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Abstract. Java-based systems have evolved from stand-alone appli-
cations to multi-component to Service Oriented Programming (SOP)
platforms. Each step of this evolution makes a set of Java vulnerabil-
ities directly exploitable by malicious code: access to classes in multi-
component platforms, and access to object in SOP, is granted to them
with often no control.

This paper defines two taxonomies that characterize vulnerabilities
in Java components: the vulnerability categories, and the goals of the
attacks that are based on these vulnerabilities. The ‘vulnerability cat-
egory’ taxonomy is based on three application types: stand-alone, class
sharing, and SOP. Entries express the absence of proper security features
at places they are required to build secure component-based systems.
The ‘goal’ taxonomy is based on the distinction between undue access,
which encompasses the traditional integrity and confidentiality security
properties, and denial-of-service. It provides a matching between the vul-
nerability categories and their consequences. The exploitability of each
vulnerability is validated through the development of a pair of malicious
and vulnerable components. Experiments are conducted in the context
of the OSGi Platform. Based on the vulnerability taxonomies, recom-
mendations for writing hardened component code are issued.

1 Introduction

Java execution environments evolve from stand alone applications to
component-based systems to Service Oriented Programming (SOP) Platforms [1].
Component-based systems introduce multi-application execution. Service
Oriented Programming (SOP) Platforms add a strong runtime dynamicity of com-
ponent linkage, thus supporting more customizable applications. While new fea-
tures are added, each of these evolutions turns potential vulnerabilities into
directly exploitable flaws. Access to component class represents a first important
threat. It makes class vulnerabilities directly exploitable by other components.
SOP broaden this threat by enabling direct access to objects provided by these
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components, with often no restriction. This makes object vulnerabilities
exploitable. We present a classification of vulnerabilities of components, so as to
help developers identify and mitigate this threat and build secure component-
based systems.

Experiments are conducted on the Java/OSGi SOP Platform [13]. They aim
at identifying vulnerabilities that can actually be exploited by malicious com-
ponents that are installed on a system, as well as additional preconditions. Is
considered as an exploitable vulnerability any feature which use leads to a be-
havior that break explicit or implicit security policies for the system [8].

In most cases, the condition of exploitation is that vulnerabilities must be
present in the code that is made available to other components. This is what we
call Public Code. This concept is introduced in the Parnas and Wang component
model [14], cited by [4].

The following of the paper is organized as follows. Section 2 presents related
works. Section 3 describes the vulnerability categories, and provides the related
taxonomies. The rationale and experiment of this study is provided in Section
4. Section 5 concludes this work.

2 Related Works

As a part of the Java ecosystem, the Java language itself has been designed with
a strong emphasis on security. However, as no system is entirely secure, pitfalls
and behaviors exist that turn out to be actual vulnerabilities, in particular in
the context of multi-component systems and Service Oriented Programming.

2.1 Attack Vectors against the Java/OSGi SOP Platform

Hackers can attack Java/OSGi applications by exploiting two main attack vec-
tors: platform vulnerabilities, and component vulnerabilities. Platform vulnera-
bilities can be exploited to indirectly attack other components. The only
requirement for exploiting them in a default, non secure Java/ OSGi platform
implementation, is to install a bundle that calls dangerous or faulty platform
code. This often implies that it is published in a known bundle repository, and
sometimes that it is signed. A security analysis of the Java/OSGi Platform is
given in [15]. 32 vulnerabilities are identified. They lead to Denial-of-Service
(through platform crash or performance breakdown ) and to undue access to
code. Most vulnerabilities (18 out of 32) are bound with the JVM, such as the
lack of CPU and memory isolation between components, the Runtime API, the
presence of dangerous functionalities such as native code execution, thread cre-
ation, reflection. Others (14 out of 32) are bound with the OSGi Platform itself,
such as bundle fragments, bundle management, and lack of control on Service-
Oriented-Programming. All of these vulnerabilities lead to attacks against the
Platform that can be exploited to harm other components. Other vulnerabilities
are specific to given implementations of the JVM [2], or to specific embedded
platforms such as the CLDC [3].
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Component vulnerabilities can be exploited to directly attack other compo-
nents. They are due to java language properties [7] that can be misused to achieve
a malicious goal.

2.2 Known Vulnerabilities in Java/OSGi Components

After platform vulnerabilities, the second kind of vulnerabilities that can plague
Java-based component systems is the presence of flaws in the components them-
selves. They can be exploited as soon a malicious component can be installed in
a Platform where components share code with each other.

Several works provide hints related to some attacks against Java-based sys-
tems, without taking a systematic approach. Java features that can lead to vul-
nerabilities are presented by Long [12]: type safety limitations, public fields, inner
classes, serialization, reflection, JVM Tool Interface, debugging and management
tools can be exploited to abuse Java-based applications. More weaknesses are
mentioned by the Last Stage of Delirium Research Group [18], such as unsafe
type conversion, class loader attacks, bad implementation of system classes. An-
other specific attack consists in executing arbitrary code through forced type
mismatch [5]. It is based on memory errors that can mainly be forced through
physical access to the machine. These vulnerabilities form the first set of oc-
curences on which our experiments are based.

The first systematic set of candidate vulnerabilities that flaw Java Extensible
Component Platforms is provided by the Findbugs tools Vulnerability List 1 [6].
The Malicious Code Vulnerability category identifies 12 code patterns that can
lead to exposition and modification of object internal data to another potentially
untrusted code element, such as returning references to mutable objects or array
or storing data in class variable that are not properly encapsulated.

The second systematic set of candidates vulnerabilities that flaw Java Ex-
tensible Component Platforms is provided by the ‘Sun Java Security Coding
Guidelines’ [17]. Each guideline matches a code flaw that can be exploited by
untrusted code to perform malicious actions. For instance, abuse of inheritance,
faulty validation and copy of method parameters or returned objects, security
checks by-passing and serialization/de-serialization of sensitive data are refer-
enced. Sun Java Security Coding Guidelines are completed by Charlie Lai’s Java
Insecurity Subtleties [9]. These two lists of vulnerabilities form the second set
of occurences on which our experiments are based. More are detailed in the
Appendix A.1.

These references provide useful support both to train developers and for sup-
porting vulnerability identification through static analysis. However, several crit-
icisms can be issued. First, none of these works provides a classification that is
structured or complete. Secondly, they do not provide information relative to the
exploitability of these vulnerabilities: are they present but harmless, or is any
installed component able to exploit them all with little to no additional effort?

1 http://findbugs.sourceforge.net/bugDescriptions.html
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3 Vulnerabilities in SOP Platforms

Vulnerabilities in Java/OSGi components pertain to three categories: Stand-
Alone components, Class Sharing, and Object Sharing. The last category is
made exploitable by the Service Oriented Programming (SOP) paradigm. Two
taxonomies characterize at best their properties: Categories of the vulnerabil-
ities, and goals of attacks that exploit them. These taxonomies are obtained
by classifying the 39 distinct vulnerabilities that we identified through biblio-
graphical review and through our own experience. Two examples that highlight
abuse risks are given in the Appendix A.1: Malicious Inversion of Control and
Synchronized Code.

3.1 Vulnerability Classes

Classes of vulnerabilities are defined according to the preconditions that must
be enforced to exploit them. These preconditions are: No access to the code
(Stand-Alone component), access to classes (Shared Classes), access to objects
(Shared Objects or SOP). These component vulnerabilities are referenced in
two vulnerability catalogs: the Malicious Bundles catalog [15], which identifies
vulnerabilities that can be exploited through malicious components and are im-
plied by platform features, and the Vulnerable Bundles catalog [16], which iden-
tifies vulnerabilities that are implied by component features, mostly based on
Java language properties [7]. Following features of the Java/OSGi Platform lead
to component vulnerabilities: the reflection API, SOP services, and fragments.
Other entries of the Malicious Bundles catalog are not considered here, since
they concern the implementation of the platform and the isolation mechanisms
it enforces, and not the way components are coded.

So as to provide an overview of the relative importance of each vulnerability
category, their cardinality is extracted.

The total number N of vulnerabilities that we identify in Java/OSGi com-
ponents is: 6 vulnerabilities from the Malicious Bundles catalog, and all 33
vulnerabilities from the Vulnerable Bundles catalog.

N = 6 + 33 = 39
The number NSA of vulnerability in stand alone components is 1, which

matches the use of serialization. When not properly protected, it provides access
to any entity that is able to read the serialized data, for instance through the net-
work or the file system. This vulnerability may not be restricted to component
platforms.

NSA = 1
Vulnerabilities that pertain to the Shared Classes vulnerability category can

be exploited provided that two conditions are met. First, victim code must be
loaded by the same ClassLoader as the attack CODE, OR be shared among
ClassLoaders. In the Java/OSGi case, this concerns exported packages as well
as bundle fragments and their hosts. Secondly, the code must be launched by
the application. In OSGi, this is for instance done through the bundle activa-
tor, or when methods are called. These vulnerabilities occur mainly when static
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fields exists in the code, and when reflection, inheritance and fragments can be
exploited.

NCL = 18
Some vulnerabilities require the execution of a given method, which can be

achieved either through static access or through SOP, depending on the imple-
mentation. This is the case e.g. for synchronization problems. They can therefore
not be classified in one or the other category, though for simplicity one can con-
sider them to be SOP vulnerabilities, because they are much more likely to be
exploitable in this case.

NS = 2
The vulnerabilities that pertain to the Object Sharing category can be exe-

cuted provided that a malicious component can be installed, and that access to
objects is granted. This is typically the case in SOP Platforms. For instance,
in OSGi, it is possible to access all objects that are registered as services. The
number NSOP of vulnerabilities in the Object Sharing category is:

NSOP = 18
Figure 1 provides an overview of the vulnerability categories in a SOP Plat-

forms.

Fig. 1. Vulnerability types in a SOP Platform

3.2 Vulnerability Implementations

Vulnerability lists are usually given without regard to their actual likeliness.
The following taxonomy provides for each system configuration the set of vul-
nerabilities that can be exploited without further effort. Each vulnerability cat-
egory extends the others: Stand Alone Application vulnerabilities can also be
exploited in case of Class Sharing system, and Class Sharing vulnerabilities can
be exploited in the context of SOP.

Table 1 present the taxonomy for vulnerability categories according to the
vulnerability category they pertain to.
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Table 1. Taxonomy: Implementations of the Component Vulnerabilities in Java/OSGi
SOP Platform

Attack Vector Implementation Occurences
Component
Interactions

Stand Alone
App.

Serialization 1

Class Sharing Exposed Internal
Representation

Mutable element in
static variable

2

Reflection 3
Fragments 2
No suitable control 2

Avoidable Calls to
the Security Man-
ager

At instanciation 4

In method call 5
Class Sharing
or SOP

Synchronization 2

SOP Exposed Internal
Representation

Returns reference
to mutable element

2

No suitable control 4
Flaws in Parameter
Validation

Unchecked parame-
ter

3

Checked parameter
without copy

1

Checked and copied
parameter

4

Non final parameter 2
Invalid Workflow 1

Stand Alone Applications. Stand alone applications do not enable to run third
party code. The only code-level vulnerability that can be exploited in this case
is the access to internal data that is made available through serialization. This
flaw can be prevented by avoiding serialization, or by properly protecting, for
instance through cryptography, the serialized data.

Other vulnerabilities may of course also exist, but they are related with the
application behavior itself, not with the code properties, and are therefore not
of interest here.

Class Sharing. Platforms that support Class Sharing are typically component-
based systems. Each component can make classes available, and have depen-
dencies to others. In the OSGi Platform, for instance, this feature is supported
by the Module Layer. Class Sharing makes two main category of vulnerabilities
open for exploits: Exposed Internal Representation and Avoidable Calls to the
Security Manager. In some specific cases, the Synchronization vulnerability can
also be exploited.

Exposed Internal Representation enables malicious components to ac-
cess data inside victim components. In the Class Sharing case, it enables to
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execute code that should remain hidden, and to access static class members2.
Four sub-categories exist: Mutable element in static variable, Reflection, Frag-
ments and No suitable control.

– Mutable element in static variable vulnerabilities consist in giving access to
third party components to fields that are both static and final, but which
content can nonetheless be modified. This occurs when the fields either con-
tain arrays, or mutable classes. Mutable classes are any classes that store
data that the client object can modify. For instance, implementations of the
Set and Collection interfaces are mutable. The only way to prevent this
vulnerability to be exploited is to ban such constructs from public variables
of public code classes.

– The Reflection sub-category consists in exploiting the Reflection API to
access and exploit the content of the victim component. It encompasses
code observation, component data modification when this data is static, and
launching hidden method . The protection against these vulnerabilities are
of two types. First, clean encapsulation can prevent unwanted access, since
reflection does not allow to access fields and execute methods when visibility
modifiers (public, protected, default, and private) forbid it. Secondly, Java
Permissions can be set to prevent untrusted components from using the
Reflection API.

– Fragments vulnerabilities exploit the OSGi-specific fragments. Fragments
are used to provide configuration data and code to OSGi bundles, e.g. for
supporting context specific behaviors such as internationalization. Fragment
code is executed in the same ClassLoader as its Host bundle. This enable
them to have full access to the code, and to share this access with other
components by exporting it. Three implementations exist for this vulnera-
bility category. First, a fragment can access the classes inside its host bundle.
It can call classes that do not pertain to public code. Next, the split pack-
age feature enable to gain access to package protected classes, fields and
methods, if the fragment contains a package with the same name as the
targeted package in the host. Lastly, private inner classes, which are made
package protected at compilation, are thus available from the fragment. Pro-
tection against fragments consists in setting BundlePermission:HOST and
BundlePermission:FRAGMENT to trusted components only.

– No suitable control vulnerabilities enable to influence the behavior of the
application through class access. In particular, shutdown hooks3 can be ex-
ploited to keep a handle on an object after all references have been destroyed
in the application. This enables in particular the execution of code after com-
ponents have been uninstalled. The protection against the shutdown hook
attack can be obtained by preventing untrusted components to set such
hooks, e.g. through Java Permissions.

2 Class members are fields and methods.
3 Shutdown hooks are methods that are executed during the shutdown process of the

virtual machine. They can be set at any moment.
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Avoidable Calls to the Security Manager enables malicious components
to by-pass security checks that occur in the code. These vulnerabilities are either
exploited by overriding the code that contains the check, or by taking advantage
of methods that are executed in spite of the presence of a Security Manager (or
any similar check).

Two types of vulnerabilities are identified: avoidable checks ‘at instantiation’,
which allows to create protected objects, and avoidable checks ‘in method call’,
which allows to perform protected actions.

– The avoidable checks at instantiation category consists either in not using a
constructor that contains security checks to create objects, or in overriding
it in a sub-class. Object creation without constructor can be achieved either
through the clone() method, or through de-serialization, when these two
mechanisms are not protected. The protection consists in performing the
same security checks in all constructors, in the clone() method if the class
is cloneable, and in the readObject()method if the class is serializable.
Avoiding security checks through overriding simply consist in re-writing the
methods that contain the checks. This is possible either if a constructor
exists that does not contain checks, or if the checks are performed in other
methods. Consequently, these methods should always be final to prevent
exploitation.

– The avoidable checks in method call category consists in performing actions
that should be prevented by the security policy. The simplest way to achieve
this is to override a method that contains a security check by a self-defined
one. Executing methods of objects which creation has aborted due to secu-
rity reasons is also possible: the finalize()method is always executed, even
through the constructor could not be properly executed. Calls on the object,
which is in a such case often only partially initialized, can typically reveal
internal data. The protection here is to perform security checks at the very
beginning of the creator method (constructor or other), to prevent data to
be set before the security check. The last vulnerability that avoids security
checks consists in executing sensible operations on behalf on untrusted com-
ponents. This is done through doPrivileged() calls. A specific case can oc-
cur with security checks that depends only on the local ClassLoader, such as
java.lang.Class.forName and java.lang.Class.newInstance. The pro-
tection against these two vulnerabilities is to never execute sensitive opera-
tions on behalf of others.

Synchronization vulnerabilities threaten Java/OSGi Platforms with freez-
ing: if a synchronized method call does not return, all subsequent calls keep
waiting for the lock to be released. Exploiting these vulnerabilities requires either
that the synchronized call freezes by itself, or that the malicious component is
able to interfere with its execution, for instance by providing a malicious service
on which the victim method relies. So as to make attack through Shared Classes
possible, these methods must be launched through a static method call, either di-
rectly (the synchronizedmethod is also static) or indirectly (the synchronized
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method is called by a static method). Attack is triggered when this malicious ser-
vice freezes and thus blocks the synchronized call. Two implementations exist:
either a full method is synchronized, or a code block inside a method. This vul-
nerability occurs without regard to the location of the synchronized keyword
inside the component: they are not restricted to public code. The ways to pre-
vent them is to ban synchronized code from components, or to ensure that only
trusted and non-freezing components are called by synchronized statements.

Service Oriented Programming (SOP). Service Oriented Programming Plat-
forms support the dynamic registration and discovery of local services, i.e.
objects that are characterized by the interface they implement. In the OSGi
Platform, for instance, this feature is supported by the Service Layer. Service
Oriented Programming provides full access to the service objects, which means
that both read and write access is granted. The vulnerabilities that plague SOP
are the following: Exposed Internal Representation, Flaws in Parame-
ter Validation, and Invalid Workflow. Moreover, the exploitation of Syn-
chronization vulnerabilities is much easier, since synchronized methods can be
targeted without requiring a static access.

Exposed Internal Representation enables, as in the Class Sharing case,
malicious components to access data inside victim components. In the SOP case,
these vulnerabilities enable malicious code to access and thus modify data that
should be kept internal to the object. Two vulnerability categories exist: Returns
reference to mutable element and No suitable control.

– The Returns reference to mutable element category occurs when a method
returns these very mutable elements. If a proper copy is not performed before
giving a reference of a mutable object to a third party component, this latter
is able to modify it. Malicious or accidental conflicts can then occur between
the modifications that take place inside the vulnerable component, and the
modifications that are performed by the caller. The protection consists in
copying the mutable element before returning it. This can only be achieved
if the considered mutable element does not itself contain mutable elements.
Otherwise, the copy process would be overly complex and error prone.

– The No suitable control category in the Object Sharing vulnerability class
enables information leak from one component to another. It encompasses
the absence of wrapper (no encapsulation), an excessive visibility for the
members4 or classifier5. The protection against ill-coded public classes vul-
nerabilities consists in a proper encapsulation of all variables. Another vul-
nerability is the leak of configuration, system, or application sensitive data
through exceptions. Exception handing should therefore either be performed
internal to the component, or only provide generic data that contain at most
references to user input to keep the message informative without revealing
the internal component state.

4 Class members are fields and methods.
5 Classifiers are classes and interfaces.
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Flaws in Parameter Validation enables malicious or ill-coded components
to call methods from other ones while passing objects as parameter that are
either not supported or lead to unexpected code behavior.

Four sub-categories exist: ‘Unchecked parameter’, ‘Checked parameter with-
out copy’, ‘Checked and copied parameter’, and ‘Non final parameter’.

– The Unchecked parameter category occurs when the method parameters are
not checked before use. It contains three vulnerabilities: accidentally un-
supported values that cause the program to behave in an erratic manner,
malicious Java code, and malicious native code. In this latter case, the caller
can forge and provide arbitrary malicious code. In particular, parameters
that are defined as interfaces or as non final classes are vulnerable. The pro-
tection against such abuses consists in checking both the value and the actual
type of the parameters. Public class methods should only accept parameters
which types are final classes, so as to prevent malicious inheritance. Lastly,
no native code should be executed on behalf of other components.

– The Checked parameter without copy vulnerability consists in performing
the validation of the parameter, but without previously copying it to a local
variable. If the object is modified in the caller component after the validation
occurs, it can take arbitrary values, including those which are rejected by
the validation process. The absence of parameter copy makes parameter
validation useless because of TOCTOU (Time of Check to Time of Use)
attacks. The suitable protection consists of course in copying the parameter
object before its validation.

– The Checked and copied parameter category highlights the restriction of the
parameter copy process: unless an object is serializable and thus explicitly
states which fields are transient and are thus not required during copy,
copying it is not necessarily straightforward. Two types of vulnerabilities
exist. The first one is the presence of fake clone methods or copy constructor,
which are provided by the malicious parameter itself: a copy statement is
present in the code, but does not perform as expected. The protection against
this problem is to use trustworthy copy methods only, such as those provided
by the Java API, or manual copy. The second type of vulnerabilities is related
to the manual copy process, which can be uncomplete. This occurs either
when some states are omitted during the copy process, or when the given
object contains references to other objects. This later problem implies that
parameter objects should have a limited depth of mutable objects so as to
prevent copy faults and omissions.

– The Non-final parameter category consists in exploiting the extensibility of
classes or the possibility of providing self-defined implementation of inter-
faces to execute arbitrary code. This can also lead to more complex sce-
nario: a malicious parameter can be used to trigger execution of code in the
caller bundle, possibly passing back data from the victim bundle. This ac-
tually builds a case of malicious inversion of control (see Appendix A.1). As
we already mentioned, the protection against this vulnerability is to allow
only basic and final types as method parameters in public classes. A copy
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mechanism designed to avoid cited flaws can also prevent this vulnerability
category from being exploited, as the object passed as parameter is no longer
used during the method execution.

Invalid Workflow (SOP) vulnerabilities are bound with invalid configura-
tion of the service dependencies. In Java/OSGi platforms, services are discovered
and retrieved through the BundleContext, which plays the role of local ser-
vice repository. Service lookup is performed according to a given Java interface,
with possibly additional provider-set properties. Consequently, very little con-
trol is enforced, in particular when components from several mutually untrusted
providers coexist in a SOP platform. This lack of control have two main conse-
quences. First, there is no guarantee that found services actually provide a valid
implementation of the advertised interface. They could either provide arbitrary
code, or gather data that is passed to them as parameters. Secondly, there is no
guarantee that the service call does not abort. Such abortion can be generated ei-
ther directly, for instance by systematically throwing exceptions, or indirectly, for
instance by creating loops between services that lead to StackOverflowErrors.
To date, most SOP frameworks assume that provided services are benevolent.
The identified risks show that a full SOP security framework should be designed
if this should not be the case. This is a requirement for future work.

3.3 Goals of the Attacks That Exploit These Vulnerabilities

The goals of the attacks that exploit vulnerabilities in Java/OSGi component
interactions are described below. The main goals are Undue Access and Denial
of Service. Undue access is either Access to internal Data or By-pass Security
Checks. Denial of Service (DoS) is restricted to method unavailability, because it
is achieved through method calls on the public code. More serious DoS attacks
can be performed in Java/OSGi platforms by attacking the platform directly [15].

The taxonomy of the goals of the attacks that can be performed by taking
advantage of vulnerabilities in Java/OSGi component interactions is shown in
Table 2, along with related vulnerability categories.

Undue Access - Access to internal Data. Hackers can gain Access to internal Data
through the Exposed Internal Representation and the Fragments vulnerabilities.

Table 2. Taxonomy: Goals of the Attacks that exploit Vulnerabilities in Java/OSGi
Component Interactions

Attack Goal Sub-goal Interaction Category
Undue Access Access to internal Data Class Sharing and SOP - Exposed Internal

Representation
Class Sharing - Fragments

By-pass Security Check Class Sharing - Avoidable Calls to the Secu-
rity Manager
SOP - Flaws in Parameter Validation

DoS Method unavailability Class Sharing and SOP - Synchronization
SOP - Invalid Workflow
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The first vulnerability provides access to internal data of the component that
provides ill-coded Shared Classes of Shared Objects. The second one provides
access to all the code of the target component, but without access to the actual
objects. Attacks are performed by malicious client components.

Undue Access - By-pass Security Check. Hackers can By-pass Security Check
through the Avoidable Calls to the security manager and the Flaws in parame-
ter validation vulnerabilities. The first vulnerability enables to execute code that
is not properly protected by security checks. It is specific to the Shared Classes
vulnerability category. The second one enables to pass unvalid or malicious code
as method parameters. It is specific to the Shared Object vulnerability cate-
gory. Attacks that exploit both weaknesses are performed by malicious client
components.

Denial of Service - Method Unavailability. Hackers can force Method Unavailabil-
ity through the Synchronization and the Invalid SOP Workflow vulnerabilities.
Both vulnerabilities enable to block the normal execution of programs, by freez-
ing them of by forcing them to abort. In most cases they are bound with the
Shared Object vulnerability category, but synchronization can also be exploited
through Shared Classes. Attacks that exploit both weaknesses are performed by
malicious servant components, i.e. malicious components which are dependencies
of the victim code.

4 Experiments

A vulnerability is any feature that forces a program to behave so that it breaks
the implicit or explicit security policy of the considered system [8]. They are
generated by errors in the program development or by assumptions that are
not valid in the execution context. In the case of vulnerabilities in Java/OSGi
component interactions, the second case holds: the Java language has not been
designed to support the execution of mutually untrusted components in the same
virtual machine.

4.1 Rationale

The rationale for identifying, validating and classifying these vulnerabilities is the
following. First, we gather knowledge about Java behaviors that are considered
as the expression of vulnerabilities. Sources are the computer science literature as
well as our own experience. Secondly, the Java Language Specification is analyzed
to identify further vulnerabilities, and to check that no language construct has
been neglected [7]. Next, the suspected vulnerabilities are validated through
proof of concept implementation of the attack scenarios. Lastly, taxonomies are
created to classify both vulnerability type - their implementation - and the goal
of the attacks based on the experiment results.

This rationale is strongly inspired by similar studies that focus on Operating
System vulnerabilities, such as those by Landwehr [10] and Lindqvist [11] for
Unix.
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4.2 Implementation of Malicious and Vulnerable SOP Components

Each identified vulnerability must be validated by implementing it so as to con-
firm that it actually breaks security requirements.

The experiment environment is the Java/OSGi Platform. Tests are conducted
on the Sun JVM 1.6, with the Apache Felix6 open source implementation of the
OSGi Platform. Felix 1.0.0 is compliant with the OSGi Release 4 Specifications.

An implementation of a vulnerability validates this vulnerability if the ma-
licious component actually performs an operation on the vulnerable one that
breaks the implicit or explicit security policy, i.e. that either is able to perform
more operations that calling provided methods, or enforces a denial of service.

For each of the 39 vulnerability occurrences that we identify, a malicious/ vul-
nerable component pair is implemented. Providing an implementation for each
attack has a twofold goal. It enables to validate the feasibility of the attack, and
provide a sound basis for our documentation effort. And it makes sample code
available for subsequent effort toward automated vulnerability identification.

5 Conclusions and Perspectives

Based on the presented experiments and classifications of vulnerabilities in Java/
OSGi component interactions, following recommendations can be emitted to
component developers. Security constraints should be enforced at two level: the
component level, i.e. the application architecture, and the Public Code level,
i.e. the code that components make available to others.

Components should:

– only have dependencies on components they trust,
– never used synchronized statements that rely on third party code,
– provide a hardened public code implementation following given recommen-

dations.

Shared Classes should:

– provide only final static non-mutable fields,
– set security manager calls during creation in all required places, at the begin-

ning of the method: all constructors, clone()method if the class is cloneable,
readObject(ObjectInputStream) if serializable,

– have security checks in final methods only,

Shared Objects (e.g. SOP Services) should:

– only have basic types and serializable final types as parameter,
– perform copy and validation of parameters before using them,
– perform data copy before returning a given object in a method. This object

should also be either a basic type or serializable,
6 http://felix.apache.org
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– not use Exception that carry any configuration information, and not serialize
data unless a specific security mechanism is available,

– never execute sensitive operations on behalf of other components.

The contribution of this paper is twofold. First, taxonomies that describes
the categories of exploitable vulnerabilities and their goals for Java systems
are defined. The three main system types are stand alone applications, multi-
component systems, and Service Oriented Programming (SOP) Platforms, which
each make a specific set of vulnerabilities directly exploitable. Secondly, recom-
mendations are issued to help software developers build more secure code.These
recommendations can be used for training, or to enrich the flaw sets that are
identified by static analysis tools. Our approach is validated through a system-
atic implementation of each vulnerability through a proof-of-concept malicious /
vulnerable pair of OSGi bundles. Experiments show that given vulnerabilities are
actually directly exposed to malicious components in standard platforms. The
only condition is that the malicious component can be installed and executed to
perform its abuses.

The perspective of this work is first to disseminate the knowledge gathered
through the development of plug-ins for static analysis tools such as FindBugs
or PMD.

Further requirements are also identified. A security framework should be de-
fined and developed to enforce security at the SOP level. Current tools, such
as SCR for the OSGi Platform, do not take security into account. This mecha-
nism should be made mandatory and support for instance dynamic proxies that
would prevent the exploitation of identified vulnerabilities by isolating service
implementation and service client. Such a feature could prove to provide a big
improvement in the quest after the dynamic discovery of unknown components
from the environment, while ensuring that the system security is not at risk.
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A Appendix

The Appendix presents additional informations related to vulnerabilities in Java/
OSGi component interactions. Subsection A.1 gives a detailed documentation for
two vulnerabilities that exist in component-based applications: Malicious Inver-
sion of Control through overridden Parameters, and Synchronized Code.

A.1 New Attacks Exploiting Interactions between Java Components

We now present two behaviors that enable malicious components to exploit weak
ones in order to achieve security breaks inside component-based applications:
Malicious Inversion of Control through overridden Parameters, and Synchronized
Code. The first vulnerability enables an attack that performs undue access to
code. The second one enables an attack that performs denial of service. To the
best of our knowledge, these behaviors of Java components have not yet been
identified and documented as vulnerabilities.

 http://java.sun.com/security/seccodeguide.html
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The Malicious Inversion of Control through overridden Parameters vulnera-
bility occurs when public code expose methods with non-final parameters. This
is the case for all parameters that are defined as interfaces, and most classes with
the exception of basic type wrappers (Integer, etc) and String. Abuse occurs
when called methods are overwritten, and trigger actions that are not supposed
to take place such as spying the behavior of the servant bundle or getting undue
access to internal data. An example of an attack that exploits this vulnerability
is given in Figure 2 as an UML Component Diagram.

Fig. 2. An Example Scenario of malicious Inversion of Control: Component Diagram

The weak method, named weakMethod(List), is provided by the class ClassB
of the servant bundle. In our example, it simply manipulates the List param-
eter. The attack is performed as follows. First, the client bundle defines a ma-
licious FileWriter- ArrayList, whose iterator() method is overwritten and
triggers action that it should not. In our case, this is a single text print for
demonstration. The client bundle creates a FileWriterArrayList object, and
passes it as parameter to the ClassB.weakMethod(List)method. When code in
ClassB.weakMethod(List) is executed, malicious code is executed seamlessly.
Again, the example does not go further than the demonstration, but shows how
a naive servant can execute unrequired code from its caller.

This vulnerability has one main consequence: public code that is intended to
be executed by not fully trusted code should never provide methods with non
final parameters.

The Synchronized Code vulnerability occurs when code in a public class is
tagged as synchronized, which means that one single client bundle can access it
at a time. Synchronization is used in particular to protect transactions or access
to system resources. Abuse occurs when the synchronized method is forced to
hang, which causes all subsequent calls to the method to freeze. An example
of an attack that exploits this vulnerability is given in Figure 3 as an UML
Sequence Diagram.

The synchronized method, setData(), is provided by the Data class. This ser-
vice relies on another one, DataStorage. A default valid scenario is executed by
Alice, which is a benevolent component that stores data every 20 seconds. The
attack is performed as follows. First, the DataStorage service must be replaced
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Fig. 3. An Example Scenario for an Attack against a Synchronized Method: Sequence
Diagram

by a malicious one, which hangs under certain circumstances (here, a specific
valueM value of the transmitted data is the signal for hanging). This substitution
can be replaced by a Denial-Of-Service Attack against a valid implementation
of the DataStorage service. The Mallory component is the accomplice of the
malicious DataStorage service, and therefore knows how to trigger its freez-
ing (transmit data with ‘valueM’ value). It performs the malicious call to the
Data service, which in turn calls the DataStorage service, which hangs. As a
consequence, Alice as well as any other client of the Data service will hang.

The Synchronized Code vulnerability exists under two flavours: Synchronized
method and Synchronized code block. This vulnerability has two consequences.
First, access to synchronized methods MUST be granted to trusted components
only. Secondly, services on which synchronized methods rely MUST be guaran-
teed to be trustworthy.
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