
Performance Prediction for Black-Box Components
Using Reengineered Parametric Behaviour Models

Michael Kuperberg, Klaus Krogmann, and Ralf Reussner

Chair for Software Design and Quality, University of Karlsruhe, Germany
{mkuper,krogmann,reussner}@ipd.uka.de

Abstract. In component-based software engineering, the response time of an
entire application is often predicted from the execution durations of individual
component services. However, these execution durations are specific for an exe-
cution platform (i.e. its resources such as CPU) and for a usage profile. Reusing
an existing component on different execution platforms up to now required re-
peated measurements of the concerned components for each relevant combina-
tion of execution platform and usage profile, leading to high effort. This paper
presents a novel integrated approach that overcomes these limitations by recon-
structing behaviour models with platform-independent resource demands of byte-
code components. The reconstructed models are parameterised over input
parameter values. Using platform-specific results of bytecode benchmarking, our
approach is able to translate the platform-independent resource demands into pre-
dictions for execution durations on a certain platform. We validate our approach
by predicting the performance of a file sharing application.

1 Introduction

To meet user requirements, software must be created with consideration of both func-
tional and extra-functional properties. For extra-functional properties such as perfor-
mance (i.e., response time and throughput), early analysis and prediction reduce the
risks of late and expensive redesign or refactoring in case the extra-functional require-
ments are not met. Performance of component-based applications is predicted on the
basis of performance of underlying components.

The performance of component-based applications depends on several factors [2]:

a) the architecture of the software system, i.e. the static “component assembly”
b) the implementation of the components that comprise the software system
c) the runtime usage context of the application (values of input parameters etc.) and
d) the execution platform (hardware, operating system, virtual machine, etc.)

Conventional performance prediction methodologies do not consider all four fac-
tors separately [4,24] or limit themselves to real-time/embedded scenarios [7]. To make
the influence of these factors on performance explicit (or even quantifiable), these ap-
proaches would need to re-benchmark each component, or even the entire application
each time one of the four factors changes. Instead, separating these factors is beneficial
for efficient performance prediction in the following scenarios:

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Performance Prediction for Black-Box Components 49

– Redeployment of an application to an execution platform with different character-
istics, i.e. into a new deployment context.

– Sizing of suitable execution platform to fulfill changed performance targets for an
existing software system, for example due to changes in the usage context (i.e.,
number of concurrent users, increased user activity, different input).

– Reuse of a single component in another architecture or architectural changes in
an existing software system, i.e. changes in the assembly context of a component.

In this paper, we present a novel integrated approach that makes these factors explicit
and quantifiable.

Our first contribution is a validated reverse engineering approach that uses
machine learning (genetic programming) on runtime monitoring data for creating plat-
form-independent behaviour models of black-box components. These models are pa-
rameterised over usage context and deployment context.

Our second contribution is the performance prediction for these behaviour models,
which predicts platform-specific execution durations on the basis of bytecode bench-
marking results, allowing performance prediction for components and also entire
component-based applications. Re-benchmarking an application for all relevant com-
binations of usage and deployment contexts is thus not necessary anymore.

We validate our approach by reconstructing a performance prediction model for a file
sharing application and subsequently predict the execution duration of the application,
depending on usage context and deployment context. To the best of our knowledge, this is
the first validated bytecode-based performance prediction approach. We describe how our
approachmaintainstheblack-boxpropertyofcomponentsbyworkingwithouttheirsource
code and without needing the full inner details of their algorithms and implementations.

The paper is structured as follows: in Section 2, we describe related work. In Section
3, an overview of our approach is given and its implementation is described. Using a
case study of a file-sharing application, we evaluate our approach in Section 4. The lim-
itations and assumptions of the presented approach and its implementation are provided
in Section 5, before the paper concludes in Section 6.

2 Related Work

This paper is related to reverse engineering of performance models, bytecode-based
performance prediction, and search-based software engineering [12].

Reverse engineering of performance models using traces is performed by Hri-
schuk et al. [14] in the scope of “Trace-Based Load Characterisation (TLC)”. In prac-
tice, such traces are difficult to obtain and require costly graph transformation before
use. The target model of TLC is not component-based.

Using trace data to determine the “effective” architecture of a software system
is done by Israr et al. in [16]. Using pattern matching, this approach can differentiate
between asynchronous, blocking synchronous, and forwarding communication. Similar
to our approach, Israr et al. support components and have no explicit control flow, yet
they do not support inter-component data flow and do not support internal parallelism
in component execution as opposed to the approach presented in this paper. As in TLC,
Israr et al. use Layered Queueing Networks (LQNs) as the target performance model.

50 M. Kuperberg, K. Krogmann, and R. Reussner

Regression splines are used by Courtois et al. in [9] to recognise input parameter
dependencies in code. Their iterative approach requires no source code analysis and
handles multiple dimensions of input, as does the approach described by us. However,
the output of the approach in [9] are polynomial functions that approximate the be-
haviour of code, but which are not helpful in capturing discontinuities in component
behaviour. The approach is fully automated, but assumes fixed external dependencies
of software modules and fixed hardware.

Search based approaches such as simulated annealing, genetic algorithms, and ge-
netic programming have been widely used in software engineering [12]. However, these
approaches have not been applied to reverse engineering, but to problems like finding
concept boundaries, software modularization, or testing.

Daikon by Ernst et al. [11] focusses on detection of invariants from running pro-
grams, while our approach aims at detecting parametric propagation and parametric
dependencies of runtime behaviour w.r.t performance abstractions. Analysis is in both
approaches supported by genetic algorithms.

Performance prediction on the basis of bytecode benchmarking has been pro-
posed by several researchers [13,23,25], but no working approach has been presented
and no libraries or tools are available. Validation has been attempted in [25], but it was
restricted to very few Java API methods, and the actual bytecode instructions were nei-
ther analysed nor benchmarked. In [18], bytecode-based performance prediction that
explicitly distinguishes between method invocations and other bytecode instructions
has been proposed.

Obtaining execution counts of bytecode instructions is needed for bytecode-based
performance prediction, and has been addressed by researchers (e.g. [5], [19]) as well
as in commercial tools (e.g. in profilers, such as Intel VTune [10]). ByCounter [19]
counts bytecode instructions and method invocations individually and it is portable,
light-weight, and transparent to the application. ByCounter works for black-box com-
ponents and its Java implementation will be used in this paper.

Execution durations of individual bytecode instructions have been studied inde-
pendently from performance prediction by Lambert and Brown in [20], however, their
approach to instruction timing was applied only to a subset of the Java instruction set,
and has not been validated for predicting the performance of a real application. In the
Java Resource Accounting Framework [6], performance of all bytecodes is assumed to
be equal and parameters of individual instructions (incl. names of invoked methods)
are ignored, which is not realistic. Hu et al. derive worst-case execution time of Java
bytecode in [15], but their work is limited to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [1], but
neither bytecode benchmarks not actual realistic performance values can be obtained,
since the performance is assumed to be equal for all bytecode instructions.

3 Reverse Engineering and Performance Prediction

An overview of our approach is summarised in Fig. 1, and Sections 3.1-3.6 provide
detailed descriptions of its steps. Our approach consists of two parts, separated in Fig. 1
by the dashed line. The first (upper, light) part A produces behavioural performance

Performance Prediction for Black-Box Components 51

Timing Values per
Bytecode Instruction

Executable
Component
Bytecode

Bytecode
counting

Monitoring of input and
output data at interface-level

Bytecode

instrumentation

Machine
Learning

Parameterised
Behavioural
Component

Model

Bytecode
Benchmarking

Create behavioural parameterised component model
(1x per component)

Benchmark execution system
(1x per execution system)

Performance
Prediction

1

2

3

5

6

4

A

B

Fig. 1. Overview on the approach

models for black-box components. These models are platform-independent because
they do not contain platform-specific timing values. Such timing values are produced
by the second part of our approach (cf. (lower, darker) part B of Fig. 1), which uses
bytecode benchmarking as described in Section 3.5.

Part A of our approach works on components and for component-based applica-
tions, for which only binary code and no source code may be available. In Step 1, the
considered component is executed in a testbed (e.g. derived from running representative
applications) and executed bytecode instructions and method invocations are counted.
In Step 2 (which can be executed concurrently with Step 1), inputs and outputs of the
considered component are monitored at the interface level.

Machine learning in Step 3 then (i) estimates the parametric dependencies between
input data and the number of executions for each bytecode instruction and (ii) finds
data and control flow dependencies between provided and required service, which is
important for components since output of one service will be the input of another one.

Step 4 uses results from machine learning in Step 3 and constructs a behavioural
component model which is parameterised over usage context (input data), external ser-
vices and also over the execution platform. Such a model includes how input data is
populated through an architecture, a specification how often external services are called
with which parameters, and how an execution platform is utilised.

Part A of our approach is executed once per component-based application.

In Step 5 (part B), bytecode instructions are benchmarked on the target execu-
tion platform to gain timing values for individual bytecode instructions (e.g. “IADD
takes 2.3 ns”). These timing values are specific for the used target platform, and the
benchmarking step is totally independent of the previous steps of our approach. Hence,
benchmarking must be executed only once per each execution platform for which the
performance prediction is to be made.

The results of part A and part B are inputs for the performance prediction (Step
6), which combines performance model and execution platform performance measures
to predict the actual (platform-specific) execution duration of an application executed
on that platform.

52 M. Kuperberg, K. Krogmann, and R. Reussner

The separation of application performance model and execution platform perfor-
mance model allows to estimate the performance of an application on an execution
platform without actually deploying the application on that platform, which means that
in practice, one can avoid buying expensive hardware (given a hardware vendor pro-
viding benchmarking results) or also avoid costly setup and configuration of a complex
software application.

3.1 Counting of Bytecode Instructions and Method Invocations

To obtain runtime counts of executed bytecode instructions (cf. Fig. 1, Step 1), we use
the ByCounter tool, which is described in detail in [19] and works by instrumenting the
bytecode of an executable component. We count all bytecode instructions individually,
and also count method invocations in bytecode, such as calls to API methods.

The instrumentation with the required counting infrastructure is transparent, i.e. the
functional properties of the application are not affected by counting and all method sig-
natures and class structures are preserved. Also, instrumentation runs fully automated,
and the source code of the application is not needed.

At runtime, the inserted counting infrastructure runs in parallel with the execution of
the actual component business logic, and does not interfere with it. The instrumentation-
caused counting overhead of ByCounter is acceptable and is lower than the overhead
of conventional Java profilers. As said before, the instruction timings (i.e. execution
durations of individual instruction types) are not provided by the counting step, but by
bytecode benchmarking in Step 5.

32x IADD
425x ISTORE
734x ILOAD
943x IMUL
45x IINC
53x ...

010010001100001110101010
101101011110000011110110
010001010011001001000100
110000001000010001101100
011011111111101111010110
011100010011011101001000

Monitoring
Data

Bytecode

Instrumentation and

Execution

Monitoring

Monitoring

1

2

2

Fig. 2. Data extraction from executed black-box components

The counting results (cf. Fig. 2, Step 1) are counts for each bytecode instruction and
found method signature, and they are specific for the given usage context. The counting
is repeated with different usage contexts of the considered component service, but on
the same execution platform. Counting results are saved individually for each usage
context and later serve as data on which machine learning is run (cf. Fig. 1, Step 3).

3.2 Data Gathering from Running Code

To capture the parametric dependencies between the application input and output, our
approach monitors at the level of component interfaces (cf. Fig. 1, Step 2). We gather
runtime information about component behaviour by executing the component in a
testbed or executing the entire application (cf. Fig. 2, Step 2).

Performance Prediction for Black-Box Components 53

To obtain representative data, the execution of the monitored component services
must be repeated for a set of representative inputs to the application (recent overview
on test data generation can be found in [21]). The datasets obtained from monitoring
serve as the input for the machine learning (Fig. 1, Step 3) to learn the parametric
dependencies between input and output.

For each component service call (provided or required), our tool monitors the input
parameter values of each component service call and the properties of the data that is
returned by that service call. Monitored data properties are:

– for primitive types (i.e. int, float etc.): their actual values
– for all one-dimensional arrays (e.g. int[], String[]), Collection, or Map

types: the number of their elements
– for one-dimensional arrays of primitive type (e.g. int[]), also aggregated data,

such as number of occurrences of values in an array (e.g. the number of ‘0’s and
‘1’s in an int[])

– for a multi-dimensional array (e.g. String[][]): its size, plus results of indivi-
dual recording of each included array (as described above)

For each provided service, we additionally monitor which required services are
called by it how often and with which parameters. The described data monitoring and
recording can be applied to component interfaces without a-priori knowledge about
their semantics, and without inspecting the internals of black-box components. Support-
ing and monitoring complex or self-defined types (e.g. objects, structs) requires domain
expert knowledge to identify important properties of these data types. Still, generic data
types are used very often, and our approach can handle these cases automatically.

3.3 Machine Learning for Recognition of Parametric Dependencies

Our approach utilises machine learning for estimating the bytecode counts on the basis
of input data and for recovering functional dependencies in the monitored data. We use
the Java Genetic Algorithm Package JGAP [22] to support machine learning (a gen-
eral introduction for genetic programming, a special case of genetic algorithms, can be
found in [17]). For our approach, we combine genes representing mathematical func-
tions to express more complex dependencies. Simple approaches like linear regression
could be applied as well, but cannot handle non-continuous functions or produce little
readable approximations by polynomials.

For every gathered input data point (e.g. size of an input array, or value of a primitive
type) a gene representing that parameter in the resulting model is introduced. In addition
to default JGAP genes (e.g. mathematical operations for power, multiplication, addition,
constants), we introduced new genes to support non-continuous behaviour (e.g. jumps
caused by “if-then-else”) as JGAP allows defining of additional genes.

Learning Counts of Bytecode Instructions and Method Invocations
Genetic programming tries to find the best estimation of functions of bytecode counts
over input data. If an algorithm uses less ILOAD instructions for a 1 KB input file than
for a 100 KB file, the dependency between input file size and the number of ILOAD
instructions would be learned.

54 M. Kuperberg, K. Krogmann, and R. Reussner

Our approach applies genetic programming for each used bytecode instruction. A
simple example of the resulting estimation for the ILOAD instruction is IF (filesize >
1024) THEN (filesize · 1.4 + 300) ELSE (24000)). For bytecode instructions and
method invocation counts, learning such functions produces more helpful results as
mere average counts, because non-linear dependencies can be described appropriately,
and also because these results are not specific to one execution platform.

Learning Functional Dependencies between Provided and Required Services
Genetic programming is also applied for discovering functional dependencies between
input and output data monitored at the component interface level. Informal examples
of such dependencies are “a required service is executed for every element of an input
array”, “a required service is only executed if a certain threshold is passed” (data de-
pendent control flow), or “the size of files passed to a required component service is
0.7x the size of an input file” (data flow).

To recover such dependencies from monitoring data, genetic programming builds
chromosomes from its genes to express a function matching the monitored data as much
as possible. The deviation between learned function and monitored data is used as “fit-
ness function” during learning. Thereby, genetic programming is selecting appropriate
input values and rejecting others, not relevant for the functional dependency. Finally,
the resulting function is an approximation of a component’s internal control and data
flow, where each dependency is represented by an own chromosome.

3.4 Parameterised Model of Component Behaviour

The target model (named “Parameterised Behavioural Component Model” in Fig. 1) is
an instance of the Palladio Component Model [3]1. The model instance has a represen-
tation for the static structure elements (software components, composition and wiring;
not described here) and a behavioural model for each provided service of a component
(an example is shown in Fig. 3).

A component service’s behaviour model consists of internal actions (i.e. algorithms)
and external calls (to services of other components). For internal actions (cf. left box in
Fig. 3), reverse-engineered annotations for each bytecode instruction specify how often
that instruction is executed at runtime, depending on component service’s input param-
eters. The parameterised counts that form these annotations are platform-independent
and do not contain platform-specific timing values.

For external calls (e.g. add and store in Fig. 3), the model includes dependencies
between component service input and external call parameters, with one formula per
input parameter of an external call (e.g. a = input1 * 2 in Fig. 3). Also, the num-
ber of calls to each required (external) service is annotated using parameterisation over
input data (cf. “Number of loops” grey box in 3).

3.5 Benchmarking Java Bytecode Instructions and Method Invocations

For performance prediction, platform-specific timings of all bytecode instructions and
all executed API methods must be obtained, since the reverse engineered model from

1 See http://www.palladio-approach.net

Performance Prediction for Black-Box Components 55

Internal Algorithm
Bytecodes

IADD: 10 x input1 + 30
ISTORE: IF(input2 < 100)
 30 ELSE 125
IINC: 0.0013 * input1
...

External Call
Service: int add(int a, int b)
a = input1 * 2
b = IF(input2 > 1) THEN 100
 ELSE input1^input2 * 0.3
return = ...

External Call
Service: byte[] store(byte[] file)
file = input1^1024
return = ...

Number of Loops
IF (input2 * 3 > 10)
 THEN 20
 ELSE input2

void doSth(int input1, int input2)
int add(int a, int b)

byte[] store(byte[] file)
Component

Fig. 3. Behavioural model of the provided service void doSth(int input1, int
input2)

part A in Fig. 1 only contains their (estimated) counts. As timings for bytecode
instructions and API methods are not provided by the execution platform and no ap-
propriate approach exists to obtain them (cf. Section 2), we have implemented our own
benchmark suite, which is an essential contribution of this paper.

We illustrate our approach by first considering the example of the Java bytecode
instruction ALOAD. This instruction loads an object reference onto the stack of the Java
Virtual Machine (JVM). To measure the duration of ALOAD, a naive approach would
insert one ALOAD between two timer calls and compute the difference of their results.
However, writing such a microbenchmark in Java source code is not possible, since
there is no source code-level construct which is compiled exactly to ALOAD.

Furthermore, the resolution of the most precise Java API timer (System.nano
Time()) of ca. 280ns is more than two orders of magnitude larger than the duration
of ALOAD (as shown by our microbenchmarks results). Hence, bytecode microbench-
marks must be constructed through bytecode engineering (rather than source code writ-
ing) and must consider the timer resolution.

Using bytecode engineering toolkits like ASM [8], we could construct microbench-
marks that execute a large number of ALOAD instructions between two timer calls.
However, to fulfill the bytecode correctness requirements which are enforced by the
JVM bytecode verifier, attention must be paid to pre- and postconditions. Specifically,
ALOAD loads a reference from a register and puts it on the Java stack. However, at the
end of the method execution, the stack must be empty again. The microbenchmark must
take care of such stack cleanup and stack preparation explicitly.

In reality, creating pre- and postconditions for the entire Java bytecode instruction
set is difficult. Often, “helper” instructions for pre-/postconditions must be inserted
between the two timer calls. In such a case, “helper” instructions are measured to-
gether with the actually benchmarked instructions. Thus, separate additional “helper”
mircobenchmarks must be created to be able to subtract the duration of “helper” in-
structions from the results of the actual microbenchmarks. Making sure all such depen-
dencies are met and resolved is a challenging task.

56 M. Kuperberg, K. Krogmann, and R. Reussner

Due to space restrictions, we cannot go into further details by describing the design
and the implementation of our microbenchmarks. In fact, we have encapsulated the
benchmarking into a toolchain that can be used without adaptation on any JVM. End
users are not required to understand the toolchain unless they want to modify or to
extend it. Selected results of microbenchmarks for instructions and methods will be
presented in Section 4 in the context of a case study which evaluates our approach and
thus also the microbenchmark results.

3.6 Performance Prediction

Step 6 performs an elementwise multiplication of all N relevant instruction/method
counts ci from step 4 with the corresponding benchmark results (execution durations)
ti from step 5. The multiplication results are summed up to produce a prediction P for
execution duration:

∑N
i=0 ci · ti =: P . The parametrisation over input can be carried

over from ci to the performance prediction result P , for example by computing that an
algorithm implementation runs in (n·5000+m·3500) ns, depending on n and m which
characterise the input to the algorithm implementation.

4 Evaluation

We evaluated our approach in a case study on the PALLADIOFILESHARE system, which
is modeled after file sharing services such as RapidShare, where users upload a number
of files to share them with other users. In PALLADIOFILESHARE, the uploaded files are
checked w.r.t. copyright issues and whether they already are stored in PALLADIOFILE-
SHARE. For our case study, we consider the upload scenario and how PALLADIOFILE-
SHARE processes the uploaded files.

The static architecture of PALLADIOFILESHARE is depicted in Figure 4. The com-
ponent that is subject of the evaluation is PalladioFileShare (the composite component
shaded in grey), which provides the file sharing service interface and itself requires two
external storage services (LARGEFILESTORAGE is optimized for handling large files
and SMALLFILESTORAGE is for handling small files).

PALLADIOFILESHARE component is composed from five sub-components. The
BUSINESSLOGIC is controlling file uploads by triggering services of sub-components.
COMPRESSION (a Lempel-Ziv-Welch (LZW) implementation) allows to compress up-
loaded files, while HASHING allows to produce hashes for uploaded files. EXISTING-
FILEDB is a database of all available files of the system; COPYRIGHTEDFILESDB
holds a list of copyrighted files that are excluded from file sharing.

Fig. 5 shows the data dependent control flow of the BUSINESSLOGIC component
which is executed for each uploaded file. First, based on a flag derived from each up-
loaded file, it is checked whether the file is already compressed (e.g., a JPEG file). An
uncompressed file is processed by the COMPRESSION component.

Afterwards, it is checked whether the file has been uploaded before (using EXIST-
INGFILEDB and the hash calculated for the compressed file), since only new files are to
be stored in PALLADIOFILESHARE. Then, for files not uploaded before, it is checked
whether they are copyrighted using COPYRIGHTEDFILESDB. Finally, non-copyrighted

Performance Prediction for Black-Box Components 57

PalladioFileShare

Compression

Hashing

ExistingFilesDB

LargeFileStorage

BusinessLogic

CopyrightedFilesDB

SmallFileStorage

Fig. 4. Component Architecture of PALLADIOFILESHARE

Compress file

fileType==FileType.TEXT

fileType==FileType.COMPRESSED

Get file hash

Check copyright

File in DB? No

Inform the user

File in DB? Yes

Accept file

Copyrighted? No

Reject file

Copyrighted? Yes

Store large file

Store small file

compressedFile.length <=

SIZE_OF_LARGE_FILES

compressedFile.length >

SIZE_OF_LARGE_FILES

call for another component

Fig. 5. Activity of BusinessLogic for each file per request (depicted here for readers convenience
only; not seen by the tooling)

files are stored, either by LARGEFILESTORAGE for large files (if the file size is larger
than a certain threshold) or SMALLFILESTORAGE otherwise.

4.1 Machine Learning for Recognition of Parametric Dependencies

In the case study, we monitored the behaviour of BusinessLogic in 19 test runs, each
with different input data (number of uploaded files, characterisation of files (text or
compressed), and file sizes). The test runs were designed to cover the application input
space as far as possible. In the rest of this section, we show some interesting excerpts
from the complete results.

As the names of input parameters are used hereafter, we use the signature of the file
sharing service, void uploadFiles(byte[][] inputFiles,int[] file

58 M. Kuperberg, K. Krogmann, and R. Reussner

Types). In the signature, inputFiles contains the byte arrays of multiple files for
upload and fileTypes is an array indicating corresponding types of the files, e.g.
FileType.COMPRESSED or FileTypes.TEXT (i.e., uncompressed).

Data dependent control flow: Use of Compression component for multiple files
In the BusinessLogic sub-component, the number of calls of the Compress compo-
nent depends on the number of uncompressed files (FileType.TEXT) uploaded.
Genetic programming (JGAP) found the correct solution for the number of calls: in-
putFiles.length - fileTypes.SUM(FileType.TEXT), where SUM is aggregated data from
the monitoring step. The search time was less than one second.

Learning of Bytecode Instruction Counts
For estimating the functional dependencies of bytecode counts, two input variables were
monitored: (i) X1 as the size of each file and (ii) X2 as flag showing whether the input
was already compressed (X2=1) or not (X2=0).

As the behaviour of data compression algorithm strongly depends on the inner char-
acteristics of the compressed data (and not only on its size and type), 100% precision
of learned functions cannot be expected in the general case. Optimal solutions were
found only for a few bytecode counts; in most cases, results of machine learning are
good estimators. An optimal solution was found within about 1 sec. for bytecode in-
structionICONST M1 : X1 + X1 + 3.0.

For a more complex case such as the bytecode ICONST 0, after evolving 15,000
generations, the following approximation (which could be simplified by a subsequent
step) was found:

0.1 + (((X1/(89.0 + 241.0 + 100.0)) ∗ X1) + (((343.0 ∗ X2) + (IF (267.0 >=
10.0)THEN(1.3)) + (241.0 + (X1/(241.0 + (343.0 ∗ X2) + 100.0)) + 100.0)) ∗
X1)+((IF (X1 >= 0.024766982)THEN((267.0∗X2)))∗X2))+(241.0+(200.0+
((89.0+(((((X1/(X1+241.0+100.0))+30.0+241.0)+X2+1.9)∗X2)∗X2)+
100.0) ∗ ((IF (267.0 >= 10.0)THEN((1.3 ∗ X2))) + X1 + 241.0)) + 400000.0))

The complexity of these functions will be hidden from the user in the performance
prediction toolchain.

When to use LargeFileStorage or SmallFileStorage
For answering this question, monitoring data from uploads with just one file was anal-
ysed. A set of eleven different input files (different file types, different size) was used
as test data. JGAP found an optimal solution: If the file size is larger than 200,000
(bytes), a file with the same size like the file passed to the Hashing component is passed
to LargeFileStorage, else nothing is stored with LargeFileStorage (an opposite depen-
dency was found for the usage of SmallFileStorage). The search time was less than
five seconds. The implementation-defined constant ‘200,000’ was not always identified
correctly, due to the limited number of input files, yet the recovered function did not
contradict the monitoring data.

We tested an additional run of JGAP where the monitoring data was disturbed by
calls of uploadFiles that did not lead to a storage write because the file already existed
in the database (one out of eleven calls did not lead to a write). Such effects depending

Performance Prediction for Black-Box Components 59

on component state are visible at the interface level only as statistical noise that cannot
be explained based on interface monitoring data. In this case the optimal solution could
still be found, but within more time: less than 20 seconds (in average). In this case the
confidence in the correctness (“fitness function” calculated by JGAP) of the result de-
creased. The average behavioural impact of uploads where no storage takes place can
be captured by computing the long-term probability of such uploads independently of
the uploaded files.

Estimation of the compression ratio
As the compression ratio of LZW strongly depends on the data characteristics (e.g.
entropy, used encoding), no optimal solution exists to describe the compression ratio.
Therefore, JGAP produces a large variety of approximations of the compression ratio.
A good approximation found after 30 seconds had the following form: 0.9∗0.5∗(X3−
(0.9 ∗ 0.5 ∗ (X3 − (0.9 ∗ (0.9 ∗ 0.5 ∗ X3) ∗ 1.0))))) where X3 is the size of the file
input for the Compression component, which was found to be significant.

4.2 Benchmarking of Bytecode Instructions and Method Invocations

We have benchmarked bytecode instructions and methods (as described in Section 3.5)
on two significantly different execution platforms to make performance prediction for
the redeployment scenario (cf. Section 1). The first platform (“P1”) featured a single-
core Intel Pentium M 1.5 GHz CPU, 1 GB of main memory, Windows XP and Sun JDK
1.5.0 15. The second platform (“P2”) was an Intel T2400 CPU (two cores at 1.83GHz
each), 1.5GB of main memory and Windows XP Pro with Sun JDK 1.6.0 06.

All microbenchmarks have been repeated systematically and median of measure-
ments has been taken for each microbenchmark. Fig. 6 is an excerpt of the results of
our microbenchmark for P1 and P2. It lists execution durations of 9 bytecode instruc-
tions among those with highest runtime counts for the compression service.

Due to the lack of space, full results of our microbenchmarks cannot be presented
here, but even from this small subset of results, it can be seen that individual results
differ by a factor of three (ARRAYLENGTH and ICONST_0). Computationally expen-
sive instructions like NEWARRAY have performance results that depend on the passed
parameters (e.g. size of the array to allocate), and our benchmarking results have shown
that the duration of such instructions can be several orders of magnitude larger than that
of simpler instructions like ICONST_0.

The most important observation we made when running the microbenchmarks was
that the JVM did not apply just-in-time compilation (JIT) during microbenchmark exe-
cution, despite the fact that JIT was enabled in the JVM. Hence, prediction on the basis
of these benchmarking must account for the “speedup” effect of JIT optimisations that
are applied during the execution of “normal” applications.

Some steps in Fig. 5 (such as “Get file hash”) make heavy use of methods provided
by the Java API. To benchmark such API calls and to investigate whether their exe-
cution durations have parametric dependencies on method input parameters, we have
manually created and run microbenchmarks that vary the size of the hashed files, algo-
rithm type etc. Due to aforementioned space limitations, we cannot describe the results

60 M. Kuperberg, K. Krogmann, and R. Reussner

ALOAD ARRAYLENGTH ANEWARRAY BALOAD ICONST_0 IF_ICMPLT IINC ILOAD ISTORE
P1 1.95 5.47 220.42 6.98 1.41 5.08 3.10 3.21 3.45
P2 3.77 2.01 178.79 3.49 1.68 4.30 3.01 2.10 3.05

Fig. 6. Excerpt of microbenchmark results for platforms P1 and P2: instruction durations [ns]

of API microbenchmarks here. To simplify working with the Java API, we are currently
working towards automating the benchmarking of Java API methods.

4.3 Performance Prediction

After counting and benchmarking have been performed, our approach predicts the
execution durations of the activities in Fig. 5. From these individual execution dura-
tions, response time of the entire service will be predicted. These prediction results are
platform-specific because underlying bytecode timings are platform-specific.

First, for source platform P1, we predict the duration of compressing a text file (ran-
domly chosen) with a size of 25 KB on the basis of bytecode microbenchmarks, yielding
1605 ms. Then, we measure the duration of compressing that file on P1 (124 ms) and
calculate the ratio R := bytecode−based prediction

measurement . R is a constant, algorithm-specific,
multiplicative factor which quantifies the JIT speedup and also runtime effects, i.e. ef-
fects that are not captured by microbenchmarks (e.g. reuse of memory by the compres-
sion algorithm). R’s value on P1 for the compression algorithm was 12.9.

Hence, R serves to calibrate our prediction. In our case study, R proved to be
algorithm-specific, but platform-independent and also valid for any input to the consid-
ered algorithm. Using R obtained on platform P1, we have predicted the compression
of the same 25 KB text file for its relocation to platform P2: 113 ms were predicted, and
121 ms were measured (note that to obtain the prediction, the compression algorithm
was neither measured nor executed on P2 !). We then used the same calibration factor
R for predicting the duration of compressing 9 additional, different files on platform
P2 (these files varied in contents, size and achievable compression rate). For each of
these 9 files, the prediction accuracy was within 10% (except one outlier which was
still predicted with 30% accuracy).

This shows that the calibration factor R is input-agnostic. Also, R can be easily
obtained in the presented relocation scenario because an instance of the application
is already running on the “source” execution platform P1 (note that the prediction of
performance on P1 is only needed for relocation, as the real performance on P1 is
available by measuring the already deployed application).

The performance of the hashing action in Fig. 5 was predicted by benchmarking
the underlying Java API calls, whereby a linear parametric dependency on the size of
input data was discovered. The JIT was carried out by the JVM during benchmarking
of these API calls, which means that R does not need to express the JIT speedup. For
example, hashing 36747 bytes of data on P2 was predicted to 1.71 ms while 1.69 ms
were measured, i.e. with < 2% error. Similar accuracy for predicting hashing duration
is obtained for other file sizes and types.

The total upload process for the above 25KB text file on P2 was predicted to take
115 ms, and 123 ms were measured. Upload of 37 KB JPEG (i.e. already compressed)

Performance Prediction for Black-Box Components 61

file took 1.82 ms, while 1.79 ms were predicted. For all files used in our case study, the
prediction of the entire upload process for one file had an average deviation of < 15%.

Ultimately, our bytecode-based prediction methodology can deal with all four factors
discussed in Sec. 1: execution platform (as demonstrated by relocation from P1 to P2),
runtime usage context (as demonstrated by the prediction for different input files), ar-
chitecture of the software system (as we predict for individual component services and
not a monolithic application), and the implementation of the components (as our pre-
dictions are based on the bytecode implementation of components). From these results,
we have concluded that a mix of upload files can be predicted if it is processed sequen-
tially. However, for capturing effects such as multithreaded execution, further research is
needed to study performance behaviour of concurrent requests w.r.t. bytecode execution.
In the next section, we discuss the assumptions and the limitations of our approach.

5 Limitations and Assumptions

For the monitoring step, we assume that a representative workload (including input
parameter values) can be provided, for example by a test driver. This workload has
to be representative for both current and planned usage of the component. For running
systems, this data can be obtained using runtime monitoring; otherwise, a domain expert
judges which scenarios are interesting or critical, and she should select or specify the
corresponding workloads ([21] provides an overview on test data generation).

To predict performance on a new (or previously unknown) execution platform, our
approach does not need to run the application there, but must run the microbenchmark
suite on the new platform. Hence, we assume that either this is possible for the predict-
ing party, or that the microbenchmark results are provided by a third party (for example,
by the execution platform vendor).

One of the current limitations of our approach is that it is not fully automated. For
example, the parts A and B in Fig. 1 are not integrated for an automated perfor-
mance prediction. Also, API calls must be measured manually to consider parametric
dependencies and complicated parameter conditions; hence, only a limited number of
API calls can be supported realistically.

In the data gathering step of our approach, asynchronous communication (e.g. mes-
sage-based information exchange) is not supported by the used logging framework.
Hence, if there is asynchronous communication inside the component under investi-
gation, monitored results will be misleading. This limitation will be addressed in next
versions of our implementation.

To support the black-box component principle (end-users do not have to deal with
code), monitoring should be performed in an automated way. In general, collecting dozens
of metrics for input and output data is not justified by the requirements of our approach. At
the moment, we assume that all input and output data is composed from primitive types or
general collection types like List. In more elaborate cases, a domain expert can specify
important data characteristics manually to improve the monitoring data base.

In the machine learning step, heavily disturbed results (i.e. those having causes not
visible at the interface-level) lead to decreased convergence speed and smaller proba-
bility of finding a good solution.

62 M. Kuperberg, K. Krogmann, and R. Reussner

6 Conclusions

In this paper, we have presented a performance prediction approach supporting black-
box software components by creating platform-independent parametric performance
models. The approach requires no a-priori knowledge on the components under in-
vestigation. By explicitly considering parameters in the performance model, the ap-
proach enables prediction for different execution platforms, different usage contexts,
and changing assembly contexts.

In the described approach, bytecode is monitored at runtime to count executed
bytecode instructions and method calls, and also for gathering data information at
component interface level to create the parametric performance model. Then, byte-
code instructions and methods are benchmarked to obtain their performance values
for a certain platform. The advantage of separating behaviour model from platform-
specific benchmarking is that the performance model must be created only once for
a component-based application, but can be used for predicting performance for any
execution platform by using platform-specific benchmark results.

We evaluated the presented approach using a case study for the Java implementation
of a file-sharing application. The evaluation shows that the approach yields accurate
prediction results for (i) different execution platforms and (ii) different usage contexts.
In fact, the accuracy of predicting the execution duration of the entire upload process
after redeployment to a new execution platform lies within 15% for all considered usage
contexts (i.e. uploaded files), and even within 5% in all but three contexts. The average
accuracy is therefore also very good.

For our future work, we plan to automate the entire approach and to merge bytecode
counting in Step 1 of our approach with data monitoring and recording in Step 2. The
manual execution of the approach took ca. five hours for the case study. Also, we plan
to automate creating microbenchmarks for methods, which currently must be created
by hand and also do not cover the entire Java API. We also plan to consider parameters
at bytecode level both for bytecode microbenchmarks and method microbenchmarks.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Experiments in Cost Analysis
of Java Bytecode. Electr. Notes Theor. Comput. Sci. 190(1), 67–83 (2007)

2. Becker, S., Happe, J., Koziolek, H.: Putting Components into Context - Supporting QoS-
Predictions with an explicit Context Model. In: Reussner, R., Szyperski, C., Weck, W. (eds.)
WCOP 2006 (June 2006)

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio Component Model for Model-Driven
Performance Prediction. Journal of Systems and Software (in press, 2008) (accepted
manuscript)

4. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance Engi-
neering into Practice. In: Crnkovic, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.C. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg (2004)

5. Binder, W., Hulaas, J.: Flexible and Efficient Measurement of Dynamic Bytecode Metrics.
In: GPCE 2006, pp. 171–180. ACM, New York (2006)

6. Binder, W., Hulaas, J.: Using Bytecode Instruction Counting as Portable CPU Consumption
Metric. Electr. Notes Theor. Comput. Sci. 153(2), 57–77 (2006)

Performance Prediction for Black-Box Components 63

7. Bondarev, E., de With, P., Chaudron, M., Musken, J.: Modelling of Input- Parameter Depen-
dency for Performance Predictions of Component-Based Embedded Systems. In: Proceed-
ings of the 31th EUROMICRO Conference (EUROMICRO 2005) (2005)

8. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to implement adapt-
able systems. Adaptable and Extensible Component Systems (2002)

9. Courtois, M., Woodside, C.M.: Using regression splines for software performance analysis.
In: WOSP 2000, Ottawa, Canada, September 2000, pp. 105–114. ACM, New York (2000)

10. Donnell, J.: Java Performance Profiling using the VTune Performance Analyzer (Retrieved
2007-01-18) (2004)

11. Ernst, M.D., et al.: The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

12. Harman, M.: The Current State and Future of Search Based Software Engineering. In: Future
of Software Engineering, 2007. FOSE 2007, May 23-25, 2007, pp. 342–357 (2007)

13. Herder, C., Dujmovic, J.J.: Frequency Analysis and Timing of Java Bytecodes. Technical
report, Computer Science Department, San Francisco State University, Technical Report
SFSU-CS-TR-00.02 (2000)

14. Hrischuk, C.E., Murray Woodside, C., Rolia, J.A.: Trace-based load characterization for gen-
erating performance software models. IEEE Transactions Software Engineering 25(1), 122–
135 (1999)

15. Hu, E.Y.-S., Wellings, A.J., Bernat, G.: Deriving Java Virtual Machine Timing Models for
PortableWorst-Case Execution Time Analysis. In: Meersman, R., Tari, Z. (eds.) OTM-WS
2003. LNCS, vol. 2889, pp. 411–424. Springer, Heidelberg (2003)

16. Israr, T., Woodside, M., Franks, G.: Interaction tree algorithms to extract effective archi-
tecture and layered performance models from traces. Journal of Systems and Software, 5th
International Workshop on Software and Performance 80(4), 474–492 (2007)

17. Koza, J.R.: Genetic Programming – On the Programming of Computers by Means of Natural
Selection, 3rd edn. MIT Press, Cambridge (1993)

18. Kuperberg, M., Becker, S.: Predicting Software Component Performance: On the Relevance
of Parameters for Benchmarking Bytecode and APIs. In: Reussner, R., Czyperski, C., Weck,
W. (eds.) WCOP 2007 (July 2007)

19. Kuperberg, M., Krogmann, M., Reussner, R.: ByCounter: Portable Runtime Counting of
Bytecode Instructions and Method Invocations. In: BYTECODE 2008 (2008)

20. Lambert, J., Power, J.F.: Platform Independent Timing of Java Virtual Machine Bytecode
Instructions. In: Workshop on Quantitative Aspects of Programming Languages, Budapest,
Hungary, March 29-30 (2008)

21. McMinn, P.: Search-based software test data generation: a survey. Software Testing, Verifi-
cation and Reliability 14(2), 105–156 (2004)

22. Meffert, K.: JGAP - Java Genetic Algorithms Package (last retrieved: 2008-03-18),
http://jgap.sourceforge.net/

23. Meyerhöfer, M., Meyer-Wegener, K.: Estimating Non-functional Properties of Component-
based Software Based on Resource Consumption. Electr. Notes Theor. Comput. Sci. 114,
25–45 (2005)

24. Smith, C.U., Williams, L.G.: Performance Engineering Evaluation of Object- Oriented Sys-
tems with SPEED. In: Marie, R., Plateau, B., Calzarossa, M.C., Rubino, G.J. (eds.) TOOLS
1997. LNCS, vol. 1245, Springer, Heidelberg (1997)

25. Zhang, X., Seltzer, M.: HBench:Java: an application-specific benchmarking framework for
Java virtual machines. In: JAVA 2000: Proceedings of the ACM 2000 conference on Java
Grande, pp. 62–70. ACM Press, New York (2000)

http://jgap.sourceforge.net/

	Performance Prediction for Black-Box Components Using Reengineered Parametric Behaviour Models
	Introduction
	Related Work
	Reverse Engineering and Performance Prediction
	Counting of Bytecode Instructions and Method Invocations
	Data Gathering from Running Code
	Machine Learning for Recognition of Parametric Dependencies
	Parameterised Model of Component Behaviour
	Benchmarking Java Bytecode Instructions and Method Invocations
	Performance Prediction

	Evaluation
	Machine Learning for Recognition of Parametric Dependencies
	Benchmarking of Bytecode Instructions and Method Invocations
	Performance Prediction

	Limitations and Assumptions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

