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Abstract. The OSGi™ Service Platform is becoming the de facto standard for 
modularized Java applications. The market of OSGi based COTS components is 
continuously growing. OSGi specific problems make it harder to validate such 
components. The absence of separate object spaces to isolate components may lead 
to inconsistencies when they are stopped. The platform cannot ensure that objects 
from a stopped component will no longer be referenced by active code (a problem 
referred by OSGi specification as stale references) leading to memory retention and 
inconsistencies (e.g., utilization of invalid cached data) that can introduce faults in 
the system. This paper classifies different patterns of stale references detailing them 
and presents techniques based on Aspect Oriented Programming for runtime detec-
tion of such problems. We also present a fail-stop mechanism on services to avoid 
propagation of incorrect results. These techniques have proven to be effective in a 
tool implementation that validated our study. 
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1   Introduction 

The OSGi service platform [1] is a framework targeting the Java platform, providing 
a dynamic environment for the deployment of services and modules (referred as bun-
dles in OSGi terminology). The OSGi architecture provides a hot deployment feature 
by allowing modules to be dynamically added, updated or completely removed during 
application execution without the need to restart the JVM. OSGi is being used in a 
myriad of applications (e.g., desktop and server computers, home gateways, automo-
biles) and is becoming the de facto standard for modularized Java applications [2] [3] 
[4] [5]. A milestone of OSGi’s acceptance in software industry is its adoption in the 
Eclipse Platform [6]. 

Although the OSGi platform has evolved and matured in several aspects, its run-
time environment does not enforce the isolation of bundles. A certain level of isola-
tion by means of class loaders is provided by the OSGi platform, but bundles are not 
truly isolated from each other under a memory perspective. There are no separate 
object spaces between bundles that would guarantee a safe and complete removal of a 
bundle from the platform. Bundles may freely exchange objects, but there is no 
mechanism to enforce that an object will not be referenced when its bundle stops.  
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Even with events notifying the departure of services and bundles, the current OSGi 
programming model is not trivial to follow and the handling of such events is error 
prone. Due to bundle programming flaws, object instances may be kept by a con-
sumer bundle after the provider bundle stops. The usage of such objects leads to 
memory retention preventing the classes from stopped bundles to be unloaded from 
memory. Faulty components can be introduced in the system due to propagation of 
incorrect results (e.g., old or invalid cached data) that may result from calls to those 
stale objects. 

The OSGi specification briefly describes this issue and refers to it as Stale Refer-
ences. Avoiding it is a matter of good programming practices since the environment 
cannot control or inspect it. Although there are mechanisms to minimize the occur-
rence of this problem, it is not possible to assure that every possibility of stale refer-
ence is being taken care of. This problem is difficult to detect in existing diagnostic 
applications (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit) because it is 
a consequence of particularities in the OSGi dynamic environment. 

The market of OSGi based Commercial-Off-The-Shelf (COTS) components is rap-
idly growing [2]. Under the perspective of the OSGi dynamicity aspects that we have 
presented, existing tools or testing suites cannot guarantee or evaluate that OSGi 
based COTS components can be safely introduced in an OSGi platform without 
bringing any problems such as stale references upon OSGi life cycle events. 

This paper proposes techniques that enable such type of validation for the OSGi 
environment. We go deeper in the stale references problem by classifying and detail-
ing different patterns of stale references. We propose and validate diagnosis tech-
niques that rely on Aspect Oriented Programming [7] to change OSGi framework 
implementations enabling them to provide information to detect those patterns during 
application runtime. We found that a static analysis approach may impose several 
constraints and it is not suitable to a dynamic environment such as OSGi. We also 
transparently introduce a fail-stop approach on calls to stale services to avoid the 
propagation of incorrect results. 

Our detection techniques make possible to identify and visualize stale references, 
achieving an OSGi specific inspection feature that is not yet available in existing 
diagnostic tools. By identifying such problems it is possible to provide information 
that can help correcting bundle source code, allowing developers to guarantee the 
quality of their OSGi targeted applications and components. 

All the techniques explained here were validated with the development of a diag-
nostic tool [8] that can be used to inspect OSGi targeted applications and components. 
The analysis of four open source OSGi based applications presented stale references 
after simulating life cycle (update, stop, uninstall) events. 

The remaining sections of this paper are organized as follows: section 2 gives an 
overview of the dynamics in OSGi and its implications; section 3 details different 
patterns of stale references; section 4 explains the techniques for runtime detection of 
those patterns; section 5 presents the results of an experiment with 4 open source 
application as a part of the validation of our work; section 6 talks about related work; 
and, at last, section 7 presents the future work and conclusion. 
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2   OSGi Dynamics and Implications 

The OSGi framework provides a straightforward service platform for the deployment 
of modules and services.  The deployment unit in OSGi is called bundle, which is an 
ordinary compressed jar file with classes and resources. The jar file manifest contains 
OSGi specific attributes describing the bundle. A bundle can be dynamically loaded 
or unloaded on the OSGi framework and may optionally provide or consume services, 
which can be any Java object. Applications can take advantage of the dynamic load-
ing feature to update software components without the need to stop the application. 
For example, a production system may have a bundle updated with a new version due 
to minor bugs fixed or other types of improvements. 

Bundles can access the OSGi framework through a BundleContext object which 
becomes available in the bundle’s activation process. Through that object they can 
register and retrieve services. In OSGi, services are ordinary Java objects that are 
registered into the framework service registry under a given interface name. The basic 
process to retrieve a service instance consists in two steps: it is necessary to ask the 
BundleContext for the desired interface, resulting in a ServiceReference object which 
holds metadata of a service. The next step is to use the BundleContext again to re-
trieve the service instance that corresponds to that ServiceReference object.  

Upon service registration, modification or unregistration—either explicit or im-
plicit when the defining bundle is stopped— the framework notifies the subscribers of 
the ServiceListener interface. Therefore, it is possible for service consumers to know 
when services become available (registered) or unavailable (unregistered). 

Any OSGi targeted code should be written considering the arrival and departure of 
bundles and services. The code must release references appropriately upon such 
events. Service consumers must be aware that a service departure means that a service 
instance or its ServiceReference must not be used anymore. Any usage of the unregis-
tered object may lead to inconsistency. 

2.1   Bundles Isolation through Class Loaders 

Whenever a bundle is loaded —either during startup or later during runtime— it is 
provided with its own class loader. Classes and resources from a bundle should be 
only loaded through its class loader. This individual class loader mechanism permits 
to unload from memory all classes provided by a given bundle when it is stopped. 

The OSGi framework provides a basic level of isolation between bundles by means 
of that class loading mechanism. A bundle may choose which packages will be visible 
to other bundles by defining in its manifest an attribute with a list of exported pack-
ages. Only classes from exported packages (specified in the bundle manifest) may be 
instantiated by other bundles, which also need to explicitly specify in their manifest 
what packages they import. Whenever a bundle tries to reference a type, its class 
loader will enforce if the visibility rules are followed. Other mechanism that can be 
seen also as an isolation enforcement is the utilization of optional framework security 
permissions (AdminPermission, PackagePermission, and ServicePermission) which 
can provide a fine grained control to grant authority to other bundles perform certain 
actions, for example to retrieve a given service instance. 
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2.2   Isolation Limitations 

Although there is some isolation level between bundles, this mechanism cannot en-
sure complete or safe removal of bundles from memory. During bundle active time 
objects can be exchanged freely between bundles. For instance, a service may receive 
a parameter object that comes from other bundle. If the bundle that provided the pa-
rameter object is stopped there is no guarantee that the service will stop referencing 
the object it received as parameter, even if the bundle of origin of that object unin-
stalled from the framework.  

There is no security enforced communication channel (e.g., communication via 
proxy objects) that can be closed upon bundle departure, nor a protection domain (i.e, 
individual object spaces in memory) that enforces communication restrictions or other 
forms of application isolation. 

The OSGi platform does not provide a true means of isolation between bundles. It 
mostly relies in a set of good programming practices to avoid the misreferencing of 
objects after bundles are stopped. 

2.3   Stale References 

The OSGi specification, release four, defines in the section 5.4 a stale reference as  

“a reference to a Java object that belongs to the class loader of a bundle 
that is stopped or is associated with a service object that is unregistered” 

The utilization of such objects after the provider bundle being stopped leads to in-
consistencies such as (1) incoherent operation results (e.g., stale services returning old 
data from stale caches) or erroneous behaviour due to the stale object’s context (e.g.., 
network connections, binary streams) be released or de-initialized; (2) garbage collec-
tion obstruction of the retained object, its class loader, and the class loader’s loaded 
types, leading to a memory leak. 

Utilizing a ServiceTracker or an OSGi component model helps to minimize the oc-
currence of stale references. The ServiceTracker is a utility class in the OSGi frame-
work for providing a transparent means for locating services but it is error prone since 
service consumers may not release the consumed service instances appropriately. 
OSGi Declarative Services (part of the OSGi R4 compendium specification), Service 
Binder [9], iPOJO [10] and Spring Dynamic Modules [11] are OSGi component mod-
els that provide the transparent handling of services arrival and departure. However, 
their usage would not avoid all possible types of stale references. Other patterns of 
stale references which are detailed in the next session may not be avoided by such 
mechanisms. 

2.3.1   Propagation of Incorrect Results 
The usage of an unregistered service may lead to inconsistent method calls. If a bun-
dle unregisters a service, it is likely that the service needs to be disposed; therefore it 
may release internal resources (open file streams and database connections, etc) and 
calls on that object would produce erroneous behaviour. Exceptions may be raised 
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(e.g., access to a method that internally would try to use a closed connection) when 
methods of stale references are used. However if such method calls do not fail but 
produce incorrect results, there is a worst scenario where faulty components are intro-
duced into the system with risks to propagate inconsistencies throughout the whole 
application. This can happen due to the stale object’s internal state being invalid or 
stale (e.g., old cached data), which compromises the accuracy of operations involving 
that object. Such types of faults are harder to detect since the system would hide these 
issues and continue to work apparently without any problem. 

A service failure mechanism, as presented in [12], currently is not enforced by the 
platform. A fail-stop strategy would be able to make the faults more explicit when 
using stale references. If any calls to stale references would result in a crash (an ex-
ception thrown) there would be no propagation of incorrect results, and bugs would 
be evident. 

2.3.2   OSGi Specific Memory Leaks 
While the previous problem may sometimes be identified due to exceptions thrown, 
memory retention is rather difficult to be seen. In addition, the retention of class load-
ers impedes OSGi to dynamically unload the classes from a stopped bundle. 

 

Fig. 1. The arrow from BundleB to BundleA illustrates a stale reference that prevents the ap-
propriate unloading of BundleA from memory 

According to the Java Language Specification [13], a class or interface reification 
(a java.lang.Class instance) may be unloaded if and only if its defining class loader 
may be reclaimed by the garbage collector. As long as an object from a stopped bun-
dle is reachable (Figure 1) we will have a reference to that object’s type as well, 
which references the bundle class loader which keeps all loaded types. Consequently, 
the classes can never be unloaded due to the presence of stale references. 
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3   Patterns of Stale References 

As stated previously, the framework cannot guarantee that the objects provided by a 
bundle will no longer be referenced when the bundle stops. Neither the OSGi frame-
work itself nor the mechanisms mentioned in section 2.3 can completely avoid stale 
references. In the current OSGi specification, the framework needs to share responsi-
bilities with bundles. The bundle side is error prone as it depends on good program-
ming practices to correctly handle the departure of services and bundles. 

The correct handling mentioned previously will handle only a few patterns of stale 
references. We have classified three main patterns: (1) Stale services; (2) forwarded 
objects and (3) active threads from stopped bundles. 

3.1   Stale Services 

Stale services are a pattern of stale references that can be found when an unregistered 
service is still being referenced by active bundles. We considered that there are two 
levels of service referencing: reference to a service instance and reference to a Ser-
viceReference instance. The former is the service object itself and the latter is a 
framework metadata object which is necessary to get a service instance. We kept 
references to ServiceReference instances as a simple case, but we classified a spe-
cialization of the reference to service instances as two possibilities: services from 
stopped bundles and services from active bundles. Therefore, we present the concept 
of stale services as three variations:  

 

• Reference to an unregistered instance of a service whose bundle is still active 
(has not stopped);  

• Reference to an unregistered instance of a service from a stopped bundled 
(update or uninstallation would lead to stopping the bundle as well);  

• References to unregistered org.osgi.framework.ServiceReference objects. 
 

The first case can happen during the active life-time of a bundle which may unreg-
ister a service due to an internal bundle change, for example. If after unregistration 
the service instance is retained by service consumers from other bundles we have a 
case of stale reference. In this case, the service can propagate incorrect results and it 
will also be prevented to be garbage collected. 

The second pattern is rather similar to the first one, but now the propagation of er-
rors is more likely because the bundle has been stopped and may have suffered some 
de-initialization code. In addition, the bundle class loader and classes would be pre-
vented to be unloaded from memory.  

The latter case of stale service (references to unregistered ServiceReference ob-
jects) does not prevent the unloading of bundle classes because there would be no 
reference to a bundle object, since the ServiceReference object is provided by the 
framework. Because of that, one may argue that this pattern does not fit the stale ref-
erence definition. However, this case has been added to our patterns because it may 
bring faults to the application and also characterizes the mishandling of service unreg-
istration. When a ServiceReference is unregistered, subsequent calls to the framework 
using that ServiceReference object would return a null value, leading to a Null-
PointerException upon any method call attempt on the resulting value. 
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3.2   Forwarded Objects 

Bundles may freely exchange messages between them by means of service method 
calls. Ordinary objects may be passed as method parameters across bundle boundaries 
without restriction. Also, there is no restriction for a service to retain an object re-
ceived as a method parameter or to forward that object reference to objects from other 
bundles. If the bundle that provides that forwarded object is stopped, the same mem-
ory retention problem as the stale service pattern would happen. The same also ap-
plies when objects are registered in server object repositories (e.g., MBean server, 
RMI registry) and are not appropriately unregistered when bundles are stopped.  

We have identified two variations of the forwarded objects pattern: 
 

• Forwarding of ordinary (non-service) objects 
• Forwarding of services as ordinary objects 

 

Figure 2 shows an example of the forwarding of an ordinary object. Consider that 
the code on that example runs on an object from Bundle X, and foo.BarService is 
provided by an object from Bundle Y. Bundle X calls a method on a service from 
Bundle Y and sends a parameter, which is a local ordinary (non-service) object from 
Bundle X. That parameter will be retained as an attribute in the Bundle Y service. If 
Bundle X is stopped, uninstalled or updated, the object that was sent to Bundle Y’s 
service will fit in the regular case of stale reference: impossibility to garbage collect 
the referenced object (localObj) and to unload the classes previously provided by 
Bundle X’s class loader. 

//Code on a BundleX retrieves a service from a BundleY 
ServiceReference ref = 
ctx.getServiceReference("foo.BarService"); 
BarService bar = (BarService)ctx.getService(ref); 

//LocalObject is created in (and provided by) BundleX 
LocalObject localObj = new LocalObject(); 

//service from BundleY will hold an object from BundleX 
bar.setAttribute("anAttribute", localObj); 

 
Fig. 2. Forwarding of an ordinary object 

The second type of forwarded object pattern is detailed in Figure 3.  It shows that 
the Bundle X uses a service instance from Bundle Z and forwards that instance to a 
service from a third bundle (Bundle Y). Bundle Y now references an object from 
Bundle Z without knowing that it is a service. Although at that time the 
foo.BarService service holds an instance of xyz.AService, most likely it would ignore 
the unregistration of xyz.AService, since the setAttribute method semantics does not 
expect a service. If Bundle Z (the provider of the xyz.AService “attribute service”) is 
ever stopped, the foo.BarService will not release the reference to the xyz.AService 
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object. Bundle Y would point to a stale reference that prevents the unloading of 
classes from Bundle Z. 

A significant difference between referencing an ordinary (non-service) object from 
a stopped bundle and referencing a service instance from a stopped bundle is the ab-
sence of framework events to notify the departure of ordinary objects. But if a for-
warded service is treated as an ordinary object, notifications of service unregistration 
are ignored and do not help. 

//Code on a BundleX retrieves a service from a BundleY 
ServiceReference ref = 
ctx.getServiceReference("foo.BarService"); 
BarService bar = (BarService)ctx.getService(ref); 

//Code on a BundleX retrieves a service from BundleZ 
ServiceReference anotherRef = 
ctx.getServiceReference("xyz.AService"); 
AService servObj = (AService)ctx.getService(anotherRef); 

//service from bundleY holds a service as an attribute 
bar.setAttribute("anAttribute", servObj); 

 

Fig. 3. Forwarding of a service instance as an ordinary object 

3.3   Active Threads from Stopped Bundles 

According to the OSGi specification, when a bundle is stopped it has to immediately 
stop all of its executing threads. Since there is no isolated bundle space in memory, 
the framework cannot cancel a bundle’s set of executing threads. So, it must rely on 
good OSGi programming practices leaving that responsibility to the bundle developer. 

Table 1. Summary of stale references 

Referred object Memory Retention 
(bundle objects 

and class loader) 

Incorrect Results 

Unregistered Service instance 
(Stopped bundle) 

Yes Yes 

Unregistered Service instance 
(Active bundle) 

Yes  
(but no class loader 

retention) 

Yes 

Unregistered ServiceReference

instance 
No Yes  

(NullPointerException) 
Active Thread (stopped bundle) Yes Yes 
Forwarded object (stopped bundle) Yes Yes 
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If the thread is not stopped in such cases, the same stale reference issue is found: 
an object (the Runnable object) from a stopped bundle is still reachable in memory, 
preventing garbage collection of its class loader (the bundle class loader) and the 
loaded types of that bundle. 

4   Detection Techniques 

Information to track object references and diagnose stale references is not present in 
implementations OSGi of the framework. Several reasons have led us to think that 
changing the source code of OSGi implementation to add that information would not 
be adequate. It would be needed to inspect the registration and retrieval of services, 
class loader creation, etc. The custom code to track such objects would be scattered 
all over the OSGi framework implementation code. It is clear that a solution which 
customizes a given OSGi implementation would compromise the portability to other 
OSGi implementations. In addition, other problems such as tracking the creation of 
threads would concern bundles but not the framework. This would imply in changing 
bundle code as well, which we most likely don’t have access in all applications. 

The whole situation led us to choose the application of Aspect Oriented Program-
ming (AOP) [7] techniques. Instead of adding a cross-cutting concern to the code of 
OSGi implementations, we left the tracking code as separate aspects. AOP would 
enable to weave those aspects into different OSGi implementations. The process 
would be the same for all of them: each implementation would have its bytecode 
changed resulting in a composed implementation capable of providing information to 
identify stale references. 

The reference tracking techniques presented here rely on a special type of reference 
provided by the Java programming language, called weak reference. Weak references 
are different than ordinary (strong) references. They do not prevent a referred object 
to be reclaimed from memory and are able to tell if an object has been garbage  
collected. 

4.1   Point Cut Definitions 

AOP introduces the concept of joint points, which are well defined points in the pro-
gram flow (e.g., method call, constructor call). Point cuts are elements that pick one 
or more specific join points in the program flow. We have defined two different sets 
of point cuts. One was responsible for aspects that would be applied to the frame-
work, for example tracking service registration and retrieval, bundle start up, class 
loader creation, etc. The other set of join points was responsible for the aspects on 
bundles, which so far were limited to the creation and start up of threads. 

The code that is injected into point cuts during the weaving process is called advice 
in AOP terminology. The portions of code defined in the advices are executed during 
method interception. In the techniques that we have developed and tested, the advices 
contained the calls to the code that enabled the tracking of objects. 



 A Practical Approach for Finding Stale References in a Dynamic Service Platform 255 

4.2   Detection of Stale Services 

With AOP, service registration can be intercepted and each ServiceReference object 
tracked with weak references. Our technique consists also in track the garbage collec-
tion of each instance provided by a ServiceReference. Multiple service instances can 
be served by the same ServiceReference when the service provider is a ServiceFac-
tory, which can provide one service instance per bundle. 

In order to verify the existence of stale services, it is necessary to analyze tracking 
information relative to unregistered ServiceReference objects. There are two straight-
forward manners to know the existence of stale services. One is checking if the unreg-
istered ServiceReference object has not been garbage collected, and the other is to 
verify if all service instances of each unregistered ServiceReference have been  
garbage collected. The former would characterize the pattern of a reference to an 
unregistered ServiceReference. The latter identifies the pattern of a reference to an 
unregistered service instance. 

4.3   Detection of Active Threads from Stopped Bundles 

The detection of thread creation and its start up in bundle code is necessary in order to 
have more information about them. Instead of weaving the framework, this approach 
implies in weaving the bundles. Two options are possible: static weaving or dynamic 
(runtime) weaving. The same aspects are reusable in both approaches.  

The static weaving is easier to perform but adds the step of externally weaving the 
bundles before loading them into the platform. The dynamic approach is more flexible 
but adds the overhead of weaving while loading the bundles in runtime. It is also 
necessary to add code in the framework, by AOP as well, to intercept the loading of 
bundles and dynamically weave them. 

The information on thread point cuts allows establishing a bundle-thread relation 
that can be stored for later inspection. Running threads that are in the bundle-thread 
map can have their metadata inspected (e.g. the class loader of the bundle that started 
the thread) and compare it with logged information of the bundle that started the 
thread. It is possible to identify if the bundle that started the thread has been update, 
stopped or uninstalled. 

4.4   Identifying Forwarded Objects 

Identification of forwarded objects was found to be more difficult and depends on the 
inspection of dumps of memory, as the one provided by tools such as jmap which 
comes with the Java 6 SDK. It is necessary to inspect a memory dump and verify if 
there are reachable objects whose class loader belongs to a stopped bundle. Jhat is a 
tool also available in the Java 6 SDK which allows performing queries o memory 
dumps. Its API can be integrated into applications that can programmatically perform 
queries on memory.  

Establishing a relation between runtime information and memory dump informa-
tion is difficult. An object’s id in the heap is a sort of JVM private information that is 
not available to the runtime objects via a Java API. User intervention constructing ad-
hoc queries has proven to be more precise some times. This happened due to the fact 
that automated inspection extracted runtime information of private attributes by 
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means of reflection and compared it with results from queries on memory dumps. The 
results most of the times would return a list of suspects that would need to go through 
a manual inspection by the user. 

5   Validations and Experiments 

The techniques to detect the patterns of stale references presented here were devel-
oped, tested and validated. We have developed a diagnostic tool called Service Coro-
ner [8] which examines the “dead” objects from stopped bundles. Our work comprises 
the implementation of the aspects to track the code, the classes to perform the queries, 
the tool that visualizes the problems and a fail-stop mechanism to avoid calls on stale 
services. The latter was developed as a side experiment that we detail in the end of 
this session. 

Aspects were developed and weaved with AspectJ [14] and each technique was ini-
tially validated by bundles that were intentionally developed with errors that would 
present stale reference problems. A series of life cycle events (stop, update or 
uninstall) would lead to stale references that were diagnosed by the tool. 

The diagnostic tool and the results of an initial experiment are presented in [8]. We 
have extended that experiment by adding two other open source applications and also 
analyzing stale threads. The tool is able to inspect OSGi applications and diagnose the 
patterns presented in this paper. 

5.1   Portability Across OSGi Implementations 

Althought the process of weaving an OSGi implementation may be seen as intrusive 
due to the changes it performs in the bytecode, the techniques that we have developed 
as separate aspects where easy to be applied to different OSGi implementations. As 
part of the validation, we have achieved to weave the diagnostics aspects into the 
three main implementations of the OSGi specification, Release 4: Equinox [15], Felix 
[16] and Knopflerfish [17]. All of the weaved platforms were successfully tested with 
our bundles that present the stale references patterns. 

From a source code point of view there was no need to change any of the imple-
mentations. The process of aspect weaving was the same on all of the three platforms, 
and consisted on a simple build process that basically compiles the Service Coroner 
tool, the aspects and then weaves the aspects into the OSGi implementation. 

5.2   Experiment on Open Source OSGi Applications  

We have validated the diagnostic tool in an application scenario where errors would 
not be intentional like in our test bundles. Four open source applications constructed 
on top of OSGi were inspected with the Service Coroner tool: JOnAS1 5.0.1 [18], SIP 
Communicator Alpha 3 [19], Newton 1.2.3 [20] and Apache Sling [21]. JOnAS is a 
JEE application server; SIP Communicator is a multi-protocol instant messenger 
application; Newton is a distributed component framework that provides an  

                                                           
1 We have also inspected Apache Geronimo and Glassfish V3 JEE servers, however analyzing 

them would not bring significant results since they do not use the OSGi service layer. 
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implementation of the Service Component Architecture (SCA) standard [22]; and 
Sling is a web framework that uses a Java Content Repository. All applications are of 
significant size, especially JOnAS, whose core is about 400 000 lines of code but 
comes to over 1 500 000 when the other components are taken into account. 

Table 2 presents an overview of the experiment that was run on a Sun HotSpot 
JVM 1.6.0u4. All OSGi implementations utilized have been previously weaved with 
the aspects that we have developed. The line IV of table 2 shows that JOnAS, SIP 
Communicator and Sling are partially developed with component models for the 
OSGi Platform: iPOJO, Service Binder and Declarative Services, respectively. Never-
theless, Newton which provides an implementation of SCA has not been developed 
with a component model. 

Table 2. Overview of the experiment. Lines VIII to XI present the results. 

I Application JOnAS SIP Comm. Newton Sling 

II Version 5.0.1 Alpha 3 1.2.3 
2.0 incubator 

snapshot 
III OSGi Impl. Felix 1.0 Felix 1.0 Equinox 3.3.0 Felix 1.0 

IV 

Bundles using 
Component 
Models 

20 
iPOJO [10]

6 
Service 

Binder [9] 

02 18 
Declarative 
Services [1] 

V Lines of Code 
Over 

1 500 000 
Aprox.  
120 000 

Aprox.  
85 000 

Over  
125 000 

VI Total Bundles 86 53 90 41 

VII 
Initial No. of 
Service Refs. 82 30 142 105 

VIII 
No. of Bundles 
w/ Stale Svcs. 4 17 25 2 

IX 
No. of Stale 
Services Found 7 19 58 3 

X 
No. of Stale 
Threads 2 4 0 0 

XI 
Stale Services 
Ratio (IX/VII) 8.5 % 63 % 40.8% 2.8% 

 
The tool was capable of executing scripts that could simulate life cycle events (up-

date, start, stop, uninstall). A script executed by the tool simulated the update of com-
ponents during runtime by performing calls on the update method of bundles that 
provide services (except for bundles related to the OSGi framework or component 
models). We used a standard 10 seconds interval between each bundle life cycle 
method call. With Newton and Sling we had to adapt the script because of exceptions 
being raised during bundle update. Instead of the update method, we performed a call 
to the stop and start methods with the standard interval between each call. 

                                                           
2 Actually the whole Newton implementation is an SCA constructed on top of OSGi, but its 

bundles did not use an OSGi component model like the other analyzed applications did. 
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5.3   Fail-Stop Calls on Stale Services 

A crash-only principle, as provided in [12], could be adapted to services in the OSGi 
environment. We have implemented this fail-stop approach to avoid the propagation 
of incorrect results when calling methods on stale services. Any method call on stale 
services would throw an exception. Actually such calls were being done through a 
proxy object dynamically generated. 

We have added another point cut to intercept the calls of the getService method in 
the BundleContext. Whenever a service instance was requested, the result would be a 
proxy object that wrapped the service instance. The proxy would receive the calls and 
delegate them to the actual service. Upon service unregistration, the proxy object had 
its state invalidated. Subsequent calls to the invalidated proxy would throw a runtime 
exception. Proxies were cached to avoid creating multiple proxies for the same ser-
vice instance if it was requested multiple times. 

The experiment presented previously did not utilize the fail-stop services. We have 
successfully tested it in a controlled environment where we developed all bundles 
deployed in the framework. Other adjustments would be necessary to make our im-
plementation more robust and usable in other scenarios. This strategy could be taken 
further to minimize the impact of stale services, the strategies to handle such excep-
tions would allow the auto correction of applications that upon such crashes could 
react trying to retrieve a valid service or aborting the operation if no valid instance of 
the service is found. 

5.4   Limitations and Drawbacks 

Some drawbacks have been found regarding the implementation of the techniques 
presented here. The first one is regarding the OSGi optional security layer when using 
digitally signed jars files. Since we have utilized bytecode weaving, the resulted jar 
file will be different from the original one. Thus, the loading of the changed frame-
work jar file will imply in security errors that will impede the start up of the OSGi 
platform. This could be found with Equinox [14] version 3.3.2 which provides the 
digitally signed jars feature, a security feature whose objective is to ensure that jars 
contents are not modified. In order to utilize our tool, such security option would have 
to be disabled. We have achieved to turn that off on Equinox by removing all infor-
mation about security on the manifest and the jar file. 

The second drawback was found when doing inspections of memory dumps using 
the jhat API integrated to our tool. The process of reading memory dumps consumes a 
large amount of memory and occasionally would lead to out-of -memory errors. An 
alternative would be using such tools as a parallel auxiliary tool instead of trying to 
integrate it with the running application. 

Although we have removed the propagation of incorrect results produced by stale 
services and made their utilization explicit by throwing exceptions, generally the 
proxy solution of our fail-stop approach has two limitations. It does not completely 
solve the memory retention problem. Upon service unregistration the proxy can free 
the reference to the actual service, but the service class loader (and all java.lang.Class 
objects it has loaded) would still hang in memory. 
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6   Related Work 

Our work addresses a problem which is a consequence of code isolation limitations in 
a specific Java-based middleware for services and components. The same issues apply 
in environments with similar modularity approaches based on the concepts of OSGi, 
such as the upcoming Java Module System [23]. Thus theses techniques could be 
adapted to detect the same problem when that system becomes available. 

We focus on the dynamic diagnosis of OSGi applications, evaluating OSGi spe-
cific problems during runtime. There are other mechanisms partially addressing this 
problem in OSGi and in other platforms as well. OSGi component models [9], [10] 
and [11] provide mechanisms that automate service location and handle service depar-
ture but do not avoid all patterns of stale references, as previously mentioned.  

A formal model was built on [24] for OSGi verification. By doing that formal 
analysis they were able to check and identify stale references problems. However 
their solution was coupled to a specific OSGi implementation (Knopflerfish) and 
constrained by the limitation of the environment that was used for formal verification. 
Only applications with a maximum of 10 000 lines of code could be analyzed. They 
proposed three different solutions to avoid stale references. On each solution the ser-
vices would have to extend from a default service superclass that provides a lock 
object. All solutions would depend on synchronization on that object in order to ac-
quire a lock to access the service. 

A service failure approach [12] presents a fail-stop solution to handle faults in the 
composition of services in SOA environments where consumers of a service must 
anticipate that any service provider will crash from time to time. Another work [25] 
presents, like ours, a proxy-based service solution to deal with fault tolerance. How-
ever, their approach to is different and does not prevent the stale service from being 
called. Their proxy implementation is responsible for dynamically locating the best 
service implementation, and in case of faults it tries to locate another service.  

Concerning isolation mechanisms, other environments such as .NET [26] have 
concepts like application domains which resemble lightweight processes isolated from 
one another and can even be terminated without interfering in the other domains exe-
cution. Communication across application domains is done in an RPC fashion and 
objects are sent via marshalling. Application domains can be dynamically loaded but 
have limitations in being unloading. 

In Java, an effort on JSR 121 [27] provides an environment where applications can 
be isolated from each other by means of Isolates, which are application units which 
resemble lightweight processes. Applications are isolated in different object spaces 
but they can share some resources like runtime libraries. Communication between 
isolates can be done through Java RMI (remote method invocation) based mecha-
nisms which imply in marshalling objects across contexts. 

7   Conclusions and Future Work 

The OSGi service platform is a dynamic environment for modules (bundles) and 
services, but it still does not provide a completely isolated environment where ser-
vices and bundles may be transparently removed during runtime without the risk of 
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having their objects still being referenced by active code. Memory instrumentations 
tools currently available (e.g., Eclipse TPTP, Netbeans profiler, Borland Optimizeit) 
do not consider such particularities of the OSGi framework such as bundle life cycle. 
The problem of stale references described in the OSGi specification may happen if 
misprogrammed bundles do not handle correctly services unregistration and bundles 
unavailability. The utilization of stale references introduces memory leaks and faulty 
components into the system due to the propagation of incorrect results (e.g., a stale 
service that provides invalid cached data).  

This paper presents different patterns of stale references, techniques to diagnose 
them and a fail-stop mechanism to minimize inconsistent results due to the utilization 
of stale services. The runtime diagnosis techniques presented here were implemented 
and validated in a tool called Service Coroner, and were effectively tested against four 
open source applications. Our detection techniques provide a solution that is portable 
across different OSGi implementations, without needing to change their correspond-
ing source codes. We rely on AOP to keep the tracking code as separate aspects that 
can be weaved into different OSGi implementations. Weak references were used to 
identify which tracked objects have been garbage collected or not. 

In a COTS market that targets OSGi application it would be necessary to somehow 
measure the quality of the components. For example, if they are able to be updated in 
the system without leaving any weak references or if they would not provoke such 
problems in the system. 

The diagnostics tool that is part of our work addresses OSGi specific issues not 
covered by currently available tools. Our techniques have proven that it is completely 
feasible to analyze large OSGi applications and components during runtime, allowing 
to detect the presence of implementation flaws that lead to stale references. We were 
able to evaluate if the applications’ components are ready to handle some dynamic 
characteristics of the OSGi platform like being able to cope with module updates. 

The initial fail-stop mechanism that we provided invalidates any method call on 
stale services, avoiding the propagation of incorrect results and facilitating to know 
where stale services are being used in the application. Some improvements need to be 
done in that mechanism in order to run it in any type of OSGi application. 

In our future work, we also plan to provide a more automated test approach by 
wrapping the script execution on unit tests. A wider range of OSGi based applications 
should be tested. It would also be important to adapt the presented techniques for 
providing the runtime inspection of the Eclipse platform’s extension points (although 
constructed on top of OSGi, Eclipse has its own dynamic plugin mechanism). 
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