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Abstract. Observational data (i.e., data that records observations and
measurements) plays a key role in many scientific disciplines. Observational
data, however, are typically structured and described in ad hoc ways, making its
discovery and integration diÆcult. The wide range of data collected, the variety
of ways the data are used, and the needs of existing analysis applications make it
impractical to define “one-size-fits-all” schemas for most observational data sets.
Instead, new approaches are needed to flexibly describe observational data for
e�ective discovery and integration. In this paper, we present a generic conceptual-
modeling framework for capturing the semantics of observational data. The
framework extends standard conceptual modeling approaches with new
constructs for describing observations and measurements. Key to the framework
is the ability to describe observation context, including complex, nested context
relationships. We describe our proposed modeling framework, focusing on con-
text and its use in expressing observational data semantics.

1 Introduction

Scientific knowledge is typically derived from relatively simple, underlying measure-
ments directly linked to real-world phenomena. Such measurements are often recorded
and stored in observational data sets, which are then analyzed by researchers using a va-
riety of tools and methodologies. Many fields increasingly use observational data from
multiple disciplines (genetics, biology, geology, hydrology, sociology, etc.) to tackle
broader and more complex scientific questions. Within ecology, e.g., cross-disciplinary
data is necessary to investigate complex environmental issues at broad geographic and
temporal scales. Carrying out such studies requires the integration and synthesis of
observational data from multiple research e�orts [1,2]. These investigations, however,
are hindered by the heterogeneity of observational data, which impedes the ability of
researchers to discover, interpret, and integrate relevant data collected by others.

The heterogeneity of observational data is due to a number of factors: (1) most obser-
vational data are collected by individuals, institutions, or scientific communities through
independent (i.e., uncoordinated) research projects; (2) the structure of observational
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data is often chosen based on collection methods (e.g., to make data easier to record
“in the field”) or the format requirements of analysis tools, as opposed to standard
schemas; and (3) the terms and concepts used to label data are not standardized, both
within and across scientific disciplines and research groups [3]. This need for a more
uniform mechanism to describe observational data has led to a number of proposals
for observational data models [4,5,6] and ontologies [7,8,9,10]. While many of these
approaches provide domain-specific vocabularies for describing data, or data models
for storing certain types of observational data, generic and extensible approaches for
modeling observational data semantics are still needed.

We present an initial step towards such a generic conceptual modeling framework for
observational data. Our framework extends traditional conceptual modeling languages
with constructs for explicitly modeling observations, measurements, and observation
context. Our approach aims to address challenges associated with the following general
characteristics of observational data:

– Observational data are primarily stored as tables within text files, where each data
set corresponds to a single table within one file. This situation stems from data
being generated for use in common analytical programs, e.g., spreadsheet tools.

– Observational data sets are represented in first normal form (1NF), but are not oth-
erwise normalized, with no integrity constraints given.

– Observational data are not initially created from explicit conceptual models (e.g.,
ER or UML diagrams).

– Observational data do not represent a set of facts, or “ontological” truths about the
world; instead, they represent (possibly conflicting) measurements of phenomena
within some broader context.

– Observational data do not use standardized terms for attribute names and coded val-
ues (e.g., species or location names). The terms used, however, may be informally
described within plain-text metadata descriptions.

We envision conceptual models being created within our framework to describe ex-
isting observational data, primarily for the purpose of enabling discovery and integra-
tion of data sets. That is, while it may be possible to employ a more traditional “top
down” modeling approach using our framework, we are primarily focused on the case
of supplementing existing data with formal, semantic content descriptions. We call this
process semantic annotation, whereby annotations referencing an external conceptual
model serve to clarify and constrain the interpretation of the original data set.

As others have noted (e.g., [11,12,13]), it is often diÆcult to represent observations
and their context in traditional conceptual-modeling languages. For example, Fig. 1
shows three hypothetical observational data sets together with their corresponding ER
diagrams. Fig. 1(a) shows diameter measurements of trunks of di�erent tree species
taken in di�erent years. Fig. 1(b) depicts similar yearly measurements of tree trunk
diameters, but where trees are located within plots, plots have average daily tempera-
tures, and plots are located within sites. Fig. 1(c) also consists of tree diameter mea-
surements, where trees are located along a transect (a fixed path within an area) and
within a particular type of soil, soil acidity is measured, and each transect has a partic-
ular type of treatment applied (either a high or low watering regime). These relatively
simple examples demonstrate the need for semantic descriptions to clarify similarities
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Fig. 1. Three simple observational data sets and example ER representations: (a) diameter-at-
breast-height (dbh) measurements per year for tree species; (b) dbh per year for tree species
located in plots within sites; and (c) dbh and soil pH (acidity) measurements along transects. The
attribute spp� in (b) generalizes the two attributes labeled with species names, piru and abba. Car-
dinality restrictions x:y denote the min and max participation of the entity in the corresponding
role of the relationship.

and di�erences among data sets. For example, it is not obvious from the attributes and
data values, nor the ER diagrams, whether these three data sets contain similar types of
measurements.

While the conceptual models of Fig. 1 help to describe these data sets, they also
highlight challenges in expressing observational data semantics that are crucial to the
scientific interpretation and potential usage of these data for an integrated analysis:

Implicit context. In each example data set, the same tree entity has di�erent diameter
(dbh) values. These discrepancies are explained by the context in which the diameter
measurements occur. In general, context describes the meaningful “surroundings” of an
observation, such as the other entities observed, their measured values, and their rela-
tionship to the observed entity. However, context is only implicitly modeled in Fig. 1:
it is unclear which relationships denote context (e.g., “dbh in year”, “within plot”) and
which denote measurements (e.g., “tree dbh”, “soil pH”). Similarly, context is only par-
tially specified: it is not explicitly stated that transects and soils are context for trees, or
that trees also serve as context for soils. Without an understanding of the contextual re-
lationships within a data set, it becomes diÆcult to interpret and analyze data. In Fig. 1,
e.g., it is not trivial to determine whether it is meaningful to summarize temperatures
across years (computing a yearly average), or how to compute average tree diameter by
soil type. This in turn has ramifications for data integration, which often requires the
aggregation of observations to combine data [10].

Coupled structure and semantics. Although similar, the conceptual models in each
of the examples reflect potentially important di�erences. These di�erences are primar-
ily due to variation in methodologies used to collect data, and are expressed through
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relationships, cardinality constraints, weak-entity constraints, promotion of attributes
to entities, etc. While the same general types of entities and relationships exist across
the three examples, the diÆculty of capturing the methodological constraints (such as
context) within models impairs the ability to: (1) define domain-specific concepts and
relationships (e.g., within a shared ontology) that can be used to semantically anno-
tate multiple datasets; and (2) easily compare the semantics of di�erent data sets for
discovery and integration.

Complex constraints. Similarly, constructing conceptual models of observational data
using traditional modeling languages often requires the combination of complex con-
straints in conjunction with “advanced” modeling features (e.g., n-ary relationships,
cardinality restrictions). Because of the complexity of observational data, constructing
appropriate conceptual models is often tricky, and thus a time-consuming and error-
prone task. Similarly, these approaches often require knowledge of esoteric concepts
that would not be intuitive to most scientific researchers who ultimately need to under-
stand and use the data.

The rest of this paper is organized as follows. In Section 2 we describe our proposed
framework for modeling observational data. Our approach addresses a number of the
challenges highlighted above: (1) we introduce explicit constructs for modeling obser-
vations and their context, thereby allowing domain-specific concepts and relationships
to be decoupled from the constraints imposed by data-collection methods; (2) because
of this separation of concerns, the complex constraints needed to represent observa-
tional data are reduced; and (3) the framework provides a natural approach for data
annotation and summarization. In Section 3 we describe related work, and discuss fu-
ture directions in Section 4.

2 Modeling Observational Data

The basic constructs of our modeling framework are depicted in Fig. 2. We introduce
new constructs (left) for representing measurement standards, measurements, observa-
tions, and context. These constructs are layered upon “traditional” ER constructs (right),
namely, entities, relationships, attributes (called “characteristics” in Fig. 2), and values.

Measurement standards represent the various criteria used for comparing measured
values. Examples of measurement standards include units (e.g., meter, gram, square
centimeter), nominal and ordinal codes (e.g., location or color names, gender codes),
scales (e.g., pH, Richter scale, drought severity index), and date-time standards. Values
are combined with measurement standards to form Standard Values. Although not
described here, measurement standards are often classified by a standard typology that
di�erentiates nominal, ordinal, interval, and ratio measurements [14].

Measurements consist of a characteristic (i.e., attribute) and a standard value.1 In
our framework, each value within an observational data set represents a measurement.
For example, the first value in the dbh column of Fig. 1(a) denotes a measurement
consisting of a characteristic of type ‘diameter-at-breast-height’, the unit ‘centimeter’,
and the value ‘35�8’. Values representing categorical and identifying information are

1 Measurements may also have additional information, such as precision and accuracy.
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Fig. 2. A metamodel for describing observational data

also considered measurements. For example, in Fig. 1(c), the trns column denotes mea-
surements having characteristics of type ‘name’ according to a local transect naming
scheme, and similarly, the trmt column represents measurements having characteristics
of type ‘water-level’ and a measurement standard that defines the values ‘hi’ and ‘lo’.

Observations consist of an entity (denoting the entity observed) and a set of mea-
surements. Each measurement associated with an observation applies to the observed
entity. That is, an observation asserts through a measurement that a particular value was
observed for one of the characteristics of the entity (implicitly shown by the gray ar-
rows on the right of Fig. 2). In addition, an observation can be related to zero or more
observations through context. A Context consists of a relationship and an observation,
and states that an observation was made within the scope of another observation. A
contextual relationship between observations asserts that the relationship was observed
between the corresponding entities.

As shown in Fig. 2, binary directed relationships are used within the framework for
modeling observational data. Binary, as opposed to more general n-ary relationships,
are employed for two primary reasons: (1) they allow for ontology languages based on
description logics (e.g., OWL-DL2) to be easily used within our framework to define
domain-specific vocabularies for data annotation (e.g., where entities are expressed via
OWL-DL classes, relationships through object properties, and characteristics through
datatype properties); and (2) they generally result in models that are simpler and easier
to define (although less restrictive). We also use the term ‘characteristic’ instead of ‘at-
tribute’ to distinguish the semantic property being described from the particular column
label used within a data set. In particular, the process of annotation involves associating
the attributes of a given data set with specific characteristics defined in domain-specific
vocabularies (described further below).

Fig. 3 shows three observational models for describing the data sets of Fig. 1. In-
stead of defining entity, relationship, and attribute types (as in Fig. 1), the diagrams
of Fig. 3 define the observation, measurement, and context types for the data sets.

2 �����������������������������

http://www.w3.org/TR/owl-ref/
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Fig. 3. Example observational conceptual models for the data sets of Fig. 1. Rectangles denote ob-
servations labeled with the corresponding entity, rounded boxes represent measurements labeled
with the corresponding characteristic, and ovals represent context labeled with the corresponding
relationship. To simplify the diagrams, measurement standards are not shown. Closely related
concepts of (b) and (c) are highlighted.

These types reference the appropriate entity, relationship, and characteristic types de-
fined, e.g., within one or more shared ontologies. As shown, measurements and con-
text relationships can be used to denote distinct entities (via keys, weak entities, and
identifying relationships), where the same entity may be involved in multiple
observations.

The examples of Fig. 3 demonstrate many of the advantages of our framework for
describing observational data. Because observational structures (observations, measure-
ments, context) and semantic structures (entities, relationships, characteristics) are de-
coupled, the latter can be used uniformly across observational models (e.g., dbh or the
‘within’ relationship). Similarly, creating models for observational data can be driven by
the definitions within standard ontologies, thereby simplifying the annotation process,
and lowering the potential for terminological ambiguity. As an example, characteristic
and relationship types can be defined within an external ontology to be used only with
specific types of entities, thus suggesting entity types for characteristics, and vice versa.

Another advantage is that context is explicitly represented and distinguished from
measurements. In contrast to Fig. 1, context relationships are directed, allowing one to
easily determine the context hierarchies (or “paths”) induced by observations. Similar to
summarizability in multidimensional databases [15], context hierarchies can help deter-
mine the meaningful summarizations available within a data set. Context relationships
also encourage the full disclosure of what was observed, which is critical metadata that
is often left implicit in observational data. This is demonstrated in Fig. 3(c), where an
explicit observation type is used to denote water entities used as experimental treat-
ments, in which the corresponding depth measurement denotes the height of the water
level. Similarly, in Fig. 3(b), an explicit air observation type is used to signify that air
temperature was measured (as opposed to water or body temperature, e.g.).
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Below we further describe the framework of Fig. 2. We first give a formal definition
of the modeling constructs, focusing on instance-level descriptions. We then describe
types, which are used to construct observational models (e.g., as in Fig. 3). We also
show how existing data sets can be annotated with conceptual models defined in our
framework, and finally discuss issues related to summarization.

2.1 Observation Instances

An instance of a model is constructed from the following base and derived sets. Val is
the set of measurement values (integers, doubles, strings, etc.). Std is the set of mea-
surement standards (units, scales, etc.). Ent is the set of entity objects. ObsId is the set
of observation identifiers. Rel is the set of identifiers denoting binary, directed relation-
ships between entities. And Char is the set of identifiers denoting entity characteristics
that relate specific entities to standard values. The derived structures are built from these
base sets as follows.

StdVal � Val � Std

EntRel � Ent � Rel � Ent

EntChar � Ent � Char � StdVal

Obs � ObsId � Ent � �(Meas) � �(Ctx)

Meas � Char � StdVal

Ctx � Rel � ObsId

A standard value consists of a measurement standard and a value, e.g., StdVal(5� cm)
denotes the quantity “5 centimeters” (where cm represents the unit centimeter). The
elements of Rel and Char act as “handles” to specific relationship and characteristic
occurrences such that EntRel and EntChar specify the relationships and characteristics,
respectively. If EntRel(e1� r� e2), we say e1 is r-related to e2, and that r goes from e1 to e2.
Similarly, if EntChar(e� c� v), we say that e has the standard value v for characteristic c.
Entities may have at most one value for a characteristic. Each observation has an explicit
identifier and consists of an entity, a set of measurements, and a set of contexts. For
convenience, we often write o � Obs(e� M�C) to denote an observation Obs(o� e� M�C).
A measurement consists of a characteristic and a standard value. And a context consists
of a relationship and a reference to an observation.

Example 1 (Observation instance). A portion of the instance of the observational model
of Fig. 3(a) corresponding to the first row of the data set in Fig. 1(a) is given below,
where c1 to c4 are characteristics of type ����, ��� (diameter at breast height), �		
(taxonomic name), and 
�, respectively, and r1 is a relationship of type ����.

o1 � Obs(e1� �m1���)

m1 � Meas(c1� StdVal(2007� datetime))

o2 � Obs(e2� �m2� m3� m4�� �Ctx(r1� o1)�)

m2 � Meas(c2� StdVal(35�8� cm))

m3 � Meas(c3� StdVal(Picea rubens� ITIS))

m4 � Meas(c4� StdVal(1� LocalTreeIds))
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Here, e1 and e2 denote entities of type ���	��������� and ����, respectively; ITIS
represents a taxonomic name standard3; and LocalTreeIds represents a catalog of tree
ids local to the study.

As mentioned above, observations represent assertions about entities. In particular,
measurements imply that within a given context, an entity was observed to have the
corresponding measured characteristic values. Similarly, observations inherit the asser-
tions of their contextual observations. The assertions of an observation are obtained by
“entering” the observation, given by the operation enter(o)4, for an observation o. Let

context : ObsId � �(ObsId)

be a function that takes an observation and returns its corresponding contextual obser-
vations. For an observation o � Obs(e� M�C), we define

context(o) � �o� � 	r Ctx(r� o�) 
 C��

where context� denotes the transitive closure of context. For context�(o) � O, we define
enter(o) � Em � Er � Ec such that:

Em � �EntChar(e� c� v) � Meas(c� v) 
 M�

Er � �EntRel(e� r� e�) � 	o�M�C� (Ctx(r� o�) 
 C) � (o�
� Obs(e�

� M�
�C�))�

Ec �

�

o�
�O

enter(o�)

For example, Fig. 4 shows the result of entering two di�erent observations correspond-
ing to the first two rows of data in Fig. 1(b). Entering a tree observation (i.e., for the piru
attribute; denoted by o5 in the figure) results in assertions “up” the context hierarchy
of Fig. 3(b), and includes the corresponding temporal, plot, air, and site observations.
Entering a plot observation (denoted by o3 in the figure), however, results only in cor-
responding plot, air, and site assertions.

By providing a semantics for observation context, the enter operation can also help
verify the consistency of conceptual models and their instances. In particular, for an
observation to be consistent, the result of entering the observation must be consistent.
The latter is determined by the constraints implied by the corresponding semantic con-
structs (entities, relationships, characteristics). For example, because entities have at
most one value for a characteristic of a given type (such as dbh in Fig. 3), the result of
entering an observation must also satisfy this constraint. Adding a new observation o8
to Fig. 4 with observation context o5 and o7 would violate this constraint, e.g., since
the union of enter(o5) and enter(o7) is inconsistent. Similarly, cardinality constraints
on relationships must be satisfied after entering an observation.

2.2 Observation Types and Models

As mentioned above, decoupling observational and semantic structures allows semantic
types (i.e., the entity, relationship, and characteristic types) to be defined independently

3 Integrated Taxonomic Information System, �����������������
4 The notion of entering an observation is similar in spirit to “lifting” operators in [16].

http://www.itis.gov
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Fig. 4. Example instances of the first two rows of Fig. 1(b), for the Picea rubens (piru) species
(left), and the corresponding result of entering observations o3 and o5 (right). For simplicity,
measurement standards are not shown for standard values.

of observations and measurements. Thus, the same semantic types can be used to de-
scribe multiple observational data sets. In prior work [3,10], we have used OWL-DL
for defining entity, relationship, and characteristic types. However, the framework is
not limited to a specific approach (such as OWL), and instead can support the use of a
number of di�erent conceptual modeling languages. Here we consider a simple typing
language for the purpose of defining observational models such as those of Fig. 3.

We define base types ���, ���, ������, ����, ���, ���
�, ���, ����, ���, and
��� for constructing observational models. We require subtypes �� of types �, written
�� � �, to imply subset relations. That is, �� � � i� ���� � ���, where ��� denotes the
set of instances of a type �. If �� � � we say that �� is-a �. Similarly, if x is an instance
of a type �, we write x : � such that x : � i� x � ���. Each base type denotes its
corresponding instance-level set, e.g., ����� � Val, ����� � Std, etc. With slight abuse
of notation, we define the standard-value, observation, measurement, and context base
types as follows.

��
��� � ��� � ��


 �� �  ��!
 � "�� � �(#���) � �($�%)

#��� � $��� � ��
���

$�% � ��� �  ��!


These types correspond to the instance-level sets defined above as follows.

���
���� � ����� � ���
�

� ��� � � ��!
� � �"��� � �(�#����) � �(�$�%�)

�#���� � �$���� � ���
����

�$�%� � ����� � � ��!
�
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Similar to observation instances, for convenience we write � � ���(�� ��1� ����� ��1� ����)
to denote the type ���(�� �� ��1� ����� ��1� ����). In general, a type definition
���(�� �� ���� ��� ����� ���� ��� ����) implies a type � � ��� such that:

� �  � " � �(#�  #�  � � � ) � �($�  $�  � � � )�

This definition similarly states that:

��� � � ��� � (� � � �"� � �(�#��  �#��  � � � ) � �(�$��  �$��  � � � ))�

Thus, using these definitions it is straightforward to test whether an instance x is of an
observational type �, or whether � � �� for two observational types.

Example 2 (Observation types). Let �������� 
�
�� ��� ���������
�� � ���;

��� ������ ������ � ���; ����� �		� 
�� ��� � ����; ���	���������� ���� �

���; and ���� � ���. The observation types of the conceptual model of Fig. 3(a)
can be expressed as follows.

&��������� � ��
���(!��� &������)

'���#��� � #���('���� &���������)

������������� �� �  ��(�������������� �'���#������)

���#��� � #���(���� ��
���(������ !�!�))

!
#��� � #���(!
� ��
���(!��� (�	������!
�))

&��#��� � #���(&��� ��
���(&������ $�))

���� �� �  ��(����� ����#���� !
#���� &��#����� �)���$�%�)

)���$�% � $�%()���� ������������� ��)

An observational model M � (O� K� W) consists of a set of observation types O, a
set of key constraints K � O � 	(C), and a set of weak-entity constraints W �

O � 	(C) � 	(R � O), where C and R denote the set of characteristic and relation-
ship types, respectively. For every (�� ��1� � � � � �n�) � K, we require observation type �
to have a measurement type �i with characteristic type �i, for 1 
 i 
 n. We similarly
constrain (�� ��1� � � � � �n�� �(�1� �1)� � � � � (�m� �m)�) � W, adding the additional constraint
that observation type � also consist of a context type having relationship type � j and
observation type � j for 1 
 j 
 m

Example 3 (Observational model). Assume we have the following type definitions for
the model of Fig. 3(b):

���� �� �  ��(����� ����#���� &��#����� �*���$�%� '���$�%�)

*��� �� �  ��(*���� �(����#����� �+�$�%� ���$�%�)

+� �� �  ��(+�� �+�����#������)

��� �� �  ��(���� �!
#������)

'��� �� �  ��(�������������� �'���#������)

*���$�% � $�%()���� *��� ��)

+�$�% � $�%(,���� +� ��)

���$�% � $�%()���� ��� ��)

'���$�% � $�%()���� '��� ��)�
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The model M � (O� K� W) shown in Fig. 3(b) is defined as:

O � ����� ��� *��� ��� +� ��� ��� ��� '��� ���

K � �(��� ��� �!
�)� ('��� ��� �'����)� (+� ��� �+�������

W � �(���� ��� ������ �()���� *��� ��)�)

(*��� ��� �(������ �()���� ��� ��)�)��

An instance I � Obs of a model M � (O� K� W), denoted I : M, consists of a set of
observations that are instances of types in O. If I : M, then I must satisfy the key and
weak-entity constraints of M. These constraints are the same as those of standard ER
models, but apply indirectly through observations and context. For example, if o1� o2 � I
are of type � in M such that (�� ��1� � � � � �n�) � K and both o1 and o2 have the same
characteristic instances (implying the same characteristic values, see Fig. 4) for �1 to
�n, then both instances must reference the same entity instance. Additionally, if I : M,
we require enter(o) to be consistent for each o � I.

2.3 Annotation

Given a data set D and a conceptual model M, we annotate D with M by relating
attributes of D to measurements in M. The result of this process is an annotation A �

(D� M� �) consisting of a set of mappings � � V � O � C, where V is a set of attribute
names, O is a set of observation types, and C is a set of characteristic types. If (�� �� �) �
�, we require that � be an attribute of D, � be an observation type in M, and � be a
characteristic type for some measurement type of �.

Example 4 (Annotation). The annotation A � (D� M� �) for data set D of Fig. 1(a) and
model M of Fig. 3(a) consists of the mappings:

� � �(tree� ���� ��� !
)� (spp� ���� ��� ���)�

(yr� ������������� ��� '���)� (dbh� ���� ��� &��)��

Additional rules are often needed to define �, e.g., for converting data-set values to
allowable values of a measurement standard. Thus, a set � is often accompanied by
more complex expressions. Observational models may also contain measurements not
directly linked to data-set attributes. In Fig. 1(b), e.g., we may know that all plots of
the study have a 10m2 area, which typically would not be stored in a data set since the
corresponding column would contain the same value in every row.

Annotations provide a mechanism to determine the semantics of attributes in a data
set. For instance, from an annotation we can determine for each attribute: (1) the cor-
responding measurement in the conceptual model; (2) the observation in which the
measurement was made; (3) the characteristic, measurement standard, and entity asso-
ciated with the attribute; (4) other attributes of the data set associated with the same
observation; and (5) the observations, measurements, and attributes serving as context
for the attribute. It is also possible to construct schema mappings (i.e., views [17]) from
annotations that map instances of data-set schemas to instances of observational mod-
els. Such mappings can be used to generate instances of the model, query data sets via
the model, or integrate data sets across models.
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2.4 Data Summarization

Meaningful summaries of data are often constrained by the direction of context relation-
ships. In particular, similar to “roll-up” operations in multidimensional and statistical
databases [15], summarization is often performed over contextualized observations and
measurements, where measurements of observations that are “lower” in a context hi-
erarchy are summarized by observations that are “higher” in the context hierarchy. For
instance, computing an average water-treatment depth by transect in Fig. 3(c) is not
meaningful, since each transect has exactly one depth. However, computing average
tree-trunk diameter by transect in Fig. 3(c) is a generally meaningful summarization.

The types and constraints defined within observational models can be used to enable
summarization testing [18], i.e., to automatically determine and compute meaningful
summarizations. For instance, the measurement standard (e.g., nominal, ordinal, inter-
val, ratio) determines the kinds of summaries that can be applied to an observation
[14]. Cardinality constraints on observations imposed by context relationships also can
suggest summaries. For instance, in Fig. 3(b) each plot within a site contains a single
average air temperature, which can be used to compute average air temperatures by site
(via the plots within the site). Key and weak-entity constraints also enable summariza-
tion by determining when two observations reference the same entity. For example,
averaging soil acidity by tree species in Fig. 3(c) is made possible by first averag-
ing acidity for each tree entity, and then aggregating over the set of entities of each
species.

Finally, annotations allow summarizations over data-set attributes to be analyzed and
computed according to the constraints of the corresponding observational model. For
example, given a desired summarization expressed over data-set attributes, the corre-
sponding measurement types within the model can be obtained, and then used to check
whether the summarization is meaningful, and if so, to determine how it should be
carried out (i.e., based on context relationships, key, and weak-entity constraints).

3 Related Work

A number of data models [4,5,6] and ontologies [7,8,9,10] have been proposed to
support observational data (see [3] for a general survey). Our approach di�ers by pro-
viding formal and generic constructs for describing observations, measurements, and
contexts that are compatible with well-established conceptual-modeling languages (ER,
UML, description logics) and suitable for data annotation. Our approach also supports
generic context relationships that are either missing or provided only through specific
properties in existing approaches (e.g., recording when or where a measurement was
taken). In [10], we describe an OWL ontology developed within the SEEK project5 that
includes concepts similar to those presented here. We extend these ideas in this paper
by: (1) identifying and formalizing the constructs of Fig. 2; (2) providing a general
definition and formalization of context that can reference arbitrary relationships; (3)
defining observational models that include key and weak-entity constraints; and (4)

5 Science Environment for Ecological Knowledge: ����������-��	��������	�����

http://seek.ecoinformatics.org
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describing a formal approach for annotating data sets with observational models. In
[10], we define concept hierarchies and properties for measurement standards includ-
ing units and unit conversions, which can also be used in the framework presented
here.

Approaches for representing context have been widely studied in logic [16,19] and
conceptual modeling [20,12,11]. For instance, in [11], an ER model is extended by
adding “weak attributes” to support context and data quality; in [12], ORM extensions
are proposed to support context-aware applications; and in [20] context is modeled via
sets of objects that can be related via classification, generalization, and attribution. In
contrast, our approach distinctly separates observations of entities from entities and in-
directly assigns context to entities via observations, thus providing additional flexibility
for describing observational data and associated context relationships. Similar to con-
text, a number of ER extensions have also been proposed to explicitly support temporal
aspects of data [13]. In [21,22,23], approaches for reverse-engineering databases into
ER models are proposed, where [21] defines an approach to generate ER models from
denormalized relational sources (as in Fig. 1). Many annotation approaches have been
proposed, ranging from column-level tagging [24] to query-based mappings [17]. Our
approach di�ers by employing simple annotations to observational models (as opposed
to arbitrary ontologies) from which more complex mappings can be constructed. Fi-
nally, summarization is well-established in multidimensional and statistical database
systems with techniques developed for testing summarizability [15,18], and our frame-
work can directly leverage these approaches.

4 Summary and Future Work

We have presented an approach for modeling observational data that extends ex-
isting conceptual-modeling frameworks by adding new constructs for representing
observations, measurements, measurement standards, and context. The benefits of our
approach include a formal and generic treatment of observation context, the ability
to decouple observational models from conceptual descriptions (allowing observational
data to be described via shared ontologies), an approach for simplifying data annotation
(e.g., based on key, weak-entity, and context constraints), and support for data sum-
marization. These benefits directly address challenges in interpreting and integrating
heterogeneous observational data that are critical for supporting broad-scale scientific
analyses.

We have implemented a number of prototype tools within the SEEK project based
on an earlier version of the framework presented here. These tools support semantic
annotation and discovery of observational data sets described in the EML6 metadata
language. We intend to extend these tools to support the constructs and annotation ap-
proach presented here. We are also exploring summarization capabilities and the merg-
ing of multiple data sets via observational models. Finally, we are developing a number
of domain-specific ecological ontologies to support the annotation of ecological data
within our framework.

6 �������-����	��������	������������������

http://knb.ecoinformatics.org/software/eml
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