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Abstract. In this paper we present an effective approach which addresses the 
issue of speech/music discrimination. Our architecture focuses on the matter 
from the scope of improving the performance of a speech recognition system by 
excluding the processing of information which is not speech. Multiresolution 
analysis is applied to the input signal while the most significant statistical fea-
tures are calculated over a predefined texture size. These characteristics are then 
modeled using a state of the art technique for probability density function esti-
mation, Gaussian mixture models (GMM). A classification scheme consisting 
of a conventional maximum likelihood decision methodology constitutes the 
next step of our implementation. Despite the fact that our system is based solely 
on wavelet signal processing, it demonstrated very good performance achieving 
91.8% recognition rate.  

Keywords: Computer audition, content-based audio classification, discrete 
wavelet transform, Gaussian mixture model. 

1   Introduction 

Over the past decades a lot of work has been conducted in the area of speech process-
ing (SP) and especially in the field of automatic speech recognition. In order to 
achieve better performance we need the recognizer component to elaborate only on 
speech data and nothing else. Here enters the idea of speech/music discrimination. 
Having a system that identifies which part of a sound includes speech or music, we 
can activate or not the component that processes speech resulting this way to a better 
accuracy. Afterwards a speech enhancement algorithm may be employed, and in 
combination with a voice activity detector, have the signal recognized. 

Another important scientific domain, audio processing, is getting more and more 
attention lately. Usually the same techniques as in SP are applied here as well, which 
shows that there is still much work to be done to attain better performance in such 
systems. A brief review of the area of speech/music discrimination is following. 
Slaney and Scheirer [1] utilize signal processing techniques in time and frequency 
domain to extract 13 features. Their experiments are made in different classification 
schemes with overall performance of 5.8% error rate. El-Maleh et al present a feature 
set which combines the line spectral frequencies (LSFs) and zero-crossing-based 
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features for speech/music differentiation [2]. For feature evaluation Bayes error rate 
with empirical estimation was used while a quadratic Gaussian classifier categorizes 
the input signal resulting in 95.9% accuracy. In [3] a fusion of two speech/music 
classification approaches is presented consisting of two different subsystems. The 
utilization of GMM and spectral features is shown to provide 94% and 90% accuracy 
for speech and music detection respectively. Tzanetakis et al [4] propose a framework 
for audio analysis using the Discrete Wavelet transform (DWT) with 12 different 
subbands while a comparison of Mel Frequency Cepstral Coefficients (MFCC) and 
Short Time Fourier transform coefficients was made. The application of a Gaussian 
classifier indicated that features derived from the wavelet transform have similar 
performance to the other two feature sets. In [5] a multi-layer perceptron forms the 
basis to classify speech and music and the performance of several features is investi-
gated including mean and variance of DWT. Seven features comprise the final feature 
set and 96.6% accuracy with ten neurons is obtained. Didiot et al [6] combined en-
ergy-based features from the wavelet coefficient of each frequency band and 12 
MFCCs in order to train Hidden Markov models. Finally, a class/non-class strategy is 
employed to distinguish speech and music. 

This work is contributing to the field of automatic acoustic analysis for the purpose 
of “understanding” the surrounding environment by exploiting only the perceived 
auditory information in the way humans exhibit quite effortless. We explore the usage 
of a feature set based solely on multiresolution processing to achieve efficient 
speech/music discrimination. The basis of our implementation is the wavelet trans-
form (Fig. 1). Wavelets are usually used in data compression with the well known 
paradigm of the image compression algorithm, JPEG 2000 proposed by the Joint 
Photographic Experts Group. We are going to show that the application of the DWT 
can be of great importance in classification tasks which involve audio processing. The 
transform has the property of treating with great accuracy the lower frequencies of the 
signal in contrast to the higher ones. The fundamental property of the Fourier trans-
form is the usage of sinusoids with infinite duration. While sinusoids are smooth and 
predictable, wavelets tend to be irregular and asymmetric. This is the principal prop-
erty of the wavelet representation and will be discussed next. 

 

Fig. 1. Discrete Wavelet Transform 

2   Wavelet Analysis 

During the past years, wavelets techniques have become a common tool in digital signal 
processing. This kind of analysis has been used in many different researching areas in-
cluding denoising of signals and applications in geophysics (tropical convention, the 
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dispersion of ocean waves etc) [7]. One can conclude that this emerging type of signal 
analysis is adequate to provide strong solutions in many and completely different re-
searching areas. The main advantage of the wavelet transform is that it can process time 
series, which include non stationary power at many different frequencies (Daubechies 
1990). Wavelet comprises a dynamic windowing technique which can treat with different 
precision low and high frequency information. The first step of the DWT is the choice of 
the original (or mother) wavelet and by utilizing this function, the transformation breaks 
up the signal into shifted and scaled versions of it. There are many types of mother wave-
let functions and in this work the next four are investigated: haar (or db1), db 4, symlet 2 
and a biorthogonal function (bior 3.7). A function must have zero mean and be localized 
in both time and frequency in order to form a mother wavelet (Farge 1992). Several ex-
periments took place before the decision of these functions was made. Although these 
functions differ a lot (Fig. 2), we will see that the results are pretty much the same. The 
application of the DWT with these four different original wavelets consists of one-stage 
filtering of the audio signals as we can see in Fig. 1. Subsequently the data series are 
downsampled due to the Nyquist theorem in order not to end up having twice as many 
data comparing to the ones that we started with. In this paper we take under consideration 
only the Approximation coefficients which contain the low frequency information of the 
input sound, which is considered to contain the most important information as regards to 
human perception (inspired by the field of image processing). 

 
Fig. 2. Shapes of the mother wavelets that were employed (a) Haar (b) Daubechies 4 (c) Bior-
thogonal 3.7 (d) Symlet 2 

2.1   The Feature Set 

In our implementation, speech/music discrimination is based on six statistical meas-
urements taken from the low frequency information of the signal. At the primary 
stage the DWT coefficient is cut into equal chunks of data using a texture size of 480 
samples (30 ms), which was determined after extensive experimentations (see Fig. 3). 
It should be noted that no preemphasis is applied and the analysis is performed onto 
non overlapping chunks without considering the incomplete ones at the end of each 
file (in case there is one). For all the experiments the standard wavelet toolbox of the 
MATLABTM framework was used. 
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Fig. 3. Average recognition rates against different texture sizes achieved by the following 
mother wavelet functions: (a) Haar, (b) Daubechies 4, (c) Symlets 2 and (d) Biorthogonal 3.7 
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Fig. 4. Feature values of sound samples belonging to both categories 

The hierarchical role of the feature extraction process is to capture the characteris-
tics that distinct these two audio classes. Moreover, it is a technique of data reduction 
and in this case the suppression of the input data is huge having an average proportion 
of 4.1/100 (feature vector bytes/initial audio signal bytes). We sustain only a small 
amount of discriminative information of the audio signal using only the following six 
statistical features measured over the texture size (see also Fig. 4): (i) mean, (ii) vari-
ance, (iii) minimum value, (iv) maximum value, (v) standard deviation and (vi) the 
median. Afterwards we used speech and music data to train probabilistic models 
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(GMMs), which are described in the next section. Both male and female speech ob-
tained from the TIMIT database, and an EBU music collection [8-9] which incorpo-
rates a large variety of musical instruments and compositions were employed to build 
up speech and music models. All the sounds were sampled at 16 KHz with 16 bit 
analysis while the average duration was 5.6 seconds. 

3   Experimental Setup 

The recognition process is consisted of probability computations of two Gaussian 
mixtures which represent the a priori knowledge that the system includes (Fig. 5). K-
means initialization algorithm along with a standard version of the Expectation 
Maximization (EM) process was used for the training of eight components for each 
category. Furthermore it should be mentioned that diagonal covariance matrices are 
utilized for the construction of each mode. 
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Fig. 5. Overall system architecture 

During the testing phase, ten-fold cross validation was employed in order to obtain 
reliable results. Class decisions are made per frame while care has been taken not to 
have parts of the same file in both train and test sets simultaneously. As we tabulate in 
Table 1, the recognition rates achieved by our system are relatively high, concerning 
the small number of descriptors facilitated by our methodology. 

Table 1. Recognition Rates (%) 

Mother Wavelet Music Speech Overall 

Haar 89.4 94.2 91.8 

Daubechies 4 89 91.4 90.2 
Symlets 2 88.5 92.7 90.6 

Biorthogonal 3.7 88.3 90.1 89.2 
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The four different original wavelets that were examined produced almost equal rec-
ognition rates. Despite its simplicity, haar function is proved to have the best per-
formance while the biorthogonal one provides the worst results. Thus, we conclude 
that Daubechies 1 mother wavelet function should be used in the task of speech/music 
discrimination. 

4   Conclusions and Future Work 

In this paper we explained a wavelet-based architecture for the purpose of efficient 
and simple speech/music discrimination under the scope of enhancing the perform-
ance of a speech recognition system. Our approach utilizes a limited amount of in-
formation produced by a well-known multiresolution technique. A comparison be-
tween three different wavelet families was conducted and the slight superiority of 
haar mother wavelet function was made clear.  

We conclude that the specific type of analysis provides a strong basis for the im-
plementation of a system with low computational needs as regards the specific classi-
fication task. The present contribution proposes a new feature set consisting only by 
six dimensions, while it reaches very high recognition accuracy. This work completes 
an initial step towards building a robust system for automatic speech/music discrimi-
nation. Our future work includes blind signal separation (BSS) to discriminate over-
lapping signals, incorporation of a silence detection algorithm and non-redundant 
fusion of the presented group of descriptors with well known sets, such as MFCC and 
MPEG-7 low level descriptors. 
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