′L′), c = c′ and m ≤ m′.
Case 1: c ≤ m and c′ ≤ m′.
Then, minIs

p〈L, v〉 = mirm(max(vL)) ≤ mirm′(max(v′L′)) = minIs
p〈L′, v′〉.

Case 2: c ≤ m and m′ < c′. Then, m′ < m, which is impossible.
Case 3: m < c and c′ ≤ m′.
Then, minIs

p〈L, v〉=min(vL)=min(v′L′)≤mirm′(max(v′L′))=minIs
p〈L′, v′〉.

Case 4: m < c and m′ < c′.
Then, minIs

p〈L, v〉 = min(vL) = min(v′L′) = minIs
p〈L′, v′〉.

We show maxIp(G) ≤ maxIp(G′).
There exists R′ ∈ R(G′) such that maxIp(G′) = maxIs

p〈R′, v′〉.
Let R = {g ∈ G : min(v′R′) ≤ v(g)}.
Case 1: R = ∅. Then, maxIp(G) ≤ max(vG) < min(v′R′) ≤ maxIp(G′).
Case 2: R 	= ∅. Then, R ∈ R(G). Thus, maxIp(G) ≤ maxIs

p〈R, v〉.
Let m, m′, c, c′ be shorthands for mean〈R,v〉, mean〈R′,v′〉, cen〈R,v〉, cen〈R′,v′〉.
Then, min(vR) = min(v′R′), max(vR) ≤ max(v′R′), and m ≤ m′.
Case 2.1: c ≤ m and c′ ≤ m′.
Then, maxIs

p〈R, v〉 = max(vR) ≤ max(v′R′) = maxIs
p〈R′, v′〉.

Case 2.2: c ≤ m and m′<c′. Then, maxIs
p〈R, v〉 = max(vR) ≤ mirm(min(vR))

≤ mirm′(min(v′R′)) = maxIs
p〈R′, v′〉.

Case 2.3: m < c and c′ ≤ m′.
Then, maxIs

p〈R, v〉=mirm(min(vR))<max(vR) ≤ max(v′R′)=maxIs
p〈R′, v′〉.

Case 2.4: m < c and m′ < c′.
Then, maxIs

p〈R, v〉 = mirm(min(vR)) ≤ mirm′(min(v′R′)) = maxIs
p〈R′, v′〉.
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Suppose G ≺r G′. We show maxIp(G) < maxIp(G′).
The proof is similar to that of maxIp(G) ≤ maxIp(G′).
The difference is that this time we have max(vR) < max(v′R′) and m < m′.
This difference allows us to derive in all cases maxIs

p〈R, v〉 < maxIs
p〈R′, v′〉.

The proofs for �l and ≺l and similar to those for �r and ≺r. ��

3.3 From Summarizing Intervals to Trust Intervals

In certain contexts, given a grade structure G = 〈G, v〉, the user needs a trust
interval rather than a summarizing one. Recall that a trust interval is an interval
such that it is rational to believe (on the basis of the past grades) that the future
grades will essentially fall on it. We think that we get such an interval T (G) if
we take a summarizing interval I(G) and add an adequate margin of error.

The question is of course: what is an adequate margin of error? The more the
number of past grades is big, the more the margin should be small. A solution
is for example to define the left bound of T (G) as the weighted mean of 0 and
the left bound of I(G). The weight of the former is 1, while that of the latter is
the number of past grades, that is, |G|. The same goes for the right bound.

Definition 11. Let G = 〈G, v〉 be a grade structure. We denote by Tp(G) the
trust interval obtained from G according to the pulling method, that is,

Tp(G) = [
|G|minIp(G)

1 + |G| ,
1 + |G|maxIp(G)

1 + |G| ]

Tp and Ip behave almost in the same way. The essential difference is that two
structures may lead to the same summarizing interval, but to different trust
intervals. This is possible because there exist structures which contain different
numbers of grades, and yet lead to the same summarizing interval. Here is an
example. Suppose that there is only one grade of value 0.5. Then, Tp is centered
and strictly smaller than [0, 1], which reflects the idea that we are expecting
future grades close to 0.5, but we remain cautious.

Next, add two other 0.5’s. Then, Tp is still centered and even smaller than before
(as desired), while in both cases Ip is the same interval, namely [0.5, 0.5].

Provided that our view of a trust interval is convincing (“trust = summary
+ margin of error”), Tp provides trustors with an indication of what they can
expect from trutees, which may be of a certain help.
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4 Trustworthiness as Levels of Trust and Distrust

Recall that the information available about the past behavior of an agent is
supposed to take the form of a collection of grades whose values belong to the
interval [0, 1]. The interval [0, 1] is viewed in this section as a bipolar univariate
scale. By convention, 0 is supposed to stand for the worst grade, and 1 for the
best one. The value 0.5 will be considered as a neutral value, which means that
values in (0.5, 1] will be understood as increasingly good, while values in [0, 0.5)
are bad values, which are all the worse as they are closer to 0. Although, it may
look natural, the choice of the neutral value in the middle of the interval is not
compulsory, and the approach described in the following could be easily adapted
to a neutral value differently located in (0, 1).

We also assume that [0, 0.5) (resp. (0.5, 1]) is partitioned into a finite number
of subintervals of equal length, increasingly ordered λ−n, ..., λ−j , ..., λ−1 (resp.
μ+1, ..., μ+i, ..., μ+n). All grade values belonging to the same interval λ−j (or
μ+i) are considered as indistinguishable and equivalent. Thus, a grade structure
G = 〈G, v〉 will be characterized by the sequence 〈w−n, ..., w−1, w+1, ..., w+n〉,
where w−j = |{g ∈ G : v(g) ∈ λ−j}| and similarly w+i = |{g ∈ G : v(g) ∈ μ+i}|.

Let us first provide some examples of partial orders for comparing two grade
structures. Given two structures G = 〈G, v〉 and G′ = 〈G′, v′〉, with respective
sequences 〈wk〉 and 〈w′

k〉, a partial order can be defined by comparing the global
amounts of grades with good and with bad values. Namely,

G �card G′ iff
n∑

i=1

w+i ≥
n∑

i=1

w′
+i and

n∑
j=1

w−j ≤
n∑

j=1

w′
−j

Clearly, G �card G′ expresses that the grade structure G is at least as good
(from a trustworthiness viewpoint) as G′ since G has more grades with good
values and less grades with bad values in the wide sense than G′. An even more
refined, actually complete, order can then be obtained by taking the difference
of the global amounts of grades with good values and bad values.

G �d-card G′ iff
n∑

i=1

w+i −
n∑

j=1

w−j ≥
n∑

i=1

w′
+i −

n∑
j=1

w′
−j

However, it makes no difference between a structure with a few good grade
values and no bad ones, and a structure with some bad ones and a few more
good ones. Moreover, it is clear that all the grades with good (resp. bad) values
have not the same importance. A value is all the better (resp. worse) as it is
closer to 1 (resp. 0). So, it would be advisable to use fuzzy cardinality [DP80] in
the above definition. Let us first define the fuzzy set Good of good value classes
and the fuzzy set Bad of bad value classes. We take for the membership degrees
increasing and decreasing functions respectively:

∀ j,Good(λ−j) = 0, Good(μ+1) =
1
n

, . . . ,Good(μ+i) =
i

n
, . . . ,Good(μ+n) = 1
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Bad(λ−n) = 1, . . . ,Bad(λ−j) =
j

n
, . . . ,Bad(λ−1) =

1
n

, ∀ i,Bad(μ+i) = 0

For convenience, let us use the simplified notations Good(μ+i) = go+i and
Bad(λ−j) = ba−j . Then, a fuzzy cardinality-based partial ordering is defined:

G �f-card G′ iff
n∑

i=1

go+iw+i ≥
n∑

i=1

go+iw
′
+i and

n∑
j=1

ba−jw−j ≤
n∑

j=1

ba−jw
′
−j

Such a comparison between two structures G and G′ is fair only if they are
based on the same number of grades, that is, only if |G| = |G′|. Otherwise, if we
compare two structures with unequal number of grades, it may be better to use
relative cardinality, that is, G �rf-card G′ iff

1
|G|

n∑
i=1

go+iw+i ≥
1
|G′|

n∑
i=1

go+iw
′
+i and

1
|G|

n∑
j=1

ba−jw−j ≤
1
|G′|

n∑
j=1

ba−jw
′
−j

Le us illustrate on an example the different discriminating powers of the orderings
�f-card and �rf-card. Let G1, G2, and G3 be three structures defined by:

– w1
−n = 3 and ∀ i, ∀ j 	= n, w1

−j = w1
+i = 0

– w2
−n = 2 and ∀ i, ∀ j 	= n, w2

−j = w2
+i = 0

– w3
−n = 2, w3

−(n−1) = 1 and ∀ i, ∀ j < n− 1, w3
−j = w3

+i = 0

Then it can be checked that G2 �f-card G1, while G2 ≈rf-card G1 (where a ≈ b
iff a � b and b � a). However G2 �f-card G3 and G3 �rf-card G2. As expected,
�rf-card is only sensitive to the percentages of rather good and rather bad cases,
but not directly to their actual cardinalities. However, it acknowledges the fact
that in average G3 is not as bad as G2, although G2 reports less bad cases.

We now discuss the computation of a level of trust as the certainty (on the basis
of the past grades) that a future grade will be good, and a level of distrust as the
fear that a future grade may be bad. The idea is that the level of trust should be
high if always grades with good values are reported, while the level of distrust
should be high as soon as some grades with bad values are reported.

For computing such levels of trust and distrust, we use a two-step approach:
i) transform the grade structure G into a possibility distribution, then viewed as
restricting the possible value of the next outcome; ii) on this basis, compute the
level of trust as the necessity measure that a grade with a good value will be
obtained, and the level of distrust as the possibility that a bad grade value will
be obtained, where “good” and “bad” refer to the fuzzy sets Good and Bad.

For performing the first step, we first normalize the weighting structure, and
then apply a probability-possibility transformation, preserving as much infor-
mation as possible. For j = 1, . . . , n, let p−j = w−j

|G| . For i = 1, . . . , n, let
p+i = w+i

|G| . Then, in order to apply the probability-possibility transformation
[DPS93], we have to re-order the set {p−n, . . . , p−1, p+1, . . . , p+n} decreasingly,
as pσ(1) ≥ . . . ≥ pσ(k) ≥ . . . ≥ pσ(2n). Next, let πσ(k) =

∑2n
j=k pσ(j). Note that
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πσ(1) ≥ . . . ≥ πσ(k) ≥ . . . ≥ πσ(2n), which expresses that the transformation is
faithful with respect to the shape of the distribution.

The second step amounts to the computation of the necessity and the possi-
bility of fuzzy events, that is,

trust(G) = min
x

max(Good(x), 1 − π(x)) distrust(G) = max
x

min(Bad(x), π(x))

The level of distrust is high as soon as there exists a really bad grade value that
is highly plausible. The level of trust is high as soon as any bad grade value
(including the less bad ones) is impossible or almost impossible. Such definitions
acknowledge the fact that one should be afraid by bad performances in trust
evaluation, which play a more important role than the good ones. It can be
checked that the sum of these two levels is always less or equal to 1 (as in most
models of trust and distrust, e.g. [dCdS06], however these levels are computed
here from past performances, good or bad, in agreement with possibility theory).
Thus, from them an interval pertaining to trust (resp. to distrust) can be built
as [trust(G), 1 − distrust(G)] (resp. [distrust(G), 1 − trust(G)]). These levels (and
intervals) not only involve the grade structure information G, but also a graded
view of goodness and badness.

Besides, the obtained possibility distribution π, or more precisely its convex
hull, can be seen as a kind of fuzzy version of summarizing interval in the sense
of Section 3.2. This interval may be transformed into a crisp one representing
its mean value [DP87]. The bounds of the interval are computed as lower and
upper expected values E∗(π) and E∗(π) (using Choquet integrals)

E∗(π) =
n∑

k=1

xk(π∗(xk)− π∗(xk−1)) E∗(π) =
n∑

k=1

xk(π∗(xk)− π∗(xk+1))

where π∗(x) = maxt≤x π(t) and π∗(x) = maxt≥x π(t) and the xk stand for the
(increasingly ordered) central values of the 2n subintervals partitioning [0, 1]. It
can be shown that the interval [E∗(π), E∗(π)] satisfies all the axioms of the first
approach, presented in Section 3.1, with the exception of the leaning axiom.

Using the possibility distribution π, one may also compute the largest value x
such that N(x ≤) = 1 or θ ≤ N(x ≤) and the smallest x such that Π(x ≤) = 0
or Π(x ≤) ≤ ρ, where θ and ρ are thresholds, Π and N are possibility and
necessity measures with Π(A) = maxx min(A(x), π(x)) and N(A) = 1−Π(¬A).
This is again a summarizing interval [x, x] (now based on Sugeno integrals).

5 Conclusion

The first contribution of the present paper is that we propose interval-based
representations of trustworthiness (i.e. summarizing and trust intervals), which
is rather new in the field of trust and reputation. The second contribution is
that we provide two approaches for evaluating trustworthiness from a set of past
performances, which has also been rather neglected in the literature. Interest-
ingly enough, the first approach is based on a purely horizontal view (based on
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the idea of pulling values), while the second approach exploits a vertical view
(based on histograms, then transformed into possibility distributions).

Besides, general partial orders can be defined for comparing two grade struc-
tures, for example, the bipolar ones introduced at the beginning of Section 4, or
unipolar ones such as stochastic dominance. This could be the basis of postu-
lates expressing some agreement between partial orderings of grade structures
and comparisons of their associated summarizing intervals.

Lines for further research also include a deeper comparison of the two ap-
proaches, the validation of the models from a cognitive psychology point of view,
and refinements in order to take into account the freshness of the information.
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Abstract. Ascribing causality amounts to determining what elements
in a sequence of reported facts can be related in a causal way, on the
basis of some knowledge about the course of the world. The paper of-
fers a comparison of a large span of formal models (based on structural
equations, non-monotonic consequence relations, trajectory preference
relations, identification of violated norms, graphical representations, or
connectionism), using a running example taken from a corpus of car
accident reports. Interestingly enough, the compared approaches focus
on different aspects of the problem by either identifying all the potential
causes, or selecting a smaller subset by taking advantages of contextually
abnormal facts, or by modeling interventions to get rid of simple corre-
lations. The paper concludes by a general discussion based on a battery
of criteria (several of them being proper to AI approaches to causality).

1 Introduction

Causality is a protean and complex notion. Accordingly, multiple models of cau-
sation were developed in Artificial Intelligence (AI). Indeed, the idea of causality
pervades several important AI problems, e.g., in the diagnosis of the potential
causes from observed effects; in the induction of causal laws from series of obser-
vations; in logics of action; in the qualitative simulation of dynamical systems
(when propagating constraints in influence graphs).

In this article, we focus on the perception of causal relations and causal as-
cription. Unsurprisingly, models proposed for causal ascription generally agree in
some way with the idea of relating causality to counterfactuality: the counterfac-
tual ‘Had A not taken place, B would not have occurred’ sounds as a necessary
condition for declaring that A causes B. This idea underlies many approaches,
from that initiated in modal logic years ago [1], to the approach more recently
advocated by Pearl [2] in a probabilistic setting. However, as we will see, pro-
viding a full account of the way causality is perceived may also benefit from the
identification of facts found ‘abnormal’ by agents in given contexts, among a
series of reported events.
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c© Springer-Verlag Berlin Heidelberg 2008



48 S. Benferhat et al.

It is a daunting task to compare the definitions and properties of models of
causal perception and ascription. A preliminary and useful step toward such an
achievement, though, consists of illustrating the behavior of the models through
a series of well-chosen examples. The examples should be realistic and relevant to
the real world—but not so complex that they would no longer be manageable.
They should strike the right balance between traditional, simplistic examples
(the causal equivalents of the Tweety problem in default reasoning), and in-
tractable scenarios such as the circumstances of Princess Diana’s death. Traffic
accidents reports offer an excellent source for such examples. They describe gen-
uine events; they naturally lend themselves to causal analysis (in fact, they are
often used for that very purpose); and they occur in a relatively self-contained
micro-universe. We were able to gain access to a database of traffic accident re-
ports submitted by drivers to insurance companies (the current sample consists
of about one hundred reports of accidents that happened in France in recent
years). We then submitted these reports to a battery of formal models (based
on structural equations, nonmonotonic logics, graphs, or connectionism). Due to
space limitations, we will restrict ourselves to one report:

Example 1 (Accident). We were at ∗ ∗ ∗, I was surprised by the person who braked
in front of me, not having the option of changing lane and the road being wet, I could
not stop completely in time.

All models will use the same common core of variables and pieces of knowledge.
Variables are: Acc (occurrence of an accident), Wet (road being wet), Brak
(driver B brakes in front of driver A), Reac (driver A brakes in reaction to
driver B’s braking), with variants ReacS and ReacL (driver A brakes shortly
after B brakes, or with a longer delay), Ncl (A does not have the option of
changing lane), Sur (A is surprised). Additional variables may be introduced in
some models to display interesting variants of the example. Logical constraints
exist among the variables: (1) Reac ≡ ReacS∨ReacL, (2) ¬ReacS∨¬ReacL, (3)
¬Reac ∨ Brak. The common core of knowledge is: (4) Accidents are abnormal,
(5) Being surprised is abnormal, (6) ReacL and Wet promote Acc, (7) Brak
and Ncl and Sur promote ReacL, (8) Brak and Ncl and ¬Sur promote ReacS.
Each model will incorporate this common core of knowledge, up to its represen-
tational specificities (especially regarding the formalization of what ‘abnormal’
and ‘promote’ mean). Again, additional pieces of knowledge may be introduced
to highlight interesting aspects of the models. The presentation of each model
will follow the same structure: brief motivation, reminder of definitions, sum-
mary of characteristic features, treatment of the example, discussion. Although
the original purpose of this paper is to compare the models mainly on the basis
of formal considerations, their discussion will occasionally point to experimental
data, when they exist.

2 Structural Equations Model

Halpern and Pearl [3] propose a model allowing identification of ‘actual causes.’
Themodel distinguishes between ‘endogenous’ and ‘exogenous’ variables.Assigned
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values of endogenous variables are governed by structural equations, whereas ex-
ogenous variables are assumed to be known and out of control. Only endogenous
variables can be causes or be caused. Background knowledge in such model is given
by the context and structural equations.A causalmodel is denotedbyM=(U, V, F )
whereU andV are sets of exogenous and endogenous variables.F is a function that
assigns a value to each variable given each value of its parents. Each assignment of
the exogenous variables U = u determines a unique value x of each subset X of
endogenous variables (i.e. X ⊆ V ).

Definition 1. The event X = x is said to be an actual cause of an event φ if
and only if:

1. X(u) = x and φ(u) is true (when U takes the value u).
2. There exists a partition (Z,W ) of V with X ⊆ Z and some settings (x′, w′)

of (X,W ) such that if Z(u) = z∗ (z∗ is the value assigned to Z when U = u),
both of the following conditions hold:
a) φX←x′,W←w′(u) is false, namely, if X is set to x′ and W is set to w′

then φ becomes false.
b) φX←x,W ′←[w′],Z′←[z∗](u) is true for all W ′ ⊆ W and for all Z ′ ⊆ Z.

Namely, if X is set to x, W ′ is set to [w′] ([w′] is an instantiation of W ′

consistent with w′), and Z ′ is set to [z∗] then φ remains true.
3. The subset X is minimal.

Pearl and Halpern also proposed an extended causal model to deal with ex-
cluded settings. The extended version of Definition 1 consists of adding to the
tuple (U, V, F ) a set E that contains allowed settings of endogenous variables.
E functions as some kind of integrity constraint. In our example, all settings are
considered allowed, and the extended causal model collapses with Definition 1.
The causal model described above can be represented using a graph, in which
nodes are corresponding to variables in V and an edge from X to Y exists if the
value of Y depends from the value of X . This graph is a directed acyclic graph
(DAG) representing the relationships between variables which are fully specified
by structural equations.

Example. We model the example presented in the introduction using only en-
dogenous variables. Variables Brak, Ncl, Sur, Wet and Acc have the same
meaning as previously given. The variable Reac is a ternary variable taking its
values in {ReacS,ReacL,NoReac}where NoReac stands for ‘A does not brake’.
For simplicity, we consider that all settings are allowed (E = ∅). The structural
equations are given by:

– Acc =
{

1 if wet = 1 and Reac = ReacL
0 otherwise

– Reac =

⎧⎨⎩
NoReac if Brak = 0 or Ncl = 0
ReacS if Sur = 0 and Brak = 1 and Ncl = 1
ReacL if Sur = 1 and Brak = 1 and Ncl = 1
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Fig. 1. A causal network

This model can be represented by the DAG given in Figure 1. Assume that the
actual context is Sur = 1 and Brak = 1 and Ncl = 1 and Reac = ReacL and
Wet = 1 and Acc = 1. Now let us find causes of the event Acc = 1 in this
context. We first check if Ncl = 1 is a cause of Acc = 1. Condition 1 holds
since Ncl = 1 and Acc = 1 is true in the actual world. Given the partition
Z = {Ncl,Reac,Acc} and W = {Sur,Brak,Wet}, it is easy to check that
maintaining the actual context (w′ = {Sur = 1, Brak = 1,Wet = 1}) and
changing the value of Ncl from true to false (i.e. Ncl = 0) is enough to change
the value of Acc from true to false (i.e. Acc = 0). Condition 2a is satisfied for
w′. Setting Ncl to true and setting all subsets Ŵ (e.g. {Sur = 1}) of W to their
values ŵ (consistent with w′) is not enough to change the value of Acc which
remains true (i.e. Acc = 1). Thus condition 2b is also satisfied. It is obvious
that Ncl = 1 is minimal (condition 3). We conclude that Ncl = 1 is a cause of
Acc = 1. Maintaining the same context and setting W = w′ we obtain that each
event is a cause of Acc = 1.

Discussion. Despite the fact that this model allows to handle notorious case
studies on causality, it still presents some limitations. Reasoning with structural
equations means that all required information must be available (this makes
sense in some physics applications where structural equations reflects physical
laws among a limited set of variables). Unfortunately, this is not always the
case, which may limit the scope of application. For example, rules (4) and (5)
in the introduction cannot be easily represented [4], and using non-monotonic
rules may be an interesting alternative. Besides, requiring that any assignment
of exogenous variables uniquely determines the value of all endogenous variables
is not always natural. The apparent lack of selective power of this model may
also be considered a weakness, as an event is very easily designated as a cause
of another. E.g., in our example, each event is a cause of Acc = 1. In order to
select preferred causes, it may be interesting to assign ‘weights’ on the basis of
levels of normality assigned to each cause according to its implication in making
the event happening.

3 Nonmonotonic Logic Approaches

As discussed by philosophers of law [5], and experimentally checked by psychol-
ogists,‘abnormal’ facts are privileged when providing causal explanations [6].
Added to the insufficiency of material implication for representing causation,
this naturally leads to consider nonmonotonic logic-based approaches for causal
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ascriptions. Relations between nonmonotonic inference and causality have al-
ready been emphasized by authors dealing with reasoning about actions and the
frame problem [7,8]. ‘Causal rules’ are understood there as ‘there is a cause for
effect B to be true if it is true that A has just been executed,’ where ‘there is a
cause for’ is a modal operator. However, we are not interested in the following
in the proper modeling of already established causality relations, but rather in
the ascription of causality relations in a reported series of facts or events.

3.1 Nonmonotonic Consequence Approach

To reflect the fact that human agents cannot always couch their beliefs in pre-
cise probabilistic terms, Bonnefon et al. [9,10] offer a qualitative counterpart to
probabilistic conceptions of causality. This approach is based on pieces of default
knowledge, and privileges the role of abnormal events in a given context.

Definition 2. Assume an agent learns of the sequence ¬Bt, At, Bt+k. Call Kt

(the context) the conjunction of all other facts known by the agent at time t. Let
|∼ denote a nonmonotonic consequence relation. If the agent believes K |∼ ¬B
and K ∧ A |∼ B, the agent will perceive A to cause B in context K, denoted
A � B. If the agent believes that K |∼ ¬B, and K ∧ A 	|∼ ¬B rather than
K ∧ A |∼ B, then A is perceived as facilitating rather than causing B, denoted
A � B.1

In the definitions of � and �, |∼ is a preferential entailment in the sense of Kraus
et al. [11], and a rational closure entailment, respectively. This definition has no-
ticeable features. E.g., causes and facilitations are abnormal in context: If A � B
or A � B then K |∼ ¬A. Furthermore, causality is transitive only in particular
cases: If A is the normal way of getting B in context K, i.e., K ∧ B |∼ A, and if
A � B and B � C, then A � C. The practical significance of Def. 2 (includ-
ing the distinction between causation and facilitation), as well as the restricted
transitivity property, have been validated by behavioral experiments. Note that a
facilitation is abnormal and is not a necessary condition for the effect, in contrast
to an enabling condition (see below).

Example. The story that unfolds in the report reads: At any point in time, Wet
is true. Initially, Ncl is true, and Acc, Brak, Reac, and Sur are false. Next,
Brak and Sur become true. Next, ReacL becomes true. Finally, Acc becomes
true. The formalization of the common core of knowledge is : (4) |∼ ¬Acc;
(5) |∼ ¬Sur; (6) ReacL ∧Wet |∼ Acc ; (7) Brak ∧ Ncl ∧ Sur |∼ ReacL; (8)
Brak ∧Ncl ∧ ¬Sur |∼ ReacS.

From (4) and (6), we derive ReacL∧Wet � Acc. The cause of the accident is
the conjunction of braking late and the road being wet. Now let us consider a few
additional plausible nonmonotonic rules. Assume that long-delay braking alone,
1 K may be omitted in practice. Def. 1 corresponds to a basic scenario already consid-

ered by von Wright [1]: The falsity of Bt agrees with the piece of general knowledge
K |∼ ¬B and after At takes place Bt+k becomes true, although normally if At does
not happen, ¬B would have persisted.
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although it does not make accidents normal, at least makes them not abnormal
(ReacL 	|∼ Acc together with ReacL 	|∼ ¬Acc). Adding this assumption, we can
derive ReacL � Acc; i.e., the long-delay braking alone facilitated the accident
(but the cause of the accident is still the conjunction of late braking and the
road being wet). Assume now that late braking is abnormal (|∼ ¬ReacL), and
remains so in the context of others braking, and being unable to change lane
(Brak∧Ncl |∼ ¬ReacL). Then it follows from (7) that being surprised caused the
late braking (Sur � ReacL). For the purpose of further illustration, let us assume
that accidents remain abnormal even when roads are wet (Wet |∼ ¬Acc). Then it
is possible to derive than late braking alone caused the accident (ReacL � Acc).
Note now that Sur � ReacL together with ReacL � Acc. Surprise caused the
late braking that itself caused the accident. Does it follow by transitivity that
Sur � Acc, i.e., that surprise caused the accident? Not necessarily so, for � is
not generally transitive. If, however, we are ready to accept that ReacL |∼ Sur,
i.e., a late braking is usually diagnostic of a surprised driver, then it follows from
the restricted transitivity property of � that the surprise caused the accident.
Finally, suppose that that we add to the story that some other car C hit B.
Then, the nonmonotonic approach yields a disjunctive causal ascription ‘car
hitting OR late braking’ caused the accident. Only a more detailed report may
lead the approach to privilege one of the disjuncts.

Discussion. This approach relies on the beliefs about the ‘normal’ states and
courses of the world. Such beliefs are agent-dependent, which explains that differ-
ent individuals may have different readings of events. Since the inference engine
based on System P is very cautious, many of these normal states must be explic-
itly coded rather than derived. Causality ascription is localized, thanks to a lack
of general transitivity, but also because only events that are explicitly mentioned
in the story can be detected as causes. Exceptional events are favored as poten-
tial causes, which help discriminating causes; in fact, the approach only exhibits
causes that are abnormal events. A notion of ‘necessary condition’ (or enabling
condition) [12] can be defined to deal with normal events without which nothing
would have happened. Finally, this approach does not embed the notion of inter-
vention and thus cannot readily distinguish spurious correlation from causation.
See nonetheless the Graphical Models and Interventions section for an extension
of the approach into that direction (both the current approach and graphical
models can be encoded in a possibilistic setting).

3.2 Trajectory-Based Preference Relations

This proposal [13]2 starts with the idea that counterfactuality involves the com-
putation of two kinds of evolutions of the world, namely extrapolation [14] and
update [15]. If we want to know whether Sur(2) (being surprised at time point 2)
is a counterfactual cause of Acc(3), given a scenario Σ (Brak(1)∧Sur(2)∧Ncl(2)∧
Wet(2) ∧Acc(3)), we need to (i) compute the most normal evolutions of the world

2 For the sake of brevity, this novel approach is only sketched in this paper.
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(called trajectories) that correspond to the scenario Sur(2) and Acc(3). This com-
putation is called extrapolation, it is a process of completing initial beliefs sets
stemming from observations by assuming minimal ‘abnormalities’ in the evolu-
tion of the world with respect to generic knowledge. In our example, the preferred
trajectories satisfying Σ do satisfy Sur(2) and Acc(3) (since they are mentioned in
Σ). (ii) Compute what would have happened to Acc3 if Sur(2) had not been true.
This is done by updating the temporal formula representing the scenario by the
formula ¬Sur(2). At this step, update aims at capturing a minimal change w.r.t.
the initial scenario. The update operator proposed in [13] is based on a distance
between trajectories that take into account the time point of the change and nor-
mality. Here, the trajectories that satisfy ¬Sur(2) that are closest to the previous
preferred trajectories until the time of the change and that are the most normal
satisfy ¬Acc(3). Hence the surprise can be considered as counterfactually caus-
ing the accident. One may consider that not all counterfactual causes are impor-
tant; the lack of selectivity of counterfactuality is tackled here by using normality.
Choosing among the ‘normal’ counterfactual causes, the most abnormal ones in
context, would further increase selectivity.

3.3 Norm-Based Approach

This approach [16], too, rests on the idea that norms are crucial for people to
find causes of events: if the event is considered normal, its cause is the norm
itself; if abnormal, its cause is traced back to the violation of a norm.3

Principle. Searching for the cause of an abnormal event E occurring at time
t basically amounts to finding an agent who should, according to some norm,
adopt behavior b at a time t′ < t, and actually adopted another behavior b′, such
that E appears as a normal consequence of b′ (in that sense, for example, the
lack of liability insurance is a norm violation but cannot usually be considered
the cause of an accident, because it arguably does not normally have an accident
as a consequence). Another condition must be checked, namely that, at t′, the
agent had the possibility to have the normal behavior b; otherwise, b′ is only
a derived anomaly and the search must be pursued to find a primary anomaly,
occurring earlier than t′ and explaining the impossibility of the agent to have
the behavior b at t′. Whenever this search fails, i.e., when the privilege conferred
to an ‘interventionist’ kind of cause gives no result, and only in this case, we
look for some non agentive abnormal circumstance that could explain E.

Norm-based reasoning is intrinsically non monotonic, as norms are rules that
apply by default. For this reason, in this approach, the knowledge necessary to
causal ascription is expressed in a reified first-order logic augmented with default
rules (in the sense of R. Reiter); the fact that property P holds for agent A at
time t is written holds(P,A, t). A discrete and linear model of time is sufficient,
as only what really happened is represented. Two modalities are introduced to

3 The word ‘norm’ is taken here in the ‘normal’ rather than ‘normative’ sense; but as
we expect agents to respect their duties, the normative is seen as a special case of
the normal.
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express norm violations: should(P,A, t) and able(P,A, t) standing for: at time t,
A should (resp. has the ability to) achieve P .

Testing this approach in the domain of road accidents requires to gather all
the literals of the form should(P,A, t) that are relevant for this domain. To this
end, we examined 73 car-crash reports, used as a training sample among the 160
reports in our possession; the remainder being left for validation purposes. For
the running example of this paper, we only need a few of these literals: By wet
weather, one should reduce one’s speed; having had an accident at time t entails
that one had at time t− 1 the duty of avoiding some obstacle; and having this
duty and being unable to change lane amounts to have the duty to stop. This is
written (→ is the material implication):

(1) Wet→ should(reduced speed,A, t)
(2) holds(Acc,A, t) → should(avoid obs,A, t− 1)
(3) should(avoid obs,A, t) ∧ ¬able(ch lane,A, t)
→ should(stop,A, t)

Expressed in this language, the cause of an abnormal event (the ‘primary
anomaly’ P ano) obtains as:

(4) should(F,A, t) ∧ able(F,A, t) ∧ ¬holds(F,A, t + 1)→ P ano(F,A, t + 1)

I.e., if at t an agent A should do F and was able to do F , while at t+1, F failed
to be done, this failure is the cause looked for. Similarly, a ‘derived anomaly’
D ano is detected by the rule:

(5) should(F,A, t) ∧ ¬able(F,A, t)→ D ano(F,A, t)

Assume as a default that agents having a duty are generally able to comply with
it. Exceptions to this default mostly correspond to cases where the situation
allows to prove the impossibility of actions known to produce the desired effect.
Example. With the notations adopted in this paper, the example is writ-
ten: holds(Brak,B, 0), holds(Sur,A, 1), holds(Ncl, A, 2), holds(Reac,A, 2),
holds(Acc,A, 3), Wet. Ncl (inability to change lane) translates as:

(6) holds(Ncl, A, t)→ ¬able(ch lane,A, T )

Expressing that surprise entails a late brake is written as:

(7) holds(Sur,A, t− 1) ∧ holds(Reac,A, t)→ holds(ReacL,A, t)

Whether late braking entails or not an accident depends on the ability of the
driver to stop the vehicle, i.e.:

(8) holds(ReacL,A, t)→ [holds(Acc,A, t + 1)↔ ¬able(stop,A, t)]

Rule (2) and fact holds(Acc,A, 3) yield should(avoid obs,A, 2); (6) gives
¬able(ch lane,A, 2), hence (3) deduces should(stop,A, 2). From (7) with
premises holds(Reac,A, 2) and holds(Sur,A, 1) we get holds(ReacL,A, 2). So
(8) shows that something abnormal occurred: agent A should have stopped
at time 2 but was unable to. According to (5), this is a derived anomaly,
so the search for the cause of the accident must go on. The ability to stop,
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under the circumstances, is expressed by (9) able(stop,A, t) ↔ (¬Wet ∨
holds(reduced speed, A, t)), which gives ¬holds(reduced speed,A, 2). (1) shows
that should(reduced speed,A, t) for any t. Without proof to the contrary, the
default ‘agents who should do something are generally able to do it’ yields
able(reduced speed,A, 1), and (4) tells that we have a primary anomaly, i.e.,
a cause of the accident: ‘at time 1, A was able to reduce speed; because of the
wetness of the road, A should have done so, but the occurrence of the accident
at time 3 shows that he was still driving too fast at time 2.’

Discussion. In traffic accident examples, the norm-based approach views norms
as normative duties. To generalize this approach to domains where norms are
only what is normal (as opposed to mandatory), it is necessary to organize these
norms in a hierarchy, and to conjecture that the most specific violated norm
will be perceived as the cause of an abnormal event. Testing this conjecture
requires to gather a reasonably complete set of norms for the domain, which
is a hard task. This was achieved in the domain of traffic accidents, and the
validation process for this domain is underway. We intuitively determined the
causes of the 160 accidents in the corpus, translated the gathered norms in
Smodels [17], and implemented a system translating natural language sentences
into the language of the norm-based approach. This system [16] agrees with the
researchers’ intuitions in 95% of the training sample and 85% of the validation
sample. Behavioral experiments are underway to check whether these intuitions
are shared by a majority of subjects.

4 Graphical Models and Interventions

Intervention is a critical route to causation. Ascribing causality becomes eas-
ier when experimenting, then observing the effects of the manipulation on the
system. Such changes cannot be deduced from a joint probability nor possi-
bility distribution, even fully specified on the variables describing the system.
Graphical causal models help make explicit the assumptions needed by allowing
inference from interventions as well as observations. A causal Bayesian network
is a Bayesian network where directed arcs of the graph are interpreted as ele-
mentary causal relations between variables. When there is an influence relation
between two variables, intervention allows to determine the causality relation
between these variables. In this case, arcs between variables should follow the
direction of the causal process. Pearl [2] proposed an approach for handling inter-
ventions using causal graphs based on a ‘do’ operator. Note that causal relations
expressed by graphs only concern variables, not complex events. Causal Bayesian
networks organize causal knowledge in terms of a few basic mechanisms, each
involving a relatively small number of variables. Each intervention entails local
change at the level of only one parents-child relation.

This section summarizes manipulation methods for handling interventions
in possibilistic causal networks. Indeed graphical models are compatible both
with a probabilistic and a possibilistic modeling of uncertainty. The possibilistic
setting [18] is adopted here. It is more qualitative, and allows us to more easily
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relate graphical models to nonmonotonic approaches. In fact, the ‘do’ operator
has been first proposed within Spohn’s ordinal conditional functions framework
which has strong relationships with possibility theory. The parents-child relation
at the level of each variable Ai is governed by a local possibility distribution
Π(Ai|UAi) where UAi is the parents set of Ai. The joint possibility distribution
is computed using the chain rule: π(A1, ..., An) = ♦i=1,...,nΠ(Ai|UAi), where
♦ is either equal to min or product. An intervention forcing a variable Ai to
take the value ai is denoted do(Ai = ai) or do(ai). This intervention consists
of making Ai true independently from all its other direct causes (i.e. parents).
Graphically, this modification is represented by the deletion of links from UAi

pointing into Ai. The resulting graph is said to be mutilated and we have:

π(ω|do(Ai = ai)) = πmut(ω|Ai = ai) =
{

♦aj :Aj �=AiΠ(aj |uAj ) if ω[Ai] = ai

0 otherwise

where ω[Ai] = ai means that ω is consistent with Ai = ai, and πmut is the joint
possibility distribution given by the mutilated graph. Another approach [19]
consists in adding a new variable denoted DOAi as a parent node of Ai. DOAi

takes value doAi−noact when no intervention is observed, and value doai when an
intervention occurs, forcing Ai to take value ai (ai belonging to the domain of
Ai). The resulting graph is called augmented. In [20], we showed that the better
option to compute the effect of interventions is using augmented graphs, since
it allows to reuse existing propagation algorithms without any change.

Example. Let us consider the possibilistic causal network given in Fig. 1. The
variables Brak, Ncl, Sur, Wet and Acc are binary variables with a domain {0, 1}
and have the same meaning as in above examples. However, Reac is a ternary
variable taking its values in {ReacS,ReacL,NoReac} where NoReac means ‘A
does not brake’, ReacS means ‘A brakes as soon as B brakes’ and ReacL means
‘A brakes later after B braked’. For simplicity’s sake, we assume only three levels
of normality: 1 (i.e. fully plausible) > β > α > 0 (i.e. impossible). Prior local
possibility distributions are assumed to be: Π(Sur = 0) = 1 > Π(Sur = 1) = α,
which encodes rule (5) of the introduction; Π(Brak = 0) = 1 > Π(Brak = 1) =
β > α, Π(Ncl = 0) = 1 > Π(Ncl = 1) = α, Π(Wet = 0) = 1 > Π(Wet =
1) = α, which respectively express that normally: ’B does not brake’, ‘ there
is no possibility to change lane’, and ’the road is not wet’. The local possibility
distribution for Reac (i.e. Λ1 = Π(Reac|Sur,Brak,Ncl)) is given by (9):

Λ1 =

⎧⎪⎪⎨⎪⎪⎩
1 if (Reac = NoReac and (Brak = 0 or Ncl = 0))

or (Reac = ReacS and Sur = 0 and Brak = 1 and Ncl = 1)
or (Reac = ReacL and Sur = 1 and Brak = 1 and Ncl = 1)

α otherwise

Rules (7) and (8) of the introduction are encoded. Indeed, for instance re-
garding rule (8) we have Π(Reac = ReacL | Sur = 1, Ncl = 1, Brak = 1)
= 1 > Π(Reac = ReacS|Sur = 1, Ncl = 1, Brak = 1) = α (and Π(Reac
= ReacL | Sur = 1, Ncl = 1, Brak = 1) = 1 > Π(Reac = NoReac|Sur = 1,



A Comparative Study of Six Formal Models of Causal Ascription 57

Ncl = 1, Brak = 1) = α, which means that if ‘when the driver B brakes, A is
surprised and there is no a possibility to change lane’ then it is more plausible
that the driver A brakes with a longer delay than he does not brake or he brakes
shortly after B brakes. Lastly, the local possibility distribution at the level of
Acc (i.e. Λ2 = Π(Acc|Wet,Reac)) is given by (10):

Λ2 =

⎧⎨⎩
1 if (Acc = 1 and Wet = 1 and Reac = ReacL)

or (Acc = 0 and (Wet = 0 or Reac = NoReac or Reac = ReacS))
α otherwise

Again, rule (6) is encoded since Π(Acc = 1 | Wet = 1 and Reac = ReacL) >
Π(Acc = 1 | Wet = 0 or Reac 	= ReacL). Note that rule (4) is not explicitly
represented but is only derived. Indeed, after propagation of weights we obtain
Π(Acc = 0) = 1 > Π(Acc = 1) = α which means that accidents are abnormal.

For binary variables, possibilistic graphical models can encode causality re-
lations as defined by nonmonotonic logic approaches. E |∼ F is interpreted by
Π(E∧F ) > Π(E∧¬F ). This relation satisfies rational monotony in addition to
System P, providing more causal relations. Besides, whereas only reported events
can be causes as per Definition 1, unreported but strongly plausible events can
be causes in the possibilistic frameworks. Lastly, graphical models provide a com-
putational tool for causality ascriptions in presence of interventions. Recall that
Π(Acc = 0) = 1 > Π(Acc = 1), i.e. Acc = 1 is rejected in the initial context.
Let us consider an external factor (say, an animal crossing the road) forcing
the variable Reac to take value ReacL. This intervention do(Reac = ReacL)
can be represented by mutilating or by augmenting the graph. Assume more-
over that the road is wet. After computation, we have Π(Acc = 1|do(Reac =
ReacL),Wet = 1) = 1 > Π(Acc = 0|do(Reac = ReacL),Wet = 1). Namely,
after intervention do(Reac = ReacL) and observation Wet = 1, event Acc = 1
becomes accepted. We conclude that do(Reac = ReacL) and Wet = 1 caused
Acc = 1.

Discussion. Graphical models offer a natural representation of causal relations
between elementary events (e.g. variables), thanks to the ’do’ operator that
models interventions. They can be viewed as complementing or extending non-
monotonic approaches. Indeed, Definition 1 can be naturally extended when
reported events include interventions (as illustrated above). A graphical model
goes beyond System P without recovering transitivity. It can be used to discrim-
inate between possible causes by considering the most plausible ones, and allows
causality ascription in presence of observations and interventions.

5 Theory of Explanatory Coherence (TEC)

Thagard’s theory of explanatory coherence [21] and its connectionist implemen-
tation (ECHO) view causal ascriptions as attempts to maximize explanatory
coherence between propositions. Although this model did not originate from the
AI knowledge representation community, it addresses a similar concern to the
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other models with have reviewed, and it is as much implementable. In the ac-
cident example, maximizing coherence would lead to accept the most plausible
hypotheses that explain the accident and reject the alternative hypotheses. If
one proposition explains another, then there is a positive constraint between
them. Negative constraints result from events that prevent or are inconsistent
with other events. Maximizing coherence is generally considered to be computa-
tionally intractable. Nevertheless, good approximation algorithms are available,
in particular connectionist algorithms such as ECHO. ECHO creates a network
of units with explanatory and inhibitory non directional links and then makes
inference by spreading activation through the network until all activations have
reached stable values. Note that links can be excitatory or inhibitory and units
can be positively or negatively activated. When units have settled, the accepta-
tion and rejection of hypotheses depend on whether final activation is positive
or negative. Some units can be given priority by linking them positively with
a special unit whose activation is kept at 1. A coherence problem is defined as
follows [22]. Let E be a finite set of elements {ei} and C be a set of constraints
on E understood as a set {(ei, ej)} of pairs of elements of E. C divides into
C+, the positive constraints on E, and C−, the negative constraints on E. With
each constraint is associated a number w, which is the weight (strength) of the
constraint. The problem is to partition E into two sets, A and R, in a way that
maximizes compliance with the following two coherence conditions:

1. if (ei, ej) is in C+, then ei is in A iff ej is in A;
2. if (ei, ej) is in C−, then ei is in A iff ej is in R.

Let W be the sum of the weights of the satisfied constraints. The coherence
problem is then to partition E into A and R in a way that maximizes W . Let
E, C, C+, and C− as defined above. ECHO runs as follows:

1. For every ei of E, construct a unit ui, a node in a network of units U ;
2. For every positive (negative) constraint in C+ (C−) on elements ei and ej ,

construct an excitatory (inhibitory) link between the corresponding units ui

and uj affected with the same positive (negative) weight.
3. Assign each unit ui an equal initial activation. Update activation of all the

units in parallel given current activations and the weights on links [23]
4. When units have settled, hypotheses acceptation and rejection depend on

the sign of their final activation. Some units can be given priority by linking
them positively with a special unit whose activation is kept at 1.

Example. In Figure 2 each node represents a variable. The three nodes on the
left and the Wet node correspond to variables with priority; in this case, ini-
tial conditions at the beginning of the accident process. Dotted lines represent

Table 1. Final TEC activation values

Brak Wet Sur Ncl ReacL ReacS Acc
Brak, Wet, Sur, Ncl initially set to 1 -.22 .72 .68 -.22 .23 -.70 .58
Only Brak initially set to 1 .68 -.64 -.65 -.43 .46 .73 -.56
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Fig. 2. Accident Example Network in ECHO

inhibitory links. Table 1 shows final activation values of the variables after the
units have settled. When initial conditions are Brak = Wet = Sur = Ncl = 1
(All in Table 1), the hypothesis that the accident occurs is accepted (Acc = .58).
Wet, Sur, and ReacL are accepted, all other hypotheses are rejected. The most
activated causes are Wet and Sur. When the only initial condition is Brak, the
accident hypothesis is rejected: Brak alone is not a sufficient condition for Acc.

Discussion. ECHO establishes an ordering between accepted causes, their final
activation representing their causal power. It is of particular interest because
previous experimental studies [9] have suggested that human distinction be-
tween facilitation and genuine causality is based on the strength of the relation
between events. Inference in connectionist models like ECHO is not monotonic,
not transitive, and can be forward or backward. Although the only central notion
is coherence in TEC, questions of abnormality, temporality and intervention can
be introduced in order to compute a more powerful causal inference. ECHO can
be translated in Pearl’s probabilistic networks [24], and has been used in diverse
psychological domains in addition to the computation of causation [25].

6 General Discussion

Causality has always been the matter of hot debates. There exists no consensus
about its very nature: is it a means by which the human mind makes sense of
the world, or an objective property of the world? Is causation intrinsically deter-
ministic, and only our ignorance makes it admissible to approach it by methods
devoted to handle uncertain knowledge; or on the opposite, is its relation to
uncertainty fundamental? The models we described are agnostic with respect to
such debates—and this should be no surprise to the reader, as this paper is not
about causation per se, but about how, under practical circumstances, agents
prune among a huge number of potential causal factors.

Although the different models start with the same core of variables and pieces
of knowledge (1–8), they rely on representation frameworks of different expres-
sive power, and they may exploit additional pieces of knowledge that are not
assumed to be available to other models. For example, the norm-based approach
relies on a vast set of norms extracted from driving regulations, while for in-
stance the graphical approach relies on probabilistic or possibilistic information.
Although this introduces some heterogeneity in the treatment of the example,
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Table 2. Comparison of the models, synthesis

Structural Eq. TEC Norms Trajectories Nonmon. Consequences Graphs
Selectivity No Yes Yes Yes Yes Yes
Abnormality No No Yes Yes Yes Yes
Temporality No No Yes Yes Yes Yes
Cause Present No No No No Yes Yes
Intervention No No No Yes No Yes
Agentivity No No Yes No No No
Backward Cause Yes Yes No No No No

this heterogeneity is irreducible if we want to compare a large span of approaches
while respecting their specific modeling strategy.

Table 2 sums up some features of each model.4 TEC and the structural equa-
tion model do not make explicit the temporal relation between the factors they
deal with, e.g. braking occurs before stopping (temporality). All other models
make this temporal link explicit. Accordingly, all models but TEC and the struc-
tural equation model assume that effects cannot precede their causes (backward
causation). The structural equation approach is the least selective of all (but
see caveat in section 2), in that sense that it delivers a set of factors that all rea-
sonably have some relevant causal connection to the effect under consideration.
All other models strive to select a smaller set of factors, apparently emulat-
ing human judgments (selectivity). These models privilege different aspects
of information to select one event as the main cause. First, all these selective
models make explicit the contrast between normal and abnormal states of af-
fairs, to orient the search of causes of an abnormal event towards factors that
make a normal course of events become abnormal (abnormality). Then, some
of them (nonmonotonic consequences, graphical models) consider that the cause
is bound to belong to the set of facts given in the description (cause present),
whereas the other models are allowed to elicit causes among implicit elements
derived from these facts, or including as background knowledge in the course of
the modelling. Besides, one model (norm-based) privileges as causes events that
are under the control of agents (agentivity). Finally, some models (trajectories,
graphical model) can support explicit intervention-like manipulations, where a
variable can be forced to take some value, regardless of what its normal value
would be given the values of the other variables (intervention).

In addition to the criteria summarized in Table 2, let us note that only the
structural equation model is deterministic, in the sense that there is (commonly)
no uncertainty in the structural equations relating the variables representing the
micro-universe under consideration. This could be seen as a guarantee of accu-
rateness, as far as the description of the micro-universe is reasonably complete.
4 Transitivity is not a built-in characteristic in any model we have considered. De-

pending on the specific setting of some parameters, though, some of them may take
causation to be transitive. Comptutational tractability is not a truly discrimi-
native criterion here either. All the formalisms underlying the approaches we have
reviewed have already been implemented. Moreover, the formal complexity of all
these frameworks has already been studied; and in any case, the treatment of traffic
accident reports is unlikely to lead to any significant combinatorial explosion.
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However, such accurateness would come with a price. Leaving aside the compu-
tational cost of ascription itself, a deterministic model is more costly in terms
of the acquisition of information that is necessary prior to making any ascrip-
tion. Furthermore, default, incomplete knowledge is arguably less unrealistic as
a model of the kind of knowledge human agents bring to a causal ascription task.

Among the topics that we have not covered, the role of argumentation in
causal ascription is worth mentioning. Argumentation is a dynamical process
where arguments interact to assess a given claim (here, a causal claim), and
processing of causal arguments requires a particular argumentation theory [26].
Agents may argue about where causation takes place in a sequence of events;
they may use a weaker notion of causality than, e.g., Def. 2. But agents may
also use argumentation in a self-serving way: in the case of a traffic accident,
they may attempt to present events in a favorable way; to produce a ‘biased
description,’ that remains respectful of the essential facts, but triggers inferences
to conclusions that are in favor of the arguer. For example, one argumentation
technique consists in suggesting a causal link between two facts, even if the
causation is at best debatable. One typical case is to present the violation of a
‘strong’ norm as a consequence caused by the adversary’s violation of a ‘weak’
norm, as in the example: ‘At the stop sign, the driver on the main road delayed
in entering the intersection; I proceeded.’ The author wishes to convey that it is
normal to overstep a stop sign, in case the vehicle having priority is hesitating.
Identifying argumentative strategies may help to get a better understanding of
reports, by detecting understatements, and reconstructing what is not explicitly
said. In addition, further work will have to compare approaches in terms of their
handling of preventative (negative) causation, and of their syntax sensitivity.
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Abstract. Possibilistic networks are graphical models particularly
suitable for representing and reasoning with uncertain and incomplete
information. According to the underlying interpretation of possibilistic
scales, possibilistic networks are either quantitative or qualitative. In
this paper, we address possibilistic-based classification with uncertain
inputs. More precisely, we first analyze Jeffrey’s rule for revising
possibility distributions by uncertain observations. Then, we propose
an efficient algorithm for revising possibility distributions encoded by
a naive possibilistic network. This algorithm is particularly suitable
for classification with uncertain inputs since it allows classification in
polynomial time using different efficient transformations of initial naive
possibilistic networks.

Keywords: Possibilistic networks, classification under uncertain inputs.

1 Introduction

Graphical models are powerful tools for representing and reasoning under uncer-
tainty conditions. For instance, probabilistic (Bayesian) networks [9] are suitable
for handling uncertain information while possibilistic networks [2][4][5] are more
suitable for imprecise and incomplete data. Like probabilistic networks, possi-
bilistic ones are graphical models but use possibility theory to handle imprecise
and incomplete knowledge. They factor a global joint possibility distribution
into a set of local possibility distributions that can be combined according to
the network structure. This factorization allows interesting inference capabili-
ties. Handling imprecise and incomplete (missing) data are main advantages of
possibilistic models.

Classification is a special kind of inference: given an observed instance of each
observable variable, it is required to determine the class label of the observed
instance among a predefined set of class labels. Possibilistic classifiers have not
been sufficiently studied in spite of the fact that they are useful for problems
where knowledge is imprecise or missing. In fact, only few works used naive pos-
sibilistic classifiers [3][1] and few works address possibilistic network classifiers.
In this paper, we address possibilistic-based classification with uncertain inputs.
More precisely, we propose an efficient algorithm suitable for naive possibilistic
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network classification with uncertain inputs. We first investigate the possibilistic
counterpart of Jeffrey’s rule [8] for revising possibility distributions given uncer-
tain observations. In fact, Jeffrey’s rule cannot be directly applied for revising
possibilistic knowledge encoded by a possibilistic network since its computa-
tion is exponential in the number of attributes and attribute domains. In order
to overcome this limitation, we propose an efficient method for revising naive
product-based possibilistic networks suitable for classification with uncertain
inputs. Our algorithm is based on a series of equivalent and polynomial trans-
formations of initial possibilistic networks taking into account uncertain inputs.

The rest of this paper is organized as follows: Section 2 briefly presents ba-
sics about possibility theory and possibilistic networks. In section 3, we address
possibilistic belief revision based on Jeffrey’s rule. Section 4 proposes a new
efficient algorithm for naive possibilistic network classification with uncertain
inputs. Finally, section 5 concludes this paper.

2 Possibilistic Networks

In this section, we present possibilistic networks with emphasis on possibilistic
classification. Before going further, let us fix the notations that will be used
along with this paper.

V = {A1, A2, .., An} denotes the set of variables. DA = {a1, a2, .., am} denotes
the finite domain of variable A. ai denotes an instance (value) of variable Ai. A,
X,.. denote subsets of variables from V . DX = ×Ai∈XDAi represents the carte-
sian product relative to variables Ai involved in subset X . x denotes any instance
of X (namely, x ∈ DX). Ω = ×Ai∈V DAi denotes the universe of discourse (all
possible states of the world); it is the cartesian product of all variable domains
involved in V . A tuple w = (a1, a2, .., an) which is an instance of Ω represents
a possible state of the world. In w = (a1, a2, .., an), the value of variable Ai is
ai and it is denoted w[Ai] = ai. φ, ϕ denote subsets of Ω called events while φ
denotes the complementary of φ in Ω (φ = Ω − φ).

2.1 Possibility Theory

Possibility theory is an uncertainty theory suitable for handling uncertain and
imprecise knowledge. Introduced by Zadeh [11], this theory is based on two dual
measures in order to represent knowledge/ignorance relative to event in hand.
One of the basic concepts of possibility theory is the one of possibility distribu-
tion π which is a mapping from the universe of discourse Ω to the unit scale
[0, 1]. The possibility degree π(wi) expresses to what extent it is consistent that
wi can be the actual state of the world. Then π(wi) = 1 means that wi is totally
possible and π(wi) = 0 denotes an impossible event. The relation π(wi)>π(wj)
means that wi is more possible than wj . A possibility distribution π is said to
be normalized if maxwi∈Ω(π(wi)) = 1. It is said to be sub-normalized otherwise.
Possibility theory relies on two measures in order to assess knowledge/ignorance:

– Possibility measure: The possibility measure, denoted Π(φ), represents
the possibility degree relative to any event φ ⊆ Ω. It evaluates to what extent
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φ is consistent with the knowledge encoded by possibility distribution π on
Ω. This is defined as follows:

Π(φ) = maxwi∈φ(π(wi)) (1)

Note that term Π(φ) denotes the possibility degree relative to having one of
the events involved in φ as the actual state of the world.

– Necessity measure: The necessity measure is the dual of possibility mea-
sure and evaluates the certainty implied by the current knowledge of the
world. Namely, N(φ)=1-Π(φ) where φ denotes the complementary of φ.

Given a possibility distribution π on Ω, marginal distributions πX relative to
subset of variables X (X ⊆ V ) are computed using the max operator as follows:

πX(x) = maxwi∈Ω(π(wi) : wi[X ] = x), (2)

where term wi[X ] = x denotes the fact that x is the instantiation of X in wi.
According to the interpretation underlying possibilistic scale [0,1], there are two
variants of possibility theory:

– Qualitative possibility theory: In this case, the possibility measure is a
mapping from the universe of discourse Ω to an ”ordinal” scale where only
the ”ordering” of values is important.

– Quantitative possibility theory: In this case, the possibilistic scale [0,
1] is numerical. Then possibility degrees are like numeric values that can
be manipulated by arithmetic operators. One of possible interpretations of
quantitative possibility distributions is viewing π(wi) as degree of surprise
as in Spohn’s ordinal conditional functions [10].

2.2 Conditioning in Possibilistic Networks

Conditioning is concerned with updating the current knowledge encoded by a
possibility distribution π when an evidence (a sure event) is observed.

In the qualitative setting, conditional possibility degree of wi given an event
φ is computed as follows (we assume that Π(φ) 	= 0):

πm(wi|φ)

⎧⎨⎩
1 if π(wi)=Π(φ) and wi ∈ φ;
π(wi) if π(wi)< Π(φ) and wi ∈ φ;
0 otherwise.

(3)

In the quantitative setting, conditioning uses the product operator as follows:

πp(wi|φ)

{
π(wi)
Π(φ) if wi ∈ φ;
0 otherwise.

(4)

In this paper, we only focus on product-based conditioning.
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2.3 Possibilistic Networks

A possibilistic network [4] [6] consists of two components: a (1) graphical
component consisting in a DAG (Direct Acyclic Graph) which encodes direct
influence relations existing between domain variables, and a (2) numerical
component which is a ”quantitative” component composed of a set of local
conditional possibility distributions measuring the influence endured by each
domain variable Ai in the context of its parents UAi .

Local possibility distributions relative to nodes without parents (UAi = ∅)
should satisfy the normalization condition. Namely,

maxaij
∈DAi

(π(aij )) = 1 (5)

In case where domain variable Ai has parents (UAi 	= ∅), the normalization
constraint is denoted as follows:

maxaij
∈DAi

(π(aij/UAi)) = 1 (6)

The possibility degree associated with an observation is computed using the
product-based chain rule. Namely,

Π(A1, A2, .., An) =
n∏

i=1

(π(Ai/UAi) (7)

In classification problems, one node represents class variable C while the remain-
ing variables are attributes A={A1, A2,..,An} that may be observable. Given an
observation denoted A=(a1,a2,..,an) of {A1, A2, .., An}, the candidate class c is
determined as follows:

c = argmaxck∈DC (Π(ck/A)) (8)

Note that term Π(ck/A) denotes possibility degree of having ck the actual class
given the observation A=(a1,a2,..,an).

2.4 Naive Possibilistic Network Classifier

A naive possibilistic network classifier assumes that attributes are independent1
in the context of the class node. As it is shown in the following figure, the only
dependencies allowed in naive networks are from the class node C to each at-
tribute Ai. The quantitative component of a naive possibilistic network involves

Fig. 1. Naive possibilistic network structure

1 In quantitative possibilistic setting, event φ ⊆ Ω is said independent from event
ψ ⊆ Ω given event ϕ ⊆ Ω if Π(φ/ψ, ϕ)=Π(φ/ϕ).
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prior possibility distribution relative to class node and the conditional possibility
distributions relative to attributes given the class node. Applying product-based
conditioning (see Equation 4) and product-based chain rule (see Equation 7) on
term Π(ck/A) leads to the following formula:

Π(ck/A) =
Π(ck, A)

Π(A)
=

π(ck) ∗ π(A1/ck) ∗ π(A2/ck) ∗ .. ∗ π(An/ck)

Π(A1A2..An)
(9)

Note that term Π(A) is a normalization factor and it is the same over all class
labels. Then this can be obtained by normalizing numerator of Equation 9.
Hence classification in naive product-based possibilistic network is ensured by
the following rule:

c = argmaxck∈DC (π(ck) ∗ π(A1/ck) ∗ π(A2/ck) ∗ .. ∗ π(An/ck)) (10)

It is important to note that there are only few works which used naive possibilis-
tic network classifiers [1][3] while other networks have not been experimented.
To the best of our knowledge, there is no work that addresses the problem of
classification under uncertain inputs using naive possibilistic networks.

3 Possibilistic Classification with Uncertain Inputs Using
Jeffrey’s Rule

In this section, we investigate the application of Jeffrey’s rule [8] for revising
possibility distributions encoded by a naive possibilistic network given uncertain
observations. In our case, uncertainty relative to uncertain/missing attribute
Ai is represented by a possibility distribution π′

Ai
given by the expert (or by

observation sensors).

3.1 Possibility Distribution Revision Using Jeffrey’s Rule

In [8], Jeffrey proposed a method for revising a probability distribution p into p′

given uncertainty bearing on a set of mutually exclusive and exhaustive events
λi. The uncertainty is of the form (λi, αi) with αi=p′(λi). Jeffrey’s method
relies on the fact that although there is uncertainty about events λi, conditional
probability of any event φ ⊆ Ω given any uncertain event λi remains the same
in the original and the revised distributions. Namely:

P (φ/λi) = P ′(φ/λi) (11)

The underlying interpretation of revision implied by constraint of Equation 11 is
that revised probability distribution p′ must not change conditional probability
degrees of any event φ given uncertain events λi. In the probabilistic framework,
applying Bayes rule then marginalization leads to the following formula:

P ′(φ) =
∑
λi

P ′(λi) ∗
P (φ,λi)

P (λi)
(12)
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Note that revised probability distribution p′ obtained using Jeffrey’s rule is
unique. In the following, we consider revising a possibility distribution π in
the presence of uncertain observations concerning a set of exhaustive and mutu-
ally exclusive events λi using Jeffrey’s rule. The possibilistic counterpart of this
rule has been investigated in [7] from a semantics point of view. Then, in the
possibilistic framework, revised possibility distribution π′ must comply with the
principle stating that uncertainty about events λi must not alter the conditional
possibility degree of any event φ ⊆ Ω given any event λi. Namely,

∀λi ∈ Ω, ∀φ ⊆ Ω, Π ′(φ/λi) = Π(φ/λi) (13)

One can easily check that there is also a unique solution π′ that satisfies Equation
13 and that guarantees that ∀λi, π′(λi)=αi. This solution is provided by the
following equation:

∀φ, Π ′(φ) = maxλi(π
′(λi) ∗

Π(φ,λi)

π(λi)
) (14)

Note that there is no algorithm for revising possibility distributions by uncertain
observations. In our context (classification with uncertain inputs), uncertainty
can bear on any attribute subset or on the whole attribute set. Uncertainty
concerning attribute Ai is encoded by a possibility distribution π′

Ai
given by the

expert or by observation sensors. The application of Jeffrey’s rule in our context
raises two problems:

The first problem is related to the fact that Jeffrey’s rule can be applied only
if uncertainty concerns a set of exhaustive and mutually exclusive events while in
classification with uncertain inputs problems, uncertainty is bearing on a set of
events λi which are not mutually exclusive. For example, if attributes A1 and A2

are uncertain, then this uncertainty is encoded by π′
A1

and π′
A2

respectively. In
order to apply Jeffrey’s rule, we must compute another possibility distribution
π′

A1A2
relative to A1A2. In this way, uncertain events a1a2 are exhaustive and

mutually exclusive. However, there are several potential possibility distributions
for π′

A1A2
. The following is an example confirming the multiplicity of π′

A1A2
.

Example. Let A1 and A2 be two variables whose domains are respectively
DA1={a11 , a12} and DA2={a21, a22}. Let also π′

A1
, π′

A2
be the possibility

Fig. 2. Example of two possibility distributions
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distributions encoding uncertainty relative to A1 and A2 respectively. Figure
2 shows that π′

A1A2
is not unique.

When uncertainty is bearing on attributes Ai,..Aj , then this uncertainty is
encoded by specifying π′

Ai
,..,π′

Aj
. Given the multiplicity of joint possibility dis-

tributions π′
Ai..Aj

, we propose to use the distribution preserving attributes’
independencies since we are concerned with naive possibilistic classifier which
assumes that attributes are independent given the class node. Hence, joint pos-
sibility distribution π′

Ai..Aj
is computed as follows:

π′
Ai..Aj

(ai..aj) =

j∏
k=i

(π′
Ak

(ak)) (15)

The second problem concerns computational issue. In order to perform clas-
sification under uncertain inputs, one cannot directly apply Jeffrey’s rule to
revise possibility distributions encoded by the naive possibilistic network. Given
the initial possibility degrees of class labels ck (namely, π(ck) involved in the
possibilistic network), we want to revise this possibility distribution given un-
certain attributes A1,..,An using Jeffrey’s rule. Namely, we need to compute
π′(ck) = π(ck|π′(A1, .., An)) defined as follows:

π(ck|π′(A1..An)) = maxA1..An(Π(ck/A1..An) ∗ π′(A1..An)) (16)

Given that joint possibility distribution π′
A1..An

is the one corresponding to the
case where attributes Ai are independent, then

π′(ck) = maxA1..An(Π(ck/A1..An) ∗ π′(A1) ∗ .. ∗ π′(An)) (17)

Clearly, one cannot use this formula to compute π′(ck) because this computa-
tion is exponential in the number of attributes and attribute domains. In the
following, we give an example of using Jeffrey’s rule to perform classification
with uncertain inputs.

3.2 Possibilistic-Based Classification with Uncertain Inputs Based
on Jeffrey’s Rule

In order to illustrate, on one hand, possibilistic-based classification using Jef-
frey’s rule and, on the other hand, our algorithm, we will consider for the rest of
this paper naive possibilistic network of Figure 3. This figure gives an example
of naive product-based possibilistic network encoding the initial knowledge. It
includes a class node C and three attribute nodes A1, A2 and A3. Figure 3 also
gives initial possibility distributions and the joint distribution obtained using
chain rule of Equation 7. Assume now that we have in hand an uncertain obser-
vation to classify. Uncertainty bearing on attributes A1, A2 and A3 is encoded
by π′

A1
, π′

A2
and π′

A3
are provided by Figure 4.

Note that our objective is to find the most plausible class(es) given the un-
certain observations. The following figure gives the results of revising the initial
joint possibility distribution (see Figure 3) using Jeffrey’s rule:

From revised joint possibility distribution π′ of Figure 5, revised local pos-
sibility distribution relative to class node C is π′

C(c1)=1, π′
C(c2)=.6667. Then
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Fig. 3. Naive possibilistic network example

Fig. 4. Uncertain observations example

Fig. 5. Revised joint possibility distribution

the only class label totally possible given the instance to classify is c1. We want
to perform same revision without computing global joint possibility distribu-
tion since this method is intractable when the number of attributes becomes
important. In the following, we propose an efficient algorithm suitable for naive
product-based possibilistic network classification with uncertain inputs.
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4 A New Algorithm for Naive Possibilistic Network
Classification with Uncertain Inputs

The basic idea of our method is to only search for classes that are totally possible
(classes having possibility degrees equal to 1) on the basis of uncertain inputs.
Since we are concerned with a classification problem (the task is finding the
most plausible class label(es) given the uncertain observation to classify), then
the method we propose fits classification objectives. Our method goes through a
sequence of equivalent transformations on the initial possibilistic network. The
following subsections provide and detail the different steps of our algorithms.

4.1 Step 1: Instance Elimination

Recall that revision is performed according to Jeffrey’s rule (using Equation 17)
and we are only concerned with determining if a given class label ck is among
the most plausible ones (namely, the ones having possibility degrees equal to 1).
Given this fact, we can eliminate all instances of A1A2..An where Π ′(A1A2..An)
<1 because such instances force the value of π′(ck) to be less than 1. Given that
attributes are independent, then this simplification leads to eliminating from
each attribute domain DNP

Ai
(relative to Ai in initial network NP ) values whose

possibility degrees in π′
Ai

are less than 1. In this step, attribute domain DNP
Ai

is

changed to D
NPS1
Ai

which denotes Ai’s domain in network NPS1 obtained from

NP after Step 1. Namely, D
NPS1
Ai

= DNP
Ai

− {ai, if π′
Ai

(ai) < 1}. After this
step, all the attributes’ remaining instances are totally possible. Then we have
the following proposition:

Proposition 1. Let NP be the initial naive possibilistic network and π′
A1

, π′
A2

,.., π′
An

be the possibility distributions encoding uncertainty relative to at-
tributes A1, A2,.., An respectively. Let NPS1 be the naive possibilistic net-
work obtained by eliminating not totally possible instances. Then,
π′NP (ck) = maxA1..An(ΠNP (ck/a1..an) ∗ π′(a1) ∗ .. ∗ π′(an)) = 1
if and only if πNPS1 (ck) = maxA1..An(ΠNPS1 (ck/a1..an)) = 1

Proposition 1 states that if there is a class label which is totally possible in the
initial network NP then it is also totally possible in network NPS1 obtained
after transformation of Step 1.

Example. The application of instance elimination step on network NP of
Figure 3 gives NPS1 as follows:

Network of Figure 6 is obtained by respectively substituting DNP
A1

={a11, a12},
DNP

A2
={a21, a22, a23} and DNP

A3
={a31, a32} by D

NPS1
A1

={a11}, DNP S1

A2
={a21, a23}

and DNP S1

A3
={a31, a32}. Note that in NPS1 , the possibility distribution relative

to node C is exactly the same as in NP .

4.2 Step 2: Unary Variable Elimination

As a consequence of instance elimination step, there might be attributes whose
domains only contain one value. This is for instance the case in our example
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Fig. 6. NP S1 : Possibilistic network after Step 1

where D
NPS1
A1

exactly contains one element which is a11. During this step, these
singleton variables are eliminated and class node distribution will be adapted so
that joint possibility distribution remains unchanged. In the network obtained
after Step 1, the possibility degree of any instance cka1a2..an is computed using
the chain rule as follows:

ΠNPS1 (cka1a2..an) = πNPS1 (ck) ∗ πNPS1 (a1/ck) ∗ .. ∗ πNPS1 (an/ck) (18)

Then we can build a new network NPS2 by eliminating unary attributes but class
node distribution has to be changed in order to guarantee that πNPS1 (cka1a2..an)
remains the same. For a singleton attribute Ai whose domain D

NPS1
Ai

contains
only one value ai, it is possible to achieve this transformation by substituting
each πNPS1 (ck) with πNPS2 (ck)=πNPS1 (ck) ∗ πNPS1 (ai/ck).

Proposition 2. Let NPS1 be the naive possibilistic network whose nodes in-
volve class node C and attribute nodes A1, A2,..,An. Assume that A1 is a
unary attribute whose domain only contains the instance a1 and let NPS2 be
the naive possibilistic network involving C, A2,..,An such that: πNPS2 (ai)=
πNPS1 (ai) for i=2,..,n and πNPS2 (ck)=πNPS1 (a1/ck) ∗ πNPS1 (ck). Then,
∀ck ∈ DC , ∀ai ∈ D

NPS1
Ai

for i = 1, .., n, πNPS1 (cka1a2..an)=πNPS2 (cka2..an)

Example (continued): This transformation on network of Figure 6 leads to
the following:

Note that node A1 which is a unary attribute has been removed and possibility
distribution relative to class node C has been altered such that joint possibility
distributions of Figure 6 and Figure 7 remain equal.

4.3 Step 3: Renormalizing Local Possibility Distributions

After Steps 1 and 2, local possibility distributions of some attributes might not be
normalized (even if global joint possibility distribution is normalized). Namely,
it may exist a variable Ai and a class label ck such that maxAi(πNPS2 (ai/ck))=α
(α<1). Step 3 deals with this problem considering two cases:
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Fig. 7. NP S2 : Possibilistic network after Step 2

– If α = 0, then ∀ck, πNPS2 (cka1a2..an) = 0. This means that whatever is
the value of Ai, this forces πNPS2 (cka1a2..an)=0. In this case, the class ck

cannot be among plausible ones, and can be removed from D
NPS2
C .

– If 0<α<1, normalization of Ai can be done by building a new network
NPS3 by substituting πNPS2 (ai/ck) with πNPS3 (ai/ck) = π

NPS2 (ai/ck)
α and

substituting πNPS2 (ck) with πNPS3 (ck)=πNPS2 (ck) ∗ α. In this way, πNPS3

(cka1a2..an) remains unchanged and local possibility distribution becomes
normalized.

Proposition 3. Let NPS2 be the naive possibilistic network involving nodes
C,A1,A2,..,An obtained from Step 2. Assume that conditional possibility
distribution relative to node A1 is not normalized (∃ck such that
maxA1(πNPS2 (a1/ck)) = α and 0<α<1). Let NPS3 be the naive possibilistic

network having same structure as NPS2 where πNPS3 (a1/ck)=π
NPS2 (a1/ck)

α
and πNPS3 (ai/ck)=πNPS2 (ai/ck) for i=2,..,n and πNPS3 (ck)=πNPS2 (ck) ∗α.
Then, ∀ck ∈ D

NPS3
C , ∀ai ∈ D

NPS3
Ai

, πNPS3 (cka1a2..an)=πNPS2 (cka1a2..an)

Example (continued): On network NPS2 of Figure 7, local possibility dis-
tribution relative to attribute A2 is sub-normalized (because max

ai∈D
NPS2
A2

(πNPS2 (ai/c2)) = .4). Transformation of Step 3 on NPS2 gives the following
network:

Note that possibility distribution relative to A2 has been renormalized and
possibility distribution relative to class node C has been adjusted accordingly.
Consequently, joint possibility distributions of Figure 7 and Figure 8 are equal.

4.4 Step 4: Prior Totally Possible Class Lookup

Steps 1, 2 and 3 allow to simplify the initial network by eliminating not totally
possible instances, eliminating unary variables and impossible classes and renor-
malizing the obtained network. In this step, we search for class labels which are
totally possible in network NPS3 obtained after Steps 1, 2 and 3. Then every
class ck having its prior possibility degree πNPS3 (ck)=1 is totally possible given
the uncertain instance to classify. Hence, we have the following proposition:
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Fig. 8. NP S3 : Possibilistic network after Step 3

Proposition 4. ∀ck ∈ D
NPS3
C such that πNPS3 (ck)=1 then

maxA1..An(πNPS3 (ck/a1..an)) = 1

Proposition 4 states that there exists an attribute configuration a1a2..an making
it possible for a class ck having πNPS3 (ck)=1 to be totally possible (namely
πNPS3 (ck/a1a2..an)=1).

Example (continued): On network NPS3 of Figure 8, class c1 is totally pos-
sible since πNPS3 (c1) = 1 and ∃a21 such that πNPS3 (a21/c1) = 1 and ∃a31 such
that πNPS3 (a31/c1) = 1. Then, ΠNPS3 (c1/a21a31)=1.

4.5 Step 5: Conditionally Totally Possible Class Lookup

Unfortunately, Proposition 4 only provides a subset of plausible classes. In-
deed, it may happen that an other class ck having πNPS3 (ck) = α (0<α<1)
is totally possible given uncertain instance to classify. Namely, it may exists
an attribute configuration a1a2..an such that ΠNPS3 (ck/a1a2..an)=1 even if
πNPS3 (ck)<1. Ofcourse, we would like to avoid exploring all configurations of
ΠNPS3 (ck/a1a2..an). For sake of simplicity, we assume in this step that C is
a binary variable (namely, D

NPS3
C ={c1, c2} but this can be easily extended to

non-binary variables) and class label c1 is totally possible (πNPS3 (c1)=1) while
πNPS3 (c2)<1. Hence, we would like to determine whether there is an attribute
configuration a1a2..an such that ΠNPS3 (c2/a1a2..an)=1 without exploring all
configurations of ΠNPS3 (c2/a1a2..an). Therefore, we propose to proceed by com-
paring these configurations with those which were previously found totally pos-
sible. The basic idea is to compare every configuration ΠNPS3 (c2/a1a2..an)
with ΠNPS3 (c1/a1a2..an) (c1 is such that πNPS3 (c1) = 1). In case where
ΠNPS3 (c2/a1a2..an)>ΠNPS3 (c1/a1a2..an), then this means that c2 is more pos-
sible that c1 conditionally to a1a2..an, consequently, ΠNPS3 (c2/a1a2..an)=1. In
order to find such a configuration, we can use the following decomposition:

Recall that we search for a configuration a1..an ensuring
ΠNPS3 (c2/a1..an)=π

NPS3 (c2a1..an)

Π
NPS3 (a1..an)

= 1
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Given that ΠNPS3 (a1..an)=max
ci∈D

NPS3
C

(π(cia1a2..an)), then ∀ci ∈ D
NPS3
C ,

ΠNPS3 (a1a2..an)≥ πNPS3 (cia1a2..an). Consequently if ΠNPS3 (c2/a1..an)=1

then, π
NPS3 (c2a1a2..an)

π
NPS3 (c1a1a2..an)

= π
NPS3 (c2)

π
NPS3 (c1)

∗ π
NPS3 (a1/c2)

π
NPS3 (a1/c1)

∗ .. ∗ π
NPS3 (an/c2)

π
NPS3 (an/c2)

≥ 1.

Since c1 denotes a class whose prior possibility degree πNPS3 (c1)=1, then,

π
NPS3 (c2a1a2..an)

π
NPS3 (c1a1a2..an)

= π
NPS3 (c2) ∗

π
NPS3 (a1/c2)

π
NPS3 (a1/c1)

∗ .. ∗
π

NPS3 (an/c2)

π
NPS3 (an/c1)

≥ 1 (19)

Decomposition of Equation 19 can be used to build a new network NPS4 by
transforming conditional possibility distributions relative to each attribute Ai in
NPS3 by substituting every term πNPS3 (ai/c2) by πNPS4 (ai/c2)=

π
NPS3 (ai/c2)

π
NPS3 (ai/c1)

and discarding c1 since it is known to be totally possible. Substituting
πNPS3 (ai/c2) by πNPS4 (ai/c2) aims at upgrading/downgrading each term
πNPS3 (ai/c2) according to the corresponding term πNPS3 (ai/c1) in order to de-
termine whether ai is more/less possible in class c2 than in c1. Note that terms
πNPS4 (ai/c2) may be greater than 1 (in case when πNPS3 (ai/c2)<πNPS3 (ai/c1)).
Hence, they will no longer represent possibility degrees. In order to avoid such
a problem, let us define an unbound possibility distribution, denoted γπ, as a
function from Ω −→ �. Unbound possibility degrees are induced in the same way
as in standard possibility setting (for event φ ⊆ Ω, γΠ(φ) = maxwi∈φ(γπ(wi)).
Note that unbound possibility distributions are similar to the so-called potentials
in junction tree algorithms [9]; they are only needed for computational issues.
An unbound naive possibilistic network is exactly a naive possibilistic network,
except that γ-possibility distributions have no upper bound (they may involve
possibility degrees greater than 1). In particular, each unbound possibilistic net-
work induces a unique joint γ-possibility distribution γπ using chain rule of
Equation 7.

Then, using decomposition of Equation 19, we can transform network NPS3

(obtained after Steps 1, 2 and 3) into an unbound possibilistic network UNP .
As a consequence of this transformation, some local conditional γ-possibility
distributions in network UNP may not be normalized. Repeating Step 2 (Re-
normalization) on γπAi (local γ-distributions relative to attributes in network
UNP ) allows to normalize them. Hence, once re-normalization accomplished,
the new possibility distribution γπUNP

C relative to class node shows whether
class label c2 is totally possible. Then we have the following proposition:

Proposition 5. Let NPS3 be the naive possibilistic network obtained after
Steps 1, 2 and 3, and let D

NPS3
C = {c1, c2}, πNPS3 (c1)=1 and πNPS3 (c2) <1.

Let UNP be the unbound naive possibilistic network having same structure
as NPS3 where DUNP

C ={c2}. Let γπUNP (ai/c2)=
π

NPS3 (ai/c2)

π
NPS3 (ai/c1)

for i=1,..,n.

Then, γπUNP (c2) ≥1 if and only if it exists an attribute configuration a1..an

such that ΠNPS3 (c2/a1..an)=1.
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Fig. 9. UNP : Possibilistic network after Step 5

Proof of Proposition 8
In network UNP (where conditional possibility distribution relative to attributes
are normalized), γπUNP (ck)≥1 means that maxA1..An(γπUNP (cka1..an))≥1.
This implies that maxA1..An(γπUNP (ck)∗γπUNP (a1/ck)∗..∗γπUNP (an/ck))≥1.

Given that for i=1..n, γπUNP (ai/ck)=π
NPS3 (ai/ck)

π
NPS3 (ai/cj)

and γπUNP (ck)= π
NPS3 (ck)

π
NPS3 (cj)

,

then γπUNP (ck)≥1 implies that maxA1..An(π
NPS3 (cka1..an)

π
NPS3 (cja1..an)

)≥1.

Example (continued): Transformation of Step 5 on network NPS3 and its
re-normalization gives network UNP of Figure 9.

On the left side, we provide network UNP before normalization while network
of right side represents UNP after re-normalization. This latter shows that class
c2 is not totally possible (πUNP (c2) < 1). At the end, clearly only c1 is totally
possible given the uncertain instance to classify (see Figure 4). This result is
exactly the same as the one achieved by directly applying Jeffrey’s rule (see
Figure 5).

5 Conclusion

This paper deals with possibilistic-based classification with uncertain inputs.
More precisely, we first addressed revising possibilistic knowledge encoded by
a naive product-based possibilistic network classifier using Jeffrey’s rule which
cannot be directly applied (since it is exponential in the number of attributes
and attribute domains). Then we proposed a new and efficient algorithm for
revising a naive product-based possibilistic network given uncertain inputs. This
algorithm ensures same classification results as Jeffrey’s rule while computations
are accomplished in polynomial time in the number of attributes. Future work
will address classification with uncertain inputs using non naive possibilistic
classifiers as well as min-based possibilistic networks.
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Abstract. If A caused B and B caused C, did A caused C? Although
causality is generally regarded as transitive, some philosophers have ques-
tioned this assumption, and models of causality in artificial intelligence
are often agnostic with respect to transitivity: They define causation,
then check whether the definition makes all, or only some, causal argu-
ments transitive. We consider two formal models of observation-based
causation, which differ in the way they represent uncertainty. The quan-
titative model uses a standard probabilistic definition; the qualitative
model uses a definition based on nonmonotonic consequence. The two
models identify different sufficient conditions for the transitivity of cau-
sation: The Markov condition on events for the quantitative model, and
a Saliency condition (if B is true then generally A is true) for the qual-
itative model. We explore the formal relations between these sufficient
conditions, and between the underlying definitions of observation-based
causation. These connections shed light on the range of applicability of
both models.

1 Causal Transitivity

Making yourself some tea, you put your kettle on the fire. Moments later, the
kettle whistles because the water is boiling. The water is boiling because it has
been heated to 100 degrees. Is the kettle whistling because the water has been
heated to 100 degrees?

Most of us agree that it is the case. The kettle example is one where it seems
natural to accept that ‘A causes C’ results from ‘A causes B’ and ‘B causes
C.’ That is, it makes causal transitivity appear unproblematic. Although it has
always been a strong temptation to consider that causality on events is neces-
sarily a transitive relation, philosophers have cogently argued that transitivity
is not a natural property of causation [1,2,3] (and, more recently, [4,5,6]). Ac-
cordingly, models of causality in artificial intelligence such as [7] often take an
agnostic stance with respect to transitivity, by defining causation first and then
checking whether the definition makes all, or only some, causal arguments tran-
sitive. For example, Pearl [8] explains (p. 237) that the transitivity of causality
becomes natural if it is understood in terms of indirect influence under a Marko-
vian condition: if A causes B, B causes C regardless of A, then A is understood

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 78–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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as causing (indirectly) C. We will indeed have more to say on the connection
between transitivity and the Markov condition.

In this article, we consider two models of uncertain causation, which differ in
the way they represent uncertainty. The first model uses the standard quanti-
tative, probabilistic definition of ‘A causes B’ as Pr(B|A) > Pr(B), or equiv-
alently Pr(B | A) > Pr(B | Ā), originally discussed by Goodman [9,10]. Note
that this definition is appropriate for observation-based causation, rather than for
intervention-based causation [8]. Accordingly, this article addresses with causal-
ity relations that are perceived (correctly or incorrectly) from merely observ-
ing the world, rather than from intervening on the world like an experimenter.
Because information about the effects of intervention is not always available,
intuitions of causation must sometimes do with observation and time only.1

The second model, recently proposed by the authors, uses a qualitative rep-
resentation of uncertainty, based on nonmonotonic consequence relations. As
we will see, sufficient conditions for the transitivity of causation laid bare by
these two models are different. The quantitative model predicts that causation
is transitive as soon as the causal chain is Markovian; and the qualitative model
predicts that causation is transitive as soon as the first event in the chain is a
salient, normal cause of the middle event. The question then arises of whether
the two transitivity conditions are formally related at all; and if so, whether their
formal relations reflect formal relations between the two underlying definitions
of causation. To answer these questions, we need to:

1. Adapt the Markov condition to a qualitative setting;
(a) check whether it is a sufficient condition for causal transitivity, in the

qualitative sense;
(b) check whether it is distinct from, stronger than, or weaker than the

Saliency condition;
2. Adapt the Saliency condition to a quantitative setting;

(a) check whether it is a sufficient condition for causal transitivity, in the
quantitative sense;

(b) check whether it is distinct from, stronger than, or weaker than the
Markov condition;

3. Compare the notions of causality captured by the qualitative and quantita-
tive conditions; in particular, we will:
(a) Translate the qualitative definition in a probabilistic setting, and check

whether it is stronger or weaker than the standard definition;
(b) investigate the transitivity conditions of this translated definition.

We eventually point out a gap between the concepts of causation captured by
each framework, which may explain the disagreement between them despite the
fact that the qualitative framework can be viewed as a mathematical limit of the
quantitative one, in terms of extreme, non-standard probabilities. Let us note
that these quantitative and qualitative frameworks are both eligible for predict-
ing judgments of causality from reported sequences of events [11]. In particular,
1 See [11] in this volume for a more general review of causality formalisms.
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their implementation does not raise significant problems from a computational
point of view, and is not discussed any further in this article.

2 The Quantitative Markov Condition

The standard definition of causation, from a probabilistic perspective, is that the
presence of the cause increases the probability of the effect. That is, ‘A causes B’
(where A, B, are events, not variables) if and only if Pr(B|A) > Pr(B|Ā). Note
that this expression precludes the cases where either Pr(A) or Pr(B) is equal
to 0 or 1,2 and that it can also be written Pr(B|A) > Pr(B). Note also that,
although it can be written in a symmetrical way expressing positive correlation,
Pr(AB) > Pr(A) Pr(B), we will maintain the tradition of abusively assigning A
and B the asymmetric roles of ‘cause’ and ‘effect,’ respectively (provided that the
cause temporally precedes the effect). Still, the correlation might be spurious,
but in the absence of appropriate interventions, a cause-effect relation may be
indeed perceived by humans.

Causation in the probabilistic sense is not necessarily transitive. The fact that
Pr(B|A) > Pr(B|Ā), i.e., ‘A causes B’, together with the fact that Pr(C|B) >
Pr(C|B̄), i.e., ‘B causes C’, does not always imply that Pr(C|A) > Pr(C|Ā),
i.e., ‘A causes C.’ A detailed counterexample is presented later on (see Table 1;
all tables display integer numbers, corresponding to the number of observations
in each cell).

Table 1. A Counterexample to the transitivity of probabilistic causation when
Pr(C|AB) = Pr(C|B)

Ā A

B̄ B B̄ B

C̄ 2 4 3 4
C 3 4 0 4

Probabilistic causation, however, is transitive as soon as the two following
conditions are jointly satisfied:

Pr(C|AB) = Pr(C|B) (1)
Pr(C|AB̄) = Pr(C|B̄) (2)

Conditions (1) and (2) are the two sides of the Markov condition on events. They
express that C is independent of A in the context of B, and in the context of B̄,
respectively. In the following, we will speak of the ‘positive’ and ‘negative’ sides
of the Markov condition on events, respectively.
2 In this paper, all probabilities are positive for the sake of simplicity. Using zero

conditional probabilities would require a full conditional probabilities framework[12],
which is outside the scope of this paper.
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Remark 1. Both sides are covered by the symmetric expression of the Markov
condition Pr(abc) Pr(b) = Pr(ab) Pr(bc), for Boolean variables a, b, c having val-
ues A, Ā, etc. This symmetric expression allows for Pr(b) = 0, which is not the
case for the conditional, asymmetric formulation, using Kolmogorov conditional
probabilities.

Proposition 1. If the two sides of the Markov condition on events are satis-
fied, then it follows from Pr(B|A) > Pr(B|Ā) and Pr(C|B) > Pr(C|B̄) that
Pr(C|A) > Pr(C|Ā).

Proof. Pr(C|A) = Pr(C|AB) Pr(B|A) + Pr(C|AB̄)(1 − Pr(B|A)). Likewise,
Pr(C|Ā) = Pr(C|ĀB) Pr(B|Ā)+Pr(C|ĀB̄)(1−Pr(B|Ā)). From (1), Pr(C|AB) =
Pr(C|ĀB) = Pr(C|B); From (2), Pr(C|AB̄) = Pr(C|ĀB̄) = Pr(C|B̄).
Hence, Pr(C|A) − Pr(C|Ā) = (Pr(C|AB) − Pr(C|AB̄))(Pr(B|A) − Pr(B|Ā)) =
(Pr(C|B)−Pr(C|B̄))(Pr(B|A)−Pr(B|Ā)). This quantity is strictly positive from
the definitions of ‘A causes B’ and ‘B causes C.’ ��

Remark 2. This proof is inspired from Eells and Sober [13], who studied the
transitivity of their own version of probabilistic causation.

It will be relevant later on to note that (1) alone is not sufficient to ensure
transitivity. Table 1 presents an example where A causes B and B causes C,
in the probabilistic sense: Pr(B|A) = 8/11 is greater than Pr(B) = 16/24,
and Pr(C|B) = 8/16 is greater than Pr(C) = 11/24. Furthermore, the positive
aspect (1) of the Markov condition on events is satisfied since Pr(C|BA) =
4/8 = Pr(C|BĀ). However, A cannot be said to cause C, since Pr(C|A) = 4/11
is less than Pr(C) = 11/24. As it can be expected, the negative aspect (2) of
the Markov condition on events is not satisfied, since Pr(C|B̄A) = 0 is different
from Pr(C|B̄Ā) = 3/5.

Table 2. Postulates and characteristic properties of System P

PREMISE 1 PREMISE 2 CONCLUSION

left equivalence E ≡ F E |∼ G F |∼ G
right weakening E |∼ F F |= G E |∼ G
and E |∼ F E |∼ G E |∼ F ∧ G
or E |∼ G F |∼ G E ∨ F |∼ G
cautious monotony E |∼ F E |∼ G E ∧ F |∼ G
cut E |∼ F E ∧ F |∼ G E |∼ G

3 A Qualitative Saliency Condition

Because probabilistic information is not always available for causal inference,
Bonnefon and colleagues [14,15] offered a qualitative counterpart to probabilis-
tic conceptions of causality. This framework takes advantage of so-called non-
monotonic consequence relations, which make it possible to express that the
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occurrence of B is generally, normally a consequence of the occurrence of A,
but that exceptional situations may arise—without the need for specifying how
frequent these exceptions are.

Formally, the relation ‘If A is true then normally B is true’ is written A |∼ B,
read A ‘snake’ B. The snake operator follows the requirements of System P [16].
That is, |∼ is reflexive and satisfies the postulates and properties summarized
in Table 2. Empirical studies repeatedly demonstrated that the postulates of
System P provide an adequate description of the way human reasoners handle
exception-laden rules [17,18].

Based on this representation of background knowledge, perceived causation is
defined in the following terms: an event A is perceived to cause another event B in
a context K if B was false before A took place (which was normal in context K),
and became true afterwards (B is normal as well in context A ∧K). Formally:

Definition 1. Assume that an agent learns of the sequence ¬Bt1, At1, Bt2 where
t2 > t1. Call Kt1 (the context) the conjunction of all other facts known by
the agent at time t1. If the agent possesses the pieces of default knowledge that
K |∼ ¬B and A∧K |∼ B, the agent will perceive At1 to cause Bt2 in context Kt1,
denoted Kt1 : At1 �Bt2, and abridged A�B when there is no risk of ambiguity.

This definition has a number of formal properties that are explored in [15].
Especially relevant to our current purpose is the fact that perceived causality
defined in this way is not generally transitive: it is not always possible to infer
At1 � Ct3 from At1 � Bt2 and Bt2 � Ct3 (where t3 > t2 > t1; for the sake
of simplicity, we shall drop the time indices from now on). Transitivity holds,
however, as soon as the following requirement is satisfied:

K ∧B |∼ A (3)

The proof is given in [15], and uses cautious monotony and cut. The con-
dition K ∧ B |∼ A means that observing B in context K normally leads one to
expect that A has occurred. In other terms, it means that A is a very common
and salient cause of B, so common and so salient that it is normally the first
explanation that one will imagine, by default, to explain the occurrence of B.

4 A Qualitative Markov Condition

In this section, we focus on the qualitative case by (a) exploring the links between
the qualitative Saliency condition and a qualitative rendition of the Markov
condition; and (b) exploring the links between this qualitative rendition and the
transitivity of qualitative causation. One qualitative rendition of (1) and (2) is:

K ∧A ∧B |∼ C if and only if K ∧B |∼ C (4)
K ∧A ∧ B̄ |∼ C if and only if K ∧ B̄ |∼ C (5)

The qualitative Saliency condition implies half of the qualitative Markov condi-
tion. More precisely, the Saliency condition (3) implies the positive side (4) but
not the negative side (5).
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Proposition 2. If K ∧B |∼ A, then K ∧A∧B |∼ C if and only if K ∧B |∼ C.

Proof. The proof simply uses cut on K ∧ B |∼ A and K ∧ A ∧ B |∼ C for ⇒,
and cautious monotony on K ∧B |∼ A and K ∧B |∼ C for ⇐. ��

However, K∧B |∼ A does not imply the negative aspect of the Markov condition.
It is possible to have K ∧ B |∼ A but not K ∧ A ∧ B̄ |∼ C ≡ K ∧ B̄ |∼ C. For
example, it is possible to have both K ∧ B |∼ A and K ∧ B̄ |∼ Ā; and this last
relation prohibits to derive K ∧ A ∧ B̄ |∼ C from K ∧ B̄ |∼ C. In a qualitative
setting, the Saliency condition does not necessarily imply the negative side of
the Markov condition on events.

Remark 3. Note that (5) could easily be derived from K ∧ B̄ |∼ A. However, if
both K ∧B |∼ A and K ∧ B̄ |∼ A hold, then (by or) (K ∧ B) ∨ (K ∧ B̄) |∼ A,
and ultimately K |∼ A. As shown in [15], the fact that K |∼ A precludes that
A�B for any B: In the qualitative model, normal events cannot be perceived as
causes of abnormal events. Thus, adding the condition K∧B̄ |∼ A to K∧B |∼ A
would allow to derive (4) and (5) instead of just (4), but would defeat the whole
point of reasoning about causes.

Remarkably, and contrary to the quantitative case, the positive side of the qual-
itative Markov condition is sufficient to give transitivity.

Proposition 3. If K ∧ A |∼ B, K ∧ B |∼ C, and (K ∧ A ∧ B |∼
C if and only if K ∧B |∼ C), then K ∧A |∼ C.

Proof. From K ∧ B |∼ C and (K ∧ A ∧ B |∼ C if and only if K ∧ B |∼ C), we
get K ∧A∧B |∼ C. From this relation and K ∧A |∼ B we arrive at K ∧A |∼ C
by applying cut. ��

Corollary 1. If an agent is in position to believe A � B and B � C as per
Definition 1, and if the agent believes that (K∧A∧B |∼ C if and only if K∧B |∼
C), then the agent is in a position to believe A � C.

Proof. To be in a position to believe A�C, as per Definition 1, it is enough that
the agent (i) believes K |∼ ¬C. This condition is satisfied because the agent is
in a position to believe B �C; (ii) the agent believes K ∧A |∼ C. This condition
is satisfied as shown by Proposition 3; and (iii) the agent knows of a sequence
¬Ct, At, Ct′ where t′ > t. Condition (iii) is satisfied as shown in [15]. ��

Nevertheless, it can be checked that the positive side of the qualitative Markov
condition does not imply the Saliency condition. To show this, we use a
model of System P where the former holds but not the latter. Consider a
qualitative possibility distribution induced by the well-ordered partition [19]:
(Ā∧ B̄∧ C̄, C), (A∪B)\C). Namely ∀s 	∈ A∪B ∪C, π(s) = 1; ∀s ∈ C, π(s) = α;
∀s ∈ (A ∪ B) \ C, π(s) = β, with 1 > α > β. Translating A |∼ B as
Π(A ∩B) > Π(A ∩ B̄), where Π(A) = maxs∈A π(s) it is easy to check that:
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– |∼ B̄ and |∼ C̄ since Π(B) < 1 and Π(C) < 1
– A |∼ B,B |∼ C since Π(A ∧B) = Π(B ∧ C) = α, assuming A ∩B ∩ C 	= ∅;

assuming A ∩ B̄ ∩ C = ∅, Π(A ∧ B̄) = Π(B ∧ C̄) = β
– Assuming that Ā ∩B ∩ C 	= ∅, B |∼ A does not hold since Π(Ā ∧B) = α.

It may seem surprising that, in the qualitative setting, the positive side of the
Markov condition is sufficient for transitivity, although it is weaker than the
Saliency condition. We can explain this by exploiting the natural connection
between conditional assertions of the form A |∼ B and conditional probabilities
Pr(B | A). Indeed, A |∼ B can be formally interpreted as a pair of events of
the form (AB,AB̄), and the logic of conditional assertions has a three-valued
semantics based on this representation [20]. Pr(B | A) is entirely determined
by Pr(AB) and Pr(AB̄), and there is a closely related semantics of conditional
assertions, whereby the statement of A |∼ B comes down to an infinitesimal
probability statement:

A |∼ B ⇐⇒ Pr(B | A) > 1− ε,

where ε is a positive number arbitrarily close to 0. The properties of reasoning
with such extreme probability statements were studied in [21,22] and turned out
to be the properties of nonmonotonic reasoning laid bare in System P. In fact,
the calculus of infinitesimal conditional probabilities of this form is equivalent
to System P [23].

Now, it is clear that B � C reads Pr(C | B) > 1− ε and Pr(C) < ε. Hence:

– From A � B and B � C we get Pr(AB) > (1 − ε) Pr(A) and Pr(BC) >
(1− ε) Pr(B); it yields:

– Pr(AB) Pr(BC) > (1−O(ε)) Pr(A) Pr(B).
– Which, with the positive Markov condition, yields: Pr(ABC) Pr(B) > (1 −

O(ε)) Pr(A) Pr(B).
– Simplifying by Pr(B): Pr(AC) ≥ Pr(ABC) > (1−O(ε)) Pr(A). Hence A�C.

5 A Quantitative Saliency Condition

In this section, we focus on the quantitative case by (a) exploring the links
between the quantitative Markov condition and a quantitative rendition of the
Saliency condition; and (b) exploring the links between this quantitative rendi-
tion and the transitivity of quantitative causation. In agreement with the broad-
est probabilistic understanding of |∼, we use the following quantitative rendition
of the Saliency condition (3):

Pr(A | B) ≥ k > 0.5. (6)

for some appropriate value of the threshold k. We first consider the limit case
where k = 1. As we will see, this limit case is already informative enough; we
will only briefly consider the general case where 0.5 < k < 1.

The fact that k = 1 in (6), i.e., that Pr(A | B) = 1, implies the positive side
of the quantitative Markov condition. More precisely, Pr(A | B) = 1 implies (1)
but not (2).
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Table 3. A Counterexample to Pr(C | AB̄) = Pr(C | B̄) where Pr(A | B) = 1

Ā A

B̄ B B̄ B

C̄ 4 0 1 1
C 2 0 1 1

Proposition 4. If Pr(A | B) = 1 then Pr(C|AB) = Pr(C|B).

Proof. Pr(A | B) = 1 implies Pr(ĀB) = 0, and therefore both Pr(AB) = Pr(B)
and Pr(ABC) = Pr(BC). Therefore, Pr(ABC) Pr(B) = Pr(AB) Pr(BC), which
gives (1). ��

Just like qualitative, the positive aspect of the Markov condition does not imply
the qualitative Saliency condition, (1) does not imply Pr(A | B) = 1. See again
Table 1 for a counterexample. Pr(A | B) = 1 is thus a stronger condition than
the positive aspect (1) of the Markov condition on events. However, no such
relation exists between Pr(A | B) = 1 and the negative aspect of the Markov
condition on events: Pr(A | B) = 1 does not imply (2). Table 3 displays a simple
counterexample where Pr(A | B) = 1 but Pr(C | AB̄) = 1/2 is different from
Pr(C | B̄) = 3/8.

Neither does Pr(A | B) = 1 imply transitivity. Table 4 displays an example
where A causes B and B causes C, in the probabilistic sense: Pr(B | A) = 1/6
is greater than Pr(B) = 1/20, and Pr(C | B) = 1 is greater than Pr(C) = 8/20.
Furthermore, Pr(A | B) = 1. But A cannot be said to cause C, as Pr(C | A) =
2/6 is lower than Pr(C) = 8/20. Unsurprisingly, the negative Markov condition
is not satisfied, since Pr(C | B̄A) = 1/5 is different from Pr(C | B̄Ā) = 6/14.

We have considered so far the limit case where K ∧ B |∼ A is translated as
Pr(A | B) = 1. Even in this limit case, causation is not necessarily transitive,
since Pr(C | A) is not necessarily greater than Pr(C) when Pr(C | B) > Pr(C)
and Pr(B | A) > Pr(B). Now, it can be shown that the optimal lower bound of
Pr(C | A) is an increasing function of the threshold k with Pr(A | B) = k.

Indeed, as shown in [24], the optimal lower bound of Pr(C | A) expresses as:

Pr(C | A) ≥ Pr(B | A) ·max
(

0, 1− 1− Pr(C | B)
Pr(A | B)

)
(7)

Table 4. A Counterexample to transitivity where Pr(A | B) = 1

Ā A

B̄ B B̄ B

C̄ 8 0 4 0
C 6 0 1 1
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It is easily checked from (7) that the optimal lower bound of Pr(C | A) increases
with Pr(A | B), and is thus an increasing function of k. Therefore, all other
probabilities being equal, if it is not guaranteed that Pr(C | A) > Pr(C) when
k = 1, then it cannot be guaranteed that Pr(C | A) > Pr(C) for any value of
k > 0.5.

6 Discussion

In summary, the following results have been obtained. In the qualitative setting,
using the nonmonotonic Definition 1 of causation, the positive Markov condition
on events is sufficient for transitivity to hold: there is no need for the negative
Markov condition to hold. Because the Saliency condition implies the positive
aspect of the Markov condition (albeit not its negative aspect), it is itself a
sufficient condition for transitivity.

In the quantitative setting, using the probabilistic definition of causation as
Pr(B | A) > Pr(B), the positive Markov condition on events alone (without the
negative side) is not a sufficient condition for transitivity. In this setting, the
Saliency condition implies the positive aspect of the Markov condition, but not
its negative aspect; and it is not itself a sufficient condition for transitivity. In this
section, we consider whether the pattern of results obtained for the transitivity
conditions is a consequence of formal relations between the underlying definitions
of causation in the two models.

6.1 Two Views of Causation

The connection between nonmonotonic inference and conditional probability, as
recalled above, clarifies the difference between probabilistic causality developed
after [9], and nonmonotonic causality. The nonmonotonic definition, couched in
probabilistic terms, comes down to the following requirements: A causes B if
and only if B is little probable per se and very probable in the context where A
is true. The weakest quantitative rendition of this definition is:

Pr(B) < Pr(B̄) and Pr(B | A) > Pr(B̄ | A). (8)

Remark 4. Note that this definition of causation is genuinely asymmetric, con-
trary to the standard probabilistic definition, which expresses a positive corre-
lation between events.

This weakest rendition already implies Pr(B | A) > Pr(B) since (8) implies
Pr(B | A) > 0.5 > Pr(B). Hence, the qualitative approach leads to a definition
of causality that, even in its weakest quantitative counterpart, is clearly stronger
than Good’s standard probabilistic definition. Causes in the qualitative sense are
always causes in the quantitative sense, but there are probabilistic causes that
the qualitative setting does not recognize as causes.

There are two classes of such situations. First, situations where, although
the presence of the cause does increase the probability of the effect, this latter
probability stays lower than .5:
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Pr(B) < P (B | A) <
1
2

. (9)

In these situations, ‘A causes B’ in the probabilistic but not in the qualitative
sense, since the normal course of things is to observe B̄ in the context of A.

Remark 5. From the perspective of scientific discovery, it certainly makes sense
to talk about the causal role of A in situation (9). And indeed, the probabilistic
definition of causality was proposed with a view to capture the nature of scien-
tific explanation in experimental fields (see [25] for a retrospective collection of
essays). It may be more debatable whether (9) corresponds to what lay persons
would declare as expressing causality. The close inspection of available experi-
mental data [26,27] shows that perceptions of causality in this situation are at
best moderate. Note, however, that Pr(B) and P (B | A) always have the same
order of magnitude in these experiments.

Although (9) is not a situation recognized as causation by the qualitative model,
it may qualify as a situation of ‘facilitation.’ In [14,15] the facilitation relation is
defined as one where B is abnormal, but becomes neither abnormal nor normal
when A occurs. There is another class of situations of probabilistic causation
that does not match the requirements for qualitative causation. This class of
situations corresponds to cases when the cause increases the probability of an
effect that was already highly probable:

Pr(B | A) > Pr(B) >
1
2

. (10)

There is no way to express this reinforcement effect in the qualitative setting, due
to a lack of expressive power. For A to cause B in the qualitative sense, it is nec-
essary that the perception of B changes from that of an abnormal event, to that
of a normal event when A occurs. A cannot be said to be a qualitative cause of B
when B belongs to the normal course of the world even in the absence of A.

Remark 6. A limit situation occurs when B is neither intrinsically normal nor
abnormal, but becomes normal in the presence of A. In other terms, one is totally
ignorant about whether B is true or not, but starts believing that B is the case
when learning that A has occurred. In a qualitative setting, this expresses as:

K 	|∼ B and K 	|∼ B̄ and K ∧A |∼ B

The probabilistic counterpart to this limit situation may be considered to be
that wherein Pr(B) = Pr(B̄). This is debatable, though, as it presupposes that
ignorance about B is confused with knowledge about the randomness of B. This
situation is not considered one of causation in [15]. Rather, following [28], it is
considered one of ‘justification.’ That is, one where, rather than seeing A as the
cause of the occurrence of B, agents may consider A the justification in their
belief that B was going to happen.
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Table 5. Counterexample to transitivity under saliency and strengthened causation

Ā A

B̄ B B̄ B

C̄ 55 0 13 8
C 10 0 4 10

6.2 Consequences for Transitivity

There is a difference of nature between the standard probabilistic definition of cau-
sation and the definition inspired by the qualitative model (notwithstanding the
fact that the first is based on a symmetric property, whilst the second is asym-
metric). Quantitatively, causality is understood in terms of a positive influence
of one event on another one, regardless of the prior probability or this last event.
Qualitatively, causality is restricted to situations of tendency reversal, where an
abnormal state of affairs becomes normal upon the occurrence of some event.

Because the quantitative rendition (8) of the qualitative definition is stronger
than the standard probabilistic model, the question arises of whether Saliency
would ensure the transitivity of this stronger notion of causation. The following
counterexample shows that this is not the case. Suppose A causes B and B
causes C in the sense of (8), and that Saliency strictly holds, i.e., Pr(A | B) = 1.
Suppose observations as in Table 5. Note that Pr(B) < 1

2 ; Pr(C) < 1
2 . Moreover

Pr(B | A) = 18
35 > 1

2 ; Pr(C | B) = 10
18 > 1

2 ; However, Pr(C | A) = 14
35 < 1

2 . One
may think of strengthening again the definition of causation by increasing the
threshold k and change (8) into what could be called k-causation:

Pr(B) ≤ 1− k < 0.5 and Pr(B | A) ≥ k. (11)

However we can show by means of the generic counterexample in Table 6 that the
Saliency condition is not sufficient to ensure transitivity of k-causation, however
close is k to 1. Indeed, the conditions Pr(B) ≤ 1 − k; Pr(C) ≤ 1 − k can be
achieved by choosing a sufficiently high value of x, tuning w accordingly for a
fixed value of k. Furthermore, when 0.5 < k < 1, it is clear that Pr(B | A) =
4+k
6−k > k ; Pr(C | B) = 5k

4+k > k; but Pr(C | A) = 5k
6−k < k. What it means is

that when k increases and the notion of k-causation becomes more demanding,
there always exists a small range of situations that do not sanction transitivity.
This range shrinks when k increases—and it vanishes when k = 1.

Table 6. Counterexample to the transitivity of k-causation under saliency

Ā A

B̄ B B̄ B

C̄ x 0 w 2w
C y 0 0 5wk

2(1−k)
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Note that replacing Saliency by the two Markov conditions will not
do any better at ensuring the transitivity of k-causation. Indeed, suppose
Pr(C|B) = Pr(B|A) = k > 0.5. Using both Markov conditions, Pr(C|A) =
Pr(C|B) Pr(B|A) + Pr(C|B̄)(1 − Pr(B|A)). Therefore: Pr(C|A) = k2 +
Pr(C|B̄)(1− k). Letting Pr(C|B̄) < k, we arrive at Pr(C|A) < k.

Although, in the strictest sense, the transitivity of k-causation can fail under
Markov conditions and Saliency, the condition Pr(C|A) ≥ Pr(C | B) Pr(B | A) >
k2 is always derivable from Pr(B|A) > k and Pr(C|B) > k, under the saliency
condition Pr(A|B) = 1, from equation (7), with no other assumption. If Pr(B|A)
and Pr(C|B) are largely greater than k, then it is possible that Pr(C|A) ≥
Pr(C | B) Pr(B | A) > k. Furthermore, from a psychological perspective, it is
conceivable that, for some high values of k2, some individuals may perceive the
causal chain as transitive in situations where k2 < Pr(C|A) < k.

7 Final Words

A case can be made for the idea that the two models we have compared in
this article do not address the same phenomenon. The probabilistic definition
of causation introduced after Good, and popularized by epistemologists, aims at
detecting a positive influence in data observed from natural phenomena. Such
causal relations can be read from a careful scrutiny of contingency tables. In
contrast, the qualitative model captures a more mundane, commonsense, every-
day variant of causation— whereby the change of a state of affairs is understood
as caused by the prior occurrence of some abnormal event. This form of causal
thinking often comes down to explaining an abnormal fact by some unexpected
circumstances. These two kinds of causal thinking are quite distinct, as shown
in this article, and perhaps it is no surprise that their transitivity conditions
observe a complex pattern of relations.

This observation raises the (largely unaddressed) empirical question of the
transitivity of everyday causal thinking. Are everyday inferences on causal chains
sensitive to Saliency, or to Markovian considerations? In parallel to the present
formal research, we collected data on the perceived transitivity of causal chains.
These chains were always quantitatively Markovian, but did or did not meet
the qualitative Saliency condition [29]. E.g., of the two following quantitatively
Markovian chains, the first meets the qualitative Saliency condition, but the
second does not:

1. Émilie had put her kettle on the fire. The kettle whistled because the water
was boiling. The water was boiling because it had been heated to 100 degrees.

2. Alice was asleep under an apple tree. She woke up because an apple fell on
her. The apple fell on her because it was ripe.

All results so far show that chains like the first are perceived as transitive (the
kettle whistled because the water had been heated to 100 degrees), whereas
chains like the second are not (Alice did not wake up because the apple was
ripe). These results suggest that lay reasoners may be prone to bypass Marko-
vian considerations in favor of qualitative Saliency considerations. If we accept
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that qualitative Saliency is more easily noticed and processed that Markovian
considerations, then it can be expected that individuals will tend to reject transi-
tivity when Saliency is not satisfied, even though the causal chain is Markovian.
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Abstract. In this paper, we present an algebraic relational operator
called antidivision and we describe a range of interpretations that can be
attached to this operator in the context of databases with fuzzy relations
(i.e., relations that contain weighted tuples). We also study the way(s)
this operator can be made tolerant to exceptions in order to limit the
risk of obtaining empty answers.

1 Introduction

The idea of extending usual Boolean queries with preferences has become a hot
topic in the database community. One of the advantages of this approach is to
deliver discriminated answers rather than flat sets of elements. Fuzzy sets are a
natural means to represent preferences and many works have been undertaken
to define queries where fuzzy predicates can be introduced inside user queries.
The objective of this article is to illustrate the expressiveness of fuzzy sets with a
certain type of queries, that we call antidivision queries, in the context of regular
databases. Like other operators, the regular antidivision is not flexible at all and
small variations in the data may lead to totally different results. To counter this
behavior, two types of tolerant antidivision operators founded on fuzzy sets are
suggested. First, let us make clear what we mean by antidivision. Let r be a
relation of schema R(X, A) and s a relation of schema S(B, Y ), with A and B
compatible (sets of) attributes. We call antidivision the operator ‡ defined the
following way:

r[A ‡B]s = {x | ∀b ∈ s[B], (x, b) /∈ r}.

In other words, an antidivision query r[A ‡B]s retrieves the X-values present in
relation r which are associated in r with none of the B-values present in s. In the
following, in order to simplify the formulas and with no loss of generality, we will
assume that the schema of s is S(B). Some examples of (non-fuzzy) antidivision
queries are given hereafter:

– A consumers’ association aims at assessing some chemical products (e.g. cos-
metics) in order to give them quality labels so as to express their level of safety.
In this context, an antidivision query could be: retrieve the products which do
not contain any noxious component in a proportion higher than 5%.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 92–105, 2008.
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– The Atomic Energy Research Center aims at finding a site for implanting a
nuclear waste processing plant. In this context, an antidivision query could
be: retrieve the sites which are at least hundred miles away from any geo-
graphic point where the seismic risk is higher than 2 (on a given scale).

It can be noticed that an antidivision is nothing but an antijoin followed by
a projection over X : r[A ‡ B]s = (r � s)[X ]. We call this operator antidivision
by analogy with the relation between a semijoin and an antijoin: a division
query r[A÷B]s (resp. a semi-join query r � s) retrieves the X-values which are
associated in r with all of the B-values present in s (resp. the tuples from r
which join with at least one tuple from s) while an antividision query r[A ‡B]s
(resp. an antijoin query r � s) retrieves those X-values which are associated with
none of the B-values from s (resp. the tuples from r which join with none of the
tuples from s).

Our purpose is not to introduce a superfluous algebraic operator but to show
that the concept of antidivision seen as an atomic operator allows to reach a wide
range of useful semantics when one moves from regular relations to fuzzy ones.
An additional outcome is that it becomes much easier to make that operator
tolerant to exceptions, in order to overcome (as much as possible) the empty
answer problem. The tolerance aspect is central to the present contribution which
constitutes a follow-up to [6] where a non-tolerant antidivision operator was
introduced.

The remainder of the paper is organized as follows. In section 2, we deal with
the possible formulations of the antidivision operator in a regular database con-
text (in both relational algebra and SQL) and with its tolerant version. Section 3
is devoted to the antidivision in the context of databases involving fuzzy relations
(i.e., relations which contain weighted tuples). We first give some basic notions
concerning fuzzy relations and fuzzy queries, then we point out the different
semantics that can be attached to the antidivision operator in such a context.
The way this operator can be made tolerant to exceptions is also dealt with.
The conclusion recalls the main contributions and mentions some perspectives
for future work.

2 Antidivision of Regular Relations

2.1 Principle and Possible Formulations

In the framework of relational algebra, an antidivision can be expressed as:

r[X ]− (r �� s)[X ] (1)

where �� denotes the join operator. In SQL, a possible formulation is:

select X from r where X not in (select X from r, s where r.A = s.B)

or equivalently:

select X from r r1 where not exists
(select * from s where A in (select A from r r2 where r2.X = r1.X)).
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Table 1. Extension of relation prod

p c prop

p1 c1 3
p1 c2 4
p1 c3 93
p2 c1 9
p2 c4 91
p3 c2 8
p3 c6 92

Example 1. Let us consider the relations prod which describes the composition
of some chemical products and nox which gathers the identifications of noxious
components. Let us consider the query “retrieve the products which do not
contain any noxious component in a proportion higher than 5%.” Let us suppose
that nox = {c1, c2, c5} and prod is represented in Table 1.

This query can be expressed as:

((Prod : prop > 5)[p, c]) [c ‡ c] Nox

and its result is {p1}. ♦

Another vision of the antidivision in an SQL-like language can be based on an
inclusion:

select X from r group by X
having set(A) includes none (select A from s)

where the Boolean predicate includes none is defined as:

includes none (E, F ) ≡ (E ∩ F ) = ∅ ≡ (E ⊆ cp(F )) ≡ (F ⊆ cp(E)).

where cp(E) denotes the complement of set E. This vision corresponds to the
following definition of the antidivision:

r[A ‡B]s = {x ∈ r[X ] | s ∩Ω(x) = ∅} = {x ∈ r[X ] | s ⊆ cp(Ω(x)} (2)
= {x ∈ r[X ] |Ω(x) ⊆ cp(s)}

where Ω(x) = (r : X = x)[A] i.e., is the set of A-values associated with x in r.

2.2 Tolerant Antidivision of Regular Relations

Among other reasons (see section 3), it is interesting to define the antidivision
in terms of an inclusion because it then becomes easy to make this operator
tolerant (and then to limit the risk of obtaining empty answers). In the case of
regular relations, tolerance consists in relaxing the quantifier “none” and thus
to authorize a certain number (or proportion) of exceptions: one looks for the
X-values from r which are connected in r with at most k of the B-values from
relation s. So as to capture that type of semantics with an algebraic expression,
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it is necessary to use two copies of relation r and to replace in expression (1) the
part (r �� s)[X ] with:

((r1 �� s)[X1, A1])[X1 = X2](r2 �� s)[X2, A2]) : (A1 	= A2))[X1]

if one wants to authorize one exception, and so on (two self-joins are necessary
if two exceptions are allowed, etc). In SQL, one would have to use an expression
such as:

select X from r where X not in
(select X from r where A in (select B from s) group by X

having count(distinct A) > k).

If the goal is to authorize a proportion of exceptions (for instance, one wants to
retrieve the X-values which are connected in r with at most k % of the values
present in s), the problem becomes more tricky. It is not expressible in relational
algebra (due to the lack of a counting operator), and in SQL one would have to
use:

select X from r where X not in
(select X from r where A in (select B from s) group by X

having count(distinct A) > (select k/100 * count(*) from s)).

On the other hand, the tolerant antidivision can be expressed simply by relaxing
the set-oriented operator “includes none(E, F )” into “includes almost none (E,
F , k)” meaning that E does not include more than k % of the elements of F . Let
x be an element of r[X ] and n the cardinality of s. The number of authorized
exceptions equals e = k × n/100 i.e., the greatest integer smaller or equal to k
× n/100. Let e′ be the number of elements b in s such that b is not associated
with x in r. If e ≤ e′ then includes almost none (Ω(x), s, k) is true, otherwise
it is false.

3 Antidivision of Fuzzy Relations

In this section, we first recall some basic notions related to fuzzy relations and
fuzzy queries, before defining the antidivision operator in a context of databases
with fuzzy relations and proposing some tolerant versions of it.

3.1 About Fuzzy Relations and Fuzzy Queries

Let us recall that fuzzy set theory [16] aims at representing sets whose bound-
aries are not sharp. A fuzzy set F defined on a domain X is associated with a
membership function F from X into the unit interval [0, 1]. The closer to 1 the
membership degree μF (x), the more x belongs to F . The support S(F ) and the
core C(F ) of a fuzzy set F are defined respectively as the following two crisp
sets:

S(F ) = {x ∈ X | F (x) > 0}
C(F ) = {x ∈ X | F (x) = 1}
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Table 2. Extension of relation fy-emp

num name salary age living-city degree

76 Martin 12,500 40 New York 0.3
26 Tanaka 12,000 37 Chiba 0.4
12 Smith 12,000 39 London 0.4
55 Lucas 13,000 35 Miami 0.8

In the database domain, fuzzy set theory can serve as a basis for defining a
flexible querying approach [9]. The key concept is that of a fuzzy relation, i.e.,
a relation designed as a fuzzy subset of Cartesian products of domains. Thus,
any such fuzzy relation r can be seen as made of weighted tuples, denoted by
μ/t, where μ expresses the extent to which tuple t belongs to the relation, i.e., is
compatible with the concept conveyed by r. Of course, since regular databases
are assumed to be queried, initial relations (i.e., those stored in the database)
are special cases of fuzzy relations where all the tuple weights are equal to 1.

Example 2. Let us consider a database with the relation employee(num, name,
salary, age, living-city). From a given initial extension of this regular relation,
it is possible to get the intermediate fuzzy relation fy-emp shown in Table 2
containing those employees who are “fairly young.” It is assumed that the mem-
bership function associated with the flexible predicate “fairly young” is defined
as follows: μfy(x) = 0 if age ≥ 45, μfy(x) = 1 if age ≤ 30, linear in between.

It can be noticed that no element is a full member of the fuzzy relation fy-emp
since no employee reaches the maximal degree 1. In the fuzzy relation obtained,
only the tuples t such that μfy(t) > 0 appear. ♦

The regular relational operations can be straightforwardly extended to fuzzy rela-
tionsby considering fuzzy relations as fuzzy sets on theonehandandby introducing
gradual predicates in the appropriate operations (selections and joins especially)
on the other hand. If r and s are two fuzzy relations defined over the same domains
D1, ..., Dk, the following three set-oriented operations can be defined:

– Union: μunion(r, s)(t) = ⊥(μr(t), μs(t)), where ⊥ is a triangular co-norm,
– Intersection: μinter(r, s)(t) = !(μr(t), μs(t)), where ! is a triangular norm,
– Difference: μdiffer(r, s)(t) = !(μr(t), 1 − μs(t)), which stems from the fact

that in the Boolean framework r – s = r ∩ cp(s). Some other definitions are
possible, but this is the most commonly used.

The Cartesian product of any two fuzzy relations r and s defined respectively
on the sets of domains X and Y is given by: μprod(r, s)(tu) = !(μr(t), μs(u)).

Selection, projection and join operations are defined as follows:

– Selection: μselect(r, cond)(t) = !(μr(t), μcond(t)) where cond is a fuzzy
predicate,

– Projection: μproject(r, Y )(u) = maxv∈r(uv) where Y is a subset of X and u
one of its values, while v takes its value in (X − Y ),
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– Join: μjoin(r, s, A, B, θ)(tu) = !(μr(t), μs(u), μθ(t.A, u.B)) where A (resp. B)
is a subset of X (resp. Y ), A and B are defined over the same domains, θ is
a binary relational operator (possibly fuzzy), t.A (resp. u.B) stands for the
value of t over A (resp. u over B).

As to the division of fuzzy relation, it is studied in [8] and a tolerant version of
this operator is defined in [3]. For more details about query language aspects,
the reader may refer to [4] where a fuzzy SQL-like language is described.

3.2 Principle and Formulation of the Antidivision of Fuzzy
Relations

Starting from expression (1), and denoting by res the relation resulting from the
antidivision query, one gets, for an element x present in relation r, the degree:

μres(x) = min(μsupport(r[X])(x), 1− μproj(r	
s, X)(x)) (3)
=min(1, 1−maxa∈s!(μs(a), μr(x, a)))
=mina∈s(1−!(μs(a), μr(x, a)))

As to the expression based on an inclusion, it becomes:

r[A ‡B]s = {μ/x | x ∈ support(r[X ]) and μ = Inc(s, cp(Ω(x)) > 0} (4)

where Inc(s, cp(Ω(x)) denotes the degree of inclusion (∈ [0, 1]) of s in cp(Ω(x)).
The graded inclusion indicator Inc can be defined the following way [1]:

Inc(E,F ) = minx∈X(μE(x) → μF (x)) (5)

where → denotes a fuzzy implication operator, i.e., a mapping from [0, 1]2 into
[0, 1]. There are several families of fuzzy implications, notably R-implications
[11]:

p→R q = supu∈[0,1]{u | !(u, p) ≤ q}

It is possible to rewrite these implications as:

p→R q = 1 if p ≤ q, f(p, q) otherwise

where f(p, q) expresses a degree of satisfaction of the implication when the
antecedent (p) exceeds the conclusion (q). The implications of Gödel (p →Gd

q = 1 if p ≤ q, q otherwise), Goguen (p →Gg q = 1 if p ≤ q, q/p otherwise) and
Lukasiewicz (p→Lu q = 1 if p ≤ q, 1− p + q otherwise) are the three most used
R-implications and they are obtained resp. with the norms !(x, y) = min(x, y),
!(x, y) = x× y and !(x, y) = max(x + y − 1, 0).

As to S-implications [11], they generalize the (usual) material implication
p ⇒ q = ((not p) or q) by: p →S q = ⊥(1− p, q). The minimal element of this
class, namely Kleene-Dienes’ implication obtained with ⊥ = max expresses the
inclusion of the support of E in the core of F (1 is reached then). This is also
the case for Reichenbach’s implication (obtained with the norm product).

Let us discuss the impact of the type of implication (R- or S-) on the semantics
of the antidivision. The degrees in the divisor (relation s) act as:
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– Importance levels if Kleene-Dienes’ implication is used; in this case, the
higher the degree attached to an element a of s, the more the degree attached
to < a, x > in r impacts the final degree attached to x in the result; the
complement of the degree attached to a (i.e., 1 − s(a)) corresponds to a
guaranteed satisfaction level;

– Thresholds with any R-implication; here, the higher the degree attached to
an element a of s, the smaller the degree attached <a, x> in r must be so
as to get a final degree attached to x equal to 1; when the degree attached
to < a, x > in r is higher than 1 minus the degree attached to a in s, a
penalty is applied, which varies with the R-implication considered.

Example 3. Let us come back to the context of example 1 and consider relations
prod and nox again. This time, these relations are supposed to be fuzzy in
order to express that a component can be more or less noxious and that the
proportion of a component in a chemical product can be more or less important.
Let us consider the query “retrieve the products which do not contain any highly
noxious component in a significant proportion”. The fuzzy term “significant” can

prod p c μ

p1 c1 0.3
p1 c2 0.85
p1 c3 1
p2 c1 1
p2 c4 0.7
p3 c2 1
p3 c6 0.9

nox c μ

c1 0.8
c2 0.3
c4 0.1
c5 0.6
c6 0.4

be defined for instance as μsig(x) = 0 if x ≤ 3, μsig(x) = 1 if x ≥ 7, linear in-
between. This fuzzy term is used to obtain the relation prod above by means of
a selection applied on a relation of schema (p, c, proportion) such as that from
Example 1. The degrees in relation nox are supposed to be specified explicitly
(the divisor relation can be given in extension in the query). Let us consider the
extensions of prod and nox above. The antidivision query can be expressed as:
(prod[p, c]) [c ‡ c] nox.

With Gödel’s implication, one gets the result: {0.15/p1}, with Goguen’s impli-
cation: {0.5/p1}, with Lukasiewicz’ implication: {0.85/p1, 0.2/p2, 0.7/p3}, and
with Kleene-Dienes’ implication: {0.7/p1, 0.2/p2, 0.6/p3}. ♦

Now, let us give a semantic justification of expression (4). It is important to
notice that if an R-implication is used in (5), one loses the equivalence valid in
the Boolean case between Inc(s, cp(Ω(x))) and Inc(Ω(x), cp(s)). Indeed, with
an R-implication, the truth value of (p →R q) is not equal to [(not q) →R (not
p)] in general. On the other hand, the equivalence between Inc(s, Ω(x)) and
Inc(Ω(x), cp(s)) is preserved by S-implications. In the case of an R-implication,
the “correct” choice for defining the antidivision is thus to use Inc(s, cp(Ω(x)))
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— as in expression (4) — and not Inc(Ω(x), cp(s)). Indeed, the expected behav-
ior is that the degrees attached to the elements of the divisor act as thresholds,
and not the opposite. Finally, we have:

μr[A‡B]s(x) = Inc(s, Ω(x)) = mina∈s(μs(a) → 1− μr(x, a)) (6)

Dubois and Prade [10] have shown that R-implications and S-implications can
be expressed using a common format, i.e., p → q = 1 – cnj(p, 1 − q) where
cnj denotes a triangular norm ! when the implication is an R-implication,
and a non-commutative conjunction ncc when it is an R-implication. For exam-
ple, the operators ncc associated with G’̈odel’s and Goguen’s implications are
respectively:

nccGd(x, y) = 0 if x + y ≤ 1, y otherwise

nccGg(x, y) = 0 if x + y ≤ 1, (x + y − 1)/x otherwise.

Hence, we get the generic expression for the antidivision of fuzzy relations:

μr[A‡B]s(x) = mina∈s(1 − cnj(μs(a), μr(x, a))) (7)

which generalizes (3) by also taking into account non-commutative conjunctions.

Remark. Expression (4) — whose interpretation rests on formula (7) — also
generalizes the definition of the antidivision based on an intersection, i.e.:

R[A ‡B]S = {x | s ∩Ω(x) = ∅} (8)

Indeed, from this expression, it comes:

μr[A‡B]s(x) = 1− μ∩(s, Ω(x))
= 1−maxa∈s!(μs(a), μr(x, a))
= mina∈s(1 −!(μs(a), μr(x, a)))

which is nothing but formula (3).
In order to obtain the generic semantics that we propose for the antidivision in

relational algebra, it would be necessary to parameterize the Cartesian product
by the conjunction operator. On the one hand, this would not be very easy to do
for an end-user (it is not obvious how to choose the right conjunction operator
to get the desired threshold-based or importance-based behavior) and, on the
other hand, this raises a semantic difficulty since the Cartesian product is by
nature a symmetrical operator (but it would not stay so if it were based on a
non-commutative conjunction).

In an SQL-like language, the most simple solution is to parameterize the
operator includes none introduced above by the fuzzy implication desired. We
get an expression of the form:

select x from r
group by x
having set(A) includes nonefuzzy implication (select B from s)

where includes nonefuzzy implication (E, F ) = Incfuzzy implication (F , cp(E)).
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Besides the better ”readability” of this formulation, another advantage is that
it provides a simple way to make the antidivision tolerant to exceptions, as will
be described in the following subsection.

3.3 Tolerant Antidivisions of Fuzzy Relations

In [5], we defined a tolerant inclusion based on the relaxation of the universal
quantifier underlying the definition of the non-tolerant inclusion according to
formulas 5 (where the universal quantifier is interpreted as a minimum). The
principle was to weaken the universal quantifier into “almost all” [15,17] so
as to obtain a tolerant inclusion, denoted by ⊆almost all (as the non-tolerant
graded inclusion, this operator is parameterized by a fuzzy implication as it
will be made clear in the following). An informal definition of this quantitative
tolerant inclusion can be given in reference to the quantifier “almost all” as
follows:

(E ⊆almost all F )⇔ “almost all” of the elements of E are included in F (9)
in the sense of the fuzzy implication considered.

The key for interpreting formula (9) resides in the use of the degrees (denoted
later by wi) induced by the fuzzy quantifier “almost all”. The mechanism sug-
gested in [5] has a natural semantics in the following sense: any degree wi issued
from the quantifier “almost all” defines a level of “ignoration” (or a guaranteed
level of satisfaction). This means that the implication value (μE(x) → μF (x)) is
somewhat ignored. This behavior is modeled by:

max(wi, (μE(x) → μF (x))) (10)

where the weight wi is defined as μalmost all(1 − i/n), and n is the cardinality
of the support of E. The method suggested in [5] consists in using the largest
ignoration degree for the compensation of the smallest degree of implication,
the second largest ignoration degree for the compensation of the second smallest
degree of implication, and so on.

Here, we want to relax a statement of the form “find the x’s which are con-
nected in r with none of the B-values from s” into “find the x’s which are
connected in r with almost none of the B-values from s”, where almost none is
a fuzzy quantifier. This can be translated into: “find the x’s such that almost
all of the B-values from s are included in cp(Ω(x))” where almost all is the
antonym of almost none, i.e., μalmost all(x) = μalmost none(1 − x) where x ∈ [0,
1] denotes a proportion. The corresponding SQL-like expression is:

select x from r group by x
having set(A) incl alm none(fuzzy impl., alm none) (select B from s)

where:

incl alm none(fuzzy impl., alm none)(E, F ) = F ⊆(fuzzy impl., alm all) (cp(E)).
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Example 4. Let us consider the quantifier “almost none” defined as:

μalmost none(p) = 1 for any p ∈ [0, 0.1], μalmost none(p) = 0 for any p ∈ [0.25, 1],
μalmost none is linearly increasing between 0.1 and 0.25.

From this definition, we can derive the interpretation of “almost all”:

μalmost all(p) = 0 for any p ∈ [0, 0.75], μalmost none(p) = 1 for any p ∈ [0.9, 1],
μalmost all is linearly increasing between 0.75 and 0.9.

Let us consider the following extensions of relations r and s:

r = {0.9/< x1, a1 >, 0.8/<x1, a2>, 0.6/<x1, a3>, 0.4/<x1, a4>,
0.2/<x1, a5>, 0.1/<x1, a6>, 0.9/<x1, a9>, 0.5/<x1, a10>, 1/<x2, a1>}

s = {0.5/<a1>, 0.8/<a2>, 0.7/<a3>, 1/<a4>, 0.9/<a5>, 0.8/<a6>,
1/<a7>, 0.2/<a8>, 0.1/<a9>, 0.4/<a10>}.

The regular antidivision of these two relations using Gödel’s implication yields
{0.1/<x1 >}. Let us now compute the tolerant antidivision of r by s with the
quantifier “almost none” above. From the definition of its antonym “almost all”,
we get the set of weights W = {w1 = 1, w2 = 0.33, w3 = ... = w10 = 0}. Using
formula 10, the degree obtained for x1 and x2 are respectively given by:

min(max(1, 0.1), max(0.33, 0.2), max(0, 0.4), max(0, 0.6), max(0, 0.8),
max(0, 1), max(0, 1), max(0, 1), max(0, 1), max(0, 1)) = 0.33,

min(max(1, 0), max(0.33, 1), max(0, 1), max(0, 1), max(0, 1), max(0, 1),
max(0, 1), max(0, 1), max(0, 1), max(0, 1)) = 1.

One observes that, according to what is expected, this new result {0.33/<x1>,
1/<x2>} is a superset of the previous one, i.e., {0.1/<x1>}.

Using Kleene-Dienes’ implication, the result of the regular antidivision of r by
s is: {0.2/<x1>, 0.5/<x2>}. The tolerant antidivision of r by s with the same
quantifier “almost none” as before leads to the result {0.4/<x1>, 1/<x2>}.

With Lukasiewicz’ implication, the regular antidivision yields {0.4/< x1 >,
0.5/<x2>}, and the tolerant antidivision: {0.6/<x1>, 1/<x2>}. ♦

In the case of an antidivision of fuzzy relations, there is another way of intro-
ducing tolerance: one can choose to ignore (to some extent) the low-intensity
exceptions (this corresponds to a qualitative vision of the exceptions). Because
of space limitation, we only deal with the case of R-implications here (see [7]
for the way to handle S-implications). When the graded inclusion E ⊆ F is
based on an R-implication, the idea is to take into account the gap betwen the
membership degrees to E and to F respectively. More precisely, one considers
that the situation where μE(x) exceeds μF (x) is totally acceptable if the differ-
ence (μE(x)− μF (x)) is in a given interval [0, α], and is more or less acceptable
when it is in the interval [α, β]. With respect to the informal definition of the
quantitative tolerant inclusion (formula 9), the change consists in stating that:

(E ⊆[α, β] F ) ⇔ all the elements of E are “almost included” in F
in the sense of the R-implication considered.
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The principle proposed in [7] consists in in splitting the compensation mechanism
both in the antecedent and in the consequent part of the R-implication used.

deg(E ⊆[α, β] F ) = minx∈X (μE(x) − δ1)→R (μF (x) + δ2) (11)

where δ= δ1 + δ2 = 0 if μE(x) – μF (x) ≥ β or μE(x) – μF (x) ≤ 0
= μE(x)− μF (x) if 0 ≤ μE(x) − μF (x) ≤ α,
= α

β−α (β−(μE(x)−μF (x)) otherwise. (12)

Special cases are obtained letting δ = δ1, δ2 = 0 or δ = δ2, δ1 = 0. In the
following, we consider that δ1 = δ × k and δ2 = (1 − k) × δ where k is a user-
specified constant belonging to the unit interval.

Remark. In the case of Gödel’s implication, it appears logical to choose k =
0, i.e., δ = δ2, δ1 = 0 since the implication degree p − δ1 → q + δ2 does not
depend on the premise when (p− δ1) > (q + δ2). With Lukasiewicz’ implication,
the result does not depend on k since p− δ1 → q + δ2 = 1− (p− δ1) + (q + δ2)
= 1 − p + kδ + q + (1 − k)δ = 1 − p + q + δ when p > q. On the other hand,
with Goguen’s implication, the choice of k has an impact on the compensation
degree.

The generic form of an SQL-like qualitative tolerant antidivision query is:

select x from r group by x
having set(A) includes none(fuzzy impl., α, β) (select B from s)

where includes none(fuzzy impl., α, β) (E, F ) ≡ F ⊆(fuzzy impl., [α, β]) cp(E).

Example 5. Let us consider the following extensions of relations r and s:

r = {< 0.2/ <x1, a1>, 0.1/ <x1, a2>, 0.6/ <x1, a4>, 0.2/ <x1, a5>,
0.2/ <x2, a2>, 0.8/ <x2, a3>, 0.3/ <x3, a1>, 0.8/ <x3, a5>}

s = {1/ <a1>, 0.7/ <a2>, 0.3/ <a3>}

and let us use the thresholds α = 0.2, β = 0.4. The non-tolerant antidivision of r
by s based on Gödel’s implication yields: {0.8/ <x1>, 0.2/ <x2>, 0.7/ <x3>}
while the tolerant antidivision based on Gödel’s implication (and k = 0) yields:
{1/ <x1>, 1/ <x2>, 0.75/ <x3>}. ♦

3.4 Implementation Aspects

The question arises of defining efficient processing algorithms suited to these
new types of queries. As a starting point, we will consider the work presented
in [3] which dealt with processing methods for the division of fuzzy relations. In
that work, three processing techniques were outlined and compared:

1. Translation into an SQL query involving a comparison of cardinalities and
a user-defined function in order to calculate the satisfaction degrees,

2. Translation into an SQL query involving an inclusion and a user-defined
function in order to calculate the satisfaction degrees,
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3. Compilation of the original division query into a processing algorithm en-
coded in a procedural language such as Pro*C or PL/SQL.

It appears that the third strategy is by far the most efficient. The experimental
measures reported in [3] show that, using the Oracle DBMS, for a dividend re-
lation made of 60,000 tuples and a divisor made of 1000 tuples, the processing
time is 1 min. 2 sec. for the cardinality-based approach, 36 sec. for the inclusion-
based one, and only 18 sec. for the one based on a compiled algorithm. Another
interesting result is that a similar division query addressed to crisp (instead of
fuzzy) relations takes 15 sec. instead of 18 sec. to be processed. The additional
cost induced by the fuzziness of the relations is thus around 20% only. In the
following, the latter method is used. Hereafter, we give the principle of the algo-
rithm based on that presented in [3]. One considers the problem of antidividing
relation r of schema R(A, X, mu) by relation s of schema S(B, mu) where mu
denotes in both cases the membership degree associated with each tuple. Let us
recall that the evaluation of the antidivision is based on formula (6). The idea
is to use two nested loops. The first one scans the different X-values present
in relation r. For a given x, the inner loop scans the B-values b in the divisor,
checks by means of a select query whether < b, x > is in the dividend (and if
so, with which degree) and updates the satisfaction degree associated with x
in the result. In the algorithm, impl (→ above) denotes the fuzzy implication
underlying the division. Let λ be the user-specified threshold (if the user does
not specify any, ≥ λ can be replaced by > 0).

define cursX = select distinct X from r;
define cursB = select mu, B from s;
div ← ∅;
for all x in cursX do

val imp ← 1;
for all <mu1, b> in cursB and val imp > 0 do

select mu into mu2 from r where X = x and A = b;
-- we assume that if <b, x> /∈ r, then mu equals zero

val imp ← min(val imp, impl(mu1, 1 - mu2));
enddo;
if val imp ≥ λ then div ← div ∪ {<val imp/x>} endif

enddo;
rank-order(div) according to the satisfaction degrees val imp.

So as to tolerate quantitative exceptions, the preceding algorithm has to go
through a few modifications. First, it is not possible anymore to calculate val imp
incrementally since the implication degrees attached to a given X-value x must
be ranked in order to apply the weights wi’s appropriately. Consequently, it is
necessary to store the different implication degrees attached to a given x. As
to the weights, they depend on the cardinality of the divisor and on the fuzzy
quantifier Q. Therefore, they can be computed before entering the outer loop of
the previous algorithm.
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Since val imp cannot be computed incrementally anymore, it is not possible
to stop the inner loop as soon as one gets a zero implication degree (for a certain
value b from s). However, it is still possible in some cases to stop that loop before
scanning s entirely. Let us denote by k the number of wi’s greater than zero.
As soon as more than k implication values equal to zero have been found (for
a given x), one can conclude that x does not belong to the result. In the case
where the user specifies a threshold λ (> 0), this pruning criterion can be refined
in the following way. Let k′ denote the number of wi’s greater than or equal to
λ. As soon as more than k′ implication degrees lower than λ are found (for a
given x) one can conclude that x is not an answer.

Compared to the reference algorithm suited to the classical division of fuzzy
relations, the additional cost is related to: i) the necessity of scanning relation s
once in order to compute its cardinality and then the weights wi’s, ii) the fact
that the inner loop cannot be stopped as often. The pruning condition is not as
favorable in the tolerant case, but this does not change the nature of the worst
case that can be encountered (and thus the maximal complexity).

In the qualitative exception case, the impact on the algorithm is even more lim-
ited. One just has to replace the calls impl(mu1, mu2) with relaxed impl(mu1,
mu2) which takes the thresholds α and β into account. The extra cost is thus prac-
tically neglectable (since the number of accesses remains the same).

4 Conclusion

In this paper, we have introduced the concept of an antidivision operator, which,
in the classical relational framework, corresponds to a non-primitive operator
since it can be expressed by means of a antijoin, a projection and a difference.
Seeing this operator as an atomic operator becomes particularly interesting when
i) one wants to make it tolerant to exceptions, and ii) one moves to the framework
of fuzzy relations. We have provided a generic definition for the antidivision
operator, based on a graded inclusion, which captures a wide range of semantics
when it comes to the interaction between the degrees in the divisor and those
in the dividend. A second step was to introduce some more flexibility into the
antidivision operator, by making the inclusion indicator tolerant to exceptions,
and two visions of exceptions have been considered: a quantitative one and a
qualitative one.

Among the perspectives for future work, it would be worthy dealing with the
optimization of antidivision queries both in the regular relational database model
and the fuzzy extension of this model. In particular, it would be interesting to
study whether some optimization mechanisms proposed for antijoin queries, such
as those described in [14], could be adapted to process antidivisions.

Another extension of this work concerns the application of the antidivision
operator proposed here to the context of information retrieval. In different in-
formation retrieval models, it is indeed possible to specify inside a user query
a set of (possibly weighted) unwanted keywords [12,13]. We thus believe that
the flexible antidivision operator would be a well suited tool for interpreting the
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”negative part” of a query, in the same way that a fuzzy division operator can
be used to interpret its ”positive part” (i.e., the set of required keywords), as
described in [2].
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Abstract. The provision of real-time and highly accurate information
in large-scale distributed systems is technically difficult and approxima-
tions imply uncertainty. In economic science, however, reliable informa-
tion about markets, its specifications, and the behavior of its participants
is essential for sophisticated and efficient negotiation strategies. There is
the need for a system that provides and allows consulting an overall
knowledge of economic information in distributed markets, while man-
aging the accuracy of information for the user. This paper evaluates the
influences of uncertainties for information retrieval within distributed
Grid markets. It proposes an uncertainty management component for a
Decentralized Market Information System (DMIS), which regulates the
accuracy of information and the number of messages for the retrieval
of economic data from a scalable market. First, we analyze the proper-
ties and the completeness of information in Grid markets. Therefore, we
simulate Grid market specific scenarios under complete and incomplete
information provision by varying the information accessibility. The re-
sults confirm the influence of the accuracy on the stability of the market.
Based on these results, an optimization mechanism, which uses approx-
imations is introduced for the retrieval of information. The approxima-
tions are controlled by the uncertainty management to find a trade-off
between the amount of messages and the accuracy of information.

1 Introduction

In the last few years the emergence of Grid markets have put the focus on mar-
ket mechanisms. The distributed nature of Grid applications has inspired to use
distributed markets for resource allocation. Examples of such approaches are the
market-based Grid platforms developed in several projects such as Grid4All [9],
GridEcon [10], Tycoon [15] or SORMA [20]. These markets use auction mecha-
nisms like the Continuous Double Auction (CDA) or the English auction. Other
market mechanisms apply bargaining like the Catallaxy-based Grid Market [8].

A problem arising from scalable distributed markets is the gathering of infor-
mation about the market, its prices, its products and the participating traders.
The knowledge about the market is essential for sophisticated and efficient nego-
tiation strategies. Examples are computational approaches like the game theory,
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predicting the future through forecasting and using learning rules on former and
current trading information. Currently, no completely researched system pro-
vides and allows consulting an overall knowledge of economic information in a
distributed manner.

Bergemann’s survey [3] shows that the economic aspect of information acquisi-
tion in market mechanisms such as auctions has attracted a significant attention
by the economic research community. Moreover, the study demonstrates the
importance of the economic information disclosure for market participants. The
need for this information lies in both, being able to apply sophisticated economic
strategies and to feed the business models. In scalable distributed environments,
however, the retrieval of real-time and accurate information is very cost intensive
or even impossible due to the snapshot problem in distributed systems [16], the
number of messages and the limited capacities of the individual peers.

The objective of this paper is first to analyze the influence of uncertainties,
in terms of inaccuracy and obsolete data, for markets. Second is, based on the
obtained results, to propose an uncertainty management for distributed and
scalable market environments. This uncertainty management has to reduce the
network load in number of sent messages and the duration of an information
retrieval process with the help of approximations. Finally, a self-management
approach will control the uncertainty automatically.

This paper is organized as follows: we present first the motivation for the need
of economic information retrieval in Section 2 and the incompleteness caused by
the distributed occurrence of information in Section 3. Afterwards, we analyze the
uncertainties in distributed markets and evaluate their influences in Section 4. Ex-
perimental evaluations show the proof-of-concept and the advantages of our uncer-
taintymanagement inSection5. Section6 compares ourwork to the existing related
work of uncertainties in distributed systems and to other market evaluations.

2 Motivation

Auction-based and bargaining-based distributed marketplaces require economic
information provision to enable a fair and equilibrium prices. Examples for such
markets are non-centralized trading places for Grid services like envisioned in
the projects Grid4All [9] and SORMA [20]. These trading places enable resource
providers and service providers to sell their products such as resources or com-
puting services on a Grid market. However, the buyers and sellers need to obtain
information about the market in order to optimize their trading strategy, which
mostly results to higher benefits.

Figure 1 (a) shows a scenario, which motivates the use of on economic infor-
mation system like the Distributed Market Information System (DMIS). Coordi-
nated by auctioneers, the sellers and buyers trade on different marketplaces. An
auctioneer uses for example an English Auction or a Continuous Double Auc-
tion (CDA). From this separation of marketplaces follows that no information
will be exchanged amongst them without any interaction. More reasons for such
a separation of markets arise from different currencies, geographical locations,
privacy, and trust constraints or political aspects.
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(a) Without global information. (b) DMIS information provision.

Fig. 1. Possible trading places containing auctioneers A, buyers B and sellers S

Introducing the DMIS to that scenario of an electronic market (see Fig. 1 (b))
enables explicitly an information exchange among all participants. Traders can
now obtain information from other traders or directly from every auctioneer.
Alternatively, an auctioneer can be distributed on several nodes, depending on
its type and implementation. Interested participants could execute queries for
certain values or could subscribe to new events such as the arriving of new
products or concluded trades.

3 Incomplete Information Retrieval in Markets

The information retrieval in distributed markets is an important feature to guar-
antee trading at fair and equilibrated prices. In markets, equilibrium prices (P0)
are finally reached by human traders, but works in research show that bid-
ding strategies are more successful than human traders. Even simple negotiation
strategies like Zero Intelligence Plus (ZIP) agents [17] outperform human trading
in finding the market equilibrium price. Both, sophisticated and simple negoti-
ation strategies need prior price information from the past. For example, the
ZIP strategy bases on the maximum bid (Bmax) or minimum offer (Omin) of the
previous trading round.

In distributed markets, these strategies need information which occurs in a dis-
tributed manner, meaning a geographical or logical separation. Therefore, it is
impossible to provide a global summary of the economic data for each individual
bidding agent within the regular trading or bargaining process. Figure 2, derivated
from Minkowski’s space-time model, shows the occurrence of information at a
set of n bidders, indexed by i ∈ 1,2, ..., n. Each bidder Bi possess Information
IT1
P1

(Bi)...ITt

Pp
(Bi), where the location of the occurring is defined by time T indexed

by t ∈ 1,2, ..., n and place P indexed by p ∈ 1,2, ..., n.
The economic information about the market occurs at different places within

the Space S i ⊗ Bi at a certain time T and a certain place P. Figure 2 depicts
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Fig. 2. Distributed information occurrence in markets

the differentiation of past, present and future information. To gain the optimal
benefit while trading, a bidder agent need to know future offers and behavior
of the market. Therefore, forecasting mechanisms are trying to predict future
events and prices. This allows the bidding strategy to select an optimal price.
However, the forecasting is based on information from the past. Therefore, the
DMIS provides the information from the distributed system for an individual
bidding agent by aggregating the local information IL from each bidding agent
Ai. The local information is defined by the following:

IBn

L (Bx) = ITs

Pj
(Bx) ∪ ITs

Pj
(Bn)0 ≤ j ≤ p, 0 ≤ s ≤ t (1)

Normally, two bidding agents meet each other at the same time at the same
place, when an offer matches a bid from both and a trade is concluded. This
allows them to know about the price of the agent participating in the same
matchmaking process. Otherwise, an agent has to consult an information service
provided by the auction mechanism. As this is limited to the auctions view, an
external market information service provides the ability to retrieve a global view
of the scalable market system.

4 Analysis of Uncertainties in Markets

Grid Markets consist of a number of traders, sellers that have an item that they
wish to sell, and buyers that have a certain amount of money, limited by the budget
to buy resources. In this work, we consider a simplified market with only one type
of resource being traded. A controlled amount of information supports the traders
as a base of the bidding strategy to simulate the uncertainty in the market.

The Reservation Price (R0) is the price that traders are willing to pay and
accumulating R0 of all traders within the market create the supply and the
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demand. For a seller R0 is the minimum price, which can be derived by the
own costs and the least desired profit. A buyer defines R0 with its maximum
budget it is willing to invest. If a market is setting up or when the agent has non
information, then an agent has no information about P0 and enters a market
with its R0.

The intersection of the supply and demand builds the equilibrium price P0

and equilibrium quantity Q0. This equilibrium point is the price and quantity at
which the maximum number of items will be exchanged. According to economic
theory, markets will naturally tend towards a trading at this price P0. If the
market price is above equilibrium, there will be more sellers competing to trade
with fewer buyers thus bringing the price down. Vice versa, if the price is below
equilibrium, there will be more buyers wanting to buy items for sale, that pushes
the price up.

Thus, a measurement of the effectiveness of a market mechanism is how close
the traders are to this equilibrium price. Also, since markets with no prior his-
tory will most likely start making negotiations far from the equilibrium, a second
important measure is how quickly the equilibrium is reached. In this work we con-
sider agents trading in a CDA. In auctions, market prices are determined through
bidding rounds in which buyers and sellers shout the current price that they are
willing to pay for an exchange of one item (identical commodity good). If these
prices match, the involved traders make a deal, otherwise the traders need to up-
date the price willing to pay for the next round. In a CDA, both, buyers and sellers
announce their current prices, which stays valid until an update in a later round.

Table 1 summarizes the symbols used for the following description of simulation
experiments, in order to assess the influence of incomplete market information:

Before comparing the market behavior with the different information types,
we establish a baseline simulation. In our market experiments, we assign to each
seller agent a reservation price of 50 money units and to each buyer agents 100
money units. Agents have initial shouts to enter the market with a random
price, for sellers from the interval [R0, R0 + 2 ], and for buyers from the interval
[R0 − 2, R0], where R0 is the reservation price for that particular agent. After a
successful trade, the bidding agents (sellers and buyers) return into the market
with a re-entering rate Er initialized with the probability of 1

3 .

Table 1. Table of symbols

Symbol Meaning

R0 reservation price

P0 equilibriums price

β learning beta

γ learning gamma

Bi bidding agent

α deviation to P0

Omin seller’s minimum offer

Bmax buyer’s maximum bid
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Fig. 3. Price evolution during 50.000 rounds

Figure 3 shows the prices traded at Pt with 2000 bidding agents (each for
seller agents and buyer agents) over 50000 rounds. As the prices are slightly
falling after 20000 rounds, we had to adjust the learning beta (β) of the buyer
agents. We assigned β = 0.05145 and γ = 0.005145 for buyer agents and β =
0.05 and γ = 0.005 for seller agents.

Smith introduced in [19] a way of appraising how close a set of n trading
prices pi are to equilibrium P0,

α = 100 ∗
(√∑n

i=1(pi − P0)2

n

)
/P0 (2)

which measures the standard deviation of trading prices from the equilibrium
trading price. Graphing α over time gives us a quantification of how quickly an
auction converges to equilibrium, and how closely it matches that equilibrium
after convergence. For the baseline experiment, we obtained an α of 1.5 for 50,000
rounds and about 200,000 successful trades, if the traders have global price
information. The calculated α is close to that shown in Priest et al. experiments
in [17]. In Smith’s experiments with humans, α reached a value between 0.6
and 13.2. Thus we consider an alpha between 1 and 2, obtained in the baseline
simulator as reasonably low.

We modify the baseline simulation to vary the accessibility of information, to
simulate an artificial uncertainty. Therefore, we create imperfect information by
modifying Omin and Bmax. Randomly, the simulator adds or subtracts a value
v between 0 and the imperfection rate rI (v ∈ 0 ≤ v ≤ rI). Figure 4(a) shows
α under varying the accuracy of the bids. A small variation until a maximum
imperfection of rI = 2 produces an α of better than 2, which is still reasonable for
a well operating market. However, α increases rapidly under a higher inaccuracy.
The market strives to a P0 with a rI of over 3.

We simulate the influence of uncertainties in form of obsolete information to
a market using a CDA where agents trade with a ZIP strategy. The CDA is
controlled by rounds where each bidder can propose its bid. The highest bid is
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Fig. 4. Influence of uncertainty on the stability of market α

matched to the lowest offer, the next highest bid to the next lowest offer until no
matches are made. Figure 4(b) depicts α for a controlled obsolete information.
The agents obtain information (Omin and Bmax), which occurred 2, 4, 6 or 8
rounds before the current bidding. A low delay of information of 2 rounds leads
to a reasonable α of 2. A longer delay follows a strong increase of α.

Our preliminary measurements illustrate how the information acquisition in
distributed Grid markets influences the performance of the market. The results
show the importance of a market information system. By revealing the disequi-
librium of the market without complete information, the simulations indicate
important requirements for the design of a distributed market information sys-
tem. The results show that the market information system has a small margin
for the provision of real-time and accurate information.

A margin for the delay of the information provision is important in distributed,
scalable systems. The delay in such systems can increase exponentially as the
provision requires the aggregation of routing structures. Even a multiplicity of
these structures are required to retrieve more complex data. Moreover, retrieving
a 100% accurate value needs a request to all participants that probably results
in a higher delay, when the slowest or most restricted participant, in terms of
uncertainty, builds a bottleneck.

The awareness of the margin for inaccurate information retrieval, shown by
the experimental results, opens new aspects for the design and the uncertainty
management of the DMIS architecture. Handling of failures in the technical
level results in cost intensive algorithm like replication to avoid the failure of the
system or loss of data. However, if the system will work in a satisfactory way in
terms of α then that tolerance allows the technical layer to have a more efficient
design regarding the number of messages.

However, the results also indicate the finding of a trade-off between real-time
and accurate information provision. A possibility is to obtain faster response
in new information, while decreasing the level of accuracy. For example, even
relatively simple statistical approximations calculate nearly exact values while
they need only the information from a small and randomly selected subset of
participants to manage the uncertainty.
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5 Evaluation

The evaluation is based on the results of uncertainty margins for a stable market,
which have been obtained by the simulations explained in the previous section.
In the following, we analyze the self-management component, which maintains
the uncertainty within user specified limits based on approximations (using a
trade-off between fast and accurate information retrieval). This component is
deployed by the DMIS prototype [4].

The DMIS has to handle the economic requirements, while it also addresses
the technical challenges arising from the decentralization. Primarily, the techni-
cal challenges result from the support for a large scalability in number of users
and information and by the provision of a high robustness against failures and
churn in a P2P-based system. The chosen solution uses Scribe [18] to apply the
advantages from its key-based routing (KBR), distributed hash table (DHT)
and its subscription mechanism. A widely deployed concept to allow aggrega-
tion and scalability in information systems are tree structures, which build the
basis structure for the information retrieval of the DMIS.

Based on the previous results and taking into account the performance of rout-
ing mechanisms in large-scale systems such as DHTs, a number of determined
parameters influence on the accuracy of information. An increase on performance
can be reached by finding a trade-off between accurate data and faster results,
obtained by fewer messages. For example, querying all nodes in a large-scale
system needs more messages and has a longer duration but obtains an optimal
accuracy. On the other side, an approximation made from a random subset of
nodes reduces the delay for the information retrieval and the number of messages
while the uncertainty increases as well.

5.1 Uncertainty Results

Distributed large-scale systems involve uncertainties, which result from the delay
of the information transmission, possible malicious peers, failures or churn. Mat-
tern [16] described the problem of a snapshot in distributed systems to obtain
a “true” state of the system. In practice, the retrieval of 100% accurate infor-
mation at one time is not feasible in large-scale and high-dynamic distributed
systems. An approach, however, are approximations to obtain a nearly global
view of the system, which have the advantage of reducing the duration of the
retrieval process and the number of messages. In certain cases, an approximation
can even lead to more accurate results, regarding the fact that it returns faster
results, than retrieving accurate information, which is already obsolete.

We define the uncertainty management parameter hops which defines the
height in a balanced binary tree (balanced through random 128-bit key IDs),
used by the DMIS as an example for n-ary trees. Consequently, the hops define
the maximal number of messages, needed for one retrieval process (2hops). The
DMIS uses the hops to manage the uncertainty level by increasing and decreasing
the number of queried nodes to reach a predefined level of uncertainty μ. In
our experiments, μ is set to an uncertainty level of maximal 2%. This value is
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deduced by the previous simulation results in Section 4, but it can be modified
by the user or be flexibly applied to other environments. The calculation of μ
is described in Equation 3, where σ is the standard deviation of the retrieved

sample ∈ 1, 2, ..., n. M =
1
n

n∑
i=0

Pi. The mean of the samples of the prices P0...Pn

and t is the value obtained from the t− distribution with n and the Confidence
Interval (CI).

μ =
t(n,CI) ∗ σ ∗ 100√

n ∗M
(3)

We measure the number of hops, since it is a significant value. On one side,
this describes the duration of a request: many connectivity scenarios for a DMIS
vary from 1 GB Intranet connections to low bandwidth connections like analog
modems. The real time can be calculated by the average connection time between
peers, within the focused network and the number of hops. On the other side,
the number of hops represents a part of the consumed bandwidth for the whole
system, because this shows the total number of send messages within a balanced
binary tree 2hops.

In our experiments, we show the functioning of the self-management compo-
nent for uncertainties in an information system for distributed markets. Smith’s
experiments with humans [19] resulted in an α between 0.6 and 13.2. Therefore,
increasing α after each retrieval process until it reaches 15, emulates an extreme
value of real markets. For each node, the price is randomly assigned after each
query process. Figure 5 shows an increase of α until 15, while in the meantime,
the uncertainty μ stays below 2. This means that a user can obtain the average
price with an accuracy (at a CI of 95%) of at least 98%.
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Fig. 5. Uncertainty self-management in experiments with 10000 nodes and a CI of
95%, while the variation of α simulates trends and finer variations of real markets
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Fig. 6. Number of hops as indicator for the duration and number of messages. The
uncertainty management reduces the hops to below 10, without the uncertainty man-
agement, querying for 10000 nodes would result in more than 14 hops.

An advantage of the applied approximation for the average price based on
the CI results in a shorter response time for the request and fewer messages
for the query process. Figure 6 shows the number of hops for each query request.
The duration for one request can be calculated by the number of hops mul-
tiplied by the average duration for the connection, depending on the network
type. Although α increases linear in Figure 5, the number of hops increases
only logarithmically. This is an import property for the scalability in distributed
environments and to ensure a fast information provision (measured in number
of hops).

The number of totally send messages for a request is reduced through the ap-
proximations. Instead of sending messages to all 10000 peers, the uncertainty man-
agement system sends only 2hops messages, depending on the level of uncertainty.
Figure 6 shows that an α of about 16 leads to an h = 9, which has a maximum of
512 messages in contrary to hops >= 14 for querying all 10000 peers.

5.2 Outlook

In future work, we will evaluate the obtained results to apply them in more
efficient routing structures, which will increase the optimization of the informa-
tion provision. This is the evaluation of faster mechanisms for the information
retrieval in scalable systems, which builds a bottleneck according to our mea-
surements of the delay for distributed information retrieval. However, a trade-off
will be necessary as a faster retrieval of messages results in higher maintaining
costs, in number of messages and network overhead. An alternative approach to
decrease the delay of messages is an approximation, which has the disadvantage
of inaccurate information.

The uncertainties caused by failures and churn in distributed environments can
be optimized in another aspect; we plan to reduce these uncertainties with the help
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of replication. Although, this approach increases the number of messages, but it
could also improve the accuracy and the delay of the process for the information
retrieval. Especially, increasing the quality of the sample data of the approxima-
tions in form of a better reliability on security and fault tolerance is supposed to
decrease the uncertainty of the global information in the entire system.

6 Related Work

A survey from Bergemann [3] discusses the retrieval and aggregation of infor-
mation in markets. Other literature puts emphasis on the theoretical analysis
of the influence of information to markets [13] and on the acquisition of infor-
mation [2]. Results about required information for economic markets are given
in [11]. However, the above mentioned literature focuses on theoretical analysis
indicating principally the need for information availability. In our work, we aim
to make empirical analysis from simulations and from a deployed prototype.

Uncertainties in distributed environments can be caused by incoherence or
inconsistence. Our idea of the DMIS is similar to the failure detectors of [5],
that studies the solution for uncertainty management in asynchronous systems
through the terms of completeness and accuracy. Large-scale systems over par-
tially unreliable networks induce uncertainties through failures and churn. Sur-
veys and discussions on fault-tolerant and scalable solutions to the problem of
accuracy and scalability are made and measured by the correctness of query
results [1] [12].

The quality of markets and bidding strategies is often measured by the level
of reaching the market’s equilibrium price [19]. At this theoretical price the most
products are traded, which can be considered as an optimum. Preist et. al [17]
introduced zero intelligence plus (ZIP) agents that use a simple learning algo-
rithm to make use of past information, that results in a better performance than
human traders. In distributed environments such as peer-to-peer (P2P) systems,
however, the past information is uncertain. Therefore, [7] handles this inaccuracy
with approximations based on historical data. In our work, an uncertainty metric
μ characterizes the efficiency, fairness and stability for distributed markets based
on current market data. With this metric we define the influence of uncertainty
to markets executed on a distributed environment, which is compared to [19]
(measured by alpha).

It is known and reported by [6], [16] and [14], that the “true“ value of a cur-
rent state in a distributed environment can only be consulted with a perfect view
over the whole system, while simulations vary as a result of imperfection. Jain et.
al [14] introduces a network imprecision metric to characterize the uncertainty
through the accuracy in distributed network systems. Our proposed market in-
formation system needs therefore to manage the uncertainty and imprecision of
information in distributed markets to allow agents to take appropriate economic
decisions.

We conclude from the related work the need for information retrieval in dis-
tributed markets. In distributed system, however, obtaining information for a
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”true“ global view as a snapshot remains a challenge. Many projects present al-
gorithms to handle the network imprecision and uncertainty and to provide or to
retrieve accurate information from a distributed system. Our approach simulates
the margin for economic uncertainty for the provision of economic information.
Afterwards, we described an approximation approach within the DMIS to handle
the uncertainty and the need for fast information provision.

7 Conclusions

This paper analyzed the economic information provision in scalable markets,
which is affected by the uncertainties caused from the distributed system. These
uncertainties result from the snapshot problem in distributed systems and from
failures and churn in distributed large-scale applications. Therefore, we analyzed
the market to identify the behavior of information accuracy and to propose a so-
lution for the uncertainty of information, a problem arising from the distributed
environments.

Simulations showed the influence of different kind of incomplete information
to the stability within the market. Our results showed that a small informa-
tion inaccuracy of less than 2% keeps a reasonable market stability. Similarly,
a small margin of obsolete information still ensures a stable market. This re-
sult is important, since the identified margin allows design decisions within the
DMIS regarding the implemented mechanisms for the implemented methods,
while maintaining the scalability and the robustness.

We proposed an approach for the uncertainty management which bases on
the result of simulations. They showed that the cost in number of messages and
in form of time delay is very important for information provision in real market
scenarios. Defining guarantees for the accuracy in form of a confidence interval
allows the reducing of the time for the information provision and the number of
messages. In an environment with 10000 participants, the approximation reduces
the time by about a half and the total number of messages by 1

20 . Both reached
a fixed value, even within a large and scalable environment. Moreover, when
increasing the deviation α from the equilibrium price of the market, the number
of messages and the time of provision increases only logarithmically.

Furthermore, we introduced an uncertainty self-management component for
the DMIS. This component follows an algorithm to keep the uncertainty within
a predefined limit. Therefore, we applied the constraints obtained by the simula-
tions to show that the self-management component helps to keep automatically
the stability of the market. While this uncertainty management is proposed for
a scalable economic market, it could principally also be suitably for being ap-
plied to other scalable distributed information management systems such as Grid
monitoring systems, where the accuracy of a parameter also needs maintenance
during the application execution.
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Abstract. This paper introduces a probabilistic description logic that adds proba-
bilistic inclusions to the popular logic ALC, and derives inference algorithms for
inference in the logic. The probabilistic logic, referred to as CRALC (“credal”
ALC), combines the usual acyclicity condition with a Markov condition; in this
context, inference is equated with calculation of (bounds on) posterior probability
in relational credal/Bayesian networks. As exact inference does not seem scalable
due to the presence of quantifiers, we present first-order loopy propagation meth-
ods that seem to behave appropriately for non-trivial domain sizes.

1 Introduction

A description logic offers a formal language where one can describe concepts such as
“A mother is a woman who has a child” [2]. To do so, a description logic typically uses
a decidable fragment of first-order logic, and tries to reach a practical balance between
expressivity and complexity. The last decade has seen a significant increase in interest
in description logics as a vehicle for large-scale knowledge representation, for instance
in the semantic web [4]. Indeed, the language OWL, proposed by the W3 consortium
as the “data layer” of their archictecture for the semantic web, is an XML encoding for
quite expressive description logics [21].

Description logics are not geared towards the representation of uncertainty about
individuals and concepts: one cannot express that “with high probability, a bird is a
flying animal”. The literature contains a number of proposals that add probabilistic
uncertainty to description logics, as this is central to the management of semantic data
in large repositories. The goal of this paper is to contribute in such a direction.

In this paper we consider a probabilistic extension of the popular logic ALC , where
we allow probabilistic inclusions such as P (FlyingBird|Bird) = 0.99. Section 2 offers
a brief appraisal of related work in the literature. The syntax and semantics of our pro-
posed probabilistic logic are introduced in Section 3. A notable feature of our proposal
is that we adopt an interpretation-based semantics that avoids the challenges of direct
inference and lets us deal smoothly with probabilities over assertions. We then adopt a
Markov condition, attached to the usual acyclicity condition of description logics, that
connects the logic with the theory of relational credal/Bayesian networks. In Section 4
we discuss the inference problem for the logic, and note that exact inference does not
seem to be scalable when quantified concepts are employed. Thus we derive a first-
order version of loopy propagation, and show evidence of the scalability of the method
even when probabilities are not uniquely specified. We briefly discuss infinite domains
in Section 5.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 120–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Probabilistic Description Logics

This section reviews the literature on probabilistic description logics; some basic con-
cepts are defined in this paragraph. Assume a vocabulary containing individuals, con-
cepts, and roles [2]. Concepts and roles are combined to form new concepts using a
set of constructors; constructors in the ALC logic [45] are conjunction (C � D), dis-
junction (C � D), negation (¬C), existential restriction (∃r.C), and value restriction
(∀r.C). Concept inclusions/definitions are denoted respectively by C & D and C ≡ D,
where C and D are concepts. A set of concept inclusions and definitions is a termi-
nology. Concept (C � ¬C) is denoted by !, and concept (C � ¬C) is denoted by ⊥
(when we use ! or ⊥, we assume them to be defined through some C that does not
appear anywhere else in the terminology). If an inclusion/definition contains a concept
C in its right hand side and a concept D in its left hand side, say that C directly uses
D. Indicate the transitive closure of “directly uses” by uses. A terminology is acyclic
if it is a set of concept inclusions/definitions such that no concept in the terminology
uses itself [2]. Typically terminologies only allow the left hand side of a concept inclu-
sion/definition to contain a concept name (and no constructors). Usually one is interest
in concept subsumption: whether C & D for concepts C and D. A terminology may
be associated to a set of assertions about individuals, such as Fruit(appleFromJohn)
and buyFrom(houseBob, John). A set of assertions A is called an Abox. An asser-
tion C(a) directly uses assertions of concepts (resp. roles) directly used by C instan-
tiated by a (resp. by (a, b) for b ∈ D), and likewise for the “uses” relation in a re-
cursive fashion. The semantics of a description logic is almost always given by a do-
main D and an interpretation I. The domain D is a nonempty set; we often assume
its cardinality to be given as input. The interpretation function I maps each individ-
ual to an element of the domain, each concept name to a subset of the domain, each
role name to a binary relation on D × D. The interpretation function is extended to
other concepts as follows: I(C � D) = I(C) ∩ I(D), I(C � D) = I(C) ∪ I(D),
I(¬C) = D\I(C), I(∃r.C) = {x ∈ D|∃y : (x, y) ∈ I(r) ∧ y ∈ I(C)},
I(∀r.C) = {x ∈ D|∀y : (x, y) ∈ I(r) → y ∈ I(C)}. An inclusion C & D is
entailed iff I(C) ⊆ I(D), and C ≡ D is entailed iff I(C) = I(D). An assertion C(a)
is consistent iff I(a) ∈ I(C) for some interpretation, and likewise for r(a, b); an Abox
is consistent iff all its assertions are consistent at once. Logics in the literature offer
significantly larger sets of features, such as numerical restrictions, role hierarchies, in-
verse and transitive roles (the OWL language contains several such features [21]). Most
description logics have direct translations into multi-modal logics [44] and fragments
of first-order logic [5] (the translation to first-order logic is particularly important here:
each concept C is interpreted as a unary predicate C(x); each role r is interpreted as a
binary predicate r(x, y); other constructs have direct translations into first-order logic,
such as ∃r.C to ∃y : r(x, y) ∧ C(y) and ∀r.C to ∀y : r(x, y) → C(y)).

Several probabilistic descriptions logics have appeared in the literature. Heinsohn
[20], Jaeger [24] and Sebastiani [46] consider probabilistic inclusion axioms such as
PD(Plant) = α, meaning that a randomly selected individual is a Plant with probabil-
ity α. That is, probabilities are assigned to subsets of the domainD; this characterizes a
domain-based semantics. Sebastiani allows assessments such as P (Plant(Tweety)) =
α as well, specifying probabilities over the interpretations themselves. For example one
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interprets P (FlyingBird(Tweety)) = 0.001 as assigning 0.001 to the probability of
all interpretations where Tweety is a flying bird. This characterizes an interpretation-
based semantics. Overall, most proposals for probabilistic description logics have
adopted a domain-based semantics [13,14,18,20,24,30,33,46,52], while relatively few
have adopted an interpretation-based semantics [6,46]. The difficulty with domain-
based semantics is the problem of direct inference [31]: statistical information about
the domain does not translate into information about individuals. For example, suppose
we learn that P (FlyingBird) = 0.3; a domain-based semantics takes a fixed domain and
fixed interpretation and assigns 0.3 to the probability that an element of the domain is a
flying bird. However, we learn nothing about P (FlyingBird(Tweety)), as the interpre-
tation is fixed and Tweety either is a flying bird, or not. For this reason, most proposals
for probabilistic description logics with a domain-based semantics simply do not handle
assertions. We note that Dürig and Studer do avoid direct inference by only allowing
probabilisties over assertions [14]. Lukasiewicz has proposed another strategy, where
probabilities over terminologies and assertions blend through an entailment relation
with nonmonotonic properties, lexicographic entailment [18,33]. Lukasiewicz consid-
ers probabilistic versions of very expressive description logics; his logic P-SHOIN (D)
is currently the most expressive probabilistic description logic in the literature. In this
paper we prefer not to employ nonmonotonic reasoning.

The probabilistic description logics discussed so far share the property that a set of
formulas may be satisfied by one or more probability measures (in fact, semantics based
on sets of probability measures are often adopted by probabilistic logics [19]). Another
characteristic shared by the probabilistic description logics mentioned so far is that they
do not express judgements of independence. However, there has been significant effort
in combining logical constructs with Bayesian and Markov networks in the last fif-
teen years, so as to benefit from independence judgements rather than to suffer from
their complexities [17,36]. Indeed, several recent probabilistic description logics have
adopted semantics based on Bayesian networks. The first logic to do so, P-CLASSIC,
enlarges the logic CLASSIC with a set of Bayesian networks (“p-classes”) so as to spec-
ify a single probability measure over the domain [30]. A limitation is that P-CLASSIC
does not handle assertions. Some characteristics of P-CLASSIC are present in the log-
ics proposed in this paper (acyclicity and Markov conditions); however our interest in
obtaining meaningful probabilities over assertions, by resorting to interpretation-based
semantics, is a major difference.

Other logics that combine terminologies with Bayesian networks are Yelland’s Tiny
Description Logic [52], Ding and Peng’s BayesOWL language [13], and Staker’s
logic [49] (none can handle assertions). Costa and Laskey’s PR-OWL language [6]
adopts an interpretation-based semantics inherited from Multi-entity Bayesian networks
(MEBNs) [7], and quite similar to the semantics used in this paper. The PR-OWL lan-
guage is more expressive than ours, with less guarantees concerning inference and infi-
nite domains; their inference algorithms are based on incremental propositionalization.
Finally, most constructs in this paper can be also emulated in Nottelmann and Fuhr’s
probabilistic version of the OWL language, however our inference methods are com-
pletely different from theirs [40]. Besides the literature just reviewed, there is a large
body of relevant work on knowledge databases [22] and on fuzzy description logics [34].
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3 A Probabilistic Description Logic: CRALC
Probabilistic inclusions and inferences. Start with a fragment of ALC by discarding
roles for a moment. That is, if C and D are concepts, then ¬C, C � D and C � D
are concepts as well. Concept inclusions and definitions are allowed, denoted by C &
D and C ≡ D where D is a concept and C is a concept name (that is, we do not
allow general concept axioms [2]). Now introduce probabilistic inclusions P (C|D) =
α, where D is a concept and C is a concept name. If D is !, then we simply write
P (C) = α. We are interested in computing a query P (A0(a0)|A) for an Abox A =
{Aj(aj)}M

j=1 (this is an inference).

Acyclicity. Given a probabilistic inclusion P (C|D) = α, say that C “directly uses” B
if B appears in the expression of D; again, “uses” is the transitive closure of “directly
uses”, and a terminology is acyclic if no concept uses itself (Section 2). We assume that
every terminology is acyclic; this is in fact a common assumption for description logics
[2]. The acyclicity assumption allows one to draw any terminology T as a directed
acyclic graph G(T ): each concept name is a node, and if a concept C directly uses
concept D, then D is a parent of C in G(T ).

Domain/interpretation semantics. As noted in Section 2, in a domain-based semantics
we consider measures over the domainD, and the natural interpretation for a probabilis-
tic inclusion is P (set of Cs | set of Ds) = α. An interpretation-based semantics instead
postulates probability measures over interpretations (that is, over complete assignments
of individuals to concepts: for m concepts and |D| = n, there are 2mn interpretations).
The most natural interpretation-based semantics for P (C|D) = α seems to be (as dis-
cussed for instance by Lukasiewicz [32]):

∀x : P (C(x)|D(x)) = α. (1)

We favor this interpretation-based semantics because it can smoothly interpret a query
P (A(a)|B(b)) for concepts A and B and individuals a and b. A domain-based seman-
tics would assign 0 or 1 to the probability P (A(a)|B(b)), depending on the particular
fixed interpretation. That is, the semantics (1) lets us bypass direct inference (the prob-
lem of moving from probabilities over domains to probabilities for individuals).1 Note
that asserted facts must be conditioned upon: there is no contradiction between assess-
ment ∀x : P (C(x)) = α and assertion C(a), as we can have P (C(a)|C(a)) = 1 while
P (C(a)) = α.

Following Bacchus [3], we harmonize the semantics (1) and assertions such as C(a)
by assuming that all individuals are rigid designators (that is, an individual corresponds
to the same element of the domain in all interpretations).

Adding roles: relational networks. We now introduce restrictions ∃r.C and ∀r.C into
the logic. To simplify the presentation, without loss of generality we assume that C in

1 As a digression, we note that the most elaborate attempt to address, rather than bypass, direct
inference in probabilistic description logics are Lukasiewicz’s. He uses lexicographic entail-
ment to produce direct inference [18,33], and also tries to avoid a drawback of semantics (1):
the fact that it forbids exceptions such as P (C(a)|D(a)) < α for some individual a.
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Fig. 1. Graph G(T1) for terminology T1 in Example 1, and its grounding for domain D = {a, b}

these restrictions is a concept name (an auxiliary definition may specify a concept C
of arbitrary complexity). As probabilistic inclusions must only have concept names in
their conditioned concept, assessments such as P (∀r.C|D) = α are not allowed.

Now, each restriction ∃r.C and ∀r.C is added as a node to the graph G(T ). As each
one of these restrictions directly uses r and C, the graph G(T ) must contain a node for
each role r, and an edge from r to each restriction directly using it. Each node ∃r.C or
∀r.C is a deterministic node in that its value is completely determined by its parents;
again, we emphasize that a direct assessment such as P (∃r.C|D) = α is not allowed.

Example 1. Consider a terminology T1 with concepts A, B, C, D. Suppose P (A) =
α1, B & A, C & B �∃r.D, P (B|A) = α2, P (C|B � ∃r.D) = α3, and P (D|∀r.A) =
α4. The last three assessments specify beliefs about partial overlap among concepts.
Suppose also P (D|¬∀r.A) = ε ≈ 0 (conveying the existence of exceptions to the
inclusion of D in ∀r.A). Figure 1 depicts G(T ). �

Independence and Markov condition. Probabilistic description logics such as P-
CLASSIC, BayesOWL and PR-OWL employ judgements of independence, encoded
by a Markov condition, to constrain probability values (down to uniqueness) and to
decompose models into small pieces. Other probabilistic logics adopt similar Markov
conditions for graph-based assessments [16,36], and a few logics adopt graphs with
Markov conditions and allow assessments “outside” of the graphs [1,9].

We take the position that the structure of the “directly uses” relation encodes stochas-
tic independence through a Markov condition. First, for every concept C ∈ T and for
every x ∈ D, C(x) is independent of every assertion that does not use C(x), given
assertions that directly use C. Second, for every (x, y) ∈ D×D, r(x, y) is independent
of all other assertions, except ones that use r(x, y).

The interaction between logical constructs and this Markov condition has its sub-
tleties. For instance, if G(T ) is A → C ← B because A & ¬C and B & C, then
the Markov condition imposes independence of A and B, but this is possible only if
P (A) = 0 or P (B) = 0, as A �B must be empty [10]. Thus CRALC does not exactly
match the behavior of standardALC when probabilities are unspecified, as logical con-
straints may interact with the Markov condition; we leave for the future a detailed study
of the relationship between CRALCand standardALC.

Homogeneity. Note that a terminology in CRALC may not specify a single measure
over interpretations (in Example 1, the assessment P (C|B � ∃r.D) = α3 does not
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guarantee that P (C|B � ∃r.D) is constrained down to a single value). We assume the
following homogeneity condition always holds. We assume that, given a concept C with
parents D1, . . . , Dm, then for any conjunction of the m concepts ±Di, where ±Di

is either Di or ¬Di, P (C(x)| ±D1(x) � ±D2(x) � · · · � ±Dm(x)) is a constant
across individuals x. Without this condition, a probability left unspecified in a termi-
nology may take a distict value for each individual in the domain, a situation we wish
to preclude. With the homogeneity condition, any terminology can be viewed as a non-
recursive relational Bayesian network [25], except for the fact that some probabilities
may not be precisely specified. Indeed, for a fixed finite domainD, the propositionaliza-
tion of a terminology T produces a credal network; that is, a Bayesian network where
probabilities are not precisely specified [8]. Figure 1 shows a propositionalized version
of T1 (Example 1).

Thus we have a logic with the constructs ofALC, including assertions (with rigidity
for individuals), plus probabilistic inclusions with semantics (1), acyclicity and the ex-
tended Markov condition, and homogeneity. We refer to the resulting logic as CRALC
(for “credal”ALC).

Uniqueness. There is a way to guarantee uniqueness of probabilities that may be useful
in practice. First, adopt the unique names assumption; that is, distinct names for indi-
viduals correspond to distinct elements of the domain. Second, assume the following
uniqueness condition: (i) for each concept C: if C has no parents, then P (C) = α is
given; and if C has parents, then either C is specified by a definition, or C has a single
parent D and probabilistic inclusions with respect to D and ¬D (that is, either C is
determined by its parents or C is a “fully probabilistic” node); and (ii) for each role r,
an assessment P (r) = α is made, whose semantics is ∀x, y : P (r(x, y)) = α.

The unique names assumption and the uniqueness condition guarantee that, when we
ground a terminology, we obtain a Bayesian network (different assumptions guarantee
uniqueness in P-CLASSIC and PR-OWL).

Example 2. Consider a terminology T2 with concepts A, B, C, D, where: P (A) = α1,
B & A, P (B|A) = α2, D ≡ ∀r.A, C ≡ B � ∃r.D, and P (r) = α3. Figure 1 also
applies, but now all probabilities are precisely specified.

4 Inference: First-Order Elimination and Loopy Propagation

Consider an inference in a CRALC terminology, defined as the calculation of query
Q = P (A0(a0)|A) for A = {Aj(aj)}M

j=1 (where |D| > M ). We start with both
the uniqueness condition and domain closure (domain with finite cardinality n that is
known and given as part of the input). Later we discuss removal of these assumptions.

We first derive the joint probability distribution over the set V n
T containing all asser-

tions generated from T and a domainD with cardinality n. To do so, introduce random
variables that are indicator functions of grounded relations. We use the same notation
for an assertion and its associated random variable. For instance, C(a) and r(a, b) refer
both to assertions and to random variables that yield 1 if the assertion holds and 0
otherwise. Denote by C the set of concept names in T , plus restrictions such as ∃r.C
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and ∀r.C (where C is always a concept name); byR the set of role names in T ; and by
pa(Ci(x)) the parents of concept Ci. Then our assumptions imply:

P (V n
T ) =

∏
Ci∈C; x∈D

P (Ci(x)|pa(Ci(x))) ×
∏

r∈R; x,y∈D
P (r(x, y)) .

One can propositionalize any terminology and do inference in the resulting network;
such a strategy is clearly not scalable. Our strategy is instead to employ techniques
from first-order variable elimination [11,12,42]. The first step then is to write Q and
P (V n

T ) in a shattered form [11]; that is, so that every pair of atoms can be grounded
either into identical or disjoint sets of grounded atoms, taking into account constraints
on the possible assertions.

A key insight is that in CRALC we can syntactically shatter the query and the dis-
tribution at once. Define D′ .= {a0, . . . , aM} and D′′ .= D\D′. The following theorem
can be proved by inspecting Expression (2) and noting that it satisfies all conditions
required for shattering [12]:

Theorem 1. Query Q and P (V n
T ) are shattered when P (V n

T ) is written as:∏
Ci∈C;a′∈D′

P (Ci(a′)|pa(Ci(a′))) ×
∏

r∈R;a′,a′′∈D′

P (r(a′, a′′))

×
∏

r∈R;a′∈D′;x0∈D′′

P (r(a′, x0))P (r(x0, a
′)) (2)

×
∏

Ci∈C;x0∈D′′

P (Ci(x0)|pa(Ci(x0))) ×
∏

r∈R;x0,x1∈D′′

P (r(x0, x1)) ,

where pa(Ci(x)) denotes the parents of Ci if Ci is a concept name; and if Ci is a
restriction ∃r.C or ∀r.C, then pa(Ci(a′)) denotes {r(a′, a′′), C(a′′) : a′′ ∈ D′} ∪
{r(a′, x0), C(x0) : x0 ∈ D′′}, and pa(Ci(x0)) denotes {r(x0, a

′), C(a′) : a′ ∈ D′} ∪
{r(x0, x1), C(x1) : x1 ∈ D′′}. �

The first line of Expression (2) encodes a propositional Bayesian network over individu-
als in Q. These individuals are connected to other individuals through roles P (r(a′, x0))
and P (r(x0, a

′)) (in pa(Ci(a′)), pa(Ci(x0)) and in the second line of Expression (2)).
The third line builds a relational Bayesian network with “generic” individuals x0 and
x1, with connections P (r(x0, x0)) and P (r(x0, x1)). Figure 2 offers a visual trans-
lation of shattering on terminology T2 and query P (C(a0)). A benefit from explicit
shattering of the Q and P (V n

T ) is that we can apply “first-order” d-separation on the
shattered network, thus eliminating unnecessary parts of the terminology. For instance,
node (∃r.D)(x0) can be removed from Figure 2 when we compute P (C(a0)).

First-order variable elimination is, in essence, variable elimination in the shattered
network. Some gains are apparent. For instance, node B(x0) in Figure 2 can be elim-
inated for all x0 at once, as

∑
B(x0)

P
(
V n
T2

)
∝
∑

B(x0)

∏
x0∈D′′ P (B(x0)|A(x0)) ×

P (C(x0)|B(x0), (∃r.A)(x0)), and we can invert summation and product in the last ex-
pression (this is an inversion elimination [11]). The elimination of nodes containing
restrictions requires new techniques. Note that, while Braz et al do not have quantifica-
tion in their language [11,12], Poole discusses the network where ∃x : A(x) has single
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Fig. 2. A shattered version of T2 and query P (C(a0)); grounded network for T2 and |D| = 10

parent A(x). Poole shows that P (∃x : A(x)) = 1− (1−P (A(x)))n when the ground-
ings of A(x) are independent [42]. Such a nice result does not apply when restrictions
are themselves parameterized, as is the case here (but approximations proposed later do
use this insight).

We first note the algebraic structure of distributions P (Ci|pa(Ci)) when Ci is a
restriction, using indicator functions. Remember that such distributions only yield 0 or
1 probabilities, as a restriction is completely determined by its parents. In the next two
expressions, ∀ stands for the indicator function of ∀r.C(x), ∃ stands for the indicator
function of ∃r.C(x), and likewise C stands for C(x) and r stands for r(x, y). Then:

P (∀|pa(∀)) = (∀)

⎛⎝∏
y∈D

1− r + rC

⎞⎠+ (1 − ∀)

⎛⎝1−
∏
y∈D

1− r + rC

⎞⎠; (3)

P (∃|pa(∃)) = (∃)

⎛⎝1−
∏
y∈D

1− rC

⎞⎠ (1− ∃)

⎛⎝∏
y∈D

1− rC

⎞⎠. (4)

In theory, one could apply these expressions to the shattered network produced by The-
orem 1, and then run first-order variable elimination. Our experience in trying the al-
gorithm on small examples (such as the examples discussed previously) suggests that
exact inference in the shattered network is rarely viable. The difficulty is that, in exactly
those cases where propositionalization does not work due to the presence of quanti-
fiers, first-order inference seems to fail as well, at least in practice. Note that first-order
variable elimination does not guarantee elimination of “first-order” nodes beforehand;
in the worst case the network (or vast parts of it) must be propositionalized. The dif-
ficulty is that restrictions typically lead to many connections between grounded nodes
due to their quantifiers. To illustrate this fact, Figure 1 (right) shows a propositionaliza-
tion of terminology T2 with a n = 10, produced using the Primula system for relational
Bayesian networks (www.cs.aau.dk/˜jaeger/Primula/). The network is dense due to aux-
iliary nodes that must be inserted to encode deterministic relations (mostly quantifiers);
without these auxiliary nodes the probability tables cannot even be stored. Exact in-
ference in this network does not seem possible even with the best available algorithms
(calculation of P (C(a0)) was possible up to n = 9 and failed for n > 9 due to memory
exhaustion).
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Instead of insisting on exact methods, a wiser and more scalable strategy is to look
for approximations. Here the challenge is to find approximations that can exploit the
structure of quantifiers. We investigate variational methods that “break” connections
in networks; among those, the loopy propagation algorithm seems particularly suitable
[39]. Another idea would be to use variational approximations of Noisy-OR [29] in
Expressions (3) and (4); we leave this possibility for the future.

A natural strategy then is to propositionalize a terminology and run loopy propaga-
tion in the resulting network. Loopy propagation deals with quantifiers in a straightfor-
ward manner: a restriction node receives messages from its neighbors, and then locally
produces messages by replacing the “local” distribution P (C|pa(C)) by an appropriate
Expression (3) or (4). Note that Poole’s analysis of quantifiers, mentioned previously,
applies locally during loopy propagation.

However, we can do much better, and this is one of the main insights of this pa-
per. We can use the shattered network produced by Theorem 1 directly, and concoct a
first-order version of loopy propagation: simply run loopy propagation in the shattered
network, and combine the local messages using Expressions (3) or (4) as appropriate; if
a message flows from a parameterized node to a restriction node, then it must be raised
to a power (equal to the number of individuals that can be substituted for the parameter)
before combination in Expressions (4) or (3). Note that it is not just the case that we are
running loopy propagation in a conveniently modified version of G(T ); we are indeed
running a first-order version of loopy propagation, because all the messages that are sent
in the parameterized portion of the shattered network would be replicated were the ter-
minology propositionalized. Thus, the same excellent empirical performance that has
been observed for loopy propagation (in propositional networks) is necessarily trans-
ferred to this first-order loopy propagation scheme.

Example 3. Consider node (∀r.A)(x0) in Figure 2. A possible schedule of messages
has nodes A(a0), A(x0/x1), r(x0, a0) and r(x0, x1) sending messages to (∀r.A)(x0).
A message to be sent to node D(x0/x1) is easily produced as, locally to the approxi-
mation scheme, P ((∀r.A)(x0) = 1) =

∏
y∈D 1− P (r(x0, y)) (1− P (A(y))).

The idea that a first-order loopy propagation scheme can be built in probabilistic re-
lational models was advanced by Jaimovich et al [28] for Markov networks without
observed variables, and more recently by Sigla and Domingos [48] for Markov logic.
What the shattered network allows us to do is to apply first-order loopy propagation on
a structure that is fixed beforehand even when observations are made.

To illustrate the performance of this first-order loopy propagation scheme, consider
again Example 2. The next table shows P (C(a0)) for a domain containing individuals
a0, . . . , an−1, for several n. Whenever possible we show the result of exact inference
with a state-of-art algorithm (in the SamIam package at reasoning.cs.ucla.edu/samiam,
using the recursive decomposition algorithm). Note that inferences converge to a stable
value for n large; the analysis of Section 5 sheds light on this issue.

n 1 2 3 5 9 10 20 50

Loopy: P (C(a0)) 0.5175 0.5383 0.5291 0.4885 0.4296 0.4223 0.4049 0.4050

Exact: P (C(a0)) 0.4350 0.4061 0.4050 0.4050 0.4050 — — —
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As another example, we have built a larger terminology containing 15 nodes, with 3
restrictions and a considerable amount of arcs amongst nodes (details are omitted due
to lack of space). Exact inference became unfeasible even for small domains; loopy
propagation produced inferences in seconds for n = 10, 20.

We have worked so far under the uniqueness assumption. In practice it may be useful
to drop such a demanding assumption, as one may for instance choose not to specify
P (r) for all roles. In theory, lack of uniqueness (in the presence of homogeneity) is easy
to handle: instead of a single probability measure, we must now deal with a set of proba-
bility measures; instead of computing a single value for an inference, we must compute
a minimum and a maximum value for the probabilities of interest [8]. In practice, the
calculation of exact probability bounds without uniqueness appears quite challenging
computationally. However, the picture is different for approximate algorithms. Indeed,
the L2U algorithm [23] is a version of loopy propagation for credal networks with bi-
nary variables that has been observed empirically to have excellent performance. One
can extend L2U to first-order just as we did for loopy propagation, now letting messages
carry probability intervals. Again, messages are locally combined and quantifiers can be
dealt with in a local fashion. And again, the first-order algorithm has the property that
its performance is identical to what would be obtained were the terminology grounded
and L2U performed in the grounded network.

To illustrate the performance of this first-order L2U scheme, we return again to Ex-
ample 2. But now we take P (r) to be entirely unspecified; that is, it can be any value in
the interval [0, 1]. This is in accord with the usual description logics where no informa-
tion is provided for roles except through their use in restrictions. In the next table we
show inferences for P (C(a0)) for a domain for several n (an inference now produces an
interval containing lower/upper probabilities). Note the convergence of probabilities as
n increases. Perhaps more surprinsingly, note the little influence P (r) has in the value
of P (C(a0)); this suggests that one may leave various probabilities free in a knowledge
base and still get meaningful answers.

n 1 3 5 10 20 50

L2U: P (C(a0))
[0.405000
0.464500]

[0.405000
0.406783]

[0.405000
0.405030]

[0.405000
0.405000]

[0.405000
0.405000]

[0.405000
0.405000]

5 Infinite Domains

Infinite domains are useful, when a domain is finite but very large, and necessary, when
the available information does not constrain the cardinality of the domain. However, in-
finite domains are challenging: there are issues concerning existence and uniqueness of
a joint measure, and then there are obvious difficulties with inference based on proposi-
tionalization. Indeed, first-order variable elimination may fail for infinite domains when
probabilities are expressed in Braz et al’s language [12].

We use results by Jaeger [26,27] to prove existence and uniqueness for CRALC:

Theorem 2. Every terminology T in CRALC defines a unique joint distribution under
the uniqueness condition, and P (V ∞

T ) = limn→∞ P (V n
T ).
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Proof. As every terminology in CRALC under the given assumptions defines a non-
recursive relational Bayesian network, it defines a unique joint distribution over an ap-
propriate algebra [27, Th. 4.7]. Now note that all restrictions can be rewritten as max-
based combination functions [25], and consequently they are exponentially convergent
[26, Def. 3.4]. The limit of the joint distribution as n grows is then the joint distribution
for an infinite domain [26, Th. 3.9]. �

Similar results have been proved for the BLOG language [35]. Existence has also been
proved for other probabilistic description logics where infinite domains may lead to vio-
lation of uniqueness [7,41,47]; existence also obtains for logics that assign probabilities
over domains (even without uniqueness) [18,33].

We now turn to inference with infinite domains, restricting ourselves to queries con-
ditioned on !. Here again Theorem 1 comes handy. We simply analyze the shattered
graph top down, taking limits at each Expression (3) or (4) that we meet. (Gaifman’s
theorem [15] is necessary here to prove correctness, as it shows that probabilities for
restrictions are obtained by taking limits over disjunctions/conjunctions.)

For example, if P (r) > 0 and P (A) > 0, then for any x, we have both limits
limn→∞ P ((∃r.A)(x)|pa((∃r.A)(x)))=1, limn→∞ P ((∀r.A)(x)|pa((∀r.A)(x)))=0
whenever the conditioning events have nonzero probability. There are several other pos-
sibilities, by taking combinations of P (r) = 0, P (r) = 1, P (A) = 0, P (A) = 1; all of
these cases lead to probability 0 or 1 for restrictions. This rationale constructs a zero-
one law for CRALC . A similar zero-one law for description logics has been proved
by Ycart and Rousset [51] for a uniform distribution over possible assertions; Jaeger’s
analysis of infinite domains [27] also implies several related zero-one laws. An inter-
esting side effect is that we can make a linear number of queries in G(T ) (one for each
restriction, from top to bottom) to build a relational Bayesian network without roles on
which inferences can be made. The next example should be sufficient to illustrate how
these ideas can be used when computing queries for infinite domains.

Example 4. Consider terminology T2, with α1 = 2α2 = 3α3 = 0.9, query P (C(a0))
and an infinite domain. From top down: as P (r) > 0 and P (A) > 0, P (∀r.A) = 0;
thus P (D) = 0 and P (C) = P (B) = P (B|A)P (A) + P (B|¬A)P (¬A) = α2α1

and P (C(a0)) = 0.405. Compare this value with the values obtained in the previous
section for n large.

6 Conclusion

This paper started from the desire to represent terminologies with probabilities over con-
cepts, in such a way that queries involving assertions can be handled. A probabilistic
version of the ALC description logic has been introduced, with an interpretation-based
semantics that allows probabilistic inclusions and queries on the probability of assertions
(thus bypassing the problem of direct inference). The paper contributed with techniques
for first-order inference algorithms in finite domains (and to a limited extent, in infinite
domains) and in particular with a first-order loopy propagation scheme that is based on the
“shattered” version of a terminology. Such techniques may be useful to other languages
such as Costa and Laskey’s PR-OWL [6]. The use of shattering and loopy propagation
may be useful in other logics as well, a point that we leave for future investigation.
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The paper clearly left a few topics for the near future: investigation of inference in in-
finite domains with observations, and more empirical testing with improved variational
approximations. In the future we plan to investigate extensions of the language, such
as at-least and at-most restrictions (these can be handled through loopy propagation) or
role inclusions, leading gradually to a full-blown version of the OWL language.

A few closing words on the assumptions we have adopted seem appropriate. Some
of them could easily be relaxed; for instance, we could allow probabilistic inclusions
with a set of conditioned concepts, provided no such concept is a restriction. Other as-
sumptions seem difficult to remove, such as the rigidity and unique names assumptions
on individuals, and the homogeneity condition on probabilities. Also, it seems difficult
to remove the acyclicity condition (and the associated Markov condition). Undirected
graphs would seem more amenable to a mix of logical and probabilistic constructs as
cycles are not a concern [43,50]; however, undirected graphs interact awkwardly with
probabilistic logic, as the usual Markov condition for undirected graphs fails to im-
ply factorization of measures in the presence of logical constraints [38]. A possibility
is to postulate a factorization from the outset [43,47]; we have preferred to stay with
the Markov condition of directed acyclic graphs, even though probabilistic description
logics based on undirected graphs certainly deserve more study.

As a final comment, we note that it would also be desirable to drop the domain
closure assumption, as description logics never assume anything about cardinality of
the domain [37]. Interest must then be in computing minima/maxima of probabilities
as n varies. Given the rigidity assumption, a query fixes observations with respect to
elements of the domain, and leaves other elements unobserved. Even though no general
technique for such optimization problems seems to be developed at this point, in some
simple cases one can find bounds and optimal n:

Example 5. Consider terminology T1 with α1 = 2α2 = 3α3 = 4α4 = 1000ε = 0.9,
and query P (C(a0)), with no information about domain cardinality. This terminology
is simple enough that we can write down the expressions for the query and optimize over
them. We obtain P (C(a0)) ∈ [0.1215, 0.3]; the lower bound is obtained for P (r) = 0
(any n) and the upper bound for P (r) = 1 and n = ∞.
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1 Universidad Simón Boĺıvar, Departamento de Computación y T.I,
Caracas, Venezuela

{mcuriel,claudia,leonid}@ldc.usb.ve
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Abstract. We are interested in providing databases with fuzzy data rep-
resentation and flexible querying capabilities. This work concerns with
a performance analysis based on statistical techniques to evaluate meth-
ods for fuzzy queries over fuzzy data. We introduce the application of
Derivation Principle for this kind of queries and show its practical ben-
efit using a prototype that we have built on top of Oracle’s DBMS.

Keywords: Fuzzy Database, Query Processing, Querying Performance.

1 Introduction

Semantics of fuzzy sets application to databases for data representation and
querying have received special attention of many database researchers ([1] [2] [3]
[4]). Nevertheless the problem of fuzzy databases is not only a semantic matter
but also a practical performance problem. In conventional DBMS, the problem
of query evaluation remains somewhat open since given a query in general the
optimal evaluation way cannot be reached. For fuzzy queries the process becomes
more complex for two reasons: i) the available access paths cannot be directly
used, and ii) the number of selected rows with fuzzy conditions number is larger
than those selected by boolean conditions based result sets cardinality. In this
sense few works have been done at present time ([5] [6] [3]). Main efforts try
to take advantage of connections between fuzzy conditions and boolean ones, so
that fuzzy query processing can come down to boolean query processing (at least
partly). It has been proposed first by Bosc and Pivert [5] for the evaluation of
SQLf and is widely known as the Derivation Principle. This principle has been
applied to different kinds of vague queries over crisp data ([7], [8], [9], [10], [11],
[12], [6], [13], [14],[15]).
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Derivation Principle states that: Given a fuzzy query, in most cases we may
derive a crisp query that retrieves the same set of rows that the fuzzy query (it
is known as Strong Derivation), furthermore, in worst case we may derive a
crisp query that retrieves a set with rows that fuzzy one retrieves and some (low
number of) undesired rows (it is known as Weak Derivation). This worst case
occurs when some mean operator (such as the arithmetic mean or the harmonic
mean and so on) is used as connector for combining fuzzy conditions, nevertheless
it has been demonstrated that the number of undesired rows is rather low [5].
Applying this principle, the fuzzy query is evaluated over the derived query
answer set, keeping low the number of accessed rows and the extra cost of truth
degree calculation.

At present time we are specially interested in the integration of SQLf and
FSQL in a standard for fuzzy databases and it upgrade to SQL:2003 [16][4]. In
this way it is necessary the extension of the Derivation Principle to vague queries
over fuzzy data [17]. It suggests to offer an improvement because is not necessary
to process the degree of membership to all rows. However, is possible that the
condition to evaluate according to filter the registers adds some additional costs
and affects the performance. Furthermore, no-atomic representation needed for
fuzzy data storage could affect the performance because his storage requirements
are bigger, this can bring more blocks to be recovered to the databases and
more CPU use because requires more processing. These reasons make necessary
a performance study by means of statistical models and descriptive analysis [18].
It would confirm or refuse the use of this principle for the evaluation of vague
queries in presence of fuzzy data.

Rest of this paper is organized as follows: Section 2 concerns with of vague
queries over fuzzy data and the Derivation Principle; Section 3 presents the
for the statistics based performance study; Section 4 shows in detail the and
parameters configuration for the study; Section 5 is devoted to the Descriptive
Analysis of experimental results; and, finally Section 6 Points out the Conclusions
and Future Work.

2 Semantics Aspects

In its original definition SQLf [1] does not allow fuzzy data values for attributes
while FSQL does [2]. For the integration of these languages in a sole standard
[16], four kinds of fuzzy attributes have been proposed. These are, lightly dif-
ferent form those of FSQL. Proposed types are: Type 1: attributes with precise
data and an ordered domain. Fuzzy predicates could be defined over it. Example:
the age has an ordered domain between [0,1000] years old, and defined labels
like young, old, etc. Type 2: attributes with precise data, but with a non or-
dered domain. Similitude relations and fuzzy predicates could be defined over
it. Example: colors are not ordered, but green is more similar to blue than red.
Type 3: fuzzy data with an ordered domain. We could define an age as young
when it is between 0 and 30 years old and adult for 31 to 60 years old, and
clearly young<adult. Type 4: fuzzy data with a not ordered domain. Also we
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could define a new color as 0.5/orange, 0.5/pink and similarity relation. The
syntax to specify the data type of an attribute in the in the CREATE/ALTER
TABLE statement will be: NAME FUZZYTYPEn CLASSICTYPE, where NAME is the
name of the attribute, n is the fuzzy attribute type number, and CLASSICTYPE
is the underlying basic domain. Possibilistic reasoning provides two truth mea-
sures for logic propositions: possibility (II) and necessity (N). In fuzzy conditions
over classic (crisp) data, case of SQLf, necessity is unsuccessful [1][4], because it
gets the same result as possibility measure. Thus, SQLf uses only the possibility
measure. On the other hand, FSQL involves fuzzy data and fuzzy conditions.
Then, FSQL allows using either possibility or necessity according to user de-
sires. Nevertheless, we would like queries returning fuzzy relations defined by
user preferences. Therefore, in the integration of FSQL and SQLf [16] the use of
possibility measure as default has been proposed, also, when user desires, there
is a way to specify that one wishes to use the necessity. Despite diverse querying
structures in fuzzy set based extensions of SQL, we focus our attention here to
basic block query:

SELECT <attribute expressions> FROM <relations>
WHERE <fuzzy condition> THRESOLD < α >

The answer of this query is the fuzzy bag of rows in the Cartesian product of the
relations in the FROM clause that satisfy the fuzzy condition with possibility
measure greater or equal to the threshold α, membership degree to the result
for each row is given by the possibility measure.

We also restrict the scope of our study in this paper to fuzzy conditions of
form T1 = T2, being T1 a fuzzy attribute of type 3 whose value is a trapezium
shape fuzzy set with core(T1) = [b, c] and support(T1) = [a, d] and T 2 a predicate
defined by a fuzzy set also with a trapezium shape membership function having
core(T2) = [f, g] and support(T2) = [e, h]. In this case the truth degree is that
of (1).

μ(T1 = T2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when (b ≤ f ≤ c ∨ f ≤ g ≤ c)

(d−e)
(f−e)−(c−d) when (e < d ∧ c < f)

(a−h)
(g−h)−(b−a) when (a < h ∧ g < b)

0 Otherwise

(1)

The answer of this query is the fuzzy bag of rows in the Cartesian product of the
relations in the FROM clause that satisfy the fuzzy condition with possibility
measure greater or equal to the threshold α, membership degree to the result
for each row is given by the possibility measure.

In order to apply the Derivation Principle, it might be shown that [17], we can
derive the Boolean condition DNC(T1 = T2,≤, α) in (2) obtaining the derived
query:
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SELECT <attribute expressions> FROM <relations>
WHERE DNC(T1 = T2,≤, α)

DCN(T1 = T2,≥, α) = (b ≤ f ∧ f ≤ c) ∨ (b ≤ g ∧ g ≤ c)∨
(f ≤ b ∧ b ≤ g)
∨(e < d ∧ c < f ∧ d−e

(f+d)−(e+c) ≥ α)
∨(a < h ∧ g < b ∧ a−h

(g+a)−(h+b) ≥ α)

(2)

3 Methodology and Hypotheses

The performance evaluation methodology consists of the definition of working
hypothesis and the study of their feasibility through controlled experiments and
statistical methods. The set of experiments allow us to obtain data to fit a lineal
model that describes the total consumed time in the prototype as a function
of different factors. With the support of ANOVA, F-Tests and plots we study
the importance of different factors and their interactions. The importance of a
factor is measured by the proportion of the total variation in the response that
is explained by it. The model and the descriptive analyses allow us to discern
the right hypotheses. Hypotheses are posed to study the performance of queries
over imperfect (fuzzy) and perfect (crisps) data with vague (fuzzy) criteria, also
the performance of derivation mechanism over fuzzy data. We deal with the
following working hypotheses:

– (H1) The use of fuzzy data will increment the total expend time in database
engine.

– (H2) The total expend time in database engine using the Derivation Principle
will be lower than that the generated using the Näıve Strategy.

– (H3) The use of the Derivation Principle would make total expend time in
database less sensible to difference between fuzzy and crisp data.

– (H4) The use of Näıve Strategy would make total expend time in database
less sensible to different user desired satisfaction levels.

– (H5) The Derivation Principle improves its performance when the query is
more selective.

4 Experimental Design

For the experiments we have extended the fuzzy querying system SQLf-pl [19]
that is based on SQLf and implemented on top of Oracle 9i. Fuzzy querying
logic in SQLf-pl is implemented in PL/SQL. Translator for Derivation Principle
and Näıve Strategy was developed in SWI-Prolog. SQLf-pl originally supports
only precise (crisp) data, our extension supports also imprecise (fuzzy) data with
trapezium shape representation.

We adopt a 2k factorial design [18]. The observed or response variable in our
study is the TCT: Total Consumed Time (TCT) that is measured by the Oracle
RDBMS and obtained by trace feature and tkprof utility. Despite there is an
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Table 1. Experimental factors and corresponding chosen levels for our 2k factorial
design

D:Data S:Strategy P:Predicate V:Volume H:Threshold
D1=CRISP S1=NAIVE P1=UNIMODAL V1=SMALL T1= LOW
D2=FUZZY S2=DERIVATION P1=MONOTONIC V2=LARGE T2= HIGH

external layer for fuzzy query recognition and translation in the corresponding
PL/SQL evaluation procedure, it is reasonable to assume that the spent time
for this layer is constant. On the other hand, Oracle TCT measures the effective
time used by the query engine isolating waiting times due to other processes in
the server and networking.

Several relevant factors were considered important to explain the response
variable. For each factor we choose two representative levels. Table 1 summa-
rizes factors and their levels. The first considered factor is named DATA (D),
it concerns with the nature of data, whose levels are D1 = CRISP (traditional
precise data) and D2 = FUZZY (imprecise data represented with a trapezium
shape possibility distribution). Second factor is the STRATEGY (S) with levels
S1 = NAı̈VE Strategy and S2 = DERIVATION Principle. Third factor is the
PREDICATE (P) behaviour, with levels P1 = UNIMODAL and P2 = MONO-
TONIC. The fourth considered factor is the VOLUME (V) of data set, whose
levels are V1 = SMALL (8912 registers) and V2 = LARGE (101250 registers).
These sizes have been fixed due to generation procedure and platform restric-
tions. Fifth factor is the THRESHOLD (H) of user desired minimum satisfaction
level, with factors T1 = LOW (1/3) and T2 = HIGH (2/3). With this setting,
the number of runs in the experiment is 32 (2k, k = 5).

This experimental design corresponds to the additive model (3) that sup-
poses the response variable to be a linear combination of the factors and theirs
interactions in combination of two, three, four and five.

T = T̂ + β1V + β2D + β3S + β4H + β5P+
β6V D + β7V S + β8V H + β9V P + β10DS + β11DH
β12DP + β13SH + β14SP + β15HP
β16V SD + β17V DH + β18V DP + β19V SH + β20V SP+
β21V HP + β22DSH + β23DSP + β24DHP + β25SHP
β26V DSH + β27V DSP + β28V DHP + β29V SHP+
β30DSHP + β31V DSHP + ε

(3)

Experimental fuzzy queries are addressed to a table with the schema:
SURVEY(name, arrival hour, time between stations, service quality)

According to factors DATA, PREDICATE and THRESHOLD, the query may
present eight variations. It is expressed in the querying structure variables: < t >
either the table with precise data of the table with fuzzy data; < fp > ei-
ther the decreasing shape fuzzy predicate or the unimodal one; and < α >
either the threshold 1/3 or 2/6. Two vague predicates were used describing the
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Fig. 1. Membership function of fuzzy predicates over time between stations (in seconds):
brief (monotonic decreasing), regular (unimodal) and long (monotonic increasing)

Table 2. Observed value for Total Consumed Time (in milliseconds), per level of factor

PREDICATE → UNIMODAL MONOTONIC
THRESHOLD → LOW HIGH LOW HIGH

VOLUME ↓ DATA ↓ STRATEGY ↓

CRISP NAIVE 1060 1180 980 940
DERIVATION 760 630 640 630

SMALL
FUZZY NAIVE 3120 2490 2460 2000

DERIVATION 2400 1070 800 310

CRISP NAIVE 14949 13880 13710 13160
DERIVATION 11490 9450 9030 8300

LARGE
FUZZY NAIVE 41810 31800 27210 24180

DERIVATION 35580 13120 9230 3070

time between stations: the monotonic decreasing brief and non monotonic uni-
modal regular, defined in Fig. 1. Predicates with increasing membership function
were not considered due to design 2k.

We have performed our experiment in a SUN-Fire-V440 Server with two 1281
MHz 1024 KB Sparc Processors and 16 GB of RAM running SOLARIS 10. The
Oracle 9i DBMS was set with 305 MB for the SGA and 236 MB for the PGA.
Measured values are shown in Table 2.

5 Descriptive Analysis

This section is devoted to present the results of performed experiments and
make the descriptive analysis of such results. Table 2 presents the measured
times. Due to the great difference between the lowest and the highest value of
observed variable it is necessary to perform a logarithmic transformation. This
variation is not amazing at all due to variation between low and high volume
of rows populating the database table. A logarithmic transformation is often
used in this kind of studies [20] [18]. With transformed data we have fitted the
initial model by means of ANOVA and F-Test. Table 3 shows the ANOVA for
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Table 3. Analysis Of Variance for the fitted model. Significance codes at rightmost
column are: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1. Observe that most significant
factors are VOLUME, DATA and STRATEGY with its interactions.

Df Sum sq Mean Sq F value Pr(>F)
VOLUME 1 52.574 52.574 7542.610 < 2.2e-16 ***
STRATEGY 1 4.204 4.204 603.096 7.404e-16 ***
DATA 1 2.170 2.170 311.316 3.068e-13 ***
THRESHOLD 1 0.848 0.848 121.725 1.056e-09 ***
PREDICATE 1 1.659 1.659 238.073 3.346e-12 ***
STRATEGY:DATA 1 0.773 0.773 110.933 2.267e-09 ***
STRATEGY:THRESHOLD 1 0.375 0.375 53.801 5.934e-07 ***
STRATEGY:PREDICATE 1 0.519 0.519 74.501 5.327e-08 ***
DATA:THRESHOLD 1 0.537 0.537 77.084 4.099e-08 ***
DATA:PREDICATE 1 0.882 0.882 126.505 7.673e-10 ***
STRATEGY:DATA:THRESHOLD 1 0.211 0.211 30.210 2.656e-05 ***
STRATEGY:DATA:PREDICATE 1 0.471 0.471 67.544 1.121e-07 ***
Residuals 19 0.132 0.007

the final fitted model (4) . We can observe the fit of considered factors and
their interactions. Next we will make a performance analysis by observing the
corresponding pairs of factors in interaction plots.

log(T ) = log(T ) + β1V + β2D + β3S + β4H + β5P+
β6SD + β7SH + β8SP + β9DH + β10DP+
β11SDH + β12SDP + ε

(4)

It is obvious in the ANOVA of Table 3 that VOLUME is the most influent
factor in the TCT Pr(> F ) < 2.2e− 16. Despite this factor has no shown sig-
nificant interaction with none other factor, it is convenient to see its interaction
plot with the STRATEGY factor due to its great influence in the response vari-
able behavior. We must remark that STRATEGY is the second most influent
factor (Pr(> F )7.404e−16 in Table 3). Remember also that the purpose of this
study is to show the behavior of the Derivation Principle strategy. So, it would
be convenient to see the interaction of the Strategy with the most influent fac-
tor. Figure 2 shows this interaction. We can see that Näıve Strategy increasing
rate is higher. It obeys to the fact that this strategy does not takes advantage
form the fuzzy condition in order to keep low the number of accessed rows as
Derivation Principle does. It is more evident while the data set is larger. This
result confirms the hypothesis (H2): The total expend time in database engine
using the Derivation Principle will be lower than that the generated using the
Näıve Strategy.

Third factor in significance according to ANOVA Table 3 is just the DATA
factor (Pr(> F )3.068e − 13). Its interaction with STRATEGY factor is very
meaningful: Pr(> F )2.267e−09 (Table 3). The first observation of these factors
interaction plot (Fig. 3) is the fulfillment of the hypothesis (H1): The use of
fuzzy data will increment the total expend time in database engine. Moreover, this
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Fig. 2. VOLUME-STRATEGY Factors Interaction Plot: Derivation Principle Strategy
shows the lowest Total Expend Times and the best tendency to scale with volume
increase

Fig. 3. DATA-STRATEGY Factors Interaction Plot: Derivation Principle Strategy
shows the lowest Total Expend Times and the lowest added cost for processing fuzzy
data

increment is higher for the Näıve Strategy than that observed for the Derivation
Principle. In fact this improved evaluation mechanism has shown its benefit
despite complexity of derived condition and representation of fuzzy data values.
If confirms our hypothesis (H3): The use of the Derivation Principle would make



142 M. Curiel et al.

Fig. 4. PREDICATE-STRATEGY Factors Interaction Plot: Derivation Principle
Strategy shows the lowest Total Expend Times and the best tendency of response to
query selectivity. Data was generated with normal distribution and the used unimodal
predicate was centered in the universe domain.

total expend time in database less sensible to difference between fuzzy and crisp
data.

PREDICATE factor is the fourth in relevance according to its contribution
to explain the TCT: Pr(> F )3.346e− 12 in Table 3. Also its interactions with
the DATA and STRATEGY factors are very meaningful: Pr(> F )7.673e − 10
and Pr(> F )5.327e− 08, respectively. We will focus our attention to the second
interaction because our main interest here is to study the Derivation Principle
behavior. In order to understand the results in Fig. 4, we must remember that
the database was populated with data being generated with normal distribution.
This distribution concentrates the highest frequencies for values in the centre of
the universe domain. On the other hand, our chosen unimodal shape fuzzy predi-
cate regular (defined in Fig. 4) is represented as a trapezium function centered in
the domain of abscissas. Therefore, this predicate defines less selective queries for
these generated data. There is an expected relationship between query selectiv-
ity and processing times, moreover, Derivation Principle takes more advantage
of selectivity due to filtering performed with derived condition. We confirm thus
the hypothesis (H5): The Derivation Principle improves its performance when
the query is more selective.

Finally, let’s study the interaction between the THRESHOLD and STRAT-
EGY factors (Fig. 5) that is related to the hypothesis (H4): The use of Näıve
Strategy would make total expend time in database less sensible to different user
desired satisfaction levels. It is clear that Derivation Principle has the best be-
haviour. It shows the lowest times and the highest rate of decreasing of times,
whiles user specified desired threshold increases. As ever, the filtering of desired
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Fig. 5. THRESHOLD-STRATEGY Factors Interaction Plot: Derivation Principle
Strategy shows the lowest Total Expend Times and the best tendency of response
to threshold increasing that is an indicator of selectivity in fuzzy querying

rows before the calculation of satisfaction degrees makes the difference between
both mechanisms. It confirms the related hypothesis.

6 Conclusions and Future Work

We have shown in this article how to apply the Derivation Principle for pro-
cessing vague queries over fuzzy data. This principle takes advantage of existing
connections between fuzzy sets and regular ones in order to keep low the extra
computational effort supposed for fuzzy query processing. We have restricted our
work to conditions where the imprecise data value is expressed with a trapez-
ium shape fuzzy set as well as the vague predicate. However it is easy to extend
it to other fuzzy sets representations. We have made an experimental perfor-
mance study supported by statistical techniques: a 2k factorial experimental
design, analysis of variance and F Tests. Considered factors and levels were:
volume (small or large), strategy (näıve or derivation), data (crisp or fuzzy),
predicate (unimodal or monotonic) and threshold (low or high). This study en-
sures that, for this kind of queries, the processing time using the Näıve Strategy
is higher than that of the Derivation Principle. As we might suppose, the use
of fuzzy data adds extra cost to query evaluation, nevertheless, the Derivation
Principle keeps it low. Finally, it was found that for high volumes of data, se-
lectivity filters applied to queries with influence over time of evaluation of the
queries, which should highlight that while predicates are more selective will be
felt more the performance benefits incurred by the principle of derivation. This
happens because the evaluation of the condition avoids calculating the degree of
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membership of the records that will not appear in the answer. In future work
we would like to study the implementation and behaviour of fuzzy queries over
fuzzy data involving other kind of fuzzy terms in conditions, not only atomic
predicates. It would be also interesting to exploit the application of Derivation
Principle in the core of a DBMS extended for fuzzy data and querying. The
integration of SQLf and FSQL and its upgrade to SQL:2003 involves some new
complex data and querying structures that would be necessary to study in order
to provide efficient implementation strategies.
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(2005)

8. Goncalves, M., Tineo, L.: Derivation principle in advanced fuzzy queries. In: Pro-
ceedings of the 14th Anual IEEE International Conference on FUZZY Systems
FUZZ-IEEE, pp. 579–584 (2005) ISBN 0-7803-9158-6

9. Goncalves, M., Tineo, L.: Derivation principle in sqlf2 algebra operators. In: Pro-
ceedings of International Conference on Fuzzy Information Processing Theories
and Applications FIP 2003, pp. 453–459 (2003) ISBN 7-302-06299-4

10. Goncalves, M., Tineo, L.: Sqlf vs. skyline - expressivity and performance. In: Pro-
ceedings of the 15th Anual IEEE International Conference on FUZZY Systems
FUZZ-IEEE (2006)

11. Goncalves, M., Tineo, L.: Towards flexible skyline queries. In: Actas de la XXXII
Conferencia Latinoamericana de Informática CLEI 2006 (2006)
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Abstract. The DL-Lite family of tractable description logics lies between the
semantic web languages RDFS and OWL Lite. In this paper, we present a proba-
bilistic generalization of the DL-Lite description logics, which is based on Bayes-
ian networks. As an important feature, the new probabilistic description logics
allow for flexibly combining terminological and assertional pieces of probabilis-
tic knowledge. We show that the new probabilistic description logics are rich
enough to properly extend both the DL-Lite description logics as well as Bayesian
networks. We also show that satisfiability checking and query processing in the
new probabilistic description logics is reducible to satisfiability checking and
query processing in the DL-Lite family. Furthermore, we show that satisfiabil-
ity checking and answering unions of conjunctive queries in the new logics can
be done in LogSpace in the data complexity. For this reason, the new probabilistic
description logics are very promising formalisms for data-intensive applications
in the Semantic Web involving probabilistic uncertainty.

Keywords: Bayesian description logics, tractable reasoning, description logics,
ontologies, DL-Lite, Bayesian networks, Semantic Web.

1 Introduction

The Semantic Web (SW) is a web of data to be shared by machines in order to help them
to understand the information in the Web and to perform various complex tasks au-
tonomously, such as data integration, discovery, etc. Ontology languages such as OWL
have been proposed to express concepts and relations in this context. These are ulti-
mately based on description logics (DLs) [1].

Intuitively, description logics model a domain of interest in terms of concepts and
roles, which represent classes of individuals resp. binary relations on classes of indi-
viduals. A description logic knowledge base (or ontology) encodes in particular (i) sub-
sumption relationships between concepts, (ii) subsumption relationships between roles,
(iii) instance relationships between individuals and concepts, and (iv) instance relation-
ships between pairs of individuals and roles.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 146–159, 2008.
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The heterogeneity of the data sources clearly introduces degrees of uncertainty in the
data manipulation process, which causes purely logical methods to fall short. Hence,
extended forms of ontology languages have been proposed in order to deal with uncer-
tainty through probabilistic reasoning [20].

There is a plethora of applications with an urgent need for handling uncertain knowl-
edge in ontologies, especially in areas like medicine, biology, defense, and astronomy.
Furthermore, there are strong arguments for the critical need of dealing with proba-
bilistic uncertainty in ontologies in the Semantic Web (in order to encode ambiguous
information, such as “John is a student with the probability 0.7 and a teacher with
the probability 0.3”, which is very different from vague/fuzzy information, such as
“John is tall with the degree of truth 0.7”):

– Concepts of a probabilistic ontology are probabilistically related. For example, two
concepts either may be logically related via a subsumption or disjointness relation-
ship, or they may show a certain degree of overlap. Probabilistic ontologies allow
for quantifying these degrees of overlap, for reasoning about them, and for using
them in semantic web applications, e.g., information retrieval. The degrees of con-
cept overlap may also be exploited in personalization and recommender systems.

– The Semantic Web will consist of a huge collection of different ontologies. So, in
semantic web applications of reasoning and retrieval, one may have to align the
concepts of different ontologies, which is called ontology matching/mapping. In
general, the concepts of different ontologies do not match exactly, and we have to
deal with degrees of concept overlap as above, which are determined by automatic
or semi-automatic tools or experts. These degrees of concept overlap are then repre-
sented in probabilistic ontologies, which thus allows for inference about the degrees
of overlap between other concepts and about uncertain instance relationships.

– The Semantic Web will likely contain controversial information in different web
sources. This can be handled via probabilistic data integration by associating with
every web source a probability describing its degree of reliability. As resulting
pieces of data, such a probabilistic data integration process necessarily produces
probabilistic facts, i.e., probabilistic knowledge at the instance level. Such proba-
bilistic instance relationships can be encoded in probabilistic ontologies and there
be enhanced by further classical and/or terminological probabilistic knowledge,
which then allows for inference about other probabilistic instance relationships.

Although there are many previous approaches to probabilistic description logics and
probabilistic ontology languages in the literature, including some that are specifically
designed for the Semantic Web, there is only little work on tractable probabilistic de-
scription logics (see Section 7), and to date no work on tractable probabilistic descrip-
tion logics for the Semantic Web. In this paper, we try to fill this gap. We present a novel
combination of description logics with probabilistic uncertainty, which is especially di-
rected towards tractable formalisms for reasoning under probabilistic uncertainty with
ontologies in the Semantic Web. More concretely, we present an extension of the DL-
Lite family of description logics [2] by probabilistic uncertainty as in Bayesian net-
works. The main contributions of this paper can be summarized as follows:

– We present a probabilistic generalization of the DL-Lite family of description log-
ics, which is based on Bayesian networks.
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– We show that the new probabilistic description logics are rich enough to properly
extend both the DL-Lite description logics as well as Bayesian networks.

– We also show that satisfiability checking and query processing in the new logics can
be reduced to satisfiability checking and query processing in the DL-Lite family.

– Finally, we show that satisfiability checking and answering unions of conjunctive
queries in the new logics can be done in LogSpace in the data complexity.

Compared to previous tractable probabilistic description logics, our new approach
to tractable probabilistic description logics is especially well-suited for data-intensive
applications in the Semantic Web, such as the ones listed above (see also Section 7).

The rest of this paper is organized as follows. In the next section, the preliminaries
of the DL-Lite family of description logics and of Bayesian networks are presented.
In Section 3, we introduce our new probabilistic description logics. Sections 4 to 6
provide semantic, computational, and data tractability results, respectively, around the
new logics. In Section 7, we survey related work in neighboring research areas. Finally,
Section 8 concludes the paper and outlines possible future directions of research. Note
that detailed proofs of all results in this paper are given in the extended report.

2 Preliminaries

In this section, we first recall the main concepts of the DL-Lite family of tractable
description logics, and we then recall the basics of Bayesian networks.

2.1 The DL-Lite Family

We now recall the DL-Lite family of tractable description logics [2], which include
the core language DL-Litecore and its extensions DL-Lite (also called DL-LiteF ) and
DL-LiteR. They are a restricted class of classical description logics for which the main
reasoning tasks in description logics can be done in deterministic polynomial time in
the size of the knowledge base and some of these tasks even in LogSpace in the size of
the ABox in the data complexity. The DL-Lite description logics are the most common
tractable description logics in the semantic web context. They are especially directed
towards data-intensive applications. We now first preliminarily recall the language and
its semantics, and we then recall tractability results.

Syntax. We first define DL-Lite (also called DL-LiteF ). Let A, RA, and I be pairwise
disjoint sets of atomic concepts, abstract roles, and individuals, respectively.

A basic role (in DL-Lite) is either an atomic role P ∈RA or its inverse P−. Roles (in
DL-Lite) are defined as follows. Every basic role P and negation of a basic role ¬P is a
role. A basic concept (in DL-Lite) is either an atomic concept from A or an existential
restriction on a basic role R, denoted ∃R.! (abbreviated as ∃R). Concepts (in DL-Lite)
are defined as follows. Every basic concept B and negation of a basic concept ¬B is a
concept.

An axiom (in DL-Lite) is either (1) a concept inclusion axiom B&φ, where B is a
basic concept, and φ is a concept, or (2) a functionality axiom (funct R), where R is
a basic role, or (3) a concept membership axiom A(a), where A is an atomic concept
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and a∈ I, or (4) a role membership axiom R(a, c), where R∈RA and a, c∈ I. A TBox
(in DL-Lite) is a finite set of concept inclusion and functionality axioms. An ABox (in
DL-Lite) is a finite set of concept and role membership axioms. A knowledge base
(in DL-Lite) KB =(T ,A) consists of a TBox T and an ABox A. A query φ is an
open formula of first-order logic with equalities. A conjunctive query is of the form
∃y φ(x,y), where φ is a conjunction of atoms and equalities with free variables x and y.
A union of conjunctive queries is of the form

∨n
i=1 ∃yi φi(x,yi), where each φi is a

conjunction of atoms and equalities with free variables x and yi.
The description logic DL-Litecore does not allow for functionality axioms in knowl-

edge bases, while DL-LiteR allows for (5) role inclusion axioms R&E, rather than
functionality axioms, where R is a basic role, and E is a role.

The following example from semantic web services illustrates the above notions.

Example 1 (Flight Services). Given an ontology as a shared knowledge base, we use
description logic concepts to describe semantic web services, and their instances to
represent the real procedures implementing the services (see [11] for more details).

More specifically, we consider flight services. The following knowledge base KB =
(T ,A) in DL-LiteR encodes an ontology with airports and air connections between
them (where conjunctions are used to compactly represent several concept inclusion
axioms with the same body by one concept inclusion axiom):

T = {Service&Top; Airport&Top; Country& Top;
Service&¬Airport�¬Country; Airport&¬Country;
Italy&Country; Germany&Country; UK&Country;
Italy&¬Germany�¬UK; Germany&¬UK;
Rome&Airport; Cologne&Airport; Frankfurt&Airport; London&Airport;
Rome&¬Cologne�¬Frankfurt�¬London; . . . ; Frankfurt&¬London;
RomLon& Service; CgnLon& Service; FraLon& Service;
RomLon&¬CgnLon�¬FraLon; CgnLon&¬FraLon;
FraLgw&FraLon; FraLhr&FraLon; FraLgw&¬FraLhr;
Service&∃From; Airport&∃From−;
Service&∃To; Airport&∃To−} ,

A = {Rome(FCO); Rome(CIA); Cologne(CGN); Frankfurt(FRA); London(LHR);
FraLon(LH456); CgnLon(GermanWings123); RomLon(BA789);
From(LH456,FRA); From(GermanWings123,CGN); From(BA789,FCO);
To(LH456,LHR); To(GermanWings123,LHR); To(BA789,LHR)} .

In particular, the concepts FraLon, CgnLon, and RomeLon describe flight services from
Frankfurt, Cologne, and Rome, respectively, to London. For each such concept, also an
instance is specified. The above TBox T is partially illustrated in Fig. 1.

The union of conjunctive queries Q(x)= ∃y(To(x, y)∧Rome(y))∨∃y(From(x, y)∧
Rome(y)) then asks for all flight services that are ending or starting in Rome.

Semantics. An interpretation I =(ΔI , ·I) consists of a nonempty (abstract) domain
ΔI and a mapping ·I that assigns to each atomic concept C ∈A a subset of ΔI , to
each abstract role R∈RA a subset of ΔI ×ΔI , and to each individual a∈ I an element
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Fig. 1. TBox (partially) for the Flight Services Example

of ΔI . Here, different individuals are associated with different elements of ΔI (unique
name assumption). The mapping ·I is extended to all concepts and roles as follows:

– (R−)I = {(a, b) | (b, a)∈RI};
– (¬R)I = ΔI ×ΔI \RI ;
– (∃R)I = {x∈ΔI | ∃y : (x, y)∈RI};
– (¬B)I = ΔI \BI .

The satisfaction of an axiom F in the interpretation I = (ΔI , ·I), denoted I |=F , is
defined as follows: (1) I |=B&φ iff BI ⊆φI ; (2) I |= (funct R) iff (o, o′)∈RI and
(o, o′′)∈RI implies o′ = o′′; (3) I |=A(a) iff aI ∈AI ; (4) I |=R(a, b) iff (aI , bI) ∈
RI ; and (5) I |=R&E iff RI ⊆EI . The interpretation I satisfies the axiom F , or I is
a model of F , iff I |=F . The interpretation I satisfies a knowledge base KB =(T ,A),
or I is a model of KB , denoted I |= KB , iff I |=F for all F ∈T ∪A. We say that
KB is satisfiable (resp., unsatisfiable) iff KB has a (resp., no) model. An axiom F is
a logical consequence of KB , denoted KB |=F , iff every model of KB satisfies F .
An answer for a query φ to KB is a ground substitution θ for all free variables in φ
such that φθ is a logical consequence of KB .

Example 2 (Flight Services (cont’d)). Consider again the knowledge base KB = (T,A)
in DL-LiteR from Example 1. It is not difficult to verify that KB is satisfiable, and that
some logical consequences of KB are given by FraLhr& Service and Service(LH456).
The only answer for the query Q(x) of Example 1 to KB is θ = {x/BA789}.

Tractability. We briefly recall the tractability results for reasoning with DL-Lite (resp.,
DL-LiteR) that we will use in the probabilistic generalization. The following result from
[2] shows that deciding the satisfiability of DL-Lite (resp., DL-LiteR) knowledge bases
can be done in LogSpace in the size of the ABox in the data complexity.

Theorem 1 (see [2]). Given a DL-Lite (resp., DL-LiteR) knowledge base KB =(T ,
A), deciding whether KB is satisfiable can be done in LogSpace in the size of the ABox
A in the data complexity.
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The next result from [2] shows that computing the answers for unions of conjunctive
queries to DL-Lite (resp., DL-LiteR) knowledge bases can also be done in LogSpace in
the size of the ABox in the data complexity.

Theorem 2 (see [2]). Given a DL-Lite (resp., DL-LiteR) knowledge base KB = (T ,A)
and a union of conjunctive queries Q=

∨n
i=1 ∃yi φi(x,yi), computing all answers

for Q to KB can be done in LogSpace in the size of the ABoxA in the data complexity.

2.2 Bayesian Networks

We now briefly recall Bayesian networks (see especially [25, 15]). Let V be a fi-
nite set of random variables. Each variable X ∈V may take on values from a finite
domain D(X). A value for a set of variables X = {X1, . . . , Xn}⊆V is a mapping
x : X→

⋃n
i=1 D(Xi) such that x(Xi)∈D(Xi) (where the empty mapping ∅ is the

unique value for X = ∅). The domain of X , denoted D(X), is the set of all values
for X . For Y ⊆X and x∈D(X), we use x|Y to denote the restriction of x to Y . We
often identify singletons {Xi}⊆V with Xi, and their values x with x(Xi).

A Bayesian network BN =(G,Pr ) over V is defined by a directed acyclic graph
G=(V,E) over the random variables in V as nodes and by a conditional probabil-
ity distribution Pr(X = · |Y = y) : D(X)→ [0, 1] for each variable X ∈V and each
value y ∈ D(Y ) of the parents Y ⊆V of X in G, denoted Pa(X). It specifies a unique
joint probability distribution PrBN over all values for V by:

PrBN (V = v) =
∏

X∈V Pr(X = v|X | Pa(X)= v|Pa(X)) (for every v ∈D(V )).

That is, the joint probability distribution PrBN is uniquely determined by the condi-
tional probability distributions Pr(X = · |Y = y). This implicitly assumes conditional
probabilistic independencies encoded in the directed acyclic graph G. One then speci-
fies a probability PrBN for every X ⊆V and x∈D(X) as follows:

PrBN (X =x) =
∑

v∈D(V ), v|X=x PrBN (V = v) .

3 Bayesian DL-LiteR (BDL-LiteR)

In this section, we introduce the novel probabilistic description logic Bayesian DL-
LiteR (or BDL-LiteR), which combines classical knowledge bases in DL-LiteR with
Bayesian networks. Informally, every description logic axiom is annotated with an
event, which is in turn associated with a probability value via a Bayesian network.
Like DL-LiteR, BDL-LiteR is especially directed towards data-intensive applications.
Note that a very similar probabilistic generalization can be defined for DL-LiteF .

3.1 Syntax

We first define the syntax of BDL-LiteR. As for the elementary ingredients, as in
Section 2.1, let A, RA, and I be pairwise disjoint sets of atomic concepts, abstract
roles, and individuals, respectively. As in Section 2.2, we assume a finite set of random
variables V , where each X ∈V may take on values from a finite domain D(X).
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We next define the concept of a probabilistic knowledge base, which consists of a
set of probabilistic axioms and a Bayesian network. Every probabilistic axiom in turn
consists of a classical axiom in DL-LiteR and a probabilistic annotation, which con-
nects it to a set of value assignments V = v with v ∈D(V ) of a Bayesian network
over V along with their probability values. Formally, a probabilistic annotation is an
expression of the form X = x, where X ⊆V and x∈D(X). We also use ! to de-
note the probabilistic annotation for X = ∅. Informally, every probabilistic annotation
represents a scenario (or an event) which is associated with the set of all value assign-
ments V = v with v ∈D(V ) that are compatible with X =x (that is, v|X =x) and their
probability value PrBN (V = v) in a Bayesian network BN over V . We next formally
define probabilistic axioms as follows. A probabilistic concept membership (resp., role
membership, concept inclusion, functionality, role inclusion) axiom in BDL-LiteR is an
expression of the form φ : X =x, where φ is a concept membership (resp., role mem-
bership, concept inclusion, functionality, role inclusion) axiom in DL-LiteR, and X =x
is a probabilistic annotation. Informally, such a probabilistic axiom φ : X =x encodes
that in the scenario X =x, the description logic axiom φ holds. We often abbreviate
probabilistic axioms of the form ! : X =x (resp., φ : !) by X = x (resp., φ). A prob-
abilistic TBox in BDL-LiteR is a finite set of probabilistic concept inclusion and prob-
abilistic role inclusion axioms in BDL-LiteR. A probabilistic ABox in BDL-LiteR is a
finite set of probabilistic concept and probabilistic role membership axioms in BDL-
LiteR. A probabilistic knowledge base KB =(T ,A,BN ) in BDL-LiteR consists of
(i) a probabilistic TBox T in BDL-LiteR, (ii) a probabilistic ABox A in BDL-LiteR,
and (iii) a Bayesian network BN = ((V,E),Pr ).

We finally define probabilistic queries to probabilistic knowledge bases in BDL-
LiteR. A probabilistic query is of the form ψ : X =x, where ψ is a first-order formula,
and X = x is a probabilistic annotation. We often abbreviate probabilistic queries of the
form! : X =x (resp., ψ : !) by X = x (resp., ψ). A probabilistic union of conjunctive
queries is a probabilistic query ψ : X =x such that ψ is a union of conjunctive queries.

Example 3 (Flight Services (cont’d)). Consider again the knowledge base KB =(T ,
A) in DL-LiteR given in Example 1. We may now know that, given that a service
belongs to a concept, then it also belongs to another concept with a certain probability.
For example, we may know that a service in FraLon is also a service in FraLhr with
the probability 0.8. This probabilistic information may be useful, for example, when
searching for services in FraLon, to speed up the service discovery process [6]. It can
be encoded by the following probabilistic concept inclusion axiom:

FraLon & FraLhr : LonLhr = true ,

where LonLhr is a random variable, which is true with the probability 0.8. Similarly,
functionality axioms and role inclusion axioms can be annotated with probabilities.

In the same way, we may know that the individual GermanWings456 is an instance
of the service description FraLon with the probability 0.9, which can be expressed by
the following probabilistic concept membership axiom:

FraLon(GermanWings456): FraLonGW = true ,

where FraLonGW is a random variable, which is true with the probability 0.9.
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Fig. 2. Bayesian network (with CPTs) for the Flight Services Example

Similarly, we can express that (1) the individual Swiss123 belongs to the concept
Transatlantic with the probability 0.8, (2) the individual Swiss123 belongs to the con-
cept WarmMeal, given that it belongs (resp., does not belong) to the concept Trans-
atlantic with the probability 0.9 (resp., 0.2), and (3) the pair of individuals (Swiss123,
CIA) belongs to the role From with the probability 0.7 by the following probabilistic
concept membership axioms and probabilistic role membership axiom:

Transatlantic(Swiss123): Tra = true ,
WarmMeal(Swiss123) : WaMe = true ,
From(Swiss123,CIA) : FrSw = true ,

where (1) Tra is a random variable, which is true with the probability 0.8, (2) WaMe is
a random variable, which is true with the probability 0.9 (resp., 0.2), given Tra is true
(resp., false), and (3) FrSw is a random variable, which is true with the probability 0.7.

The above random variables along with their probabilities and conditional probabil-
ities form a Bayesian network, which is shown in Fig. 2, where the probabilities and
conditional probabilities are represented in conditional probability tables (CPTs).

The probabilistic union of conjunctive queries Q(x) = ∃y(To(x, y) ∧ Rome(y)) ∨
∃y(From(x, y) ∧ Rome(y)) then asks for all flight services that are ending or starting
in Rome, along with their probabilities. Whereas the probabilistic conjunctive query
Q′(x) = ∃y(From(x, y)∧Rome(y)∧WarmMeal(x)) asks for all flight services that are
starting in Rome and are offering a warm meal, along with their probabilities.

From the engineering viewpoint, there are two different ways of designing probabilis-
tic knowledge bases KB =(T ,A,BN ) in BDL-LiteR. One is to start to model the
Bayesian network BN = ((V,E),Pr ), and to collect for every probabilistic annota-
tion V = v with v ∈D(V ) a set of probabilistic axioms φ : V = v, which is then simpli-
fied to a set of probabilistic axioms of the type φ : X =x with X ⊆V and x∈D(X).
Another way is to start to model a set of probabilistic axioms φ : X = x with single
binary random variables X , which are then used to form the nodes of the Bayesian
network BN = ((V,E),Pr ). In this paper, we adopt especially the first viewpoint.

3.2 Semantics

We now define a formal semantics of probabilistic knowledge bases in BDL-LiteR, in
terms of probability distributions over classical interpretations.
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We first define annotated interpretations, which extend standard first-order interpre-
tations (under the unique name assumption) by value assignments V = v in a Bayesian
network over V . Formally, an annotated interpretation I =(ΔI , ·I) is defined in the
same way as a classical first-order interpretation under the unique name assumption (see
Section 2.1) except that ·I maps additionally the set of random variables V to a value
v ∈D(V ). The annotated interpretation I satisfies (or is a model of) a probabilistic
axiom φ : X =x, denoted I |= φ : X =x, iff V I |X =x is equivalent to I |= φ.

We next define probabilistic interpretations, which are finite probability distribu-
tions over annotated interpretations. Formally, a probabilistic interpretation Pr is a
probability function over the set of all annotated interpretations that associates only
a finite number of annotated interpretations with a positive probability. The probabil-
ity of a probabilistic axiom φ : X =x in Pr , denoted Pr(φ : X =x), is the sum of
all Pr(I) such that I is an annotated interpretation that satisfies φ : X =x. A prob-
abilistic interpretation Pr satisfies (or is a model of) a probabilistic axiom φ : X =x
iff Pr(φ : X = x)= 1. We say Pr satisfies (or is a model of) a set of probabilistic ax-
ioms F iff Pr satisfies all F ∈F . The probabilistic interpretation Pr satisfies (or is a
model of) a probabilistic knowledge base KB = (T ,A,BN ) in BDL-LiteR iff (i) Pr is
a model of T ∪A and (ii) Pr(V = v)=PrBN (V = v) for all v ∈D(V ). We say KB is
satisfiable iff it has a model Pr .

We finally define answers for probabilistic queries as follows. An annotated interpre-
tation I satisfies (or is a model of) a ground query ψ : X =x, denoted I |= ψ : X = x,
iff V I |X = x and I |= ψ. The probability of a ground query ψ : X = x in Pr , denoted
Pr(ψ : X =x), is the sum of all Pr(I) such that I is an annotated interpretation that
satisfies ψ : X = x. An answer for a probabilistic query Q=ψ : X =x to a probabilistic
knowledge base KB =(T ,A,BN ) is a pair (θ, pr) consisting of a ground substitution
θ for the variables in Q and some pr∈ [0, 1] such that Pr(ψθ : X =x)= pr for all
models Pr of KB . An answer (θ, pr) for Q to KB is positive iff pr> 0.

Example 4 (Flight Services (cont’d)). Consider again the probabilistic knowledge base
KB in BDL-LiteR and the two probabilistic queries Q(x) and Q′(x) described in Ex-
ample 3. It is not difficult to verify that KB is satisfiable. The only positive answers
(θ, pr) for Q(x) to KB are ({x/BA789}, 1) and ({x/Swiss123}, 0.7), while the only
positive answer (θ, pr) for Q′(x) to KB is ({x/Swiss123}, 0.76). If KB would addi-
tionally contain the probabilistic concept membership axiom Transatlantic(Swiss123),
then the only positive answer (θ, pr) for Q′(x) to KB would be ({x/Swiss123}, 0.9).

4 Semantic Properties

An important property of hybrid knowledge representation and reasoning formalisms
is that they faithfully extend their integrated formalisms. In this section, we show that
BDL-LiteR faithfully extends both DL-LiteR and Bayesian networks.

The following theorem shows that probabilistic knowledge bases in BDL-LiteR faith-
fully extend Bayesian networks. That is, querying any Bayesian network is equiv-
alent to querying any of its extensions to a satisfiable probabilistic knowledge base
in BDL-LiteR.
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Theorem 3. Let BN = ((V,E), Pr ) be a Bayesian network, and let KB = (T , A,
BN ′) be any probabilistic knowledge base in BDL-LiteR such that BN ′ =BN . Let
X ⊆V and x∈D(X). Then, the probabilistic query Q = X =x to KB has the pair
(θ, pr) = (∅,PrBN (X =x)) as an answer. If KB is satisfiable, then this pair (θ, pr) is
also the only answer for Q to KB .

We next show that probabilistic knowledge bases in BDL-LiteR also faithfully extend
classical knowledge bases in DL-LiteR. In detail, querying any satisfiable knowledge
base in DL-LiteR is equivalent to querying any of its extensions in BDL-LiteR.

Theorem 4. Let KB =(T ,A) be a satisfiable knowledge base in DL-LiteR, let ψ be
a query to KB , and let BN =((V,E),Pr ) be any Bayesian network. Then, the proba-
bilistic query Q=ψ to KB ′ = (T ,A,BN ) has as positive answers (θ, pr) exactly all
pairs (θ, 1) such that θ is an answer for ψ to KB .

5 Computation

In this section, we show that satisfiability checking and query processing in BDL-LiteR
can be reduced to satisfiability checking and query processing in DL-LiteR.

The following theorem shows that the satisfiability of probabilistic knowledge bases
in BDL-LiteR can be reduced to the satisfiability of knowledge bases in DL-LiteR. Note
that all negated axioms in the theorem can be simulated by positive ones.

Theorem 5. Let KB =(T ,A,BN ) be a probabilistic knowledge base in BDL-LiteR.
For every v ∈ D(V ), let Tv (resp., Av) be the set of all axioms φ and ¬φ for which
there exists a probabilistic axiom φ : X =x in T (resp., A), such that v|X =x and
v|X 	= x, respectively. Then, KB is satisfiable iff the knowledge base KBv = (Tv,Av)
in DL-LiteR is satisfiable for every v ∈D(V ) with PrBN (V = v)> 0.

The next theorem shows that query processing in probabilistic knowledge bases in BDL-
LiteR can be reduced to query processing in knowledge bases in DL-LiteR. Note that
all negated axioms in the theorem can be simulated by positive ones.

Theorem 6. Let KB = (T ,A,BN ) be a satisfiable probabilistic knowledge base in
BDL-LiteR, and let Q = ψ : X =x be a probabilistic query to KB . For every v ∈
D(V ), let Tv (resp.,Av) be the set of all φ and¬φ for which there exists some φ : X =x
in T (resp., A) such that v|X =x and v|X 	=x, respectively. Let θ be a ground substi-
tution for the variables in Q and let pr∈ (0, 1]. Then, (θ, pr) is an answer for Q to KB
iff pr is the sum of all PrBN (V = v) such that (i) v ∈D(V ) with PrBN (V = v)> 0,
(ii) θ is an answer for ψ to KBv = (Tv,Av), and (iii) v|X = x.

6 Tractability Results

As an important result of this paper, we now show that both satisfiability checking and
query processing in BDL-LiteR can be done in LogSpace in the data complexity. Note
that we adopt the notion of data complexity from logic programming [5].

The following theorem shows that deciding whether a probabilistic knowledge base
in BDL-LiteR is satisfiable can be done in LogSpace in the data complexity.
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Theorem 7. Given a probabilistic knowledge base KB =(T ,A,BN ) in BDL-LiteR,
deciding whether KB is satisfiable can be done in LogSpace in the size ofA in the data
complexity.

The next theorem shows that computing all positive answers for probabilistic unions of
conjunctive queries can also be done in LogSpace in the data complexity.

Theorem 8. Given a satisfiable probabilistic knowledge base KB =(T ,A,BN ) in
BDL-LiteR and a probabilistic union of conjunctive queries Q = ψ : X =x, computing
the set of all positive answers (θ, pr) for Q to KB can be done in LogSpace in the size
of the ABox A in the data complexity.

7 Related Work

There are several related approaches to probabilistic description logics in the literature,
which can be classified according to the generalized description logics, the supported
forms of probabilistic knowledge, and the underlying probabilistic reasoning.

Closest in spirit to this paper is perhaps the work by Koller et al. [17], which presents
P-CLASSIC, which is a probabilistic generalization of the CLASSIC description logic,
rather than the DL-Lite family. Like our approach, theirs allows for terminological prob-
abilistic knowledge about concepts and roles, but unlike ours, theirs does not support
assertional knowledge about instances of concepts and roles. Like ours, their approach
is based on inference in Bayesian networks as underlying probabilistic reasoning for-
malism. Closely related work by Yelland [29] combines a restricted description logic
close to FL with Bayesian networks, rather than the DL-Lite family. It also allows
for terminological probabilistic knowledge about concepts and roles, but does not sup-
port assertional knowledge about instances of concepts and roles. The main differ-
ences to our work are summarized as follows. First, we allow for both terminologi-
cal probabilistic knowledge about concepts and roles, and assertional knowledge about
instances of concepts and roles. Second, as a closely related aspect, unlike the above
two works, we provide LogSpace data complexity results, and we consider the prob-
lem of answering probabilistic unions of conjunctive queries. Third, the above two
probabilistic description logics essentially lie in the intersection of tractable descrip-
tion logics and Bayesian networks, and are thus limited in their expressive power,
while ours orthogonally and faithfully combine the two components, and thus keep
their expressive power. For this reason, our approach allows for much richer termi-
nological knowledge. Hence, compared to previous tractable probabilistic description
logics, our new approach to tractable probabilistic description logics is especially well-
suited for data-intensive applications in the Semantic Web, such as the ones listed in
the introduction.

Also closely related are the probabilistic description logics in [20], which are prob-
abilistic extensions of the expressive description logics SHIF(D) and SHOIN (D)
behind OWL Lite and OWL DL, respectively, towards sophisticated formalisms for rea-
soning under probabilistic uncertainty in the Semantic Web.1 They allow for expressing

1 See [16] for an implementation of the probabilistic description logics in [20].
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both terminological probabilistic knowledge about concepts and roles, and also asser-
tional probabilistic knowledge about instances of concepts and roles. Our present work
is more flexible in the sense that terminological and assertional pieces of probabilistic
knowledge can be freely combined, while [20] partitions the probabilistic knowledge
into terminological pieces of probabilistic knowledge and object-centered assertional
pieces of probabilistic knowledge. Rather than on Bayesian networks, they are based
on probabilistic lexicographic entailment from probabilistic default reasoning [19] as
underlying probabilistic reasoning formalism, which treats terminological and asser-
tional probabilistic knowledge in a semantically way as probabilistic knowledge about
random resp. concrete instances. Differently from [20], we here provide LogSpace data
complexity results, and we consider probabilistic unions of conjunctive queries.

Heinsohn [12] presents a probabilistic extension of ALC, which allows to repre-
sent terminological probabilistic knowledge about concepts and roles, and which is
essentially based on probabilistic reasoning in probabilistic logics, similar to [23, 18].
Heinsohn, however, does not allow for assertional knowledge about concept and role
instances. Jaeger’s work [13] proposes another probabilistic extension of ALC, which
allows for terminological and assertional probabilistic knowledge about concepts / roles
and about concept instances, respectively, but does not support assertional probabilis-
tic knowledge about role instances (although a possible extension in this direction is
mentioned). The uncertain reasoning formalism in [13] is essentially based on prob-
abilistic reasoning in probabilistic logics, as the one in [12], but coupled with cross-
entropy minimization to combine terminological probabilistic knowledge with asser-
tional probabilistic knowledge. Jaeger’s recent work [14] is less closely related, as it
focuses on interpreting probabilistic concept subsumption and probabilistic role quan-
tification through statistical sampling distributions, and develops a probabilistic ver-
sion of the guarded fragment of first-order logic.

Related works on probabilistic web ontology languages focus especially on combin-
ing the web ontology language OWL with probabilistic formalisms based on Bayesian
networks. In particular, da Costa et al. [4, 3] propose a probabilistic generalization of
OWL, called PR-OWL, which is based on multi-entity Bayesian networks.

Ding et al. [8] propose a probabilistic generalization of OWL, called BayesOWL,
which is based on standard Bayesian networks. BayesOWL provides a set of rules
and procedures for the direct translation of an OWL ontology into a Bayesian net-
work that supports ontology reasoning, both within and across ontologies, as Bayesian
inferences. The authors also describe an application of this approach in ontology map-
ping. In closely related work, Mitra et al. [22] introduce a technique to enhancing
existing ontology mappings by using a Bayesian network to represent the influences
between potential concept mappings across ontologies.

Yang and Calmet [28] present an integration of the web ontology language OWL
with Bayesian networks. The approach makes use of probability and dependency-anno-
tated OWL to represent uncertain information in Bayesian networks. Pool and Aikin
[26] also provide a method for representing uncertainty in OWL ontologies, while
Fukushige [9] proposes a basic framework for representing probabilistic relationships in
RDF. Finally, Nottelmann and Fuhr [24] present two probabilistic extensions of variants
of OWL Lite, along with a mapping to locally stratified probabilistic Datalog.
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8 Summary and Outlook

We have presented probabilistic generalizations of the DL-Lite description logics, which
are based on Bayesian networks. We have shown that the new probabilistic description
logics properly extend both the DL-Lite description logics as well as Bayesian networks.
We have also shown that satisfiability checking and query processing in the new proba-
bilistic description logics can be reduced to satisfiability checking and query processing
in the DL-Lite family. Furthermore, satisfiability checking and answering probabilistic
unions of conjunctive queries can be done in LogSpace in the data complexity.

Other classical description logics can be extended similarly by probabilistic uncer-
tainty in Bayesian networks. All results of this paper carry over to such extensions,
except for the tractability results, which generally will not hold for extensions of clas-
sical description logics that are more expressive than those of the DL-Lite family.

We leave for future work the implementation of the new probabilistic description
logics and the investigation of efficient algorithms for the general case beyond the data
complexity (where tractable cases and efficient techniques from Bayesian networks may
come into play). Another interesting topic for future research is to investigate the use of
the new tractable probabilistic description logics in important tasks such as web search
and database querying. Furthermore, it would be very interesting to develop techniques
for learning the new tractable probabilistic description logics (e.g., from web data).
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Abstract. In most real-world applications the choice of the right representation
language represents a fundamental issue, since it may give opportunities for gen-
eralization and make inductive reasoning computationally easier or harder. While
the setting of First Order Logic (FOL) is the most suitable one to model the multi-
relational data of real and complex domains, on the other hand it puts the ques-
tion of the computational complexity of the knowledge induction that represents
a challenge for multi-relational data mining algorithms. Indeed, the complex-
ity of most real domains, in which a lot of relationships are required to model
the objects involved, calls for both an efficient and effective search method for
exploring the space of candidate solutions and a deduction procedure assessing
the validity of the discovered knowledge. A way of tackling the complexity of
such domains is to use a method that reformulates a multi-relational learning task
into an attribute-value one. In this paper we propose an approximate reasoning
technique that decreases the complexity of a relational problem changing both
the language and the inference operation used for the deduction. The complexity
of the FOL language is decreased by means of a stochastic propositionalization
method, while the NP-completeness of the deduction is tackled using an approx-
imate query evaluation. The induction is performed with an anytime algorithm,
implemented by a population based method, able to efficiently extract knowledge
from structured data in form of complete FOL definitions. The validity of the pro-
posed technique has been proved making an empirical evaluation on a real-world
dataset.

1 Motivations

Over the last decades large volumes of data in digital form have been acquired. Most
of these data are stored using relational databases consisting of multiple tables and
associations. Moreover, the data used in the fields of weather prediction, financial risk
analysis and drug design are relational in nature. The induction of conceptual definitions
to model the knowledge of such complex real-world domains is a hard and crucial task.
The challenges posed by such domains are due to various elements such as the noise in
the descriptions, the lack of data, but also the choice of the right representation language
exploited to describe them.

Representation is a fundamental as well as a critical aspect in the process of knowl-
edge discovery. Indeed, the choice of the right representation has a significant impact
on the performance of the learning algorithms but also on the possibility to interpret and
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reuse the discovered knowledge. The most suitable representation language to describe
the objects and their relationships of complex real-world domains is a logic-based repre-
sentation such as the first-order logic language (FOL) and the research area implement-
ing algorithms working on this kind of representation is popularly known as Inductive
Logic Programming (ILP). ILP systems represent examples, background knowledge,
hypotheses and target concepts in Horn clause logic. The core of ILP is the use of logic
for representation and the search for syntactically legal hypotheses constructed from
predicates provided by the background knowledge.

However, this representation language allows a potentially large number of mappings
between descriptions. The obvious consequence of such a representation is that both the
space of candidate solutions to search and the test to assess the validity of the induced
model result more costly. A possible solution is represented by approximate reasoning
techniques [1], that try to decrease the complexity of a problem changing either the
adopted language or the inference operation used for the deduction. In this way, the
results may be unsound or incomplete but with a consequent speed-up and a reduced
reasoning complexity.

A possible approximate reasoning technique consists in reformulating the original
multi-relational learning task in a propositional one (i.e., propositionalization). This
reformulation can be partial (heuristic), in which information is lost and the represen-
tation change is incomplete, or complete, in which no information is lost. In general,
however, it is not possible to efficiently transform multi-relational data into an equiva-
lent propositional form without an exponentially increasing complexity [2]. Alternative
approaches concern the possibility to apply propositionalization directly on the original
FOL context by a sort of flattening of the multi-relational data substituting them with
all (or a subset of) their matchings with a pattern that can be provided by the users or
previously built by the system.

This work proposes a method to decrease the dimensionality of the space of can-
didate solutions of multi-relational data to search by means of a propositionalization
technique in which the transposition of the relational data is performed by an online
flattening of the examples. The proposed method is a population based (genetic) algo-
rithm that stochastically propositionalizes the training examples in which the learning
phase may be viewed as a bottom-up search in the hypotheses space. The objective of
this paper is twofold:

O1: Providing an efficient and scalable method for inductive reasoning on relational
databases, combining a genetic approach to navigate the search space of candi-
date solutions with a partial transposition of the relational knowledge base in a
propositional one;

O2: Incorporating an approximate reasoning strategy in a relational inductive learner,
making incomplete a) the validation test (query answering) of the acquired knowl-
edge, and b) the inductive generalization task.

The resulting learning algorithm, of the objective O1, belongs to the class of anytime
algorithms [3] whose quality of results improves gradually as computation time in-
creases, hence trading this quality against the cost of computation. They are resource
constrained algorithms that return the best solution within a specified computational
budget.
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The validation test of the acquired knowledge, in objective O2, corresponds to the
classical query answering task, that in relational learning is obtained by solving a sub-
sumption problem known to be NP-complete. In many cases it is less important to
obtain an exact query result than keeping query response time short. For instance, the
following conjunctive FOL query

author(A1, P1), journal(P1, J), impact(J, IF ), author(A2, P2), journal(P2, J)

may be used to test if there exist two authors A1 and A2 that have published a paper
(resp. P1 and P2) in a journal J with an impact factor IF . Sometimes, instead of a
correct answer, it may be suitable knowing the response for a subset of the authors in
the domain, sacrificing the accuracy to improve running time. The approximate query
answering used in this work is a sampling based technique, in which a random sample
of the individuals involved in the domain is selected and used to solve the query.

2 Related Work

Various strategies have been proposed in order to overcome the limitation imposed
by the inborn complexity of most real-word applications whose descriptions involve
many relationships. One of the classical approaches consists in the reformulation of the
relational learning in a propositional one followed by the application of well known
propositional learners and by the mapping back in relational form of the resulting hy-
potheses. During the reformulation, a fixed set of structural features is built from rela-
tional background knowledge and the structural properties of the individuals occurring
in the examples. In such a process, each feature is defined in terms of a corresponding
program clause whose body is made up of a set of literals derived from the relational
background knowledge. When the clause defining the feature is called for a particular
individual (i.e., if its argument is bound to some example identifier) and this call suc-
ceeds at least once, the corresponding boolean feature is defined to be true for the given
example; otherwise, it is defined to be false. Examples of systems that implement such
kind of propositionalization process are LINUS [4], and its extensions DINUS [5] and
SINUS [6], and RSD [7].

Alternative approaches avoid the reformulation process and apply propositionaliza-
tion directly on the original FOL context: the relational examples are flattened by sub-
stituting them with all (or a subset of) their matchings with a pattern. To this concern, it
was noted [8,9,10] that a most suitable setting for supervised relational learning is that
of multiple instance problems (MIP), first introduced by Dietterich [11], where each
example consists of a set of literals (instances) built on a same predicate symbol. The
multiple instances representation is an extension that offers a good trade-off between
the expressive power of relational learning and the low complexity of propositional
learning. Unfortunately, most of the existing inductive learning systems are not able to
face efficiently with this problem. In some cases the learning system has an incomplete
knowledge about each training example: It does not know the features vector but it only
knows that each example can be represented by means of one (or more) potential feature
vectors (a bag of instances).



Approximate Reasoning for Efficient Anytime Induction 163

Following this idea, [12,9,10] proposed a multi-instance propositionalization. In such
a framework each relational example is reformulated in its multiple matchings with a
pattern (a formula of the initial hypotheses space that can be built from the training
data or provided by the user). After the reformulation, each initial observation corre-
sponds to many feature vectors and the search for hypotheses may be recasted in this
propositional representation as the search for rules that cover at least one instance per
observation. Consequently, the learning task is no longer to induce an hypothesis that is
consistent with all the feature vectors reformulated but an hypothesis that covers at least
one reformulated example of each positive initial training example and no reformulated
example of any negative initial training example.

Specifically, the approach proposed in [9] consists in limiting the number of possible
mappings by means of a selective mapping and then searching inductive generalizations
in the hypotheses space defined by the selected mapping type. The type of mapping, i.e.
the relevant propositionalization pattern, is provided by the user/expert and represents
a (strong) bias which allows to dramatically reduce the matching space. On the con-
trary, in [12] the propositionalization process is done through a stochastic selection on
each example of a user-defined number of example matchings with the pattern, which
allows to reduce the dimensionality of the reformulated problem. In other words, for
each example it is constructed the set of a user-defined number of hypotheses cov-
ering the example and not covering any example belonging to other classes. Then a
representative of such a set for each example is learned that classifies unseen examples
via a nearest-neighbour-like process. Finally, [10] proposed a method that selectively
propositionalizes the relational data by interleaving attribute-value reformulation and
algebraic resolution avoiding, as much as possible, the generation of reformulated data
which are not relevant with respect to the discrimination task and obtaining a reformu-
lated learning problem of tractable size. The obtained set of attribute-value instances is
then used to solve the initial relational problem by applying a data-driven strategy.

Based on this kind of more suitable propositionalization and on the existing effective
and efficient techniques for feature selection, [13] proposed an extension of classical
feature selection methods for coping with the problem of relational data by firstly trans-
forming the original relational data in propositional ones by means of a multi-instance
propositionalization and successively applying methods for feature selection on such a
new transformation.

3 The Anytime Induction Method

In this paper we propose a technique that, reformulating the training positive and neg-
ative examples, solves the multi-relational learning problem by applying a data-driven
bottom-up strategy.

3.1 Logic Background

We used Datalog [14] as representation language for the domain and induced knowl-
edge, that here is briefly reviewed. For a more comprehensive introduction to logic
programming and ILP we refer the reader to [15,16,5].
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A first-order alphabet consists of a set of constants, a set of variables, a set of func-
tion symbols, and a non-empty set of predicate symbols. Each function symbol and
each predicate symbol has a natural number (its arity) assigned to it. The arity assigned
to a function symbol represents the number of arguments the function has. Constants
may be viewed as function symbols of arity 0. A term is a constant symbol, a variable
symbols, or an n-ary function symbol f applied to n terms t1, t2, . . . , tn.

An atom p(t1, . . . , tn) (or atomic formula) is a predicate symbol p of arity n ap-
plied to n terms ti. Both l and its negation l are said to be literals (resp. positive and
negative literal) whenever l is an atomic formula. A clause is a formula of the form
∀X1∀X2 . . . ∀Xn(L1 ∨L2 ∨ . . .∨Li ∨Li+1 ∨ . . .∨Lm) where each Li is a literal and
X1, X2, . . .Xn are all the variables occurring in L1 ∨L2 ∨ . . . Li ∨ . . . Lm. Most com-
monly the same clause is written as an implicationL1, L2, . . . Li−1 ← Li, Li+1, . . . Lm,
where L1, L2, . . . Li−1 is the head of the clause and Li, Li+1, . . . Lm is the body of the
clause. Clauses, literals and terms are said to be ground whenever they do not contain
variables. A Horn clause is a clause which contains at most one positive literal. A Dat-
alog clause is a clause with no function symbols of non-zero arity; only variables and
constants can be used as predicate arguments.

A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an} where
Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution θ is applicable
to an expression e, obtaining the expression eθ, by replacing all variables Xi with their
corresponding terms ai.

The learning problem for ILP can be formally defined:

Given: A finite set of clauses B (background knowledge) and sets of clauses E+ and
E− (positive and negative examples).

Find: A theory Σ (a finite set of clauses), such that Σ ∪ B is correct with respect to
E+ and E−, i.e.: a) Σ ∪ B is complete with respect to E+: Σ ∪ B |= E+; and, b)
Σ ∪ B is consistent with respect to E−: Σ ∪ B 	|= E−.

Given the formula Σ ∪ B |= E+, deriving E+ from Σ ∪ B is deduction, and deriving
Σ from B and E+ is induction. In the simplest model, B is supposed to be empty and
the deductive inference rule |= corresponds to θ-subsumption between clauses.

Definition 1 (θ-subsumption). A clause c1 θ-subsumes a clause c2 if and only if there
exists a substitution σ such that c1σ ⊆ c2. c1 is a generalization of c2 (and c2 a spe-
cialization of c1) under θ-subsumption. If c1 θ-subsumes c2 then c1 |= c2.

θ-subsumption is the test used in relational learning for query answering. It corre-
sponds to the most time consuming task of the induction process being it a problem
NP-complete. In Section 3.4 we will present an approximate θ-subsumption test based
on a sampling method described in the following section.

3.2 Data Reformulation

The method we propose is based on a stochastic reformulation of examples that, dif-
ferently from other proposed propositionalization techniques, does not use the classical
subsumption relation. For instance, in PROPAL [10], each example E, described in
FOL, is reformulated into a set of matchings of a propositional pattern P with E by
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using the classical θ-subsumption procedure, being in this way still bound to the FOL
context. On the contrary, in our approach the reformulation is based on a syntactic
rewriting of the training examples based on a fixed set of domain constants.

Let E be an example, represented as a Datalog ground clause, and let consts(E)
be the set of the constants appearing in E. One can write a new example E′ from E
by changing one or more constants in E, i.e. by renaming. In particular, E′ may be
obtained by applying an antisubstitution (i.e., a mapping from terms onto variables)
and a substitution under Object Identity (OI) to E, E′ = Eσ−1θOI , where σ−1 is an
antisubstitution that maps terms to variables, and θOI is a substitution under OI. In
the Object Identity framework, within a clause, terms that are denoted with different
symbols must be distinct, i.e. they must represent different objects of the domain. In
the following we will omit the OI notation, and we will consider substitutions under the
Object Identity framework.

Definition 2 (Renaming of an example). A ground renaming of an example E, R(E),
is obtained by applying a substitution θ = {V1/t1, V2/t2, . . . Vn/tn} to Eσ−1, i.e.
R(E) = Eσ−1θ, such that σ−1 is an antisubstitution, {V1, V2, . . . Vn} ⊆ vars(Eσ−1),
and {t1, t2, . . . tn} are distinct constants of consts(E), n = consts(E).

Example 1. Let E : h(a) ← q(a, b), c(b), t(b, c) an example, C = consts(E) =
{a, b, c}, and σ−1 = {a/X, b/Y, c/Z} an antisubstitution. All the possible ground
renamings of E, R(E) in the following, are

E1 : h(a)← q(a, b), c(b), t(b, c),
E2 : h(a)← q(a, c), c(c), t(c, b),
E3 : h(b)← q(b, a), c(a), t(a, c),
E4 : h(b)← q(b, c), c(c), t(c, a),
E5 : h(c)← q(c, a), c(a), t(a, b),
E6 : h(c)← q(c, b), c(b), t(b, a)

obtained by applying to Eσ−1 : h(X)← q(X,Y ), c(Y ), t(Y, Z) all the possible injec-
tive substitutions from vars(Eσ−1) = {X,Y, Z} to consts(E).

In this way, we do not need to use the θ-subsumption test to compute the renamings of
an example E, we just have to rewrite it considering the permutations of the constants
in consts(E).

Lemma 1. Given an example E, let m =| consts(E) |. The number of all possible
renamings of E, |R(E)|, is equal to the number of permutations on a set of m constants,
i.e. |R(E)| = Pm

m = m!.

Proof. Let consts(E) = {c1, c2, . . . , cm}, and σ−1 = {c1/V1, c2/V2, . . . , cm/Vm} be
an antisubstitution. By Definition 2, a renaming R(E) ∈ R(E) is obtained by choosing
a substitution θi = {V1/t1i, V2/t2i, . . . , Vm/tmi}, where {t1i, t2i . . . , tmi} are ele-
ments of consts(E), s.t. R(E) = Eσ−1θi. Letting fixed variables Vj , j = 1 . . .m, all
the possible substitutions θi can be obtained by selecting permutations (t1it2i · · · tmi)i

of the elements in the set {c1, c2, . . . , cm}. Being Pm
m = m!, it follows that |R(E)| =

|{R(E) | R(E) = Eσ−1θi}| = Pm
m = m!. �
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Table 1. Renamings of the clause h(a) ← q(a, b), c(b), t(b, c)

h(a) h(b) h(c) q(a,b) q(a,c) q(b,a) q(b,c) q(c,a) q(c,b) c(a) c(b) c(c) t(a,b) t(a,c) t(b,a) t(b,c) t(c,a) t(c,b)
E1 • • • •
E2 • • • •
E3 • • • •
E4 • • • •
E5 • • • • •
E6 • • • •

Lemma 2. All the renamings of an example E belong to the same equivalence class,
[E] = R(E) = {R(E) ∈ E | R(E) ∼s E}, based on the equivalence relation ∼s

defined by a ∼s b iff a is syntactically equivalent to b, where E is the set of all the
possible ground clauses. In particular, given an example E, ∀E′ ∈ [E], ∃θ, σ−1 s.t.
E′σ−1θ = E.

Proof. Let consts(E) = {c1, c2, . . . , cm}. If R,Q ∈ R(E) then, by Definition 2,
∃σ−1 = {c1/V1, c2/V2, . . . , cm/Vm}, and θR = {V1/t1R, . . . , Vm/tmR} and θQ =
{V1/t1Q, . . . , Vm/tmQ}, where (t1R · · · tmR) and (t1Q · · · tmQ) are permutations of
the elements in the set consts(E), s.t.R = Eσ−1θR andQ = Eσ−1θQ. Now,Rθ−1

R σ =
Qθ−1

Q σ, where θ−1
R = {t1R/V1, . . . , tmR/Vm}, θ−1

Q = {t1Q/V1, . . . , tmQ/Vm} and
σ = {V1/c1, . . . , Vm/cm}, and hence R and Q are syntactically equivalent, R ∼s Q. �

Table 1 reports the propositional representation of the renamings belonging to the equiv-
alence class of the clause reported in the Example 1.

3.3 Approximate Model Construction

In the general framework of ILP, the generalization of clauses, and hence the model con-
struction, is based on the concept of least general generalization originally introduced
by Plotkin. Given two clauses C1 and C2, C1 generalizes C2 (denoted by C1 ≤ C2) if
C1 subsumes C2, i.e. there exists a substitution θ such that C1θ ⊆ C2.

In our propositionalization framework, a generalization C (a non-ground clause) of
two positive examples E1 and E2 may be calculated by turning constants into variables
in the intersection between a renaming of E1 and a renaming of E2.

Definition 3. Let E1 and E2 be two positive examples, n and m the number of con-
stants in E1 and E2 respectively. Let C be a set of p constants such that p ≥ n and
p ≥ m. R(E1){C} and R(E2){C} indicate two generic renamings of the examples E1

and E2, respectively, onto the set of constants C.

Proposition 1 (Generalization). Given E1, E2 examples, a generalization G such that
subsumes both E1 and E2, G ≤ E1, E2 is

G = (R(E1){C} ∩R(E2){C})σ−1.

Proof. We must show, by generalization definition, that there exist θ1, θ2 substitutions,
such that Gθ1 ⊆ E1 and Gθ2 ⊆ E2. ∀lj ∈ Gθi : lj ∈ (R(E1){C} ∩R(E2){C})σ−1θi,
and hence lj ∈ R(Ei){C}σ

−1θi. θi are substitutions that map variables in G onto terms
in Ei. Since R(Ei){C}σ

−1θi ∈ [Ei] then R(Ei){C}σ
−1θi ∼s Ei by Lemma 2. Thus,

∀lj ∈ Gθi : lj ∈ Ei, hence Gθi ⊆ Ei. �
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In order to obtain consistent intersections, it is important to note that all the renamings,
for both E1 and E2, must be calculated on the same fixed set of constants. Hence, given
E1, E2, . . . , En examples, the set C of the constants useful to build the renamings may
be chosen equal to

C = argmax
Ei

(|consts(Ei)|).

Furthermore, to avoid empty generalizations, the constants appearing in the head literal
of the renamings must be take fixed.

Example 2. Given two positive examples
E1 : h(a)← q(a, b), c(b), t(b, c), p(c, d) and
E2 : h(d) ← q(d, e), c(d), t(e, f).

We calculate C as:

C = argmax
Ei

(|consts(Ei)|) = consts(E1) = {a, b, c, d}.

Now,
R(E1){C} = {h(a),¬q(a, b),¬c(b),¬t(b, c),¬p(c, d)},
R(E2){C} = {h(a),¬q(a, b),¬c(a),¬t(b, c)}

A generalization G of E1 and E2 is
G = (R(E1){C} ∩R(E2){C})σ−1 = {h(a),¬q(a, b),¬t(b, c)}σ−1 =
= (h(a) ← q(a, b), t(b, c))σ−1 = h(X)← q(X,Y ), t(Y, Z)

with σ−1 = {a/X, b/Y, c/Z}.

3.4 Approximate Model Validation

The model validation we adopt in the proposed framework to assess and exploit the
generated model on the seen and unseen data is based on a syntactic lazy matching.

Corollary 1 (Subsumption). Given a generalization G and an example E, G sub-
sumes E iff R(Gθ){C} ∩R(E){C} ∼s Gθ.

Proof. →) If G subsumes E then, by definition, there exists a substitution θ s.t. Gθ ⊆
E. This means that ∀l ∈ Gθ : l ∈ E and hence Gθ ∩ E = Gθ ∼s R(Gθ){C} =
R(Gθ ∩ E){C} = R(Gθ){C} ∩R(E){C}.
←) If R(Gθ){C} ∩R(E){C} ∼s Gθ, then by Proposition 1,

(R(Gθ){C} ∩R(E){C})σ−1 ≤ E
⇒ R(Gθ){C}σ

−1 ≤ E
⇒ ∃δ : R(Gθ){C}σ

−1δ ⊆ E
⇒ (Gθσ′−1δ′)σ−1δ ⊆ E
⇒ Gθ′ ⊆ E

�

To be complete, the procedure must prove the test Gθ ∩ E = Gθ for all Pn
r =

n!
(n−r)! renamings of Gθ and E, where n = max{|consts(Gθ)|, |consts(E)|} and
r = min{|consts(Gθ)|, |consts(E)|} and by taking fixed the renaming for the clause
Gθ or E containing less constants. However, we can make the test approximate by
randomly choosing a number α of all the possible permutations.
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Algorithm 1. Sprol
Input: E+: positive examples; E−: negative examples; α: the parameter for negative coverage; β: the parameter for

positive coverage; k: the dimension of the population; r: number of restarts;
Output: the hypotheses h
1: C = argmaxEi∈E=E+∪E− (|consts(Ei)|);

2: while E+ �= ∅ do
3: select a seed e from E+

4: /* select k renamings of e */
5: Population ← ren(k, e, C);
6: PopPrec ← Population; i ← 0;
7: while i < r do
8: P ← ∅;
9: for each element v ∈ Population do
10: for each positive example e+ ∈ E+ do
11: /* select t renamings of e+ */
12: Ve+ ← ren(t, e+, C);
13: /* generalization */
14: P ← P ∪{u|u = v ∩ wi, wi ∈ Ve+};
15: Population ← P;
16: /* Consistency check */
17: for each negative example e− ∈ E− do
18: /* select α renamings of e− */
19: Ve− ← ren(α, e−, C);
20: for each element v ∈ Population do
21: if v covers an element of Ve− then
22: remove v from Population
23: /* Completeness check */
24: for each element v ∈ Population do
25: completenessv ← 0;
26: for each positive example e+ ∈ E+ do
27: /* select β renamings of e+ */
28: Ve+ ← ren(β, e+, C);
29: for each element v ∈ Population do
30: if ∃u ∈ Ve+ s.t. u ∩ v = v then
31: completenessv ← completenessv + 1;
32: i ← i + 1;
33: if |Population| = 0 then
34: /* restart with the previous population */
35: Population ← PopPrec;
36: else
37: leave in Population the best k generalizations only;
38: PopPrec ← Population;
39: add the best element b ∈ Population to h;
40: remove from E+ the positive exs covered by b

Definition 4 (Subsumption degree). Let be n the number of all possible renamings of
Gθ and E, and α, α ≤ n, the renamings to test the subsumption between G and E. The
subsumption degree between G and E is defined as

sd(G,E) =

{
1 if R(Gθ){C} ∩R(E){C} ∼s Gθ;

argmaxα
|R(Gθ){C}∩R(E){C}|

|R(Gθ){C}| otherwise.

In this paper we do not use the subsumption degree to access the validity of general-
izations. Each generalization G is considered complete with respect to a positive ex-
ample E if R(Gθ){C} ∩ R(E){C} ∼s Gθ (exact completeness) for a given renaming,
and it is considered consistent with respect to a negative example E′ if R(Gθ){C} ∩
R(E′){C} ∼s Gθ does not hold for all the chosen α renamings (approximate consis-
tency). The induction with subsumption degree represents a future work.
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To reduce the set of possible permutations we can fix the associations for the vari-
ables in the head of the generalization G. In particular if G : h(V1, V2, . . . , Vd) ← . . .
and E : h(c1, c2, . . . , cd) ← . . . then we can fix in all the generated permutations the
associations {V1/c1, V2/c2, . . . , Vd/cd}, d ≤ r, n.

Finally, we can further reduce the set of permutations by taking into account the
positions of the costants in the literals. Suppose p(V1, V2, . . . , Vk) be a literal of the
generalization G. Then, all the constants that may be associated to Vi, 1 ≤ i ≤ k,
are all those appearing in position i in the literals p/k of the example E.

3.5 Sprol System

Algorithm 1 reports the sketch of the Sprol system, implemented in Yap Prolog 5.1.1,
that incorporates ideas of the propositional framework we proposed. Sprol is a popu-
lation based algorithm where several individual candidate solutions are simultaneously
maintained using a constant size population implementing the anytime nature of the
algorithm. The population of candidate solutions provides a straightforward means for
achieving search diversification and hence for increasing the exploration capabilities of
the search process. In our case, the population is made up of candidate generalizations
over the training positive examples. In many cases, local minima are quite common in
search algorithms and the corresponding candidate solutions are typically not of suf-
ficiently high quality. The strategy we used to escape from local minima is a restart
strategy that simply reinitializes the search process whenever a local minimum is en-
countered.

Sprol takes as input the set of positive and negative examples of the training set and
some user-defined parameters characterizing its approximate and anytime behaviour.
In particular, α and β represent the number of renamings of a negative, respectively
positive, example to use for the covering test; k is the size of the population; and r is
the number of restarts.

As reported in Algorithm 1, Sprol tries to find a set of clauses that cover all the
positive examples and no negative one, by using an iterative population based covering
mechanism. It sets the initial population made up of k randomly chosen renamings of a
positive example (lines 3-5). Then, the elements of the population are iteratively gener-
alized on the positive examples of the training set (lines 9-15). All the generalizations
that cover at least one negative example are taken out (lines 16-22), and the quality of
each generalization, based on the number of covered positive examples, is calculated
(lines 23-31). Finally, best k generalizations are taken into account for the next itera-
tion (line 37). In case of an empty population a restart is generated with the previous
population (line 35).

Renamings of an example are generated according to the procedure reported in
Algorithm 2, that randomly chooses k renamings of the example E onto the set of
constants C. This procedure implements the approximate and anytime nature of the
method. Indeed, the parameter k represents at the same time both the approximation
degree and the time allocated for the algorithm. The more renamings the algorithm se-
lect, the more accurate generalizations and subsumptions will be, but the more time to
compute them will be needed.
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It is important to note that our approach constructs hypotheses that are only approx-
imately consistent. Indeed, in the consistency check it is possible that there exists a
matching between an hypothesis and a negative example. The number α of allowed
permutations is responsible of the induction cost as well as of the consistency of the
produced hypotheses. An obvious consequence is that the more permutations allowed,
the more consistent the hypotheses found and, perhaps, the more learning time.

Algorithm 2. ren(k,E,C)
Input: k: the number of renamings; E: the example; C: a set of constants;
Output: a set S of renamings of E
1: S ← ∅
2: for i = 1 to k do
3: S ← S ∪ {R(E){C}}

4 Experiments

In order to evaluate the system Sprol, we performed experiments on the classical ILP
mutagenesis dataset [17] consisting of structural descriptions of molecules. The Muta-
genesis dataset has been collected to identify mutagenic activity in a compound based on
its molecular structure and is considered to be a benchmark dataset for multi-relational
learning. The Mutagenesis dataset consists of the molecular structure of 230 compounds,
of which 138 are labelled as mutagenic and 92 as non-mutagenic. The mutagenicity of
the compounds has been determined by the Ames Test. The task is to distinguish mu-
tagenic compounds from non-mutagenic ones based on their molecular structure. The
Mutagenesis dataset basically consists of atoms, bonds, atom types, bond types and
partial charges on atoms. The dataset also consists of the hydrophobicity of the com-
pound (logP), the energy level of the compound’s lowest unoccupied molecular orbital
(LUMO), a boolean attribute identifying compounds with 3 or more benzyl rings (I1),
and a boolean attribute identifying compounds which are acenthryles (Ia). Ia, I1, logP
and LUMO are relevant properties in determining mutagencity.

The size of the population has been set to 50, the parameter α to 50, the parameter β
to 50, and making 5 restarts. As measures of performance, we use predictive accuracy
and execution time. Results have been compared to those obtained by running, on both
the same machine and dataset, the system Progol [18]. A 10-fold cross-validation pro-
duced the results reported in Table 2, averaged over the 10-folds, where we can note that
there is an evident improvement of the execution time with respect to Progol obtaining
a comparable predictive accuracy of the learned theory.

A second experiment, whose result are reported in Table 3, has been made in order to
evaluate how the behaviour of the algorithm change by altering parameters k, α and β.

As we can see in Table 3, the first row reports the case in which we fixed α and β and
letting k to change. Obviously, taking more elements in the population make grow the
execution time. Furtherome, the second and the third row show that changing β does
not change the accuracy of the theory. On the contrary α seems to be more important
than β in improving the system performances. A further investigation of this behaviour
deserve a more accurate experiment on an ad-hoc artificial dataset.
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Table 2. Execution time (in seconds) and accuracy of Progol and Sprol on the mutagenesis dataset

Progol SPROL
Time Accuracy Time Accuracy

M1 330.76 84.21 56.73 57.89
M2 479.03 78.95 41.15 89.47
M3 535.95 84.21 48.51 73.68
M4 738.54 68.42 63.67 84.21
M5 699.90 89.47 55.56 84.21
M6 497.08 78.95 53.55 78.49
M7 498.22 84.21 71.97 84.21
M8 584.00 78.95 56.29 89.47
M9 511.88 68.42 50.44 83.33
M10 587.18 82.35 65.63 70.59
Mean 546.25 79.81 56.35 79.60

Table 3. Results on parameter settings

Time Accuracy

α = 50 β = 50
k = 50 75.49 71.14
k = 75 96.80 75,35
k = 100 117.29 71.67

α = 50 k = 50

β = 40 78.84 78.67
β = 50 75.49 71.14
β = 60 74.39 76.85
β = 100 114 78.02

β = 50 k = 50

α = 40 75.49 70.19
α = 50 75.49 71.14
α = 60 56.35 79.6

5 Conclusion

Efficient multi-relational data mining algorithms have to tackle the problem of selecting
the best search method for exploring the hypotheses space and the problem of reducing
the complexity of the coverage procedure that assessis the validity of the learned theory
against the training examples. A way of tackling the complexity of this kind of learning
systems is to use a propositional method, that reformulates a multi-relational learning
problem into an attribute-value one.

In this paper we proposed a population based algorithm able to efficiently solve
multi-relational problems by using an approximate propositional method. The result of
an empirical evaluation on the mutagenesis dataset of the proposed technique is very
promising and proves the validity of the method.

As a future work, we plan to perform more in-depth experiments, on a purposely de-
fined artificial dataset, in order to evaluate the method dependence from the parameters
k, α and β. A solution should be to automatically discover, in an online manner, the
correct input parameters of Sprol for a given learning task.
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Furthermore, we want to investigate the behaviour of the algorithm in the case of ap-
proximate completeness. In particular, we want to use the subsumption degree between
clauses in order to induce theories when noisy or uncertain data are available.
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Abstract. Spatial information associates properties to labeled areas.
Space is partitioned into (elementary) parcels, and union of parcels con-
stitute areas. Properties may have various level of generality, giving birth
to a taxonomy of properties for a given universe of discourse. Thus, the
set of properties pertaining to a conceptual taxonomy, as the set of ar-
eas and parcels, are structured by a natural partial order. We refer to
such structures as ontologies. In fusion problems, information coming
from distinct sources may be expressed in terms of different conceptual
and/or spatial ontologies, and may be pervaded with uncertainty. Deal-
ing with several conceptual (or spatial) ontologies in a fusion perspective
presupposes that these ontologies be aligned. This paper introduces a ba-
sic representation format called attributive formula, which is a pair made
of a property and a set of parcels (to which the property applies), possi-
bly associated with a certainty level. Uncertain attributive formulas are
processed in a possibilistic logic manner, augmented with a two-sorted
characterization: the property may be true everywhere in an area, or at
least true somewhere in the area. The fusion process combines the fac-
tual information encoded by the attributive formulas provided by the
different sources together with the logical encoding of the conceptual
and spatial ontologies (obtained after alignment). Then, inconsistency
encountered in the fusion process may be handled by taking advantage
of the existence of different fusion modes, or by relaxing when neces-
sary a closed world-like assumption stating by default that what is true
somewhere in an area may be also true everywhere in it (if nothing else
is known). A landscape analysis toy example illustrates the approach.

Keywords: spatial information, ontology, uncertainty, possibilistic logic,
fusion.

1 Introduction

The management of multiple sources raises many fusion problems due to the un-
certainty and the heterogeneity of the information. Geographical information has
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all these problems [4,2,12,18], its specific aspect being to deal with geographical-
space areas, called parcels, on which we need to operate union and intersection.

A popular representation is the so called “field model”, f :(x, y) → f(x, y),
with a Cartesian coordinate domain as space, and real numbers as target do-
main. Though widely used in geophysics, meteorology, etc. and in most applica-
tions that involve imagery, terrain or any “gridded data”, it is much too limited
in many situations that deal with non quantitative data. Landscape analysis is
one such situation. Spatial information may involve a mix of numeric and sym-
bolic attributes, using different vocabularies more or less structured, but rarely
unstructured. The sources may use different space partitions. Moreover, there
may exist several kinds of dependencies, and spatial fusion must keep consistent
with all of them. A previous paper [7] started an informal discussion of these
problems. The present paper provides a logical framework for handling spatial
information and ontological information. Another step is made by handling the
merging of spatial information in the general setting of logical information fu-
sion. Lastly, both numeric and symbolic information may be pervaded by several
forms of uncertainty and imprecision [14]. This is why we allow for “uncertain
attributive formulas” linking parcels to a property associated with a certainty
degree: it expresses that for any parcel of a given set, we are sure at least at this
degree that a property is true.

Hence, dealing with spatial data requires relatively powerful representation
languages, as discussed in [15]. Ontology is often used for representing a struc-
tured vocabulary [12], and the fusion of ontology-based geospatial information
must face the problem of heterogeneous vocabularies [10]. This paper deals with
terminology integration and discusses the merging of information provided by
different sources using multiple space partitions, and expressed with more or less
precise labels from the same ontology resulting from a preliminary alignment.

Following Papini et al. [23], we use a logical framework for processing ontolog-
ical information, and “attributive formulas” to link sets of parcels to property
or attribute statements. We need a simple type of ontology that can be logically
expressed by three and only three conditions: 1) a label may be a sub-label of
another label, 2) a label is the reunion of its sub-labels, 3) labels referring to
the most specific classes are mutually exclusive two by two. This representation
allows us to express both ontological information and attributive formulas. Be-
sides, the spatial extent on which an attributive formula applies may vary within
a parcel: it means that we must distinguish between statements true everywhere,
or only somewhere in a parcel.

The paper is organized as follows. Section 2 discusses representation needs,
proposes a logical formalism for representing geographic information in ontolo-
gies, and introduces the notion of an attributive formula as a reified formula
that links space and labels. Section 3 details the fusion process that helps to
merge heterogeneous descriptions of the same space. In Section 4, “uncertain
attributive formulas” are defined, and we introduce the explicit precision of
the “somewhere” or “everywhere” reading associated to an attributive formula.
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Section 5 shows how to integrate possibilistic principles in the context of “at-
tributive formulas”. It is illustrated on a landscape information fusion example.

2 Geographic Ontologies and Attributive Formulas

In geographic information we can distinguish the geo part, the info part, and the
association that links them (the what, the there and the is, of Quine[20]). Hence,
three aspects should be considered for representing geographic information:

1) The (attributed) space: one single space for all applications, but many different
ways to split it into parts. Parcels have a spatial extent, and it is assumed that
after intersecting all parcels from the different splittings, the most elementary
parcels form a finite partition of the space. This is called a partonomy structure.
2) The (attribute) properties : many property domains, more or less independent,
can serve different purposes. A taxonomy structure can represent a hierarchy of
properties, reflecting some partial order. A consistent fusion of partial orders
may help to detect, and to remove errors when mixing such structures.
3) The attribution: it results from an observation process, where the associations
are often multiple, and largely pervaded by uncertainty for space and properties.

A similar, but not formalized, approach was proposed in [17]: an ontology is
built on three main concepts: (1) a partonomy of physical objects of which the
attributes represent most of the relevant information, (2) a simple taxonomy of
informational objects, (3) a relation between the informational objects and those
physical objects they inform about. In order to have a representation model more
appropriate than the “field model”, we use a logical “attributive formalism”
to represent “property-parcel” information. Beside the attributive link, there
are two other basic links: property-property (from the knowledge encoded in a
property taxonomy), and parcel-parcel (from a partonomy). The logical repre-
sentation is satisfactory for encoding such qualitative links too. The ontology
representation we use is simpler than the ones offered by description logics since
we remain propositional. The ontological relations are not uncertain here.

2.1 A Logical Encoding of an Ontology of Information

In fusion problems, it is advantageous to encode taxonomies in a logical manner,
which makes the information merging easier. Let {〈set of nodes〉,⊆} be a poset
structure that we name ontology [22], where nodes are concepts, and ⊆ encodes
specialization/subsumption relations: these relations are represented graphically
by edges where arrow direction refers to generalization. Let L be a propositional
logical language built on a vocabulary V with connectives ∧, ∨, → (“and”, “or”,
material implication).

Definition 1 (poset definition of an ontology). An ontology is a directed
acyclic graph (dag) G = (X,U). X ⊆ L is a set of formulas (one per concept,
or node); U is a set of directed arcs (ϕ, ψ) denoting that ϕ is a subclass of ψ.
An ontology admits one single source, ⊥, and one single sink !.
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Definition 2 (levels in an ontology). Levels are defined inductively: L0 is
the set of formulas that have no predecessor (it contains only the contradiction
⊥) Li is the set of formulas that have no predecessor in G \ (L0 ∪ . . . Li−1), etc.
Γ+(x) and Γ−(x) are the sets of successors and predecessors of x.

Level L1 nodes are called leaves (i.e., formulas ϕ s.t. the edge (⊥, ϕ) ∈ U).
Moreover, we impose: (a) G: to be a lattice, (b) all the sub-classes of a class: to
appear in the ontology, (c) all the leaves: to be mutually exclusive two by two.

Proposition 1. Providing that
(1) we add the appropriate formulas and arcs that turn a dag into a lattice;
(2) we add to each not-leave formula ϕ, a sub-formula “other elements of ϕ”;
(3) we split leaves, wherever necessary, to make them mutually exclusive;
then, we can insure properties (a), (b) and (c) because the operations (1), (2)
and (3) can always be done in the finite case.

Hence, an ontology will be encoded in the following way.

Definition 3 (logical encoding of an ontology). Any dag G = (X,U) rep-
resenting an ontology can be associated to a set LG of formulas that hold:

1. ∀(ϕ, ψ) ∈ U , it holds that ϕ→ ψ.
2. ∀ϕ ∈ X \ {L1 ∪ L0}, it holds that ϕ→

∨
ϕi∈Γ −(ϕ) ϕi.

3. ∀ϕ, ψ ∈ L1, it holds that ϕ ∧ ψ → ⊥.
4. ∀(ϕ, ψ) ∈ X ×X, s.t. ϕ ) ψ, it exists a directed path from ϕ to ψ in G.

Rule 1 expresses that an inclusion relation holds between two classes, 2 is a kind
of closed world assumption version of property (b), 3 expresses property (c), 4
expresses completeness, as follows: if all the inclusion relations are known in the
ontology, hence all corresponding paths must exist in G. From this, it follows
that: ∀ϕ ∈ X , ϕ →

∧
ϕi∈Γ+(ϕ) ϕi. and ∀ϕ ∈ X , ϕ → !. Given any pair of

formulas (ϕ, ψ) ∈ X×X , the logical encoding of the ontology G = (X,U) allows
us to decide if {ϕ ∧ ψ} ∪ LG is consistent or not; and if ϕ ∪ LG ) ψ or not.
Taxonomy 1 of Figure 2 provides a toy example of such an ontology, where e.g.
L0 = {⊥}, L1 = {conifer, wetland, agriculture}.

2.2 Attributive Formulas

Since we need to express binary links, our representational language is built on
ordered pairs of formulas of Li×Ls, here denoted (ϕ, p). Such formulas should
be understood as formulas of Li reified by association with a set of parcels
described by a formula of Ls. In other words, to each formula is attached a set
of parcels, where this formula applies. More precisely, (ϕ, p) expresses that ϕ
is true for each elementary parcels satisfying p. Another understanding would
view (ϕ, p) as the material implication ¬p∨ϕ in the language based on the union
of the two vocabularies Vi and Vs. Alternatively, in a first order logic language
view, this may be also understood as ∀x, p(x) → ϕ(x), here p(x) means that the
parcel x satisfies p, equating formula p with the union of elementary parcels x0

satisfying p. A pair (ϕ, p) will be called an attributive formula.
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Definition 4 (attributive formula). An attributive formula f , denoted by a
pair (ϕ, p), is a propositional language formula based on the vocabulary Vi ∪ Vs

where the logical equivalence f ≡ ¬p ∨ ϕ holds and p contains only variables of
the vocabulary Vs (p ∈ Ls) and ϕ contains only variables of Vi (ϕ ∈ Li).

The intuitive meaning of f = (ϕ, p) is that for the set of elementary parcels that
satisfy p, the formula ϕ is true. Observe that there exist formulas built on the
vocabulary Vi ∪ Vs which cannot be put under the attributive form, e.g., a ∧ p1

where a is a literal of Vi and p1 a literal of Vs. The introduction of connectives
∧, ∨ and ¬ does make sense, since any pair (ϕ, p) is a classical formula. From the
above definition of (ϕ, p) as being equivalent to ¬p ∨ ϕ, several inference rules
straightforwardly follow from classical logic:

Proposition 2 (inference rules on attributive formulas)
1. (¬ϕ ∨ ϕ′, p), (ϕ ∨ ϕ′′, p′) ) (ϕ′ ∨ ϕ′′, p ∧ p′)
2. (ϕ, p), (ϕ′, p) ) (ϕ ∧ ϕ′, p); 3. (ϕ, p), (ϕ, p′) ) (ϕ, p ∨ p′)
4. if p′ ) p then (ϕ, p) ) (ϕ, p′); 5. if ϕ ) ϕ′ then (ϕ, p) ) (ϕ′, p)

From these rules, we can deduce the converse of 2: (ϕ ∧ ϕ′, p) ) (ϕ, p), (ϕ′, p)
and that (ϕ, p), (ψ, p′) ) (ϕ ∨ψ, p∨ p′) and (ϕ, p), (ψ, p′) ) (ϕ ∧ψ, p∧ p′). Thus,
reification allows us to keep potential inconsistency local, namely restricted to a
subset of parcels rather than pervading the whole knowledge base.

2.3 Taxonomy of Properties and Partonomy of Parcels

The previous formalization of an ontology can be applied both to parcels, which
gives birth to partonomies, and to properties for describing conceptual tax-
onomies. The properties associated to parcels can be labels taken from a vocab-
ulary. It might seem more suitable to develop first on parcels, before developing
on properties that we will attribute to parcels. But, in fact we agree with [13]
who says that “the taxonomic basis of single-resource classifications precludes
their direct placement in a spatially based ecological hierarchy (partonomy).”

Taxonomies divide and organize items into hierarchies of kind-of relations
[21]. “They work well for arranging entities possessing distinct, identifiable char-
acteristics [...] (soils, vegetation, etc.). But, this strict and rigid identification
is also a limitation, as announced in [13]: Applying taxonomic classifications to
characterize ecological patterns over space proves difficult.” A taxonomy is an
ontology, hence a lattice where the nodes are labeled on a given vocabulary, and
where the partial order entails a relation, named sort-of or is-a, with the follow-
ing peculiarities in practice: (i) Any level can exist without antecedent; (ii) If a
sort-of b, then a may be unique. Let’s name taxon a node of this graph.

Partonomies reflect part-of relations based on space or proximity [21]. [13]
says: “Recognition of patterns at different spatial resolutions is fundamental to
partonomies. Fortunately, there is a natural tendency for humans to perceive
and subdivide the environment on the basis of part-whole relationships [5]. [...]
most patterns or structures originate from ecological processes that are inherently
spatial and thus partonomic in nature.” In a partition of a territory, particular
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Fig. 1. Two partonomies (space ontologies) for the same set of parcels

subsets of parcels may have names, hence any partition equipped with the set
inclusion relation, can be represented by partonomy. We further assume that all
these partonomies share the same set of elementary parcels. Fig.1 exhibits two
partonomies Gs and Gs′ and their common elementary parcels p1, . . . , p6.

A partonomy [1] is an ontology, hence a lattice, where the nodes are labeled
by the elementary parcels, and the partial order entails a part-of relation which,
in practice, has the following properties: (i) A class exists if and only if all its
sub-classes exist; (ii) Only leaves can exist without antecedent; (iii) If a part-
of b, then b made-of a, and it exists c (in the parcel vocabulary), complement
of a in b. The union of two taxons can always exist, but it is not the case for
two elements of a partonomy (partons), because taxons are classes, but partons
are individuals that must exist when used by an operator. Figure 1 represents
two partitions Gs and G′

s of the same space, leading to two partonomies where
elementary parcels are identified by ovals.

3 Fusion of Properties as an Ontology Alignment
Problem

Because the vocabulary is often insufficient for describing any subset of objects
in a non-ambiguous way; or conversely because there may be no proper set
of objects that satisfy a given set of properties and only them, only many-to-
many relationships are really useful for representing geographic information. For
a many-to-many relationship between the parcels of a given subset Pi of the
partonomy, and the properties of a given list Lj of excerpts from the taxonomy,
we need classically to build three database relations:

- Rs that distributes the subset Pi over its parcels;
- Rp that distributes the subset Lj over its properties;
- Ra made of the attributive formulas: pairs from Rs ×Rp (learning samples).
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Fig. 2. An example of two taxonomies

What interests us is to discover if some additional knowledge emerges from the
fusion of two information sources (Rs1, Rp1, Ra1) and (Rs2, Rp2, Ra2). The
fusion of partonomies is not a problem, if we accept to ignore data matching
issues, and that the geometric intersection between parcels of Rs1 and Rs2,
become leaves of the fusion Rs. The fusion of taxonomies is more difficult (many
papers in FCA, semantic web, database integration), and it converges now to the
notion of ontology alignment (see: Euzenat and Shvaiko [11]). We can distinguish
several aspects: (a) the construction of Ra = Ra1 + Ra2 (concatenation), (b)
the structural alignment that will identify th number of nodes for candidate
attributive formulas, and their partial order (classical FCA); (c) the labeling of
this nodes that may unify them possibly on either Rp1 or Rp2, or may need to
form a new label by coupling (sign &) concepts from both Rp1 and Rp2; (d) the
decision to keep or discard these candidates nodes, according to one or several
criteria (this aspect is skipped here, but similar to the discussion of section 5).

Let’s now illustrate the problem with a landscape analysis example. Fig. 2
exhibits two concurrent taxonomies about land cover, as often, when experts
from different disciplines try to build a domain ontology that reflects their own
knowledge. Here, taxonomy 1, seems broader than taxonomy 2, which focuses
on moor lands (shrubs, heath, and grass that can be natural or cultivated). We
also notice that taxonomy 1 accepts multi-heritage, while the second does not.

Fig. 3. Mutual exclusion taxonomy (solution 1)
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Fig. 4. Corresponding cross product taxonomy (solution 2)

Fig. 5. Corresponding aligned taxonomy (solution 3)

One solution is to combine the two taxonomies with the assumption that they
are totally disjoint, and that only one type of information is possible at one parcel
(full mutual exclusion: Fig.3). This first solution means that for each parcel, we
must choose only one label, from either taxonomy. This is a much too strong
constraint, e.g.: Agriculture and Herbaceous are not necessarily incompatible.

A second approach is to consider every association as equally possible, under
the only constraint to preserve both original partial orders (Fig.4). It doesn’t
impose anything: consequently, it doesn’t provide any additional knowledge.

The third solution is to use the relation Ra, built for each p with all the at-
tributive formulas (ϕ1

i , p) expressed in taxonomy 1, together with all the (ϕ2
j , p)

expressed in taxonomy 2. Using a FCA algorithm [16], we can compute the tax-
onomy of Fig. 5: this is the most informative solution, which filters only the
concepts that fit with the actual observations. The principle of the algorithm
is to ’learn’, among several partial orders compatible with both taxonomies,
the minimal which complies with the given set of observations. Of course, this
data-mining technique, if used with different observations, may lead to differ-
ent ”learned taxonomies”, but a stability can be obtained with reliable enough
samples.
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4 Representing Uncertain Geographical Information

Our attributive language is now extended in a possibilistic logic manner, by
allowing uncertainty on properties. Let us recall that a standard propositional
possibilistic formula [8] is a pair made of a logical proposition (Boolean), associ-
ated with a certainty level. The semantic counterpart of a possibilistic formula
(ϕ, α) is a constraint N(ϕ) ≥ α expressing that α is a lower bound on the ne-
cessity measure N [9] of logical formula ϕ. Possibilistic logic has been proved to
be sound and complete with respect to a semantics expressed in terms of the
greatest possibility distribution π underlying N (N(ϕ) = 1 − supω|=¬ϕ π(ω)).
This distribution rank-orders interpretations according to their plausibility [8].

Note that a possibilistic formula (ϕ, α) can be viewed at the meta level as
being only true or false, since either N(ϕ) ≥ α or N(ϕ) < α. This allows us
to introduce possibilistic formula instead of propositional formula inside our
attributive pair, and leads to the following definition.

Definition 5 (uncertain attributive formula). An uncertain attributive
formula is a pair ((ϕ, α), p) meaning that for the set of elementary parcels that
satisfy p, the formula ϕ is certain at least at level α.

The inference rules of possibilistic logic [8] straightforwardly extend into the
following rules for reasoning with uncertain attributive formulas:

Proposition 3 (inference rules on uncertain attributive formulas)
1. ((¬ϕ ∨ ϕ′, α), p), ((ϕ ∨ ϕ′′, β), p′) ) ((ϕ′ ∨ ϕ′′,min(α, β)), p ∧ p′)
2. ((ϕ, α), p), ((ϕ′, β), p) ) ((ϕ ∧ ϕ′,min(α, β)), p)
3.A. ((ϕ, α), p), ((ϕ, β), p′) ) ((ϕ,min(α, β)), p ∨ p′)
3.B. ((ϕ, α), p), ((ϕ, β), p′) ) ((ϕ,max(α, β)), p ∧ p′)
4. if p ) p′ then ((ϕ, α), p′) ) ((ϕ, α), p); 5. if ϕ ) ϕ′ then ((ϕ, α), p) ) ((ϕ′, α), p)

Rules 3.B. and 3.A. correspond respectively to the fact that either i) we locate
ourselves in the parcels that satisfy both p and p′, and then the certainty level of
the formula ϕ can reach the maximal upper bound of the certainty levels known
in p or in p′, or ii) we consider any parcel in the union of the models of p and p′

and then the certainty level is only guaranteed to be greater than the minimum
of α and β. Note that this formalism allows us to express a greater uncertainty
about a rather specific label than about a more general label, as in:

Example 1. In order to express that parcel p1 has either “Conifer” or “Wetland”
and more plausibly “Conifer”, we use the two uncertain attributive formulas:
((Conifer, α1), p1) and ((Wetland ∨ Conifer, α2), p1) where α1 ≤ α2. At the
semantic level, this is represented by the possibility distribution π1 for p1:

π1(ω) =

⎧⎨⎩
1 if ω |= Conifer,
1− α1 < 1 if ω |= Wetland ∧ ¬Conifer,
1− α2 otherwise.
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Suppose that parcel p2 has almost certainly Forest and more plausibly Conifer,
knowing that Conifer are Forest ((¬Conifer ∨ Forest, 1),!). Then for p2:

π2(ω) =

⎧⎪⎪⎨⎪⎪⎩
0 if ω |= Conifer ∧ ¬Forest,
1− α2 if ω |= ¬Conifer ∧ ¬Forest,
1− α1 if ω |= ¬Conifer ∧ Forest,
1 if ω |= Conifer ∧ Forest,

This distribution can be syntactically encoded by the three formulas ((¬Conifer∨
Forest, 1), p2), ((Forest, α2), p2) and ((Conifer, α1), p2), with α2 ≥ α1.

Fusion operations. The syntactic counterpart of the pointwise combination
of two possibility distributions π1 and π2 into a distribution π1 ⊕ π2 by any
monotonic combination operator ⊕ such that 1⊕1 = 1, can be easily computed.
Namely, if Σ1 is associated with π1 and Σ2 with π2, a possibilistic base that is
semantically equivalent to π1 ⊕ π2 can be computed as [3]:

Σ1⊕2 =

∣∣∣∣∣∣
{(ϕi, 1− (1− αi)⊕ 1) s.t. (ϕi, αi) ∈ Σ1},

∪ {(ψj , 1− 1⊕ (1− βj)) s.t. (ψj , βj) ∈ Σ2},
∪ {(ϕi ∨ ψj , 1− (1 − αi)⊕ (1− βj)) s.t. (ϕi, αi) ∈ Σ1, (ψj , βj) ∈ Σ2}.

For ⊕ = min, we get πΣ1∪Σ2 = min(π1, π2) as expected. For ⊕ = max, we get
Σmax(π1,π2) = {(ϕi ∨ ψj ,min(αi, βj)) s.t. (ϕi, αi) ∈ Σ1, and (ψj , βj) ∈ Σ2}.

Localization of attributive knowledge. Still, attributive information itself
may have two different intended meanings, namely when stating (ϕ, p) one may
want to express that:

– Everywhere in each parcel satisfying p, ϕ holds as true, denoted by (ϕ, p, e).
Then, for instance, (Agriculture, p, e) cannot be consistent with (Forest, p, e)
since “Agriculture” and “Forest” are mutually exclusive in taxonomy 1.

– Somewhere in each parcel satisfying p, ϕ holds as true, denoted by (ϕ, p, s).
Then, replacing e by s in this example is no longer inconsistent, since in each
parcel there may exist “Agricultural” parts and “Forest” parts.

Note that these two meanings differ from the case where two exclusive labels
such as “Water” and “Grass” might be attributed to the same parcel because
they are intimately mixed, as in a “Swamp”. This latter case should be handled
by adding a new appropriate label in the ontology. More formally, for a given
parcel p in the partonomy, if p is:

-not a leave, (ϕ, p, s) means: ∀p′, p′ ) p, (ϕ, p′, s) holds;
-a leave, but made of parts o, (ϕ, p, s) means that ∃o ∈ p, ϕ(o).

Thus, it is clear that inference rules that hold for “everywhere”, not necessarily
hold for “somewhere”. Indeed, the rule 2.2 (ϕ, p), (ψ, p) ) (ϕ ∧ψ, p) is no longer
valid since ∃o ∈ p, ϕ(o) and ∃o′ ∈ p, ψ(o′) doesn’t entail ∃o′′ ∈ p, ϕ(o′′) ∧ ψ(o′′).
More generally, here are the rules that hold for the “somewhere” reading:
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Proposition 4 (inference rules on attributive formulas)
1’. (¬ϕ ∨ ϕ′, p ∧ p′, e), (ϕ ∨ ϕ′′, p′, s) ) (ϕ′ ∨ ϕ′′, p ∧ p′, s)
2’. (ϕ, p, s), (ϕ′, p, e) ) (ϕ ∧ ϕ′, p, s); 3’. (ϕ, p, s), (ϕ, p′, s) ) (ϕ, p ∨ p′, s)
4’. if p′ ) p then (ϕ, p, s) ) (ϕ, p′, s); 5’. if ϕ ) ϕ′ then (ϕ, p, s) ) (ϕ′, p, s)

where (ϕ, p, s) stands ∀p′, p′ ) p ∃o ∈ p′, ϕ(o), and (ϕ, p, e) for ∀o ∈ p, ϕ(o).
Moreover, between “somewhere” and “everywhere” formulas, we have:

6’. ¬(ϕ, p,s) ≡ (¬ϕ, p,e)

Taxonomy information and attributive information should be handled separately,
because they refer to different types of information, and, more importantly, be-
cause taxonomy distinctions expressed by mutual exclusiveness of taxons do not
mean that they cannot be simultaneously true in a given area: the taxonomy-
formula (a ↔ ¬b), with a, b ∈ Vi coming from the same taxonomy, differs from
the attributive-formula (a↔ ¬b,!), applied to every parcel (with the everywhere
reading), since it may happen that for a parcel p, we have (a, p) ∧ (b, p) (with a
somewhere reading). The latter may mean that p contains at least two distinct
parts, and that ∃o ∈ p, ϕ(o) ∧ ∃o′ ∈ p, ψ(o′).

However, subsumption properties can be added to attributive formulas with-
out any problem. Indeed ϕ ) ψ means ∀o, ϕ(o) → ψ(o), and if we have (ϕ, p),
implicitly meaning that ∃o ∈ p, ϕ(o), then we obtain ∃o ∈ p, ψ(o), i.e., (ψ, p).
Thus we can write the subsumption property as (ϕ→ ψ,!).

5 Information Fusion: General Discussion on an Example

Generally speaking, fusing consistent knowledge bases merely amounts to apply
logical inference to the union of the knowledge bases. In presence of inconsistency,
another combination process should be defined and used. In this section, we
develop an example, represented in the language of section 4, on two sources
using the same taxonomy (possibly aligned: section 3), but different partonomies.

Possibilistic information fusion easily extends to attributive formulas: each
given (ϕ, p) is equivalent to the conjunction of the (ϕ, pi), where the pi’s are the
leaves of the partonomy, such that pi |= p. Using finite partonomies, it is always
possible to refine them by taking the non-empty intersection of pairs of leaves,
and possibilistic information fusion takes place for each pi.

Let us detail the example of Fig.6: two sources report observations about an
area which is partitioned in four elementary parcels, after refinement: p1, p2, p3, p4,

Source 1 Source 2

Heath Conifer p2

Natural grass Forest
p13 Marsh p4

Forest p12

Herbaceous p3 Wetland
Natural grass p4

Fig. 6. The information given by the sources (inspired from [19])
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using the aligned taxonomy from Fig.5. Clearly, we have four possible logical read-
ings of two labels a and b associated with an area covered by two elementary
parcels p1 and p2:

i. (a ∧ b, p1 ∨ p2): means that both a and b apply to each of p1 and p2.
ii. (a ∧ b, p1) ∨ (a ∧ b, p2): both a and b apply to p1 or both apply to p2.
iii. (a ∨ b, p1 ∨ p2): a applies to each of p1, p2 or b applies to each of p1, p2.
iii. (a∨ b, p1)∨ (a∨ b, p2): we don’t know what of a or b applies to what of p1

or p2. This may be particularized by adding the mutual exclusiveness constraint
¬(a, p1 ∨ p2) ∧ ¬(b, p1 ∨ p2): that a label cannot apply to both parcels.

When a and b are mutually exclusive the everywhere meaning is impossible (if
we admit that sources provide consistent information).

Another ambiguity is about if the “closed world assumption” (CWA) holds
or not, e.g.: if a source says that pi contains Conifer and Agriculture, does it
exclude that pi would also contain Marsh ? It would be indeed excluded by
applying CWA. Also, CWA may help to induce “everywhere” information from
“somewhere” information. Indeed, if we know that all formulas attached to p are
ϕ1, . . . ϕn with a somewhere meaning: (ϕ1, p, s) ∧ . . . ∧ (ϕn, p, s)), then CWA
entails that if there were another ψ that holds somewhere in p, it would have
been already said, hence we can jump to the conclusion that (

∨
i=1,n ϕi, p, e).

Let’s consider the non ambiguous reading i. of the example with the formulas:

Spatial formulas Property formulas
1. p1 → p12,
2. p1 → p13,
3. p2 → p12,
4. p3 → p13,
5. p12 ∨ p13 ∨ p4,
6. p12 → p1 ∨ p2,
7. p13 → p1 ∨ p3,
8. p1 ∧ p2 → ⊥,
9. + 5 mut. excl.

14. Natgrass → Wetland,
15. Natgrass→ ForHeath,
16. WetHerb → Wetland,
17. WetHerb → Herbac,
18. Conifer → ForHeath,
19. Conifer → Shrubs,
20. AgriShrub → Shrubs,
21. AgriShrub → Agric,

22. AgriHerb → Herbac,
23. AgriHerb → Agric,
24. Wetland → Marsh,
25. Wetland → Forest,
26. ForHeath → Forest,
27. ForHeath → Heath,
28. Shrubs → Heath,
29. + 20 mutual excl.

Under the CWA:
Source 1 Source 2

49. (Heath, p13, s)
50. (Natural grass, p13, s)
51. (Conifer, p2, s)
52. (Forest, p2, s)
53. (Marsh, p4, s)

54. (Forest, p12, s)
55. (Herbaceous, p3, s)
56. (Natural grass, p3, s)
57. (Wetland, p4, s)

Let’s project on: p1 ≡ p12 ∧ p13, using formula 7: p13 → p1 ∨ p3, and inference
rule 4’ (with p1 ) p13 and p3 ) p13). Idem with p12. We obtain:

Source 1 Source 2
58. (Heath, p1, s)
59. (Heath, p3, s)
60. (Natural grass, p1, s)
61. (Natural grass, p3, s)

62. (Forest, p1, s)
63. (Forest, p2, s)
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With the closed world assumption, we deduce:
Source 1 Source 2

64. (Heath ∨ Natural grass, p1, e)
65. (Heath ∨ Natural grass, p3, e)
66. (Conifer ∨ Forest, p2, e)
67. (Marsh, p4, e)

68. (Forest, p1, e)
69. (Forest, p2, e)
70. (Herbaceous ∨ Natural grass, p3, e)
71. (Wetland, p4, e)

Now we can proceed with the fusion step, in the conjunctive mode. We obtain:

parcel p1: (64) and (68) yields (Conifer, p1, e), which contradicts (60).
parcel p2: the conjunction of (51), (52), (66), (63) is consistent, and yields
(Woods, p2, e) ∧ (Conifer, p2, s).
parcel p3: the conjunction of (59), (61), (65), (55), (56),(70) consistently yields
(Herbaceous ∨ Naturalgrass, p3, e) ∧ (Herbaceous, p3, s) ∧ (Naturalgrass, p3, s)
parcel p4: (67) and (71) yields (Rivers, p4, e).

Conclusion:
⊥ (Conifer, s)

(Forest, e)
(Herbaceous, s) (Wetland, e)
(Naturalgrass, s)

Sources 1 and 2 are conflicting on p1: we can perform a disjunction of their
formulas on this parcel. This conflict may come from the application of CWA
to each source prior the fusion: the induction from (Forest, p1, s) to (Forest,
p1, e) is perhaps too adventurous. We can check that (Forest, p1, s) would yield
(Conifer ∨ Natural grass, p1, e) ∧ (Conifer, p1, s) ∧ (Natural grass, p1, s).

The treatment of this kind of fusion problem in [19] and [16] distinguishes
between pessimistic and optimistic fusion modes. Our approach uses i) a pure
logical representation setting (with an explicit distinction between conjunction
and disjunction of labels), ii) distinguishes between somewhere and everywhere
statements, iii) allows to express CWA (or not), iv) applies the general setting
of logic-based information fusion. Our fusion result may also be more precise,
thanks to a greater expressivity power of the representation framework.

Our logical framework also allows us to have a possibilistic handling of un-
certainty, and then a variety of combination operations, which may depend on
the level of conflict between the sources, or on their relative priority [3], can
be encoded. The uncertainty setting enables us to enrich the reading of the
example. Consider the information given by source 1 on p2, namely “Conifer,
Forest”. As discussed in section 4.2, such an information may express that p2

is covered by Forest, and plausibly by Conifer. With the “everywhere” reading,
this can be syntactically encoded by the possibilistic formulas ((Forest, 1), p2, e)
and ((Conifer, α), p2, e), with α < 1, together with the ontology information
((¬Conifer ∨ Forest, 1),!). Similarly, the information given by source 2 on
p2 can be encoded as ((Forest, 1), p2, e). Here, there is no inconsistency, hence
((Forest, 1), p2, e) ∧ ((Conifer, α), p2, e).

Imagine that, now, source 2 says ((Forest, 1), p2, e) and ((Wetland, β), p2, e).
The two sources are now partially inconsistent on p2, and it can be checked that
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the level of possibilistic inconsistency of the information provided by the two
sources, about p2, is Inc = min(α, β).

Different fusion modes can be used. One may use a renormalized conjunc-
tion [3]: the syntactic counterpart of this operator yields, if we assume α > β,
((Woods, 1), p2, e) ∧ ((Conifer, α), p2, e). Or one may choose a disjunctive atti-
tude (⊕ = max), one gets ((Forest, 1), p2, e) ∧ ((Conifer ∨Wetland, β), p2, e).

In case we again combine the two previous results obtained with the above
fusion modes, by a product-based conjunction (⊕ =product), one would ob-
tain ((Woods, 1), p2, e) ∧ ((Orchards ∨ Wetland, 1 − (1 − α)(1 − β)), p2, e) ∧
((Conifer, α), p2, e). This is a more refined result, since it keeps track of the con-
flict, and of a preference for the more certain information ((Conifer, α), p2, e)
since α > β. Observe however that 1 − (1 − α)(1 − β)) > α, which makes the
statement Conifer ∨Wetland more certain.

6 Conclusion

After having identified representational needs (use of two vocabularies referring
respectively to parcels and to properties, references to ontologies, uncertainty)
when dealing with spatial information and restating ontology alignment proce-
dures, a general logical setting has been proposed. It offers a non-ambiguous
representation, propagates uncertainty in a possibilistic manner, and provides
also the basis for handling multiple source information fusion. Moreover, we
have seen that it is often important to explicitly distinguish between the cases
where a property holds everywhere or somewhere into a parcel. An issue of in-
terest for further research would be to allow for uncertain or default inheritance
in ontologies. Note that, since subsumption relations can be easily added to the
pieces of attributive spatial information, it would be possible to make some of
these relations uncertain in our framework.
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Abstract. Dealing with structured data has always represented a huge
problem for classical neural methods. Although many efforts have been
performed, they usually pre-process data and then use classic machine
learning algorithm. Another problem that machine learning algorithm
have to face is the intrinsic uncertainty of data, where in such situa-
tions classic algorithm do not have the means to handle them. In this
work a novel neuro-fuzzy model for structured data is presented that ex-
ploits both neural and fuzzy methods. The proposed model called Fuzzy
Graph Neural Network (F-GNN) is based on GNN, a model able to
handle structure data. A proof of F-GNN approximation properties is
provided together with a training algorithm.

Keywords: Structured pattern recognition, fuzzy systems, neural
networks.

1 Introduction

Although neural methods have proved their powerful in dealing with various
machine learning problems, sometimes they have failed because of the intrinsic
data uncertainty. For this reason a growing interest has been addressed towards
the integration of neural nets and approximated logics with a particular inter-
ested for the most famous, i.e. fuzzy logic[18,19]. Synergy between these two
computational methods leads to the definition of new models called neuro-fuzzy
systems. The basic idea behind neuro-fuzzy system is transforming fuzzy control
system so to get neural net learning feature and hence exploiting advantages
from both models. In neuro-fuzzy models, neural nets supply to fuzzy systems
the connectionist structure and the learning ability, while fuzzy systems allow
the use of a framework for approximated reasoning by means of rules in the
IF-THEN form.

Fuzzy logic and neural nets are complementary technologies. Neural nets get
information from systems that have to learn and control, while fuzzy logic based
techniques use linguistic information from experts. It is natural that the synergy
between these two techniques brings benefits to the final model. For example, it
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is possible to use a fuzzy system to represent experience from an expert and to
use neural nets to calibrate their operation. In general, neuro-fuzzy model can
be classified in three categories[6]:

1. Neural fuzzy systems: neural nets are used into fuzzy model
2. Fuzzy neural networks : fuzzification of neural nets
3. Fuzzy-neural hybrid systems: hybrid systems that incorporate fuzzy tech-

niques and neural techniques.

In the first approach the goal is to provide fuzzy systems with tuning techniques
used for neural nets without modifying their functionalities. In these models
neural nets are used for numeric processing of fuzzy systems.

A fuzzy system of the first type are the fuzzy basis function network (FBFN),
a type of neuro-fuzzy controller originally proposed by Wang and Mendel in [14].
In a FBFN, a fuzzy system is presented like an expansion series of fuzzy basis
function (FBF), that is algebraic superimposition of membership functions. For
this reason each FBF codes a fuzzy rule.

In the second approach, some typical elements of neural nets are fuzzified. In
particular in fuzzy neural nets fuzzy neuron with activation signal obtained from
a fuzzy relation are used[9].

In the third approach, both techniques play a fundamental role: each one
operates in distinct part of the system so to incorporate complete functionalities
of the other one[2].

A major drawback of the existing neural fuzzy systems is that their appli-
cation domain is limited to static problems due to their inherent feedforward
network structure. However, these kinds of studies are very interesting in all the
application domains where the patterns are strongly correlated through struc-
ture, the processing is both numerical and symbolic and the nature of the data
is imprecise and incomplete. Hence neural fuzzy systems capable for solving
structure dependent problems are needeed.

The use of more complex data structures can lead to a better representation
of data, so to simplify the solution of a given problem that deals with such data.
Many efforts have been performed to handle structured data by pre-processing
them and then apply classical machine learning algorithms. This approach not
only add complexity to the final algorithm, but also introduce approximation
errors and implementation difficulties. Moreover these kind of techniques tend
to be specific for a problem and hence can be hardly reused for other prob-
lems. Neural methods are an example of techniques that evolved to handle with
structured data[8][16][17][10]: original connectionist models have been modified
to process sequences, trees and graphs. Some models[3][1] have been proposed
to deal directly with structured data, also able to approximate showing in prob-
ability every function defined on graph till an arbitrary precision degree.

Recently, much work has been focused on the representational capabilities of
recursive networks. The idea which motivates these studies is that if a network
model cannot represent a certain structure, then it certainly cannot learn it
either. The main question is then whether or not a given recursive network
architecture can represent a specific structure [4]. Recursive neural networks can
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be initialized with prior knowledge provided by training structured data; this
ability makes recursive neural networks useful tools for modeling tree automata,
where prior knowledge is available.

The purpose of the present paper is to report how to construct neural fuzzy
models for dealing with structured data in recursive manner. The work extends
the model Graph neural network [11,12], letting to handle fuzziness. The learning
algorithm of the reported model and its approximation capabilities are reported
and demonstrated.

2 The Proposed F-GNN Model

The model is based on the idea that computing “concepts” is more efficient if
performed by means of linguistic elements coded as fuzzy rules. A node can
represent an object with some physical attributes, but it can also represent a
concept; in this case a crisp computation is not adequate. A model able to
elaborate such nodes should deal with an intrisic uncertainty, hence fuzzy logic
can support this kind of computation with poweful tools. In the same way, edges
represent relationships between nodes that can be better expressed in terms of
linguistic concepts. Once again, fuzzy computation allows the use of powerful
tools to deal with the uncertainty of these linguisitc elements. Based on these
considerations, the information processing at each node and each edge is made
by means of fuzzy systems in the form of multi-input-single-output (MISO). The
idea is that each node computes input information using fuzzy rules.

Let us assume the fuzzy rules for each node have the following form:

Rj : IF x1 is Aj
1 AND x2 is Aj

2 AND ... AND xn is Aj
n THEN y is Bj

where xi, i = 1, 2, ..., n are the input variables, y is the output variable and Aj
i

and Bj are linguistic terms characterized by membership functions μAj
i
(xi) and

μBj (y) with j = 1, 2, ...,M .
Each node in the graph is encoded by a fuzzy control multi-input-single-output

system (X ⊂ Rn → Y ⊂ R) and in case of multiple output system, it can be
decomposed in more multi-input-single-output systems.

Given an input graph, an encoding map is built using a MISO for each node
of the graph. Each connection between nodes of the graph corresponds to con-
nection between MISOs. Moreover for each output node another MISO is used.
Figure 1 shows the structure of an encoding map where fw and gw are MISOs.

Connections between nodes are necessary to collect the states from adjacent
nodes to a given node. In this way a node output will depend not only on the
state and labels of the node itself but also on states and labels of adjacent nodes.
Once the encoding map has been built, it is unfolded following the input graph
connections (fig.2) and, once the fixed state has been reached, g-unit are added
(encoding network). g-unit is unique in case of focused map; in general, we can
say that they equal the number of output nodes.
From the definition of MISO and from the structure of encoding network, it is

possible to note how in the proposed model f -unit input data are fuzzified and
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Fig. 1. Structure of an encoding map

Fig. 2. Unfolding

defuzzified before they become input of the next f -unit. It is well known [5] that
when more fuzzy rules are linked, problems can arise if the output of the first
rule is not defuzzified before it is given in input to the next rule: this problem,
called fuzzy modus ponens [13], has been faced by a large number of fuzzy logic
researchers.

The above described procedure can be formalized by the following equation:{
xn = fw(ln, lcp[n], xne[n], lne[n])

on = gw(xn, ln)
(1)

where ln is the label of node n, lcp[n] are the labels of its edges, xne[n] are the
states of the nodes in the neighborhood of n, lne[n] are the labels of the nodes in
the neighborhood of n, and xn is the state of node n, i.e. it represents the concept
denoted by node n. This value, along with the label ln, is used to produce an
output, i.e. a decision about the concept.
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However, for non-positional graphs it is useful to replace function fw of Eq.1
with the following equation

xn =
∑

u∈ne[n]

hw(ln, l(n,u), xu, lu) (2)

where hw is a parametric function. This transition function, already used in
recursive neural networks, is not affected by the positions and the number of the
children.

Assuming that the fuzzy system implemented on each node is composed by
the following elements:

– Singleton fuzzifier
– Product inference
– Centroid defuzzifier
– Gaussian membership function.

Each MISO could be modeled as follows:

y = f(x) =

∑M
j=1 yj(

∏n
i=1 μAj

i
(xi))∑M

j=1(
∏n

i=1 μAj
i
(xi))

(3)

where f : X ⊂ Rn → R, yj is the point in the output space Y where μBj (yj)
reaches its maximum value and μAj

i
(xi) is a Gaussian membership function

defined as:

μAj
i
(xi) = aj

iexp[−
1
2
(
xi −mj

i

σj
i

)2] (4)

where aj
i , mj

i and σj
i are real parameters and 0 < aj

i ≤ 1.
From Eq. 4, it is possible to define fuzzy basis functions (FBFs) as:

pj(x) =

∏n
i=1 μAj

i
(xi)∑m

j=1(
∏n

i=1 μAj
i
(xi))

, j = 1, 2, ...,M. (5)

and a FBF network (FBFN) like a FBF expansion:

f(x) =
M∑

j=1

pj(x)θj (6)

where θj = yj ∈ R, i.e. a FBFN can be thought as a linear combination of FBFs.
This asserts also the computational equivalence between a MISO fuzzy system

and a FBFN.
Figure 3 shows the structure of a FBFN where Gaussian membership functions

composed with product are present in layer 1. The output of layer 1 is composed
using the sums in layer 2, while in layer 3 the output is defuzzified. It has to be
noted that, although FBFN structure for f -unit and g-unit is the same, rules
implemented by the two nets are not necessarily the same.
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Fig. 3. FBFN structure

3 F-GNN: Universal Approximator

In the following, theorems that demonstrate approximation properties of the
F-GNN model will be reported.

Firstly we introduce the concept of unfolding equivalence. Let us assume that
τ : D → Rm is a generic map constrained to produce the same output on
nodes that are equivalent, i.e. given two nodes n and u of a grah G, n ∼ u
implies τ(G,n) = τ(G, u). The equivalence ∼ is called unfolding equivalence and
is defined using the concept of unfolding tree T d

n , that is the graph obtained by
unfolding G up to the depth d using n as root.

Definition 1 UnfoldingEquivalence. LetG = (N,E) be an undirected graph1.
The nodes n, u ∈ N are said to be unfolding equivalent, i.e. n ∼ u, if Tn = Tu.

Theorem 1 Approximation by non positional GNN[11]. Let D be the
non-positional graph domain. For each measurable function τ ∈ F(D) that pre-
serves the unfolding equivalence, each norm ‖ · ‖ over Rm, each probability mea-
sure P over D and every real ε, μ, λ with ε > 0, 0 < λ < 1, 0 < μ < 1, exist two
continuous derivable function h and g

xn =
∑

u∈ne[n] hw(ln, l(n,u), xu, lu)
on = gw(xn, ln), n ∈ N

(7)

1 The definition can be extended also to directed graph.
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such that the global transition function F is a contraction with constant μ, state
dimension is s = 1 and the function defined by φ(G,n) = on satisfy the condition

P (‖τ(G,n) − φ(G,n)‖ ≥ ε) ≤ 1− λ (8)

where the global transition function F is a stacked version of |N | instances of fw.

Theorem 2 Approximation by non-positional non-linear F-GNN. Let
assume true the hypothesis of the previous theorem, then exists a set of parame-
ters w and two FBFNs hw and gw with continuous derivative such that the thesis
of the previous theorem is verified.

Previous theorem relies on the following Lemma, which demonstrates that FBFNs
are universal approximators.

Lemma 1 Stone-Weierstrass theorem. Let Z be a set of continuous real
functions on a compact set U . If

1. Z is an algebra, that is the set Z is closed with respect to sum, product and
scalar product operations

2. Z separates points in U , that is for each x, y ∈ U , x 	= y

then Z uniform closure consists of all the continuous real functions on U , that
is (Z, d∞) is dense in (G[U ], d∞).

Proof: Firstly, we show the proof that (Y, d∞) is an algebra. Let f1, f2 ∈ Y such
that:

f1(x) =

∑K1
j=1(z1

j
∏n

i=1 μA1j
i
(xi))∑K1

j=1(
∏n

i=1 μA1j
i

(9)

f2(x) =

∑K2
j=1(z2

j
∏n

i=1 μA2j
i
(xi))∑K2

j=1(
∏n

i=1 μA2j
i

(10)

from which we have:

f1(x) + f2(x) =

∑K1
j1=1

∑K2
j2=1(z1

j1 + z2j2)(
∏n

i=1 μA1j1
i

(xi)μA2j2
i

(xi))∑K1
j1=1

∑K2
j2=1(

∏n
i=1 μA1j1

i
(xi)μA2j2

i
(xi))

(11)

Given that μA1j1
i

and μA2j2
i

are Gaussian membership functions, their product
μA1j1

i
μA2j2

i
is still a Gaussian function, hence f1 + f2 is in the form a FBFN

(f1 + f2 ∈ Y ). Similarly we have that:

f1(x)f2(x) =

∑K1
j1=1

∑K2
j2=1(z1

j1z2j2)(
∏n

i=1 μA1j1
i

(xi)μA2j2
i

(xi))∑K1
j1=1

∑K2
j2=1(

∏n
i=1 μA1j1

i
(xi)μA2j2

i
(xi))

(12)

is also in the form of a FBFN, hence f1f2 ∈ Y . Finally, for an arbitrary c ∈ R,

cf1(x) =

∑K1
j=1(cz1

j
∏n

i=1 μA1j
i
(xi))∑K1

j=1(
∏n

i=1 μA1j
i
)

(13)
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we still have a FBFN, hence f1f2 ∈ Y .
Next step consist in demonstrating that (Y, d∞) separates points U .
Build a function f ∈ Y , such that f(x0) 	= f(y0) with arbitrary x0, y0 ∈ U

and x0 	= y0. Then two fuzzy rules are chosen in the form:

Rj: IF x1 is Aj
1 AND x2 is Aj

2 ... AND xn is Aj
n THEN

z is Bj

as base fuzzy rule (M = 2).
Let x0 = (x0

1, x
0
2, ..., x

0
n) and y0 = (y0

1 , y
0
2 , ..., y

0
n). Se x0

i 	= y0
i , two fuzzy sets

are defined (A1
i , μA1

i
) and (A2

i , μA2
i
) where

μA1
i
(xi) = exp[− (xi − x0

i )
2

2
] (14)

μA2
i
(xi) = exp[− (xi − y0

i )2

2
] (15)

If x0
i = y0

i , then A1
i = A2

i and μA1
i

= μA2
i
, hence only a fuzzy set is defined. Two

fuzzy sets are defined (B1
i , μB1

i
) and (B2

i , μB2
i
) where

μBj
i
(z) = exp[− (z − zj)2

2
] (16)

with j = 1, 2 and zj specified in the following. Hence all parameters have been
defined except zj (j = 1, 2), then a function f , in the FBFN form, has been
defined, with M = 2 and μAj

i
specified before. With such f we have:

f(x0) =
z1 + z2

∏n
i=1 exp[−(x0

i − y0
i )2/2]

1 +
∏n

i=1 exp[−(x0
i − y0

i )2/2]
= αz1 + (1− α)z2 (17)

f(y0) =
z2 + z1

∏n
i=1 exp[−(x0

i − y0
i )2/2]

1 +
∏n

i=1 exp[−(x0
i − y0

i )2/2]
= αz2 + (1 − α)z1 (18)

where

α =
1

1 +
∏n

i=1 exp[−(x0
i − y0

i )2/2]
(19)

Given that x0 	= y0, it must exist some i such that x0
i 	= y0

i , so that
∏n

i=1 exp[−(x0
i−

y0
i )2/2] 	= 1, or α 	= 1−α. If z1 = 0 and z2 = 1, then f(x0) = 1−α 	= α = f(y0).

Hence (Y, d∞) separates all points in U .
(Y, d∞) in not null for any point in U , just choosing all the zj > 0 with

j = 1, 2, ..,M , i.e. every f ∈ Y with zj > 0 can be used as the requested f .

4 F-GNN: Training Algorithm

Before introducing F-GNN training algorithm, we have to show how a neuro-
fuzzy system and a FBFN in particular can be trained:
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1. If aj
i , mj

i and σj
i are free parameters, then the FBFN is non-linear and an

optimization technique like backpropagation has to be used.
2. If all the parameters in pj(x) are given and the only free parameter is θj ,

then f(x) is linear and the orthogonal least-squares (OLS)[14] algorithm can
be used.

In particular in the second case, Gram-Schmidt OLS algorithm is employed,
which can be determine automatically the number of significant FBFs. This
algorithm is a hybrid learning method because other than the number of the
most significant FBFs, it can compute the relative parameters.

4.1 FBFN Backpropagation Algorithm

In the most general case, where optimization has to be performed with respect
to all the parameters, backpropagation algorithm is adopted for FBFN[15]. In
particular FBFN has to be continuous differentiable with respect to parameters
m,σ, θ, where m and σ represent mean and variance of the Gaussian membership
function and θ represents the weight associated with each fuzzy basis function.
Differentiability conditions are ensured by use of Gaussian membership func-
tion, because it is continuous differentiable with respect to both m and σ, hence
FBFN is differentiable too with respect to the same parameters and also with
respect to states x. For parameter θ, FBFN compact form

f(x) =
M∑

j=1

pj(x)θj (20)

shows that f is differentiable with respect to θ.
Given a pair (xP , dP ), xP ∈ U ⊂ Rn and dP ∈ R, we want to minimize

eP =
1
2
[f(xP )− dP ]2 (21)

where f is a FBFN. If we consider e, f, d as eP , f(xP ), dP , respectively, we have:

1. To modify zj it is used:

zj(k + 1) = zj(k)− α
∂e

∂zj |z
j = zj(k) (22)

where j = 1, ...,M and k = 0, 1, 2, ... and α is the learning rate. Because
f and hence e depend on zj only through a, where f = a/b with a =∑M

j=1(z
jyj) and b =

∑M
j=1 yj and yj =

∏n
i=1 μAj

i
(xP

i ), using the chain rule
we have:

∂e

∂zj = (f − d)
∂f

∂a

∂a

∂zj = (f − d)
1
b
yj (23)

from which:
zj(k + 1) = zj(k)− α

f − d

b
yj (24)

where j = 1, ...,M e k = 0, 1, 2, ...
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2. To modify xj
i it is used:

xj
i (k + 1) = xj

i (k)− α
∂e

∂xj
i

|xj
i = xj

i (k) (25)

where i = 1, 2, ..., n, j = 1, 2, ...,M and k = 0, 1, 2, .... Because f and hence
e depend on xj

i only through yj , using the chain rule we have:

∂e

∂xj
i

= (f − d)
∂f

∂yj

∂yj

∂xj
i

= (f − d)
zj − f

b
yj x

P
i − xj

i

σj2
i

(26)

from which:

xj
i (k + 1) = xj

i (k)− α
f − d

b
(zj − f)yj x

P
i − xj

i (k)
σj2

i (k)
(27)

where j = 1, ...,M e k = 0, 1, 2, ...
3. Using the same method, we have the following update of parameter σj

i :

σj
i (k + 1) = σj

i (k)− α
∂e

∂σj
i

|σj
i = σj

i (k)

= σj
i (k)− α

f − d

b
(zj − f)yj (xP

i − xj
i (k))2

σj3
i (k)

(28)

where j = 1, ...,M and k = 0, 1, 2, ...

Based on such considerations, F-GNN learning algorithm see F as a stacked
version of the FBFNs which implement f -units, G is the stacked version of the
FBFNs which implement g-units and vector w contains free parameters to be
modified (mean and variance of the membership functions and weights associated
with each FBF).

To obtain a fast convergence of the algorithm, it is important to initialize pa-
rameters with values consistent with input data, rather than random. Mean and
variance of the nodes label membership functions and of the edges labels mem-
bership functions can be computed as sampled mean and variance (or by using
a clustering algorithm) because these data are part of the input data. On the
contrary, parameters of the states membership functions cannot be computed

Algorithm 1. F-GNN Training algorithm
1: x = FORWARD-1ST(w)
2: repeat
3: ∂ew

∂w
=BACKWARD(x,w)

4: w = w - λ · ∂ew
∂w

5: x = FORWARD(w);
6: until stop criterion is reached
7: return w
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previously and hence it is necessary, during operation of FORWARD-1st func-
tion, to apply a clustering algorithm or to compute sampled mean and variance
of the produced states.

Next, the output node states are first computed (by FORWARD step) and
then computes the gradient (by BACKWARD step).

Once all parameters have been updated, a new FORWARD step is performed,
until the desired accuracy is reached.

5 Conclusion

The aim of the proposed research is the theoretic definition of a neuro-fuzzy
model for structured data. The model employs neural nets to capture information
contained in each node of a graph as well as the information contained at each
adjacent node. This allows to produce a new state, that is a concept defined by a
node and its adjacent nodes. Motivations behind the study of the proposed model
relies on the consideration that a concept can be expressed more effectively in
terms of natural language rather than with numeric values. This aspect imposes
the use of a logic that could handle linguistic terms in the framework of a numeric
model. The chosen logic is the one that more then the others has contributed to
bring “human experience” into expert systems: fuzzy logic.

Although fuzzy logic is often used in static system, the challenge for many
researchers has been that of introducing it into dynamic systems, like neural nets,
which has lead to a new field of computer science: neural fuzzy systems. This is
particularly demanded when the data are too complex, incomplete and, as the
topic of the present paper, are characterized by an inner structure. Synergy of
systems based on fuzzy logic and neural nets to deal structured data aims to put
together two complementary techniques, so to get the best from both of them.
This synergy is mainly required in many application fields where structured data
play a fundamental role, like bioinformatics and computer vision.

The reported model is in this direction and extends in the fuzzy framework
recent works on this subject. In the reported model, named by us F-GNN, nodes
and edges labels (which represents an event) are fuzzy data as well as fuzzy
results the state computation. A remarkable result is presented for the proposed
model in that it is a universal approximator. A learning algorithm based on the
FBFN backpropagation is also sketched to handle structured data.
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Abstract. A framework for the partial evaluation of SPARQL queries on multi-
ple RDF data sources, both at a local and global level, is proposed. According to
the proposed approach, global evaluation of queries is accomplished by first per-
forming local evaluation on each data source, then merging the obtained results.
When merging the results, term equivalence across different sources is evaluated
by looking at the context of each term. Moreover, the framework allows scoring
partial answers by evaluating how much a partial answer is able to capture each
concept expressed in the query. Finally, a distributed index structure is proposed
that supports early pruning of useless intermediate results.

1 Introduction

With the increasing adoption of the Resource Description Framework (RDF) [1] for
describing resources in a semantically-rich and machine-readable way, the integration
and querying of data coming from distributed autonomous sources has gained more
and more importance. Moreover, it is often mandatory to provide a single querying
interface to different data sources, viewing all the available RDF databases as a single
federated database [2]. The standard query language for RDF, SPARQL [3], allows
targeting RDF graphs coming from different sources, and supports the specification of
a different pattern to be matched to each different graph.

In this paper we focus on SPARQL queries consisting of graph patterns, that must be
matched against a set of RDF data sources seen as a whole. In this setting, we propose
a framework for supporting partial answers, in the sense that some of the conditions in
the query can be left unsatisfied.

In the proposed framework, queries are evaluated by first performing local (partial)
evaluation on each data source, then merging the results. This is done with the aim
of retrieving information which can be extended (and possibly completed) with the
information provided by other sources. The final answer is obtained by combining local
partial answers. Observe that our approach differs from the most common approach
currently adopted in the RDF scenario, that is moving all data into a single repository
then merging and querying them locally. Indeed, the latter is unfeasible in the presence
of, e.g., data access limitations, frequently-changing data, large volumes of data, or
on-the-fly creation of RDF views of relational or object-oriented databases.

Moreover, the framework supports the recognition of “implicit” equivalence among
RDF terms: we aim at identifying terms that, across different sources, represent the
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ex:author
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978…2619

ex:book3978…2633 Powers

ex:ISBN

ex:ISBN

ex:ISBN
ex:author

Practical RDF

ex:title

Creating

Location…

ex:title

Creating

the Semantic…

ex:title

ex:publisher

ex:publisher

Wiley

978…2588

ex:ISBN

978…2596

ex:ISBN

(Source A) (Source B)

Fig. 1. Two example RDF graphs

same real-world objects. This way, an object description provided by a source can be
completed by looking at the information about the same object extracted from other
sources. In our framework, term equivalence is recognized by exploiting information
about functional and inverse functional properties (such properties can be specified us-
ing OWL [4]). This process also involves blank RDF nodes, that are unidentified nodes
providing connectivity between different parts of an RDF graph1.

Example 1. Consider two RDF data sources exporting information about books
(Fig. 1). A user that looks for the title of the books wrote by “Hijelm” and published by
“Wiley” would write a SPARQL query containing the clauses

SELECT ?title
WHERE { ?book ex:title ?title .

?book ex:author “Hjelm” .
?book ex:publisher “Wiley”

}
Evaluating this query against each of the RDF graphs by itself would yield no answer.
However, we can recognize that “Creating the Semantic...” is an answer to the query
if we take into account all the available information about ex:book1. In fact, the first
blank node in the RDF graph can be recognized to represent ex:book1, because it has
the same value for an inverse functional property (ISBN). Moreover, source A provides
information about the book’s author and source B about its publisher. If we extract
this partial information and combine them, we can provide a complete answer to the
query. �

Our framework also supports partial final answers. As a consequence, we aim at distin-
guishing among partial answers by trying to quantify how close they are to a complete

1 SPARQL manages blank nodes coming from different sources by replacing them with “fresh”
ones, each with a different local identifier [5], and applying the query to the merged graph.
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answer. Our proposed scoring technique looks at the “independent” concepts specified
in the query, corresponding to connected subgraphs of the query graph. In particular,
for each concept, the score quantifies to which extent the concept is captured, by con-
sidering the “largest” (in terms of triple patterns) of its captured sub-concepts. The
framework is also capable of taking into account the importance given by the user, in
the form of weights, to the triple patterns in the query.

Finally, we propose a distributed index structure supporting the independent evalu-
ation of graph pattern queries at each data source. The main idea is that each source
maintains information about the possibility of finding, in other sources, RDF terms that
are equivalent to local ones. This way, early pruning of useless intermediate results can
be performed.

1.1 Related Work

Past works on partial distributed SPARQL querying tackled different aspects of the sce-
nario described above. [6] proposes a system for the support of SPARQL querying of
multiple relational databases. In [7], a mediator-based engine is proposed for SPARQL
queries over federated RDF databases. The idea is to decompose the original query
into subqueries to be routed to the different sources. To this aim, service descriptions
are employed to declaratively describe the data available at each source. Subqueries
are then identified in such a way that local evaluation always yields a (possibly par-
tial) answer; final answers are always complete. The main focus of the proposal is dis-
tributed query planning and optimization, mainly based on existing techniques from the
relational realm such as query rewriting and cost based optimization; the authors also
propose specific techniques for result size estimation.

A similar approach is proposed in [8,9], where an extension of the Sesame RDF
repository is proposed to support distributed queries over multiple repositories. An in-
dex structure is used to determine the relevant sources for different parts of a query,
then query optimization is performed by viewing the paths in RDF graphs as relation
instances. The approach is thus restricted to path queries. A technique is also proposed
for the recognition of implicit term equivalence that is based on a predefined set of keys.
In [10], a technical infrastructure based on this framework is presented.

Other proposals aim at the support of “relaxed” RDF query answers in the central-
ized scenario. A formal framework is proposed in [11] that supports a complex set
of query transformations: besides dropping entire triple patterns, they allow replacing
a constant with a variable, breaking join dependencies, and predicate-to-domain and
predicate-to-range relaxations. The focus of the proposal is an efficient algorithm for
computing relaxed answers. The framework also attacks the problem of ranking results
by providing a formal characterization of rank functions, but no proposal is made for a
suitable rank function.

The proposal in [12] allows similarity joins by allowing sets of variables to be
declared as imprecise. To rank the results, they look at the imprecise variables and
compare them based on a specified similarity measure, such as edit distance. In [13]
conjunctive queries over a terminological knowledge base are considered. Query con-
tainment is viewed as a form of query approximation, and query evaluation proceeds
from less complex queries to more complex ones (the original one is evaluated last). A
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“query graph” is exploited to establish which parts of the original query are successively
added to the approximate query.

1.2 Main Contributions and Plan of the Paper

To the best of our knowledge, the framework presented in this paper is the first attempt
at supporting, in an integrated way:

- Partial evaluation of SPARQL queries both at a local and global level, in a dis-
tributed scenario;

- Scoring of partial query results;
- Recognition of term equivalence based on the context of each term;
- Early pruning of useless intermediate results through the use of a distributed index.

The remainder of the paper is organized as follows. In Section 2 we briefly formalize
some basic RDF-related notions. In Section 3 we propose our framework for partial
querying of RDF data. Section 4 describes the distributed index and its usage. Finally,
Section 5 outlines conclusions.

2 Preliminaries

We assume the reader is familiar with ordinary RDF. In this section we briefly describe
how we formalize RDF graphs, queries, and query answers.

Let U denote a set of Internationalized Resource Identifiers (IRIs), B a set of blank
nodes, L a set of literals (with U , B, and L being pairwise disjoint), P ⊆ U a set of
IRIs denoting properties, and Pf,Pif ⊆ P two sets of functional and inverse functional
RDF properties [4], respectively. An RDF triple is a triple of the form 〈s, p, o〉 where
s ∈ U ∪ B is the subject, p ∈ P is the property, and o ∈ U ∪ B ∪ L is the object (s,
p, and o are called terms). An RDF database is a finite set of RDF triples2. We say that
a term t belongs to an RDF database D (and write t ∈ D) if t appears in at least one
triple of D. The graph induced by an RDF database contains, for each triple 〈s, p, o〉,
two nodes corresponding to s and o, respectively, and a p-labeled edge between them.
From now on we will refer to a set of RDF triples as to an RDF graph.

The kind of queries we are interested in are graph patterns, that essentially corre-
spond to conjunctive SPARQL queries.

Definition 1 (Graph pattern query). A graph pattern query is a 5-tuple
(V,N,E, ω, C) where:

- V is the set of variables;
- N ⊆ U ∪ B ∪ L ∪ V is the set of nodes;
- E ⊆ N × (V ∪ P)×N is the set of edges;
- ω : E → IR is the edge weight function;
- C is a set of constraints of the form σ1ψσ2, where σ1 ∈ V , σ2 ∈ V ∪ L, and
ψ ∈ {=, <,≤, >,≥, 	=}.

2 We assume we are dealing with RDF databases where all subclass/subproperty inferences have
been drawn.
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?title

ex:author

ex:title

?book HjelmWiley

ex:publisher

Fig. 2. The query graph of Example 1

A graph pattern query (V,N,E, ω, C) is said to be safe if every variable in V appears
in at least one triple in E. In the remainder of the paper we assume that our queries are
always safe.

We view a graph pattern query (V,N,E, ω, C) as a graph containing, for each triple
〈s, p, o〉 ∈ E, two nodes corresponding to s and o, respectively, and a p-labeled edge
between them. For instance, Fig. 2 shows the graph associated with the query of Exam-
ple 1. By a little abuse of notation, given a graph pattern query q = (V,N,E, ω, C) and
a node v ∈ V (resp., edge e ∈ E), we will equivalently write v ∈ q (resp., e ∈ q).

The answer to a graph pattern query q = (V,N,E, ω, C) with respect to a graph D
is the set of substitutions for the variables in V that map each variable to a term in D
such that structural relationships are preserved and constraints are satisfied.

Definition 2 (Query answer). Let D be an RDF graph and q = (V,N,E, ω, C) be a
graph pattern query. The answer to q over D, denoted as q(D), is the set of substitutions
{θ1, . . . , θk} with ∀i ∈ [1, k], θi : V ∪ U ∪ B ∪ L → U ∪ B ∪ L, such that:

1. ∀t ∈ U ∪ B ∪ L it holds that tθi = t;
2. ∀i ∈ [1, k], ∀e ∈ E, it holds that eθi ∈ D;
3. ∀i ∈ [1, k], ∀σ1ψσ2 ∈ C, it holds that σ1θiψσ2θi.

Example 2. The following query, when applied over the RDF graph of source A in
Example 1, retrieves ISBNs and titles of all the books:

SELECT *
WHERE { ?book ex:title ?title .

?book ex:ISBN ?ISBN
}

The answer to this query is the set of substitutions {〈?ISBN/“978...2596”, ?book
/ex:book1, ?title/“Creating the Semantic...”〉, 〈?ISBN/“978...2619”, ?book/ex:book2,
?title/“Creating Location...”〉, 〈?ISBN/“9782633”, ?book/ex:book3, ?title/“Practical
RDF”〉}. �

3 Partial Answers to Graph Pattern Queries

In this section we present a framework for supporting partial answers to graph pattern
queries. A partial answer can be viewed as the result of evaluating a new query where
some of the conditions in the original one have been removed. The aim of our frame-
work is that of providing answers to queries that result from removing conditions from
the original query up to a certain extent.
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We first introduce the notion of partial substitution, then we discuss the notion of
score of a partial substitution, which is a measure of the extent to which a partial sub-
stitution satisfies query conditions, and finally we define partial answers.

Definition 3 (Partial substitution). Let q = (V,N,E, ω, C) be a graph pattern query
and D an RDF graph. A partial substitution for q on D is a (partial) function θ :
V ∪ U ∪ B ∪ L → U ∪ B ∪ L such that the following conditions hold:

1. ∀t ∈ L it holds that tθ = t and ∀t ∈ U ∪ B either t is not mapped by θ or tθ = t;
2. ∀〈s, p, o〉 ∈ E, if s, p, and o are mapped then 〈sθ, pθ, oθ〉 ∈ D;
3. ∀σ1ψσ2 in C, if σ1 and σ2 are mapped then σ1θψσ2θ holds;
4. ∀〈s, p, o〉 ∈ E such that pθ = rdf:type, if s is mapped, then o is mapped;
5. ∀〈s, p, o〉 ∈ E such that pθ is a functional property, if s is mapped and there is a

triple 〈sθ, pθ, x〉 in D, then oθ = x;
6. ∀〈s, p, o〉 ∈ E such that pθ is an inverse functional property, if o is mapped and

there is a triple 〈y, pθ, oθ〉 in D, then sθ = y.
7. ∀v ∈ V if v is mapped then there is a triple e ∈ E such that v appears in e and e

does not contain unmapped variables.

Condition 1 of Definition 3 ensures that θ does not scramble constant terms. Conditions
2 and 3 impose that θ preserves the structural relationships and the constraints specified
in q. Condition 4 states that, if θ maps a term having an rdf:type specified in q, then its
image must be a node of the correct type. Conditions 5 and 6 entail that, if a term n is
mapped, then the triples in q that express (inverse) functional properties of n must be
mapped and thus correctly preserve the (inverse) functionality. Condition 7 means that
mapped variables are indeed used to satisfy at least one triple in q.

Obviously, given a query q and a data graph D, several partial substitutions for q
on D may exist. As it will be clearer in the following, it is important to distinguish
among these partial substitutions, by trying to quantify how close they are to a total
substitution. We now discuss our proposal for the ranking of partial substitutions that
is based on this criterion, and define a measure for estimating the closeness of a partial
substitution to a (total) substitution. From now on, we say that a triple, constraint, or
graph is mapped iff it does not contain unmapped variables.

In the light of Definition 3, a partial substitution can be viewed as an incomplete
substitution, in the sense that it may leave some of the query variables unmapped. Some
of the constraints in the query may also be disregarded; however, due to Condition 3
in Definition 3, this happens only if at least one of the two terms in the constraint is
not mapped. Thus, since all the variables occurring in a query appear in at least one
triple, a constraint is disregarded when at least one triple of the query is not mapped.
This reasoning suggests that the degree of completeness of a partial substitution θ can
be measured by counting the number of triples of the query which are mapped by θ (as
explained above, this takes into account the constraints which are disregarded by the
partial substitution as well).

The measure explained above is based on the assumption that each triple in the
query represents a concept independently from the concepts represented by the other
triples. A more reasonable completeness measure must distinguish among the indepen-
dent concepts specified in the query, and evaluate, for each of them, with which degree
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of completeness this concept is mapped onto the data graph by the partial substitution.
Intuitively enough, it is reasonable to assume that each concept expressed in the query
corresponds to a connected subgraph of the query graph. Consequently, we measure the
completeness of a partial substitution by taking the average of the degrees of complete-
ness with which each connected subgraph of the query graph is mapped. Specifically,
we measure the completeness of a partial substitution w.r.t. each connected subgraph c
as the ratio between the size of the largest mapped connected subgraph of c and the size
of c itself.

More formally, given a graph pattern query q, we denote the set of maximal con-
nected subgraphs of q as C(q). Moreover, given a subgraph q′ of q and a partial substi-
tution θ, we denote the set of maximal connected subgraphs of q′ which are mapped by
θ as CG(q′, θ). Finally, we define the score of θ, denoted as score(θ, q,D), as

score(θ, q,D) = avgq′∈C(q)

⎛⎝maxg∈CG(q′,θ)

(∑
e∈g ω(e)

)
∑

e∈q′ ω(e)

⎞⎠ .

Observe that, since query triples are associated with a weight, graph sizes are evaluated
by considering the weights of their triples.

Example 3. Consider a query q corresponding to the following SPARQL query (we
consider an extended syntax, where the weights associated with triple patterns are writ-
ten in square brackets):

SELECT ?a1 ?b1
WHERE { ?a1 p ?a2 [1]. ?a2 p ?a3 [1]. ?a3 p A [1].

?b1 q ?b2 [2]. ?b2 q ?b3 [2]. ?b3 q B [2]
}

When evaluated over an RDF graph D, the query retrieves all the pairs of nodes
n1, n2 ∈ D, such that A is reachable from node n1 through 3 p-labeled edges, and
B is reachable from node n2 through 3 q-labeled edges. Now consider two partial sub-
stitutions θ and θ′, where θ maps triples 〈?a1 p ?a2〉, 〈?a3 p A〉, and 〈?b1 q ?b2〉,
and θ′ maps triples 〈?a1 p ?a2〉, 〈?a2 p ?a3〉, and 〈?a3 p A〉. Both substitutions map
3 of the triples in the query, but θ′ is able to completely map the path between the
image of ?a1 and A. If we measure the completeness of the substitutions as the over-
all weight of the mapped triples, substitutions θ and θ′ have scores 4 and 3, respec-
tively; with our characterization, we obtain: score(θ, q,D) = avg(1

3 ,
2
6 ) = 1

3 , and
score(θ′, q,D) = avg(3

3 ,
0
6 ) = 1

2 , thus capturing the fact that θ′ can be considered
more complete than θ. �

The notion of query answer introduced in Definition 2 as a set of (total) substitutions can
be naturally extended to the notion of partial query answer. In our framework, a partial
answer is a set of partial substitutions whose score is greater than a given threshold.

Definition 4 (Partial answer). Let q be a graph pattern query, D an RDF graph, and
κ ∈ [0, 1]. The partial answer of q on D w.r.t the threshold κ (denoted as qκ(D)) is the
set of all the partial substitutions θ for q on D such that
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1. Score(θ, q,D) ≥ κ;
2. There is no partial substitution θ′ for q on D such that (i) for each variable v

mapped by θ it holds that θ′(v) = θ(v), and (ii) there exists a variable in V that is
mapped by θ′ and not by θ.

Basically, Condition 2 ensures maximality of the partial substitutions. Obviously,
q1(D) = q(D), and q0(D) consists of all the maximal partial substitutions for
q on D.

3.1 Partial Answers over Multiple RDF Graphs

In the previous section we introduced the notion of partial answer for queries posed
against a single RDF graph. We now extend this notion to the case of distributed data.
In this scenario, a partial description of a concept can be provided by a single source,
but the description can still be extended (and possibly completed) by looking at the
information about the same concept given by other sources (as explained in Example 1).
In defining the notion of partial answer in the distributed scenario, we take advantage
of this possibility. To this aim, we introduce the notion of term equivalence, which will
be exploited to detect whether the same concept is described by different sources.

Definition 5 (Term equivalence). Let D1, . . . , Dk be RDF graphs and D =
⋃k

i=1 Di.
Let t1, t2 be two terms in D. Terms t1 and t2 are said to be equivalent w.r.t. D (denoted
as t1 ≡ t2) iff one of the following conditions holds:

1. t1 and t2 are the same term (same IRI or same literal);
2. there is a property p ∈ Pf and there are triples 〈t′1, p, t1〉, 〈t′2, p, t2〉 in D such that

t′1 ≡ t′2;
3. there is a property p ∈ Pif and there are triples 〈t1, p, t′1〉, 〈t2, p, t′2〉 in D such that

t′1 ≡ t′2;
4. there is a term t3 in D such that t1 ≡ t3 and t2 ≡ t3.

Basically, Definition 5 means that two terms are equivalent if they refer to the same
“real-world” object. Specifically, Conditions 2 and 3 exploit functional and inverse
functional properties to detect term equivalence. For instance, Condition 3 captures
the fact that, if two distinct terms are related through an inverse functional property to
the same term (or, more generally, to a pair of equivalent terms), then they represent
the same concept, as inverse functional property values uniquely identify concepts (see
Example 1).

The term equivalence relation defines equivalence classes of terms; we denote the
equivalence class containing a term t as c(t). Let C(≡) be the set of equivalence classes
of the terms of D implied by relation ≡ and let γ : C(≡) → U ∪ B ∪ L be the function
defined as follows:

- If c ∈ C(≡) contains a term in U , then γ(c) is the first IRI in c according to any
given total order on U ;

- If c contains a literal l ∈ L, then γ(c) = l;3

3 Two literals are equivalent only if they represent the same value, thus all the literals in the same
equivalence class represent the same value.
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Fig. 3. Global RDF graph for Example 1

- Otherwise, γ(c) is a blank node not appearing in D and such that ∀c′ ∈ C(≡) s.t.
c′ 	= c, γ(c′) 	= γ(c′).

Function γ associates a single representative term with each equivalence class in C(≡).
We define the global graph over a set of RDF graphs D1, . . . , Dk as the graph obtained
by merging graph D1, . . . , Dk after substituting every term with the representative of
its equivalence class.

Definition 6 (Global graph). Let D1, . . . , Dk be RDF graphs and D =
⋃k

i=1 Di. The
global graph over D1, . . . , Dk is

global(D1, . . . , Dk) = {〈γ(c(s)), γ(c(p)), γ(c(o))〉 | 〈s, p, o〉 ∈ D}.

Fig. 3 shows the global graph obtained from the RDF graphs of Example 1.
The partial answer of a query over multiple RDF graphs is defined as the partial

answer over the corresponding global graph.

Definition 7 (Partial answer over multiple RDF graphs). Let D1, . . . , Dk be RDF
graphs, q be a graph pattern query and κ ∈ [0, 1]. The partial answer of q over
D1, . . . , Dk w.r.t κ is qκ(global(D1, . . . , Dk)).

Thus, with our proposed query semantics for multiple graphs, partial evaluation is per-
formed on the global graph. For instance, the evaluation of the query of Example 1 is
performed on the global RDF graph of Fig. 3. It should be noted that, if we set κ = 1,
our semantics is able to correctly provide the complete answer {〈?book/ex:book1, ?ti-
tle/“Creating the Semantic...”〉}.

4 Evaluation of Graph Pattern Queries

Following Definition 7, the answer to a graph pattern query q over a set of RDF graphs
can be evaluated by first computing the corresponding global graph D and then evalu-
ating q over D. However, this may require large amounts of data to be exchanged, and
thus be unfeasible in practice. In this section, we propose an approach for evaluating
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a graph pattern query in a distributed scenario which takes advantage of partial results
computed on each RDF graph involved in the query.

Specifically, we first show that the partial answer evaluated on the global graph can
be obtained by merging the results of the partial evaluation of the query on each graph.
Then, we show that this strategy can be enhanced by exploiting a distributed index that
counts the number of equivalent terms of every term.

We start by introducing the notion of subgraph induced by a set of partial substitu-
tions Θ of a query q on a single RDF graph D. Basically, this subgraph consists of the
triples of D onto which the triples in q are mapped by some substitution in Θ, along
with triples of D defining chains of functional/inverse-functional properties connected
to terms mapped onto D by some substitution in Θ.

Definition 8 (Induced subgraph). Let q = (V,N,E, ω, C) be a graph pattern query
and D an RDF graph. The subgraph of D induced by a set of (partial) substitutions Θ
for q on D (denoted as sub(Θ,D)) is the RDF graph satisfying the following conditions:

1. ∀e ∈ E and ∀θ ∈ Θ, if eθ ∈ D, then eθ ∈ sub(Θ,D);
2. ∀x ∈ U ∪ B such that there is a triple of the form 〈x, p, o〉 or of the form 〈s, p, x〉

in sub(Θ,D),
(a) if there is a triple 〈s′, p, x〉 in D where p ∈ Pf, then 〈s′, p, x〉 ∈ sub(Θ,D);
(b) if there is a triple 〈x, p, o′〉 in D where p ∈ Pif, then 〈x, p, o′〉 ∈ sub(Θ,D).

Proposition 1 below ensures that the partial answer to a query q over a set of RDF
graphs D1, · · · , Dk w.r.t. a threshold κ can be evaluated by performing the following
steps:

1. Evaluate q0(D1), . . . , q0(Dk), i.e., the partial answers of q on D1, · · · , Dk w.r.t.
the threshold 0;

2. For each Di, compute its subgraph induced by q0(Di);
3. Build the global graph from the k induced subgraphs;
4. Evaluate q on the graph obtained at the previous step w.r.t. the threshold κ.

Proposition 1. Let D1, . . . , Dk be RDF graphs, q be a graph pattern query, κ ∈ [0, 1]
and ∀i ∈ [0..k], Si = sub(q0(Di), Di). It holds that qκ(global(D1, . . . , Dk)) =
qκ(global(S1, . . . , Sk)).

We now show how the above-described strategy for computing partial answers on mul-
tiple RDF graphs can be further enhanced by exploiting a suitable distributed index on
the equivalent terms. Specifically, the information represented in this index will allow
us to prune, from each q0(Di), the substitutions which cannot contribute to the final
answer, i.e., the substitutions which cannot be extended up to a substitution satisfying
the specified threshold.

Definition 9 (Equivalent-term index). Let D1, . . . , Dk be RDF graphs. The local
equivalent-term index Ii of Di is a set containing, for each term t ∈ Di, the pair
〈t, n〉, where n is the number of terms in D1 ∪ · · · ∪Di−1 ∪Di+1 ∪ · · · ∪Dk that are
equivalent to t. The equivalent-term index on D1, . . . , Dk is the set I = {I1, . . . , Ik}.
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On the basis of the information represented in the equivalent-term index, we introduce
the notion of forbidden term. Basically, given a query q and a partial substitution θ, a
term t of q is forbidden if it is not mapped by θ and cannot be mapped by any substitu-
tion extending θ, as t is connected (through an edge in q) to a term t′ which is mapped
by θ onto a node of the local RDF graph that has no equivalent terms in any other data
source.

Definition 10 (Forbidden term and extension-candidate subgraph). Given a graph
pattern query q = (V,N,E, ω, C), an RDF graph Di, a partial substitution θ for q
on Di, and the local equivalent-term index Ii, we say that a term t is forbidden if it
appears in a triple e ∈ E and the following conditions hold:

1. θ does not map t;
2. There is a term t′ in e such that t′ is mapped by θ and there is no pair 〈t′θ, n〉 ∈ Ii

with n > 0;
3. If t appears as the subject or object of e, then the property p specified in e is mapped

by θ.

The extension-candidate subgraph of q w.r.t. θ and Ii (denoted as EC(q, θ, Ii)) is a graph
consisting of the triples in E containing no forbidden terms.

Given a graph pattern query q = (V,N,E, ω, C), an RDF graph Di, a local equivalent
term index Ii, and a partial substitution θ for q on Di, we say that θ is an extension-
candidate substitution for q w.r.t. Ii up to a threshold κ iff

κ ≤ avgq′∈C(q)

⎛⎝maxg∈A(q′)

(∑
e∈g ω(e)

)
∑

e∈q′ ω(e)

⎞⎠
where A(q′) = C

(
EC(q, θ, Ii) ∩ q′

)
, i.e., A(q′) is the set of maximally connected sub-

graphs of EC(q, θ, Ii) which are subgraphs of q′ as well.

Proposition 2. Let D1, . . . , Dk be RDF graphs, q a graph pattern query, and, for
each i ∈ [1..k], let Θi be the set of the extension-candidate substitutions for
q on Di w.r.t. Ii up to a threshold κ. It holds that qκ(global(D1, . . . , Dk)) =
qκ(global(sub(Θ1, D1), . . . , sub(Θk, Dk))).

Maintaining the equivalent-term index. We now discuss how the equivalent-term
index is maintained up-to-date w.r.t. bulk updates performed at each data source. A bulk
update is a pair of the form 〈U+, U−〉, where U+ and U− are disjoint sets consisting
of the triples to be inserted and deleted, respectively.

Triple insertions and deletions may cause insertions and deletions of terms, and may
change the subgraphs induced by already existing terms. These three forms of changes
may modify the number of terms equivalent to a term stored in the equivalent-term
index. It is straightforward to see that both the insertion and the deletion of a term t
changes the entries of the equivalent-term index I corresponding to terms equivalent to
t. Moreover, the insertion/deletion of a triple may also change the number of detectable
equivalents of terms not occurring in the triple. In fact, the equivalence between two
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terms ti, tj occurring in two distinct RDF graphs Di, Dj is decided on the basis of the
subgraphs of Di, Dj induced by ti and tj , which, as explained above, may be changed
by a triple insertion/deletion.

When a bulk update is applied on the local RDF graph Di, Di is changed accord-
ingly, and several messages are exchanged between Di and the other data sources, to
update the equivalent-term index. The algorithm in Fig. 4 is executed at each data source
Di where a bulk update U is performed. It first computes the set TU of the terms in the
local RDF graph whose induced subgraphs are affected by U . Then, for each term t in
TU , a message is sent to all the other data sources, depending on which of the following
cases occurs:

- If t has been inserted into Di, a message insert is sent, with the specification of t
and the subgraph induced by t on the updated local RDF graph;

- If t has been deleted from Di, a message delete is sent, with the specification of t
and the subgraph induced by t on the old local RDF graph;

- If t is a term which has been neither inserted nor deleted from Di and the induced
subgraph of t has been changed by U , a message update is sent, with the specifica-
tion of t and both the subgraphs induced by t on the updated and the old local RDF
graph.

The algorithm in Fig. 5 is executed at each data source Dr which receives a message
from another data source Ds. The following cases may occur:

- If an insert(t, G) message is received (where G is the subgraph induced by t in
Ds), the algorithm looks for a term t′ equivalent to t in the local RDF graph Dr. In
order to check the equivalence, both Dr and G are exploited, i.e., t ≡ t′ is tested on
D′ = Dr ∪G, as this enables terms related to t and t′ through (inverse) functional
properties to be taken into account. Then, if an equivalent term is found, the local
equivalent-term index is updated accordingly, and a reply is sent back to Ds, so
that Ds will be aware of the presence of term equivalent to t and will increase the
counter associated with t in its local index.

- If a delete(t, G) message is received, the algorithm looks for a term t′ equivalent to
t among those referred in the local equivalent-term index. Again, the equivalence

Algorithm Update
Input: U = 〈U+, U−〉: update to the local RDF graph D
Output: Updated D and transmission of the appropriate messages

1 D′ ← D ∪ U+ \ U−

2 TU = {t | ∃t′ s.t. t′ appears in U and t′ appears in sub(D, t) or in sub(D′, t)}
3 for each term t ∈ TU

4 if t ∈ D′ \ D then send insert(t, sub(D′, t))
5 if t ∈ D \ D′ then send delete(t, sub(D, t))
6 if t ∈ D ∩ D′ and sub(D, t) �= sub(D′, t) then send update(t, sub(D, t), sub(D′, t))
7 end for
8 D ← D′

Fig. 4. Performing bulk updates
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Algorithm Apply update messages
Input: Update message m, local RDF graph D, equivalent-term index I
Output: Updated equivalent-term index I

1 if m =insert(t,G)
2 for all terms t′ ∈ D
3 if t ≡ t′ w.r.t. D ∪ G then
4 replace 〈t′, n〉 with 〈t′, n + 1〉 in I
5 reply increase(t)
6 if m =delete(t,G)
7 for all pairs 〈t′, n〉 ∈ I with n > 0
8 if t ≡ t′ w.r.t. D ∪ G then
9 replace 〈t′, n〉 with 〈t′, n − 1〉 in I

10 if m =update(t,Gnew , Gold)
11 for all terms t′ ∈ D
12 if t ≡ t′ w.r.t. D ∪ Gold and t �≡ t′ w.r.t. D ∪ Gnew then
13 replace 〈t′, n〉 with 〈t′, n − 1〉 in I
14 reply decrease(t)
15 if t ≡ t′ w.r.t. D ∪ Gnew and t �≡ t′ w.r.t. D ∪ Gold then
16 replace 〈t′, n〉 with 〈t′, n + 1〉 in I
17 reply increase(t)

Fig. 5. Updating an equivalent-term index after receiving an update message

test t ≡ t′ is accomplished w.r.t. Dr ∪ G. Then, if an equivalent term is found,
the local equivalent-term index is updated accordingly. Observe that in this case no
message is sent back to Ds, since Ds deletes the entry corresponding to t from its
local-term index independently on whether t has equivalents or not.

- If an update(t, Gnew, Gold) message is received (where Gnew and Gold are the sub-
graphs induced by t in the version of Ds after and before the update, respectively),
the algorithm looks for a term t′ in the local RDF graph Dr satisfying one of the
following conditions:

1. t′ is equivalent to t w.r.t. Dr ∪ Gold, but not w.r.t. Dr ∪ Gnew: this means that
the update resulted in removing some triple from the induced subgraph of t.
In this case, the number of terms equivalent to t′ in the local equivalent-term
index is decreased by 1, and a message is sent to Ds calling for the decrease of
the counter associated to t in the local equivalent-term index of Ds.

2. t′ is equivalent to t w.r.t. Dr∪Gnew, but not w.r.t. Dr∪Gold: this means that the
update resulted in inserting some triple into the induced subgraph of t. In this
case, the number of terms equivalent to t′ in the local equivalent-term index
is increased by 1, and a message is sent to Ds calling for the increase of the
counter associated to t in the local equivalent-term index of Ds.

Observe that, if a term t′ is found in Dr which is equivalent to t w.r.t. both Dr∪Gnew

and Dr ∪Gold, no change must be performed on the equivalent-term index.
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5 Conclusions

In this work, a framework for the partial evaluation of SPARQL queries in a distributed
scenario has been proposed. The framework supports, in an integrated way, the partial
evaluation of SPARQL queries both at local and global level, by exploiting implicit
equivalence among terms. Moreover, a scoring function for partial answers has been
defined that looks at the independent concepts expressed in the query. Finally, a dis-
tributed index for the early pruning of useless intermediate results has been proposed.
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Abstract. RDF is increasingly being used to represent large amounts
of data on the Web. Current query evaluation strategies for RDF are
inspired by databases, assuming perfect answers on finite repositories.
In this paper, we focus on a query method based on evolutionary com-
puting, which allows us to handle uncertainty, incompleteness and un-
satisfiability, and deal with large datasets, all within a single conceptual
framework. Our technique supports approximate answers with “anytime”
behaviour. We present scalability results and next steps for improvement.

1 Introduction

The Resource Description Framework (RDF) standard [22] is increasingly being
used to represent large amounts of data on the Web [10], such as the openly
available datasets for the billion triple challenge1. Such Semantic Web data is
intrinsically incomplete, is too large to represent entirely, and contains errors,
omissions and ambiguity. However, most query languages and evaluation strate-
gies for Semantic Web data are inspired by databases: the SPARQL [27] query
language assumes perfect answers on finite repositories and most RDF stores
rely on database back-ends or database-style implementations [6, 17].

We introduced evolutionary RDF query answering [25] as an alternative to
these approaches, a new querying paradigm which, we claim, has the potential
to efficiently produce approximate answers for large RDF datasets. In short,
our algorithm finds variable assignments such that the data graph entails the
query graph after variable substitution. Instead of using database-style indices,
we randomly generate various “individuals” with complete variable assignments
and evolve these individuals using an evolutionary algorithm. A fitness function
rewards approximate answers and yields maximum value for perfect solutions. At
the current state, our implementation shows some good convergence properties,
even though the quality of the answers is not yet fully satisfying.

In this paper, we investigate evolutionary RDF query answering from the per-
spectives of approximation and scalability; first, studying how our evolutionary
approach behaves in the light of uncertainty, incompleteness and unsatisfiability,
and secondly, how it scales when applied to realistic datasets. The outcome of
our analysis is encouraging, as it indicates nice computational properties of our
method, and that it effectively deals with different kinds of uncertainty.
1 http://challenge.semanticweb.org
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After giving some background in section 2 we describe our evolutionary algo-
rithm for RDF query answering in section 3. In section 4, we study the space and
run-time requirements of our algorithm. In section 5, we discuss the application
of our technique to approximate queries on imperfect data.

2 Background

We first introduce an example which will be used throughout the paper to il-
lustrate our approach. A short snippet of RDF, taken from the SwetoDblp pub-
lications dataset [1], is shown in Listing 1.1. It states that the “Principles of
Database Systems” book was written by some unnamed blank node, whose first
element is Jeff Ullman, with a homepage at Stanford. All authors in the SwetoD-
blp dataset are RDF sequences (ordered lists). A simple SPARQL query over the
SwetoDblp dataset, selecting the titles of all books, is shown in Listing 1.2. In
the rest of the paper, we use a subset of this SwetoDblp2 dataset containing 3m
triples and a collection3 of FOAF profiles containing 15k triples for evaluation.

Listing 1.1. RDF snippet from SwetoDBLP dataset


 �
<Ullman88> rdf:type opus:Book .
<Ullman88> rdfs:label "Principles�of�Database�and�Knowledge-Base�Systems" .
<Ullman88> opus:author _:b1 .
_:b1 rdf:_1 dblp:ullman .
dblp:ullman foaf:homepage <http://www-db.stanford.edu/~ullman/> .

� 

Listing 1.2. SPARQL query for book title


 �
SELECT ?title WHERE {
?publication rdf:type opus:Book .
?publication rdfs:label ?title .

}
� 

2.1 Formal Problem Description

The formal definitions for the problem we address are standard and closely
follow the formalism presented in [23, 26]. RDF [22], the data model of the
Semantic Web, is a language for asserting statements about arbitrary identifiable
resources. Formally, given three infinite sets I, B and L called respectively URI
references, blank nodes and literals, an RDF triple (s, p, o) is an element of
(I ∪ B) × I × (I ∪ B ∪ L). Here, s is called the subject, p the predicate, and o
the object of the triple. An RDF graph (or dataset) is then a set of RDF triples.

For querying RDF, we restrict ourselves to a subset of SPARQL [27]: select
and construct queries with one or more where clauses of simple graph pat-
terns. Graph patterns are subsets of (I∪L∪V )×(I∪V )×(I∪L∪V ), where V is a
set of variables (disjoint from U ∪I ∪B). The rest of SPARQL can be supported

2 http://eardf.few.vu.nl/dblp3m.nt.gz
3 http://eardf.few.vu.nl/foaf.nt.gz

http://eardf.few.vu.nl/dblp3m.nt.gz
http://eardf.few.vu.nl/foaf.nt.gz
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within the same conceptual framework. In the remainder of the paper we refer
to this sub-language. We define the semantics of a query through a mapping μ
which is a partial function μ : V → U ∪ I ∪B. For a triple pattern t, μ(t) is the
triple obtained when the variables in t are replaced according to μ.

The set of solutions to a query Q over a data-set D is now defined as follows:
let D be an RDF data-set over U ∪ I ∪B, and Q a graph pattern. Then we say
that a mapping μ is a solution for Q in D if, and only if, μ ∈

⋂
t∈Q{μ | dom(μ) =

var(t) and μ(t) ∈ D}, where var(t) is the set of variables occurring in t. In the
following we will often call the graph pattern Q a query, a solution for Q in D
an assignment, and will refer to a triple pattern within a query as a clause.

2.2 Evolutionary Algorithms

Evolutionary algorithms [14] are based on a population of individuals that evolve
based on natural selection and inheritance. Each individual represents a candi-
date solution which competes with its siblings based on “survival of the fittest”.
Evolutionary algorithms have proven to be efficient on a wide range of optimisa-
tion, modeling, and simulation problems; using them for satisfiability problems
(as we do here) leads to good results when some knowledge about the problem
is incorporated in the evolution process [8, 13].

In general, convergence of an evolutionary algorithm depends on the algo-
rithm, the type of problem, and the fitness landscape (how the fitness is dis-
tributed over the solutions). For an evolutionary algorithm with elitist selection
as we use here, lower and upper bounds on convergence can be determined [19].
Recently, Teytaud and Gelly [29] have shown that evolutionary algorithms that
only compare fitness values can converge linearly at best, and suggest ranking
solutions instead; we do so, by weighting parts of the solutions. Later in the
paper, we empirically demonstrate convergence for some RDF queries.

2.3 Evolutionary RDF Querying

Existing RDF stores such as Sesame [6] or YARS [17] mostly employ standard
database techniques for query answering. Generally speaking, all systems con-
struct partial indices for simple triple patterns such as (∗po) and (sp∗) during
loading time. During query execution, single patterns can be answered with di-
rect index lookups, while joins require nested loops with backtracking.

We propose a different approach which consists of, iteratively, guessing a set of
complete assignments for the query variables (a “candidate solution”), verifying
those assignments, and if no solutions are found, loop and trying again [25]. The
main difference with traditional database querying approaches is that we verify
candidate solutions instead of generating them.

In order to minimize query answering time, our evolutionary algorithm should
improve its assignments with each loop, arrive at some solution relatively fast,
and verify each candidate solution rapidly. To achieve those goals, we combine an
evolutionary algorithm with Bloom filters [3], to respectively generate candidate
solutions and to test them. Additionally, we use a dictionary encoding to reduce
memory usage during evolution.
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Verification of solutions. Bloom filters [3] are compact data representations that
support only set insertion and membership evaluation. On insertion, a bitmask
is computed by applying k hash functions to the inserted key. Bits indicated by
the mask are set to 1 in the filter (default value is 0). For membership evaluation,
the element’s bitmask is computed and evaluated against the stored mask of the
set. Since computed hash functions may collide, a lookup may result to false
positives (if all k hash functions collide). This collision rate p depends on the
ratio m/n between filter bitsize and number of stored elements, and on the k

number of hash functions used: p = (1− e−
kn
m )k.

In our application, the size of our filters can be adjusted during data loading
time to achieve a given collision rate; alternatively, with a given filter and domain
size, we can estimate the confidence of false positives in the answers using the
same equation. Typically, the number of hash functions is set to k = 4, to achieve
good collision rates with varying data sizes.

Dictionary. During graph parsing a term dictionary is constructed, which maps
terms to integer keys and vice versa. The domain of each variable (candidate
assignments) and all generated individuals (selected assignments) are expressed
as integer vectors, holding dictionary keys. For readibility, those integers are
substitued by their corresponding terms throughout the examples in this paper.

3 An Evolutionary Algorithm for RDF Querying

We now describe the details of our evolutionary encoding: the representation
of variable assignments as individuals, the fitness evaluation, the evolutionary
operators that modify the population, and some convergence results.

3.1 Encoding of Individuals and Constraints

To setup our evolutionary algorithm, we need to choose a representation for the
individuals (candidate solutions) and for the query (constraints). Each individual
is a fully instantiated solution to our problem, ie. an assignment for all variables.
Therefore, the encoding template for the individuals is the set of terms defined by
the query, as shown in Table 1(a). In order to increase the genetic material, and
in contrast to our earlier encoding [25], each variable is considerated separately,
resulting in two different genes for the same variable ?publication.

The domain of a variable depends on its usage in the graph. In total, we have
seven possible domains: s, p, o, sp, so, po, spo. During graph parsing we populate
the three domains s, p and o with nodes occurring at subject, predicate and
object position. Then a variable’s domain is the intersection of its position in
the query clauses. Table 1(b) shows the domains for our standard example.

A candidate solution is optimal if it satisfies all of the Bloom filter tests and
equality constraints. Each constraint is associated to a reward.We use four filters
(spo, sp, so, po) to check both complete and partial triple assignments to increase
fitness granularity. Table 2 shows the constraints for the query in Listing 1.2. Con-
straints 1–4 are generated from the first WHERE clause (?publicationrdf:type
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Table 1. Encoding of individuals (candidate solutions)

(a) Encoding template for individuals

?publication1 ?publication2 ?title

(b) Domain snippets for the variables

Variable Domain

?publication1 s: <Ullman88>, :b1, dblp:ullman
?publication2 s: <Ullman88>, :b1, dblp:ullman
?title o: <http:/. . .>, :b1, dblp:ullman, "Principles. . .", opus:Book

Table 2. Translation of SPARQL query into constraints

Constraint to satisfy Expected reward
➊ bloom(spo|?publication1 rdf:type opus:Book) 3 × w1

➋ bloom(sp|?publication1 rdf:type) w1

➌ bloom(po|rdf:type opus:Book) w1

➍ bloom(so|?publication1 opus:Book) w1

➎ bloom(spo|?publication2 rdfs:label ?title) 3 × w2

➏ bloom(sp|?publication2 rdfs:label) w2

➐ bloom(po|rdfs:label ?title) w2

➑ bloom(so|?publication2 ?title) w2

➒ equal(?publication1,?publication2) w3 × w1+w2
2

opus:Book), 5–8 correspond to (?publication rdfs:label ?title), the last one
is created by the double usage of ?publication. Constraint 3 is removed from the
list as it is satisfied by definition.

3.2 Fitness Evaluation

A fitness function should be designed in such a way that individuals closer to
the optimal solution can be identified by the system. For our application, an
optimal solution consist of a valid variable assignment.

A candidate solution is optimal if it satisfies all constraints. The quality of in-
dividuals is therefore related to the number of satisfied constraints. To illustrate
the fitness consider Table 3(a). The query instantiated with the assignment cor-
responding to the individual is checked against all relevant corresponding Bloom
filters and Equality constraints. For each constraint that is validated this candi-
date solution is rewarded, as shown in Table 3(b). Table 3(c) shows the complete
fitness evaluation for this individual; half of the constraints are validated, leading
to a total reward of 6× w2.

In addition to this overall evaluation, each variable involved in a satisfied
contraint receives a reward This information is used later to determine how to
control mutation.
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Table 3. Evaluation of a candidate solution

(a) Candidate solution to evaluate

dblp:ullman <Ullman88> "Principles. . ."

(b) Evaluation of the total reward for that candidate assignment

Constraint to satisfy Result Reward
➊ bloom(spo | dblp:ullman rdf:type opus:Book) false 0
➋ bloom(sp | dblp:ullman rdf:type) false 0
➍ bloom(so | dblp:ullman opus:Book) false 0
➎ bloom(spo | <Ullman88> rdfs:label "Principles. . .") true 3 × w2

➏ bloom(sp | <Ullman88> rdfs:label) true w2

➐ bloom(po | rdfs:label "Principles. . .") true w2

➑ bloom(so | <Ullman88> "Principles. . .") true w2

➒ equal(dblp:ullman <Ullman88>) false 0

(c) For satisfied constraints, reward is equally
distributed to each variable involved

?publication1 ?publication2 ?title

➎ 0 3×w2
2

3×w2
2

➏ 0 w2 0
➐ 0 0 w2

➑ 0 w2
2

w2
2

3.3 Evolution Process

In the basic form, starting with an initial population, individuals recombine and
mutate to produce offspring. In each iteration, individuals are evaluated using the
fitness function: the unfittest are removed and replaced by new individuals. When
a stop criterion, such as minimal fitness or maximum number of generations, is
satisfied the best individuals are presented as final solutions.

During a loop, the evolution consists of the consecutive execution of four
“operators”: parent selection, recombination (crossover), mutation and survivor
selection. We now describe our implemented choice for each of these operators.

Parent selection. Evolution loops create new individuals and destroy previous
ones. Parent selection is aimed at selecting from the current population the
individuals that will be allowed to mate and create offspring, and is commonly
aimed at the best individuals. Several parent selection schemes can be used. We
employ a tournament-based selection, in which two individuals are randomly
picked from the population, the best one is kept as the first parent. This process
is repeated to get more parents.

Recombination. Recombination acts as exploration during the search process.
This operator is aimed at creating new individuals in unexplored regions of
the search space. Its operation takes two parents and combines them into two
children. After various experiments, we opted for a classical one-point crossover
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Table 4. One-point crossover operator process

(a) Selection of a random pivot gene

dblp:ullman <Ullman88> "Principles. . ."

<Ullman88> dblp:ullman :b1

(b) Creation of two children

dblp:ullman <Ullman88> :b1

<Ullman88> dblp:ullman "Principles. . ."

Table 5. Mutation operator process

(a) Select the gene with lowest reward

dblp:ullman <Ullman88> "Principles. . ."

0 3 × w2 3 × w2

(b) Assign a random new value

<Ullman88> <Ullman88> "Principles. . ."

operator, in which one pivot gene is randomly selected and the parts around it
are swapped between the parents, demonstrated in Table 4.

Mutation. As compared with the crossover operator whose objective is to do
“big jumps” in the search space, the mutation operator is meant to explore the
neighbourhood of an individual. A slight modification is applied to one or more
genes. This perturbation is commonly referred to as an exploitation scheme. In a
standard genetic algorithm mutation is blind, ie., the gene to modify is randomly
selected. After some experimentation, we instead designed a mutation operator
which is biased towards mutating badly performing genes, based on the score
per variables computed during fitness evaluation. The process of this operator
is depicted in Table 5.

Such a mutation operator improves convergence of a population by identify-
ing the less efficient assignments. However, such a greedy strategy may lead to
local optima without reaching global optima. To reduce the risk of premature
convergence we therefore also apply blind mutation after our optimised local
search. This mutation is applied randomly, with low probability, to one gene.

Survivor selection. At this point of the evolution we have both a parent pop-
ulation and an offspring population (created by the parents). During survivor
selection we select the individuals to keep for the next evolution round. We chose
a generational selection: after each evolutionary cycle the parent population is
discarded and replaced by its offspring.

3.4 Convergence Results

Figure 1(a) shows the fitness of the best individual when trying to answer an
example query on the FOAF dataset (using 200 individuals, for 500 generations).
Three phases can be observed: first a rapid improvement during initialisation,
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Fig. 1. Best fitness on FOAF and DBLP queries, avg. over 100 runs

when constraints are easy to satisfy, then a slower improvement when individ-
uals solve the more difficult (join) constraints, and finally near-constant fitness
when an optimum is found. The curve is typical for evolutionary algorithms and
confirms the expected convergence behaviour.

Figure 1(b) shows the result on the DBLP dataset, with same evolution pa-
rameters. Now only the first phase is visible and the evolution stops during the
second one. Although a partial solution during the initialisation phase is reached
quickly, the individuals have difficulty finding further improvements; more work
is needed to prevent a local optimum.

4 Discussion on Scalability

Using an evolutionary approach combined with Bloom filters has several scalabil-
ity benefits. First, during query evaluations users can decide to trade soundness
for speed, by stopping the evolution before perfect solutions are found, and to
trade soundness for memory size, by using smaller bloomfilters with higher col-
lision rate. In this section, we explore such scalability advantages in more detail.

4.1 Fast Dictionary Construction

Dictionaries often improve performance when handling large amounts of data.
All terms are rewritten into dictionary keys (in our case, integer indices).Using
these keys during computation improves performance because keys require on
average less memory space than the full terms and because integer comparison
is faster than a string comparison of the terms.

Constructing dictionaries is however not trivial, as during construction a list
of all seen terms and their assigned keys must be kept [20]. For building the
dictionary, we employ move-to-front hashtables [30], which are a particular type
of chained hashtables using linked lists for overflow entries. When accessed, el-
ements are moved to the front of their list. This simple heuristic relies on the
Zipfian distribution of terms in texts, so that often used terms are on aver-
age available in the front of the list. Since terms in RDF data follow a similar
distribution [24], we use the same data structure and heuristic.
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Table 6. Average memory usage using 200 individuals

(a) parsing

dataset memory

FOAF 65 MB
DBLP 230 MB

(b) querying

dataset memory

FOAF 15 MB
DBLP 140 MB

To insert a term in these hashtables, its hash value is computed using some
hash function, and used as index into an array of lists. The term is compared
to the other terms in the list at that position. If found, the corresponding key
is returned, and the list element is moved to the front of the list. If not found,
this term is added to the end of the list along with a new key, incremented using
some counter, is assigned to him.

An expensive computation in the move-to-front hashtable is the string term
comparison, performed at each list element to see whether the existing list term
is the same as the one being inserted. To improve performance, we store and
compare only the Adler-32 fingerprint [9] of each term. Comparing these finger-
prints is a fast bitwise operation, while collision rate is extremely low since both
hash value and fingerprint value need to collide.

4.2 Small Memory Footprint

Since the bloom filters, the domain, and all individuals are compactly repre-
sented, all runtime data fits in memory, avoiding the disk I/O bottleneck [4, 18].
Actual memory usage during prototype experiments is shown in Table 6, for the
smaller FOAF dataset and the larger DBLP dataset. During parsing, most mem-
ory is used during dictionary and bloom filters construction; during evolution
the memory is used to hold the bloom filters, the assignments of all individuals
and the hash table of the dictionary, used for printing final solutions. Both parse
and query actions indeed require a reasonable amount of memory; more compact
bloomfilter variations are possible, eg. for network distribution [5].

4.3 Short and Fast Evolution Cycles

During evolution, we verify whether solutions are present in each of the bloomfil-
ters. Membership testing in the bloomfilter consists of computing the k hashval-
ues, which are used as a bitmask for the filter. All computation stays in memory,
and all bitwise operations are very fast.

Secondly, we perform the evolutionary operations (cross-over, mutation, etc.)
and sometimes assign new values to individuals. Again, since individuals are
encoded as integer vectors, these operations are very efficient.

4.4 Suitable for Parallel Computation

Since evolution of individuals is in principal independent the computation can
be easily parallelised. Our evolutionary algorithm could use an island model with
independent demes [7], to evolve sub-populations in parallel.



224 C. Guéret et al.

Since our Bloom filters are relatively compact, they can be transported over
the network, allowing local evolution on distributed clients in a “thinking at
home” manner [15]. In a P2P setting, the dictionary itself may also be stored in
the network using distributed hashtables [28].

5 Discussion on Approximations and Applicability

In our technique, we have several points in which some approximation of data or
query can be performed. Generally speaking, when querying a dataset KB with
query Q, we can distinguish three kinds of approximations: one can approximate
the query Q by Q′, one can approximate KB by KB′, and one can approximate
the reasoning strategy, by for example returning unsound, partial, matches.

Our method can be seen as an approximation of all three kinds simultane-
ously. We approximate the dataset, somewhat similar to random sampling, since
the evolution can be stopped at any point without all constraints necessarily
satisfied, and without having explored the complete search space. At the same
time, we also approximate the query, using a simple form of query relaxation,
and approximate the reasoning strategy by returning unsound answers.

5.1 Approximate Anwers through Query Relaxation

Query rewriting approximates the original, possibly unsatisfiable, query Q by Q′.
Relaxation through query rewriting can be done eg. by making clauses optional,
by breaking join dependencies, by replacing constants by variables, by replacing
constants using the class and property hierarchy in an associated ontology, or
by deleting (ignoring) problematic clauses [11, 21]

Hurtado et al. [21] add an explicit RELAX clause to SPARQL queries, which
are automatically and successively relaxed based on schema information such
as subClassOf and subPropertyOf. Similarly, Dolog et al. [11] explicitly model
user preferences and domain preferences, and use these preferences to automat-
ically relax query clauses by replacing values and predicates in the query with
preferred alternatives (eg. synonym values or related predicates).

We employ a similar but less fine-grained form of query relaxation, by return-
ing answers from individuals with sub-optimal fitness. The solutions encoded
by these individuals have found partial matches, and thus ignored some of the
clauses or clause parts in the query.

5.2 Approximate Answers through Unsoundness

On top of the notion of approximation by ignoring some triple patterns in the
query graph, we also introduce approximation by using an unsound method for
checking whether a mapping μ is indeed a solution to a query Q for a graph D.
The reason for this is that Bloom filters are fast but unsound lookup mechanisms.

Because we generate several constraints for each query clause, and because we
have a population-based algorithm which returns only the best solution for each
problem, the error rate of answers returned to the user is several factors lower.
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For the basic approach which uses four constraints for each clause (for each pair
and triple in the clause) the confidence level is:

1− p(query) = 1−
∏
C

(psp · pso · ppo · pspo) = 1−
∏
4C

p (1)

For instance, using a collision probability of 10%, the confidence level for query
with c clauses is: 1− (0.10)4c - 1, indicating the absence of false positives in the
solution.

5.3 Dealing with Imperfect Queries

When users lack sufficient knowledge about the dataset that they are querying,
they are unable to formulate queries that return the intended result. In the
context of the Semantic Web, users frequently lack such knowledge, since data
come from multiple sources, with different schemas and often lacking any schema
information. Research on cooperative query answering [16] focuses on interactive
query formulation, helping users to refine their query until suitable results can
be returned.

In our case, when users investigate some dataset, eg. “what can I learn
about Tim from this FOAF file?”, a potential query would be “SELECT ?prop
WHERE ?sub foaf:name ”Tim”. ?sub ?prop ?obj”. Though thousands of prop-
erties may exist, the user is likely not to be interested in seeing all of them.
And here is where the approximation is made: instead of fetching all the results,
the evolutionary process is executed until some reasonable number of answers
becomes available.

Evolutionary algorithms are designed to have a population of candidate so-
lution evolving towards a given optimum (according to a fitness function). The
initial population may be created randomly or using any other initialisation
scheme. Thus, a first set of answers can be such a starting point for a new evolu-
tion. Besides, the optimum to reach could be adapted to take into account some
new constraints. By taking advantage of those restart and robustness capabili-
ties, an incremental query answering system can be designed.

5.4 Dealing with Imperfect Data

Our initial approach for translating SPARQL queries into a constraint satisfac-
tion problem [25], gave equal importance to all the where clauses; in practical
queries, such equal importance might not be the case. In this paper, the intro-
duction of specific weights for different constraints caters for such differences,
allowing more “useful” approximate answers. The constraint weights can be
tuned using three different strategies: a “static” strategy based on statistical
information, a “dynamic” one based on adjustment during evolution, and an
“adaptative” scheme based on interactive user feedback.

Static. Relative importance of the clauses could be deduced from their prob-
ability, depending on their occurrence frequency. We can simply count each
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triple occurrence into six wildcard patterns: (?s,p,o), (s,?p,o), (s,p,?o),
(?s,?p,o), (s,?p,?o) and (?s,p,?o). The first one, for instance, will count all
combinations of p and o. During query time, the value of the counter associated
to a pattern gives a hint on the difficulty of finding a variable binding for it.

Dynamic. The importance of a clause can also be discovered dynamically, based
on the difficulty of solving them during evolution: a constraint that appears to be
hard to satisfy should be solved first. We can assume that a where clause is hard
to satisfy if no valid assignment is found for that particular constraint within
a finite time [12]. Initially, the weights associated to each clauses are set to a
default value. After each n iterations, the weight of a clause is incremented if the
best individual could not find a valid assignment for it. Once a valid assignment
has been found, those weights are set back to the default, neutral, value. Using
this scheme, hard constraints will gain importance until they are satisfied. Once
solved, more attention will be paid to the remaining unsatisfied constraints.

Interactive. The third weighting schema allows users to explicitly indicate their
preferences. In terms of evolutionary algorithms, the user is then involved in
the variation-selection loop, which is called interactive evolutionary computation
[2]. In terms of the weighting scheme mentioned above, involving the user in
the search process means that he is able to change the weights according to
fitness values he sees. Then, the weights are used to correct the direction of
the search process towards “good” enough answers. Technically, the weights are
incorporated in the EA to determine either the fitness of candidate answers
and/or the operators to generate new candidates. For the former, one has to
take into account that users can only evaluate a small number of candidates,
meaning that these candidates have to represented to the user in an intelligible
way. Even when using a static fitness function, considerable speed-up can be
achieved by user involvement during the generation of new candidates.

6 Conclusion

We have introduced a novel method for querying RDF datasets based on an
evolutionary algorithm. Our method is not focused on finding perfect solutions
but on providing approximate solutions efficiently. We study this approach from
two perspectives: scalability and uncertainty. Regarding scalability, three aspects
show the positive behaviour of our method: the potential for parallelisation, small
memory usage, and minimal execution time of evolutionary cycles. Furthermore,
we show that our approach allows to deal very naturally with different types
of uncertainty: approximate queries, approximate answers, and uncertain data.
Although the evolutionary operators still need improvement, we believe that our
analysis justifies further development of evolutionary methods for RDF querying.

Future work. In this paper, we have focused on finding the best, possibly approx-
imate, solution to a given query. How to efficiently return many results instead
is an open issue. One direction for research is evolutionary taboo-search, using
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individuals as scouts that explore the solution space; once a local optimum is
found, the area is tabooed and individuals focus on another part.

We currently do not support aggregation functions, since these are currently
not part of the SPARQL standard. Still, we can employ the evolutionary search
as a method to compute approximate aggregations “along the way”, without
requiring complete solutions before aggregating.
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Abstract. Uncertain data are usually represented in terms of an uncer-
tainty region over which a probability density function (pdf) is defined.
In the context of uncertain data management, there has been a growing
interest in clustering uncertain data. In particular, the classic K-means
clustering algorithm has been recently adapted to handle uncertain data.
However, the centroid-based partitional clustering approach used in the
adapted K-means presents two major weaknesses that are related to: (i)
an accuracy issue, since cluster centroids are computed as deterministic
objects using the expected values of the pdfs of the clustered objects;
and, (ii) an efficiency issue, since the expected distance between uncer-
tain objects and cluster centroids is computationally expensive.

In this paper, we address the problem of clustering uncertain data
by proposing a K-medoids-based algorithm, called UK-medoids, which
is designed to overcome the above issues. In particular, our UK-medoids
algorithm employs distance functions properly defined for uncertain ob-
jects, and exploits a K-medoids scheme. Experiments have shown that
UK-medoids outperforms existing algorithms from an accuracy view-
point while achieving reasonably good efficiency.

1 Introduction

Handling uncertainty in data management has been requiring more and more
importance in a wide range of application contexts. Indeed, data uncertainty
naturally arises from, e.g., implicit randomness in a process of data genera-
tion/acquisition, imprecision in physical measurements, and data staling. Various
notions of uncertainty have been defined depending on the application domain
(e.g., [2,3,4,5,6,7,8]). In general, uncertainty can be considered at table, tuple or
attribute level [9], and is usually specified by fuzzy models [10], evidence-oriented
models [11,12], or probabilistic models [13].

In this paper, we focus on data containing attribute-level uncertainty, which
is modeled according to a probabilistic model. We hereinafter refer to this data
as uncertain objects. An uncertain object is usually represented by means of
probability density functions (pdfs), which describe the likelihood that the object
appears at each position in a multidimensional space [14,15,1], rather than by a
traditional vectorial form of deterministic values.

Attribute-level uncertainty expressed by means of probabilistic models is
present in several application domains. For instance, sensor measurements may
be imprecise at a certain degree due to the presence of various noisy factors

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 229–242, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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(e.g., signal noise, instrumental errors, wireless transmission) [16,14]. To address
this issue, it is advisable to model sensor data as continuous pdfs [17,18]. An-
other example is given by data representing moving objects, which continuously
change their location so that exact positional information at a given time instant
may be unavailable [19]. Further examples come from distributed applications,
privacy preserving data mining, and forecasting or other statistical techniques
used to generate data attributes [20].

Dealing with uncertain objects has raised several issues in data management
and knowledge discovery. In particular, organizing uncertain objects is challeng-
ing since the intrinsic difficulty underlying the various notions of uncertainty.
As a major exploratory task of data mining, clustering is organizing a collection
of objects (whose classification is unknown) into meaningful groups (clusters),
based on interesting relationships discovered in the data. Objects within a clus-
ter will be each other highly similar, but will be very dissimilar from objects
in other clusters. One of the most popular clustering approaches is represented
by partitional (or partitioning) clustering [21], which iteratively assigns objects
to the clusters according to a certain distance/similarity function. A major cru-
ciality in partitional clustering is how to devise a notion of cluster prototype. In
particular, a cluster prototype can be defined as a centroid, which is the “mean”
object in the cluster, or as a medoid, which is an actual object that is nearest
to all the other objects in the cluster. The K-means [22] and K-medoids [23]
algorithms are the exemplary methods of centroid-based and medoid-based par-
titional clustering, respectively.

In a recent work [1], the K-means algorithm has been adapted to the uncer-
tain data domain. However, the resulting algorithm, named UK-means, has two
major weak points. First, cluster centroids are defined as deterministic objects
and computed as the mean of the expected values over the pdfs of the uncer-
tain objects in the cluster; defining centroids in this way may result in loss of
accuracy, since only the expected values of the pdfs of the uncertain objects are
taken into account. Second, the computation of the Expected Distance (ED) be-
tween cluster centroids and uncertain objects is computationally expensive, as it
requires non-trivial numerical integral estimations; this represents an efficiency
bottleneck at each iteration of the algorithm.

In this paper, we present UK-medoids, an algorithm for clustering uncertain
objects based on the K-medoids clustering scheme. The proposed algorithm ex-
ploits a distance function for uncertain objects, which is not limited to consider
only scalar values derived from the pdfs associated to the objects (e.g., pdf ex-
pected values). This allows for better estimating the real distance between two
uncertain objects, leading to significant improvement of the clustering quality.
Also, our algorithm does not require any expensive operation to be repeated
at each iteration; indeed, the computation of the distances between uncertain
objects in the dataset is performed only once, thus guaranteeing a significant
improvement of the efficiency w.r.t. UK-means. Experiments have shown that
our method outperforms existing algorithms from an accuracy viewpoint while
achieving reasonably good efficiency.
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The rest of the paper is organized as follows. The next section discusses some
related work. Section 3 describes the uncertain data models used in the paper.
Section 4 describes the notion of uncertain distance and the UK-medoids al-
gorithm. Section 5 provides experimental evaluation of our algorithm and the
competing methods. Finally, Section 6 concludes the paper.

2 Related Work

In the context of uncertain data management, a lot of research has been mainly
focused on data representation and modeling, indexing, query processing, and
data mining (e.g., [20]). In particular, data mining applications have involved
various tasks, such as classification [24], outlier detection [25], association anal-
ysis [26], and clustering [27,15,1,28,29].

As above mentioned, one of the earliest attempts to solve the problem of clus-
tering uncertain objects is UK-means [1]. In order to improve the UK-means
efficiency, [28] proposes some pruning techniques to avoid the computation of
redundant EDs. Such techniques make use of lower- and upper-bounds that are
ad-hoc defined for each ED to be calculated; these bounds allow for eliminating
some candidate assignments of objects to cluster centroids, avoiding the corre-
sponding ED computation. However, a major problem of this approach is that it
cannot guarantee high pruning (and, hence, high efficiency), as it depends on the
features of the objects in the specific dataset. In [29], the CK-means is proposed
as a variant of UK-means that resorts to the moment of inertia of rigid bodies
in order to reduce the execution time needed for computing EDs. Unfortunately,
the soundness of the CK-means criterion for the ED computation is guaranteed
only if the mean squared error for the definition of the EDs is used and the
distance function is based on the Euclidean norm.

It should be noted that all the UK-means variants have to face the issue
of computing cluster centroids, whose effectiveness depends on how well the
aggregated values (e.g., the expected values) extracted from the object pdfs
represent the real location of the uncertain objects. Also, computing the distance
between uncertain objects is usually accomplished by calculating the Euclidean
distance between the vectors of the (deterministic) expected values.

A more refined approach to the distance computation consists in defining a uni-
variate pdf, or fuzzy distance function, for each pair of objects. This univariate pdf
computes a probability for each distance value for two objects, and the distance
between the objects is finally computed by extracting an aggregated, representa-
tive value (e.g., expected value) from the pdf of those objects. This method has
been originally presented in [27] and has been proved to be more effective than
the standard Euclidean distance applied to vectors of deterministic values.

Devising a fuzzy distance function is a key aspect in density-based approaches
that have been proposed for clustering uncertain objects [15,27]. In [15], a fuzzy
version of the popular DBSCAN [30] algorithm, FDBSCAN, is proposed. Fuzzy
distance functions are used to compute core object and reachability proba-
bilities, which are at the basis of the density-based clustering strategy of the
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algorithm. A similar approach is presented in [27], where FOPTICS is proposed
as a fuzzy version of the popular hierarchical density-based clustering algorithm
OPTICS [31].

It is important to note that [15,27] focus on how to efficiently compute reacha-
bility probabilities; however, they do not provide a formal definition of fuzzy dis-
tance function that can be applied to any clustering algorithm. By contrast, we
provide a definition of fuzzy distance function that does not depend on a particular
clustering scheme and is well-suited to continuous as well as discrete pdfs.

3 Modeling Uncertain Data

Representing attribute-level uncertain objects is traditionally accomplished by
using two models, namely multivariate uncertainty and univariate uncertainty
models.

Using a multivariate uncertainty model, an m-dimensional uncertain object
is defined in terms of an m-dimensional region and a multivariate probability
density function, which stores the probability according to which the exact rep-
resentation of the object coincides with any point in the region. In a univariate
uncertainty model, an m-dimensional uncertain object has, for each attribute, an
interval and a univariate probability density function that assigns a probability
value to any point within the interval. Formally:

Definition 1 (multivariate uncertain object). A multivariate uncertain ob-
ject o is a pair (R, f), where R ⊆ �m is the region in which o is defined and
f : �m → �+

0 is the probability density function of o at each point z ∈ R.

Definition 2 (univariate uncertain object). A univariate uncertain object
o is a tuple (a(1), . . . , a(m)). Each attribute a(h) is a pair (I(h), f (h)), for each
h ∈ [1..m], where I(h) = [l(h), u(h)] is the interval of definition of a(h), and
f (h) : � → �+

0 is the probability density function that assigns a probability value
to each z ∈ I(h).

For each multivariate uncertain object, the probability density function involved
in its representation can be either continuous or discrete. A continuous multi-
variate m-dimensional probability density function defined over a region R ⊆ �m

is a function f : �m → �+
0 such that:∫

z∈R

f(z) dz = 1 and
∫

z∈�m\R

f(z) dz = 0

A discrete multivariate m-dimensional probability density function defined over
a set of points S = {z1, . . . , zv} (zu ∈ �m, for each u ∈ [1..v]) is a function
f : �m → �+

0 such that:∑
z∈S

f(z) = 1 and
∫

z∈�m\S

f(z)d z = 0
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For the univariate model, a continuous (resp. discrete) univariate probability
density function can be trivially defined in terms of a continuous (resp. dis-
crete) multivariate probability density function, in which the region (resp. set)
of definition is a subset of � (i.e., m = 1).

We hereinafter refer to uncertainty models involving continuous probability
functions. Note that this assumption does not result in loss of generality, since the
corresponding “discrete” version can be obtained by simply replacing integrals
with sums in the equations.

4 Clustering Uncertain Data

4.1 Computing Uncertain Distance

To measure the distance between uncertain objects, we need to devise a suitable
notion of uncertain distance, which is involved in the proposed clustering algo-
rithm. Uncertain distance is defined in terms of an uncertain distance function.
In order to make the uncertain distance independent from the chosen uncertainty
model, we provide definitions of uncertain distance function for both multivariate
and univariate uncertainty models.

Definition 3 (uncertain distance function). Given a set of uncertain ob-
jects D = {o1, . . . , on}, the uncertain distance function defined over D is a
function Δ : D ×D ×� → �+

0 , for which the following conditions hold:∫
z∈�

Δ(oi, oj , z) dz = 1, ∀oi, oj ∈ D,

Δ(oi, oj , z) =
{

1, if i = j, z = 0
0, if i = j, z 	= 0

For any pair of uncertain objects oi, oj , i 	= j, Δ can be derived from the pdfs as-
sociated to the uncertain objects. The definition of Δ depends on the uncertainty
model used for representing oi and oj (Sect. 3).

Uncertain distance function for multivariate objects. If oi = (Ri, fi),
oj = (Rj , fj) are multivariate uncertain objects, Δ is defined as:

Δ(oi, oj , z) =
∫

x∈Ri

∫
y∈Rj

I[dist(x,y) = z] fi(x) fj(y) dx dy (1)

where dist(x,y) is a distance measure between any pair x,y ∈ �m (e.g., Eu-
clidean distance), and I[A] is the indicator function, which is equal to 1 when
the event A occurs, 0 otherwise.

Uncertain distance function for univariate objects. If oi = ((I(1)
i , f

(1)
i ),

. . . , (I(m)
i , f

(m)
i )), oj = ((I(1)

j , f
(1)
j ), . . . , (I(m)

j , f
(m)
j )) are univariate uncertain

objects, Δ is defined as:
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Δ(oi, oj , z)=
∫

x1∈�

· · ·
∫

xm∈�

I[fdist(x1, . . . , xm) = z]
m∏

h=1

Ψ (h)(oi, oj , xh) dx1 · · ·dxm

(2)
where

– Ψ (h) : D ×D ×� → �,

– Ψ (h)(oi, oj , xh) =
∫

u∈I
(h)
i

∫
v∈I

(h)
j

I[|u− v| = xh] f
(h)
i (u) f

(h)
j (v) du dv, h ∈ [1..m],

– fdist : �m → � is a function that computes a scalar value from the com-
ponents of a vector (x1, . . . , xm). In this work, this function is defined as
fdist =

√
(1/m)

∑m
h=1 xh

2.

It can be proved that the condition
∫

z∈�
Δ(oi, oj , z) dz = 1 holds for both the

definitions of Δ, for all oi, oj in the dataset.
Given an uncertain distance function Δ, we now provide a definition of

uncertain distance by extracting a single, well-representative numerical value
from Δ.

Definition 4 (uncertain distance). Given a set of uncertain objects D =
{o1, . . . , on}, let Δ be the uncertain distance function defined over D. The un-
certain distance is a function δ : D ×D → �+

0 , which is defined as:

δ(oi, oj) =
∫

z∈�

zΔ(oi, oj , z) dz (3)

According to Eq. (3), δ(oi, oj) is the expected value of the uncertain distance
function Δ between oi and oj . Note that, if oi, oj are multivariate uncertain
objects, δ(oi, oj) can be directly computed as:

δ(oi, oj) =
∫

x∈Ri

∫
y∈Rj

dist(x,y) fi(x) fj(y) dx dy (4)

whereas, if oi, oj are univariate uncertain objects, δ(oi, oj) can be calculated as:

δ(oi, oj) = fdist(ψ(1)(oi, oj), . . . , ψ(m)(oi, oj)) (5)

where

ψ(h)(oi, oj) =
∫

x∈I
(h)
i

∫
y∈I

(h)
j

|x− y| f (h)
i (x) f

(h)
j (y) dx dy, h ∈ [1..m].

4.2 The UK-Medoids Algorithm

In this section we present our K-medoids-based algorithm for clustering uncertain
objects, named UK-medoids. The outline of UK-medoids is given in Algorithm 1.
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Algorithm 1. UK-medoids

Input: a set of uncertain objects D = {o1, . . . , on}; the number of output clusters k
Output: a set of clusters C

1. compute distances δ(oi, oj),∀oi, oj ∈ D
2. compute the set S = {m1, . . . , mk} of initial medoids
3. repeat
4. S′ ← S
5. S ← ∅
6. C = {C1, . . . , Ck} ← {∅, . . . , ∅}
7. for all o ∈ D do
8. {assign each object to the closest cluster, based on its uncertain distance to

cluster medoids}
9. mj ← arg mino′∈S′δ(o, o′)

10. Cj ← Cj ∪ {o}
11. end for
12. for all C ∈ C do
13. {recompute the medoid of each cluster}
14. m ← arg mino∈C

∑
o′∈C δ(o, o′)

15. S ← S ∪ {m}
16. end for
17. until S �= S′

18. return C

The input for the UK-medoids algorithm is a dataset D of n uncertain objects
and the number k of clusters to be discovered, and the output is a set C of k
clusters. Initially, all the uncertain distances between any pair of objects oi, oj ∈
D are computed (Line 1). The distances are calculated only once and are used
at each iteration of the algorithm. Then, the set of k initial medoids is computed
(Line 2). The initial medoids can be selected by means of either random chance or
a suitable procedure aimed to choose well-separated medoids (e.g., that proposed
for the Partitioning Around Medoids (PAM) algorithm [32]).

After the initialization steps, the algorithm performs the main loop (starting
from Line 3) which is comprised of two phases. In the first phase (Lines 7− 11),
each object o in D is assigned to the cluster represented by the medoid m closest
to o. In the second phase, the medoids in the set S are recomputed according to
the objects assigned to each cluster (Lines 12− 16). Such phases are iteratively
repeated until a local optimum has not been reached, i.e., there has been some
change in the current S w.r.t. the previous iteration (Line 17).

Proposition 1. Given a dataset D of n uncertain objects, Algorithm 1 works
in O(n2 I), where I is the maximum number of iterations.

5 Experimental Evaluation

We devised an experimental evaluation aimed to assess the ability of our algo-
rithm in clustering uncertain objects, both in terms of accuracy and efficiency.
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Table 1. Datasets used in the experiments

dataset objects attributes classes

Iris 150 4 3
Wine 178 13 3
Glass 214 10 6
Ecoli 327 7 5

We also compared our UK-medoids to K-means-based uncertain data clustering
algorithms, i.e., UK-means and its variant CK-means.

5.1 Evaluation Methodology

Datasets. Experimental analysis was performed on benchmark datasets from
the UCI Machine Learning Repository.1 We chose four datasets with numerical
real-value attributes, namely Iris, Wine, Glass, and Ecoli.

Table 1 shows the main characteristics of the datasets. Iris contains measure-
ments on different iris plants. Wine reports results of a chemical analysis of
Italian wines derived from three different cultivars. In Glass, each glass instance
is described by the values of its chemical components. Ecoli contains data on
the Escherichia Coli bacterium, which are identified with values coming from
different analysis techniques.

All the selected datasets originally contain deterministic values, hence the
uncertainty was synthetically generated for each object of any dataset. In case
of univariate uncertain objects, we generated the uncertain interval I(h) and the
pdf f (h) defined over I(h), for each attribute a(h), with h∈ [1..m] of the object o.
The interval I(h) was randomly chosen as a subinterval within [minoh

,maxoh
],

where minoh
(resp. maxoh

) is the minimum (resp. maximum) deterministic value
of the attribute h, over all the objects belonging to the same ideal class of
o. As concerns f (h), we considered two continuous density functions, namely
Uniform and Normal pdfs, and Binomial as a discrete mass function. We set
the parameters of Normal and Binomial pdfs in such a way that their mode
corresponded to the deterministic value of the h-th attribute of the object o.

We performed experiments for multivariate uncertain objects as well. In this
case, we generated uncertainty starting from the univariate model, assuming
statistical independence for the pdfs of the attributes of any object. Since uni-
variate and multivariate models gave similar results, here we report only results
on the univariate models for the sake of brevity.

Clustering validity criteria. To assess the quality of clustering solutions
we exploited the availability of reference classifications for the datasets. The
objective was to evaluate how well a clustering fits a predefined scheme of known
classes (natural clusters). To this purpose, we resorted to the F-measure [33],
which is one of the most commonly used external validity criteria, and is defined
in terms of the Information Retrieval notions’ Precision and Recall.
1 http://archive.ics.uci.edu/ml/
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Given a collection D of uncertain objects, let Γ = {Γ1, . . . , ΓH} be the ref-
erence classification of the objects in D, and C = {C1, . . . , CK} be the output
partition yielded by a clustering algorithm. Precision of cluster Cj with respect
to class Γi is the fraction of the objects in Cj that has been correctly classified:

Pij =
|Cj ∩ Γi|
|Cj |

Recall of cluster Cj with respect to class Γi is the fraction of the objects in Γi

that has been correctly classified:

Rij =
|Cj ∩ Γi|
|Γi|

Using a macro-averaging strategy on the local values of precision and recall, the
overall precision (P ) and recall (R) are computed as:

P =
1
H

H∑
i=1

max
j∈[1..K]

Pij , R =
1
H

H∑
i=1

max
j∈[1..K]

Rij ,

Finally, in order to score the quality of C w.r.t. Γ by means of a single value, the
overall F-measure (F ∈ [0, 1]) is computed as the harmonic mean of the overall
precision and recall:

F =
2PR

P + R
(6)

Settings. In K-means-based approaches, the set of initial centroids is randomly
selected. Therefore, to avoid that clustering results were biased by random
chance, we averaged accuracy and efficiency measurements over 100 different
runs. We made a similar choice also for UK-medoids, since we noted that the
use of a refined strategy for selecting initial medoids (e.g., the procedure pro-
posed in [32]) gave no significant improvement w.r.t. random selection.

We computed the integrals involved into the distances calculation by tak-
ing into account lists of samples derived from the pdfs. To accomplish this, we
employed the classic Monte Carlo sampling method.2 We also performed a pre-
liminary tuning phase to properly set the number of samples S; in particular, for
each method and dataset, we chose S in such a way that there was no significant
improvement in accuracy for any S′ > S. In general, the optimal S depended
on the width of the uncertainty interval/region; however, according to our ex-
periments, 50 and 400÷500 samples represented a reasonably good choice, for
univariate and multivariate uncertainty model, respectively.

5.2 Results

Accuracy. Table 2 summarizes the F-measure results obtained by UK-medoids
and the other methods. We can observe that UK-medoids drastically outper-
formed UK-means and CK-means on all the datasets, with Uniform and Binomial
2 We used the SSJ library, available at http://www.iro.umontreal.ca/∼simardr/ssj/
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Table 2. Clustering quality results (F-measure)

dataset pdf UK-means CK-means UK-medoids

Uniform 0.45 0.50 0.84
Iris Normal 0.84 0.85 0.88

Binomial 0.62 0.58 0.87

Uniform 0.46 0.50 0.80
Wine Normal 0.69 0.70 0.70

Binomial 0.63 0.58 0.73

Uniform 0.26 0.29 0.71
Glass Normal 0.63 0.59 0.68

Binomial 0.27 0.29 0.67

Uniform 0.30 0.33 0.73
Ecoli Normal 0.73 0.74 0.77

Binomial 0.50 0.44 0.72

pdfs. In particular, compared to best competing method, the accuracy improve-
ment obtained by our UK-medoids was from 34% to 42% with Uniform pdfs and
from 10% to 38% with Binomial pdfs. In case of Normal pdfs, UK-medoids per-
formed 3÷5% better than the other methods on three datasets, whereas all the
methods behaved similarly in Wine. The reduction of gap between UK-medoids

(a) Iris (b) Wine

(c) Glass (d) Ecoli

Fig. 1. Clustering time performances
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and K-means-based approaches on Normal pdfs can be explained in that, ac-
cording to our uncertainty generation scheme, the expected value of a Normal
pdf associated to any attribute of each uncertain object was set equal to the
deterministic value of the attribute for that object. This allowed the centroid
generation strategy of UK-means and CK-means to perform well in that case.

It shouldbealso noted thatUK-means andCK-meansperformed similarly for all
the pdfs and datasets, as expected, since they employ a similar clustering scheme;
the only differences between the two methods are due to random choices, such as
selection of initial centroids and pdf sampling for the computation of the integrals.

Efficiency. To evaluate the efficiency of UK-medoids and the competing meth-
ods, we measured their time performances in clustering uncertain objects.3

Figure 1 shows the total execution times (in milliseconds) obtained by the meth-
ods on the various datasets. For UK-medoids and CK-means, we calculated the
sum of the times obtained for the pre-computing phase (i.e., uncertain distances
computation for UK-medoids and cluster centroids computation for CK-means),
together with the algorithm runtimes.

(a) Iris (b) Wine

(c) Glass (d) Ecoli

Fig. 2. Performance of the algorithm runtimes (pre-computing phases are ignored)

3 Experiments were conducted on a platform Intel Pentium IV 3GHz with 2GB mem-
ory and running Microsoft WinXP Pro.
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In the figure, it can be noted that our UK-medoids was 1÷2 orders of magni-
tude faster than UK-means, which was the slowest method on all datasets. The
slowness of UK-means is mainly due to the EDs computation needed for each
object in the dataset, at each iteration of the algorithm.

As expected, CK-means outperformed UK-medoids on all datasets, which is
explained by a difference between the computational complexities of the two
algorithms. Indeed, both the phases of pre-computing and algorithm execution
are quadratic (resp. linear) with the number of objects in the dataset for UK-
medoids (resp. CK-means). However, it should be emphasized that the CK-
means algorithm is less general than the other methods, as it works only if the
mean squared error for the definition of the EDs is used and the distance function
is based on the Euclidean norm.

We also measured separately the times of the pre-computing phases, which
involve the calculation of uncertain distances (in UK-medoids) and cluster cen-
troids (in CK-means). Figure 2 shows that the gap between UK-medoids and
CK-means was reduced w.r.t. that measured by including the total runtimes
(Figure 1). This result confirms that the major difference between UK-medoids
and CK-means is given by the pre-computing phase. Thus, in case of multiple
runs of the two algorithms, we can state that the performance of UK-medoids
and CK-means are comparable, since the pre-computing phase has to be per-
formed once.

6 Conclusion

We addressed the problem of clustering uncertain objects based on an efficient
K-medoids clustering scheme. We provided distance functions for both univariate
and multivariate uncertain objects, which are well-suited to continuous as well as
discrete pdfs. Moreover, these functions are designed to better estimate the real
distance between two uncertain objects since they are not limited to consider
only scalar values derived from the object pdfs.

Our UK-medoids has been experimentally shown to outperform other existing
methods in terms of accuracy, regardless of the choice of uncertainty density
function. Also, from an efficiency viewpoint, UK-medoids performs up to two
orders of magnitude faster than the baseline method UK-means.
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Abstract. Methods of top-k search with no random access can be used
to find k best objects using sorted access to the sources of attribute
values. In this paper we present new heuristics over the NRA algorithm
that can be used for fast search of top-k objects using wide range of
user preferences. NRA algorithm usually needs a periodical scan of a
large number of candidates during the computation. In this paper we
propose methods of no random access top-k search that optimize the
candidate list maintenance during the computation to speed up the
search. The proposed methods are compared to a table scan method
typically used in databases. We present results of experiments showing
speed improvement depending on number of object attributes expressed
in a user preferences or selectivity of user preferences.

Keywords: top-k search, no random access, TA-sorted variants, user
preferences.

1 Introduction

Top-k search became popular with growing use of the web services and increasing
datasets sizes. Users are usually interested in few best objects rather than a
big list of objects as a result. Top-k algorithms usually follow two main goals.
Firstly, they minimize the number of source data to be processed i.e. they find
the correct top-k objects using only a part of data. Secondly, the algorithms tend
to minimize the number of accesses to the sources and the computation time as
well.

1.1 Motivation

In the family of Threshold algorithms (TA) the basic assumption is a monotone
combination function over ordered sources. The expressivity of a monotone com-
bination function over domain ordering is low. Many authors [22,23] face the
problem of more expressive queries by complicate analysis of ranking functions
and they offer a kind of multidimensional search.

Example 1. Imagine a user u1 looking for a low price flat with size about 60m2.
His overall ranking function F can be expressed as follows:

Fu1(price, size) = (1− price

maxprice
) ·max{0, (1− |1− size

60
|)} (1)

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 243–255, 2008.
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Fig. 1. Local preferences of user u1

We can see that Fu1 is not a monotone function and TA cannot to be used
ad-hoc.

Instead of a difficult function analysis we prefer a different form of query com-
pound of local preferences and a monotone combination function. Local prefer-
ence represents user’s notion about the suitability of values from the attribute
domain. Local preference can be expressed e.g. by fuzzy predicate that maps at-
tribute domain into the interval [0, 1], where 1 means the most preferred domain
value and 0 means the least preferable value.

The monotone combination function is used to compare objects incomparable
in particular local preferences (one flat can be better in price, another one in
size). Typical monotone combination functions are weighted average, minimum,
maximum or a set of ranking rules [10].

The ranking function Fu1 of user u1 can be written as a monotone combination
(product) of partially linear scoring functions fp and fs as depicted on Figure 1.

Formally the preferences of user u for a set of objects with m attributes
a1, . . . , am are described by m arbitrary scoring functions of one variable fa1 , . . . ,
fam (local preferences) and one monotone combination function F (global pref-
erences). For every object X with attribute values x1, . . . , xm the preference of
user u for object X is equal to F (fa1(x1), . . . , fam(xm)).

In the näıve approach, we could sort both attributes according to local prefer-
ences and use any effective TA-like algorithm to find top-k flats. Unfortunately,
the meaning of good values of attributes (specified by local preferences), as well
as the combination function, can be different for each user.

Example 2. Consider a user u2 with preferences for rather large flats but mainly
the flats with the price about $50k:

Fu2(price, size) = 3 · fp2(price) + fs2(size),where

fp2(price) =

⎧⎨⎩
price
10k − 4 , price ∈ 〈40k, 50k〉

6− price
10k , price ∈ (50k, 60k)

0 , otherwise
fs2(size) = size

maxsize

(2)

We can see that the local preferences induce different ordering of the attributes
than functions on figure 1. Now the näıve approach fails - reordering in the time
of the query is unacceptable.
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In this paper we present the heuristics for 3P-NRA algorithm, which is similar
to NRA algorithm - a member of the Threshold algorithms. We use the NRA-
like algorithms because they work with data obtained by sorted access from the
sources ordered from the best to the worst in particular attributes and as pre-
sented in [10] sorted access can be simulated using an index structure depending
on an attribute type. For an ordinal attribute a B+ tree traversed according to
user local preference can be used. In example 2 the price tree is traversed from
maximal value in descending order using leaf pointers. In the size tree we have
to create two pointers, both starting at 60m2. First pointer traverses the tree
in descending direction and the second one in ascending direction. For a simu-
lation we need to identify local maxima, then the scoring function is used as a
black box. Having simple functions (partially linear) we can easily find points of
extremes to identify the pointers and directions. Arbitrary functions expressing
local preferences would need function analysis. This analysis is much more sim-
ple than in case of multidimensional analysis used in [22]. Besides ordinal and
nominal attributes presented in [10] we can simulate sorted access over metric
and hierarchical attributes, too (not published yet).All simulation algorithms
have their speed close to a simple scan of tables sorted in.

In order to enable different users to express top-k queries we designed an
intuitive user friendly interface. As an alternative to complicated input users
can also use an inductive procedure. Our system was integrated in the UPRE
system [9]. In UPRE, user can define his/her preference by ordering or evalu-
ating a sample of objects. The system creates input for top-k search based on
user’s evaluation in a two step learning process. First, local fuzzy preference
functions have to be induced for each attribute. Second, using these functions,
the monotone combination function in the form of fuzzy rules is learned by an
inductive logic programming method IGAP described in [12]. Alternatively we
can use the SVM based system [21].

1.2 Contribution

Having simulations of sorted access it is natural to find top-k objects using the
NRA algorithm requiring sorted access and monotone combination function only.
The original NRA algorithm is rather slow because of inefficient management of
candidates during the computation. In this paper we present several variants of
NRA algorithm that speed up the computation of top-k objects.

• Our first contribution includes new heuristics in 3P-NRA algorithm (an
extension of NRA algorithm) named 3P-NRAz and 3P-NRA2z that make the
computation fast and more stable than the previous approaches.
• The second contribution is the execution of experiments in different direc-

tions. We compared time efficiency of a table scan over joined data to several
variants of our 3P-NRA algorithm with data in one index per attribute archi-
tecture. We describe common situations in which our approach is better than
simple table scan. In section 3 we also show that the 3P-NRA algorithm with
heuristics outperforms the previous NRA algorithm significantly.
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2 3P-NRA Algorithm

In this section we present the modification of NRA algorithm [6] named 3P-NRA
(3-phased no random access) proved to be better than NRA in several aspects.
The presentation of 3P-NRA algorithm without the support of local preferences
is accepted for ADBIS conference [8].

In the rest of this paper we use the following notation. Value m represents the
number of attributes of objects or the number of sources. An arbitrary object is
denoted as X = (x1, . . . , xm), where x1, . . . , xm are real attribute values of X .
f1, . . . , fm are arbitrary scoring functions of one variable that represent local pref-
erences to attribute values. For each i ∈ {1, . . . ,m}, fi(xi) represents a user pref-
erence to the real value of the i-th attribute of X . Let V (X) = {i1, . . . , in} ∈
{1, . . . ,m} be a subset of known attributes xi1 , . . . , xin of X , we define WV (X) (or
shortly W (X) if V is known from context) to be minimal (worst) possible value
of the combination function F for the object X . We assume that F is a monotone
combination function. We compute WV (X) so that we substitute each missing at-
tribute by the minimum of appropriate scoring function. For example if V (X) =
{1, . . . , g} then WV (X) = F (f1(x1), . . . , fg(xg),min(fg+1), . . . ,min(fm)).

Analogously we define maximal (best) possible value of the combination func-
tion F for object X as BV (X) (or shortly B(X) if V is known from context). Since
we know that sorted access returns values in descending order, we can substitute
each missing value by the corresponding value from the vector u = (u1, . . . , um),
where u1, . . . , um are the last scoring values seen from each source. For example
if V (X) = 1, . . . , g then BV (X) = F (f1(x1), . . . , fg(xg), ug+1, . . . , um).

The real value of the object X is W (X) ≤ F (f1(x1), . . . , fm(xm)) ≤ B(X).
Note that during the computation unseen objects (no values are known) have
B(X) = F (u1, . . . , um). The value τ = F (u1, . . . , um) is known as the threshold
value.

In the algorithm we use the top-k list T ordered by the worst value. The
object in T with the smallest worst value is labeled Tk. In the (unordered) set
C we store the candidates with the worst value smaller or equal to W (Tk) but
with the best value larger than W (Tk). These are the objects with a chance to
get into T later. We call the objects in C candidates.

In 3P-NRA we implemented C as a hash table with object identifiers as a key.
To recognize the sources with all known values among the objects in T ∪ C we
maintain the number of missing values for each source.

3P-NRA algorithm works as follows:

Input: k, F, m sources
Output: k ranked objects if exist
T = ∅ , C = ∅

Phase 1:
Do the sorted access in parallel to all sources.
For every object X seen under sorted access compute W (X) and do

If |T | < k then put X to T
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Else If W (X) > W (Tk) then
If X /∈ T move Tk to C, put X to T

Else put X to C
If W (Tk) ≥ threshold τ goto Phase 2
repeat Phase 1
Phase 2:
Do the sorted access in parallel to the sources for which there
are unknown values for objects in C and T.
For every object X seen under sorted access do

If X /∈ T ∪ C ignore it
Else If B(X) ≤W (Tk) remove X from C

If |C| = 0 return T and exit
If W (X) > W (Tk) and X /∈ T move Tk to C, put X to T

If (W (Tk) increased) OR (threshold τ decreased) then
heuristic H can choose to go to Phase 3

repeat Phase 2
Phase 3:
For every object X ∈ C compute B(X);
If X is no more relevant (i.e. B(X) ≤W (Tk)) remove X from C
If |C| = 0 return T and exit; otherwise goto Phase 2.

Phase 1 works similarly to the standard NRA algorithm with the exception of
the threshold test and the absence of candidate set search. The heuristic H in
3P-NRA algorithm can be used to skip an expensive computation of phase 3. On
the other hand, if H always chooses to do the phase 3 the 3P-NRA algorithm is
proved to be instance optimal. The instance optimality of NRA means, that if
NRA finds top k objects using y sorted accesses, then there are no algorithms
reading the sources only by sorted access, that can find top k objects using less
than y

m sorted accesses (see [6]).

Theorem 1. Let F to be a monotone combination function, then algorithm 3P-
NRA correctly finds top-k objects.

Theorem 2. Let F be a monotone combination function. If heuristic H al-
ways chooses to go to phase 3, then algorithm 3P-NRA makes at most the same
number of sorted accesses as NRA algorithm i.e. 3P-NRA algorithm is instance
optimal.

Proofs excluding the local preferences of can be found in [8]. The improvements
of the 3P-NRA algorithm in contrast to NRA [6] are the following:

– New objects are considered in phase 1 only. Other objects are ignored. This
is the most significant difference between 3P-NRA and NRA.

– Many computations of the best values are omitted. This feature allows the
speedup of the computation especially for large number of candidates.

– After acquisition of all unknown values of any attribute among objects in
T ∪ C the algorithm stops working with the corresponding source (no more
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sorted accesses to the source will be done). This feature decreases the number
of disk accesses significantly.

– A good choice of heuristic H can yield a massive speedup of the algorithm,
however it can slightly increase the number of disk accesses according to H .

In [8] we discussed also the modification of 3P-NRA algorithm for the cases
when the candidate set C do not fit into the available memory. The proposed
modification allows efficient computation of top-k objects with less than 1/100
of candidates in memory.

2.1 Heuristics

Two the most expensive points of instance optimal 3P-NRA algorithm are par-
tial join of data form the sources and the computation of the best values in
the candidate set C. All heuristics presented in this section follow the idea of
decreasing the number of expensive best values computation in phase 3. Never-
theless, we need to do this computation occasionally to prevent the processing
of all input data.

The first approach to decrease the number of computations of the best values
in phase 3 is to use the heuristic H mentioned in phase 2. In our tests in section 3
we use the heuristic that goes to phase 3 only each 1000th loop of phase 2. A
number 1000 is an approximated number of sorted accesses to the sources that
is done by reading one disk page per attribute when user preferences cover 5 at-
tributes of the objects. Thus we can be near the optimal number of disk accesses.
In the tests we show orders of magnitude speedup against algorithms without
the heuristic. This heuristic was used in [8] too. We will call the algorithm having
this heuristic 3P-NRA2.

Our new heuristic of decreasing the number of computations of the best
values modifies the phase 3 as follows:

Phase 3:
Iterate over objects X ∈ C and compute B(X)
If X is relevant (i.e. B(X) > W (Tk))
break the cycle and goto Phase 2

Else Remove X from C
numberOfRemoved++

If |C| = 0 return T and exit;
If numberOfRemoved ≥ 100
Create new set CNew
For every object X ∈ C compute B(X)
If X is relevant, copy X to CNew

If |CNew| = 0 return T and exit;
Free memory used by C, set C = CNew
Set numberOfRemoved = 0 and goto Phase 2;

The main idea behind this heuristic is to skip the computation of the best values
when there are still many relevant candidates. By iteration through random el-
ements of set C there is a high probability that after erasing of 100 not relevant



Speeding Up the NRA Algorithm 249

k=1,m =5

0,01

0,1

1

10

100

1MB 10MB 100MB 1GB

3PNRA2z

3PNRAz

3PNRA2

table-scan

k=10,m =5

0,01

0,1

1

10

100

1000

1M B 10M B 100M B

table-scan

3PNRA2z

3PNRA2

3PNRAz

3PNRA

NRA

Fig. 2. Computation time in seconds over different size of datasets

objects the candidate set C will have less than 1% of relevant objects. It is more
effective to create a new small set rather than deletion of 99% objects from C.
We will call this algorithm 3P-NRAz. Note that the algorithm having this modi-
fication of phase 3 is correct and instance optimal. Both the correctness and the
instance optimality come from the fact that every time the previous version of
phase 3 returns list T , so does the new version.

We have also the possibility of combination of proposed heuristics. The result
of the combination is the algorithm called 3P-NRA2z. This new algorithm is the
best in our tests especially for bigger data sizes and restrictive local preferences.

3 Experiments

This section reports the experiments with algorithms using only sorted access
over artificial data. The experiments were conducted on a PC having Intel Core
2 1,86 GHz CPU and 2 GB RAM running on Windows XP. We minimized the
number of other processes during the tests to keep a stable test environment.
Algorithms are implemented in Java. The size of the disk pages was set to 4 kB.
All table scan computations were tested using InnoDB table organized as a heap
file with no index support in MySQL 6 database.

In the first experiment we compare the mentioned algorithms over different size
of datasets: 1 MB (10k objects), 10 MB (100k objects), 100 MB (1M objects)
and 1GB (10M objects). Each dataset consists of 5 attributes x1, . . . , x5. Each
attribute has values in range [0, 1] and Gaussian distribution (the most difficult
distribution for TA-like algorithms). Tests were computed with 5 different com-
bination functions F (X) =

∑5
i=1 ai · xi where ai were randomly generated from

interval 〈1, 5〉. Results presented on figure 2 are average times of all the tests. NRA
and 3P-NRA algorithms without any heuristic are significantly worse than the
algorithms with heuristics. For example the computation of top-10 objects over
100MB dataset with NRA algorithm took 308 seconds. The same result was com-
puted in 2 seconds using the fastest 3P-NRA2z algorithm. Table scan took 2,5
seconds. Because of the low performance of the original NRA algorithm and in-
stance optimal 3P-NRA algorithm we do not compare them in all our tests. The
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Fig. 3. Computation time in ms over different number of attributes in user preferences

graph on the left shows the computation time needed to search the best object
from the datasets. The proposed methods become more effective in comparison
to table scan with the growing data size. For example the table scan over 1GB
dataset takes more than 23 seconds while the 3P-NRA2z algorithm needs 11,5
seconds. We have to admit that with the growing k the computation times become
longer than table scan times e.g. when k = 20 the 3P-NRA2z algorithm needs 42
seconds to present the results, whilst the table scan time remains 23 seconds.

Our second experiment was motivated by our experiences in project NAZOU
(see http://nazou.fiit.stuba.sk). In NAZOU, our target domain are job
offers. We identified more than 15 attributes of job offers. Users usually express
their preferences by a small subset of attributes (2 to 5). In this experiment
we used 10 randomly generated attributes with uniform distribution of values
having 1 million tuples ( 100MB). The base combination function used in this
experiment was F (X) = 3x1+2x2+x3+2x4+2x5+3x6+2x7+x8+2x9+2x10. In
each run of the test we have a different number of the attributes. The test with m
attributes uses the first m elements of the combination function. From the results
presented on Figure 3 we can conclude that our methods of top-k search become
efficient when user preferences covers up to 5 attributes. These advantages of top-
k search grow with the number of stored attributes. For example cars, notebooks
or mobile phones are domains with more than 25 attributes.

In NAZOU we also face the problem of one object having more than one value
of an attribute e.g. required education level of a job offer can be expressed as
”bachelor or master degree”. When computing the overall value of an object



Speeding Up the NRA Algorithm 251

Table 1. Computation time in ms over data with 2 attribute values per object over
100.000 objects

k 1 5 10 20

3PNRA2z 157 203 218 250
3PNRAz 234 297 422 484
3PNRA2 141 188 203 235
3PNRA 3782 4484 9031 10890
NRA 3766 4500 9078 10875
table-scan 5890 5890 5890 5890

we use the fuzzy value of more preferred attribute value. For example in this
attribute the mentioned job offer would suit a young man who has just ended
the bachelor studies. In this experiment each source has 2 values of attribute per
object. By joining the data from 5 sources holding 50k objects (100k values per
source), we got 1.6M tuples. Results in table 1 show the significant difference
between table scan of joined data and our methods. Even low effective algorithms
NRA and 3P-NRA are faster than table scan when searching the best object only.

Another significant property that influences the computation time of top-k
search is the selectivity of user local preferences i.e. the number of values having
minimal fuzzy value equal to zero. The situation with many zeros is typical also
when the attribute values are unknown. In this case they can be marked as
not preferred values (we need some value to compute the overall value of the
objects). Unknown values are typical for web extracted data.

Domain values having minimal fuzzy value do not need to be processed from
the sources. After reaching the first object with the minimal fuzzy value, the
unknown values of this attribute can be substituted by the minimal fuzzy value
in all objects not seen in the given attribute. In Figure 4 there are the results of
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Fig. 4. Computation time in ms over different selectivity of local preferences. X-axis
represents the number of objects that have fuzzy value zero (in %).
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tests with 5 attributes over sources with uniform distribution. The combination
function in this experiment was F (X) = 3f1(x1) + 2f2(x2) + f3(x3) + 2f4(x4) +
2f5(x5) where fi = max{0, 100·xi−d

100−d }, and d have values 0.05, . . . , 0.95. It is not
surprising that for high selective local preferences the top-k search is better
than table scan. Results show an interesting behavior of 3P-NRA2 algorithm
for high selective queries. We have analyzed it and found out that after a short
phase 1 there was a long and expensive computation of phases 2 and 3 with the
candidate set of high cardinality. Even if the number of computations of phase 3
has decreased 1000 times compared to NRA algorithm, the number of best value
evaluations is still high. The new heuristic with restrictive phase 3 is very stable
and resistant against long-term large candidate set.

All tests indicate the situations in which the 3P-NRA style of computation
is suitable. All the mentioned situations are typical for the advanced web based
search applications that allow complicate user preferences. Users are usually
interested in a few best objects only and express their preferences with a small
part of attributes. Local preferences are often restrictive (they prefer specific job
positions or they want to find houses in a small region). Data sets of objects grow
every day. Objects can have more values of one attribute and many attribute
values are unknown.

The original TA-like algorithms were developed to aggregate the data from
the distributed sources having the form of web services. If we combine all the fea-
tures of data and queries, the use of 3P-NRA algorithm with heuristics becomes
profitable even for local repositories.

4 Related Work

In our approach we face the problem of complex queries by simulation of sorted
access over various attribute types. The simulation is directed by an arbitrary
local preference function. The combination of arbitrary local preference functions
and monotone combination function has a high expressive power.

Top-k query processing using monotone combination function and ordered
sources or sources accessed only by random access was extensively studied
[1,2,3,6,11]. If we have ordered sources, many of these algorithms are proven to be
instance optimal for the top-k search of a single user (constant local preferences).

The top-k algorithms embedded in RDBMS [14,15] are concerned with aug-
menting the query optimizer to considering rank-joins during plan evaluation.
The rank-join algorithms require ordered data on input similarly to the previous
middleware algorithms.

The problem of more expressive queries was studied in different ways. Systems
MPro [5] and Upper [4] access unordered sources only by random access. In
system PREFER [13] the sorted access is provided by choosing one of several
prepared ranked materialized views having ordering near to the ordering made
by ranked query.

Zhang et al in [23] present the OPT* algorithm combining discrete selection
condition and continuous optimization over arbitrary ranking function to find
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the first best object. Xin et al [22] analyze the ranking function of many vari-
ables similarly to [23] to navigate through the huge set of states over m B+
trees. If we can analyze the ranking function over any domain subregion (to find
the minimum and possibly recognize monotonicity) this approach should be able
to find top-k objects in an effective way. Authors in [22] made many tests and
compared their approaches to the table scan as we did. Nevertheless it is diffi-
cult to compare our results with theirs because of questionable results of their
tests. For example the table scan over 1M tuples having 3 attributes took over
30 seconds in their tests. Our results of the table scan over 1M tuples with 5
attributes shows times from 2 to 3 seconds on a common workstation machine.

Another possible view of recent research distinguishes two branches. One
branch of research generalizes types of data to uncertain (see e.g. [19,18]) or to
XML data (see e.g. [20]). The other branch focuses on top-k query optimization.

5 Discussion

In this paper we have studied methods of top-k search with no random access
which can be used to find k best objects using sources that can be read only by
sorted access. Such methods usually need to work with a huge set of candidates
during the computation and management of candidates is an important issue.

We have introduced new methods for top-k search with sorted access and imple-
mentation of own experimental environment. New versions of 3P-NRA algorithm
were tested with different heuristics that improve the computational time.

We can say that it is suitable to use our methods of top-k search for systems
allowing various user preferences. Our motivation comes from querying a big
repository with data extracted and/or retrieved from the web relevant to job
search. Such data typically contain several dozens of different attributes and
single user query typically uses a constant fraction of them, nevertheless all of
them are used by some user. System shows better performance if objects have
more values of the same attribute. Top-k search with the proposed algorithms
should be preferred when the specified local preferences are restrictive.

Moreover the combination of the methods presented in this paper together
with the sorted access simulation algorithms over ordinal, nominal, hierarchical
and metric attributes becomes a powerful tool for top-k search with a high
expressive power [10].

Our system uses a light weight proprietary disk data structures used to sim-
ulate the sorted access. This serves only to top-k search, we do not need the full
functionality of a transactional multiuser RDBMS.

In the project NAZOU (see http://nazou.fiit.stuba.sk), we use the
sorted access to process the output from different methods, which produce data
with respect to user preferences to attribute values. There are different methods
over various index structures for different types of attributes: ordinal, nominal,
hierarchical and metric attributes. To obtain the combination function for differ-
ent users, our system uses learning user preferences from a sample of objects (see
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[12]) or a recommendation for a similar user based on it. The learned preferences
have a form of monotone fuzzy rules (instead of the analytical form).

Considering that users are interested only in a part of the attributes and that
attribute domains can be complex structures, the new methods of top-k search
become very useful.
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Abstract. Context-sensitive knowledge is widespread in Semantic Web,
but traditional RDF triples lack references to situations, points in time,
or generally contexts. In order to resolve this problem, Dimensional
Ontology (DO) theory is put forward, which features dimensional rela-
tions, dimensional operators as well as reasoning mechanism for context-
sensitive knowledge. The notion of context in DO is actuarially a vector
of dimensions, which are crisp sets representing certain contextual as-
pects. We propose an approach of modeling uncertain contexts of DO
through fuzzy subsets instead of crisp ones. In this way, DO provides the
ability of representing fuzzy triples in uncertain contexts. Apart from
describing uncertain context model of DO, we discuss how dimensional
operators and reasoning mechanism can be applied to uncertain contexts
to allow more complex manipulations.

Keywords: Uncertain Context, Dimensional Ontology, Fuzzy Subset
Theory.

1 Introduction

Context-sensitive knowledge is widespread in Semantic Web, such as temporary
evolution, spatial situation, trust and provenance. Dimensional Ontology (DO)
theory [1] provides the abilities of representing contexts and applying them to
traditional RDF tripes [2]. For example, the RDF triple 〈eg:Jim, eg:hasHeight,
1.80〉 needs a specified time point denoting the context, because the height of a
person usually upgrades with the evolution of time. What’s more, 1.80 is only
for measurement in meters, while 180 is for centimeters. Suppose the time point
granular is year, we can construct a dimensional statement (see Definition 12)
ρ1 = (〈eg:Jim, eg:hasHeight, 1.80〉, {dY 2004, dmeter}) to represent “Jim was 1.80
meters tall in the year of 2004”. In DO, the notion of context is represented by
mathematical sets. dY 2004 is a temporal set, which can further perform set opera-
tions like dY 2004 ∪dY 2005. Suppose ρ2 = (〈eg:Jim, eg:hasHeight, 1.80〉, {dY 2004 ∪
dY 2005, dmeter}), which means “Jim was 1.80 meters tall both in the year of
2004 and 2005”, it’s obvious that ρ1 can be inferred by ρ2 because of the subset
relation of temporal context.

Besides crisp ones, there’re fuzzy triples in Semantic Web as well. For ex-
ample, the RDF triple 〈eg:Jim, eg:hasHeight, eg:TALL〉 is a vague qualitative
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statement of a person’s tallness. It also requires the context of time, which is
not a precise time point but a fuzzy time period. Because we can not tell ex-
actly the time period when Jim is tall or not. For a specified time point, the
degree of tallness should be modeled to represent to what extent Jim is tall. In a
word, context-sensitive fuzzy triples in Semantic Web request uncertain context
modeling mechanism, which is the main motivation of this paper.

We propose to extend DO theory with fuzzy logic for uncertain context mod-
eling. The approach is to substitute fuzzy subsets for crisp ones when the context
is uncertain. For example, if Jim grew up rapidly and linearly in the year of 2004,
we can replace crisp set of dY 2004 with, e.g. trapezoidal fuzzy subset. This kind of
extension of DO is smooth because fuzzy logic does not dramatically overthrow
traditional crisp set theory. Another reason why this approach is applicable is
that DO accommodates different types of contexts, which are semantically de-
coupled (see Definition 1). It means crisp contexts and fuzzy ones can cooperate
well without interfering with each other in the extended version of DO.

The remainder of this paper is organized as follows. Sect. 2 discusses the
related work. Sect. 3 presents a brief description of partial the DO theory; Sect. 4
illustrates how to model uncertain context of DO, followed by the description
of corresponding fuzzy operations and reasoning mechanism; and finally the
conclusion is drawn in Sect. 5.

2 Related Work

Uncertain context has been drawing much attention from researchers in the ubiq-
uitous and pervasive computing domain, real time systems or mobile computing.
In the novel scenario of the Semantic Web, context representation has been a
hot topic as well [6]. As for uncertain context modeling related to Semantic Web
or ontology, some researchers have proposed a few approaches, among which the
following 4 are typical representatives.

In the paper [7] and [8] , an approach is proposed to support fuzzy, similari-
ty-based matchmaking between real-world situation parameters and predefined
semantic situation descriptions by incorporating semantic context information
on a conceptual level into common symbolic Semantic Web descriptions utiliz-
ing a novel metamodel of Conceptual Situation Spaces (CSS). Based on Con-
ceptual Spaces [9], CSS adopts quality dimensions to describe entities at the
conceptual level in terms of their natural characteristics. Note that dimensions
and dimension types in DO are towards representing (fuzzy) contexts of asser-
tions/statements of RDF triples, while quality dimensions are entity-oriented or
concept-oriented. Another difference is that CSS is for fuzzy context matchmak-
ing, but the goal of DO is (uncertain) context modeling and reasoning.

The project of VICODI [10] develops an ontology of European history used for
semantical indexing of historical documents. It presents a fuzzy interval-based
temporal model capable of representing imprecise historical temporal knowledge.
The ontology model is constructed by KOAN [11] based on HiLog semantics [12],
while there’s another fuzzy temporal model independent of the ontology model.
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These two heterogeneous semantics are orthogonal and need to be integrated at
the syntactical and at the semantic level. Although the approach for integrating
temporal and ontology models is general and not tied to any particular model,
it still separates uncertain context knowledge with domain ontology. On the
contrary, DO enhanced with fuzzy subset theory is a unified solution for modeling
uncertain context. What’s more, the fuzzy temporal model is only for temporal
knowledge , but other types of uncertain context are not supported. DO provides
the ability of modeling any types of uncertain context through different fuzzy
dimension types.

Paper [13] introduces an OWL context model to provide a shared semantic
understanding for context-driven adaptation of mobile services. Continuing, the
authors propose a simple and lightweight yet generic approach to extend con-
text ontologies with quality of context properties and discuss the use of these
quality properties for context ontology matching under uncertainty using fuzzy
set theory [14]. This is also a domain-specific approach, in which merely such
contexts as User, Platform, Service, Environment for adaptation of mobile ser-
vices are supported. The fuzzy parameters representing the quality of context
only include Precision, Correctness, Trust and Resolution. It’s similar to uncer-
tain context with discrete membership mapping function described in Sect. 4.1.
But the context modeling mechanisms are quite different: it follows the design
patterns in the guideline for defining OWL N-ary relations introduced in [15],
while DO theory provides a brand new approach beyond triple-based ontology
framework of W3C standards.

Paper [16] presents algorithms of computationally efficient handling of large
but sparse fuzzy relations, and theory of knowledge representation, thematic cat-
egorization and user modeling. The following work is put forward in paper [17],
which introduces how these diverse algorithms and methodologies can be com-
bined in order to approach a greater goal, that of semantic multimedia personal-
ization. The fuzzy semantic relations discussed is merely related to MPEG-7. It
proposes to use RDF Reification [18] in order to achieve the desired expressive-
ness and obtain the enhanced functionality introduced by fuzziness. It’s known
that RDF Reification is redundant and clumsy, which arises performance doubt
of this approach. On the contrary, DO does not adopts RDF Reification at all.
Instead, DO utilizes “statement-id” as a OWL DatatypeProperty pointing at a
DStatement reference [1].

Besides the four approaches related to Semantic Web and ontology, some ef-
forts have been taken to model different types of contexts of possibility through
extending modal logic [19], which attempts to deal with modalities, namely, pos-
sibility, probability, and necessity. For example, temporal logic [20] and further
linear temporal logic [21] discuss representing, and reasoning about, propositions
qualified only in the context of time. But DO supports multiple context types in-
cluding but not limited to time. As another example, dynamic logic [22] extends
modal logic by associating to every action a the modal operators, in which the
context refers to the dynamic action performed. On the contrary, DO is toward
modeling the contexts of static contextual statues of RDF triples/statements.
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3 Brief Description of DO Theory

This section presents a brief introduction of DO Theory. It presents only partial
the theory. The full one can be found in paper [1].

3.1 Dimension Type, Dimension and Dimension Container

Definition 1 (Dimension Type). We define τ to be a dimension type stand-
ing for a context aspect, and T to be the set of all context aspects. T is also
called the context environment. All the elements in T are disjoint in semantics.

Definition 2 (Dimension). We define d to be a concrete dimension for a di-
mension type τ restricting one certain context aspect, which it’s a mathematical
set containing a context scope of τ . Let D to be the set of all such dimensions,
then Ψd : D → T maps a specific dimension to its dimension type.

Definition 3 (Universal Dimension). We define μτ to be the universal di-
mension for the dimension type τ , which is the universal superset of τ imposing
no context restriction on τ . There is one and only one universal dimension for
each dimension type .Any dimension is a sub set of a universal dimension of the
same type: μτ ⊇ d, if Ψd(d) = τ, d ∈ D. We define M to be the set of all the
universal dimensions in the context environment of T , therefore |M| = |T |.

Example 1 (Dimension). Suppose τtime to be the temporal dimension type, then
μτtime is the universal dimension of all the time. Let dY 2008 ∈ D to be a temporal
dimension restricting the context of time within year of 2008, then Ψd(dY 2008) =
Ψd(μτtime) = τtime and μτtime ⊇ dY 2008. Note that all the dimensions here are
crisp sets without vagueness.

Definition 4 (Dimension Container). A dimension container o is a set of
dimensions restricting certain contexts. A dimension container is an intersec-
tion combination of the context restrictions of different dimension types. which
satisfies :

∀di∀dj(Ψd(di) 	= Ψd(dj)), di, dj ∈ o and i 	= j.

Let DC to be the set of all the dimension containers, then DC ⊆ P(D). The
function Ψo : DC → P(T ) is defined as: Ψo(o) = {Ψd(d1), . . . , Ψd(dn)}, o =
{d1, . . . , dn} and o ∈ DC.

Example 2 (Dimension container). Let T = {τtime, τloc}; let τloc to be the di-
mension type of location; suppose there is a dimension dUSA denoting the loca-
tion within USA; then {dY 2007}, {dY 2008}, {dUSA}, and {dY 2008, dUSA} are all
dimension containers, while {dY 2007, dY 2008} and {dY 2007, dY 2008, dUSA} are not.
{dY 2007, dUSA} restricts the context to be “time within the year of 2007” and
“location in USA”. The temporal dimension that denotes “time between the year
2007 and 2008” can be constructed through set union operator dY 2007 ∪ dY 2008

(note that it’s not {dY 2007} ∪ {dY 2008}), but these two dimensions can not exist
in the same dimension container at the same time.
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3.2 Dimensional Relations

Each dimensional relation is a binary relation between two dimension containers.
We introduce only two dimensional relations here: dimensional equivalency and
dimensional superset.

Definition 5 (Dimensional equivalency). We define T= to be the relation
denoting dimensional equivalency in the context environment of T as follows: Let
M′ ⊆M and Ψo(o)∩Ψo(M′) = ∅, o,M′ ∈ DC; then o

T= o∪M′, o∪M′ ∈ DC.

Definition 6 (Overline Normalized Dimension Container). Let o ∈ DC.
We define o to be the overline normalized dimension container of o in the context
environment of T , which satisfies: o T= o and Ψo(o) = T . We defineDC to be the set
of all the overline normalized dimension containers. We define Ω : (T ,DC) → D
mapping a overline normalized dimension container and a dimension type to the
dimension in the dimension container that belongs to the specified dimension type.

Example 3 (Normalized Dimension Container). Suppose T = {τtime, τloc}; let
Ψd(d1) = τtime, o = {d1}, o ∈ DC; then o = {d1, μ

τloc}, and o
T= o. Both of them

restrict the context to be “time within d1 and in any location ”. In this case,
Ω(τtime, o) = d1 and Ω(τloc, o) = μτloc .

Definition 7 (Dimensional superset). We define
T
⊇ to be the relation denot-

ing dimensional superset in the context environment of T as follows: Suppose

o, o′ ∈ DC; o
T
⊇ o′, iff ∀τ(Ω(τ, o) ⊇ Ω(τ, o′)), τ ∈ T .

3.3 Dimensional Operators

We introduce three dimensional operators here: dimensional intersection, dimen-
sional partial union and dimensional partial complement.

Definition 8 (Dimensional intersection). We define
T
∩ to be the operator

denoting dimensional intersection in the context environment of T : o
T
∩ o′

T=

{Ω(τ1, o) ∩ Ω(τ1, o′), . . . , Ω(τn, o) ∩ Ω(τn, o′)}, o
T
∩ o′ ∈ DC, if o, o′ ∈ DC and

T = {τ1, . . . , τn}.

Definition 9 (Dimensional union). We define
T
∪ to be the operator denoting

dimensional union in the context environment of T .

Note that dimension union is not what performs union operations on each dimen-
sion type of a dimension container. As is illustrated in Fig. 1, the dimensional

union of o and o′ (o
T
∪ o′) is the bold area, which is not a dimension container at

all (o
T
∪ o′ /∈ DC). However dimensional partial union (see Definition 10) makes

the operation results dimension containers in any case.
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Fig. 1. Dimensional partial union

Definition 10 (Dimensional partial union). We define
τ
∪ to be the operator

denoting dimensional union of two dimension containers on the specified dimen-
sion type τ : o

τ
∪ o′

T= {Ω(τ1, o) ∩ Ω(τ1, o), . . . , Ω(τ, o) ∪ Ω(τ, o), . . . , Ω(τn, o) ∩
Ω(τn, o)}, T = {τ1, . . . , τ, . . . , τn}, o

τ
∪ o′ ∈ DC.

Example 4 (Dimensional partial union). Fig. 1 demonstrates dimensional partial
union of o and o′ on τx in the grey area. It performs union operation on τx,
while performs intersection operations on the other dimension types (τy). It can

be inferred [1] that (o
T
∪ o′)

T
⊇ (o

τx∪ o′).

Definition 11 (Dimensional partial complement). We define
τ¬ to be the

operator denoting dimensional complement of a dimension container on a speci-
fied dimension type:

τ¬ o = {μτ1 , . . . ,¬Ω(τ, o), . . . , μτn}, T = {τ1, . . . , τ, . . . , τn}.

3.4 DStatement

Dimensional containers are devoted to represent context. We can further apply
dimension containers to RDF triples to construct contextual assertions.

Definition 12 (DStatement). A dimensional statement (i.e. DStatement) is
an ordered, strongly binary tree [3] ρ that is defined recursively in terms of left
and right subtrees of the root as follows:

ρ =
({

t
ρ′

, o

)
, ρ, ρ′ ∈ DS, t ∈ T, o ∈ DC

DStatement is an assertion which means the left subtree exists in the context of
the right dimension container, or the left one is truth for the right one. We define
DS to be the set of all DStatements . The function Υρ : (DS,N) → DS ∪T maps
a DStatement to its left child in the specified depth. The function Φρ : (DS,N) →
DC maps a DStatement to its right child in the specified depth. We define Hρ to
be the height of ρ.

Definition 13 (Simple DStatement). A DStatement ρ is a simple DState-
ment, iff Υρ(ρ, 1) ∈ T . And SDS is the set of all the simple DStatements.
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Example 5 (Simple DStatement). Let t = 〈eg:Jim, eg:hasHeight, eg:175〉 ∈ T ;
let T = {τtime, τmea}; let τmea to be the measurement dimension type, which
has dimensions dcenti and dmeter , we have ρ = (t, {dY 2007, dcenti}), which means
“Jim is 175 centimeters tall in 2007”.

Definition 14 (Simplified DStatement). Let ρ to be a DStatement, the the
simplified DStatement of ρ is :

ρ̂ =

⎛⎜⎜⎝Υρ(ρ,Hρ),

Hρ

T⋂
d=1

Φρ(ρ, d)

⎞⎟⎟⎠ , d ∈ N, ρ ∈ DS.

Proposition 1. ρ̂ ∈ SDS, if ρ ∈ DS.

Example 6 (Simplified DStatement). Let t1 = 〈eg:Jim, eg:hasHeight, eg:185〉;
let T = {τtime, τprov}; let τprov to be the provenance dimension type, which
has dimension dLucy (i.e. Lucy says/said) ; let ρ1 = ((t1, dY 2008), {dLucy}) ,ρ2 =
((t1, dLucy), {dY 2008}) and ρ3 = (t1, {dLucy, dY 2008}); then ρ1 means “Lucy says
‘Jim was 185 tall in 2008’”, while ρ2 means “In 2008 Lucy said ‘Jim is 185 tall’”
and ρ2 means “ ‘Jim is 185 tall’ is truth, if time is in 2008 and it’s from Lucy’s
words ”. Note that the semantic meanings of the three are not equivalent. We
have ρ̂1 = ρ̂2 = ρ3.

4 Uncertain Context Extension of DO

This section discusses how to model uncertain context of DO using fuzzy subset
theory. The basic idea is to create new dimension types for different uncertain
contexts and construct corresponding dimensions and dimension containers with
fuzzy subsets instead of crisp ones. In this way, the universe of discourse of all the
fuzzy subsets is the set of DStatements including RDF triples (RDF triples are
special cases of DStatements in Definition 12). And dimension containers with
dimensions of fuzzy subsets can be applied to DStatements in order to denote
ambiguous contextual assertions. Note that it’s not required for a dimension
container to encapsulate only fuzzy subsets or merely crisp ones. They can be
mixed within a dimension container for different contextual aspects.

The membership function of a fuzzy subset can be either discrete or continuous.

4.1 Discrete Membership Function

Fuzzy subset F of a set S can be defined as a set of ordered pairs, each with a
first element that is an element of the set S, and a second element that is a value
in the interval [0,1], with exactly one ordered pair present for each element of
S. If S = {x1, . . . , xn} is a finite set and F is a fuzzy subset in S then we can
use the notation: F = μ1/x1 + · · ·+ μn/xn, where term μi, i = 1, . . . , n signifies
that μi is the degree of membership of xi in F and the plus sign represents the
union. Suppose F contains finite n mappings from DStatements to [0,1]. We can
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introduce a new dimension type τf denoting the extent of uncertainty with a
property value between 0 and 1.

For example, in order to modeling tallness of Jim at discrete time points, we
can define T = {τtime, τf}. Let t = 〈eg:Jim, eg:hasHeight, eg:TALL〉, t ∈ T , we
have such DStatements as ρ1 = (t, {dY 2002, df0.25}), ρ2 = (t, {dY 2004, df0.50})
and ρ3 = (t, {dY 2008, df1.00}), ρ1, ρ2, ρ3 ∈ DC. ρ1 represents “In the year of 2002,
degree of truth of the statement ‘Jim is TALL’ is 0.25”, while ρ3 interprets “Jim
is 100% TALL in 2008”. Note that both τtime and τf are ordinary crisp sets. We
don’t use fuzzy subsets in this approach. Instead, we utilize crisp dimensions for
modeling discrete fuzzy subsets.

In fact, dimension types of DO can be so diverse that we can establish a
new dimension type denoting the extent of uncertainty to modeling uncertain
context for each DStatement. But the limitation of this approach is that it is
merely suitable for fuzzy subsets with finite and discrete mappings instead of
infinite continuous ones.

4.2 Continuous Membership Function

Sometimes, a more general definition is used, where membership functions take
values in an arbitrary fixed algebra or structure F = {(x, μF (x))|x ∈ S}. And
μF : S → [0, 1] is defined as a mapping between elements of the set S and values
in the interval [0,1]. μF (x) is the degree is interpreted as the degree of member-
ship of element x in fuzzy set F. The value zero is used to represent complete
non-membership, the value one is used to represent complete membership, and
values in between are used to represent intermediate degrees of membership. The
set S is referred to as the universe of discourse for the fuzzy subset F.

Taking tallness as an example, we can define a fuzzy subset F which answers
the question “to what degree is person x tall?”. To each person in the universe
of discourse, we have to assign a degree of membership to μF (x). The easiest
way to do this is with a membership function based on the person’s height.

μF (x) =

⎧⎨⎩
0 if height(x) ≤ 1.6
2.5 · height(x)− 4 if 1.6 < height(x) ≤ 2.0
1 if height(x) > 2.0

(1)

Furthermore, we can also make it based on time with certain assumption.
Suppose Jim’s height has a linear relation with time, we can define:

height(t) = 0.05 · t− 98.4, 1968 ≤ t ≤ 2020 (2)

Therefore we can construct a fuzzy subset F of Jim’s tallness in time set
through combining Equation 1 and Equation 2:

μF (t) =

⎧⎨⎩
0 if 1968 < t ≤ 2000
0.125 · t− 250 if 2000 < t ≤ 2008
1 if 2008 < t ≤ 2020

(3)

In this example, it is actually a normal trapezoidal fuzzy subset [5] on the real
line. Due to its linear nature, a normal trapezoidal fuzzy subset can be specified
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Fig. 2. Trapezoidal fuzzy subset of F[2000,2008,2020,2020]

by four parameters, a, b, c and d, which is represented as F[a,b,c,d]. The fuzzy
subset of Jim’s tallness in time set is F[2000,2008,2020,2020], which is illustrated
in Fig. 2.

As is showed in the example of Jim’s tallness in Equation 3, Jim was born
in 1968 and died in 2020. During the 52 years of his life, Jim’s tallness can be
judged at any time point. It’s not possible to enumerate all the mappings and
construct infinite DStatements of Jim’s tallness for any time points. On the other
hand, τtime and τf are strongly related, which is in conflict with the principle
in Definition 1: dimension types are desired to be decoupled with each other.
The design of the dimension environment in the example of Sect. 4.1 may lead
to unexpected consequence of dimensional union operation. Paper [1] discusses
the harmfulness of this situation. It’s better to combine the two strongly related
dimension types into an intergraded one.

We denote the combined dimension type to be τftime. All the dimensions of
τftime are fuzzy subsets of time set. For modeling Jim’s tallness, the dimension of
τftime has 4 property values representing the 4 parameters of trapezoidal fuzzy
subset. Let t = 〈eg:Jim, eg:hasHeight, eg:TALL〉, t ∈ T ; let dF [2000,2008,2020,2020]

∈ D and Ψd(dF [2000,2008,2020,2020]) = τftime; then ρ = {t, {dF [2000,2008,2020,2020]}}
∈ DC represents Jim’s tallness perfectly.

4.3 Operation and Entailment on Uncertain Context

Uncertain context can be modeled through the methods introduced in Sect. 4.1
or Sect. 4.2. This section discusses how to further manipulate uncertain contexts
for fuzzy dimensional operations and corresponding reasoning.

The definition of entailment in DO are presented here with useful theorems
and corollaries. They apply well to both crisp and fuzzy context reasoning.

Definition 15 (Dimensional Interpretation). A dimensional interpretation
I of a vocabulary V consists of:

1. A non-empty set of RDF triples TI.
2. A set of dimension containers DCI .
3. A set of DStatements DSI .
4. A dimensional context mapping PI : TI ∪ DSI → DCI .
5. A vocabulary interpretation mapping IV : V → TI ∪ DCI ∪ DSI .
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We define the mapping: I : V → TI ∪ DCI ∪ {True, False} such that:

1. I(x) = IV(x), ∀x ∈ V ∩ (T ∪ DC).
2. Let x ∈ V ∩ DS, then I(x) = True, if IV(Φρ(x, 1)) ∈ PI(IV (Υρ(x, 1))) ,

otherwise I(x) = False.

Definition 16 (Dimensional Entailment). Let ρ, ρ′ ∈ DS and T is the di-
mensional environment. We say that ρ dimensional-entails ρ′ (ρ |=T ρ′ ) iff for
every dimensional interpretation I, if I |= ρ then I |= ρ′.

Theorem 1. Let ρ, ρ′ ∈ DS,Hρ = Hρ′ = h ∈ N and Υρ(ρ,Hρ) = Υρ(ρ′, Hρ′) =

t ∈ T ; let ∀i(Φρ(ρ, i)
T
⊇ Φρ(ρ, i)), i ≤ h ∈ N; then ρ |=T ρ′.

Theorem 2. Let ρ, ρ′ ∈ DS, Hρ = Hρ′ = h ∈ N and Υρ(ρ,Hρ) = Υρ(ρ′, Hρ′)

= t ∈ T ; let ρ′′ =

⎛⎝{ t if i = h
Υρ(ρ′′, i) if i < h

,

⎧⎨⎩Φρ(ρ, j)
T
∪ Φρ(ρ′, j) if j = k

Φρ(ρ, j)
T
∩ Φρ(ρ′, j) otherwise

⎞⎠,

ρ′′′ =

({
t if i = h
Υρ(ρ′′′, i) if i < h

,

{
Φρ(ρ, j)

τ
∪ Φρ(ρ′, j) if j = k

Φρ(ρ, j)
T
∩ Φρ(ρ′, j) otherwise

)
, τ ∈ T ,

i, j, k ≤ h ∈ N. i, j are variables denoting tree node depth, while k is a predefined
constant; then {ρ, ρ′} |=T ρ′′ |=T ρ′′′.

Corollary 1. Let ρ = (ρ1, o1), ρ′ = (ρ′1, o′1), ρ, ρ1, ρ
′, ρ′1 ∈ DS and Υρ(ρ,Hρ) =

Υρ(ρ′, Hρ′) = t ∈ T ; let ρ′′1 =
(
t, Φρ(ρ̂1, 1)

T
∩τ¬ Φρ(ρ̂′1, 1)

)
, ρ′′ =

(
ρ′′1 , o1

T
∩τ¬ o′1

)
;

then {ρ, ρ′} |=T ρ′′.

Example 7. Let t1 = 〈eg:Jim, eg:hasName, “Jackson”〉; let T = {τtime, τprov};
let τprov to be the dimension type denoting provenance, which has dimensions
ddairy and darchive (i.e. recorded in the private diary and personal identify
archive) ; let ρ1 = ((t1, {dBY 2006}), {ddairy}), which means “It’s recorded in
the diary that Jim’s name was ‘Jackson’ before 2006 ” (informal provenance);
let ρ2 = ((t1, {dBY 2007}), {darchive}), which means “It’s recorded in the per-
sonal identity archive that Jim’s name was ‘Jackson’ before 2007 ” (official
provenance); let ρ3 = ((t1, {dBY 2006}), {ddairy ∪ darchive}), which means “It’s
recorded both in the diary and in the personal identity archive that Jim’s name
was ‘Jackson’ at least before 2006 ”; if we want to merge the two statements and
find what is true from both the two provenances, we can perform entailment of
Theorem 2 and get {ρ1, ρ2} |=T ρ3. Note that “in both of provenances” implies
that the union operation is performed on τprov, but intersection should be per-
formed on the other dimension types (τtime) at the same time, according to Theo-

rem 2. Let ρ4 =
((

t1, Φρ(ρ̂2, 1)
T
∩τtime¬ Φρ(ρ̂1, 1)

)
, Φρ(ρ2, 1)

T
∩

τprov¬ Φρ(ρ1, 1)
)

=

((t1, {dY 0607}), {darchive}) ∈ DS, which means “It’s recorded in the personal
identity archive but not in the diary that Jim’s name was ‘Jackson’ between
2006 and 2007”. We have {ρ1, ρ2} |=T ρ4 according to Corollary 1.
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The entailment of Example 7 shows the crisp dimensional operation results
of DO. We can further introduce fuzzy operations on fuzzy subsets and perform
uncertain context reasoning.

Here are the definitions of fuzzy operations. Let A and B are fuzzy subsets of
a nonempty (crisp) set S, we have:

Definition 17 (Fuzzy Intersection). The intersection of A and B is defined
as: μ(A∩B)(x) = min(μA(x), μB(x)), for all x ∈ S.

Definition 18 (Fuzzy Union). The union of A and B is defined as: μ(A∪B)(x)
= max(μA(x), μB(x)), for all x ∈ S.

Definition 19 (Fuzzy Complement). The complement of a fuzzy subset A is
defined as: μ(¬A)(x) = 1− μA(x), for all x ∈ S.

Some dimension types for uncertain context modeling, such as τftime, are fuzzy
subsets by nature. Therefore the dimensional operations (see Sect 3.3) on them
are also fuzzy ones, which should be performed according to Definition 17, 18
and 19.

Fig. 3. Fuzzy subsets of F[Lucy] and F[Lily]

Let’s introduce a new dimension type of provenance τprov to illustrate fuzzy
dimensional operations. We suppose τprov has two dimensions dLucy and dLily

(i.e. Lucy says and Lily says). Since everybody’s view of tallness is subjective,
Lucy and Lily may have different options of Jim’s tallness. For example, Lucy
says the fuzzy subset of F[2000,2008,2020,2020] (i.e. F[Lucy] for short) rep-
resents Jim’s tallness, but Lily says it should be F[2002,2006,2020,2020] (i.e.
F[Lily] for short). Suppose t = 〈eg:Jim, eg:hasHeight, eg:TALL〉, t ∈ T and
T = {τftime, τprov}, we have two DStatements: ρLucy = ((t, {dF [Lucy]}), {dLucy})
and ρLily = ((t, {dF [Lily]}), {dLily}). Their fuzzy subsets are showed in Fig. 3 .

If we want to find out what both Lucy and Lily say, we can perform fuzzy

intersection on the two fuzzy time dimensions. Let ρLucyLily = ((t, {dF [Lucy]}
T
∩

{dF [Lily]}), {dLucy}
τprov

∪ {dLily}) = ((t, dF [Lucy]∩F [Lily]), {dLucy ∪ dLily}) ∈ DS,
we have {ρLucy, ρLily} |=T ρLucyLily according to Theorem 2. Let’s take the year
of 2003 as an example. In this year, Lucy believes the extent of Jim’s tallness is
0.33, while Lily regards it as 0.25. Therefore we can infer that both Lucy and



Uncertain Context Modeling of Dimensional Ontology 267

Fig. 4. Fuzzy subset of F[Lucy] ∩ F[Lily]

Lily think Jim’s tallness attains the extent of 0.25 in 2003. Note that in this
entailment, the dimensional intersection of {dF [Lucy]} and {dF [Lily]} are fuzzy
intersection merging two fuzzy subsets of Jim’s tallness in time set. But the
union on dLucy and dLily are ordinary crisp union operation for denoting the
combination two persons’ views. The reasoning result of Jim’s tallness in this
case is showed in Fig. 4.

Fig. 5. Fuzzy subset of F[Lucy] ∩¬ F[Lily]

In a similar way, if we want to find out what Lucy says but Lily disagrees, we
can first perform fuzzy complement on Lily’s fuzzy time dimension and then

perform fuzzy intersection with Lucy’s. Let ρLucyNotLily = ((t, {dF [Lucy]}
T
∩

{d¬F [Lily]}), {dLucy}
T
∩

τprov¬ {dLily})=((t, {dF [Lucy]∩¬F [Lily]}), {dLucy∩¬dLily})
∈ DS. Since Lucy and Lily are different persons, we have dLucy∩¬dLily = dLucy.
Therefore ρLucyNotLily = ((t, {dF [Lucy]∩¬F [Lily]}), {dLucy}) ∈ DS. Finally we
have {ρLucy, ρLily} |=T ρLucyNotLily according to Corollary 1. Taking the year
of 2005 as an example, we have Lucy’s view on Jim’s tallness is 0.66. But Lily
thinks it should be 0.75, therefore the extent that Lily disagrees with Jim’s
tallness is 0.25. We can further infer that Lucy says but Lily disagrees on the
extent of Jim’s tallness in 2005 is 0.25 (i.e. MIN of 0.66 and 0.25). The reasoning
result of Jim’s tallness in this case is showed in Fig. 5.

Definition 20 (Subsethood of Fuzzy Subset). Let A and B are fuzzy subsets
of a classical set X. We say that A is a subset of B if μA(x) ≤ μB(x), for all x ∈ S.
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There’s also subsethood defined in fuzzy subset theory as is showed in Defini-
tion 20. We can also apply it to fuzzy time dimensions, and then perform entail-
ment of Theorem 1. Let ρLucySub = ((t, {dF [2002,2008,2020,2020]}), {dLucy}) ∈ DS,
we have ρLucy |=T ρLucySub according to Theorem 1, because F[2002, 2008, 2020,
2020] is a fuzzy subset of F[Lucy].

5 Conclusion

In this paper we propose to extend DO’s crisp dimensions with fuzzy ones based
on fuzzy subset theory in order to model uncertain contexts. Crisp dimension
types and fuzzy ones can cooperate with each other well within DO theory. Un-
certain contexts modeled in this way can be applied to RDF triples or generally
DStatements to construct ambiguous contextual assertions. Fuzzy dimensional
operations and related reasoning mechanism are also discussed, which still work
well in DO based on fuzzy subset theory. One of the advantages of our proposal
is that it’s a domain-independent solution. Other strong points are mainly the
great features of DO compared with other approaches, such as theory uniformity
and implementation flexibility/efficiency.
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Abstract. Existing approaches to service ranking and selection eval-
uate the suitability of available services for a given request based on
the advertisement created by the service provider. They will compare
how well the advertisement matches the service request and will choose
the service with the best matching advertisement. Unfortunately, at this
point in time, it is uncertain whether the service that will actually be
performed will match the request as well as the advertisement promised.
In this paper, we present an approach that reduces the degree of this un-
certainty by taking previous experiences with the service provider (which
reflect the performance of the actual service not the advertisement) into
account. Contrary to many other approaches our solution accounts for
the subjective nature of rating-based experiences by considering the pref-
erences of the experience creators. Moreover it exploits the number of
available experiences more effectively by considering not only experi-
ences for a given service, but also experiences for similar services of the
same provider. Our solution utilizes indirect user information and avoids
explicit sharing of personal consumer information.

1 Introduction

Over the last decade the Web evolved from a collection of static web sites of-
fered by a relatively small number of providers to a platform for sharing and
collaboration where everyone can provide content and offer functionality. This
shift of web usage behavior and the consequent rise of available information and
resources as well as their growing heterogeneity poses new challenges to appli-
cation integration. A paradigm that has proved to be appropriate to enable this
is service-oriented computing. It allows to provide functionality or information
as stand-alone services, that can be described by a service offer, then published,
automatically discovered, and ranked by comparing (matching) a given service
request with available offers, selected, composed and executed. Facing the over-
whelming flood of information effective mechanisms for matching and ranking
available resources according to their relevance become crucial to support con-
sumers when selecting a service. In this context much work has been done on
improving the expressiveness of service descriptions, particularly by applying
semantic techniques, as well as on effective matchmaking algorithms to select
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suitable service offers based on a given request. However, there is a critical point
here that has not been paid much attention to so far. Existing matchmaking ap-
proaches implicitly assume that the service advertised in the offer corresponds to
the actually provided service. However, it is unrealistic to assume to have a 1:1
correspondence here. In fact one cannot be sure about the degree of correspon-
dence between offer and actual service. This is due to several reasons. On the one
hand service providers may advertise more than they are able to provide to be
preferred over competing providers. On the other hand discrepancies between the
promised and the actually provided service naturally arise from the dynamics of
services as well as from the finiteness of service descriptions. In general, there is
a tradeoff between the accuracy and the size of a service description and thus the
cost of matchmaking. Thus service descriptions tend to be inaccurate to some
degree [1]. Though this problem can be mitigated by introducing a negotiation
step it cannot be solved completely. It is obvious that the bigger the difference
between the advertised and the actually provided service the less meaningful are
the results of the service matchmaker and the more arbitrary is the offer ranking
and thus the selection decision based on those results, since available services
are solely compared on the basis of their offer descriptions. Service ranking and
selection algorithms should take this point into consideration by 1) quantifying
the difference between the offer and the actual service (offer conformance) and
thus the preciseness of the matching results and 2) considering this information
when ranking available services.

In this context collaborative feedback mechanisms seem to be promising to
reduce the uncertainty in service selection [2]. However existing mechanisms for
experience-aware service selection exhibit a number of disadvantages. In most
of the approaches offer conformance is a rather abstract concept [2], neither re-
lated to the attributes of a service nor to the service promised in the offer. A
specific class of approaches in that context are those that recommend suitable
services based on selections of other users [3,4]. In our opinion these approaches
suffer from a major drawback: they do not consider whether the decision of the
user was a good one or not, i.e., they record user satisfaction with the offer not
with the actual service delivered. Often solutions that measure the performance
of a service in terms of its attributes captured in the offer description assume
consumer feedback to be objective and measurable [5,6,7,8,9]. Thus, they mainly
focus on QoS attributes [10,8,9]. Though some service properties’ values can be
measured automatically, most of them, particularly in the field of information
services, cannot. Imagine for instance a service that provides digital contents like
a mp3-file containing a song. In that case one can automatically verify that the
downloaded file is an mp3-file, but automatically checking that it contains the
song you wanted by the interpreter you wanted is not possible. Moreover, mea-
suring a service’s performance with respect to several aspects can be very costly
and has to be based on commonly agreed upon measuring methods. Due to these
facts we advocate personalized experiences in terms of consumer ratings. Ratings
are personalized, i.e they depend on a consumer’s expectations expressed in his
preferences. These preferences capture how important certain aspects of a service
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are to a consumer. Consequently experiences of specific consumers are only trans-
ferable to situations where the involved service consumer has similar preferences.
Most of the existing rating based approaches [10,11,12] do not account for that
fact. Some solutions, e.g. [7], that consider the subjective nature of ratings rely on
the explicit exchange of consumer requests and preferences. In our opinion this
would divulge valuable personal information. Moreover comparing user requests
and preferences directly would be very costly. Consumer ratings for a specific
service are scarce. For that reason feedback should be exploited effectively. Only
a few approaches consider this [5,10].

In this paper we propose an approach for experience-aware service ranking
and selection that solves the described problems. It is designed as an extension
for existing matchmakers and utilizes consumer experiences in former service
interactions to allow for proper service ranking and selection. The remainder of
the paper is organized as follows. First we provide definitions for basic notions
and specify our assumptions about the underlying service description language
as well as on the underlying matchmaker (Sect. 2). Afterwards we present our
solution for experience-aware service selection in Sect. 3. We discuss and present
experimental results in Sect. 4 and conclude the paper in Sect. 5.

2 Prerequisites

Before describing the entire approach in the following sections we define basic
notions and make some general assumptions about the underlying service de-
scription language as well as on the underlying basic matchmaker. We consider
a service as a set of instances that can be executed. It is characterized by a set
of attributes. Each service instance is characterized by a particular combina-
tion of values for those attributes. Service descriptions are set-based, i.e. they
describe a service by means of its instances.1 A service offer or advertisement
specifies which instances a given service provides. For instance a service offer for
a bookseller might describe that this offer contains the set of service instances
where the effect is that ownership of a book changes. These books have a title,
prices and so on. An example of a service instance would be the service selling
the book with the title ”Pope Joan” for 14.90 Euro, to be delivered by 01.04.08
to a certain address. A service request characterizes a service consumer’s goal
by describing the service instances that are suitable for solving that goal. Ad-
ditionally, a service request contains an implicit mapping that assigns a match
value to each service instance in the request. This value indicates how well a
given instance fits to the service consumer’s goal. W.l.o.g. we assume that the
match value is a real number from the interval [0, 1]. The mapping can be in-
terpreted as the consumer’s preferences with respect to the given request. A
service request could be the set of instances where the effect is that ownership

1 We assume this set to be finite. Though this is not necessarily true for real service
descriptions, we argue that an infinite instance set can be sufficiently approximated
by a finite instance set.
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of a book with the title ”Pope Joan” changes to me, where the delivery address
is my address, the price is less than 20 Euro and delivery happens within the
next 2 days. We do not set any further restrictions on the underlying service de-
scription language. We assume that the basic matcher implements a pessimistic
set-based matchmaking approach. Specifically that means that an offer matches
to a given request, if it is a subset of the request. The match value of an of-
fer and a request is the smallest match value of the service instances described
in the offer according to the request. It indicates how well the considered offer
fits to the request. The pessimistic approach ensures that the executed service
instance has a match value that is at least as high as the match result for the
whole service. This is reasonable, since we will not know in advance which of the
service instances described in the offer is executed by the service provider. Once
available offers are discovered the matcher determines a sorted vector containing
the match values for the offers according to a given request (match result vector)
in a completely automatic fashion. The best fitting offer, i.e. the offer yielding
the highest match value, is chosen and the corresponding service is invoked, i.e.
one of its instances is executed, without requiring additional human interven-
tion. Among other approaches the semantic service description language DSD
[13,14] and the DIANE service matcher meet these assumptions.

3 Experience-Aware Service Selection

Our solution is designed as an extension for existing matchmakers, i.e. we as-
sume to have the matching results provided by a basic matcher based on a
given request and available offer descriptions. To allow for proper service rank-
ing we evaluate how reliable those results are. More precisely we have to quantify
the degree of conformance between the offer, the matching result is based on,
and the service that will be actually provided (offer conformance). For that
reason each service consumer provides the offer conformance of a provider per-
ceived during service interaction as experience to others. Obviously, experiences
of users that had similar requirements are more valuable in this context. If,
for instance, two users requested a mp3-file but with different encoding and
bit rates, and one of them is dissatisfied with the service, that does not imply
that the other will be, too. The offer conformance of a specific service provider
with respect to a given request and thus the reliability of the matching results
for his services can then be predicted based on relevant experiences provided
by other consumers. Finally, available offers are ranked based on their match
value provided by the underlying matcher, the offer conformance prediction and
the confidence of that prediction. In this section, we will describe how offer
conformance can be formalized (Subsect. 3.1), how it can be used to predict
the future offer conformance of a provider (Subsect. 3.3), how relevance of ex-
periences can be determined (Subsect. 3.2) and how services can be ranked
based on this information (Subsect. 3.3). Algorithm 1 is the resulting overall
algorithm.
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Algorithm 1. ExperienceAwareServiceSelection(request r, offer set O)
1. get the matching results mr for the request r and the offers in O from the basic matcher;
2. drop all offers with a match value of 0;
3. if (mr contains more than one offer of the same provider) then
4. keep the offer with the highest match value among them and drop all the others;
5. end if
6. for (each provider with an offer in mr) do
7. get all available experiences that are relevant for predicting the offer conformance of that

provider with respect to r;
8. calculate the overall offer conformance value and its confidence;
9. end for
10. rank the available offers based on mr, their predicted offer conformance and its confidence;
11. return t he offer with the highest rank;

3.1 Offer Conformance

Inspired by the concept of quality conformance proposed by Vu et al. [8], we
measure the conformance between the service promised and that actually pro-
vided by comparing the match value calculated by the basic matcher and the
rating the consumer provides after service execution. More specifically consider
a consumer c posing a request r. Once the best fitting offer o among the set
of available offers is determined, the corresponding service s is invoked. After
service execution the consumer rates the service in terms of its suitability for
reaching the goals captured in the request. Given the consumer c and the request
r we measure the conformance oc ∈ [0, 1] of the offer o and the service s actually
provided by

oc(c, s, r, o) =

{
ra(c,s,r)
mv(r,o) if mv(r, o) ≥ ra(c, s, r)
1 otherwise

(1)

where mv(r, o) is the match value for r and o provided by the basic matcher.
The value ra(c, s, r) ∈ [0, 1] is the personalized rating for the service s provided
by the consumer c (with respect to the request r). It is the higher the more
the service outcome suited to the consumer’s needs. Note that we consider only
negative deviations from the match value.

3.2 Relevance of Experiences

Once suitable offers and their providers are determined by the basic matcher,
we have to identify consumer experiences that are relevant for predicting the
offer conformance of every single provider with respect to the specified request.
We define the set of experiences that are relevant for the offer conformance pre-
diction of a given provider p with respect to the request r as those experiences
that refer to a service stemming from p. An experience is the more relevant the
more similar r and the request the experience is based on are. The first postula-
tion is due to the fact that experiences with one provider cannot be transferred
to another, the second accounts for the fact that ratings and thus offer confor-
mance experiences are personalized and request-specific, i.e. experiences based
on similar service demands and similar preferences are more valuable in this con-
text. More specifically this means that observing the same service instance, the
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considered consumer and the experience provider should produce similar offer
conformance values. This is true, if the given requests are similar. Moreover it is
required that given similar requests the matcher provides similar match values.
Presuming that the similarity of requests implies similarity of all their instances,
this assumption holds if we choose 1− the mean deviation of corresponding ser-
vice instances’ match values (instances not contained in one of the requests were
assumed to have a match value of 0) as a measure for request similarity. The rel-
evance of a given experience may then be determined by directly comparing the
two requests involved. However this is not a satisfying solution. The reasons are
twofold. On the one hand the computation would be very costly, on the other
hand consumers had to divulge much of their personal information including
their preferences to allow for that comparison. Due to these facts we propose to
approximate the similarity of the requests by indirectly comparing their match
result vectors containing the match values for several offers. Note that this will
not raise additional effort, since the match result vectors are created by the basic
matchmaker anyway.

Approximating the request similarity. Without loss of generality we assume that
both requests r1 and r2 are matched against the same set of offers,2 i.e. all offers,
and both resulting match result vectors mr1 and mr2 are in the same order with
respect to the offers. The algorithm is based on two assumptions:

1. The result of the comparison between two corresponding match values mr1[i]
and mr2[i], 0 ≤ i ≤ n, where n + 1 is the length of mr1 resp. mr2, pro-
vides an indication for request similarity/dissimilarity, if at least one of the
corresponding match values is high. It is the more significant, the higher
max(mr1[i],mr2[i]) is.

2. If the result of a comparison is significant, the following holds: The smaller
the differences between the corresponding match values, the higher the sim-
ilarity of the corresponding requests.

Figure 1 illustrates the motivation for those assumptions. It shows three dia-
grams each indicating the service instances of a sample offer with 10 instances
and their match values with respect to two different requests (black and gray
points). The lines correspond to the match value of the overall offer with respect
to the requests. Diagram 1(a) presents the case where the offer has a low match
value with respect to both requests, 0.1 and 0.2 respectively. In that case the dif-
ference between the match values of a single service instance with respect to the
two requests is between 0 and 1− 0.1 = 0.9, so we cannot draw any conclusions
about the similarity of the requests. Diagram 1(b) shows the case where the offer
has a high match value with respect to one request and a low match value with

2 Note that this is a simplified assumption, since existing matchmakers often do not
match a given offer but a request-specific configuration of an offer (specialization
of the offer). Consequently we do not necessarily compare the match values for the
same offers. However our algorithm will provide meaningful results, if the available
offers are not too generic. In this case the configured offers do not differ that much.
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(a) (b) (c)

Fig. 1. Motivation for the assumptions

Algorithm 2. ApproximateSimilarity(minimalMV,threshold,mr1,mr2)
1. sumOfDeviations = 0;
2. sumOfWeights = 0;
3. for (i < mr1.length) do
4. maximum = max(mr1[i], mr2[i]);
5. if (maximum ≥ minimalMV ) then
6. maximum = maximum2;
7. sumOfDeviations+=| mr1[i] − mr2[i] | · maximum;
8. sumOfWeights+=maximum;
9. end if
10. end for
11. if (sumOfWeights ≥ threshold) and (sumOfWeights > 0) then
12. return 1-(sumOfDeviations/sumOfWeights);
13. else
14. return 0;
15. end if

respect to the other. In that case the difference between the match values of a
single service instance with respect to the two requests is also between 0 and 0.9,
but we presume that it is most often high, since we believe that in real requests
the match values of the described service instances are similar to some degree.
Thus case 1(b) is an indication for the dissimilarity of the two requests. Dia-
gram 1(c) depicts the case where the offer has a high match value with respect
to both requests. In that case the difference between the match values of a single
service instance with respect to the two requests is between 0 and 1− 0.7 = 0.3.
Thus we have a strong indication for the similarity of the two requests. Based
on the above assumptions we calculate the approximate similarity simapprox of
two requests r1 and r2 according to Alg. 2 by comparing their corresponding
match values for a set of comparison offers given by the match result vectors
mr1 and mr2. The algorithm calculates the weighted mean of the match value
deviations. Following Assumption 1 the weights max2(mv1,mv2) correspond to
the significance of each comparison result. Moreover for calculating the approx-
imate similarity only those pairs are considered where at least one of the match
values exceeds the value minimalMV. The output of the algorithm is only mean-
ingful, if it is based on a sufficient number of significant comparisons. This is
true, if the sum of the weights exceeds a given threshold, otherwise the algo-
rithm returns 0, which means that the requests are not similar. Consequently the
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corresponding experiences are not considered for the offer conformance predic-
tion. Appropriate values for minimalMV and threshold are application-specific
and thus parameters of the algorithm. They can be determined based on test
data (see Sect. 4).

Quality of the measure. The quality of our approximate similarity measure de-
pends on the diversity and the number of available offers. This is due to the fact
that we need a sufficient number of offers that lead to a high match value for at
least one of the two requests to be compared to have enough match results that
provide an indication for request similarity/dissimilarity. Since each single match
value comparison allows to draw conclusions only about the request similarity
referring to the service instances contained in the offer, a sufficient number of
diverse offers is needed. On the other hand if a subset of the service instances
covered by a request is not contained in any of the available offers, the quality of
the similarity approximation with respect to those instances would be bad, but
it does not matter, because those instances are never executed and thus never
rated. However we argue that the algorithm provides meaningful results in real
world scenarios, since in those settings we have a variety of offers. The quality
of the approximate similarity measure will be evaluated in Sect. 4.

3.3 Service Ranking

Having determined the set of relevant experiences Erel(p, r) for each provider p
with respect to the specified request r, we predict its future offer conformance
ocp(r) based on those experiences. Moreover we calculate a confidence value
conf(ocp(r)) indicating the reliability of the offer conformance prediction ocp(r).
Afterwards we rank the offers in the match result vector based on those values
and the initial match values provided by the basic matcher.

Predicting the offer conformance. The future offer conformance ocp(r) ∈ [0, 1]
for p’s offers with respect to the specified request r is calculated as the weighted
mean of the observed oc-values (see Equ. 1) provided by the experiences in
Erel(p, r).

ocp(r) =

{ ∑
i∈Erel(p,r) w(i)·oc(i)∑

i∈Erel(p,r) w(i) if Erel(p, r) 	= ∅
0 otherwise

(2)

with
w(i) = wa(age(i)) · simapprox(ri, r), (3)

where w(i) is a weight indicating the relevance of an experience i for the given
request r. An experience is the more relevant the smaller its age age(i) and the
higher the similarity simapprox(ri, r) of ri and the considered service request r.
The weight wa with wa(amax) = 0 and wa(0) = 1 is a monotonically decreasing
function taking into account the age of an experience. Experiences older than
amax are not considered.
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Confidence calculation. The confidence conf(ocp(r)) of the predicted offer con-
formance value ocp(r) is determined by the number, age, and relevance of the
experiences its calculation is based on. It is the higher the higher the number
of experiences and the newer and the more relevant the experiences are. The
confidence conf(ocp(r)) of the offer conformance prediction ocp(r) is

conf (ocp(r)) =
{

f(|Erel(p, r)|,mini∈Erel(p,r) w(i)) if Erel(p, r) 	= ∅
0 otherwise, (4)

where f is an application-specific function to the interval [0, 1]. It increases
with the number of experiences and the minimal weight w(i) of the experiences
i ∈ Erel(p, r). It can be determined based on test data in the given field of
application. We may also consider weights that account for the trustworthiness
of the experience providers. However assessing the trustworthiness of experiences
is a challenging topic in itself. It is not considered in this paper.

Service ranking. Once the ocp(r) and conf(ocp(r)) values are calculated for the
providers, we rank the offers based on those values and the initial match value
of each offer. The rank rank(op) ∈ [0, 1] of an offer op from the provider p with
the match value mv(r, op) is calculated by

rank(op) = mv(r, op) · conf (ocp(r)) · (ocp(r)2 − 1) + mv(r, op). (5)

The rank of an offer op is equal to mv(r, op) as long as no experiences are available
and decreases linear to mv(r, op) · ocp(r)2 with increasing confidence. Intuitively
spoken this means that unknown services are preferred to give newcomers a
chance. On the other hand inaccurate description providers are punished, where
the penalty is the higher the lower the offer conformance is. Algorithm 1 sum-
marizes the overall service ranking and selection procedure. Given a request r
it ranks the available offers O based on the match result vector provided by the
basic matcher and available experiences.

4 Evaluation and Discussion

We implemented the service model and a basic matcher as described in Sect. 2
as well as our approach to experience-aware service selection introduced in this
paper. We performed several simulative experiments to evaluate the effectiveness
of our solution.3

In a first series of tests we evaluated the quality of our approximate similarity
measure, in a second series we investigated the quality of the offer conformance
prediction. In both cases we studied the dependency of the quality from several
parameters.

3 The simulation environment as well as the implementation of the tests described in
this section are available under
http://fusion.cs.uni-jena.de/professur/?content=fklan.
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Algorithm 3. TestApproxSim(|I|,|C|,minMV )
1. create two random requests of randomly chosen similarity containing maximal |I| instances
2. create |C| random comparison offers having at least a match value of minMV with the first

request
3. calculate approximate and actual similarity for the requests as described in Sect. 3.2
4. return t he percental deviation of the approximate similarity from the actual similarity

Quality of the approximate similarity measure. We evaluated the quality of our
approximate similarity measure (Alg. 2) depending on the maximum number of
instances per request |I|, the cardinality of the comparison set of offers |C|, i.e.
the number of offers considered in the match result vectors which are input to the
approximate similarity algorithm, and the match values of the offers in that set.
For the latter we introduced a parameter minMV indicating the smallest match
value of all offers in the comparison set with respect to a given requests. The
quality was measured in terms of the percental deviation of the approximate
measure’s results from the actual similarity calculated by comparing requests
directly as described in Sect. 3.2.

The test was performed according to Alg. 3. It was run with several param-
eter settings. The average quality was calculated over 10000 runs (50000 for
the quality-|I|-dependency plot). We tested our approximate similarity mea-
sure with several parameter configurations. We identified threshold = 10 and
minimalMV = 0.5 as a good combination. Decreasing one or both of the values
leads to lower quality results. Increasing the parameter values does not result in
a significant improvement of the result’s quality. All test series are based on this
parameter setting. Figure 2(a) shows the quality of the approximate similarity
measure depending on the maximum number of instances per request.4 After an
initial phase the average deviation of the approximated similarity is about 17%
for |I| ≈ 100 and slightly increases with higher |I|-values. Another series of exper-
iments showed that the absolute deviation for |I| ≈ 100 is 0.1. Further increasing
of |I| up to 5000 instances results in a deviation of about 20%. The bad quality
for small request lengths originates from the small number of possible offers in
the comparison set. We evaluated the quality of the approximate similarity mea-
sure depending on the minimal match value of the offers in the comparison set
with respect to the given request. Resulting from the higher match values of the
comparison offers and thus a higher significance of the single comparison results,
the quality increases with higher values for minMV and reaches its optimum
around minMV = 0.5. Further increasing of minMV leads to results of worse
quality. This is due to the decreasing number of possible comparison offers. The
dependency between the quality of the approximate similarity measure and the
cardinality of the set of comparison offers is illustrated in Fig.2(b). The quality
is plotted for 3 different values of |I|. After an initial phase the quality remains
stable at a level of about 17% for |C| = 20. Further increasing of |C| does not
result in a better quality. Summarizing the results for this test series we point
out that a number of 20 comparison offers with a match value of at least 0.5

4 The brackets indicate the standard error of the sample mean assuming that the
discrepancy values follow a Gaussian distribution.
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Fig. 2. Quality of the approximate similarity measure depending from the maximal
number of instances per request (a) and the cardinality of the comparison set (b)

with respect to at least one of the two requests to be compared is sufficient to
assure a measure quality of about 17%. The quality just slightly decreases with
the maximal number of instances per request.

Quality of the offer conformance prediction. The quality of the offer conformance
prediction was evaluated depending on the number of relevant experiences |Erel|
and the minimal similarity minExpSim between the given request and those the
experiences are based on. We simplified our experiments in that we considered
only service providers offering a single service. We did not consider providers
with changing behavior over time, i.e. the actually provided service of a provider
remained stable over time. Finally we did not account for the age of experiences,
i.e. we assumed age(i) = 0 for all experiences i. Studying of those aspects is sub-
ject to our future research. The quality of the offer conformance prediction was
measured in terms of its percental deviation from the actual offer conformance.
Given a request r and an offer o the actual offer conformance was calculated
as the mean offer conformance of all instances in o with respect to r. This
is reasonable, since this is the expected offer conformance when executing the
service belonging to o, presuming that all service instances are executed with
equal probability. As already mentioned a provider offers a single service. He
is characterized by the offer for that service and by the actually provided ser-
vice. The latter is represented as an offer that differs from the advertised offer.
The differences between the offer and the actually provided service are gener-
ated by replacing instances, uniformly chosen from the instances contained in
the advertised offer, by others uniformly chosen from the basic instance set. We
introduced a provider parameter indicating the maximum number of differing
instances per offer. The plots are based on a provider where maximal 50% of
the instances differ from the advertised offer. If executed, a service uniformly
chooses one of its instances and provides it to the consumer. The consumer may
rate this service by determining the match value of this instance with respect to
the posed request. Afterwards the offer conformance can be calculated based on
this rating and the match value for the whole service offer.
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Algorithm 4. TestOfferConf(|Erel|,minExpSim)
1. create a request r and a set R of |Erel| requests having at least a similarity of minExpSim to r
2. create a provider p based on a random offer o
3. create a set of |C| comparison offers each having at least a match value of minMV with the

request r
4. for (each of the requests in R) do
5. generate an experience with p as well as the matching result vector based on the set of com-

parison offers
6. end for
7. get the offer conformance of the provider p with respect to r based on the generated experiences

according to formula (2)
8. get the actual offer conformance of the provider p with respect to r as described in this section
9. return t he percental deviation of the predicted from the actual offer conformance value

The test was performed according to Alg. 4. It was run with several parameter
settings and the average quality over 10000 runs was calculated. Figure 3(a)
shows the quality of the offer conformance prediction depending on the minimal
similarity between the given request and those the experiences are based on.
The test was performed with the parameter values |C| = 20, |I| = 100 and
minMV = 0.5. The quality is plotted for 20, 30 and 50 experiences. As expected
the quality of the prediction increases with minMV , since the relevance of the
considered experiences is higher. The optimal quality of about 10% deviation is
reached for minMV ≈ 0.9. When calculating the offer conformance by assigning
the same weight to all experiences, the quality of the prediction is much worse.
The dependency between the quality of the offer conformance prediction and
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Fig. 3. Quality of the offer conformance prediction depending on the minimal experi-
ence similarity (a) and the number of experiences (b)

the number of experiences is illustrated in Fig. 3(b). The test was performed
with the parameter values |C| = 50, |I| = 100 and minMV = 0.5. The quality
is plotted for similarity thresholds of 0.5, 0.7 and 0.9. As expected the quality
of the prediction increases with the number of experiences and remains stable
after a threshold specific number of experiences. This number is the smaller the
smaller the minimal similarity of the experiences is. Considering an experience
similarity of 0.9 we need about 50 experiences to have a prediction deviation
of 10%. A number of 20 experiences is sufficient to have a prediction deviation
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of 12%. The described test series is based on the assumption that we know
about the actual similarity of the requests, but in fact we have to rely on the
approximate similarity when selecting the experiences to be considered for the
offer conformance prediction. We can simply infer results for this case. Assuming
a similarity deviation of 20% the average deviation of the offer conformance
prediction is between 7% and 14% when having a minimal similarity of 0.8 and
a number of 20 experiences (see Fig. 3(a)).

Based on a test series like this one may derive an appropriate function f
defining the confidence of the prediction (see Def. 4). In our experiments requests
and offers are created randomly. The distribution of their instances differs from
that of real world service descriptions in that the match value distribution for the
latter is smoother, i.e. the match values of the single instances within a request
are more similar. Due to this observation we expect that the approximation of
the request similarity and thus the offer conformance prediction will be even
more accurate when working with real world service descriptions.

5 Conclusion

We introduced our approach for experience aware service ranking and selection.
Designed as an extension it augments the functionality of existing matchmakers
by allowing them to predict a service’s future performance more accurately based
on offer conformance experiences in former service interactions and thereby re-
ducing the uncertainty encountered in this step. The services discovered by those
matchers are then ranked based on their match values, the predicted offer con-
formance and the confidence of this prediction. The approach relies on subjective
feedback in terms of ratings and considers the personalized nature of those ex-
periences while avoiding explicit sharing of personal consumer information by
comparing consumer preferences indirectly. It exploits available feedback effec-
tively by considering not only ratings for a single service but also ratings for
similar services of the same provider when evaluating the offer conformance of
a specific service.

In our future work we plan to elaborate on mechanisms for providing request
and preference templates as proposed in [3,15]. On the one hand this eases the
creation of service descriptions, on the other hand it reduces the ambiguity of
descriptions. Moreover it allows for more efficient storage and gathering of expe-
riences. The presented approach considers experiences where service consumers
rated a service as a whole. We plan to extend our solution by also allowing
for refined experience, where consumers may rate partial aspects of a service.
Another interesting point that is important when dealing with experiences of
other consumers is that of dishonest experience providers. We have to question
how to recognize those experiences, how to deal with them and how to prevent
them. It is planned to adopt the reputation system solution of Obreiter et al. [16]
for this purpose. Beside those extending features we will expand our evaluation
by testing our solution with service descriptions based on existing description
languages.
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Abstract. In this paper we analyze the performance of three algorithms
for soft evidential update, in which a probability distribution represented
by a Bayesian network is modified to a new distribution constrained by
given marginals, and closest to the original distribution according to
cross entropy. The first algorithm is a new and improved version of the
big clique algorithm [1] that utilizes lazy propagation [2]. The second
and third algorithm [3] are wrapper methods that convert soft evidence
to virtual evidence, in which the evidence for a variable consists of a like-
lihood ratio. Virtual evidential update is supported in existing Bayesian
inference engines, such as Hugin. To evaluate the three algorithms, we
implemented BRUSE (Bayesian Reasoning Using Soft Evidence), a new
Bayesian inference engine, and instrumented it. The resulting statistics
are presented and discussed.
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1 Introduction and Motivation

The issue of how to deal with uncertain evidence in Bayesian networks appears in
Pearl’s foundational text [4, sections 2.2.2, 2.3.3] and has recently been the sub-
ject of methological inquiry and algorithm development (e.g., [1,5,6,7,8,9,3,10]).
A result of these studies has been to clarify the distinction between soft and
virtual evidence. Briefly, representing uncertain probabilistic evidence as virtual
evidence is appropriate when we model the reliability of an information source,
while the soft evidence representation is appropriate when we want to incorpo-
rate the distribution of a variable of interest into a probabilistic model. Update
based on virtual evidence (sometimes called likelihood evidence) is supported
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in several existing Bayesian inference engines, such as Hugin1. This paper is
concerned with soft evidence only.

For the purpose of this paper, we define evidence in a Bayesian network as a col-
lection of findings on variables of the Bayesian network. A hard finding specifies
which value (state) the variable is in. A soft finding specifies the probability distri-
bution of a variable. Hard evidence is a collection of hard findings. Soft evidence is
a collection of soft findings. See [1] for more general definitions of evidence. Some
authors describe the problem of update in the presence of soft evidence as a model
revision or parameter tuning problem. In the case of soft evidential update, all ev-
idence (hard and soft) is presented simultaneously; in the case of model revision,
the soft evidence is better considered as a constraint on the probability distribu-
tion encoded by the model, which is modified before evidence is applied. Despite
the clear difference in the problems that are solved, similar algorithms can be used
to solve both problems, as can be seen by contrasting [9], which takes the model
revision approach, with [3], which takes the evidential update approach.

Belief update in the presence of hard evidence is carried out by conditioning.
As observed by many authors, conditioning cannot be used to update beliefs in
the presence of soft evidence. The general soft evidential update method of [1]
will be used in this paper; this general method admits several detailed algo-
rithmic variants, which have different efficiency characteristics with respect to
network topologies and evidence presentations. The input to the method con-
sists of a Bayesian network and a set of soft and hard findings. The method
computes implicitly a joint probability that has two properties: (1) the evidence
is respected, i.e. the findings are marginals for the joint probability distribu-
tion; (2) the joint probability is as close as possible to the initial distribution
represented in the input Bayesian network, where distance is measured by cross-
entropy (I-divergence). The joint probability is computed implicitly in that only
its single-variable marginals are output. The focus of this paper is the experi-
mental comparison of three such variants: the big clique algorithm of [1,6], and
the two wrapper-based methods of [3]. The authors of [3] prove that the three
variants compute the same distribution. The three variants are described in the
following section. We aim (in future work) to provide further insight into the ap-
propriateness of the three variants for different network topologies and evidence
presentations.

2 Algorithms

In this section we first describe lazy propagation, an efficient probabilistic update
algorithm that is used as the core update mechanism for the three algorithms ana-
lyzed in this paper.We thendescribe thebig clique algorithmand the twovariations
of wrapper algorithms that can utilize any inference engine without modification.
In this paper we only consider wrappers for lazy propagation. Finally, we list vari-
ous other methods that have been proposed for soft evidential update.

1 Virtual evidence is, confusingly, called soft evidence in [11].
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2.1 Lazy Propagation

Lazypropagation [2] is anefficient junctiontreealgorithmthatutilizesd-separation
properties of the originalBayesiannetwork bymaintaining amultiplicative decom-
position of clique and separator potentials. Itmerges the ideas of belief update algo-
rithms that compute allmarginals anddirect query-based algorithms that compute
a marginal for a query and better exploit evidence-induced d-separation.

Lazy propagation can be used with any computational tree structure that
maintains the d-separation properties of the original Bayesian network. Our im-
plementation uses the junction tree structure as does Hugin propagation, rather
than the original Lauritzen-Spiegelhalter or the Shafer-Shenoy structures. In
particular, two mailboxes per separator are used, one for messages sent during
the collect evidence phase and the other for the distribute evidence phase [12].
Cliques and separators in the junction tree maintain sets of potentials and com-
bination of potentials is delayed as long as possible to take advantage of d-
separation and unity potential properties of the Bayesian network.

Lazy propagation consists of two phases: collecting evidence to the designated
root clique, and distributing evidence from the designated root clique to the rest
of the junction tree. Evidence is collected and distributed by message passing,
where each message is a collection of potentials.

Following is a description of the lazy propagation algorithm:

1. Build a junction tree for the Bayesian network (see [13] and [2] for details).
2. Apply hard evidence (see procedure on page 287 for details).
3. Invoke Collect Evidence on designated root of junction tree.
4. Invoke Distribute Evidence on designated root of junction tree.
5. Invoke Calculate Posterior Marginals.

Collect Evidence. Let Ci and Cj be adjacent cliques in the junction tree and
let S be the separator between Ci and Cj . Let ΦCi and ΦCj be the set of potentials
associated with Ci and Cj . Let Φ↑ and Φ↓ be the set of potentials stored in the
collect and distribute mailboxes of S respectively. If Collect Evidence is invoked
on Cj from Ci, then:
1. Cj invokes Collect Evidence on all adjacent cliques except Ci.
2. The message Φ↑ from Cj to Ci is calculated (using the algorithm on page

287) and stored in the collect mailbox of S.
3. Update ΦCi = ΦCi ∪ Φ↑.

Distribute Evidence. Let Ci and Cj be adjacent cliques in the junction tree
and let S be the separator between Ci and Cj . Let ΦCi and ΦCj be the set of
potentials associated with Ci and Cj. Let Φ↑ and Φ↓ be the set of potentials
stored in the collect and distribute mailboxes of S respectively. If Distribute
Evidence is invoked on Cj from Ci, then:
1. The message Φ↓ from Ci to Cj is calculated (using the algorithm on page

287) and stored in the distribute mailbox of S.
2. Update ΦCj = ΦCj ∪ Φ↓\Φ↑.
3. Cj invokes Distribute Evidence on all adjacent cliques except Ci.
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Calculate Message. Let Ci and Cj be adjacent cliques in the junction tree
and let S be the separator between Ci and Cj . Let ΦCi be the set of potentials
associated with Ci. Let dom(A) be the set of variables associated with A (where
A is either a potential or a separator). The message passed from Ci to Cj is
calculated as follows:

1. Set RS = Invoke Find Relevant Potentials on ΦCi for dom(S).
2. For each variable X in {X ∈ dom(φ)|φ ∈ RS ,X /∈ dom(S)}

(a) Marginalize X out of RS :
i. Set ΦX = {φ ∈ RS |X ∈ dom(φ)}.
ii. Let φ∗

X =
∑

X
∏

φ∈ΦX
φ.

iii. Update RS = {φ∗
X} ∪ RS\ΦX

3. Return RS .

A detailed presentation on alternative ways to perform the second step can be
found in [14].

Find Relevant Potentials. Let Φ be a set of potentials and let S be a set of
variables. The relevant potentials of Φ for calculating the joint probablity of S
are calculated as follows:

1. Let RS = {∃X ∈ dom(φ)|X is d-connected to Y ∈ S}.
2. Use the unity-potential axiom to remove from RS all potentials containing

only barren head variables (defined in, e.g., [13]) to obtain R′
S .

3. Return R′
S .

Apply Hard Evidence. In the lazy propagation algorithm, hard evidence is
incorporated by applying hard evidence on a variable X with all cliques Ci

where X ∈ dom(Ci). This is done to fully exploit d-separation properties of
the Bayesian network induced by the evidence. Hard evidence on a variable
X = x is incorporated by the reduction of the domain of all potentials φi where
X ∈ dom(φi) to only include configurations of the potential where X = x.
All configurations where X 	= x are simply removed. This process is called an
instantiation of φi.

Calculate Posterior Marginals. In the lazy propagation algorithm, marginals
of all variables in the Bayesian network can be calculated by first applying any
hard evidence entered, then performing the collect evidence and distribute evi-
dence phases, known collectively as a full propagation of evidence. Let P(X|ε) be
the posterior marginal of X . Calculation of marginals is then performed on each
variable X by the following:

1. For each variable X
(a) Let ΦX = {argminΦCi

dom(Ci)|X ∈ dom(Ci)}.
(b) Set RX = Invoke Find Relevant Potentials on ΦX for dom({X}).
(c) For each variable Y in {Y ∈ dom(φ)|φ ∈ RX ,Y 	= X}
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i. Marginalize Y out of RX :
A. Set ΦY = {φ ∈ RX |X ∈ dom(φ)}.
B. Let φ∗

Y =
∑

Y
∏

φ∈ΦY
φ.

C. Update RX = {φ∗
Y} ∪ RX \ΦY

(d) Calculate

P(X|ε) =

∏
φ∈RX

φ∑
X
∏

φ∈RX
φ

The above algorithm can be modified to also calculate posterior marginals
using the separators as well as the cliques.

2.2 Lazy Big Clique Algorithm

The big clique algorithm [1] incorporates soft evidence by combining two meth-
ods: junction tree propagation and Iterative Proportional Fitting Procedure
(IPFP; [15,16,1]). The original big clique algorithm modified the Hugin prop-
agation algorithm and therefore did not exploit d-separation properties of the
underlying Bayesian network. A new version of the big clique algorithm was
developed (the lazy big clique algorithm), that is more efficient by taking ad-
vantage of d-separation using the lazy propagation algorithm described in the
previous section.

The lazy big clique algorithm modifies the lazy propagation algorithm as
follows:

1. Construct a junction tree that includes all variables that have soft evidence
in one clique - the big clique C1.

2. Apply hard evidence and invoke the lazy propagation routine Collect Evi-
dence on C1.

3. Combine all potentials associated with C1 to produce the joint probability
distribution P(C1).

4. Absorb all soft evidence in C1 (with the algorithm described on page 289).
5. Invoke the Big Clique Distribute Evidence routine. A special method is

needed to distribute evidence from the big clique since during absorption
of soft evidence the decomposition of potentials in C1 is lost, and therefore
a division by the evidence received from a neighboring clique is necessary
when calculating messages to avoid passing back redundant information.

Big Clique Distribute Evidence

1. For each clique Ci adjacent to C1, combine potentials of message in collect
mailbox of separator S between Ci and C1, call this result Φ∗

i - the evidence
C1 received from Ci.

2. Calculate message passed from C1 to Ci as follows:

Φ↓
i =

ΦC1

Φ∗
i
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3. For each variable X in {X ∈ dom(Φ↓
i )|X /∈ S}

(a) Marginalize out X .
4. Let Φ↓∗

i be the potential obtained.
5. Store Φ↓∗

i in the distribute mailbox of S.
6. Update ΦCi = ΦCi ∪ Φ↓∗

i .
7. Ci invokes the lazy propagation routine Distribute Evidence on all adjacent

cliques except C1.

Absorption of Soft Evidence. We define absorption in the special big clique
C1 as the process by which the joint probability P(C1) is updated to satisfy
the constraints imposed by soft evidence on variables S ⊆ C1, where S =
{S1,S2, ..,Sk}. Let Q(C1) be the joint probability after absorption.

Then ∀i
∑

C1\Si
Q(C1) = P(Si), where P(Si) is the soft evidence on Si, i =

1, ..., k. Absorption of soft evidence in clique C1 is done using IPFP and consists
of cycles of k steps, one per finding. Each step corresponds to one soft finding.
The procedure is as follows:

Q0(C1) = P(C1)

Qi(C1) =
Qi−1(C1) · P(Sj)

Qi−1(Sj)

where j = (i− 1) mod k + 1.

2.3 Wrapper Method 1: Iterate over Network

Both wrapper methods [3] utilize any existing Bayesian inferencing engine that
supports virtual evidence by converting soft evidence findings into virtual evi-
dence that are applied to the Bayesian network using standard inference. Con-
vergence is achieved using an iterative method. For wrapper method 1, at each
iteration one soft evidence finding is converted to virtual evidence and applied.
The process is performed repeated until convergence as follows:

Let P(X ) be the joint probability of the Bayesian network N obtained using
standard BN inference. Let S be the variables with soft evidence, where S =
{S1,S2, ..,Sk}, and P(Si) is the soft evidence on Si, i = 1, .., k. This algorithm
applies soft evidence by iterating over the whole network as follows:

1. Q0 = P(X ); k = 1;
2. Repeat the following until convergence:

(a) i = 1 + (k − 1) mod m; j = 1 + .(k − 1)/m/;
(b) (Convert the soft evidence to virtual evidence) Construct virtual evi-

dence Vi,j with likelihood ratio:

L(Si) =
P(Si)
Qk−1(Si)

(c) Obtain Qk(X ) by updating Qk−1(X ) with Vi,j using standard BN
inference.

(d) k = k + 1
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2.4 Wrapper Method 2: Iterate over Soft Evidence

Wrapper method 2 is similar to the big clique algorithm in that both methods
calculate the joint probability of the soft evidence variables and use IPFP to
absorb soft evidence. The big clique performs IPFP on all variables in the big
clique, while the wrapper 2 method only performs IPFP on the soft evidence
variables. The wrapper 2 method converts the soft evidence to virtual evidence
that is applied to the Bayesian network using standard inference. As a result,
the wrapper 2 method requires two full propagations: one to calculate the joint
probability of the soft evidence variables, and another to calculate the posterior
marginals. The process is as follows:

Let P(X ) be the joint probability of the Bayesian network N obtained using
standard BN inference. Let S be the variables with soft evidence, where S =
{S1,S2, ..,Sk} and P(Si) is the soft evidence on Si, i = 1, .., k. Let P(S) be the
joint probability of S. This algorithm applies soft evidence as follows:

1. Use any BN inference method on N to obtain P(S).
2. Absorb all soft evidence in P(S) (with the algorithm described below) to

obtain Q(S).
3. (Convert the soft evidence to virtual evidence) Construct virtual evidence V

with likelihood ratio:

L(S) =
Q(S)
P(S)

4. Update the beliefs in N with V using standard BN inference.

Bayesian network engines of the “all-marginal” variety (junction tree based)
do not compute joint probabilities, but rather calculate single-variable marginals
for all variables. Junction tree algorithms can be modified to calculate joint
probabilities for a set of variables by adding pairwise edges between all variables
of interest to the moral graph before performing triangulation. This ensures the
resulting junction tree will contain a clique that contains all variables of interest.
After propagation, the joint probability of the variables can be constructed by
combining all potentials associated with this clique. Our implementation of the
wrapper 2 method uses this technique to calculate the joint probability of the
soft evidence variables. See [17] and [13, Section 5.2] for a discussion of other
methods to calculate joint probabilities in “all-marginal” algorithms.

Absorption of Soft Evidence. We define absorption of soft evidence as the
process by which the joint probability P(S) is updated to satisfy the constraints
imposed by soft evidence on variables S, where S = {S1,S2, ..,Sk}. Let Q(S)
be the joint probability after absorption. Then ∀i

∑
S\Si

Q(S) = P(Si), where
P(Si) is the soft evidence on Si, i = 1, ..., k. Absorption of soft evidence is
done using the Iterative Proportional Fitting Procedure (IPFP) and consists of
cycles of k steps, one per finding. Each step corresponds to one soft finding. The
procedure is as follows:

Q0(S) = P(S)
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Qi(S) =
Qi−1(S) · P(Sj)
Qi−1(Sj)

where j = (i− 1) mod k + 1.

2.5 Other Methods

Here, we only list several other methods for soft evidence update: the space-
saving implementation of IPFP [18,19,20]; the soft updating algorithm of [10];
and the approximate update algorithms by Peng and Ding [9].

3 Experimental Setup

To evaluate the lazy big clique (referred to as big clique from here on) and wrap-
per algorithms, a new Bayesian reasoning engine was constructed that utilizes
lazy propagation, the Bayesian Reasoning Using Soft Evidence (BRUSE) en-
gine. BRUSE was developed using the Java framework and implements the three
discussed algorithms for soft evidential update. In order to evaluate algorithm
performance, an instrumentation framework was implemented into BRUSE to
gather statistics during inferencing. Statistics collected are: number of table mul-
tiplication operations performed, number of table addition operations performed,
number of table division operations performed, IPFP iterations required for con-
vergence, domain size of the IPFP table, and time to perform inference. Our test-
ing was done on a Dell Optiplex Intel Core 2 Duo, 2.4 GHz machine with 2GB
of RAM. Each test configuration was performed ten times and average statis-
tics were calculated. The tests were performed using four Bayesian networks
of varying sizes and complexity. Two of the networks were downloaded from a
web-based repository [21]: stud farm (12 nodes) [13] and alarm (37 nodes) [22].
The other two networks, test71 (80 nodes) and test61 (200 nodes), were ran-
domly generated to simulate complex networks. Table 1 shows statistics for the
four networks. These statistics show the relative complexity of the networks and
corresponding junction trees when one soft evidence finding is chosen.

Each network was tested with ten different test configurations consisting of
one to ten soft evidence findings. Hard evidence was not used in our tests. Each
test, randomly selects soft evidence variables accordingly to satisfy the test con-
figuration chosen. The same set of soft evidence findings are applied to each of
the three algorithms to compare their relative performance.

Table 1. Statistics for test networks

Network Number of Nodes Number of Cliques Max Clique Size Triangulation Weight

studfarm 12 9 16 116

alarm 37 27 144 1065

test71 80 65 2916 13793

test61 200 175 262144 347180
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4 Results

We present here some of the experimental results obtained so far, without in-
terpretation. Since we use the min-size heuristic, which is widely recognized as
excellent [23], the cost to generate the junction tree is negligible. Accordingly, for
all networks, we collect statistics only after the construction of the junction tree.
Also, we found that, in our implementation, inference time corresponds closely
to the number of elementary table operations performed, where we define num-
ber of elementary table operations as the sum of table multiplications, additions
and divisions. As an example, compare Figure 1 with Figure 2. Therefore, the
number of table operations provides a good measure of relative performance.

Fig. 1. Average number of elementary table operations for the alarm network

Fig. 2. Average propagation time for the alarm network

For all networks, it appears that wrapper 1 is slower than the other two
methods when the number of soft evidence findings is small (less than 7 for the
networks we consider). (We apologize to the reader for the fact that several of
the graphs do not provide sufficient resolution to show this.) We conjecture that
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Fig. 3. Number of elementary table operations for test case 3 of the alarm network

Fig. 4. Average number of elementary table operations for the test61 network

the reason is that the cost of propagation through the whole network dominates
the cost of IPFP over a rather small joint probability. As a consequence, we also
conjecture that this would not be the case for networks with large state spaces,
for which the joint probability tables are large, even when they contain only a
few nodes.

For all networks, wrapper 2 and big clique have similar run times. This is
to be expected, because both methods need to compute the joint probability
of the soft evidence variables, which requires, in a junction tree algorithm, the
computation of the joint probability of variables in a clique that contains all
the soft evidence variables. The big clique algorithm also performs IPFP on all
variables in that clique, while the wrapper 2 method only performs IPFP on the
soft evidence variables. On the other hand, the wrapper 2 method uses virtual
evidence, which requires two full propagations, to compute posterior marginals,
while the big clique method only needs one full propagation. When the cost of
propagation is higher than the cost of IPFP on the big clique, the big clique
algorithm will perform better, and vice versa.
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Fig. 5. Number of elementary table operations for test 6 of the test61 network

Fig. 6. Average number of elementary table operations for the test71 network

For the stud farm network (Figure 7), the cost of propagation in the very
small junction tree is dominated by the cost of IPFP in the big clique and
wrapper 2 algorithms. Use of IPFP requires the computation of the joint prob-
ability of the soft evidence variable(s), by first computing the joint probability
of the variables in the cliques containing the soft evidence variable(s) and then
marginalizing down to the soft evidence variable(s). On the other hand, the
wrapper 1 method computes posterior marginal probabilities by updating with
respect to each individual soft evidence variable in turn. This computation is
very fast on the small junction tree of the stud farm network. Accordingly, the
wrapper 1 method is the fastest for this network.

For the alarm network (Figure 1), the results are similar to those for stud farm.
The relatively poor performance of big clique for eight soft evidence findings is
explained by a particularly difficult evidence scenario, whose performance is
reported in Figure 3. The resulting big clique for these soft evidence findings
is very large resulting in an expensive IPFP computation. A similar situation
occurs for ten soft evidence findings.
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Fig. 7. Average number of elementary table operations for the stud farm network

For the test61 network (Figure 4), the state spaces of one of the cliques in
the junction tree is very large, reflecting the fact that this is indeed a random
network and not a typical, human-constructed, low-treewidth network [24]. The
performance of the wrapper 1 algorithm is accordingly poor, because the cost
of additional propagations required by this method overcomes the savings re-
sulting from not performing IPFP on a joint distribution. Similarly, wrapper 2
is slower than the big clique algorithm, because it performs twice the number
of propagations. The spike in the number of table operations for the wrapper 1
method with nine soft evidence findings is due mainly to one difficult evidence
scenario, whose performance is reported in Figure 5, for which the number of
IPFP iterations before convergence is very high.

For the test71 network (Figure 6), the number of operations for the wrapper
2 method is approximately double the number for big clique. This indicates that
the contribution of IPFP is negligible, while the propagation cost for probabil-
ity update after IPFP dominates the number of operations. Since wrapper 2
needs to perform two such propagations, as opposed to one for the big clique
algorithm, the experimental result is explained. The junction tree constructed
for the wrapper one method, which does not need to include all soft evidence
variables in one clique, is much simpler than the one built for the other two
methods, and this explains the comparatively better performance of wrapper
one for seven evidence findings.

5 Conclusion

This paper only presents initial results. As discussed in the previous section,
our initial tests indicate that the three algorithms for soft evidential update
we have implemented have definite relative strengths and weaknesses. However,
future work, such as improving the instrumentation of the implementation to
collect better convergence data, designing experiments to test specific features
of networks and evidence configurations that may include hard findings, and
testing on a wider range of large networks, remains to be done in order to
conclude under which conditions each algorithm is preferable.
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Additional future work includes the analysis of several other proposed algo-
rithms: the space-saving implementation of IPFP [18] and [19]; the soft updating
algorithm of [10]; the approximate update algorithms by Peng and Ding [9]; and
possibly more.

It will also be necessary to evaluate memory usage, which leads to a consid-
eration of any-space algorithms such as recursive conditioning [13] instead of
junction tree algorithms, and to evaluate the effect of performance tuning, such
as the use of different query methods to calculate lazy messages and of different
methods (e.g., variable passing [13] and query-based methods [17]) to calculate
joint probabilities in BRUSE.
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Abstract. In this paper we deal with the logical and physical opti-
mization of select-from-where queries over interval probabilistic data.
We present a data model with algebraic equivalences, to be used to ver-
ify the equivalence of alternative query plans, and propose and compare
different join algorithms over uncertain relations. We also provide a pre-
liminary experimental evaluation of our contributions.

1 Introduction

The study of different aspects of imperfection in data management, like missing
values [1,2], uncertain relational models [3,4,5,6,7,8], vagueness [9], imperfect
non–relational data [10,11,12,13], system development [14,15,16,17,18,19], and
applications [20,21,22,23], has always been of primary importance in database
theory and practice. This paper concerns the optimization of select-from-where
queries over interval probabilistic relational data. In particular, 1) we define a
data model with algebraic equivalences to rewrite queries over relational data
into equivalent expressions (logical optimization), and 2) introduce and compare
different algorithms to perform joins over uncertain data (physical optimization).
Although interesting, in this work we do not deal with uncertain data indexing.

To the best of our knowledge, existing systems for uncertain data use an un-
derlying relational system to store the data structures defined in their uncertain
data models, and translate queries over uncertain data into traditional relational
queries. However, in general a query over uncertain data corresponds to a se-
quence of SQL operations manipulating groups of rows representing a single
uncertain tuple. This has a very relevant practical implication: the underlying
query optimizer may become less effective, because it believes it is working on a
relational data model, while in fact it is working on an uncertain data model of
which it is not aware.

With regard to the choice of using interval probabilities, this theory is one of
many alternative approaches to manage imperfect data. Today, it is well recog-
nized that these different approaches are not competitors. On the contrary, each
one is best suited to tackle different problems — for a survey, see [24]. Interval
probabilistic approaches have the following specific features: 1) they are more
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expressive than approaches based on simple probabilities, and reduce to them
when singleton intervals are used, 2) can be used to represent both uncertainty
(like in: John is probably 14 years old) and non-specificity (like in: John is be-
tween 13 and 16 years old), 3) and are useful when single probabilities are not
known, or difficult to compute. In particular, in this paper we adopt Dempster’s
interval probabilistic model [25].

In the next section we introduce our data model and query algebra for interval
probabilistic data, which are a relational application of the general structures
and operators described in [26]. In addition, we show how our data structures
are stored inside a traditional relational database management system. Then, in
Section 3 we show an example of logical query rewriting. In Section 4 we present
two join algorithms, with a preliminary experimental comparison that highlights
their pros and cons. We conclude the paper with some final remarks.

2 Data Model and Query Algebra

An uncertain tuple is a distribution of probability over sets of alternative tuples,
as usual. When probability 1 is assigned to a single tuple, it means we are certain
that it describes the corresponding real world object, and the model reduces to
the relational one. The meaning of the compatibility flag {T,F} (true/false) will
be clarified later, when we introduce the selection operator.

Definition 1 (Uncertain Tuple). Let TA be the set of all tuples over a set of
attributes A. An uncertain tuple over A is a function t : P(TA×{T,F})→ [0, 1]
(P indicates a powerset) such that:

1. t(∅) = 0
2.
∑

B⊆T A×{T,F} t(B) = 1 .

From t we can compute the interval probability (upper and lower probability)
of any tuple or set of alternative tuples, as follows:

LP(X) =
∑

B⊆X

t(B) UP(X) =
∑

B∩X �=∅
t(B) .

To understand the meaning of these equations consider the following example,
with two alternative tuples about Mr. X: #1) 〈John, Ford〉 and #2) 〈Jack,
Ford〉 — we are not sure of his name. If we assign some probability to the
expression Mr. X’s name is John, this probability also supports the fact that
Mr. X’s surname is Ford — therefore, it increases the lower probability of tuple
#1 and of the set of tuples {#1, #2} (LP equation). Now consider a probability
assignment to the expression Mr. X’s surname is Ford. This supports the fact
that Mr. X’s name is John or Jack, but does not directly support neither the
first nor the second alternative. Therefore, it increases the upper probability of
both tuples #1 and #2 (UP expression). As this is a well known mathematical
theory, we do not further discuss these equations here — additional details and
comprehensive examples are available in [27].
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Definition 2 (Uncertain Relation). An uncertain relation is a bag of uncer-
tain tuples.

U T C Name Surname

1 1 T John Ford

1 2 T Jack Ford

2 1 T Robert Morrison

2 2 T Mitchell Morrison

3 1 T Tom Mix

U T P

1 1 .6
1 2 .4

2 1 .3
2 1 2 .7

3 1 1

Fig. 1. An uncertain relation as we store it in a relational database management sys-
tem. U is the uncertain tuple identifier, T represents the identifiers of each alternative
tuple, C is the compatibility flag and P is the probability assigned to sets of alternative
tuples. To the left, an example to show why we need two tables

In Figure 1 we have illustrated how we store uncertain relations inside an un-
derlying relational database system. In each table there can be multiple rows
representing different alternatives of the same uncertain tuple. In this case, these
rows share an uncertain tuple identifier (U). Each alternative tuple has a local
identifier, unique inside the uncertain tuple (T). Then, we store the compatibil-
ity flag and the actual values. Probabilities are stored inside a separate table,
with the identifier of the uncertain tuple to which the assignment refers (column
U), the set of local tuple identifiers (T), and the associated probability (P).

The fact that an interval of probability attached to the end of each tuple of
the first table would not be sufficient to represent a complete interval probability
distribution should be clear looking at the definition of uncertain tuple, where
t is defined over a powerset: for each n rows defining an uncertain tuple we
may have up to 2n different probability assignments. However, if we specify one
interval for each row we will only have 2 · n values. On the right hand side of
Figure 1 we have provided an additional example: consider the two distributions
of probability p1 and p2. It is easy to see that they correspond to the same
intervals of probability, i.e., using four intervals we cannot distinguish the first
distribution from the second. However, they are clearly different: if we add the
information that the name is not John to p1, the probability of Jack becomes
[.5, .5]. If we add the same information to p2, it is Ron’s probability that changes!

Example 1 (Uncertain Relation). Figure 1 represents three uncertain tuples,
with identifiers (U) 1, 2 and 3. The first uncertain tuple presents two alter-
natives, John Ford, with probability .6, and Jack Ford, with probability .4. The
second uncertain tuple presents two alternatives, Robert Morrison and Mitchell
Morrison, with probabilities respectively in the intervals [.3, 1] and [0, .7]. Finally,
we have a certain tuple, Tom Mix, whose probability is 1.
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2.1 Basic Operations on Uncertain Tuples

The mathematical theory of uncertainty that we use in our model provides
some basic operations that we will use to define our manipulation operators.
In this section we describe the two operations used in the paper: coarsening and
combination.

Before providing a formal definition, we introduce the coarsening operation
through an example. Consider the four alternative tuples represented in the cen-
ter of Figure 2, and referring to an individual (Mr. X). Now assume we have three
sources of evidence about the three facts listed in the figure. Now, we can show
a coarsening: assume we make a projection on column Name. We will obtain two
tuples, John and Jack, represented on the right hand side table of the figure. The
first statement (Mr. X is called John Fard) supports the fact that Name is John,
therefore p1 will be reassigned to 〈Name: John〉. The second statement supports
both names (John Ford and Jack Ford), therefore p2 will be reassigned to both tu-
ples. Finally the third statement supports the fact that the correct name is Jack
(Jack Ford, Jack Fard), therefore p3 will be assigned to Jack.

1. p(Mr. X is called John Fard) = p1.
2. p(Mr. X’s surname is Ford) = p2.
3. p(Mr. X’s name is Jack) = p3.

Name Surname p1 p2 p3 Name
#1 John Fard ×
#2 John Ford × John
#3 Jack Ford × ×
#4 Jack Fard × Jack

Fig. 2. An example to explain the semantics of the coarsening operator

From this example it should be intuitively clear that the new probability
assignment is automatically defined by the mapping between input and output
tuples. A coarsening is defined as follows:

Definition 3 (Coarsening). Let t be an uncertain tuple over A, and Map :
TA × {T,F} → TA × {T,F}. t

′ is a Map–coarsening of t, notated CMap(t), if:

t
′(X) =

∑
{B⊆T A×{T,F}|Map(B)=X}

t(B) . (1)

The concept of coarsening can be generalized to n-ary functions — we do not
include this generalization here because of space limitations.

The second important basic mathematical operation on uncertain tuples is
combination:

Definition 4 (Combination). For every subset X of TA × {T,F}, a combi-
nation of two uncertain tuples t = t1 ⊕ t2 is defined as:

t(X) =

⎧⎪⎨⎪⎩
0 if X = ∅
0 if

∑
X1∩X2=∅ = 1∑

X1∩X2=X t1(X1)t2(X2)

1−
∑

X1∩X2=∅ t1(X1)t2(X2)
o.w.

(2)
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In the previous definition, X,X1, X2 ⊆ TA×{T,F}. As you can see from Defini-
tion 4, when two uncertain tuples contradict each other (all probability assigned
to disjoint sets, as in the second condition) they cannot be combined. In this
case we will conventionally assign no probability at all, which is not a problem
because these contradictory uncertain instances will always be removed from
their collections.

2.2 Manipulation Algebra

Selection. Differently from traditional tuples, uncertain tuples may satisfy a
selection predicate partially. If at least one alternative tuple with positive upper
probability satisfies it, the uncertain tuple containing it will be selected. Inside
it, the alternative tuples not satisfying the predicate will be marked using the
compatibility flag (F), but not deleted.

In the following we will notate with Compt the set {(t, b) | UP({(t, b)}) >
0∧b = T}. As a consequence, the probability not assigned to Compt corresponds
to the fact that the uncertain tuple does not belong to its table. In addition, for
the sake of simplicity we use a set notation without indicating the cardinality of
each element — we remind the reader that the model is based on bags.

The reason for keeping these incompatible tuples is exemplified in Figure 3.
Assume we have an uncertain tuple with the four alternatives illustrated in the
figure, and equal probabilities (.5) associated to the two circled sets — as a
consequence, all alternatives have a probability comprised between 0 and .5. If
we want to select all tuples about male names, we will obviously retrieve this
uncertain tuple because of the alternatives John and Mark. If then we get some
evidence indicating that the name of this person is not Jane, we will obtain a
modified probability distribution, with P(Mark) ∈ [0, .5] and P(John) = .5, as
indicated in the right hand side of the figure. Notice that to obtain this new
probabilities we need to know that the probability associated to Jane was also
associated to John and not to Mark.

Fig. 3. Change of probabilities and selections

Moreover, in this way we can compute upper and lower probabilities for the new
uncertain instance to belong to the resulting collection, because Compt contains
exactly the alternatives compatible with the new semantics. If UP(Compt) > 0,
then t is compatible with the new table, and is included in the result. Otherwise,
it is not.

Definition 5 (Selection). Let MapAi=c be a function defined as follows:

MapAi=c((t, b)) =
{

(t,F) if b = F ∨ t[Ai] 	= c
(t,T) if b = T ∧ t[Ai] = c

. (3)
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U T C ID Name Surname Age P

1 1 T 0001 Mary Sloan 30 [0,1]

1 2 T 0001 Mary Sloan 50 [0,1]

2 1 T 0002 Mark Shelley 18 [1,1]

3 1 T 0003 John Smith 28 [0,1]

3 2 T 0003 John Schmidt 28 [0,1]

U T P

1 1 2 1

2 1 1

3 1 2 1

U T C Patient Disease P

1 1 T 0001 heart attack [0,1]

1 2 T 0001 panic attack [0,1]

2 1 T 0003 flu [0,1]

2 2 T 0003 cold [0,1]

U T P

1 1 2 1

2 1 2 1

Fig. 4. Uncertain tables PATIENT and DISEASE (we have also indicated the interval of
probability associated to each tuple)

A selection operator on uncertain tables is defined as:

σAi=c(T ) = {t′ | t ∈ C ∧ t
′ = CMapAi=c

(t) ∧ Compt
′ 	= ∅} . (4)

Similar definitions with other predicates, like the equality of two columns, are
analogous. In Figure 5 we have represented the result of a selection of all patients
whose surname is Smith — the input table is the one illustrated in Figure 4. The
third uncertain tuple is selected, without changing its associated probabilities.
However, the flag of the tuple with surname Schmidt has now been set to F, and
the probability of this tuple to belong to this table is now comprised between 0
and 1 — in fact, if the real surname were Schmidt the result of the query would
be the empty set.

U T C ID Name Surname Age P

3 1 T 0003 John Smith 28 [0,1]

3 2 F 0003 John Schmidt 28 [0,1]

U T P

3 1 2 1

Fig. 5. σSURNAME=Smith(PATIENT)

Projection. The principle at the basis of the projection operator is that if we
have committed some belief to a tuple, the same belief will be committed to the
fact that the projected tuple corresponds to the true result in the real world.
Therefore, projections modify tuples, but do not directly alter probabilities. How-
ever, when two or more tuples are mapped to the same, their probabilities sum
up. As an example, assume the two alternatives are that Mary is 18 years old or
Mary is 17 years old. If we project on the name, we obtain a certain information:
that the person is called Mary. Mathematically, this corresponds to a coarsening.
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Definition 6 (Projection). We define a function from TA × {T,F} to TA ×
{T,F} as follows:

MapA1,...,An
((t, b)) = (t[A1, . . . , An], b) . (5)

A projection operator on uncertain tables is defined as:

πA1,...,An(T ) = {t′ | t ∈ T ∧ t
′ = CMapA1,...,An

(t)} . (6)

As an example, we project the table PATIENT on the attributes Id and Surname
(Figure 6). The first uncertain tuple, which previously contained two alternative
tuples, is now composed of only one alternative. According to our intuition, we
obtain a certain tuple, because we are sure about Mary’s Surname.

U T C ID Surname P

1 1 T 0001 Sloan [1,1]

2 1 T 0002 Shelley [1,1]

3 1 T 0003 Smith [0,1]

3 2 T 0003 Schmidt [0,1]

U T P

1 1 1

2 1 1

3 1 2 1

Fig. 6. πID,SURNAME(PATIENT)

Cross Product. Before defining the operator of cross product, which is quite
complex in presence of probabilistic dependencies, we define a simplified version of
it, using a strong independence assumption. Then, we will relax this assumption.

Definition 7 (Independent cross product). We define a function Map as:

Map(t1, b1, t2, b2) =
{

(t1 · t2,T) if b1 = T ∧ b2 = T
(t1 · t2,F) o.w. . (7)

In the previous definition, · indicates a tuple concatenation operator. The inde-
pendent cross product of two uncertain relations T1 and T2 over disjoint sets of
attributes is defined as:

T1 × T2 = {t | t = CMap(t1, t2) ∧ t1 ∈ T1 ∧ t2 ∈ T2} (8)

The independence assumption can be relaxed using a probability assignment
(i.e., an uncertain tuple) storing the information we have on dependencies, and
combining it with the result of a cross product using the combination rule re-
ported in Section 2.1. This information is usually expressed in form of predicates,
without referencing single instances. For example, we can state that tuples with
a gender attribute set to man should not be composed with job titles hostess
and business woman, or that the probability of being old is increased by the
fact one has children, and so on.

To express this probability distribution, we can use a list of mutually exclusive
predicates Pr= {Pr1, . . . ,Prn} and a probability assignment p over its powerset.
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Then, we can define a probability assignment PPr corresponding to an assignment
on the sets of tuples where the corresponding predicates are true. In particular:

PPr({(t,T), (t,F) | Prx1(t) ∨ · · · ∨ Prxn(t)}) = p({Prx1 , . . . ,Prxn}) .

We will consider the combination as a separate operator cPr,p, and repre-
sent a generalized cross product as an independent cross product followed by a
combination.

As an example, we show a cross product between PATIENT and DISEASE —
together with a selection, to obtain a join. As in general there can be some infor-
mation on the dependency between patients’ personal data and the occurrence
of diseases, in our example we will use the dependency information represented
in Table 1 about the relationships between age, heart and panic attacks — this
data has no scientific basis, it is only used to show how to compute dependencies.

The result of the operation is illustrated in Figure 7.

U T C ID Name Surname Age Patient Disease P

1 1 T 0001 Mary Sloan 30 0001 heart attack [.2,.2]

1 2 T 0001 Mary Sloan 30 0001 panic attack [.3,.3]

1 3 T 0001 Mary Sloan 50 0001 heart attack [.3,.3]

1 4 T 0001 Mary Sloan 50 0001 panic attack [.2,.2]

3 1 T 0003 John Smith 28 0003 flu [0,1]

3 2 T 0003 John Smith 28 0003 cold [0,1]

3 3 T 0003 John Schmidt 28 0003 flu [0,1]

3 4 T 0003 John Schmidt 28 0003 cold [0,1]

U T P

1 1 .2

1 2 .3

1 3 .3

1 4 .2

3 1 2 3 4 1

Fig. 7. σID=PATIENT(cPr,p(PATIENT × DISEASE))

Table 1. Dependencies between age and diseases. The first column contains predicates
about the Disease attribute, the header (first row) about Ages.

< 30 ∈ [30, 49] ∈ [50, 69] > 70

/∈ {Panic Attack, Heart Attack} .6 .18

= Panic Attack .05 .03 .02 .03

= Heart Attack 0 .02 .03 .04

3 Logical Optimization with Algebraic Equivalences

The query algebra introduced in this paper is very similar to the relational one, and
shares with it many algebraic equivalences that can be used to transform a query
into an equivalent but more efficient one1. We notate attr(P ) the set of attributes
(columns) involved in predicate P (for instance, attr(A = B) = {A,B}), and with
sort(T ) the set of attributes of table T (for example, sort(PATIENT) = {Id, Name,
Surname, Age}). Here we indicate only the rules used in the following example.
1 Similar rules have been applied to generic (non–relational) data in [26].
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Theorem 1. The following equivalences hold:

c(σP (T )) ≡ σP (c(T )) (9)
T1 × T2 ≡ T2 × T1 (10)

if attr(P ) ⊆ sort(T2) then
σP (T1 × T2) ≡ T1 × σP (T2) (11)

In addition to these rules, we define the theta join operator (��P ) as a cross
product followed by a selection, as usual. Rule 9 can be used to invert a selection
with a conditioning. Rules (10) and (11) can be used to push a selection inside
a cross product.

As an example of application of these rules, consider the logical query plan
of Figure 8-1. This has been obtained through a direct translation of the query
presented in the introduction. Now we can do the following:

– Invert the selection on the Surname (σb) with the conditioning, swap the
arguments of the cross product and push the selection into it. This involves
rules (9), (10) and (11).

– Invert the other selection with the conditioning and merge it with the cross
product, obtaining a join. This involves rule (9) and the definition of join.

The logical query plan obtained through these transformations (Figure 8-2) is
equivalent to the original one, i.e., it generates the same result. However, we
can consider it as much more efficient, because: 1) we do not compute a cross
product, but a join, 2) the join is not computed on all patients, but only on
those whose surname is Smith, and 3) the computation of the new probabilities
(conditioning) is performed only on tuples that have been filtered and that will
be included in the result.

1)

×

σa

σb

T1 T2

c

π

2)

��

σb

T1
T2

c
π

Fig. 8. Query plans: 1) logical 2) equivalent logical

4 Joining Uncertain Relations

The main difference between a traditional join and a join over relations repre-
senting interval probabilistic data is that when we compare two tuples we cannot
know locally if they will be included in the result of the operation. In fact, even
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if they do not match (satisfy the join predicate), they could belong to uncer-
tain tuples which match — because of other alternatives. As a consequence, we
may follow two main approaches: the first is to compute traditional relational
joins, followed by some additional work to recollect all tuples with the same
uncertain tuple identifiers of matching rows. The second is the definition of an
uncertainty-aware join over uncertain tuples.

Assume we want to join two uncertain relations T1 and T2 on attributes
c1 and c2. Also, remember that the two relations are stored using four tradi-
tional tables: tT1 and tT2, with the actual data, and pT1 and pT2, containing
the probability distributions. An uncertain relational join can be computed by
evaluating the following expressions2:

– (πtT1.U,tT2.U (tT 1 ��c1=c2 tT 2)) �� tT 1 �� tT 2
– (πtT1.U,tT2.U (tT 1 ��c1=c2 tT 2)) ��tT1.U=pT1.U pT 1 ��tT2.U=pT2.U pT 2

The first part of the two queries extracts the pairs of uncertain tuple identifiers of
matching rows. The next two joins of each equation recollect all rows belonging
to these uncertain tuples.

The second approach is to explicitly consider each uncertain tuple as a whole,
and extend a traditional join approach, such as a sort join algorithm. The main
problem to define a sort join algorithm that works directly on uncertain tuples, i.e.,
an uncertainty-aware algorithm, is that while single tuples can be totally ordered,
uncertain tuples only constitute a partially ordered set. Consider for example the
following uncertain relations T1 and T2, with three uncertain tuples each:

T1 (A: 2 4 5 7), (B: 5 7 8), (C: 11 13 17 19)
T2 (D: 5 10), (E: 8 9), (F: 12 14 16)

If we consider uncertain tuples D and E, we can see that there is not a natu-
ral ordering, because D contains 5, which is less than 8, but also 10, which is
greater than 9. The idea behind our algorithm is that each uncertain tuple can
be considered as an interval, from its lower alternative tuple to its upper one.
Therefore, we can represent A as [2, 7], B as [5, 8], and so on. This has two
consequences: 1) two tuples potentially match only if their associated intervals
have a non-empty intersection, and 2) this approach reduces to a traditional sort
join when uncertain tuples are made by only one tuple — in fact, in this case
intervals reduce to single points.

More specifically, uncertain tuples are ordered by their lower bound (lb).
Then each uncertain tuple is compared only with those uncertain tuples whose
lower bound is less than its upper bound (ub) — which corresponds to a non-
empty intersection. This guarantees that all subsequent uncertain tuples will not
match the uncertain tuple under consideration, and we can continue without
considering it any longer, as it happens with a traditional sort join over non-
uncertain relations.
2 Some additional work is needed to construct the resulting uncertain tuples, but it

has no relevant effect on the execution time if compared with the time needed to
perform the joins. We do not discuss this less relevant aspect for space reasons.
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As an example, our extended algorithm would work as follows on the uncertain
relations listed above:

– A is the lower tuple. D.lb (lower bound) < A.up (upper bound), therefore
they may match. The comparison confirms this, and A·D is computed.

– E.lb > A.up, therefore we are done with A, without considering any other
uncertain tuple — A cannot match any tuple greater than E!

– Now we continue with D. D and B overlap, therefore they may match. After
the comparison, we return B·D. D cannot match C, therefore we are also
done with it.

– We continue in the same way: we will verify the matching of B and E, and
of C and F. In the first case we will produce B·E, in the second we will find
that there is no matching.

We have performed a preliminary experimental evaluation of the algorithm,
which has been compared against a nested loop join over uncertain tuples. The
evaluation is preliminary because to the best of our knowledge there are no
existing benchmarks to test queries over interval probabilistic data. We have
therefore generated synthetic sets of data as follows: first, we have produced
pairs of identical tables with varying cardinality, and with a random string of 10
characters on the join attribute. Then, we have perturbated each table by adding
an alternative tuple to each uncertain tuple. The alternative tuple contains the
same string with a character randomly changed. This guarantees that each tuple
will match at least one other tuple, and creates random intervals with an uniform
probability distribution.

In the left hand side of Figure 9 we have illustrated the number of compar-
isons between uncertain tuples performed by a nested loop approach and by our
extended sort join algorithm on this synthetic data. These results clearly suggest
that the number of comparisons can be significantly reduced using this approach.
However, they also show that the complexity of the extended sort join algorithm
is not linear. This is due to the fact that all tuples in the input relations are
uncertain (contain more than one alternative). In fact, as we will see shortly,
the complexity of this algorithm depends on the amount of uncertainty it has
to deal with.

The right hand side of the figure shows a comparison of the execution time of the
extended sort join (continuous line) and uncertain relational join (dashed line) al-
gorithms. The graph has been computed joining two relations with 100.000 simple
tuples each, aggregated into uncertain tuples in different percentages. For exam-
ple, the value 60% on the x axis means that 40.000 uncertain tuples are made of
a single tuple, i.e., they are not uncertain, while the remaining have been aggre-
gated two by two to build uncertain tuples. This highligths two important features
of these algorithms. First, the extended sort join depends on the amount of un-
certainty, while the uncertain relational join does not, as it is not aware of it and
manipulates simple relational tuples — except while the uncertain result is aggre-
gated, at the end of the computation. As a consequence, when there is no (or a few)
uncertainty, the extended sort join algorithm is more efficient, because it
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Fig. 9. Number of comparisons between uncertain tuples using a nested loop and an ex-
tended sort join approach (ESJ), and comparison of the execution times of an extended
sort join and a relational uncertain join (RJ) — we have illustrated both the time to
produce the full result and the time to output the first tuple). These experiments have
been performed on a Linux 2.6 system — 1GHz CPU and 512MB RAM.

reduces to a simple sort join (compared with six joins needed to execute the un-
certain relational join algorithm). Basically, there is an amount of uncertainty, to
be better determined by further experiments, below which the extended sort join
is more efficient, and above which the uncertain relational join is better
suited.

The second important consideration is that in general relational systems do
not compute all the result of a query, but start returning the first tuples as soon
as they are ready. Usually, users must explicitly ask the system to load additional
tuples, otherwise only a few are computed. Therefore, it is important to see how
soon these algorithms start to produce their results.

When the extended sort join algorithm has finished to process one uncertain
tuple, it knows if it will be included in the result or not. Therefore, after having
sorted the two input relations it can start producing tuples at once. On the
contrary, the uncertain relational join cannot output tuples until all the joins but
the last have been completely computed — in case efficient secondary memory
join algorithms are used. Therefore, the time to produce the first tuple is almost
the same time needed to perform all the computation. In this case, the extended
sort join algorithm is preferred.

5 Final Remarks

In this paper we have presented some advances towards the implementation of a
query optimizer for interval probabilistic data. We have shown that both logical
and physical optimizations are possible and can significantly affect the efficiency
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of query execution. We have supported our contributions with preliminary ex-
perimental results, showing that the two join algorithms presented in the paper
are more or less efficient than the other depending on the execution context.
In future work, we plan to build a benchmark to provide a comparable testing
framework for our and other approaches, and to include the transformation rules
holding in our data model inside a cost-based query optimizer, whose statistics
will be obviously evaluated directly on the data model for uncertain data and
not on the underlying relational representation.
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Abstract. This paper investigates the problem of repairing and query-
ing relational databases which may be inconsistent with respect to
functional dependencies and foreign key constraints. Specifically, partic-
ular sets of functional dependencies, called canonical, are considered. We
present a repairing strategy whereby only tuple updates and insertions
are allowed in order to restore consistency: when foreign key constraints
are violated, new tuples (possibly containing null values) are inserted
into the database; when functional dependency violations occur, tuple
updates (possibly introducing unknown values) are performed. We pro-
pose a semantics of constraint satisfaction for databases containing null
and unknown values, since the repairing process can lead to such da-
tabases. The proposed approach allows us to obtain a unique repaired
database which can be computed in polynomial time. The result of the
repairing technique is an incomplete database (in particular, an OR-
database). The consistent query answers over an inconsistent database
are the certain answers on the repaired database. Relying on the results
in [17] on the complexity of query processing in OR-databases, we can
identify conjunctive queries which can be evaluated in polynomial time.

1 Introduction

Inconsistent databases, namely databases which violate given integrity con-
straints, may arise in several scenarios, such as database integration,
data warehousing, automated reasoning systems and others. The problem
of repairing and querying inconsistent database has been widely studied
([2,3,7,10,8,11,12,13,14,15,19]). Several works are based on the notion of repair,
which is a consistent database obtained by modifying as little as possible the
original (possibly inconsistent) one. Given a query, its consistent answers are
those tuples which can be derived from every repair [3]. In most of the proposed
approaches, only insertions and deletions of tuples are allowed in order to re-
store the consistency of databases; only a few works have investigated the issue
of repairing inconsistent databases by means of tuple updates ([22]).

In this paper we deal with the problem of repairing and querying databases in
the presence of functional dependencies and foreign key constraints. Specifically,
we consider particular sets of functional dependencies (called canonical) where
attributes appearing in the right-hand side of functional dependencies cannot
appear also in the left-hand side. We propose a repairing strategy which aims at
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preserving the information in the original database as much as possible: when
foreign key constraints are violated new tuples are inserted into the database,
whereas tuples updates are performed to make the database consistent w.r.t.
functional dependencies; thus tuple deletions are never performed. Since tuple
insertions and updates may introduce respectively null and unknown values in
the database, we propose a semantics of constraint satisfaction for databases
containing null and unknown values. Let us give the basic idea of our approach
in the following example.

Example 1. Consider the following database:

Project
Name Manager

p1 john
p1 bob
p2 carl

Employee
Name Phone
john 123
bob 111

Suppose to have the following set of constraints (functional dependencies and
foreign key constraints):

– fd1 : Name→Manager defined over Project,
– fd2 : Name→ Phone defined over Employee,
– fk : Project[Manager] ⊆ Employee[Name].

The database is inconsistent as it violates both fd1 and fk: there are two dif-
ferent managers for the same project p1 and the manager carl, appearing in
the project relation, is not in the employee relation. In this case, the repaired
(consistent) database is as follows:

Project
Name Manager

p1 #1
p2 carl

Employee
Name Phone
john 123
bob 111
carl ⊥1

where #1 is an unknown value whose domain is {john, bob} whereas ⊥1 is a
(labeled) null value. Therefore, in order to satisfy the functional dependency
fd1 we have introduced the unknown value #1 which expresses the fact that
p1 has a unique manager that could be either john or bob. Observe that the
first tuple in the project relation does not lead to a violation of fk because
the manager of p1, whoever he may be, is in the employee relation too. The
consistency of the original database w.r.t. fk has been restored by inserting the
manager carl into the employee relation. �

In the above example, observe that a labeled null value has been introduced
for the phone number of carl since this information is missing. Specifically, we
know neither if the telephone number of carl does not exist nor if the telephone
number exists but is not known. Thus, neither the “nonexistent” (a value does
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not exist) nor the “unknown” (a value exists but it is not known) interpretation
of the null is applicable in this situation. Here the null value is interpreted as
“no information” ([23,24]), that is a placeholder for either a nonexistent or an
unknown value. Thus, both unknown and null values express incomplete infor-
mation, even though unknown values are “more informative than” null values.

As it will be shown in the paper, given an inconsistent database and a set
of constraints consisting of functional dependencies and foreign key constraints,
the proposed repairing strategy allows us to obtain a unique repaired database
which can be computed in polynomial time.

It is worth noting that, the so obtained (incomplete) database represents a
set of “possible worlds”, namely the databases which are obtained by replacing
every unknown value with a constant of its domain. The “certain answers” to
a query over such a database are those tuples which can be derived from every
possible world ([20,16]). Observe that, in our case, a possible world can contain
labeled nulls; the evaluation of a query over such a database treats each labeled
null like a standard constant. We propose a semantics of query answering over
inconsistent databases which naturally follows from the previous observations:
the consistent answers to a query over a possibly inconsistent database are the
certain answers in the repaired database.

Example 2. Consider the database of Example 1. The consistent answer to the
query asking for the manager of p2 is carl, because this answer can be obtained
from every possible world of the repaired database. Clearly, there is no consistent
answer to the query asking for the manager of p1. Observe that, the consistent
answer to the query asking for the telephone number of p2’s manager is ⊥1, that
means that we have no information about it. �

Since repaired databases are OR-databases, relying on the result in [17], we can
identify conjunctive queries that can be evaluated in polynomial time.

The rest of the paper is organized as follows. Section 2 introduces some pre-
liminaries on relational databases and integrity constraints. Section 3 introduces
a semantics of constraint satisfaction for databases containing null and unknown
values, and a repairing strategy. The problem of querying inconsistent databa-
ses is tackled in Section 4. Finally, Section 5 contains concluding remarks and
related work.

2 Preliminaries

This section introduces basic notions on relational databases and integrity con-
straints ([1,21]).

The existence of alphabets of relation symbols and attribute symbols is as-
sumed. The domain of an attribute A is denoted by Dom(A). The database
domain is denoted by Dom. A relation schema is of the form r(A1, . . . , Am)
where r is a relation symbol and the Ai’s are attribute symbols (we denote the
previous relation schema also as r(U), where U = {A1, . . . , Am}). A relation in-
stance (or simply relation) R over r(U) is a subset of Dom(A1)×. . .×Dom(Am).
Each element of R is a tuple. Given a tuple t ∈ R and a set X ⊆ U of attributes
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(resp. a single attribute A ∈ U), we denote by t[X ] (resp. t[A]) the projection
of t on X (resp. A). A database schema DS is a set {r1(U1), . . . , rn(Un)} of
relation schemata. A database instance (or simply database) DB over DS is a
set {R1, . . . , Rn} where each Ri is a relation over ri(Ui), i = 1..n.

Integrity constraints express semantic information over data, i.e. relationships
that should hold among data. They are mainly used to validate database trans-
actions. In this paper we consider functional dependencies and foreign key con-
straints. The notation used hereafter is introduced below.

Given a relation schema r(U), a functional dependency fd over r(U) is of
the form X → Y , where X,Y ⊆ U . If Y is a single attribute, the functional
dependency is in standard form whereas if Y ⊆ X then fd is trivial. A relation R
over r(U) satisfies fd if ∀t1, t2 ∈ R t1[X ] = t2[X ] implies t1[Y ] = t2[Y ] (we also
say that R is consistent w.r.t. fd). Given a set FD of functional dependencies, a
key of r is a minimal set K of attributes of r s.t. FD entails K → U . A primary
key of r is one designated key of r.

Given two relation schemata r(U) and s(V ), a foreign key constraint fk is of
the form r(W ) ⊆ s(Z), where W ⊆ U,Z ⊆ V, |W | = |Z| and Z is a key of s
(if Z is the primary key of s we call fk a primary foreign key constraint). Two
relations R and S over r(U) and s(V ) respectively, satisfy fk if for each tuple
t1 ∈ R there is a tuple t2 ∈ S such that t1[W ] = t2[Z] (we also say that R and
S are consistent w.r.t. fk).

A database satisfies (or is consistent w.r.t.) a set IC of constraints, if it satisfies
every constraint in IC.

3 Repairing Inconsistent Databases

In this section we investigate the problem of repairing databases that are in-
consistent w.r.t. functional dependencies and foreign key constraints. Specifi-
cally, in this paper we consider particular sets of functional dependencies, called
canonical, which are introduced in the following definition.1

Definition 1. Canonical sets of functional dependencies. Let FD be a set of
functional dependencies over the relation schema r(U). FD is said to be in
canonical form if for each functional dependency X → A ∈ FD does not exist a
functional dependency Y → B ∈ FD such that A ∈ Y . �

Thus, a set of functional dependencies is canonical if there is no attribute appea-
ring in the right-hand side of a functional dependency and in the left-hand side
of another one. When the database schema consists of more than one relation
schema, each schema is associated with a canonical set of functional dependen-
cies. It is easy to see that, given a canonical set FD of functional dependencies
over a relation schema r(U), there exists a unique key K of r and, moreover,
every functional dependency X → A in FD is s.t. X ⊆ K. Thus, we observe
that we deal with primary foreign key constraints.
1 From now on, we assume that functional dependencies are nontrivial and in standard

form.
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Most of the proposed approaches for repairing inconsistent databases rely on
tuple insertions and deletions; only a few works have investigated the computa-
tion of repairs by means of tuple updates ([22]). We propose a repairing strategy
which aims at preserving the information in the original database as much as
possible: when foreign key constraints are violated new tuples are inserted into
the database whereas tuples updates are performed to make the database con-
sistent w.r.t. functional dependencies; thus tuple deletions are never performed.
As it has been shown in Example 1, null and unknown values can be introduced
when repairing w.r.t. foreign key constraints and functional dependencies, re-
spectively.

In the rest of this section, first we present a semantics of constraint satisfaction
for databases containing null and unknown values, next we propose a repairing
strategy.

3.1 Semantics of Constraint Satisfaction

First of all, let us introduce databases containing null and unknown values. We
assume to have two infinite enumerable domains D# = {#1, . . . ,#n, . . .} and
D⊥ = {⊥1, . . . ,⊥k, . . .} of distinct unknown values and distinct labeled nulls,
respectively. The database domain, denoted as Dom#,⊥, contains, in addition
to a set Dom of standard constants, the unknown values D# and the null va-
lues D⊥, i.e. Dom#,⊥ = Dom ∪D# ∪ D⊥ (likewise, given an attribute Ai, its
domain is Dom#,⊥(Ai) = Dom(Ai) ∪ D# ∪ D⊥ where Dom(Ai) is the set of
constants for the attribute Ai). The sets of constants, null and unknown values
are pairwise disjoint. A relation R over the schema r(A1, . . . , An) is a subset of
Dom#,⊥(A1)× · · · ×Dom#,⊥(An), where each unknown value #j appearing in
R in correspondence of an attribute Ai is associated with a finite set of con-
stants dom(#j) ⊆ Dom(Ai) (we call dom(#j) the domain of #j). Given a tuple
t ∈ R, we denote by ground(t) the set of tuples obtained from t by replacing
every unknown value occurring in t with a constant from its domain. We will
call databases containing neither null nor unknown values complete databases.
We point out that source databases are complete (and possibly inconsistent) and
the proposed repairing strategy leads to consistent databases possibly containing
null and unknown values.

We present first a semantics of constraint satisfaction for databases containing
null and unknown values in the presence of foreign key constraints, and next a
semantics for functional dependencies (in this paper we consider only canonical
sets of functional dependencies, see Definition 1).

Definition 2. Satisfaction of foreign key constraints. Let R,S be two relations
with schemata r(U), s(V ) respectively, and fk be a foreign key constraint of the
form r(X) ⊆ s(Y ). R and S satisfy fk if for each tuple tR ∈ R

– there exists Xi in X s.t. tR[Xi] =⊥j , or
– for each tuple t′R ∈ ground(tR[X ]) there is a tuple tS ∈ S s.t. t′R = tS [Y ].

Clearly, a database DB satisfies a set FK of foreign key constraints if it satisfies
every foreign key constraint in FK. �
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In the above definition, if a tuple t ∈ R contains a null value on some attribute
in X , then it does not violate the foreign key constraint fk. Observe that, if such
a tuple could violate fk, a reasonable way (relying on tuple insertions) to repair
the database would lead to the insertion in S of a new tuple containing null values
on attributes belonging to the primary key, which is not desirable (we recall that
we deal with primary foreign key constraints). If a tuple t ∈ R does not contain
any null value on X , intuitively, it could be any tuple in ground(tR) and, in
order to consider the constraint not violated by tR, we require that any tuple
in ground(tR) does not violate the constraint (under the standard semantics).
When complete databases are considered, the previous definition coincides with
the classical semantics of foreign key constraint satisfaction.

Example 3. Consider the database schema of Example 1 and the following
database.

Project
Name Manager

p1 ⊥1

p2 #1

Employee
Name Phone
john 123

where dom(#1) = {john, bob}. The first tuple of the project relation does not
lead to a violation of Project[Manager] ⊆ Employee[Name] since it has a null
value on the attribute Manager. With regard to the second tuple in the project
relation, since the manager of p2 could possibly be bob and he is missing in the
employee relation, the database is inconsistent. �

Now we present the semantics of constraint satisfaction w.r.t. functional depen-
dencies. As it has been observed before, given a canonical set FD of functional
dependencies over a relation schema r(U), every functional dependency X → Y
in FD is s.t. each attribute Xi ∈ X belongs to the primary key of r. Since null
values cannot occur in correspondence of such attributes, in the following defi-
nition we assume that, given a relation R over r(U), every tuple t ∈ R contains
constants or unknown values on attributes appearing in the left-hand side of
some functional dependency. Moreover, for the sake of simplicity of presenta-
tion, we say that dom(c) = {c} for every constant c ∈ Dom.

Definition 3. Satisfaction of functional dependencies. Given a relation R and
a functional dependency fd = X → A over the schema r(U), R satisfies fd
if for every pair t1, t2 of tuples in R,

∧
Xi∈X(dom(t1[Xi]) ∩ dom(t2[Xi]) 	= ∅)

implies t1[A] = t2[A]. Clearly, R satisfies a set FD of functional dependencies if
it satisfies every functional dependency in FD. �

In the previous definition, similarly to the semantics for foreign key constraints,
if two tuples in R could possibly have the same value on X , thus we require that
they have same value on A in order to consider fd not violated. In the presence
of complete databases the above definition coincides with the classical semantics
of satisfaction of functional dependencies.
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Example 4. Consider the database schema of Example 1 and the following
database (the employee relation is empty and then omitted).

Project
Name Manager

p1 ⊥1

p1 #1
p1 carl

where dom(#1) = {john, bob}. The tuples in the above relation are pairwise
violating fd1 : Name→Manager as they have the same information on Name
but different information on Manager. �

3.2 Repairing

We now present how to repair inconsistent databases. Basically, we introduce
a rule to be applied whenever functional dependency violations occur, and an-
other rule to be applied when foreign key constraints are violated. Our repairing
strategy consists in applying these rules in some arbitrary order as long as they
are applicable. We show that this procedure always terminates and the final
consistent database does not depend on the order the rules have been applied.
Finally, we show that the repairing process is polynomial time.

Let DB be a database and FD, FK be sets of functional dependencies and
foreign key constraints respectively. The aforementioned rules are the following:

– FKC rule. if there exist two relations R and S in DB with schemata r(U)
and s(V ) respectively, a foreign key constraint fk : r(X) ⊆ s(Y ) in FK and
a tuple tR ∈ R which violate fk (according to Definition 2), then we say
that the FKC rule is applicable. The rule is applied as follows: for each tuple
t ∈ ground(tR[X ]) s.t. there is no tuple tS ∈ S s.t. tS [Y ] = t insert a tuple
tnew into S s.t. tnew[Y ] = t and ∀Ai ∈ (V − Y ) tnew [Ai] =⊥j where ⊥j is a
fresh labeled null.

– FDC rule. if there exist a functional dependency fd : X → A ∈ FD
and a relation R over r(U), and two tuples t1, t2 in R which violate fd
(according to Definition 3), then we say that the FDC rule is applicable. For
the sake of simplicity of presentation, we say that dom(⊥i) = ∅ for every
unknown value ⊥i∈ D⊥ and dom(c) = {c} for every constant c ∈ Dom.
The rule is applied as follows. Let d = dom(t1[A]) ∪ dom(t2[A]). If d = {c}
then t1[A] := c, t2[A] := c. If d = ∅ then t1[A] :=⊥j, t2[A] :=⊥j, where
⊥j is a fresh null value, and every occurrence of the old values t1[A] and
t2[A] elsewhere is replaced with ⊥j . If both the previous cases do not hold
then t1[A] := #i, t2[A] := #i, where #i is a fresh unknown value with
domain dom(#i) = d, and every occurrence of the old values t1[A] and t2[A]
elsewhere, only if unknown values, is replaced with #i.

Therefore, when a foreign key constraint is violated, the missing information
is simply inserted into the database. By inserting a new tuple into the database,
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it may be the case that some information about the new tuple is missing and
then we need to use null values. We adopt the no information interpretation of
null values because, as it has been shown in Example 1, this interpretation allows
us to model every kind of missing information, whereas adopting the unknown
or the nonexistent interpretation non-factual information can be stored in the
database.

Example 5. Consider the database of Example 3. By applying the FKC rule, the
consistent database reported below is obtained.

Project
Name Manager

p1 ⊥1

p2 #1

Employee
Name Phone
john 123
bob ⊥2

Thus, we have inserted bob into the employee relation as it could be p2’s
manager. �

The proposed rule for repairing w.r.t. functional dependencies stems from the
observation that, if a relation contains two tuples t1, t2 which are equal on a set
X of attributes, and a functional dependency X → A is defined, this means that
t1[X ] (equivalently, t2[X ]) should be associated with a unique A-value. When this
is not the case, that is t1 and t2 violate X → A, we modify both of them on the
attribute A in such a way that they have the same information on this attribute.
Specifically, when t1, t2 do not have a null value on A we “fix” them by assigning
the same (unknown) value on A; the possible values for this unknown value come
from the old values of t1 and t2 on A. Observe that the domain of an unknown
value consists of constants which come from the original (complete) database,
and, in particular, these values were in the original database in positions where
the unknown value occurs.

Example 6. Consider the database schema of Example 1 and the following
database (the employee relation is empty and then omitted).

Project
Name Manager

p1 #1
p1 carl

where dom(#1) = {john, bob}. Clearly, the database violates fd1 : Name →
Manager. By applying the FDC rule, we obtain the following consistent
database:

Project
Name Manager

p1 #2

where dom(#2) = {john, bob, carl}. �
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Let us consider the case where t1[A] and t2[A] contain null values. If t1[A] =⊥i

and t2[A] =⊥j , with i 	= j, then the same (fresh) labeled null is assigned to
both t1[A] and t2[A] (every occurrence of ⊥i and ⊥j elsewhere is replaced with
the new labeled null). Let us now consider the case where there is only one null
values among t1[A] and t2[A]. As we have stressed several times, a null value
is interpreted as no information (the value either exists but it is not known or
does not exist) whereas we can say more about unknown values (a value exists
but it is not know and a finite set of possible values is known). In a sense,
both constants and unknown values are more informative than null values. The
proposed repairing strategy aims at exploiting functional dependencies to “infer”
more precise information on null values: suppose that t1[A] is a null value whereas
t2[A] is not, then we replace the null value with t2[A]. We show this idea in the
following example.

Example 7. Consider the database below.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl

Suppose that the following constraints are defined.

– fd1 : Name→ Dept, City defined over Employee,
– fd2 : Name→Manager defined over Department,
– fk : Employee[Dept, City] ⊆ Department[Name,City].

Thus, a department can be located in different cities and has a unique manager.
As the pair cs,milan is missing in the department relation, the database violates
fk. By applying the FKC rule we obtain the following database.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl
cs milan ⊥1

The obtained database is inconsistent w.r.t. fd2 since there are two tuples in the
department relation regarding the same department cs and containing different
information about its manager. As the first tuple states that the manager of cs is
carl, whereas the second tuple does not say anything, it seems to be reasonable
replacing the null value with a more precise information which comes from the first
tuple, that is we exploit the functional dependency to “infer” missing information.
By applying the FDC rule, the following consistent database is obtained.

Employee
Name Dept City
john cs rome
bob cs milan

Department
Name City Manager

cs rome carl
cs milan carl

�
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Observe that unknown values are introduced only in correspondence of attributes
appearing in the right-hand side of functional dependencies and, since we con-
sider canonical sets of functional dependencies, unknown values never appear in
correspondence of attributes in some left-hand side.

We point out that, since the original database is complete, every null value is
introduced either by the FKC rule or by the FDC rule. As it has been discussed
above, null values introduced by the FKC rule are no information nulls. Null
values introduced by the FDC rule are used just for assigning the same label to
different null values, and this does not change their no information interpretation.
Thus, we deal only with no information nulls.

It is worth noting that the repairing strategy we propose consists in applying
the FDC and FKC rules as long as they are applicable.

Definition 4. Repairing sequence. Let DB be a complete database, FD be a
set of functional dependencies and FK be a set of foreign key constraints. A
repairing sequence of DB w.r.t. FD and FK is a (possibly infinite) sequence
DB0, . . . , DBj , . . . s.t. DB0 = DB and for each i > 0 DBi is the database
obtained by applying the FDC or the FKC rule to DBi−1. �

The following proposition states that the proposed repairing process always ter-
minates.

Proposition 1. Let DB be a complete database, FD be a set of functional
dependencies and FK be a set of foreign key constraints. Each repairing sequence
of DB w.r.t. FD and FK is finite. �

Given a database DB, a set FD of functional dependency and a set FK of
foreign key constraints, a repairing sequence DB, . . . ,DBn is complete if DBn

satisfies FD∪FK (we call DBn repaired database). Clearly, Proposition 1 entails
that a repaired database always exists.

Corollary 1. Let DB be a complete database, FD be a set of functional de-
pendencies and FK be a set of foreign key constraints. There exists a repaired
database DBn for DB w.r.t. FD and FK. �

The following theorem states that, up to renaming of unknown and null values,
the repaired database is unique.

Theorem 1. Let DB be a complete database, FD be a set of functional de-
pendencies and FK be a set of foreign key constraints. There exists a unique
repaired database for DB w.r.t. FD and FK (up to renaming of unknown and
null values). �

As stated in the following theorem, the proposed repairing strategy is polynomial
time.

Theorem 2. Let DB be a complete database, FD be a set of functional depen-
dencies and FK be a set of foreign key constraints. The repaired database of DB
w.r.t. FD and FK can be computed in polynomial time. �
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4 Query Answering

In this section we present a semantics of query answering over possibly inconsi-
stent databases. Relying on the results in [17], we show that there exists a class
of conjunctive queries which can be evaluated in polynomial time.

In this section we consider only conjunctive queries. A conjunctive query Q
is of the form ∃y Φ(x, y) where Φ is a conjunction of literals (a literal is of the
form p(t1, . . . , tn) where p is a relation symbol and each ti is a term, that is a
constant or a variable) and x is the set of free variables of Q (x and y are sets
of variables).

The proposed semantics of query answering stems form the following observa-
tions. The repairing strategy presented in the previous section lead to a consis-
tent database possibly containing unknown and (labeled) null values. Specifically,
the so obtained database is an OR-database [17] and thus it represents a set of
“possible worlds”, namely the databases which are obtained by replacing every
unknown value with a constant of its domain (observe that we treat labeled nulls
like standard constants). The “certain answers” to a query over an OR-database
are those tuples which can be derived from every possible world of the database
(we observe that, in our case, a possible world can contain labeled nulls; the
evaluation of a query over a possible world treats such null values like standard
constants). Then, it is natural to define the semantics of query answering over a
possibly inconsistent database as the certain answers over its repaired database
(Definition 5 below). Let DB be an OR-database. We denote by pw(DB) the
set of possible worlds of DB.

Definition 5. Consistent Query Answers. Let DB be a complete database, FD
be a canonical set of functional dependencies, FK be a set of foreign key con-
straints and Q be a conjunctive query. Let DB be the repaired database for DB
w.r.t. FD and FK. The consistent answers to Q on DB w.r.t. FD and FK are:

Qc(DB,FD ∪ FK) =
⋂

D∈pw(DB)

Q(D)

where Q(D) denotes the result of applying Q over D. �

Relying on the results in [17], we show that there exists a class of conjunctive
queries whose consistent answers can be computed in polynomial time. The data
complexity of queries is considered.

Let us briefly recall the results in [17]. Basically, OR-Tables are relations
(as presented at the beginning of Section 3.1) which do not contain labeled
null values. Unknown values are also called OR-Objects. Only in correspondence
of certain attributes, OR-Tables are allowed to have variables and this is pre-
designated by a typing function α. Given a database schema DS, let Att be
the set of attribute symbols in DS. The typing function α is defined as α :
Att → {ATOMIC,OR}. Those attributes that are mapped to OR are called
OR-Attributes.

Given a query Q and a literal l in Q, we denote by V AR(l) the set of variables
occurring in l.



Polynomial Time Queries over Inconsistent Databases 323

Definition 6. Given a query Q, two literals l1 and l2 in Q are connected to each
other if V AR(l1) ∩ V AR(l2) 	= ∅ or, if there exists a literal l3 in Q such that l1
is connected to l3 and V AR(l3) ∩ V AR(l2) 	= ∅. �

Given a database schema DS, a query Q and a literal l = p(x1, . . . , xn) in Q, then
a variable xi in l occurring in correspondence of an attribute A is said to label
A. Moreover, xi occurs as OR in l if it is in correspondence of an OR-Attribute
(according to the typing function α for DS).

Definition 7. Let DS be a database schema, α be the corresponding typing
function, Q be a query and l1, l2 be two different literals in Q. Then l1 marks l2
if there exists a variable y ∈ V AR(l1) ∩ V AR(l2), such that y occurs as OR in
l1 or, if there is another literal l3 in Q such that l1 marks l3 and l3 is connected
to l2. �

Marking depends on both the typing function and the way the variables are
shared in Q.

Definition 8. A query Q is an acyclic query if there are no two literals l1 and
l2 in Q such that l1 marks l2 and l2 marks l1. A query which is not acyclic is
called cyclic query. �

Given a database schema DS, a typing function α for it and a query Q, we
denote by MODIFY (α,Q) the typing function obtained by modifying α in
such a way that every attribute labeled by a free variable in Q is ATOMIC.
Proper conjunctive queries are those queries in which every pair of literals have
different relation symbols.

Theorem 3. [17] Let DS be a database schema, α be its typing function, Q
be a proper conjunctive query and D be a database instance on DS. Let α′ =
MODIFY (α,Q). Then, the data complexity of computing the certain answers
of Q over D is in PTIME iff Q is acyclic with respect to α′. �

We recall that null values appearing in repaired databases are treated as con-
stants in query evaluation. Consider a complete database DB, a canonical set
FD of functional dependencies and a set FK of foreign key constraints. Let DB
be the repaired database for DB w.r.t. FD and FK. According to the previous
theorem, we can identify proper conjunctive queries which can be evaluated in
polynomial time on DB. As the certain answers computed on DB coincide with
the consistent answers for DB w.r.t. FD and FK and DB can be computed
in polynomial time, we can identify queries whose consistent answers over the
original database can be computed in polynomial time.

5 Discussion

5.1 Summary of Results

This paper has proposed a framework for repairing and querying relational da-
tabases which may be inconsistent with respect to functional dependencies and
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foreign key constraints. Specifically, canonical sets of functional dependencies
have been considered, that is sets of functional dependencies where attributes
appearing in the right-hand side cannot appear also in the left-hand side. In
order to restore the consistency of inconsistent databases, we have proposed a
repairing strategy that performs tuple insertions when foreign key constraints
are violated and tuple updates when functional dependency violations occur
(tuple deletions are never performed). Since tuple insertions and updates may
introduce, respectively, null and unknown values in the database, we have pro-
posed a semantics of constraint satisfaction for databases containing null and
unknown values. Our approach always allows us to obtain a unique (up to
renaming of unknown and null values) repaired database which can be com-
puted in polynomial time. The result of the repairing technique is an incom-
plete database (in particular, an OR-database). The consistent query answers
over an inconsistent database are the certain answers on the repaired database.
The results in [17] on the complexity of query processing in OR-databases al-
lows us to identify conjunctive queries which can be evaluated in polynomial
time.

5.2 Related Work

Several works have addressed the problem of repairing and querying inconsi-
stent databases. Most of them are based on the notion of repair (a consistent
database which minimally differs from the original one) and consistent query
answers (query answers which can be obtained from every repair of an inconsi-
stent database) [3]. An introduction to the central concepts of consistent query
answering is [9], whereas surveys on this topic are [5,4]. We introduce below
some approaches enabling the computation of repairs and consistent answers in
possibly inconsistent databases.

In [18] a semantics of satisfaction of functional and inclusion dependencies in
the presence of databases with null values is presented. Here the null value is
interpreted as “unknown”. The classical chase procedure is extended to incom-
plete relations and used to test whether a database satisfies a set of constraints.
The axiomatization and the implication problem of functional and inclusion de-
pendencies is studied. No repairing strategy is provided.

The issue of dealing with databases containing null values in the presence of
integrity constraints has been considered also in [6]. In this work, null values are
also used to repair the original database. The paper considers a wide class of
integrity constraints which includes universal integrity constraints, denial con-
straints, cyclic sets of inclusion dependencies and others. The proposed semantics
of constraint satisfaction takes into account the relevance of the occurrence of a
null value in a relation and is compatible with the way null values are usually
treated in commercial database management systems. The notion of repair is
that one presented in [3], that is a consistent database instance which minimally
differs from the original database.
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Using OBDDs for Efficient Query Evaluation on

Probabilistic Databases

Dan Olteanu and Jiewen Huang

Oxford University Computing Laboratory, UK

Abstract. We consider the problem of query evaluation for tuple inde-
pendent probabilistic databases and Boolean conjunctive queries with
inequalities but without self-joins. We approach this problem as a con-
struction problem for ordered binary decision diagrams (OBDDs): Given
a query q and a probabilistic database D, we construct in polynomial
time an OBDD such that the probability of q(D) can be computed lin-
early in the size of that OBDD. This approach is applicable to a large
class of queries, including the hierarchical queries, i.e., the Boolean con-
junctive queries without self-joins that admit PTIME evaluation on any
tuple-independent probabilistic database, hierarchical queries extended
with inequalities, and non-hierarchical queries on restricted databases.

1 Introduction

Recently there has been renewed interest in probabilistic databases [2,10,20,5,6,1]
due to important applications that systems for representing uncertain informa-
tion have, such as data cleaning, data integration, and scientific databases.

In this paper we study the following evaluation problem: given a Boolean con-
junctive query q without self-joins and with inequalities and a tuple-independent
probabilistic databases D, compute the probability of q(D).

Dalvi and Suciu’s seminal work [5] on the evaluation of conjunctive queries
without self-joins on tuple-independent probabilistic databases shows that the
complexity of query evaluation is either PTIME or #P-hard. In case of PTIME
queries, also called hierarchical [6], there exists an evaluation method that rewrites
them into linear-size SQL queries (called safe plans) that compute the probability
of the distinct answer tuples. Such SQL rewritings use aggregates to eagerly elim-
inate duplicates and compute the probability of distinct tuples in projections of
the input and temporary tables. The addition of aggregates severely restricts the
search space for good query plans to compute the answer tuples: In most cases it
enforces unoptimal join orderings and each of these aggregates requires sorting.
We also note that this rewriting approach cannot be naturally extended to cope
with queries beyond the hierarchical ones.

In this paper we devise a new method for the aforementioned evaluation prob-
lem. Our method is rooted in the following two observations that relate query
evaluation on probabilistic databases, #SAT procedures, and knowledge com-
pilation. First, the probability of a query q on a probabilistic database D is

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 326–340, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the probability of the Boolean expression φq,D associated with q and D; such
Boolean expressions encode the (provenance) information on which input tuples
contribute to which answer tuples. Second, the probability of φq,D can be com-
puted by compiling it into a propositional theory with PTIME model counting
(and thus probability computation). Our approach is to compile φq,D into reduced
ordered binary decision diagrams (OBDDs). Boolean expressions are commonly
represented using OBDDs, as it is the case in hardware verification and model
checking [4], program analysis [15], and probabilistic logic programming [18].

We show that OBDDs are effective in handling Boolean expressions of in-
terest. In contrast to the approach of Dalvi and Suciu, our approach is more
general as it covers the orthogonal tractable classes of both hierarchical queries
and Boolean expressions of bounded treewidth, which are associated with prob-
abilistic databases and non-hierarchical queries, and a large tractable class of
conjunctive queries extended with inequalities.

The key technical challenge of our method is to efficiently find good variable
orders, under which Boolean expressions associated with queries and probabilis-
tic databases can be compiled into OBDDs in polynomial time.

The contributions of this article are as follows:

– We revisit the problem of query evaluation for conjunctive queries on tuple-
independent probabilistic databases and connect it to the OBDD construc-
tion problem.

– We show that the expression φq,D associated with any hierarchical query
q and tuple-independent probabilistic database D, can be brought into a
special factored form, where each of its variables occurs exactly once. It
then follows that such expressions can be efficiently compiled into OBDDs,
whose sizes are linear in the number of their variables. This guarantees the
robustness of our method.

– We define a large tractable class of queries with inequalities. Queries in
this class can be represented as trees where nodes are hierarchical queries
and each edge that connects two nodes for queries A and B represents one
inequality on variables occuring in all subgoals of A and B, respectively.

– Within the #P-hard class of conjunctive queries, we identify one subclass
that remains in PTIME under certain assumptions about the database. By
relating the complexity of query evaluation to that of OBDD construction for
arbitrary Boolean expressions, we are able to carry over results that bound
the exponent of the evaluation time to the treewidth of such expressions.

To the best of our knowledge, this paper is the first to develop a robust frame-
work based on OBDDs to efficiently evaluate queries on probabilistic databases.
Similar in spirit to the approach of this paper, previous work [14] of the first au-
thor employs knowledge compilation techniques for probability computation of
conjunctive queries on arbitrary probabilistic databases, but without polynomial-
time guarantees. Follow-up work [17] of the same authors applies the results of
this paper to implement in PostgreSQL a low-level query plan operator for prob-
ability computation, and shows experimentally that our method can outperform
the method of Suciu and Dalvi by orders of magnitude.
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R A B

x1 a1 b1

x2 a2 b1

x3 a2 b2

x4 a3 b3

S A C

y1 a1 c1

y2 a1 c2

y3 a2 c1

y4 a4 c2

T D

z1 c1

z2 c2

z3 c3

Fig. 1. A tuple-independent probabilistic database over {R(A, B), S(A, C), T (D)}

2 Preliminaries

We next recall the notions of probabilistic databases, conjunctive queries, and
ordered binary decision diagrams.

2.1 Tuple-Independent Probabilistic Databases

Let a finite set X of (independent) random Boolean variables and a probability
distribution over their assignments given by a function P , i.e., ∀x ∈ X : P (x) +
P (x) = 1. A probabilistic relation R over a schema and variable set X is a set
of tuples over that schema, such that each tuple is associated with a distinct
variable from X. We denote by V ars(R) ⊆ X the set of variables of R. A
probabilistic database, or database for short, is a set of probabilistic relations.
Fig.1 gives such a database, where for instance V ars(R) = {x1, x2, x3, x4}.

The set of possible worlds is defined by the finite set of truth assignments
of all variables from X. There is a one-to-one correspondence between possible
worlds and database instances. To obtain one instance, we fix a truth assignment
f , and then process each relation Ri tuple by tuple. A tuple t with variable φ(t)
is in Ri if f(φ(t)) is true. For instance, the truth assignment that maps x1, y1,
and z1 to true and all remaining variables to false, defines the database instance
where R = {(a1, b1)}, S = {(a1, c1)}, and T = {(c1)}. The probability of this
world is the product of the probabilities of x1, y1, and z1 being true, and of the
probabilities of the remaining variables being false.

2.2 Conjunctive Queries with Inequalities and without Self-joins

We consider Boolean conjunctive queries with negated equalities but without
self-joins. We write queries using the Datalog notation: q :- g1, . . . , gn defines a
query q where its body is a conjunction of n distinct positive relational pred-
icates, called subgoals. A subgoal has the form R(A1, . . . , Ak), where R is a
relation name and A1 to Ak are query variables. By sg(Ai) we denote the set
of subgoals of query variable Ai. An eq-join variable occurs in more than one
subgoal. Inequality joins are expressed using inequality conditions, e.g., B 	= C
with query variables B and C occurring in some subgoals.

We partition the conjunctive queries into hierarchical and non-hierarchical [7]:
The hierarchical queries admit polynomial-time evaluation, whereas the non-
hierarchical ones are #P-hard in general [5].
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A

ABC AD

R3(A)R1(ABCE) R2(ABC) R4(ADF) R5(AD)

H5

H4

H3

H1 H2

Fig. 2. (Left) Hierarchical query of Ex.1 and (right) IHQ �= query of Ex.2

Definition 1 ([7]). A conjunctive query is hierarchical if for any two variables,
either their sets of subgoals are disjoint, or one set is contained in the other.

Each connected component of a hierarchical query has at least one query vari-
able that occurs in all subgoals. Following [7], we call such variables maximal.
We represent hierarchical queries as trees, where the inner nodes are the join
variables of the children and the leaves are query subgoals. The root is then the
set of maximal variables in case of connected queries, or the empty set otherwise.
Each inner node stands for a relation, which corresponds to the subquery of the
tree rooted at that node, and can be realized as the natural join of the node’s
children followed by a projection on the node’s join variables.

Example 1. The following query is hierarchical and the variable A is maximal:

h:-R1(A,B,C,E), R2(A,B,C), R3(A), R4(A,D, F ), R5(A,D).

Fig.2 gives its tree representation. If we remove A from either R1 or R2, we
obtain a non-hierarchical query, because sg(A)− sg(B) 	= ∅ 	= sg(B)− sg(A). �

We also consider a class of conjunctive queries with inequalities, which we show
in Section 4 to be tractable.

Definition 2. An IHQ �= query is either hierarchical, or a join of two indepen-
dent IHQ �= queries using an inequality predicate on maximal query variables.
Two queries are independent if they use disjoint sets of relations.

IHQ �= queries have no cycles containing inequalities. We use here a tree repre-
sentation that cannot distinguish unconnected hierarchical queries from IHQ �=

queries. Consider a partial order on the hierarchical subqueries of a IHQ �= query
q such that if one subquery is joined with n others, then it occurs after all sub-
queries joined with at most n− 1 others (the acyclicity ensures the existence of
such orders). We construct a binary left-deep tree representation of q by adding
in the ordered subqueries from right to left. The leaves of such a tree represent
the hierarchical subqueries and the inner nodes are labeled with empty sets. The
leaves are then replaced by the tree representations of the subqueries.
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Example 2. The IHQ �= query

q:-R1(A, B), R2(A,C), (H1)

U(H, I), (H2)

T (F,G), (H3)

S1(C, D, E), S2(C, D), D �= A, C �= F, (H4)

V (J, K), J �= I,K �= C. (H5)

consists of five hierarhical queries (denoted by H1 to H5 above). Fig.2 gives the
tree representation of q corresponding to the order H1, H2, H3, H4, H5. For space
reasons, we do not replace the leaves Hi by their tree representations. �

The query evaluation follows the standard semantics with the addition that each
tuple t is associated with a Boolean expression over random variables [13], as
shown below for product, selection, and projection:

Q1 ×Q2 = {(t1 ◦ t2, φ1φ2) | (t1, φ1) ∈ Q1, (t2, φ2) ∈ Q2}
σcond(Q) = {(t, φ) | (t, φ) ∈ Q, cond(t)}

πĀ(Q) = {(t.Ā, φ) | (t, φ) ∈ Q}

The expression associated with q and D, denoted by φq,D, is the disjunction
of the monotone expressions of the tuples in q(D): φq,D :=

∑
(ti,φi)∈q(D)(φi).

The size of an expression φq,D, denoted by |φq,D|, is the product of the number
of its clauses (equal to the number of tuples in the answer q(D)) and the number
of variables per clause (equal to the number the subgoals of q).

Proposition 1 ([5]). For any query q and probabilistic database D, it holds
that P (q(D)) = P (φq,D).

Example 3. Consider the Boolean queries

qeq:-R(A,B), S(A,C) qneq:-R(A,B), S(C,D), A 	= C

The expressions φeq and φneq are (in an easier to follow factored form)

φeq = x1(y1 + y2) + (x2 + x3)y3

φneq = x1(y3 + y4) + (x2 + x3)(y1 + y2 + y4) + x4(y1 + y2 + y3 + y4)

2.3 Ordered Binary Decision Diagrams

Reduced ordered binary decision diagrams (OBDDs) are commonly used to rep-
resent compactly large Boolean expressions [16].

The idea behind OBDDs is to decompose Boolean expressions using variable
elimination and to avoid redundancy in the representation. The decomposition
step is normally based on exhaustive application of Shannon’s expansion: Given
a Boolean expression φ and one of its variables x, we have φ = x · φ |x +x̄ · φ |x̄,
where φ |x and φ |x̄ are φ with x set to true and false, respectively. The order of



Using OBDDs for Efficient Query Evaluation on Probabilistic Databases 331

x1

y1

y2

x2

x3

y3

x4

y4

1 0 10

x1

x2

x3

x4

y1

y2

y3

y4

0 01 1

(a) Good variable order π1 for eq-joins (b) Good variable order π2 for neq-joins
OBDDs: (a) left (φeq , π1), (a) right (φneq, π1), (b) left (φeq, π2), (b) right (φneq, π2).

The expressions φeq and φneq are given in Example 3.

Fig. 3. Eq-joins and neq-joins have different good variable orders

variable eliminations is a total order π on the set of variables of φ, called variable
order. An OBDD for φ is uniquely identified by the pair (φ, π).

OBDDs are represented as directed acyclic graphs (DAG), with two terminal
nodes representing the constants 0 (false) and 1 (true), and non-terminal nodes
representing variables. Each node for a variable x has two outgoing edges corre-
sponding to the two possible variable assignments: a high (solid) edge for x = 1
and a low (dashed) edge for x = 0. To evaluate the expression for a given set of
variable assignments, we take the path from the root node to one of the termi-
nal nodes, following the high edge of a node if the corresponding input variable
is true, and the low edge otherwise. The terminal node gives the value of the
expression. The non-redundancy is what makes OBDDs usually more compact
than the textual representation of Boolean expressions: a node n is redundant
if both its outgoing edges point to the same node, or if there is a node for the
same decision variable and with the same children as n.

The choice of variable order can greatly influence the size of the OBDD.

Definition 3. A variable order π is good for an expression φ if it can be com-
puted from φ in PTIME and the OBBD (φ, π) has size polynomial in |φ|.

Some expressions do not admit good orders, either because they do not ad-
mit polynomial-size OBDDs, or because computing orders for such OBDDs is
NP-hard [16]. In this paper, we nevertheless show that expressions associated
with hierarchical queries and even with IHQ �= queries admit good variable or-
ders. Additionally, although not obvious in general, we are able to construct
polynomial-size OBDDs in an output-sensitive manner and hence in PTIME.

Example 4. Fig. 3 depicts OBDDs for the expressions φeq and φneq of Example 3
under two distinct variable orders π1 and π2. The variable order π1 is good for
φeq as the size of the OBDD (φeq , π1) is linear in the number of φeq ’s variables.
We show later that the variable order π2 is good for φneq . �
OBDDs can be maniputated efficiently. We exemplify here with linear-time prob-
ability computation, given a probability distribution over the OBDD variables.
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prob (Node n)
if (n.p = – 1) then n.p := P(n.v) * prob(n.high) + (1 – P(n.v)) * prob(n.low);
return n.p;

end

Fig. 4. Computing the probability of an OBDD

Fig. 4 gives the procedure prob to this effect. We consider that for each OBDD
node n, its variable is accessible by n.v, its probability by n.p, and its children
by n.high and n.low. The probability value is initialized to 0 for terminal node
0, to 1 for terminal node 1, and to -1 for the remaining nodes. The probability
of the OBDD is the probability of its root node, and the probability of any inner
node n is the sum of the probabilities of their children weighted by the proba-
bilities of the corresponding assignments of the decision variable n.v. Because
we do a constant number of operations per node, we have that

Proposition 2. The probability of the OBDD (φ, π) for an expression φ and a
variable order π can be computed in time O(|(φ, π)|).

From Query Evaluation to OBDD Construction. The problem of query
evaluation on (not necessarily tuple-independent) probabilistic databases and
the OBDD construction problem are closely connected. In particular, an effi-
cient solution to the latter guarantees an efficient solution to the former. The
connection follows in two steps: A reduction from the evaluation problem to
probability computation of expressions over random Boolean variables, followed
by a reduction from the latter problem to the problem of construction and prob-
ability computation of OBDDs.

Proposition 3. For any query q, database D, and variable order π of φq,D, it
holds that P (q(D)) = P ((φq,D, π)).

By Proposition 2, we can linearly reduce the query evaluation problem to the
problem of OBDD construction.

Corollary 1. Let query q and probabilistic database D. If there is a good variable
order π such that the OBDD (φq,D, π) can be constructed in time polynomial in
|φq,D|, then P (q(D)) can be computed in PTIME.

3 Hierarchical Queries

The hierarchical queries are the Boolean conjunctive queries without self-joins
that admit PTIME evaluation on any tuple-independent probabilistic database [6].
The main result of this section is that

Theorem 1. For any hierarchical query q and database D there is a good variable
order π for φq,D. In particular, π can be computed in timeO(|φq,D | log2 |φq,D|) and,
given π, the OBDD (φq,D, π) can be computed in time O(|V ars(φq,D)|).
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type (query q) = τ (q, ∅)
τ (inner node Ā(X1, . . . , Xn), L) = ite(L = Ā, τ (X1, Ā) ◦ . . . ◦ τ (Xn, Ā))
τ (leaf node R(Ā), L) = ite(L = Ā, V ars(R))
ite (Cond, t) = if Cond then t else (t)∗

Fig. 5. Deriving VO-types from queries represented in tree form

Example 5. Consider the eq-join query qeq :- R(A,B), S(A,C) of Example 3
and the database of Fig. 1, where R and S are partitioned according to the
A-values. By the semantics of eq-join, the tuples of the a1-partitions of R and S
are paired independently of the a2-partitions. We thus generate a disjunction of
conjunctions representing all pairs of variables from the two partitions, i.e., x1

is paired with y1 and y2, and x2 and x3 are paired with y3. This information is
made explicit in the factored form of φeq given in Example 3.

A good variable order makes use of the independence of conjunctions across
partitions. We partition the set of variables of φeq in independent sets {x1, y1, y2}
and {x2, x3, y3}, and choose a total order on the sets. We also exploit the fact
that, within any of these sets, all variables from the partition of R are combined
with all variables from the corresponding partition of S. The good orders for φeq

thus correspond to any permutation of elements within each (nesting or nested)
set in {{x1, {y1, y2}}, {{x2, x3}, y3}}. Fig. 3 gives one of these good orders: π1 =
x1y1y2x2x3y3, which induces an OBDD for φeq whose size is linear in the number
of variables. The boxes surrounding the subgraphs for the expressions y1 + y2

and x2 + x3 highlight that under such good orders each of them can be treated
as one variable (each box has one parent and two distinct children). �

We next generalize our reasoning from Example 5. For a given hierarchical query
q, we first derive a class of variable orders, or VO-type for short, that captures
good variable orders, and then use the VO-type and the expression φq,D associ-
ated with q and D to create a good variable order.

Definition 4. A VO-type is defined inductively as follows:

– A set X of variables is a VO-type that defines all variable orders consisting
of one variable of X;

– A reflexive transitive closure α∗ of a VO-type α is a VO-type that defines all
variable orders obtained by concatenating zero or more variable orders of α;

– A (unordered) concatenation αβ of two VO-types α and β is a VO-type that
defines all variable orders obtained by concatenating a variable order of α
(β) and a variable order of β (resp. α).

A set X can only occur once in a VO-type.

Example 6. Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4}. The VO-types of
the variable orders of Fig. 3 are (X∗Y∗)∗ and X∗Y∗, respectively. �

Fig. 5 gives the function type that constructs a VO-type from the tree repre-
sentation of a query q. While traversing the tree top-down, we keep the query
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vo (α∗, φ) = let φ1, . . . , φn be a maximal independent partitioning of φ in
vo (α, φ1) ◦ . . . ◦ vo (α, φn)

vo (αβ, φ) = vo (α, φ restricted to V ars(α)) ◦ vo (β, φ restricted to V ars(β))
vo (X, φ) = the only variable in φ

Fig. 6. Deriving good variable orders for Boolean expressions wrt given VO-types

variables of the parent node (which includes the variables of all the ancestors)
in L; initially, L = ∅. For a query subgoal R(Ā), we create a VO-type V ars(R)
or (V ars(R))∗. The former case occurs when Ā represents the parent variables
L, and thus there is one tuple (and thus one variable) per distinct Ā-value. Oth-
erwise, there may be several tuples (variables) per distinct Ā-value (due to the
projection at the parent node on the proper subset L of Ā), and hence the expo-
nent (*). In case of an inner node, we recursively compute the VO-types for the
children and then concatenate them in any order. Distinction on Ā = L applies
here as well. Note that Ā = ∅ covers the case of hierarchical subqueries that are
unconnected or connected using inequalities (IHQ �= queries discussed later). In
both cases, we treat such subqueries independently.

Example 7. The query of Example 1 has the VO-type ((X∗
1X2)∗X3(X∗

4X5)∗)∗,
whereXi =V ars(Ri). The IHQ �= query of Example 2 has the VO-type (V ars(R1)∗

V ars(R2)∗)∗V ars(U)∗V ars(T )∗ (V ars(S1)∗V ars(S2))∗V ars(V )∗. �

The VO-type of a hierarchical query q is also useful for bringing the expression
φq,D in a factored form where each variable of φq,D occurs exactly once.

Definition 5. A DNF expression φ can be factored according to a VO-type

– X if φ is in one variable and that variable occurs in the set X;
– α∗ if there exist DNF expressions φ1, . . . , φn that can be factored according

to α, φ = φ1 + . . . + φn and ∀1 ≤ i < j ≤ n : V ars(φi) ∩ V ars(φj) = ∅;
– αβ if there exist DNF expressions φ1 and φ2 that can be factored according

to α and β, respectively, φ = (φ1)(φ2), and V ars(φ1) ∩ V ars(φ2) = ∅.

Example 8. As shown in Example 3, the expression φeq can be factored according
to the VO-type (V ars(R)∗V ars(S)∗)∗ of qeq: Some variables of V ars(R) are
paired with some variables of V ars(S), and the same may apply to further
independent sets of variables in V ars(R) and V ars(S). �

Lemma 1. For any hierarchical query q and database D, φq,D can be factored
according to VO-type type(q).

Fig. 6 gives the function vo that computes good variable orders. This function
uses pattern matching on the structure of VO-types.

In case of VO-types α∗, the variable order is a concatenation of variable orders
for α. Because these variable orders use disjoint sets of variables, we compute the
maximally independent partitioning of the input expression φ and continue on
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each partition independently. A partitioning φ1, . . . , φn of φq,D is independent
if φq,D = φ1 + . . . + φn and ∀1 ≤ i 	= j ≤ n : V ars(φi) ∩ V ars(φj) = ∅. An
independent partitioning of φq,D is maximal if φq,D has no finer partitioning. For
instance, consider again the expressions φeq and φneq of Example 3. A maximal
independent partitioning of φeq is given by x1y1 + x1y2 and x2y3 + x3y3. The
expression φneq has no maximal independent partitioning but itself.

In case of concatenated VO-types αβ, we recursively compute the variable
order for α independently of β on the restrictions of φ computed by eliminating
all occurrences of variables not in α and not in β, respectively. In case of a
variable set X, the (monotone) expression φ is necessarily in one variable.

Example 9. Let the VO-type θ = (V ars(R)∗V ars(S)∗)∗ of qeq of Example 3.
The variable order vo(θ, φeq) is obtained as follows. We first partition φeq in
φ1 = x1y1 + x1y2 and φ2 = x2y3 + x3y3, each typed by V ars(R)∗V ars(S)∗. For
φ1, we obtain x1 + x1 with type V ars(R)∗, and y1 + y2 with type V ars(S)∗,
then x1 + x1 with type V ars(R) and y1 and y2 with type V ars(S), and finally
the variable order x1y1y2. We proceed similarly with φ2 and obtain x2x3y3. We
concatenate the two orders and return x1y1y2x2x3y3. �

Lemma 2. For any query q and database D, vo(type(q), φq,D) is a variable
order, an instance of type(q), and can be computed in time O(|φq,D | log2 |φq,D|).

In case of hierarchical queries, the outcome of vo is a good variable order.

Lemma 3. For any hierarchical query q and database D, π = vo(type(q),φq,D)
is a good variable order for φq,D and the OBDD (φq,D, π) can be computed in
time O(|V ars(φq,D)|).

Theorem 1 follows immediately from Lemmata 2 and 3.

4 IHQ�= Queries

We extend the PTIME result of Theorem 1 to the strictly more expressive IHQ �=.
We consider IHQ �= queries Qn with n hierarchical subqueries. We assume these
subqueries ordered as in the tree representation of Qn and denote by vi the num-
ber of variables occurring in both φQn,D and the relation produced by computing
the hierarchical subquery i on a database D (1 ≤ i ≤ n). Then,

Theorem 2. For any IHQ �= query Qn and database D there is a good vari-
able order π for φQn,D. In particular, π can be computed in time O(|φQn ,D|
log2 |φQn,D|) and, given π, the OBDD (φQn,D, π) can be computed in time

O(|φQn,D| · (
n−1

Σ
i=1

(
i

Π
j=1

vj)vi +
n

Π
i=1

vi)).

The above time complexity for OBDD construction can be exponential in the
size of the fixed query q.
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Fig. 7. Partial OBDD of quadratic size used in Lemma 4

Example 10. Consider the database of Fig. 1, the query qneq :- R(A,B), S(C,D),
A 	= C, and the associated expression φneq of Example 3. Assume R and S are
partitioned according to the A-values. The R-partition for ai is paired with all
S-partitions but for ai. The factored form of φneq makes the relationship between
the variables of partitions explicit (Example 3).

Fig. 3 shows the OBDD (φneq , π2). Let π2 = U ◦ L, where U = x1 . . . x4 and
L = y1 . . . y4. We partition horizontally this OBDD in the upper part for U and
the lower part for L. Any edge crossing the border from U to L points to a
subgraph that represents a possibly partial sum of y’s and is thus representable
linearly in the number of y’s. Less obvious is that the number of these subgraphs
is at most quadratic in the number of x’s (see Lemma 4 below). In short, this
is because by setting to true at most two variables from different R-partitions,
we reduce φneq to a sum of some y’s. For instance, we reach the leftmost node
y1 by any of the assignments x1 = x2 = 1, x1 = x3 = 1, and x4 = 1, and
each of these cases covers all possible (exponentially many) assignments for the
remaining variables. It turns out that π2 is a good variable order for φneq. �

Like for hierarchical queries, we can derive VO-types for IHQ �= queries and good
variable orders using the functions type and vo described in Section 3.

We next discuss the base case of Theorem 2 with one inequality join on arbi-
trary relations, a generalization of qneq from Example 10.

Lemma 4. Let q :- R(A1, . . . , Ak), S(B1, . . . , Bl), Ai 	= Bj for some 1 ≤ i ≤
k, 1 ≤ j ≤ l, and database D. Then, π = vo(type(q),φq,D) is a good variable
order for φq,D and the OBDD (φq,D, π) can be computed in time O(|φq,D | ·
(|V ars(R)|2 + |V ars(R)| · |V ars(S)|)).

Proof. Let V ars(R) = X = {x1, . . . , xn} and V ars(S) = Y = {y1, . . . , ym}. The
VO-type for q is X∗Y∗ and the variable order π =vo(type(q),φq,D)= U ◦ L,
where U = x1 . . . xn and L = y1 . . . ym. We partition the OBDD (φq,D, π) into
the upper part for U and the lower part for L.
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We show that (1) the number of nodes in the upper part is at most quadratic
in n and (2) the number of nodes in the lower part is at most linear in n ·m.

(1) A variable of X, which is associated in R with an Ai-value a, is paired in
φq,D with all variables of Y associated in S with a Bj value different from a.
This also means that by setting to true at most two variables associated with
different Ai-values, we reduce φq,D to a (possibly partial) sum of y’s. Fig. 7 shows
our OBDD under the assumption that there is one variable in X per distinct
Ai-value. The number of nodes on path 1 is n, on path 2 is n− 1, and on path n
is 1. We thus have n · (n− 1)/2 nodes in the upper part, which can be computed
as shown in the figure. In case there are several variables in X associated with
the same Ai-values, then they behave like one variable. If any one of them is set
to true, then the remaining ones become redundant (x1 + . . . xp = 1 if at least
one variable in the sum is 1); see the case of x2 and x3 in Fig. 3.

(2) Any edge crossing the border from the upper to the lower part points
to a subgraph that represents a (possibly partial) sum of y’s and thus linearly
representable. This is because the expression φq,D is a bipartite monotone 2-
DNF over X and Y, and by crossing the border all variables of X are either set
or irrelevant. The sum of all y’s is reached from all upper part nodes having two
variables of X set to true (depicted in Fig. 7 as the sum with most incoming
edges). Regarding the partial sums, there is one such sum for each of the n
clusters, namely when all or all but one variable in X are set to false (In case
n < m some of these sums are equal).

We create the quadratic-size OBDD as follows. We first choose an arbitrary
order of X-variables followed by an arbitrary order of Y-variables. For the con-
struction of each node, we have a variable v and an expression φ (initially,
φ = φq,D). We compute φ|v and φ|v̄ in two scans over φ. To detect that two ex-
pressions without X-variables are the same, we only need to check in time linear
in |φq,D| that they were created by setting to true two X-variables corresponding
to different Ai-partitions. �

We next sketch the idea behind the proof of the general case of Theorem 2.
We first simplify the input IHQ�= query Qn based on the observation that the
hierarchical subqueries can be materialized to tuple-independent probabilistic
relations. A good variable order π for φQn,D can then be obtained by concate-
nating the variables of the materialized relations, as given by the function vo.

If the tree of the simplified Qn has under three leaves (corresponding to ma-
terialized hierarchical subqueries), then Theorem 1 or Lemma 4 applies. We
otherwise construct the OBDD (φQn,D, π) by incrementally removing from Qn

hierarchical subqueries in the left-to-right order of their leaves in the tree. On
removal, we create an OBDD fragment whose structure follows that of Fig.7.

Let H1 and H2 be the subquery to remove and a subquery that has an in-
equality with H1, respectively. Let {x1, . . . , xk} and {y1, . . . , yl} be the sets of
(independent) expressions that occur in φQn,D and are associated with the tuples
of the materialized H1 and H2, respectively.

Due to the inequality joins between H2 and H1 on one hand, and of H2 and
some of the remaining subqueries on the other hand, the expression φQn,D can
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be factored as y1f(y1)g(y1)+ . . .+ ylf(yl)g(yl), where for any expression yj, the
function g is a sum of xi’s and the function f defines the cofactors of yjg(yj) in
φQn,D. We can now apply the OBDD construction from the proof of Lemma 4,
where we replace yj by yjf(yj). After constructing the OBDD fragment for the
variables {x1, . . . , xk}, we continue with the O(k) expressions representing sums
Sy of some yjf(yj) for 1 ≤ j ≤ l. We consider each such sum in separation and
proceed by removing the next hierarchical subquery H . Each expression Sy can
be factored according to the expressions of the materialized H and of a further
materialized subquery sharing an inequality with H (if any), because their co-
occurrence in the same clauses is not influenced by the fact that some yjf(yj)
are missing - there is no join between H1 and H and hence all their dependencies
are through some other subqueries.

By induction, the upper bound on the OBDD construction time is O(|φQn ,D|·
(k2 + k ∗Rest)), where Rest is an upper bound for the size of sums Sy.

5 Hard Conjunctive Queries

We next discuss the case of general intractable conjunctive queries on restricted
databases. The tractable classes of hierarchical queries and of queries with ex-
pressions φq,D of bounded treewidth are orthogonal, because the expressions
φq,D do not admit in general bounded treewidth for hierarchical queries. Intu-
itively, this is because eq-joins lead in general to expressions φq,D consisting of
clauses that pair an unbounded number of variables. We recall that the approach
based on safe plans [5] cannot accommodate both aforementioned classes [6].

The #P-hard conjunctive queries have subqueries of the form [5]

R(. . . , X, . . .), S(. . . , X, . . . , Y, . . .), T (. . . , Y, . . .).

Such queries are not hierarchical because the query variables X and Y have a
common subgoal S and further distinct subgoals: R for X and T for Y . Intu-
itively, these queries are hard because they allow for arbitrary monotone DNF
expressions (S can be constructed so as to allow arbitrary combinations of tuples
of R and T ), and some of them only admit exponential-size OBDDs [11].

Example 11. The expressionφq,D for the hard query q :-R(X,Z), S(X,Y ), T (Y )
and the database of Figure 1 is x1y1z1 + x1y2z2 + (x2 + x3)y3z1. All clauses are
transitively dependent on each other and do not adhere to the regular factored-
form pattern as in the case of hierarchical queries. �

Bounded Pathwidth. Our approach can benefit from existing significant work
on tractable OBDD construction for Boolean expressions of bounded pathwidth
or treewidth, e.g.,[12,8,9]. We use here the notion of pathwidth of the graph
constructed from DNF formulas, where the nodes are variables and two nodes
are directly connected if their variables occur in the same clause. The pathwidth
of a graph measures how close the graph is to a path.
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Definition 6 ([19]). A path decomposition of a graph G = (V,E) is a pair of
path P with node set I and edge set F , and a family L = {Li | i ∈ I} of subsets
of V such that: (1)

⋃
i∈I Li = V ; (2) ∀(v, w) ∈ E, ∃i ∈ I : {v, w} ⊆ Li; (3)

∀i, j, k ∈ I if j is on the path from i to k in P , then Li ∩ Lk ⊆ Lj. The width
of a path decomposition is maxi∈I |Li| − 1 and the pathwidth of a graph is the
minimum width over all its possible path decompositions.

The connection between pathwidth and treewidth follows by pathwidth(G) =
O(treewidth(G) · logn) for a graph G with n nodes. Using an argument similar
to Theorem 2.1 of [9], we have that

Theorem 3. For any query q and database D with φq,D of n variables and
pathwidth p, φq,D has an OBDD of size O(n2p).

In case p is bounded, φq,D admits a good variable order. The proof of Theorem
2.1 in [9] gives such an order: Let a path decomposition (P,L) for the graph of
φq,D and define First and Last over the variables of φq,D: First(x) = min{n ∈
P | x ∈ L(n)} and Last(x) = max{n ∈ P | x ∈ L(n)}. A good variable order is
the increasing lexicographic order of variables according to (First(·), Last(·)).

FD-induced Hierarchical Queries. We shortly mention a further impor-
tant case of restricted databases that can ensure tractability of non-hierarchical
queries. The idea is that under functional dependencies (FDs), non-hierarchical
queries can sometimes admit equivalent hierarchical queries, and thus PTIME
evaluation. Such equivalent hierarchical queries can be obtained by chasing the
non-hierarchical query using FDs. Follow-up work [17] discusses this case in de-
tail and shows that the conjunctive subqueries of most of the 22 TPC-H queries
admit equivalent hierarchical rewritings under the TPC-H FDs.
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Abstract. Knowledge representation is an important issue in reinforce-
ment learning. Although logic programming with answer set semantics
is a standard in knowledge representation, it has not been exploited in
reinforcement learning to resolve its knowledge representation issues. In
this paper, we present a logic programming framework to reinforcement
learning, by integrating reinforcement learning, in MDP environments,
with normal hybrid probabilistic logic programs with probabilistic an-
swer set semantics [29], that is capable of representing domain-specific
knowledge. We show that any reinforcement learning problem, MT, can
be translated into a normal hybrid probabilistic logic program whose
probabilistic answer sets correspond to trajectories in MT. We formally
prove the correctness of our approach. Moreover, we show that the com-
plexity of finding a policy for a reinforcement learning problem in our
approach is NP-complete. In addition, we show that any reinforcement
learning problem, MT, can be encoded as a classical logic program with
answer set semantics, whose answer sets corresponds to valid trajectories
in MT. We also show that a reinforcement learning problem can be en-
coded as a SAT problem. In addition, we present a new high level action
description language that allows the factored representation of MDP.

1 Introduction

Reinforcement learning is the problem of learning to act by trial and error inter-
action in dynamic environments. Under the assumption that a complete descrip-
tion of the environment is known, a reinforcement learning problem is modeled
as a Markov Decision Process (MDP), in which an optimal policy can be found.
Operation Research (OR) methods— mainly dynamic programming— have been
extensively used to find the optimal policy for a reinforcement learning problem
in MDP environment.

A limitation of OR methods to reinforcement learning is the inability to ex-
ploit domain-specific knowledge of the reinforcement learning problem domains
to improve the efficiency of finding the optimal policy. In addition, these OR
methods use primitive representation of states and actions as this representa-
tion does not capture the relationship between states [20] and makes it difficult
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to represent domain-specific knowledge. In addition, OR methods in general do
not justify how policies are constructed which is vital in reasoning and deci-
sion making to convince the decision maker about the validity of the concluded
policies. Moreover, it has been argued in [20] that using purely OR methods
solve MDP with relatively small domain sizes. However, using richer knowledge
representation frameworks for MDP allow to reason efficiently about policies in
more complex stochastic domains and lead to develop methods to find optimal
policies with larger domains sizes.

Logic programming with answer set semantics is a standard for knowledge
representation and reasoning. In addition, it has been successfully applied to
classical planning. A probabilistic extension to logic programming with answer
set semantics— called normal hybrid probabilistic logic programs with prob-
abilistic answer set semantics (NHPP)— has been introduced in [29] which is
successfully applied to probabilistic planning [26]. It has been shown that NHPP
subsumes logic programming with answer set semantics and inherits its knowl-
edge representation and reasoning capabilities including the ability to represent
and reason about domain-specific knowledge [29]. The probabilistic planning
approach of [26] encodes in NHPP any probabilistic planning problem as an
ordinary factored MDP without reward.

In this paper we integrate reinforcement learning with NHPP, providing a
logical framework to reinforcement learning that overcomes the representational
and reasoning limitations of OR methods to reinforcement learning. The pro-
posed framework is capable of representing any reinforcement learning problem
and its domain-specific knowledge as well as reasoning about policies. This is
achieved by allowing the representation and reasoning about MDP using NHPP.

The choice of NHPP with probabilistic answer set semantics to represent and
solve reinforcement learning problems in MDP environment is interesting for
many reasons. NHPP with probabilistic answer set semantics is nonmonotonic,
and hence, more suitable for knowledge representation and commonsense rea-
soning. It has been shown in [26] that NHPP can be easily and intuitively used
to represent and reason about actions with probabilistic outcomes and change
in stochastic domains. In addition, NHPP with probabilistic answer set seman-
tics is a rich probabilistic logic programming framework that allows representing
and reasoning about variety of fundamental probabilistic reasoning problems in-
cluding probabilistic planning [26], probabilistic contingent planning, the most
probable explanation in belief networks, and the most likely trajectory in prob-
abilistic planning [27].

The contributions of this paper are as follows. We develop a new high level
action language called AMD that allows the factored representation and reason-
ing about MDP. We show that any reinforcement learning problem, MT, in the
action language AMD, can be translated into a program in NHPP whose prob-
abilistic answer sets correspond to trajectories in MT, with associated value
function. We formally prove the correctness of the translation. We show that
the complexity of finding a policy for a reinforcement learning problem in our
approach is NP-complete. In addition, we show that any reinforcement learning
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problem in MDP environment, MT, can be encoded as a classical normal logic
program, Π , with answer set semantics, where the answer sets of Π correspond
to valid trajectories in MT. However, policy evaluation in classical normal logic
programs is not as intuitive as in NHPP. Moreover, we show that any reinforce-
ment learning problem in MDP environment can be encoded as a SAT problem.
The importance of that is reinforcement learning problems can be now solved as
SAT problems.

2 Syntax and Semantics of NHPP

This section describes a subclass of NHPP [29], called atomic NHPP, denoted by
NHPPA, that is expressive enough and sufficient to represent and reason about
MDP.

2.1 The Language of NHPPA

Let L be a first-order language with finitely many predicate symbols, function
symbols, constants, and infinitely many variables. The Herbrand base of L is
denoted by BL. An annotation denotes a probability interval in [0, 1]. Let C[0, 1]
be the set of all closed intervals in [0, 1] and [a1, b1], [a2, b2] ∈ C[0, 1]. Then we
say that [a1, b1] ≤t [a2, b2] iff a1 ≤ a2 and b1 ≤ b2. A probabilistic logic program
(p-program) in NHPPA is a pair P = 〈R, τ〉, where R is a finite set of normal
probabilistic rules (p-rules) and τ is a mapping τ : BL → Sdisj , where Sdisj

is a set of disjunctive probabilistic strategies (p-strategies) whose composition
functions, c, are mappings c : C[0, 1]×C[0, 1]→ C[0, 1]. A composition function
of a disjunctive p-strategy returns the probability interval of a disjunction of two
events given the probability intervals of its components. A p-rule is an expression
of the form

A : μ← A1 : μ1, . . . , An : μn, not (B1 : μn+1), . . . , not (Bm : μn+m)

where A, A1, . . . , An, B1, . . . , Bm are atoms and μ, μi (1 ≤ i ≤ m + n) are
annotations. Intuitively, the meaning of a p-rule is that if for each Ai : μi, the
probability interval of Ai is at least μi (w.r.t. ≤t) and for each not (Bj : μj),
it is not believable that the probability interval of Bj is at least μj , then the
probability interval of A is μ. The mapping τ associates to each atom A a
disjunctive p-strategy that will be employed to combine the probability intervals
obtained from different p-rules having A in their heads. A p-program is ground
if no variables appear in any of its p-rules.

2.2 Probabilistic Answer Set Semantics of NHPPA

A probabilistic interpretation (p-interpretation) is a mapping h : BL → C[0, 1].
Let P = 〈R, τ〉 be a ground p-program, h be a p-interpretation, and r be

A : μ← A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm) ∈ R.

Then, we say
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• h satisfies Ai : μi (denoted by h |= Ai : μi) iff μi ≤t h(Ai).
• h satisfies not (Bj : βj) (denoted by h |= not (Bj : βj)) iff βj 	≤t h(Bj).
• h satisfies Body ≡ A1 : μ1, . . . , An : μn, not (B1 : β1), . . . , not (Bm : βm)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ n), h |= Ai : μi and ∀(1 ≤ j ≤ m), h |=
not (Bj : βj).

• h satisfies A : μ← Body iff h |= A : μ or h does not satisfy Body.
• h satisfies P iff h satisfies every p-rule in R and for every atom A ∈ BL, we

have

cτ(A){{μ|A : μ← Body ∈ R such that h |= Body}} ≤t h(A).

The probabilistic reduct P h of P w.r.t. h is a p-program P h = 〈Rh, τ〉 where:

Rh =

⎧⎨⎩A : μ ← A1 : μ1, . . . , An : μn

A : μ ← A1 : μ1, . . . , An : μn,
not (B1 : β1), . . . , not (Bm : βm) ∈ R and

∀(1 ≤ j ≤ m), βj �t h(Bj)

⎫⎬⎭
Intuitively, for any not (Bj : βj) in the body of r ∈ R with βj �t h(Bj) is simply
satisfied by h, and not (Bj : βj) is removed from the body of r. If βj ≤t h(Bj)
then the body of r is not satisfied and r is trivially ignored. A probabilistic
model (p-model) of a p-program P is a p-interpretation of P that satisfies P . A
p-interpretation h of a p-program P is said to be a probabilistic answer set of P
if h is the minimal p-model of the probabilistic reduct of P w.r.t. h.

3 Markov Decision Processes (MDP)

In this section we review the definition of MDP. For simplicity, we consider
finite-horizon MDP with stationary transition functions, stationary bounded
reward functions, and stationary policies. MDP is a tuple of the form M =
〈S, S0, A, T, λ,R〉 where: S is a finite set of states; S0 is the initial state distri-
bution; A is a finite set of stochastic actions; T is stationary transition function
which is a mapping T : S × A × S → [0, 1], where for any s ∈ S and a ∈ A,
T (s, a, .) is the probability distribution over states resulting from executing a in
s, given that a is executable in s, such that

∑
s′∈S T (s, a, s′) = 1; λ ∈ (0, 1] is

the discount factor; and R : S × A × S → R is a stationary bounded reward
function, where R(s, a, s′) is the reward received in state s′ after executing the
action a in a state s. A stationary policy is a mapping from states to actions of
the form π : S → A. The value of a policy π is determined by a value function
V π. The value function of a policy π with respect to an initial state s0 ∈ So,
with finite horizon of n steps remaining, denoted by V π

n (s0), is given by

V π
n (s0) =

∑
s1∈S

T (s0, π(s0), s1)
[
R(s0, π(s0), s1) + λ V π

n−1(s1)
]

The value function, V π, of a policy, π, determines the expected sum of discounted
rewards resulting from executing the policy π starting from s0. A policy, π∗, is
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optimal for a given MDP, M , if π∗ has the maximum value function, denoted
by V ∗

n , over all policies of M , which is given by

V ∗
n (s0) = max

π
V π

n (s0)

4 Markov Action Language AMD

In this section we develop a novel action language, called Markov action language,
AMD, that allows the factored representation and reasoning about MDP. An
action theory in AMD is capable of representing the initial state distribution,
the executability conditions of actions, the probabilistic transitions of actions,
the discount factor, and the reward received from executing actions in states.
The semantics of AMD is based on a transition function that maps an action
and a set of states to a set of states.

4.1 Language Syntax

A fluent is a predicate, which may contain variables, that describes a property
of the environment. Let F be a set of fluents and A be a set of stochastic actions
that can contain variables. A fluent literal is either a fluent f ∈ F or ¬ f ,
the negation of f . A fluent formula is a formula formed from the set of fluent
literals using the logical connectives ∧, ∨, and ¬. Conjunctive fluent formula
is a conjunction of fluent literals of the form l1 ∧ . . . ∧ ln, where l1, . . . , ln are
fluent literals. Sometimes we abuse the notation and refer to a conjunctive fluent
formula as a set of fluent literals (∅ denotes true). A Markov decision theory,
MT, in AMD is a tuple of the form MT = 〈S0,AD, λ〉, where S0 is a proposition
of the form (1), AD is a set of propositions from (2-3), and λ ∈ (0, 1] is a discount
factor as follows:

initially

⎧⎪⎪⎨⎪⎪⎩
ψ1 : p1

ψ2 : p2

. . .
ψn : pn

(1)

executable a if ψ (2)

a causes

⎧⎪⎪⎨⎪⎪⎩
φ1 : p1 : r1 if ψ1

φ2 : p2 : r2 if ψ2

. . .
φn : pn : rn if ψn

(3)

where ψ, ψ1, . . . , ψn, φ1, . . . , φn are conjunctive fluent formulas, a ∈ A is an ac-
tion, and for all 1 ≤ i ≤ n, we have pi ∈ [0, 1]. The set of all ground ψi

must be exhaustive and mutually exclusive, where ∀ i
∑

s pi Pr(ψi|s) = 1 and
∀ i, j, s, ψi 	= ψj ⇒ Pr(ψi ∧ ψj |s) = 0 (given s is a state defined later).
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Proposition (1) represents the initial-state distribution—a probability distri-
bution over the possible initial states (see next section for the precise meaning
of a state). It states that for all 1 ≤ i ≤ n, the possible initial state ψi holds
with probability pi. Executability condition is represented by proposition (2)—
where each variable that appears in a also appears in ψ— which states that an
action a is executable in any state in which ψ holds. A proposition of the form
(3) represents the probabilistic effects of an action a along with the rewards
received in the states resulting from executing a in the states in which a is ex-
ecutable. For each 1 ≤ i ≤ n, all variables that appear in φi also appear in a
and ψi. Proposition (3) says that for all 1 ≤ i ≤ n, a causes φi to hold with
probability pi and reward ri is received in a successor state to a state in which
a is executed and ψi holds. For each 1 ≤ i ≤ n, ψi is called a precondition of
an action a that corresponds to an effect φi, φi is called an effect of a, pi is the
probability that φi holds given that ψi holds, where 0 ≤ pi ≤ 1, and ri ∈ R
is the reward received in a state in which φi holds. For any proposition of the
form (3), since the set of ground preconditions ψi are mutually exclusive and
exhaustive, it will be more convenient for the subsequent results to represent an
action a as a set of the form a = {a1, . . . , an}, where each ai corresponds to φi,
pi, ri, and ψi. Therefore, alternatively, for each 1 ≤ i ≤ n, proposition (3) can be
represented as

ai causes φi : pi : ri if ψi

A Markov decision theory is ground if it does not contain any variables.

Example 1. Consider the following simple blocks world domain example. Objects
of the world are table and three blocks a, b, and c. Initially, the blocks a and b
are on the table, the block c is on a, and the blocks b and c and the table are
clear. A robot is trying to build a stack of blocks such that the block a is on
table, b is on a, and c is on b. The robot using the action move(X,Y ) to move
a block X on top of another block Y or on the table, given that both X and
Y are clear. However, the moving operation is not always successful. The action
move succeeds to move a block on top of another block or the table with 0.7
probability and r1 reward, and cause no change in the world with 0.3 probability
and r2 reward. This block world domain is represented by the Markov decision
theory MT = 〈S0,AD, λ〉, where λ in any value in (0, 1] and S0 and AD are
represented by (4) and (5)-(6)respectively as follows:

initially
{{

on(a, table), on(b, table), on(c, a),
clear(b), clear(c), clear(table)

}
: 1 (4)

executable move(X,Y ) if ∅ X ∈ {a, b, c}, Y ∈ {a, b, c, table}, X 	= Y (5)

move(X,Y ) causes

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
on(X,Y ),¬ clear(Y ),
¬ on(X,Z), clear(Z)

}
: 0.7 : r1 if

{
clear(X), clear(Y ),

on(X,Z)

}

∅ : 0.3 : r2 if
{

clear(X), clear(Y ),
on(X,Z)

}(6)

where X ∈ {a, b, c} and Y, Z ∈ {a, b, c, table}, X 	= Y 	= Z.
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4.2 Semantics

We say a set of ground literals φ is consistent if it does not contain a pair of
complementary literals, i.e., l and ¬l /∈ φ. If a literal l belongs to a set of ground
literals φ, then we say l is true (holds) in φ (denoted by φ |= l), and l is false
(does not hold) in φ if ¬ l is in φ (denoted by φ |= ¬ l). A set of literals σ is true
(holds) in φ (denoted by φ |= σ) if σ is contained in φ, otherwise, σ is false (does
not hold) in φ (denoted by φ � σ). A state s is a complete and consistent set of
literals that describes the world at a certain time point.

Definition 1. Let MT = 〈S0,AD, λ〉 be a ground Markov decision theory, s be
a state, ai causes φi : pi : ri if ψi (1 ≤ i ≤ n) be a proposition in AD, and
a = {a1, . . . , an} be an action, where each ai corresponds to φi, pi, ri, and ψi for
1 ≤ i ≤ n. Then, Φ(ai, s) is the state resulting from executing a in s, given that
a is executable in s, where:
• l ∈ Φ(ai, s) and ¬ l /∈ Φ(ai, s) if l ∈ φi and the precondition ψi holds in s.
• ¬ l ∈ Φ(ai, s) and l /∈ Φ(ai, s) if ¬ l ∈ φi and the precondition ψi holds
in s.
• Otherwise, l ∈ Φ(ai, s) iff l ∈ s and ¬ l ∈ Φ(ai, s) iff ¬ l ∈ s.

We call Φ a transition function.

Definition 2. Let MT = 〈S0,AD, λ〉 be a ground Markov decision theory, s be
a state, and ai causes φi : pi : ri if ψi (1 ≤ i ≤ n) be a proposition in AD.
Then, the probability distribution resulting from executing a in s is given by

T (s, a, s′) =
{

pi ifs′ = Φ(ai, s)
0 otherwise

In addition, the reward received in a state s′ resulting from executing a in s is
given by

R(s, a, s′) =
{

ri ifs′ = Φ(ai, s)
0 otherwise

Definition 3. Let MT = 〈S0,AD, λ〉 be a ground Markov decision theory, s0

be an initial state, s, s′ be states, and π be a policy for MT. Then, the n-steps
value function, V π

n , of a policy π is given by

V π
n (s0) =

∑
s′∈S

T (s0, π(s0), s′)
[
R(s0, π(s0), s′) + λ V π

n−1(s
′)
]

where after n steps, V π
0 (sn) = R(sn−1, π(sn−1), sn).

Given a policy π, π(s) ∈ A represents the action that is executed in a state s. Due
to the stochastic nature of actions in A, executing π(s) in s causes a transition
to a set of states. Let σ = {s′1, s′2, . . . , s′m} be the set of states resulting from
executing π(s) in s. We abuse the notation and use π(σ) to denote the set of
actions π(s′1), π(s′2), . . . , π(s′m) executed in the states s′1, s

′
2, . . . , s

′
m respectively.

Considering finite horizon policies with n steps and a set of stochastic actions A,
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a policy π : S → A, can be represented as a set of ordered pairs starting from an
initial state σ0 = s0 ∈ S0 as π = {(σ0, π(σ0)), (σ1, π(σ1)), . . . , (σn−1, π(σn−1))},
where σi is the set of states resulting from executing π(σi−1) in σi−1 for 1 ≤
i ≤ n, and σn is the set of states resulting from executing π(σn−1) in σn−1.
This set representation of finite horizon policies leads to view a policy as a set
of trajectories, where each trajectory takes the form

s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn

where σ0 = s0, for all 1 ≤ i ≤ n, si ∈ σi and π(si) ∈ π(σi), such that for any
1 ≤ i ≤ n, si = Φ(si−1, π(si−1)). Let π be a finite horizon policy of n steps and
Tπ be the set of trajectories representation of π.

Having the trajectory view of a policy π, the value function of π can be
described by:

V π
n (s0) =

∑
s0,π(s0),s1,π(s1),...,sn−1,π(sn−1),sn∈Tπ

[
n−1∑
t=0

λt

[
t∏

i=0

T (si, π(si), si+1)

]
R(st, π(st), st+1)

]

Intuitively, the above formula accumulates the expected rewards of all trajecto-
ries of a policy π. Since the optimal policy V ∗

n has the maximum value function
among all policies, therefore, V ∗

n is given by

V ∗
n (s0) = max

π
V π

n (s0)

5 Reinforcement Learning in NHPP

In this section we provide a translation from any Markov decision theory MT =
〈S0,AD, λ〉, the representation of a reinforcement learning problem in MDP envi-
ronment in the action languageAMD, into a p-program, ΠMT, in NHPPA, where
the p-rules in ΠMT encode (1) the initial-state distribution S0, (2) the transition
function Φ, (3) the set of actions propositions AD, (4) and the discount factor λ.
The probabilistic answer sets of ΠMT correspond to valid trajectories in MT, with
associated value function.Thep-programtranslation ofMarkovdecision theories is
mainly adapted from [26,30]. Sincewe consider only finite-horizonMDP,we assume
that the length of the optimal policy that we are looking for is known and finite. We
use the predicates; holds(L, T ) to represent the fact that a literal L holds at time
moment T ; occ(AC, T ) to describe that an action AC executes at time moment T ;
state(T ) to represent a possible state of the world at time moment T ; reward(T, r)
to describe that the reward received at time moment T is r; value(T, V ) to repre-
sent that the value function of a state at time moment T is V ; and factor(T,Λ)
to describe that the reward received at time moment T is discounted by Λ, where
Λ = λT−1. We use lower case letters to represent constants and upper case letters
to represent variables.
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Let ΠMT = 〈R, τ〉 be the p-program translation of a Markov decision the-
ory, MT = 〈S0,AD, λ〉, where τ is any arbitrary assignment of disjunctive p-
strategies and R is the set of p-rules described as follows. To simplify the pre-
sentation, any atom appearing in a p-rule in R with no annotation is assumed
to be associated with the annotation [1, 1]. In addition, given p is a predicate
and ψ = {l1, . . . , ln}, we use p(ψ) to denote p(l1), . . . , p(ln).

– To represent each action a = {a1, . . . , an} ∈ A, we add to R the set of facts

action(ai) ← (7)

for each 1 ≤ i ≤ n. States of the world are described by literals that are
encoded in R by the p-rules

literal(A)← atom(A) (8)
literal(¬A)← atom(A) (9)

where atom(A) is a set of facts that describe the properties of the world. To
specify that A and ¬A are contrary literals the following p-rules are added
to R.

contrary(A,¬A) ← atom(A) (10)
contrary(¬A,A) ← atom(A) (11)

– The initial-state distribution initially ψi : pi for 1 ≤ i ≤ n is represented
in R as follows. Let s1, s2, . . . , sn be the set of possible initial states, where
for each 1 ≤ i ≤ n, si = {li1, . . . , lim}, and the initial probability distribution
be Pr(si) = pi. Moreover, let s = s1 ∪ s2 ∪ . . . ∪ sn, s′ = s1 ∩ s2 ∩ . . . ∩ sn,
ŝ = s − s′, and s′′ = { l | l ∈ ŝ ∨ ¬l ∈ ŝ}. Intuitively, for any literal l in ŝ,
if l or ¬l belongs to ŝ, then s′′ contains only l. The set of all possible initial
states are generated by the following set of p-rules. For each literal l ∈ s′,
the fact

holds(l, 0)← (12)

is in R. This fact specifies that the literal l holds at time moment 0. This set
of facts represents the set of literals that hold in every possible initial state.
Moreover, for each literal l ∈ s′′, we add to R the p-rules

holds(l, 0)← not holds(¬l, 0) (13)
holds(¬l, 0)← not holds(l, 0) (14)

The above p-rules say that the literal l (similarly ¬l) holds at time moment 0,
if ¬l (similarly l) does not hold at the time moment 0. The initial probability
distribution over the initial states is represented in R by the following set of
p-rules. For each possible initial state si = {li1, . . . , lim}, the p-rule

state(0) : [pi, pi]← holds(li1, 0), . . . , holds(lim, 0) (15)

is in R. The above p-rule says that the probability of a state at time moment
0, si, is [pi, pi] if the literals li1, . . . , l

i
m hold at the time moment 0.
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– Each executability condition proposition of an action a = {a1, . . . , an} of the
form (2) is encoded in R for each 1 ≤ i ≤ n as

exec(ai, T )← holds(ψ, T ) (16)

– For each proposition of the form ai causes φi : pi : ri if ψi ( 1 ≤ i ≤ n),
in AD, we proceed as follows. Let φi = {l1i , . . . , lmi }. Then, ∀ (1 ≤ i ≤ n),
we have for each 1 ≤ j ≤ m,

holds(lji , T + 1)← occ(ai, T ), exec(ai, T ), holds(ψi, T ) (17)

belongs to R. This p-rule states that if the action a occurs at time moment
T and the precondition ψi holds at the same time moment, then the literal
lji holds at the time moment T + 1. The probability distribution over states
resulting from executing the action a is represented in R using the p-rules:

state(T + 1): [pi × U, pi × U ]←state(T ):[U,U ], occ(ai, T ), exec(ai, T ),
holds(ψi, T ),

holds(φi, T + 1) (18)

where U is an annotation variable ranging over [0, 1] acts as a place holder.
This p-rule asserts that if the precondition ψi holds in a state of the world
at time moment T , whose probability is [U,U ], and in which the action a is
executable, then the probability of a successor state at time moment T + 1,
after executing an action a in the state at time T , is [pi×U, pi×U ], in which
the effect φi holds. The reward ri received at time moment T + 1 resulting
from executing the action a in a state at time moment T given that a is
executable in the state at same time moment T is encoded in R by

reward(T + 1, ri)← occ(ai, T ), exec(ai, T ) (19)

The following p-rule calculates the value of a state at time moment T+1 given
the value of a state at time moment T in which an action a is executable.

value(T + 1, V + F ∗ U ∗ ri) ← value(T, V ), factor(T, F ), state(T + 1) : [U,U ],
reward(T + 1, ri), occ(ai, T ), exec(ai, T ),

holds(ψi, T ), holds(φi, T+1)(20)

where the variables V ∈ R, F ∈ (0, 1], and U ∈ [0, 1]. The above p-rule says
that the value of a state at time moment T + 1 is equal to the value of a
state at time moment T added to the product of the reward ri received at
time moment T + 1 and the probability of a state at time moment T + 1
discounted by F = λT+1, where the discount, F = λT+1, at time moment
T + 1 is calculated by the p-rules:

factor(0, 1)← (21)
factor(T + 1, U ∗ λ) ← factor(T, U) (22)
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– The frame axioms are encoded in R as follows. For any literal L we have the
p-rule

holds(L, T + 1)← holds(L, T ), not holds(L′, T + 1), contrary(L,L′) (23)

in R. The above p-rule says that L holds at the time moment T +1 if it holds
at the time moment T and its contrary does not hold at the time moment
T + 1.

– To describe the fact that a literal A and its negation ¬A cannot hold at the
same time, we add the following p-rule to R

inconsistent← not inconsistent, holds(A, T ), holds(¬A, T ) (24)

where inconsistent is a special literal that does not appear in MT.
– P-rules that generates actions are described by

occ(ACi, T )← action(ACi), not abocc(ACi, T ) (25)
abocc(ACi, T )← action(ACi), action(ACj), occ(ACj , T ), ACi 	= ACj (26)

The above p-rules generate action occurrences once at a time, where ACi

and ACj are variables representing actions.
– Let G = g1 ∧ . . . ∧ gm be a goal expression, then G is encoded in R as

goal← holds(g1, T ), . . . , holds(gm, T ) (27)

6 Correctness

In this section we show the correctness of our translation. We prove that the prob-
abilistic answer sets of the p-program translation of a Markov decision theory,
MT, correspond to trajectories in MT = 〈S0,AD, λ〉, with associated values. In
addition, we show that the complexity of finding a policy for MT in our approach
is NP-complete. Let the domain of T be {0, . . . , n}. Let Φ be a transition function
associated with MT, s0 is a possible initial state, and a0, . . . , an−1 be a set of ac-
tions in A. Any action ai can be represented as a set where ai = {a1i, . . . , ami}.
Therefore, a trajectory s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn in MT can be
also represented as s0 aj0 s1 . . . ajn−1 sn for (1 ≤ j ≤ m) and (0 ≤ i ≤ n),
such that ∀(0 ≤ i ≤ n), si is a state, ai is an action, aji ∈ ai = {a1i , . . . , ami},
aji = π(si), and si = Φ(aji−1 , si−1).

Theorem 1. Let MT be a Markov decision theory, π be a policy in MT, and Tπ

be the set of trajectories in π. Then, s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn is a
trajectory in Tπ iff occ(π(s0), 0), . . . , occ(π(sn−1), n−1) is true in a probabilistic
answer set of ΠMT.

Theorem 1 states that any Markov decision theory, MT, can be translated into
a p-program, ΠMT, such that a trajectory in MT is equivalent to a probabilistic
answer set of ΠMT.
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Theorem 2. Let MT be a Markov decision theory, h be a probabilistic an-
swer set of ΠMT, π be a policy in MT, and Tπ be the set of trajectories
in π. Let OCC be a set that contains occ(π(s0), 0), . . . , occ(π(sn−1), n − 1) iff
s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn ∈ Tπ. Then,∑

h|=value(n,v) and h|=occ(π(s0),0),...,occ(π(sn−1),n−1)∈OCC
v = V π

n (s0)

Theorem 2 asserts that the expected sum of discounted rewards after executing
a policy π starting from a state s0 is equivalent to the summation of the values
v, appearing in value(n, v) that is satisfied by a probabilistic answer set h in
which occ(π(s0), 0), . . . , occ(π(sn−1), n− 1) is satisfied.

NHPPA with probabilistic answer set semantics finds policies for reinforce-
ment learning problems in finite horizon MDP environments using the flat repre-
sentation of the problem domains. Flat representation of a reinforcement learning
problem domain is the explicit enumeration of world states [21]. Hence, Theo-
rem 4 follows directly from Theorem 3.

Theorem 3 ([21]). The stationary policy existence problem for finite-horizon
MDP in the flat representation is NP-complete.

Theorem 4. The policy existence problem for a reinforcement learning problem
in MDP environment using NHPPA with probabilistic answer set semantics is
NP-complete.

7 Reinforcement Learning Using Answer Set
Programming

In this section we show that any reinforcement learning problem in MDP environ-
ment can be encoded as a classical normal logic programs with classical answer
set semantics. Excluding the p-rules (15), (18), (19), (20), (21), (22) from the
p-program translation, ΠMT, of a reinforcement learning problem, MT, results
a p-program, denoted by Πnormal

MT , with only annotations of the form [1, 1]. As
shown in [29], the syntax and semantics of this class of p-programs is equivalent
to classical normal logic programs with answer set semantics.

Theorem 5. Let MT be a Markov decision theory, π be a policy in MT, and Tπ

be the set of trajectories in π. Let Πnormal
MT be the normal logic program result-

ing after deleting the p-rules (15),(18), (19), (20), (21), (22) from ΠMT. Then,
s0, π(s0), s1, π(s1), . . . , sn−1, π(sn−1), sn is a trajectory in Tπ iff occ(π(s0), 0), . . . ,
occ(π(sn−1), n− 1) is true in an answer set of Πnormal

MT .

Theorem 5 shows that classical normal logic programs with answer set semantics
can be used to solve reinforcement learning problems in MDP environments in
two steps. The first step is to translate a reinforcement learning problem, MT,
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into a classical normal logic program whose answer sets correspond to valid
trajectories in MT. From the answer sets of the normal logic program translation
of MT, we can determine the set of trajectories Tπ for a policy π in MT. Then,
as a second step, we calculate the value of the policy π using

∑
s0,π(s0),s1,π(s1),...,sn−1,π(sn−1),sn∈Tπ

[
n−1∑
t=0

λt

[
t∏

i=0

T (si, π(si), si+1)

]
R(st, π(st), st+1)

]

In addition, we show that any reinforcement learning problem in MDP envi-
ronment can be encoded as a SAT problem. Hence, state-of-the-art SAT solvers
can be used to solve reinforcement learning problems. Any normal logic program,
Π , can be translated into a SAT problem, S, where the models of S are equiva-
lent to the answer sets of Π [18]. Hence, the normal logic program encoding of
a reinforcement learning problem MT can be translated into an equivalent SAT
problem, where the models of S correspond to valid trajectories in MT.

Theorem 6. Let MT be a Markov decision theory and Πnormal
MT be the normal

logic program encoding of MT. Then, the models of the SAT encoding of Πnormal
MT

are equivalent to valid trajectories in MT.

The transformation step from normal logic program encoding of a reinforcement
learning problem to SAT can be avoided, by encoding a reinforcement learn-
ing problem directly to SAT. The following corollary shows any reinforcement
learning problem can be encoded directly as SAT problem.

Corollary 1. Let MT be a Markov decision theory. Then, MT can be directly
encoded as a SAT formula S where the models of S are equivalent to valid tra-
jectories in MT.

However, encoding reinforcement learning problems in NHPPA has advantages
over normal logic program and SAT encoding. These include, the explicit rep-
resentation of probabilities, the explicit assignment of probabilities to states,
and the direct propagation of probabilities through states, which are naturally
present in NHPPA with probabilistic answer set semantics.

8 Conclusions and Related Work

We presented a new high level action language, AMD, that allows the specifica-
tion of MDP, in addition, we introduced a new reinforcement learning framework
by relating reinforcement learning, in MDP environment, to NHPP. The transla-
tion from a Markov decision theory, MT, into an NHPP program mainly relies
on a similar translation from probabilistic planning into NHPP program [26].
The literature is rich with action languages that are capable of representing and
reasoning about actions with probabilistic effects, which include [1,3,6,11,16]. In
addition toAMD is a high level language, the major difference between AMD and
these languages is that AMD allows the factored specification of MDP through
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the representation of the initial state distribution, the executability conditions of
actions, the probabilistic transitions of actions, discount factor, and the reward
received from executing actions in states.

Moreover, many approaches for solving MDP to find the optimal policy have
been presented. These approaches can be classified into two main categories of
approaches; dynamic programming approaches and the search-based approaches
(a detailed survey on these approaches can be found in [3]). However, dynamic
programming approaches use primitive domain knowledge representation. On
the other hand, the search-based approaches mainly rely on search heuristics
which have limited knowledge representation capabilities to represent and use
domain-specific knowledge.

A logic based approach for solving MDP, for probabilistic planning, has been
presented in [19]. The approach of [19] converts a MDP specification of a prob-
abilistic planing problem into a stochastic satisfiability problem and solving the
stochastic satisfiability problem instead. Our approach is similar in spirit to [19]
in the sense that both approaches are logic based approaches. However, it has
been shown in [27] that NHPP is more expressive than stochastic satisfiability
from the knowledge representation point of view. First-order logic representation
of MDP has been described in [15] based on first-order logic programs without
nonmonotonic negations. Similar to the first-order representation of MDP in
[15], AMD allows objects and relations. However, unlike AMD, [15] finds policies
in the abstract level. In addition, NHPP allows objects and relations. A more
expressive first-order representation of MDP than [15] has been presented in [4]
that is a probabilistic extension to Reiter’s situation calculus. Although more
expressive, it is more complex than [15].
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Abstract. In this paper we study the relationship between Stochastic
Satisfiability (SSAT) [20,12] and Extended Hybrid Probabilistic Logic
Programs (EHPP) with probabilistic answer set semantics [22]. We show
that any instance of SSAT can be modularly translated into an EHPP
program with probabilistic answer set semantics. In addition, we prove
that there is no modular mapping from EHPP to SSAT. This shows that
EHPP is more expressive than SSAT from the knowledge representation
point of view. Moreover, we present that the translation in the other
way around from a program in EHPP to SSAT is more involved. We
show that not every program in EHPP can be translated into an SSAT
instance, rather a restricted class of EHPP can be translated into SSAT.

1 Introduction

Hybrid Probabilistic Logic Programs (HPP) [25] modifies the original Hybrid
Probabilistic Logic Programming framework of [5] and generalizes and modifies
the probabilistic annotated logic programming framework, originally proposed in
[16] and further extended in [17,18]. It was shown that the HPP [25] framework
is more suitable for reasoning and decision making tasks, including those arising
from probabilistic planning [24]. Furthermore, NHPP was extended to Extended
Hybrid Probabilistic Logic Programs (EHPP) [22] to deal directly with classical
negation as well as non-monotonic negation to allow reasoning in the presence
of incomplete knowledge. It was shown that Baral et al’s probabilistic logic
programming approach for reasoning with causal Bayes networks (P-log) [1] is
naturally subsumed by EHPP [22]. In addition, the semantics of EHPP is a
natural extension to the answer set semantics of extended logic programs [7].

Stochastic Satisfiability (SSAT) was first introduced in [20] as an extension
to SAT with random quantifiers, in addition to the existential quantifiers. The
introduction of randomized quantifiers in SSAT brings uncertainty into the ques-
tion of whether there is a satisfying assignment to a propositional formula. In
[12], SSAT has been extended to allow existential, randomized, and universal
quantifiers. Moreover, SSAT solver has been presented [12] that extends Davis-
Putnam-Lognmann-Loveland (DPLL) algorithm [4] to solve SSAT instances.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 356–371, 2008.
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The extended DPLL algorithm [12] has been built by exploiting the existing
work to solve SAT as efficiently as possible.

In this paper we study the relationship between Extended Hybrid Probabilis-
tic Logic Programs (EHHP) and Stochastic Satisfiability (SSAT). We show that
any SSAT formula can be easily reduced to an EHPP program, with probabilis-
tic answer set semantics, using a local modular mapping. The importance of
that is the application of SSAT to probabilistic planning, contingent probabilis-
tic planning, the most probable explanation in belief networks, the most likely
trajectory in probabilistic planning, and belief inference [14,15,12] carry over to
EHPP. This shows that EHPP is applicable to a variety of fundamental proba-
bilistic reasoning tasks including those solved by SSAT. Moreover, we show that
there is no similar local and modular mapping from EHPP to SSAT implying
that EHPP is more expressive than SSAT from the knowledge representation
point of view.

Moreover, we show that, in general, any EHPP program cannot be translated
into SSAT. However, there is a class of EHPP that can be translated into SSAT,
called EHPPSSAT . This class of EHPP is expressive enough to represent and
reason with a variety of probabilistic reasoning tasks such as probabilistic plan-
ning and Bayes networks. The importance of this translation from EHPPSSAT

to SSAT is that it provides a foundation for an implementation for computing
probabilistic answer sets of EHPP by exploiting the existing work on SSAT with
a selection from a variety of SSAT solvers.

This paper is organized as follows. Section 2 describes the syntax and the prob-
abilistic answer set semantics of EHPPSSAT . Section 3 reviews SSAT. Section
4 provides the translation from SSAT to EHPPSSAT . In section 5, we introduce
the translation from a restricted class of EHPPSSAT to SSAT. Conclusions and
related work are presented in section 6.

2 Extended Hybrid Probabilistic Logic Programs
(EHPPSSAT)

In this section we quote the syntax and the probabilistic answer sets semantics of
EHPPSSAT . The syntax and semantics of the full version of EHPP is described
in [22].

2.1 Language Syntax

Let C[0, 1] denotes the set of all closed intervals in [0, 1]. In the context of
EHPPSSAT , probabilities are assigned to events (literals) as intervals in C[0, 1].
Let [α1, β1], [α2, β2] ∈ C[0, 1]. Then the truth order asserts that [α1, β1] ≤t

[α2, β2] iff α1 ≤ α2 and β1 ≤ β2. Let L be an arbitrary first-order language
with finitely many predicate symbols, constants, and infinitely many variables.
The Herbrand base of L is denoted by BL. A literal is either an atom a or the
negation of an atom ¬a, where ¬ is the classical negation. We denote the set of
all literals in L by Lit. An annotation denotes a probability interval in C[0, 1].
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An annotated literal is an expression of the form l : μ, where l is a literal and μ
is an annotation. An extended probabilistic rule (E-rule) is an expression of the
form

l : μ← l1 : μ1, . . . , lm : μm, not (lm+1 : μm+1), . . . , not (ln : μn)

where l, li (1 ≤ i ≤ n) are literals, and μ, μi (1 ≤ i ≤ n) are annotations. The in-
tuitive meaning of an E-rule is that, if for each li : μi (1 ≤ i ≤ m), li is true with
probability interval at least μi and for each not (lj : μj) (m+1 ≤ j ≤ n), it is not
known that lj is true with probability interval at least μj , then l is true with prob-
ability interval μ. An extended probabilistic logic program (E-program) is a pair
P = 〈R, τ〉, where R is a finite set of E-rules and τ is a mapping τ : Lit→ cpcd.
cpcd is the disjunctive positive correlation probabilistic composition function de-
fined as cpcd([α1, β1], [α2, β2]) = [max(α1, α2),max(β1, β2)]. The mapping τ in
the above definition associates to each literal l the disjunctive positive correla-
tion probabilistic composition function, cpcd, that will be used to combine the
probability intervals obtained from different E-rules having l in their heads. An
E-program is ground if no variables appear in any of its rules.

2.2 The Probabilistic Answer Set Semantics of E-Programs

A probabilistic interpretation (p-interpretation) is a mapping h : Lit→ C[0, 1].
We say a set C, a subset of Lit, is a consistent set of literals if there is no
pair of complementary literals a and ¬a belonging to C. A partial or total p-
interpretation h is a mapping from a consistent set of literals C to C[0, 1]. Let
P = 〈R, τ〉 be a ground E-program, h be a p-interpretation, and r ≡ l : μ← l1 :
μ1, . . . , lm : μm, not (lm+1 : μm+1), . . . , not (ln : μn). We say

– h satisfies li : μi (denoted by h |= li : μi) iff li ∈ dom(h) and μi ≤t h(li).
– h satisfies not (lj : μj) (denoted by h |= not (lj : μj)) iff lj ∈ dom(h) and

μj �t h(lj) or lj /∈ dom(h).
– h satisfies Body ≡ l1 : μ1, . . . , lm : μm, not (lm+1 : μm+1), . . . , not (ln : μn)

(denoted by h |= Body) iff ∀(1 ≤ i ≤ m), h |= li : μi and ∀(m + 1 ≤ j ≤
n), h |= not (lj : μj).

– h satisfies l : μ← Body iff h |= l : μ or h does not satisfy Body.
– h satisfies P iff h satisfies every E-rule in R and for every literal l ∈ dom(h),

cpcd{{μ|l : μ← Body ∈ R and h |= Body}} ≤t h(l).

A probabilistic model (p-model) of an E-program P is a p-interpretation h of P
that satisfies P . Given the p-models h1 and h2, we say h1 ≤o h2 if dom(h1) ⊆
dom(h2) and ∀l ∈ dom(h1), h1(l) ≤t h2(l). We say that h is a minimal p-model
of P (a probabilistic answer set of P ) if there is no p-model h′ of P such that
h′ <o h. Let P = 〈R, τ〉 be a ground E-program and h be a p-interpretation.
The probabilistic reduct P h of P w.r.t. h is P h = 〈Rh, τ〉 where:

Rh =

⎧⎨⎩ l : μ ← l1 : μ1, . . . , lm : μm

l : μ ← l1 : μ1, . . . , lm : μm,
not (lm+1 : μm+1), . . . , not (ln : μn) ∈ R and

∀(m + 1 ≤ j ≤ n), μj �t h(lj) or lj /∈ dom(h)

⎫⎬⎭
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The probabilistic reduct P h is an E-program without non-monotonic negation.
Therefore, its probabilistic answer set is well-defined. For any not (lj : μj) in the
body of r ∈ R with μj �t h(lj) means that it is not known that the probability
interval of lj is at least μj given the available knowledge, and not (lj : μj) is
removed from the body of r. In addition, if lj /∈ dom(h), i.e., lj is undefined in
h, then it is completely not known (undecidable) that the probability interval of
lj is at least μj . In this case, not (lj : μj) is also removed from the body of r.
A p-interpretation h is a probabilistic answer set of an E-program P if h is the
probabilistic answer set of P h.

3 Stochastic Satisfiability

In this section we review the definition of stochastic satisfiability presented in
[20,12]. Stochastic satisfiability (SSAT) [20] extends deterministic satisfiability
with random quantifiers. Let x = {x1, . . . , xn} be a set of n propositional vari-
ables (1 for true and 0 for false) and φ(x) be a k-CNF propositional formula on
the variables in x, with the underlying ordering x1, . . . , xn. An assignment A
of propositional variables to values from {true, false} is said to be a satisfying
assignment (model) to a formula φ(x) if φ(A) evaluates to true, otherwise, A
is said to be unsatisfying. Formally, an SSAT formula contains both existential
and randomized quantifiers and takes the form

∃x1,
R

y1, . . . ,∃xn,
R

yn (E[φ(x)] ≥ θ).

The SSAT decision problem determines that, given a formula φ(x), if there exists
a value for x1 such that for random values (true or false with equal probability)
of y1, . . . , there exists a value for xn such that for random values of yn, such that
the expected probability of satisfying the formula φ(x) is at least a probability
threshold θ, where 0 ≤ θ ≤ 1. An SSAT formula [12] can be represented as a triple
〈φ, θ,Q〉, where φ is a CNF formula over the variables x1, . . . , xn, 0 ≤ θ ≤ 1, and
Q is the mapping Q : x→ {∃, R}. The evaluation of an SSAT formula, 〈φ, θ,Q〉,
is inductively defined on the number of quantifiers to determine the expected
probability of satisfying the formula φ. Assume x1 is the variable associated
with the leftmost quantifier. The expected probability of satisfying φ, under Q,
denoted by val(φ,Q), is inductively defined as:

– val(φ,Q) = 0.0 if φ contains an empty clause.
– val(φ,Q) = 1.0 if φ does not contain clauses.
– val(φ,Q) = max(val(φ1x1=0, Q), val(φ1x1=1, Q)) if Q(x1) = ∃.
– val(φ,Q) = (val(φ1x1=0, Q) + val(φ1x1=1, Q))/2 if Q(x1) =

R

.

where φ1xi=b is the (n-1)-variable CNF formula produced from the n-variable
formula φ after assigning the variable xi the value b ∈ {true, false} and sim-
plifying the outcome, in addition to, making any required variable renumbering.
Given, an SSAT formula, 〈φ, θ,Q〉, we say ∃x1,

R

y1, . . . ,∃xn,

R

yn (E[φ(x)] ≥ θ)
is true (satisfied) if and only if val(φ,Q) ≥ θ.
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If Q(x1) =

R

, then the probability that x1 evaluates to true leads to a
satisfying formula φ is equally likely to the probability that x1 evaluates to
false leads to a satisfying φ, i.e., both have probability equal to 0.5. However,
this is not necessary. A randomly quantified variable can take the value true
or false with different probabilities.

Rpx1 is used to represent that the ran-
dom variable x1 is true with probability p, which implies that the probabil-
ity that x1 is false is 1 − p. Consequently, if Q(x1) =

Rp, val(φ,Q) becomes
val(φ,Q) = val(φ1x1=0, Q)× (1 − p) + val(φ1x1=1, Q))× p.

As pointed in [12], many decision problems can be reduced to special cases of
SSAT.The satisfiabilityproblem(SAT), canbe expressedas an instance ofSSATby
allowing only existential quantifiers and setting θ = 1 as: ∃x1, . . . ,∃xn (E[φ(x)] =
1). Another problem, MAJSAT, asks if the satisfying assignments of a CNF for-
mula φ(x) is at least half of the possible assignments to φ(x). MAJSAT can be rep-
resented as an instance of SSAT of the form

R

x1, . . . ,

R

xn (E[φ(x)] ≥ 1
2). SAT and

MAJSAT can be combined together to form E-MAJSAT [12] which takes the form
∃x1, . . . , ∃xm,

R

xm+1, . . . ,

R

xn (E[φ(x)] ≥ θ). E-MAJSAT asks wether there is an
assignment to x1, . . . , xm so that the combined probability of a satisfying assign-
ment of φ(x) with random variables xm+1, . . . , xn is at least θ.

4 Stochastic Satisfiability as EHPPSSAT

In this section we show that any SSAT formula, 〈φ(x), θ,Q〉, can be modularly
translated into an E-program in EHPPSSAT whose probabilistic answer sets
correspond to the models of φ(x). Moreover, we show that SAT, MAJSAT,
and E-MAJSAT can be mapped to EHPPSSAT . These translations are mainly
adapted from [19]. All probabilities used throughout the rest of the paper are
point probabilities. Although probability intervals with the same bounds are
used to represent point probabilities they are considered point probabilities.
Therefore, all arithmetic operators used over probability intervals with the same
bounds are also arithmetic operators over point probabilities.

4.1 SAT as EHPPSSAT

Any SAT formula, ∃x1, . . . ,∃xn (E[φ(x)] = 1), can be translated into an E-
program, P = 〈R, τ〉, where R is a set of E-rules consist of only atoms of the
form

A : [1, 1]← A1 : [1, 1], . . . , Am : [1, 1], not (Am+1 : [1, 1]), . . . , not (An : [1, 1])

where A,A1, . . . , An are atoms and [1, 1] represents the truth value true. The
translation proceeds as follows:

1. For each existentially quantified variable x that appears in φ(x), we provide
two atoms x and x and include in R the E-rules

x : [1, 1]← not(x : [1, 1]) x : [1, 1]← not(x : [1, 1])
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where x : [1, 1] corresponds to the fact that x is true, however, x : [1, 1]
means that the negation of x (¬x) is true or x is false.

2. For each clause c in φ(x) and for each variable l in c, if l = x, then c :
[1, 1] ← x : [1, 1] is included in R. Otherwise, if l = ¬x, then R includes
c : [1, 1]← x : [1, 1].

3. For each clause c in φ(x), we include in R
inconsistent : [1, 1]← not(inconsistent : [1, 1]), not(c : [1, 1])

where inconsistent is a special atom that does not appear in φ(x).

Proposition 1. Let S be a SAT formula and P = 〈R, τ〉 be the E-program
translation of S. Then, S has a model iff P has a probabilistic answer set.

Example 1. Let S be a SAT formula of the form ∃x, ∃y(E[(x∨¬y)∧(¬x∨y)] = 1).
The E-program translation, P = 〈R, τ〉, of S consists of the following E-rules, R,

x : [1, 1]← not (x : [1, 1]) x : [1, 1]← not (x : [1, 1])
y : [1, 1]← not (y : [1, 1]) y : [1, 1]← not (y : [1, 1])
c1 : [1, 1]← x : [1, 1] c1 : [1, 1]← y : [1, 1]
c2 : [1, 1]← x : [1, 1] c2 : [1, 1]← y : [1, 1]
inconsistent : [1, 1] ← not(inconsistent : [1, 1]), not(ci : [1, 1])

where 1 ≤ i ≤ 2. P has two probabilistic answer sets h1 and h2, where h1(x) =
[1, 1], h1(y) = [1, 1], h1(c1) = [1, 1], h1(c2) = [1, 1], and h2(x) = [1, 1], h2(y) =
[1, 1], h2(c1) = [1, 1], h2(c2) = [1, 1]. h1 implies that ¬x and ¬y, as well as, the
clauses c1 and c2 are true in h1. Furthermore, h2 means that x, y, c1, c2 are true in
h2. Notice that S has two models s1 = {¬x,¬y}, which implies that x and y are
false in s1, and s2 = {x, y}, which means that x and y are true in s2. This implies
that there is a one-to-one correspondence between the probabilistic answer sets
of P and the models of S, since, s1 corresponds to h1 and s2 corresponds to h2.

4.2 MAJSAT as EHPPSSAT

Let S be a MAJSAT formula of the form

Rp1x1, . . . ,

Rpnxn (E[φ(x)] ≥ 1
2),

where all variables appear in φ(x) are randomly quantified. We say S is satisfied
iff val(φ,Q) ≥ 1

2 . S can be translated into an E-program, P = 〈R, τ〉, where R
is a set of E-rules consist of only atoms. The translation proceeds as follows:

1. For each randomly quantified variable x that appears in φ(x), with Q(x) =

Rp, we provide two atoms x and x and include in R the E-rules

x : [p, p]← not(x : [1− p, 1− p]) x : [1− p, 1− p]← not(x : [p, p])

where x : [p, p] encodes the probability of x being true is p and x : [1−p, 1−p]
represents the probability of x being false is 1 − p. Obviously, if events are
equally likely, then p = 0.5.

2. For each clause c in φ(x) and for each variable l in c, if l = x, then c :
[1, 1] ← x : [p, p] is included in R. Otherwise, if l = ¬x, then R includes
c : [1, 1]← x : [1− p, 1− p].
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3. For each clause c in φ(x), we include in R
inconsistent : [1, 1]← not(inconsistent : [1, 1]), not(c : [1, 1])

where inconsistent is a special atom that does not appear in φ(x).

Theorem 1. Let S = 〈φ(x), 1
2 ,Q〉 be a MAJSAT formula, P = 〈R, τ〉 be the

E-program translation of S, and Ans be the set of all probabilistic answer sets of
P . Then, φ(x) has a model iff P has a probabilistic answer set, and S is satisfied
iff
∑

h∈Ans

∏
xi∈dom(h) h(xi) = val(φ(x),Q) ≥ 1

2 .

Example 2. Let S be a MAJSAT formula of the form

R

x,

R

y(E[(x∨¬y)∧ (¬x∨
y)] ≥ 1

2 ). The E-program translation, P = 〈R, τ〉, of S consists of the following
E-rules, R,

x : ν ← not (x : ν) x : ν ← not (x : ν)
y : ν ← not (y : ν) y : ν ← not (y : ν)
c1 : [1, 1]← x : ν c1 : [1, 1]← y : ν
c2 : [1, 1]← x : ν c2 : [1, 1]← y : ν
inconsistent : [1, 1] ← not(inconsistent : [1, 1]), not(ci : [1, 1])

where 1 ≤ i ≤ 2 and ν ≡ [0.5, 0.5]. Clearly, S is satisfied, since val(((x ∨ ¬y) ∧
(¬x∨y)), Q) = 1

2 ≥
1
2 . On the other hand, P has two probabilistic answer sets h1

and h2, where h1(x) = [0.5, 0.5], h1(y) = [0.5, 0.5], h1(c1) = [1, 1], h1(c2) = [1, 1],
and h2(x) = [0.5, 0.5], h2(y) = [0.5, 0.5], h2(c1) = [1, 1], h2(c2) = [1, 1], and
hence,

∑
h∈Ans

∏
xi∈dom(h) h(xi) = h1(x) × h1(y) + h2(x) × h2(y) = 0.5 =

val(φ(x),Q) ≥ 1
2 . Moreover, ((x∨¬y)∧ (¬x∨y)) has two models s1 = {¬x,¬y}

and s2 = {x, y}. This implies that there is a one-to-one correspondence between
the probabilistic answer sets of P and the models of ((x∨¬y)∧ (¬x∨ y)), since
s1 corresponds to h1 and s2 corresponds to h2.

4.3 E-MAJSAT as EHPPSSAT

Let S be an E-MAJSAT formula of the form ∃x1, . . . ,∃xn,

Rp1y1, . . . ,

Rpnyn

(E[φ(x)] ≥ θ), where a sequence of existentially quantified variables, xi (1 ≤ i ≤
n), are followed by a sequence of randomly quantified variables, yi (1 ≤ i ≤ n).
Similarly, we say that an E-MAJSAT formula S is satisfied iff val(φ,Q) ≥ θ.
Since E-MAJSAT combines both SAT and MAJSAT together, a translation form
E-MAJSAT to an E-program combines the SAT and MAJSAT translations to
E-programs together. S can be translated into an E-program, P = 〈R, τ〉, where
R is a set of E-rules consist of only atoms. The translation proceeds as follows:

1. For each existentially quantified variable x that appears in φ(x), we provide
two atoms x and x and include in R the E-rules

x : [1, 1]← not(x : [1, 1]) x : [1, 1]← not(x : [1, 1])

2. For each randomly quantified variable y that appears in φ(x), with Q(y) =

Rp, we provide two atoms y and y and include in R the E-rules

y : [p, p]← not(y : [1− p, 1− p]) y : [1− p, 1− p]← not(y : [p, p])
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3. For each clause c in φ(x) and for each variable l in c, if l = x, with Q(x) = ∃,
then c : [1, 1] ← x : [1, 1] is included in R. Otherwise, if l = ¬x, then R
includes

c : [1, 1]← x : [1, 1].

4. For each clause c in φ(x) and for each variable l in c, if l = y, with Q(y) =

Rp,
then c : [1, 1] ← y : [p, p] is included in R. Otherwise, if l = ¬y, then R
includes

c : [1, 1]← y : [1− p, 1− p].

5. For each clause c in φ(x), we include in R
inconsistent : [1, 1]← not(inconsistent : [1, 1]), not(c : [1, 1])

where inconsistent is a special atom that does not appear in φ(x).

Theorem 2. Let S = 〈φ(x), θ,Q〉 be an E-MAJSAT formula, P = 〈R, τ〉 be the
E-program translation of S, Ans be the set of all probabilistic answer sets of P ,
and h, h′ ∈ Ans be probabilistic answer sets of P . Then, φ(x) has a model iff P
has a probabilistic answer set, and S is satisfied iff

maxh|=x̃1:[1,1],...,x̃n:[1,1]

[
h(x̃n)

∑
h′|=D

∏n
i=1 h′(ỹi)

]
≥ θ. where D ≡ x̃1 : [1, 1],

. . . , x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn : [pn, pn] and x̃i = xi or x̃i = ¬xi and ỹi = yi or
ỹi = ¬yi.

Intuitively, in the expression of Theorem 2, the maximum is taken over all the
possible assignments to the existentially quantified variables. For a given assign-
ment to the existentially quantified variables, x̃1, . . . , x̃n, a summation is taken
over the product of probabilities associated with all randomly quantified vari-
ables in each satisfying assignment to φ(x), of the form x̃1, . . . , x̃n, ỹ1, . . . , ỹn,
that contains x̃1, . . . , x̃n. This satisfying assignment corresponds to a probabilis-
tic answer set h′ of P .

Example 3. Let S be an E-MAJSAT formula of the form ∃x, R

y(E[(x ∨ ¬y) ∧
(¬x ∨ y)] ≥ 0.75). The E-program, P = 〈R, τ〉, translation of S consists of the
following E-rules, R,

x : [1, 1]← not (x : [1, 1]) x : [1, 1]← not (x : [1, 1])
y : ν ← not (y : ν) y : ν ← not (y : ν)
c1 : [1, 1]← x : [1, 1] c1 : [1, 1]← y : ν
c2 : [1, 1]← x : [1, 1] c2 : [1, 1]← y : ν
inconsistent : [1, 1] ← not(inconsistent : [1, 1]), not(ci : [1, 1])

where 1 ≤ i ≤ 2 and ν ≡ [0.5, 0.5]. It can be easily verified that S is unsatisfied,
since val(((x∨¬y)∧(¬x∨y)), Q) = 0.5 � 0.75. On the other hand,P has two prob-
abilistic answer sets h1 and h2, where h1(x) = [1, 1], h1(y) = [0.5, 0.5], h1(c1) =
[1, 1],h1(c2) = [1, 1], andh2(x) = [1, 1],h2(y) = [0.5, 0.5],h2(c1) = [1, 1],h2(c2) =
[1, 1], and hence, maxh1|=x:[1,1],h2|=x:[1,1] [h1(x)× h1(y), h2(x) × h2(y)] = 0.5 =
val(φ(x), Q) � 0.75.Moreover, ((x∨¬y)∧(¬x∨y)) has two models s1 = {¬x,¬y}
and s2 = {x, y}. This implies that there is a one-to-one correspondence between
the probabilistic answer sets of P and the models of ((x∨¬y)∧ (¬x∨ y)), since s1

corresponds to h1 and s2 corresponds to h2.
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The translation from a general SSAT formula, where existentially quantified
variables alternating with randomly quantified variables, is the same as the
translation from an E-MAJSAT formula to an E-program. Then, the following
proposition directly follows.

Proposition 2. Let S be an SSAT formula of the form ∃x1,

R

y1, . . . ,∃xn,

R

yn

(E[φ(x)] ≥ θ) and P = 〈R, τ〉 be the E-program translation of S. Then, φ(x)
has a model iff P has a probabilistic answer set.

Observe that the translation from SSAT to EHPPSSAT is modular, since small
local changes in the clauses in φ causes small local changes in the corresponding
E-program translation. However, this is not the case in the reverse direction.
There is no local modular mapping from EHPPSSAT to SSAT. This implies
that EHPPSSAT is more expressive than SSAT from the knowledge represen-
tation point of view. Similar to [19], let, e.g., M(.) be a modular mapping from
EHPPSSAT to SSAT. Let P = 〈R, τ〉 be an E-program in EHPPSSAT that is
modularly mapped to an SSAT formula S = 〈M(R), θ, Q〉, whereM(R) = φ(x).
M(.) is said to be modular if for each set of facts F that is mapped to M(F),
we have P = 〈R ∪ F , τ〉 has a probabilistic answer set iff M(R) ∪M(F) has a
model. Intuitively, adding a fact to an E-program should make a local change in
the translated SSAT formula, but not require translating the entire E-program.

Proposition 3. There is no modular mapping from EHPPSSAT to SSAT.

5 EHPPSSAT as SSAT

In general, it is not possible to translate any E-program in EHPPSSAT or EHPP
[22] to SSAT, since EHPPSSAT allows probability intervals while SSAT deals
with point probabilities. In addition, EHPP [22] allows conjunctions and disjunc-
tions of literals to appear in the body of E-rules. However, we show that there is a
class of EHPPSSAT , namely restricted EHPPSSAT , that can be translated into
SSAT. An E-program in restricted EHPPSSAT takes the form P = 〈R∪Rneg , τ〉,
where τ : Lit → cpcd and R ∪ Rneg is a set of E-rules that satisfy the following
conditions:

1. All events that appear in R are atomic events, represented as positive literals
(atoms) in R.

2. All probabilities that appear in any E-rule in R are point probabilities of the
form [p, p].

3. If the probability of an event a is [p, p], then the probability of all occurrences
of a in R is [p, p].

4. For any event a that appears in R, we have Pr(a) + Pr(¬a) = 1.
5. For each event a that appears in R with probability [p, p] < [1, 1], the E-rule

a : [1− p, 1− p]← not (a : [p, p])
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belongs to Rneg . If the probability of a is [1, 1], then the above E-rule is
simply written as

a : [1, 1]← not (a : [1, 1]).

This set of E-rules, Rneg , is not used in the translation from P to an SSAT
formula. However, E-rules in Rneg are used to encode the default probabili-
ties, i.e., to encode the fact that the probability of ¬a is 1− Pr(a).

Observe that an E-program in restricted EHPPSSAT contains E-rules that con-
sist of only atoms of the form

r ≡ A : μ← A1 : μ1, . . . , Am : μm, not (Am+1 : μm+1), . . . , not (An : μn)

where A,Ai(1 ≤ i ≤ n) are atoms. Let Head(r) = A, Pos(r) = {A1, . . . , Am},
and Neg(r) = {Am+1, . . . , An}. A positive dependency graph of an E-program,
P = 〈R ∪Rneg, τ〉 in restricted EHPPSSAT , is a directed graph, GP , such that
(i) vertices of GP are atoms appearing in R and (ii) for each E-rule r in R, there
is an edge from Head(r) to each atom in Pos(r).

Definition 1. An E-program P in restricted EHPPSSAT is tight E-program if
the positive dependency graph of P is acyclic.

5.1 Tight EHPPSSAT as SSAT

Any tight E-program, P = 〈R∪Rneg, τ〉 in restricted EHPPSSAT , can be trans-
lated into an SSAT formula. The resulting SSAT formula can be viewed as SAT,
MAJSAT, or E-MAJSAT, depending on the probability values that appear in
R, and the type of quantifiers that we associate with each distinct variable in
the resulting SSAT formula. If all probabilities that appear in R are [1, 1], then
the resulting SSAT formula, S, is SAT with existential quantifier associated
with each variable appearing in S. But, if all probabilities that appear in R
are [p, p] 	= [1, 1], then the resulting formula, S, is MAJSAT with randomized
quantifier associated with each variable in S. If the probabilities appearing in
R are a combination of [p, p] and [1, 1], then the resulting formula, S, can be
viewed as E-MAJSAT or MAJSAT, depending on how we want to view the
formula. If S is viewed as E-MAJSAT, then an atom a in R, whose associated
probability is [1, 1], corresponds to an existentially quantified variable in S. How-
ever, if a is associated with probability [p, p] 	= [1, 1] in R, then a corresponds
to a randomly quantified variable in S (given that all existentially quantified
variables are followed by the randomly quantified ones). Let atoms(P ) denotes
the set of atoms that appearing in R. The translation from an E-program, in
restricted EHPPSSAT , to SSAT is provided by defining the notion of probabilis-
tic completion of EHPPSSAT adapted from [3]. The probabilistic completion
of an E-program, P = 〈R ∪ Rneg, τ〉 in restricted EHPPSSAT , is denoted by
Comp(P ) = 〈R, Q〉, where:
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– R is the set of propositional formulas formed from the E-rules in R as follows:
• For each A ∈ atoms(P ), if

A : μ← Ai
1 : μi

1, . . . , A
i
m : μi

m, not (Ai
m+1 : μi

m+1), . . . , not (Ai
n : μi

n)

for 1 ≤ i ≤ k, is the set of E-rules in R whose heads contain A, then A ≡
Body1∨· · ·∨Bodyk ∈ R where Bodyi = Ai

1∧. . .∧Ai
m∧¬Ai

m+1∧. . .∧¬Ai
n.

If k = 0, i.e., there is no E-rule in R whose head contains A, then ¬A ∈ R.
• If R contains an E-rule of the form

inconsistent : [1, 1]← not(inconsistent : [1, 1]), A1 : μ1, . . . , Am : μm,
not (Am+1 : μm+1), . . . , not (An : μn)

then, ¬Body ∈ R, where Body = A1 ∧ . . . ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An.
– Q is a mapping, where for each atom A ∈ atoms(P ), we have Q(A) =

Rp,
if A : [p, p] appears in any E-rule r in R (either in the head of r or in its
body). Similarly, Q(A) = ∃, if A : [1, 1] appears in any E-rule r in R (if the
resulting SSAT is viewed as E-MAJSAT). In the mapping Q, Q(A) =

Rp

says that, in the resulting SSAT formula, A is randomly quantified variable
with the probability of A being true is p.

Theorem 3. LetP = 〈R∪Rneg, τ〉 be a tight E-program in restrictedEHPPSSAT

and Comp(P ) = 〈R, Q〉 be the probabilistic completion of P . Then, R has a model
iff P has a probabilistic answer set.

Theorem 4. LetP = 〈R∪Rneg , τ〉 be a tight E-program in restrictedEHPPSSAT

and Comp(P ) = 〈R, Q〉 be the probabilistic completion of P . Let Ans be the set of
all probabilistic answer sets of P and h, h′ ∈ Ans. Then, S = 〈R, θ, Q〉 is satisfied
iff
∑

h∈Ans

∏
Ai∈dom(h) h(Ai) = val(R, Q) ≥ θ, viewing the SSAT formula, S, as

MAJSAT,where θ = 1
2 , andmaxh|=x̃1:[1,1],...,x̃n:[1,1]

[
h(x̃n)

∑
h′|=D

∏n
i=1 h′(ỹi)

]
≥

θ. where D ≡ x̃1 : [1, 1], . . . , x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn : [pn, pn] and x̃i = xi or
x̃i = ¬xi and ỹi = yi or ỹi = ¬yi, viewing the SSAT formula, S, as E-MAJSAT.

In the following examples, without loss of generality, we consider MAJSAT trans-
lation from E-programs.

Example 4. Consider the E-program,P = 〈R∪Rneg, τ〉 in restrictedEHPPSSAT ,
where R ∪Rneg contains the E-rules

a : [0.9, 0.9]← not (b : [0.2, 0.2]) b : [0.2, 0.2]← not (a : [0.9, 0.9])
c : [1, 1]← a : [0.9, 0.9] c : [1, 1]← b : [0.2, 0.2]
a : [0.1, 0.1]← not (a : [0.9, 0.9]) b : [0.8, 0.8]← not (b : [0.2, 0.2])
c : [1, 1]← not (c : [1, 1])

The first four E-rules belong to R and the last three E-rules belong to Rneg .
Clearly, P is tight. The probabilistic completion of P is Comp(R, Q), where
R = {a ≡ ¬b, b ≡ ¬a, c ≡ a ∨ b}, and Q(a) =

R0.9, Q(b) =

R0.2, Q(c) =

R1. P
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has two probabilistic answer sets h1 and h2, where h1(a) = [0.9, 0.9], h1(b) =
[0.8, 0.8], h1(c) = [1, 1], and h2(a) = [0.1, 0.1], h2(b) = [0.2, 0.2], h2(c) = [1, 1].
In addition, R = {a ≡ ¬b, b ≡ ¬a, c ≡ a ∨ b} has two models s1 = {a,¬b, c} and
s2 = {¬a, b, c}. This implies that there is a one-to-one correspondence between
the probabilistic answer sets of P and the models of R, since s1 corresponds to
h1 and s2 corresponds to h2. It can be easily verified that the SSAT formula,
S = 〈R, 0.5, Q〉, is satisfied, since val(R, Q) = 0.74 ≥ 0.5, in addition, we have∑

h∈Ans

∏
xi∈dom(h) h(xi) = h1(a) × h1(b) × h1(c) + h2(a) × h2(b) × h2(c) =

0.74 = val(R, Q) ≥ 0.5.

5.2 Non-tight EHPPSSAT as SSAT

Let P = 〈R∪Rneg , τ〉 be any E-program in restricted EHPPSSAT and Comp(P )
= 〈R, Q〉 be its probabilistic completion. It is possible to get a model of R that
does not correspond to any probabilistic answer set of P , and hence, Theorems 3
and 4 do not apply for that E-program. This occurs for any E-program in re-
stricted EHPPSSAT that is not tight. Consider the following E-program.

Example 5. Let P = 〈R ∪ Rneg, τ〉 be an E-program in restricted EHPPSSAT ,
where R ∪Rneg consists of the E-rules

a : [0.5, 0.5]← b : [0.3, 0.3] b : [0.3, 0.3]← a : [0.5, 0.5]
a : [0.5, 0.5]← not (a : [0.5, 0.5]) b : [0.7, 0.7]← not (b : [0.3, 0.3])

The probabilistic completion of P is Comp(P ) = 〈R, Q〉, where R = {a ≡ b}
and Q(a) =

R0.5, Q(b) =

R0.3. This E-program, P , has only one probabilistic
answer set, h, where h(a) = [0.5, 0.5] and h(b) = [0.7, 0.7] (h(a) corresponds to
Pr(¬a) and h(b) corresponds to Pr(¬b)). We have,

∑
h∈Ans

∏
Ai∈dom(h) h(Ai) =∏

Ai∈dom(h) h(Ai) = h(a)×h(b) = [0.5, 0.5]× [0.7, 0.7] = [0.35, 0.35]. But, on the
other hand, there are two models of R that contribute to val(R, Q). These
models are s1 = {¬a,¬b} and s2 = {a, b}. The probabilistic answer set h of
P corresponds to the model s1 = {¬a,¬b} of R. Given the models s1 and s2

of R, it can be easily verified that val(R, Q) = [0.5, 0.5]. This implies that∑
h∈Ans

∏
Ai∈dom(h) h(Ai) 	= val(R, Q).

There is a one-to-one correspondence between the probabilistic answer sets of
any tight E-program, P , in restricted EHPPSSAT , and the models of R in
Comp(P ) = 〈R, Q〉. But this is not the case for the E-program in Example 5.
The reason is that this E-program, P , is not tight, since there is a cycle in the
positive dependency graph of P . The set {a, b} is a cycle (loop) in P because in
the positive dependency graph of P , a depends on b from the first E-rule and b
depends on a from the second E-rule. This loop does not allow us to conclude any
knowledge about the probabilities of a and b using the probabilistic answer set
semantics of EHPPSSAT . However, in SSAT, assumptions can be made about
the truth values and the probabilities of a and b in that loop. These loops are the
reason for the existence of a model (or models) of R that does not correspond
to any probabilistic answer set of P , and hence

∑
h∈Ans

∏
Ai∈dom(h) h(Ai) 	=
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val(R, Q). In the rest of this section, we follow the approach of [11] adapted to
deal with EHPPSSAT .

Definition 2. Let P = 〈R ∪ Rneg, τ〉 be a (finite and non-tight) E-program in
restricted EHPPSSAT and LP be a non-empty subset of atoms(P ). Then, LP
is a loop of P if for any A,B ∈ LP , there exists a path of length > 0 from A to
B, in the positive dependency graph of P , such that all the vertices in the path
are in LP .

Following [11], to allow Theorems 3 and 4 to be applied to non-tight E-programs
P = 〈R ∪ Rneg, τ〉 in restricted EHPPSSAT , we associate to each loop, LP , of
P a formula, LF , called loop formula, and add this loop formula LF to R in
the probabilistic completion, Comp = 〈R, Q〉, of P . This obtains a one-to-one
correspondence between the models of R∪LF and the probabilistic answer sets
of P , and hence, Theorems 3 and 4 apply to non-tight E-programs (where LF is
the set of all loop formulas of P ). The loop means that non of the atoms involved
in the loop can be defined in any probabilistic answer set, h, of P , and hence
they do not exist in dom(h). The added loop formulas associated with each loop
of P to R in the probabilistic completion of P means that the atoms of the loops
are not in any model of R∪ LF .

Definition 3. Let P = 〈R∪Rneg , τ〉 be an E-program in restricted EHPPSSAT

and LP be a loop in P . We define

R+
P (LP ) =

⎧⎨⎩ A : μ ← A1 : μ1, . . . , Am : μm,
not (Am+1 : μm+1), . . . , not (An : μn)

A : μ ← A1 : μ1, . . . , Am : μm,
not (Am+1 : μm+1), . . . , not (An : μn) ∈ R,
and A ∈ LP, (∃A′).A′ ∈ LP, A′ ∈ B

⎫⎬⎭
R−

P (LP ) =

⎧⎨⎩ A : μ ← A1 : μ1, . . . , Am : μm,
not (Am+1 : μm+1), . . . , not (An : μn)

A : μ ← A1 : μ1, . . . , Am : μm,
not (Am+1 : μm+1), . . . , not (An : μn) ∈ R,
and A ∈ LP,¬ (∃A′).A′ ∈ LP, A′ ∈ B

⎫⎬⎭
where B = {A1, . . . , Am, Am+1, . . . , An}.

Intuitively, similar to [11], R+
P (LP ) contains the E-rules in R that are involved

in the loop LP . However, R−
P (LP ) contains the E-rules in R that are not in the

loop LP . Clearly, R+
P (LP ) and R−

P (LP ) are disjoint sets.

Definition 4. Let P = 〈R∪Rneg , τ〉 be an E-program in restricted EHPPSSAT

and LP be a loop in P . Let Ai : μi ← Aij
1 : μij

1 , . . . , Aij
m : μij

m, not (Aij
m+1 :

μij
m+1), . . . , not (Aij

n : μij
n ) for 1 ≤ j ≤ kn, be the set of E-rules in R−

P (LP ),
for an atom Ai (1 ≤ i ≤ n). Then, the implication ¬ [Body11 ∨ · · · ∨Body1k1 ∨
. . .∨Bodyn1 ∨ . . .∨Bodynkn ] ⊃

∧
A∈LP ¬A is called a probabilistic loop formula,

denoted by LF (LP ), of LP , where Bodyij = Aij
1 ∧ . . .∧Aij

m∧¬A
ij
m+1∧ . . .∧¬Aij

n .

Theorem 5. Let P = 〈R∪Rneg , τ〉 be any E-program in restricted EHPPSSAT ,
Comp(P ) = 〈R, Q〉 be the probabilistic completion of P , Ans be the set of all prob-
abilistic answer sets of P and h ∈ Ans. Let LF be the set of all probabilistic loop
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formulas associated with all loops of P . Then,R∪LF has a model iff P has a prob-
abilistic answer set, and S = 〈R ∪ LF , θ, Q〉 is satisfied iff

∑
h∈Ans

∏
Ai∈dom(h)

h(Ai) = val(R∪ LF , Q) ≥ θ, viewing the SSAT formula, S, as MAJSAT, where
θ = 1

2 , and

maxh|=x̃1:[1,1],...,x̃n:[1,1]

[
h(x̃n)

∑
h′|=D

∏n
i=1 h′(ỹi)

]
≥ θ where D ≡ x̃1 : [1, 1], . . . ,

x̃n : [1, 1], ỹ1 : [p1, p1], . . . , ỹn : [pn, pn] and x̃i = xi or x̃i = ¬xi and ỹi = yi or
ỹi = ¬yi, viewing the SSAT formula, S, as E-MAJSAT.

Example 6. Consider again the non-tight E-program, P , from Example 5. This
E-program belongs to restricted EHPPSSAT and has one loop LP = {a, b},
where

R+(LP ) = {a : [0.5, 0.5] ← b : [0.3, 0.3], b : [0.3, 0.3] ← a : [0.5, 0.5]} R−(LP ) = ∅.

Thus, the loop formula LF (LP ) is ¬false ⊃ (¬a ∧ ¬b), which is equivalent
to (¬a ∧ ¬b). Adding LF (LP ) to R outcomes the propositional formula R ∪
LF (LP ) = {a ≡ b, (¬a ∧ ¬b)}, which has only one model {¬a,¬b}. It can
be easily verified that val(R ∪ {(¬a ∧ ¬b)}, Q) = 0.35. This implies that the
only probabilistic answer set h, where h(a) = [0.5, 0.5], h(b) = [0.7, 0.7], of P
corresponds to the only model of R ∪ LF (LP ). Moreover, the SSAT formula,
S = 〈R∪ {(¬a∧¬b)}, 0.5, Q〉, is unsatisfied, since

∑
h∈Ans

∏
Ai∈dom(h) h(Ai) =

0.35 = val(R∪ {(¬a ∧ ¬b)}, Q) � 0.5.

6 Related Work and Conclusions

We studied the relationship between EHPP and SSAT. EHPP is closely related
to EDHPP presented in [23] that is similar to EHPP but allows disjunctions in
the head of rules. We presented a modular translation from SSAT to EHPP. The
translation is based on a corresponding local translation from SAT to normal
logic programs described in [19]. Moreover, we proved that there is no modular
mapping from EHPP to SSAT. This shows that EHPP is more expressive than
SSAT from the knowledge representation point of view.

In addition, we presented a translation from EHPPSSAT to SSAT that relies
on a corresponding translation from normal logic programs to SAT [3,11]. Two
classes of EHPPSSAT are identified; tight and non-tight EHPPSSAT . The trans-
lation form tight EHPPSSAT to SSAT is based on the translation from tight
normal logic programs [6] to SAT, using Clark’s completion [3]. In addition, the
translation form non tight EHPPSSAT to SSAT relies on the translation from
non tight normal logic programs to SAT, using loop formulas [11].

A similar relationship between SSAT and other probabilistic logic program-
ming frameworks, e.g., [16,17,18,5,8,13,1,9,10,21,26], has not been studied. How-
ever, the relationship between the probabilistic logic programming frameworks
[16,17,18,5,8,13] and a different extension to SAT, namely, Probabilistic SAT
(PSAT) [2] has been studied. Given an assignment of probabilities to a collec-
tion of propositional formulas, PSAT asks if this assignment is consistent. The
solution to PSAT is based on the possible world semantics. The possible world
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semantics solution to PSAT is achieved by compiling a linear program from the
given probability assignments to a collection of propositional formulas, PSAT,
and if this linear program has a solution, implies that the probability assignments
to the set of propositional formulas is consistent. However, it is not clear how to
translate PSAT to a probabilistic logic program in [16,17,18,5,8,13]. The prob-
abilistic logic programming frameworks of [1,9,21,26] relate probabilistic logic
programming to Bayesian networks, which is different from SSAT and PSAT.
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Abstract. The “Most Probable World” (MPW) problem in probabilistic logic
programming (PLPs) is that of finding a possible world with the highest proba-
bility. Past work has shown that this problem is computationally intractable and
involves solving exponentially many linear programs, each of which is of ex-
ponential size. In this paper, we study what happens when the user focuses his
interest on a set of atoms in such a PLP. We show that we can significantly reduce
the number of worlds to be considered by defining a “reduced” linear program
whose solution is in one-one correspondence with the exact solution to the MPW
problem. However, the problem is still intractable. We develop a Monte Carlo
sampling approach that enables us to build a quick approximation of the reduced
linear program that allows us to estimate (inexactly) the exact solution to the
MPW problem. We show experimentally that our approach works well in prac-
tice, scaling well to problems where the exact solution is intractable to compute.

1 Introduction

Action probabilistic logic programs (ap-programs for short) [5,4] provide a logic pro-
gramming paradigm through which we can develop stochastic models of the behavior
of real world organizations without making any assumptions about independence of
events and/or conditions. Because no such assumptions are made, this paradigm is fun-
damentally different from others such as Bayesian Networks which are structured based
on the knowledge that certain variables are only dependent on a specific subset of vari-
ables. ap-programs and their variants have been used extensively over the last couple
of years to develop models of the behaviors of the various stakeholders in the Afghan
drug trade [14] as well as terrorist groups such as Hezbollah [8] and Hamas [9]. These
models, which are now available through a secure site to various law enforcement and
military users [10], exist for over 36 groups ranging from Morocco to Afghanistan. The
behavioral models themselves are expressed through a set of stochastic rules that are
informally of the form “If condition C holds, then group g will take a given action a
with a probability in the range [ , u].” Note that the use of ap-programs to model orga-
nizational behavior is not limited to organizations with suspicious activities - in theory,
they could just as well be used to learn conditions about when an investment bank will
buy or sell a certain stock, or when an insurance company will pay or deny a given
claim, or when OPEC will raise oil prices. However, these latter applications have not
been built to the best of our knowledge.

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 372–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A group’s behavior is thus characterized by a set of such rules. Naturally, there is
much interest in what a group will do in a given situation S (real or hypothetical) that
may or may not have been encountered in the past. Past work by us has studied this
problem in considerable detail. A “world” informally refers to a set of actions that the
group might take in situation S. It is clear that the number of all possible worlds is
exponential in the number of actions considered. The key question for decision makers
is: what is the most (or k most) probable worlds in a given situation S for group g?

The naive approach to solving this problem as described in [5,4] is to derive a linear
program from the ap-program and situation S, and to try to compute the probability
of world w for each and every world w. This approach has two fundamental problems.
First, the size of the linear program is exponential in the number of actions considered.
Second, we need to solve an exponential number of such linear programs (one for each
world) in order to determine the most probable world. [5,4] made three major improve-
ments to alleviate these problems. First, they proposed a method to reduce the size of
the linear program (sometimes but not always) from being exponential in the number of
atoms, to being exponential in the number of rules. Second, they developed a “binary”
heuristic that explores only a fixed number of worlds. Third, they developed a suite of
parallel algorithms to solve the problem.

In this paper, we show that the approach of [5,4] can be significantly improved
through the incorporation of yet another piece of knowledge. Under certain conditions,
when we know what actions the user is interested in predicting (which is often the
case and can be easily communicated by the user to a system implementation), we can
reduce the size of the linear program significantly, while guaranteeing that an exact so-
lution will be found, not an approximate solution. Furthermore, we develop a Monte
Carlo sampling approach that, when used in conjunction with the reduced linear pro-
gram, is enormously helpful in scaling the performance of the system. We describe
these methods and provide experimental results showing that our system performs well
even when a relatively large number of actions is considered.

2 Preliminaries

Action probabilistic logic programs (ap-programs) are a variant of the probabilistic
logic programs introduced in [11,12]. We assume the existence of a logical alphabet
that consists of a finite set Lcons of constant symbols, a finite set Lpred of predicate
symbols (each with an associated arity) and an infinite set V of variable symbols: func-
tion symbols are not allowed in this language. Terms and atoms are defined in the usual
way [6]. We assume that a subset Lact of Lpred is designated to be the set of action
symbols (symbols that denote some action). Thus, if t1, . . . , tn are terms, and p is an
n-ary action symbol, then p(t1, . . . , tn), is called an action atom. Ground terms and
atoms are defined in the usual manner [6].

Definition 1. A (ground) basic action formula is either a conjunction or a disjunction
of (ground) atoms from Lact.

The set of all possible basic formulas is denoted by bf(BLact), where BLact is the
Herbrand base associated with Lact and Lcons.
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Definition 2. If F is a basic action formula and μ = [α, β] ⊆ [0, 1], then F : μ is
called an ap-annotated action basic formula. μ is called the ap-annotation of F .

Definition 3 (ap-rules). If F is a basic action formula, B1, . . . , Bn are non-action
atoms, and μ, μ1, ..., μm are ap-annotations, then F : μ ← B1 ∧ . . . Bm is called a
basic ap-rule. If this rule is named c, then Head(c) denotes F : μ and Body(c) denotes
B1 ∧ . . . Bn.

Intuitively, the rule specified above says that if B1, . . . , Bm are all true in a given situa-
tion, then there is a probability in the interval μ that F is true. Thus, if F is a basic action
formula representing some actions that a given group might take, then this reflects the
probability that the group will take the combination of atomic actions in F .

Definition 4 (ap-program). A basic action probabilistic logic program (basic ap-
program for short) is a finite set of basic ap-rules.

In the following, we will refer to basic ap-programs simply as ap-programs when there
is no ambiguity.

Definition 5 (world/state). A world is any set of ground action atoms. A state is any
finite set of ground non-action atoms.

We useW to denote the set of all possible worlds. Note that both worlds and states are
just ordinary Herbrand interpretations. As such, it is clear what it means for a state to
satisfy the body of a rule [6].

Definition 6. Let Π be an ap-program and s a state. The reduction of Π w.r.t. s, de-
noted by Πs is {F : μ | s satisfies Body and F : μ ← Body is a ground instance of a
rule in Π}.

In the following, we assume that we have been provided with a distinguished set Q of
action atoms of interest chosen from the set of all possible ground action atoms. For
instance, when a user is reasoning about a given group, he might specify what actions
he is interested in. The powerset ofQwill be denoted byWQ, and represents the worlds
of interest; their importance in the reduction of the size of the resulting constraints when
performing most probable world computations will be discussed below.

Definition 7. Let F ∈ bf(Lact) be a ground basic action formula, and Q be a set of
ground action atoms. The reduction of F with respect to Q, denoted by red(F,Q) is
defined as a new formula F ′, which is obtained by removing from F , the atoms that do
not appear in Q.

We use comp(F,Q) to denote the part of formula F that does contain the atoms in Q
(this intuitively corresponds to the complement of red(F,Q)).

Definition 8. Let F ∈ bf(Lact) be a ground basic action formula, and Q be a set of
ground action atoms. The complement of F with respect to Q, denoted by comp(F,Q)
is defined as a new formula F ′, which is obtained by removing from F the atoms that
do not appear in red(F,Q).

The example below illustrates these concepts.
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Example 1. Let F = a ∨ b ∨ c ∨ d ∨ e, and Q = {a, b, c}. In this case, red(F,Q) =
a ∨ b ∨ c, while comp(F,Q) = d ∨ e.

3 Exponential Speedup of Most Probable World Computations

Let Π be a basic ap-program, s be a state, Lact be the set of all possible action predi-
cates, and gr(Lact) be the set of all possible ground action atoms. Following the work
of [2,13,3,1,12,7], [4] shows how we can associate a set of linear constraints with
Π, s,Lact. If W is the set of all possible worlds, and pi is a variable denoting the (as
yet unknown) probability of world wi ∈ W , then [4] creates the set of linear constraints
defined by:

1. If Fi : [ , u] ∈ Πs, then  ≤
(∑

wj �→Fi
pj

)
≤ u is in CONS(Π, s).

2. Σwipi = 1 is in CONS(Π, s).

Now suppose the user selects a set Q of ground action atoms that he considers to be
of interest for his work. We can take advantage of Q to significantly reduce the size
of the linear constraints specified in [4]. Given Q, we define a set of linear constraints
CONS0(Π, s,Q). The intuition behind this set of constraints, as compared to that used
in CONS(Π, s) [4] is that we now have a new setWQ that contains 2|Q| worlds, each of
which is an abstraction of worlds in the old setW (each w′ ∈ W ′ represents 2|W|−|W′|

worlds from the original set). The constraints are then defined over the set of all possible
worlds of interestWQ as follows:

1. If Fi : [ , u] ∈ Πs and Fi is a conjunction, then  ≤
(∑

wj �→red(F,Q) pj

)
−qi

0 ≤ u

is in CONS0(Π, s,Q).
2. If Fi : [ , u] ∈ Πs and Fi is a disjunction, then  ≤

(∑
wj �→red(F,Q) pj

)
+ qi

0 ≤ u

is in CONS0(Π, s,Q).
3. For each variable qi

0 introduced in the constraints of type (1) and (2),
CONS0(Π, s,Q) contains the constraint qi

0 ≥ 0.
4. Σwipi = 1 is in CONS0(Π, s,Q).

The probability of each world in WQ represents the summation of probabilities of
worlds in the original set of constraints. The qi

0 variables introduced in the constraints
of type (1) and (2) (referred to as auxiliary variables from now on) serve the purpose of
compensating for the loss of granularity of this new set of worlds; for conjunctions they
appear as negative values, since the reduced formula has more satisfying worlds than
the original, and for disjunctions the opposite holds. In the former case, the qi

0 values
represent the summation ∑

wi|=red(Fi,Q)∧¬comp(Fi,Q)

pi (1)

from the original constraints, while in the latter they represent the summation∑
wi|=comp(Fi,Q)∧¬red(Fi,Q)

pi (2)
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1. a ∨ b ∨ c : [0.85, 0.95] ← .
2. b ∧ c : [0.4, 0.55] ← .
3. a ∨ b ∨ d : [0.6, 0.78] ← .
4. a ∧ c ∧ d : [0.15, 0.3] ← .

Fig. 1. A simple ap-program

In the following, we will abbreviate with corr(v) (for correction formula) the formula
associated with auxiliary variable v, which initially has the values just described. Now,
this is only a first approximation towards obtaining a set of constraints that adequately
reflects all the restrictions provided by the full set used in [4]. In order to clarify what
we mean by this, we first present an example of how to obtain CONS0(Π, s,Q).

Example 2. Suppose we have the basic ap-program Π of Figure 1, and letQ = {a, b}.
While the original set of worlds W included 16 worlds, the reduced set W ′ contains
only 4. As discussed, each of these worlds represents an abstraction of worlds from the
original set; for instance, world {a} represents worlds {a}, {a, c}, {a, d}, and {a, c, d}.
This reflects the fact that the reasoning agent is only interested in the atoms in Q, and
therefore needs not differentiate among the worlds that only differ in atoms that are not
in this set.

The following is the set of constraints CONS(Π, s,Q), for which we use the enu-
meration of worlds w0 = {}, w1 = {a}, w2 = {b}, and w3 = {a, b}:

0.85 ≤ p1 + p2 + p3 + q1
0 ≤ 0.95 0.4 ≤ p2 + p3 − q2

0 ≤ 0.55
0.6 ≤ p1 + p2 + p3 + q3

0 ≤ 0.78 0.15 ≤ p1 + p3 − q4
0 ≤ 0.3

q1
0 , q

2
0 , q

3
0 , q

4
0 ≥ 0 p0 + p1 + p2 + p3 = 1

Here, for instance, corr(q2
0) = b ∧ ¬c.

3.1 Refining the Set of Constraints

In Example 2, it can clearly be seen that the values of variables q1
0 and q3

0 are
not independent of each other, since their corresponding formulas share models, i.e.,
(c ∧ ¬(a ∨ b)) ∧ (d ∧ ¬(a ∨ b)) 	|= ⊥. In this case, there is one world, {c, d} that is a
model of both correction formulas. This means that the initial set of constraints does not
adequately represent the original restrictions on the probabilities that can be assigned to
each world, and we should take this into account in order to refine the set of constraints.
Figure 2 presents the RefineCONS algorithm which addresses this issue by replacing
the variables that give rise to these situations with new variables, and setting their as-
sociated formulas accordingly. The for loop on line 11 states that each of the auxiliary
variables must be bounded from above by the upper bounds that are associated with
formulas in the head of rules in Π that are satisfied by their associated formulas. This
process can add redundant constraints (since more than one formula could be satisfied,
and then only the lowest upper bound would make a difference) but we do not include
the simple checks to avoid this in order to keep the presentation clear. The following
example shows the set of constraints from the previous example after applying this
algorithm.
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algorithm RefineCONS(Π,CONS)
1. CONS′ := copy of CONS; i := 1;
2. while CONS′ has two auxiliary variables uk1 , vk2 s.t.

corr(uk1) ∧ corr(vk2) �|= ⊥ {
3. replace uk1 in CONS′ with a new variable ui;
4. set corr(ui) = corr(uk1) ∧ ¬corr(vk2); i := i + 1;
5. replace vk2 in CONS′ with a new variable vi;
6. set corr(vi) = corr(vk2) ∧ ¬corr(uk1); i := i + 1;
7. introduce a new variable ri in CONS′ (coeff. +1)

wherever uk1 and vk2 appeared;
8. set corr(ri) = (corr(uk1) ∧ corr(vk2));
9. add constraint ri ≥ 0 to CONS′; i := i + 1;
10. }
11. for each aux variable v and formula F in Π s.t.

corr(v) ∧ F �|= ⊥ and
F : [L, U ] is the head of a rule in Π {

12. add constraint 0 ≤ v ≤ U to CONS′

13. }
14. return CONS′;

Fig. 2. The RefineCONS algorithm

Example 3. When we apply the RefineCONS algorithm to the set of constraints ob-
tained in Example 2, we obtain the following result.

(1). 0.85 ≤ p1 + p2 + p3 + q1
1 + r2 ≤ 0.95

(2). 0.4 ≤ p2 + p3 − q2
3 − r4 ≤ 0.55

(3). 0.6 ≤ p1 + p2 + p3 + q3
1 + r2 ≤ 0.78

(4). 0.15 ≤ p1 + p3 − q4
3 − r4 ≤ 0.3

(5). q1
1 , q2

3 , q3
1 , q4

3 , r2, r4 ≥ 0
(6). p0 + p1 + p2 + p3 = 1

(7). 0 ≤ q1
1 ≤ 0.95; (8). 0 ≤ r2 ≤ 0.95; (9). 0 ≤ r2 ≤ 0.78

(10). 0 ≤ q2
3 ≤ 0.95; (11). 0 ≤ q2

3 ≤ 0.78; (12). 0 ≤ r4 ≤ 0.95
(13). 0 ≤ r4 ≤ 0.78; (14). 0 ≤ q4

3 ≤ 0.95; (15). 0 ≤ q4
3 ≤ 0.55

(16). 0 ≤ q4
3 ≤ 0.78

Here, for instance, corr(q2
3) = (b ∧ ¬c) ∧ ¬(a ∧ ¬(c ∧ d)), constraint 11 states that,

because (a ∨ b ∨ d) ∧ corr(q2
3) 	|= ⊥, the upper bound of rule 3 applies to q2

3 . As we
discussed above, some of the constraints indicating upper bounds (constraints 7 to 16)
are redundant and their insertion can be easily avoided by the algorithm. Such is the
case of constraints 8, 10, 12, 14, and 16.

The following result links the results obtained from solving the output of RefineCONS
with those obtained from solving the original set of constraints from [4] for the corre-
sponding worlds. We use V ars(C) to denote the set of variables occurring in a set C of
constraints, and val(V, S) to denote the value assigned to variable V by a solution S.
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Fig. 3. Part of the set of constraints after applying the RefineCONS algorithm to the set of con-
straints obtained in Example 2. Here, we show one constraint arising from a rule whose head
contains a disjunction and one arising from a rule containing a conjunction (C1 and C2, respec-
tively) in order to demonstrate the two possible scenarios that come up.

Theorem 1. Let Π be an ap-program, s be a state, Q be a subset of all possible ac-
tion atoms, C = CONS(Π, s) be the original set of constraints (obtained by con-
sidering the entire set of action atoms), and C∗ be the set of constraints returned by
RefineCONS(Π,C). Then, there exists a mapping μ : V ars(C∗) → V ars(C) such
that:

1. If V1, V2 ∈ V ars(C∗), V1 	= V2, then μ(Vi) ∩ μ(V2) = ∅
2. For every solution S of C there exists a solution S∗ of C∗ such that for every

V ∗
i ∈ S∗, val(V ∗

i , S∗) =
∑

Vj∈μ(V ∗
i ) val(Vj , S).

Proof sketch: We first establish how mapping μ is obtained. For any non-auxiliary vari-
able p∗j corresponding to a world of interest w∗

j 3→ red(F,Q), μ(p∗j ) = {pi | wi =
w∗

j ∪ wr where wr ∈ P(W − W ′)}. For any auxiliary variable q∗j , μ(q∗j ) =
{pi | wi ∈ W and wi 3→ corr(q∗j )}. Note that this mapping is the by-product of
how CONS(Π, s,Q) is defined.

We must first prove that condition (1) holds. For non-auxiliary variables, it is clear from
the definition of the mapping that no two images can intersect, since their elements
are constructed from disjoint worlds in W ′. For auxiliary variables, the algorithm Re-
fineCONS guarantees that the images of two different variables do not intersect, since
the while loop in line 2 exits only when, for all pairs of auxiliary variables, their
corresponding correction formulas do not share models.

In order to prove condition 2, consider a solution S of C and an assignment of values
S∗ to variables of C∗ satisfying the conditions in the theorem. We must now prove that
S∗ so defined is in fact a solution for C∗; in order to do this, we will consider constraints
arising from disjunctions and conjunctions in turn:
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– Let c∗i be a constraint arising from a rule whose head is a disjunction. From the
definition of CONS(Π, s,Q) and the operations performed by the RefineCONS
algorithm, all variables in the constraint appear with a coefficient of 1 (positive).
Therefore, from condition (1) it follows that c∗i is simply a rewriting of its corre-
sponding constraint in C, where p∗j replaces the block of variables μ(q∗j ).

– Let c∗i be a constraint arising from a rule whose head is a conjunction. In
this case we will have variables with a −1 coefficient. As before, it is pos-
sible to see c∗i as a rewriting of its corresponding constraint in C. To see
why, consider the set of non-auxiliary variables in c∗i ; the value assigned by
S∗ to the sum of all such variables can be separated into two positive val-
ues, s∗i,1 and s∗i,2, such that s∗i,1 =

∑
wj∈W,wj �→red(F,Q)∧¬comp(F,Q) pj and

s∗i,2 =
∑

wj∈W,wj �→comp(F,Q)∧¬red(F,Q) pj (note that by definition red(F,Q) ∧
comp(F,Q) |= ⊥). Therefore, s∗i,2 = val(qi

0) (as stated in Equation 1) and, since
RefineCONS guarantees that qi

0 will be replaced by a set of variables whose cor-
rection formulas do not share models and with a union of models equal to that of
qi
0’s correction formula, this means that the constraint is indeed a rewriting of its

corresponding one in C, since s∗i,2 is effectively added and then subtracted. �

The following result is an immediate consequence of the above theorem and establishes
the correctness of the RefineCons algorithm.

Corollary 1 (Correctness of RefineCONS). Algorithm RefineCONS is
correct, i.e., minimizing/maximizing w.r.t. a non-auxiliary variable qi in
C∗ = RefineCONS(Π, s,Q) yields the same value as that obtained by mini-
mizing/maximizing the sum of variables associated with the set of worlds abstracted by
world wi ∈ W ′.

3.2 Analysis of the RefineCONS Algorithm

The first aspect of the the algorithm that we will analyze is the number of times that
the while loop in line 3 is executed. In the worst case, the auxiliary variables’ sets
of models are such that their pairwise intersections are all non-empty. This leads to a
number of auxiliary variables that is exponential in the number of constraints. In Fig-
ure 4, we show how this situation can arise; on the left, we have two formulas whose
sets of models intersect (shown in gray), while on the right we show the worst possi-
ble scenario when considering one more formula, i.e., that the new formula’s models
intersects with all parts of the original diagram. This clearly leads to 2c − 1 auxiliary
variables in the worst case, where c is the number of constraints in CONS0(Π, s,Q).

The second source of complexity is in evaluating whether the formulas associated
with a given pair of auxiliary variables are consistent or not (i.e. whether their sets of
models intersect or not). The alert reader may have noticed that correction formulas
contain atoms from the original set, and therefore performing the satisfiability checks
required to verify existence of common models will surely lead to intractable computa-
tions even for a moderate number of possible atoms. Even though we can leverage the
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Fig. 4. A Venn diagram representation of the models of formulas. On the left, two formulas share
at least one model; the set of shared models is shown in gray. On the right, a new formula is
introduced, which shares models with all three sets from the left (i.e., only F1, only F2, and both)
generating a total of seven possible subsets.

fact that because rules only contain basic formulas, sets of models can be compactly
represented using binary strings of length n, this property is lost once we perform a
“cut” such as those performed in lines 5 and 7 of RefineCONS, since correction formu-
las are no longer basic. The best case running time, on the other hand, occurs when all
pairs of formulas in rule heads are mutually inconsistent.

We can, however, perform a single step of refinement in polynomial time in the
special case in which all formulas are conjunctions. In this case, non-emptiness of in-
tersections of sets of models can be checked in time linear in the number of atoms in
the original set. Therefore, the set of auxiliary variables after one step of refinement can
be computed in time in O(2|CONS(Π,s,Q)|).

3.3 A Monte Carlo Refinement Algorithm

In the previous section we saw that the applicability of the RefineCONS algorithm is
limited due to the intensive computations that it must carry out in order to ensure that the
constraints are fully refined. In this section, we will present a Monte Carlo algorithm
that alleviates these computations, at the expense of not being able to guarantee full
refinement.

The basic Monte Carlo refinement algorithm is described in Figure 5. The algorithm
follows the same basic approach as RefineCONS, except that auxiliary variables are
now refined based on randomly selected models instead of exhaustive verification of
satisfiability of conjunctions of pairs of correction formulas. The while loop in line 3
uses a subroutine terminationCond as a condition; we assume that this subroutine
is designed by the user to decide when enough refining attempts have been made (for
instance, number of models tried, number of refinements made, time elapsed, etc). This
basic algorithm can be enhanced by considering two heuristics, described next.

Small number of variables check. Before any sampling is done, we can perform
checks for every pair of auxiliary variables to see if the total number of atoms oc-
curring between them is small enough for an exhaustive verification, i.e., a SAT check
on their conjunction. This enhances the accuracy of the final result by identifying easy
refinements that could otherwise be missed by the random generation of models.
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algorithm MonteCarloRefineCONS(Π,CONS)
1. CONS′ := copy of CONS;
2. i := 1; m := 0; VariableAssignment test;
3. while terminationCond(Π,CONS, i, m) = false {
4. test = randomly generate a world wrt
5. full set of atoms; m := m + 1
6. for each pair of aux. variables vk1 �= vk2 s.t.

test |= corr(uk1) ∧ corr(vk2)
7. replace uk1 in CONS′ with a new variable ui;
9. set corr(ui) = corr(uk1) ∧ ¬corr(vk2); i := i + 1;
10. replace vk2 in CONS′ with a new variable vi;
11. set corr(vi) = corr(vk2) ∧ ¬corr(uk1); i := i + 1;
12. introduce a new variable ri in CONS′ (coeff. +1)

wherever uk1 and vk2 appeared;
14. add constraint ri ≥ 0 to CONS′; i := i + 1;
15. }
16. }
17. for each aux variable v and formula F in Π s.t.

corr(v) ∧ F �|= ⊥ and
F : [L, U ] is the head of a rule in Π {

18. add constraint 0 ≤ v ≤ U to CONS′

19. }
20. return CONS′;

Fig. 5. The basic MonteCarloRefineCONS algorithm

Targeted sampling. A data structure can be maintained for storing the pairs of auxiliary
variables that we have proved do not share models. Such a data structure can be an
array of auxiliary variables, where each variable vi has an associated set of auxiliary
variables vj such that corr(vi) ∧ corr(vj) |= ⊥. These sets are all initially empty,
and then can be updated either by the checks discussed above, or when a refinement is
otherwise identified (such as when a randomly generated model satisfies two or more
variables’ correction formulas). When such an event occurs, the two variables involved
are replaced by the new three, where the conjunction variable is associated with the
union of the two other variables’ sets.

When such a data structure is maintained, targeted sampling can be performed, i.e.,
generation of models specifically geared towards certain pairs. This means that a certain
pair of variables can be selected out of the possible ones remaining, and models can be
generated involving only the atoms appearing in these variables’ correction formulas,
thus enhancing the chances of finding a model for their conjunction if one exists. If
no model is found after a certain number of checks or time elapsed, the pair can be
“declared” to be already refined. Another advantage of the use of such a data structure
is in being able to determine how many pairs remain to be tested for refinement, and in
particular if none remain.
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algorithm FindMPW(Π,s,Q)
1. let WQ be the set of worlds according to Q;
2. obtain CONS0(Π,s, X,Q);
3. CONS′ = RefineCONS(CONS0(Π,s, X,Q));
4. let currlow = 0; currlowWorld = null;
5. for each wQ

i ∈ P(WQ) {
6. compute low(wQ

i ) w.r.t. CONS′;
7. if (low(wQ

i ) > currlow) {
8. currlow:= low(wQ

i );
9 currlowWorld:= wQ

i ;
10. }
11. }
12. return currlowWorld;

Fig. 6. The FindMPW algorithm

4 Finding Most Probable Worlds of Interest

The FindMPW algorithm shown in Figure 6 correctly computes the most probable
world as long as step 6 correctly computes the result of minimizing pi subject to the
constraints in CONS0(Π, s,Q). This can be done by minimizing this variable subject
to the constraints computed by the RefineCONS algorithm, and in this case, the world
returned by FindMPW is guaranteed to be the most probable world. However, if the
Monte Carlo algorithm is used, then this is not guaranteed.

The FindMPW algorithm yields a significant improvement in performance. When
n = |W|, the savings in number of worlds (and number of LPs solved) when using
algorithm FindMPW is given by a factor of 2n−|Q|. There is, however, an extra cost
associated with this algorithm, since the RefineCONS subroutine incurs additional costs
when trying to separate all the auxiliary variables into an adequate set.

5 Experimental Evaluation

We developed a prototype implementation of the FindMPW algorithm using both Re-
fineCONS and MonteCarloRefineCONS constraint refinement methods described in
this paper. The implementation consisted of about 2,500 lines of Java code run on
a Linux computing cluster comprised of 64 8-core, 8-processor nodes with between
10GB and 20GB of RAM; the cluster was not used for parallel computations, but for
concurrent independent runs. The linear constraints for finding the most probable world
were solved using the QSopt linear programming solver library, and the logical for-
mula manipulation code from the COBA belief revision system and SAT4J satisfaction
library were used for the SAT checks in the refinement methods.

To test the FindMPW algorithm with both the full refinement approach and the
Monte Carlo approximation, we conducted two experiments.
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Fig. 7. Average running times for the FindMPW algorithm with both the full refinement and
Monte Carlo refinement approaches

Experiment 1. In the first experiment, we compared the running time of the FindMPW
algorithm using RefineCons to find an exact solution to using the Monte Carlo ap-
proach. The number of atoms was varied between 5 and 15 and the number of atoms
of interest was set to 50% of the total for each run. For the Monte Carlo approach, we
used a sample size that was 10% the number of possible worlds. Figure 7 below shows
the running time results. The reader can readily see that the Monte Carlo algorithm
works quite effectively, while the version of FindMPW that uses RefineCons is unable
to perform when more than 12 atoms are present (and even for 10, 11 atoms, it can fail).
The irregular shape of the curve for RefineCons is due to the fact that there is great
variability in the running times depending on the specific programs that it is run on.

Experiment 2. As the previous experiment indicates, the FindMPW algorithm with Re-
fineCONS can become intractable for a fairly small number of atoms. Experiment 2
focuses on the scalability of the FindMPW algorithm when used in conjunction with
the Monte Carlo approach. Here we varied the number of atoms considered from 1,000
to 10,000 in steps of 1,000. In these experiments the sample size is fixed at 1,000 worlds
and the number of interesting atoms is fixed at 10. Figure 8 shows the running times for
FindMPW with Monte Carlo refinement for large numbers of atoms. Using the sam-
pling refinement, FindMPW is able to find the most probable world of interest out of
210,000 possible worlds in 97.7 minutes.

In past work, [4,5] have developed a method to determine the most probable world of
an ap-program. However, in that work, an algorithm is presented in which a probability
is associated with each subset X of rule heads of “applicable” rules in Π in state s 1.
Such a subset corresponds to the conjunction of rule heads in X with negations of
applicable rule heads not in X . All worlds satisfying this conjunction have the same
probability, but the timings reported in [4] do not include the time required to find this

1 A rule in an ap-program Π is applicable in s iff s satisfies that rule’s body.
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Fig. 8. Average running times for the FindMPW algorithm using the Monte Carlo approach for
large numbers of atoms

probability. It should be noted that the algorithms presented here directly yield worlds
of interest (along with their probabilities), without the need to take this extra step.

6 Conclusion

Though there has been extensive work on probabilistic logics and probabilistic logic
programming, most of this work has focused on the entailment problem of checking
whether an annotated formula F : [ , u] is entailed by a PLP. This is done by solving
up to two linear programs (minimizing and maximizing the same function expression
subject to a given set of constraints). However, there are many applications in oppo-
nent modeling where we need to find the most probable set of actions that a given
entity might take in a given situation. As a practical example of this, we have described
our SOMA Terror Organization Portal [10] that contains ap-programs about 36 terror
groups ranging from Morocco to Afghanistan. This system has registered users from
several government agencies. Such users would like to experiment with “what if” sce-
narios. What is the most likely reaction from group g in a given situation? What set of
actions are they most likely to take, and with what probability?

In this paper, we have developed methods to reduce the size of the linear programs
involved by taking into account, the set of action atoms that a specific user might be
interested in. By taking this into account, one can come up with a smaller linear program
than that given in past work [4] that often, but not always, leads to a fast solution. The
SemiHOP algorithm presented in [4] also proposes a reduction in number of variables
in the resulting linear program by defining equivalence classes of worlds. However,
that algorithm base the equivalence classes on co-occurrence of worlds in constraints,
whereas the equivalence classes that arise here are purely a consequence of the input
provided by the user through the set Q of actions that are interesting to him.

We have developed the RefineCons algorithm, and a Monte Carlo approach and con-
ducted experiments showing that the latter works efficiently in practice. It remains to be
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seen what the accuracy of the Monte Carlo approach is, and whether it can be improved
using the heuristics presented here.
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Abstract. In probabilistic logic programming, given a query, either a probability
interval or a precise probability obtained by using the maximum entropy prin-
ciple is returned for the query. The former can be noninformative (e.g., interval
[0, 1]) and the reliability of the latter is questionable when the priori knowledge
is imprecise. To address this problem, in this paper, we propose some methods to
quantitatively measure if a probability interval or a single probability is sufficient
for answering a query. We first propose an approach to measuring the ignorance
of a probabilistic logic program with respect to a query. The measure of igno-
rance (w.r.t. a query) reflects how reliable a precise probability for the query can
be and a high value of ignorance suggests that a single probability is not suitable
for the query. We then propose a method to measure the probability that the exact
probability of a query falls in a given interval, e.g., a second order probability. We
call it the degree of satisfaction. If the degree of satisfaction is high enough w.r.t.
the query, then the given interval can be accepted as the answer to the query. We
also provide properties of the two measures and use an example to demonstrate
the significance of the measures.

1 Introduction

Probabilistic logic programming is a framework to represent and reason with imprecise
(conditional) probabilistic knowledge. An agent’s knowledge is represented by a proba-
bilistic logic program (PLP) which is a set of (conditional) logical formulae with prob-
ability intervals. The impreciseness of the agent’s knowledge is explicitly represented
by assigning a probability interval to every logical formula (representing a conditional
event) indicating that the probability of a formula shall be in the given interval.

Given a PLP and a query against the PLP, traditionally, a probability interval is re-
turned as the answer. This interval implies that the true probability of the query shall be
within the given interval. However, when this interval is too wide, it provides no useful
information. For instance, if a PLP contains knowledge {(fly(X)|bird(X)[0.98, 1],
(bird(X)|magpie(X))[1, 1]}, then the answer to the query Can a magpie fly? (i.e.,
?(fly(t)|magpie(t))) is a trivial bound [0, 1].

S. Greco and T. Lukasiewicz (Eds.): SUM 2008, LNAI 5291, pp. 386–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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One way to enhance the reasoning power of a PLP is to apply the maximum entropy
principle [1]. Based on this principle, a single probability distribution is selected and
it is assumed to be the most acceptable one for the query among all possible proba-
bility distributions. As a consequence, a precise probability is given for a query even
when the agent’s original knowledge is imprecise. In the above example, by applying
the maximum entropy principle, 0.98 is returned as the answer for the query. Intuitively,
accepting a precise probability from (a prior) imprecise knowledge can be risky. When
an agent’s knowledge is rich enough then a single probability could be reliable, how-
ever, when an agent’s knowledge is (very) imprecise, an interval is more appropriate
than a single probability.

Therefore, in probabilistic logic programming as well as other conditional proba-
bilistic logics, there is a question that has not been fully investigated, that is, how useful
is a probabilistic logic program (PLP) to answering a given query? This question is
important in two ways: first, it helps to analyze if a PLP is adequate to answer a query
and second, if a PLP is sufficiently relevant to a query, then shall a single probability
be obtained or shall a probability interval be more suitable? If it is an interval that is
more suitable, then how can we get a more meaningful interval (which is satisfactory to
certain extent), rather then a loose bound?

To answer the above questions, in this paper, we propose two concepts, the measure
of ignorance and the measure of the degree of satisfaction, w.r.t. a PLP and a query. The
former analyzes the impreciseness of the PLP w.r.t. the query, and the latter measures
which (tighter) interval is sufficiently reliable to answer the query.

The main contributions of this paper are as follows. First, we propose a general
framework which formally defines the measure of ignorance and the measure of the de-
gree of satisfaction, and the postulates for these two measures. We also provide several
consequence relations based on the degree of satisfaction. Second, by using the di-
vergence of probabilistic distribution, we instantiate our framework, and show that the
measure of ignorance and the measure of the degree of satisfaction have many desirable
properties and provide much useful information about a PLP w.r.t. a query. Third, we
prove that our framework is an extension of both reasoning on probabilistic logic pro-
gram and reasoning under the maximum entropy principle. Fourth, we prove that these
measures can be viewed as a second-order probability. More specifically, a high level
of ignorance means a high probability about the given PLP (the agent’s knowledge)
is towards total absence of knowledge. The degree of satisfaction is the second-order
probability about the actual probability for a conditional event given in the query falls
in the given interval (provided in the query).

This paper is organized as follows. A brief review of probabilistic logic programming
is given in Section 2. In Section 3, we formally analyze probabilistic logic programming
and the maximum entropy principle, and provide our general framework. In Section 4,
we give instantiations of the framework. We then use an example to demonstrate the
significance of the measures in Section 5. Finally, we compare our approach with related
work and conclude the paper in Section 6.

2 Probabilistic Logic Programming

We briefly review conditional probabilistic logic programming here [2,3].
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We use Φ to denote the finite set of predicate symbols and constants symbols, V to
denote the set of object variables, and B to denote the set of bound constants which
describe the bound of probabilities and bound constants are in [0,1]. We use a, b, . . . to
denote constants from Φ and X,Y . . . to denote object variables from V . An object term
t is a constant from Φ or an object variable from V . An atom is of the form p(t1, . . . , tk),
where p is a predicate symbol and t1, . . . , tk are object terms. We use Greek letters
φ, ϕ, ψ, . . . to denote events (or formulae) which are obtained from atoms by logic
connectives ∧,∨,¬ as usual. A conditional event is of the form (ψ|φ) where ψ and φ
are events, and φ is called the antecedent and ψ is called the consequent. A probabilistic
formula, denoted as (ψ|ϕ)[l, u], means that the probability of conditional event ψ|ϕ is
between l and u, where l, u are bound constants. A set of probabilistic formulae is called
a conditional probabilistic logic program (PLP), a PLP is denoted as P in the rest of
the paper.

A ground term, (resp. event, conditional event, probabilistic formula, or PLP) is a
term, (resp. event, conditional event, probabilistic formula, or PLP) that does not con-
tain any object variables in V .

All the constants in Φ form the Herbrand universe, denoted as HUΦ, and the Her-
brand base, denoted as HBΦ, is the finite nonempty set of all atoms constructed from
the predicate symbols in Φ and constants in HUΦ. A subset I of HBΦ is called a pos-
sible world and IΦ is used to denote the set of all possible worlds over Φ. A function
σ that maps each object variable to a constant is called an assignment. It is extended to
object terms by σ(c) = c for all constant symbols from Φ. An event ϕ satisfied by I
under σ, denoted by I |=σ ϕ, is defined inductively as:

• I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I ;
• I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;
• I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
• I |=σ ¬φ iff I �|=σ φ

An event ϕ is satisfied by a possible world I , denoted by I |=cl ϕ, iff I |=σ ϕ for all
assignments σ. An event ϕ is a logical consequence of event φ, denoted as φ |=cl ϕ, iff
all possible worlds that satisfy φ also satisfy ϕ.

In this paper, we use ! to represent (ground) tautology, and we have that I |=cl !
for all I and all assignments σ. And we use ⊥ to denote ¬!.

If Pr is a function (or distribution) on IΦ (i.e., as IΦ is finite, Pr is a mapping
from IΦ to the unit interval [0,1] such that

∑
I∈IΦ

Pr(I) = 1), then Pr is called a
probabilistic interpretation. For an assignment σ, the probability assigned to an event ϕ
by Pr, is denoted as Prσ(ϕ) where Prσ(ϕ) =

∑
I∈IΦ,I|=σϕ Pr(I). When ϕ is ground,

we simply write it as Pr(ϕ). When Prσ(φ) > 0, the conditional probability,Prσ(ψ|φ),
is defined as Prσ(ψ|φ) = Prσ(ψ ∧ φ)/Prσ(φ). When Prσ(φ) = 0, Prσ(ψ|φ) is
undefined. Also, when (ψ|φ) is ground, we simply written as Pr(ψ|φ).

A probabilistic interpretation Pr satisfies or is a probabilistic model of a proba-
bilistic formula (ψ|φ)[l, u] under assignment σ, denoted as Pr |=σ (ψ|φ)[l, u], iff
u ≥ Prσ(ψ|φ) ≥ l or Prσ(φ) = 0. A probabilistic interpretation Pr satisfies or is a
probabilistic model of a probabilistic formula (ψ|φ)[l, u] iff Pr satisfies (ψ|φ)[l, u] un-
der all assignments. A probabilistic interpretation Pr satisfies or is a probabilistic model
of a PLP P iff for all assignment σ, ∀(ψ|φ)[l, u] ∈ P, Pr |=σ (ψ|φ)[l, u]. A probabilis-
tic formula (ψ|ϕ)[l, u] is a consequence of the PLP P , denoted by P |= (ψ|ϕ)[l, u],
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iff all probabilistic models of P satisfy (ψ|ϕ)[l, u]. A probabilistic formula (ψ|ϕ)[l, u]
is a tight consequence of P , denoted by P |=tight (ψ|ϕ)[l, u], iff P |= (ψ|ϕ)[l, u],
P 	|= (ψ|ϕ)[l, u′], P 	|= (ψ|ϕ)[l′, u] for all l′ > l and u′ < u (l′, u′ ∈ [0, 1]). It is
worth noting that if P |= (φ|!)[0, 0] then P |= (ψ|φ)[1, 0] where [1, 0] stand for the
empty set.

A query is of the form ?(ψ|φ) or ?(ψ|φ)[l, u], where ψ and φ are ground events and
l, u ∈ [0, 1]. For query ?(ψ|φ), by the tight consequence relation, a bound [l, u] is given
as the answer, such that P |=tight (ψ|φ)[l, u]. For query ?(ψ|φ)[l, u], a bound [l, u] is
given by the user. A PLP returns True (or Yes) if P |= (ψ|φ)[l, u] and False (or No) if
P 	|= (ψ|φ)[l, u] [3].

The principle of maximum entropy is a well known techniques to represent
probabilistic knowledge. Entropy quantifies the indeterminateness inherent to a dis-
tribution Pr by H(Pr) = −ΣI∈IΦPr(I) logPr(I). Given a logic program P , the
principle of maximum entropy model (or me-model), denoted by me[P ], is defined as:
H(me[P ]) = maxH(Pr) = maxPr|=P −ΣI∈IΦPr(I) logPr(I).

me[P ] is the unique probabilistic interpretation Pr that is a probabilistic model of
P and that has the greatest entropy among all the probabilistic models of P .

Let P be a ground PLP, we say that (ψ|ϕ)[l, u] is a me-consequent of P , denoted by
P |=me (ψ|ϕ)[l, u], iff P is unsatisfiable, or me[P ] |= (ψ|ϕ)[l, u].

We say that (ψ|ϕ)[l, u] is a tight me-consequent of P , denoted by P |=me
tight

(ψ|ϕ)[l, u], iff either P is unsatisfiable, l = 1, u = 0, or P |= ⊥ ← ϕ, l = 1,
u = 0, or me[P ](ϕ) > 0 and me[P ](ψ|ϕ) = l = u.

3 General Framework

Example 1. Let P be a PLP:

P =
{

(fly(X)|bird(X))[0.9, 1], (bird(X)|magpie(X))[1, 1]
(sickMagpie(X)|magpie(X))[0, 0.1], (magpie(X)|sickMagpie(X))[1, 1]

}
From P , we can infer that P |=tight (fly(t)|magpie(t))[0, 1],
P |=tight (fly(t)|sickmagpie(t))[0, 1], P |=me

tight (fly(t)|magpie(t))[0.9, 0.9], and
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

In the above example, we get the same answers for queries on the proportions that
magpies and sick magpies can fly. Since the proportion of sick magpies in birds is
smaller than the proportion of magpies in birds, the knowledge about birds can fly
should be more cautiously applied to sick magpies than magpies. In other words, the
statement that more than 90% birds can fly is more about magpies than sick magpies.
Therefore, to accept that 90% magpies can fly is more rational than to accept 90% sick
magpies can fly. However, this analysis can not be obtained directly from comparing
the bounds inferred from P .

In this section, we provide a framework to measure the ignorance of a PLP w.r.t. a
conditional event and the degree of satisfaction for a conditional event with a user-given
bound under a PLP.
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Definition 1 (Ignorance). Let PL be the set of all PLPs and E be a set of conditional
events. Function IG : PL × E 3→ [0, 1] is called a measure1 of ignorance, iff for any
PLP P and conditional event (ψ|φ) it satisfies the following postulates

[Bounded] IG(P, ψ|φ) ∈ [0, 1].
[Preciseness] IG(P, ψ|φ) = 0 iff P |=tight (ψ|φ)[u, u] for some u ∈ [0, 1] or P |= ⊥ ← φ.
[Totally Ignorance] IG(∅, ψ|φ) = 1, if �|=cl φ → ψ and �|=cl φ → ¬ψ.
[Sound] If IG(P, ψ|φ) = 1 then P |= (ψ|φ)[l, u] iff ∅ |= (ψ|φ)[l, u].
[Irrelevance] If P and another PLP P ′ do not contain common syntaxes, i.e.Φ ∩ Φ′ = ∅,

then IG(P, ψ|φ) = IG(P ∪ P ′, ψ|φ), where P and P ′ are defined over Φ and Φ′ respectively.

For simplicity, we use IGP (ψ|φ) to denote IG(P, ψ|φ) for a given PLP P and (ψ|φ).
Value IGP (ψ|φ) defines the level of ignorance about (ψ|φ) from P .

If P = ∅, only tautologies can be inferred from P . Therefore, from any PLP P ,
IGP (ψ|φ) ≤ IG∅(ψ|φ), which means that an empty PLP has the biggest ignorance value
for any conditional event. When IGP (ψ|φ) = 0, event (ψ|φ) can be inferred precisely
from P , since a single precise probability for (ψ|φ) can be obtained from P .

Definition 2 (Degree of Satisfaction). Let PL be the set of all PLPs and F be a set of
probabilistic formulae. Function SAT : PL×F 3→ [0, 1] is called a measure of degree
of satisfaction iff for any PLP P and ground probabilistic formula μ = (ψ|φ)[l, u], it
satisfies the following postulates:

[Reflexive] SAT(P, μ) = 1, iff P |= μ.
[Rational] SAT(P, μ) = 0 if P ∪ {μ} is unsatisfiable.
[Monotonicity] SAT(P, μ) ≥ SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊆ [l, u].

SAT(P, μ) > SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊂ [l, u] and SAT(P, (ψ|φ)[l′, u′]) < 1.
[Cautious Monotonicity] Let P ′ = P ∪ {(ψ|φ)[l′, u′]}, where P |=me (ψ|φ)[l′, u′]

Then SAT(P ′, μ) ≥ SAT(P, μ).

For simplicity, we use SATP (μ) to denote SAT(P, μ).
The reflexive property says that every consequence is totally satisfied. Rational says

that 0 is given as the degree of satisfaction of an unsatisfiable probabilistic formula.
Monotonicity says that if we expect a more precise interval for a query, then the chance
that the exact probability of the query is not in the interval is getting bigger. Cautious
monotonicity says that, if P and P ′ are equivalent except for the bound of (ψ|φ), and
P ′ contains more knowledge about (ψ|φ), then the degree of satisfaction of (ψ|φ)[l, u]
under P ′ should be bigger than that of (ψ|φ)[l, u] under P .

Proposition 1. Function SAT is consistent with the maximum entropy principle, that
is, it satisfies the following conditions for any PLP P and any conditional event (ψ|φ)
with P 	|= ⊥ ← φ and l, u ∈ [0, 1].

1 In mathematical analysis, a measure m : 2S �→ [0,∞] is a function, such that
1) m(E1) ≥ 0 for any E ⊆ S
2) m(∅) = 0
3) If E1, E2, E3, . . . is a countable sequence of pairwise disjoint subsets of S, the measure of
the union of all the Ei’s is equal to the sum of the measures of each Ei, that is,
m(
⋃∞

i=1 Ei) =
∑∞

i=1 m(Ei).
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SATP ((ψ|φ)[l, u])

{
= 0 if P |=me (ψ|φ)[l′, l′], l′ /∈ [l, u]
> 0 if P |=me (ψ|φ)[l′, l′], l′ ∈ [l, u]

For a query ?(ψ|φ)[l, u], when SATP ((ψ|φ)[l, u]) < 1 it means that the exact probabil-
ity of (ψ|φ) in [l, u] could be wrong based on the knowledge in P .

In our framework, given a PLP P , a conditional event (ψ|φ), and a probabilistic for-
mula (ψ|φ)[l, u], the ignorance value IGP (ψ|φ) and the degree of satisfaction SATP (μ)
reveal different aspects of the impreciseness of the knowledge in P w.r.t. (ψ|φ) and
(ψ|φ)[l, u]. The former says how much this P can tell about (ψ|φ) and the latter says
to what degree a user can be satisfied with the bound [l, u] with (ψ|φ).

Proposition 2. Let P be a PLP and (ψ|φ) be a conditional event. If IGP (ψ|φ) = 0
then SATP ((ψ|φ)[l, l]) = 1 for some l ∈ [0, 1].

Definition 3. Let SATP (μ) be the degree of satisfaction for a PLP P and μ =
(ψ|φ)[l, u] be a probabilistic formula. We define two consequence relations as

P |=SAT≥w μ iff SATP (μ) ≥ w,
P |=SAT≥w

tight μ iff P |=SAT≥w μ and P �|=SAT≥w (ψ|φ)[l′, u′] for every [l′, u′] ⊂ [l, u].

Proposition 3. Let SATP (μ) be the degree of satisfaction for a PLP P and a proba-
bilistic formula μ = (ψ|φ)[l, u], then

P |= μ iff P |=SAT=1 μ
P |=tight μ iff P |=SAT=1

tight μ

If SAT is also consistent with the maximum entropy principle, then
P |=me

tight μ iff limε→0+ P |=SAT≥ε
tight μ

In this proposition, we use SATP (μ) = 1 instead of SATP (μ) ≥ 1, since the degree of
satisfaction cannot be bigger than 1.

The above proposition says that our framework is a generalization of PLP under its
original semantics as well as under the maximum entropy principle. That is, the classical
consequence relations |= and |=tight are too cautious - they are equivalent to requiring
the degree of satisfaction of μ w.r.t P to be 1, which means that the true probability of
(ϕ|φ) must fall in the bound [l, u]. On the other hand, the reasoning under the maximum
entropy principle (|=me

tight) is credulous – it excludes all the other possible probability
distributions except for the most possible one.

Given a query ?(ϕ|φ)[l, u] against a PLP P , the degree of satisfaction SATP (μ)
tells the probability that p(ϕ|φ) ∈ [l, u]. For a query ?(ϕ|φ), the bound [l, u] re-
turned by P |=tight (ψ|φ)[l, u] may be noninformative as discussed above. In our
framework, we provide three ways to generate a more informative interval [l′, u′] with
SATP ((ϕ|φ)[l′, u′]) ≥ a, where a is threshold given by the user. First, a user may want
to know the highest acceptable lower bound, so the lower bound is increased from 0
to l′ until SATP ((ϕ|φ)[l′, u]) ≥ a holds. Second, a user may want to know the lowest
upper bound, so u is decreased to be u′ until SATP ((ϕ|φ)[l, u′]) ≥ a is true. Third, a
user may want to create an interval [l′, u′] around me[P ], the precise probability given
by the maximum entropy principle, where SATP ((ϕ|φ)[l′, u′]) ≥ a holds. To formalize
these three scenarios, we define three consequence relations |=SAT≥a

maxLow, |=SAT≥a
minUp and

|=SAT≥a
aroundMe for them respectively as
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– P |=SAT≥a
maxLow (ψ|φ)[l′, u] iff P |=SAT≥a (ψ|φ)[l′, u] where P |=tight [l, u], and l′ > l

– P |=SAT≥a
minUp (ψ|φ)[l, u′] iff P |=SAT≥a

tight (ψ|φ)[l, u′], where P |=tight [l, u] and u > u′

– P |=SAT≥a
aroundMe (ψ|φ)[l′, u′] iff P |=SAT≥a

tight (ψ|φ)[l′, u′] where P |=tight (ψ|φ)[l, u], and
∃b ≥ 0, P |=me

tight [m, m], l′ = max{l, m − b}, u′ = min{u, m + b}

Example 2. Let P = {(fly(t)|bird(t))[0.90, 1], (bird(t)|magpie(t))[1, 1]} be a PLP.
From P , we can only infer that P |=tight (fly(t)|magpie(t))[0, 1], and P |=me

tight

(fly(t)|magpie(t))[0.9, 0.9]. As discussed above, the bound [0, 1] is meaningless and
there is not enough knowledge to infer that exactly 90% magpies can fly. In reality,
taking [0.9, 0.9] as the answer for this query is too risky, and there is no need to get
a precise probability for the query. A more informative interval [l, u] then [0, 1] would
be useful. Assume that a user is happy when there is a 80% (i.e. a = 0.8) chance that
the actual probability of the query is in [l, u], then we are able to use the above three
consequence relations to get the following

P |=SAT≥0.8
maxLow (fly(t)|magpie(t))[0.7, 1]

P |=SAT≥0.8
minUp (fly(t)|magpie(t))[0, 0.96]

P |=SAT≥0.8
aroundMe (fly(t)|magpie(t))[0.7, 1]

From the highest lower bound 0.7, the user can assume that a magpie very likely can fly.
The user should not think that all magpies can fly either, since the lowest upper bound
0.96 is less than 1. The bound [0.7, 1] gives an estimate for the probability of a magpie
can fly.

In our framework, the user can calculate the degree of satisfaction for a query with a
user-given bound, and the user can also calculate the tightest bound for a query s.t. the
degree of satisfaction w.r.t. this bound is greater than a user-given threshold.

4 Instantiating the Framework

In this section, we provide an instantiation of our framework by defining a specific igno-
rance function and a satisfaction function. But first, we define a quasi-distance between
probability distributions based on Kullback-Leibler divergence (KL-divergence) [4].

One of the most common measures of distance between probability distributions is
the KL-divergence.

Definition 4. Let Pr and Pr′ be two probability distributions over the same set of
interpretations IΦ. The KL-divergence between Pr and Pr′ is defined as:

KL(Pr‖Pr′) = −ΣI∈IΦPr(I) log
Pr′(I)
Pr(I)

KL-divergence is asymmetric and is also called relative entropy. It is worth noting that
KL(Pr, Pr′) is undefined if Pr′(I) = 0 and Pr(I) 	= 0. This means that Pr has to be
absolutely continuous w.r.t. Pr′ for KL(Pr‖Pr′) to be defined.
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4.1 Measurable Space

In this subsection, we first define a measurable space, in which we can measure how
wide a set of probability distributions is.

Let PrΦ be the set of all probability distributions on the set of interpretations IΦ. Let
Pr1 and Pr2 be two subsets of PrΦ, Pr1 and Pr2 are separated if each is disjoint from
the other’s closure 2. A subset Pr of PrΦ is called inseparable if it cannot be partitioned
into two separated subsets. Empty set ∅ is defined as inseparable. For example, the
intervals [0, 0.3], [0.4, 1] are separated and each of them is inseparable in the set of real
numbersR. Obviously, any subset Pr can be partitioned into a set of inseparable sets.
Formally, there exists Pr1,Pr2, . . ., such that every Pri is inseparable, Pri ∩ Prj =
∅ (i 	= j), and Pr =

⋃
i Pri.

It is worth noting that, the set of all probabilistic models for a PLP is a convex set,
which is an inseparable set. So, we only need to define a measurable space over all
inseparable sets.

Definition 5. Let (ψ|φ) be a conditional event and Pr be a subset of PrΦ. Suppose
that Pr is inseparable, l = infPr∈Pr Pr(ψ|φ), and u = supPr∈Pr Pr(ψ|φ). We define
δub : 2PrΦ ×F → [0, 1] and δlb : 2PrΦ ×F → [0, 1] as

δub(Pr, (ψ|φ)) = min
Pr ∈ Pr Pr |= (ψ|φ)[u, u]

KL(Pr||Prunif )

δlb(Pr, (ψ|φ)) = min
Pr ∈ Pr Pr |= (ψ|φ)[l, l]

KL(Pr||Prunif )

where Prunif is the uniform distribution on IΦ.
If Pr(φ) = 0 for all Pr ∈ Pr, we define δub(Pr, (ψ|φ)) = δlb(Pr, (ψ|φ)) = 0.

For simplicity, we use δub
Pr(ψ|φ) to denote δub(Pr, (ψ|φ)) and use δlb

Pr(ψ|φ) to denote
δlb(Pr, (ψ|φ)).

Value δub
Pr(ψ|φ) (resp. δlb

Pr(ψ|φ)) measures how much additional information needs
to be added to the uniform distribution in order to infer the upper (resp. lower) bound
of the conditional event (ψ|φ) given subset Pr.

Definition 6. Let Pr be an inseparable subset of PrΦ and (ψ|φ) be a conditional event
defined on Φ. Let PrIS contains all the inseparable subsets of PrΦ. We define ϑψ|φ :
PrIS 3→ [0, 1] as ϑψ|φ(Pr) = sign(p − u) ∗ δub

Pr(ψ|φ) − sign(p − l) ∗ δlb
Pr(ψ|φ),

where p = Prunif (ψ|φ), l = minPr∈Pr Pr(ψ|φ) and u = maxPr∈Pr Pr(ψ|φ). Here,
sign : R 3→ R is defined as sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.

In the above definition, if Pr(φ) = 0 for all Pr ∈ Pr, then we canonically define
ϑψ|φ(Pr) = 0 since δub

Pr(ψ|φ) = δlb
Pr(ψ|φ) = 0.

Let σΦ denote the smallest collection such that σΦ contains all the inseparable subsets
of PrΦ and it is closed under complement and countable unions of its members. Then,
〈PrΦ, σΦ〉 is a measurable space over the set PrΦ. Obviously, PrΦ ∈ σΦ, and if Pr =
{Pr | Pr |= P} for any PLP P , then Pr ∈ σΦ.

We extend function ϑψ|φ to the members of σΦ.

2 The closure of a set S is the smallest closed set containing S.
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Definition 7. Let Pr be a member of σΦ and (ψ|φ) be a conditional event. Define
ϑψ|φ : σΦ 3→ [0, 1] as ϑψ|φ(Pr) =

∑
Pri∈P ϑ(ψ|φ)Pri where P is a partition of Pr

such that each element of P is inseparable.

Informally, value ϑ(ψ|φ)(Pr) measures how wide the probability distributions in Pr
is when inferring ψ given φ. For example, when all the distributions in Pr assign the
same probability for the conditional event (ψ|φ), then the set Pr is acting like a single
distribution when inferring ψ given φ, and Pr has width 0 for inferring ψ given φ.

From the definition, we know that function ϑ(ψ|φ) is a measure. Since it is a measure,
we can define a probability distribution based on it, and we show that this probability
distribution can be used as an instantiation of ignorance in the next subsection.

4.2 Instantiation of Ignorance

Definition 8. Let P be a PLP and (ψ|φ) be a conditional event. Then a KL-divergence

based ignorance, denoted IGKL
P (ψ|φ), is defined as IGKL

P (ψ|φ) = ϑ(ψ|φ)(Pr)

ϑ(ψ|φ)(PrΦ) , when

ϑ(ψ|φ)(PrΦ) > 0, where Pr = {Pr | Pr |= P}. And we define IGKL
P (ψ|φ) = 0 when

ϑ(ψ|φ)(PrΦ) = 0.

Since ϑψ|φ is a measure, IGKL
P is an uniform probability distribution. Therefore,

IGKL
P (ψ|φ) is the probability that a randomly selected probability distribution from

set PrΦ assigns ψ|φ a probability value that is in the interval [l, u], where P |=tight

(ψ|φ)[l, u]. If this probability is close to 1, then reasoning on P is similar to reasoning
on an empty PLP; when it is close to 0, it indicates that a tighter bound for (ψ|φ) can
be inferred from P .

Proposition 4. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that
P |=tight (ψ|φ)[l, u] and pm = me[P ](ψ|φ). Then IGKL

P (ψ|φ) = IGKL
P1

(ψ|φ) +
IGKL

P2
(ψ|φ), where P1 = P ∪ {(ψ|φ)[pm, u]}, P2 = P ∪ {(ψ|φ)[l, pm]}.

This proposition says that the ignorance of a PLP about a conditional event is the sum of
the ignorance of lacking knowledge supporting probability distributions above and be-
low the maximum entropy probability. The ignorance can also be calculated according
to maximum entropy as below.

Proposition 5. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that
P |=tight (ψ|φ)[l, u], ∅ |=me

tight (ψ|φ)[pme, pme], and Pr = {Pr | Pr |= P}, then
ϑ(ψ|φ)(Pr) = sign(u−pme)∗maxPr|=P u H(Pr)−sign(l−pme)∗maxPr|=P l H(Pr)
where Pu = P ∪ {(ψ|φ)[u, u]} and P l = P ∪ {(ψ|φ)[l, l]}.

4.3 Instantiation of Satisfaction Function

Given a PLP P , a set of probability distributions can be induced such that Pr = {Pr |
Pr |= P} and a unique probability distribution me[P ] in the set that has maximum
entropy can be determined. In Pr, some distribution is likely to be the actual proba-
bility distribution. Based on the maximum entropy principle, me[P ] is the most likely



Measuring the Ignorance and Degree of Satisfaction 395

one, and the probability me[P ](ψ|φ) is the most likely probability for the event (ψ|φ).
Intuitively, the probability value that is closer to me[P ](ψ|φ) is more likely to be the
actual probability of (ψ|φ). Based on this, an interval that contains values closer to
me[P ](ψ|φ) are more likely to contain the actual probability of (ψ|φ). Of course, a
loose interval is always more likely to contain the actual probability of (ψ|φ) than a
tight interval.

From the KL-divergence, we can define how close a value is to me[P ] as:

νpos
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me), where v ≥ me[P ]

νneg
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me), where v ≤ me[P ]

dispos
P,(ψ|φ)(u, v) = |νpos

P,(ψ|φ)(u) − νpos
P,(ψ|φ)(v)|

disneg
P,(ψ|φ)(u, v) = |νneg

P,(ψ|φ)(u) − νneg
P,(ψ|φ)(v)|

Let dis be dispos
P,(ψ|φ) (resp. disneg

P,(ψ|φ)). It is easy to see that dis is a distance function

on R[pme,u] (resp. R[l,pme]), where P |=tight (ψ|φ)[l, u], pme = me[P ](ψ|φ) and
R[a,b] = {x | x ∈ [a, b], x ∈ R}, i.e. dis satisfies the following:

• dis(u, v) ≥ 0
• dis(u, v) = 0 iff u = v
• dis(u, v) = dis(v, u)
• dis(u, v) ≤ dis(u, x) + dis(x, v)

Again, from the distance functions dispos
P,(ψ|φ) and disneg

P,(ψ|φ), a probability distribution
can be defined. So, by KL-divergence, the possible probabilities of a conditional event
(ψ|φ) are measurable. Consider every probability is equally possible, then the (second
order) probability that the actual (first order) probability of (ψ|φ) falls in an interval
[a, b] is the length of [a, b] divided by the length of [l, u], where P |=tight (ψ|φ)[l, u],
according to the distance function dispos

P,(ψ|φ) and disneg
P,(ψ|φ). Formally, we define the

degree of satisfaction as this second order probability:

Definition 9. Let P be a PLP and (ψ|φ) be a conditional event. Suppose that P |=tight

(ψ|φ)[l, u] and P |=me
tight (ψ|φ)[pme, pme], then we have that:

SATKL
P ((ψ|φ)[a, b]) ={

0.5(
dispos

P,(ψ|φ)(pme,min(u,b))

dispos
P,(ψ|φ)(pme,u)

+
disneg

P,(ψ|φ)(pme,max(a,l))

disneg
P,(ψ|φ)(pme,l)

), if pme ∈ [a, b]

0, otherwise

Proposition 6. Let P be a PLP, then the function SATKL
P defined in Definition 9 sat-

isfies all the postulates in Definition 2, and it is consistent with the maximum entropy
principle, that is, it satisfies the conditions in Proposition 1.

5 Examples

We illustrate the usefulness of our framework with two examples.
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Example 3. Let P be a PLP as given in Example 1. In our framework, we calculate the
KL-ignorance and KL-satisfaction for our queries. We have IGKL

(fly(t)|magpie(t)(P ) =
0.11 and IGKL

(fly(t)|sickMagpie(t))(P ) = 0.0283. This indicates that P is more useful
to infer the proportion of magpies that can fly than to infer the proportion of sick
magpies that can fly. We also have that SATKL

P ((fly(t)|magpie(t))[0.8, 1]) = 0.58,
SATKL

P ((fly(t)|sickMagpie(t))[0.8, 1]) = 0.53. By comparing these KL degrees of
satisfaction, we know that magpies are more likely to fly than sick magpies.

Example 4 (Route planning). [1]. Assume that John wants to pick up Mary after she
stopped working. To do so, he must drive from his home to her office. Now, John has
the following knowledge at hand: Given a road (ro) from R to S, the probability that he
can reach (re) S from R without running into a traffic jam is greater than 0.7. Given a
road in the south (so) of the town, this probability is even greater than 0.9. A friend just
called him and gave him advice (ad) about some roads without any significant traffic.
Clearly, if he can reach S from T and T from R, both without running into a traffic
jam, then he can also reach S from R without running into a traffic jam. Furthermore,
John has some concrete knowledge about the roads, the roads in the south of the town,
and the roads that his friend was talking about. For example, he knows that there is a
road from his home (h) to the university (u), from the university to the airport (a), and
from the airport to Mary’s office (o). Moreover, John believes that his friend was talking
about the road from the university to the airport with a probability between 0.8 and 0.9
(he is not completely sure about it, though). The above and some other probabilistic
knowledge is expressed by the following PLP P:

P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ro(h, u)[1, 1], ro(u, a)[1, 1], ro(a, o)[1, 1],
ad(h, u)[1, 1], ad(u, a)[0.8, 0.9], so(a, o)[1, 1],
(re(R,S)|ro(R,S))[0.7, 1], (re(R,S)|ro(R, S) ∧ so(R, S))[0.9, 1],
(re(R,S)|ro(R,S) ∧ ad(R,S))[1, 1],
(re(R,S)|re(R,T ) ∧ re(T,S))[1, 1]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
John wants to know the probability of him running into a traffic jam, which can be
expressed by the query: Q0 =?(re(h, o)|!).

In [1], Q0 can be answered by P |=tight (re(h, o)|!)[0.7, 1], and by P |=me
tight

(re(h, o)|!)[0.93, 0.93]. The user can either accept a noninformative bound [0.7, 1] or
accept a unreliable precise probability 0.93, and no further reasoning can be done.

Using our method, we can get that IGKL
P (re(h, o)|!) = 0.066. The ignorance

value IGKL
P (re(h, o)|!) indicates that the knowledge is reliable about (re(h, o)|!).

However, the actual probability of (re(h, o)|!) may be still different from 0.93, since
IGKL

P (re(h, o)|!) > 0.
John is wondering whether he can reach Mary’s office from his home, such that the

probability of him running into a traffic jam is smaller than 0.10. This can be expressed
by the following probabilistic query: Q1 =?(re(h, o)|!)[0.90, 1]. John is also wonder-
ing whether the probability of him running into a traffic jam is smaller than 0.10, if his
friend was really talking about the road from the university to the airport. This can be
expressed as a probabilistic query: Q2 =?(re(h, o)|ad(u, a))[0.90, 1].

In [1], in the traditional probabilistic logic programming both Q1 and Q2 are given
the answer “No”; by applying the maximum entropy principle Q1 is given the answer
“No” and Q2 is given the answer “Yes”. For Q1 John will accept the answer “No”,
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Table 1. Degrees of satisfaction for queries Q1 and Q2

Bound (re(h, o)|�) Bound (re(h, o)|ad(u, a))

[0, 1] 1 [0, 1] 1
...

...
...

...
[0.70, 1] 1 [0.88, 1] 1
[0.75, 1] 0.785 [0.897, 1] 0.75
[0.80, 1] 0.658 [0.922, 1] 0.60
[0.86, 1] 0.500 [0.94, 1] 0.50
[0.90, 1] 0.000

however, for Q2, John may be confused and does not know which answer he should
trust.

Using our method, we can calculate the degree of satisfaction of these two queries.
For Q1, SATKL

P (Q1) = 0, which means the bound [0.9, 1] does not contain the prob-
ability given by applying the maximum entropy principle, and thus John has no con-
fidence that he can reach Mary’s office on time. For Q2, SATKL

P (Q2) = 0.724, the
relative high value “0.724” can help John to decide whether he should set off to pick up
Mary.

Using our method, John can get an estimation of the probability that he can reach
Mary’s office from his home without running into a traffic jam. If it is a special day for
him and Mary, he hopes that his estimation be more accurate, otherwise, he can tolerate
a less accurate estimation. Formally, he needs to decide the threshold a for |=SAT≥a

maxLow.
For example, for Q2, he may set aN = 0.6 for a normal day, and aI = 0.75 for an
important day. Therefore, he can infer that P |=SAT≥0.6

maxLow (re(h, o)|ad(u, a))[0.922, 1]
and P |=SAT≥0.75

maxLow (re(h, o)|ad(u, a))[0.897, 1]. If it is an ordinary day and the lowest
probability is bigger than 0.90, then he can set off. On an important day, he will need to
investigate more about the traffic (to decrease the ignorance of (re(h, o)|ad(u, a))) or
he has to revise his plan, since 0.897 < 0.9.

On the another hand, we can also analyze the usefulness of the advice from his friend.
By analyzing his friend’s knowledge, we have IGKL

P (re(h, o)|ad(u, a)) = 0.0184. This
means that his friend’s advice is indeed useful, since this ignorance value is significantly
smaller than IGKL

P (re(h, o)|!). So, John needs to call his friend to make sure that his
friend is really talking about the road from the university to the airport.

The degrees of satisfaction for various intervals are given in Table 1. From the table,
we can see that, the degree of satisfaction decreases as the interval becomes tighter.
This means that the second order probability that the actual probability of (ψ|φ) falls in
[l, u] is getting smaller.

6 Related Work and Conclusion

Related work. In recent years there have been a lot of research on integrating logi-
cal programming with probability theory. These probabilistic logic programs have been
studied from different views and have different syntactic forms and semantics, including
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conditional probabilistic logic programming [5,3], causal probabilistic logic program-
ming [6,7,8], success probabilistic logic programming [9,10], and some others [11].

In causal probabilistic logic programming [6,7], a rule pr(a|φ) = v is intuitively
interpreted as a is caused by factors determined by φ with probability v. A causal prob-
ability statement implicitly represents a set of conditional independence assumptions:
given its cause C, an effect E is probabilistically independent of all factors except the
(direct or indirect) effects of E (see [6] for detail). Formally, if pr(ψ|φ1) = y1 ∈ P and
pr(ψ|φ2) = y2 ∈ P where y1 	= y2, then no possible world of P satisfies φ1 ∧ φ2.

In [9,10], the real number attached to a rule represents the probability that this rule is
alliable (or satisfiable). In another word, a PLP in this view represents a set of (classical)
logic programs, and the probability of each logic program is decided by all probabilities
of all the rules. Then for any query, the answer is the probability of choosing a classical
logic program from the set that can successfully infer the query. In this formalization,
we can only query about the probability of ψ and cannot query about the probability of
(ψ|φ), since (ψ|φ) is meaningless in classical logic programs.

In [11], the probabilities are attached to atoms, such as: b[0.6, 0.7] ← a[0.2, 0.3],
which means that if the probability of a is in between 0.2 and 0.3 then the probability
of b is in between 0.6 and 0.7. Intuitively, the interpretation of rules is more close to
casuality than conditioning. As a consequence, if we have another rule: b[0.2, 0.3] ←
c[0.5, 0.6], then Pr(a) ∈ [0.2, 0.3] and Pr(c) ∈ [0.5, 0.6] cannot be both true.

In this paper, we focus on the framework of conditional probabilistic logic program-
ming for representing conditional events.

Because of its weakness in reasoning, subclasses cannot inherit the properties of
its superclass in the basic semantics of PLP. For instance, subclass magpie can not
inherit the attribute “can fly” from its superclass bird in Example 1, since P |=tight

(fly(t)|magpie(t))[0, 1]. In [12,13,14], Lukasiewicz provided another method to en-
hance the reasoning power mainly on the issue of inheritance. In this setting, logic
entailment strength λ is introduced. With strength 1, subclasses can completely inherit
the attributes of its superclass; with strength 0 subclasses cannot inherit the attributes
of its superclass; with a strength between 0 and 1, subclasses can partially inherit the
attributes of its superclass. Value strength appears to be similar to the degree of satis-
faction in our framework, but they are totally different. First, λ is not a measurement
for a query, but is given by a user to control the reasoning procedure, in other words,
we cannot know beforehand the strength in order to infer a conclusion. Second, even if
we can use a strength as a measurement, i.e. even if we can obtain the required strength
to infer an expected conclusion, it is not an instance of degree of satisfaction, because
the cautious monotonicity postulate in Definition 2 is not satisfied. Given a PLP P, as-
sume that we can infer both (ψ|φ)[l1, u1] by strength λ = λ1 and (ψ|φ)[l2, u2] by
strength λ = λ2. Now assume that (ψ|φ)[l1, u1] is added to P, however, in order to
infer (ψ|φ)[l2, u2], we still need to have the strength λ = λ2 given. That is, adding
additional information to P does not avoid requiring the strength λ2 if (ψ|φ)[l2, u2] is
to be inferred. In contrast, if we have (ψ|φ)[l1, u1] added in the PLP, then the degree of
satisfaction of (ψ|φ)[l2, u2] will increase.

In [15,16], the authors provided a second order uncertainty to measure the reliability
of accepting the precise probability obtained by applying maximum entropy principle
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as the answer to a query in propositional probabilistic logic. The second order uncer-
tainty for (ψ|φ) and PLP P is defined as (− log l − log u) where P |=tight (ψ|φ)[l, u].
Similarly, we provided ignorance function to measure the usefulness of a PLP to an-
swering a query. If a precise probability for a query is inferred from a PLP P then P
contains full information about the query, and therefore accepting the probability is to-
tally reliable. More precisely, their second order uncertainty is directly computed from
the probability interval of the query inferred from P . In contrast, our ignorance is com-
puted from the PLP, which provides more information than an interval. Therefore, our
measure of ignorance is more accurate in reflecting the knowledge in a PLP.

Conclusion. In this paper, we investigated the issues surrounding how much we can
trust a result for a query given a PLP with imprecise knowledge. We proposed a frame-
work to measure both ignorance and the degree of satisfaction of an answer to a query
under a given PLP. Using the consequence relations provided in this paper, we can get
an informative and reliable interval as the answer for a query or alternatively we know
how much we can trust a single probability. The proofs that our framework is an ex-
tension of both traditional probabilistic logic programming and the maximum entropy
principle (in terms of consequence relations) show that our framework is theoretically
sound.
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