
Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 114–127, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Multi-level Methodology for Developing UML
Sequence Diagrams

Il-Yeol Song, Ritu Khare, Yuan An, and Margaret Hilsbos

The iSchool at Drexel, Drexel University,
3141, Chestnut Street, Philadelphia, PA 19104, USA

songiy@drexel.edu, rk84@drexel.edu, yan@ischool.drexel.edu,
mhilsbos@drexel.edu

Abstract. Although the importance of UML Sequence Diagrams is well recog-
nized by the object-oriented community, they remain a very difficult UML arti-
fact to develop. In this paper we present a multi-level methodology to develop
UML Sequence Diagrams. Our methodology is significant in three aspects.
First, it provides a multilevel procedure to facilitate ease of the development
process. Second, it makes use of certain patterns to ensure the validity of SQDs.
Third, it uses consistency checks with corresponding use-case and class dia-
grams. Throughout the steps of the method we present rules and patterns dem-
onstrating correct and incorrect diagramming of common situations through
examples. The purpose of this study is to serve as a reference guide for novice
sequence diagram modelers. This methodology is particularly useful for novice
practitioners who face challenges in learning the process of SQD development.

1 Introduction

Sequence Diagrams (SQDs) are one of the important dynamic modeling techniques in
the UML. An SQD visualizes interactions among objects involved in a use case sce-
nario. Although several methods have been proposed to develop an SQD, the devel-
opment of SQDs remains a very difficult part of the object oriented development
process. The development process is very intricate. As new objects and messages are
identified, the diagram gets more packed and complicated. Also, at every step, multi-
ple factors, such as which object to choose, which message to assign to what object,
and what patterns to use for message passing, need to be taken care of simultaneously.
As a result, the modeler very often ends up making mistakes in the diagram, and mak-
ing an SQD which is inconsistent with other UML artifacts. Hence, we are motivated
to develop an easy-to-use and practical method for SQD development.

In our earlier work, we presented a ten-step method (Song, 2001) for developing
SQDs based on use case descriptions and a class diagram. In this paper, we extend our
earlier work as follows: First, we re-organize the steps into three levels and each level
is further divided into several stages so that we can focus on one issue at a time. Sec-
ond, we add guidelines and patterns using correct and incorrect examples. Third, we
provide consistency checks between an SQD and use case and class diagrams. This
method brings forth the recommended visual patterns and warns against mistakes
committed by SQD developers. The purpose of this study is to serve as a reference

 A Multi-level Methodology for Developing UML Sequence Diagrams 115

guide for novice SQD modelers. In this paper, we use UML 2.0 notation to present
SQDs. For the notations of SQDs in UML 2, we refer Ambler (2008b) or Larman
(2004).

The rest of the paper is organized as follows. Section 2 presents the research meth-
ods used and the related literature review. Section 3 describes the process of multi-
level methodology to develop SQDs. Section 4 concludes our paper.

2 Research Setting and Related Literature Review

In this paper, we have come up with both correct and incorrect patterns of SQDs, as
well as guidelines. The guidelines were tested and examples were collected for the
past five years of teaching SQDs in a graduate class. Incorrect patterns have been
found on the basis of our observation of the mistakes students make in SQD assign-
ments to develop SQDs. Our subjects include students from different backgrounds in-
cluding computer science, information science, psychology, biosciences, biomedical,
and business. Students found our guidelines usable and effective.

There is a decent amount of research related to specification of semantics of the
SQD. Xia and Kane (2003) present an attribute grammar based approach on defining
the semantics of UML SQD to make it easily convertible to code. While both this pa-
per and the work by Aredo (2000) prepare a framework for defining the semantics of
an SQD to create a shared understanding across a design team, the problem of design-
ing an SQD still remains unresolved especially for novices.

Baker et al. (2005) address the problem of automatically detecting and resolving
the semantic errors that occur in SQD scenarios. The method proposed in this paper is
claimed to be successful in detecting semantic inconsistencies in industrial case stud-
ies. Our method, however, takes a preventive action to deal with the semantic incon-
sistencies by basing itself on the commonly occurring valid patterns in SQD and
avoiding the frequently committed mistakes by novices.

Li (2000) presents a parser that semi-automatically translates use case steps into
message records that can be used to construct a sequence diagram. The work is based
on syntactic structure of standardized sentences of use-case description. Although this
work provides useful rules for novices, e.g. converting a use case to “message sends”,
it does not avoid common mistakes made by novices.

Other recent works on SQDs include use of SQDs for code generation, generation
of SQDs through reverse engineering of code, and finding reusable SQDs from exist-
ing artifacts. Rountev and Connell (2005), and Merdes and Dorsch (2006) present re-
verse engineering techniques to extract an SQD from a program. Another interesting
work ‘REUSER’ by Robinson and Woo (2004) automatically retrieves reusable SQDs
from UML artifacts.

Our review shows that the research effort for developing an easy-to-use method for
developing SQDs is still rare and far from satisfactory. Hence, the task of creating this
artifact remains challenging to novices, and they continue to commit errors. We pro-
pose a multi-level methodology in order to develop the artifact in an incremental
manner. We refer to the work by Bist, MacKinnon, and Murphy (2004) for guidelines
in drawing SQDs.

116 I.-Y. Song et al.

3 A Multi Level SQD Development

An Overview

In this section we describe our proposed methodology to develop an SQD. The most
significant portion of this work is that it offers a multi-level way to develop SQDs. In-
stead of considering multiple design issues at each step of SQD development, we pro-
pose focusing on one major issue at each level of the process to make best possible
use of knowledge at every level. We begin designing in terms of the objects first
which form the building blocks of an SQD. After the objects are well arranged, re-
sponsibilities are assigned to them in the next level. In the last level, the visual pattern
of the SQD obtained from previous level is analyzed to make further modifications
and produce the final version of the SQD. Furthermore, each level is divided into
stages to focus on just one sub-issue at each stage, and to further simplify the overall
development process. A multi-level development process also offers the following in
a systematic manner:

• Maintenance of consistency with other UML artifacts (use-case and class dia-
grams).

• Correctness of the SQD by making use of certain rules and visual patterns.
• Warnings to stay away from frequently committed mistakes in drawing SQDs.

In this paper, we deal with the UML use-case descriptions that represent one main
success scenario and zero or more included use cases. It is important to maintain con-
sistency between the SQDs and other diagrams of the system model. The SQD
depends on classes identified in the domain model. Therefore, before beginning to
construct an SQD, the use cases should have been identified and use case descriptions
generated for the use cases assigned to the current development iteration, and an
analysis class diagram (domain model) constructed.

Fig. 1 shows the three-level development process. Table 1 summarizes the whole
methodology. The three abstract levels are: the object framework level, the responsi-
bility assignment level, and the visual pattern level. Each level comprises multiple
stages.

Fig. 1. A Component Diagram of Multi-level SQD Development

 A Multi-level Methodology for Developing UML Sequence Diagrams 117

Table 1. The Steps of Multi-level SQD Development

(BO: Boundary object; CO: Control Object; EO: Entity Object)
1. Object Framework Level: Identify the building participants which constitute the basic
framework of an SQD.
1.1 Object Assembly Stage: Identify the actor, primary BO, primary CO, secondary CO(s),
secondary BO(s) for the SQD.
1.2 Object Rearrangement Stage: Rearrange the classes (and also the actor) in the follow-
ing order: Actor, Primary BO, Primary CO, EOs (list in the order of access), and Secon-
dary COs and Secondary BOs in the order of access.

2. Responsibility Assignment Level: Assign correct responsibilities to each object.
2.1 Action-Message Mapping Stage: Map every automated action in the use-case descrip-
tion to a message in the SQD. Each message would fall under one of the following catego-
ries: Instance creation and destruction, Association forming, Attribute modification, At-
tribute access, Input/Output/Interface, and Integrity-constraint checking.
2.2 Message Re-arrangement Stage: Perform arrangement checks such as: making sure
that each message is traceable to the primary actor through activated objects, giving mean-
ingful names to each message, checking consistency of SQD with class diagram, removing
any unnecessary return messages, and checking for continuity of focus of control.

3. Visual Pattern Level: Apply final checks based on the visual patterns illustrated by the
SQD.
3.1 High Cohesion Check: Make sure that the responsibilities assigned to a class are re-
lated, and there exists a high cohesion within a class.
3.2 Low Coupling Check: Re-arrange messages from one class to another class to reduce
coupling.
3.3 Fork or Stair Check: Choose between the “fork” and the “stair” pattern depending on
the relationship between classes, and taking into account the pros and cons of both patterns.
3.4 Central Class Check: It should be kept in mind that the class, which looks central in
the class diagram, is likely to send most messages to other classes in the SQD.

3.1 The Object Framework Level

In this level, we identify the building blocks that constitute the framework of an SQD.

3.1.1 Object Assembly Stage: Following Are the Steps to Be Followed in This
Stage

1. Select the initiating actor and initiating event from the use case description.
2. Identify the primary display screen needed for implementing the use case. Call it

the primary boundary object.
3. Create a primary control object to handle communication between the primary

boundary object and domain objects. It is not always necessary to have a control
object (CO) between the boundary object (BO) and the entity object (EO). A BO
can directly pass message to an EO, if the message is simple and requires no ma-
nipulation.

4. If the use case involves any included or extended use case, create one secondary
CO for each of them. UML 2.0 introduces specific notation for connecting se-
quence diagrams. The following method has previously been suggested, and may
be simpler to apply, at least until modeling tools “catch up” to the UML 2 notation.

118 I.-Y. Song et al.

As shown in Fig. 2, use a separate CO for the supporting use case; show the sup-
porting CO on the base use case SQD, with messages to and from indicating the
flow of control (Song, 2001).

:Actor:Actor :PrimaryBO:PrimaryBO

:PrimaryCO:PrimaryCO

:SomeEO:SomeEO

:SecondaryCO:SecondaryCO

1: submitInfo()

2: create

3: create

4: doSomething()

5: create

Fig. 2. The use of a Control Object for an Inclusion Use Case

5. Identify the number of major screens necessary to implement the use case. The fol-

lowing cases represent the situations that require creation of a new secondary BO:

• A new window needs to be opened for user’s input and the contents of the origi-
nal window need to be kept visible

• A new window only handles a sub-flow and the original window may proceed
with the sequence regardless of the operations in the secondary window.

Also, create a secondary CO for each of them.

6. From the class diagram, list all domain classes participating in the use case by re-
viewing the use case description. If any class identified from the use case descrip-
tion does not exist in the class diagram, add it to the class diagram. These classes
become the EOs.

3.1.2 Object Rearrangement Stage
Use the classes just identified as participant names in the SQD. In a logical sequence
of actions, tasks begin with an actor interacting with an interface (BO). The BO then
passes control to a CO that has resources to carry the required actions, which then
passes control to relevant EOs, and so on. Hence, list the actor and the classes in the
following order: Actor, Primary BO, Primary CO, EOs (list in the order of access),
Secondary BOs, and Secondary COs in the order of access.

3.2 Responsibility Assignment Level

Responsibility assignment refers to the determination of which class should imple-
ment a message, and which class should send the message. It is important to assign
the correct set of responsibilities to each object because they become operations of
corresponding objects in the design stage UML artifacts such as design-class dia-
grams. A message in an SQD is assigned to the class at the target of the message. For
example, the message 4 doSomething() will be implemented as an operation in class

 A Multi-level Methodology for Developing UML Sequence Diagrams 119

:SomeEO in Fig. 2. There are several guidelines that can be followed when assigning
responsibility to classes. In this paper we follow the GRASP (General Responsibility
Assignment Software Patterns) guidelines described by Larman (2004).

3.2.1 Action-Message Mapping Stage
Each action specified or implied in the use case description should have a
corresponding message(s) in the SQD. Depending on the degree of completeness of
the use-case description text, the author of the SQD may need to infer some of the
operations. The messages are identified through the following procedure:

• Identify verbs from the use-case description.
• Remove verbs that describe the problem. Select verbs that solve the problem and

call them problem-solving verbs (PSVs).
• From the PSVs, select the verbs that represent an automatic operation or a manual

operation by the actor. We call these PSVs problem-solving operations (PSOs) and
use them as messages in the SQD.

Larman (2004) uses three types of postconditions: Instance creation and destruc-
tion, Association forming, and Attribute modification. In this paper, we treat them as
PSO categories. Here, we add three more PSO categories: Attribute access, In-
put/Output/Interface, and Integrity-constraint checking. We use these six PSO catego-
ries to identify messages from a use case description. These six types of PSOs can
also be used in identifying messages that are necessary but not explicit in the use case
descriptions.

A. Instance Creation and Destruction: The “Creator” pattern suggests rules for de-
termining which object should send an object creation message (Larman, 2004).
Class B should have the responsibility to send create() message to A in the following
cases: B aggregates A objects; B records instances of A objects; B closely uses A ob-
jects; or B has the initializing data that will be passed to A when it is created. Often,
the controller will have the initializing data, but an entity class will be assigned the re-
sponsibility when it is closely associated with the new object as in the first four cases.
The UML 2 notation suggests that a created object should be placed at the creation
height in the diagram, which Ambler (2008b) refers to as “direct creation”.

Fig. 3 shows the correct SQD with the direct creation of object :SomeEO.

:SomeCO:SomeCO

:SomeEO:SomeEO

:AnotherEO:AnotherEO

1: create(AnotherEO_id)

2: getX()

4: getY()

3: X

5: Y

Fig. 3. Correct Object Creation at the Creation Height

120 I.-Y. Song et al.

B. Association Forming: If there is an association between two classes, then at least
one of the SQDs must include a message that forms this association. If a depicted as-
sociation is never supposed to be used at all, then there must be an error either in the
class diagram or the SQD (Ambler, 2008b). Associations can be formed by creating
the object with the appropriate parameters or by updating the appropriate parameter in
the object. The association must be formed before other operations, which require
visibility from the sender to the receiver, can be performed. Fig. 3 shows an example
where the association is formed between :SomeEO and :AnotherEO by the parameter
(AnotherEO_id) being passed to :SomeEO at creation. This makes the getX() mes-
sage possible.

C. Attribute Modification (set/compute/convert): For each postcondition that causes a
state change, there should be a message. The messages change the value of attributes
such as deposit_amount(), calc_subscription_charge(), and convert_cm_to_inch(). Any
message that sets a value, computes a value, or converts one unit to another belongs to
this message type.

D. Attribute Access (get/find/compare/sort): This type of message reads values of at-
tributes. Any message that gets a value, finds a value, compares values, and sorts val-
ues belongs to this message type.

A frequent mistake of novice developers is to try to update an attribute of a read-
only class in the use case. We call such a class as a reference class, which refers to an
entity class that just provides information to a use case, and that should not be up-
dated by any interaction. Fig. 4 illustrates a case where the modeler did not under-
stand the roles of the class :PricingPolicy. Fig. 4 is a portion of a sequence diagram
submitted by a student for use case called “Add Paid Subscription” in a subscription
automation system. This example is incorrect because :PricingPolicy is a class that
stores the pricing rules. :PricingPolicy may be updated in a maintenance transaction,
but not by a customer transaction of adding a new subscription. A tip-off is the class
name. Any class name including “policy”, “rule”, or “template” is probably a refer-
ence class for any interaction except the use case to specifically update that class.
This example also demonstrates the value of clear class names. Fig. 5 shows a correct
depiction of the same interaction.

E. Input/Output/Interface: This type of messages is used (a) to input data, (b) to dis-
play output, generate report, or to save a data to a storage, and (c) to interface with ex-
ternal objects or systems.

Interaction with an external system is shown by a message from a CO to the BO of
the external system. Some messages to be included in an SQD aren’t mentioned any-
where in the use-case description; a designer of an SQD needs to make decisions re-
garding these messages. Entire communication between a BO and a CO is based on
the designer’s judgment. The GRASP “Controller” pattern stipulates that, for interac-
tions requiring any manipulation or coordination, actor inputs are transferred from the
interface (BO) to a CO. Fig. 6 is an example of an incorrect use of an entity class to
send a message that should be sent by the controller. Fig. 7 shows the corrected ver-
sion, sending a message from a CO to an external system.

 A Multi-level Methodology for Developing UML Sequence Diagrams 121

:Subscription:Subscription :PricingPolicy:PricingPolicy

1: getBeginEndDates()

3: setDescription()

4: updatePrice()

2: BeginEndDates

:Subscription:Subscription :PricingPolicy:PricingPolicy

1: getPrice(beginDate,endDate,price)

2: Price

Fig. 4. Incorrect, updating a reference class Fig. 5. Correct, getting information from a
reference class

:Email Handler:Email Handler

:Email Template:Email Template

:Email system:Email system

1: create

2: sendEmail()

:Email Handler:Email Handler

:Confirmation Email:Confirmation Email

:Email system:Email system

1: create

2: sendEmail()

Fig. 6. Incorrect- Entity communicating with
an external system

Fig. 7. Correct – Controller communicating
with an external system

A common BO pattern is as follows. An actor creates a BO and enters some data.
The BO creates a necessary CO and transfers data to it. After the CO completes what-
ever processing it is responsible for (which may include calling other COs), the CO
returns some value to the calling BO. The BO displays some information for the ac-
tor. Fig. 8 shows an incorrect message sequence between an actor and the BO, and
Fig. 9 shows an example of the correct use of a BO.

:Actor:Actor :BO:BO

:CO:CO

:EO:EO

1: submitInfo()

2: create

3: getNewInfo()

4: getNewInfo()

5: newInfo

6: newInfo

7: displayNewInfo()

Fig. 8. An incorrect sequence of messages between a user and a window

It should be noted that a BO may access an EO directly, but this is only appropriate
when the interaction is very simple, e.g. a retrieval of values from a single class, or an
update to a single class with no calculations. Fig. 10 shows an example of this pattern.

122 I.-Y. Song et al.

:Actor:Actor :BO:BO

:CO:CO

:EO:EO

1: submitInfo()

2: create

3: getNewInfo()

4: getNewInfo()

5: newInfo

6: displayNewInfo()

Fig. 9. A correct Sequence of messages

:AnyUser:AnyUser :WebWindow:WebWindow :ZipLookup:ZipLookup

1: enterZipcode()

2: getCityState(zipcode)

3: CityState

Fig. 10. An example of valid direct communication between BO and EO

F. Integrity-constraint (IC) Checking: Another message type in an SQD is an IC
checking operation. Checking a complex integrity constraint usually requires passing
of multiple messages among objects. Examples include validating a user input or
computing a discount amount based on the current order and customer credit rating.

3.2.2 Message Rearrangement Stage
After the Action-Message mapping stage, an SQD is generated; but it still requires
manipulation and re-arrangement of messages among objects. Perform the following
to rearrange the messages in the SQD.

1. Make sure that each message is traceable to the primary actor through activated
objects. The actor interacts with a BO. The BO transfers information to and from
other objects via COs. At no time can an object initiate a message without first be-
ing activated by another object which is already activated, except for a BO which is
activated by a message from the actor (Pooly and Steven, 1999). The exception to
this is active objects, which are beyond the scope of this paper. Fig. 11 is an exam-
ple of an invalid SQD, where the :PaymentHandler initiates a message without first
being activated. Fig. 12 shows a correct version of the same diagram, where the
:PaymentHandler is first activated by the :SubscriptionHandler.

 A Multi-level Methodology for Developing UML Sequence Diagrams 123

:Subscriber:Subscriber :WebInterface:WebInterface

;Subscription
Handler

;Subscription
Handler

:Individual
Subscriber
:Individual
Subscriber

:Pricing Policy:Pricing Policy :Payment
Handler

:Payment
Handler

:Payment:Payment

1: selectOption()

3: create

4: create

5: getPrice(beginDate,endDate,price)

2: create

6: price

Fig. 11. Incorrect – Payment Handler was never activated

6: create

:Subscriber:Subscriber :Web Interface:Web Interface

:Subscription
Handler

:Subscription
Handler

:Individual
Subscriber
:Individual
Subscriber

:Pricing Policy:Pricing Policy

:Payment
Handler

:Payment
Handler

:Payment:Payment

1: submitInfo()

2: create

3: create

4: getPrice(beginDate,endDate,price)

7: create

5: Price

Fig. 12. Correct – Payment Handler is created

2. Name each message with meaningful names. Message names should clearly com-
municate what is being requested. For example, if a message to :Client is getting the
email address, the message getEmailAddress() is more descriptive than getEmail().

Supply each message with optional parameters. The SQD will not necessarily show
all the relevant attributes as message arguments (Chonoles and Schardt, 2003). Some
parameters, however, should be shown, such as an object or parameter that is being
passed among multiple other objects. (Ambler 2008b; and Chonoles and Schardt,
2003). The items to verify with respect to message arguments are:

• Each depicted or implied argument represents either an input value or an attribute
of some class or a class in the class diagram. Specified parameters which represent
attributes or classes should match their depiction in the class diagram.

• The sender of the message containing the argument has visibility to the value or at-
tribute(s) used in the arguments.

3 Check the SQD for consistency with the Class Diagram. All entity classes used in
an SQD must appear in the class diagram. Conversely, if SQDs are completed for all
use cases within the project scope, all entity classes shown on the design class dia-
gram must be used in at least one SQD, with the following caveats:

124 I.-Y. Song et al.

• This is not necessarily true for abstract classes.
• In many projects, SQDs will not be generated for the entire set of use cases. In that

case, the modeler should mentally verify that any remaining concrete entity classes
will be used by the yet-to-be-modeled SQDs.

4. Check if return messages are implied or required. It is not always necessary to
show returns on SQDs (Arlow and Neustadt, 2002; Larman, 2004). Returns should be
shown only when showing them makes the drawing more understandable (Ambler,
2008b; and Fowler 2000). Some rules that help to make this determination are:

• When a message implies the return, such as getPrice(), it is not necessary to show
the return.

• When complex processing results in a new value that is returned to a calling rou-
tine, the return should be shown.

• Ambler(2008b) suggests “If you need to refer to a return value elsewhere in your
SQD, typically as a parameter passed in another message, then indicate the return
value on your diagram”.

• Returns usually point from right to left, but not always; messages normally point
from left to right, but not always. Therefore it is important to use the correct nota-
tion for clarity.

5. Check for the correctness of focus of control. The focus of control is also referred
to as a method activation box (OMG 2003) or method-invocation box (Ambler,
2008a). The focus of control shows the time during which the object is active, or has
control of the interaction. If an object receives a message (message no. 2 in Fig. 13)
that needs to return a value to a calling class (:PaymentWindow), the focus of control
for the calling class should be continuous as the object is just waiting for a response.
The focus of control should remain active till a return message (message no. 3) is re-
ceived from :PaymentHandler. Fig. 13 shows incorrect focus of control and a wrong
return notation. A corresponding correct diagram is not shown due to limited space.

3: confirmation

:Subscriber:Subscriber :Payment
Window

:Payment
Window

:Payment
Handler

:Payment
Handler

1: enterPaymentData()

2: submitCC_Info()

Fig. 13. Incorrect – broken focus of control; returns shown incorrectly

3.3 Visual Pattern Level

3.3.1 High Cohesion Check
“High Cohesion” stipulates that the responsibilities of a class should be closely re-
lated and should not be diverse. In Fig. 14, :PaidSubscriber is sending those messages
to :Subscription that have nothing to do with the job of being a subscriber, i.e.

 A Multi-level Methodology for Developing UML Sequence Diagrams 125

:Subscription:Subscription :Paid
Subscriber

:Paid
Subscriber

1: setExpDate()

2: setExpWarningDate()

3: updateSubStatus()

:Subscription
Handler

:Subscription
Handler

:Subscription:Subscription
1: create(subsBeginDate,subLength)

2: setExpDate()

3: setExpWarningDate()

4: updateSubsStatus()

Fig. 14. An SQD with Low Cohesion Fig. 15. An SQD with High Cohesion

:PaidSubscriber is handling the attributes which are irrelevant to its function, causing poor
cohesion. A better solution is shown in Fig. 15, where the CO :SubscriptionHandler pro-
vides the data to :Subscription, which then calculates and sets the attributes itself.

3.3.2 Low Coupling Check
“Low Coupling” is a design goal to assign responsibilities such that coupling is
reduced to the extent possible while observing “High Cohesion” and other guidelines.
Use the following guidelines to achieve low coupling:

1. Ensure that the recipient object of a message and the parameter in a message is ei-
ther part of the state of the sending object; passed as a parameter to the method
sending the new message; or returned from a previous message sent within the cur-
rent method (Law of Demeter; Rowlett, 2001).

2. To send a message, use a source class that is already coupled to the target class.
3. Introduce a CO if many messages are being passed between two classes. In this

way, the CO can coordinate among multiple objects.
4. Make sure a parameter is not passed again and again in multiple messages.

3.3.3 Fork or Stair Check
Application of the aforementioned guidelines results in a visual pattern to the SQD,
which is descriptively called a “fork” or “stair” pattern (Jacobson, 1992). Once con-
structed, a message sequence can have a very noticeable visual pattern resembling ei-
ther a “fork” (Fig. 16) or a “stair” (Fig. 17). This effect is more than just appearance;
it presents an overall indication of how responsibilities are assigned. An SQD will
probably exhibit both patterns, depending on the relationships of the classes. A
“fork” structure is recommended when messages could change the order of message
sequences or when there is a central object that controls many messages as in the case
of enforcing an integrity constraint. Interactions of control objects frequently show a
"fork" pattern. This pattern helps in reuse, error recovery, and maintenance (Rowlett,
2001). A “stair” structure is recommended when there is no central object in the SQD
or when messages have strong connections among objects based on relationships such
as a temporal relationship (e.g, order – invoice – delivery – payment) or an aggrega-
tion hierarchy.

126 I.-Y. Song et al.

;Some CO;Some CO :Obj1:Obj1 :Obj2:Obj2 :Obj3:Obj3 :Obj4:Obj4

1: doA()

2: doB()

3: doC()

4: doD()

:SomeCO:SomeCO :Obj1:Obj1 :Obj2:Obj2 :Obj3:Obj3 :Obj4:Obj4

1: doA()

2: doB()

3: doC()

4: doD()

Fig. 16. The Fork Pattern Fig. 17. The Stair Pattern

3.3.4 Central Class Check
Chonoles and Schardt (2003) presents the notion of “central class” concept. They
suggest identifying a central class for a use case, and note that this class will probably
do a large part of the work in the interaction. For example, if a use case involves the
classes shown in Fig. 18, it can be seen that Obj2 is the central class – it has the
shortest access route (least hops) to all the other classes in the interaction. With this
observation, if the modeler looks at the finished SQD (Fig. 19), he would notice a
“fork” structure beginning from Obj5. It might be an indication that responsibilities
are incorrectly assigned (Obj5 has the most difficult access to the other classes). On
the other hand, a fork structure emanating from Obj2 would not be surprising.

Obj1 Obj3Obj2

10..1 10..n

Obj4

1

0..n

Obj5

0..11

0..1 1 0..n 1
0..n

1

1 0..1

Fig. 18. Identifying the central class Obj2

:SomeCO:SomeCO :Obj5:Obj5 :Obj4:Obj4 :Obj2:Obj2 :Obj1:Obj1 :Obj3:Obj3

1:

2:

3:

4:

5:

Fig. 19. Likely not a good pattern for the class diagram in Fig. 18

4 Conclusion

In this paper, we have presented a multi-level development methodology for develop-
ing SQDs in UML. Our research is motivated by the need of providing a practical me-
thod with easy-to-use guidelines for novice SQD developers. We have included
guidelines and common visual patterns in SQDs, highlighting the frequently commit-
ted mistakes by novices. The guidelines were tested and examples were collected for
the past five years of teaching SQDs in a graduate class. The students found our
guidelines usable and effective. In future, we will perform a formal study to measure
the number and nature of mistakes they make at each level of the methodology.

 A Multi-level Methodology for Developing UML Sequence Diagrams 127

References

1. Ambler, S.W.: UML 2 Sequence Diagram Overview (2008a),
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

2. Ambler, S.W.: UML Sequence Diagramming Guidelines (2008b),
http://www.agilemodeling.com/style/sequenceDiagram.htm

3. Aredo, D.B.: Semantics of UML sequence diagrams in PVS. In: UML 2000 Workshop on
Dynamic Behavior in UML Models, Semantic Questions, York, UK (2000)

4. Arlow, J., Neustadt, I.: UML and the Unified Process: Practical Object-Oriented Analysis
and Design. Addison-Wesley Professional, Boston (2002)

5. Baker, P., Bristow, P., Jervis, C., King, D., Mitchell, B., Burton, S.: Detecting and resolv-
ing semantic pathologies in UML sequence diagrams. In: 10th European Software Engi-
neering Conference, pp. 50–59. ACM, New York (2005)

6. Bist, G., MacKinnon, N., Murphy, S.: Sequence diagram presentation in technical docu-
mentation. In: 22nd Annual International Conference on Design of Communication: The
Engineering of Quality Documentation, pp. 128–133. ACM, New York (2004)

7. Chonoles, M.J., Schardt, J.A.: UML 2 for Dummies. Wiley, Hoboken (2003)
8. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Professional, Boston (2000)
9. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach. Addi-

son-Wesley Professional, Boston (1992)
10. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development. Prentice Hall PTR, Upper Saddle River (2004)
11. Li, L.: Translating Use Cases to Sequence Diagrams. In: 15th IEEE International Confer-

ence on Automated Software Engineering, Washington, DC, pp. 293–296 (2000)
12. Merdes, M., Dorsch, D.: Experiences with the development of a reverse engineering tool

for UML sequence diagrams: A case study in modern java development. In: 4th Interna-
tional Symposium on Principles and Practice of Programming in Java, pp. 125–134. ACM,
New York (2006)

13. Object Management Group. UML 2.0 Superstructure Final Adopted specification (2003),
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

14. Pooley, R., Stevens, P.: Using UML: Software Engineering with Objects and Components.
Addison-Wesley, Harlow (1999)

15. Robinson, W.N., Woo, H.G.: Finding Reusable UML Sequence Diagrams Automatically.
IEEE Software 21(5), 60–67 (2004)

16. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered sequence dia-
grams. In: 27th International Conference on Software Engineering, pp. 254–263. ACM,
New York (2005)

17. Rowlett, T.: The Object-Oriented Development Process: Developing and Managing a Ro-
bust Process for Object-Oriented Development. Prentice Hall, Upper Saddle River (2001)

18. Song, I.-Y.: Developing Sequence Diagrams in UML. In: 20th International Conference on
Conceptual Modeling, pp. 368–382. Springer, London (2001)

19. Xia, F., Kane, G.S.: Defining the Semantics of UML Class and Sequence Diagrams for
Ensuring the Consistency and Executability of OO Software Specification. In: 1st Interna-
tional Workshop on Automated Technology for Verification and Analysis, Taipei, Taiwan
(2003)

	A Multi-level Methodology for Developing UML Sequence Diagrams
	Introduction
	Research Setting and Related Literature Review
	A Multi Level SQD Development
	The Object Framework Level
	Responsibility Assignment Level
	Visual Pattern Level

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

