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Abstract. Today model checking of security or safety properties of
component-based systems based on finite protocols has the flaw that
either parallel or sequential systems can be checked. Parallel systems
can be described often by well known Petri nets, but it is not possible to
model recursive behaviour. On the other hand sequential systems based
on pushdown automata can capture recursion and recursive callbacks
[27], but they do not provide parallel behaviour in general.

In this work we show how this gap can be filled if process rewrite
systems (introduced by Mayr [16]) are used to capture the behaviour
of components. The protocols of the components interfaces specified as
finite state machines can be combined to a system equal to a process
rewrite system. By calculating the reachability of the fault state range
one gets a trace (counterexample) which does not satisfy the properties
specified by all protocols of the combined components, if any error exists.

1 Introduction and Motivation

Modern software development contains a big share of reusing previously de-
veloped software called components. Often these components are developed by
third party companies and supplied in binary code or as Web Service. So it is
not easy to have a look at the source code to collect the behaviour. Hence the
supplier should deliver together with the component a protocol of the interfaces
and an abstraction of the component which specifies the behaviour, to give us
the ability to check certain properties, e. g. abortion freeness.

The protocol is in general specified as finite state machine. Today the abstrac-
tions are often specified in one of the following four ways:

– By using Petri nets it is possible to specify parallel behaviour like threads
as well as synchronous and asynchronous method calls, but no recursion in
general.

– By using pushdown automata (PDA) it is possible to specify recursion and
synchronous method calls, but no threads or asynchronous calls in general.
[27]
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– By using finite state machines (FSM) ([18, 23]) a kind of parallel behaviour
can be described (cf. [22]), but no recursion in general. Normally FSM can
be represented as PDA or Petri nets.

– By using process algebras such as CSP [1], these approaches are more pow-
erful than FSM and PDA, but at the end the conformance checking reduces
to checking FSM [12].

In (modern) component systems like OMG’s CORBA, Sun’s JavaEE or Mi-
crosoft’s .NET parallel concepts as well as sequential concepts are permitted.
Hence it will be nearly impossible to use exclusively Petri nets or pushdown
automata in practice to model the behaviour of components.

Our idea is to use another representation to model the behaviour of com-
ponents and component-based systems and to develop a tool which proves the
absence of component protocol violations. This tool should advance the veri-
fication of a component-based system by automatically verifying the protocol
conformance of its components. No expert of verification will be necessary.

In Section 2 definitions of components, protocols and abstractions will be de-
scribed. Creating abstractions of a full program will be shown in Section 3. In
Section 4 the so called Combined Abstraction will be introduced, which is a rep-
resentation of the full component-based system in combination with a considered
protocol. We show in Section 5 how a counterexample can be calculated, while
solving a reachability problem. To converge our approach to real component-
based systems we show in Section 6 how abstractions of single components can
be constructed without knowledge of the other components in the component-
based system, and how they are assembled to a full component-based system
abstraction.

2 Terms and Definitions

2.1 Components and Component-Based Systems

We assume that a component is an implementation of each provided interface. It
is possible, that a component uses provided interfaces, thus has required inter-
faces. We make no restrictions on the language nor location where the compo-
nent is deployed. Of course the implementation could be inaccessible (e. g. Web
Service). Our assumptions are summarized in Figure 1.

A component-based system is assembled by components which communicate
only over required (and provided) interfaces. These interfaces consist of a set of
functions/procedures. We allow synchronous and asynchronous interfaces. Called
synchronous interfaces block their caller until the callee has been completed the
call, while asynchronous interfaces start a new thread when they are called.
Hence the caller can proceed without waiting for completion. We also assume,
that a components interface does not contain the information if it is implemented
synchronous or asynchronous in general.1

We allow call-backs, but no external dynamic instances of a component.
1 For simplification we specify in our example the communication method.
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Fig. 1. Component C0 with the required interfaces J1, . . . , Jn and the provided inter-
faces I1, . . . , In

2.2 Protocol

A protocol of a component describes the use of all interfaces (remote use of func-
tions) of the component. It can be used to verifiy dynamically incoming (remote)
method calls, and also to verifiy the components statically. Using model checking
we consider the latter in this work because it has the advantage that component-
based systems are checked before they are deployed by the customer. This is a
model checking problem, which is much harder to solve than verifing dynami-
cally. Nevertheless component protocols could be used with both approaches to
increase safety and security.

Creating and verifying protocols can help to ensure the restrictions of business
rules. For example, using a SSO-component2 in a system with the following
actions, a. register and sign in, b. sign in, c. optionally change password, d.
logout, could have the following business rule respectively protocol A formulated
as regular expression: RA = ((a|b)c∗d)∗.

This protocol should be obeyed by every client. We will check automatically,
if a component-based system using the mentioned SSO-service protocol obeys
the defined constraints.

In accordance with other works [11, 21, 27] we use FSM to represent the
protocol A. The FSM A = (QA, ΣA, →A, IA, FA) is defined as usual, i. e. QA is
a finite set of states, ΣA is a finite set of atomic actions, →A⊆ QA × ΣA × QA

is a finite set of transition rules, IA ∈ QA is the initial state, FA ⊆ QA is the set
of final states.

Note that the protocol as FSM gives us the ability to show this protocol to
the developers, to create a graphical representation (to use it in the development
process), and to use it for automated verification.

Many approaches [11, 21] model the use of required interfaces by regular
languages obtained by finite transducers. In [27] it is shown that this approach
leads to false positives if recursion is present.

The use of a component Ci in a component-based system is the set of possible
sequences of calls to Ci. Thus, this can be also modeled as a language Li

Π . Hence
the protocol conformance checking is equivalent to check whether Li

Π ⊆ LPi ,
when LPi is the language defined by the protocol Pi of Ci.

In Figure 2 an example of a component-based system including the compo-
nents implementations and protocols is shown.

2 Single Sign On. A component which provides the functionality of a lo-
gin/logout/session management, so different applications can use this mechanism
to verify a user.
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interface I {
sync void a(); }

interface K {
async void e(); }

interface J {
sync void c(int);
sync void b();
sync void d(); }

Fig. 2. Example. A component-based system assembled from the components A (im-
plements interface I), B (implements interfaces J) and C (implements interface K).
The components have following protocols, given as regular expessions: A: a∗, B: cb+d+,
C: e∗.

In this work we will verify if components interfaces are used in the manner the
developer specified by a protocol. By doing this, we can exclude semantic errors
which appear because of an unexpected sequence of (remote) method calls.

For a more detailed proof we also need an abstraction of the behaviour of the
component.

2.3 Process Rewrite Systems (Short PRS)

The abstracted behaviour of a component can be modeled with different repre-
sentations. An abstraction AC of a component C describes the behaviour BC of
C. Every possible execution path of C has a counterpart (trace) in AC . There
exists a mapping from BC to AC .3

An abstraction AC has to implement every path of a component C, every
control flowpath has to be recognized. In the work [27] parameterized context
free systems (equal to PDA) were used to integrate recursion. The parameteriza-
tion is required to implement callbacks. Because we transform a turing-powerful
implementation to a not turing-powerful representation, the created abstrac-
tion AC will approximate the behaviour of C, but this way we find a protocol
violation, if there exists one.

As mentioned above, both representations (Petri nets and PDA) have advan-
tages. We consider a representation which contains parallel semantic (like Petri
nets) as well as sequential semantic (like PDA). Hence the base of this work will
be the use of a representation called process rewrite systems (short PRS) defined
by Mayr [16].

PRS unify the semantic of Petri nets and PDA. Mayr introduced an operator
for parallel composition ”||” and sequential composition ”.”. A process rewrite
system Π = (Q, Σ, I,→, F ) is defined as followed:

3 The mapping B → A is often not bidirectional.
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Q is a finite set of atomic processes,
Σ is a finite alphabet over actions,
I ∈ Q is the initial process,

→ ⊆ PEX(Q) × (Σ � {λ}) × PEX(Q) is a set of process rewrite rules,
F ⊆ PEX(Q) is a finite set of final processes.

We introduce a special action λ, denoting no action or emtpy word. The set
PEX(Q) contains all process-algebraic expressions over the set of atomic pro-
cesses Q. The process rewrite rules define a derivation relation a⇒ ∈ PEX(Q) ×
Σ∗ × PEX(Q) by the following inference rules (a ∈ Σ ∪ {λ}, x ∈ Σ∗):

(u a→ v) ∈ Π

u
a⇒ v

,
u

a⇒ v

u.w
a⇒ v.w

,
u

a⇒ v

u||w a⇒ v||w
,

u
a⇒ v

w||u a⇒ w||v
,

u
x⇒ v v

a⇒ w

u
x a=⇒ w

LΠ=̂{w : ∃f ∈ F |I w⇒ f} is the language accepted by Π .

Based on the operators Mayr defined a hierarchy of PRS classes that allows
us the classification of process rewrite systems by the appearance of operands.
Mayr uses the following base classes:

– 1: terms are composed of atomic processes only
– P : terms are composed of atomic processes or parallel composition
– S: terms are composed of atomic processes or sequential composition
– G: terms can be formed with all operators

These classes model different behaviour. Hence it is not possible to model all
behaviour of a parallel system only with sequential composition and vice versa
(cf. Figure 3a).

With the four base classes, a hierarchy based on bisimulation was formed (cf.
Figure 3b), which allows us to classify all possible and sensible PRS.4

As we see, the (1, S)-PRS allows rules, which contain a process constant at
the left-hand side and allows the sequential operator at the right-hand side. Thus
this class is equivalent to PDA with one state, which accepts a language, if the
stack is empty. The empty stack is represented in a (1, S)-PRS with the emtpy
process ε. The (S, S)-PRS is the companion piece to PDA with several states.

PRS which allows the parallel operator are among others the class (P, P )-PRS
which is equivalent to the well known Petri nets. The (1, P )-PRS are Petri nets,
where every transition of the net has only one incoming arc, hence it does not
contain synchronization.

By looking at the PRS hierarchy in Figure 3b we see, that if we search for
a fusion of Petri nets with sequential concepts we have to use the (P, G)-PRS
”PAN”5, but also the (1, G)-PRS ”Process Algebra” (short PA) could be inter-
esting, if we have no synchronization of components.
4 [16] points out that the left-hand side of a PRS-rule must be at most as large as the

right-hand side in the sense of Figure 3a.
5 Caused by the fact, that the grammar described by a (S,S)-PRS PDA can be ac-

cepted by a (1, S)-PRS called BPA, which is a pushdown automata with only one
state.
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Fig. 3. a) Hierarchy of basic PRS operators, b) Hierarchy of process rewrite systems
(cf. [2]), classification by appearance of operands on the left-hand side and right-hand
side, (lhs,rhs)-PRS

Using PRS as an abstraction model, we are able to deal with real programs,
because all important behaviour like recursion, threads, synchronous and asyn-
chronous remote function calls can be modeled.

In this paper we will focus on (1, G)-PRS called Process Algebras because it
can handle recursion and parallel behaviour, and our component model does not
contain synchronization. Mayr has shown, that reachability is solvable, therefore
Process Algebras can be considered for our application.

3 Building the Use of Components as PRS

Now we will create an PRS abstraction ΠS = (QS , ΣS , IS , →S , FS) of the
component-based System S in a (1, G)-PRS representation. We assume here,
that the full source code is available. The main ideas for the construction are:

1. Create an atomic process for each program point pi of a component C:
Without loss of generality we assume, that every control flow path of a
method ends with a return-statement. For return-statements no program
point will be created.

2. Create transition rules, which map the control flow of the component in
process rewrite rules: We use the mapping function next : pi → pj , which
results in the program points pj ∈ Q, which are the possible succeeding
program points of pi. The mapping result contains ε if there exists a control
path, that ends in the next step (return-statement).
– If at a program point pi a synchronous method call a is performed,

we create rewrite rules pi
a→S pj . pk and pi

a→S pj || pk, if a is an
asynchronous method call.

– If at a program point pi another operation is performed, we create rewrite
rules pi

λ→ pk, where pk ∈ next(pi). This transition rule has the semantic,
that this operation is not interesting for the protocol verification.
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We always update QC , if we create a new rewrite rule.

Note that all these pieces of information can be derived automatically from the
source code of the component and the interfaces used by the component. We have
chosen a left-to-right evaluation order according to semantics of Java or C#. If
the evaluation order of the regarded component is implementation-dependent
one has to choose here the order used by a compiler.

Remark: As in [27], we can encode reference parameters in our component
abstraction too, to regard even recursive call-backs. Also resolving the reference
parameters to all possible dynamically chosen services is possible and equal to
the mentioned earlier work. Because of the lack of space we do not describe these
calculations here.

For technical reasons we add a new start rule IS
λ→ pi, where pi is the first

program point to be executed.
After this construction we get a Process Algebra, but it contains all possible

remote method calls, so we have to eliminate every action which is not included
in the protocol Pi of the component Ci that is checked. For this purpose we use
the following mapping function Φi:

Φi : Σ → ΣCi defined by Φi(x) =

{
x if x ∈ ΣCi

λ otherwise

Where ΣCi containts all remote methods of component Ci. Thus every transla-
tion rule using an action x which is not part of the components protocol alphabet
will be replaced by the same rule which uses λ as action. Now we have a rep-
resentation Πi

S = (QS , Φi(Σ), IS , →S , FS) of the component-based system S
according to the component Ci, it is valid LΠi

S
⊆ LPi . Πi

S is used to create the
Combined Abstraction in the next section.

In Figure 4 the example6 – mentioned before – has been extended by labelled
program points. For better understanding, we chose these labels unique over all
components. In Figure 5 we show the abstraction ΠB

S of the example component-
based system according to the protocol PB of the component B. Because our
example has a main component, we can use the first directive to create a start
rule of S, hence we create one extra start rule only.

4 Combined Abstraction

To verify the component-based system abstraction with respect to a component
Ci, we have to check, if LΠi

S
⊆ LPi , where LPi is the regular language described

by the components protocol PCi , and LΠi
S

is the language over the actions in
Πi

S , specifying a superset of the use of Ci. In order to check LΠi
S

⊆ LPi it is usual

6 Because of the lack of space the example has no reference parameters nor dynamically
chosen services. All components are hard coded.
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Fig. 4. Example. System with labelled program points.

IS
λ→S p1 p4

b→S p10.p5 p8
λ→S p9 p12

λ→S p13

p1
λ→S p2 p5

λ→S p7||p6 p9
λ→S ε p12

λ→S ε

p2
c→S p8.p3 p6

d→S p14 p10
λ→S p11 p13

λ→S p4

p3
λ→S p4 p7

b→S p10 p11
λ→S p12 p14

λ→S ε

Fig. 5. Rewrite rules of Abstraction ΠB
S of the example component-based system ac-

cording to the protocol of the component B

to check the equivalent problem LΠi
S

∩ LPi = ∅. Unfortunately this question is
undecidable.

Theorem 1 (Undecidability of Protocol Checking Problem). It is un-
decidable if LΠ ⊆ LP where Π is a (1, G)-PRS and LP is regular.

Proof (Sketch). As we know from model checkers (e. g. Spin, Moped), for each
propositional LTL-formula φ, a FSM P can efficiently be constructed s. t. L(φ) =
LP , where L(φ) is the set of action sequences specified by φ. Thus if the protocol
checking problem would be decidable, we could also decide LTL-formula model
checking for (1, G)-PRS. Contradiction, because LTL is undecidable in (1, G)-
PRS. [5] �

We therefore construct a (1, G)-PRS K which describes a language L≈, where
LΠi

S
∩ LPi ⊆ L≈. We call K Combined Abstraction. Thus if L≈ = ∅, we know

that LΠi
S

⊆ LPi . However, there might be a sequence w ∈ L≈ s. t. w /∈ LΠi
S
∩LPi .

We call these sequences spurious false negatives.
In the following, we present the construction of the Combined Abstraction.
Roughly spoken the Combined Abstraction encodes in one model K the paral-

lel execution paths of the abstraction of our system Πi
S and the execution paths

(which are forbidden by the regarded protocol Pi of Ci) formulated as finite state
machine P i.

A combination of a protocol (FSM) A and an abstraction (PA) ΠS is to our
knowledge not defined yet. The Combined Abstraction K = (QK , ΣK , IK , →K

, FK) is defined as follows:
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QK = QA × QS × QA is a finite set of processes,
ΣK is a finite set of atomic actions,
IK ∈ QK is a start process,

→K ⊆ QK × Σ × QK is a finite set of transition rules,
FK ⊆ QK is a finite set of final processes.

In accordance with [13] the processes (qi, qj, qk) ∈ QK encodes, that the FSM
A is in the state qi while the PA S has the process qj created. The aim of
(qi, qj , qk) is, that qi

x⇒A qk while qj
x⇒ ε can be performed.

The transition rules of the Combined Abstraction K have the same form and
semantic as transition rules of PRS.

The construction of the other transition rules follows the directives shown in
Figure 6 (described below) and is a generalization of the standard construction
of the intersection of a finite state machine and a pushdown automaton in [13].

For technical reasons we also have to introduce the following two sets of rules:

RS = {IK
λ−→ (IA, IS , qFA) : qFA ∈ FA}

RE = {(qA, qP , qA) λ−→ ε : qA ∈ QA, qP ∈ FP }

The chain transition rules R1C and the set of sequential transition rules R1S

are handled similar to creating an intersection of pushdown automata and finite
state machines in [13] (cf. Figure 6). The transition rules with a parallel operator
R1P are constructed as shown in directive r1p. As we see, a transition rule in
the Combined Abstraction is similar to a transition rule in →P .

If one of the parallel threads in K accepts a a ∈ Σ the protocol state in the
other to p parallel threads should change to the same protocol states. With the
transition rules in R0, it is possible to implement these state changes.

The set of transition rules →K is formed by uniting the sets RS , RE , R1C ,
R1S , R1P and R0.

After constructing the transition rules of the Combined Abstraction, we re-
ceive a rewrite system K in the syntax of PRS (we can also call K interleaving
PRS). Now every possible interleaving sequence of the actions contained in the
protocol is represented by at least one path in the Combined Abstraction K.

Theorem 2 (Correctness of construction of Combined Abstraction).
The construction K results in a representation, s. t. LPi ∩ LΠi

S
⊆ LK.

Proof (Idea). Counterexamples constructable only by sequential rules are gath-
ered by using the rewrite rules of R1C and R1S .

If a counterexample is conductable while using parallel rules, we have to look
at rules of the form (p1||p2).p3. Using the construction directive r1p the parallel
traces are calculated independently.

If a rule out of R1P is applied to p1 thus this trace reaches a new state x in
the protocol automaton. However in p2 the protocol automaton has still the old
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R1C = {(s, r, t) a→K (s′, r′, t) :(s a→A s′) ∧ (r a→S r′)∨
(s = s′) ∧ (r λ→S r′) ∧ (a = λ)} (r1c)

R1S = {(s, r, t) a→K (s′, r′, s′′).(s′′, r′′, t) :(s a→A s′) ∧ (r a→S r′.r′′)∨
(s = s′) ∧ (r λ→S r′.r′′) ∧ (a = λ)} (r1s)

R1P = {(s, r, t) a→K (s′, r′, t)||(s′, r′′, t) :(s a→A s′) ∧ (r a→S r′||r′′)∨
(s = s′) ∧ (r λ→S r′||r′′) ∧ (a = λ)} (r1p)

R0 = {(s, r, t) λ→K (s′, r, t) :(s a→A s′)} (r0)

with s, s′, s′′, t ∈ QA; r, r′, r′′ ∈ QP ; a ∈ ΣA ∪ {λ};

(s, r, t), (s′, r′, t), (s′, r′′, t), (s′, r′, s′′), (s′′, r′′, t) ∈ QK

Fig. 6. Directives for construction of transition rules of a Combined Abstractions K

state. With a rule from R0, it is possible that p2 reaches x, too, while using a
rule out of R0.

As we can easily see, using the explained construction, we create false negatives,
too. These will be described at the end of the next chapter.

5 Performing Protocol Checking

Now, we want to verify if there exists a path from the start process IK to the
empty process ε. This is a reachability problem.

As seen before we create A = (ΣA, QA, δA, qA, FA), where L(A) = LA =
Σ∗ \ L(A). A contains all possible traces to the final states qFA ∈ FA which are
not part of the protocol A, we want to verify. Using A and P , the Combined
Abstraction K will be created as described in the previous section. After this
construction every existing path IK

∗⇒ ε is a candidate for a counterexample,
because ε encodes the error process. Creating the counterexamples is possible
using the logic EF, which is decidable in the class of (1, G)-PRS. [17]

We get a sequence of actions s as counterexample. Because we named the pro-
cess constants of the system abstraction as program points, we are able to point
out each program point of the regarded component, where a possible protocol
violation can appear.

If we look at the Combined Abstractions in Figure 5 we can easily see that
there is no protocol violation in component A and C. But there is a protocol
violation in B. In Figure 7 a trace constructed by the reachability algorithms
is shown. For the lack of space we reduce the language LB to the one given
in Figure 7 and show only a trace which results in the counterexample cbdb.
This counterexample can appear only, if the method call of e is asynchronously
performed. If we look at the original source code of the component B in Figure
4 we can see, that this sequence of actions really results in a division by zero,
which is a non expected behaviour.
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FSM PB′ , that describes a subset of the inverted protocol PB of component B.

PB′ = ({IA, x2, x3, x4, xF }, {b, c, d}, IA, {IA
c→ x2, x2

b→ x3, x3
d→ x4, x4

b→
xF }, {xF }) We can see that LPB′ ⊆ LB .
Trace of K constructing the protocol violation cbdb in component B:

(IA, IS, xF ) λ⇒ (IA, q1, xF ) λ⇒ (IA, p2, xF )
c⇒ (x2, p8, x2).(x2, p3, xF ) λ⇒ (x2, p9, x2).(x2, p3, xF ) λ⇒ (x2, ε, x2).(x2, p3, xF )
λ⇒ (x2, p3, xF ) λ⇒ (x2, p4, xF ) b⇒ (x3, p10, x3).(x3, p5, xF )
λ⇒ (x3, p11, x3).(x3, p5, xF ) λ⇒ (x3, p12, x3).(x3, p5, xF ) λ⇒ (x3, ε, x3).(x3, p5, xF )
λ⇒ (x3, p5, xF ) λ⇒ (x3, p7, xF )||(x3, p6, xF ) d⇒ (x3, p7, xF )||(x4, p14, xF )

λ⇒ (x3, p7, xF )||(x4, ε, xF ) λ⇒ (x4, p7, xF )||(x4, ε, xF ) b⇒ (xF , p10, xF )||(x4, ε, xF )
λ⇒ (xF , p11, xF )||(x4, ε, xF ) λ⇒ (xF , p12, xF )||(x4, ε, xF ) λ⇒ (xF , p12, xF )||(xF , ε, xF )
λ⇒ (xF , p12, xF ) λ⇒ (xF , ε, xF ) �

Fig. 7. Example. Trace that will be constructed by the reachability algorithm, it results
in the counterexample cbdb for the protocol of B in Figure 4. For better understanding
the processes of K rewritten in the considered step are underlined.

False Negatives There are two causes of false negatives:

– real false negatives: Because the component abstractions are created with-
out any data flow or control flow analysis, it is possible that a trace will be
contained in the component abstraction, which is not possible in the imple-
mented component. Moreover e. g. a return value can route the control flow,
thus if we have no access to the implementation of the other components of
the component-based system, it is possible to create more false negatives.
The constructable counterexample c in our example is such a false negative.

– spurious false negatives: Because we only construct an approximated inter-
section of the language described by the component-based system and the
regarded protocol, it is possible to get false negatives.

If the component code is not available, it will only be possible to reduce the
spurious false negatives.

6 Component Composablity

We now show how a kind of PRS can be individually computed for each compo-
nent, and how these can be composed in order to obtain a PRS describing the
use of the component whose protocol has to be checked.

As in reality not every component (e. g. Web Service) is accessible by a com-
ponent developer. Thus it is necessary to define an abstraction for each com-
ponent C, which is composable to an abstraction of the full component-based
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system. We call the PRS of a single component C stripped process rewrite system
ΠC = (QC , ΣC , →C , RC , PC). ΠC is defined as follows:

QC is a finite set of atomic processes,
ΣC is a finite set of atomic actions,
→C ⊆ PEX(QC) × (Σ � {λ}) × PEX(QC) is a set of process rewrite rules,
RC is a finite set of required interfaces,
PC : S �→ QC is a mapping from the services to

the first program point in the
provided interfaces.

The foundation for creating →C are the directives described in Section 3. We
extend the considered directives by the following:

– If at a program point pi a synchronous remote method call a is performed, we
create rewrite rules pi

a→C qJ,s . pk, if a is an asynchronous remote method
call we create rewrite rules pi

a→C qJ,s || pk, where qJ,s specifies the interface
J of the required service s, and pk ∈ next(pi). Note if we do not know how
the interface is implemented, we have to create both sets of rewrite rules to
ensure, that we create a conservative abstraction.

– If the considered program point pi is the first in a method implementing a
provided service s, we will extend the mapping PC with s �→ pi.

The set RC contains all interfaces qJ,s where s is a service of a required
interface J . PC mappes the set of services S (provided by the interfaces of C)
to the initial process of the provided interface.

In the case considered in this paper, we have to look at stripped Process Alge-
bras only. You can see the abstractions of the example components in Figure 8.

After having constructed abstractions for each component, we have to com-
bine each component Ci (respectively ΠCi) to the component-based system S
(respectively ΠS) we want to verify. In the first phase, this can easily be con-
structed by uniting the relevant sets. Thus we define the abstraction ΠS =
(QS , ΣS , IS , →S , FS) of S as follows:

QS = {IS} �
⋃
Ci

QCi is a finite set of processes,

ΣS = {λ} ∪
⋃
Ci

ΣCi is a finite set of actions,

IS ∈ QS is a new start process,

→S =
⋃
Ci

→Ci ∪ Init is a finite set of transition rules,

FS =
⋃
Ci

FCi ⊆ QS is a finite set of final processes.
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→A = {p1
λ→ p2, p2

c→ qJ,c . p3, p3
a→ p4, p4

b→ qJ,b . p5, p5
e→ qK,e || p6, p6

d→ qJ,d}

→C = {p7
b→ qJ,b}

→B = {p8
λ→ p9, p9

λ→ ε, p10
λ→ p11, p11

λ→ p12, p12
λ→ p13, p12

λ→ ε, p13
a→ qI,a, p14

λ→ ε}
PA(qI,a) 	→ p4, PC(qK,e) 	→ p7, PB(qJ,c) 	→ p8, PB(qJ,b) 	→ p10, PB(qJ,d) 	→ p14

Fig. 8. Example. Transitions rules of the abstractions ΠA, ΠB, ΠC and mapping of
provided interfaces of components A, B, and C in Figure 4.

To ensure that every initial program point Ii of a component Ci is reachable
from the new start process IS , we add the following transition rules to →S :

(IS
λ→S Ii) iff Ci is the main component/the client of S

(IS
λ→S Ii) iff any component Ci of S can start

(IS
λ→S I0||I1||...||In) iff each component Ci of S can process independently

In the second phase, every used interface has to be resolved to a process, that
specifies the first program point of the called interface implementation. Thus we
have to resolve all interfaces qJ,s ∈

⋃
Ci

RCi using the mapping function PCi of
the component implementing the interface J .

As in Section 3 we still have to create new start rules and eliminate every
action, which is not included in the protocol PCi of the considered component
Ci using the mapping function Φi.

In Figure 8 the abstractions of the components A, B and C are shown. As
can easily be seen the abstraction S of the full system in our example is easy
to build, unifying the sets and resolving the provided interfaces as mentioned
above. It results in the PRS shown in Figure 5.

7 Related Work

Many works on static protocol-checking of components consider local protocol
checking on FSMs. The same approach can also be applied to check protocols
of objects in object-oriented systems. The idea of static type checking by using
FSMs goes back to Nierstrasz [18]. Their approach uses regular languages to
model the dynamic behaviour of objects, which is less powerful than context-
free grammars (CFG). In the work of Yellin and Strom [25] also only regular
representations of the components are used, but they describe a protocol by
send and receive synchronous method calls, and generate adapters if the protocol
check fails. These approaches cannot handle recursive call-backs. [15] considers
object-life cycles for the dynamic exchange of implementations of classes and
methods using a combination of the bridge/strategy pattern. It also based on
FSMs. The approach comprises dynamic as well as static conformance checking.
Tenzer and Stevens [23] investigate approaches for checking object-life cycles.



176 A. Both and W. Zimmermann

They assume that object-life cycles of UML-classes are described using UML
state-charts and that for each method of a client, there is a FSM that describes
the calling sequence from that method. In order to deal with recursion, Tenzer
and Stevens add a rather complicated recursion mechanism to FSMs. It is not
clear whether this recursion mechanism is as powerful as pushdown automata
and therefore could accept general context-free languages. All these works are for
sequential systems. Schmidt et al. [12] propose an approach for protocol checking
of concurrent component-based systems. Their approach is also FSM-based and
unable to deal with recursive call-backs.

Even modeling the use of a component with context-free languages may ab-
stract too much from the real behaviour. Other approaches [9, 20] therefore use
dynamic protocol-checking. Dynamic protocol checking does not exclude pro-
tocol faults as static protocol checking does. On the other hand, they identify
bugs at the right place. In particular, dynamic adapters might support avoiding
protocol faults whenever possible.

An alternative approach for investigation of protocol conformance is the use
of process algebras such as CSP, cf. e. g. [1]. These approaches are more powerful
than FSMs and context-free grammars. However, mechanized checking requires
some restrictions on the specification language. For example, [1] uses a subset
of CSP that allows only the specification of finite processes. At the end the
conformance checking reduces to checking FSMs similar to [12].

FSMs are also used for checking Liskov’s substitution principle for subtyping
in object-oriented systems based on class protocols. Reussner [21] generalizes
on the idea of Nierstrasz and adds counters and conditions over counters to
the regular types to decide, whether Liskov’s substitution principle is satisfied.
Freudig et al. [11] use sub-classes of CFGs for describing protocols and check-
ing Liskov’s substitution principle. They need subclasses of CFGs because the
subset-problem on general context-free languages is algorithmically undecidable.
They do not model calling sequences stemming from a method which is required
for checking whether the use of an object of a certain class conforms to its
protocol.

The work on model checking context-free processes and pushdown systems
started with [6, 7]. The model checking of LTL-formulas can be done linear in
the size of the system and cubic in the number of states [2, 3, 10]. However, these
approaches would require that the complete system is available as a context-
free process or as a pushdown system. The framework described in [4] contains
among others an algorithm for checking whether L(G) ⊆ L(A) for context-free
grammars G and finite state machines A.

The approach in this paper is a generalization of [26, 27]. In these papers
recursion is modeled by CFG, so only sequential behaviour is considered. It is
demonstrated how the approach can be made compositional. Moreover recursive
callbacks are respected, which is possible but not considered within our work.
Like in our approach every components abstraction has to be known at the
verification time, but in contrast to this work counterexamples can be created
exactly, if a fault has been discovered.
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Chaki et al. described in [8] a method to verify communicating recursive C
programs. This problem seems to be similar to verification of component-based
systems, although they considered synchronous method calls only. In contrast to
our work they consider even the data manipulation and synchronization state-
ments. The problem can be reduced to the intersection of – by C programs
described – context free languages, which were calculated approximately by a
CEGAR-loop. There are other works [14, 19, 24] which consider the verification
of concurrent programs, but these reduce the problem with bounded context
switching, which results in a bounded parallelism.

8 Summary and Conclusions

In this paper we discussed the automatic verification of components according
to their protocol. This static verification can be used to find semantic errors, i. e.
to verify defined non functional business rules.

To apply our check, we require static knowledge of the used components. But
this abstraction can be part of the component description, so we do not need
access to the components source code. As other works in this research area, we
use FSM for describing component protocols.

In contrast to previous approaches, we are able to handle recursion and par-
allel behaviour in a local and global view without any restrictions using process
rewrite systems to represent the behaviour of each component instead of finite
state machines or context free grammars. The decidability of the reachability
problem has been proven by Mayr. In order to circumvent the undecidability
of the protocol checking problem, we define an approximated intersection of
protocols and Process Algebras – the so called Combined Abstraction.

We implemented a two phase process to consider the component composition,
where in the first phase the components were composed, like in the real system
and in the second phase the required interfaces (and reference parameters) were
resolved, so every information depending on the component-based system can be
included in the system abstraction. Because of this process we are able to compose
the abstractions of the components like the components in reality. Moreover our
approach makes it possible to deal with components implemented in different pro-
gramming languages, because the abstraction layer hides the implementing details.

The tool provides a counterexample if the protocol conformance check fails. So
our approach is a model-checking approach. A counterexample is a word over all
protocol actions, which are remote method calls. A calculated counterexample
may not occur in the real system, because we create a conservative abstraction,
hence false negatives may be delivered. But we are sure to find a counterexample
if any exists.

At this stage of our work we only consider static verification, i. e., the ab-
stractions of each component are known statically. CORBA, COM, .NET and
EJBs also allow dynamic instances of components. It is subject to further work
to handle this property. As demonstrated in [27], a points-to analysis might help
to solve the problem.
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Our approach is adaptable for object-oriented programming where the pro-
tocols are defined over the public interfaces. It will be part of future work to
research if our approach is suitability for daily use in OOP.

We currently implement a framework which creates abstractions of compo-
nents implemented in Python (finished) and C++ (in progress). Creating ab-
stractions of Java components is planed. This framework is currently be used
to verify our approach in industrial case studies. Early results show that our
approach is applicable and can result to real (so far undiscovered) bugs.

False negatives may be reduced by integration of data and control flow analysis
algorithms into the component abstraction process.

We thank Heinz W. Schmidt for pointing us to process rewrite systems.
We are grateful to OR Soft GmbH for providing us with industrial case studies.
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