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Abstract. Model-based performance prediction methods aim at evaluating the
expected response time, throughput, and resource utilisation of a software system
at design time, before implementation. Existing performance prediction methods
use monolithic, throw-away prediction models or component-based, reusable pre-
diction models. While it is intuitively clear that the development of reusable mod-
els requires more effort, the actual higher amount of effort has not been quantified
or analysed systematically yet. To study the effort, we conducted a controlled ex-
periment with 19 computer science students who predicted the performance of
two example systems applying an established, monolithic method (Software Per-
formance Engineering) as well as our own component-based method (Palladio).
The results show that the effort of model creation with Palladio is approximately
1.25 times higher than with SPE in our experimental setting, with the resulting
models having comparable prediction accuracy. Therefore, in some cases, the cre-
ation of reusable prediction models can already be justified, if they are reused at
least once.
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1 Introduction

As current applications always ask for maximum performance, performance problems
are continuously prevalent in many software systems [20]. Model-based prediction
methods [1] try to tackle these problems during early design phases to avoid the prob-
lem of implementing architectures which are not able to fulfil certain performance
goals. They counter the still popular ”fix-it-later” attitude towards performance prob-
lems. Many of these methods use designer-friendly UML-based models for software
developers, and transform them into formal models (e.g., queueing networks, stochas-
tic Petri-nets, stochastic process algebras), from which performance measures (e.g.,
response times, throughput) can be derived analytically or via simulation.

During the last decade, researchers have proposed several monolithic prediction ap-
proaches (such as SPE [20], uml2LQN [15], umlPSI [2], survey in [1]) and several
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component-based (CB) prediction approaches (such as CB-SPE [7], ROBOCOP [8],
and Palladio [6], survey in [5]). CB approaches try to leverage the benefits of compo-
nentry in the sense of Szyperski [21] by reusing well-documented component specifica-
tions. This is of particular interest for performance prediction methods, as CB software
designs limit the degree of freedom for implementation by (at least partially) reusing
existing components. This can also lead to higher performance prediction accuracy. In
addition, reusable component prediction models can be composed isomorphically to the
software architecture, thereby lowering the effort of performance modelling.

Palladio features highly parametrised component performance specifications, which
are better suited for reuse than those of other approaches, because they include more
context dependencies (i.e., dependencies to external service calls, usage profile, re-
source environment). The effort for creating such parametrised, CB models is naturally
higher than for throw-away models. However, until now this higher effort has not been
investigated systematically. Therefore, it is an open question when it is justified.

Based on this observation, we conducted a controlled experiment comparing the ef-
fort of applying SPE (as an example for a method with throw-away models) and Palladio
(as an example for a method with reusable models). In this paper, we present the results
for the following question: (Q1) What is the duration of modelling and predicting with
both methods? As we wanted to assess the effort of applying the methods without bias,
we let 19 computer science students apply the methods in an experimental setting. They
analysed two CB software systems and assessed the performance impact of additional
five design alternatives (e.g., introducing caches, replication, etc.). By using tools ac-
companying the methods (SPE-ED and PCM-Bench), they predicted response times
for two different usage profiles. Therefore we assessed the effort for the combination of
applying the method and the corresponding tools.

Our results show that modelling the whole task (that is the initial system and five
additional design alternatives) took in average 1.25 times longer with Palladio than with
SPE. Interestingly, modelling only the initial architecture took in average 1.81 times
longer. The students spent most of the time modelling the control flow and debugging
their models, to make them valid for the analyses tools.

In a second paper [13], we further analysed the accuracy of the predictions achieved
by the students compared to a sample solution. Additionally, we searched for reasons
for the achieved prediction accuracy by analysing the models created during the exper-
iment and evaluating questionnaires filled out by the participants after the experiment.
For reasons of self-containedness, sections 2.3, 3.2 - 3.4, 5.1 and 6 are similar in both
papers, as they describe and discuss the common experiment setting.

The contributions of this papers are (i) the design of an experimental setting for
comparing performance prediction methods, allowing the replication of the study, and
(ii) a first quantification of the effort required to produce reusable prediction models.

This paper is organised as follows. Section 2 presents the basics of model-driven
performance prediction and briefly introduces SPE and Palladio. Afterwards, Section 3
explains the experimental design, before Section 4 illustrates the results. Section 5 dis-
cusses the validity of the empirical study and provides potential explanations for the
results. Related work is summarised by Section 6, while Section 7 concludes the paper
and sketches future work.
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2 Model-Driven Performance Prediction

2.1 Background

Several model-driven performance prediction approaches have been proposed [1], all of
which follow a similar process model (Fig. 1). First, developers annotate plain software
design models (e.g., UML models) with estimated or already measured performance
properties, such as the execution time for an activity or the number of users concurrently
issuing requests.
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Fig. 1. Performance Prediction Process

Second, model transformations automatically convert the annotated software models
into established performance formalisms such as queueing networks (QN), stochas-
tic Petri nets (SPN), or stochastic process algebras (SPA). Existing analytical or si-
mulation-based solution techniques then automatically derive and report performance
measures, such as response times for specific use cases, maximum throughputs, or the
utilisation of resources, which is crucial for identifying performance bottlenecks. Devel-
opers compare the predicted results to their requirements and decide whether to change
their design or to start implementation. Only a few approaches implement an automated
feedback of the prediction results into the software design model.

For our experiment, we compared our component-based Palladio method [6] with the
mature, monolithic Software Performance Engineering (SPE) method [20]. We chose
SPE as it has been applied in practice and provides a reasonably usable tool support, un-
like many other approaches [11] solely proposed by academics. The following two sec-
tions briefly describe the two approaches, which both follow the process model sketched
above.

2.2 SPE

The SPE method was the first elaborated, practically applicable comprehensive ap-
proach for early, design-time performance prediction for software systems [19]. SPE
primarily targets software architects and performance analysts during early develop-
ment stages. They identify key scenarios (i.e., use cases critical to the overall system
performance) and set performance goals for the scenarios (e.g., max. response time)
based on the requirements.

Afterwards, developers use a software execution model (Execution Graph, EG) to
describe steps within such a performance-critical scenario. EGs are similar to UML ac-
tivity diagrams and allow annotating each step with resource requirements, for example
the number of needed CPU instructions.
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With a so-called overhead matrix, software resource requirements in EGs (e.g., a
database access) can be mapped to system resources (e.g., 10 ms for a hard disk ac-
cess per database access). Several scenarios and the corresponding user arrival rates on
different machines can be combined to form a system execution model.

EGs do not necessarily reflect actual componentisation of a system, but provide an
abstraction of the most performance-relevant steps in a scenario. This is useful for con-
ducting performance analyses as early as possible during the life-cycle of a system,
when many details are still unknown. It also limits the developers’ effort for initial mod-
elling. However, dependencies on the specific project context are not made explicit, but
are mixed with component specifics. Thus, it is usually not possible to readily reuse the
resulting performance models when reusing the software components. Additionally, the
models cannot be used for model-driven development, as their performance-related ab-
straction does not provide enough information for other purposes like code generation.

The SPE methodology has been applied in industrial settings. Several anonymised
case studies are provided in [20].

2.3 Palladio Component Model

The Palladio Component Model (PCM) [6] is a meta-model for specifying and
analysing component-based software architectures with focus on performance
prediction.

This meta-model is divided among the separate developer roles of a component-
based development process: The component developer produces independent, reusable
component specifications. The other roles (software architects, system deployers, do-
main experts and quality-of-service analysts) provide information on the project-
specific context, such as binding of the components, their allocation to hardware and
their usage. The meta-model provides each role with a domain-specific language suited
to capture their specific knowledge [6].

To support the creation of reusable component performance models, the component
specifications are parametrised by influence factors whose later values are unknown to
the component developer. In particular, these are the performance measures of external
service calls, which depend on the actual binding of the component’s required interfaces
(provided by the software architect), the actual resource demands which depend on the
allocation of the components to hardware resources (provided by the system deployer),
and performance-relevant parameters of service calls (provided by the domain expert).

The parametric behavioural specification used in the PCM as part of the software
model is the Resource Demanding Service Effect Specification (RD-SEFF) which is a
control and data flow abstraction of single component services, also similar to UML ac-
tivity diagrams. It specifies control flow constructs like loops, or branches only if they
affect external service calls. Additionally, they abstract component internal computa-
tions in so called internal actions which only contain the resource demand (e.g. reading
100 Bytes from a hard drive) of the action but not its concrete behaviour. Calling ser-
vices and parameter passing are specified using external call actions, which only refer
to the component’s required interfaces to stay independent of the component binding.
Hence, unlike EGs, RD-SEFFs reflect the componentisation of the system and allow
to create component specifications that can be reused in other project contexts. In this
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Table 1. GQM plan overview

Goal Empirically investigate the effort to create and analyse performance pre-

diction models using Palladio and SPE

Question 1 What is the duration of predicting the performance?
Metric 1.1 Average duration of a prediction avda = avg({dp |p ∈ Pa })

Metric 1.2 Break down of the duration avdacta,i =
normda(avg({dacti,p |p ∈ Pa }))

Hypothesis 1.1 A Palladio prediction needs 1.5 as long
as an SPE prediction

avdPal = 1.5 · avdSPE

Hypothesis 1.2 For both approaches, the largest time fraction is needed to model the system
1 l i

experiment, we thus measure the additional effort required to reflect the componentisa-
tion in the Palladio models (in contrast to the SPE models).

3 Empirical Investigation

For the empirical investigation, we formulated a goal, one question and derived metrics
using the Goal-Question-Metric approach [4]. The goal of this work is:

Goal: Empirically investigate the effort to create and analyse performance pre-
diction models using Palladio and SPE.

For each metric, hypotheses were formulated to support the evaluation of the metrics
and answering the question. The same metrics can also be used when repeating this
experiment. Details are presented in section 3.1.

We conducted the investigation as a controlled experiment. Section 3.2 presents the
experiment’s design, section 3.3 describes the preparation of the participants. The tasks
and the experiment execution are presented in section 3.4 and 3.5, respectively.

3.1 Questions and Metrics

For each metric, we have formulated hypotheses to support the evaluation of the metrics
and answer the question. After an informal explanation, we give a formal description
for the metrics. Table 1 summarises goal, question, metrics, and hypotheses.

Q1: What is the duration of predicting the performance? To evaluate the effort for
making a prediction, we looked at the time needed, i.e. the duration, because time (in
terms of person-days) is the major factor of effort and costs. For an empirical study of
the effort of any software development technique, it is inevitable to include the used
tools. Thus, here we measured the effort for the combination of applying the method
(SPE and Palladio) and the corresponding tools (SPE-ED and PCM-Bench).

Metric 1.1 is the average duration of making a performance prediction. The dura-
tion includes reading the specification (ra), modelling the control flow (cf ), adding
resource demands (rd), modelling the resource environment (re), modelling the usage
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profile (up), searching for errors (err) and analysing (ana). Metric 1.2 breaks down the
overall duration into the duration of the different activities of a performance prediction
mentioned above.

Our hypothesis 1.1 was that a Palladio prediction needs 1.5 times as long as an SPE
prediction. We based this hypothesis on experience from the field of code reuse cost
models, where a median relative cost of writing for reuse of 1.5 over several studies
was detected by [16, p.29], with a standard deviation of 0.24. Furthermore, hypothesis
1.2 is that the entire modelling, including cf , rd, re, and up, is the largest fraction of
the duration with both approaches, which should be the case as the analysis is auto-
mated. Still, as the tools are not equally matured and Palladio uses simulation, which
takes more time than SPE’s analytical solution, the hypothesis is not beyond doubt. Ad-
ditionally, we did not know whether the results can be readily interpreted by the users,
and we wanted to check this assumption.

In the following, the metrics are defined formally. Each variable is defined only once
and keeps that definition throughout this work. Let A = {SPE, Pal} be the approaches
under study. With a ∈ A, let Pa be the set of participants applying approach a.

Metric 1.1: For each participant p ∈ Pa, the duration dp of making a performance
prediction is measured. The duration is averaged over all participants. To do so, the
function avg is defined as the arithmetic mean of a set of real values.

Metric 1.1: For a ∈ A : avda = avg({dp |p ∈ Pa })

Metric 1.2: Let Act = {ra, cf, rd, re, up, err, ana} be the set of different perfor-
mance prediction activities mentioned above. We measured the duration of each of the
single steps i ∈ Act for each participant p ∈ Pa and named it dacti,p. We averaged it
over all participants and normalised it, i.e. gave it as a percentage of the overall duration
avda.

Metric 1.2: For i ∈ Act, a ∈ A :
avdacta,i = normda(avg({dacti,p |p ∈ Pa }))

3.2 Experiment Design

The study was conducted as a controlled experiment and investigated the effort with
participants who are not the developers of the approaches. The participants of this study
were students of a master’s level course (see section 5.1 for the discussion of student
subjects). In an experiment, it is desirable to trace back the observations to changes of
one or more independent variables. Therefore, all other variables influencing the results
need to be controlled. The independent variable in this study was the approach used
to make the predictions. Observed dependent variables were the duration of making a
prediction and the quality of the prediction to ensure a minimum quality.

The experiment was designed as a changeover trial as depicted in figure 2. The par-
ticipants were divided into two groups, each applying an approach to a given task. In
a second session, the groups applied the other approach to a new task. Thus, each par-
ticipant worked on two tasks in the course of the experiment (inter-subject design) and
used both approaches. This allowed to collect more data points and balanced potential
differences in individual factors such as skill and motivation between the two experi-
ment groups. Additionally, using two tasks lowered the concrete task’s influence and
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Fig. 2. Experiment design

increased the generalisability. We balanced the grouping of the participants based on
the results in the preparatory exercises: We divided the more successful half randomly
into the two groups, as well as the less successful half, to ensure that the groups were
equally well skilled for the tasks. We chose not to use a counter-balanced experiment
design, as we would need to further divide the groups, which would disturb the bal-
ancing between the groups. We expected a higher threat to validity from the individual
participant’s performance than from sequencing effects.

Before handing in, the participants’ solutions were checked for minimum quality
by comparing the created models to the respective reference model. This acceptance
test included the comparison of the predicted response time with the reference model’s
predicted response time as well as a check for the models’ well-formedness.

3.3 Student Teaching

The 19 computer science students participating in the experiment were trained in apply-
ing SPE and Palladio during a one-semester course covering both theory and practical
labs. For the theory part, there was a total of ten lectures, each of them took 1.5h.
The first three lectures were dedicated to foundations of performance prediction and
CBSE. Then, two lectures introduced SPE followed by five lectures on Palladio. The
three additional lectures on Palladio in comparison to SPE were due to its more complex
meta-model which allows for reusable prediction models. Note, that this also shows that
reusable models require more training effort. In parallel to the lectures, eight practical
labs took place, again, each taking 1.5h. During these sessions, solutions to the accom-
panying ten exercises were presented and discussed. Five of these exercises practised
SPE and five Palladio.

The exercises had to be solved by the participants as homework. We assigned pairs
of students to each exercise and shuffled frequently to get different combinations of stu-
dents work together and exchange knowledge. This was assumed to lower the influence
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of individual performance in the experiment. Each exercise took the students 4.75h in
average to complete.

Overall, the preparation phase was intended to ensure a certain level of familiarity
with the tools and concepts, because participants who failed two preparatory exercises
or an intermediate short test were excluded from the experiment.

3.4 Experiment Tasks

To be applicable for both SPE and Palladio, the experiment tasks can only contain
aspects that can be realised with both approaches. For example, the tasks cannot make
use of the separate roles of Palladio, because these roles are not supported by SPE.
Thus, each participant needs to fulfil all roles.

For reasons of compatibility, both experiment tasks had similar set-ups. The task de-
scriptions contained component and sequence diagrams documenting the static and dy-
namic architecture of a CB system. The sequence diagrams also contained performance
annotations. The resource environment with servers and their performance properties
was documented textually. The detailed task description is available on-line in [12].
For each system, two usage profiles were given, to reflect both a single-user scenario
(UP1) and a multi-user scenario leading to contention effects (UP2). Additionally, they
differed in other performance relevant parameters (see below).

In addition to the initial system, several design alternatives were evaluated. This re-
flects a common task in software engineering. Four design alternatives were designed
to improve the system’s performance, and the participants were asked to evaluate which
alternative is the most useful one. Three of these alternatives implied the creation of a
new component, one changed the allocation of the components and the resource envi-
ronment by introducing a second machine. With the final fifth alternative, the impact of
a change of the component container, namely the introduction of a broker for compo-
nent lookups, on the performance should be evaluated.

The two systems were prototypical systems specifically designed for this experiment.
In the first session, a performance prediction for a web-based system called Media
Store was conducted. This system stores music files in a database. Users can either
upload or download sets of files. The size of the music files and the number of files to be
downloaded are performance-relevant parameters. The five design alternatives were the
introduction of a cache component that kept popular music files in memory, the usage
of a thread pool for database connections, the allocation of two of the components to a
second machine, the reduction of the bit rate of uploaded files to reduce the file sizes
and the aforementioned usage of a broker.

In the second session, a prototypical Web Server system was examined. Here, only
one use case was given, a request of an HTML page with further requests of potential
embedded multimedia content. Performance-relevant parameters were the number of
multimedia objects per page, the size of the content and the proportion of static and dy-
namic content. The five design alternatives were the introduction of a cache component,
the aforementioned usage of a broker, the parallelisation of the Web Server’s logging,
the allocation of two of the components on a second machine and the usage of a thread
pool within the Web Server.



24 A. Martens et al.

The participants using the Palladio approach were provided with the initial repository
of available components without RD-SEFFs. It made the tasks for SPE and Palladio
more comparable, because the participants still had to create the RD-SEFFs with the
performance annotations, which is similar to the creation of an EG in SPE.

3.5 Experiment Execution

The group of 19 computer science students was divided into two groups as shown in
figure 2. We conducted two sessions, each with a maximum time constraint of 4.5 hours.
One participant did not attend the second session due to personal reasons, thus, only 18
students took part. The participants were asked to document the duration of the activities
given in metric 1.2 and to fill in a questionnaire with qualitative questions at the end of
the session.

Four members of our chair were present to help with tool problems, the exercise,
and the methods, as well as to check the solutions in the acceptance tests. This might
have distorted the results, because they might have influenced the duration. The more
problems were solved by the experimentators, the less time the participants might have
spent on solving them themselves. To avoid this effect, the participants were asked
to first try to solve problems on their own before consulting the experimentators. To be
able to assess a possible influence of this help, we documented all help and all rejections
in the acceptance tests [12].

Because many participants did not finish the task within 4.5 hours in both sessions,
the time restriction was loosened afterwards and they were allowed to work another 2.5
hours (session 1) and 2 hours (session 2). In both sessions, three (session 1) respec-
tively two (session 2) participants were not properly prepared, as they needed a lot of
basic help or were not able to finish even the initial system prediction. Thus, the results
of these three / two participants could not be used. All other participants modelled the
initial system and at least one design alternative. Because two participants failed using
both approaches, omitting their results does not advantage one of the approaches. Addi-
tionally, the time constraints did not distort the results for the initial system prediction,
because every remaining participant finished the initial prediction well before the end
of the experiment.

Overall, in session 1, three of the remaining seven participants using Palladio and
seven of the nine participants using SPE were able to finish all design alternatives. In
session 2, the eight participants using SPE finished all design alternatives, as well as
six of the eight participants using Palladio. The acceptance test ensured that the created
models were meaningful. As a result, the average deviation of the predicted response
time from a reference solution was only about 10%.

4 Results

4.1 Metric 1.1: Average Duration of Making a Prediction

First, we evaluated metric 1.1 for the whole experiment task (=: scope wt), thus the
duration dp includes the duration of analysing the initial system and all design alterna-
tives. In neither session, all participants were able to finish the respective task within the
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extended time constraints, especially for Palladio. We first looked at those participants
who finished the whole task with one approach a: Let ka be this number of participants.
To not favour one approach, only the results of the k = max(kPal, kSPE) fastest par-
ticipants from both groups were evaluated for metric 1.1, so that for both groups, the
slower participants were left out.
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Figure 3(a) shows the results of metric 1.1 for the four combinations of approaches
and systems in a boxplot, showing the minimum, the lower quartile, the mean, the upper
quartile and the maximum for all groups and systems. The number of evaluated results
is k = 3 for the Media Store (MS) and k = 6 for the Web Server (WS).

To get more data points, metric 1.1 was also evaluated for the analysis of the initial
system only without design alternatives (=: scope is), now considering all participants
(except the aforementioned excluded ones). Figure 3(b) shows the resulting boxplot,
including the time to read the exercise.

Table 2 shows the average metric 1.1 for all aforementioned combinations. Addi-
tionally, we compared how much longer it takes in average to make the Palladio pre-
diction compared to making the respective SPE prediction. These factors are shown as
avdPal/avdSPE . In average over both scopes, the duration for a Palladio prediction
was 1.4 times the duration for an SPE prediction.

We tested our initial hypotheses using Welch’s t-test [22], as we cannot assume iden-
tical variances for the distributions, and chose a significance level of 0.05. For the initial
system, the hypothesis 1.1 is not rejected in a two sided test (p=0.15). Using one sided
tests, we found that it is unlikely that students using Palladio needed less that 1.5 times
the effort than students using SPE (p=0.08), although not significantly. Overall, it is

Table 2. Metric 1.1: Duration of making a prediction in minutes

Whole task Avg Initial system Avg Avg
MS WS MS WS

avdPal 374 285 329.5 203 191 197 263
avdSPE 284 243 263.5 99 119 109 186
avdPal
avdSPE

1.32 1.17 1.25 2.05 1.61 1.81 1.41
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significant that students using Palladio did need more effort than students using SPE for
the initial system only (p=1.7 ∗ 10−4). The statistical power of these tests were larger
than 0.9 and thus satisfactory. For the whole system, i.e. the actual experimental task,
hypothesis 1.1 is rejected (p=0.009). Students using Palladio needed significantly less
than 1.5 the time than students using SPE, as the opposite is rejected with p=0.004.
The statistical power of these two tests is 0.65 and 0.78, respectively, and barely suf-
ficient [18]. Still, students using Palladio needed significantly more time than students
using SPE for the whole task as well, as the opposite is rejected (p=0.01,power 0.78).

4.2 Metric 1.2: Break Down of the Duration

We first looked at the break down of the duration as measured in metric 1.1 into the dif-
ferent activities for the initial system only (scope is), because it represented a creation
of the models from scratch and we had more data points for it.

Reading (ra) was only an initial reading of the task description, all participants had
to read excerpts of the task again while modelling, which was included in the modelling
time. For SPE, the participants did not give a separate time for the annotation of resource
demands (rd) , but included this time into modelling of the control flow (cf ) or of the
resource environment (re). Each experiment task contained two usage profiles, so the
duration of their modelling, searching for errors and analysing was measured separately
for each usage profile and then averaged.

Fig. 3. Metric 1.2: Break down of the duration for the initial system (scope is)

Figure 3 shows the break down of the duration of making a prediction for the initial
system, without design alternatives (scope is). It is visible that the entire modelling,
including cf , rd, re, and up, was the major activity for both approaches, as expected.
The results indicate that hypothesis 1.2 can be held.

Notable results are found for the time needed for searching for errors (err) and the
analysis (ana). However, participants using Palladio spent much more time on search-
ing for errors, i.e. fixing wrong or missing parameters: 20%. Here, the participants using
SPE only spent 2% (Media Store) and 6% (Web Server), of their time. The propor-
tion of the analyses was fairly constant for the approaches and differs only in the system
under study: For the Media Store system, participants spent about 10% of their time
in average for the analyses, for the Web Server, only 4%.
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The duration of the whole task, i.e. modelling all design alternatives (scope wt) was
also composed down to these aspects. The duration of reading avdacta,ra,wt was rela-
tively smaller, because it had just been queried once at the beginning of the task. The
other ratios stayed approximately the same. Due to space limitations, we omit the charts
here.

5 Discussion

5.1 Threats to Validity

To enable the reader to assess our study, we list some potential threats its validity in
the following. We look at the internal, construct, and external validity (a more thorough
discussion can be found in [12]).

The internal validity states whether changes of an experiment’s independent vari-
ables are in fact the cause for changes of the dependent variables [23, p.68]. Control-
ling potential interfering variables ensures a high internal validity. In our experiment,
we evaluated the pre-experiment exercises and assigned the students to equally capa-
ble groups based on the results to control the different capabilities of the participants.
A learning effect might be an interfering variable in our experiment, as the students
finished the second experiment session faster than the first one.

A potential bias towards or against Palladio was threatening the internal validity
in our experiment, as the participants knew that the experimenters were involved in
creating this method. However, we did not notice a strong bias from the collected data
and the filled-out questionnaires, as the participants complained equally often about the
tools of both approaches.

The construct validity states whether the persons and settings used in an experiment
represent the analysed constructs well [23, p.71]. Palladio and SPE are both typical per-
formance prediction methods involving UML-like design models. The SPE approach
has no special support for component-based systems, and was chosen for the exper-
iment due to its higher maturity compared to existing CBSPE approaches. To allow
a comparison, we designed the experimental tasks so that not all specific component-
based features of Palladio (e.g. separation of developer roles in component-based de-
velopment, performance requirements using quantiles) were used.

While our experiment involved student participants, we argue that their performance
after the training sessions was comparable to the potential performance of practitioners.
Most of the students were close to graduating and will become practitioners soon. Due
to the training sessions, their knowledge about the methods was more homogeneous
than the knowledge of practitioners with different backgrounds. With a homogeneous
group of participants, the significance of the results is even improved. Studies, such
as [10], suggest the suitability of students for similar experiments.

The external validity states whether the results of an experiment are transferable to
other settings than the specific experimental setting [23, p.72]. While we used medium-
sized, self-designed systems for the students to analyse, we modelled these system
designs and the alternatives after typical distributed systems and commonly known
performance patterns [20], which should be representative for the usually analysed
systems.
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We tried to increase the external validity of our study by letting the participants
analyse two different systems, so that differences in the results could be traced back to
the systems, and not the prediction methods. Effects that are observed for both tasks are
thus more likely to be generalisable to other settings.

Still, the systems under study were modelled on a high abstraction level due to the
time constraints of such an experiment. More complex systems would increase the ex-
ternal validity, but would also involve more interfering variables thus decreasing the
internal validity. Furthermore, the available information at early development stages is
usually limited, which would be reflected by our experimental setting.

5.2 Potential Explanations for the Results

Using SPE, the predictions can be done significantly faster. Using Palladio takes 1.17 to
2.05 times longer, depending on the system under study and the nature of the task. The
proportion is higher if we look at the prediction of the initial system only. However, this
is not a realistic setting, because a usual task in performance engineering is the com-
parison of several alternatives. For the evaluation of several alternatives, using Palladio
only takes 1.17 or 1.32 times longer. To a certain extent, this can be explained by the
reuse character of this scenario: For the prediction of design alternatives, the EGs of
SPE were copied and adapted, which is faster than creating new models from scratch,
but still a considerable effort. However, for Palladio, the RD-SEFFs of the most com-
ponents can be reused as is due to their parametrisation, and only single components,
their assembly and allocation need to be changed.

To a certain extent, the extra time needed for making Palladio predictions could
be traced back to the duration of searching for errors. This might be partly caused
by the immaturity of the tool and the limited understandability of the error messages.
Using Palladio, more problems occur during creation of the model and searching for
errors before the simulation, but the number of problems in the later acceptance tests
after simulation is lower than with SPE. The PCM-Bench performs more consistency
checks on the models than the SPE-ED tool, thus predictions with the PCM-Bench
seem more reliable. However, both tools still allow wrong parameter settings or wrong
modelling.

Still, the participants using SPE also needed less time to model and analyse the sys-
tems. However, in this experimental setting, not yet considering potential time-savings
when reusing models in other projects, SPE is favoured, because it allows to create the
models on a higher abstraction level and thus faster. The resulting SPE models are not
meant for reuse, which is the case for Palladio models. Furthermore, existing compo-
nents were not reused in the systems under study and no code was generated from the
resulting Palladio models, which might have affected the combined effort of design and
implementation. The influence of possible reuse on the effort, however, is deliberately
not subject of our experiment and needs further studies.

Next to differences of the approaches presented here, we also found that the results
differ for the two systems under study. For the Web Server, both the duration of mod-
elling the control flow and the variance of the overall duration is considerably higher
for both approaches.
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5.3 Implications for Further Research

Our experiment has several implications for further research. The study could be re-
peated with a larger sample size to allow a better and more precise quantification of the
additional effort. Furthermore, the actual reuse of the created parametrised models in
terms of applicability, effort and quality need to be studied. Also more complex, and
less componentised systems could be evaluated with the approaches. We also plan to
investigate whether cost models on the effort of creating reusable code [16] are suitable
for assessing the overhead effort of creating reusable performance prediction models.

For comparative studies between different approaches, a component-based reference
system can help avoid researchers applying their methods on their own model exam-
ples, which are often tuned to show specific benefits but not general applicability. A
recent joint effort by more than 15 research groups has taken steps into this direction
by specifying CoCoME (Common Component Modelling Example) [17], which could
be used for comparative studies.

6 Related Work

Basics about the area of performance prediction can be found in [20,14]. Balsamo
et al. [1] give an overview of about 20 recent approaches based on QN, SPN, and
SPA. Becker et al. [5] survey performance prediction methods specifically targeting
component-based systems. Examples are CB-SPE [7], ROBOCOP [8], and CBML [24].

Empirical studies and controlled experiments [23] are still under-represented in the
field of model-based performance predictions, as hardly any studies comparable to ours
can be found. Balsamo et al. [3] compared two complementary prediction methods
(one based on SPA, one on simulation) by analysing the performance of a naval com-
munication system. However, in that study, the authors of the methods carried out the
predictions themselves. Gorton et al. [9] compared predicted performance metrics to
measurements in a study, but only used one method for the predictions.

Koziolek et al. [11] conducted a study similar to this one. They compare predictions
with SPE [20], Capacity Planning [14], and umlPSI [2] with measurements of an im-
plementation. It attested SPE the most maturity and suitability for early performance
predictions and influenced our decision to compare Palladio to SPE.

7 Conclusions

We have conducted an empirical investigation to quantify the higher effort for creat-
ing reusable, component-based models for performance prediction in relation to create
throw-away models. After substantial training, we let 19 computer science students
apply the SPE method and the Palladio method to predict the response times of two
example systems. We found that the effort for applying Palladio on the whole task was
in average 1.25 times the effort for applying SPE. Our results indicate that in some
cases, the effort of creating reusable models for performance prediction can already be
justified if the models are reused at least once, if the costs for the reuse itself are low. If
the models are reused more often, the additional upfront effort pays off even more.
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The results are useful for both practitioners and researchers. Practitioners, such as
software architects and performance analysts, get a first quantification of the higher
effort to create reusable, component-based models, which they could use in front of
management to justify higher upfront costs for modelling. Researchers obtain a reusable
experimental setting, which is the basis for future replications of the experiment. The
results suggest that it is worthwhile to put more research effort into creating reusable
models, because their creation can quickly pay off. However, our study cannot give a
definite, overall answer to the questions raised, as the results are also confined to our
specific experimental setting.

Our investigation opens up future directions for research. We conducted one of the
first empirical studies comparing two performance prediction approaches. The study
could be repeated with a larger sample size to allow a better quantification of the ad-
ditional effort as well as a validation of the results. Furthermore, it has to be assessed
whether the promised reusability of the models can be achieved in more complex or
less componentised systems. Moreover, the analysis of factors influencing the effort,
especially the nature of the systems under study, is an issue for future research.

Details on the Experimental Settings and the Results. can be found in [12], available
online at
http://sdq.ipd.uka.de/diploma theses study theses/completed
theses.

Acknowledgements. We would like to thank Walter Tichy, Lutz Prechelt, and Wilhelm
Hasselbring for their kind review of the experimental design and fruitful comments.
Furthermore, we thank all members of the SDQ Chair for helping prepare and conduct
the experiment. Last, but not least, we thank all students who volunteered to participate
in our experiment.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Prediction
in Software Development: A Survey. IEEE TSE 30(5), 295–310 (2004)

2. Balsamo, S., Marzolla, M.: A Simulation-Based Approach to Software Performance Model-
ing. In: Proc. of ESEC/FSE, pp. 363–366. ACM Press, New York (2003)

3. Balsamo, S., Marzolla, M., Di Marco, A., Inverardi, P.: Experimenting different software
architectures performance techniques. In: Proc. of WOSP, pp. 115–119. ACM Press, New
York (2004)

4. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering - 2 Volume Set, pp. 528–532.
John Wiley & Sons, Chichester (1994)

5. Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance Prediction of Component-
Based Systems: A Survey from an Engineering Perspective. In: Reussner, R., Stafford,
J.A., Szyperski, C.A. (eds.) Architecting Systems with Trustworthy Components. LNCS,
vol. 3938, pp. 169–192. Springer, Heidelberg (2006)

6. Becker, S., Koziolek, H., Reussner, R.: Model-based Performance Prediction with the Pal-
ladio Component Model. In: Proc. of WOSP, February 5–8, 2007, pp. 54–65. ACM Sigsoft
(2007)

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses


Component-Based Models for Performance Prediction 31

7. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Performance En-
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