
S. Becker, F. Plasil, and R. Reussner (Eds.): QoSA 2008, LNCS 5281, pp. 171–188, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Quality-Attribute Reasoning Frameworks in
the ArchE Design Assistant

Andres Diaz-Pace, Hyunwoo Kim, Len Bass, Phil Bianco, and Felix Bachmann

Software Engineering Institute, Carnegie Mellon University
4500 Fifth Avenue, Pittsburgh, PA-15213-2612, USA

{adiaz,hkim,ljb,pbianco,fb}@sei.cmu.edu

Abstract. Techniques and tools for specific quality-attribute issues are becom-
ing a mainstream in architecture design. This approach is practical for evaluat-
ing the architecture in early stages but also for planning improvements for it.
Thus, we believe that one challenge is the integration of the individual capabili-
ties of quality-attribute techniques. This paper presents our research work on
a design assistant called ArchE that, based on reasoning framework technology,
provides an infrastructure for third-party researchers to integrate their own qual-
ity-attribute models. This infrastructure aims at facilitating the experimentation
and sharing of quality-attribute knowledge in both research and educational
contexts.

Keywords: Architecture-based analysis & design, quality attributes, design as-
sistance, ArchE.

1 Introduction

The importance of tackling quality-attribute requirements (e.g., performance, modifi-
ability, reliability and other “non-functional” issues) in early development stages has
been widely recognized by the software community. The software architecture is an
effective instrument to reason about the relationships between design decisions and
quality attributes [4].

One mechanism for modeling quality-attribute issues is via reasoning frameworks.
A reasoning framework [5] is an abstraction to encapsulate the knowledge needed to
understand and estimate the behavior of a system with respect to a particular quality,
so that this knowledge can be applied by non-experts. Having encapsulated models
for quality attributes has advantages in terms of scale and level of detail, because it
helps the architect to manage the relationships among multiple quality-attribute mod-
els when designing an architecture. Ideas of the same kind have been discussed by
other researchers as well [7, 10, 14].

In this context, automated tool support is crucial to take advantage of quality-
attribute knowledge. A particular category of tools is design assistants. A design assis-
tant can be seen as an agent that supports the architect in decision-making, either by
making suggestions on possible courses of action or by performing some computations
autonomously on her behalf. For several years, the Software Engineering Institute

172 A. Diaz-Pace et al.

(SEI) has been developing an assistant for architecture design called ArchE1 [1, 2, 16].
In a nutshell, this prototype performs a semi-automated search of the design space,
using the outputs of reasoning frameworks to direct the search towards solutions with
known quality properties. The initial release of ArchE consisted of a rule-based engine
and examples of reasoning frameworks that allow the user to explore simple architec-
tures for performance and modifiability.

However, the challenge is not only about sound reasoning frameworks able to link
architectures to quality-attribute models individually. In order to fully realize the
potential of this technology, we argue that a design assistant should allow people to
put their own reasoning frameworks to work together. In this paper we describe an
extension of ArchE called ArchE Reasoning Framework Interface (ArchE-RF Inter-
face) to support such an objective. This new release consists of a collaborative infra-
structure for third parties to contribute reasoning frameworks to ArchE as plugin
modules. The approach is based on a blackboard organizational style, in which the
ArchE engine plays the role of control component and the reasoning frameworks
register themselves with ArchE through a publish-subscribe schema. ArchE has no
semantic knowledge of quality-attribute models; it just manages the basic inputs such
as scenarios and responsibilities, delegates the design work to the available reasoning
frameworks, and then assembles their results.

The contribution of this approach is that a researcher can concentrate directly on
the modeling and implementation of a reasoning framework for her quality of interest,
and afterwards instantiate her reasoning framework easily on top of the ArchE-RF
Interface. Furthermore, providing a platform for modular reasoning frameworks that
are ArchE-compatible, we expect to support the development and integrated use of
quality-attribute models by researchers, practitioners and educators.

The rest of the paper is structured around 5 sections. Section 2 describes the key
concepts of the ArchE vocabulary for reasoning frameworks. Section 3 is devoted to
the interactions between ArchE and the reasoning framework plugins using the Ar-
chE-RF Interface. Section 4 briefly describes our experiences implementing two rea-
soning framework examples. Section 5 comments on related work. Finally, Section 6
presents the conclusions and discusses future lines of work.

2 Reasoning Frameworks: The Building Blocks

Conceptually, a reasoning framework is a modular entity that provides the capability to
reason about specific quality-attribute behavior(s) of an architecture. In its original for-
mulation [5], a reasoning framework only involved analytic theories (e.g., queuing net-
works for performance, change impact for modifiability, Markov chains for availability,
etc.) to determine whether an architecture satisfies quality-attribute requirements. Later,
this formulation was extended with the capability to transform an architecture using
tactics [2] in order to satisfy unmet quality-attribute requirements.

The class of behaviors or situations for which the reasoning framework is useful is
referred to as the problem description. A specification of a problem description can be
a collection of scenarios along with an initial architectural model for the system. The

1 http://www.sei.cmu.edu/architecture/arche.html

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 173

analytic theory needs also a representation to abstractly describe those aspects of the
design we should reason about. This representation is referred to as the analysis
model. In this context, a reasoning framework is expected to support three phases [2]:

1. Interpretation: The mapping procedure that converts the architectural model
into the analysis model

2. Evaluation: The procedure used to solve the analysis model and compute qual-
ity-attribute measures for the scenarios. These measures help to determine
whether the current architecture satisfies its scenarios.

3. Re-design (optional): In case some scenarios are unmet, tactics permit to adjust
the structure/behavior of the current architectural model.

To accomplish these phases, the process of building a reasoning framework relies
on a vocabulary of architectural concepts. The key concepts we have used for the
development of ArchE-RF Interface include: general quality-attribute scenarios, con-
crete quality-attribute scenarios, quality-attribute models, responsibilities, architec-
tural tactics, and architectural views. Figure 1 shows the ontology of concepts and the
relationships among them.

General
Quality Attribute

Scenario

Concrete
Quality Attribute

Scenario

instance
of

satisfies 0..*

Quality
Attribute

Model

View

has
parameters
adjustable

by

transforms

Responsibility
Structure

extracted
from 1..*

associated with
some of

have properties
reflecting
parameters of

generated
from

determines

interpreted
from

Architectural
Tactic

manipulates

Fig. 1. Ontology of architectural concepts for reasoning frameworks

A summary of the concepts is provided below (see references for further details).

• General quality-attribute scenario. A system-independent table for deriving
quality-attribute requirements. The table consists of six parts, namely: a stimulus,
a stimulus source, an environment, an artifact being stimulated, a response, and a
response measure; each part having different possible values. General scenarios
for several quality attributes are discussed in [4].

• Concrete quality-attribute scenario. A system-specific requirement that is an
instance of a general scenario. A concrete scenario for modifiability would look
like “The operating system used by different customers may vary (stimulus).

174 A. Diaz-Pace et al.

Adaptation of the software to the different processors (response) should be done
within 1 person-day (response measure)”.

• Quality-attribute model. The result of interpreting an architecture design with an
analytic theory. A quality-attribute model usually has a set of independent pa-
rameters that can be manipulated (in specific reasoning framework instances) to
control the values of the measures produced by the evaluation procedure. See the
chain impact analysis theory described in Section 2.1 for an example.

• Responsibilities. A responsibility is an activity undertaken by the software being
designed [18]. We use responsibilities as a means to express functional require-
ments as a part of quality-attribute scenarios, and moreover, as a means to inte-
grate the models produced by various reasoning frameworks. Responsibilities can
be annotated with quality-specific properties or take part in relationships. All this
information provides clues for a reasoning framework to create an initial architec-
ture and reason about quality-attribute issues. See example of Section 2.1.

• Architectural tactic. A vehicle for satisfying a quality-attribute-response measure
by manipulating some aspect of a quality-attribute model through design deci-
sions. That is, a tactic is an architectural transformation based on a quality-
attribute justification. A tactic comes with both analysis rules and design rules.
The former rules specify how the independent parameters of a quality-attribute
model can be controlled to achieve a desired measure (i.e., a scenario response).
The latter rules codify architectural decisions to move from a given architecture
to another one (variant) with a better fitness. See example of Section 2.1.

• Architectural view. A view is a design structure of the system that can be seen
from a viewpoint [4]. In general, an architectural view can be seen as a typed
graph that is composed of architectural design elements, their properties, and
their relations for the viewpoint. Examples of common architectural views are:
the module view, the process view, the component-and-connector view, etc.

Note that the ontology involves three types of model transformations. A first type

of transformation generates the architectural model (i.e., a set of architectural views)
from the scenarios and responsibilities. Then, a second type of transformation is the
interpretation procedure, which translates the views to a representation that is more
suitable for quality-attribute analysis. Finally, a third type of transformation is that of
tactics, which modifies the current architectural view(s) to generate architectural vari-
ants. Here, it is assumed also that the tactics determine responsibilities and relation-
ships for the architecture, which are consistent with the quality-attribute models ma-
nipulated in terms of its parameters.

In addition, we require every reasoning framework to publish a manifesto. This
manifesto is used by ArchE to integrate the reasoning framework to the infrastructure,
checking compliance of its modeling concepts and detecting possible conflicts with
other reasoning frameworks. The manifesto specifies the quality attribute the reason-
ing framework is interested in, the scenario structure, and other architectural element
types that the reasoning framework is able to process.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 175

2.1 Example: A Modifiability Reasoning Framework

We briefly describe a modifiability reasoning framework based on change impact
analysis (CIA) [6], as an example of the kind of quality-attribute models that can be
integrated in ArchE [1]2. Modifiability is seen as “the ability of a software architecture
to accommodate changes”. Given a set of change scenarios, the level of modifiability
of an architecture is a function of how functionality is allocated to modules and how
these modules interact with each other.

According to the CIA theory, the architecture is interpreted as a graph, in which the
nodes correspond to “units of change” (e.g., responsibilities, modules, interfaces)
while the arcs represent dependencies between the nodes (e.g., functional dependen-
cies, data flows). A modification of a specific node is likely to propagate to a
neighborhood of nodes. We assume that the effects of the change in the neighbors
decrease as a function of the distance to the source of the change. So, we define an
evaluation procedure that traverses the graph and returns cost estimations for the
change. To do this evaluation, nodes and arcs are annotated with properties. The total
cost of making a change is computed as a weighted sum that considers the costs of
individual nodes and the probabilities of change rippling associated to the arcs. Fur-
thermore, we allow manipulation of the graph via tactics, so as to affect the results of
the evaluation function. This is accomplished either by adjusting the values of proper-
ties or by altering the topology of the graph.

Figure 2 outlines the manifesto for our modifiability reasoning framework. This
manifesto is an XML file that lists the element types handled by the reasoning frame-
work. The manifesto exposes structural information of the element types, but it is not
concerned with their behavior. The first part of the manifesto identifies the reasoning
framework itself (tag <rf>). For CIA, the manifesto specifies a new type of modifiabil-
ity scenario (section <scenarioTypes>) as well as modifiability-related elements for it
(e.g., sections for responsibility parameters, responsibility relationship types, view
element types, view relation types, etc.). ArchE will use this specification as “meta-
information” of what is needed by the reasoning framework to operate. Additionally,
ArchE will display appropriate GUIs and infer the data mappings to its database.

In the <responsibilityStructure> section, we specify that a responsibility can take
part in a “functional dependency” relationship with other responsibilities. Besides, we
decorate plain responsibilities and dependency relationships with modifiability-
specific parameters. One parameter of a responsibility is the cost of changing that
responsibility. Two parameters of a dependency are the probabilities for “incoming”
and “outgoing” rippling of changes. The assignment of values to these parameters is
done by the architect based on previous experiences or empirical data.

The <view> section specifies a module view [4] as a suitable architectural descrip-
tion for modifiability issues. A module can be thought of as a code or implementation
unit that delivers some functionality. Modules have relationships with other modules.
A common relationship between modules is dependency, which denotes coupling
between two modules. Since ArchE relies on responsibilities, we have extended the
module view to include allocation relationships, so that a module can support one or
more responsibilities. Dependencies between modules are computed in terms of

2 Although the CIA-based model is plausible to reason about modifiability, the model has not

been fully validated yet.

176 A. Diaz-Pace et al.

responsibility dependencies and responsibility allocations. That is, if a responsibility
A is dependent on a responsibility B and they are allocated to different modules MA
and MB respectively, we will have then a dependency between modules MA and MB.
The dependency relationship for modules behaves similarly to the responsibility de-
pendency, having associated probabilities for incoming and outgoing change rippling.
The <model> section is about the representation of the graph in terms of units of
change and rippling probabilities. This section is optional in the manifesto, and it only
serves to visualization purposes of the ArchE GUI.

<!--xml header -->
<rf <!-- Reasoning framework identification -->

id=”ChangeImpactModifiabilityRF” <!-- Unique ID -->
quality=”Modifiability” <!--Target quality attribute -->
name=”ModifChangeImpact RF v0.1” <!--Description -->
version=”0.1” <!-- Version of this reasoning framework -->

>
 <scenarioTypes> <!-- Specification of 6-part general scenario -->
 . . .
 </scenarioTypes>
<responsibilityStructure > <!-- Information about responsibility parameters, types of responsibility

relations and parameters for those relationships, e.g., dependency relationship, cost of change or
rippling properties -->
 <parameterTypes> . . . </parameterTypes>
 <responsibilityParameters> . . . </ responsibilityParameters >
 <relationshipTypes> . . . </ relationshipTypes >
 </responsibilityStructure >
<view > <!-- Description of the design elements and relationships used in the architectural

representation, e.g., a module view-->
 <viewElementType> . . . </ viewElementType >
 <viewRelationType> . . . </ viewRelationType >
 . . .
 </view >
<model > <!-- Description of elements and relationships of the model used for quality- attribute

analysis, e.g., a dependency graph -->
 <modelElementType> . . . </ modelElementType >
 <modelRelationType> . . . </ modelRelationType >
 . . .
 </model >
</rf>

Fig. 2. Fragment of the XML manifesto

When the reasoning framework executes, its interpretation procedure will filter out
those design elements and design relations of the module view that are related to sce-
nario-specific responsibilities, in order to construct a graph for the architecture. This
graph will be evaluated according to a cost formula. We used a cost formula derived
from [1] for computing the cost of all the nodes impacted by a given scenario. The in-
terpretation and evaluation are graphically exemplified in Figure 3. Finally, the design
cycle is completed with two modifiability tactics [3], which are not included in the
manifesto but supported by the reasoning framework implementation. The first tactic
aims at reducing the cost of modifying a single (costly) responsibility by splitting it into
children responsibilities. An instance of this tactic is shown at the bottom of Figure 3.
The second tactic aims at reducing the coupling between modules by inserting an inter-
mediary that breaks module dependencies. These tactics are materialized through

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 177

transformations that affect both the module view and the responsibility structure. The
re-interpretation of the architectures generated by the transformations leads to slightly
different dependency graphs, and consequently, the modifiability measures for these
graphs vary. The process of interpretation-evaluation-transformation continues until the
analysis of the scenarios reaches values that satisfy the architect’s expectations.

 KEY

R1 R2
responsibility dependency

M1 M2
module dependency

responsibility allocation

 responsibility(unaffected)

primary responsibility

rippling chain responsibility

primary module

arc
N1 N2

N1 R
containment

node

EVALUATION

Modifiability scenario S responsibilities { R1, R2 }

Module C

Module A

R1

R3

R2

R4

Module B

CostR = 2.0 CostR = 4.0

CostR = 2.0
CostR = 3.0

CostM = 12.0
CostM = 14.0

CostM = 15.0

Rippling = 0.2

R1

INTERPRETATION

Cost(S) = CA + CB + CC = 8 + 13 + 7 = 28 hours

RE-DESIGN

Tactic Split-
Responsibility
applied to R2,
which gets
refined by
responsibilities
R2A & R2B

Node A
Node B

R2

Node C R3

8

7

13

R2

Module B2

Module A

Module C

R3
R4

Module B1

R1 R2A

R2B

Cost(S) = CA + CB1+CB2 + CC 23 hours

Modifiability scenario responsibilities { R1, R2A }

Fig. 3. Interpretation, evaluation and re-design for modifiability

178 A. Diaz-Pace et al.

3 ArchE-RF Interface: The Collaborative Infrastructure

The working of ArchE follows a blackboard style [8], in which different actors col-
laborate to produce a solution for a problem. Each actor can potentially read informa-
tion from the blackboard that was developed by other actors; and conversely, each
actor can introduce new information into the blackboard that could be of interest to
anyone else. The reasoning frameworks can be seen as knowledge sources, and ArchE
is the control component that manages the interactions among them, so as to ensure
progress in the architecting process. Note that ArchE is an assistant to explore quality-
driven architectural solutions, rather than being an automated design tool. Since not
all the decisions can be made by ArchE, the user becomes an additional actor in the
schema, who makes the final decisions. For instance, the computations of the reason-
ing frameworks need human intervention for specifying correct scenarios, entering the
necessary parameters for analysis and tactics, among other tasks. This modality of
assistance is known as mixed-initiative [17].

Enhancing the assistive capabilities of ArchE means to integrate different reason-
ing frameworks into the blackboard schema. To do so, we have re-designed the
initial version of ArchE towards a collaborative infrastructure: the ArchE Reasoning
Framework Interface (ArchE-RF Interface). In this infrastructure, reasoning frame-
works are considered as “external plugins”. The term “external” means that a reason-
ing framework resides anywhere outside the ArchE process, even on a remote
machine over networks. The term “plugin” means that a reasoning framework can be
added or removed at runtime without disturbing the current tasks of ArchE. Thus,
ArchE can take advantage of multiple computing resources by executing reasoning
frameworks in parallel.

In Figure 4, we show a simplified view of the interactions between ArchE and the
reasoning frameworks. A reasoning framework announces itself in the infrastructure
via its manifesto, and ArchE enables the reasoning framework for operation. From
that point on, the ArchE engine starts sending asynchronous interaction commands to
the reasoning framework(s), and also communicating information through a database.
Meanwhile, each reasoning framework acts as a “command listener”, executing the
received commands with its own logic and accessing the database. Once a reasoning
framework has successfully executed a command, it sends the results back to ArchE.
Examples of command results can be: analysis values, suggested tactics, or questions
for the user. ArchE either waits for the results of a predefined command or proceeds
with other commands, depending on the context.

The collaborative infrastructure relies on four main components:

• ArchE Engine. This component retains the functionality of the first release with
respect to the general structure of the search for architectural alternatives. The
only modification is that the design work is now delegated to “remote” reasoning
frameworks. This engine has very little knowledge of either quality-attribute de-
sign techniques or semantics of the system being designed. The responsibilities of
the engine are: processing of user inputs, update of GUI panels, parsing of the
manifesto, coordination of reasoning frameworks, presentation of their results,
and display of user questions.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 179

XmlBlaster
:Server

Architecture
Database
:Server

ArchE Engine :PC
Modifiability Reasoning

Framework:PC

Performance Reasoning
Framework:PC

Other Reasoning
Framework:PC

Reasoning
Framework
Interface

Reasoning
Framework
Interface

Reasoning
Framework
Interface

Key

Interface Asynchronous
Message over
TCP/IP

B is the
interface to A

Node A
B

Synchronous Call
over TCP/IP

Interaction
commands

Fig. 4. Integration of external reasoning frameworks with the ArchE engine

• XmlBlaster3. This is a message-oriented middleware where implicit message
invocations can take place among participants over networks. This middleware
fosters extensibility in terms of adding (or removing) a participant without con-
sidering others.

• Reasoning Framework Interface. This is the actual interface to a reasoning
framework. It abstracts the details about working with XmlBlaster, the communi-
cation protocol between ArchE and the reasoning framework, and also the algo-
rithms executing the interaction commands.

• Architecture Database. This repository is used to manage any persistent data that
need to be shared by ArchE and all participating reasoning frameworks. The data
include both the original and the candidate architectures (e.g., scenarios, respon-
sibilities, architectural views, and relationships among them).

The ArchE-RF Interface is implemented in Java, so the reasoning framework func-
tionality must be implemented in Java as well. Anyway, given the XMLBlaster char-
acteristics, the functionality could be implemented in other programming language
(e.g., C or C++) and then assembled with the top-level Java code using JNI4.

3.1 ArchE Interaction Commands

Basically, ArchE runs a search algorithm for finding promising candidate architec-
tures. The search is divided between the ArchE engine and the available reasoning
frameworks. On one side, the engine controls the main search cycle and makes a
global evaluation of the proposals of the reasoning frameworks. On the other side,
each reasoning framework should implement its own search algorithms to suggest
tactics for the current architecture.

3 http://www.xmlblaster.org/
4 http://java.sun.com/javase/6/docs/technotes/guides/jni/

180 A. Diaz-Pace et al.

The search cycle is structured around five commands that govern the interactions
with the reasoning frameworks.

• ApplyTactics. This command requests a specific reasoning framework to apply a
tactic to the current architecture in order to refine it (Re-design phase). The tactic
must come from a question that was previously shown to the user of ArchE and
she agreed to apply (see command DescribeTactic below). The expected result is
to have the refined version of the current architecture in the database.

• AnalyzeAndSuggest. This command requests a reasoning framework to analyze
the current architecture regarding scenarios of interest, and to suggest new tactics
if some scenarios are not fulfilled (Interpretation and Evaluation phases). The
reasoning framework returns the analysis results and the tactics (if any) to ArchE.

• ApplySuggestedTactic. This command requests a reasoning framework to apply a
tactic to the current architecture in order to create a new candidate architecture
(Re-design phase on a new architecture instance). The tactic must be one of the
tactics that the reasoning framework suggested when executing the AnalyzeAnd-
Suggest command. The expected result is to have a candidate architecture in the
database.

• Analyze. This command requests a reasoning framework to analyze a candidate
architecture regarding scenarios of interest (Interpretation and Evaluation phases
on a new architecture instance). The evaluation results returned by the reasoning
framework will be used by ArchE to prioritize candidate architectures.

• DescribeTactic. This command requests a reasoning framework to provide ArchE
with user-friendly questions that describe tactics or any other recommendations.
This is actually the main mechanism to offer design advice to the user on how to
improve its architecture. Again, ArchE does not know about the semantics of user
questions, it just shows these questions in the GUI and let the user decide.

Whenever the user makes a change to some part of the design, ArchE starts a new

cycle of its algorithm and executes the above commands in the following sequence:

1. If the change is a decision to apply a tactic, ArchE sends ApplyTactics to the
reasoning framework that suggested the tactic, and then, the reasoning framework
modifies the working architecture according to the tactic. For example, let’s con-
sider that our modifiability framework inserts an intermediary module upon
user’s request.

2. For every reasoning framework, ArchE sends AnalyzeAndSuggest sequentially.
Each reasoning framework might modify the current architecture (if needed),
in preparation for the following analysis task. This assures consistency on the
responsibility structure and initialization of its architectural view. For example,
our reasoning framework can decorate new responsibilities with costs (if that
property is missing) and update the module view by allocating every new respon-
sibility to a module. Then, each reasoning framework starts its analysis of the ar-
chitecture. If the analysis results say that some scenarios are not fulfilled, it tries
to find tactics suitable for the architecture. At last, it returns the analysis results
and the list of suggested tactics. For instance, our reasoning framework may run
its change impact analysis, detect a costly responsibility as a main contributor to
the scenario response (total cost), and propose a responsibility splitting.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 181

3. For every suggested tactic:
a) ArchE sends ApplySuggestedTactic to the reasoning framework with the tac-

tic under consideration. The reasoning framework creates a candidate archi-
tecture by modifying the architecture according to the tactic.

b) For every reasoning framework, ArchE sends Analyze in parallel. Each
framework analyzes the candidate architecture and returns the evaluation re-
sults to ArchE.

4. ArchE prioritizes all the evaluation results that came from applying suggested
tactics. This ranking of evaluation results is displayed as a matrix of scenarios
versus tactics called “traffic light”. For every reasoning framework, ArchE sends
DescribeTactic in parallel. Each reasoning framework provides ArchE with ques-
tions that describe suggested tactics (if applicable). For example, our reasoning
framework would ask the user to apply the tactic of splitting on a particular re-
sponsibility, in order to satisfy a modifiability scenario.

5. ArchE shows to the user all the questions sent by reasoning frameworks. The
cycle goes back to step 1.

3.2 Governing Reasoning Frameworks

When implementing the ArchE-RF Interface, a reasoning framework is expected to
support six basic functionalities, which will hook into the search cycle described
above. The functionalities are:

- Self Description (manifesto)
- Creating Initial Design
- Analyzing (for commands Analyze and AnalyzeAndSuggest),
- Suggesting Tactics (for command AnalyzeAndSuggest)
- Applying Tactics (for commands ApplyTactic and ApplySuggestedTactic)
- Describing Tactics (for command DescribeTactic)

ArchE does not require a reasoning framework to implement all the functionalities,

but at least Self Description must be implemented to enable communication with
ArchE. The implementation of the remaining functionalities is up to the researcher,
depending on the type of reasoning framework wanted. The Analyzing functionality is
generally present in any reasoning framework. For example, if we build our modifi-
ability reasoning framework just to apply CIA on the module view, we can implement
the Analyzing and Creating Initial Design parts and ignore other functionalities.
However, if we would like our reasoning framework to be able to alter the architec-
ture (after performing analysis), then we also need to implement the functionalities of
Suggesting Tactics, Applying Tactics and Describing Tactics.

In addition to a command-based interface for interacting with ArchE, the ArchE-
RF Interface API provides guidelines to implement the reasoning framework inter-
nals. These guidelines can be seen as a small object-oriented framework [11] that
predefines the overall design of a plugin, its decomposition into Java interfaces and
classes, the main methods to be overridden, and the general flow of control derived
from the interaction commands. These features significantly reduce the design deci-
sions that have to be made by a researcher when creating plugins for ArchE.

182 A. Diaz-Pace et al.

The ArchE-RF Interface API is structured into four layers. Each layer provides ser-
vices for the upper layers, although there is no strict layering.

• Communication layer. It is the top-level layer that includes all the classes and
interfaces related to interacting with ArchE via the XmlBlaster. It provides func-
tionalities such as: registration of a reasoning framework with ArchE at runtime;
reception of an interaction command from the XmlBlaster and delegation of its
execution to the Execution layer; communication of progress messages and notice
of command cancellations.

• Execution layer. It is equipped with a set of algorithms, each processing a differ-
ent interaction command as forwarded from the Communication layer. Based on
the services from the two layers below it, the Execution layer provides functional-
ities such as: restoring, saving and deletion of the architecture in the ArchE Data-
base; exception handling, etc.

• Reasoning Framework layer. It provides the ArchEReasoningFramework class,
which has to be extended by a researcher in order to implement a specific reason-
ing framework. It also provides other helping classes that she may use to handle
inputs and outputs for an interaction command.

• Data layer. It is the bottom-level layer that provides the upper layers with the
concepts shown in Figure 1. It includes the Java interfaces needed to manage the
key concepts, which must be mapped to concrete classes and database tables.

3.3 Interaction with the User

The user gets to know about the reasoning framework proposals for the current
architecture through two GUI mechanisms: the “traffic-light” metaphor and the user
questions. Figure 5 shows a traffic light snapshot for modifiability and performance
scenarios, along with potential scenario improvements when applying different tactics.
The columns display color-coded ball icons that represent the tactics being evaluated
by ArchE. A green ball indicates that the scenario will be satisfied if that tactic is ap-
plied, while a red ball indicates that the scenario will not be satisfied. Note also how
the effects of the tactics on the scenarios lead to quality-attribute tradeoffs.

The snapshot below the traffic light shows a list of user questions. Typically, a
question describes the purpose of a particular tactic. For instance, Figure 5 displays a
question dialog for the tactic of splitting a costly responsibility. If the user enters a
positive answer, then ArchE will trigger the corresponding architectural transforma-
tion. The types of questions associated to a reasoning framework must be specified by
the reasoning framework developer in a questions file that supplements the manifesto.
This questions file let ArchE know about the template and parameters of each possible
question. The bottom part of Figure 5 shows how the question scripts look like. When
the ArchE engine invokes the DescribeTactic command and the reasoning framework
returns a question instance, ArchE loads its associated template and substitutes the
placeholders of the text with specific question parameters. The ArchE GUI uses that
information to display the question by means of predefined graphical widgets. Once
the user picks and answers a particular question, ArchE translates the results into an
ApplyTactic command for the reasoning framework that provided that question.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 183

questionId: splitResponsibility
parameters: <1> the target responsibility
<2> the current cost for the scenario (double)
<3> a cost after applying the tactic (double)
default: null (this could be 'yes')
##
splitResponsibility.questionType = yesNo
 splitResponsibility.category = Applying modifiability tactics
 splitResponsibility.purpose = The responsibility "<1:name>" has multiple strong dependencies
to other responsibilities. Therefore, it might be a good idea to split responsibility "<1:name>" into
two children responsibilities so as to minimize the dependencies. An estimate
suggests that you could reduce costs from "<2>" to "<3>" person days for this change scenario.
splitResponsibility.question = Do you want to split the responsibility "<1:name>"?

Question script
(in questions file)

Question
parameters

Traffic Light

List of user questions

Question selected by the user
tradeoff
point

Fig. 5. Configuration and visualization of tactics in ArchE

4 Implemented Reasoning Frameworks and Lessons Learned

Currently, we have created two reasoning framework plugins using the ArchE-RF
Interface. The first plugin is a full-fledged reasoning framework for modifiability (as
outlined in sub-section 2.1), which served to test and tune the infrastructure. The

184 A. Diaz-Pace et al.

second plugin is a reasoning framework for real-time performance that takes advan-
tage of an existing analytic solver called MAST5. MAST [12, 15] is a toolset for
describing event-driven real-time systems and performing schedulability analysis.
Figure 6 shows a snapshot of ArchE running the two plugins. In general, validating
reasoning frameworks with respect to the scope and accuracy of their predictions is
the job of the reasoning framework developer and not a portion of ArchE.

After writing its manifesto, the modifiability reasoning framework was imple-
mented from scratch in Java. Initially, we defined subclasses for the responsibility
dependencies and the responsibility structure. We also created a class to represent the
module view. Then, we implemented a subclass of the ArchEReasoningFramework
class that encapsulates the interpretation and the formulae for computing various
metrics such as cost, coupling and cohesion. On this basis, we codified rules that
looked at the values of these metrics to configure possible tactics. Finally, we
equipped the reasoning framework with architectural transformations for the tactics,
and we also wrote the corresponding questions file.

The performance reasoning framework was conceived as an “analyzer” with no
support for tactics. The implementation steps were similar to the ones carried out for
the modifiability plugin, except that we wrapped the MAST solver to supply the Ana-
lyze functionality. The MAST input is an ASCII file that consists of an arrangement
of tasks with timing requirements (e.g., latency) and events linking the tasks. A worst-
case analyzer processes this specification and outputs the timing behavior of the
system. In our ArchEReasoningFramework subclass, the Analyze implementation
converts the performance scenarios and their responsibilities to tasks, considering the
responsibility relationships as event reactions between tasks. The task model is sent to
a file and fed into the MAST toolset. The worst-case latency results are then com-
pared against the timing requirements to determine the schedulability of the scenarios.
We are now working on the addition of a set of performance tactics to this plugin.

The reliance of ArchE on reasoning frameworks favors integrability and modular
reasoning about quality attributes. One of the research questions here is the extent to
which the interactions (i.e., dependencies) among quality-attribute models can be
reduced. The implementations above shed light on general issues about these interac-
tions and also exposed some drawbacks of the blackboard approach.

In the current design, dataflow interactions arise because the reasoning frameworks
often share (parts of) the architectural representation (e.g., responsibilities, elements of
architectural views). Anyway, this architectural representation must be kept consistent
at all times. Our plugins shared responsibilities but worked on separate architectural
views (i.e., a module view and a task view respectively), and only the modifiability
plugin had the capability of modifying the architecture. Because of these factors, the
consistency checking was relatively simple. For instance, if a modifiability tactic splits
a responsibility that appears in a performance scenario, then the performance reasoning
framework is asked to update its task model and run the schedulability analysis again.
We believe that a general treatment of opportunistic or harmful types of interactions
would require more knowledge about the architectural representation, the effects of
tactics or the user’s inputs.

5 MAST homepage: http://mast.unican.es/

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 185

(1) Modifiability
reasoning
framework activity

ArchE GUI

XMLBlaster
running in

background

(2) MAST analyzer for performance

Fig. 6. The ArchE prototype executing two reasoning frameworks as plugins

The management of tradeoffs is decoupled into two aspects. The first aspect has to
do with the “traffic light” metaphor, so that the user must decide on a tactic making a
quality-attribute balance that is good enough for her scenarios of interest. The second
aspect comes from the opportunistic/harmful interactions discussed above. A simple
source of tradeoffs is the parameters of responsibilities [2]. For instance, when insert-
ing an intermediary due to modifiability reasons, the modifiability reasoning frame-
work can impose a minimum execution time for that responsibility, but this constraint
on the execution time parameter later impacts on the schedulability analysis of the
performance reasoning framework. Putting mechanisms in place for ArchE to support
this second aspect of trade-offs is a topic for further research.

Regarding search, each reasoning framework looks locally for tactics that change
the architectural structure. However, the resulting architectural transformations do not
always guarantee an improvement of the evaluation function, because that function
depends on both the architectural configuration and tactic-specific parameters. For
instance, when applying the tactic of splitting a responsibility, we must set the costs
for the children responsibilities and set the rippling probabilities for their dependen-
cies. Different choices for these values lead to different instances of the same tactic,

186 A. Diaz-Pace et al.

some of which reduce the cost of the change and some others do not. The problem of
finding an adequate configuration of values for a given tactic is not trivial, and it often
needs heuristic search.

We additionally observed some side-effects of the blackboard architecture on us-
ability. A first issue is the processing overhead forced by the main control strategy,
because the ArchE engine does not know the semantics of the user’s actions. A sec-
ond issue (related to the control strategy) is that the reasoning framework activities for
responding to the ArchE commands have limited visibility through the GUI. There-
fore, while ArchE is running, the user can only handle or inspect reasoning framework
features at specific points of the exploration process. Future developments should
provide a more flexible user-interaction schema.

5 Related Work

The analysis of component-based systems by applying quality-attribute techniques
has been an active field of research and technology transfer for many years. Several
quality-specific approaches have been developed [7, 10, 14, 15], although few of
them have tackled the integration of models and analysis tools. To begin with, the
Predictable Assembly from Certifiable Components (PACC) initiative at the SEI has
focused on building component-based systems that have predictable behaviors prior
to implementation [15]. PACC uses the notion of reasoning frameworks in combina-
tion with model checking to analyze performance and safety properties but also to
enforce the assumptions required by each analysis technique when applied to the
systems. This technology can be applied to predict other properties as well (e.g., reli-
ability, security). As evidenced by the MAST example, we think these techniques can
be integrated into ArchE with little effort.

The DeSiX approach [7] provides tools for component-based systems on multi-
processor architectures that allow for design space exploration. Here, scenario-based
analyses for performance, reliability and cost serve to focus the design on particular
architectural configurations. The developer can map usage profiles to simulation
tasks, and then visualize the resulting architectures using Pareto curves. When com-
pared to ArchE, a drawback of DeSiX is that it does not support automated search,
and the developer manually selects configurations to be evaluated by the tool.

Other researchers have proposed a view of software engineering as a search prob-
lem [9], in which automation is supported by optimization techniques. Along this line,
Grunske [13] has investigated the integration of quality-attribute techniques using
genetic algorithms for some experiments involving reliability and cost requirements.
Also, he has proposed a generic model for quality-attribute evaluation [14] that con-
tains four elements, namely: encapsulated evaluation models, composition algorithms
for these evaluation models, operational/usage profiles, and evaluation algorithms to
determine relevant quality measures from the evaluation models. This perspective is
similar in spirit to that of reasoning framework, although it does not consider explic-
itly the aspect of architectural transformations. Nonetheless, Grunske has pointed out
challenges for the combined use of quality-attribute models and tool support, such as
composability, analyzability and complexity issues.

 Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant 187

More recently, Edwards et al. have [10] coined the term “model interpreter” as a
vehicle to transform component-based models into analysis models by means of
model-driven engineering (MDE) techniques. Consequently, they have developed a
“tool-chain” called XTEAM that supports and integrates different types of model
interpreters. These interpreters are able to implement transformations between high-
level component models (amenable to architectural reasoning) and low-level analysis
models (amenable to prediction of component assembly properties). This approach is
still experimental and has many analogies with the PACC work, but unlike ArchE, it
does not seem to focus on the exploration of the design space.

6 Conclusions

In this paper, we have described a tool approach for incentivizing the use of quality-
attribute models in architectural design. The ArchE approach relies on having a col-
lection of reasoning frameworks that are each specialized for a single quality attribute
but that work together in the creation and analysis of architectural designs. ArchE is
not intended to perform an exhaustive or optimal search in the design space; rather, it
is an assistant to the architect that can point out “good directions” in that space. Along
this line, the contributions of this work are the encapsulation of quality-attribute
knowledge and the tool infrastructure to accommodate that knowledge.

The ArchE-RF Interface constitutes an important step towards improving the de-
sign of the ArchE prototype. Nonetheless, there are issues that need further discussion
and implementation efforts. Some of these issues are:

- Incorporation of UML features for architectural modeling, and linking ArchE to
other development tools.

- Management of tradeoffs between solutions proposed by individual reasoning
frameworks, under multiple criteria (e.g., cost, utility, uncertainty).

- Experiments with searching techniques and more powerful solvers (e.g., simu-
lated annealing, planning, SAT, etc.).

- Support for recording design decisions, as an extension of quality-attribute analy-
sis results and tactic proposals.

Finally, we believe that the more reasoning frameworks that are available, the
broader the reasoning capabilities of ArchE will be. Thus, we hope this work will
stimulate researchers, educators and practitioners to plug in and share analysis/design
models for various quality attributes, in order to foster architecture-centric practices.

References

1. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Experience Using an Expert System to As-
sist an Architect in Designing for Modifiability. In: Proceedings 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA 2004), Oslo, Norway, p. 281 (2004)

2. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing Software Architectures to
Achieve Quality Attribute Requirements. Software IEE 152(4), 153–165 (2005)

3. Bachmann, F., Bass, L., Nord, R.: Modifiability Tactics. Technical report CMU/SEI-2007-
TR-002. Software Engineering Institute, Pittsburgh, PA (2007)

188 A. Diaz-Pace et al.

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

5. Bass, L., Ivers, I., Klein, M., Merson, P., Wallnau, K.: Encapsulating Quality Attribute
Knowledge. In: Proceedings 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA 2005), Pittsburgh, PA, pp. 193–194. IEEE Computer Society, Los Alamitos
(2005)

6. Bohner, S., Arnold, R.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

7. Bondarev, E., Chaudron, M., de With, P.: Quality-Oriented Design Space Exploration for
Component-Based Architectures. Computer Science Report. University of Technology,
Eindhoven, The Netherlands (2006)

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture. A System of Patterns. John Wiley & Sons, Chichester (1996)

9. Clarke, J., Dolado, J., Harman, M., Hierons, R., Jones, R., Lumkinm, M., Mitchell, B.,
Mancoridis, S., Rees, K., Roper, M., Shepperd, M.: Reformulating Software Engineering
as a Search Problem. Software IEE 150(3), 161–175 (2003)

10. Edwards, G., Seo, C., Medvidovic, N.: Construction of Analytic Frameworks for Compo-
nent-Based Architectures. In: Proceedings of the Brazilian Symposium on Software Com-
ponents, Architectures and Reuse (SBCARS). Campinas, Sao Paulo, Brazil (2007)

11. Fayad, M., Schmidt, D., Johnson, R. (eds.): Building Application Frameworks: Object-
Oriented Foundations of Framework Design. Wiley, Chichester (1999)

12. Gonzalez Harbour, M., Gutierrez García, J.J., Palencia Gutiérrez, J.C., Drake Moyano,
J.M.: MAST: Modeling and Analysis Suite for Real Time Applications. In: Proceedings
13th Euromicro Conference on Real-Time Systems (ECRTS), IEEE Comp. Society, Wash-
ington (2001)

13. Grunske, L.: Identifying "Good" Architectural Design Alternatives with Multi-Objective
Optimization Strategies. In: International Conference on Software Engineering (ICSE),
Workshop on Emerging Results, pp. 20–28, 849–852. ACM Shanghai, China (2006)

14. Grunske, L.: Early quality prediction of component-based systems - A generic framework.
Journal of Systems and Software 80(5), 678–686 (2007)

15. Ivers, J., Moreno, G.A.: Model-driven development with predictable quality. In: Compan-
ion 22nd ACM SIGPLAN Conference on Object Oriented Programming Systems and Ap-
plications Companion (OOPSLA 2007), Montreal, Quebec, Canada (2007)

16. McGregor, J., Bachmann, F., Bass, L., Bianco, P., Klein, M.: Using an Architecture Rea-
soning Tool to Teach Software Architecture. In: Proceedings 20th Conference on Software
Engineering Education & Training (CSEE&T 2007), pp. 275–282. IEEE Computer Soci-
ety, Los Alamitos (2007)

17. Wilkins, D., des Jardins, M.: A Call for Knowledge-based Planning. AI Magazine 22(1)
(Spring, 2001)

18. Wirfs-Brock, R., McKean, A.: Object Design: Roles, Responsibilities, and Collaborations.
Addison-Wesley, Boston (2003)

	Integrating Quality-Attribute Reasoning Frameworks in the ArchE Design Assistant
	Introduction
	Reasoning Frameworks: The Building Blocks
	Example: A Modifiability Reasoning Framework

	ArchE-RF Interface: The Collaborative Infrastructure
	ArchE Interaction Commands
	Governing Reasoning Frameworks
	Interaction with the User

	Implemented Reasoning Frameworks and Lessons Learned
	5 Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

