
Towards a Systematic Method for Identifying Business
Components

Antonia Albani1, Sven Overhage2, and Dominik Birkmeier2

1 Information Systems Design,
Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands
a.albani@tudelft.nl

2 Component and Service Engineering Group,
Business Informatics and Systems Engineering Chair,

University of Augsburg,
Universitaetsstrasse 16, 86159 Augsburg, Germany

{sven.overhage,dominik.birkmeier}@wiwi.uni-augsburg.de

Abstract. The identification of business components, which together define a
modular systems architecture, is a key task in todays component-based devel-
opment approaches for the business domain. This paper describes the Business
Component Identification (BCI) method which supports a systematic partitioning
of a problem domain into business components. The method allows the designer
to state preferences for the partitioning process and uses them as the basis to pro-
duce an optimized balance between the business components’ granularity on the
one hand and their context dependencies on the other hand. It makes use of busi-
ness domain models specified during the definition of system requirements and
can be integrated into the early design phase of a component-based development
process. The paper also shows how the produced partitioning can easily be re-
fined into an architecture specification and thus can be used as a starting point for
the technical design of a software system and/or its business components.

1 Motivation

Modern component-based approaches allow developers to realize software systems in
business domains by partitioning a problem space into a set of proper business com-
ponents, developing or discovering suitable candidates, and assembling them to obtain
the aspired solution [1,2,3]. This modular way of systems development promises to
bring many advantages, among which especially a reduced time to market, the increased
adaptability of systems to changing requirements and, as a result, reduced development
costs are of key importance for the IT strategy of todays enterprises [1,4].

A prerequisite for the envisioned breakthrough of component-based approaches in
practice, however, is to better support the underlying modular development paradigm
with specialized methods and tools. Although the modular paradigm sounds rather
straight-forward at a first glimpse, it introduces a variety of methodological challenges
when being analyzed more closely. As a consequence, both the partitioning as well as
the composition process continue to pose research questions. Compared to the composi-
tion process, where a lot of research is ongoing and for which methods to browse, adapt,

M.R.V. Chaudron, C. Szyperski, and R. Reussner (Eds.): CBSE 2008, LNCS 5282, pp. 262–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Systematic Method for Identifying Business Components 263

as well as to assemble components in a predictable way have already been proposed
[5,6,7,8,9], especially the question of how to partition a problem space into modular
components still remains to be addressed.

In line with this observation, component identification strategies found in literature
are usually limited to basic guidelines or general advices. The established partitioning
principle of maximizing cohesion and minimizing dependencies between components,
e.g., states that contextually related functions and data should be grouped together and
ideally constitute a single component [10,11,1]. This principle, however, does not make
a statement about an optimal component granularity. Consequently, it might be con-
ceivable to design coarse-grained components containing all required functionality and
having no context dependencies at all. Because this leads to redundant implementations
of supporting functions and makes components more difficult to maintain, an alterna-
tive is to outsource supporting functions into separate components and opt for a better
reuse grade. In practice, designers will have to strive for an optimal balance between
self-containedness and implementation reuse [1]. This means that even with the advices
and guidelines from literature taken for granted, a component-based system can well be
partitioned into parts of varying size and context dependencies. To date, there only exist
generalized approaches that show how a grouping of functions can technically be re-
alized (see e.g. [12]) and discussions about different aspects that have to be taken into
account (e.g. selected aspects of scale and granularity presented in [1]). The partitioning
itself is still left completely to the designer and his or her personal skills, though.

In this paper, we present the Business Component Identification (BCI) method, which
systematically supports the partitioning process and helps designers to find an optimized
set of business components. The presented method takes results from the requirements
definition as input and forces designers to make their partitioning preferences explicit.
Based on these preferences, it generates an optimized partitioning of a problem space
into business components, which provides a basis for further refining. It allows de-
signers to make use of a rational, unequivocal partitioning procedure and validate the
stability of the result against modified preferences. In doing so, the BCI method con-
tributes to evolve the partitioning of component-based systems from handcrafting to an
engineering process. The key research questions addressed in this paper are a) how the
information modeled in business domains can be used to identify business components
in a formal way and b) which optimization methods are suitable for the identification of
business components leading to better results than existing solutions. Principally, the in-
troduced partitioning algorithm is not limited to business domains, since it uses process
and concept models as inputs which are being created in many application domains. To
date, however, we have only applied BCI in business domains.

In section 2, we firstly discuss how to integrate BCI into the component-based de-
velopment process. This discussion will also elaborate on the input that can be taken
as a basis for the partitioning as well as the output that has to be generated by the BCI
method. In section 3, we will then describe the BCI method in detail and present the
algorithms used for the generation as well as the optimization of a partitioning. Section
4 briefly presents related approaches. We conclude the paper with a discussion of addi-
tional aspects that will be taken into consideration in the future and the work that has
been done to validate the results of BCI in practice.

264 A. Albani, S. Overhage, and D. Birkmeier

2 Systems Development and Component Identification Process

The partitioning of a problem space into components is a core part of the component-
based development process and has a significant impact on the quality of both the
resulting software system as well as its constituent components. Component-based
development process models presented in literature therefore typically either comprise
an explicit component identification phase before the actual design starts or at least
include this task as an early step of the system design phase [2,13,12]. The extent, to
which a partitioning has to be made from scratch, of course, depends on the availability
of components that eventually can be reused.

With mature component markets in place and components preferably being reused in-
stead of being newly developed, the partitioning process during the design of a software
system needs to be driven by two determinants: the predefined architecture imposed by
reusing existing components and the conceptual models created during the requirements
definition. The conceptual models describe processes and information of the problem
domain which have to be managed. There are various process models that can be used
to develop component-based systems with reuse, among which the Reuse-Oriented and
Reuse-Driven Development approaches [2] as well as the Assemble Route of Catalysis
[13] are the more prominent ones. In such a reuse-oriented scenario, the partitioning of
a problem domain into components also is an important step during the so-called devel-
opment for reuse, which provides reusable components for the development of systems.
Reusable components are usually not being developed in isolation, but in so-called do-
main engineering approaches in which entire problem spaces are being partitioned.

The before-mentioned reuse-based development has repeatedly been described as an
ideal component-based software engineering scenario in literature. Using a component-
based development approach, however, even is able to bring substantial benefits where
component markets and in-house reuse are not established, since modular systems with
easily replaceable parts better support managing changes [12,1]. Cheesman and Daniels
have presented a process model that supports component-based systems development
without a special focus on reuse [12]. In this case, the partitioning process can begin
from scratch. It solely depends upon domain-oriented conceptual models that have been
created during the requirements definition. Notably, however, is the fact, that none of
the process models mentioned in this chapter describes how to achieve a good parti-
tioning in detail. Instead, all of them are limited to giving very heuristic advice or to
introducing technical means which merely help to capture relationships and dependen-
cies between parts of the domain models. To advance the state of the art, we integrate
a rational partitioning procedure, namely the BCI method, into the component-based
development process.

The integration is demonstrated for the UML Components process model introduced
by Cheesman and Daniels [12], which we have chosen for several reasons: firstly, ma-
ture component markets today are rather the exception than the rule and especially the
development of business systems can not yet systematically include the reuse of existing
components. Furthermore, the UML Components process model is well-established,
easily applicable in practice, and – thanks to its close relationship to Catalysis as well
as to other approaches [12, p. xv] – the transfer of our results to different process models
is rather straightforward.

Towards a Systematic Method for Identifying Business Components 265

The UML Components process already includes an explicit component identifica-
tion phase. It is part of the system specification and follows immediately after the re-
quirements engineering (see fig. 1). The goal of the component identification phase is
to come up with an initial specification of the system’s architecture and its constituent
components, which is then refined during the next design steps. The system partitioning
is driven by the description of the problem domain and – following established software
engineering principles – separates the discovery of system components (the front-end
side) from the discovery of business components (the server side providing the business
functions).

In this paper, we focus on the discovery of business components, which is based upon
the business concept model and the associated business processes. The business concept
model documents the information which is being processed in the application domain.
It consists of information objects (concepts) and identified structural relationships be-
tween them. The business processes describe workflows of the business domain which
have to be supported by the software system. They contain business functions (modeled
as process steps) as well as the temporal relationships between them.

Requirements

Specification

Provisioning

Assembly

Requirements
Definition

Component
Identification

Component
Interaction

Component
Specification

Component
Identification(1) Develop Business

Type Model

(3) Create Initial Comp
Specs & Architecture

(2) Identify Business
Interfaces & Ops

Identify System
Interfaces & Ops

Business Concept
Model & Processes Use Case Model

Component Specs &
Architecture

Business
Interfaces

System
Interfaces

Fig. 1. UML Components process and component identification stage (cf. [12])

To identify business components, Cheesman and Daniels recommend to formalize
the business concept model into a more detailed and technical business type model (see
fig. 1 (1)). The next step is to identify so-called core business types, which represent
information that can stand alone in the business domain. For each core business type,
a business interface has then to be created (see fig. 1 (2)). A business interface has to
manage the information represented by an independent core type and thus is a candidate
to constitute a business component. The so identified business components finally have
to be specified in detail and, together with identified system components, can be formed
into an initial systems architecture (see fig. 1 (3)).

While this procedure may serve as a very heuristic approach to get to an initial set
of business components, it has a variety of drawbacks. Firstly, even information that
can stand alone in the business domain may likely have relationships to other informa-
tion objects. Cheesman and Daniels acknowledge this and recommend to convert such

266 A. Albani, S. Overhage, and D. Birkmeier

Component
Identification(1) Denote Partitioning

Preferences

(3) Create Initial Comp
Specs & Architecture

(2) Create & Validate
Optimized Partitioning

Identify System
Interfaces & Ops

Business Concept
Model & Processes Use Case Model

Component Specs &
Architecture

Business
Interfaces

System
Interfaces

Fig. 2. Integration of the BCI method into the UML Components process

relationships into component dependencies. This might, however, not lead to an opti-
mal partitioning, e.g., when components have to be easily replaceable and dependencies
have to be kept at a minimum. Furthermore, the procedure is focused solely on a modu-
larized management of information objects. Most business systems, however, will also
have to include business components that manage entire processes or parts of business
workflows [3]. These business components will then automatically have dependencies
to all the business components governing relevant information in a process. Design-
ers will hence have to take business functions and information (with their respective
relationships to each other) into account when partitioning a problem space [10].

With the BCI method, the procedure proposed by Cheesman and Daniels can be
replaced (see fig. 2). In line with their procedure, BCI also takes a business concept
model and specified business processes as input to create a partitioning. In a first step,
the designer will have to denote his partitioning preferences (see fig. 2 (1)). Thereafter,
an optimized partitioning with respect to the given preferences is derived and has to be
validated (see fig. 2 (2)). The resulting partitioning clusters process steps and informa-
tion objects to form a set of business components. The identified business components
are then to be refined, technically specified, and, together with the required system com-
ponents, formed into a systems architecture (see fig. 2 (3)).

3 The Business Component Identification Method

The set of domain models and the defined metrics of maximizing cohesion and mini-
mizing dependencies constitute the basis for the identification of business components.
The identification is strongly dependent on the underlying domain models [14,15]. Only
a domain model reflecting the business in a concise, complete and comprehensive way
can lead to an adequate component model and therefore to a corresponding application
system. In this paper we will not discuss the advantages and disadvantages of domain
modeling methodologies. Instead, we will show how the information modeled in busi-
ness domains can be used to identify business components in a formal way using the
BCI method. Data from the domain of Strategic Supply Network Development (SSND)
is used in the figures below to better visualize the identification process. The example
domain comes from the area of strategic purchasing, where networks of suppliers are

Towards a Systematic Method for Identifying Business Components 267

analyzed and selected in order to define an adequate purchasing strategy. It is not our in-
tention to explain the SSND example in this paper, we rather focus on the formal method
for identifying business components using the data of the SSND example. For details
about the SSND domain we refer to [16]. In the following, the single BCI process steps
– (1) Denote Partitioning Preferences, (2) Create and Validate Optimized Partitioning,
and (3) Create initial Component Specification and Architecture – introduced in fig. 2
will be described.

3.1 Denote Partitioning Preferences

The BCI method uses the information objects from the concept models and the process
steps from the process diagrams of the business domain, including their relationships.
One can distinguish between three types of relationships necessary for the identifica-
tion of business components: the relationships between single process steps, the re-
lationships between information objects, and the relationships between process steps
and information objects. A relationship type distinguishes between subtypes expressing
the significance of a relationship. E.g., a relationship between single process steps ex-
presses – based on their cardinality constraints – how often a process step is executed
and therefore how close two process steps are related to each other in that business
domain. The relationships between information objects define how loosely or tightly
the information objects are coupled, and the relationships between process steps and
information objects define whether a corresponding information object is, e.g., used
or created while executing the respective process step. All types of relationships are
of great relevance and build the basis for the BCI method. In order to apply a formal
method for the identification of business components, we map the domain models to a
weighted graph. As the nodes represent information objects and process steps, the edges
characterize the relationships between the nodes. Weights are used to define the differ-
ent types and subtypes of relationships. They build the basis for assigning process steps
and information objects to components. The mapping of information objects and pro-
cess steps from the domain models to nodes in the weighted graph is straightforward.
Whereas, the definition of the relationship subtypes and the assignment of weights to
corresponding edges is heavily dependent on the importance of the relationships in the
underlying domain models. Therefore, domain knowledge and know-how is required
for this step and the designers need to denote their partitioning preferences by intro-
ducing relevant relationship subtypes and assigning weights to them. The relationship
subtypes as well as the weights may therefore differ dependent on the domain models
and the preferences specified by the designers.

The BCI-3D Tool was developed to support the application of the BCI method. Due
to display reasons the weighted graph is visualized in a three-dimensional representa-
tion having the process steps and information objects arranged as nodes in circles. The
nodes representing the information objects are shown on top of fig. 3, and the nodes
representing the process steps are shown on the bottom of fig. 3. The edges representing
the relationships between information objects connect the top nodes to each other, the
ones representing the relationships between process steps connect the nodes on the

268 A. Albani, S. Overhage, and D. Birkmeier

Fig. 3. BCI – defined preferences

Table 1. Assignment of process step names to shortcuts

process steps name shortcut process steps name shortcut
request offering T01/rq state exploration T03/st
promise offering T01/pm accept exploration T03/ac
produce offering T01/ex request evaluation T04/rq
state offering T01/st promise evaluation T04/pm
accept offering T01/ac produce evaluation T04/ex
request engineering T02/rq state evaluation T04/st
promise engineering T02/pm accept evaluation T04/ac
produce BoM explosion T02/ex request conclusion T05/rq
state engineering T02/st promise conclusion T05/pm
accept engineering T02/ac produce concluded contract T05/ex
request exploration T03/rq state conclusion T05/st
promise exploration T03/pm accept conclusion T05/ac
produce contract T03/ex

bottom and the edges representing the relationships between information objects and
process steps connect the nodes on top with the nodes on the bottom, shown in fig. 3.
The weights assigned to the relationship subtypes are listed in a separate window on the
right of fig. 3. Shortcuts are used to describe the process steps and information objects.
The full names can be found in table 1 and table 2.

Towards a Systematic Method for Identifying Business Components 269

Table 2. Assignment of information object names to shortcuts

information object name shortcut
Product P
Assembly A
Contract C
Evaluated Contract EC
Potential Contract PC
Concluded Contract CC
Offered contract OC

3.2 Create and Validate Optimized Partitioning

For the identification of business components, as implemented by the BCI method, the
weighted graph needs to be partitioned by assigning information objects and process
steps to single components. The grouping should satisfy the defined metrics of maxi-
mizing cohesion and minimizing dependencies and should take all domain information
into account which has been mapped to the weighted graph .

The problem of partitioning a graph G = (V, E), with vertices V and edges E, into
subsets of nodes of a defined size is known to belong to the class of NP-complete prob-
lems [17]. A clustering of the given example with 32 nodes into, e.g., three components
of approximately equal size can be achieved in over 1012 different ways. Therefore, a
direct calculation of the best solution by comparing all combinations is unreasonable,
but heuristics can be used to find a best possible solution in suitable time. BCI applies
an opening heuristic first, that gives a starting partition, and enhances this partition with
an improving heuristic.

In general, a better starting partition is more likely to lead to better optimization
results. We achieved the best results with the Start Partition Greedy heuristic shown in
fig. 4. This is a greedy graph partitioning algorithm. In each iteration the most promising
step is taken [18, p. 127]. The Start Partition Greedy utilizes a priority queue (PQ) to
order the edges e ∈ E, whereby a higher priority is assigned to higher weighted edges.
In the case of edges having equal weights, the weights of all edges adjacent to the end
nodes are added. This allows for a fine-grained ordering. Beginning with unmarked
vertices v ∈ V , the heuristic sequentially takes the edges in the PQ, and examines their
end nodes. In the case of two unmarked nodes, a new component is generated. Whereas,
in the case of one unmarked node, it is added to the marked node’s component. Finally,
all remaining unmarked nodes are collected in a last new component.

An advantage of our opening heuristic is, that there is no need to define the number
of components in advance. It is determined by the Start Partition Greedy algorithm,
depending solely on the given domain models and based on priority ordering of the
edges. The idea is to cluster nodes, that are highly connected to their neighbors into
one and the same component. An evaluation of different starting heuristics on various
models, emphasized this method as leading to the most promising starting solutions.

After obtaining a primary solution for the optimization problem, various heuris-
tics can be used to further improve the component structure. In 1970, Kernighan and
Lin developed an algorithm for the enhancement of a given clustering of a graph into

270 A. Albani, S. Overhage, and D. Birkmeier

Fig. 4. UML Activity Diagram of the Start Partition Greedy heuristic

equal sized subgraphs [19]. Numerous variations of this method where proposed since
then and all are based on the same concept (cf. [20,21,22]). We adopted the original
Kernighan-Lin heuristics to improve the starting solution. This method does not con-
sider all components at once, but rather a pair of two components in each step. At the
beginning, all pairs are unmarked. In each step an unmarked pair is picked at random
and the components are optimized, with respect to the heuristics. If any changes are
made, all pairs are going to be unmarked again. Whereas, if no action is taken, the pair
will be marked. This is repeated until no unmarked pairs are left and the component
structure is optimized.

In order to compare different component structures and to be able to optimize
them, we defined the cost C(A, B) of a partitioning into components A and B as
C(A, B) =

∑
a∈A,b∈B w(a,b), where w(a,b) is the weight of the connection between

the single nodes a ∈ A and b ∈ B. The goal is to minimize the cost of the partitioning
for each pair of components (A, B). Furthermore, we defined internal I(a) and external
E(a) costs of a node a according to Kernighan and Lin [19]:

I(a) =
∑

x∈A,x �=a

w(a,x), E(a) =
∑

b∈B

w(a,b)

Moreover, the D-value of a node is referred to as the difference between its external and
internal costs, D(a) = E(a) − I(a). The gain g(a, b) of exchanging the nodes a and b
between the components A and B is then calculated by g(a, b) = D(a)+D(b)−2w(a,b).
The basic procedure of a two-component optimization step corresponds to Kernighan-
Lin and is shown in fig. 5.

Towards a Systematic Method for Identifying Business Components 271

Fig. 5. UML Activity Diagram of the adopted Kernighan-Lin algorithm

The process of identifying business components by applying the BCI method and
satisfying defined metrics is an iterative process. The business components resulting
from BCI need to undergo a sensitivity analysis check before taken for granted. In
analyzing the process steps and information objects assigned to the resulting compo-
nents, inconsistencies and errors in the underlying domain models can be identified
and corrected correspondingly. Additionally, the resulting component model should re-
main stable even if the weights in the weighted graph are slightly changed. By changing
weights of the relationships and reapplying the BCI method, the stability of the resulting
component model can be analyzed.

Applying the BCI method to the graph introduced in fig. 3 results in the following
graph clustering (see fig. 6). The figure shows the identified business components and
the dependencies between them. Additionally, the window on the right lists the single
process steps and information objects as assigned to the identified components by BCI.

3.3 Create Initial Component Specification and Architecture

Two business components can be identified immediately. While looking at the process
steps and information objects clustered within the components, the designer can identify
the business functionality of the two business components: one containing the business
tasks related to Product Management and one containing the business tasks related to
Contract Management.

From fig. 6, the services provided and required by each component can be derived.
We distinguish between two types of services: inter-component services and informa-
tion services. Inter-component services are services, which are required by another
component in order to provide a specific functionality. The inter-component services

272 A. Albani, S. Overhage, and D. Birkmeier

Fig. 6. BCI – optimized partitioning

Fig. 7. UML Component Model of the identified components

are apparent in fig. 6 as the edges connecting two process steps, each located in a dif-
ferent component. E.g., the edge connecting the T01/pm (promise offering) and T05/rq
(request conclusion) defines an inter-component service. The service provided by the
Contract Manager component relates to the conclusion of the contract, and is therefore
called ProduceConcludedContract. Which business component requires or provides
that service becomes clear when looking at the process step diagrams of the relevant

Towards a Systematic Method for Identifying Business Components 273

business domain. The identified business components with their required and provided
services are shown in fig. 7.

The second type of services gained from the business components identified and
visualized in fig. 6 are information services. While information objects are created and
updated by the responsible business component, other components need to request the
values of required information objects through services. By analyzing the edges that
connect process steps of one component with information objects of another component
the services are identified. In fig. 6 we have e.g., T03/ex (produce potential contract)
connected by an edge with A (Assembly). This means that the process step of producing
a potential contract needs information about the assembly information object. In this
case the Product Manager component needs to provide the service ProvideAssembly,
while the Contract Manager component requires that service (see fig. 7).

4 Related Work

The identification of business components and their services is a primary research prob-
lem that needs to be addressed. Today, there is still little research contributing to the
development of systematic approaches which support designers in finding an optimized
set of business components. In accordance with the classification introduced by [23],
mainly three different types of business component identification techniques can be dis-
tinguished: Domain Engineering based methods, CRUD (Create, Read, Update, Delete)
matrix based methods and Cohesion-Coupling based Clustering Analysis methods.

A key issue in the design phase of the domain engineering process is “the genera-
tion of components that represent conceptual, functional and technological aspects of
the domain, and their organization within a domain architecture” [24]. Given that fact,
Domain Engineering based methods for component identification usually focus on the
reusability of the domain architecture and the adaptability of constituent components,
based on defined criteria. E.g., the Feature-Oriented Reuse Method (FORM) [25] cap-
tures commonality selectable for different applications as an AND/OR graph, where
AND nodes indicate mandatory features and OR nodes indicate alternative features.
This graph is used to define parameterized reference architectures and reusable compo-
nents instantiable during application development. Another approach aims at gathering
components that intensively exchange messages in a unique artifact, and defining an
architecture element referred to as components grouping [24]. It uses defined criteria
for the grouping of components based on four different aspects: domain context, pro-
cess component, components interfaces, and the component itself. Domain Engineering
based methods, however, rarely use formal approaches to obtain reusable components
and are highly dependent on the experiences of the designers.

CRUD matrix based methods focus on the semantics of business elements, which is
contained in domain models, to merge closely related elements into business compo-
nents. They use the relationships between behavioral business elements (e.g., process
steps) and static business elements (e.g., information objects) to define how closely the
elements are related to each other. Four relationship types – Create (C), Read (R), Up-
date (U) and Delete (D) with the priority C>D>U>R – are used to specify the semantic
relationship between the behavioral and the static business elements. The relationships

274 A. Albani, S. Overhage, and D. Birkmeier

are visualized in a matrix. CRUD matrix based methods aim at transforming the ma-
trix by given rules in order to identify blocks in which behavioral and static business
elements with C and D relationships are merged to form single components. Examples
of CRUD matrix based methods are [26,27]. The disadvantage of CRUD matrix based
approaches is that additional information available in the domain models is not used for
identifying business components. E.g., the relationships between static elements and
the relationships between behavioral elements are not considered at all.

With Cohesion-Coupling based Clustering Analysis methods, researchers try to clus-
ter business models according to high cohesion and low coupling principles, and encap-
sulate each cluster in a component. The main idea of those methods is to first transform
the domain models into the form of weighted graphs, in which business elements are
nodes, the dependencies between single business elements are edges and semantic de-
pendency strengths are represented as weights. In a second step, the graph is clustered
using graph clustering or matrix analysis techniques that satisfy the metrics of high co-
hesion and low coupling. E.g., [28,29] are implementing such clustering analysis meth-
ods in order to identify components. Both approaches assume that UML models are
available describing the business domain. The disadvantage of such approaches is that
they are often based on technical concepts defined, e.g., in UML instead of focusing on
the semantics of the corresponding business domain.

The BCI method directly contributes to the research area of identifying business
components. According to the classification of business components identification
methods by [23], the BCI method combines Cohesion-Coupling based Clustering Anal-
ysis and CRUD matrix based methods. The advantage of BCI is that the method uses
all relevant dependencies of business domain models, including relationships between
behavioral business elements, between static business elements, and those between be-
havioral and static business elements. It therefore extends CRUD matrix based methods
with two additional types of dependencies. Additionally, BCI maps those business ele-
ments and their mentioned dependencies, independently of the notation used to model
the business domain and its technical concepts, into a weighted graph. This graph is
then used to apply the Cohesion-Coupling based Clustering Analysis methods imple-
mented in BCI for identifying business components. With BCI, we thus satisfy Wang’s
recommendation of combining current component identification methods in order to
achieve better results [23].

5 Conclusions and Future Directions

In this paper, we described the BCI method and have shown how to integrate it into
the UML Components development process. The BCI method creates a partitioning of
a problem space into business components which are optimized to satisfy the design-
ers’ partitioning preferences. In doing so, we advance the current state of the art and
contribute to establish a more systematic approach to partition business systems into
components, a key task in component-based systems development.

The BCI method was created in a perennial research project and has been continually
improved to reach the scope of operation presented in this paper. It already has been val-
idated in complex case studies that confirm its appropriateness for the development of

Towards a Systematic Method for Identifying Business Components 275

component-based business systems in practice [30,31,32]. While the algorithms used in
the current method and the derived partitioning results have proven to be mature, several
approaches to further the scope of operation are currently under development. Among
others, it is the plan to empirically evaluate the BCI method versus the other compo-
nent identification methods described in this paper in order to show that the approach
presented is superior to alternative approaches. Additionally, the initiative to integrate
the BCI method into a tool that covers the domain modeling process is ongoing. With
the partitioning as a final result, the tool may lead over to a component-based system
design as well as to a service-based development approach. More technically motivated
research initiatives include an automatic derivation of component orchestrations as well
as the generation of parts of the components’ internal structure.

In future, we plan to extend the BCI method to support reuse-driven development
approaches, in which existing components will be considered. To reuse existing com-
ponents during the partitioning process, we require conceptual models of process steps
and information objects managed by those components. These models are either derived
from technical specifications or already available when building upon more holistic
specification approaches like, e.g., the Unified Specification of Components approach
[33]. Existing components will then be represented as clusters of process steps and
information objects that are marked to remain unchanged during the partitioning.

Our research initiatives centered around the BCI method are part of a longer-term
goal to provide a mature methodical support of the partitioning process, just as it will
become available for the complementary composition process. Only with an appropriate
support of both processes, component-based development will lead to a component-
based software engineering process.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software. Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley, Harlow (2002)

2. Sametinger, J.: Software Engineering with Reusable Components. Springer, Heidelberg
(1997)

3. Herzum, P., Sims, O.: Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise. John Wiley & Sons, New York (2000)

4. Brown, A.W.: Large-Scale, Component-Based Development. Prentice Hall, Upper Saddle
River (2000)

5. Zaremski, A.M., Wing, J.M.: Signature Matching: A Tool for Using Software Libraries.
ACM Transactions on Software Engineering and Methodology 4(2), 146–170 (1995)

6. Seacord, R.C., Hissam, S.A., Wallnau, K.C.: Agora: A Search Engine for Software Com-
ponents. Technical report CMU/SEI-98-TR-011, Software Engineering Institute, Carnegie
Mellon University (1998)

7. Yellin, D., Strom, R.: Protocol Specifications and Component Adaptors. ACM Transactions
on Programming Languages and Systems 19(2), 292–333 (1997)

8. Wallnau, K.C.: A Technology for Predictable Assembly from Certifiable Components. Tech-
nical Report CMU/SEI-2003-TR-009, Software Engineering Institue (2003)

9. Reussner, R.H., Schmidt, H.W.: Using Parameterised Contracts to Predict Properties of
Component-Based Software Architectures. In: Crnkovic, I., Larsson, S., Stafford, J. (eds.)
Workshop on Component-Based Software Engineering, Lund (2002)

276 A. Albani, S. Overhage, and D. Birkmeier

10. Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into Modules. Communi-
cations of the ACM 15(12), 1053–1058 (1972)

11. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Englewood Cliffs
(1997)

12. Cheesman, J., Daniels, J.: UML Components. A Simple Process for Specifying Component-
Based Software. Addison-Wesley, Upper Saddle River (2001)

13. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML. The Cataly-
sis Approach. Addison-Wesley, Upper Saddle River (1999)

14. Albani, A., Dietz, J.L.: The benefit of enterprise ontology in identifying business compo-
nents. In: IFIP World Computing Conference, Santiago de Chile, Chile (2006)

15. Albani, A., Dietz, J.L., Zaha, J.M.: Identifying business components on the basis of an en-
terprise ontology. In: Konstantas, D., Bourrieres, J.P., Leonard, M., Boudjlida, N. (eds.) In-
teroperability of Enterprise Software and Applications, Geneva, Switzerland, pp. 335–347.
Springer, Heidelberg (2005)

16. Albani, A., Müssigmann, N., Zaha, J.M.: A Reference Model for Strategic Supply Net-
work Development. In: Reference Modeling for Business Systems Analysis, Idea Group Inc.
(2006)

17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In:
STOC 1974: Proceedings of the sixth annual ACM symposium on Theory of computing, pp.
47–63. ACM, New York (1974)

18. Jungnickel, D.: Graphs, Networks and Algorithms, 3rd edn. Springer, Berlin (2007)
19. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell

system technical journal 49, 291–307 (1970)
20. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions.

In: DAC 1982: Proceedings of the 19th conference on Design automation, Piscataway, NJ,
USA, pp. 175–181. IEEE Press, Los Alamitos (1982)

21. Dutt, S.: New faster kernighan-lin-type graph-partitioning algorithms. In: ICCAD 1993: Pro-
ceedings of the 1993 IEEE/ACM international conference on Computer-aided design, pp.
370–377. IEEE Computer Society Press, Los Alamitos (1993)

22. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In: Proceedings
of the 1995 ACM/IEEE conference on Supercomputing. ACM, New York (1995)

23. Wang, Z., Xu, X., Zhan, D.: A survey of business component identification methods and
related techniques. International Journal of Information Technology 2, 229–238 (2005)

24. Blois, A.P.T., Werner, C.M., Becker, K.: Towards a components grouping technique within
a domain engineering process. In: Proceedings of the 31st EUROMICRO Conference on
Software Engineering and Advanced Applications (EUROMICRO-SEAA 2005) (2005)

25. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: Form: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Software Engineering 5,
143–168 (1998)

26. Lee, S., Yand, Y.: Como: A uml-based component development methodology. In: Proceed-
ings of the 6th Asia Pacific Software Engineering Conference, pp. 54–63 (1998)

27. Somjit, A., Dentcho, B.: Development of industrial information systems on the web using
business components. Computer in Industry 50, 231–250 (2003)

28. Kim, S.D., Chang, S.H.: A systematic method to identify software components. In: 11th
Asia-Pacific Software Engineering Conference (APSEC), pp. 538–545 (2004)

29. Jain, H., Chalimeda, N.: Business component identification - a formal approach. In: Proceed-
ings of the Fifth International Enterprise Distributed Object Computing Conference (EDOC
2001). IEEE Computer Society, Los Alamitos (2001)

30. Albani, A., Bazijanec, B., Turowski, K., Winnewisser, C.: Component framework for strate-
gic supply network development. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) AD-
BIS 2004. LNCS, vol. 3255, pp. 67–82. Springer, Heidelberg (2004)

Towards a Systematic Method for Identifying Business Components 277

31. Selk, B., Kloeckner, S., Bazijanec, B., Albani, A.: Experience report: Appropriateness of
the bci-method for identifying business components in large-scale information systems. In:
Turowski, K., Zaha, J.M. (eds.) Component-Oriented Enterprise Applications, Proceedings
of the Conference on Component-Oriented Enterprise Applications (COEA 2005), Bonn,
Köllen. Lecture Notes in Informatics, vol. 70, pp. 87–92 (2005)

32. Eberhardt, A., Gausmann, O., Albani, A.: Case study automating direct banking customer
service processes with service oriented architecture. In: Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 763–779. Springer, Heidelberg (2006)

33. Overhage, S.: UnSCom: A Standardized Framework for the Specification of Software Com-
ponents. In: Weske, M., Liggesmeyer, P. (eds.) NODe 2004. LNCS, vol. 3263, pp. 169–184.
Springer, Heidelberg (2004)

	Towards a Systematic Method for Identifying Business Components
	Motivation
	Systems Development and Component Identification Process
	The Business Component Identification Method
	Denote Partitioning Preferences
	Create and Validate Optimized Partitioning
	Create Initial Component Specification and Architecture

	Related Work
	Conclusions and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

