
Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies

Valentina Presutti and Aldo Gangemi

ISTC-CNR, Semantic Technology Lab, Italy
{valentina.presutti,aldo.gangemi}@istc.cnr.it

Abstract. In this paper we present how to extract and describe emerging content
ontology design patterns, and how to compose, specialize and expand them for
ontology design, with particular focus on Semantic Web technologies. We exem-
plify the described techniques with respect to the extraction of two content ontol-
ogy design patterns from the DOLCE+DnS Ultra Lite ontology, and by showing
the design of a simplified ontology for the music industry domain.

1 Introduction

Computational ontologies in the context of information systems are artifacts that
encode a description of some world (actual, possible, counterfactual, impossible, de-
sired, etc.), for some purpose. They have a (primarily logical) structure, and must match
both domain and task: they allow the description of entities whose attributes and rela-
tions are of concern because of their relevance in a domain for some purpose, e.g. query,
search, integration, matching, explanation, etc.

Like any artifact, ontologies have a lifecycle: they are designed, implemented, eval-
uated, fixed, exploited, reused, etc. In this paper, we focus on patterns for ontology
design [9,11].

Today, one of the most challenging and neglected areas of ontology design is
reusability. The possible reasons include at least: size and complexity of the major
reusable ontologies, opacity of design rationales in most ontologies, lack of criteria
in the way existing knowledge resources (e.g. thesauri, database schemata, lexica) can
be reengineered, and brittleness of tools that should assist ontology designers.
On this situation, an average user that is trying to build or reuse an ontology, or an ex-
isting knowledge resource, is typically left with limited assistance in using unfriendly
logical structures, some large, hardly comprehensible ontologies, and a bunch of good
practices that must be discovered from the literature. On the other hand, the success
of very simple and small ontologies like FOAF [5] and SKOS [18] shows the poten-
tial of really portable, or “sustainable” ontologies. The lesson learnt supports the new
approach to ontology design, which is sketched here.

Under the assumption that there exist classes of problems that can be solved by
applying common solutions (as it has been experienced in software engineering), we
propose to support reusability on the design side specifically. We envision small ontolo-
gies with explicit documentation of design rationales, and best reengineering practices.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 128–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 129

These components need specific functionalities in order to be implemented in reposi-
tories, registries, catalogues, open discussion and evaluation forums, and ultimately in
new-generation ontology design tools. In this paper, which is a result of the evolution
of work described in [9], we describe small, motivated ontologies that can be used as
practical building blocks in ontology design. A formal framework for (collaborative)
ontology design that justifies the use of building blocks with explicit rationales is pre-
sented in [11].

We call the practical building blocks to be used in ontology design Content Ontology
Design Patterns (CP, [9]). CPs encode conceptual, rather than logical design patterns. In
other words, while Logical OPs [23] (like those investigated by [22]) solve design prob-
lems independently of a particular conceptualization, CPs propose patterns for solving
design problems for the domain classes and properties that populate an ontology, there-
fore addressing content problems [9]. CPs exemplify Logical OPs (or compositions of
Logical OPs), featuring a non-empty signature. Hence, they have an explicit non-logical
vocabulary for a specific domain of interest (i.e. they are content-dependent). For ex-
ample, a simple participation pattern (including objects taking part in events) emerges
in domain ontologies as different as enterprise models [13], sofware management [20],
and biochemical pathways [10]. Other, more complex patterns have also emerged in the
same disparate domains.

CPs are strictly related to small use cases i.e., each of them is built out of a domain
task that can be captured by means of competency questions [13]. A competency ques-
tion is a typical query that an expert might want to submit to a knowledge base of its
target domain, for a certain task. Moreover, CPs are transparent with respect to the ra-
tionales applied to the design of a certain ontology. They are therefore an additional
tool to achieve tasks such as ontology evaluation, matching, modularization, etc.

For example, an ontology can be evaluated against the presence of certain patterns
(which act as unit tests for ontologies, cf. [28]) that are typical of the tasks addressed by
a designer. Furthermore, mapping and composition of patterns can facilitate ontology
mapping: two ontologies drafted according to CPs can be mapped in an easier way: CP
hierarchies will be more stable and well-maintained than local, partial, scattered on-
tologies. Finally, CPs can be also used in training and educational contexts for ontology
engineers.

The paper is organized as follows: section 1.1 gives some background notions; sec-
tion 2 defines the notion of CP, and briefly describes the online repository and Web por-
tal; section 3 provides methodological guidelines for creating and reusing CPs, presents
two of them, and an example of reuse. Finally, section 4 provides some conclusions and
remarks.

1.1 Background

Ontology engineering literature has tackled the notion of design pattern at least since
[6], while in the context of Semantic Web research and application, where ontology de-
sign patterns (OPs) are now a hot topic, the notion has been introduced by [10,24,26].
In particular, [10,26] take a foundational approach that anticipates that presented in [9].
Some work [4] has also attempted a learning approach (by using case-based reasoning)
to derive and rank patterns with respect to user requirements. The research has also

130 V. Presutti and A. Gangemi

addressed domain-oriented patterns, e.g. for content objects and multimedia [2], soft-
ware components [20], business modelling and interaction [12,15], relevance [17] etc.

Throughout experiences in ontology engineering projects1 in our Laboratory, as well
as in other ongoing international projects that have experimented with these ideas, typ-
ical conceptual patterns have emerged out of different domains, for different tasks, and
while working with experts having heterogeneous backgrounds. For an historical per-
spective and a more detailed survey, the reader can refer to [1,9,12,14,16]

2 Content Ontology Design Patterns (CPs)

Content ontology design patterns (CPs) are reusable solutions to recurrent content mod-
elling problems. In analogy to conceptual modeling (cf. the difference between class
and use case diagrams in the Unified Modeling Language (UML) [21]) and knowl-
edge engineering (cf. the distinction between domain and task ontologies in the Unified
Problem-solving Method Development Language (UPML) [19]), these problems have
two components: a domain and a use case (or task). A same domain can have many use
cases (e.g. different scenarios in a clinical information context), and a same use case can
be found in different domains (e.g. different domains with a same “competence finding”
scenario). A typical way of capturing use cases is by means of competency questions
[13]. A competency question is a typical query that an expert might want to submit to a
knowledge base of its target domain, for a certain task. In principle, an accurate domain
ontology should specify all and only the conceptualizations required in order to answer
the competency questions formulated by, or acquired from, experts.

Based on the above assumptions, we define what a Content Ontology Design Pattern
(CP) is:

CPs are distinguished ontologies. They address a specific set of competency
questions, which represent the problem they provide a solution for. Further-
more, CPs show certain characteristics i.e., they are: computational, small and
autonomous, hierarchical, cognitively relevant, linguistically relevant, and best
practices.

According to [9], such characteristics can be described as follows:

– Computational components. CPs are language-independent, and should be encoded
in a higher-order representation language.2 Nevertheless, their (sample) representa-
tion in OWL is needed in order to (re)use them as building blocks over the Semantic
Web.

– Small, autonomous components. Regardless of the particular way a CP has been cre-
ated (section 3.1 describes how to create a CP), it is a small, autonomous ontology.

1 For example, in the projects FOS: http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org, Metokis: http://metokis.salzburgresearch.at, and NeOn:
http://www.neon-project.org

2 Common Logic (see http://cl.tamu.edu/) is a good candidate because of its expressivity and
computationally-sound syntax.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 131

Smallness (typically two to ten classes with relations defined between them) and au-
tonomy of CPs facilitate ontology designers. Smallness also allows diagrammatical
visualizations that are aesthetically acceptable and easily memorizable.

– Hierarchical components. A CP can be an element in a partial order, where the
ordering relation requires that at least one of the classes or properties in the pattern
is specialized.

– Inference-enabling components. A CP allows some form of inference e.g. a taxon-
omy with two sibling disjoint classes, a property with explicit domain and range
set, a property and a class with a universal restriction on that property, etc.

– Cognitively relevant components. CP visualization must be intuitive and compact,
and should catch relevant, “core” notions of a domain. [9]

– Linguistically relevant components. Many CPs nicely match linguistic patterns
called frames. A frame can be described as a lexically founded ontology design
pattern; The richest repository of frames is FrameNet [3].

– Best practice components A CP should be used to describe a “best practice” of
modelling. Best practices are intended here as local, thus derived from experts,
emerging from real applications.

A Catalogue and Repository of CPs. The above definition provides ontology designers
with the necessary means to identify CPs within existing ontologies. However, we be-
lieve it is important for reuse purpose, to have a repository of CPs and related services,
where CPs can be added and retrieved, and to guarantee that published CPs have a high
level of quality.

With the above principles in mind, we have set up the Ontology Design Patterns Web
portal3 (ODPWeb),whereCPsarecollected, classified,described with aspecific template,
and available for download. They respond to a common specification (which extends the
above CP definition), and are described in terms of a template, which is inspired by the
well known one used for Software Engineering design patterns [7]. The Web portal is open
to contribution from any user, who is only required to register in order to have authoring
rights. ODPWeb is intended as a space where ontology designers, practitioners, and Se-
mantic Web users can discuss about web ontology design issues, find information about
good practices, and download reusable components for building web ontologies. More-
over, the ODPWeb is associated with a lightweight (peer reviewing) workflow, which
guarantees both quality of the published CPs and openness of the community.

3 CP Creation and Usage

Content Ontology Design Pattern (CP) creation and usage rely on a common set of
operations.

– import: as with any ontology, it consists of including a CP in the ontology under
development. This is the basic mechanism for CP reuse. Elements of a CP cannot
be modified.

3 http://www.ontologydesignpatterns.org.

132 V. Presutti and A. Gangemi

– clone: consists of duplicating an ontology element i.e., a class and a property, which
is used as a prototype4. We can distinguish among three kinds of clones:

• shallow clone: consists of creating a new ontology element O’ by duplicating
an existing ontology element O. Axioms of O and O’ will refer to the same
ontology elements.

• deep clone: consists of creating a new ontology element O’ by duplicating an
existing ontology element O, and by creating a new ontology element for each
one that is referred in O’s axiomatization, recursively.

• partial clone: consists of deep cloning an ontology element, by keeping only a
subset of its axioms.

– specialization: can be referred to ontology elements or to CPs. Specialization be-
tween ontology elements of a CP consists of creating sub-classes of some CP’s
class and/or sub-properties of some CP’s properties. A CP c’ is a specialization of
a CP c, if at least one ontology element of c’ specializes an ontology elements of c,
and all ontology elements of c’ are either a specialization of ontology elements of
c, or clones of them.

– generalization: is the reverse of the specialization operation.
– composition: consists of associating classes (properties) of one CP with classes

(properties) of other CPs by subsumption, by creating new owl restrictions, or by
creating new properties.

– expansion: consists of enriching an ontology with ontology elements and axioms,
which do not identify any CP or composition of them.

3.1 CP Creation

CPs mainly emerge either from ontologies (i.e., foundational, core, and domain ontolo-
gies)5 or by reengineering other types of conceptual models (e.g. E-R models, UML mod-
els, linguistic frames, thesauri, etc.) to ontologies. CPs can be defined in four main ways:

– Reengineering from other data models A CP can be the result of a reengineering
process applied to different conceptual modeling languages, primitives, and styles.
[12] describes a reengineering approach for creating CPs starting from UML dia-
grams [21], workflow patterns [27], and data model patterns [16].
Other knowledge resources that can be reengineered to produce candidate CPs are
database schemas, knowledge organization systems (e.g. thesauri), and lexica for
reengineering techniques on these resources). The reader can refer to [12] for more
references.

– Specialization/Composition of other CPs A CP can be created either by composi-
tion of other CPs or by specialization of another CP, (both composition and spe-
cialization can be combined with expansion).

– Extraction from reference ontologies A CP can be extracted from an existing ontol-
ogy, which acts as the “source” ontology. Extraction of a CP is a process consisting
of (partial) cloning the ontology elements of interest from the source ontology.

– Creation by combining the above techniques.

4 There is a strong analogy between the clone operation in OO software programming and the
ontology element clone operation.

5 see [9] for references.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 133

Figure 1 shows the typical process that is performed by an ontology engineer for
creating a CP by extraction from a reference ontology, possibly including specialization
and expansion. The creation of a CP starts with the creation of a new ontology to which
a suitable namespace is assigned. Each pattern has its own namespace that does not
depend on that of the source ontology. The source ontology(ies) is(are) then imported.
Elements of the source ontology must not be modified. Some tools allow designers to
modify imported ontologies, when they are locally stored and writable. In such a case,
it is a good practice to lock the imported ontologies in order to set access permissions
to read-only.

The creation proceeds with the partial cloning of the ontology elements i.e., classes
and properties, of interest. Some ontology design tools support the shallow clone oper-
ation 6, while deep clone and partial clone are not yet supported by any existing tool.
Currently, in order to obtain a partial or deep clone of an ontology element we can either
start from a shallow clone (when supported), or we can write a SPARQL CONSTRUCT
query, and then manually update the results. For example, the SPARQL expression (1)
allows us to extract the class DUL:Agent and its associated axioms from the source
ontology, and to create the class Agent as a shallow clone of it. Within the results pro-
vided by the SPARQL engine, we can choose which axioms we want to keep. With this
procedure, the selected axioms will still contain ontology elements from the source on-
tology. Therefore, we have to manually update such axioms in order to substitute those
elements with new cloned ones.

CONSTRUCT { :Agent ?r ?y }
WHERE { DUL :Agent ?r ?y } (1)

After all elements of interest have been cloned and updated, optional specialization
and/or expansion is performed. At this point, possible disjointness axioms are intro-
duced before launching the reasoner for consistency checking, and for inferences, some
of which might be explicitly asserted. Finally, the imports are removed and the CP and
its elements are annotated.

CPs that are published on ODPWeb are annotated by means of the cp annotation
schema7.

3.2 The Information Realization CP

In this section we describe a CP that is named information realization. It is created by
extraction from the Dolce Ultra Lite ontology8, and represents the relations between in-
formation objects like poems, songs, formulas, etc., and their physical realizations like
printed books, registered tracks, physical files, etc.. We also show how it is extracted, and
provide the main information according to that contained in its associated catalogue entry.

Figure 2 depicts some screenshots of the ontology editor while we extract the in-
formation realization CP. The arrows indicates the ontology element that we clone i.e.,

6 e.g., TopBraid Composer available at http://www.topbraidcomposer.com/
7 http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
8 http://www.loa-cnr.it/ontologies/DUL.owl

134 V. Presutti and A. Gangemi

Fig. 1. The CP creation by extraction process. Circles with dashed lines indicates steps that can
be skipped.

Fig. 2. The information realization CP extraction from Dolce+DnS Ultra Lite ontology. The ar-
rows identify the class DUL:InformationObject, the result of its cloning, which is the class
InformationObject, and the axiom kept and updated from the source class definition.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 135

Fig. 3. The information realization CP UML graphical representation

DUL:InformationObject9 The upper part of the picture depicts the axiomati-
zation of DUL:InformationObject, in the bottom left part, the (shallow) clone
functionality is applied to DUL:InformationObject. The clone operation result
is a new class belonging to the information realization CP and namespace, named
InformationObject. We also clone DUL:InformationRealization and
create InformationRealization, and clone the two object properties
DUL:realizes, and DUL:isRealizedBy and create realizes, and
isRealizedBy, object properties. We remove the axioms we do not want to keep,
and update the kept ones with the new ontology elements. In the bottom right of the pic-
ture is shown the resulting definition of InformationObject. It can be noticed that
we keep the comment, and the restrictions on the DUL:isRealizedBy object prop-
erty, and update the restricted property to the local cloned one i.e., isRealizedBy.
We use the same approach for all the other ontology elements. Finally we remove the
import and obtain the information realization CP. Figure 3 shows a UML diagram of
the information realization CP. The information realization CP is associated with in-
formation according to the catalogue entry fields reported below:

– Name: Information Realization
– Intent: Which physical object realizes a certain information object? Which infor-

mation object is realized by a certain physical object?
– Extracted from: The Dolce Ultra Lite ontology available at

http://www.loa-cnr.it/ontologies/DUL.owl
– Examples: That CD is the recording of The Dark Side of the Moon
– Diagram: See Figure 3
– Elements:

• InformationObject:A piece of information, such as a musical composi-
tion, a text, a word, a picture, independently from how it is concretely realized.

• InformationRealization:A concrete realization of an InformationOb-
ject, e.g. the written document containing the text of a law.

• realizes:A relation between an information realization and an information
object, e.g. the paper copy of the Italian Constitution realizes the text of the
Constitution.

• isRealizedBy: A relation between an information object and an informa-
tion realization, e.g. the text of the Constitution is realized by the paper copy
of the Italian Constitution.

9 DUL is the prefix for the Dolce+DnS Ultra Lite ontology namespace.

136 V. Presutti and A. Gangemi

– Consequences: The CP allows to distinguish between information encoded in an
object and the possible physical representations of it .

– Known uses: The Multimedia ontology, available at
http://multimedia.sematicweb.org/COMM/multimedia-ontology.owl10 used this
CP.

– Building block: The CP is available at
http://wiki.loa-cnr.it/index.php/LoaWiki:informationrealization

With reference to the complete set of fields that compose the template, here we are
missing: the Also Known as field, which provides alternative names for the CP; and the
Related CPs field, which indicates other CPs (if any) that e.g., specialize, generalize,
include, are components of, or are typically used with, etc. the CP.

3.3 The Time Indexed Person Role Pattern

The time indexed person role is a CP that represents time indexing for the relation
between persons and roles they play. This CP is created by combining extraction and
specialization. According to its associated catalogue entry, the main information asso-
ciated with this CP are the following:

– Name: Time Indexed Person Role
– Intent: Who was playing a certain roles during a given time interval? When did a

certain person play a specific role?
– Extracted from: The Dolce Ultra Lite ontology available at

http://www.loa-cnr.it/ontologies/DUL.owl
– Examples: George W. Bush was the president of the United States in 2007.
– Diagram: See Figure 4, the elements which compose the CP are described in the

Elements field.
– Elements:

• Entity: Anything: real, possible, or imaginary, which some modeller wants
to talk about for some purpose.

• Person: Persons in commonsense intuition, i.e. either as physical agents (hu-
mans) or social persons.

• Role: A Concept that classifies a Person
• TimeInterval: Any region in a dimensional space that aims at represent-

ing time.
• TimeIndexedPersonRole: A situation that expresses time indexing for

the relation between persons and roles they play.
• hasRole:A relation between a Role and an Entity, e.g. ’John is considered a

typical rude man’; your last concert constitutes the achievement of a lifetime;
’20-year-old means she’s mature enough’.

• isRoleOf: A relation between a Role and an Entity, e.g. the Role ’student’
classifies a Person ’John’.

10 Actually the multimedia ontology used a simplified version of Dolce Ultra Lite including
classes and properties we have extracted (from the same source ontology) in order to define
the CP.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 137

• isSettingFor:A relation between time indexed role situations and related
entities, e.g. ’I was the director between 2000 and 2005 ’, i.e.: the situation in
which I was a director is the setting for a the role of director, me, and the time
interval.

• hasSetting: The inverse relation of isSettingFor.
– Consequences: The CP allows to assign a time interval to roles played by people.
– Building block: The CP is available at

http://wiki.loa-cnr.it/index.php/LoaWiki:timeindexedpersonrole

Fig. 4. The time indexed person role CP UML graphical representation

The time indexed person role CP is created by combining extraction, specialization,
and expansion. The class TimeIndexedPersonRole is derived by specializing the
Dolce Ultra Lite class DUL:Classification (pointed by the blue arrow), while
the other elements are partially cloned with the same approach we use for classes and
properties of the information realization CP.

3.4 CP Usage

Supporting reuse and alleviating difficulties in ontology design activities are the main
goals of setting up a catalogue of CPs. In order to be able to reuse CPs, two main
functionalities must be ensured: selection and application.

Selection of CPs corresponds to finding the most appropriate CP for the actual do-
main modeling problem. Hence, selection includes search and evaluation of available
CPs. This task can be performed by applying typical procedures for ontology selection
e.g., [25] and evaluation [8].

Informally, intent of the CP must match the actual local modeling problem. Once a
CP has been selected, it has to be applied to the domain ontology. Typically, application
is performed by means of import, specialization, composition, or expansion (see section
3). In realistic design projects, such operations are usually combined.

Several situations of matching between intent of CPs and local domain problem can
occur, each associated with a different approach to using CPs. The following summary

138 V. Presutti and A. Gangemi

assumes a manual (re)use of CPs. An automatic support to CP selection and usage
should take into account the principles informally explained in the summary below.

– Precise or redundant matching. The CP intent perfectly or redundantly matches
the local domain problem. The CP is directly usable to describe the local domain
problem: the CP only has to be imported in the domain ontology.

– Broader matching. The CP intent is more general than the local domain problem:
the Generalization Of field of the CP’s catalogue entry, may contain references to
less general CPs that specialize it. If none of them is appropriate, the CP has firstly
to be imported, then it has to be specialized in order to cover the domain part to be
represented.

– Narrower matching. The CP intent matches is more specific than the local domain
problem: the odpschema:specializationOf11 property of the CP annota-
tion schema may contain references i.e., URIs, to more general CPs it is the spe-
cialization of, the same information is reported in the Specialization Of field of the
CP’s catalogue entry. If none of them is appropriate, the selected CP has firstly to
be imported, then it has to be generalized in order to cover the domain part to be
represented.

– Partial matching. The CP intent partly matches the local domain problem: the is
Component Of field of the CP’s catalogue entry may contain CPs it is a component
of. If none of such compound CPs is appropriate, the local domain problem has to
be partitioned into smaller pieces. One of these pieces will be possibly covered by
the selected CP. For the other pieces, other CPs have to be selected. All selected CPs
have to be imported and composed. If the local domain problem is not too big, it
is worth to propose a new entry to the catalogue of CPs for the resulting composed
CP.

An example in the music domain As an example of usage we design a small fragment
of an ontology for the music industry domain. The ontology fragment has to address
the following competency questions:

– Which recordings of a certain song do exist in our archive?
– Who did play a certain musician role in a given band during a certain period?

The first competency question requires to distinguish between a song and its record-
ing, while the second competency question highlights the issue of assigning a given
musician role e.g., singer, guitar player, etc., to a person who is member of a certain
band, at a given period of time. The intent of the information realization is related
to the first competency question with a broader matching. The intent of the time in-
dexed person role partially and broadly matches the second competency question. The
second requirement also requires to represent membership relation between a person
and a band12. Let’s consider the case that we cannot find more specialized CPs for
reusing. We proceed by following the above guidelines. Figure 5 shows a screenshot

11 odpschema is a prefix for
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

12 The collection entity CP is about membership relations.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 139

of the resulting ontology fragment. In the bottom part of the screenshot we find the
import tab where the information realization13 and time indexed person role14 CPs
are imported. Additionally, we import the time interval CP that allows us to assign
a date to the time interval15 In order to complete our ontology fragment we create:
the class Song that specializes ir:InformationObject, the class Recording
that specializes ir:InformationRealization, the class MusicianRole that
specializes tipr:Role, the class Band, and the object property memberOf (and its
inverse) with explicit domain i.e., tipr:Person, and range i.e., Band.

Fig. 5. The music industry example. The arrows indicate the imported CPs (bottom of the figure),
and the ontology elements we have specialized (left and right side of the figure).

4 Conclusion and Remarks

Ontology design is a crucial research area for semantic technologies. Many bottlenecks
in the wide adoption of semantic technologies depend on the difficulty of understand-
ing ontologies and on the scarcity of tools supporting their lifecycle, from creation to
adaptation, reuse, and management. The lessons learnt until now, either from the early
adoption of semantic web solutions or from local, organizational applications, put a lot
of emphasis on the need for simple, modular ontologies that are accessible and under-
standable by typical computer scientist and field experts, and on the dependability of
these ontologies on existing knowledge resources.16 In this paper, we have described
content ontology design patterns, which are beneficial to ontology design in terms of

13 We use the prefix ir for this CP.
14 We use the prefix tipr for this CP.
15 The time interval CP also defines two additional sub-properties of the hasIntervalDate

for expressing a start and an end date to the time interval.
16 References to review work of evaluation, selection and reuse methods in ontology engineering

can be found in [12].

140 V. Presutti and A. Gangemi

their relation to requirement analysis, definition, communication means, related work
beyond ontology engineering, exemplification, creation, and usage principles.

We have shown how CPs can be created and reused, and presented two of them
as sample entries from a larger catalogue, with an example in the design of a small
ontology in the music domain. Finally, we have briefly described our ongoing work a
Web portal where designers, practitioners, and users can discuss about, propose, and
download content ontology design patterns.

References

1. Alexander, C.: The Timeless Way of Building. Oxford Press (1979)
2. Arndt, R., Troncy, R., Staab, S., Hardman, L., Vacura, M.: Comm: Designing a well-founded

multimedia ontology for the web. In: Proceedings of the 4th European Semantic Web Con-
ference (ISCW 2007), Busan Korea, November 2007. Springer, Heidelberg (2007)

3. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Boitet, C., White-
lock, P. (eds.) Proceedings of the Thirty-Sixth Annual Meeting of the Association for Compu-
tational Linguistics and Seventeenth International Conference on Computational Linguistics,
pp. 86–90. Morgan Kaufmann Publishers, San Francisco (1998)

4. Blomqvist, E.: Fully automatic construction of enterprise ontologies using design patterns:
Initial method and first experiences. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3761, pp. 1314–1329. Springer, Heidelberg (2005)

5. Brickley, D., Miller, L.: Foaf vocabulary specification. Working draft (2005)
6. Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In: Cohn, A.G., Giunchiglia, F.,

Selman, B. (eds.) KR2000: Principles of Knowledge Representation and Reasoning, pp. 591–
600. Morgan Kaufmann, San Francisco (2000)

7. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

8. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling Ontology Evaluation
and Validation. In: Proceedings of the Third European Semantic Web Conference. Springer,
Heidelberg (2006)

9. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Musen, M., et al.
(eds.) Proceedings of the Fourth International Semantic Web Conference, Galway, Ireland.
Springer, Heidelberg (2005)

10. Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation ontology design pattern: an exercise
in building a core biomedical ontology with descriptions and situations. In: Pisanelli, D.M.
(ed.) Ontologies in Medicine. IOS Press, Amsterdam (2004)

11. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-odo: an owl meta-
model for collaborative ontology design. In: Alani, H., Noy, N., Stumme, G., Mika, P., Sure,
Y., Vrandecic, D. (eds.) Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

12. Gangemi, A., Presutti, V.: Ontology design for interaction in a reasonable enterprise. In:
Rittgen, P. (ed.) Handbook of Ontologies for Business Interaction, IGI Global, Hershey, PA
(November 2007)

13. Gruninger, M., Fox, M.: The role of competency questions in enterprise engineering (1994)
14. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD thesis, Univer-

sity of Twente, Enschede, The Netherlands, Enschede (October 2005)
15. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in

business modeling. In: CAiSE Workshops (3), pp. 129–143 (2004)
16. Hay, D.C.: Data Model Patterns. Dorset House Publishing (1996)

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 141

17. Gomez-Romero, J., Bobillo, F., Delgado, M.: An ontology design pattern for representing
relevance in owl. In: Aberer, K., Choi, K.-S., Noy, N. (eds.) The 6th International Semantic
Web Conference and the 2nd Asian Semantic Web Conference 2007, Busan, Korea (Novem-
ber 2007)

18. Miles, A., Brickley, D.: SKOS Core Vocabulary Specification. Technical report, World Wide
Web Consortium (W3C) (November 2005),
http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/

19. Motta, E., Lu, W.: A library of components for classification problem solving. ibrow project
ist-1999-19005: An intelligent brokering service for knowledge-component reuse on the
world- wide web. Technical report, KMI (2000)

20. Oberle, D.: Semantic Management of Middleware. The Semantic Web and Beyond, vol. I.
Springer, New York (2006)

21. Object Management Group (OMG). Unified modeling language specification: Version 2,
revised final adopted specification (ptc/04-10-02) (2004)

22. Semantic Web Best Practices and Deployment Working Group. Task force on ontology en-
gineering patterns. description of work, archives, w3c notes and recommendations (2004),
http://www.w3.org/2001/sw/BestPractices/OEP/

23. Presutti, V., Gangemi, A., Gomez-Perez, A., Figueroa, M.-C.S.: Library of design patterns
for collaborative development of networked ontologies. Deliverable D2.5.1, NeOn project
(2007)

24. Rector, A., Rogers, J.: Patterns, properties and minimizing commitment: Reconstruction of
the galen upper ontology in owl. In: Gangemi, A., Borgo, S. (eds.) Proceedings of the EKAW
2004 Workshop on Core Ontologies in Ontology Engineering. CEUR (2004)

25. Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web: How to cover
the queen’s birthday dinner? In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI),
vol. 4248, pp. 96–111. Springer, Heidelberg (2006)

26. Svatek, V.: Design patterns for semantic web ontologies: Motivation and discussion. In: Pro-
ceedings of the 7th Conference on Business Information Systems, Poznan (2004)

27. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

28. Vrandecic, D., Gangemi, A.: Unit tests for ontologies. In: Jarrar, M., Ostyn, C., Ceusters, W.,
Persidis, A. (eds.) Proceedings of the 1st International Workshop on Ontology content and
evaluation in Enterprise, Montpellier, France, October 2006. LNCS, Springer, Heidelberg
(2006)

 http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/
http://www.w3.org/2001/sw/BestPractices/OEP/

	Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies
	Introduction
	Background

	Content Ontology Design Patterns (CPs)
	CP Creation and Usage
	CP Creation
	The Information Realization CP
	The Time Indexed Person Role Pattern
	CP Usage

	Conclusion and Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

