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Abstract. Access limitations may occur when querying data sources
over the web or heterogeneous data sources presented as relational ta-
bles: this happens, for instance, in Data Exchange and Integration, Data
Warehousing, and Web Information Systems. Access limitations force
certain attributes to be selected in order to access the tables. It is
known that evaluating a conjunctive query under such access restrictions
amounts to evaluating a possibly recursive Datalog program. We address
the problem of checking containment of conjunctive queries under access
limitations, which is highly relevant in query optimization. Checking con-
tainment in such a setting would amount to checking containment of
recursive Datalog programs of a certain class, while, for general Datalog
programs, this problem is undecidable. We propose a decision procedure
for query containment based on the novel notion of crayfish-chase, show-
ing that containment can be decided in co-nexptime, which improves
upon the known bound of 2exptime. Moreover, by means of a direct
proof, our technique provides a new insight into the structure of the
problem.

1 Introduction

In Data Exchange and Integration [11,14,24], Data Warehousing, and Web In-
formation Systems, querying heterogeneous data sources, possibly on the web,
is a crucial issue. In this scenario, it is often the case that data sources impose
access limitations, i.e., they require that the query that is executed on them has
a special form. In particular, in the relational case, certain (fixed) attributes are
required to be selected, i.e., associated to a constant. This is true, for instance,
when the data source is accessible through a web form, that requires some fields
to be filled in, or in some legacy databases.

The presence of access limitations significantly complicates query processing;
in particular, as shown in [23,17,19], it requires the evaluation of a recursive
query plan, which can be suitably expressed in Datalog.
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Example 1. Consider the following relational sources: r1(Title,City ,Artist),
representing information about concerts, with song title, city of perfor-
mance, and artist name, and requiring the second attribute to be selected;
r2(Artist ,Nation,City), representing name, nationality and city of birth of
artists, and requiring the first attribute to be selected. In this case, given the
conjunctive query

q(A) ← r2(A, italian, modena)

asking for names of Italian artists born in Modena, we notice that q cannot be
immediately evaluated, since r2 requires the first attribute to be bound to a
constant (selected). However, the two attributes named City in r1 and r2 both
represent city names, and similarly the attributes named Artist represent artist
names.1 In such a case, we can use names of artists extracted from r1 to access
r2 and thus extract tuples that may contribute to the answer. More precisely, we
start from the constant ‘modena’, present in the query, and access r1; this will
return tuples with new artist names; such constants (artist names) can be used
to access r2. In turn, new tuples from r2 may provide new constants representing
city names, that can be used to access r1, and so on. Once this recursive process
has terminated, we have retrieved all obtainable tuples that contribute to the
answer.

Since accessing sources may be costly, especially on the web, an important issue is
how to optimize query evaluation. Query containment [15,6] is a well-recognized
problem in query evaluation and optimization, in particular in Data Integration
and Exchange; containment between two queries q1, q2 holds if the result of q1 is
always a subset of the result of q2, independently of the database on which the
queries are evaluated.

In this paper we address the problem of checking containment of conjunctive
queries in the presence of access limitations on the data sources. In particular:

1. We clearly state the problem in the case of access limitations, showing that it
amounts to checking containment between two recursive Datalog programs
(problem that is, in general, undecidable).

2. We introduce a novel formal tool to check containment of a conjunctive query
into another under access limitations, namely the crayfish-chase, that is a set
of databases that are representative of all databases that provide an answer
to a query. The crayfish-chase is in general an infinite set.

3. We give a direct proof of the decidability of containment in this setting,
by showing that, in order to check containment, it is sufficient to consider
databases in the crayfish-chase whose size does not exceed a certain limit.

4. We provide an upper bound to the complexity of conjunctive query contain-
ment, showing that it can be decided in co-nexptime, which improves the
known bound of 2exptime.

Finally, besides achieving a better worst-case complexity upper bound, the new
technique provides an insight into the query containment problem, that paves
1 In the following, this will be represented by the notion of abstract domain.
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the way to the investigation of the containment problem under limitations for
more expressive classes of queries, and under database dependencies.

2 Preliminaries

In this section we present the formal framework in which we address the problem
of query containment.

We consider relations as sets of facts whose arguments are values belong-
ing to given domains. Instead of using concrete domains, such as Integer or
String, we deal with abstract domains, which have an underlying concrete do-
main, but represent information at a higher level of abstraction, which, referring
to Example 1, distinguishes, e.g., strings representing artist names from strings
representing song titles. Access limitations on a relation are constraints that
impose that certain attributes must be selected (bound to a constant) for the
relation to be accessed. More formally, a schema with access limitations is a pair
〈R, Λ〉, where (i) R is a set of relational predicates, each with an associated ar-
ity; (ii) every attribute of a relational predicate r ∈ R has exactly one abstract
domain; (iii) Λ is a set of access limitations, that specifies, for every attribute
of every relational predicate, whether it is an input or an output attribute; in
order to access a relation in a query, all input attributes must be selected. For
convenience of notation, we indicate the access limitations of each relation as a
sequence, of ‘i’ and ‘o’ symbols written as a superscript in the signature of the
relation; an ‘i’ (resp., ‘o’) indicates that the corresponding argument is an input
(resp., output) argument. A signature has the form rΛr (A1, . . . , An), where r is
the relation name, n is the arity of r, Λr its access limitations, and each Ai is
an abstract domain. A relation over such a signature is a set of facts of the form
r(c1, . . . , cn) such that each ci is a value belonging to abstract domain Ai. A
(database) instance of a schema S is a union of relations, one over each signa-
ture in S, i.e., it is a set of facts. In the following, we assume two fixed domains:
a non-empty set Δ of constants and, for technical reasons, an infinite domain
ΔF of fresh constants. We call concrete those databases whose values belong to
Δ and virtual those databases whose values belong to ΔF ; we also assume that
constants in ΔF cannot appear in queries. We sometimes indicate a sequence of
terms (i.e., variables or constants) t1, . . . , tn as t, its length n as |t|, and similarly
a tuple 〈t1, . . . , tn〉 as 〈t〉, and its length n as |〈t〉|. A conjunctive query (CQ) q
of arity n over a schema S is written in the form

q(X) ← conj (X , Y )

where |X| = n, q(X) is called the head of q, conj (X , Y ) is called the body of q
and is a conjunction of atoms involving the variables in X and Y and possibly
some constants, and the predicate symbols of the atoms are in S; 〈X〉 is denoted
as head(q), the set of atoms in the body is denoted as body(q), and |q| denotes
|body(q)|. The set of constants appearing in q is denoted const(q), the set of
variables var(q). A set of atoms N is connected if the non-directed graph (N , A)
is connected, where N is the set of nodes, and A is the set containing exactly
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ρ1 : q(A) ← r̂2(A, italian, modena)
ρ2 : r̂1(T, C, A) ← r1(T, C, A), domC(C)
ρ3 : r̂2(A, N, C) ← r2(A,N, C), domA(A)
ρ4 : domT (T ) ← r̂1(T, C, A)
ρ5 : domC(C) ← r̂1(T, C, A)
ρ6 : domA(A) ← r̂1(T, C, A)
ρ7 : domA(A) ← r̂2(A,N, C)
ρ8 : domN (N) ← r̂2(A,N, C)
ρ9 : domC(C) ← r̂2(A,N, C)
ρ10 : domN (italian)
ρ11 : domC(modena)

Fig. 1. Datalog program for Example 2

all arcs between any two atoms in N that share a variable or a constant. A CQ
q is connected if body(q) is. Every maximal subset of body(q) that is connected
is called a connected part of q.

In the following we shall extensively use the notion of mapping from terms to
terms, and typically we will map variables to terms, or fresh constants in ΔF

to constants in Δ. The term resulting from the application of such a mapping
μ to a term t is written μ(t); note that μ also induces a mapping from a tu-
ple θ = 〈t1, . . . , tn〉 to another tuple indicated μ(θ) = 〈μ(t1), . . . , μ(tn)〉, from
a fact f = r(t1, . . . , tn) to another fact indicated μ(f) = r(μ(t1), . . . , μ(tn)),
and from a database D = {f1, . . . , fm} to another database indicated μ(D) =
{μ(f1), . . . , μ(fm)}. A substitution mapping (or, simply, substitution) is a map-
ping from terms to terms that sends every constant into itself2; a substitution is
grounding for a set of variables V if it sends each variable in V into a constant.

Given a database D, the answer q(D) to a CQ q on D is the set of tuples 〈c〉
of constants, with |c| = |head(q)|, such that there is a substitution that sends
body(q) to facts of D and head(q) to 〈c〉.

In the presence of access limitations on the sources, queries cannot be eval-
uated as in the traditional case, as will be shown in Example 2. Given a query
over the data sources, an algorithm exists [17] that retrieves all the obtainable
tuples in the answer to the query. Such an algorithm consists in the evaluation
of a suitable Datalog program which extracts all obtainable tuples starting from
a set of initial values, each with an associated abstract domain, as described in
Example 1. The Datalog program, whose construction is sketched in Example 2,
encodes the limitations on the sources that must be respected during evaluation
of the query. The evaluation of the Datalog program is done as follows: start-
ing from a set of initial values, that must include those appearing in the query,
we access all the relations we can, according to their access limitations. With
the new facts obtained (if any), we obtain new values with which we can re-
peat the process and access the relations again, until we have no way of making
new accesses. The program extracts all facts obtainable while respecting the ac-
cess limitations, but there may be facts in the sources that cannot be retrieved.

2 Substitutions are sometimes written in postfix notation. Here we use infix notation.
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Given a query q posed over a schema S = 〈R, Λ〉, a set of constants I ⊆ Δ,
and a database D for S, we denote the answers obtained through the recursive
evaluation described above as ans(q, S, D, I). The tuples or facts extracted from
D starting from I and respecting Λ are said to be Λ, I-obtainable. Notice that
in general ans(q, S, D, I) ⊆ q(D).

Example 2. Consider again Example 1, with roio
1 (T, C, A) and rioo

2 (A, N, C).
The Datalog program generated by the algorithm of [17] for the query
q(A) ← r2(A, italian, modena) is shown in Figure 1. The query is rewritten
over the caches (rule ρ1) defined in the cache rules ρ2 and ρ3; these also ensure
that the facts that are stored in the caches are retrieved from the sources ac-
cording to the access limitations. Rules ρ4 − ρ9 are the domain rules. Finally,
ρ10, ρ11 are facts assigning the right abstract domain to the initial constants.

We now come to the problem of containment. Since, in the presence of access
limitations, the only way of accessing the sources to answer a query is to extract
the facts recursively as described above, we will define the containment between
two CQs by considering this query answering technique. As for the set of ini-
tial constants, in principle we may have additional constants with respect to
those appearing in the two queries; therefore, as set of initial constants, we shall
consider a superset of the union of the constants appearing in the two queries.

Definition 1. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1)∪ const(q2) ⊆ I ⊆ Δ; we say that q1 is contained in q2 under
Λ with respect to I, denoted q1 ⊆Λ,I q2, if, for every database D for R, we have
ans(q1, S, D, I) ⊆ ans(q2, S, D, I).

From the previous definition, it follows that checking containment would amount
to checking containment between two recursive Datalog programs, which in gen-
eral is an undecidable problem [1]. However, in the following we will show that,
due to the special form of the programs, checking containment under access
limitations is indeed decidable.

3 Containment under Access Limitations

We start by observing that query containment under access limitations is essen-
tially different from ordinary query containment, because, although the latter
entails the former, the converse does not hold, as shown in Proposition 1.

Proposition 1. Let q1 and q2 be two CQs over a schema 〈R, Λ〉, and I a set
of constants such that I ⊇ const(q1) ∪ const(q2). If q1 ⊆ q2 then q1 ⊆Λ,I q2, but
the converse does not hold.

Proof. Assume, w.l.o.g., that q1 and q2 have no variables in common. For
each obtainable answer tuple 〈t〉 to q1, there is a corresponding instance of
body(q1) whose facts are Λ, I-obtainable, i.e., there is a grounding substitu-
tion μt for var(q1) such that the facts in μt(body(q1)) are Λ, I-obtainable and
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μt(head(q1)) = 〈t〉. Since containment is assumed, there exists a substitution λ
such that λ(body(q2)) ⊆ body(q1), and λ(head(q2)) = head(q1). But then, for
each answer tuple 〈t〉 to q1 there is also an instance of body(q2) whose facts
are Λ, I-obtainable that generates the same answer tuple 〈t〉. To see this, it suf-
fices to note that the facts in μt(λ(body(q2))) are Λ, I-obtainable since those in
μt(body(q1)) are, and that 〈t〉 = μt(λ(head(q2))).

To see that the converse does not hold, consider a schema with two rela-
tions rii

1 (A, B) and roi
2 (B, C) and the queries q1(B) ← r1(a, B) and q2(B) ←

r1(a, B), r2(B, C) . For every I ⊇ {a} that does not contain any constant of ab-
stract domain B, we have that q1 ⊆Λ,I q2. Indeed, when evaluating q1, the only
Λ, I-obtainable facts for r1 are those whose second argument is some constant
b that occurs as first argument in a fact for r2, i.e., b is also an answer to q2.
However q1 	⊆ q2, since there is at least one database D such that q1(D) 	⊆ q2(D)
(take, e.g., D = {r1(a, b)}).

We now present the foundations of our novel technique to check containment
of CQs under access limitations. Similarly to what is done for containment of
CQs under inclusion and functional dependencies [15], in order to check the
containment of a query q1 into another query q2, we characterize the set of all
databases that provide an answer tuple for q1 by constructing, starting from q1,
a set of databases called chase. In our case, the chase is constructed according to
the access limitations. With the chase at hand, we can evaluate q2 over a finite set
of databases in the chase of q1 in order to check the existence of a counterexample
to containment, i.e., a database D that provides an answer tuple to q1 that is
not in the answer to q2 in D.

The chase of a CQ under access limitations is defined as follows. Each database
of the chase starts from the frozen body of the query, i.e., the image of the body
of the query according to some grounding substitution that sends variables to
fresh constants. Then, according to the access limitations, we go back in the
extraction process, adding facts that may lead to the extraction of the previous
ones, and we continue to do that until all the facts we choose to add come from
relations whose input arguments are filled in by initial values. Since we proceed
somehow backwards, we call our chase crayfish-chase.

For convenience, we first need a preprocessing step (constElim) to eliminate
constants in the query, as illustrated in Figure 2. The intuition is that a con-
stant acts as a relation, called artificial relation, whose content is accessible and
amounts only to the constant itself. Under this assumption, the constant-free
query and the original one are equivalent, as specified in Proposition 2.

Proposition 2. Let q be a CQ over a schema S, I a set such that const(q) ⊆
I ⊆ Δ, and (S′, q′) = constElim(S, q, I). Let D be a database for S and let D′

be as D plus one fact �c(c) for each artificial relation �c in S′ with associated
constant c. Then q(D) = q′(D′).

Definition 2 (crayfish-chase). Consider a CQ q over a schema S = 〈R, Λ〉
and a set I such that const(q) ⊆ I ⊆ Δ. The crayfish-chase of q, denoted
cchase(q, S, I), is the set of all finite databases that can be constructed as follows.
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INPUT: a schema S , a CQ q over S , and a set I such that const(q) ⊆ I ⊆ Δ
OUTPUT: a schema S ′, a CQ q′ over S ′

– Let S ′ := S , q′ := q
– For each constant a ∈ I with abstract domain A

• Add signature �o
a(A) for the new artificial relation �a to S ′

• Replace all occurrences of a in q′, if any, with a fresh new variable Xa

• If a occurs in q, add the conjunct �a(Xa) to the body of q′

– Return (S ′,q′)

Fig. 2. Algorithm constElim for elimination of constants

Each database D ∈ cchase(q, S, I) is represented as a forest, the nodes of which
are facts of D; each node n has a level, denoted level(n), that is a non-negative
integer. The set of nodes at level h in a database D will be called level h of D.
The depth of D, denoted depth(D), is the maximum level of nodes in D.

1. Let (S′, q′) = constElim(S, q, I).
2. We fix a single injective substitution mapping μ for all databases of

cchase(q, S, I) that sends each variable in var(q′) into a fresh new constant
in ΔF , and thus body(q′) into a set of facts; such facts will be level 0 of D.
Each tree of the forest will be rooted at a node of level 0.

3. We call μ(head(q)) the head of the crayfish-chase, denoted
head(cchase(q, S, I)).

4. For each fact f = r(c1, . . . , cn) at level k, and for each input attribute of r,
say the i-th, there is exactly one fact f ′ = r′(c′1, . . . , c′m) such that ci = c′j, for
some position j corresponding to an output attribute of r′ having the same
abstract domain as ci’s. If f is at level k, then f ′ must be at level k +1, and
an arc (f, f ′) is in D. All other constants in f ′ must be fresh new constants
in ΔF , not appearing elsewhere in any of the levels less than or equal to
k + 1.

5. Each leaf of D is a fact of a (possibly artificial) relation without input argu-
ments.

The databases in the crayfish-chase of a query q, as stated in Lemma 1, are rep-
resentative of all concrete databases that return an answer to q while respecting
the access limitations, i.e., they are sufficient to retrieve all obtainable answers
to q and yet do not add any other answer.

Definition 3. A mapping λ from ΔF to Δ is said to be compatible with a virtual
database D (in short, D-compatible), if λ sends each constant ζ occurring in D
in a fact �c(ζ) of an artificial relation �c into the corresponding constant c.

Lemma 1. Let S be a schema, q a query over S, and I a set of constants
such that const(q) ⊆ I ⊆ Δ. (a) For every concrete database D such that there
exists a tuple t ∈ ans(q, S, D, I), there exists a database D′ ∈ cchase(q, S, I)
and a D′-compatible mapping λ from ΔF to Δ such that λ(D′) ⊆ D and
t ∈ ans(q, S, λ(D′), I).
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r1(ζ0, ζ1, ζ2)

�a(ζ0) r2(ζ3, ζ1)

r1(ζ4, ζ5, ζ3)

�a(ζ4)
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r2(ζ3, ζ1)

�a(ζ0)

r3(ζ6)

r2(ζ6, ζ5)

r3(ζ0)

�a(ζ3)

Fig. 3. Database forests in the crayfish-chase cchase(q, S , I) of Example 3

(b) Conversely, for every database D′ ∈ cchase(q, S, I) and for every D′-
compatible mapping λ from ΔF to Δ such that λ(D′) is concrete, if there
exists a tuple t′ ∈ ans(q, S, λ(D′), I), then there is a database D such that
t′ ∈ ans(q, S, D, I).

Proof (sketch). (a) If t can be obtained in D, this means that there is a grounding
substitution μ for var(q) such that μ(head(q)) = t and all the facts in μ(body(q))
are obtainable and in D. Therefore, each fact in μ(body(q)) either has constants
from I in all its input positions, or, inductively, for each constant c not from
I in an input position there is some obtainable fact in D with c in an output
position. But this models exactly a tree of a database of cchase(q, S, I), with the
only difference that here there may be more than one constant not from I in
common in two facts, which can be captured by a mapping λ.
(b) This holds by construction: by applying λ to D′ one obtains a database D
with t′ in the answer to q.

Example 3. Assume we have a schema S with the following relations:
riio
1 (A, B, A), rio

2 (A, B), ro
3(A). Consider the query q(X2) ← r1(a, X1, X2) and

the set I = {a}. First of all, we transform the query by eliminating the constants:
we get q′(X2) ← r1(X0, X1, X2), �a(X0), where �a is an auxiliary predicate with
signature �o

a(A); no other auxiliary predicates are introduced. After freezing the
query, we obtain two facts in the frozen body: r1(ζ0, ζ1, ζ2) and �a(ζ0); the head
of cchase(q, S, I) is 〈ζ2〉. Every database in cchase(q, S, I) is a forest of exactly
two trees rooted at r1(ζ0, ζ1, ζ2) and �a(ζ0) respectively, since these two facts
constitute the level 0 of every database in the chase; every tree rooted in �a(ζ0)
will consist of only one node; two possible databases (forests) are depicted in
Figure 3, separated by a dashed vertical line on which we have indicated the
depth of the different levels.

We now show that, when considering q1 ⊆Λ,I q2, once we have the crayfish-chase
of q1, the evaluation of q2 over a database in the above chase can ignore the
access limitations, as long as the same set of initial constants is used.
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Lemma 2. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, a set I ⊆ Δ,
and a database D ∈ cchase(q1, S, I); then ans(q2, S, D, I) = q2(D).

Proof. Straightforward, since all facts in D are, by construction, Λ, I-obtainable.

Lemma 3. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ. Then q1 ⊆Λ,I q2 if and only if, for
every database D ∈ cchase(q1, S, I), head(cchase(q1, S, I)) ∈ ans(q2, D, S, I).

Proof (sketch). “⇐” Consider a generic concrete database B such that there
exists a tuple t in ans(q1, S, B, I); by Lemma 1, there exist a database D ∈
cchase(q1, S, I) and a mapping λ from ΔF to Δ compatible with D such that
λ(D) ⊆ B and t ∈ ans(q1, S, λ(D), I). Now, by hypothesis, there exists a map-
ping μ that sends body(q2) to facts of D, and head(q2) to head(cchase(q1, S, I));
we have that λ(μ(body(q2))) ⊆ B and λ(μ(head(q2))) = t. This proves that
t ∈ ans(q2, S, B, I) and thus that q1 ⊆Λ,I q2, since B was generic.

“⇒” Trivial, from the definition of containment under access limitations.

Now we come to the main result in this section, that follows trivially as a corollary
of Lemma 2 and Lemma 3, stating that examining the databases of a crayfish-
chase provides us with a necessary and sufficient condition to test containment
of CQs under access limitations.

Theorem 1. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ. Then, q1 ⊆Λ,I q2 if and only if, for
every database D ∈ cchase(q1, S, I), head(cchase(q1, S, I)) ∈ q2(D).

Notice that the previous theorem does not provide any direct strategy for check-
ing containment; indeed, given a CQ over a schema S, and a set I of initial
constants, the number of databases in cchase(q1, S, I) may be infinite. Also, no-
tice that, although all databases in cchase(q1, S, I) are of finite size, there is in
general no fixed bound on such size.

4 Decidability and Complexity

In this section we give a direct proof of decidability of checking containment
between CQs under access limitations that exploits the notion of crayfish-chase.
This will be done by showing that, while checking q1 ⊆Λ,I q2, when we look for a
substitution that sends body(q2) to facts in some database D ∈ cchase(q1, S, I)
(and head(q2) to head(cchase(q1, S, I))), it is sufficient to consider databases in
cchase(q1, S, I) whose depth does not exceed a certain limit, depending on the
schema and the queries. In particular, Lemma 5 states that in order to find a
counterexample showing that q1 	⊆Λ,I q2, we need to consider only databases of
the crayfish-chase of q1 of limited depth. This allows us to provide an improved
upper bound for the complexity of this problem, as shown in Theorem 2. This
requires some preparatory lemmas and definitions.

We first show that two facts sharing a constant in a database of a crayfish-
chase cannot be more than one level apart.
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Lemma 4. Consider a database D in a crayfish-chase. If two nodes n1 and n2
in D have a constant in common, then |level(n1) − level(n2)| ≤ 1.

Proof. If n1 = n2 the claim trivially holds. By construction of the crayfish-chase,
the constants that appear at some level k of D cannot appear in any level greater
than k + 1. In particular, all constants in output arguments are not propagated
to the next level, while those in input arguments occur only in output fields in
the next level, and therefore disappear after two levels. Therefore, either n1 and
n2 are connected by an arc (and thus their levels are at a distance of 1), or each
of them lies on a level less than 2 (not necessarily connected by an arc, since
different nodes of level 0 may share constants).

As a consequence of Lemma 4, a connected part of n atoms of a query cannot
be mapped on more than n contiguous levels.

Corollary 1. Consider a CQ q over a schema S = 〈R, Λ〉, a set I such that
const(q) ⊆ I ⊆ Δ, and a database D ∈ cchase(q, Λ, I). Let P be any connected
part of q′, where (S′, q′) = constElim(S, q, I); if there exists a substitution μ
sending variables to constants in ΔF that sends the atoms in P into facts of
D, then max{pi,pj}⊆P(|level(μ(pi)) − level(μ(pj))|) ≤ |P|, i.e., μ(P) lies onto at
most |P| contiguous levels on D.

Henceforth, we shall denote with subtree(c) the subtree (of a given tree) having
node c as root, and containing all descendants of c; with k-subtree(c), k a positive
integer, we denote the subtree rooted in c, and containing all descendants of c
up to level level(c)+ k − 1. Lemma 5, below, shows that if a query does not map
onto a database of a crayfish-chase, then there is a (possibly different) database
of the chase which has limited depth and onto which the query still cannot
be mapped. To construct this database, we trim redundant parts by using the
notion of subtree replacement.

Definition 4 (Subtree replacement). Let D be a virtual database of a
crayfish-chase, and consider two nodes n1 = r(c1, . . . , ck) and n2 = r(d1, . . . , dk)
in D, such that n2 is a descendant of n1. Let μ be a mapping from ΔF to ΔF

that sends di into ci for 1 ≤ i ≤ k and every other constant into itself. Then,
a replacement of subtree(n1) with subtree(n2) in D is the result of replacing
subtree(n1) with μ(subtree(n2)).

Lemma 5. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set
I such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ; if there exists a database D ∈
cchase(q1, S, I) such that head(cchase(q1, S, I)) 	∈ q2(D), then there exists a
database D′ ∈ cchase(q, S, I) such that head(cchase(q1, S, I)) 	∈ q2(D′), and such
that depth(D′) ≤ 2 · |R| + |q2| − 3.

Proof.
Case (1): q2 is connected.

Subcase (1a). There is only one relation r among those in q2 such that, for
every database B ∈ cchase(q1, S, I), if q2 can be mapped onto facts of B, the
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π1

c

b b

π1

Fig. 4. Subtree replacement of subtree(b) with subtree(c) (Lemma 5)

d

e

σde

|q2|

Fig. 5. Second phase of iterative subtree replacement (Lemma 5)

mapped fact f with smallest level has relation r and no mapped fact with a
different relation has level equal to level(f).

Since q2 is connected, if it is mapped onto a database, by Corollary 1,
it will be mapped onto facts whose level is between level(f) and level(f) +
|q2| − 1.

Take now any path π1 from a node at level 0 to a leaf of D. For simplicity,
we say that a relation r occurs in a path π (and that π contains r), if a
fact of the form r(ζ) occurs in it π. Since q2 cannot be mapped onto D
by hypothesis, a fortiori q2 cannot be mapped onto any of the |q2|-subtrees
rooted in any of the occurrences of r in π1. Let b be the node of π1 with the
occurrence (if any) of r with the smallest level (call a its parent if b is not at
level 0) and let c be the one with the greatest level. We apply the replacement
of subtree(b) with subtree(c), as shown in Figure 4. In the obtained database,
q2 continues to be not mappable, since (i) facts have been removed from D,
and (ii) only one potential ”join” has been added (that between c and a in
D), which is irrelevant to q2, since a’s relation is certainly different from r,
and r was assumed to be the only possible predicate at the smallest level
of facts of the image of q2 (and r does not occur above b in π1). This step
is repeated for every path in which r occurs. After this, in all paths from a
node at level 0 to a leaf of the obtained database, r occurs at most once and
q2 is still not mappable.
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To complete the transformation, we apply the following steps as long as
possible to every path π2 from a node at level 0 and a leaf.
– If π2 does not contain r, we a apply subtree replacement, in the same

way as was done for r above, for any relation occurring more than once
in π2; again, non-mappability of q2 onto the database is preserved. At
the end of the process, each such path will have at most length |R| − 1.

– If π2 contains r, let d be the node at level 0, and e the node with r; the
segment σde of π2 from d to e contains r only in e. If there is another
relation s occurring more than once in σde, we apply the replacement of
the subtree rooted at the occurrence of s in σde closest to d with the one
with the occurrence in σde closest to e, as shown in Figure 5; again, non-
mappability is preserved; besides, after all such replacements, σde has
length at most |R|. We apply in the same way all possible replacements
to remove multiple occurrences of a relation in all subtrees rooted in
a node of subtree(e) lying at level level(e) + |q2| − 1. Thus, the |q2|-
subtree(e) (shaded in Figure 5) on which q2 cannot be mapped is kept
and the distance between e and the leaves will eventually be at most
(|q2| − 1) + (|R| − 1) = |q2| + |R| − 2.

In total, the obtained database D′ has depth at most |R|+(|q2|+|R|−2)−1 =
2 · |R| + |q2| − 3 and q2 cannot be mapped onto D′.

Subcase (1b): There is more than one relation that can be on the smallest level
of the mapped facts of q2 in a crayfish-chase database; let call F the set of
such relations. For each path in D from a node of level 0 to a leaf, consider the
occurrence with smallest level among the relations in F . For that relation,
we apply the replacement of the first occurrence with the last occurrence on
the path. Since it was the first occurrence of a relation in F , the join added
with the replacement will not introduce mappability of q2. After all such
replacements are applied, in each path from level 0 to a leaf, the relation, say
r, of the occurrence, say a, with smallest level among the relations in F will
occur only once. With this in mind, we proceed as in subcase 1a to eliminate
all multiple occurrences of relations above a in the path, still preserving
non-mappability, so that eventually level(a) will be at most |R| − 1. Also,
we safely apply all possible replacements to remove multiple occurrences
of a relation in all subtrees rooted in a node of subtree(a) lying at level
level(a) + |q2| − 1, since in any such subtree r does not occur, and thus q2
cannot be mapped onto (and we know that q2 cannot be mapped onto the
|q2|-subtree(a), which is kept). In the end we still obtain a database D′ with
depth at most 2 · |R| + |q2| − 3 such that q2 cannot be mapped onto D′.

Case (2): q2 is not connected. We proceed as in the case of a connected query,
and apply the same argument on one of the connected parts of q2. Clearly, if a
connected part of q2 cannot be mapped, q2 cannot be mapped either.

Finally, we characterize the computational complexity of our query containment
problem, by providing an upper bound for it.

Theorem 2. Containment of conjunctive queries under access limitations is
decidable in co-nexptime.
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Proof (sketch). By virtue of Theorem 1 and Lemma 5, in order to check con-
tainment, only databases of a limited depth need to be checked. There are only
finitely many such databases that are different modulo isomorphism.

Let q1 ⊆Λ,I q2 be the containment to be decided for a schema S = 〈R, Λ〉. We
use a nondeterministic algorithm that guesses a database D ∈ cchase(q1, S, I)
with maximum number of levels δ = 2 · |R| + |q2| − 3 that is a witness of non-
containment; by Lemma 5, we know that we do not need to consider databases of
bigger depth for this purpose. The guessed database has at most O(W δ) nodes,
where W is the maximum arity of the relations in R; notice that each node has at
most W children, each of which can be chosen in at most |R| ·W different ways.
The database D can therefore be guessed in exponential time (w.r.t. δ) by a
nondeterministic algorithm. After that, checking, on the same nondeterministic
branch, whether q2(D) yields head(cchase(q, S, I)) can be done in polynomial
time in the size of D, i.e., in exponential time w.r.t. δ. Therefore a witness for
non-containment can be guessed in nexptime, from which the thesis follows.

5 Related Work

The issue of processing queries under access limitations has been widely in-
vestigated in the literature [23,17,19,18,12,10]; in particular, [12] considers the
optimization of non-recursive plans, [10] addresses the problem in the case of
query answering using views, and [23] presents a polynomial-time algorithm to
decide whether a CQ can be answered in the presence of access limitations. Re-
cursive query plans were introduced in [22,17]; in particular, [22] addresses the
problem of query containment under access limitations.

The problem of checking containment of two CQs under access limitations
was shown to be decidable in [22] in the setting of data integration systems
using the local-as-view approach by reducing this problem to containment of a
recursive Datalog program in a non-recursive one; the optimal complexity for
this problem is 3exptime [7]. In [18], the authors propose an encoding of CQs
with access limitations into monadic Datalog programs; containment between
monadic Datalog programs was shown to be decidable in 2exptime in [8], which
immediately provides a 2exptime upper bound for containment of CQs under
access limitations. The same upper bound is easily obtained by combining the
results from Section 3 with the complexity of checking containment of a Datalog
program in a CQ; such problem was shown to be decidable in 2exptime (tight
bound) in [7]. In this paper, we improve upon this upper bound by providing an
algorithm that checks containment in co-nexptime, as mentioned in the position
paper [4] and informally presented in [3].

In [16], the author addresses the issue of stability, i.e., determining whether
the complete answer to a query (the one that would be obtained with no ac-
cess limitations) can always be computed despite the access limitations. [25]
addresses the problem of ordering subgoals for non-recursive Datalog queries in
oder to make the query executable from left to right complying with the access
limitations. In [2], a run-time optimization technique, that exploits the infor-
mation about database dependencies that hold on the sources, is presented; [5]
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uses the structure of the query to minimize the accesses needed to retrieve all
obtainable answers to a query. [9] solves the (quite general) problem of query an-
swering using views [13] under integrity constraints and under access limitations
by reducing it to the same problem under integrity constraints only; various ex-
tensions to the query languages are provided. In [20], the authors analyze the
complexity of determining the feasibility of a query, i.e., determining whether
there exists an equivalent query that is executable as is, while respecting the
access limitations. [21] studies the complexity of the feasibility problem for CQs,
UCQs, CQ¬s and UCQ¬s.

6 Conclusions

We have addressed the problem of containment of CQs in the case where ac-
cess limitations are present on the relational schema. This problem is highly
relevant in query optimization. In the presence of access limitations, the eval-
uation of a query is in general inherently recursive and can be encoded in a
Datalog program. The problem of containment would then amount to checking
containment between two Datalog programs, which is undecidable. However, in
this particular case, containment checking is indeed decidable, and we have pro-
vided an improved upper bound to the complexity of the problem by exhibiting
a nondeterministic algorithm that solves it.

With our crayfish-chase technique we have provided a direct proof of decid-
ability that we plan to use for further investigations. In particular, we intend to
extend our results to more general classes of queries, and to extend the prob-
lem by introducing integrity constraints on the schema. The combination of
our crayfish-chase with the well-known chase based on inclusion and functional
dependencies seems a promising direction of research. We also plan to extend
the results presented in this paper by finding a lower complexity bound for the
problem of query containment.
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