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Abstract. Multilabel classification is a rapidly developing field of ma-
chine learning. Despite its short life, various methods for solving the task
of multilabel classification have been proposed. In this paper we focus on
a subset of these methods that adopt a lazy learning approach and are
based on the traditional k-nearest neighbor (kNN) algorithm. Two are our
main contributions. Firstly, we implement BRkNN, an adaptation of the
kNN algorithm for multilabel classification that is conceptually equivalent
to using the popular Binary Relevance problem transformation method
in conjunction with the kNN algorithm, but much faster. We also iden-
tify two useful extensions of BRkNN that improve its overall predictive
performance. Secondly, we compare this method against two other lazy
multilabel classification methods, in order to determine the overall best
performer. Experiments on different real-world multilabel datasets, using
a variety of evaluation metrics, expose the advantages and limitations of
each method with respect to specific dataset characteristics.

1 Introduction

Traditional single-label classification is concerned with learning from a set of
examples that are associated with a single label λ from a set of disjoint labels
L, |L| > 1. If |L| = 2, then the learning task is called binary classification, while
if |L| > 2, then it is called multi-class classification. In multilabel classification,
each example is associated with a set of labels Y ⊆ L.

Multilabel classification methods can be categorized into two different
groups [1]: i) problem transformation methods, and ii) algorithm adaptation
methods. The first group of methods are algorithm independent. They trans-
form the multilabel classification task into one or more single-label classification,
regression or label ranking tasks. The second group of methods extend specific
learning algorithms in order to handle multilabel data directly.

In this paper we focus on lazy multilabel classification methods of both cat-
egories that are based on the k Nearest Neighbor (kNN) algorithm. Among the
strong points of these methods is that their time complexity scales linearly with
respect to |L|. Furthermore, their main computationally intensive operation is
the calculation of nearest neighbors, which is actually independent of |L|.
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Two are our main contributions in this work. Firstly, we implement BRkNN,
an adaptation of the kNN algorithm for multilabel classification that is concep-
tually equivalent to using the popular Binary Relevance problem transformation
method in conjunction with the kNN algorithm, but |L| times faster. We also
identify two useful extensions of BRkNN that improve its overall predictive per-
formance. Secondly, we compare this method against two other lazy multilabel
classification methods, in order to determine the overall best performer.

The rest of this paper is structured as follows. Section 2 presents the BRkNN
method and its extensions. Section 3 presents the setup of the experimental work
and Section 4 discusses the results. Finally, Section 5 concludes this work.

2 BRkNN and Extensions

Binary Relevance (BR) is the most widely-used problem transformation method
for multilabel classification. It learns one binary classifier hλ : X → {¬λ, λ} for
each different label λ ∈ L. BR transforms the original data set into |L| data
sets Dλ that contain all examples of the original data set, labeled as λ if the
labels of the original example contained λ and as ¬λ otherwise. It is the same
solution used in order to deal with a multi-class problem using a binary classifier,
commonly referred to as one-against-all or one-versus-rest.

BRkNN is an adaptation of the kNN algorithm that is conceptually equivalent
to using BR in conjunction with the kNN algorithm. Therefore, instead of imple-
menting BRkNN, we could have utilized existing implementations of BR [2] and
kNN [3]. However, the problem in pairing BR with kNN is that it will perform
|L| times the same process of calculating the k nearest neighbors. To avoid these
redundant time-intensive computations, BRkNN extends the kNN algorithm so
that independent predictions are made for each label, following a single search of
the k nearest neighbors. This way BRkNN is |L| times faster than BR plus kNN
during testing, a fact that could be crucial in domains with a large set of labels
and requirements for low response times. BRkNN was implemented within the
MULAN multilabel classification software [2].

We propose two extensions to the basic BRkNN algorithm. Both are based
on the calculation of confidence scores for each label λ ∈ L from BRkNN. The
confidence for a label can be easily obtained by considering the percentage of
the k nearest neighbors that include it. Formally, let Yj , j = 1 . . . k, be the label
sets of the k nearest neighbors of a new instance x. The confidence cλ of a label
λ ∈ L is equal to:

cλ =
1
k

k∑

j=1

IYj (λ)

where IYj : L → {0, 1} is a function that outputs 1 if its input label λ belongs
to set Yj and 0 otherwise, called indicator function in set theory.

The first extension of BRkNN, called BRkNN-a, checks whether BRkNN out-
puts the empty set, due to none of the labels λ ∈ L being included in at least
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half of the k nearest neighbors. If this condition holds, then it outputs the label
with the highest confidence. It so deals with a general disadvantage of BR, that
has not been raised in the past: as each label is independently predicted in BR,
there exists a possibility that the empty set is given as the overall output. We
hypothesize that better results will be obtained through the proposed extension
that outputs the most probable label when this phenomenon arises.

The second extension of BRkNN, called BRkNN-b calculates the average size
s of the label sets of the k nearest neighbors at a first step, s = 1

k

∑k
j=1 |Yj |, and

then outputs the [s] (nearest integer of s) labels with the highest confidence.

3 Experimental Setup

3.1 Datasets

We experiment with 3 datasets from 3 different application domains: The biolog-
ical dataset yeast [4] is concerned with protein function classification. The image
dataset scene [5] is concerned with semantic indexing of still scenes. The music
dataset emotions [6] is concerned with the classification of songs according to
the emotions they evoke.

Table 1 shows certain standard statistics of these datasets, such as the num-
ber of examples in the train and test sets, the number of numeric and dis-
crete attributes and the number of labels, along with multilabel data statistics,
such as the number of distinct label subsets, the label cardinality and the label
density [1]. Label cardinality is the average number of labels per example, while
label density is the same number divided by |L| .

Table 1. Standard and multilabel statistics for the data sets used in the experiments

Attributes Distinct Label Label
Dataset Examples Numeric Discrete Labels Subsets Cardinality Density

scene 2712 294 0 6 15 1.074 0.179
emotions 593 72 0 6 27 1.868 0.311

yeast 2417 103 0 14 198 4.327 0.302

3.2 Evaluation Methodology

We perform two sets of experiments. In the first one, we compare BRkNN to
its extensions. In the second one, we compare the best version of BRkNN in
each dataset to two other lazy multilabel classification methods, LPkNN and
MLkNN, in order to make a final recommendation.

LPkNN is simply the pairing of the Label Powerset (LP) problem transforma-
tion method [2] with the kNN algorithm. LP considers each different subset of L
that appears in the training set as a different label of a single-label classification
task. LPkNN has not been discussed in the related literature to the best of our
knowledge.
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MLkNN [7] is another adaptation of the kNN algorithm for multilabel data.
What mainly differentiates this method from BRkNN is the use of prior and
posterior probabilities which are directly estimated from the training set based
on frequency counting. We implemented MLkNN in Java within the MULAN
multilabel classification software [2] for the purposes of this study.

Each method was executed with a varying number of nearest neighbors.
Specifically, the parameter k ranged from 1 to 30. The performance of each
method for each k was evaluated using 10-fold cross-validation, in order to ob-
tain an accurate performance estimate. In each fold, the following metrics were
calculated [2], and eventually averaged over all folds:

– Example-based. Hamming loss, accuracy, F-measure and subset accuracy
– Label-based. Micro and macro version of F-measure

4 Experimental Results

4.1 Do the Proposed Extensions Improve BRkNN?

In this subsection we investigate whether BRkNN-a and BRkNN-b improve the
performance of BRkNN. Table 2 reports the average performance of the three
algorithms across all 30 values of the k parameter for each dataset. It presents
results for all evaluation metrics mentioned in Section 3.2. The best result on
each metric and dataset is shown with bold typeface. The last line contains
for each algorithm the number of metrics for which it achieves the best result,
while within parentheses there is the number of metrics for which BRkNN-a and
BRkNN-b are better than the base BRkNN algorithm.

The results show that both extensions outperform the base BRkNN method in
more than half of the 6 metrics on all datasets. BRkNN-a outperforms BRkNN
in 6, 5 and 5 out of the 6 metrics in the scene, emotions and yeast datasets
respectively. BRkNN-b outperforms BRkNN in 6, 4 and 4 out of the 6 metrics in
the scene, emotions and yeast datasets respectively. These two pieces of evidence
strongly support that both BRkNN-a and BRkNN-b are beneficial extensions.

Studying the performance of the algorithms at each individual dataset, we no-
tice that BRkNN-a dominates in scene and emotions, while BRkNN-b dominates

Table 2. Experimental results of BRkNN, BRkNN-a and BRkNN-b on all datasets,
averaged for all k

scene emotions yeast
metric base ext-a ext-b base ext-a ext-b base ext-a ext-b

Hamming loss 0.0950 0.0938 0.0941 0.1976 0.1982 0.2175 0.1974 0.1975 0.2082
accuracy 0.6256 0.7226 0.7218 0.5215 0.5441 0.5430 0.5062 0.5080 0.5346

F-measure 0.6386 0.7392 0.7381 0.6275 0.6576 0.6590 0.5777 0.5795 0.6652
subset accuracy 0.5993 0.6889 0.6886 0.2895 0.2971 0.2759 0.1958 0.1959 0.1766
micro F-measure 0.6964 0.7296 0.7284 0.6499 0.6577 0.6509 0.6374 0.6380 0.6567
macro F-measure 0.6955 0.7363 0.7349 0.6224 0.6303 0.6294 0.3926 0.3931 0.4261
#wins (#better) 0 6 (6) 0 (6) 1 4 (5) 1 (4) 1 1 (5) 4 (4)
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Fig. 1. Percentage of new instances, where BRkNN outputs the empty set (y axis),
with respect to the number of nearest neighbors (k) (x axis) for all datasets

in yeast. This performance pattern correlates with the cardinality of the datasets,
which is 1.074, 1.868 and 4.327 for the scene, emotions and yeast dataset respec-
tively (see Table 3.1). Actually, it is natural for datasets of low cardinality, such
as scene and emotions, to favor BRkNN-a over BRkNN, because the probability
that the latter outputs the empty set increases in such datasets. This is clearly
shown in Figure 1, which plots the percentage of the instances, where BRkNN
outputs the empty set, for various values of the k parameter. BRkNN-a deals
with exactly this problem of BRkNN. On the other hand, BRkNN-b works bet-
ter in datasets with larger cardinality, as it includes a mechanism to predict the
number of true labels associated with a new instance.

4.2 Comparison of BRkNN, LPkNN and MLkNN

Table 3 reports the average performance of the three algorithms across all 30
values of the k parameter for each dataset. It presents results for all evaluation
metrics mentioned in Section 3.2. The best result on each metric and dataset is
shown with bold typeface. The last line contains for each algorithm the number
of metrics for which it achieves the best result.

Table 3. Experimental results of best version of BRkNN, LPkNN and MLkNN with
normalization on all datasets, averaged for all k

scene emotions yeast
metric BR-a LP ML BR-a LP ML BR-b LP ML

Hamming loss 0.0938 0.0955 0.0884 0.1982 0.2094 0.2003 0.2082 0.2143 0.1950
accuracy 0.7226 0.7181 0.6720 0.5441 0.5600 0.5233 0.5346 0.5280 0.5105

F-measure 0.7392 0.7343 0.6944 0.6576 0.6662 0.6352 0.6652 0.6375 0.5823
subset accuracy 0.6889 0.6854 0.6272 0.2971 0.3287 0.2780 0.1766 0.2452 0.1780
micro F-measure 0.7296 0.7249 0.7316 0.6577 0.6649 0.6509 0.6567 0.6415 0.6422
macro F-measure 0.7363 0.7323 0.7341 0.6303 0.6505 0.6110 0.4261 0.4322 0.3701

#wins 4 0 2 1 5 0 3 2 1
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We notice that BRkNN-a and LPkNN dominate in the scene and emotions
datasets respectively, while in the yeast dataset there is no clear winner. However
BRkNN-b performs better in most measures, followed by LPkNN and finally
MLkNN. There is no apparent explanation on why LPkNN performs better in
the emotions dataset. We notice in Table 3.1 that this dataset has the highest
label density, while the scene dataset where LPkNN has the worst performance
has the lowest label density. However we cannot safely argue that high density
datasets lead to improved performance of the LPkNN algorithm.

5 Conclusions

This paper has studied how the k Nearest Neighbor (kNN) algorithm is used
for the classification of multilabel data. It presented BRkNN, an efficient imple-
mentation of the pairing of BR with kNN, along with two interesting extensions.
Experimental results indicated that the proposed extensions are in the right di-
rection. In addition, the paper compared experimentally BRkNN with two other
methods (LPkNN and MLkNN) and reached to some interesting conclusions as
to what kind of evaluation metrics and what kind of datasets are well-suited to
the different methods.
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