

Lecture Notes in Computer Science 5231
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Qing Li Stefano Spaccapietra Eric Yu
Antoni Olivé (Eds.)

Conceptual
Modeling - ER 2008

27th International Conference on Conceptual Modeling
Barcelona, Spain, October 20-24, 2008
Proceedings

13

Volume Editors

Qing Li
City University of Hong Kong, Department of Computer Science
83 Tat Chee Avenue, Kowloon, Hong Kong, China
E-mail: itqli@cityu.edu.hk

Stefano Spaccapietra
EPFL-IC-IIF-LBD
Station 14 - INJ 236, 1015 Lausanne, Switzerland
E-mail: stefano.spaccapietra@epfl.ch

Eric Yu
University of Toronto, Faculty of Information
140 St. George Street, Toronto, Ontario, M5S 3G6, Canada
E-mail: eric.yu@utoronto.ca

Antoni Olivé
Universitat Politècnica de Catalunya
Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: olive@lsi.upc.edu

Library of Congress Control Number: 2008935110

CR Subject Classification (1998): D.2.2, D.2.8, D.3, H.1, H.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-87876-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87876-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12525928 06/3180 5 4 3 2 1 0

Preface

Conceptual modeling has long been recognized as the primary means to enable soft-
ware development in information systems and data engineering. Conceptual modeling
provides languages, methods and tools to understand and represent the application
domain; to elicit, conceptualize and formalize system requirements and user needs; to
communicate systems designs to all stakeholders; and to formally verify and validate
systems design on high levels of abstraction.

The International Conference on Conceptual Modeling provides a premiere
forum for presenting and discussing current research and applications in which the
major emphasis is on conceptual modeling. Topics of interest span the entire spectrum
of conceptual modeling including research and practice in areas such as theories of
concepts and ontologies underlying conceptual modeling, methods and tools for de-
veloping and communicating conceptual models, and techniques for transforming
conceptual models into effective implementations.

The scientific program of ER 2008 featured several activities running in parallel.
The core activity was the presentation of the 33 research papers published in this
volume, which were selected by a large Program Committee (PC) Co-chaired by
Qing Li, Stefano Spaccapietra and Eric Yu. We thank the PC Co-chairs, the PC
members and the additional referees for the hard work done, often within a short
time. Thanks are also due to Moira Norrie from ETH Zurich, Oscar Pastor from the
Universitat Politècnica de València, and Amit Sheth from the Wright State Univer-
sity for accepting our invitation to present keynotes. Fifteen sessions of the confer-
ence were dedicated to the seven ER Workshops selected by the Workshops
Co-chairs Il-Yeol Song and Mario Piattini. We express our sincere appreciation to
the Co-chairs and to the organizers of the seven workshops for the work done. The
proceedings of these workshops are published in a separate volume. Three sessions
were dedicated to the PhD Workshop, a new activity in the ER Conferences, organ-
ized by John Mylopoulos, Jordi Cabot and Giancarlo Guizzardi, whose efforts are
highly appreciated. This volume also includes short descriptions of the 18 demos
that were selected by a committee chaired by the Demonstration Program Co-chairs
Juan Trujillo and Martin Gogolla, whose efforts are also highly appreciated. Thanks
also to the Tutorial Co-chairs Jolita Ralyte and Vicente Pelechano, and to the Pan-
els Co-chairs Paul Johannesson and Pericles Loucopoulos for the work done in
selecting and organizing the tutorials and the panel, respectively. Special thanks to
David W. Embley, the ER Steering Committee liaison for the advice and help he
gave to us whenever we needed it.

Likewise we acknowledge the engagement and enthusiasm of the local organi-
zation team, chaired by Ernest Teniente and Joan-Antoni Pastor. The members of
the team were Maria R. Sancho and Joan-Antoni Pastor (Sponsor Chairs), Jordi
Cabot (Publicity Chair), Cristina Gómez (Treasurer), Jordi Conesa and Xavier de

 Preface

VI

Palol (Webmasters), Dolors Costal (Venue Chair), Enric Mayol and Ruth
Raventós (Social Events Chairs), and Anna Queralt, Albert Tort and Elena Planas
(Registration Chairs).

October 2008 Antoni Olivé

Program Chairs’ Message

The ER International Conferences on Conceptual Modeling aim at providing a leading
international forum for presenting and discussing current research and applications in
which the major emphasis is on conceptual modeling. Their scope spans the entire
spectrum of conceptual modeling. This year it included in particular research and
practice in areas such as theories of concepts and ontologies underlying conceptual
modeling, methods and tools for developing and communicating conceptual models,
and techniques for transforming conceptual models into effective implementations.

In response to the call for papers, ER2008 received a total of 178 submissions.
Thirty-three submissions were accepted for presentation, representing an acceptance
rate of about 18.5%. Based on a separate call, 18 demo papers were accepted for pres-
entation. The authors of these accepted papers come from 11 countries resulting in a
remarkable international diversity. We would like to thank all the reviewers for spend-
ing their precious time reviewing the papers and for providing valuable comments that
aided significantly in the paper selection process.

The best paper presented at the ER2008 Conference, selected by the PC Co-chairs,
received the DKE 25Year Award, given by Elsevier, publisher of the Data and
Knowledge Engineering journal to celebrate the 25 years of the journal.

A conference of this magnitude involves the work of many people. We would like
to thank our General Chair, Antoni Olivé, who served as the main interface between
the Program Committee and the local organization team. We also thank the ER Steer-
ing Committee Liaison, David W. Embley, for providing directional instructions as
well as paper reviewing assistance in cases of need. Our work was made easier by
relying on the MyReview conference management system, developed by Philippe
Rigaux.

Finally, we would like to thank all the authors of the submitted papers, whether
accepted or not, for their contribution in maintaining the high quality of this confer-
ence. We count on all your continual support in the future in making significant con-
tributions to the conceptual modeling community.

 Qing Li

Stefano Spaccapietra
Eric Yu

ER 2008 Conference Organization

Honorary Conference Chair

Peter Chen Louisiana State University, USA

General Conference Chair

Antoni Olivé Universitat Politècnica de Catalunya, Spain

Program Committee Co-chairs

Qing Li City University of Hong Kong, China
Stefano Spaccapietra École Polytechnique Fédérale de Lausanne,

Switzerland
Eric Yu University of Toronto, Canada

Organization Co-chairs

Ernest Teniente Universitat Politècnica de Catalunya, Spain
Joan A. Pastor Universitat Oberta Catalunya, Spain

Workshops Co-chairs

Il-Yeol Song Drexel University, USA
Mario Piattini Universidad de Castilla, La Mancha, Spain

PhD Workshops Co-chairs

John Mylopoulos University of Toronto, Canada
Jordi Cabot Universitat Oberta Catalunya, Spain
Giancarlo Guizzardi Federal University of Espírito Santo, Brazil
 Laboratory for Applied Ontology ISTC-CNR, Italy

Demos Co-chairs

Martin Gogolla University of Bremen, Germany
Juan Carlos Trujillo Universidad de Alicante, Spain

 Organization X

Tutorials Co-chairs

Jolita Ralyté University of Geneva, Switzerland
Vicente Pelechano Universidad Politécnica de Valencia, Spain

Panels Co-chairs

Paul Johannesson Stockholm University and the Royal Institute of
Technology, Sweden

Pericles Loucopoulos Loughborough University, UK

Steering Committee Liaison

David W. Embley Brigham Young University, USA

Local Organization

Sponsor Chairs Maria R. Sancho, Joan A. Pastor
Publicity Chair Jordi Cabot
Treasurer Cristina Gómez
Webmasters Jordi Conesa, Xavier de Palol
Venue Chair Dolors Costal
Social Events Co-chairs Enric Mayol, Ruth Raventós
Registration Co-chairs Anna Queralt, Elena Planas, Albert Tort

Program Committee

Carlo Batini Università degli studi di Milano-Bicocca, Italy
Sonia Bergamaschi Università di Modena e Reggio Emilia, Italy
Philip Bernstein Microsoft Research, USA
Alex Borgida Rutgers University, USA
Boualem Benatallah University of New South Wales , Australia
Mokrane Bouzeghoub Université de Versailles, France
Shawn Bowers UC Davis Genome Center, USA
Isabelle Comyn-Wattiau CNAM and ESSEC, France
Philippe Cudre-Mauroux EPFL, Switzerland
Bernardo Cuenca Grau University of Manchester, UK
Ernesto Damiani University of Milan, Italy
Mathieu d'Aquin The Open University, UK
Valeria De Antonellis University of Brescia, Italy
Olga De Troyer Vrije Universiteit Brussel, Belgium
Lois Delcambre Portland State University, USA
Jan Dietz Delft University of Technology, The Netherlands
Hans-Dieter Ehrich Technische Universität Braunschweig, Germany

 Organization XI

David W. Embley Brigham Young University, USA
Vadim Ermolayev Zaporozhye National University, Ukraine
Thibault Estier Université de Lausanne, Switzerland
Jérôme Euzenat INRIA and LIG, France
Avigdor Gal Israel Institute of Technology, Israel
Paolo Giorgini University of Trento, Italy
Angela Goh Nanyang Technological University, Singapore
Mohand-Said Hacid University Lyon 1, France
Jean-Luc Hainaut University of Namur , Belgium
Sven Hartmann Massey University, New Zealand
Brian Henderson-Sellers University of Technology, Australia
Carlos Heuser Universidade Federal do Rio Grande do Sul, Brazil
Patrick Heymans University of Namur and PReCISE, Belgium
Carlos Hurtado Universidad de Chile, Chile
Arantza Illarramendi Basque Country University, Spain
Manfred Jeusfeld Tilburg University, The Netherlands
Paul Johannesson Stockholm University and the Royal Institute of

Technology, Sweden
Gerti Kappel Vienna University of Technology, Austria
Kamalakar Karlapalem IIIT-Hyderbad , India
Markus Kirchberg Institute for Infocomm Research, A*STAR, Singapore
Yasushi Kiyoki Keio University, Japan
Manolis Koubarakis National and Kapodistrian University of Athens,

Greece
Alberto Laender Universidade Federal de Minas Gerais, Brazil
Chiang Lee National Cheng-Kung University , Taiwan, R.O.C.
Julio Cesar Leite Pontifícia Universidade Católica do Rio de Janeiro,

Brazil
Stephen Liddle Brigham Young University, USA
Michele Missikoff IASI-CNR, Italy
Mukesh Mohania IBM India Research Lab, India
Renate Motschnig University of Vienna, Austria
Moira Norrie ETH Zurich, Switzerland
Jyrki Nummenmaa University of Tampere, Finland
Andreas Oberweis Universität Karlsruhe, Germany
José Palazzo M. de Oliveira Federal University of RS - UFRGS, Brazil
Christine Parent Université de Lausanne, Switzerland
Jeffrey Parsons Memorial University of Newfoundland, Canada
Óscar Pastor Universidad Politécnica de Valencia, Spain
Mor Peleg University of Haifa, Israel
Zhiyong Peng Wuhan University, China
Barbara Pernici Politecnico di Milano, Italy
Dimitris Plexousakis University of Crete, Greece
Jaroslav Pokorny Charles University, Czech Republic
Alex Poulovassilis University of London, UK
Sudha Ram University of Arizona, USA
Tore Risch Uppsala University, Sweden

 Organization XII

Colette Rolland Université Paris 1, France
Matti Rossi Helsinki School of Economics, Finland
Motoshi Saeki Tokyo Institute of Technology, Japan
Monica Scannapieco Università degli Studi di Roma "La Sapienza", Italy
Klaus-Dieter Schewe Massey University, New Zealand
Marc H. Scholl University of Konstanz, Germany
Keng Siau University of Nebraska-Lincoln, USA
Il-Yeol Song Drexel University, USA
Veda Storey Georgia State University, USA
Heiner Stuckenschmidt Universität Mannheim, Germany
Rudi Studer Institut AIFB - Universität Karlsruhe (TH), Germany
Andrei Tamilin Bruno Kessler Foundation - IRST, Italy
Dimitri Theodoratos New Jersey Institute of Technology, USA
Guy De Tré Ghent University, Belgium
Juan Trujillo University of Alicante, Spain
Holger Wache University of Applied Sciences Northwestern

Switzerland (FHNW), Switzerland
Gerd Wagner Brandenburg University of Technology, Germany
X.Sean Wang University of Vermont, USA
Kyu-Young Whang Korea Advanced Inst. of Science and Technology,

Korea
Roel Wieringa University of Twente, The Netherlands
Carson Woo University of British Columbia, Canada
Jian Yang Macquarie University, Australia
Dongqing Yang Peking University, China
Jeffrey Yu Chinese University of Hong Kong, China
Yanchun Zhang Victoria University, Australia
Shuigeng Zhou Fudan University, China
Esteban Zimányi Université Libre de Bruxelles, Belgium

External Referees

Carola Aiello
Sofia Athenikos
George Baryannis
Domenico Beneventano
Jesus Bermudez
Serge Boucher
Vanessa Braganholo
Petra Brosch
Jordi Cabot
Cinzia Cappiello
Marco Antonio Casanova
Sven Casteleyn
Syin Chan
Wen-Hsin Chang

Yi-Shiang Chang
Po-Chia Chen
Chi-Wei Chen
Dickson Chiu
Philipp Cimiano
Andreas Classen
Fabiano Dalpiaz
Jérôme David
Antonio De Nicola
Giovanni Denaro
Matteo Di Gioia
Ion-Mircea Diaconescu
Cédric Du Mouza
Flavio Antonio Ferrarotti

Virginia Franqueira
Renata Galante
Michael Grossniklaus
Christian Gruen
Francesco Guerra
Peter Haase
Hakim Hacid
Yanan Hao
Dat Hoang
Siv Hilde Houmb
Horst Kargl
Zoubida Kedad
Woralak Kongdenfha
Kiriakos Kritikos

 Organization XIII

Nadira Lammari
Chan Le Duc
Ki Jung Lee
Jonathan Lemaitre
Mario Lezoche
Sebastian Link
Hong-Cheu Liu
Jung-Bin Luo
Jiangang Ma
Svetlana Mansmann
Leonardo Mariani
Raimundas Matulevicius
Christian Meilicke
Sergio Mergen
Milan Milanovic
Irena Mlynkova
Mirella Moro
Hamid Motahari
Hans Mulder
Kreshnik Musaraj
Vivi Nastase
Martin Necasky
Wee Siong Ng
Oana Nicolae
Mirko Orsini

Matteo Palmonari
Emilian Pascalau
Gabriella Pasi
Bram Pellens
Verónika Peralta
Laura Po
Elaheh Pourabbas
Nicolas Prat
Rodolfo Resende
Marco Rospocher
Raul Ruggia
Seung Ryu
Deise Saccol
Antonio Sala
Ana Carolina Salgado
Yacine Sam
Germain Saval
Anne Schlicht
Martina Seidl
Frédéric Servais
Samira Si-Saïd Cherfi
Tomas Skopal
Stefanos Souldatos
George Stoilos
Ljiljana Stojanovic

Nenad Stojanovic
Francesco Taglino
Puay-Siew Tan
Aries Tao
Rainer Telesko
Linda Terlouw
Bernhard Thalheim
Ornsiri Thonggoom
Thanh Tran
Thu Trinh
Pascal van Eck
Steven van Kervel
Boris Verhaegen
Maurizio Vincini
Gianluigi Viscusi
Denny Vrandecic
Hung Vu
Bing-Jyun Wang
Qing Wang
Yi Wang
Rob Weemhoff
Xiaoying Wu
Zhong-Jer Yeh
Lucas Zamboulis
Jane Zhao

Organized by

Universitat Politècnica de Catalunya
Universitat Oberta de Catalunya

Sponsored by

The ER Institute
Commissionat Universitats i Recerca (Generalitat de Catalunya)
Ministerio de Educación y Ciencia (Gobierno de España)
Elsevier
Universitat Internacional de Catalunya
Universitat Politècnica de Catalunya
Universitat Oberta de Catalunya
Grupo Alarcos (Universidad de Castilla-La Mancha)

In Cooperation with

ACM SIGMIS
ACM SIGMOD

Table of Contents

Keynotes

Conceptual Modeling Meets the Human Genome . 1
Óscar Pastor

Relationship Web: Spinning the Web from Trailblazing to Semantic
Analytics . 12

Amit Sheth

PIM Meets Web 2.0 . 15
Moira C. Norrie

Novel Semantics

Developing Preference Band Model to Manage Collective Preferences . . . 26
Wilfred Ng

A Conceptual Modeling Framework for Expressing Observational Data
Semantics . 41

Shawn Bowers, Joshua S. Madin, and Mark P. Schildhauer

Towards a Compositional Semantic Account of Data Quality
Attributes . 55

Lei Jiang, Alex Borgida, and John Mylopoulos

Ontology

A Formal Model of Fuzzy Ontology with Property Hierarchy and
Object Membership . 69

Yi Cai and Ho-fung Leung

What’s in a Relationship: An Ontological Analysis 83
Giancarlo Guizzardi and Gerd Wagner

An Upper Level Ontological Model for Engineering Design Performance
Domain . 98

Vadim Ermolayev, Natalya Keberle, and Wolf-Ekkehard Matzke

Patterns

A Multi-level Methodology for Developing UML Sequence Diagrams 114
Il-Yeol Song, Ritu Khare, Yuan An, and Margaret Hilsbos

XVI Table of Contents

Content Ontology Design Patterns as Practical Building Blocks for
Web Ontologies . 128

Valentina Presutti and Aldo Gangemi

Quality Patterns for Conceptual Modelling . 142
Samira Si-Säıd Cherfi, Isabelle Comyn-Wattiau, and Jacky Akoka

Privacy, Compliance, Location

Automating the Extraction of Rights and Obligations for Regulatory
Compliance . 154

Nadzeya Kiyavitskaya, Nicola Zeni, Travis D. Breaux,
Annie I. Antón, James R. Cordy, Luisa Mich, and John Mylopoulos

Location-Based Software Modeling and Analysis: Tropos-Based
Approach . 169

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

Risk Evaluation for Personal Identity Management Based on Privacy
Attribute Ontology . 183

Mizuho Iwaihara, Kohei Murakami, Gail-Joon Ahn, and
Masatoshi Yoshikawa

Process mgt and Design

Beyond Control-Flow: Extending Business Process Configuration to
Roles and Objects . 199

Marcello La Rosa, Marlon Dumas, Arthur H.M. ter Hofstede,
Jan Mendling, and Florian Gottschalk

Value-Driven Coordination Process Design Using Physical Delivery
Models . 216

Roel Wieringa, Vincent Pijpers, Lianne Bodenstaff, and
Jaap Gordijn

Relaxed Compliance Notions in Adaptive Process Management
Systems . 232

Stefanie Rinderle-Ma, Manfred Reichert, and Barbara Weber

Process Models

On Measuring Process Model Similarity Based on High-Level Change
Operations . 248

Chen Li, Manfred Reichert, and Andreas Wombacher

Recommendation Based Process Modeling Support: Method and User
Experience . 265

Thomas Hornung, Agnes Koschmider, and Georg Lausen

Table of Contents XVII

On the Formal Semantics of Change Patterns in Process-Aware
Information Systems . 279

Stefanie Rinderle-Ma, Manfred Reichert, and Barbara Weber

Queries

Modeling and Querying E-Commerce Data in Hybrid Relational-XML
DBMSs . 294

Lipyeow Lim, Haixun Wang, and Min Wang

Approximate Probabilistic Query Answering over Inconsistent
Databases . 311

Sergio Greco and Cristian Molinaro

Conjunctive Query Containment under Access Limitations 326
Andrea Cal̀ı and Davide Martinenghi

Similarity and Coherence

Automatic Extraction of Structurally Coherent Mini-Taxonomies 341
Khalid Saleem and Zohra Bellahsene

Analysis and Reuse of Plots Using Similarity and Analogy 355
Antonio L. Furtado, Marco A. Casanova,
Simone D.J. Barbosa, and Karin K. Breitman

Discovering Semantically Similar Associations (SeSA) for Complex
Mappings between Conceptual Models . 369

Yuan An and Il-Yeol Song

Space and Time

An Adverbial Approach for the Formal Specification of Topological
Constraints Involving Regions with Broad Boundaries 383

Lotfi Bejaoui, François Pinet, Michel Schneider, and Yvan Bédard

Capturing Temporal Constraints in Temporal ER Models 397
Carlo Combi, Sara Degani, and Christian S. Jensen

Temporal Constraints in Non-temporal Data Modelling Languages 412
Peter McBrien

System Design

Integrated Model-Driven Development of Goal-Oriented Data
Warehouses and Data Marts . 426

Jesús Pardillo and Juan Trujillo

XVIII Table of Contents

Design Metrics for Data Warehouse Evolution . 440
George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, and
Yannis Vassiliou

A Domain Engineering Approach for Situational Method Engineering . . . 455
Anat Aharoni and Iris Reinhartz-Berger

Translation, Transformation, and Search

Retune: Retrieving and Materializing Tuple Units for Effective
Keyword Search over Relational Databases . 469

Guoliang Li, Jianhua Feng, and Lizhu Zhou

Model Driven Specification of Ontology Translations 484
Fernando Silva Parreiras, Steffen Staab, Simon Schenk, and
Andreas Winter

Dealing with Usability in Model Transformation Technologies 498
Jose Ignacio Panach, Sergio España, Ana M. Moreno, and
Óscar Pastor

Demo

Ontology Coordination: The iCoord Project Demonstration 512
Silvana Castano, Alfio Ferrara, Davide Lorusso, and
Stefano Montanelli

Designing Similarity Measures for XML . 514
Ismael Sanz, Maŕıa Pérez, and Rafael Berlanga

SESQ: A Model-Driven Method for Building Object Level Vertical
Search Engines . 516

Ling Lin, Yukai He, Hang Guo, Ju Fan, Lizhu Zhou, Qi Guo, and
Gang Li

HealthSense: An Application for Querying Raw Sensor Data 518
Fabrice Camous, Dónall McCann, and Mark Roantree

Visual SQL: Towards ER-Based Object-Relational Database
Querying . 520

Bernhard Thalheim

SAMSTAR: An Automatic Tool for Generating Star Schemas from an
Entity-Relationship Diagram . 522

Il-Yeol Song, Ritu Khare, Yuan An, Suan Lee, Sang-Pil Kim,
Jinho Kim, and Yang-Sae Moon

Constraint-Aware XSLT Evaluation . 524
Ming Li, Murali Mani, and Elke A. Rundensteiner

Table of Contents XIX

A Quality Circle Tool for Software Models . 526
Hendrik Voigt and Thomas Ruhroth

Generating and Optimizing Graphical User Interfaces for Semantic
Service Compositions . 528

Eran Toch, Iris Reinhartz-Berger, Avigdor Gal, and Dov Dori

REMM-Studio+: Modeling Variability to Enable Requirements Reuse . . . 530
Begoña Moros, Cristina Vicente-Chicote, and Ambrosio Toval

A Conceptual-Model-Based Computational Alembic for a Web of
Knowledge . 532

David W. Embley, Stephen W. Liddle, Deryle Lonsdale,
George Nagy, Yuri Tijerino, Robert Clawson, Jordan Crabtree,
Yihong Ding, Piyushee Jha, Zonghui Lian, Stephen Lynn,
Raghav K. Padmanabhan, Jeff Peters, Cui Tao, Robby Watts,
Charla Woodbury, and Andrew Zitzelberger

MDBE: Automatic Multidimensional Modeling . 534
Oscar Romero and Alberto Abelló

Oryx – Sharing Conceptual Models on the Web . 536
Gero Decker, Hagen Overdick, and Mathias Weske

Providing Top-K Alternative Schema Matchings with OntoMatcher . . . 538
Haggai Roitman, Avigdor Gal, and Carmel Domshlak

Role and Request Based Conceptual Modeling – A Methodology and a
CASE Tool . 540

Yair Wand, Carson Woo, and Ohad Wand

AutoMed Model Management . 542
Andrew Smith, Nikos Rizopoulos, and Peter McBrien

QUINST: A Metamodeling Tool . 544
Xavier Burgués, Xavier Franch, and Josep M. Ribó

An Implementation of a Query Language with Generalized
Quantifiers . 547

Antonio Badia, Brandon Debes, and Bin Cao

Author Index . 549

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 1–11, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Conceptual Modeling Meets the Human Genome

Oscar Pastor

Centro de Investigación en Métodos de Producción de Software –PROS-.
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
opastor@dsic.upv.es

Abstract. Looking backwards, it makes sense to discuss the value that Concep-
tual Modeling has provided to the Information Systems Design and Develop-
ment area. Thinking about the present, the most advanced Software Engineering
approaches oriented to producing quality software propose using extensively
conceptual model-based approaches. Conceptual Modeling is widely used in the
Information Systems domain. Nevertheless, in terms of Conceptual Model Evo-
lution, we should wonder which new application domains will become more
challenging for Conceptual Modeling in the very near future. In an attempt to
answer that question, one path to follow is associated to the Bioinformatics do-
main and specifically, to confront the problem of precise understanding of the
Human Genome. The problems related to this topic have become first-order is-
sues in which, curiously, the role of Conceptual Modeling has not yet been fully
exploited. The comprehension of the Human Genome is an extremely attractive
topic for future research taking into account the continuous and increasing in-
terest that is being generated. Therefore, it is worth analyzing how Conceptual
Modeling principles, methods and techniques could help to face the problem
and how Conceptual Modeling could aid to provide more efficient solutions.
The basic goal of this talk will be the introduction and the discussion of these
ideas. If we look at the Human Genome as the representation of some Concep-
tual Model –which is not yet known-, interesting analogies with the modern
Model-Driven Software Development principles appear. As a precise interpreta-
tion of the Human Genome would be much easier if the underlying model were
known, Conceptual Modeling can provide new ways of facing that problem in
order to obtain new and better strategies and solutions.

Keywords: Conceptual Modeling, Bioinformatics, Human Genome.

1 Introduction

If we look at the past, it makes sense to discuss the strong value that Conceptual
Modeling has provided to Information Systems Design and Development. If we look
at the present, we see how the most advanced Software Engineering approaches,
which are oriented to producing software with the required quality, extensively use
models under the acronyms of Model Driven Development (MDD), Model-Based
Code Generation (MBCD), Model-Driven Architectures (MDA), etc. Nowadays,
Conceptual Modeling is widely used in the Information Systems domain. If we look

2 O. Pastor

at the future, we could wonder what kind of new application domains could become
more challenging for Conceptual Modeling.

Specifically, the Bioinformatics domain in general (and the understanding of the
Human Genome in particular) are currently considered to be first-order issues, where
the role of Conceptual Modeling has not yet been fully exploited. Considering the
continuous and increasing interest of this domain, analyzing how Conceptual Model-
ing principles, methods and techniques could help to improve the current ways of
facing the problem and how Conceptual Modeling could help to provide more effi-
cient solutions, is an extremely attractive topic.

The introduction and the discussion of these ideas are the basic goals of this key-
note speech. Describing the Human Genome as a representation of some mainly still
unknown Conceptual Model, analogies with the main Model-Driven Software Devel-
opment conventional principles will be analyzed in order to achieve a precise inter-
pretation of the Human Genome.

Current and future scenarios based on these ideas will be introduced. If Conceptual
Modeling is being an effective approach for providing a sound linkage between con-
cepts and their associated software representation –facilitating the understanding of
where programs (seen as conceptual model representations) come from-, why not
conclude that Conceptual Modeling can be equally effective in understanding the
Human Genome (seen as a representation of a Conceptual Model) by extracting the
concepts that are behind it? Since the interpretation of the Human Genome is a big
challenge for the scientific community, the use of Conceptual Modeling-based notions
and methods to undertake this problem will open exciting scenarios finding more
efficient scientific strategies with their corresponding set of original solutions, tools
and subsequent practical applications.

2 Will Genome Conceptual Modelling Really Make Things
Better?

Why use Conceptual Modelling for understanding genomic information? How can the
application of Conceptual Modeling techniques help to improve the current strategies
that are used to confrontfor facing that challenging problem? These are the main ques-
tions to be answered in this talk. Firstly, virtually everything that is known about
genomes and genome expression has been discovered by scientific research: it is said
to be quite normal to learn “facts” about genomes without knowing very much about
“why” they happen as discovered. This lack of conceptual understanding is an inter-
esting first problem.

Secondly, understanding requires precise definitions. Too often, vague descriptions
appear associated to basic bioinformatics concepts. This imprecise definition of con-
cepts is a second problem. As already commented in [1], the provision of clear and
intuitive models is fundamental to be able to have an effective description and man-
agement of genomic data. Also, we read in [2] that the idealistic goals of systems and
synthetic biology will not be feasible without the engaged contribution of computer
scientists. The role of Computer Scientists should not be limited to the implementa-
tion level. Indeed, I would like to emphasize that the role of Conceptual Modeling is
still more important. We could say that the conventional view of a computer scientist

 Conceptual Modeling Meets the Human Genome 3

in the Bioinformatics domain is that of an engineer providing more processing power
and more refined algorithms intended to process larger and larger amounts of infor-
mation, normally trying to discover or infer specific patterns in the genome. Instead, a
computer scientist should be perceived as a conceptual modeller of reality, in this
case, as a modeller of how life works.

That fundamental conceptual perspective is too often just not present. If biological
cells are seen as an alternative to current hardware, it is logical to conclude that a
software analogy should be engineered to direct cells to produce useful artifacts or
substances. However models should play a fundamental role in that scenario, as they
are considered to play a basic role in what we could call “conventional” software
production methods. Additionally, through the use of models, it would become possi-
ble to characterize conceptual patterns seen as modelling primitives related to those
human aspects that are represented in that “biological” low-level software that the
human genome constitutes. In that case, we could reuse the Model-Driven Develop-
ment (MDD) “metaphor” of moving from the Problem Space (a conceptual model of
the human genome now) to the Solution Space (the human beings that constitute its
running implementation).

Conceptual Modeling could provide the necessary basis to have a consistent and
integrated representation of genomic data. While the biological community is building
and dealing with increasingly complex models and simulations of cells and lots of
biological entities, it is our belief that conceptual models can improve communication
among the involved actors. Through the use of conceptual models, it will be possible
to fix the relevant concepts, abstracting those biological system components that are
really required to describe and understand how the human genome works. By having
a proper conceptual model, the relevant biological information will be preserved and
understood by all the different researchers involved in the challenge of interpreting
the human genome. Models are useful to provide different views of the relevant in-
formation that are properly adapted to different user needs. Another important issue is
that such a conceptual model should include both system structure and system behav-
iour. On the one hand, a data model must be provided to characterize the static system
architecture, specifying the classes and their relationships that make up the structural
genome. On the other hand, a process model has to fix the behaviour that is attached
to this structure. In most of the text books about biological systems, functional bio-
logical information often appears to be drawn with somewhat inconsistent or at least
highly complicated nodes and arrows. As a consequence the readers are often con-
fused because a vague view about how a biological system works is provided to them,
especially when they do not have enough knowledge about the biological systems.
Putting the information in a Process Diagram –which is complementary to the former
Entity-Relationship Diagram- will package the precise information required to under-
stand the basic structure and the subsequent behaviour of the involved biological
complex system that is analyzed.

In that context, understanding how a genome specifies the biochemical capability
of a living cell, and subsequently, the rules that determine our perceived behaviour, is
the major research challenge of modern Bioinformatics. Conceptual Modeling can
provide extremely attractive and efficient answers to this challenge. In the next sec-
tion, we are going to explain in further detail that process of conceptual modelling
analysis, starting from a basic entity-relationship modelling intended to characterize

4 O. Pastor

the structural view of the genome. This view should be complemented with the sub-
sequent process modelling perspective, which is not dealt with in this paper although
it will be briefly analyzed in the talk. This behavioural model includes the processes
of transcription –in which individual genes are copied into RNA molecules- and
translation -where the proteins that make up the proteome (the cell’s repertoire of
proteins) are synthesized by translation of the individual RNA molecules present in
the transcriptome (RNA copies of the active protein-coding genes). According to this
genome taxonomy, transcriptome (the result of the transcription process) and pro-
teome (the result of the translation process) ([8]), we are going to focus our next mod-
elling efforts on the Genome, seen as a store of biological information that is in its
own unable to release that information to the cell, because the utilization of its bio-
logical information requires the coordinated activity of enzymes and other proteins
which participate in a complex series of biochemical reactions referred to as genome
expression.

3 A Conceptual Schema for the Human Genome

If, for instance, we want to elaborate an Entity-Relationship Diagram to represent the
basic genomic concepts, their precise definition will be a need. At least, we are forced
to determine in detail what we mean by any given concept. A common agreement in a
shared definition for such a fundamental concept as the “gene” concept becomes an
extremely interesting issue. We could start saying that the most modern definition
basically accepts that a gene is a union of genomic sequences encoding a coherent set
of potentially overlapping functional products ([3],[4]). This definition manifests how
integral the concept of biological function is in defining genes: they are not character-
ized by their precise structure, which probably exists, but which is mostly still
unknown. What precisely characterizes a gene is what it does from a functional per-
spective, specifically which protein or proteins it can exactly code.

However, as stated above, things are not so simple. When a Conceptual Modeler
enters the game of understanding what exactly a gene is, and when one tries to char-
acterize the “gene” entity, it is surprising to see how many different definitions exist,
and how difficult it becomes to fix the subset of observable properties associated to
the gene notion, as position (start and end of the DNA chain), sequence of nucleo-
tides, etc. that should allow a gene in a DNA chain to be identified uniquely. These
properties can vary in different individual of the same specie. In other modelling
domains, if this situation occurs, one external property is added to the object to iden-
tify it. For instance, a tree in a forest or sheep in a flock can be labelled. But it is not
so easy to label a gene within a DNA chain. In the genomic data repositories, genes
are named, but that name is even not unique.

In the literature, there are different gene definitions that come from different
prominent authors and works. Currently, there are clear discrepancies between what
we could call a previous protein-centric view of the gene, and one that is revealed by
the extensive transcriptional activity of the genome. For instance, in [3] and [4], em-
phasis is placed on genomic sequences at the DNA level and what they do in terms of
protein production, while in [5] the point is that at the DNA level, the gene cannot yet

 Conceptual Modeling Meets the Human Genome 5

be directly identified and the formation of the mRNA and its expression must be ana-
lyzed in time and space to characterize the gene function at translation time. Taking
into account these works, we could even question whether the gene concept exists as a
precise concept! Obviously, when genetists make an experiment and they look for a
given gene in an DNA sequence, they find it and they manipulate it with certainty.
Furthermore, when they talk about a gene, they know what they are talking about.
The immediate conclusion is that observable properties that allow it to be recognized
do exist. But which properties we are talking about exactly is not so clear when we
enter in further detail. Conceptual Modeling can provide a lot of knowledge in that
context.

As an example of these ideas, we now present an Entity-Relationship Diagram to
describe a gene. The intention is twofold: i) on the one side, to show how conceptual
modelling forces us to understand and to define with precision what we are talking
about, and ii) to open the door to implement a concrete database corresponding to the
conceptual schema, whose context would be clearly structured and ready to be used as
a data repository of reference for further, concrete experimentation. Such a unified
database including all the information related with genes, their characteristics and
their concise behaviour would constitute a first-order result in the current context,
where information is spread in a lot of different repositories, with strong problems of
interoperability and often with inconsistencies and useless information.

This problem has been intensively reported in the last years. Ram in [9] discusses
how difficult it is to connect all those data sources seamlessly unless all the data is
transformed into a common format. Different solutions to try to overcome this prob-
lem exist, as those based on using the notion of seed [10], from which an extraction
ontology can be generated in order to collect as much related information as possible
from online accessible repositories. But in any case all these solutions are always
partial solutions, and the underlying problem of lack of uniformly structured data
across related biomedical domains is a barrier that is always present.

3.1 A Model for Chromosomes

Even if in this section we restrict ourselves to the gene concept due to obvious size
constraints, let us first introduce some basic genome concepts to show the huge
amount of complexity associated to the goal of modelling any genome in general, and
certainly for the human genome in particular.

In biology, the genome of an organism is its whole hereditary information and is
encoded in the DNA (or, for some viruses, RNA). A genome includes all the genetic
material present in the cells of an organism. In eukaryote beings – those whose cells
are organized into complex structures enclosed within membranes, including a nu-
cleus- genome refers to the DNA contained in the nucleus and organized in chromo-
somes. A very basic hierarchy of concepts can be seen in Fig.1, where the highest
level is constituted by the cell, and the lowest level is made up of chromosomes and
genes.

The genome of an organism is a complete genetic sequence on one set of chromo-
somes. Chromosomes are organized structures of DNA and proteins that are found in
cells. A gene is basically a locatable region of genomic sequence, corresponding to a
unit of inheritance, although an attempt to define it precisely is the goal of this section.

6 O. Pastor

Fig. 1. From the cell to the genes, through the chromosomes

For our modelling purpose, the chromosome segment is the first relevant structure
within a chromosome to be specified. By a chromosome segment we refer to i) a set
of genic sequences that also includes regulator sequences, or ii) nongenic sequences
including other chromosomic elements and intergenic elements. This basic structure is
graphically depicted and can be analyzed in Fig. 2.

A chromosome segment could be seen as a DNA sequence constituted by different
genic or non-genic sequences. Instead of looking at a chromosome segment as a union
of different types of DNA sequences, we will model a chromosome segment as a con-
ceptualization of any relevant type of DNA sequence that is present in a chromosome.
From the modelling representation perspective, this means that a specialization relation-
ship will be used instead of an aggregation or association relationship. As we will see
later, a parent entity ChromosomeSegment will be specialized in a set of disjoint, de-
scendent entities that represent the different existing, relevant types of chromosome
segments. In this way, the chromosomes can be defined as an ordered sequence of
chromosome segments that have a precise functionality and that can overlap.

We will refer to these types of chromosome segments as genic and non-genic seg-
ments. By a genic segment we mean a DNA segment made up of the following com-
ponents:

• A Promoter, which is a DNA sequence that controls the start of the transcription
process.

• A Transcribed Sequence, constituted by a set of nucleotides that contain the in-
structions that have to be transcribed and translated in order to synthesize a
given protein for a specific gene. It has a precise start and end point defined by
particular codons (combinations of three nucleotides with that special function).

• A Terminator, which is a DNA sequence that signals the end of a gene, or more
precisely the end of a transcription chain.

• An Enhancer is a DNA sequence that includes the instructions that fix where
and how much a gene will express itself.

 Conceptual Modeling Meets the Human Genome 7

Fig. 2. A chromosome segment can denote either a genic segment (a transcribed sequence, a
promoter, a terminator or an enhancer), or a non-genic region which includes non-coding DNA
located in between the genic segments

Promoters and terminators are called regulators sequence. To include them in the
genic segment is a controversial issue. We have decided to model them in that way,
considering that they are an important part in explaining and understanding the gene
function. Similarly, how to model the enhancer is an interesting issue. It can be lo-
cated either within the Transcribed Sequence, or in the non-genic segment, or even it
could even be outside of the considered chromosome segment.

The non-genic segments refer to sequences of nucleotides that are considered non
transcribable material. Nevertheless, they are part of the chromosome segment as chro-
mosomal elements or intergenic regions, with some particular function probably still
unknown. By chromosomal elements we mean the following three different types of
regions:

1. ORI, which is are a specific DNA sequence required to start a replication.
2. Centromeres, which are regions that are often found in the middle of the chro-

mosome. They are involved in cell division and the control of gene expression.
3. Telomeres, that constitutes the ending extreme of the chromosomes. They are

non-coding DNA regions, which are highly repetitive and which have the main
function of assuring chromosome structural stability.

3.2 A Conceptual Schema Proposal for the Human Genome

Taking into account the previous information, we can have an idea of the degree of
complexity attached to all the components together with all their interactions involved
in the genome structure. In order to understand the genome fundamentals, we propose
a Conceptual Schema that could adequately represent all the introduced concepts.
This Conceptual Schema, which includes the classes specification, the definition of
relationships and the declaration of integrity constraints, provides a basis to fix the
main features that are considered relevant to characterize the basic components of the
human genome. Fig. 3 presents that proposed schema.

8 O. Pastor

Fig. 3. An ER Conceptual Schema for representing the main components that are relevant to
understand the structure of the Human Genome

In this paper, we list the attributes of entities only when these are considered to be
important to the understanding of the model as a whole. Obviously, listing all the
relevant attributes of all the entities would consume a prohibitive amount of space.
Further details will be provided during the keynote address. As usual in the scope of
Conceptual Modeling, the final selection of entities, attributes, relationships, cardinal-
ities for relationships, etc. fixes and defines a specific structure that is the result of the
modeler decisions, which has direct implications on the intended use of the model in
empirical settings. A corresponding database would include the contents according to
the model structure. A further characterization of functional products associated to
particular genes would have, for instance, a strong impact on the management of
biological, biomedical and healthcare knowledge representation. This could, for ex-
ample, accelerate the development of solutions for the pharmacological and medical
industries by benefitting from knowledge reuse and inferencing capabilities.

Many aspects are to be considered, which will be analyzed carefully during the
keynote address. The model is full of extremely relevant details. In this short, written
presentation, let’s mention some of them. For instance, we can observe that:

□ a genic segment is associated not only with a transcribed sequence, but also
with its functionally relevant regulator components: promoter, terminator and
enhancer;

□ inter-chromosome segments do not exist since each chromosome segment only
belongs to one chromosome;

□ chromosome segments are specialized in genic and non-genic segments to rep-
resent those parts of the segment that correspond to the genes, and those that

 Conceptual Modeling Meets the Human Genome 9

represent intergenic regions or chromosomic elements, composed by (at least
as far as it is currently known) non-coding DNA sequences;

□ genes are related to genic segments in a many-to-many way, which covers the
gene view as a union of genomic sequences encoding a coherent set of poten-
tially overlapping functional products;

□ integrity constraints can be specified to declare specific properties. For in-
stance, it appears to be a natural order in the way in which the different types
of sequences appear within a genic segment: first, a promoter; then a tran-
scribed sequence; and finally, a terminator. The following constraint based on
the start and end attributes of the involved parts could be used to specify that
property:

RI: Promoter.end > Promoter.start and
 Terminator.end > Terminator.start and
 Terminator.start > Promoter.end and
 TranscribedSequence.start > Promoter.end and

 TranscribedSequence.end < Terminador.start

Broadly speaking, the Conceptual Schema must answer important questions that
are present even today in the genomic domain. Is there a distinction between genic
and intergenic segments? The Conceptual Schema provides a positive answer by
distinguishing between genic and nongenic segments, depending on the coding DNA
sequences associated to the rich tapestry of transcription involving alternative splic-
ing. Splicing (including alternative splicing) and intergenic transcription are also
some of the most problematic aspects.

Other modeling approaches could be considered. In the works presented in [1] and
[6], chromosome segments are specialized in Transcribed and Non-Transcribed re-
gions, instead of the presented specialization of Genic and Non-Genic segments. A
Transcribed Region is then associated to a set of Primary Transcripts, while Regula-
tory Sequences are attached to Non-Transcribed Regions. As regulatory regions are
important for gene expression, we suggest that they should be considered as an essen-
tial part of the gene, which is in itself a controversial decision. Hence, we assume that
regulation is an integral concept in the gene definition, and we adopt the tradition of
defining a gene in molecular terms as “the entire nucleic acid sequence that is neces-
sary for the synthesis of a functional polypeptide” ([7])

At the same time, many challenging open problems assure the evolution of the
model. It appears that some of the regulatory elements may actually themselves be
transcribed. This could mean that promoters, terminators or enhancers could also be
seen as transcribed sequences. In that case, integrity constraints such as the one men-
tioned above would be incorrect. In the extreme, we could even declare the current
concept of the gene dead and try to come up with something completely new that fits
all the open, not well-solved challenges. Here, we have introduced a tentative attempt
to understand the current notion of a gene by means of Conceptual Models. On the
one hand, the proposed Conceptual Schema clarifies the currently most accepted
definitions, and on the other hand, it leaves the door open to conceptually rethinking
and adapting the existing models to the new biogenomic information that is discov-
ered day after day.

10 O. Pastor

4 Conclusions

Imagine for a moment that humans are able to develop to a very sophisticated species
of robots, whose specialized behavior is in many aspects a replication of particular
human activities. We have seen this kind of fiction in recent, successful movies.
Imagine that due to the widely commented current global climate change there is a
natural disaster that makes our civilization disappear, while this other silicon-based
life –created by humans- persists in time. Imagine for a moment that after centuries of
evolution, individuals of that silicon-based species start to wonder about where they
come from, and what the fundamentals of their life processes are –which are assumed
to be based on binary sequences of 0s and 1s-.

Trying to answer those questions just by exhaustively analyzing the execution
model of programs is as difficult as looking for a needle in a haystack. But isn’t that
just what we humans are doing when we try to understand the working mechanisms
of our life by directly exploring our intricate biological-based execution model? In
our case, instead of huge sequences of 0s and 1s, we face huge sequences of four
nucleotides (A,C,G,T), and we try to discover hidden patterns that should allow us to
understand why life processes happen as we perceive them.

How difficult could it be to discover, for instance, the notion of a foreign key –a
basic and trivial data modeling concept when it is described at the conceptual model-
ing perspective- just looking for it in the executable, machine-oriented version of a
program? Nevertheless, it is quite trivial to model a foreign key using the DDL of any
Relational Data Base Engine. In some sense, within the current Bioinformatics do-
main, we are looking for the foreign key concept directly in the assembler version of a
program. The position of this keynote address is quite clear: this is not the right way.

To understand the program encoded by any genome, we should be able to elaborate
and manipulate the models that constitute the source of which a particular implemen-
tation is an individual –a human being for the human genome- Conceptual Modeling
is consequently a basic strategy that could become the essential approach for guiding
the research in Bioinformatics.

We have outlined how a Conceptual Schema can be built to characterize the Hu-
man Genome. If such a Conceptual Schema were widely accepted, it would make
sense to create a Human Genome database whose contents would include all the es-
sential information to determine which genes synthesize which proteins. As protein
elaboration can be associated with particular human behaviors, this will open the door
to linking genes with behaviors in order to create a complete catalog of human char-
acteristics. At the same time, this level of understanding can be used to understand the
effect of mutations that cause undesired effects –illnesses- and consequently, it would
become much more feasible to face and correct them. By applying conceptual model-
ing-based techniques, we shall not only find ourselves equipped with precise defini-
tions for understanding gene expressions in terms of Molecular Biology, but we shall
also be able to devise and apply model-based transformations that could analyze gene
storage and expression in terms of information systems processing. This is a real
challenge to be overcome by the Conceptual Modeling community in the near future.

 Conceptual Modeling Meets the Human Genome 11

References

1. Paton, N., et al.: Conceptual Modeling of Genomic Information. Bioinformatics 16(6),
548–557 (2000)

2. Cohen, J.: The Crucial Role of CS in Systems and Synthetic Biology. Communications of
the ACM 51(5) (2008)

3. ENCODE Project Consortium: Identification and Analysis of Functional Elements in 1%
of the Human Genome by the Encode Pilot Project. Nature 447, 779–796 (2007),
doi:10.1038/nature05874

4. Gerstein, M.B., et al.: What is a gene, post-ENCODE? History and updated definition. Ge-
nome Res. 17, 669–681 (2007)

5. Scherrer, K., Jost, J.: Gene and genon concept: coding versus regulation. Theory Bio-
sci. 126, 65–113 (2007)

6. Paton, N., et al.: Conceptual Data Modeling for Bioinformatics. Briefings in Bioinformat-
ics 3(2), 166–180 (2002)

7. Lodish, H., et al.: Molecular cell biology, 5th edn. Freeman and Co., New York (2000)
8. Brown, T.A.: Genome 3. Garland Science Publishing (2007)
9. Ram, S.: Toward Semantic Interoperability of Heterogeneous Biological Data Sources. In:

Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, p. 32. Springer, Hei-
delberg (2005)

10. Tao, C., Embley, D.: Seed-Based Generation of Personalized Bio-ontologies for Informa-
tion Extraction. In: ER Workshops 2007, pp. 74–84 (2007)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 12–14, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Relationship Web: Spinning the Web from Trailblazing
to Semantic Analytics

Amit Sheth

Kno.e.sis Center, CSE Department
Wright State University, Dayton OH 45435-0001 USA

amit.sheth@wright.edu

Subject and object convey little without a verb and a few prepositions. Reducing this
to the subject-predicate-object representation, subject and object convey little without
predicate. Entities are lame without the relationships that associate meaning to them.
Concepts can be quite ambiguous without context or domain of discourse. Labels and
terms become meaningful when we associate them with a conceptual model or an
ontology. Semantics is about meaning and understanding, and relationships are at the
heart of semantics. And with semantics we can create more powerful search, achieve
interoperability among heterogeneous and multimodal content, and develop more
powerful analytic and discovery capabilities.

We believe, as we move from simpler to more demanding activity, from search to
integration to analysis and discovery, that the role of semantics becomes more vital and
relationships become more central. Dr. Vannevar Bush in his 1945 Atlantic Monthly
article outlined Memex, a compelling vision for information processing, in which
relationships are pivotal. Describing the human brain navigating an information space in
what he called trailblazing, Dr. Bush said, “it operates by association. With one item in
its grasp, it snaps instantly to the next that is suggested by the association of thoughts, in
accordance with some intricate web of trails carried by the cells of the brain.”

Semantic technologies and Semantic Web languages and techniques have opened
up a rich playground in which to utilize and benefit from a focus on relationships.
There has been substantial progress in entity and relationship extraction from the
Web-based text and semi-structured content that builds on longstanding research in
IR, information extraction, NLP, statistical NLP, etc. There has also been limited
success with entity/object identification from nontextual content. Semantic Web gives
us a number of capabilities that enhance our ability to exploit a variety of content and
metadata extraction capabilities. These include the following.

• Use of nomenclatures, taxonomies, domain models or ontologies that embody
collective understanding and agreements as well as provide factual knowledge to
exploit (esp. with populated ontologies), leading to largely automated or semi-
automated methods for semantic annotations.

• Use of model reference and microformats to extend XML-based language with
semantic annotations (e.g., SAWSDL for WSDL and XML schemas, SA-REST for
RESTful services and WebAPIs1, SML-S for sensor markup language2).

1 http://knoesis.org/research/srl/standards/sa-rest/

2 http://knoesis.org/research/semsci/application_domain/sem_sensor/

 Relationship Web: Spinning the Web from Trailblazing to Semantic Analytics 13

• Using semantic metadata to enrich links (i.e., HREF) or to define semantic
relationships between Web resources. For example, Metadata Reference Links was
defined as a method to add semantic metadata or facets to HREF or to define
relationships between any Web resources (including entities and concepts within
Web pages that may not have been linked a priori by a HREF).

• Ability to express semantic data in RDF, which enables representation of
relationships as first-class objects, and richer knowledge representation languages
for representing ontologies.

• Support for graph-based and inferencing techniques that deal with manipulation of
relationships for the discovery of multi-relational connection patterns between
entities.

Capabilities such as those described above support definition and exploitation of a
broad set of implicit and explicit linguistic and formal relationships [4] between Web
content and resources, independent of explicitly encoded or generated links. This
meta-web in which relationships interconnect with Web content and resources is what
we call the Relationship Web.

What metadata, annotation, and labeling are to the Semantic Web, relationships of
all forms (implicit, explicit, and formal) are to the Relationship Web. The focus on
relationships lead in turn to such advanced capabilities as:

• Faceted search: Early this decade we developed a semantic search (also called
faceted search) called Taalee Semantic search engine ([7]). A more recent example
is that of Power Set’s semantic search.

• Semantic Analytics: This includes semantic association discovery that involve
finding meaningful paths and subgraphs, similarity, causality and other pattern
discovery.3

• Trailblazing: development of an interactive, human-directed, semantic browsing
environment in which users can explore heterogeneous content from disparate
sources in a kind of stream of consciousness, identifying one item of interest and
then following contextually relevant links to another. Our recent work [2] on
semantic metadata extraction from text has allowed us to create such a browser for
biomedical literature. Combining this with data in existing curated data sources,
this vision of Semantic trails can be realized.

• Spatio-temporal-thematic (or spatio-temoral-thematic) query processing and
reasoning, leading to EventWeb [1].

• Hypothesis validation: a complementary form of analysis that allows the
specification of a complex, potentially underspecified hypotheses composed of
entities connected by relationships with constraints on these relationships
expressed as edge weights. Corroborating evidence for these hypotheses might be
gleaned from textual as well as structured sources. We envision a system
supporting piece-meal corroboration of hypothesis fragments, thereby affording the
user an investigatory tool for heterogeneous data sources.

In this talk, we will weave a number of explorations focused on relationships and
provide several examples from the domains for biomedical research, health care and

3 http://knoesis.wright.edu/projects/semdis/

14 A. Sheth

Semantic Sensor Web that have been developed or are being developed in
collaboration with the scientists and users. Complementary discussions can also be
found in [3, 5].

References

1. Jain, R.: EventWeb: Developing a Human Centered Computing System. IEEE Computer,
42–50 (February 2008)

2. Ramakrishnan, C., Mendes, P., Wang, S., Sheth, A.: Unsupervised Discovery of Compound
Entities for Relationship Extraction. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008.
LNCS(LNAI), vol. 5268. Springer, Heidelberg (2008)

3. Sheth, A., Arpinar, I.B., Kashyap, V.: Relationships at the Heart of Semantic Web:
Modeling, Discovering and Exploiting Complex Semantic Relationships. In: Nikravesh, et
al. (eds.) Enhancing the Power of the Internet Studies in Fuzziness and Soft Computing.
Springer, Heidelberg (2003)

4. Sheth, A., Ramakrishnan, C., Thomas, C.: Semantics for the Semantic Web: the Implicit, the
Formal and the Powerful. Intl. Journal on Semantic Web and Information Systems 1(1), 1–
18 (2005)

5. Sheth, A., Ramakrishnan, C.: Relationship Web: Blazing Semantic Trails between Web
Resources. IEEE Internet Computing 11(4), 84–88 (2007)

6. Shah, K., Sheth, A.: Logical information modeling of Web-accessible heterogeneous digital
assets. In: Proc. of the Advances in Digital Libraries (ADL 1998), April 1998, pp. 266–275
(1998)

7. Sheth, A., et al.: Semantic Content Management for Enterprises and the Web. Technical
report, IEEE Internet Computing, July-August, pp. 80–87 (2002)

PIM Meets Web 2.0

Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

norrie@inf.ethz.ch

Abstract. Web 2.0 refers to a new generation of web applications de-
signed to support collaboration and the sharing of user-generated con-
tent. These applications are increasingly being used, not just to share
personal information, but also to manage it. For example, a user might
use Facebook to manage their photos and personal contacts, a network-
ing site such as LinkedIn to manage professional contacts and various
project Wiki sites to manage and share information about publications
and presentations. As a result, personal data and its management become
fragmented, not only across desktop applications, but also between desk-
top applications and various Web 2.0 applications. We look at personal
information management (PIM) issues in the realm of Web 2.0, showing
how the respective communities might profit from each other.

1 Introduction

The term Web 2.0 has been adopted to refer to a new generation of web
applications specifically designed to support collaboration and the sharing of
user-generated content [1]. Applications commonly classified under Web 2.0
include social networking sites such as Facebook, sites to share and manage mul-
timedia content such as YouTube and sites that support collaborative authoring
such as Wikipedia.

Web 2.0 applications are increasingly being used not just to share personal
information, but also to manage it. For example, a user might use Facebook
to manage personal contacts and photos, networking sites such as LinkedIn to
manage professional contacts and various project Wiki sites to manage infor-
mation about publications and presentations. As a result, personal data and its
management becomes fragmented, not only across desktop applications, but also
between desktop applications and various Web 2.0 applications.

We propose that there should be a clear separation of concerns between
publishing data and managing data with the former being the task of Web 2.0
applications and the latter the task of personal information management (PIM)
systems. Further, the PIM system should provide an integrated solution to the
management of all forms of personal information management, whether related
to social or professional activities of the user, and it should also be responsi-
ble for controlling where, when and how information is published to Web 2.0
applications.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 15–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 M.C. Norrie

At the same time, we believe that the developers of PIM systems can learn
valuable lessons from the popularity of Web 2.0 applications when it comes to
designing systems for the management of personal data. Sites such as Facebook
provide simple, intuitive interfaces along with a plug-and-play architecture that
allows users to easily select and combine applications. Further, users can even
create and share their own applications.

In this paper, we examine personal information management issues in the
realm of Web 2.0, showing how the respective communities might profit from
each other. We start by examining some of the data management issues related
to Web 2.0 applications in Sect. 2. In Sect. 3, we then discuss the recent renewal
of interest in PIM systems within the research community and outline the main
approaches proposed in various research projects. Following on from these dis-
cussions, we present an architecture designed to develop an integrated solution
to data management for PIM and Web 2.0 in Sect. 4 and outline our on-going
work in this area. Concluding remarks are given in Sect. 5.

2 Data Management for Web 2.0

As mentioned previously, Web 2.0 applications include social networking sites
such as Facebook, Xing and LinkedIn, sites to share and manage photos and
videos such as Flickr and YouTube, and sites that support collaborative author-
ing such as project Wikis. While Web 2.0 does not define a particular technol-
ogy, it is commonly associated with a number of technologies that can support
the forms of interaction, collaboration and information sharing characteristic of
these applications. For example, Asynchronous JavaScript and XML (AJAX)
increases the interactivity and responsiveness of web pages important in many
Web 2.0 applications. AJAX toolkits support the development of the required
JavaScript and are available for most web scripting languages such as PHP and
ASP.NET. To support the development of Web 2.0 applications, Google Web
Toolkit (GWT) can be used to transform Java-based applications into AJAX
applications.

The term Rich Internet Application (RIA) introduced by Macromedia in 2002
to describe web applications with the same level of interactivity as desktop
applications is often used in relationship to Web 2.0 applications. In the early
days of web applications, Java Applets were proposed as a technology to sup-
port highly interactive applications by downloading Java applications to allow
client-side processing. This even included systems where components of a DBMS
were downloaded onto the client to improve user interaction [2]. However, later,
Java Applets tended to be abandoned in favour of Java Servlets and server-side
processing due to various problems such as browser variability, security restric-
tions and latency. Now that web technologies are more mature, the vision of
desktop-style applications being accessible over the web and within browsers
is more realistic. Major software companies such as Adobe, Microsoft, Google
and Sun Microsystems are all developing tools to make this vision a reality. Ex-
amples of technologies that have been developed or extended to support RIA

PIM Meets Web 2.0 17

are DHTML, Adobe Flash, Microsoft Silverlight and JavaFX. Based on these
technologies, a number of RIA development frameworks have been proposed such
as Adobe Flex, Microsoft Popfly and the open-source project OpenLaszlo.

While RIA technologies are designed to support rich interaction which is cer-
tainly a characteristic of Web 2.0 applications, they do not specifically support
other characteristics such as user participation and collaboration. A Wiki is soft-
ware that supports collaborative authoring of web sites and the term dates back
to 1994 with the emergence of WikiWikiWeb. Wikis have been widely adopted
with the best known application being Wikipedia. They are often used nowa-
days to support research and commercial projects, enabling members of a project
team to easily upload and share documents as well as collaboratively authoring
design documents and articles.

Another feature of many Web 2.0 applications is the ability to reuse con-
tent from existing web sites, often integrating it to provide new or value-added
services. Users can create their own applications by combining data from exist-
ing web applications through a notion of web mashups1. The content is usually
generated by RSS or Atom web feeds, screen scraping or public programming
interfaces. A common example is to combine data tagged with location informa-
tion, for example hotels, with Google Maps. Various tools have been developed to
allow users to easily combine data from web feeds to create their own mashups,
e.g. Yahoo Pipes, Microsoft Popfly and the Google Mashup Editor.

Research within the database community related to Web 2.0, tends to focus
mainly on issues of data integration of which mashups are one example. A re-
cent joint effort by the University of Illinois and the University of Wisconsin is
a project to develop a software platform to set-up and support on-line commu-
nities [3]. As a first step, they have developed a community portal DBLife [4]
for the database research community that will serve as a driving application for
their research. The DBLife systems monitors more than 900 data sources, ex-
tracting and integrating data about people, events, publications etc. relevant to
the database community. A major research issue that they want to address is how
to ensure data quality and part of the proposed solution is the encouragement
of user participation.

Having outlined the key ideas and technologies characteristic of Web 2.0 appli-
cations, we now turn to consider related research in the field of web engineering.
The long-term goal of the web engineering research community is to develop
technologies, tools and methods to support the systematic design, development,
deployment and maintenance of high quality web applications. This is a major
challenge in a field in which new technologies and tools are constantly emerg-
ing, but a major influence has been the promotion of model-based approaches.
Leading research efforts in this field include WebML [5], Hera [6], WSDM [7],
OOHDM [8], OO-H [9], SiteLang [10] and UWE [11]. WebML and Hera stand out
as model-based approaches which feature comprehensive implementation plat-
forms. As the requirements of web applications have evolved to deal with features
such as multi-channel access, context-awareness and mobility, researchers have

1 http://www.programmableweb.com

18 M.C. Norrie

addressed how to adapt and extend their models and methods to support these.
WebML, in particular, has been enriched several times, using its built-in support
for extensibility to introduce additional concepts for the definition of business
workflows, web services and context-aware adaptation [12,13]. With the rapid
growth in interest in RIA and Web 2.0, a current topic of research within the
web engineering communtiy is how to support the design and development of
RIA and Web 2.0 applications.

We note that, with few exceptions, research projects in all areas related to
Web 2.0 tend to be based on existing data management platforms and there
has been little consideration given to how databases could play a more central
role in managing all forms of data that define a web application and supporting
both the development and operation of a web site. Further, user studies related
to Web 2.0 applications have tended to focus on the social networking or col-
laboration aspects rather than on issues of personal information management. If
anything, these issues have only been considered at the level of data integration
rather than data management. Yet, anyone who is a regular user of Web 2.0
applications will be well aware of the rich variety of personal information being
managed by these applications and the fact that application support for man-
aging all sorts of data ranging from contacts to photo albums often makes it
much more convenient to use a Web 2.0 application than desktop applications.
A key advantage of using a Web 2.0 application such as Facebook is the fact
that all these applications are integrated in a single, portal-like interface. Also,
simple tagging mechanisms allow links to be easily created across applications,
for example, between a contact and a photo.

On the down side, personal data often ends up being replicated and frag-
mented. For example, some personal contacts may be managed using Facebook,
while professional contacts are managed using a site such as LinkedIn or Xing.
At the same time, a desktop application such as Microsoft Outlook may be used
to manage more general contact information including contacts who are not reg-
istered on Web 2.0 sites. Photos may be stored on a desktop PC, with subsets
uploaded to Web 2.0 sites such as Facebook. Information about publications may
be published on one or more project web sites and also personal web sites.

We therefore feel that studies should be undertaken to find out more about
how and why users are managing personal data using Web 2.0 applications.
This should include examining the problems of replication and fragmentation
of data across Web 2.0 applications as well as between desktop and Web 2.0
applications. Based on these studies, new data management solutions should be
developed that will allow personal information to be managed in a convenient,
integrated manner and published to Web 2.0 applications as and when required.

3 PIM Systems

Although personal information management (PIM) is a topic that has long been
of interest to the research community, particularly with respect to possible re-
placements for the desktop paradigm, there has been a recent renewal in interest

PIM Meets Web 2.0 19

as seen by the series of PIM workshops started in 20052. The workshops are
inter-disciplinary, bringing together researchers from various domains including
human-computer interaction, information retrieval and databases.

The basic model of managing personal data has changed little over the past
decades. Essentially, today’s PIM solutions are based on the file system and desk-
top applications. One problem is the fact that personal information is typically
managed by different applications and often stored in different places, making
it difficult to handle data uniformly and integrate it in interesting ways. This
problem has been referred to as information fragmentation [14] or information
compartmentalisation [15].

The most radical approach is to consider replacing the file system as the basic
model underlying PIM with a different model that allows information to be man-
aged and shared in more flexible ways. For example, in the Presto system [16],
they developed a notion of shareable document spaces to replace the file/folder
means of hiearchically classifying documents within personal spaces. Documents
could be freely tagged with properties that could then be used to classify and
retrieve documents. One of the major drawbacks of such an approach is the
problem of migrating existing data and applications. If applications are to take
advantage of the flexibility that new PIM models offer, then they have to be
re-designed.

With the dramatic increase in the volume of personal data typically stored by
users, researchers in the information retrieval and database communities have
become interested in trying to adapt their technologies to the problems of re-
trieving and processing information stored as personal data. In both cases, they
typically build tools on top of existing file systems and applications that can al-
low data to be extracted and integrated from various documents to meet a user’s
information needs. For example, in the position paper by Franklin, Halevy and
Maier [17], they propose a notion of dataspace systems where traditional database
technologies such as metadata management, indexing and query processing can
be used alongside traditional file systems and applications to support the ad-
ministration, discovery and enhancement of personal data. This is the approach
that has, for example, been adopted in the iMemex system [18].

Both of the above approaches have had limited success to date. One reason for
this is that both approaches typically require major efforts in the reengineering
of applications or ways of user working. Therefore while they tend to be of theo-
retical interest, they have had little impact in the everyday use of computers. In
the meantime, the development of Web 2.0 applications has caused a dramatic
shift in personal information management that has almost gone without remark
in the research community. Many users are increasingly shifting away from tra-
ditional desktop applications for managing all of their personal information and
instead are using Web 2.0 applications. This applies to professional as well as
social information since people are increasingly using Web 2.0 applications such
as Wikis and community portals not only as a basis for collaboration, but also

2 Information about these workshops, papers and report can be found at
http://pim.ischool.washington.edu/

20 M.C. Norrie

to manage information about publications, articles of interest, bookmarks etc.
Also, messaging supported in systems such as Facebook and community portals
is now often being used to support asynchronous communication rather than
email systems. There are a number of reasons for this trend away from some
desktop applications to Web 2.0 applications. One is the nature of Web 2.0
applications to empower the users as information providers and promote infor-
mation sharing. Thus, a user does not need to create and manage the contact
details of friends and colleagues as they do this themselves. By each user pro-
viding a small amount of information, the combined effect is a vast information
space.

We believe another reason is the very nature of Web 2.0 applications and their
portal-style interfaces as discussed in the previous section. Sites such as Facebook
provide an integrated solution to the management of all sorts of data through
a very simple, intuitive style of interface. While a core set of applications are
provided to manage basic information such as contacts, messages, photo albums
etc., it is simple for users to install other applications of interest and even to
write their own applications. Facebook now offers several thousand applications3.
This plug-and-play style typical of many Web 2.0 applications makes it easy
for users to customise their site in terms of the types of information stored
and published, their own visibility, the level of information sharing and also
the layout. In addition, Facebook provides a rich networked information space
by automatically generating links between information items and applications
based on social networks as well as explicit links created by users through image
tagging etc. Last but not least, Facebook offers awareness information about the
activities of users through status messages and news feeds.

Given the overwhelming success of Web 2.0 applications, we believe that the
PIM community could benefit from trying to understand the reasons behind their
success and possibly adopting the Web 2.0 paradigm in the design of future PIM
systems.

4 Integrating PIM and Web 2.0

Our goal is to provide improved, integrated PIM solutions based on the Web 2.0
paradigm that will at the same time support the publishing and sharing of data
through Web 2.0 applications. The information architecture that we aim for is
shown in Fig. 1. Each user manages their personal information through an in-
stance of PIM 2.0, a personal information management portal, and users have
control over how and when this information is published to one or more Web
2.0 applications. Further, since Web 2.0 applications are about the sharing of
user-generated content, it is possible for users to have data published on Web 2.0
applications by other users automatically imported into their own personal in-
formation space.

PIM 2.0 has a plug-and-play architecture that allows users to select and even
develop their own information management components as and when required.
3 Facebook listed more than 17’600 in February 2008.

PIM Meets Web 2.0 21

Social Networking
Xing, LinkedIn, Facebook, ...

Multimedia
WebShots, Flickr,Youtube, ...

Community Portals
DBLife,Project Wikis...

Web 2.0
Applications

PIM 2.0

OMS Object-Oriented Database
implementation of PIM 2.0 metamodel

Personal
Information
Management
Portal pluggable db

components

personal mashups

bilateral integration
and synchronisation

Link and
Annotation Server

community-based
publishing & sharing
of information

integrated solution
for personal data
management

Data Management
Platform
personal data storage

ContactsProfile Calendar Photos Publications

Fig. 1. Information Architecture

We aim to make these database components rather than services since we want
to achieve tight integration at the level of data management to enable us to
leverage as much as possible of the database functionality and semantics within
PIM 2.0. Also, it should be possible to create links between objects in different
database components and to create mashups by integrating data from one or
more components. We therefore introduce a general link and annotation server
as well as the concept of personal mashups in PIM 2.0.

The concept of plug-and-play architectures at the database level is some-
thing that has received little attention to date within the research community.
A lot of emphasis has been placed recently on service-oriented architectures and
specifically the use of web services, but this is more suited to integration and or-
chestration at higher levels, especially in heterogeneous environments. We want
to be able to integrate components within the database in order that we could,
for example, introduce constraints and triggers over these components as well
as executing queries over them. This in turn would enable the integration of
data from different components required for personal mashups to be performed
within the database. Currently, we are in the process of formulating precisely a
notion of a database component and designing an architecture and mechanism
to support this concept. Also, since users should be able to, not only select com-
ponents, but also develop their own components and personal mashups, we need
to investigate how this can best be supported through declarative languages and
graphical tools.

To provide improved PIM systems, it is important that the underlying data
management platform is based on a semantic data model. Specifically, it should
be able to support rich classification structures, versions, constraints, triggers

22 M.C. Norrie

and associations as well as a declarative query language. The ability to support
multiple classification is particularly useful as a basic means of specifying which
information objects should be published to which Web 2.0 applications. We are
using the OMS Avon system [19] as a data management platform for PIM 2.0
since it supports these concepts. OMS Avon provides a semantic data man-
agement layer on top of the object database engine db4o4. In OMS Avon, all
data—application, metadata and system objects—are handled uniformly and
the system is bootstrapped from a core metamodel. This provides the basis
for its flexibility in being able to integrate new concepts required to meet the
demands of emerging domains as has been done previously for web engineer-
ing [20], peer-to-peer data management [21] and context-awareness [22,23]. The
implementation of the database will be based on a PIM 2.0 metamodel which in
turn will take into account the database component concept under development.

An important part of the architecture is the mechanism used to support the
various forms of integration and synchronisation required. On the one hand,
there needs to be some form of data synchronisation between PIM 2.0 and the
Web 2.0 applications that will be the basis behind the publishing of personal
information in the Web 2.0 applications. Thus changes to the data in PIM 2.0
should propagate to all Web 2.0 applications that are registered as using that
data. We may also want bilateral synchronisation which means that it should also
be possible to propagate changes to data in the Web 2.0 applications to PIM 2.0.
An example of this would be propagating changes to the contacts information in
PIM 2.0 if the corresponding data has been updated in the Web 2.0 application.
On the other hand, there also needs to be integration and synchronisation of data
within PIM 2.0 across database components. For example, a personal mashup
application may integrate data from two or more database components.

The PIM 2.0 architecture that we propose exemplifies the various forms of
data integration and synchronisation that are found in many forms of mod-
ern distributed information systems, especially those based on web technologies.
Therefore it is important to develop general mechanisms that are flexible enough
to meet these requirements and can be customised to specific settings. We want
to use this project to investigate how we can achieve a general model and asso-
ciated mechanisms for data integration and synchronisation that can be applied
both within object databases and between object databases and external data
sources. We therefore propose to investigate how we can generalise and extend
the generic proxy mechanism that we recently developed for the integration and
synchronisation of OMS Avon databases [24] with external data sources to these
more general architectures.

An advantage of the generic proxy approach is that it allows the details of how
and when synchronisation takes place to be customised through proxy processes.
Also, it supports integration at the database level, which again means that we
can leverage database fucntionality and semantics. The generic proxy mechanism
was developed for object-oriented databases and we will need to consider how
the concept can be adapted and extended to cater for situations where the

4 http://www.db4o.com

PIM Meets Web 2.0 23

data sources are non-OODBMS and possibly heterogeneous. In particular, we
need to investigate in detail how we can interface with Web 2.0 applications to
achieve bilateral synchronisation. Another key issue is how to ensure that the
mechanisms are efficient.

The PIM 2.0 project is in its first phases and there are many open issues.
An initial prototype that allows data stored and managed in a personal data
space to be published to one or more Web 2.0 applications has already been
developed [25]. In the next stage, we will implement a second prototype based
on the concept of database components and the plug-and-play architecture. In
addition to the issues mentioned above, an important aspect of the project will
be the means for users to specify how and where data should be published.
Currently we are developing a simple language that can be used to specify the
necessary data mappings and also modes of synchronisation. Later, we will design
and experiment with various tools to allow these to be specified graphically.

Alongside the technical work, we plan to carry out various user studies. These
will cover the use of Web 2.0 applications for personal information management
as well as evaluations on the system and tools that we will develop.

5 Conclusions

We have discussed the issue of personal information management in the realm of
Web 2.0 and how the problem of information fragmentation has now extended
beyond the desktop. We make the case for an architecture that supports a clear
separation of concerns between the management of data and the publishing of
data. The proposed system PIM 2.0 provides an integrated solution for personal
information management based on the Web 2.0 paradigm of a portal with a
plug-and-play architecture. The publishing of data to Web 2.0 applications is
controlled through a bilateral synchronisation mechanism that also offers the
possible automatic importation of data published by other users into a per-
sonal information space. Central to the plug-and-play architecture is a notion of
database components that allow personal information spaces to be constructed
in a modular way.

The concepts presented in the paper are still under discussion and the PIM 2.0
system is in the early stages of design and implementation. However, we are
optimistic that significant advances in PIM systems can be achieved by learning
from the success of Web 2.0.

Acknowledgements

Many members of the Global Information Systems group at ETH Zurich have
contributed to the ideas expressed in this paper. Special thanks are due to
Michael Grossniklaus and Stefania Leone who are leading the PIM 2.0 project
and Martin Schnyder who has implemented a first prototype.

24 M.C. Norrie

References

1. O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software (2005),
http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html

2. Norrie, M.C.: Client-Server Database Architectures for the Web. In: Masunga,
Y., Spaccapietra, S. (eds.) Advances in Multimedia and Databases for the New
Century, A Swiss/Japanese Perspective (2000)

3. Doan, A., Ramakrishnan, R., Chen, F., DeRose, P., Lee, Y., McCann, R., Sayya-
dian, M., Shen, W.: Community Information Managemnt. Data Engineering Bul-
letin 29(1) (2006)

4. DeRose, P., Shen, W., Chen, F., Lee, Y., Burdick, D., Doan, A., Ramakrishnan,
R.: DBLife: A Community Information Management Platform for the Database
Research Community. In: Proceedings of CIDR 2007 (Demo) (2007)

5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: De-
signing Data-Intensive Web Applications. The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann Publishers Inc., San Francisco (2002)

6. Frăsincar, F., Barna, P., Houben, G.J., Fiala, Z.: Adaptation and Reuse in De-
signing Web Information Systems. In: Proceedings of International Conference on
Information Technology: Coding and Computing, Las Vegas, NV, USA, April 2-4
(2004)

7. Casteleyn, S., De Troyer, O., Brockmans, S.: Design Time Support for Adaptive
Behavior in Web Sites. In: Proceedings of ACM Symposium on Applied Computing,
Melbourne, FL, USA, March 9-12 (2003)

8. Rossi, G., Schwabe, D., Guimarães, R.: Designing Personalized Web Applications.
In: Proceedings of International World Wide Web Conference, Hong Kong, China,
May 1-5 (2001)

9. Garrigós, I., Casteleyn, S., Gómez, J.: A Structured Approach to Personalize Web-
sites Using the OO-H Personalization Framework. In: Proc. Asia Pacific Web Conf.,
Shanghai, China (2005)

10. Schewe, K.D., Thalheim, B.: Reasoning About Web Information Systems Using
Story Algebras. In: Proceedings of East-European Conference on Advances in
Databases and Information Systems, Budapest, Hungary, September 22-25, 2004,
pp. 54–66 (2004)

11. Koch, N.: Software Engineering for Adaptive Hypermedia Systems. PhD thesis,
Ludwig-Maximilians-University Munich, Munich, Germany (2001)

12. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven Development of
Context-Aware Web Applications. ACM Transactions on Internet Technology 7(2)
(2007)

13. Ceri, S., Daniel, F., Facca, F.M., Matera, M.: Model-driven Engineering of Active
Context-Awareness.In: World Wide Web (2007)

14. Tungara, M., Pyla, P., Sampat, M., Perez-Quinones, M.: Defragmenting Informa-
tion using the Syncables Framework. In: SIGIR Workshop on Personal Information
Management (2006)

15. Bellotti, V., Smith, J.: Informing the Design of an Information Management System
with Iterative Fieldwork. In: Proceedings of the Conference on Designing Interac-
tive Systems (DIS 2000) (2000)

16. Dourish, P., Edwards, W., LaMarca, A., Salisbury, M.: Presto: An Experimental
Architecture for Fluid Interactive Document Spaces. ACM Transactions on Com-
puter Human Interaction 6(2) (1999)

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

PIM Meets Web 2.0 25

17. Franklin, M., Halevy, A., Maier, D.: From Databases to Dataspaces: A New Ab-
straction for Information Management. ACM SIGMOD Record (December 2005)

18. Dittrich, J.P., Blunschi, L., Färber, M., Girard, O.R., Karakashian, S.K., Salles,
M.A.V.: From Personal Desktops to Personal Dataspaces: A Report on Building
the iMeMex Personal Dataspace Management System. In: BTW 2007 (2007)

19. Norrie, M.C., Grossniklaus, M., Decurtins, C., de Spindler, A., Vancea, A., Leone,
S.: Semantic Data Management for db4o. In: Proceedings of 1st International Con-
ference on Object Databases (ICOODB 2008), Berlin, Germany (March 2008)

20. Grossniklaus, M., Norrie, M.C., Signer, B., Weibel, N.: Producing Interactive Pa-
per Documents based on Multi-Channel Content Publishing. In: Proceedings of
International Conference on Automated Production of Cross Media Content for
Multi-Channel Distribution, Barcelona, Spain, November 28-30 (2007)

21. Norrie, M.C., Palinginis, A.: A Modelling Approach to the Realisation of Modular
Information Spaces. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix,
Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590. Springer, Heidelberg
(2003)

22. Grossniklaus, M., Norrie, M.C.: Using Object Variants to Support Context-Aware
Interactions. In: Proceedings of International Workshop on Adaptation and Evo-
lution in Web Systems Engineering, Como, Italy, July 19 (2007)

23. Norrie, M.C., Signer, B., Grossniklaus, M., Belotti, R., Decurtins, C., Weibel, N.:
Context-Aware Platform for Mobile Data Management. Wireless Networks 13(6)
(2007)

24. Vancea, A., Grossniklaus, M., Norrie, M.C.: Database-Driven Web Mashups. In:
Proceedings 8th International Conference on Web Engineering (ICWE 2008), New
York, USA (July 2008)

25. Leone, S., Grossniklaus, M., Norrie, M.C.: Architecture for Integrating Desktop and
Web 2.0 Data Management. In: Proceedings 7th International Workshop on Web-
Oriented Software Technologies (IWWOST 2008), New York, USA (July 2008)

Developing Preference Band Model to Manage
Collective Preferences

Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Hong Kong
wilfred@cse.ust.hk

Abstract. Discovering user preference is an important task in various database
applications, such as searching product information and rating goods and ser-
vices. However, there still lacks of a unifying model that is able to capture both
implicit and explicit user preference information and to support managing, query-
ing and analysing the information obtained from different sources.

In this paper, we present a framework based on our newly proposed Preference
Band Model (PBM), which aims to achieve several goals. First, the PBM can
serve as a formal basis to unify both implicit and explicit user preferences. We
develop the model using a matrix-theoretic approach. Second, the model provides
means to manipulate different sources of preference information. We establish
a set of algebraic operators on Preference-Order Matrices (POMs). Third, the
model supports direct querying of collective user preference and the discovery
of a preference band. Roughly, a preference band is a ranking on sets of equally
preferred items discovered from a POM that presents collective user preference.
We demonstrate the applicability of our framework by studying two real datasets.

1 Introduction

Discovering user preference is an important task in various database applications, such
as searching product information and rating goods and services [2,7,8]. Many business
activities also rely heavily on estimating overall user preference in order to import user
preferred goods and to design appropriate selling tactics. Previous work that incorpo-
rates user preference into databases mainly falls into two main categories of approaches.
It either assumes that users are able to formulate their preference explicitly in terms of
formulas or constraints [2,7,8], which may not be easy in reality, or develops mining
techniques to discover implicit users’ preference from the log of item selection [9] and
then generate an adaptive full ranking of items, which may be too restrictive. However,
there still lacks of a unifying model that is able to capture both implicit and explicit user
preference information and to support managing, querying and analysing the informa-
tion obtained from different sources.

We identify three problems that arise from handling preferences obtained from dif-
ferent sources and times. First, individual user preference can be modelled as a partial
or full ranking between items [7,8]; but how do we model a large amount of such rank-
ing information, which represents very different, possibly noisy and conflicting user

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 26–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Developing Preference Band Model to Manage Collective Preferences 27

preferences? Second, how do we compare and contrast expected preference and real
user preference? This also gives challenges to focus on some target preference data for
analysing. Third, how do we rank and classify collective user preference and express
the result in some form of simple but useful knowledge?

In this paper, we present a holistic framework shown in Figure 1, which involves a
formal model, a set of algebraic operators and various algorithmic techniques to tackle
the above problems. The framework aims to manage preference information in a sys-
tematic way and to support better analyses of collective user preferences.

Items
(x1,...,xn)

+ User
Preferences

Ranked Lists
(L1,...,Lm)

Input POMs

Preference
Order Query

Language
(POQL)

POM Algebra
(Seven

Operators)

Output POM

Preference
Bands

Normalized
POM

Phase 1:
Preference collection

and Storage

Phase 2:
Preference
Querying

Phase 3:
Preference

Band Discovery

POM
Modelling

POM
Normalizing

Fig. 1. The framework for managing collective user preference based on PBM

The basic idea of our approach is to convert a collection of user ranked items into a
Preference-Order Matrix (POM). An entry aij in a POM is the frequency that one item
xi (more preferred) precedes another item xj (less preferred) in the collected informa-
tion, which captures the fact that users prefer xi to xj in a number of choice records.

As shown in the blueprint presented in Figure 1, we classify the process based on
our Preference Band Model (PBM) into three phases. In the first phase, the PBM inte-
grates implicit and explicit preference information represented by a set of user ranked
lists, each of which is a user preference with possible choice order on target items. The
information is modelled within a unifying matrix structure called POMs. In the second
phase, we use a high level declarative query language called POQL to support manipu-
lation of preference data and to generate a more effective POM for further analyses. The
language is executed and can be optimized via a set of POM operators, which shares the
similar spirit of execution of SQL expressions in relational databases. In the third phase,
we need to normalize the POM in order to have it run in an adapted PIVOT algorithm
[1], which classify and rank items into a preference band. The algorithm is known to be
an efficient and effective method for discovering order knowledge from similar matrix
structures, which is capable of tolerating noise of order in some reasonable limit [5,4].

Our main contribution in this paper is the development work of the PBM that sup-
ports managing user preference information and discovering preference bands.

28 W. Ng

– We formalise the novel concept of preference-order matrices (POMs) that express
collected preference information. POMs support the discovery of preference bands
that represent the maximal consistent collective preference obtained from a given
set of user preference ranked lists.

– We establish a new set of seven algebraic operators such as the sum, the union, the
intersection and the selection on POMs. We develop a new declarative language
POQL based on the POM operators.

– We identify efficient algorithmic techniques for discovering preference bands,
which shows that the discovery of preference bands from a POM is feasible in
practice. Finally, we present the preliminary results of two interesting applications,
which show the idea of preference bands is easily applicable.

The rest of the paper is organised as follows. Section 2 gives some preliminary concepts
of user preference. Section 3 defines a set of formal POM operators. Section 4 discusses
the issues arising from the three phases of the PBM framework. Section 5 presents
our results of finding preference bands on two applications. Section 6 reviews some
related work on user addressing preference and the algorithmic techniques for finding
preference bands. In Section 7, we give our concluding remarks.

2 Preliminaries

User preferences can be expressed in an implicit and explicit order of items. For ex-
ample, explicit user preference is formulated in a lexicographic order of preference at-
tributes [8]. Preference SQL [7] is equipped with a “preferring” clause that allows user
to specify soft constraints reflecting multiple preference terms. All these approaches
would result in a preference ranking of items. Implicit preferences are some ranking or-
der that is inferred from users’ track record of choosing items against some background
of item order [9], which also depends on the interpretation of the chosen items.

We assume that a preference rank list can be obtained via some users’ implicit or
explicit preference information and formalize the concept as follows:

Definition 1. (Preference Ranked List) Given a set of items I = {x1, . . . xn} with
an imposed order <I . A choice C ⊆ I is a list of items ordered according to some
user preference <C , where (C, <C) may or may not equal to (I, <I). We generate
a preference ranked list T by appending (I − C) into C such that T = 〈C, (I −
C)〉, in which the items of (I − C) are ordered according to <I . We denote by L =
{T1, . . . , Tm} a collection of m preference ranked lists.

Note that in Definition 1, <C can represent the order of choosing items in C by the user,
which is an implicit preference, or it can represent the order according to some explicit
preference criteria. L is a collective user preference on I . The following example helps
illustrate the ideas of individual and collective preferences.

Example 1. Let I = {a, b, c, d, e, f} be the items stored in a database and two cus-
tomers search some items on the web. Let the items be ranked according to the
default order I = {a > b > c > d > e > f}, which can be interpreted as an

Developing Preference Band Model to Manage Collective Preferences 29

arbitrary ranking or a ranking derived from some commercial considerations. One cus-
tomer explicitly states his or her preference criteria, which result in a preferred ranking
C1 = {c > f > e > d > b > a}. Another customer does not state any preference
and just browses the items ranked by the default order <I . However, s/he only checks
a subset of items of I in some different order given by C2 = {d > b > f > e}.

We now show in Figure 2 two sets of preference ranked lists L1 and L2, each of
which contains five preference ranked lists. L1 and L2 can represent collective customer
preference information obtained from two sources. It can be checked that T1 and T8 are
the preference ranked lists derived from C1 and C2 respectively. T5 can also be viewed
as a precise match between a user’s preference and the shop’s estimated user preference
that is expressed in the default item order.

L1 =

T1: c > f > e > d > b > a

T2: a > c > b > d > f > e

T3: a > c > d > b > f > e

T4: d > f > c > a > b > e

T5: a > b > c > d > e > f

L2 =

T6: c > f > e > d > b > a

T7: a > c > b > d > f > e

T8: d > b > f > e > a > c

T9: d > f > c > a > e > b

T10: b > d > f > e > c > a

Fig. 2. An example of two sets of five preference ranked lists

A collection of preference ranked lists L from a given source can be modelled as a
Preference Order Matrices (POMs) ML, which is a matrix structure derived from L to
support further querying and preference band discovery.

Definition 2. (Preference Order Matrix) Given L and let | L |= n. A Preference-
Order Matrix (POM) ML with respect to L (or simply M if L is understood) is an
n × n matrix such that each entry aij ∈ M is equal to the number of occurrences that
item xi precedes item xj in L. We define aij ∈ M to be | L |whenever i = j. M is said
to be normalized if each entry norm(aij) = aij

n (or equivalently, aij

aii
or aij

ajj
) whenever

i �= j, and norm(aij) = 1
2 whenever i = j.

Clearly, it follows from Definition 2 that 0 ≤ aij ≤| L |, aij + aji =| L | for any
distinct i, j. The normalization implies that each entry aij ∈ norm(ML) is equal to the
probability that item xi precedes item xj in L. Given norm(ML). The entries satisfies
the following conditions: (1) (normalization constraint) 0 ≤ aij ≤ 1; (2) (linearity
constraint) aij + aji = 1; and (3) (triangle constraint) aij ≤ aik + akj .

Normalised POMs are important in this work. For simplicity of presentation we as-
sume all T being a total order. However, we remark that if a partial order is resulted
from more general user preferences [7] we still can use a corresponding set of linear
extensions to represent the order information of equally preferred items. I.e. two equally
preferred items xi and xj can still be captured by normalised POMs in the entry aij = 1

2 .
Specifically, a partial order can be directly represented by a normalised POM as follows:
aij ∈ M is equal to 1 if xi ≤ xj , aij ∈ M is equal to 0 if xj ≤ xi, and aij ∈ M
is equal to 1

2 otherwise (i.e. xi and xj are incomparable). In other words, normalised
POMs are flexible enough to capture more general user preference information.

30 W. Ng

a b c d e f

a 5 4 3 3 4 3
b 1 5 1 2 4 3
c 2 4 5 4 5 4
d 2 3 1 5 4 4
e 1 1 0 1 5 1
f 2 2 1 1 4 5

⇒

a b c d e f

a 0.5 0.8 0.6 0.6 0.8 0.6
b 0.2 0.5 0.2 0.4 0.8 0.6
c 0.4 0.8 0.5 0.8 1.0 0.8
d 0.4 0.6 0.2 0.5 0.8 0.8
e 0.2 0.2 0.0 0.2 0.5 0.2
f 0.4 0.4 0.2 0.2 0.8 0.5

a b c d e f

a 5 2 2 1 2 1
b 3 5 2 2 3 3
c 3 3 5 2 3 2
d 4 3 3 5 4 4
e 3 2 2 1 5 0
f 4 2 3 1 5 5

⇒

a b c d e f

a 0.5 0.4 0.4 0.2 0.4 0.2
b 0.6 0.5 0.4 0.4 0.6 0.6
c 0.6 0.6 0.5 0.4 0.6 0.4
d 0.8 0.6 0.6 0.5 0.6 0.8
e 0.6 0.4 0.4 0.2 0.5 0.0
f 0.8 0.4 0.6 0.2 1.0 0.5

(a) M1 and norm(M1) (b) M2 and norm(M2)

Fig. 3. The POMs M1 and M2 obtained from L1 and L2, and their normalized counterparts

Example 2. We now continue Example 1 to derive the POMs and their normalized form
from L1 and L2. The POMs M1 and M2 and their normlized forms are given in Figures
3(a) and (b).

One objective of this work is to establish a set of operators that are able to manipulate
POMs and support in-depth analyses of collective user preference modelled in POMs.
Another objective is to discover preference bands obtained from a given normalised
POM. A preference band is intuitively a linear order of sets of equally preferred items
taking into collective user preference. The motivation of defining a preference band
is that in many adaptive searching applications, modelling the preference with a total
order might be too restrictive in the sense that all items in I should be comparable. How-
ever, it is also too complex to manage, analyse and present the preference information
expressed in general partial order.

We now give the formal definition of a preference band as follows.

Definition 3. (Preference Band) A preference band B of I with granularity k is an
ordered partition of I given by 〈P1, . . . , Pk〉, where Pi ⊆ I is a non-empty set called a
band element in B. A band order of the items in I arising from B, denoted as <B, can
be inferred from B as follows: For any pair of items x and y in the same band element
P , x and y are incomparable (i.e. x �<B y and y �<B x). However, if x and y are from
two distinct band elements Pi and Pj such that i < j, then x <B y.

Essentially, a preference band adopts an appropriately low granularity to eliminate
noises and ranking contradictions of items among preference ranked lists collected in
L. However, there is an inherent cost of losing some information of the preference or-
ders in individual T when putting items in a band element; as an extreme we can put all
items in one single band element which is obviously no use. Thus, we need to establish
a penalty cost function for measuring the quality of a preference band. A simple one is
adopted as below but more sophisticated functions can be studied as a future work.

If M1 and M2 are two normalized POMs, we define the distance measure given by
D(M1, M2) = Σi�=j | aM1

ij − aM2
ij |.

Given a normalised POM M . We aim to find the best preference band describing M .
We now formulate the Preference Band Discovery (PBD) problem.

Definition 4. (PBD problem) Let ML be a normalised POM on I obtained from L and
MB be a normalised POM obtained from a preference band B of I . Find a preference

Developing Preference Band Model to Manage Collective Preferences 31

band such that D(ML, MB) is minimized. (Note that B is a partial order and can be
represented by POM MB.)

In other words, the main task of PBD is to find a preference band B on the items of I
such that the penalty cost function is minimized, which is equal to the sum of values in
the following three cases: (i) | (aij)M − 1 | if xi <B xj , (ii) | (aij)M | if xj <B xi,
and (iii) | (aij)M − 1

2 | otherwise.

Example 3. Consider our running example L1 and L2 given in Figure 2. Suppose there
is a preference band B = 〈{a, b, c, d} > {e, f}〉 (which may not be the best one
according to D). Then, it can be checked that D(ML1 , MB) = 6.6 and D(ML2 , MB) =
10. The difference is reasonable, since it can be checked that L1 has a noise level of 40%
with respect to the preference band B because two of the five preference ranked lists,
namely T1 and T4, are not the linear extension [5] of B, whereas L2 has an even worse
noise level of 80% with respect to B because only T7 is the linear extension of B. This
motivates us to develop an effective algorithm to generate B from a given ML.

3 The POM Operators

In this section, we define seven POM operators, namely the sum, the union, the differ-
ence, the intersection, the complement, the projection and the selection, each of which
takes one or two given POMs as input parameters, and returns a POM.

The POM operators are easy to understand and to compute and their output result
serves as a basis for carrying out the discovery of preference band. The sum operator is
additive to preference data, that is, the result is incremental with respect to preference
information. This gives advantage to handle preference data in a progressive manner,
say temporal change in preference can be detected. The overall, change, common, oppo-
site preference can be formalised by the sum, the union, the difference, the intersection,
and the complement operations. We can focus on the preference information of a par-
ticular set of items by using the projection and the selection operations. On the other
hand, matrices are an elegant notion studied in a well-established branch of mathemat-
ics. It implies that many interesting results in matrix theory can be used to strengthen
the foundation of PBMs as a development work.

We need two binary operators, denoted as min and max, to represent the usual min-
imum and maximum of two given integers in defining the POM operators. From now
on, we use throughout the paper M1 and M2 to represent two POMs defined over the
same set of items I . The sum operation is given in Definition 5.

Definition 5. (Sum) The sum of two POMs M1 and M2 , denoted as M1 + M2, is
defined as a POM M3 over I such that for all i, j ∈ {1, . . . , n}, (aij)3 = (aij)1+(aij)2.

An interesting property of the sum operation is that the sum of two POMs M1 and
M2, which originates from the two respective preference ranked lists L1 and L2, is
equal to the matrix which originates from the preference ranked list L3 containing the
combination of the information in L1 and L2 (i.e. L3 = L1 ∪ L2). This implies that
we are able to perform analyses on “overall” preference information by summing up

32 W. Ng

“individual” pieces of preference information, in this sense we say that the sum operator
is additive with respect to the preference data.

Another possibility to combine preference information is to consider the maximum
number of occurrences of precedence between items, taking into account the “overlap”
effect. We now define this operation by the union operator as follows.

Definition 6. (Union) The union of two POMs M1 and M2, denoted as M1 ∪ M2,
is defined as a POM M3 over I such that (aii)3 := max((aii)1, (aii)2) for all i ∈
{1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we obtain (aii)3 as follows:

Let x := max((aij)1, (aij)2) and y := max((aji)1, (aji)2).
If x > y then (aij)3 := x and (aji)3 := max((aii)1, (aii)2)− x;
otherwise (i.e. x ≤ y) (aji)3 := y and (aij)3 := max((aii)1, (aii)2)− y.

Note that the comparison x > y makes sure that the most dominant precedence in
M1 and M2 is chosen as the output. In contrast, we can consider the less dominant
precedence but it is common to both M1 and M2. This becomes another operation
called intersection defined as follows.

Definition 7. (Intersection) The intersection of two POMs M1 and M2, denoted as
M1 ∩M2, is defined as a POM M3 over I such that (aii)3 := min((aii)1, (aii)2) for
all i ∈ {1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we obtain (aii)3 as
follows:

Let x := max((aij)1, (aij)2) and y := max((aji)1, (aji)2).
If x < y then (aij)3 := x and (aji)3 := min((aii)1, (aii)2)− x;
otherwise (i.e. x ≥ y) (aji)3 := y and (aij)3 := min((aii)1, (aii)2)− y.

We now introduce the difference operator, which is useful to contrast two preference
ranked lists. For example, we can use the difference operator to find the temporal change
in preference data obtained at two different time intervals or to compare the preference
data obtained from two user groups having different preference profiles.

Definition 8. (Difference) Assume | L1 |>| L2 |. The difference of two POMs M1

and M2 , denoted as M1 − M2, is defined as a POM M3 over I such that (aii)3 :=
(aii)1 − (aii)2 for all i ∈ {1, . . . , n} and for all pairs of distinct i, j ∈ {1, . . . , n}, we
obtain (aii)3 as follows:

Let x := (aij)1 − (aij)2 and y := (aji)1 − (aji)2.
Case x > 0 and y > 0: (aij)3 := x and (aji)3 := y;
Case x > 0 and y ≤ 0: (aij)3 := min(x, (aii)1 − (aii)2) and (aji)3 := (aii)1 −

(aii)2 −min(x, (aii)1 − (aii)2);
Case y > 0 and x ≤ 0: (aij)3 := (aii)1 − (aii)2 − min(y, (aii)1 − (aii)2) and

(aji)3 := min(y, (aii)1 − (aii)2).

Notably, the operator is undefined for | L1 |≤| L2 |. This prevents the happening of
meaningless negative entries in a POM. Thus, there is no need to consider the possibility
of y ≤ 0 and x ≤ 0 in the definition. It also implies that either x or y is strictly positive
as shown in the three cases in Definition 8.

The following is an interesting operator that defines the “reverse” of the preference
order for all items in I .

Developing Preference Band Model to Manage Collective Preferences 33

Definition 9. (Complement) The complement of a POM M1, denoted as ¬M1, is de-
fined as a POM M2 over I such that for all i, j ∈ {1, . . . , n}, (aij)2 = (aji)1.

Similar to relational algebra, the POM operators are employed to extract a target set
of items. The operators projection and selection aim to realise similar objectives. But
unlike operating on relational tables, an POM operation needs to preserve the entries of
the non-target items in the output, since POM is a matrix. To tackle this problem, we
simply fill in the entries of these items according to the default order <I . I.e. All the
items in (I −X) in the projection are ordered according to <I in the output POM.

Definition 10. (Projection) The projection of a POM M1, denoted as πX(M1) where
X ⊆ I is a set of items, is defined as a POM M2 as follows:

Case xi, xj ∈ P : (aij)2 = (aij)1.
Case xi ∈ P but xj �∈ P : (aij)2 = (aij)1 + (aji)2 and (aji)2 = 0.
Case xi, xj �∈ P : (aij)2 = (aij)1 + (aji)2 if xj <I xi; otherwise (i.e. xi <I xj)

(aji)2 = 0.

The tricky point in defining the POM selection is that we should not allow arbitrary
entry comparison, since it is difficult to know or seldom need to concern the absolute
occurrence of precedence in L. Instead, we choose the relative ratio of precedence be-
tween items as the parameter used in the selection predicate, which always falls in a
unit interval. This also captures the intuition that how much x is more preferred to y.

Definition 11. (Selection) The selection of a POM M1, denoted as σθx(M1), where θ
is a comparator such as >, <,≥,≤, or =, and x ∈ [0, 1] is a positive number, is defined
as a POM M2 as follows:

For all i ∈ {1, . . . , n}(aii)2 = (aii)1.
For all distinct i, j ∈ {1, . . . , n}, if | (aij)1−(aji)1

(aij)1+(aji)1
| θx, then (aij)2 = (aij)1;

otherwise (i.e. | (aij)1−(aji)1
(aij)1+(aji)1

| θ̄x) if xj <I xi (aij)2 = (aij)1 +(aji)2; or else (i.e.

xi <I xj) (aji)2 = 0,

where the notation θ̄ denotes the complement of θ (e.g. θ̄ is “≤” when θ is “>”).

It follows from Definition 11 σ≥0(M) = M , where all entries are trivially selected.
The result of “σ>1(M)” represents the preference being reduced to the default order
<I . This can be used as the identity POM ID for revealing some interesting properties
of the union and intersection operators in the following discussion.

We let δ1 ∈ {+,∪,∩} and δ2 ∈ {¬, πX} and δ3 ∈ {¬, σp, πX}. The following
properties of the POM operations can be verified by Definitions 5 to 11.

Associative Property. The POMs on the same I are associative under sum, union
and intersection which is shown in the equations as follows:

(M1δ1M2)δ1M3 = M1δ1(M2δ1M3).
Commutative Property. The POMs on the same I are also commutative under sum,

union and intersection.
(1) M1δ1M2 = M2δ1M1. (2) δ′3(δ3(M)) = δ3(δ′3(M)).
Distributive Property. Projection and negation are distributive under sum, union

and intersection.

34 W. Ng

a b c d e f

a 10 6 5 4 6 4
b 4 10 3 4 7 6
c 5 7 10 6 8 6
d 6 6 4 10 8 8
e 4 3 2 2 10 1
f 6 4 4 2 9 10

a b c d e f

a 5 4 3 1 4 1
b 1 5 1 2 4 3
c 2 4 5 4 5 4
d 4 3 1 5 4 4
e 1 1 0 1 5 0
f 4 2 1 1 5 5

a b c d e f

a 5 2 2 3 2 3
b 3 5 2 2 3 3
c 3 3 5 2 3 2
d 2 3 3 5 4 4
e 3 2 2 1 5 1
f 2 2 3 1 4 5

a b c d e f

a 5 4 3 5 5 5
b 1 5 1 5 5 5
c 2 4 5 5 5 5
d 0 0 0 5 5 5
e 0 0 0 0 5 5
f 0 0 0 0 0 5

a b c d e f

a 5 4 5 5 4 5
b 1 5 1 5 4 5
c 0 4 5 4 5 4
d 1 0 1 5 4 4
e 1 1 0 1 5 1
f 0 0 1 1 4 5

(a) (b) (c) (d) (e)

Fig. 4. The results of the some binary and unary POM operations (a) M1 + M2 (b) M1 ∪ M2 (c)
M1 ∩ M2 (d) πabc(M1) (e) σθ>0.2(M1)

δ2(M1 δ1 M2) = (δ2(M1)) δ1 (δ2(M2)).
In general, σp(M1δ1M2)�=(σp(M1))δ1(σp(M2)) and πX(M1−M2) �= (πX(M1))−

(πX(M2)). However, ¬(M1 −M2) = (¬(M1))− (¬(M2)) and ¬(¬(M)) = M .
We now let σ>1(M) = ID and present the identity property.
Identity Property. Union and intersection satisfy the identity property.
(1) M ∪ ID = ID. (2) M ∩ ID = M.

Example 4. We now make use the POMs M1 and M2 given in Figure 3 to show some
of the results of M1δ1M2 and δ3(M2) in Figure 4.

4 Implementation Issues

In this section, we briefly discuss the techniques and methods that address the chal-
lenges arising from the three phases of the PBM framework depicted in Figure 1.

4.1 Phase 1: How to Obtain and Store POMs?

We can construct the POM M by using L in two ways. The first way is to adopt a brute
force approach to bookkeep aij when scanning the total order in which xi precedes xj .
As the algorithm for discovering preference bands needs to take a normalized POM as
the input, we still need to compute the normalized values of the entries in M in the
final phase. So we may use a more direct way to obtain norm(M). We can sample
possible orderings of the user preference T ∈ I and in this case norm(aij) is set to be
the fraction of L in which xi precedes xj , such as Markov Chain Monte Carlo method
used in [10]. In this approach, we avoid the heavy computation to track all precedences.
In fact it is inevitable to have noise in preference data in real applications. Sampling
techniques seem to be more appropriate to generate normalized POMs.

The storage scheme of a matrix greatly affects the performance of POM operators.
In practice, there are usually many items to be considered. As I is large and the number
of preferred items is small, the POMs may be very sparse with respect to the entries that
actually represent user preference data. As the entries of diagonal and lower triangular
portion of a POM can be deduced from | L |, we may develop a concise version that
targets on only those entries that contain preference information. Specifically, we fill in
zeros in entry of (i) the lower triangular portion of the POM and (ii) the diagonal running

Developing Preference Band Model to Manage Collective Preferences 35

top left to bottom right. The first condition is valid, since we have aji =| L | −aij . The
second condition is also valid since we have aii =| L |. There will be more zero entries
in the upper triangular portion of M if the ranking order is skew.

4.2 Phase 2: How to Use the POM Operators to Formulate Queries?

We develop a declarative language on POMs in our framework and term the langauge
the Preference Order Query Language (or simply the POQL). A POQL expression is
executed via the seven POM operators defined in Section 3, which shares the same prin-
ciple of translating a SQL expression into a sequence of relational algebra operations.
We now define the POQL syntax in Backus Naur Form (BNF):

<query> :: = <selectClause><fromClause>[<conditionClause>]
<selectClause> :: = SELECT <itemList>
<queryList> :: = query [, query. . .]
<fromClause> :: = FROM <matrixIdentifier> | FROM <operator> <matrixList>
<conditionClause> :: = WHERE PREFERENCE RATIO <compOp> a number in [0,1]
<itemList> :: = itemIdentifier [, itemIdentifier. . .] | ∗
<matrixList> :: = matrixIdentifier [, matrixIdentifier. . .]
<operator> :: = SUM|UNION|DIFFERENCE|INTERSECT|COMPLEMENT
<compOp> :: = |<=|>=|<|=
There are three main clauses in a query expression: the select, from, and condition.

Among them the select and the from clauses are compulsory, while the condition clause
is optional. Similar to SQL, POQL is a simple declarative language but is expressive
enough to formulate query on finding preference information stored as POMs.

We execute a POQL expression by translating it into a sequence of POM opera-
tions using Algorithm 1. Suppose X ⊆ L is a set of items which appears in the se-
lect clause, M is a set of m POMs which appears in the from clause, where M =

Algorithm 1. Translate POQL Algorithm
Input: A POQL expression q
LET q = <selectClause><fromClause>[<conditionClause>]

<selectClause> := “SELECT X | ∗”
<fromClause> := “FROM OPER M”
<conditionClause> := “WHERE PREFERENCE RATIO θx”

Procedure:
Step 1 : For the fromClause, CASE OPER OF:

ε : TEMP := “M1”
COMPLEMENT : TEMP := “¬M1”
SUM : TEMP := “M1 + M2 + · · · + Mm”
UNION : TEMP := “M1

⋃
M2

⋃
· · ·

⋃
Mm”

DIFF : TEMP := “M1 − M2 − · · · − Mm”
INTERSECT : TEMP := “M1

⋂
M2

⋂
· · ·

⋂
Mm”

Step 2 : For the selectClause:
IF “∗” THEN TEMP := TEMP

ELSE TEMP := “πX(TEMP)”
Step 3 : IF there is a whereClause THEN TEMP := “σθx(TEMP)”

Output: TEMP expression

36 W. Ng

{M∗
1 , M∗

2 , . . . , M∗
m} and M∗ means either M or COMPLEMENT M , and OPER ∈

{ε, SUM , UNION , DIFFERENCE, INTERSECT }. Note that the input POQL
query expression is assumed to be syntactically valid. If OPER = ε, then m = 1.

4.3 Phase 3: How to Generate Preference Bands?

The challenge of this final phase is to tackle the PBD problem in Definition 4. However,
the problem is equivalent to the Bucket Order Discovery (BOD) problem, which aims
to find a linear order of buckets from a given set of linear orders. The BOD problem has
been proved to be NP-hard [1]. Thus, we have to resort to heuristic algorithms. Given
a set of full rankings T1 and T2 over I . Gionis et al. [5] proposed a heuristic algorithm
called Bucket Pivot, which is adapted from Ailon’s randomized algorithm Pivot [1] (or
simply called the PIVOT algorithm).

Essentially, the PIVOT algorithm starts with a random selected element and then
compares the elements with others and finally generates three classes of “left”, “same”
and “right” classes. To apply the techniques in our context, the PIVOT algorithm can
be employed to exploit precedence probabilities stored in the input normalized POM
M and then to discover the output preference band recursively, in which a preference
band can be regarded as a bucket order B. The three classes of buckets correspond to
the lower band (LB), current band (CB) and upper band (UB) elements.

Specifically, the adapted PIVOT algorithm runs in a quick-sort-like manner. In each
recursion, a random pivot item xi is first selected and the following three band elements,
〈UB > CB > LB〉, are also created for xi. Other items are then compared with the
pivot xi. An item xj will be put into CB if the precedence probability aij satisfies the
following inequality: 0.5 − β ≤ aij < 0.5 + β, where β ∈ [0, 0.5] is a parameter
that describes the degree of precision of precedence probability relative to 0.5. The
drawback of using PIVOT is that it is not easy to set a suitable β value and the choice of
β affects the final number of band elements in B. Clearly if β = 0 we cannot generate
any approximated band element to provide insight of the collective preference in the
input POM. On the other hand, if β = 0.5 we have a very imprecise (and is likely to be
large) band element that contains all xj having aij �= 1 (which has a high probability).

Algorithm 2. The Preference Band Discovery Algorithm PBD(X, M, β)
Input: A normalized POM M of I , X ⊆ I and β = 0.25 by default
Procedure:

Step 1 : IF X = ∅ RETURN ∅
Step 2 : Pick xi ∈ I randomly as a pivot DO

UB ← ∅
CB ← {xi}
LB ← ∅

Step 3 : FOR ALL items xj ∈ (X − {xi}) DO
IF 0.5 + β ≤ aij THEN UB ← UB ∪ {xj}
ELSE IF 0.5 − β ≤ aij < 0.5 + β THEN CB ← CB ∪ {xj}
ELSE IF aij < 0.5 − β THEN LB ← LB ∪ {xj}

Output: A preference band given by 〈PBD(UB, M, β), CB, PBD(LB, M, β)〉

Developing Preference Band Model to Manage Collective Preferences 37

Fortunately, according to [5], the default value β = 0.25 is shown to be able to make
PIVOT achieve good approximation ratio with respect to the penalty cost function D.

We now present the adapted PIVOT algorithm for PBD problem in Algorithm 2,
which adapts PIVOT in our contest. We simply assume β = 0.25 for running PBD.

5 Applications of Preference Bands

We now present two applications of the PBM to discover the user preference in (1) a real
rating movie dataset and (2) a real clickstream dataset. A clickstream is the evidence of
user preference in choosing a web page to browse.

(1) Movie Preference. We consider the ranking of movie obtained from MovieLens
dataset1. The dataset consists of 6040 users, 3900 movies, and 1 million movie votes.
Each of the movie votes has a weight and a score, where the weight denotes whether
or not the user actually saw the movie, and where the score denotes the user’s movie
rating. Using Algorithm 2, we ignore the weight and set it to 1 for all users. There are
actually very different preference in ranking the movies. We target on the following set
of ten movies to find the PB:

I = {Strange Days (SD), Lawnmover Man 2 (LM), Flintstones (FS), Free Willy
(FW), Godfather (GF), 3 Musketeers (MU), 101 Dalmatians (DM), Empire Strikes
Back (ES), Barb Wire (BW), and Jungle Book (JB)}.

Figure 5 shows the normalised POM for the rankings of the 10 movies. We obtain
the best preference band of four band elements of movies as follows: 〈{ES, GF} > {
JB} > {SD, DM, MU} > {FW, FS, BW, } > {LM}〉. The band elements are not
so trivial to be obtained from the huge amount of data or even from the POM given in
Figure 5, which is obtained after the processing efforts in Phases 1 and 2.

(2) Web Page Preference. We consider the user page visits of msnbc.com on a single
day. The clickstream dataset is obtained from MSNBC data2. Each user has exactly one

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ES GF JB SD MU DM FW FS LM BW
ES 0.50 0.32 0.78 0.92 0.90 0.92 0.95 0.96 1.00 0.99
GF 0.68 0.50 0.86 0.94 0.90 0.92 0.95 0.94 1.00 0.98
JB 0.22 0.14 0.50 0.69 0.77 0.88 0.92 0.94 0.96 0.95
SD 0.08 0.06 0.31 0.50 0.69 0.71 0.77 0.92 0.96 0.91
MU 0.10 0.10 0.23 0.31 0.5 0.65 0.81 0.88 0.96 0.85
DM 0.08 0.08 0.12 0.29 0.35 0.5 0.68 0.70 0.80 0.88
FE 0.05 0.05 0.08 0.23 0.19 0.32 0.5 0.64 0.77 0.67
FS 0.04 0.06 0.06 0.08 0.12 0.30 0.36 0.5 0.83 0.67
LM 0.00 0.00 0.04 0.04 0.04 0.20 0.23 0.17 0.50 0.19
BW 0.01 0.02 0.05 0.09 0.05 0.12 0.33 0.33 0.81 0.5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 5. The normalized POM of movie preference to discover preference bands

1 http://www.grouplens.org/node/73�attachments
2 http://kdd.ics.uci.edu/databases/msnbc/msnbc.html

38 W. Ng

User 1: frontpage → news → sports → weather
User 2: news → politics → weather

...
...

. . .
...

User n: frontpage → politics → weather

Fig. 6. Collective users’ browsing habits to form a preference band

sequence of page visits, where each page visit is recorded as a URL category. There are
17 categories in total, and each category is encoded by a distinct integer from 1 to 17.
In other words, I = {1, . . . , 17} with usual numerical order and L consists of a set of
T sequences, each of which is a permutation of I .

First, we keep the first occurrence of a category in each sequence T and denote the
resulting sequence as C. Usually, C ⊆ I and thus | C | is less than 17. We denote the
(17 - | C |) categories as S and sort the categories in S according to the numerical order
of their integer code. Then, we append S to C to form a permutation of I as a result,
which is a T sequence. We select a subset of the sequences whose | C | contains at
least 14 categories in order to increase the effect of the user preference in L. In total,
we identify 160 such T sequences.

Examples of URL categories are “frontpage” and “msn-sports”. The page visit se-
quence is a total order if we do not consider duplicate page visits. The order of page
visits reflects a user’s browsing habit. By clustering page-visit orders, we generate a
user preferred categorization. For example, in Figure 6, we may use a preference band
to indicate the common browsing habits of the set of users, who may usually start from
reading some news, either about politics or about sports, and end up with a look at the
weather conditions.

The best preference band discovered in MSNBC data is found as follows:
〈{frontpage, news} > {tech, local, on-air, misc, weather, msn-news, health,
living, business, sports, summary, travel} > {opinion} > {msn-sports, bbs}〉.
It shows that the item “news” is put in the first band element in addition to the “front-
page”. The result that both “frontpage” and “news” are in the top band element is not
so trivial but seems to match real-life experience: while users can first visit “frontpage”
and then go from the “frontpage” to “news”, users may have bookmarked “news” and
visit “news” directly. In contrast, if we use a preference ranking instead of a preference
band to represent such browsing preference, “frontpage” would most likely be put in the
top of the preference rank, which wrongly assumes that users normally start with the
“frontpage” and then go to the “new”. Thus, using a preference band is a more natural
and meaningful representation of collective preference.

6 Related Work

Preferences are receiving much attention in querying, since DBMSs need to provide
better information services in advanced applications [7]. In particular, preference SQL
[7] is equipped with a “preferring” clause that allows user to specify soft constraints
reflecting multiple preference terms. Implicit preference has been commonly studied in

Developing Preference Band Model to Manage Collective Preferences 39

the area of searching such as using clickthrough data to mine user preference in web
browsing [9]. In reality, implicit and explicit user preferences are important but there
lacks of a formal basis to accommodate and manipulate both of them.

Our previous work [8] models single user preference as a hierarchy of its underlying
data values and formalises the notion of Prioritized Preferences (PPs). We then consider
multiple user preferences in ranking tuples in a relational table. We examine the impact
of a given set of PPs on possible choices in ranking a database relation and develop a
new notion of Choice Constraints (CCs) in a relation.

The PBD problem can be translated into the bucket order discovery (BOD) problem
that is studied in recent years. The problem of obtaining a single bucket order from a
collection of input total orders has been considered by Fagin et al. [3] in their general
framework of comparing and aggregating partial rankings. In our recent work [4], we
develop a new algorithm, called GAP, to tackle the BOD problem. The GAP algorithm
consists of a two phase ranking aggregation and involves the use of a novel rank gap
heuristic for segmenting multiple quantile orders.

7 Concluding Remarks

In this paper, we propose a new PBM framework that consists of three phases of work
for managing a collection of user preference data that are modelled as POM matrices.
We also establish a set of operations which serve as the formal tool to analyse and ma-
nipulate preference data. We further develop a declarative query language based on the
POM operators and a new concept of preference band to discover and classify collective
user preference. We discuss various technical issues related to the three phases.

There are indeed many interesting issues that deserve further study. In the modelling
aspect, we need to clarify if POQL is expressive enough to obtain important prefer-
ence information from given POMs. In the deployment aspect, we still need to study
the efficiency of the POM operators and devise effective optimization strategy for the
execution of the operations. The algorithm of finding preference bands is also related
to the research work of discovering bucket order in data mining area. In the applica-
tion aspect, we are exploring more interesting possibilities to apply our framework, in
addition to usual databases and web applications discussed in Section 5.

Acknowledgements. Thanks to Qiong Fang for updating the experimental results
presented in Section 5 in this published version. This work is partially supported by
HKUST grant under grant No. DAG04/05.EG10.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and
clustering. In: ACM STOC, pp. 684–693 (2005)

2. Chomicki, J.: Preference formulas in relational queries. ACM Transaction Database Sys-
tem 28(4), 427–466 (2003)

3. Fagin, R., Kumar, R., Mahdian, M.: Comparing and aggregating with ties. In: ACM PODS,
pp. 47–58 (2004)

40 W. Ng

4. Feng, J., Fang, Q., Ng, W.: Discovering Bucket Orders from Full Rankings. In: ACM SIG-
MOD (2008)

5. Gionis, A., Mannila, H., Puolamaki, K., Ukkonen, A.: Algorithms for discovering bucket
orders from data. In: ACM SIGKDD, pp. 561–566 (2006)

6. Goharian, N., Jain, A., Sun, Q.: Comparative analysis of sparse matrix algorithms for infor-
mation retrieval. Journal of Sys., Cyb. and Inf. 1(1) (2003)

7. Kießling, W., Köstler, G.: Foundations of Preference in Database Systems. In: Proc. of VLDB
(2002)

8. Ng, W.: Prioritized Preferences and Choice Constraints. In: Parent, C., Schewe, K.-D., Storey,
V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 261–276. Springer, Heidelberg
(2007)

9. Tan, Q., et al.: Applying Co-training to Clickthrough Data for Search Engine Adaptation. In:
Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 519–532.
Springer, Heidelberg (2004)

10. Puolamäki, K., Fortelius, M., Mannila, H.: Seriation in paleontological data using markov
chain monte carlo methods. PLoS Computational Bioglogy 2(2) (2006)

11. van Zuylen, A., et al.: Deterministic pivoting algorithms for constrained ranking and cluster-
ing problems. In: ACM-SIAM SODA, pp. 405–414 (2007)

A Conceptual Modeling Framework for Expressing
Observational Data Semantics�

Shawn Bowers1, Joshua S. Madin2, and Mark P. Schildhauer3

1Genome Center, University of California, Davis
2Dept. of Biological Sciences, Macquarie University, Australia

3National Center for Ecological Analysis and Synthesis, UC Santa Barbara
���������	
�����
�� ���
���	��
���	�����	����
�

Abstract. Observational data (i.e., data that records observations and
measurements) plays a key role in many scientific disciplines. Observational
data, however, are typically structured and described in ad hoc ways, making its
discovery and integration diÆcult. The wide range of data collected, the variety
of ways the data are used, and the needs of existing analysis applications make it
impractical to define “one-size-fits-all” schemas for most observational data sets.
Instead, new approaches are needed to flexibly describe observational data for
e�ective discovery and integration. In this paper, we present a generic conceptual-
modeling framework for capturing the semantics of observational data. The
framework extends standard conceptual modeling approaches with new
constructs for describing observations and measurements. Key to the framework
is the ability to describe observation context, including complex, nested context
relationships. We describe our proposed modeling framework, focusing on con-
text and its use in expressing observational data semantics.

1 Introduction

Scientific knowledge is typically derived from relatively simple, underlying measure-
ments directly linked to real-world phenomena. Such measurements are often recorded
and stored in observational data sets, which are then analyzed by researchers using a va-
riety of tools and methodologies. Many fields increasingly use observational data from
multiple disciplines (genetics, biology, geology, hydrology, sociology, etc.) to tackle
broader and more complex scientific questions. Within ecology, e.g., cross-disciplinary
data is necessary to investigate complex environmental issues at broad geographic and
temporal scales. Carrying out such studies requires the integration and synthesis of
observational data from multiple research e�orts [1,2]. These investigations, however,
are hindered by the heterogeneity of observational data, which impedes the ability of
researchers to discover, interpret, and integrate relevant data collected by others.

The heterogeneity of observational data is due to a number of factors: (1) most obser-
vational data are collected by individuals, institutions, or scientific communities through
independent (i.e., uncoordinated) research projects; (2) the structure of observational

� This work supported in part by NSF grants #0533368, #0553768, #0612326, #0225676,
#0630033, and #0612326.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 41–54, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

42 S. Bowers, J.S. Madin, and M.P. Schildhauer

data is often chosen based on collection methods (e.g., to make data easier to record
“in the field”) or the format requirements of analysis tools, as opposed to standard
schemas; and (3) the terms and concepts used to label data are not standardized, both
within and across scientific disciplines and research groups [3]. This need for a more
uniform mechanism to describe observational data has led to a number of proposals
for observational data models [4,5,6] and ontologies [7,8,9,10]. While many of these
approaches provide domain-specific vocabularies for describing data, or data models
for storing certain types of observational data, generic and extensible approaches for
modeling observational data semantics are still needed.

We present an initial step towards such a generic conceptual modeling framework for
observational data. Our framework extends traditional conceptual modeling languages
with constructs for explicitly modeling observations, measurements, and observation
context. Our approach aims to address challenges associated with the following general
characteristics of observational data:

– Observational data are primarily stored as tables within text files, where each data
set corresponds to a single table within one file. This situation stems from data
being generated for use in common analytical programs, e.g., spreadsheet tools.

– Observational data sets are represented in first normal form (1NF), but are not oth-
erwise normalized, with no integrity constraints given.

– Observational data are not initially created from explicit conceptual models (e.g.,
ER or UML diagrams).

– Observational data do not represent a set of facts, or “ontological” truths about the
world; instead, they represent (possibly conflicting) measurements of phenomena
within some broader context.

– Observational data do not use standardized terms for attribute names and coded val-
ues (e.g., species or location names). The terms used, however, may be informally
described within plain-text metadata descriptions.

We envision conceptual models being created within our framework to describe ex-
isting observational data, primarily for the purpose of enabling discovery and integra-
tion of data sets. That is, while it may be possible to employ a more traditional “top
down” modeling approach using our framework, we are primarily focused on the case
of supplementing existing data with formal, semantic content descriptions. We call this
process semantic annotation, whereby annotations referencing an external conceptual
model serve to clarify and constrain the interpretation of the original data set.

As others have noted (e.g., [11,12,13]), it is often diÆcult to represent observations
and their context in traditional conceptual-modeling languages. For example, Fig. 1
shows three hypothetical observational data sets together with their corresponding ER
diagrams. Fig. 1(a) shows diameter measurements of trunks of di�erent tree species
taken in di�erent years. Fig. 1(b) depicts similar yearly measurements of tree trunk
diameters, but where trees are located within plots, plots have average daily tempera-
tures, and plots are located within sites. Fig. 1(c) also consists of tree diameter mea-
surements, where trees are located along a transect (a fixed path within an area) and
within a particular type of soil, soil acidity is measured, and each transect has a partic-
ular type of treatment applied (either a high or low watering regime). These relatively
simple examples demonstrate the need for semantic descriptions to clarify similarities

A Conceptual Modeling Framework for Expressing Observational Data Semantics 43

tree spp yr dbh

1 piru 2007 35.8

2 abba 2008 33.2

1 piru 2008 36.2

...

Tree

treespp

dbh

(a)

site plot yr piru

1 A 2007 50.1

1 B 2007 41.2

1 A 2008 50.5

...

(b)

abba

40.1

35.2

40.7

...

trns spp

1 piru

2 abba

1 piru

... ...

(c)

dbh

14.1

12.5

16.2

...

Site site

Plot

plot
Year

yr

Treespp*

dbh

within
site

within
plot

tree

t1

t3

t2

...

dbh
in year

Year yr

1:n

1:n

dbh
in year

pH

3.9

6.0

5.1

...

Transect

trns

Soil

soil

within
transect

soil

Tree

treespp

Dbh

dbh
1:1

1:n1:n

tree
dbh

1:n

1:n

within
transect

trmt

hi

lo

hi

...

tmp

53.2

50.2

53.2

...

tmp

trmt soil
pH

Soil
Acidity

1:n

1:n

pH

soil

s

h

s

...

1:n

1:n

Fig. 1. Three simple observational data sets and example ER representations: (a) diameter-at-
breast-height (dbh) measurements per year for tree species; (b) dbh per year for tree species
located in plots within sites; and (c) dbh and soil pH (acidity) measurements along transects. The
attribute spp� in (b) generalizes the two attributes labeled with species names, piru and abba. Car-
dinality restrictions x:y denote the min and max participation of the entity in the corresponding
role of the relationship.

and di�erences among data sets. For example, it is not obvious from the attributes and
data values, nor the ER diagrams, whether these three data sets contain similar types of
measurements.

While the conceptual models of Fig. 1 help to describe these data sets, they also
highlight challenges in expressing observational data semantics that are crucial to the
scientific interpretation and potential usage of these data for an integrated analysis:

Implicit context. In each example data set, the same tree entity has di�erent diameter
(dbh) values. These discrepancies are explained by the context in which the diameter
measurements occur. In general, context describes the meaningful “surroundings” of an
observation, such as the other entities observed, their measured values, and their rela-
tionship to the observed entity. However, context is only implicitly modeled in Fig. 1:
it is unclear which relationships denote context (e.g., “dbh in year”, “within plot”) and
which denote measurements (e.g., “tree dbh”, “soil pH”). Similarly, context is only par-
tially specified: it is not explicitly stated that transects and soils are context for trees, or
that trees also serve as context for soils. Without an understanding of the contextual re-
lationships within a data set, it becomes diÆcult to interpret and analyze data. In Fig. 1,
e.g., it is not trivial to determine whether it is meaningful to summarize temperatures
across years (computing a yearly average), or how to compute average tree diameter by
soil type. This in turn has ramifications for data integration, which often requires the
aggregation of observations to combine data [10].

Coupled structure and semantics. Although similar, the conceptual models in each
of the examples reflect potentially important di�erences. These di�erences are primar-
ily due to variation in methodologies used to collect data, and are expressed through

44 S. Bowers, J.S. Madin, and M.P. Schildhauer

relationships, cardinality constraints, weak-entity constraints, promotion of attributes
to entities, etc. While the same general types of entities and relationships exist across
the three examples, the diÆculty of capturing the methodological constraints (such as
context) within models impairs the ability to: (1) define domain-specific concepts and
relationships (e.g., within a shared ontology) that can be used to semantically anno-
tate multiple datasets; and (2) easily compare the semantics of di�erent data sets for
discovery and integration.

Complex constraints. Similarly, constructing conceptual models of observational data
using traditional modeling languages often requires the combination of complex con-
straints in conjunction with “advanced” modeling features (e.g., n-ary relationships,
cardinality restrictions). Because of the complexity of observational data, constructing
appropriate conceptual models is often tricky, and thus a time-consuming and error-
prone task. Similarly, these approaches often require knowledge of esoteric concepts
that would not be intuitive to most scientific researchers who ultimately need to under-
stand and use the data.

The rest of this paper is organized as follows. In Section 2 we describe our proposed
framework for modeling observational data. Our approach addresses a number of the
challenges highlighted above: (1) we introduce explicit constructs for modeling obser-
vations and their context, thereby allowing domain-specific concepts and relationships
to be decoupled from the constraints imposed by data-collection methods; (2) because
of this separation of concerns, the complex constraints needed to represent observa-
tional data are reduced; and (3) the framework provides a natural approach for data
annotation and summarization. In Section 3 we describe related work, and discuss fu-
ture directions in Section 4.

2 Modeling Observational Data

The basic constructs of our modeling framework are depicted in Fig. 2. We introduce
new constructs (left) for representing measurement standards, measurements, observa-
tions, and context. These constructs are layered upon “traditional” ER constructs (right),
namely, entities, relationships, attributes (called “characteristics” in Fig. 2), and values.

Measurement standards represent the various criteria used for comparing measured
values. Examples of measurement standards include units (e.g., meter, gram, square
centimeter), nominal and ordinal codes (e.g., location or color names, gender codes),
scales (e.g., pH, Richter scale, drought severity index), and date-time standards. Values
are combined with measurement standards to form Standard Values. Although not
described here, measurement standards are often classified by a standard typology that
di�erentiates nominal, ordinal, interval, and ratio measurements [14].

Measurements consist of a characteristic (i.e., attribute) and a standard value.1 In
our framework, each value within an observational data set represents a measurement.
For example, the first value in the dbh column of Fig. 1(a) denotes a measurement
consisting of a characteristic of type ‘diameter-at-breast-height’, the unit ‘centimeter’,
and the value ‘35�8’. Values representing categorical and identifying information are

1 Measurements may also have additional information, such as precision and accuracy.

A Conceptual Modeling Framework for Expressing Observational Data Semantics 45

1

*

*

1 1

*

1 1

*

1

1

*

*

*

*

1

1

*

* 1

* 1

* 1

Standard
Value

Measurement Characteristic

EntityObservation

RelationshipContext

Value
Measurement

Standard

Fig. 2. A metamodel for describing observational data

also considered measurements. For example, in Fig. 1(c), the trns column denotes mea-
surements having characteristics of type ‘name’ according to a local transect naming
scheme, and similarly, the trmt column represents measurements having characteristics
of type ‘water-level’ and a measurement standard that defines the values ‘hi’ and ‘lo’.

Observations consist of an entity (denoting the entity observed) and a set of mea-
surements. Each measurement associated with an observation applies to the observed
entity. That is, an observation asserts through a measurement that a particular value was
observed for one of the characteristics of the entity (implicitly shown by the gray ar-
rows on the right of Fig. 2). In addition, an observation can be related to zero or more
observations through context. A Context consists of a relationship and an observation,
and states that an observation was made within the scope of another observation. A
contextual relationship between observations asserts that the relationship was observed
between the corresponding entities.

As shown in Fig. 2, binary directed relationships are used within the framework for
modeling observational data. Binary, as opposed to more general n-ary relationships,
are employed for two primary reasons: (1) they allow for ontology languages based on
description logics (e.g., OWL-DL2) to be easily used within our framework to define
domain-specific vocabularies for data annotation (e.g., where entities are expressed via
OWL-DL classes, relationships through object properties, and characteristics through
datatype properties); and (2) they generally result in models that are simpler and easier
to define (although less restrictive). We also use the term ‘characteristic’ instead of ‘at-
tribute’ to distinguish the semantic property being described from the particular column
label used within a data set. In particular, the process of annotation involves associating
the attributes of a given data set with specific characteristics defined in domain-specific
vocabularies (described further below).

Fig. 3 shows three observational models for describing the data sets of Fig. 1. In-
stead of defining entity, relationship, and attribute types (as in Fig. 1), the diagrams
of Fig. 3 define the observation, measurement, and context types for the data sets.

2 �����������������������������

http://www.w3.org/TR/owl-ref/

46 S. Bowers, J.S. Madin, and M.P. Schildhauer

year
<<meas>>

within
<<ctx>>

dbh
<<meas>>

id
<<meas>>

spp
<<meas>>

TemporalRange
<<obs>>

(a)

label
<<meas>>

within
<<ctx>>

dbh
<<meas>>

spp
<<meas>>

Plot
<<obs>>

(b)

Tree
<<obs>>

Tree
<<obs>>

year
<<meas>>

TemporalRange
<<obs>>

within
<<ctx>>

within
<<ctx>>

Site
<<obs>>

id
<<meas>>

near
<<ctx>>

dbh
<<meas>>

spp
<<meas>>

Tree
<<obs>>

type
<<meas>>

Soil
<<obs>>

within
<<ctx>>

Transect
<<obs>>

depth
<<meas>>

id
<<meas>>

id
<<meas>>

acidity
<<meas>>

avg temp
<<meas>>

overlaps
<<ctx>>

(c)

contains
<<ctx>>

WaterTreatment
<<obs>>

within
<<ctx>>near

<<ctx>>

Air
<<obs>>

Fig. 3. Example observational conceptual models for the data sets of Fig. 1. Rectangles denote ob-
servations labeled with the corresponding entity, rounded boxes represent measurements labeled
with the corresponding characteristic, and ovals represent context labeled with the corresponding
relationship. To simplify the diagrams, measurement standards are not shown. Closely related
concepts of (b) and (c) are highlighted.

These types reference the appropriate entity, relationship, and characteristic types de-
fined, e.g., within one or more shared ontologies. As shown, measurements and con-
text relationships can be used to denote distinct entities (via keys, weak entities, and
identifying relationships), where the same entity may be involved in multiple
observations.

The examples of Fig. 3 demonstrate many of the advantages of our framework for
describing observational data. Because observational structures (observations, measure-
ments, context) and semantic structures (entities, relationships, characteristics) are de-
coupled, the latter can be used uniformly across observational models (e.g., dbh or the
‘within’ relationship). Similarly, creating models for observational data can be driven by
the definitions within standard ontologies, thereby simplifying the annotation process,
and lowering the potential for terminological ambiguity. As an example, characteristic
and relationship types can be defined within an external ontology to be used only with
specific types of entities, thus suggesting entity types for characteristics, and vice versa.

Another advantage is that context is explicitly represented and distinguished from
measurements. In contrast to Fig. 1, context relationships are directed, allowing one to
easily determine the context hierarchies (or “paths”) induced by observations. Similar to
summarizability in multidimensional databases [15], context hierarchies can help deter-
mine the meaningful summarizations available within a data set. Context relationships
also encourage the full disclosure of what was observed, which is critical metadata that
is often left implicit in observational data. This is demonstrated in Fig. 3(c), where an
explicit observation type is used to denote water entities used as experimental treat-
ments, in which the corresponding depth measurement denotes the height of the water
level. Similarly, in Fig. 3(b), an explicit air observation type is used to signify that air
temperature was measured (as opposed to water or body temperature, e.g.).

A Conceptual Modeling Framework for Expressing Observational Data Semantics 47

Below we further describe the framework of Fig. 2. We first give a formal definition
of the modeling constructs, focusing on instance-level descriptions. We then describe
types, which are used to construct observational models (e.g., as in Fig. 3). We also
show how existing data sets can be annotated with conceptual models defined in our
framework, and finally discuss issues related to summarization.

2.1 Observation Instances

An instance of a model is constructed from the following base and derived sets. Val is
the set of measurement values (integers, doubles, strings, etc.). Std is the set of mea-
surement standards (units, scales, etc.). Ent is the set of entity objects. ObsId is the set
of observation identifiers. Rel is the set of identifiers denoting binary, directed relation-
ships between entities. And Char is the set of identifiers denoting entity characteristics
that relate specific entities to standard values. The derived structures are built from these
base sets as follows.

StdVal � Val � Std

EntRel � Ent � Rel � Ent

EntChar � Ent � Char � StdVal

Obs � ObsId � Ent � �(Meas) � �(Ctx)

Meas � Char � StdVal

Ctx � Rel � ObsId

A standard value consists of a measurement standard and a value, e.g., StdVal(5� cm)
denotes the quantity “5 centimeters” (where cm represents the unit centimeter). The
elements of Rel and Char act as “handles” to specific relationship and characteristic
occurrences such that EntRel and EntChar specify the relationships and characteristics,
respectively. If EntRel(e1� r� e2), we say e1 is r-related to e2, and that r goes from e1 to e2.
Similarly, if EntChar(e� c� v), we say that e has the standard value v for characteristic c.
Entities may have at most one value for a characteristic. Each observation has an explicit
identifier and consists of an entity, a set of measurements, and a set of contexts. For
convenience, we often write o � Obs(e� M�C) to denote an observation Obs(o� e� M�C).
A measurement consists of a characteristic and a standard value. And a context consists
of a relationship and a reference to an observation.

Example 1 (Observation instance). A portion of the instance of the observational model
of Fig. 3(a) corresponding to the first row of the data set in Fig. 1(a) is given below,
where c1 to c4 are characteristics of type ����, ��� (diameter at breast height), �		
(taxonomic name), and
�, respectively, and r1 is a relationship of type ����.

o1 � Obs(e1� �m1���)

m1 � Meas(c1� StdVal(2007� datetime))

o2 � Obs(e2� �m2� m3� m4�� �Ctx(r1� o1)�)

m2 � Meas(c2� StdVal(35�8� cm))

m3 � Meas(c3� StdVal(Picea rubens� ITIS))

m4 � Meas(c4� StdVal(1� LocalTreeIds))

48 S. Bowers, J.S. Madin, and M.P. Schildhauer

Here, e1 and e2 denote entities of type ���	��������� and ����, respectively; ITIS
represents a taxonomic name standard3; and LocalTreeIds represents a catalog of tree
ids local to the study.

As mentioned above, observations represent assertions about entities. In particular,
measurements imply that within a given context, an entity was observed to have the
corresponding measured characteristic values. Similarly, observations inherit the asser-
tions of their contextual observations. The assertions of an observation are obtained by
“entering” the observation, given by the operation enter(o)4, for an observation o. Let

context : ObsId � �(ObsId)

be a function that takes an observation and returns its corresponding contextual obser-
vations. For an observation o � Obs(e� M�C), we define

context(o) � �o� � 	r Ctx(r� o�)
 C��

where context� denotes the transitive closure of context. For context�(o) � O, we define
enter(o) � Em � Er � Ec such that:

Em � �EntChar(e� c� v) � Meas(c� v)
 M�

Er � �EntRel(e� r� e�) � 	o�M�C� (Ctx(r� o�)
 C) � (o�
� Obs(e�

� M�
�C�))�

Ec �

�

o�
�O

enter(o�)

For example, Fig. 4 shows the result of entering two di�erent observations correspond-
ing to the first two rows of data in Fig. 1(b). Entering a tree observation (i.e., for the piru
attribute; denoted by o5 in the figure) results in assertions “up” the context hierarchy
of Fig. 3(b), and includes the corresponding temporal, plot, air, and site observations.
Entering a plot observation (denoted by o3 in the figure), however, results only in cor-
responding plot, air, and site assertions.

By providing a semantics for observation context, the enter operation can also help
verify the consistency of conceptual models and their instances. In particular, for an
observation to be consistent, the result of entering the observation must be consistent.
The latter is determined by the constraints implied by the corresponding semantic con-
structs (entities, relationships, characteristics). For example, because entities have at
most one value for a characteristic of a given type (such as dbh in Fig. 3), the result of
entering an observation must also satisfy this constraint. Adding a new observation o8
to Fig. 4 with observation context o5 and o7 would violate this constraint, e.g., since
the union of enter(o5) and enter(o7) is inconsistent. Similarly, cardinality constraints
on relationships must be satisfied after entering an observation.

2.2 Observation Types and Models

As mentioned above, decoupling observational and semantic structures allows semantic
types (i.e., the entity, relationship, and characteristic types) to be defined independently

3 Integrated Taxonomic Information System, �����������������
4 The notion of entering an observation is similar in spirit to “lifting” operators in [16].

http://www.itis.gov

A Conceptual Modeling Framework for Expressing Observational Data Semantics 49

o7: Obs

m9: Meas

m8: Meas

o3: Obse3: Plot Ent

oc3: Ctx

o1: Obse1: Site Ent

oc1: Ctx

o6: Obs e6: Temporal Ent)

oc6: Ctx

r1: within Rel

o5: Obs

e5: Tree Ent

m5: Meas

m6: Meas

o4: Obse4: TempRng Ent

oc4: Ctx

m1: Meas
c1: id Char

1: StdVal

r3: within Rel

m3: Meas
c3: label Char

A: StdVal

r4: within Rel

m4: Meas
c4: year Char

2007: StdVal

c5: spp CharP. rubens: StdVal

c6: dbh Char50.1: StdVal

r6: within Rel

m7: Meas
c7: year Char

2008: StdVal

oc5: Ctx r5: within Rel

P. rubens: StdVal

50.5: StdVal

e3: Plot Ent c2: label Char A: StdVal

c3: avg temp Char 53.2: StdValr1: within Rel

e1: Site Ent c1: id Char 1: StdVal

e5: Tree Ent

c6: dbh Char

c5: spp Char P. rubens: StdVal

50.1: StdVal

r4: within Rel

r3: within Rel

e4: TempRng Ent c4: year Char 2007: StdVal

enter(o3):

enter(o5):

oc2: Ctxr2: near Rel

o2: Obse2: Air Ent

m2: Meas
c2: avg temp Char

53.2: StdVal

r2: near Rel e2: Air Ent

e3: Plot Ent c2: label Char A: StdVal

c3: avg temp Char 53.2: StdValr1: within Rel

e1: Site Ent c1: id Char 1: StdVal

r2: near Rel e2: Air Ent

Fig. 4. Example instances of the first two rows of Fig. 1(b), for the Picea rubens (piru) species
(left), and the corresponding result of entering observations o3 and o5 (right). For simplicity,
measurement standards are not shown for standard values.

of observations and measurements. Thus, the same semantic types can be used to de-
scribe multiple observational data sets. In prior work [3,10], we have used OWL-DL
for defining entity, relationship, and characteristic types. However, the framework is
not limited to a specific approach (such as OWL), and instead can support the use of a
number of di�erent conceptual modeling languages. Here we consider a simple typing
language for the purpose of defining observational models such as those of Fig. 3.

We define base types ���, ���, ������, ����, ���, ���
�, ���, ����, ���, and
��� for constructing observational models. We require subtypes �� of types �, written
�� � �, to imply subset relations. That is, �� � � i� ���� � ���, where ��� denotes the
set of instances of a type �. If �� � � we say that �� is-a �. Similarly, if x is an instance
of a type �, we write x : � such that x : � i� x � ���. Each base type denotes its
corresponding instance-level set, e.g., ����� � Val, ����� � Std, etc. With slight abuse
of notation, we define the standard-value, observation, measurement, and context base
types as follows.

��
��� � ��� � ��

 �� � ��!
 � "�� � �(#���) � �($�%)

#��� � $��� � ��
���

$�% � ��� � ��!

These types correspond to the instance-level sets defined above as follows.

���
���� � ����� � ���
�

� ��� � � ��!
� � �"��� � �(�#����) � �(�$�%�)

�#���� � �$���� � ���
����

�$�%� � ����� � � ��!
�

50 S. Bowers, J.S. Madin, and M.P. Schildhauer

Similar to observation instances, for convenience we write � � ���(�� ��1� ����� ��1� ����)
to denote the type ���(�� �� ��1� ����� ��1� ����). In general, a type definition
���(�� �� ���� ��� ����� ���� ��� ����) implies a type � � ��� such that:

� � � " � �(#� #� � � �) � �($� $� � � �)�

This definition similarly states that:

��� � � ��� � (� � � �"� � �(�#�� �#�� � � �) � �(�$�� �$�� � � �))�

Thus, using these definitions it is straightforward to test whether an instance x is of an
observational type �, or whether � � �� for two observational types.

Example 2 (Observation types). Let ��������
�
�� ��� ���������
�� � ���;

��� ������ ������ � ���; ����� �		�
�� ��� � ����; ���	���������� ���� �

���; and ���� � ���. The observation types of the conceptual model of Fig. 3(a)
can be expressed as follows.

&��������� � ��
���(!��� &������)

'���#��� � #���('���� &���������)

������������� �� � ��(�������������� �'���#������)

���#��� � #���(���� ��
���(������ !�!�))

!
#��� � #���(!
� ��
���(!��� (�	������!
�))

&��#��� � #���(&��� ��
���(&������ $�))

���� �� � ��(����� ����#���� !
#���� &��#����� �)���$�%�)

)���$�% � $�%()���� ������������� ��)

An observational model M � (O� K� W) consists of a set of observation types O, a
set of key constraints K � O � 	(C), and a set of weak-entity constraints W �

O � 	(C) � 	(R � O), where C and R denote the set of characteristic and relation-
ship types, respectively. For every (�� ��1� � � � � �n�) � K, we require observation type �
to have a measurement type �i with characteristic type �i, for 1
 i
 n. We similarly
constrain (�� ��1� � � � � �n�� �(�1� �1)� � � � � (�m� �m)�) � W, adding the additional constraint
that observation type � also consist of a context type having relationship type � j and
observation type � j for 1
 j
 m

Example 3 (Observational model). Assume we have the following type definitions for
the model of Fig. 3(b):

���� �� � ��(����� ����#���� &��#����� �*���$�%� '���$�%�)

��� �� � ��(���� �(����#����� �+�$�%� ���$�%�)

+� �� � ��(+�� �+�����#������)

��� �� � ��(���� �!
#������)

'��� �� � ��(�������������� �'���#������)

*���$�% � $�%()���� *��� ��)

+�$�% � $�%(,���� +� ��)

���$�% � $�%()���� ��� ��)

'���$�% � $�%()���� '��� ��)�

A Conceptual Modeling Framework for Expressing Observational Data Semantics 51

The model M � (O� K� W) shown in Fig. 3(b) is defined as:

O � ����� ��� *��� ��� +� ��� ��� ��� '��� ���

K � �(��� ��� �!
�)� ('��� ��� �'����)� (+� ��� �+�������

W � �(���� ��� ������ �()���� *��� ��)�)

(*��� ��� �(������ �()���� ��� ��)�)��

An instance I � Obs of a model M � (O� K� W), denoted I : M, consists of a set of
observations that are instances of types in O. If I : M, then I must satisfy the key and
weak-entity constraints of M. These constraints are the same as those of standard ER
models, but apply indirectly through observations and context. For example, if o1� o2 � I
are of type � in M such that (�� ��1� � � � � �n�) � K and both o1 and o2 have the same
characteristic instances (implying the same characteristic values, see Fig. 4) for �1 to
�n, then both instances must reference the same entity instance. Additionally, if I : M,
we require enter(o) to be consistent for each o � I.

2.3 Annotation

Given a data set D and a conceptual model M, we annotate D with M by relating
attributes of D to measurements in M. The result of this process is an annotation A �

(D� M� �) consisting of a set of mappings � � V � O � C, where V is a set of attribute
names, O is a set of observation types, and C is a set of characteristic types. If (�� �� �) �
�, we require that � be an attribute of D, � be an observation type in M, and � be a
characteristic type for some measurement type of �.

Example 4 (Annotation). The annotation A � (D� M� �) for data set D of Fig. 1(a) and
model M of Fig. 3(a) consists of the mappings:

� � �(tree� ���� ��� !
)� (spp� ���� ��� ���)�

(yr� ������������� ��� '���)� (dbh� ���� ��� &��)��

Additional rules are often needed to define �, e.g., for converting data-set values to
allowable values of a measurement standard. Thus, a set � is often accompanied by
more complex expressions. Observational models may also contain measurements not
directly linked to data-set attributes. In Fig. 1(b), e.g., we may know that all plots of
the study have a 10m2 area, which typically would not be stored in a data set since the
corresponding column would contain the same value in every row.

Annotations provide a mechanism to determine the semantics of attributes in a data
set. For instance, from an annotation we can determine for each attribute: (1) the cor-
responding measurement in the conceptual model; (2) the observation in which the
measurement was made; (3) the characteristic, measurement standard, and entity asso-
ciated with the attribute; (4) other attributes of the data set associated with the same
observation; and (5) the observations, measurements, and attributes serving as context
for the attribute. It is also possible to construct schema mappings (i.e., views [17]) from
annotations that map instances of data-set schemas to instances of observational mod-
els. Such mappings can be used to generate instances of the model, query data sets via
the model, or integrate data sets across models.

52 S. Bowers, J.S. Madin, and M.P. Schildhauer

2.4 Data Summarization

Meaningful summaries of data are often constrained by the direction of context relation-
ships. In particular, similar to “roll-up” operations in multidimensional and statistical
databases [15], summarization is often performed over contextualized observations and
measurements, where measurements of observations that are “lower” in a context hi-
erarchy are summarized by observations that are “higher” in the context hierarchy. For
instance, computing an average water-treatment depth by transect in Fig. 3(c) is not
meaningful, since each transect has exactly one depth. However, computing average
tree-trunk diameter by transect in Fig. 3(c) is a generally meaningful summarization.

The types and constraints defined within observational models can be used to enable
summarization testing [18], i.e., to automatically determine and compute meaningful
summarizations. For instance, the measurement standard (e.g., nominal, ordinal, inter-
val, ratio) determines the kinds of summaries that can be applied to an observation
[14]. Cardinality constraints on observations imposed by context relationships also can
suggest summaries. For instance, in Fig. 3(b) each plot within a site contains a single
average air temperature, which can be used to compute average air temperatures by site
(via the plots within the site). Key and weak-entity constraints also enable summariza-
tion by determining when two observations reference the same entity. For example,
averaging soil acidity by tree species in Fig. 3(c) is made possible by first averag-
ing acidity for each tree entity, and then aggregating over the set of entities of each
species.

Finally, annotations allow summarizations over data-set attributes to be analyzed and
computed according to the constraints of the corresponding observational model. For
example, given a desired summarization expressed over data-set attributes, the corre-
sponding measurement types within the model can be obtained, and then used to check
whether the summarization is meaningful, and if so, to determine how it should be
carried out (i.e., based on context relationships, key, and weak-entity constraints).

3 Related Work

A number of data models [4,5,6] and ontologies [7,8,9,10] have been proposed to
support observational data (see [3] for a general survey). Our approach di�ers by pro-
viding formal and generic constructs for describing observations, measurements, and
contexts that are compatible with well-established conceptual-modeling languages (ER,
UML, description logics) and suitable for data annotation. Our approach also supports
generic context relationships that are either missing or provided only through specific
properties in existing approaches (e.g., recording when or where a measurement was
taken). In [10], we describe an OWL ontology developed within the SEEK project5 that
includes concepts similar to those presented here. We extend these ideas in this paper
by: (1) identifying and formalizing the constructs of Fig. 2; (2) providing a general
definition and formalization of context that can reference arbitrary relationships; (3)
defining observational models that include key and weak-entity constraints; and (4)

5 Science Environment for Ecological Knowledge: ����������-��	��������	�����

http://seek.ecoinformatics.org

A Conceptual Modeling Framework for Expressing Observational Data Semantics 53

describing a formal approach for annotating data sets with observational models. In
[10], we define concept hierarchies and properties for measurement standards includ-
ing units and unit conversions, which can also be used in the framework presented
here.

Approaches for representing context have been widely studied in logic [16,19] and
conceptual modeling [20,12,11]. For instance, in [11], an ER model is extended by
adding “weak attributes” to support context and data quality; in [12], ORM extensions
are proposed to support context-aware applications; and in [20] context is modeled via
sets of objects that can be related via classification, generalization, and attribution. In
contrast, our approach distinctly separates observations of entities from entities and in-
directly assigns context to entities via observations, thus providing additional flexibility
for describing observational data and associated context relationships. Similar to con-
text, a number of ER extensions have also been proposed to explicitly support temporal
aspects of data [13]. In [21,22,23], approaches for reverse-engineering databases into
ER models are proposed, where [21] defines an approach to generate ER models from
denormalized relational sources (as in Fig. 1). Many annotation approaches have been
proposed, ranging from column-level tagging [24] to query-based mappings [17]. Our
approach di�ers by employing simple annotations to observational models (as opposed
to arbitrary ontologies) from which more complex mappings can be constructed. Fi-
nally, summarization is well-established in multidimensional and statistical database
systems with techniques developed for testing summarizability [15,18], and our frame-
work can directly leverage these approaches.

4 Summary and Future Work

We have presented an approach for modeling observational data that extends ex-
isting conceptual-modeling frameworks by adding new constructs for representing
observations, measurements, measurement standards, and context. The benefits of our
approach include a formal and generic treatment of observation context, the ability
to decouple observational models from conceptual descriptions (allowing observational
data to be described via shared ontologies), an approach for simplifying data annotation
(e.g., based on key, weak-entity, and context constraints), and support for data sum-
marization. These benefits directly address challenges in interpreting and integrating
heterogeneous observational data that are critical for supporting broad-scale scientific
analyses.

We have implemented a number of prototype tools within the SEEK project based
on an earlier version of the framework presented here. These tools support semantic
annotation and discovery of observational data sets described in the EML6 metadata
language. We intend to extend these tools to support the constructs and annotation ap-
proach presented here. We are also exploring summarization capabilities and the merg-
ing of multiple data sets via observational models. Finally, we are developing a number
of domain-specific ecological ontologies to support the annotation of ecological data
within our framework.

6 �������-����	��������	������������������

http://knb.ecoinformatics.org/software/eml

54 S. Bowers, J.S. Madin, and M.P. Schildhauer

References

1. Andelman, S., Bowles, C., Willig, M., Waide, R.: Understanding environmental complexity
through a distributed knowledge network. BioSciences 54(3), 240–246 (2004)

2. Ellison, A., et al.: Analytic webs support the synthesis of ecological datasets. Ecology 87,
1345–1358 (2006)

3. Madin, J., Bowers, S., Schildhauer, M., Jones, M.: Advancing ecological research with on-
tologies. Trends Ecol. Evol. 23(3), 159–168 (2008)

4. Cox, S.: Observations and measurements. Technical Report 05-087r4, OGC (2006)
5. Tarboton, D., Horsburgh, J., Maidment, D.: CUAHSI community observations data model

(ODM), version 1.0 (2007), ������������������
��	������
��
6. Cushing, J., Nadkarni, N., Finch, M., Fiala, A., Murphy-Hill, E., Delcambre, L., Maier, D.:

Component-based end-user database design for ecologists. J. Intell. Inf. Syst. 29(1), 7–24
(2007)

7. McGuinness, D., et al.: The virtual solar-terrestrial observatory: A deployed semantic web
application case study for scientific research. In: AAAI (2007)

8. Williams, R., Martinez, N., Goldbeck, J.: Ontologies for ecoinformatics. J. of Web Seman-
tics 4, 237–242 (2006)

9. Raskin, R.: Enabling semantic interoperability for earth science data (2004),
�������������.�����������

10. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for
describing and synthesizing ecological observation data. Eco. Inf. 2, 279–296 (2006)

11. Tu, S., Wang, R.: Modeling data quality and context through extension of the ER model. In:
Workshop on Information Technologies and Systems (1993)

12. Henricksen, K., Indulska, J., McFadden, T.: Modelling context information with ORM. In:
OTM Workshops (2005)

13. Gregersen, H., Jensen, C.: Temporal entity-relationship models – a survey. TKDE 11, 464–
497 (1999)

14. Stevens, S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
15. Lenz, H., Shoshani, A.: Summarizability in OLAP and statistical data bases. In: SSDBM

(1997)
16. McCarthy, J.: Notes on formalizing context. In: IJCAI (1993)
17. Beeri, C., Levy, A., Rousset, M.: Rewriting queries using views in description logics. In:

PODS (1997)
18. Hurtado, C., Mendelzon, A.: OLAP dimension constraints. In: PODS (2002)
19. Guha, R., McCarthy, J.: Varieties of contexts. In: International and Interdisciplinary Confer-

ence on Modeling and Using Context (2003)
20. Analyti, A., Theodorakis, M., Spyratos, N., Constantopoulos, P.: Contextualization as an

independent abstraction mechanism for conceptual modeling. Inf. Syst. 32(1), 24–60 (2007)
21. Petit, J., Toumani, F., Boulicaut, J., Kouloumdjian, J.: Towards the reverse engineering of

denormalized relational databases. In: ICDE (1996)
22. Alhajj, R.: Extracting the extended entity-relationship model from a legacy relational

database. Inf. Syst. 28(6), 597–618 (2003)
23. Davis, K., Aiken, P.: Data reverse engineering: A historical survey. In: WCRE (2000)
24. An, Y., Borgida, A., Mylopoulos, J.: Discovering the semantics of relational tables through

mappings. J. Data Semantics VII, 1–32 (2006)

http://water.usu.edu/cuahsi/odm/
http://sweet.jpl.nasa.gov

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 55–68, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Compositional Semantic Account of Data
Quality Attributes

Lei Jiang1, Alex Borgida1,2, and John Mylopoulos1,3

1 University of Toronto
2 Rutgers University

3 University of Trento
{leijiang,jm}@cs.toronto.edu, borgida@cs.rutgers.edu

Abstract. We address the fundamental question: what does it mean for data in a
database to be of high quality? We motivate our discussion with examples,
where traditional views on data quality are found to be unsatisfactory. Our work
is founded on the premise that data values are primarily linguistic signs that
convey meaning from their producer to their user through senses and referents.
In this setting, data quality issues arise when discrepancies occur during this
communication. We sketch a theory of senses for individual values in a rela-
tional table based on its semantics expressed using some ontology. We use this
to offer a compositional approach, where data quality is expressed in terms of a
variety of primitive relationships among values and their senses. We evaluate
our approach by accounting for quality attributes in other frameworks proposed
in the literature. This exercise allows us to (i) reveal and differentiate multiple,
sometimes conflicting, definitions of a quality attribute, (ii) accommodate com-
peting views on how these attributes are related, and (iii) point to possible new
definitions.

1 Introduction

The quality of any artifact is determined by the degree to which it fulfills its intended
use (“fitness for purpose”). Arguably, for a database the purpose is answering ques-
tions about the application it models. Data quality (DQ), the fitness of data values for
question-answering purposes, is widely accepted as a multi-dimensional and a hierar-
chical concept [23,13,3]. More than a dozen proposals have been made to characterize
and define various aspects of DQ (also called quality dimensions or quality attributes)
in terms of a classification scheme. Examples of such schemes include (i) accessibil-
ity, interpretability, usefulness and believability DQ [23] (ii) intrinsic, contextual,
representational, and accessibility DQ [24], and (iii) mandatory vs. desirable, primary
vs. secondary, and direct vs. indirect DQ [5].

Criticism of these approaches includes ambiguity, subjectiveness, and even circu-
larity of definitions within a single classification [4], and inconsistency across multi-
ple classifications [13]. As an example of circular definition, credibility in [23] is
considered as a sub-attribute of believability, but it is itself defined as having suffi-
cient evidence to be believed; as an example of inconsistent definition, in [X24] com-
pleteness and believability belong to two disjoint categories, while they are related

56 L. Jiang, A. Borgida, and J. Mylopoulos

through a specialization link in [23]. This lack of precision and consistency in defin-
ing DQ attributes also prevents one from answering even the most basic questions
about how DQ attributes relate. For example, does imprecision imply inaccuracy?
Does our judgment of completeness presuppose the notion of relevance? Do concepts
such as trust, believability and credibility refer to the same DQ attribute? If not, how
do they differ?

The objective of this paper is to address these problems by offering a formal frame-
work for DQ. In particular, we consider a DQ attribute as a complex expression, where
the meaning of the attribute is captured in terms of the meaning of its constituents and the
structure of the expression. Instead of defining each DQ attribute separately, we seek to
answer the following questions: (i) what are the primitive constituents from which DQ
attributes can be expressed and (ii) how can these constituents be combined in a mean-
ingful way. The concept of “sign” provides such a primitive notion for the investigation
of these questions. Data values in a database are above all linguistic signs that convey
meaning from their producer to their user; DQ issues arise when discrepancies occur
during this communication. Based on these observations, we propose a novel, composi-
tional approach to understand and define DQ attributes in terms of a variety of primitive
relationships between values and their senses. We evaluate our approach by accounting
for DQ attributes in other frameworks proposed in the literature. This exercise allows us
to (i) reveal and differentiate multiple, sometimes conflicting, definitions of a quality
attribute; (ii) accommodate competing views on how these attributes should be related;
and (iii) point to possible new definitions.

The rest of paper is structured as follows. We motivate our discussion with some
examples where traditional views on DQ are unsatisfactory in determining whether
data is defective (Section 2). We then describe our view of data quality based on a
triadic model of signs (Section 3), and sketch a theory of senses for individual values
in a relational table based on its semantics expressed using some ontology (Section 4).
Next, we present the compositional approach to DQ and its evaluation (Section 5 and
6). Finally, we review related work (Section 7), and concluded and point to our future
research plan (Section 8).

2 Motivating Examples

Consider a Patient table (XTable 1X) that records body temperatures for patients in a hospi-
tal. Suppose that each row shown here records the temperature of a particular patient at
different time points (other rows are omitted). First, let us consider accuracy, one of the
most studied DQ attributes. It has been defined as a measure of “the closeness between a
value v and a value v', considered as the correct representation of the real-life phenome-
non v aims to represent” [22,3X]. For example, if the patient’s real name is v' = 'Ben
Cheung', but was recorded as v = 'Ben Franklin' instead, we may conclude that v is inac-
curate.

Example 1. In some cases, our judgment of accuracy does not rely on syntactic prox-
imity of data values, but is affected instead by our interpretation of their meanings. For
example, it would have been no less accurate to have '98.6°F' instead of '37.0°C' in
the last row, as long as we understand that these two values represent the same tem-
perature reading using different scales.

 Towards a Compositional Semantic Account of Data Quality Attributes 57

Table 1. The Patient table

Name Temperature Time
Ben Cheung 37.2°C 2007/11/05 13:05

Ben Cheung 38.5°C 2007/11/06 12:00

Ben Cheung 37.0°C 2007/11/07 11:55

Example 2. Moreover, whether a data value is considered accurate often depends on
both its interpreted and intended meaning. For example, if there is no agreement on
how the temperature should to be measured, we may interpret '37.2°C' in the first row
as Ben’s temperature measured under normal conditions, while it really represents his
temperature after aspirin was administered. Inaccuracy caused by such a mismatch
cause no less a problem than a typographical error (e.g., entering '36.2°C' instead of
'37.2°C').

Example 3. Furthermore, accuracy cannot be considered in isolation: our judgment on
accuracy of a value depends on the judgment of that of its related values. For exam-
ple, consider '38.5°C' and '2007/11/06 12:00' in the second row. If we know that
Ben’s temperature was U39 U degree Celsius on Nov. 6, 2007 at 12:00, we may want to
conclude that '38.5°C' represents the real-world phenomenon (i.e., 39 degree Celsius)
inaccurately. But, in doing so we have already made an assumption that '2007/11/06
12:00' is accurate! What if we instead know that Ben’s temperature was 38.5 degree
Celsius on Nov. 6, 2007 at U11:45U? In this case, are we willing to believe that it is the
time not the temperature value that was inaccurately recorded?

Consider next completeness, another commonly studied DQ attribute, which has
been defined as the percentage of all tuples satisfying the relational schema of a table
(i.e., tuples in the true extension of the schema) which are actually presented in the
table [3X].

Example 4. Actually, it is impossible to talk about the “true” extension of a relational
schema without knowing what the user’s requirements are. Accordingly, the above
data about Ben Cheung could be complete or incomplete depending on whether Ben’s
temperature is required to be measured only once or twice a day.

3 Nature of Data Quality

In this section, we describe our view of DQ, founded on the notion of signs [17].
Generally speaking, a sign is something that stands to someone for something else.
Accordingly, we see values (together with their metadata) in databases as primarily
linguistic signs standing for real world phenomena. Information processing is a form
of communication realized by creating, passing and utilizing signs [12]; DQ issues
arise when discrepancies occur during this communication.

58 L. Jiang, A. Borgida, and J. Mylopoulos

In the meaning triad [12], a triadic sign model, a symbol (e.g., 'Ben Cheung') is con-
nected to a referent (e.g., a particular person in the world), and a sense understood by its
interpreter (e.g., the concept of that person in the interpreter’s mind). The difference
between the referent and sense of a symbol could be understood in analogy to that of the
extensional and intensional definitions of a term. Moreover a symbol may have more
than one “valid” sense (and referent), under different circumstances, according to differ-
ent interpreters.

We find it useful to distinguish four kinds of senses/referents of a symbol:

• The intended sense/referent is the sense/referent of the symbol according to its
producer. It is the meaning the producer intends to communicate, and is deter-
mined exclusively by the producer.

• The interpreted sense/referent is the sense/referent of the symbol according to its
user. It is the meaning the user recognizes, and is determined exclusively by the
user.

• The supposed sense/referent is the sense/referent, determined exclusively by the
requirements for production of the symbol, such as conventions and regulations the
producer has to comply with, ethical and social norms, etc.

• The expected sense/referent is the sense/referent, determined exclusively by the
conditions for use of the symbol, such as the tasks, purposes and goals of the user.

To illustrate this distinction, consider the temperature value '37.2°C' in XTable 1X.
Suppose Sudha, the doctor of Ben, needs to know his temperature, not lowered by an
antipyretic, and measured around noon every day (because he is plotting a graph with
X-axis points every 24 hours). She also expects the measurement to be taken using a
thermometer in the mouth. A new nurse, Catherine, running late, measured Ben’s
temperature at 13:05, with a thermometer in the ear. Moreover, Catherine is unaware
of the fact that Ben had taken an antipyretic at 12:40. As a result, by recording
'37.2°C', Catherine intended to say “Ben’s temperature UwithoutU antipyretic, measured
Uat 13:05U with a UtympanalU thermometer”. If Catherine had been more careful, this
value’s supposed meaning would be “Ben’s temperature Uafter U antipyretic, measured Uat
13:05U with Usome U thermometer”. On the other hand, Sudha may interpret this value as
“Ben’s temperature UwithoutU antipyretic, measured Uat 13:05U (because he saw the time
value in the table) with an Uoral U thermometer”, which is different from what he ex-
pected: “Ben’s temperature UwithoutU antipyretic, measured Uaround noonU with an Uoral U
thermometer”.

Ideally, total data quality means that the four types of senses must match for each
data value individually, and certain constraints must hold among the same types of
senses for related values, especially ones in different fields of the same row. DQ is-
sues arise when this does not hold. For example, when Sudha expects oral measure-
ments, but this requirement is not specified explicitly, discrepancy is likely to exist
between the expected and supposed senses. More generally, if some sources of vari-
ability (e.g., the type of thermometer used and patient conditions) are not captured in
the data (or metadata), the communication between the producer and user will be am-
biguous. Of course, whether or not such ambiguity is considered problematic depends
on the purpose for which the data is to be used, and it is the role of the requirements
specification to eliminate these problems.

 Towards a Compositional Semantic Account of Data Quality Attributes 59

4 Nature of Senses

Before using the preceding distinctions in a theory of DQ, it helps to flesh out a bit
the notion of “sense” we have in mind. In this paper we concentrate on data values
concerning object properties (e.g., length, temperature and color), rather than general
relationships between objects. For this purpose, we follow the DOLCE ontology [14]
in viewing the world as populated by entities, which include concrete physical objects
(e.g., persons) as well as abstract regions (e.g., distance values); the latter can appear
as the values of properties1

F, called qualia, for objects. To help communication, enti-
ties have names that allow them to be uniquely identified within some more or less
restricted context: 'Ben Cheung' is presumably sufficient to identify the patient cur-
rently in the hospital in the previous example. Naming qualia allows us, for example,
to have the region named 'normal temperature' contain the region named '37°C',
which in turn contains '37.2°C'. Qualia are associated with properties at specific times
(which are also treated as qualia), allowing property values to change. In FOL, this
might be written as temptrOf('Ben Cheung', '2007/11/05 13:05') = '37.2°C'; inten-
sional logics use other notations [7].

The fundamental premise of databases is that one can associate a semantics with a
relational table such as Patient(NM, TPTR, TM) along the lines of “the unique person
named NM has temperature property value TPTR at time TM”, a semantics that must
be shared by data producer and user for proper communication. Given a shared ontol-
ogy, this might be written in FOL as

 Patient(NM, TPTR, TM) →
 ∃!p: Person . hasName(p, NM) ∧ temptrOf (p, TM) = TPTR

where we simplify matters by omitting additional variables for qualia to be “named”
by TM and TPTR.

Based on this, the interpreted senses of the values in Patient('Ben Cheung',
'37.2°C', '2007/11/05 13:05') could be m = “the unique person named Ben Cheung”,
m' = “the temperature quale for the unique person named Ben Cheung at time quale
2007/11/05 13:05”, and m'' = “the time quale when the temperature quale 37.2°C was
measured for the unique person named Ben Cheung”. Note that the senses of these
values, and their derivation from the table semantics accounts for the situations we
encountered in motivating examples in Section 2 (e.g., Example 3 concerns violation
of the constraint that m' and m'' must refer to the same temperature and time quale).

The above account is idealized, since it is usually necessary to observe or measure
properties. This introduces a process of measurement, which allows the semantic
specification to capture additional requirements. For example, the following formula
specifies the kind of instrument to measure the temperature with, and a constraint on
the time when measurements are to be taken:

 Patient(NM, TPTR, TM) →
 ∃!p: Person, instr: OralThermometer . hasName(p, NM)
 ∧ measures(temptrOf (p, TM), TPTR, instr, TM) ∧ closeToNoon(TM)

1 DOLCE calls properties “qualities”, but we find this too confusing in our context, where we

are talking about data UqualityU. Also, DOLCE reifies properties into entities that “inhere” in
objects -- a complication that is unnecessary in our context.

60 L. Jiang, A. Borgida, and J. Mylopoulos

Moreover, measurements are almost never exact, so the precise semantics may need
to talk about accuracy and precision errors for measurements or the instruments in-
volved, the subject of metrology.

The above considerations allow us to see a basis for distinguishing different de-
grees of match between two senses m1 and m2 of a data value s, which will be impor-
tant for our development of a theory of DQ. On the one hand, we have the ideal exact
match matchexact(m1, m2) when the senses are identical. At the other extreme, we have
a total mismatch matchmismatch(m1, m2) in cases such as when m1 is a temperature
quale while m2 is a person. In between, we admit partial matches matchattr

partial(m1 ,m2)
where attr is the attribute, of which s is a value; for example, the four senses of Ben’s
temperature value '37.2°C' discussed in the previous section would match partially.
The precise details of partial match are under study, but are not important here; some
of its properties include

• there is a reasoning process for deciding it, allowing for differing background
knowledge (thus allowing one to discover that "37.0°C" and "98.6°F" refer to the
same quale (or not));

• the arguments must agree on certain predicates and the identity of certain central
entities (e.g., it is the same person's temperature that is being talked about);

• aspects concerning other predicates and entities (such as those dealing with meas-
uring and its circumstances) are less crucial, and will lead to partial matches; the
precise details of how these are to be weighted in a comparison are application
goal-dependent;

• all other things being equal, the geometry of quale regions is used to compare simi-
larity.

We also find useful a more precise variant of partial match, called closerattr(m,m1,m2),
which indicates that m1 is conceptually closer to m than m2 is; it allows us to find that,
all other things being equal, a 13:05 measurement of a particular property is closer to
a noon one than a 14:30 measurement.

5 Defining Data Quality

We characterize data quality considering four DQ aspects, each of which contains a
collection of theoretical DQ predicates. These predicates are defined in terms of the
relationships among symbols and their senses from a single viewpoint, therefore provid-
ing primitive constituents from which DQ attributes can be expressed. A DQ attribute in
practice (e.g., accuracy, completeness) normally correspond to predicates in more than
one aspect. In what follows, we discuss a few important DQ predicates in each aspect.
This is, however by no means an exhaustive list of possible predicates in these aspects.

5.1 Symbol Aspect

The first DQ aspect concerns the relationships involving symbols only, without explic-
itly mentioning their senses. Let S be a set of symbols of interest. First we may be inter-
ested in the membership of a symbol s∈ S in a subset Saccept of S. Let us denote this
using the predicate symmember(s, Saccept) ⇔ s∈Saccept. For example, symmember('50°C', Sbody-

temp) does not hold, assuming Sbody-temp is the set of symbols representing the acceptable

 Towards a Compositional Semantic Account of Data Quality Attributes 61

human body temperatures. For acceptable symbols, we may now consider a variety of
relationships between them. The simplest such relationship is sameness: let symmatch(s1,
s2) hold whenever s1 and s2 have exactly the same syntactic form. When two symbols do
not match exactly, we may consider which are closer syntactically, based on some dis-
tance function distancef (such as edit distance [3]). Let us write this using symcloser(s, s1,
s2) ⇔ distancef(s, s1) < distancef(s, s2). For example, symcloser('Cheng', 'Cheung',
'Chiang') is true because changing from 'Cheng' to 'Cheung' requires fewer edits than to
'Chiang'. Another interesting relationship, symmore-detail(s1, s2), concerns level of detail;
for real numbers we might have symmore-detail('3.1415926', '3.14') indicating that, in nor-
malized scientific notation, (i) the two arguments have the same exponent, (ii) the first
argument has as least as many digits as the second one in the coefficient, and (iii) the
coefficients agree in the digits presented.

5.2 The Meaning Aspect

This DQ aspect deals with the relationships involve the interpreted and intended senses
of a symbol. According to H.P. Grice’s classical account of speaker meaning, we rely on
the recognition of our intention to communicate and we use that very recognition to get
our message across [20]. In the context of data quality, this implies that in an ideal com-
munication, there should be an exact match between intended and interpreted senses.

Let M be the set of senses to which the symbols in S may refer. First of all, we need
to know whether for each symbol there is an interpreted (or intended) sense assigned
to it by its user (or producer). Let us use meahas-intp(s, m) (respectively, meahas-intd(s,
m)) to indicate that a sense m∈ M is an interpreted (respectively, intended) sense of a
symbol s∈ S F

2
F. For example, ∃m∈ M. meahas-intp('37.2°C', m) probably does not hold

for a physician who doesn’t work in Ben’s hospital, because she will not have a way
to identify the person named Ben Cheung at that hospital.

Once we know that the interpreted and intended senses exist, we can then consider
whether their existence is unique. Formally, let’s define

meahas-uni-inp(s) ⇔ ∀ m1, m2∈M. meahas-intp(s, m1) ∧ meahas-intp(s, m2) → matchex-

act(m1, m2),
meahas-uni-int(s) ⇔ ∀ m1, m2∈M. meahas-intd(s, m1) ∧ meahas-intd(s, m2) → matchex-

act(m1, m2).
Conversely, we may also be interested in whether two symbols are synonyms from

the user’s or producer’s perspective (i.e., sharing their interpreted or intended senses):
measynonym-u(s1, s2) ⇔ ∃m∈M. meahas-intp(s1, m) ∧ meahas-intp(s2, m) ∧ ¬symmatch(s1,

s2)
measynonym-p(s1, s2) ⇔ ∃m∈M. meahas-intd(s1, m) ∧ meahas-intd(s2, m) ∧ ¬ symmatch(s1,

s2)

When a symbol has an interpreted and intended sense, we are mostly interested in
whether there is a match between them. First we want to know if they match exactly

meamatch(s, m1, m2) ⇔ meahas-intp(s, m1) ∧ meahas-intd(s, m2) ∧ matchexact(m1, m2).

2 Throughout the rest of the paper, when we mention symbol s, we mean a symbol token - its

occurrence in a field of a particular table tuple. So '37.2°C' is the occurrence of this symbol in
row 1, column 2 of Table 1.

62 L. Jiang, A. Borgida, and J. Mylopoulos

For example, meamatch('37.2°C', m1, m2) does not hold when m1 and m2 are tem-
peratures of a patient measured at different time points. In general, we may want to
know, for partially matched senses, how closely they match. For example, when two
symbols s1 and s2 share their intended senses (e.g., because people recorded the same
value with different precision), we can state the fact that “the interpreted sense of s1 is
closer than that of s2 to their shared intended sense” as

meacloser(s1, s2, m, m1, m2) ⇔ meahas-intd(s1, m) ∧ meahas-intd(s2, m) ∧ meahas-intp(s1,
m1) ∧ meahas-intp(s2, m2) ∧ matchattr

partial(m1, m) ∧ matchattr
partial(m2, m) ∧ closerattr(m,

m1, m2).

5.3 The Purpose Aspect

This DQ aspect deals with the relationships involve the interpreted and expected
senses of a symbol from the user perspective. As we have mentioned, an ultimate cri-
terion for data quality is fitness for purpose. In our framework, the intended use of
data values is captured through their expected senses. Therefore, quality issues arise
when the interpreted and expected senses of a data value do not match exactly.

We are interested in a variety of relationships involving expected senses. Predicates
such as purmatch(s, m1, m2), for indicating the interpreted sense m1 and expected sense m2
of the symbol s match exactly, and purcloser(s1, s2, m, m1, m2), for indicating the inter-
preted sense m1 of s1 is closer than the interpreted sense m2 of s2 to their shared in-
tended sense m, are defined in a similar way to their counterparts in the meaning aspect.
The existence of expected sense, however, deserves more discussion.

Unlike the interpreted sense which is determined by the user directly, the expected
sense is determined by a particular application. If a doctor is only interested in study-
ing the effect of psychotherapy on the temperature of the patient, we’ll say that the
blood pressure (or more obviously the number of chairs in the room) have no ex-
pected senses to that doctor. To formalize this, let Me denote a subset of M, deter-
mined by the tasks and goals the user has to fulfill. In our example, M might have
temperatures and blood pressures taken at any time, while Me might only have tem-
peratures taken around noon. We say m ∈ Me is an expected sense of a symbol s if m
matches, at least partially, with the interpreted sense of s. This can be stated as

purhas-exp(s, m) ⇔ m∈Me ∧ ∃m'∈M. meahas-intp (s, m') ∧
(matchattr

partial(m, m') ∨ matchexact(m, m')).

This also allows us to consider the existence of a symbol, given partial knowledge
about its expected sense. For example, we cannot find a symbol s in XTable 1 X with the
property purhas-exp(s, “Ben’s cholesterol level on Nov. 5, 2007 at 13:05”).

When more than one expected sense exists, we may want to know if they are all
comparable with respect to the interpreted sense of the symbol (so that later we can
pick the closest one):

purcomparable-exp(s) ⇔ ∃m∈ M. meahas-intp(s, m) ∧ ∀m1, m2 ∈ Me.
purhas-exp(s, m1) ∧ purhas-exp(s, m2) → closerattr(m, m1, m2) ∨ closerattr(m, m2, m1)

For example, given a temperature value '37.2°C' with its interpreted sense “the tem-
perature quale of Ben measured at 13:05 with some thermometer”, and two expected
senses “temperature qualia of Ben measured at 13:05 with an oral/tympanal thermome-

 Towards a Compositional Semantic Account of Data Quality Attributes 63

ter”, then these two expected senses are probably not comparable, unless we have a the-
ory on how different types of thermometers affect temperature measurement.

5.4 The Trust Aspect

This DQ aspect deals with the relationships involve the intended and supposed senses
of a symbol from the producer perspective. According to [20], in order to establish
audience trust, both the sincerity and authority conditions have to hold. In the context
of our framework, this means the user has to believe that the producer is neither a liar
(i.e., no discrepancy caused intentionally, e.g., due to falsification) nor a fool (i.e., no
discrepancy caused unintentionally, e.g., due to observation bias). Trust issues arise
therefore when there is discrepancy between intended and supposed sense. Predicates
in the aspects, such as truhas-sup, trucomparable-sup and trumatch are defined in the similar
way as their counterparts in the purpose aspect. For lack of space, we do not elaborate
them here.

6 Mapping Data Quality Attributes

We evaluate our approach by expressing quality attributes defined in the literature in our
framework. One observation from this exercise will be that a single quality attribute
often has multiple, sometimes conflicting, definitions. We differentiate these definitions
by expressing them in terms of different (combinations of) theoretical quality predicates
we have defined. This also allow us to accommodate competing views on how these
attributes should be related, by making explicit the exact meaning of the attributes in-
volved, and by distinguishing relationships that exist by definition and those that exist
based on assumptions. Finally, this exercise also allows us to point out possibly new
definitions.

6.1 Accuracy, Precision and Currency

Accuracy is normally understood as free of defects or correspondence to reality [24,13].
In [32], it is defined formally as the closeness between two representations s and s',
where s' is the correct representation of the real-life phenomenon s aims to represent. If
we accept that “correctness” here means “justified by some accepted standards or con-
ventions”, and make “closeness” be “identity” to get a Yes/No predicate, then this defi-
nition can be stated in terms of our symbol, meaning and trust aspects

accuracysymbol(s) ⇔ ∃ m∈ M, s'∈ S. meahas-intd(s, m) ∧ truhas-sup(s', m) ∧ symmatch(s,
s').

According to this definition, we cannot have synonyms such as '37.0°C' and '98.6°F',
which may have been desired. To accommodate this, we can change the perspective
from a fixed phenomenon to a fixed representation [25]; it defines accuracy as the
closeness between two real-life phenomena m and m', where m is what a symbol s
aims to represent and m' is what s appears to represent. This view requires only the
meaning aspect

accuracymeaning(s) ⇔ ∃m1, m2∈ M. meamatch(s, m1, m2).

64 L. Jiang, A. Borgida, and J. Mylopoulos

The fact that s1 is more accurate than s2 can then be represented in this view as
accuracymeaning-compare(s1, s2) ⇔ ∃m, m1, m2∈ M. meacloser(s1, s2, m, m1, m2).

A typical understanding of precision as a quality attribute is the degree of details
data values exhibit. For example, precision of numeric values is often measured by
the number of significant digits used [5]. A number (e.g., '3.1415926') is more precise
than another one (e.g., '3.14'), assuming both represent the same phenomenon (e.g.,
the mathematical constant π), can be stated as

precisionsymbol(s1, s2) ⇔ symmore-detail(s1, s2) ∧ ∃m1, m2 ∈ M.
meahas-intd(s1, m1) ∧ meahas-intd(s2, m2) ∧ matchexact(m1, m2)

Precision is often considered in close relation to accuracy. A typical intuition is that
low precision leads to inaccuracy [25,5], which however cannot be accommodated by
precisionsymbol alone. This is because having greater degree of details doesn’t guaran-
tee a better interpretation towards the intended meaning. In order to support this intui-
tion, we need a strengthened notion of precision

precisionstrengthened(s1, s2) ⇔ precisionsymbol(s1, s2) ∧ accuracymeaning-compare(s1, s2).

From the opposite view, one considers accuracy as a prerequisite for precision: in
order to say s1 is a more precise than s1, both have to be accurate (i.e., have matching
intended and interpreted senses). This view can be defined as

precisionmeaning(s1, s2) ⇔ symmore-detail(s1, s2) ∧ ∃m11, m12, m21, m22∈ M.
meamatch(s1, m11, m12) ∧ meamatch(s2, m21, m22) ∧ matchexact(m11, m21).

Now we really have a theorem precisionmeaning(s1, s2) → accuracymeaning (s1) ∧ accuracymean-

ing(s2).
Currency as a DQ attribute is normally understood as the degree to which data are

up to date [3,22]. As a first try, we could represent this understanding as:

currencynaive(s1, s2) ⇔ ∃m1, m2 ∈ M. meahas-intd(s1, m1) ∧ meahas-intd(s2, m2) ∧ t(m1) > t(m2)

where t returns the time component of a sense. One might notices that this definition
allows us to compare the currency of the temperatures of different patients. When this
is not desired, we can strengthen it using the notion of partial match

currencystrengthened(s1, s2) ⇔ ∃m1, m2 ∈ M. meahas-intd(s1, m1)
∧ meahas-intd(s2, m2) ∧ matchattr

partial(m1, m2) ∧ t(m1) > t(m2)

Currency defined in this way is orthogonal to accuracy. As with precision, some au-
thors consider a value s1 is more current than another one s2 only when both are accu-
rate at a certain point in time [X25]. This view can be captured by

currencymeaning(s1, s2) ⇔ ∃m11, m12, m21, m22∈ M. meamatch(s1, m11, m12)
∧ meamatch(s2, m21, m22) ∧ matchattr

partial(m11, m21) ∧ t(m11) > t(m21)

A further complication, which will be discussed below, relates currency to relevance [5].

6.2 Relevance, Completeness and Timeliness

Relevance considers how data fits its intended use [13]. In its simplest form, it can be
defined on the purpose aspect alone (recall Me is a subset of M, determined by the tasks,

 Towards a Compositional Semantic Account of Data Quality Attributes 65

etc. the user of s has): relevancepurpose(s) ⇔ ∃m∈ Me. purhas-exp(s, m). This definition sup-
ports the view that relevance should evaluated before other quality attributes [5].

Intuitively, completeness concerns whether data is missing with respect to some
reference set. In the simplest case, value completeness [3,19] refers to the existence of
null values in a reference column, row or table. This definition can therefore be un-
derstood as completenesssymbol(Sa) ⇔ ∃s∈ Sa. symmatch(s, “null”), where Sa is the set
of data values of interest. In a more complicated situation, population completeness
[19] of Sa is defined as the existence of missing values with respect to the reference
set Me: completenesspurpose(Sa) ⇔ ∀m∈Me ∃s∈Sa. purhas-exp(s, m). While the notion of
completeness concerns whether every relevant data value is presented, we may also
consider whether every presented value is relevant (the closest terms proposed in the
literature for this attribute are “appropriate amount of data” [13] and “concise-
ness”[25]):

completenesspurpose-reverse(Sa) ⇔ ∀s∈Sa ∃m∈Me. purhas-exp(s, m).

When both conditions need to be enforced, we can define:

completenesscomposite(Sa) ⇔ completenesspurpose(Sa) ∧ completenesspurpose-reverse(Sa).

Some authors use timeliness to mean data is sufficiently up to date with respect to
its intended use [3,21]. It can therefore be considered as another variant of currency
[5]. The fact that a value s1 is timelier than s2 with respect to Me can be stated as

currencypurpose(s1, s2) ⇔ currencymeaning(s1, s2) ∧ relevancepurpose(s1) ∧ relevancepur-

pose(s1).

6.3 Reliability and Believability

There is no generally accepted notion of reliability as a DQ attribute: some definitions
overlap with that of accuracy [1], others are linked to dependability of the data pro-
ducer [13], while still others are based on verifiability[16]. If we choose the last view
-- that data is reliable if it can be verified (i.e., generated independently by different
producers, possibly using different tools, methods, and etc.), we can define, given
expect senses Me

reliabilitytrust(s) ⇔ ∃m1∈M, m2∈ Me. trumatch(s, m1, m2).

This means what is intended to be represented by s matches exactly with what is
supposed to be represented by it, according to the obligations the producer has. A
violation of this condition may be caused by bias (i.e., lack of objectivity [3,24]) or
intention (i.e., intentional falsification [13]) of the producer, or limitation of instru-
mentation, method, etc. Notice that reliability defined in this way is independent of
accuracy. On the contrary, believability defined in [3,24] as “the extent to which data
are accepted or regarded as true, real, and credible”, clearly concerns both the mean-
ing and trust aspects

believabilitymeaning-trust(s) ⇔ accuracymeaning(s) ∧ reliabilitytrust(s).

66 L. Jiang, A. Borgida, and J. Mylopoulos

7 Related Work

Some approaches to DQ share with ours the view that generic quality attributes (e.g.,
accuracy, completeness) may be understood in terms of more primitive quality con-
structs. In the Qurator project [15], such constructs (called quality characterizations or
QC) are concrete, operational level quality attributes defined by scientists. For example,
“accuracy” can be defined in terms of confidence QC, which can then be quantified
using calculated number of experimental errors, or a function of the type of experimen-
tal equipment.

While the Qurator project provides a flexible way for specifying user-definable and
domain-specific QCs in the context of e-Science, we are focusing on identifying primi-
tive constructs that are reusable across domains. From a system-oriented view, [25]
discusses various types of problematic correspondences (called of representation defi-
ciencies) between a real world system (RW) and an information system (IS). For exam-
ple, an incomplete representation means some RW phenomena are not (or cannot be)
represented in IS, while an ambiguous representation means multiple RW phenomena
have the same representation in IS. We also consider mismatches, but emphasize the role
of producer and user, and mental representations (senses), abandoning the objectivist
view of IS.

We are also not alone in considering DQ from a semiotics perspective. Thus, [21]
proposes to understand and classify quality attributes in terms of syntactic (i.e., confor-
mity to stored metadata), semantic (i.e., correspondence to external phenomena) and
pragmatic (i.e., suitability for a given use) quality categories. Although these distinc-
tions are embedded in our definitions of “senses” and “DQ aspects”, they are only used
in [21] to provide a conceptual framework to classify quality attributes. We also define
quality attributes in terms of primitive constructs derived from these distinctions.

8 Conclusion

In this paper, we have proposed a novel, compositional framework for understanding
and defining DQ attributes in a precise and comparable way, based on the notion of
signs. We have also sketched a theory of senses for individual values in a relational
table, based on its semantics expressed using some ontology. We have shown in our
framework how multiple, sometimes conflicting, definitions of a DQ attribute could
be differentiated, and how competing views on relating these attributes could be ac-
commodated.

However, understanding DQ is just a means, not an end for us. Our ultimate goal in
this quest is a methodology for “data quality by design”. We have proposed a general
goal-oriented quality design process for databases [10,11]. This process starts with
application-specific goals where application data requirements are elicited and organ-
ized into an ordinary conceptual schema; then quality goals are modeled and opera-
tionalized to introduce new and modify existing data requirements in the initial
schema. An important step during this process is to identify potential risks that may
compromise quality of application data. The theory of senses provides exactly such
machinery for a risk-based analysis. During schema design, one has to decide which
components of the senses of application data values need to be modeled as schema

 Towards a Compositional Semantic Account of Data Quality Attributes 67

elements (according to user’s goals and assumptions); such decisions eventually af-
fect the quality of the application data. For example, Doctor Sudha is able to under-
stand correctly the temperature value '37.2°C' with respect to “when” it was meas-
ured, exactly because there is a “time” attribute in the Patient schema. However, the
design decision to leave out other components (such as how it was measured, with
what type of thermometer and by whom) contributes to Sudha’s partially incorrect
understanding of '37.2°C'. Our immediate next step is to refine the notion of senses
and formalize partial match between senses, and use them to derive patterns of risk
factors for database design.

References

1. Agmon, N., Ahituv, N.: Assessing Data Reliability in an Information Systems. Journal of
Management Information Systems 4(2), 34–44 (1987)

2. An, Y., Borgida, A., Mylopoulos, J.: Discovering the Semantics of Relational Tables
through Mappings. In: Spaccapietra, S. (ed.) Journal on Data Semantics VII. LNCS,
vol. 4244, pp. 1–32. Springer, Heidelberg (2006)

3. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques.
Springer, Heidelberg (2006)

4. Bovee, M.: A Conceptual Framework and Belief-Function Approach to Assessing Overall
Information Quality International. Journal of Intelligent Systems 18(1), 51–74 (2003)

5. Gackowski, Z.J.: Logical interdependence of data/information quality dimensions - A pur-
pose focused view on IQ. In: Proc. of the 2004 International Conference on Information
Quality (2004)

6. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Data Integration in
Data Warehousing. Journal of Cooperative Information Systems 10(3), 237–271 (2001)

7. Fitting, M.: Intensional Logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philoso-
phy (Spring 2007), http://plato.stanford.edu/archives/spr2007/
entries/logic-intensional/

8. Grice, H.P.: Meaning. The Philosophical Review 66, 377–388 (1957)
9. Jeusfeld, M.A., Quix, C., Jarke, M.: Design and analysis of quality information for daa

warehouses. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp.
349–362. Springer, Heidelberg (1998)

10. Jiang, L., Borgida, A., Topaloglou, T., Mylopoulos, J.: Data Quality by Design: A Goal-
Oriented Approach. In: Proc. of the 12th International Conference on Information Quality
(2007)

11. Jiang, L., Topaloglou, T., Borgida, A., Mylopoulos, J.: Goal-Oriented Conceptual Data-
base Design. In: Proc. of the 15h IEEE Int. Requirements Engineering Conference, pp.
195–204 (2007)

12. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

13. Liu, L., Chi, L.N.: Evolutional Data Quality: A Theory-Specific View. In: Proc. of the
2002 International Conference on Information Quality (2002)

14. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: Wonder-
Web Deliverable D17 (2002)

15. Missier, P., Preece, A.D., Embury, S.M., Jin, B., Greenwood, M., Stead, D., Brown, A.:
Managing Information Quality in e-Science: A Case Study in Proteomics. In: ER 2005
Workshops, pp. 423–432 (2005)

68 L. Jiang, A. Borgida, and J. Mylopoulos

16. Naumann, F.: Do metadata models meet IQ requirements? In: Proc. of the 1999 Interna-
tional Conference on Information Quality, Cambridge, MA, pp. 99–114 (1999)

17. Peirce, C.S.: Collected Papers. In: Peirce, C.S., Hartshorne, C., Weiss, P., Burks, A. (eds.),
vol. 8. Harvard University Press, Cambridge (1931–1958)

18. Pernici, B., Scannapieco, M.: Data Quality in Web Information Systems. In: Proc of the
21st int. Conference on Conceptual Modeling, pp. 397–413. Springer, London (2002)

19. Pipino, L.L., Lee, Y.W., Wang, R.: Data quality assessment. Comm. of ACM 45(4), 211–
218 (2002)

20. Price, G.: On the communication of measurement results. Measurement 29, 293–305
(2001)

21. Price, R., Shanks, G.: A Semiotic Information Quality Framework. In: Proc. IFIP Interna-
tional Conference on Decision Support Systems, Prato (2004)

22. Redman, T.C.: Data Quality for the Information Age. Artech House, Boston (1996)
23. Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based approach.

Decision. Support Systems 13(3–4), 349–372 (1995)
24. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers.

Journal of Management Information Systems 12(4), 5–33 (1996)
25. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations.

Communications of ACM 39(11), 86–95 (1996)

A Formal Model of Fuzzy Ontology with Property
Hierarchy and Object Membership

Yi Cai and Ho-fung Leung

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong, China
{ycai,lhf}@cse.cuhk.edu.hk

Abstract. In this paper, we propose a formal model of fuzzy ontology with prop-
erty hierarchy by combining theories in cognitive psychology and fuzzy set the-
ory. A formal mechanism used to determine object memberships in concepts is
also proposed. In this mechanism, object membership is based on the defining
properties of concepts and properties which objects possess. We show that our
model is more reasonable in calculating object memberships and more powerful
in concept representation than previous models by an example.

1 Introduction

With the development of the Semantic Web, ontologies play an important role in
knowledge representation. Ontologies provide a way to describe and structure the in-
formation on the web. An ontology is generally defined as an ‘explicit specification of
conceptualization’ and can be used to provide semantics to resources on the Semantic
Web [1].

Traditional ontologies represent concepts as crisp sets of objects [2]. Objects are
considered either to belong to or not to belong to a concept. However, there are many
vague concepts in reality. These vague concepts have no clear boundaries. For exam-
ple, ‘hot water’, ‘red car’ and so on. To extend the representation ability of ontologies
to handle fuzzy concepts, some fuzzy ontologies are proposed based on fuzzy DLs
(description logics) [3] [4] [5]. These fuzzy ontologies provide ways to represent the
fuzziness of knowledge. However, object memberships are given by users manually
or obtained by fuzzy functions defined by users in these fuzzy ontologies. While con-
cepts, objects and properties are building blocks of ontologies, to our best knowledge,
there lacks of a formal mechanism to determine memberships of objects in concepts
automatically based on the defining properties of concepts and properties which ob-
jects possess. Thus, machine cannot obtain object memberships automatically while
given defining properties of concepts and objects in ontologies. While properties are
generally used in describing concepts and objects in ontology, we consider that it is de-
sirable to formalize object membership in ontology based on properties of concepts and
objects.

Au Yeung and Leung [6] consider that methods used by human beings in
classification and categorization are useful in modeling a domain by ontology, while

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 69–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

70 Y. Cai and H.-f. Leung

there is no such a consideration in previous ontology models. They propose a concep-
tual model of fuzzy ontology which is based on the theories in cognitive psychology.
Nevertheless, their model can only represent the conjunction concepts (concepts de-
fined by conjunction of properties). Furthermore, the Au Yeung-Leung model only can
handle the concepts defined by independent properties. It requires to assume all proper-
ties in the ontology are independent (i.e., there is no relation between properties), and
it lacks building blocks to handle the cases with dependent properties. Thus, we cannot
infer some implicit knowledge based on the dependence of properties. For example, we
cannot infer the property ‘is a man’ based on property ‘is a tall man’ because there is
no relation between the two properties in the Au Yeung-Leung model.

To overcome the limitations of previous models of ontology, based on theories in
cognitive psychology [7] [8], works in [9] and fuzzy set theory [10], we propose a
novel formal model of fuzzy ontology with property hierarchy and object membership.
Our model extends the expression and reasoning capability of ontologies in handling
fuzzy concepts. It can handle the cases with dependent properties in ontology based
on a property hierarchy, and represent conjunction concepts, disjunction concepts (con-
cepts defined by disjunction of properties) and combination concepts (concepts defined
by conjunction and disjunction of properties). Our model provides a more reasonable
formal mechanism to determine object memberships in concepts than previous models.
A main feature of this mechanism is that object membership is measured by the defin-
ing properties of concepts and properties which objects possess, which is based on the
classical view in cognitive psychology.

The structure of this paper is as follows. Section 2 introduces the background and
related work. We give a motivating example and state the limitations of the existing
models in section 3. In section 4 we propose a novel formal model of fuzzy ontology
with property hierarchy. A formal mechanism to determine the object memberships
in concepts based on the defining properties of concepts and properties which objects
possess is presented in section 5. We illustrate the use of our model by an example in
section 6. Section 7 concludes the paper.

2 Background and Related Work

2.1 Classical View of Concept Representation in Cognitive Psychology

In cognitive psychology, how concepts are represented in the human memory is an im-
portant concern. It is generally accepted that concepts are characterized by properties
[11]. One important model of concept representation based on properties is classical
view. The classical view [7] [8] of concepts posits that each concept is defined by a set
of properties which are individually necessary and collectively sufficient. Properties are
atomic units which are the basic building blocks of concepts. Concepts are organized
in a hierarchy and the defining properties of a more specific concept includes all the
defining properties of its super-concepts. In classical view, there are clear-cut bound-
aries between members and non-members of the category. As a result, the classical view
cannot handle the vague concepts.

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 71

2.2 Formal Models of Fuzzy Ontology

Currently, most ontologies are based on DLs (description logics) [12] and concepts are
represented as crisp sets of objects (e.g., ontologies written in OWL DL) [1]. These on-
tologies cannot represent the fuzzy concepts. Several fuzzy DLs are proposed to handle
the fuzzy concepts by combining fuzzy set theory [10] and description logics. For exam-
ple, Straccia proposes a fuzzyALC in [3] and a fuzzy SHOIN (D) in [4]. Stoilos et al.
present a fuzzy SHIN in [5]. These fuzzy DLs vary in possessing different expressive
power, complexity and reasoning capabilities. Some fuzzy ontologies are constructed
based on fuzzy DLs or fuzzy logic [13] [14]. Besides, some works apply fuzzy on-
tologies for some applications. For instance, Cross and Voss [15] explore the potential
that fuzzy mathematics and ontologies have for improving performance in multilingual
document exploitation. These works can represent membership degrees of different ob-
jects in concepts. Nevertheless, in these models, object memberships are given by users
manually or obtained by fuzzy functions defined by users. These works lack a formal
mechanism to obtain the membership degrees of objects in concepts automatically based
on the defining properties of concepts and properties which objects possess. Besides,
there is no consideration of how people representing concepts in their mind.

Recently, Au Yeung and Leung [6] propose a formal model for fuzzy ontology by
borrowing the idea of classical view. They have formalized the membership degrees of
objects (they name the membership degree of objects as likeliness) in concepts by con-
structing several vectors in ontologies. They consider that a concept r can be defined by
a single characteristic vector −→c r of r which consists all the necessary properties of r.
They assume relation among all properties is conjunction and all properties are indepen-
dent. The value of each element in a characteristic vector is the minimal requirement of
a corresponding property. An object a can be represented by a property vector−→p a, and
each element in −→p a corresponds to the degree to which the object possesses a property.
The likeliness of an object in a concept is the degree to which the object satisfies the
minimal requirements of defining properties of the concept.

3 Limitations of Previous Models

We use a motivating example to illustrate the limitations of previous models.

Example 1. Suppose an online-shop will select the top one hundred special customers
to give them some discount. The concept ‘special-customer’ is a fuzzy concept and
is defined as the union of two kinds of customers. One kind of special customer is
defined by three properties A, B and C (properties of concepts ‘special-customer’ and
’customer’ are given in table 1), i.e., this kind of special customers requires a customer
must have bought at least five items (goods) belonging to ‘expensive item’ and possess
average degree of all items that the customer has bought belonging to ‘expensive item’
as higher as possible. The other kind of special customers is defined by properties A,
D, and E, i.e., it requires a customer must have bought at least one hundred items (not
necessary expensive items) and there are at least one item that the customer has bought
belonging to ‘expensive item’. In this example, ‘special-customer’ is the sub-concept
of ‘customer’ and ‘expensive item’ is the sub-concept of ‘item’.

72 Y. Cai and H.-f. Leung

Table 1. Properties of concepts ‘special-customer’ and ‘customer’ in the motivating example

A has customerID B buy at least five expensive items
C possess average degree of all bought items belonging to expensive items D buy at least 100 items
E buy at least one expensive items F buy at least one item

We suppose that the definition of the concept ‘customer’ denoted by C and that of
the concept ‘special-customer’ denoted by SC are as following:

C : [A]1 and [F]1, SC : ([A]1 and [B]1 and [C]0.6) OR ([A]1 and [D]1 and [E]0.5)

where the subscript of each property is the minimal requirement of the property. Objects
(e.g., all customers) satisfying all minimal requirements of defining properties of a con-
cept (e.g., ‘special-customer’) belong to the concept to a degree 1. We want to calculate
object memberships for there customers O1, O2 and O3 in concept ‘special-customer’
and concept ‘customer’. Table 2 are items bought by the three customers.

Table 2. Items bought by O1, O2 and O3

O1 O2 O3

bought item price bought item price bought item price
Furniture00002 1550 Book10032 120 Clothes02006 180
Eproduct00307 2500 Book20039 20 Clothes08001 80

...
Book07005 200 EletronicProduct70032 175 Book03102 140

For fuzzy ontologies based on fuzzy DLs or fuzzy logic (e.g., ontologies in [15]),
they provide a model to represent the fuzziness of concepts, and object memberships in
concepts are given by users previously or obtained by membership functions defined by
users. However, there is no direct or principle of how to give object memberships or to
define membership functions, so there may exist arbitrary assignments of object mem-
berships or arbitrary definitions of membership functions. Moreover, while concepts,
objects and properties are building blocks of these fuzzy ontologies, they lack a formal
mechanism to give membership degrees to objects in concepts automatically based on
the defining properties of concepts and properties which objects possess. Thus, for these
fuzzy ontologies, machines cannot calculate the object memberships of O1, O2 and O3

in concepts SC and C based on defining properties of the two concepts and properties
the three objects possessing automatically.

If using the Au Yeung-Leung model which provides a formal mechanism for calcu-
lating object membership based on properties, we can obtain characteristic vectors for
SC and C, property vectors of O1, O2 and O3 as following:

SC : [A]1, [B]1, [C]0.6, [D]1, [E]0.5, [F]1; C : [A]1, [F]1

O1 : [A]1, [B]1, [C]0.8, [D]0.2, [E]1, [F]1; O2 : [A]1, [B]0.2, [C]0.1, [D]1, [E]0.8, [F]1

O3 : [A]1, [B]1, [C]0.5, [D]0.5, [E]1

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 73

The subscript of each property is the degree to which the object possessing the property.
We calculate the customers’ memberships of O1, O2 and O3 in SC and C according to
the axioms and equations in the Au Yeung-Leung model and get the results1 as following:
O1 belongs to SC to a degree 0.2 and to C to a degree 1, O2 belongs to SC to a degree
0.1 and to C to a degree1, O3 belongs to both SC and to C to a degree 0. Such results are
not reasonable. It is obvious that O1 satisfies the minimal requirements of the first kind
of special customers, while O2 satisfies the minimal requirements of the second kind of
special customers. Thus, O1 and O2 should belong to SC to a degree 1. For object O3, it
should be a member of C to a degree 1. The reason is that people can infer O3 definitely
has bought at least one items because O3 has bought at least five expensive items. Thus
it satisfies the minimal requirement of all properties of ‘customer’.2

Thus, one limitation of the Au Yeung-Leung model is that a concept is represented
by a set of properties and the relations among those properties are conjunction. Such
a representation cannot represent disjunction concepts and combination concept, and
may lead to unreasonable results. For example, concept ‘special-customer’ is a union
of two kinds of customers. Another limitation is that all properties in the Au Yeung-
Leung model are assumed to be independent while some of them should be dependent
in reality. We cannot infer some properties based on their dependent properties in the
Au Yeung-Leung model. For example, property ‘buy at least five expensive items’ def-
initely implies property ‘buy at least one item’. Besides, there is no formal definition of
property and no formal mechanism to obtain the degree to which an object possesses a
property in the Au Yeung-Leung model. All degrees of an object possessing properties
are given by user.

4 A Novel Formal Model of Fuzzy Ontology with Property
Hierarchy

To overcome the limitations of previous models, we propose a novel formal model of
fuzzy ontology by combining the classical view and fuzzy set theory. In our model, a
concept is defined by properties, and some properties can be dependent within a prop-
erty hierarchy specifying the subsumption relationships between properties. Member-
ship degree of an object in a concept depends on the comparison of properties of the
object and that of the concept.

4.1 A Conceptual Model of Fuzzy Ontology

We consider a fuzzy ontology O in a particular domain Δ as follows:

OΔ = (C, R, P, I)

where C is a set of fuzzy concepts, R is a set of fuzzy roles which are the relations
between two objects, P is a set of fuzzy properties of concepts, and I is a set of objects.3

1 Due to lack of space, we omit the details of calculation here.
2 Because ‘item’ is the super-concept of ‘expensive-item’.
3 In the rest of this paper, all concepts, roles and properties are referred to fuzzy concepts, fuzzy

roles and fuzzy properties respectively unless otherwise specified.

74 Y. Cai and H.-f. Leung

Fuzzy Concept. A fuzzy concept is a fuzzy set of objects. Objects are considered as
members of a concept to some degrees. Such a degree is given by a fuzzy function.

Definition 1. A fuzzy concept C is defined as following:

C = {av1
1 , av2

2 , ..., avn
n }

where ai is an object, vi is the membership degree of object i in concept C.

We say ai is a member of C or ai belongs to C to a degree vi. The degree of object a
belongs to a fuzzy concept C is given by a fuzzy membership function:

μC : A→ [0, 1]

where A is the set of objects. If there are objects whose membership degree in a concept
C is greater than zero, and we name those objects as members of concept C.

According to classical view, concepts are organized as in a hierarchy. In our model,
a fuzzy concept hierarchy HC is a partial order on the set of all fuzzy concepts in the
domain defining the subsumption relationship between fuzzy concepts.

Definition 2. For two concepts X and Y , X = {aw1
1 , aw2

2 , ..., awn
n } and Y =

{ay1
1 , ay2

2 , ..., ayn
n }, ai is an object, wi is the membership degree of ai in fuzzy concept X

and yi is the membership degree of ai in fuzzy concept Y . If ∀awi

i ∈ X, ayi

i ∈ Y, yi >=
wi then X is subsumed by Y (or Y subsumes X) which is denoted as X ⊆ Y .

Fuzzy Role. There may be some binary relations between objects in a domain, and we
define them as follows.

Definition 3. A fuzzy role R is a fuzzy set of binary relations between two objects in
the domain. It is interpreted as a set of pairs of objects from the domain denoted by

R = {< a1, b1 >w1 , < a2, b2 >w2 , ..., < an, bn >wn}

where ai and bi are two objects, wi is a real value between zero and one which repre-
senting the degree of strength of the relation between the two objects.

For example, we have a statement ‘Bob extremely likes football’. There is a relation
‘likes’ between Bob and football, and the degree wi of the strength of this relation is
very high (extremely).

The degree of strength of the relation between two objects is given by a fuzzy mem-
bership function:

μR : A×B → [0, 1]

where A and B are sets of objects. The set of objects A is named the domain of the
role while the set of objects B is named the range of the role. If there are object pairs
< ai, bi > whose membership degree in a role R is greater than zero, and we name
those object pairs as members of fuzzy role R.

In our model, roles are also organized in a hierarchy. A role hierarchy is a partial
order on the set of all fuzzy roles in the domain defining the subsumption relationship
between roles.

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 75

Definition 4. For two fuzzy roles S and Q, S = {< a1, b1 >w1 , < a2, b2 >w2 , ..., <
an, bn >wn} and Q = {< c1, d1 >y1 , < c2, d2 >y2 , ..., < cn, dn >yn}, if ∀ <
ai, bi >wi∈ S, < ai, bi >yi∈ Q, yi >= wi then we say S is subsumed by Q (or Q
subsumes S) denoted as S ⊆ Q. wi is the degree of strength of < ai, bi > in fuzzy role
S and yi is the degree of strength of < ai, bi > in fuzzy role Q.

Fuzzy Property. In our model, an object may have several roles with other objects.
These roles with different ranges and the same domain (the same object) are considered
as properties of the object.

Definition 5. A fuzzy property P is defined as following:

P = R.C

where R is a fuzzy role, C is a fuzzy concept which is the range of the fuzzy role R.

Concept C is a restriction on the range of the role R in property P , and it requires that
all objects in the range of role R should be a member of concept C (i.e., μC(bi) > 0).
P is interpreted as a fuzzy set of pairs of fuzzy role and fuzzy objects (< ai, bi >, bi)vi .
< ai, bi > is a member of the fuzzy role R and bi is a member of fuzzy concept C, and
vi is the degree of the object ai possessing the property P .

The degree of objects possesses a property P = R.C is given by a function:

μP : R× C −→ [0, 1]

where R is the set of fuzzy roles, C is the set of fuzzy concepts. If an object a has a
fuzzy role (relation) < a, b > with object b, μR(a, b) > 0 and μC(b) > 0, then we
say a possesses a property member (< a, b >, b) of property P = R.C to a degree
μP (< a, b >, b) where 1 ≥ μP (< a, b >, b) > 0. Object a may possess more than one
property members of P . All property members of a property belong to the property to
a degree greater than zero. There are some axioms for function μP to observe.

Axiom 1. For an object a, a fuzzy property P = R.C, if μR(a, c) = 0 or μC(c) = 0
then μP (< a, c >, c) = 0.

Axiom 2. For an object a, a fuzzy property P = R.C, if μR(a, c) = 1 and μC(c) = 1,
then μP (< a, c >, c) = 1.

Axiom 3. For an object a, a fuzzy property P = R.C, if μR(a, c) ≥ μR(a, d) and
μC(c) ≥ μC(d), then μP (< a, c >, c) ≥ μP (< a, d >, d).

Axiom 4. For two objects a and b, a fuzzy property P = R.C, if μR(a, c) ≥ μR(b, d)
and μC(c) ≥ μC(d) , then μP (< a, c >, c) ≥ μP (< b, d >, d).

Axiom 5. For an object a, two fuzzy properties P1 = R.C and P2 = S.D, if μR(a, e) ≥
μS(a, e), and μC(e) ≥ μD(e), then μP1(< a, e >, e) ≥ μP2(< a, e >, e).

Axioms 1 and 2 specify the boundary cases of calculating the degree of objects pos-
sessing properties. If μP (< a, c >, c) = 0, it means (< a, c >, c) is not a property
member of P . If μP (< a, c >, c) = 1, it means (< a, c >, c) is definitely a member of

76 Y. Cai and H.-f. Leung

P . Axioms 3, 4 and 5 specify the influence of the membership degree of role and that
of the range concept on the property memberships.4

There is a special kind of property named fuzzy instance property. For a property,
it consists of some property members. If there is only one property member in the
property, the property is so called a fuzzy instance property.

Analogously, a property hierarchy HP is a partial order on the set of all properties in
the domain defining the subsumption relationship between fuzzy properties.

Definition 6. For two fuzzy properties P1 and P2,

P1 = {(< a, c >, c)v1i | < a, c >w1i∈ S, cy1i ∈ C}

and
P2 = {(< a, c >, c)v2i | < a, c >w2i∈ Q, cy2i ∈ D}

,if ∀(< a, c >, c), (< a, c >, c)v1i ∈ P1, (< a, c >, c)v2i ∈ P2, v1i ≤ v2i, then P1 is
said to be subsumed by P2 (or P2 subsumes P1), denoted by P1 ⊆ P2.

Two theorems are obtained based on axioms and definitions introduced above.5

Theorem 1. For two properties P1 and P2, if P1 = S.C, P2 = Q.D, S ⊆ Q, and
C ⊆ D, then P1 ⊆ P2.

Theorem 2. For an object a and two properties P1 and P2, suppose a possesses P1 to
a degree va

P1
and P2 to a degree va

P2
. If P1 ⊆ P2, then va

P1
≤ va

P2
.

For theexample in section3,weassumeacustomerOchasaproperty ‘buy.expensiveItem’
and there is one property member ‘buy.Eproduct00307’of ‘buy.expensiveItem’(‘Eprod-
uct00307’ isan item and ‘buy.Eproduct00307’ isalso an instanceproperty ofOc).Accord-
ing to theorem 1 and 2, we know that ‘buy.expensiveItem’ is a sub-property of ‘buy.Item’
(‘expensiveItem’ is a sub-concept of ‘Item’) and we can infer that Oc also possesses the
property ‘buy.Item’ to a degree no less than that of ‘buy.expensiveItem’.

Object Representation by Fuzzy Instance Properties. For the reason that an object
a has several fuzzy relations (roles) with other objects, each specific member of a role
and the object which is a member of the role’s range concept can form an fuzzy instance
property. Thus object a possesses a set of fuzzy instance properties and each of these
properties has only one property member.

We consider an object in an ontology is represented by a set of fuzzy instance prop-
erties named object property vector. The relation among the fuzzy instance properties
in the object property vector is conjunction.

−→
P a = (pva,1

a,1 , p
va,2
a,2 , ..., pva,n

a,n), 1 ≤ i ≤ n

where pa,i is a fuzzy instance property a possessing, va,i is the degree to which a
possesses property pa,i. For the reason that all properties in the object property vector
are instance properties, thus ∀i, va,i = 1.

4 For the interest of space, we omit all the verification of axioms in this paper.
5 For the reason of space, we omit all proofs of theorems in this paper.

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 77

For the example in section 3, we assume a customer Oc has a customer id ‘20071202’
and has bought two items ‘Furniture00002’ and ‘Eproduct00307’. Oc is represented as

−→
O c = (hasId.2001202 : 1, buy.Furniture00002 : 1, buy.Eproduct00307 : 1)

4.2 Two Kinds of Measurements of Objects Possessing Properties

In our model, the measure of the degree to which a possesses px is based on the property
members of px which a possesses. There are two kinds of measurements on the set
of property members which a possesses for a specific property px, which are named
quantitative measure and qualitative measure for a possessing px.

N-property. The quantitative measure for a possessing px is a number restriction on
property members of px which object a possessing. There are a set of quantifiers for
modeling number restrictions on properties. We present six quantifiers used frequently
here, which are [∃], [∀], [≥n], [≤n], [>n], [<n] and n is an integer. We name a property
with a quantifier as an N-property, e.g., [∃]px, [∀]px and so on.6

The degrees to which an object a possessing N-Properties presented above are given
by fuzzy functions defined as following respectively:

μ[∃]P (a, P) = max(μP a
1
, ..., μP a

m
), 1 ≤ i ≤ m (1)

where μP a
i

= μP (μR(a, ci), μC(ci)) and ci are objects in the domain.

μ[∀]P (a, P) = min(μP a
1
, ..., μP a

m
), 1 ≤ i ≤ m (2)

where μP a
i

= max(1− μR(a, ci), μC(ci)) and ci are objects in the domain.

μ[≥n]P (a, P) = supc1,...,cn∈ΔI (min(μP a
c1

, ..., μP a
cn

)) (3)

where μP a
ci

= μP (μR(a, ci), μC(ci)) and ci are objects in the domain.
Furthermore, μ[>n]P = μ[≥n+1]P , μ[<n]P = 1−μ[≥n]P , μ[≤n]P = 1−μ[>n]P , i.e.,

[≤n]P = ¬([>n]P), [<n]P = ¬([≥n]P).
For example, if a customer Oc has bought a set of items (e.g., ‘Eproduct00307’,

‘Book07005’ and so on). We can use the fuzzy functions defined above to calculate
the degree of Oc possessing these N-properties. For instance, we can obtain that Oc

possesses the property ‘[∃]buy.Item’ to a degree 1 according to equation 1. It means
that Oc definitely buyers at least one item.

L-property. A qualitative measure of object a possessing a property P is a qualitative
aggregation on the set of property members of P which object a possessing. We call a
property with an aggregation function on property members as an L-property, which is
in the form of [$]P . [$] is a qualification aggregation on all property members, and we
call it as a qualifier.

6 We use the form of [quantifier]P as syntax of N-property in order to distinguish from some
concepts which are with quantifiers and without [] in DLs, e.g., ∃R.C is a concept in DLs.

78 Y. Cai and H.-f. Leung

There are several possible aggregation functions to aggregate all the property mem-
bers [16]. One of the aggregation used frequently for qualitative measure is an average
function for membership degrees of property members which objects possess in P and
we present it here as following:

μ[$]P (a, P) =
∑n

i=1 wa
i

n
(4)

where wa
i is the membership degree of property member pi of P object a possessing.

For example, suppose a customer Oc buys two items ‘Eproduct00307’ and
‘Furniture00002’ only. Both ‘Eproduct00307’ and ‘Furniture00002’ belong to ‘expen-
siveItem’ to a degree 1. Then we can obtain that Oc possesses ‘[$]buy.expensiveItem’
to a degree 1 according to equation 4. It means that Oc definitely buys expensive items.

Difference between Properties, L-properties and N-properties. L-Properties and
N-properties are used to measure the degree an object possessing properties qualita-
tively and quantitatively, respectively. An L-property is a qualitative measurement of
an object possessing a property based on aggregating all property members the object
possessing for the property, while an N-property is a quantitative measurement of an
object possessing a property based on a number restriction on all property members the
object possessing for the property. To our best knowledge, there is no a formalization
of qualitative measurement for the degree of an object possessing a property. These two
measurements are frequently used measurements from two perspectives of people.

4.3 Concepts Represented by N-Properties and L-Properties

We combine the classical view and fuzzy set theory so that our model can handle the
vague concepts. In our model, all members of a concept should possess all defining
properties of the concept to some degrees. For the reason that N-properties and L-
properties are quantitative measures and qualitative measures of properties an object
possessing respectively, thus a concept can be defined by a set of N-properties and
L-properties. Besides, there is a minimal requirement for each defining property of
concepts. If an object possesses all defining properties of a concept to higher degrees,
then it means that the object satisfies the minimal requirements of defining properties
to higher degrees. Thus the object is given a higher membership degree in the concept.

Based on classical view and fuzzy set theory, we generalize the representation of a
concept C as following:

−→
C = (−→S 1,

−→
S 2, ...,

−→
S m), 1 ≤ i ≤ m

and −→
S i = (pwi,1

i,1 , p
wi,2
i,2 , ..., p

wi,ni

i,ni
), 1 ≤ j ≤ ni

where ni is the number of properties in
−→
S i. A

−→
S i is named a characteristic vector

of C which consists of a set of defining properties. The relation between characteristic
vectors is union, and the relation between defining properties in a

−→
S i is conjunction.

pi,j is a defining property in a
−→
S i and it can be either N-properties or L-properties. wi,j

is considered as a minimal requirement of property pi,j and wi,j ∈ (0, 1].

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 79

5 Fuzzy Membership of Objects in Concepts

In our model, membership degree of an object a in concept C depends on the com-
parison of object property vector of a and characteristic vectors of C. If an object a
possesses all the defining properties in one of characteristic vectors

−→
S i of C to a de-

gree greater than zero, then a is a member of C to some degree.7 Besides, while object
a possesses all the defining properties of any

−→
S i of C to degrees which are greater than

or equal to the minimal requirements of all defining properties of the specific
−→
S i in

C, the membership of a in concept C is equal to one. For the reason that concepts are
represented by N-properties and L-properties while objects are represented by fuzzy
instance properties, and properties in our model may be not independent, we need to
do property alignment (aligning fuzzy instance properties of objects to defining prop-
erties of concepts) before measuring the membership of objects in concepts based on
properties comparison.

5.1 Measuring Degrees of Objects Possessing Defining Properties of Concepts

For the reason that a concept is represented by a set of disjoint characteristic vectors, we
need to align the property vector of object a to each characteristic vectors. We define a
function for the alignment between object property vectors and characteristic vectors.

alignO : Pa × Sx → Sa
x

where Pa is the set of object property vectors, Sx is set of characteristic vectors and Sa
x

is the set of aligned property vectors. The function alignO(−→p a,
−→
S x) is used to align

object property vector −→p a to characteristic vector
−→
S x, the result of alignO(−→p a,

−→
S x)

is an aligned property vector
−→
S

a

x as following:

−→s a
x = (p

wa
x,1

x,1 , p
wa

x,2
x,2 , ..., p

wa
x,n

x,n), 1 ≤ j ≤ n

where n is the number of properties of
−→
S x and wa

x,j is the degree of object a possessing

property px,j in characteristic vector
−→
S x. In our model, we can obtain the degree of ob-

ject a possessing each defining property px,j (px,j can be N-properties or L-properties)
by the fuzzy membership function μpx,j (−→p a, px,j). The reason is that object a is rep-
resented by a vector of instance properties (i.e., a vector of property members) and
measuring the degree of object a possessing an N-property or L-property is based on
all property members of a possessing. Thus we can obtain wa

x,j = μpx,j (−→p a, px,j)
for each property px,j where μpx,y(−→p a, px,j) is one of the membership functions of
N-properties or L-properties defined in section 4.2 (e.g., equation 3 and 4).

5.2 Calculation of Object Fuzzy Memberships in Concepts

For a concept C and object a, we can align −→p a to each characteristic vector
−→
S x of C

and get its aligned property vector
−→
S

a

x. The degree of a property vector −→p a satisfying

7 If object a possesses all the defining properties of
−→
S i of C to higher degrees, then its mem-

bership degree in C is higher.

80 Y. Cai and H.-f. Leung

the minimal requirements of a characteristic vector
−→
S x is calculated by a comparison

function of vectors.
ϕ : Sa

x × Sx → [0, 1]
where Sa

x is the set of aligned property vectors and Sx is the set of characteristic vec-
tors. There are some axioms for ϕ(−→S a

x,
−→
S x) to observe.

Axiom 6. For a characteristic vector
−→
S x of a concept and its aligned property vector

−→
S

a

x, if for some properties px,i in
−→
S

a

x, we have wa
x,i = 0 , then ϕ(−→S a

x,
−→
S x) = 0.

Axiom 7. For a characteristic vector
−→
S x of a concept and its aligned property vector

−→
S

a

x, if for each properties px,i in
−→
S

a

x, we have wa
x,i ≥ wx,i, then ϕ(−→S a

x,
−→
S x) = 1.

Axiom 8. For an object property vector −→p a, two characteristic vectors
−→
S x1 and

−→
S x2

of a concept,
−→
S

a

x1 is the aligned property vector of−→p a for
−→
S x1 and

−→
S

a

x2 is the aligned
property vector of−→p a for

−→
S x2 , if wx1,i ≤ wx2,i for some properties px,i, and wx1,j =

wx2,j for others properties px,j where i �= j, then ϕ(−→S a

x1,
−→
S x1) ≥ ϕ(−→S a

x2,
−→
S x2).

Axiom 9. For a characteristic vector
−→
S x of a concept, two aligned property vectors

−→
S

a

x

and
−→
S

b

x for object a and b respectively, if wa
x,i ≥ wb

x,i for some properties px,i and

wa
x,j = wb

x,j for others properties px,j where i �= j, then ϕ(−→S a

x,
−→
S x) ≥ ϕ(−→S b

x,
−→
S x).

Axioms 6 and 7 specify the boundary cases of objects satisfying the minimal require-
ments of properties of concepts. Axioms 8 and 9 concern how the degree of an object
property vector satisfying the minimal requirement of a characteristic vector is varied.

Here, we present a possible function which satisfies axioms 6, 7, 8 and 9.

ϕ(−→S a

x,
−→
S x) = min(τ1, τ2, ..., τn) (5)

where

τi =

{
wa

x,i

wx,i
wa

x,i < wx,i

1 wa
x,i ≥ wx,i

(6)

where wa
x,i is the degree to which a possessing property px,i and wx,i is the minimal

requirement of property px,i in
−→
S x.

Besides, we consider the fuzzy membership of an object a in fuzzy concept C de-
pends on the following equation:

μC(a) = max(ϕ(−→S a

1 ,
−→
S 1), ϕ(−→S a

2 ,
−→
S 2), ..., ϕ(−→S a

n,
−→
S n)) (7)

One object may satisfy all the property minimal requirements of more than one charac-
teristic vectors. We choose the maximal value ofϕ(−→S a

i ,
−→
S i)as the the membership ofa in

C because that the relation among
−→
S i is disjunction. This is in line with fuzzy set theory.

6 An Illustrating Example

Let’s revisit the example discussed in section 3. The concept ‘special-customer’ denoted
by SC and the concept ‘customer’ denoted by C are defined as following using our
model (Properties of SC and C formalized in our model are shown in table 3.):

A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership 81

Table 3. Properties of SC and C formalized in our model

A’ [∃]hasId.customerID B’ [≥5]buy.expensiveItem C’ [$]buy.expensiveItem
D’ [≥100]buy.Item E’ [≥1]buy.expensiveItem F’ [∃]buy.Item

−→
C = (A′ : 1, F ′ : 1), −→SC =

(−→
SC1 = (A′ : 1, B′ : 1, C′ : 0.6)
−→
SC2 = (A′ : 1, D′ : 1, E′ : 0.5)

)

For O1, O2 and O3 in section 3, they are represented by fuzzy instance properties and
items bought by the three customers are showed in table 2 in section 3. We align the
property vectors of them to characteristic vectors of SC as following.

−→
O1 = (A′ : 1, B′ : 1, C′ : 0.8) ∪ (A′ : 1, D′ : 0.2, E′ : 1)

−→
O2 = (A′ : 1, B′ : 0.2, C′ : 0.1) ∪ (A′ : 1, D′ : 1, E′ : 0.8)
−→
O3 = (A′ : 1, B′ : 1, C′ : 0.5) ∪ (A′ : 1, D′ : 0.5, E′ : 1)

The degrees of each object possessing defining properties (e.g., ‘[∃]buy.expensiveItem’)
is calculated based on all property members (e.g., ‘buy.Furniture00002’) possessed by
the object for the corresponding property (e.g., ‘buy.expensiveItem’) using equations
1, 2, 3 and 4 in section 4.2.8 For example, according to table 2, object O1 has prop-
erty members for property ‘[∃]buy.Item’ such as O1 possessing ‘buy.Furniture00002’,
‘buy.Eproduct00307’ and ‘buy.Book07005’, and these property members are belonged
to ‘[∃]buy.Item’ to degree 1. Then the degree of object O1 possessing the property
‘[∃]buy.Item’ is calculated using equation 1 as following:

μ[∃]buy.Item(O1, [∃]buy.Item) = max(1, 1, ...1) = 1

Then we can get the following result for SC by axioms 6, 7, 8, 9 and equations 5, 6,
7 introduced in section 5:

μSC(O1) = 1, μSC(O2) = 1, μSC(O3) = 0.83

Analogously, we can get the result for C as following:

μC(O1) = 1, μC(O2) = 1, μC(O3) = 1

Such results are more reasonable than that in previous models. For the reason that
O1 satisfies all minimal requirements of properties in

−−→
SC1 while O2 satisfies that in−−→

SC2 and O3 satisfies a part of that in
−−→
SC1, we obtain μSC(O1) = 1, μSC(O2) =

1, μSC(o3) = 0.83. Further more, according to theorem 1, we can obtain that
‘buy.expensiveItem’ is a sub-property of ‘buy.Item’. Thus we can obtain μC(O1) =
1, μC(O2) = 1, μC(O3) = 1 without knowing the degree of each object possessing
property F ′.

8 For the interest of space, we omit all the fuzzy functions of concepts and the calculation details
here.

82 Y. Cai and H.-f. Leung

7 Conclusion

In this paper, we propose a novel formal model of fuzzy ontology with property hierar-
chy and object membership by combining the classical view and fuzzy set theory, and
show that our model is more reasonable and powerful than previous models. Our model
can handle the cases of representing concepts by dependent properties in ontology and
represent all kinds of concepts (including conjunction concepts, disjunction concepts
and combination concepts). Besides, our model also provides a formal mechanism to
determine object memberships in concepts automatically based on the defining proper-
ties of concepts and properties which objects possess.

Acknowledgement

The work described in this paper was supported by a CUHK Research Committee Di-
rect Grant for Research.

References

1. Antoniou, G., van Harmelen, F.: A Semantic Web Primer: Cooperative Information Systems.
MIT Press, Cambridge (2004)

2. Staab, S., Studer, R.: Handbook on Ontologies. Springer, Heidelberg (2004)
3. Stracia, U.: A fuzzy description logic. In: AAAI 1998/IAAI 1998: Proceedings of the fif-

teenth national/tenth conference on Artificial intelligence/Innovative applications of artificial
intelligence, pp. 594–599 (1998)

4. Straccia, U.: Towards a fuzzy description logic for the semantic web. In: Proceedings of the
Second European Semantic Web Conference, pp. 167–181 (2005)

5. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The Fuzzy Description Logic
f-SHIN. In: Proc. of the International Workshop on Uncertainty Reasoning for the Semantic
Web (2005)

6. Au Yeung, C.M., Leung, H.F.: Ontology with likeliness and typicality of objects in concepts.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 98–111. Springer,
Heidelberg (2006)

7. Murphy, G.L.: The big book of concepts. MIT Press, Cambridge (2002)
8. Galotti., K.M.: Cognitive Psychology In and Out of the Laboratory, 3rd edn. Wadsworth,

Belmont (2004)
9. Parsons, J., Wand, Y.: Attribute-based semantic reconciliation of multiple data sources. Jour-

nal on Data Semantics 2800, 21–47 (2003)
10. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
11. Smith, E.E., Medin, D.L.: Categories and Concepts. Harvard University Press (1981)
12. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The

description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

13. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)
14. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic:theory and applications. Prentice hall PTR,

Englewood Cliffs (1995)
15. Cross, V., Voss, C.R.: Fuzzy ontologies for multilingual document exploitation. In: Proceed-

ings of the 1999 conference of NAFIPS, pp. 392–397 (1999)
16. Yager, R.R.: On mean type aggregation. IEEE Transactions on Systems, Man and Cybernet-

ics 26, 209–221 (1996)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 83–97, 2008.
© Springer-Verlag Berlin Heidelberg 2008

What’s in a Relationship: An Ontological Analysis

Giancarlo Guizzardi1 and Gerd Wagner2

1 Comp. Science Department, Federal University of Espírito Santo (UFES), Brazil
gguizzardi@inf.ufes.br

2 Brandenburg University of Technology at Cottbus, Germany
wagnerg@tu-cottbus.de

Abstract. In a series of publications, we have proposed a foundational system
of ontological categories which has been successfully used to evaluate and im-
prove the quality of conceptual modeling grammars and models. In this article,
we continue this work by using this foundational ontology to provide real-world
semantics and sound modeling guidelines for one of the most fundamental (and
yet one of the most problematic) constructs in conceptual modeling, namely, the
relationship type. In addition, we systematically compare our approach with a
classical ontological treatment of this construct in the literature, provided by the
BWW framework.

1 Introduction

In recent years, there has been a growing interest in the application of Foundational
Ontologies, i.e., formal ontological theories in the philosophical sense, for providing
real-world semantics for conceptual modeling languages, and theoretically sound
foundations and methodological guidelines for evaluating and improving the individ-
ual models produced using these languages.

For a number of years, we have been developing a foundational ontology named
UFO (Unified Foundational Ontology) [1-3] by employing theories from Formal On-
tology, Cognitive Psychology, Linguistics, Philosophy of Language and Philosophical
Logics. In a series of publications, this reference ontology has been successfully ap-
plied to analyze a number of fundamental conceptual modeling constructs ranging
from Roles, Types and Taxonomic Structures, Part-Whole Relations, Attributes,
Weak Entities and Datatypes, among others. The system of ontological categories con-
stituting UFO is presented in depth in [1], together with its empirical justifications and
formal characterization.

In this article we continue this work by addressing one of the most fundamental
(and yet one of the most problematic) constructs in conceptual modeling, namely, the
relationship type (also named “association” or “relation”). Despite its importance,
empirical evidence shows that the use of this construct is often problematical as a way
of communicating meaning in an application domain [4]. In pace with [5], we believe
that this is mainly due to the lack of consensus and imprecise definitions of its real-
world semantics.

The remaining of this article is organized as follows. In section 2, we present the
core categories of the UFO ontology, focusing on those aspects which are germane to

84 G. Guizzardi and G. Wagner

the purpose of this article. In particular, in sections 2.4 and 2.5 we built on the work
presented in [2] to propose an ontological theory of relations. In section 3, we employ
the theory presented in section 2 to provide an ontological analysis of relationship
types and well-founded guidelines for their representation in conceptual models. In
section 4, we briefly compare the results of section 3 with a classical ontological treat-
ment of this construct in the literature, provided by BWW framework. Section 5
presents some final considerations.

2 Background: The Unified Foundational Ontology (UFO)

The core of the UFO ontology is depicted in figure 1 below. A fundamental distinc-
tion in this ontology is between the categories of Individual and Universal. Individu-
als are entities that exist in reality possessing a unique identity. Universals,
conversely, are space-time independent pattern of features, which can be realized in a
number of different individuals. The core of this ontology exemplifies the so-called
Aristotelian ontological square comprising the category pairs Object-Object Univer-
sal, Trope-Trope Universal. From a metaphysical point of view, this choice allows
for the construction of a parsimonious ontology, based on the primitive and formally
defined notion of existential dependence [1]: Definition 1 (existential dependence):
Let the predicate ε denote existence. We have that an individual x is existentially de-
pendent on another individual y (symbolized as ed(x,y)) iff, as a matter of necessity, y
must exist whenever x exists, or formally (1). ed(x,y) =def □(ε(x) → ε(y)). In comple-
mentary manner, we define two individuals as independent from each other as: (2).
indep(x,y) =def ¬ed(x,y) ∧ ¬ed(y,x).

Entity

Universal Individual

Object Trope

Quality Relator

Monadic Universal Relation

Object UniversalQuality Universal

Relator Universal

Formal RelationMaterial Relation

1..*

1 < inheres in

*

<mediates2..*

* *

< instance of (::)

1

1..*
< derived from

Quality Structure

1
1..*

< associated with

Quale

1 1..*

< memberOf

*

1..* qualeOf >

Abstract

Fig. 1. Excerpt of the Foundational ontology UFO

2.1 Tropes and Objects

Intuitively, a trope is an instance of a property (i.e., the instance of an objectified
property) of a specific entity: the redness of John’s T-shirt is a trope that inheres to
John’s T-shirt (the host). Both John’s T-shirt and the redness of John’s T-shirt are in-
dividuals. However, they are individuals of very different natures. Tropes are indi-
viduals which can only exist in other individuals, i.e., they are existentially dependent
on other individuals in the way, for instance, the color and the weight of an apple a

 What’s in a Relationship: An Ontological Analysis 85

depend on a, the electric charge of a conductor c depends on c, or John’s headache
depends on John. In contrast, individuals such as John, the apple a, and the conductor
c do not inhere in other individuals and, hence, are not existentially dependent entities
in this sense. In this article, we give the name Object to the latter type of individual.

As discussed in [1], there is solid evidence for tropes in the literature. On one hand,
in the analysis of the content of perception, tropes are the immediate objects of every-
day perception. On the other hand, the idea of tropes as truthmakers underlies a stan-
dard event-based approach to natural language semantics. The notion of tropes
employed here comprises: (a) Intrinsic Tropes or Qualities: an individualized (objec-
tified) color, temperature, or weight, a symptom, a skill, a belief, an intention, an elec-
tric charge; (b) Relational Tropes or Relators: a kiss, a handshake, a covalent bond, a
medical treatment, but also social objects such as an enrollment, an employment, a
purchase order and a commitment or claim.

Existential dependence can also be used to differentiate intrinsic and relational
tropes: qualities are dependent on one single individual; relators depend on a plurality
of individuals. More technically, a special type of existential dependence relation that
holds between a trope x and the individual y of which x depends is the relation of
inherence (i). Thus, for an individual x to be a trope of another individual y, the
relation i(x,y) must hold between the two. For example, inherence glues your smile to
your face, or the charge in a specific conductor to the conductor itself. We then
formally characterize a trope as an individual that inheres in (and, hence, is
existentially dependent upon) another individual: Definition 2 (Trope): (3). Trope(x)
=def Individual(x) ∧ ∃y i(x,y).

Inherence is irreflexive, asymmetric and intransitive relation. Moreover, in our
framework, we adopt the so-called non-migration (or non-transferability) principle.
This means that it is not possible for a trope m to inhere in two different individuals a
and b: (4). ∀x,y,z (Trope(x) ∧ i(x,y) ∧ i(x,z) → y = z). The unique individual y that a
tropes x inheres in is termed the bearer of x and is defined as follows: Definition 3
(Bearer of a Trope)1: (5). β(x) =def ιy i(x,y). The bearer of a trope can itself be
another trope. Examples include the individualized time extension, or the gravity of
John’s headache. The infinite regress in the inherence chain is prevented by the fact
that there are individuals (namely Objects) that cannot inhere in other individuals.

2.2 Qualia and Quality Structures

The feature of tropes defined by the non-migration principle (formula 4) seems at first
counterintuitive. For example, if we have two particulars a (a red apple) and b (a red
car), and two tropes r1 (particular redness of a) and r2 (particular redness of b), we
consider r1 and r2 to be different individuals, although perhaps qualitatively indistin-
guishable. What does it mean then to say that a and b have the same color? Due to
(4), sameness here cannot refer to strict (numerical) identity, but only to a qualitative
one (i.e., equivalence in a certain respect). We thus distinguish between the color of a
particular apple (its quality) and its ‘value’ (e.g., a particular shade of red). The latter

1 The iota operator (ι) used in a formula such as ιxϕ was defined by Bertrand Russel and im-

plies both the existence and the uniqueness of an individual x satisfying predicate ϕ.

86 G. Guizzardi and G. Wagner

is named quale, and describes a projection of an individual quality into a certain value
space or measurement structure named a quality structure [1].

An attempt to model the relation between properties and their representation in
human cognitive structures is presented in the theory of conceptual spaces introduced
in [6]. The idea is that for several perceivable or conceivable quality universals there
is an associated quality structure in human cognition. For example, height and mass
are associated with one-dimensional structures with a zero point isomorphic to the
half-line of nonnegative real numbers. Other properties such as color and taste are
represented by multi-dimensional structures. Moreover, [6] defends that this notion
should be understood literally, i.e., quality structures are endowed with certain geo-
metrical properties (topological or ordering structures) that constrain the relations be-
tween its constituting dimensions. For example, both the dimensions of height and
mass are totally ordered structures. For an in depth discussion on the topic of quality
structures and their role in conceptual modeling one should refer to [1,2].

2.3 Relations and Relators

Relations are entities that glue together other entities. Every relation has a number of
relata as arguments, which are connected or related by it. The number of a relation’s
arguments is called its arity. In the philosophical literature, two broad categories of re-
lations are typically considered, namely, material and formal relations [7,8].

Formal relations hold between two or more entities directly, without any further
intervening individual. In principle, it includes those relations that form the mathe-
matical superstructure of our framework. Examples include existential dependence
(ed), inherence (i), subtype-of, part-of, subset-of, instantiation(::), among many others
not discussed here [1]. We name these relations here basic formal relations [7]. How-
ever, we also classify as formal those domain relations that exhibit similar characteris-
tics, i.e., those relations of comparison such as is taller than, is older than, knows
more Greek than. We name these relations domain formal relations. As pointed out in
[8], the entities that are immediate relata of such relations are not objects but qualities.
For instance, the relation heavier-than between two atoms is a formal relation that
holds directly as soon as the relata (atoms) are given. The truth-value of a predicate
representing this relation depends solely on the atomic number (a quality) of each
atom and the material content of heavier-than is as it were distributed between the two
relata. Moreover, to quote [8], “once the distribution has been effected, the two relata
are seen to fall apart, in such a way that they no longer have anything specifically to
do with each other but can serve equally as terms in a potentially infinite number of
comparisons”.

Material relations, conversely, have material structure on their own and include
examples such as working at, being enrolled at, and being connected to. Whilst a
formal relation such as the one between Paul and his knowledge x of Greek holds di-
rectly and as soon as Paul and x exist, for a material relation of being treated in
between Paul and the medical unit MU1 to exist, another entity must exist which me-
diates Paul and MU1. We name these entities relators. Relators are individuals with
the power of connecting entities. For example, a medical treatment connects a patient
with a medical unit; an enrollment connects a student with an educational institution;

 What’s in a Relationship: An Ontological Analysis 87

a covalent bond connects two atoms. The notion of relator (relational tropes) is sup-
ported by several works in the philosophical literature [7,8] and, the position advo-
cated here is that they play an important role in answering questions of the sort: what
does it mean to say that John is married to Mary? Why is it true to say that Bill works
for Company X but not for Company Y?

An important notion for the characterization of relators (and, hence, for the charac-
terization of material relations) is the notion of foundation. Foundation can be seen as
a type of historical dependence [1], in the way that, for instance, an instance of being
kissed is founded on an individual kiss, or an instance of being punched by is founded
on an individual punch, an instance of being connected to between airports is founded
on a particular flight connection.

Suppose that John is married to Mary. In this case, we can assume that there is an
individual relator (relational trope) m1 of type marriage that mediates John and Mary.
The foundation of this relator can be, for instance, a wedding event or the signing of a
social contract between the involved parties. In other words, for instance, a certain
event e1 in which John and Mary participate can create an individual marriage m1

which existentially depends on John and Mary and which mediates them. The event e1
in this case is the foundation of relator m1.

Now, let us elaborate on the nature of the relator m1. There are many qualities that
John acquires by virtue of being married to Mary. For example, imagine all the legal
responsibilities and rights that John has in the context of this relation. These newly
acquired tropes are intrinsic qualities of John which, therefore, inhere and are existen-
tially dependent on him. However, these qualities also depend on the existence of
Mary. We name this type of qualities externally dependent qualities, i.e., externally
dependent qualities are intrinsic tropes that inhere in a single individual but that are
existentially dependent on (possibly a multitude of) other individuals: Definition 4
(Externally Dependent Quality): A quality x is externally dependent iff it is existen-
tially dependent of an individual which is independent of its bearer. Fornally, (6).
ExtDepQuality(x) =def Quality(x) ∧ ∃y indep(y,β(x)) ∧ ed(x,y).

In the same manner, there are also a number of individual qualities (e.g., rights and
responsabilities) that Mary acquires by virtue of being married to John. Now, we can
define an aggregate m1 composed of all these externally dependent qualities that share
the same foundation. In this example, m1 is exactly the sum of all qualities (rights and
responsabilities) acquired by John and Mary due to the same foundational event, i.e.,
m1 is the instance of the relational property marriage that mediates John and Mary
and that is the truthmaker of propositions such as “John is married to Mary”, “Mary is
married to John”, “John is the husband of Mary”, and “Mary is the wife of John”.

A relator is said to mediate (or connect) the relata of a material relation (symbol-
ized by m(x,y)). As discussed above, mediation is a special type of existential depend-
ence relation or, more specifically, a sort of non-exclusive inherence (see [1] for
formal details). Finally, we require that a relator mediates at least two distinct indi-
viduals, i.e., (7). ∀x Relator(x) → ∃y,w (y ≠ w ∧ m(x,y) ∧ m(x,w)).

2.4 Universals

An Object Universal is a universal whose instances are objects (e.g., the universal
Person or the universal Apple). A Quality Universal is a universal whose instances

88 G. Guizzardi and G. Wagner

are individual qualities (e.g., the objectified color of this apple is an instance of the
universal color, a particular headache is an instance of the universal Symptom), and a
Relator Universal is one whose instances are individual relational tropes (e.g., the
particular enrollment connecting John and a certain University is an instance of the
universal Enrollment). Finally, a Relation is a universal whose instances are n-tuples
or related elements (e.g., being older than, being married to, being the father of).

In general, conceptual specifications (such as UML class diagrams and ER specifi-
cations) represent conceptualizations only at the type level, i.e., only universals and
relations among universals are typically represented. Thus, we define the formal rela-
tions of Characterization and Mediation as the counterparts at the type level of the
relations inheres in and mediates, respectively. In these definitions, the symbol ::
represents the formal relation of instantiation: Definition 5 (Characterization): A
universal U is characterized by a trope universal T iff every instance of U bears an in-
stance of T. Formally, (8). charac(U,T) =def Universal(U) ∧ QualityUniversal(T)
∧∀x (x::U → ∃y y::T ∧ i(y,x)); Definition 6 (Mediation): The mediation relation
holds between a universal U and a relator universal UR iff every instance of U is me-
diated by (m) an instance of UR. Formally, (9). mediation(U,UR) =def Universal(U) ∧
RelatorUniversal(UR) ∧ ∀x (x::U → ∃r r::UR ∧ m(r,x)).

Relator universals constitute the basis for defining material relations R whose in-
stances are n-tuples of entities. In general, a material relation R can be defined by the
following schema: Definition 7 (Material and Formal Relations): Let φ(a1,…,an)
denote a condition on the individuals a1,…,an

[a1…an]::R(U1…Un) ↔ ∧i ≤ n
 ai::Ui ∧ φ (a1…an)

A relation is called material if there is a relator universal UR such that the condition φ
is obtained from UR as follows: φ(a1…an) ↔ ∃k (k::UR ∧i ≤ n m(k,ai))). In this case,
we say that the relation R is derived from the relator universal UR, or symbolically,
derivation(R,UR). Otherwise, if such a relator universal UR does not exists, R is
termed a formal relation.

We can summarize this discussion as follows: (1) we make a fundamental distinc-
tion between formal and material relations. Whilst the former hold directly between
two entities without any further intervening individual, the latter are induced by medi-
ating entities called relators. Moreover, material relations are founded by material en-
tities in reality, typically events, which are external to their relata. Domain formal
relations, in contrast, are founded in qualities which are intrinsic to the their relata
and, hence, can be reduced to relations between these qualities; (2) Relators are
special types of (relational) tropes, i.e., particularized relational properties and are ag-
gregations of externally dependent qualities; (3) Externally dependent qualities exem-
plify the properties that an individual has in the scope of a certain material relation;
(4) We explicitly differentiate a relator universal from the material relations (classes
of tuples) derived from that relator universal.

3 An Ontological Foundation for Conceptual Modeling Relations

In this section, we employ the set of ontological categories proposed is section 2 to ana-
lyze and provide foundations for conceptual modeling relationship types or relations.

 What’s in a Relationship: An Ontological Analysis 89

These modeling concepts are represented in practically all conceptual modeling lan-
guages. Thus, the conclusions drawn in what follows can be extended to all these lan-
guages. However, with the sole purpose of exemplification, we shall refer in the sequel to
these concepts as they are represented by UML’s modeling primitives.

In most conceptual modeling languages, n-ary relationship types are taken to rep-
resent sets of n-tuples. In UML, the ER concept of a relationship type is called asso-
ciation: “an association defines a semantic relationship that can occur between typed
instances…An instance of an association is called a link…An association declares
that there can be links between instances of the associated types. A link is a tuple with
one value for each end of the association, where each value is an instance of the type
of the end…An association describes a set of tuples whose values refer to typed in-
stances.”[9, p.81]. The OMG UML Specification is somehow ambiguous in defining
associations. An association is primarily considered to be a ‘connection’, but, in cer-
tain cases (whenever it has ‘class-like properties’), an association may be a class: An
association class is “[a] model element that has both association and class properties.
An AssociationClass can be seen as an association that also has class properties, or
as a class that also has association properties. It not only connects a set of classifiers
but also defines a set of features that belong to the relationship itself and not to any of
the classifiers.”[9, p.118].

3.1 Representing Formal and Material Relations

An association A between the classes C1,…,Cn of a conceptual model can, in princi-
ple, be understood in our framework as a relation R between the corresponding uni-
versals U1,…,Un whose extension consists of all tuples corresponding to the links of
A. However, current conceptual modeling languages (including UML) do not distin-
guish between formal and material relations. In figure 2, an example of a formal rela-
tion is the relation of temporal precedence between Symptoms. In this model, the
unstereotyped classes (Person, Patient and Medical Unit) represent object universals;
the quality universal Symptom is represented by a class with the corresponding
stereotype; Finally, the intrinsic property start date of a symptom (a universal whose
instances are qualities of a quality) is not represented directly but instead by its asso-
ciated quality structure, the tridimensional DateDomain. The representation rules used
in this model amount to the modeling profile proposed in [1,2] and are discussed in
depth there.

Fig. 2. Representing Objects, Qualities, Quality Structures and Relations

It is easy to see that the relation of Precedence in figure 2 is a domain formal rela-
tion since it is completely reducible to intrinsic qualities of the involved relata. It is
common in conceptual modeling and knowledge representation languages that a

90 G. Guizzardi and G. Wagner

number of formal meta-properties (e.g., reflexivity, symmetry, transitivity) are de-
fined for relationships (e.g., OWL, F-LOGIC). In the specific case of precedence,
these meta-properties are irreflexivity, anti-symmetry and transitivity and, hence,
precedence is a strict partial ordering relation between symptoms that depends only
on the starting date of each of them. Can we provide an explanation for these meta-
properties?

As we have discussed in section 2, the immediate relata of domain formal relations
are not objects but qualities. Take, for example, the relations of taller than, heavier
than and precedence. All these relations can be reduced to relations between qualities:
x is taller than y iff height(x) > height(y); x is heavier than y iff weight(x) >
weight(y); x preceeds y iff startDate(x) < startDate(y), in which height, weight and
startDate are attribute functions mapping the objects x and y to the corresponding
qualia. All three quality structures involved in these expressions have a linear struc-
ture ordered by the < relation. By making this analysis explicit, it becomes evident
that precedence is an ordered relation because the qualities founding this relation are
associated with a ordered quality structure. In general, we can state that the meta-
properties of a formal relation RF can be derived from the meta-properties of the rela-
tions between qualia associated with the qualities founding this relation RF.

Now, take for instance the relation treatedIn between Patient and Medical Unit in
figure 2. This relation requires the existence of a third entity, namely an individual
Treatment mediating a particular Patient and a particular Medical Unit in order for the
relation to hold, i.e., it is an example of a material relation. There is a specific practi-
cal problem concerning the representation of material relations as standard associa-
tions as depicted in figure 2. This problem, mentioned in [10], is caused by the fact
that the standard notation for associations collapses two different types of multiplicity
constraints. In this particular example, the model represents that each Patient can be
treated in one-to-many Medical Units and that each medical unit can treat one-to-
many patients. However, this statement is ambiguous since many different interpreta-
tions can be given to it, including the following: (i) a patient is related to only one
treatment in which possibly several medical units participate; (ii) a patient can be re-
lated to several treatments to which only one single medical unit participates; (iii) a
patient can be related to several treatments to which possibly several medical units
participate; (iv) several patients can be related to a treatment to which several medical
units participate, and a single patient can be related to several treatments. The cardi-
nality constraint that indicates how many patients (or medical units) can be related to
one instance of Treatment is named single-tuple cardinality constraint. Multiple-tuple
cardinality constraints restrict the number of treatments a patient (or medical unit) can
be related to.

Fig. 3. Explicit representation of single-tuple and multiple-tuple cardinality constraints

 What’s in a Relationship: An Ontological Analysis 91

How shall we represent a material relation in a conceptual modeling language such
as UML such that the aforementioned problem could be addressed? Let us follow for
now this (tentative) principle: a material relation RM of the domain may be repre-
sented in a conceptual model by representing the relator universal associated with the
relation as an association class. By applying this principle to the treatedIn relation
aforementioned we obtain the model of figure 3. In this model, by modeling the rela-
tor universal Treatment as an association class one can explicitly represent both types
of cardinality constraints.

The reader should notice that the aforementioned problem is not at all specific to
this case. For another example of a situation where this problem arises see figure 4.a.
In this case, the (material) relation statement is that: (a) a customer purchases one-to-
many purchase items from one-to-many suppliers; (b) a supplier supplies one-to-
many purchase items to one-to-many customers; (c) a purchase item can be bought by
one-to-many customers from one-to-many suppliers. PurchaseFrom is a material rela-
tion induced by the relator universal Purchase, whose instances are individual pur-
chases. Therefore, we have that [a1,a2,a3]::RpurchFrom(Customer, PurchaseItem,
Supplier) ↔ a1::Customer ∧ a2::PurchaseItem ∧ a3::Supplier ∧ ∃p (p::Purchase
∧ m(p,a1) ∧ m(p, a2) ∧ m(p, a3)). In other words, for this relation to hold between a
particular Customer, a particular PurchaseItem, and a particular Supplier, they must
be mediated by the same Purchase instance.

Fig. 4. Example of a material relation with ambiguous (a-left) and (b) with explicit representa-
tion of cardinality constraints

Once more, we can see that the specification in figure 4.a collapses single-tuple
and multiple-tuple cardinality constraints. For this reason, thereare several possible
ways of interpreting this model, including the following: (i) In a given purchase, a
Customer participates by buying many items from many Suppliers and a customer can
participate in several purchases; (ii) In a given purchase, many Customers participate
by buying many items from many Suppliers, and a customer can participate in only
one purchase; (iii) In given purchase, a Customer participates by buying many items
from a Supplier, and a customer can participate in several purchases; (iv) In given
purchase, many Customers participate by buying many items from a Supplier, and a
customer can participate in several purchases. By depicting the Purchase universal
explicitly (such as in figure 4.b), we can make explicit the intended interpretation of
the material PurchaseFrom relation, namely, that in a given purchase, a Customer
buys many items from a Supplier. Both customer and supplier can participate in sev-
eral purchases. Although a purchase can include several items, each item in this
model is a unique exemplar and, hence, can only be sold once.

92 G. Guizzardi and G. Wagner

Now it is important to emphasize that this problem is specific to material relations.
Formal relations are represented by sets of tuples, i.e., an instance of the relation is it-
self a tuple with predefined arity. In formal relations, cardinality constraints are al-
ways unambiguously interpreted as being multiple-tuple, since there is no point in
specifying single-tuple cardinality constraints for a relation with predefined arity.
Hence, formal relations can be suitably represented as standard UML associations.
One should notice that the relations between Patient and Treatment, and Medical Unit
and Treatment are formal relations between universals (mediation). This is important
to block the infinite regress that arises if material relations were required to relate
these entities. The same holds for the pairwise associations between Customer, Sup-
plier and PurchaseItem, on one hand, and Purchase on the other.

3.2 An Alternative to Association Classes

At first sight, it seems to be satisfactory to represent a material relation by using an
association class to model a relator universal that induces this relation. Nonetheless,
the interpretation of this construct in UML is quite ambiguous w.r.t. defining what
exactly counts as instances of an association class. We claim that the association class
construct in UML exemplifies a case of construct overload in the technical sense dis-
cussed in [11]. This is to say that there are two distinct ontological concepts that are
represented by this construct.

To support this claim, we make use of the following (overloaded) semantic defini-
tion of the term as proposed by the pUML (precise UML) community: “an associaton
class can have as instances either (a) a n-tuple of entities which classifiers are end-
points of the association; (b) a n+1-tuple containing the entities which classifiers are
endpoints of the association plus an instance of the objectified association itself” [12].
Take as an illustration the association depicted in figure 3. In case (a), TreatedIn can
be directly interpreted as a relation, whose instances are pairs [a,b], whereas a is pa-
tient and b is medical unit. In this case, [a,b] is an instance of TreatedIn iff there is a
relator Treatment connecting a and b. In interpretation (b), TreatedIn is what is named
in [3] a Factual Universal. In short, if the relator r connects (mediates) the entities
a1,…,an then this yields a new individual that is denoted by 〈r: a1,…,an〉. Individuals of
this latter sort are called material facts. For every relator universal R there is a set of
facts, denoted by facts(R), which is defined by the instances of R and their corre-
sponding arguments. Therefore, an instance of TreatedIn in this case could be the ma-
terial fact 〈t1: John, MedUnit#1〉, whereas John is a Patient, MedUnit#1 is a Medical
Unit and t1 is a treatment relator.

As a trope, a relator can bear other tropes. For example, in figure 3 the temporal du-
ration of a Treatment is a quality of the latter. Moreover, a relator can also be medi-
ated by other relators such as, for instance, a relator universal Payment whose
instances connect particular Treatments and Payers. For these reasons, between the
two aforementioned interpretations for association classes, we claim that interpreta-
tion (b) should be favored, since it allows for the explicit representation of relators
and their possible intrinsic and relational properties. However, there is still one prob-
lem with this representation in UML. Suppose that treatment t1 mediates the individu-
als John, and the medical units MedUnit#1 and MedUnit#2. In this case, we have as
instances of the association class Treatment both facts 〈t1: John, MedUnit#1〉 and

 What’s in a Relationship: An Ontological Analysis 93

〈t1: John, MedUnit#2〉. However, this cannot be represented in such a manner in UML.
In UML, t1 is supposed to function as an object identifier for a unique tuple. Thus, if
the fact 〈t1: John, MedUnit#1〉 holds then 〈t1: John, MedUnit#2〉 does not, or alterna-
tively, John and MedUnit#2 must be mediated by another relator. These are, nonethe-
less, unsatisfactory solutions, since it is the very same relator Treatment that connects
one patient to a number of different medical units.

We therefore propose to represent relator universals explicitly as in figure 5. This
model explicitly distinguishes the two entities: relator universals are represented by
the stereotyped class «relator»; material relations are represented by a derived UML
association stereotyped as «material». The dashed line between a material relation and
a relator universal, represents that the former is derived from the latter (see derived
from relation in section 2.5). To mark this difference to the similar graphic symbol in
UML, we attach a black circle in the relator universal end of this relation. In this fig-
ure, a particular Treatment is existentially dependent on a single Patient and in a (im-
mutable) group of medical units. This would mean in UML that for every association
representing an existential dependency relation between a trope and the individual it
depends on, the association end should have the frozen meta-attribute set to true on
the side of the latter. This compound modeling construct should replace the ambigu-
ous association class construct in UML. Unlike in figure 3, the entities representing a
relator universal (the stereotyped class that replaces an association class), and the ma-
terial relation (the association itself) are distinct entities. In fact, the latter is com-
pletely derived from the former (see definition 7). For instance, the relator universal
Treatment and the material relation TreatedIn represent distinct entities and can pos-
sibly have different cardinalities, since the same relator t1 can connect both the entities
in [John, MedUnit#1] and [John, MedUnit#2]. Nonetheless, the cardinality constraints
of TreatedIn can be completely deduced from the existential dependency relations
(mediation) between Treatment and the universals whose instances are the relata of
TreatedIn, namely, Patient and MedicalUnit.

Fig. 5. Model with explicit representation of a Relator Universal, a Material Relation, and a
(formal) derivation relation between the two

The benefits of this approach are even more evident in the case of n-ary relations
with n > 2. Take the UML representation of a ternary relation in figure 4. In this
specification, we are forced to represent the minimum cardinality of zero for all asso-
ciation ends. As explained in the UML specification [9, p.82]: “For n-ary associa-
tions, the lower multiplicity of an end is typically 0. If the lower multiplicity for an
end of an n-ary association of 1 (or more) implies that one link (or more) must exist
for every possible combination of values for the other ends”. As recognized by the

94 G. Guizzardi and G. Wagner

UML specification itself, n-ary associations in which there are tuples for every possi-
ble combination of the cross-product of the extension of the involved classes are
atypical. Thus, in the majority of cases, the UML notation for n-ary associations com-
pletely looses the ability of representing real minimum cardinality constraints. Fur-
thermore, as empirically demonstrated in [13], conceptual models without optional
properties (minimum cardinality constraints of zero) lead to better performance in
problem-solving tasks that require a deeper-level understanding of the represented
domain.

The results of this section can be summarized in the following principle regarding
the representation of formal and material relations in a conceptual model: In a concep-
tual model, any domain formal relation universal RF may be directly represented as a
standard association whose links represent the tuples in the extension of RF. Con-
versely, a material relation RM of the domain may be represented by a complex con-
struct composed of: (i) a class stereotyped as «relator» representing the relator
universal. The relator universal is associated to classes representing mediated entities
via associations stereotyped as «mediation»; (ii) a standard association stereotyped as
«material» representing a material relation whose links represent the tuples in the ex-
tension of RM; (iii) a dashed line with a black circle in one of the ends representing
the formal relation of derivation between RM and the relator universal it derives from.

4 A Critical Comparison to the BWW Approach

The approach found in the literature that is closest to the one presented here is the so-
called BWW approach presented in (e.g., [5,11,14]). In these articles, the authors re-
port their results in mapping common constructs of conceptual modeling to an upper
level ontology. Their approach is based on the BWW ontology, a framework created
by Wand and Weber on the basis of the original metaphysical theory developed by
Mario Bunge in [15].

In BWW, a property whose existence depends only on a single thing is called an
intrinsic property. A property that depends on two or more things is called a mutual
property. These concepts are analogous to our notions of intrinsic and relational trope
universals. Nevertheless, in our approach properties are instantiated. Thus, our intrin-
sic properties can be better defined as universals whose instances inhere in a single
individual, while relational properties are universals whose instances mediate multiple
individuals. This marks an important distinction between the two approaches.

As demonstrated in [2], the ontological position behind the BWW approach (inher-
ited from Bunge) is the substance-attribute view, whilst ours is a trope-theoretical
one. Two consequences of their particular ontological choice are: (i) the denial of the
existence of instances of properties; (ii) and the consequence denial of properties of
properties (i.e., higher order properties). Thus, in BWW, only things (objects) possess
properties. In particular, for the case of relational properties, this dictum leads to the
following modeling principle: “Associations should not be modeled as classes” (rule 7
in [14]). This claim is not only perceived as counterintuitive by conceptual modeling
practitioners (as shown by [16,17]), but, as discussed in depth [1,2], it is also contro-
versial from a metaphysical point of view and puts BWW in a singular position
among the foundational ontologies developed in the realm of computer science.

 What’s in a Relationship: An Ontological Analysis 95

Moreover, even if both ontological choices were deemed equivalent, there are a num-
ber pragmatic reasons for defending the acceptance of property instances and, hence,
in favor of accepting also the representation of non-object universals as conceptual
modeling types [1,2]. Examples include the proper representation of weak entities and
structured datatypes [2] and, to cite an example demonstrated here, the explicit repre-
sentation of relator universals (relational properties), which allows for the disam-
biguation of single-tuple and multiple-tuple cardinality constraints in associations.

To provide one more example of the importance of relators in conceptual model-
ing, suppose the situation in which one wants to model that students are enrolled in
universities starting on a certain date. Following the proscription of mutual properties
being modeled as entity types, Wand and colleagues propose an alternative model for
this situation depicted in Figure 6.a [5].

We claim that it is rather counterintuitive to think about a model of this situation in
these terms. According to [5], relationships representing mutual properties are equiva-
lent to n-ary attribute predicates. In this case, what is startDate supposed to stand for?
Is it a binary predicate that holds, for example, for John and UFES, like in startDate
(John, UFES)? This seems to be an absurd conclusion. Thus, startDate should at least
be a ternary predicate applied to, for instance, startDate (John, UFES, 14-2-2004).
Now, suppose that there are many predicates like this one relating a student and a
university. For example, the start-date of writing the thesis, the start-date of receiving
a research grant, etc. We believe that, in this case, the authors would propose to dif-
ferentiate the startDate depicted in figure 6.a by naming it startDateofEnrollment. But
does not this move make it obvious that startDate is actually a property of the enroll-
ment? In our approach, this can be explicitly modeled such as in figure 6.b. In
contrast to figure 6.a, the model of 6.b makes an explicit distinction between a closed-
linked relation between student and university and an indirect relation between
student and start date.

Fig. 6. (a-left) An alternative modeling of “properties of properties” in the BWW approach
(from [5]); (b) The representation of “properties of properties” in our approach

5 Final Considerations

This article proposes an ontological theory of relations which makes a fundamental
distinction between two different categories, namely, formal and material relations.

This theory shows that only material relations stand for bonafide ontological rela-
tional properties (relational tropes or relators). Domain formal relations, in contrast,

96 G. Guizzardi and G. Wagner

are simply useful logical constructions which do not stand for genuine properties of
the things themselves but, instead, for the way we talk about these things. It is impor-
tant to highlight that the theory presented here deals with domain relations as opposed
to relations that form the meta-level structure of a modeling framework such as
parthood, generalization/specialization, participation (in processes), existential de-
pendence, among others. In our approach, these meta-relations have been formally
treated elsewhere [1,3].

Making the aforementioned distinction explicit is important from an ontological
point of view since the very nature of these categories is uncovered. However, this
also bears important consequences from a modeling perspective. Deciding whether an
n-ary term in the universe of discourse stands for a formal or material relation and,
deciding which is the foundation of these relations, amounts to eliciting the very
meaning of these terms. On one hand, uncovering the intrinsic tropes and associated
quality structures underlying a domain formal relation can explain which are the for-
mal meta-properties which should be described for that relation. On the other hand,
recognizing and representing the relator universal underlying a material relation helps
to disambiguate different sorts of cardinality constraints (a problem which is specific
to material relations). Contrariwise, as demonstrated in [1], by not clearly represent-
ing relators and, due to the ambiguity of cardinality constraints, the standard notation
for associations can collapse in a single representation, multiple relational properties
with even contradictory semantics, which can be major source of interoperability
problems. Furthermore, as discussed in depth in [18], the explicit representation of re-
lator universals and their corresponding existential dependency relations provides a
suitable mechanism for consistency preservation between static and dynamic concep-
tual models - an issue which we intend to give an ontological treatment in future
works.

Acknowledgements. This research has been partially supported by the funding agen-
cies FAPES (INFRA-MODELA project) and FACITEC (MODELA project).

References

1 Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, PhD Thesis,
University of Twente, The Netherlands (2005)

2 Guizzardi, G., Masolo, C., Borgo, S.: In Defense of a Trope-Based Ontology for Concep-
tual Modeling: An Example with the Foundations of Attributes, Weak Entities and
Datatypes. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp.
112–125. Springer, Heidelberg (2006)

3 Guizzardi, G., Herre, H., Wagner, G.: On General Ontological Foundations of Conceptual
Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503. Springer, Heidelberg (2002)

4 Batra, D., Hoffler, J.A., Bostrom, R.P.: Comparing representations with relational and EER
models. Communications of the ACM 33(2), 126–139 (1990)

5 Wand, Y., Storey, V.C., Weber, R.: An ontological analysis of the relationship construct in
conceptual modeling. ACM Trans. on Database Systems 24(4), 494–528 (1999)

6 Gärdenfors, P.: Conceptual Spaces: the Geometry of Thought. MIT Press, USA (2000)
7 Heller, B., Herre, H.: Ontological Categories in GOL. Axiomathes 14, 71–90 (2004)

 What’s in a Relationship: An Ontological Analysis 97

8 Mulligan, K., Smith, B.: A Relational Theory of the Act. Topoi (5/2), 115–130 (1986)
9 OMG, UML 2.0 Infrastructure Specification, Doc.# ptc/03-09-15 (September 2003)

10 Bock, C., Odell, J.: A More Complete Model of Relations and Their Implementation: Rela-
tions as Object Types. Journal of Object-Oriented Programming 10(3) (June 1997)

11 Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand, Mel-
bourne (1997)

12 Breu, R., et al.: Towards a Formalization of the Unified Modeling Language. In: Proceed-
ings fo the 11th ECOOP, Jyväskylä, Finland (1997)

13 Bodart, F., Patel, A., Sim, M., Weber, R.: Should Optional Properties Be Used in Concep-
tual Modelling? A Theory and Three Empirical Tests, Information Systems Re-
search 12(4), 384–405 (2001)

14 Evermann, J., Wand, Y.: Towards ontologically based semantics for UML constructs. In:
Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224. Springer, Heidel-
berg (2001)

15 Bunge, M.: Treatise on Basic Philosophy. In: Ontology I. The Furniture of the World,
vol. 3. D. Reidel Publishing, New York (1997)

16 Veres, C., Mansson, G.: Cognition and Modeling: Foundations for Research and Practice.
Journal of Information Technology Theory and Application 7(1), 93–100 (2005)

17 Hitchman, S.: An interpretive study of how practitioners use entity-relationship modeling
in a ternary relationship situation. Comm. Assoc. for Inf. Systems 11, 451–485 (2003)

18 Snoeck, M., Dedede, G.: Existential Dependency: The Key to semantic integrity between
structural and behavioral aspects of object types. IEEE Transactions on Software Engineer-
ing 24(4) (April 1998)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 98–113, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Upper Level Ontological Model for Engineering
Design Performance Domain

Vadim Ermolayev1, Natalya Keberle1, and Wolf-Ekkehard Matzke2

1 Department of IT, Zaporozhye National University, Zhukovskogo 66, 69063,
Zaporozhye, Ukraine

vadim@ermolayev.com, kenga@zsu.zp.ua
2 Cadence Design Systems, GmbH, Mozartstr. 2 D-85622 Feldkirchen, Germany

wolf@cadence.com

Abstract. The paper presents our upper level lightweight descriptive model for
the set of the Core ontologies of PSI1 Suite. While PSI Suite of Ontologies is an
interlinked modular library of ontologies describing the domain of engineering
design performance in microelectronics, PSI upper level ontology is more do-
main-independent. It is a model of stateful creative dynamic processes, pro-
active agents, and objects situated in nested dynamic environments based on
formal representation of time, events, and happenings. It may be used as an up-
per level theory for domain ontologies in different application domains having
common features. PSI upper level ontology is designed as a semantic bridge fa-
cilitating to mapping PSI Domain ontologies to abstract ontological foundations
and common sense. It is also used as semantic “glue” for bridging PSI ontolo-
gies with other theories, widely accepted in the domains where processes,
states, and participating objects are the major entities. These mappings and se-
mantic bridges are supposed to ease the commitment of potential users to PSI
Suite. PSI upper level ontology is also used as a “proxy” for different kinds of
evaluation of PSI ontologies in frame of our “shaker modeling” methodology
for ontology refinement.

1 Introduction

PSI project develops the methodology and the toolset for assessing, predicting, and
optimizing the performance of engineering design systems in microelectronics. Though
design technology in this domain is well defined, many factors make design processes
highly stochastic, non-deterministic, structurally ramified, time-bound – in a phrase,
loosely defined and highly dynamic. The examples of such factors are: human factor,
innovative character, the pace of technology change, the peculiarities of the market and
customer requirements, etc. PSI uses simulation to observe and predict the course of a
Dynamic Engineering Design Process (DEDP) with sufficient detail for making assess-
ments grounded. Simulation allows playing “what-if” games to model the unpredictable
character of the real business world of microelectronic design.

1 Performance Simulation Initiative (PSI) is a research and development project of Cadence

Design Systems, GmbH.

 An Upper Level Ontological Model for Engineering Design Performance Domain 99

Finely grained and explicit knowledge of design processes and environments is an im-
portant intellectual asset which allows PSI methodology be convincing. This knowledge
is formalized using the Suite of PSI ontologies. If someone imagines an arbitrary design
flow, most certainly he or she will think in terms of: a goal – the state of affairs to be
reached; an action which may bring the process closer to its goal; an object to apply
actions to; a designer who acts and applies actions to objects; an instrument to be used by
an actor to execute actions; and an environment in which the process occurs. All these
interact in dynamics – depending on time and on events which manifest the changes in a
design system which is the environment of a DEDP. The structure of the Suite of PSI
Ontologies reflects this approach. It comprises six cross-linked Core ontologies: Time
ontology; Environment, Event and Happening ontology; Actor ontology; Project ontol-
ogy; Process and Process Pattern ontologies; and Design Artifact ontology. The “corolla”
of this Core is formed by Extension ontologies collaboratively developed in PSI and
PRODUKTIV+2 projects. The most important Extensions are: Resource ontology with
Tool package, Generic Negotiation ontology.

The ontology presented in this paper is the upper level part of PSI Suite of Ontolo-
gies. Its main purpose is putting the components of the Suite in line with the commonly
accepted metaphysical and cognitive framework of the common sense represented by
chosen reference ontologies. Additionally, we aim at providing semantic bridge to
mainstream enterprise, business, and process modeling frameworks. Bridging PSI on-
tologies to these mainstream theories of process knowledge representation facilitates to
easier commitment of engineering design domain professionals to the Suite. Upper level
ontology also plays an integration and harmonization role in PSI Suite because it repre-
sents a rather domain-independent descriptive theory based on formal principles for
harmonizing and integrating the underlying domain dependent modules with other rele-
vant ontologies. In addition to being the semantic “glue” between the Suite and the outer
world of knowledge representation presented ontology plays an important role in the
methodology of knowledge engineering in PSI. It is the resource which is intensively
used in the refinement and the evaluation of PSI Core Ontologies.

The rest of the paper is structured as follows. Section 2 outlines requirements and ob-
jectives which shaped out our upper level model. Section 3 puts PSI upper level ontology
in the context of related work and presents our ontological choices. Section 4 outlines
the taxonomy PSI upper level ontology and discusses the semantic contexts of its key
concepts in detail. Section 5 sketches our ontology engineering methodology. Section 6
reports on the implementation and evaluation of the described ontology. Finally, conclud-
ing remarks are given and our plans for future work are outlined in Section 7.

2 Modeling Requirements

PSI project aims at developing models, methodologies, and software tools providing
for rigorous engineering treatment of performance and performance management. PSI
performance modeling and management approach focuses on performance as a
pro-active action. A fine-grained dynamic model of a DEDP and a design system is

2 PRODUKTIV+ is the R&D project funded by the German Bundesministerium für Bildung

und Forschung (BMBF).

100 V. Ermolayev, N. Keberle, and W.-E. Matzke

therefore developed. PSI approach considers that performance is embodied in its
environment and is controlled by the associated performance management process.

A DEDP is a goal-directed process of transforming the representations of a design
artifact in stateful nested environments. An environment comprises design artifact
representations, resources, tools, and actors who perform actions to transform design
artifacts using tools, consume resources. Actions are admissible in particular envi-
ronment states and may be atomic or compound, state-transitive or iterative, depend-
ent or independent on other actions. The components of an environment may generate
internal events or may be influenced by external events. Events may have causal de-
pendencies. A DEDP is a problem solving process which goals, partial goals, and
environments may change dynamically. A decision taking procedure is associated
with each state to allow environments adjust the process taking these changes into
account. Decisions are taken by actors modeled by software agents.

PSI software tools are developed [1] for assisting project managers to make robust
planning, monitoring, and management of their design projects aiming at reaching
best possible performance. Grounded decisions in planning are based on the knowl-
edge base of project logs accomplished in the past. These logs provide vast and finely
grained records of the performance of accomplished projects and may be used for
simulating the behavior of the design system in response to different influences. At
project execution phase PSI software may be used for predicting the behavior of the
design system in the future based on the record of the partially accomplished DEDP,
the knowledge about its environment(s), and performance simulations.

Mentioned functionalities may only be implemented if a rich and expressive do-
main model is used. This model should be capable of facilitating agents reasoning
about environments, events, and actions employed in decision taking procedures en-
acted at environmental states. These sorts of commonsense reasoning require
ontological representations of time [2], environments, events and their subjective
perceptions [3], processes, actions, actors, design artifacts, resources, tools [4, 5]. The
models of these domain aspects form the Core and the Extensions of PSI Suite of
Ontologies v.2.1 and v.2.2 [5].

3 Related Work and Modeling Choices

The main function of our upper level ontological model is putting the components of
the Suite in line with the commonly accepted metaphysical and cognitive framework
of the common sense. Common sense knowledge is captured by several foundational
ontologies. Important examples are Suggested Upper Merged Ontology (SUMO) [6],
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [7], the
upper level of OpenCYC [22], Basic Formal Ontology (BFO) [7]. Highly reputable
linguistic resources like WordNet Linguistic Ontology (WordNet) [8] should also be
considered. One more objective of introducing the upper level of the Suite is provid-
ing semantic bridges to mainstream enterprise, business, and process models like the
Enterprise Ontology (EO) [9], Toronto Virtual Enterprise Ontology (TOVE) [10],
Process Specification Language (PSL) [11].

In difference to the mentioned enterprise, business, and process modeling frame-
works, which are, to a certain extent, domain independent (TOVE, PSL) or model
manufacturing Domain (EO), PSI upper level ontology defines an abstract descriptive

 An Upper Level Ontological Model for Engineering Design Performance Domain 101

theory for the domain of engineering design processes and environments. As many
foundational ontologies PSI upper level ontology has a clear cognitive orientation in
the sense that it does not pretend being strictly and rigorously referential to the theo-
ries describing nature. Instead, it captures ontological categories and contexts based
on human common sense reflecting socially dominant views on the Domain – charac-
teristic at least to engineering design professionals. As such, the categories introduced
in our ontology are not related to the intrinsic nature of the world but are rather
thought of as “cognitive artifacts ultimately depending on human perception, cultural
imprints and social conventions” [7]. Therefore, these categories assist in making
already formed conceptualizations of PSI Suite of Ontologies explicit and referenced
by the common sense. PSI upper level ontology also plays an integration and
harmonization role of a foundational ontology [12] because it represents a rather do-
main-independent descriptive theory based on formal principles for harmonizing and
integrating the underlying domain dependent modules with other relevant ontologies.

In contrast to foundational ontologies PSI upper level ontology is not foundational
in the sense that it is not a profound and a complete theory in philosophical or, more
precisely, cognitivistic sense. For example, it does not deal with many problems char-
acteristic for foundational theories like: differences between abstract and concrete
objects, particulars and universals; spatio-temporal co-localization of things;
mereological axiomatization; etc. It also does not provide rich axiomatic sets for rig-
orously describing the semantics of the contained entities. Instead, other highly repu-
table foundational ontologies are used as reference sources for defining PSI upper
level ontology components. The mappings of these components to those reference
sources are explicitly specified. Choosing the most appropriate reference foundational
ontologies among possible candidates is not an easy task because it requires ontologi-
cal commitment to the chosen ontologies and their ontological choices. Typical onto-
logical choices (also called meta-criteria) are: (i) Descriptivism vs. Revisionarism; (ii)
Multiplicativism vs. Reductionism; (ii) Possibilism vs. Actualism; (iv) Endurantism
vs. Perdurantism. A good comparative analysis of several well known foundational
ontologies and their ontological choices has been undertaken in SmartWeb project
[13]. Five most promising candidates among approximately a dozen available world-
wide has been analyzed: BFO, DOLCE, Object-Centered High-level Reference
Ontology (OCHRE) [7], OpenCYC, and SUMO. The results are given in Table 1.
Typical ontological choices in line with modeling requirements of PSI project are
discussed below. Based on this discussion our choice of reference foundational on-
tologies for the design of our upper level ontology is made.

Table 1. Foundational ontologies and their ontological choices [13]

 Ontology
Alternative

BFO DOLCE OCHRE OpenCYC SUMO

Descriptivism - + - + +
Multiplicativism - + unclear unclear +
Actualism + - - unclear unclear
Perdurantism + + - unclear +

Legend: + – the ontology supports the ontological choice; - – the ontology does not support the
ontological choice; unclear – it is not clear if the ontology supports the ontological choice.

102 V. Ermolayev, N. Keberle, and W.-E. Matzke

Descriptivism vs. Revisionarism. A descriptive ontology aims at describing the
ontological assumptions based on the surface structure of natural language and human
common sense. For example, a descriptive ontology distinguishes between physical
and abstract objects based on the human common sense perception of these catego-
ries. It is common to consider that a physical object is a category of things which have
tangible physical properties, can be sensed, are extended in space and time. On the
contrary, an abstract object does not possess the abovementioned properties. A revi-
sionary ontology is committed to capture the intrinsic nature of the world. As a con-
sequence, such a commitment may impose that only entities extended in space and
time exist. Though we refrain from modeling abstract things in PSI as much as possi-
ble3, we still have to model immaterial things which are not made of matter, do not
possess spatial properties, etc. Therefore, revisionarism would have been a wrong
choice for PSI. PSI upper level ontology is a descriptive ontology and has to be based
on a descriptive foundational ontology like DOLCE, OpenCYC, or SUMO.

Multiplicativism vs. Reductionism. A multiplicative ontology allows different enti-
ties to be co-localized in the same space-time. The difference of these entities means
that they have different essential properties. For example, a silicon wafer of a chip (a
material object) and a definite amount of silicon this wafer is made of (an amount of
matter) are co-localized in space-time for the whole life of this particular chip. Reduc-
tionistic ontology postulates that each space-time location contains at most one object.
Differences in essential properties are regarded as being linked to different points of
view from which one can look at the same spatio-temporal entity. Reductionistic
approach therefore extracts all essential properties different from spatio-temporal ones
from entities and places them to the views on these entities. In PSI it is considered
that an entity possesses all its essential properties and the views on an entity may
reveal different subsets of these properties depending on the point of view. For exam-
ple, an agent may be (i) a model of one physical person – a designer; (ii) a model of a
group of designers working on one design project – a development team. PSI upper
level ontology should therefore be a multiplicative ontology – like DOLCE or SUMO.

Possibilism vs. Actualism. An actualistic ontology postulates that everything that
exists is actual. Things that are not actual and, therefore, do not exist may be with-
drawn from consideration. Different forms of possibilism are based on different ways
of the denial of this postulate. For example our beliefs, which are hypotheses based on
incomplete, partial knowledge about the world, are very often roughly equally be-
lieved possible alternatives. Considering such alternatives is characteristic to human
common sense and cognition. Committing to possibilism means being able to repre-
sent possibilia – possible alternative entities in a domain corresponding to different
modalities in different possible worlds. Possibilism is particularly useful in reasoning
about future courses of processes and about actions [14]. PSI upper level ontology has
to be capable of modeling possibilia. For example, a design process depending on the
future events in its environment may take one of the possible alternative courses.
These alternative courses should all be considered and analyzed for choosing the best
possible one to follow. Hence, we have to commit to possibilism of a foundational
ontology like DOLCE or OCHRE.

3 All concepts of PSI upper-level ontology are not abstract – Fig. 1.

 An Upper Level Ontological Model for Engineering Design Performance Domain 103

Endurantism vs. Perdurantism. A fundamental ontological choice is the commit-
ment to a way of modeling changes of things in time. Endurantism (also called 3D
paradigm) postulates that all things do not change in time in the sense that all the
proper parts of an entity (a whole) are present in this whole at any moment of the
existence of this whole. Differently to that, perdurantism (also called 4D paradigm)
assumes that entities may have different parts at different moments of their existence
– meaning that entities have both spatial and temporal constituents. PSI upper level
ontology needs to model both endurants and perdurants. Indeed, many of the concepts
characteristic to engineering design always contain all their parts, but many other of
them are composed of temporally different parts – like phases in a design process.
Therefore, a reference foundational ontology for our ontology should be based on 4D
paradigm, comprising 3D as a particular case. Such ontologies are BFO, DOLCE, and
SUMO.

Hence, only DOLCE commits fully to all the ontological choices required by PSI.
SUMO provides all the necessary features except possibilism. This is why we use the
upper taxonomical level of DOLCE as our foundational framework. We also use
SUMO extended by WordNet as a target for mapping the concepts of our upper level
ontology and PSI Core Ontologies.

4 PSI Upper Level Ontology

The postulates, assumptions, objectives, and ontological choices of PSI modeling
approach were presented in Sections 2 and 3. Here the semantic contexts of several
key concepts of PSI upper level ontology4 are discussed in detail: a Process, a State,
an Object, an Agent, and a Rule. Fig. 1 pictures the taxonomy of PSI upper level
ontology.

A Process (Fig. 2a) is a specialization of an Event [3] which is stateful and pos-
sesses pro-active character. A Process has its Environment – the part of the world
which may influence the course of the Process or may be changed in the course of the
Process. A Process is pro-actively directed by the Agent who manages it. Pro-
activeness of the Agent is understood in the sense that the Agent pursues a particular
Goal in the managed Process. This Goal is the State of the Environment which the
Agent desires to make reached. It should also be mentioned that the change in the
Environment is not produced by the Process, but by the entities who act in this proc-
ess – those Agents who execute AtomicActions wrapped by the Process. In general, it
is considered that changes may only be applied by Agents through execution of At-
omicActions. For example, it is wrong to say that a multimedia controller layout has
been designed by the process of logical design. In fact the appearance of the layout
for the multimedia controller in a certain state of the Environment (the measurable
change in the Environment [3]) has been achieved by the team of Agents who exe-
cuted a particular sequence of AtomicActions. By that the Agents applied the se-
quence of particular changes to the Environment and guided the environment through
the sequence of States towards the Goal. Processes in an engineering Environment

4 Complete specification could be found at http://ermolayev.com/psi-public/PSI-META-v-2-2-

Spec.pdf

104 V. Ermolayev, N. Keberle, and W.-E. Matzke

can not connect any arbitrary State to any other arbitrary State because it is senseless
with respect to the technology or the methodology. Some sequences of States may
therefore be withdrawn from the engineering design routine and some other sequences
of States may be suggested or prescribed by an industrial standard or a company pol-
icy. These prescriptions in terms of PSI upper level ontology are ProcessPatterns.

Any Process, as a pro-active stateful manifestation of a change in the Environment,
is guided by its managing Agent to reach the State (Fig. 2b) of affairs in which the
constituents of the Environment possess the properties partially or fully matching the
Goal of that Agent. It is considered that a Process has reached its target State if such a
state of affairs is reached. Otherwise the Process fails to reach its target State. A Goal,
if complex, can be decomposed to simpler partial Goals as often done in problem
solving. Such partial Goals are in fact the states of affairs that should be reached be-
fore the overall compound Goal can be attacked. States in upper level ontology are the
configurations of the constituents of an Environment. It is considered that a State is
reached when the constituents of the Environment have properties with Values in the
ranges satisfactory matching the corresponding Goal or partial-Goal5 of an Agent. In
engineering design mentioned Goals are technologically controlled. For example, a
technology of digital front-end design in microelectronics and integrated circuits
prescribes that an overall Goal of a digital back-end design is the development of a

5 In our agent-based software implementation such decomposition is the substantial part of

work breakdown structure generation [1]. Goal decomposition is based on the ontological
representation of design task and activity patterns provided by the Process Pattern Ontology
of the Core of the PSI Suite.

Legend:
(i) Concepts are colored reflecting classification by OntoClean property types (Section 6):
 - category, - type, - quasi-type, - material role, - mixin.
 Categories, types, and quasi-types form the backbone taxonomy.
(ii) Semantic contexts of the concepts in rounded rectangles () are discussed in detail.

Fig. 1. The taxonomy of PSI upper-level ontology

 An Upper Level Ontological Model for Engineering Design Performance Domain 105

design artifact in GDSII layout representation. At the same time the technology sug-
gests that netlist, floorplan, placement and routing representations should be devel-
oped before the overall Goal can be reached. In these settings the States can be seen
as technological milestones on the path through the problem solution space leading to
the overall Goal. The requirements to the ranges of the property values of the con-
stituents of the Environment are denoted by StatePatterns. StatePatterns are controlled

a) a Process

b) a State

c) an Object and an Agent

d) a Rule

Fig. 2. Semantic contexts of the key concepts

106 V. Ermolayev, N. Keberle, and W.-E. Matzke

by the Policies of a company which should be based on the standards of the particular
industrial sector. Goals and corresponding partial Goals may be pursued by taking
different alternative paths going through different States. If a problem solution space
is represented as a directed graph, a State may have several alternative outgoing
edges. These edges correspond to different admissible AtomicActions applying dif-
ferent changes to the Environment. A Decision on the choice of an admissible Atomi-
cAction should be taken for choosing the continuation of the path at any State. In
particular, a Decision in the target State chooses among the alternative to terminate
the process in success and the alternative to refine the values of the properties of the
constituents of the Environment heading to the same target State. Hence, a Decision is
a specific AtomicAction which applies changes to an Environment indirectly – by
choosing the alternative on the solution path. A Decision is also a mechanism to alter
the course of the Process when the Goal or the sub-Goals are dynamically changed.
In difference to an Environment, which is a Perdurant, a State is an Endurant because
all its parts should be present at any TimeInstant of the presence of a State. A State is
not a Holon because a State can not be a part of another State.

An Object (Fig. 2c) is a Holon which has Environment, belongs to an Environ-
ment, and may be changed in the course of the execution of an AtomicAction. An
Object may have Characteristics, though the relationship of an Object to a Character-
istic is not explicitly specified at this level of abstraction. The reason is that we refrain
from letting the subclasses of an Object inherit this very generic relationship. Instead
we prefer to specify individual relationships between the subclasses of an Object and
a Characteristic at lower abstraction levels – for example in the Core or the Exten-
sions of PSI Suite. An Object could be either material or immaterial. MaterialObjects
are those Objects which are physically or legally substantial in the sense that they
possess tangible physical non-temporal properties like mass, color, shape, size, speed,
usage right and can not be copied or duplicated without borrowing a definite amount
of physical or legal6 substance for it. The law of conservation of matter is applicable
to material objects. MaterialObject subclasses are an Agent, a MaterialArtifact, a
ConsumableResource, a Tool. ImmaterialObjects in contract to material ones are not
substantial in physical or legal sense. Hence, they can be copied or duplicated without
consuming physical or legal substance for that. ImmaterialObject subclasses are an
ImmaterialArtifact, a Rule, a Plan, a Fact, a Belief.

An Agent (Fig. 2c) is a MaterialObject who possesses pro-activity, is able to exe-
cute AtomicActions and manage Processes. Pro-activity of an Agent is revealed in
pursuing Goals of changing the Environment to a desired State. An Agent is the only
entity which can change its Environment by executing AtomicActions applied to the
Objects in the Environment. An Agent has Beliefs about its Environment(s) which are
the hypotheses believed to be true. These Beliefs may further become Facts if con-
firmed by the happenings [3] perceived by the Agents. Beliefs together with desires
and intentions are important basic elements forming the behavior of an Agent. This
behavior is regulated by BehaviorPatterns specified as Rules. An Agent is an abstract
entity which is a generic model for an individual person (a manager, a designer), a

6 By an odd term of “legal substance” we mean a legal permission to have an extra copy of an

Object which is not a physical object in the sense of SUMO or DOLCE. A good example of
such an Object is a software program with a license (legal substance).

 An Upper Level Ontological Model for Engineering Design Performance Domain 107

group of persons or artificial agents acting on behalf of physical persons (a team or an
organizational unit), or an external pro-active entity influencing the Environment of
an observed Process in a definite way. These aspects of an Agent are specialized and
refined at the lower abstraction levels by PSI Core ontologies.

A Rule (Fig. 2d) is an ImmaterialObject which is a principle, a condition, a proce-
dure, a generic pattern, or a norm regulating possible process, action, behavior, or
state of affairs. As far as a Rule subsumes to a Holon it inherits structural parthood
relationship of a Holon. Hence, a Rule may be an atomic proposition or a more com-
plex composition of other Rules. As far as a Rule is an Endurant no temporal
parthood relationships are allowed for its proper parts – the composition of a rule can
not be changed in time. A Rule itself still has a temporal property of validity – it is
valid within a particular TimeInterval or several particular TimeIntervals. If a Rule is
a principle or condition that customarily governs behavior then it subsumes to Word-
Net: Rule and further on to SUMO: Proposition. If a Rule is a generalization that
describes recurring facts or events then it subsumes to WordNet: Law and further on
to SUMO: Proposition. If a Rule is something regarded as a norm constraining possi-
ble action or behavior then it subsumes to WordNet: Regulation and further on to
SUMO: Proposition.

5 Ontology Engineering Methodology

The methodology used in the design of PSI upper level ontology may be identified as
“shaker modeling”. It is the combination of bottom-up and top-down modeling tech-
niques exercised in subsequent design iterations. The source for the top-down activity
is PSI Theoretical Framework. The source for the bottom-up phase is domain knowl-
edge acquired from subject experts and formalized in the Core of PSI Suite of On-
tologies. Both kinds of sources are refined in iterations before performing the phases
of upper level ontology design. The sources are also aligned to the foundational refer-
ence ontology and mapped to the common sense reference ontology using the upper
level ontology as a semantic “glue” in the last two phases of every design iteration.

The most recent revision of the Theoretical Framework is used in the first phase –
skeleton design of the upper level ontology. The outcome is represented as a UML
class diagram. Skeleton design phase is a top-down activity because a more abstract
theoretical framework is used as a source for the development of a more elaborated
descriptive theory. In the refinement phase the harmonization of the skeleton of the
upper level ontology with the previous stable revision of the Core Ontologies of PSI
Suite is performed. The objectives of this harmonization activity are: (i) ensuring that
the upper level model does not contain components which contradict to the core-level
model in their semantics and (ii) ensuring that all core-level concepts are properly
mapped to the upper level concepts. Previous stable revision of PSI Core Ontolgies is
used to ensure upward compatibility of the revisions of the PSI Suite comprising the
upper level ontology. The outcome of this phase is presented in the form of three
separate UML class diagrams: (i) the taxonomical structure of the upper level ontol-
ogy; (ii) the diagram of the “horizontal” relationships among the concepts of the up-
per level ontology; (iii) the mappings of the concepts of the Core Ontologies to the
concepts of the upper level ontology. Refinement phase is a bottom-up activity be-
cause an upper level model is harmonized with the lower-level one – the core part of

108 V. Ermolayev, N. Keberle, and W.-E. Matzke

the domain theory. At the beginning of the alignment phase upper level ontology is
checked for the conformance to the ontological choices of the reference foundational
ontology and its taxonomical structure is formally evaluated. As DOLCE is chosen as
a reference foundational ontology for PSI, the upper level model is checked for being
descriptive, possibilistic, multiplicative, and perdurantistic. OntoClean [15] is used as
a methodology for formal evaluation of the taxonomy. As result, the taxonomy is
refined and formally evaluated. Further on, upper level ontology concepts are mapped
to the reference ontology which has been chosen as a source of common sense seman-
tics – SUMO+WordNet in our case. These mappings allow checking if our upper
level theory is sound enough to adequately conform to human beliefs about what the
world is. If the result of such verification is positive (all the mappings are easily built
and their semantics is easily understood), then we may expect that PSI upper level
ontology will be accepted by humans without major difficulties. These common sense
mappings may also be used as “referees” at the subsequent bridging phase. Bridging
phase is actually not the phase of ontology design. It is the activity in which upper
level ontology is used as a semantic bridge to help evaluating the Core of PSI Suite
against the other ontologies describing similar domain theories.

The iterations of PSI upper level ontology development are organized as shown in
Fig. 3. The whole process is performed in two stages: (i) initial design and (ii) itera-
tive refinement similarly to what is suggested by DILIGENT [16] methodology of
collaborative ontology engineering. It may be stated that DILIGENT in our approach
is used as the higher-level methodological framework organizing iterations in a
needed way. DILIGENT is used because the development of our Suite of Ontologies
is done in a distributed dynamic environment (several local groups of subject experts
from different organizations in frame of PSI and PRODUKTIV+ projects take part).

The stage of the initial design is the preparatory activity at the very beginning of
ontology design process. Its objective is to develop the initial revisions of the Theo-
retical Framework and the Core set of the domain ontologies. An initial revision of
the upper level ontology is developed at the end of the initial design stage because it
requires both as sources. Two revisions of the Theoretical Framework have been
developed before starting the design of the upper level ontology. The second revision
is the result of the refinement based on the user evaluation feedback on the first revi-
sion of the Core ontologies. Hence, even the first revision of the upper level ontology
is designed with the account for the user evaluation of the domain theory. An iteration
of the refinement stage also uses the latest revision of the Theoretical Framework
developed in this iteration and the revision of the Core ontologies built in the previous
iteration. Iteration starts with the development of the Core set of ontologies based on
the upper level ontology revision of the previous iteration and ends by the develop-
ment of the new revision of the upper level ontology.

Several kinds of ontology evaluation activities are undertaken in each design itera-
tion (Fig. 3). The first one is user evaluation. The objective of the user evaluation is to
find out if the Core set of ontologies fits the requirements of user teams and the re-
quirements of the software development based on this set of ontologies. An external
evaluation by independent experts may also be done at this stage to ensure that
evaluation results are unbiased and of good quality. It has been found out [17] that for
PSI Core ontologies probably the best fitting methodology is Pinto and Martens [18].

 An Upper Level Ontological Model for Engineering Design Performance Domain 109

Theoretical
Framework

Meta-
Ontology

initial design

Core
Ontologies

one iteration
refinement

user
evaluation

. . .

r.1

r.1

r.2

r.2

r.i

r.i+1

r.i+1

r.i+1

. . .

formal
evaluation

common
sense

evaluation

“Golden
Standard”
evaluation

Fig. 3. Iterations of PSI upper level ontology design

The feedback of this iteration is taken into account in the refinement of the Theoreti-
cal Framework. The second kind of evaluation activity – formal evaluation, is under-
taken at the Alignment phase after the newly developed revision of the upper level
ontology has reached release candidate state. The objective of formal evaluation is to
check the conformance of the taxonomy structure of the upper level ontology to meta-
properties of rigidity, identity, and dependence [15]. The methodology for this kind of
evaluation is OntoClean [15]. The results of the formal evaluation are used for the
refinement of the release candidate of the upper level ontology. The third kind of
evaluation activity is the evaluation of the Core set of ontologies versus the upper
level ontology. Similarly to the formal evaluation it is performed at the Alignment
phase. The conformance of the Core set to the common sense is now checked. The
mappings of the Core ontologies to the reference common sense ontology (SUMO)
are elaborated using the upper level ontology as the “glue”, like for example in [19].
The result allows estimating how easily domain experts may (potentially) commit to
the Suite of Ontologies. If the Core set maps well to the common sense reference
ontology one may expect that the commitment of domain experts to it may be reached
considerably easily. If the mapping is bad then the ontology is either a novel exten-
sion of the common sense conceptualization or, more probably, is badly designed.
The feedback of this kind of evaluation is used in refining the Core ontologies and,
later on, in refining the next revision of the upper level ontology. Finally, the fourth
kind of evaluation is the comparison of the Core set of ontologies with the so called
“Golden Standard” [20]. By “Golden Standard” we mean a highly reputable ontology
describing the theory of the same or a similar domain which has already gained broad
commitment by domain experts. The evidence of such a commitment may be that a
“Golden Standard” ontology is the basics for a standard, a de-facto standard, or a
standardization proposal. This kind of evaluation is performed at the Bridging phase.
Similarly to the common sense evaluation the mappings of the Core set of ontologies
to a “Golden Standard” are built. However, the objective of the evaluation is different.
Completeness and expressiveness of the Core Ontologies are checked at this time. If
all the concepts of a “Golden Standard” ontology are mapped by the concepts of the
Core set then it may be estimated that the Core set covers the domain equally to or
better than a “Golden Standard”. Otherwise, the core set is less complete than the
“Golden Standard”. In the latter case the reasons of potential incompleteness should

110 V. Ermolayev, N. Keberle, and W.-E. Matzke

be analyzed. In a safe case it may be found out that the domain described by the
“Golden Standard”, though similar to ours, is broader. Otherwise, the Core set is in-
complete. The mappings in the opposite direction – from the concepts of a “Golden
Standard” to the concepts of evaluated Core ontologies, may help assessing the level
of the expressiveness of the target. For example, if all the concepts of the “Golden
Standard” map to single concepts of the evaluated Core set then it may be the case
that the Core set possesses at least the same level of expressiveness at the “Golden
Standard”.

6 Ontology Implementation and Evaluation

PSI upper level ontology v.2.2 has been implemented in OWL-DL7. PSI Theoretical
Framework v.2.0 [14] and Core ontologies of PSI Suite of Ontologies v.2.1 have been
used as the knowledge sources. PSI Suite of Ontologies v.2.2 has been developed
based on the elaborated upper level ontology v.2.2. Two different kinds of evaluation
have been accomplished for the upper level ontology so far: formal evaluation and
commonsense evaluation. Besides that, user evaluation of the set of the Core ontolo-
gies v.2.1 has been done before the beginning of the development of the upper level
ontology v.2.2, as described in Section 5. “Golden Standard” evaluation is still in
progress. User evaluation of the Core ontologies v.2.1 has been performed by the
group of PSI software developers who used a goal-based evaluation routine to assess
the appropriateness, the completeness, and the upward compatibility of the Suite of
Ontologies. Appropriateness has been evaluated by checking if the Suite fulfils the
requirements imposed by developed software. Completeness and upward compatibil-
ity with the previous revision has been checked by transferring the instances of the
PSI knowledge base v.2.0 to v.2.1. User evaluation revealed minor problems which
have been immediately resolved allowing us to fix v.2.1. Several issues have been
listed as the ones for the future development. These issues have been taken into ac-
count in the revision of the Theoretical Framework v.2.0.

Formal evaluation of the taxonomy of PSI upper level ontology has been per-
formed using OntoClean methodology [15]. The goal of taxonomy analysis is to ver-
ify if the structure of the taxonomy is formally correct. Other outcomes of this formal
analysis are: (i) classifying taxonomy nodes according to OntoClean ontology of
property types [21]; (ii) extracting the part of the analyzed taxonomy which is its
backbone taxonomy [21]. In the course of this evaluation OntoClean meta-properties
have been assigned to the concepts of the upper level ontology. After that OntoClean
constraints have been applied to analyze if there are constraint violations in the taxon-
omy8. Applying OntoClean constraints to PSI upper level ontology subsumptions
revealed no violations. Hence, the structure of the taxonomy is formally correct. Fol-
lowing [21], the concepts of PSI upper level ontology were classified according to

7 Web Ontology Language, http://www.w3.org/TR/owl-guide/. OWL-DL implementation of

PSI upper-level ontology is available at http://ermolayev.com/psi-public/psi-meta-v-2-2-
draft.owl and its specification is at http://ermolayev.com/psi-public/PSI-META-v-2-2-
Spec.pdf

8 Detailed description of the results of this formal evaluation is given in PSI upper ontology
specification.

 An Upper Level Ontological Model for Engineering Design Performance Domain 111

OntoClean ontology of property types. As it has been found out, all its own concepts
are Sortals. Non-sortal concepts are imported from DOLCE and are the categories
forming the most upper part of the taxonomy. Among the sortals 16 are types and 17
are quasi-types. Categories, types and quasi-types form the backbone taxonomy of
PSI upper level ontology. Among the remaining 6 concepts 5 are material roles and
only 1 is a mixin. PSI upper level ontology does not contain phased sortals, formal
roles and attributions. The backbone taxonomy and the parts of the ontology extend-
ing the backbone taxonomy are pictured in Fig. 1 using different shades of gray.

The objective of commonsense evaluation was to find out if the upper level ontol-
ogy facilitates in mapping the Core ontologies to the reference foundational ontology.
The mappings of the concepts of six PSI Core ontologies to WordNet+SUMO
through PSI upper level ontology have been done using subsumptions. It has been
found out that using upper level ontology as semantic “glue” made these mappings
more precise and facilitated to defining the semantics of the concepts of the Core
more explicitly. For example, looking up for a Project (the concept of PSI Project
ontology) in WordNet+SUMO9 reveals that a project is both: (i) “any piece of work
that is undertaken or attempted” which subsumes to SUMO: IntentionalProcess and
further to SUMO: Process; and (ii) “a planned undertaking” which subsumes to
SUMO: Plan. The semantics of PROJECT: Project as specified in [5] reveals that a
Project subsumes to PSI-META: Plan and consequently to SUMO: Plan. The map-
ping to SUMO: Process is therefore discarded as irrelevant. From the other hand, the
analysis of the “hanging” concepts in the upper level ontology helps revealing the
contexts in the Core which are still under-developed. For example, PSI-META: Goal
does not subsume the concepts of the Core v.2.2. Therefore we may suspect that the
aspects of goal-directed behavior in the Actor and Process Core ontologies v.2.2 still
require refinement.

7 Concluding Remarks and Outlook

Presented ontology is the upper level descriptive theory for the Core set of PSI Suite of
Ontologies. PSI Suite is an interlinked modular library of ontologies describing the
domain of engineering design performance in microelectronics. PSI upper level ontol-
ogy is more domain-independent. It formalizes an abstract theory of stateful creative
dynamic processes, pro-active agents, and objects situated in nested dynamic environ-
ments based on the formal representation of time, events, and happenings. This upper
level theory may be used as a higher-level framework for domain ontologies in different
application domains having common features. PSI upper level ontology is designed as a
semantic bridge formalizing the mappings of PSI Domain ontologies to abstract
ontological foundations and common sense. It is also used as semantic “glue” for bridg-
ing PSI domain theory with other theories widely accepted in the domains where proc-
esses, states, and participating objects are the major entities. These mappings and
semantic bridges are supposed to ease the commitment of potential users to PSI Suite.
PSI upper level ontology is also used as a “proxy” for different kinds of evaluation of

9 KSMSA Ontology Browser has been used: http://virtual.cvut.cz/ksmsaWeb/browser/title

112 V. Ermolayev, N. Keberle, and W.-E. Matzke

PSI ontologies in frame of our “shaker modeling” methodology for ontology refine-
ment. In its current revision presented ontology is still lightweight in the sense that it
does not provide rich axiomatic definitions of domain semantics. The main reason is
that in-depth domain axiomatization is done in the core of PSI Suite. However, some
enrichment of the upper level theory with formal axioms for better describing bridges to
common sense theories is planned for future work. One more direction of our future
development is extending the sphere of influence of PSI upper level ontology to cover
the Extensions of our Suite of Ontologies. We are also plan applying our upper level
ontological framework in the domains adjacent to PSI and PRODUKTIV+. For exam-
ple, it will be used in ACTIVE project10 as one of the models for representing knowl-
edge processes and their environments.

Bibliography

1. Sohnius, R., Jentzsch, E., Matzke, W.-E.: Holonic Simulation of a Design System for Per-
formance Analysis. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007.
LNCS (LNAI), vol. 4659, pp. 447–454. Springer, Heidelberg (2007)

2. Ermolayev, V., Keberle, N., Matzke, W.-E., Sohnius, R.: Fuzzy Time Intervals for Simu-
lating Actions. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds.) UNISCON 2008.
LNBIP, vol. 5, pp. 429–444. Springer, Heidelberg (2008)

3. Ermolayev, V., Keberle, N., Matzke, W.-E.: An Ontology of Environments, Events, and
Happenings. In: Elci, A., Kone, M.T., Orgun, M.A. (eds.) Proc 3d Int. Workshop on Engi-
neering Semantic Agent Systems. IEEE Computer Society CPS, Los Alamitos (2008)

4. Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N., Matzke, W.-E., Samoylov, V.,
Sohnius, R.: An Agent-Oriented Model of a Dynamic Engineering Design Process. In:
Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2005. LNCS
(LNAI), vol. 3529, pp. 168–183. Springer, Heidelberg (2006)

5. Ermolayev, V., Jentzsch, E., Keberle, N., Sohnius, R.: Performance Simulation Initiative.
The Suite of Ontologies v.2.2. Reference Specification. Technical report PSI-ONTO-TR-
2007-5, VCAD EMEA Cadence Design Systems, GmbH (2007)

6. Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Guarino, N., Smith, B.,
Welty, C. (eds.) Int. Conf. on Formal Ontologies in Inf. Systems, pp. 2–9. ACM Press,
New York (2001)

7. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable
D18 Ontology Library (final), ICT Project 2001-33052 WonderWeb: Ontology Infrastruc-
ture for the Semantic Web (2003)

8. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

9. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Ontology. The Knowl-
edge Engineering Review 13(1), 31–89 (1998)

10. Grüninger, M., Atefy, K., Fox, M.S.: Ontologies to Support Process Integration in Enter-
prise Engineering. Computational & Mathematical Organization Theory 6(4), 381–394
(2000)

11. Bock, C., Grüninger, M.: PSL: A Semantic Domain for Flow Models. Software Systems
Modeling 4(2), 209–231 (2005)

10 ACTIVE: Knowledge Powered Enterprise (http://www.active-project.eu/) is an Integrated

Project funded by Framework Program 7 of European Union.

 An Upper Level Ontological Model for Engineering Design Performance Domain 113

12. Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for Service Ontologies: Align-
ing OWL-S to DOLCE. In: 13th Int. Conf. on WWW, pp. 563–572. ACM Press, New
York (2004)

13. Oberle, D., et al.: DOLCE ergo SUMO: On foundational and domain models in the
SmartWeb Integrated Ontology (SWIntO). J. Web Semantics 5(3), 156–174 (2007)

14. Ermolayev, V., Jentzsch, E., Matzke, W.-E., Pěchouček, M., Sohnius, R.: Performance
Simulation Initiative. Theoretical Framework v.2.0. Technical report PSI-TF-TR-2007-1,
VCAD EMEA Cadence Design Systems, GmbH (2007)

15. Guarino, N., Welty, C.: Supporting Ontological Analysis of Taxonomic Relationships.
Data and Knowledge Engineering 39(1), 51–74 (2001)

16. Vrandečić, D., Pinto, S., Tempich, C., Sure, Y.: The DILIGENT Knowledge Processes. J.
of Knowledge Management 9(5), 85–96 (2005)

17. Simperl, E.: Evaluation of the PSI Ontology Library. Technical report, DERI Innsbruck,
Austria (2007)

18. Pinto, H.S., Martins, J.P.: A Methodology for Ontology Integration. In: Gil, Y., Musen,
M., Shavlik, J. (eds.) 1st Int. Conf. on Knowledge Capture, pp. 131–138. ACM Press, New
York (2001)

19. Keberle, N., Ermolayev, V., Matzke, W.-E.: Evaluating PSI Ontologies by Mapping to the
Common Sense. In: Mayr, H.C., Karagiannis, D. (eds.) 6th Int. Conf. Information Systems
Technology and its Applications, Gesellschaft für Informatik, Bonn. GI LNI, vol. 107, pp.
91–104 (2007)

20. Brank, J., Grobelnik, M., Mladenić, D.: A Survey of Ontology Evaluation Techniques. In:
Grobelnik, M., Mladenić, D. (eds.) SiKDD 2005, pp. 166–169 (2005)

21. Guarino, N., Welty, C.A.: A Formal Ontology of Properties. In: Dieng, R., Corby, O.
(eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg (2000)

22. Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An Introduction to the Syntax and
Content of Cyc. In: Proc. 2006 AAAI Spring Symp. on Formalizing and Compiling Back-
ground Knowledge and Its Applications to Knowledge Representation and Question An-
swering, Stanford, CA (2006)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 114–127, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Multi-level Methodology for Developing UML
Sequence Diagrams

Il-Yeol Song, Ritu Khare, Yuan An, and Margaret Hilsbos

The iSchool at Drexel, Drexel University,
3141, Chestnut Street, Philadelphia, PA 19104, USA

songiy@drexel.edu, rk84@drexel.edu, yan@ischool.drexel.edu,
mhilsbos@drexel.edu

Abstract. Although the importance of UML Sequence Diagrams is well recog-
nized by the object-oriented community, they remain a very difficult UML arti-
fact to develop. In this paper we present a multi-level methodology to develop
UML Sequence Diagrams. Our methodology is significant in three aspects.
First, it provides a multilevel procedure to facilitate ease of the development
process. Second, it makes use of certain patterns to ensure the validity of SQDs.
Third, it uses consistency checks with corresponding use-case and class dia-
grams. Throughout the steps of the method we present rules and patterns dem-
onstrating correct and incorrect diagramming of common situations through
examples. The purpose of this study is to serve as a reference guide for novice
sequence diagram modelers. This methodology is particularly useful for novice
practitioners who face challenges in learning the process of SQD development.

1 Introduction

Sequence Diagrams (SQDs) are one of the important dynamic modeling techniques in
the UML. An SQD visualizes interactions among objects involved in a use case sce-
nario. Although several methods have been proposed to develop an SQD, the devel-
opment of SQDs remains a very difficult part of the object oriented development
process. The development process is very intricate. As new objects and messages are
identified, the diagram gets more packed and complicated. Also, at every step, multi-
ple factors, such as which object to choose, which message to assign to what object,
and what patterns to use for message passing, need to be taken care of simultaneously.
As a result, the modeler very often ends up making mistakes in the diagram, and mak-
ing an SQD which is inconsistent with other UML artifacts. Hence, we are motivated
to develop an easy-to-use and practical method for SQD development.

In our earlier work, we presented a ten-step method (Song, 2001) for developing
SQDs based on use case descriptions and a class diagram. In this paper, we extend our
earlier work as follows: First, we re-organize the steps into three levels and each level
is further divided into several stages so that we can focus on one issue at a time. Sec-
ond, we add guidelines and patterns using correct and incorrect examples. Third, we
provide consistency checks between an SQD and use case and class diagrams. This
method brings forth the recommended visual patterns and warns against mistakes
committed by SQD developers. The purpose of this study is to serve as a reference

 A Multi-level Methodology for Developing UML Sequence Diagrams 115

guide for novice SQD modelers. In this paper, we use UML 2.0 notation to present
SQDs. For the notations of SQDs in UML 2, we refer Ambler (2008b) or Larman
(2004).

The rest of the paper is organized as follows. Section 2 presents the research meth-
ods used and the related literature review. Section 3 describes the process of multi-
level methodology to develop SQDs. Section 4 concludes our paper.

2 Research Setting and Related Literature Review

In this paper, we have come up with both correct and incorrect patterns of SQDs, as
well as guidelines. The guidelines were tested and examples were collected for the
past five years of teaching SQDs in a graduate class. Incorrect patterns have been
found on the basis of our observation of the mistakes students make in SQD assign-
ments to develop SQDs. Our subjects include students from different backgrounds in-
cluding computer science, information science, psychology, biosciences, biomedical,
and business. Students found our guidelines usable and effective.

There is a decent amount of research related to specification of semantics of the
SQD. Xia and Kane (2003) present an attribute grammar based approach on defining
the semantics of UML SQD to make it easily convertible to code. While both this pa-
per and the work by Aredo (2000) prepare a framework for defining the semantics of
an SQD to create a shared understanding across a design team, the problem of design-
ing an SQD still remains unresolved especially for novices.

Baker et al. (2005) address the problem of automatically detecting and resolving
the semantic errors that occur in SQD scenarios. The method proposed in this paper is
claimed to be successful in detecting semantic inconsistencies in industrial case stud-
ies. Our method, however, takes a preventive action to deal with the semantic incon-
sistencies by basing itself on the commonly occurring valid patterns in SQD and
avoiding the frequently committed mistakes by novices.

Li (2000) presents a parser that semi-automatically translates use case steps into
message records that can be used to construct a sequence diagram. The work is based
on syntactic structure of standardized sentences of use-case description. Although this
work provides useful rules for novices, e.g. converting a use case to “message sends”,
it does not avoid common mistakes made by novices.

Other recent works on SQDs include use of SQDs for code generation, generation
of SQDs through reverse engineering of code, and finding reusable SQDs from exist-
ing artifacts. Rountev and Connell (2005), and Merdes and Dorsch (2006) present re-
verse engineering techniques to extract an SQD from a program. Another interesting
work ‘REUSER’ by Robinson and Woo (2004) automatically retrieves reusable SQDs
from UML artifacts.

Our review shows that the research effort for developing an easy-to-use method for
developing SQDs is still rare and far from satisfactory. Hence, the task of creating this
artifact remains challenging to novices, and they continue to commit errors. We pro-
pose a multi-level methodology in order to develop the artifact in an incremental
manner. We refer to the work by Bist, MacKinnon, and Murphy (2004) for guidelines
in drawing SQDs.

116 I.-Y. Song et al.

3 A Multi Level SQD Development

An Overview

In this section we describe our proposed methodology to develop an SQD. The most
significant portion of this work is that it offers a multi-level way to develop SQDs. In-
stead of considering multiple design issues at each step of SQD development, we pro-
pose focusing on one major issue at each level of the process to make best possible
use of knowledge at every level. We begin designing in terms of the objects first
which form the building blocks of an SQD. After the objects are well arranged, re-
sponsibilities are assigned to them in the next level. In the last level, the visual pattern
of the SQD obtained from previous level is analyzed to make further modifications
and produce the final version of the SQD. Furthermore, each level is divided into
stages to focus on just one sub-issue at each stage, and to further simplify the overall
development process. A multi-level development process also offers the following in
a systematic manner:

• Maintenance of consistency with other UML artifacts (use-case and class dia-
grams).

• Correctness of the SQD by making use of certain rules and visual patterns.
• Warnings to stay away from frequently committed mistakes in drawing SQDs.

In this paper, we deal with the UML use-case descriptions that represent one main
success scenario and zero or more included use cases. It is important to maintain con-
sistency between the SQDs and other diagrams of the system model. The SQD
depends on classes identified in the domain model. Therefore, before beginning to
construct an SQD, the use cases should have been identified and use case descriptions
generated for the use cases assigned to the current development iteration, and an
analysis class diagram (domain model) constructed.

Fig. 1 shows the three-level development process. Table 1 summarizes the whole
methodology. The three abstract levels are: the object framework level, the responsi-
bility assignment level, and the visual pattern level. Each level comprises multiple
stages.

Fig. 1. A Component Diagram of Multi-level SQD Development

 A Multi-level Methodology for Developing UML Sequence Diagrams 117

Table 1. The Steps of Multi-level SQD Development

(BO: Boundary object; CO: Control Object; EO: Entity Object)
1. Object Framework Level: Identify the building participants which constitute the basic
framework of an SQD.
1.1 Object Assembly Stage: Identify the actor, primary BO, primary CO, secondary CO(s),
secondary BO(s) for the SQD.
1.2 Object Rearrangement Stage: Rearrange the classes (and also the actor) in the follow-
ing order: Actor, Primary BO, Primary CO, EOs (list in the order of access), and Secon-
dary COs and Secondary BOs in the order of access.

2. Responsibility Assignment Level: Assign correct responsibilities to each object.
2.1 Action-Message Mapping Stage: Map every automated action in the use-case descrip-
tion to a message in the SQD. Each message would fall under one of the following catego-
ries: Instance creation and destruction, Association forming, Attribute modification, At-
tribute access, Input/Output/Interface, and Integrity-constraint checking.
2.2 Message Re-arrangement Stage: Perform arrangement checks such as: making sure
that each message is traceable to the primary actor through activated objects, giving mean-
ingful names to each message, checking consistency of SQD with class diagram, removing
any unnecessary return messages, and checking for continuity of focus of control.

3. Visual Pattern Level: Apply final checks based on the visual patterns illustrated by the
SQD.
3.1 High Cohesion Check: Make sure that the responsibilities assigned to a class are re-
lated, and there exists a high cohesion within a class.
3.2 Low Coupling Check: Re-arrange messages from one class to another class to reduce
coupling.
3.3 Fork or Stair Check: Choose between the “fork” and the “stair” pattern depending on
the relationship between classes, and taking into account the pros and cons of both patterns.
3.4 Central Class Check: It should be kept in mind that the class, which looks central in
the class diagram, is likely to send most messages to other classes in the SQD.

3.1 The Object Framework Level

In this level, we identify the building blocks that constitute the framework of an SQD.

3.1.1 Object Assembly Stage: Following Are the Steps to Be Followed in This
Stage

1. Select the initiating actor and initiating event from the use case description.
2. Identify the primary display screen needed for implementing the use case. Call it

the primary boundary object.
3. Create a primary control object to handle communication between the primary

boundary object and domain objects. It is not always necessary to have a control
object (CO) between the boundary object (BO) and the entity object (EO). A BO
can directly pass message to an EO, if the message is simple and requires no ma-
nipulation.

4. If the use case involves any included or extended use case, create one secondary
CO for each of them. UML 2.0 introduces specific notation for connecting se-
quence diagrams. The following method has previously been suggested, and may
be simpler to apply, at least until modeling tools “catch up” to the UML 2 notation.

118 I.-Y. Song et al.

As shown in Fig. 2, use a separate CO for the supporting use case; show the sup-
porting CO on the base use case SQD, with messages to and from indicating the
flow of control (Song, 2001).

:Actor:Actor :PrimaryBO:PrimaryBO

:PrimaryCO:PrimaryCO

:SomeEO:SomeEO

:SecondaryCO:SecondaryCO

1: submitInfo()

2: create

3: create

4: doSomething()

5: create

Fig. 2. The use of a Control Object for an Inclusion Use Case

5. Identify the number of major screens necessary to implement the use case. The fol-

lowing cases represent the situations that require creation of a new secondary BO:

• A new window needs to be opened for user’s input and the contents of the origi-
nal window need to be kept visible

• A new window only handles a sub-flow and the original window may proceed
with the sequence regardless of the operations in the secondary window.

Also, create a secondary CO for each of them.

6. From the class diagram, list all domain classes participating in the use case by re-
viewing the use case description. If any class identified from the use case descrip-
tion does not exist in the class diagram, add it to the class diagram. These classes
become the EOs.

3.1.2 Object Rearrangement Stage
Use the classes just identified as participant names in the SQD. In a logical sequence
of actions, tasks begin with an actor interacting with an interface (BO). The BO then
passes control to a CO that has resources to carry the required actions, which then
passes control to relevant EOs, and so on. Hence, list the actor and the classes in the
following order: Actor, Primary BO, Primary CO, EOs (list in the order of access),
Secondary BOs, and Secondary COs in the order of access.

3.2 Responsibility Assignment Level

Responsibility assignment refers to the determination of which class should imple-
ment a message, and which class should send the message. It is important to assign
the correct set of responsibilities to each object because they become operations of
corresponding objects in the design stage UML artifacts such as design-class dia-
grams. A message in an SQD is assigned to the class at the target of the message. For
example, the message 4 doSomething() will be implemented as an operation in class

 A Multi-level Methodology for Developing UML Sequence Diagrams 119

:SomeEO in Fig. 2. There are several guidelines that can be followed when assigning
responsibility to classes. In this paper we follow the GRASP (General Responsibility
Assignment Software Patterns) guidelines described by Larman (2004).

3.2.1 Action-Message Mapping Stage
Each action specified or implied in the use case description should have a
corresponding message(s) in the SQD. Depending on the degree of completeness of
the use-case description text, the author of the SQD may need to infer some of the
operations. The messages are identified through the following procedure:

• Identify verbs from the use-case description.
• Remove verbs that describe the problem. Select verbs that solve the problem and

call them problem-solving verbs (PSVs).
• From the PSVs, select the verbs that represent an automatic operation or a manual

operation by the actor. We call these PSVs problem-solving operations (PSOs) and
use them as messages in the SQD.

Larman (2004) uses three types of postconditions: Instance creation and destruc-
tion, Association forming, and Attribute modification. In this paper, we treat them as
PSO categories. Here, we add three more PSO categories: Attribute access, In-
put/Output/Interface, and Integrity-constraint checking. We use these six PSO catego-
ries to identify messages from a use case description. These six types of PSOs can
also be used in identifying messages that are necessary but not explicit in the use case
descriptions.

A. Instance Creation and Destruction: The “Creator” pattern suggests rules for de-
termining which object should send an object creation message (Larman, 2004).
Class B should have the responsibility to send create() message to A in the following
cases: B aggregates A objects; B records instances of A objects; B closely uses A ob-
jects; or B has the initializing data that will be passed to A when it is created. Often,
the controller will have the initializing data, but an entity class will be assigned the re-
sponsibility when it is closely associated with the new object as in the first four cases.
The UML 2 notation suggests that a created object should be placed at the creation
height in the diagram, which Ambler (2008b) refers to as “direct creation”.

Fig. 3 shows the correct SQD with the direct creation of object :SomeEO.

:SomeCO:SomeCO

:SomeEO:SomeEO

:AnotherEO:AnotherEO

1: create(AnotherEO_id)

2: getX()

4: getY()

3: X

5: Y

Fig. 3. Correct Object Creation at the Creation Height

120 I.-Y. Song et al.

B. Association Forming: If there is an association between two classes, then at least
one of the SQDs must include a message that forms this association. If a depicted as-
sociation is never supposed to be used at all, then there must be an error either in the
class diagram or the SQD (Ambler, 2008b). Associations can be formed by creating
the object with the appropriate parameters or by updating the appropriate parameter in
the object. The association must be formed before other operations, which require
visibility from the sender to the receiver, can be performed. Fig. 3 shows an example
where the association is formed between :SomeEO and :AnotherEO by the parameter
(AnotherEO_id) being passed to :SomeEO at creation. This makes the getX() mes-
sage possible.

C. Attribute Modification (set/compute/convert): For each postcondition that causes a
state change, there should be a message. The messages change the value of attributes
such as deposit_amount(), calc_subscription_charge(), and convert_cm_to_inch(). Any
message that sets a value, computes a value, or converts one unit to another belongs to
this message type.

D. Attribute Access (get/find/compare/sort): This type of message reads values of at-
tributes. Any message that gets a value, finds a value, compares values, and sorts val-
ues belongs to this message type.

A frequent mistake of novice developers is to try to update an attribute of a read-
only class in the use case. We call such a class as a reference class, which refers to an
entity class that just provides information to a use case, and that should not be up-
dated by any interaction. Fig. 4 illustrates a case where the modeler did not under-
stand the roles of the class :PricingPolicy. Fig. 4 is a portion of a sequence diagram
submitted by a student for use case called “Add Paid Subscription” in a subscription
automation system. This example is incorrect because :PricingPolicy is a class that
stores the pricing rules. :PricingPolicy may be updated in a maintenance transaction,
but not by a customer transaction of adding a new subscription. A tip-off is the class
name. Any class name including “policy”, “rule”, or “template” is probably a refer-
ence class for any interaction except the use case to specifically update that class.
This example also demonstrates the value of clear class names. Fig. 5 shows a correct
depiction of the same interaction.

E. Input/Output/Interface: This type of messages is used (a) to input data, (b) to dis-
play output, generate report, or to save a data to a storage, and (c) to interface with ex-
ternal objects or systems.

Interaction with an external system is shown by a message from a CO to the BO of
the external system. Some messages to be included in an SQD aren’t mentioned any-
where in the use-case description; a designer of an SQD needs to make decisions re-
garding these messages. Entire communication between a BO and a CO is based on
the designer’s judgment. The GRASP “Controller” pattern stipulates that, for interac-
tions requiring any manipulation or coordination, actor inputs are transferred from the
interface (BO) to a CO. Fig. 6 is an example of an incorrect use of an entity class to
send a message that should be sent by the controller. Fig. 7 shows the corrected ver-
sion, sending a message from a CO to an external system.

 A Multi-level Methodology for Developing UML Sequence Diagrams 121

:Subscription:Subscription :PricingPolicy:PricingPolicy

1: getBeginEndDates()

3: setDescription()

4: updatePrice()

2: BeginEndDates

:Subscription:Subscription :PricingPolicy:PricingPolicy

1: getPrice(beginDate,endDate,price)

2: Price

Fig. 4. Incorrect, updating a reference class Fig. 5. Correct, getting information from a
reference class

:Email Handler:Email Handler

:Email Template:Email Template

:Email system:Email system

1: create

2: sendEmail()

:Email Handler:Email Handler

:Confirmation Email:Confirmation Email

:Email system:Email system

1: create

2: sendEmail()

Fig. 6. Incorrect- Entity communicating with
an external system

Fig. 7. Correct – Controller communicating
with an external system

A common BO pattern is as follows. An actor creates a BO and enters some data.
The BO creates a necessary CO and transfers data to it. After the CO completes what-
ever processing it is responsible for (which may include calling other COs), the CO
returns some value to the calling BO. The BO displays some information for the ac-
tor. Fig. 8 shows an incorrect message sequence between an actor and the BO, and
Fig. 9 shows an example of the correct use of a BO.

:Actor:Actor :BO:BO

:CO:CO

:EO:EO

1: submitInfo()

2: create

3: getNewInfo()

4: getNewInfo()

5: newInfo

6: newInfo

7: displayNewInfo()

Fig. 8. An incorrect sequence of messages between a user and a window

It should be noted that a BO may access an EO directly, but this is only appropriate
when the interaction is very simple, e.g. a retrieval of values from a single class, or an
update to a single class with no calculations. Fig. 10 shows an example of this pattern.

122 I.-Y. Song et al.

:Actor:Actor :BO:BO

:CO:CO

:EO:EO

1: submitInfo()

2: create

3: getNewInfo()

4: getNewInfo()

5: newInfo

6: displayNewInfo()

Fig. 9. A correct Sequence of messages

:AnyUser:AnyUser :WebWindow:WebWindow :ZipLookup:ZipLookup

1: enterZipcode()

2: getCityState(zipcode)

3: CityState

Fig. 10. An example of valid direct communication between BO and EO

F. Integrity-constraint (IC) Checking: Another message type in an SQD is an IC
checking operation. Checking a complex integrity constraint usually requires passing
of multiple messages among objects. Examples include validating a user input or
computing a discount amount based on the current order and customer credit rating.

3.2.2 Message Rearrangement Stage
After the Action-Message mapping stage, an SQD is generated; but it still requires
manipulation and re-arrangement of messages among objects. Perform the following
to rearrange the messages in the SQD.

1. Make sure that each message is traceable to the primary actor through activated
objects. The actor interacts with a BO. The BO transfers information to and from
other objects via COs. At no time can an object initiate a message without first be-
ing activated by another object which is already activated, except for a BO which is
activated by a message from the actor (Pooly and Steven, 1999). The exception to
this is active objects, which are beyond the scope of this paper. Fig. 11 is an exam-
ple of an invalid SQD, where the :PaymentHandler initiates a message without first
being activated. Fig. 12 shows a correct version of the same diagram, where the
:PaymentHandler is first activated by the :SubscriptionHandler.

 A Multi-level Methodology for Developing UML Sequence Diagrams 123

:Subscriber:Subscriber :WebInterface:WebInterface

;Subscription
Handler

;Subscription
Handler

:Individual
Subscriber
:Individual
Subscriber

:Pricing Policy:Pricing Policy :Payment
Handler

:Payment
Handler

:Payment:Payment

1: selectOption()

3: create

4: create

5: getPrice(beginDate,endDate,price)

2: create

6: price

Fig. 11. Incorrect – Payment Handler was never activated

6: create

:Subscriber:Subscriber :Web Interface:Web Interface

:Subscription
Handler

:Subscription
Handler

:Individual
Subscriber
:Individual
Subscriber

:Pricing Policy:Pricing Policy

:Payment
Handler

:Payment
Handler

:Payment:Payment

1: submitInfo()

2: create

3: create

4: getPrice(beginDate,endDate,price)

7: create

5: Price

Fig. 12. Correct – Payment Handler is created

2. Name each message with meaningful names. Message names should clearly com-
municate what is being requested. For example, if a message to :Client is getting the
email address, the message getEmailAddress() is more descriptive than getEmail().

Supply each message with optional parameters. The SQD will not necessarily show
all the relevant attributes as message arguments (Chonoles and Schardt, 2003). Some
parameters, however, should be shown, such as an object or parameter that is being
passed among multiple other objects. (Ambler 2008b; and Chonoles and Schardt,
2003). The items to verify with respect to message arguments are:

• Each depicted or implied argument represents either an input value or an attribute
of some class or a class in the class diagram. Specified parameters which represent
attributes or classes should match their depiction in the class diagram.

• The sender of the message containing the argument has visibility to the value or at-
tribute(s) used in the arguments.

3 Check the SQD for consistency with the Class Diagram. All entity classes used in
an SQD must appear in the class diagram. Conversely, if SQDs are completed for all
use cases within the project scope, all entity classes shown on the design class dia-
gram must be used in at least one SQD, with the following caveats:

124 I.-Y. Song et al.

• This is not necessarily true for abstract classes.
• In many projects, SQDs will not be generated for the entire set of use cases. In that

case, the modeler should mentally verify that any remaining concrete entity classes
will be used by the yet-to-be-modeled SQDs.

4. Check if return messages are implied or required. It is not always necessary to
show returns on SQDs (Arlow and Neustadt, 2002; Larman, 2004). Returns should be
shown only when showing them makes the drawing more understandable (Ambler,
2008b; and Fowler 2000). Some rules that help to make this determination are:

• When a message implies the return, such as getPrice(), it is not necessary to show
the return.

• When complex processing results in a new value that is returned to a calling rou-
tine, the return should be shown.

• Ambler(2008b) suggests “If you need to refer to a return value elsewhere in your
SQD, typically as a parameter passed in another message, then indicate the return
value on your diagram”.

• Returns usually point from right to left, but not always; messages normally point
from left to right, but not always. Therefore it is important to use the correct nota-
tion for clarity.

5. Check for the correctness of focus of control. The focus of control is also referred
to as a method activation box (OMG 2003) or method-invocation box (Ambler,
2008a). The focus of control shows the time during which the object is active, or has
control of the interaction. If an object receives a message (message no. 2 in Fig. 13)
that needs to return a value to a calling class (:PaymentWindow), the focus of control
for the calling class should be continuous as the object is just waiting for a response.
The focus of control should remain active till a return message (message no. 3) is re-
ceived from :PaymentHandler. Fig. 13 shows incorrect focus of control and a wrong
return notation. A corresponding correct diagram is not shown due to limited space.

3: confirmation

:Subscriber:Subscriber :Payment
Window

:Payment
Window

:Payment
Handler

:Payment
Handler

1: enterPaymentData()

2: submitCC_Info()

Fig. 13. Incorrect – broken focus of control; returns shown incorrectly

3.3 Visual Pattern Level

3.3.1 High Cohesion Check
“High Cohesion” stipulates that the responsibilities of a class should be closely re-
lated and should not be diverse. In Fig. 14, :PaidSubscriber is sending those messages
to :Subscription that have nothing to do with the job of being a subscriber, i.e.

 A Multi-level Methodology for Developing UML Sequence Diagrams 125

:Subscription:Subscription :Paid
Subscriber

:Paid
Subscriber

1: setExpDate()

2: setExpWarningDate()

3: updateSubStatus()

:Subscription
Handler

:Subscription
Handler

:Subscription:Subscription
1: create(subsBeginDate,subLength)

2: setExpDate()

3: setExpWarningDate()

4: updateSubsStatus()

Fig. 14. An SQD with Low Cohesion Fig. 15. An SQD with High Cohesion

:PaidSubscriber is handling the attributes which are irrelevant to its function, causing poor
cohesion. A better solution is shown in Fig. 15, where the CO :SubscriptionHandler pro-
vides the data to :Subscription, which then calculates and sets the attributes itself.

3.3.2 Low Coupling Check
“Low Coupling” is a design goal to assign responsibilities such that coupling is
reduced to the extent possible while observing “High Cohesion” and other guidelines.
Use the following guidelines to achieve low coupling:

1. Ensure that the recipient object of a message and the parameter in a message is ei-
ther part of the state of the sending object; passed as a parameter to the method
sending the new message; or returned from a previous message sent within the cur-
rent method (Law of Demeter; Rowlett, 2001).

2. To send a message, use a source class that is already coupled to the target class.
3. Introduce a CO if many messages are being passed between two classes. In this

way, the CO can coordinate among multiple objects.
4. Make sure a parameter is not passed again and again in multiple messages.

3.3.3 Fork or Stair Check
Application of the aforementioned guidelines results in a visual pattern to the SQD,
which is descriptively called a “fork” or “stair” pattern (Jacobson, 1992). Once con-
structed, a message sequence can have a very noticeable visual pattern resembling ei-
ther a “fork” (Fig. 16) or a “stair” (Fig. 17). This effect is more than just appearance;
it presents an overall indication of how responsibilities are assigned. An SQD will
probably exhibit both patterns, depending on the relationships of the classes. A
“fork” structure is recommended when messages could change the order of message
sequences or when there is a central object that controls many messages as in the case
of enforcing an integrity constraint. Interactions of control objects frequently show a
"fork" pattern. This pattern helps in reuse, error recovery, and maintenance (Rowlett,
2001). A “stair” structure is recommended when there is no central object in the SQD
or when messages have strong connections among objects based on relationships such
as a temporal relationship (e.g, order – invoice – delivery – payment) or an aggrega-
tion hierarchy.

126 I.-Y. Song et al.

;Some CO;Some CO :Obj1:Obj1 :Obj2:Obj2 :Obj3:Obj3 :Obj4:Obj4

1: doA()

2: doB()

3: doC()

4: doD()

:SomeCO:SomeCO :Obj1:Obj1 :Obj2:Obj2 :Obj3:Obj3 :Obj4:Obj4

1: doA()

2: doB()

3: doC()

4: doD()

Fig. 16. The Fork Pattern Fig. 17. The Stair Pattern

3.3.4 Central Class Check
Chonoles and Schardt (2003) presents the notion of “central class” concept. They
suggest identifying a central class for a use case, and note that this class will probably
do a large part of the work in the interaction. For example, if a use case involves the
classes shown in Fig. 18, it can be seen that Obj2 is the central class – it has the
shortest access route (least hops) to all the other classes in the interaction. With this
observation, if the modeler looks at the finished SQD (Fig. 19), he would notice a
“fork” structure beginning from Obj5. It might be an indication that responsibilities
are incorrectly assigned (Obj5 has the most difficult access to the other classes). On
the other hand, a fork structure emanating from Obj2 would not be surprising.

Obj1 Obj3Obj2

10..1 10..n

Obj4

1

0..n

Obj5

0..11

0..1 1 0..n 1
0..n

1

1 0..1

Fig. 18. Identifying the central class Obj2

:SomeCO:SomeCO :Obj5:Obj5 :Obj4:Obj4 :Obj2:Obj2 :Obj1:Obj1 :Obj3:Obj3

1:

2:

3:

4:

5:

Fig. 19. Likely not a good pattern for the class diagram in Fig. 18

4 Conclusion

In this paper, we have presented a multi-level development methodology for develop-
ing SQDs in UML. Our research is motivated by the need of providing a practical me-
thod with easy-to-use guidelines for novice SQD developers. We have included
guidelines and common visual patterns in SQDs, highlighting the frequently commit-
ted mistakes by novices. The guidelines were tested and examples were collected for
the past five years of teaching SQDs in a graduate class. The students found our
guidelines usable and effective. In future, we will perform a formal study to measure
the number and nature of mistakes they make at each level of the methodology.

 A Multi-level Methodology for Developing UML Sequence Diagrams 127

References

1. Ambler, S.W.: UML 2 Sequence Diagram Overview (2008a),
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

2. Ambler, S.W.: UML Sequence Diagramming Guidelines (2008b),
http://www.agilemodeling.com/style/sequenceDiagram.htm

3. Aredo, D.B.: Semantics of UML sequence diagrams in PVS. In: UML 2000 Workshop on
Dynamic Behavior in UML Models, Semantic Questions, York, UK (2000)

4. Arlow, J., Neustadt, I.: UML and the Unified Process: Practical Object-Oriented Analysis
and Design. Addison-Wesley Professional, Boston (2002)

5. Baker, P., Bristow, P., Jervis, C., King, D., Mitchell, B., Burton, S.: Detecting and resolv-
ing semantic pathologies in UML sequence diagrams. In: 10th European Software Engi-
neering Conference, pp. 50–59. ACM, New York (2005)

6. Bist, G., MacKinnon, N., Murphy, S.: Sequence diagram presentation in technical docu-
mentation. In: 22nd Annual International Conference on Design of Communication: The
Engineering of Quality Documentation, pp. 128–133. ACM, New York (2004)

7. Chonoles, M.J., Schardt, J.A.: UML 2 for Dummies. Wiley, Hoboken (2003)
8. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Professional, Boston (2000)
9. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach. Addi-

son-Wesley Professional, Boston (1992)
10. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design and Iterative Development. Prentice Hall PTR, Upper Saddle River (2004)
11. Li, L.: Translating Use Cases to Sequence Diagrams. In: 15th IEEE International Confer-

ence on Automated Software Engineering, Washington, DC, pp. 293–296 (2000)
12. Merdes, M., Dorsch, D.: Experiences with the development of a reverse engineering tool

for UML sequence diagrams: A case study in modern java development. In: 4th Interna-
tional Symposium on Principles and Practice of Programming in Java, pp. 125–134. ACM,
New York (2006)

13. Object Management Group. UML 2.0 Superstructure Final Adopted specification (2003),
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02

14. Pooley, R., Stevens, P.: Using UML: Software Engineering with Objects and Components.
Addison-Wesley, Harlow (1999)

15. Robinson, W.N., Woo, H.G.: Finding Reusable UML Sequence Diagrams Automatically.
IEEE Software 21(5), 60–67 (2004)

16. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered sequence dia-
grams. In: 27th International Conference on Software Engineering, pp. 254–263. ACM,
New York (2005)

17. Rowlett, T.: The Object-Oriented Development Process: Developing and Managing a Ro-
bust Process for Object-Oriented Development. Prentice Hall, Upper Saddle River (2001)

18. Song, I.-Y.: Developing Sequence Diagrams in UML. In: 20th International Conference on
Conceptual Modeling, pp. 368–382. Springer, London (2001)

19. Xia, F., Kane, G.S.: Defining the Semantics of UML Class and Sequence Diagrams for
Ensuring the Consistency and Executability of OO Software Specification. In: 1st Interna-
tional Workshop on Automated Technology for Verification and Analysis, Taipei, Taiwan
(2003)

Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies

Valentina Presutti and Aldo Gangemi

ISTC-CNR, Semantic Technology Lab, Italy
{valentina.presutti,aldo.gangemi}@istc.cnr.it

Abstract. In this paper we present how to extract and describe emerging content
ontology design patterns, and how to compose, specialize and expand them for
ontology design, with particular focus on Semantic Web technologies. We exem-
plify the described techniques with respect to the extraction of two content ontol-
ogy design patterns from the DOLCE+DnS Ultra Lite ontology, and by showing
the design of a simplified ontology for the music industry domain.

1 Introduction

Computational ontologies in the context of information systems are artifacts that
encode a description of some world (actual, possible, counterfactual, impossible, de-
sired, etc.), for some purpose. They have a (primarily logical) structure, and must match
both domain and task: they allow the description of entities whose attributes and rela-
tions are of concern because of their relevance in a domain for some purpose, e.g. query,
search, integration, matching, explanation, etc.

Like any artifact, ontologies have a lifecycle: they are designed, implemented, eval-
uated, fixed, exploited, reused, etc. In this paper, we focus on patterns for ontology
design [9,11].

Today, one of the most challenging and neglected areas of ontology design is
reusability. The possible reasons include at least: size and complexity of the major
reusable ontologies, opacity of design rationales in most ontologies, lack of criteria
in the way existing knowledge resources (e.g. thesauri, database schemata, lexica) can
be reengineered, and brittleness of tools that should assist ontology designers.
On this situation, an average user that is trying to build or reuse an ontology, or an ex-
isting knowledge resource, is typically left with limited assistance in using unfriendly
logical structures, some large, hardly comprehensible ontologies, and a bunch of good
practices that must be discovered from the literature. On the other hand, the success
of very simple and small ontologies like FOAF [5] and SKOS [18] shows the poten-
tial of really portable, or “sustainable” ontologies. The lesson learnt supports the new
approach to ontology design, which is sketched here.

Under the assumption that there exist classes of problems that can be solved by
applying common solutions (as it has been experienced in software engineering), we
propose to support reusability on the design side specifically. We envision small ontolo-
gies with explicit documentation of design rationales, and best reengineering practices.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 128–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 129

These components need specific functionalities in order to be implemented in reposi-
tories, registries, catalogues, open discussion and evaluation forums, and ultimately in
new-generation ontology design tools. In this paper, which is a result of the evolution
of work described in [9], we describe small, motivated ontologies that can be used as
practical building blocks in ontology design. A formal framework for (collaborative)
ontology design that justifies the use of building blocks with explicit rationales is pre-
sented in [11].

We call the practical building blocks to be used in ontology design Content Ontology
Design Patterns (CP, [9]). CPs encode conceptual, rather than logical design patterns. In
other words, while Logical OPs [23] (like those investigated by [22]) solve design prob-
lems independently of a particular conceptualization, CPs propose patterns for solving
design problems for the domain classes and properties that populate an ontology, there-
fore addressing content problems [9]. CPs exemplify Logical OPs (or compositions of
Logical OPs), featuring a non-empty signature. Hence, they have an explicit non-logical
vocabulary for a specific domain of interest (i.e. they are content-dependent). For ex-
ample, a simple participation pattern (including objects taking part in events) emerges
in domain ontologies as different as enterprise models [13], sofware management [20],
and biochemical pathways [10]. Other, more complex patterns have also emerged in the
same disparate domains.

CPs are strictly related to small use cases i.e., each of them is built out of a domain
task that can be captured by means of competency questions [13]. A competency ques-
tion is a typical query that an expert might want to submit to a knowledge base of its
target domain, for a certain task. Moreover, CPs are transparent with respect to the ra-
tionales applied to the design of a certain ontology. They are therefore an additional
tool to achieve tasks such as ontology evaluation, matching, modularization, etc.

For example, an ontology can be evaluated against the presence of certain patterns
(which act as unit tests for ontologies, cf. [28]) that are typical of the tasks addressed by
a designer. Furthermore, mapping and composition of patterns can facilitate ontology
mapping: two ontologies drafted according to CPs can be mapped in an easier way: CP
hierarchies will be more stable and well-maintained than local, partial, scattered on-
tologies. Finally, CPs can be also used in training and educational contexts for ontology
engineers.

The paper is organized as follows: section 1.1 gives some background notions; sec-
tion 2 defines the notion of CP, and briefly describes the online repository and Web por-
tal; section 3 provides methodological guidelines for creating and reusing CPs, presents
two of them, and an example of reuse. Finally, section 4 provides some conclusions and
remarks.

1.1 Background

Ontology engineering literature has tackled the notion of design pattern at least since
[6], while in the context of Semantic Web research and application, where ontology de-
sign patterns (OPs) are now a hot topic, the notion has been introduced by [10,24,26].
In particular, [10,26] take a foundational approach that anticipates that presented in [9].
Some work [4] has also attempted a learning approach (by using case-based reasoning)
to derive and rank patterns with respect to user requirements. The research has also

130 V. Presutti and A. Gangemi

addressed domain-oriented patterns, e.g. for content objects and multimedia [2], soft-
ware components [20], business modelling and interaction [12,15], relevance [17] etc.

Throughout experiences in ontology engineering projects1 in our Laboratory, as well
as in other ongoing international projects that have experimented with these ideas, typ-
ical conceptual patterns have emerged out of different domains, for different tasks, and
while working with experts having heterogeneous backgrounds. For an historical per-
spective and a more detailed survey, the reader can refer to [1,9,12,14,16]

2 Content Ontology Design Patterns (CPs)

Content ontology design patterns (CPs) are reusable solutions to recurrent content mod-
elling problems. In analogy to conceptual modeling (cf. the difference between class
and use case diagrams in the Unified Modeling Language (UML) [21]) and knowl-
edge engineering (cf. the distinction between domain and task ontologies in the Unified
Problem-solving Method Development Language (UPML) [19]), these problems have
two components: a domain and a use case (or task). A same domain can have many use
cases (e.g. different scenarios in a clinical information context), and a same use case can
be found in different domains (e.g. different domains with a same “competence finding”
scenario). A typical way of capturing use cases is by means of competency questions
[13]. A competency question is a typical query that an expert might want to submit to a
knowledge base of its target domain, for a certain task. In principle, an accurate domain
ontology should specify all and only the conceptualizations required in order to answer
the competency questions formulated by, or acquired from, experts.

Based on the above assumptions, we define what a Content Ontology Design Pattern
(CP) is:

CPs are distinguished ontologies. They address a specific set of competency
questions, which represent the problem they provide a solution for. Further-
more, CPs show certain characteristics i.e., they are: computational, small and
autonomous, hierarchical, cognitively relevant, linguistically relevant, and best
practices.

According to [9], such characteristics can be described as follows:

– Computational components. CPs are language-independent, and should be encoded
in a higher-order representation language.2 Nevertheless, their (sample) representa-
tion in OWL is needed in order to (re)use them as building blocks over the Semantic
Web.

– Small, autonomous components. Regardless of the particular way a CP has been cre-
ated (section 3.1 describes how to create a CP), it is a small, autonomous ontology.

1 For example, in the projects FOS: http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org, Metokis: http://metokis.salzburgresearch.at, and NeOn:
http://www.neon-project.org

2 Common Logic (see http://cl.tamu.edu/) is a good candidate because of its expressivity and
computationally-sound syntax.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 131

Smallness (typically two to ten classes with relations defined between them) and au-
tonomy of CPs facilitate ontology designers. Smallness also allows diagrammatical
visualizations that are aesthetically acceptable and easily memorizable.

– Hierarchical components. A CP can be an element in a partial order, where the
ordering relation requires that at least one of the classes or properties in the pattern
is specialized.

– Inference-enabling components. A CP allows some form of inference e.g. a taxon-
omy with two sibling disjoint classes, a property with explicit domain and range
set, a property and a class with a universal restriction on that property, etc.

– Cognitively relevant components. CP visualization must be intuitive and compact,
and should catch relevant, “core” notions of a domain. [9]

– Linguistically relevant components. Many CPs nicely match linguistic patterns
called frames. A frame can be described as a lexically founded ontology design
pattern; The richest repository of frames is FrameNet [3].

– Best practice components A CP should be used to describe a “best practice” of
modelling. Best practices are intended here as local, thus derived from experts,
emerging from real applications.

A Catalogue and Repository of CPs. The above definition provides ontology designers
with the necessary means to identify CPs within existing ontologies. However, we be-
lieve it is important for reuse purpose, to have a repository of CPs and related services,
where CPs can be added and retrieved, and to guarantee that published CPs have a high
level of quality.

With the above principles in mind, we have set up the Ontology Design Patterns Web
portal3 (ODPWeb),whereCPsarecollected, classified,described with aspecific template,
and available for download. They respond to a common specification (which extends the
above CP definition), and are described in terms of a template, which is inspired by the
well known one used for Software Engineering design patterns [7]. The Web portal is open
to contribution from any user, who is only required to register in order to have authoring
rights. ODPWeb is intended as a space where ontology designers, practitioners, and Se-
mantic Web users can discuss about web ontology design issues, find information about
good practices, and download reusable components for building web ontologies. More-
over, the ODPWeb is associated with a lightweight (peer reviewing) workflow, which
guarantees both quality of the published CPs and openness of the community.

3 CP Creation and Usage

Content Ontology Design Pattern (CP) creation and usage rely on a common set of
operations.

– import: as with any ontology, it consists of including a CP in the ontology under
development. This is the basic mechanism for CP reuse. Elements of a CP cannot
be modified.

3 http://www.ontologydesignpatterns.org.

132 V. Presutti and A. Gangemi

– clone: consists of duplicating an ontology element i.e., a class and a property, which
is used as a prototype4. We can distinguish among three kinds of clones:
• shallow clone: consists of creating a new ontology element O’ by duplicating

an existing ontology element O. Axioms of O and O’ will refer to the same
ontology elements.

• deep clone: consists of creating a new ontology element O’ by duplicating an
existing ontology element O, and by creating a new ontology element for each
one that is referred in O’s axiomatization, recursively.

• partial clone: consists of deep cloning an ontology element, by keeping only a
subset of its axioms.

– specialization: can be referred to ontology elements or to CPs. Specialization be-
tween ontology elements of a CP consists of creating sub-classes of some CP’s
class and/or sub-properties of some CP’s properties. A CP c’ is a specialization of
a CP c, if at least one ontology element of c’ specializes an ontology elements of c,
and all ontology elements of c’ are either a specialization of ontology elements of
c, or clones of them.

– generalization: is the reverse of the specialization operation.
– composition: consists of associating classes (properties) of one CP with classes

(properties) of other CPs by subsumption, by creating new owl restrictions, or by
creating new properties.

– expansion: consists of enriching an ontology with ontology elements and axioms,
which do not identify any CP or composition of them.

3.1 CP Creation

CPs mainly emerge either from ontologies (i.e., foundational, core, and domain ontolo-
gies)5 or by reengineering other types of conceptual models (e.g. E-R models, UML mod-
els, linguistic frames, thesauri, etc.) to ontologies. CPs can be defined in four main ways:

– Reengineering from other data models A CP can be the result of a reengineering
process applied to different conceptual modeling languages, primitives, and styles.
[12] describes a reengineering approach for creating CPs starting from UML dia-
grams [21], workflow patterns [27], and data model patterns [16].
Other knowledge resources that can be reengineered to produce candidate CPs are
database schemas, knowledge organization systems (e.g. thesauri), and lexica for
reengineering techniques on these resources). The reader can refer to [12] for more
references.

– Specialization/Composition of other CPs A CP can be created either by composi-
tion of other CPs or by specialization of another CP, (both composition and spe-
cialization can be combined with expansion).

– Extraction from reference ontologies A CP can be extracted from an existing ontol-
ogy, which acts as the “source” ontology. Extraction of a CP is a process consisting
of (partial) cloning the ontology elements of interest from the source ontology.

– Creation by combining the above techniques.

4 There is a strong analogy between the clone operation in OO software programming and the
ontology element clone operation.

5 see [9] for references.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 133

Figure 1 shows the typical process that is performed by an ontology engineer for
creating a CP by extraction from a reference ontology, possibly including specialization
and expansion. The creation of a CP starts with the creation of a new ontology to which
a suitable namespace is assigned. Each pattern has its own namespace that does not
depend on that of the source ontology. The source ontology(ies) is(are) then imported.
Elements of the source ontology must not be modified. Some tools allow designers to
modify imported ontologies, when they are locally stored and writable. In such a case,
it is a good practice to lock the imported ontologies in order to set access permissions
to read-only.

The creation proceeds with the partial cloning of the ontology elements i.e., classes
and properties, of interest. Some ontology design tools support the shallow clone oper-
ation 6, while deep clone and partial clone are not yet supported by any existing tool.
Currently, in order to obtain a partial or deep clone of an ontology element we can either
start from a shallow clone (when supported), or we can write a SPARQL CONSTRUCT
query, and then manually update the results. For example, the SPARQL expression (1)
allows us to extract the class DUL:Agent and its associated axioms from the source
ontology, and to create the class Agent as a shallow clone of it. Within the results pro-
vided by the SPARQL engine, we can choose which axioms we want to keep. With this
procedure, the selected axioms will still contain ontology elements from the source on-
tology. Therefore, we have to manually update such axioms in order to substitute those
elements with new cloned ones.

CONSTRUCT { :Agent ?r ?y }
WHERE {DUL :Agent ?r ?y } (1)

After all elements of interest have been cloned and updated, optional specialization
and/or expansion is performed. At this point, possible disjointness axioms are intro-
duced before launching the reasoner for consistency checking, and for inferences, some
of which might be explicitly asserted. Finally, the imports are removed and the CP and
its elements are annotated.

CPs that are published on ODPWeb are annotated by means of the cp annotation
schema7.

3.2 The Information Realization CP

In this section we describe a CP that is named information realization. It is created by
extraction from the Dolce Ultra Lite ontology8, and represents the relations between in-
formation objects like poems, songs, formulas, etc., and their physical realizations like
printed books, registered tracks, physical files, etc.. We also show how it is extracted, and
provide the main information according to that contained in its associated catalogue entry.

Figure 2 depicts some screenshots of the ontology editor while we extract the in-
formation realization CP. The arrows indicates the ontology element that we clone i.e.,

6 e.g., TopBraid Composer available at http://www.topbraidcomposer.com/
7 http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl
8 http://www.loa-cnr.it/ontologies/DUL.owl

134 V. Presutti and A. Gangemi

Fig. 1. The CP creation by extraction process. Circles with dashed lines indicates steps that can
be skipped.

Fig. 2. The information realization CP extraction from Dolce+DnS Ultra Lite ontology. The ar-
rows identify the class DUL:InformationObject, the result of its cloning, which is the class
InformationObject, and the axiom kept and updated from the source class definition.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 135

Fig. 3. The information realization CP UML graphical representation

DUL:InformationObject9 The upper part of the picture depicts the axiomati-
zation of DUL:InformationObject, in the bottom left part, the (shallow) clone
functionality is applied to DUL:InformationObject. The clone operation result
is a new class belonging to the information realization CP and namespace, named
InformationObject. We also clone DUL:InformationRealization and
create InformationRealization, and clone the two object properties
DUL:realizes, and DUL:isRealizedBy and create realizes, and
isRealizedBy, object properties. We remove the axioms we do not want to keep,
and update the kept ones with the new ontology elements. In the bottom right of the pic-
ture is shown the resulting definition of InformationObject. It can be noticed that
we keep the comment, and the restrictions on the DUL:isRealizedBy object prop-
erty, and update the restricted property to the local cloned one i.e., isRealizedBy.
We use the same approach for all the other ontology elements. Finally we remove the
import and obtain the information realization CP. Figure 3 shows a UML diagram of
the information realization CP. The information realization CP is associated with in-
formation according to the catalogue entry fields reported below:

– Name: Information Realization
– Intent: Which physical object realizes a certain information object? Which infor-

mation object is realized by a certain physical object?
– Extracted from: The Dolce Ultra Lite ontology available at

http://www.loa-cnr.it/ontologies/DUL.owl
– Examples: That CD is the recording of The Dark Side of the Moon
– Diagram: See Figure 3
– Elements:

• InformationObject:A piece of information, such as a musical composi-
tion, a text, a word, a picture, independently from how it is concretely realized.

• InformationRealization:A concrete realization of an InformationOb-
ject, e.g. the written document containing the text of a law.

• realizes:A relation between an information realization and an information
object, e.g. the paper copy of the Italian Constitution realizes the text of the
Constitution.

• isRealizedBy: A relation between an information object and an informa-
tion realization, e.g. the text of the Constitution is realized by the paper copy
of the Italian Constitution.

9 DUL is the prefix for the Dolce+DnS Ultra Lite ontology namespace.

136 V. Presutti and A. Gangemi

– Consequences: The CP allows to distinguish between information encoded in an
object and the possible physical representations of it .

– Known uses: The Multimedia ontology, available at
http://multimedia.sematicweb.org/COMM/multimedia-ontology.owl10 used this
CP.

– Building block: The CP is available at
http://wiki.loa-cnr.it/index.php/LoaWiki:informationrealization

With reference to the complete set of fields that compose the template, here we are
missing: the Also Known as field, which provides alternative names for the CP; and the
Related CPs field, which indicates other CPs (if any) that e.g., specialize, generalize,
include, are components of, or are typically used with, etc. the CP.

3.3 The Time Indexed Person Role Pattern

The time indexed person role is a CP that represents time indexing for the relation
between persons and roles they play. This CP is created by combining extraction and
specialization. According to its associated catalogue entry, the main information asso-
ciated with this CP are the following:

– Name: Time Indexed Person Role
– Intent: Who was playing a certain roles during a given time interval? When did a

certain person play a specific role?
– Extracted from: The Dolce Ultra Lite ontology available at

http://www.loa-cnr.it/ontologies/DUL.owl
– Examples: George W. Bush was the president of the United States in 2007.
– Diagram: See Figure 4, the elements which compose the CP are described in the

Elements field.
– Elements:

• Entity: Anything: real, possible, or imaginary, which some modeller wants
to talk about for some purpose.

• Person: Persons in commonsense intuition, i.e. either as physical agents (hu-
mans) or social persons.

• Role: A Concept that classifies a Person
• TimeInterval: Any region in a dimensional space that aims at represent-

ing time.
• TimeIndexedPersonRole: A situation that expresses time indexing for

the relation between persons and roles they play.
• hasRole:A relation between a Role and an Entity, e.g. ’John is considered a

typical rude man’; your last concert constitutes the achievement of a lifetime;
’20-year-old means she’s mature enough’.

• isRoleOf: A relation between a Role and an Entity, e.g. the Role ’student’
classifies a Person ’John’.

10 Actually the multimedia ontology used a simplified version of Dolce Ultra Lite including
classes and properties we have extracted (from the same source ontology) in order to define
the CP.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 137

• isSettingFor:A relation between time indexed role situations and related
entities, e.g. ’I was the director between 2000 and 2005 ’, i.e.: the situation in
which I was a director is the setting for a the role of director, me, and the time
interval.

• hasSetting: The inverse relation of isSettingFor.
– Consequences: The CP allows to assign a time interval to roles played by people.
– Building block: The CP is available at

http://wiki.loa-cnr.it/index.php/LoaWiki:timeindexedpersonrole

Fig. 4. The time indexed person role CP UML graphical representation

The time indexed person role CP is created by combining extraction, specialization,
and expansion. The class TimeIndexedPersonRole is derived by specializing the
Dolce Ultra Lite class DUL:Classification (pointed by the blue arrow), while
the other elements are partially cloned with the same approach we use for classes and
properties of the information realization CP.

3.4 CP Usage

Supporting reuse and alleviating difficulties in ontology design activities are the main
goals of setting up a catalogue of CPs. In order to be able to reuse CPs, two main
functionalities must be ensured: selection and application.

Selection of CPs corresponds to finding the most appropriate CP for the actual do-
main modeling problem. Hence, selection includes search and evaluation of available
CPs. This task can be performed by applying typical procedures for ontology selection
e.g., [25] and evaluation [8].

Informally, intent of the CP must match the actual local modeling problem. Once a
CP has been selected, it has to be applied to the domain ontology. Typically, application
is performed by means of import, specialization, composition, or expansion (see section
3). In realistic design projects, such operations are usually combined.

Several situations of matching between intent of CPs and local domain problem can
occur, each associated with a different approach to using CPs. The following summary

138 V. Presutti and A. Gangemi

assumes a manual (re)use of CPs. An automatic support to CP selection and usage
should take into account the principles informally explained in the summary below.

– Precise or redundant matching. The CP intent perfectly or redundantly matches
the local domain problem. The CP is directly usable to describe the local domain
problem: the CP only has to be imported in the domain ontology.

– Broader matching. The CP intent is more general than the local domain problem:
the Generalization Of field of the CP’s catalogue entry, may contain references to
less general CPs that specialize it. If none of them is appropriate, the CP has firstly
to be imported, then it has to be specialized in order to cover the domain part to be
represented.

– Narrower matching. The CP intent matches is more specific than the local domain
problem: the odpschema:specializationOf11 property of the CP annota-
tion schema may contain references i.e., URIs, to more general CPs it is the spe-
cialization of, the same information is reported in the Specialization Of field of the
CP’s catalogue entry. If none of them is appropriate, the selected CP has firstly to
be imported, then it has to be generalized in order to cover the domain part to be
represented.

– Partial matching. The CP intent partly matches the local domain problem: the is
Component Of field of the CP’s catalogue entry may contain CPs it is a component
of. If none of such compound CPs is appropriate, the local domain problem has to
be partitioned into smaller pieces. One of these pieces will be possibly covered by
the selected CP. For the other pieces, other CPs have to be selected. All selected CPs
have to be imported and composed. If the local domain problem is not too big, it
is worth to propose a new entry to the catalogue of CPs for the resulting composed
CP.

An example in the music domain As an example of usage we design a small fragment
of an ontology for the music industry domain. The ontology fragment has to address
the following competency questions:

– Which recordings of a certain song do exist in our archive?
– Who did play a certain musician role in a given band during a certain period?

The first competency question requires to distinguish between a song and its record-
ing, while the second competency question highlights the issue of assigning a given
musician role e.g., singer, guitar player, etc., to a person who is member of a certain
band, at a given period of time. The intent of the information realization is related
to the first competency question with a broader matching. The intent of the time in-
dexed person role partially and broadly matches the second competency question. The
second requirement also requires to represent membership relation between a person
and a band12. Let’s consider the case that we cannot find more specialized CPs for
reusing. We proceed by following the above guidelines. Figure 5 shows a screenshot

11 odpschema is a prefix for
http://www.ontologydesignpatterns.org/schemas/cpannotationschema.owl

12 The collection entity CP is about membership relations.

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 139

of the resulting ontology fragment. In the bottom part of the screenshot we find the
import tab where the information realization13 and time indexed person role14 CPs
are imported. Additionally, we import the time interval CP that allows us to assign
a date to the time interval15 In order to complete our ontology fragment we create:
the class Song that specializes ir:InformationObject, the class Recording
that specializes ir:InformationRealization, the class MusicianRole that
specializes tipr:Role, the class Band, and the object property memberOf (and its
inverse) with explicit domain i.e., tipr:Person, and range i.e., Band.

Fig. 5. The music industry example. The arrows indicate the imported CPs (bottom of the figure),
and the ontology elements we have specialized (left and right side of the figure).

4 Conclusion and Remarks

Ontology design is a crucial research area for semantic technologies. Many bottlenecks
in the wide adoption of semantic technologies depend on the difficulty of understand-
ing ontologies and on the scarcity of tools supporting their lifecycle, from creation to
adaptation, reuse, and management. The lessons learnt until now, either from the early
adoption of semantic web solutions or from local, organizational applications, put a lot
of emphasis on the need for simple, modular ontologies that are accessible and under-
standable by typical computer scientist and field experts, and on the dependability of
these ontologies on existing knowledge resources.16 In this paper, we have described
content ontology design patterns, which are beneficial to ontology design in terms of

13 We use the prefix ir for this CP.
14 We use the prefix tipr for this CP.
15 The time interval CP also defines two additional sub-properties of the hasIntervalDate

for expressing a start and an end date to the time interval.
16 References to review work of evaluation, selection and reuse methods in ontology engineering

can be found in [12].

140 V. Presutti and A. Gangemi

their relation to requirement analysis, definition, communication means, related work
beyond ontology engineering, exemplification, creation, and usage principles.

We have shown how CPs can be created and reused, and presented two of them
as sample entries from a larger catalogue, with an example in the design of a small
ontology in the music domain. Finally, we have briefly described our ongoing work a
Web portal where designers, practitioners, and users can discuss about, propose, and
download content ontology design patterns.

References

1. Alexander, C.: The Timeless Way of Building. Oxford Press (1979)
2. Arndt, R., Troncy, R., Staab, S., Hardman, L., Vacura, M.: Comm: Designing a well-founded

multimedia ontology for the web. In: Proceedings of the 4th European Semantic Web Con-
ference (ISCW 2007), Busan Korea, November 2007. Springer, Heidelberg (2007)

3. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Boitet, C., White-
lock, P. (eds.) Proceedings of the Thirty-Sixth Annual Meeting of the Association for Compu-
tational Linguistics and Seventeenth International Conference on Computational Linguistics,
pp. 86–90. Morgan Kaufmann Publishers, San Francisco (1998)

4. Blomqvist, E.: Fully automatic construction of enterprise ontologies using design patterns:
Initial method and first experiences. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3761, pp. 1314–1329. Springer, Heidelberg (2005)

5. Brickley, D., Miller, L.: Foaf vocabulary specification. Working draft (2005)
6. Clark, P., Thompson, J., Porter, B.: Knowledge patterns. In: Cohn, A.G., Giunchiglia, F.,

Selman, B. (eds.) KR2000: Principles of Knowledge Representation and Reasoning, pp. 591–
600. Morgan Kaufmann, San Francisco (2000)

7. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

8. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling Ontology Evaluation
and Validation. In: Proceedings of the Third European Semantic Web Conference. Springer,
Heidelberg (2006)

9. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: Musen, M., et al.
(eds.) Proceedings of the Fourth International Semantic Web Conference, Galway, Ireland.
Springer, Heidelberg (2005)

10. Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation ontology design pattern: an exercise
in building a core biomedical ontology with descriptions and situations. In: Pisanelli, D.M.
(ed.) Ontologies in Medicine. IOS Press, Amsterdam (2004)

11. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-odo: an owl meta-
model for collaborative ontology design. In: Alani, H., Noy, N., Stumme, G., Mika, P., Sure,
Y., Vrandecic, D. (eds.) Workshop on Social and Collaborative Construction of Structured
Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

12. Gangemi, A., Presutti, V.: Ontology design for interaction in a reasonable enterprise. In:
Rittgen, P. (ed.) Handbook of Ontologies for Business Interaction, IGI Global, Hershey, PA
(November 2007)

13. Gruninger, M., Fox, M.: The role of competency questions in enterprise engineering (1994)
14. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD thesis, Univer-

sity of Twente, Enschede, The Netherlands, Enschede (October 2005)
15. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications of it in

business modeling. In: CAiSE Workshops (3), pp. 129–143 (2004)
16. Hay, D.C.: Data Model Patterns. Dorset House Publishing (1996)

Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies 141

17. Gomez-Romero, J., Bobillo, F., Delgado, M.: An ontology design pattern for representing
relevance in owl. In: Aberer, K., Choi, K.-S., Noy, N. (eds.) The 6th International Semantic
Web Conference and the 2nd Asian Semantic Web Conference 2007, Busan, Korea (Novem-
ber 2007)

18. Miles, A., Brickley, D.: SKOS Core Vocabulary Specification. Technical report, World Wide
Web Consortium (W3C) (November 2005),
http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/

19. Motta, E., Lu, W.: A library of components for classification problem solving. ibrow project
ist-1999-19005: An intelligent brokering service for knowledge-component reuse on the
world- wide web. Technical report, KMI (2000)

20. Oberle, D.: Semantic Management of Middleware. The Semantic Web and Beyond, vol. I.
Springer, New York (2006)

21. Object Management Group (OMG). Unified modeling language specification: Version 2,
revised final adopted specification (ptc/04-10-02) (2004)

22. Semantic Web Best Practices and Deployment Working Group. Task force on ontology en-
gineering patterns. description of work, archives, w3c notes and recommendations (2004),
http://www.w3.org/2001/sw/BestPractices/OEP/

23. Presutti, V., Gangemi, A., Gomez-Perez, A., Figueroa, M.-C.S.: Library of design patterns
for collaborative development of networked ontologies. Deliverable D2.5.1, NeOn project
(2007)

24. Rector, A., Rogers, J.: Patterns, properties and minimizing commitment: Reconstruction of
the galen upper ontology in owl. In: Gangemi, A., Borgo, S. (eds.) Proceedings of the EKAW
2004 Workshop on Core Ontologies in Ontology Engineering. CEUR (2004)

25. Sabou, M., Lopez, V., Motta, E.: Ontology selection for the real semantic web: How to cover
the queen’s birthday dinner? In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI),
vol. 4248, pp. 96–111. Springer, Heidelberg (2006)

26. Svatek, V.: Design patterns for semantic web ontologies: Motivation and discussion. In: Pro-
ceedings of the 7th Conference on Business Information Systems, Poznan (2004)

27. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14, 5–51 (2003)

28. Vrandecic, D., Gangemi, A.: Unit tests for ontologies. In: Jarrar, M., Ostyn, C., Ceusters, W.,
Persidis, A. (eds.) Proceedings of the 1st International Workshop on Ontology content and
evaluation in Enterprise, Montpellier, France, October 2006. LNCS, Springer, Heidelberg
(2006)

 http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/
http://www.w3.org/2001/sw/BestPractices/OEP/

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 142–153, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Quality Patterns for Conceptual Modelling

Samira Si-Saïd Cherfi1, Isabelle Comyn-Wattiau2, and Jacky Akoka3

1 CEDRIC-CNAM, 292 R Saint Martin, F-75141 Paris Cedex 03
sisaid@cnam.fr

2 CEDRIC-CNAM and ESSEC Business School
wattiau@cnam.fr

3 CEDRIC-CNAM and INT
akoka@cnam.fr

Abstract. Patterns have generated a large interest during last years. In software
engineering, a pattern is a reusable solution based on the capitalization of well
known and agreed practices. The role of a pattern is to speed up development
process. The aim of this paper is twofold: it first proposes a concept of quality
pattern. The latter is used to structure and to package predefined solutions for
evaluation of conceptual modelling quality. The second contribution is related
to the combination of two concepts, namely quality patterns and design patterns
in a three-step process aiming at i) guiding the quality evaluation by the use of
quality patterns, ii) helping designers improve conceptual models using design
patterns, iii) evaluating the improvement by quality measurement.

Keywords: Conceptual model quality, quality patterns, design patterns, devel-
opment process guidance, quality measurement.

1 Introduction

With increasing costs of software development and the growing centrality of information
systems (IS) within organizations, building patterns is becoming widely recognized as an
important activity. However, despite its importance, it is often ignored or carried out
inefficiently. The reason lies within the complexity of the task related to the development
of patterns. Building patterns, and more specifically quality patterns, is still considered as
problematic. Moreover, choosing design patterns associated with specific quality patterns
remains a difficult task. Although a number of patterns, especially design patterns, are
available, none of them integrates quality evaluation. We argue that the accurate capture
of quality factors and metrics plays a critical role in the elicitation of effective and usable
quality patterns that could be used further to assist IS developers in the choice of the
appropriate design patterns. The process of quality patterns engineering and the choice of
the associated design patterns is still not well defined. In particular, the initial investiga-
tion and elicitation of the quality patterns relevant to the choice of design patterns is not
supported by current development methods.

The work described in this paper takes the premise that adopting a three-phase engi-
neering approach to conceptual modelling will offer a promise, especially for helping the
activities of quality pattern-driven conceptual modelling. Our aims are threefold:

 Quality Patterns for Conceptual Modelling 143

1. To draw upon information systems quality factors to develop a quality at-
tributes specification, specifically incorporating i) quality goals relevant to
conceptual modellers, ii) sufficient formality to allow the identification of
quality attributes related to the quality goals.

2. To perform quality measurements leading to quality patterns.
3. To perform a design pattern-driven phase, based on quality patterns, and

leading to conceptual model quality improvement.

In this paper, we propose a knowledge-based approach that helps in quality patterns-
based development, combining quality and design patterns, leading to a better infor-
mation system design.

The paper is organized as follows. Section 2 briefly reviews conceptual modelling
quality and patterns research. Section 3 presents our knowledge-based approach in-
cluding the underlying meta-model. Section 4 defines more precisely the content of
quality patterns and design patterns. Section 5 illustrates our proposal for quality
patterns driven in conceptual modelling. It combines quality goals, quality patterns,
and design patterns in order to guide the conceptual modelling process. Finally, Sec-
tion 6 presents the limitations and conclusions.

2 State of the Art

The issue of quality in conceptual modelling can be related at least to two problems: 1)
quality evaluation, which includes quality definition and quality measurement, and 2)
quality improvement. In this paper we propose to step forward by referring to a common
concept: the pattern. This literature review is therefore composed of two main parts. First
we summarize the findings in conceptual modelling quality. Then we synthesize the main
results related to the application of patterns in information system design.

Quality in conceptual modelling has attracted much attention for more than ten
years. [1] has laid the foundations allowing computer scientists i) to isolate the
specificity of conceptual modelling quality vs. software quality, and ii) to clearly
differentiate between quality goals and quality means. [2] provided a comprehensive
state-of-the-art and argued that it is time to propose an international standard for
evaluating the quality of conceptual modelling, in the same way as ISO/IEC 9126 has
defined a framework for evaluating the quality of software products. We have pro-
posed a framework enabling the evaluation of conceptual model quality according to
three viewpoints: the designer, the user, and the developer. Each viewpoint is associ-
ated with a set of quality attributes which can be measured using several metrics [3].
These metrics have been validated through a survey to which have taken part 120
computer professionals [4]. Numerous meta-models have been presented to define
quality concepts and to implement them [5,6].

Patterns originated as an architectural concept by Alexander [7]. In computer science,
they have been applied to programming by [8]. However, we argue that their main im-
pact has been achieved later with design patterns. Reuse of design patterns when building
software is now admitted as a way to improve software reusability and maintainability
[9]. A design pattern encapsulates a proven solution for a class of recurring design prob-
lems. Gamma distinguishes between creational, structural, and behavioural patterns.
They respectively cope with class instantiation, class and object composition, and
communication between objects. Research about patterns is orientated towards: i) the

144 S. Si-Saïd Cherfi, I. Comyn-Wattiau, and J. Akoka

definition of patterns’ catalogues (see for example [10,11]), ii) the use of patterns
[12,13,14,15,16], and iii) the evaluation of patterns [17,18]. To the best of our knowl-
edge, quality patterns are only introduced in [19]. In this paper, quality frames are pro-
posed to capture experience in the context of quality improvement. These frame instan-
tiations are called quality patterns. The latter inherit from the Goal/Question/Metric
model: the goal expresses what should be investigated to measure quality and why, the
questions are derived, and the related metrics define how to perform the investigation
[20]. A quality pattern is divided into three major parts: i) the classification of the experi-
ence expressed through a number of attributes, ii) the description of the problem, its
solution, and the context, iii) the explanation part.

In this paper, we propose to reconcile quality patterns and design patterns in the
same approach where quality patterns encapsulate quality evaluation experience
whereas design patterns tend to represent best practices in conceptual modelling. This
approach is described in the next section.

3 The Quality Driven Approach

As it has been mentioned in Section 2, there are plenty of design patterns available in
the literature. However, conceptual designers can be confused in the process of choos-
ing the design patterns relevant to their problems. Some guidance is needed. Our
approach aims at facilitating their choice by linking design patterns to quality pat-
terns. Our knowledge base contains two types of information: knowledge about qual-
ity and knowledge related to design. Quality patterns are organized as trees whose
roots are quality goals refined in quality attributes and, at the lower level, in quality
metrics. Design patterns are those available in the literature. Our approach encom-
passes a quality pattern-driven process allowing the IS conceptual modeler to dy-
namically link quality patterns and design patterns (Figure 1). These dynamic links
are represented by a meta-model described below.

The quality meta-model presented in Figure 2 describes the main concepts used in our
approach and related to the evaluation of a modeling element, such as a UML class dia-
gram, a use case, etc.. A quality attribute is a quality property to be achieved. It can be
characterized by a set of sub characteristics that can be considered as refined quality
attributes. Quality attributes could influence positively or negatively other quality attrib-
utes. For example, adding explicit knowledge in a conceptual schema generates new
modeling elements. These elements will probably increase the expressiveness of the
schema, but they will probably decrease its simplicity. Consequently, the “expressive-
ness” quality attribute influences another quality attribute, “simplicity” in this example.

A quality goal describes a high level intention regarding the quality of the speci-
fied system. This goal could be achieved by examining the specification at hand con-
sidering several quality attributes. For example, if we consider the following quality
goal “improve specification understandability”, we probably have to examine quality
attributes such as readability, complexity, degree of documentation, etc.

A quality metric permits to measure the degree to which a conceptual model satis-
fies a quality goal. A quality attribute can be associated with several metrics. For
example, the simplicity of a UML class diagram could be measured as the number of
classes, the number of associations, the number of attributes, etc. More details on
metrics are given in [21,3,22].

 Quality Patterns for Conceptual Modelling 145

Design
Patterns

Quality
Patterns

Quality
goal

Quality
attribute

Quality
metric

Knowledge base

Visitor
Façad

Indirection
MVC

…

IS
conceptual
modeller

Quality
pattern-driven

process

Design
Patterns

Quality
Patterns

Quality
goal

Quality
attribute

Quality
metric

Knowledge base

Visitor
Façad

Indirection
MVC

…

IS
conceptual
modeller

Quality
pattern-driven

process

Fig. 1. The knowledge base

influence
Quality_goal

Metric

Modelling_element

Quality_attribute

*has_sub_characteristics *

*
*

*

influences

* *

*

*

*

achieved_by

** **

measured_by

*

1

*

1
measured_on

influence
Quality_goal

Metric

Modelling_element

Quality_attribute

*has_sub_characteristics *

*
*

*

influences

* *

*

*

*

achieved_by

** **

measured_by

*

1

*

1
measured_on

Fig. 2. The quality meta-model

NOC
<<metric>>

Aggregation degree
<<metric>>

Factorization degree
<<metric>>Maintainability

<<quality_attribute>>
Extendibility

<<quality_attribute>>

DIT
<<metric>>

Modifiability
<<quality_attribute>>

Class
<<modelling_element>>

Ease of change
<<quality_goal>>

Implementability
<<quality_attribute>>

…
achived_by

achived_by

Measured_by

Measured_by

Measured_byMeasured_by

Measured_on

Measured_on

Measured_on

Measured_on

sub_characteristic

NOC
<<metric>>

NOC
<<metric>>

Aggregation degree
<<metric>>

Aggregation degree
<<metric>>

Factorization degree
<<metric>>

Factorization degree
<<metric>>Maintainability

<<quality_attribute>>
Extendibility

<<quality_attribute>>

DIT
<<metric>>

DIT
<<metric>>

Modifiability
<<quality_attribute>>

Modifiability
<<quality_attribute>>

Class
<<modelling_element>>

Ease of change
<<quality_goal>>

Implementability
<<quality_attribute>>

…
achived_by

achived_by

Measured_by

Measured_by

Measured_byMeasured_by

Measured_on

Measured_on

Measured_on

Measured_on

sub_characteristic

Fig. 3. Instantiation of the quality meta-model

146 S. Si-Saïd Cherfi, I. Comyn-Wattiau, and J. Akoka

A partial instantiation of the quality meta-model described above is presented in Fig-
ure 3. It illustrates the achievement refinement related to the quality goal “ease of
change”. The instantiation proposes two quality attributes allowing this achievement
namely “Modifiability” and “Understandability”. The “Modifiability” quality goal is
decomposed into two sub characteristics, namely “maintainability” and “extendibility”.

The objective of modifiability is to provide a system with a structure that can be
adapted with a minimal effort to either maintain the current solutions improving their
effectiveness (“maintainability”) or to extend the system for future needs (“extendibility”).

Several metrics related to the measure of maintainability are available in the litera-
ture. As an example, the DIT metric (Depth in Inheritance Tree) measures the position
of a class in an inheritance tree, whereas the NOC metric measures the number of
children directly related to a class [21].

4 Quality Patterns and Design Patterns

A pattern could be seen as a mean to package experience in order to reuse it in similar
contexts. The meta-model presented in the previous section and its instantiation en-
able the capitalization of the knowledge about quality attributes and the way to meas-
ure them by the use of metrics. However, applying a quality oriented approach during
the development of a conceptual model requires a certain expertise. Moreover, having
information on the quality of a conceptual model is not sufficient to improve it. Our
objective is to propose a quality pattern concept and structure to package the knowl-
edge about i) the quality goals to achieve, ii) a set of techniques enabling the evalua-
tion, and iii) a set of metrics supporting quality measurements.

A design pattern is a mechanism for expressing design structures. It identifies classes,
instances, their roles, collaborations, and the distribution of responsibilities [23]. A
pattern is supposed to capture the essential structure of a successful family of proven
solutions to a recurring problem that arises within a certain context. Each pattern has a
three-part rule, which expresses a relation between a certain context, a problem, and a
solution. We propose to use the following outline that has become fairly standard within
the software community to structure both quality and design patterns.

Name: a significant name summarizing the pattern objective.
Context: characterization of the situation in which the pattern applies.
Problem: description of the problem to solve or the challenge to be addressed.
Solution: the recommendation to solve the problem.
Related patterns: patterns that are closely related to the one described.

In the following section we will concentrate mainly on the description of the solu-
tion part as it is the essence of our contribution. For the other elements (name,
context and problem) we suggest to use simple textual descriptions.

4.1 Quality Pattern

We describe in this section our proposal to structure quality patterns. The objective
we assign to a quality pattern is to package an experience in the domain of conceptual
modeling quality evaluation.

 Quality Patterns for Conceptual Modelling 147

quality_pattern

Quality_attribute

Metric
Quality_evaluation

_technique

*

*

*

*

verified_by

*
*

*
*

implemented_by

Fig. 4. The quality pattern: solution part structure

In order to define the concept of quality pattern, we need to define more precisely
the solution part. The solution part should help in the evaluation of a specification
according to a target quality attribute. As depicted in Figure 4, the solution involves
three concepts: the quality attribute, the quality evaluation technique, and finally the
metric.

The concepts of quality attribute and metric have been defined in the meta-model
section. A quality evaluation technique also called a means is defined as how to
achieve a quality goal [1]. For example, to verify whether a conceptual model is easy
to maintain (maintainability quality attribute), we could use several evaluation tech-
niques such as static analysis, dynamic analysis, data mining, etc.

Static analysis is a set of techniques for analyzing coupling in a given specification
based on strictly structural criteria. These techniques as well as the ones related to
dynamic coupling have been validated in several studies [24,25] as enabling to prove
the impact of coupling on maintainability.

Dynamic analysis proposes to study coupling during run-time sessions [26].
Data mining techniques propose the usage of data mining to explore industrial

software source code in order to understand it and to evaluate its maintainability [27].
We can therefore instantiate the quality pattern described in Figure 4 as follows:

Quality attribute: Maintainability
Quality evaluation techniques: static analysis, dynamic analysis, data mining,
Metrics: size evaluation (lines of code, number of classes, etc.), cohesion metrics,
coupling metrics, etc.

4.2 Design Pattern

In this section, we propose to enrich the concept of design pattern to make its rela-
tionship with quality pattern more explicit.

The structure presented in Figure 5 suggests making more explicit the relationship
between a design pattern and the underlying modelling principles. Indeed, it is largely
agreed that design patterns are just object-oriented design principles [28] and that
patterns lead to quality as they are based on good, agreed and proven principles.

148 S. Si-Saïd Cherfi, I. Comyn-Wattiau, and J. Akoka

Quality_attribute

Recommendations Modelling_principle

*

*

*

*

contributes_to

* ** *

realized_by

Design_pattern

Fig. 5. The design pattern: solution part structure

The recommendations represent the proven solution captured in well known design
patterns as objects, their collaborations and their responsibilities. The modelling principle
explicitly represents the “good” modeling practice applied in the pattern. This principle
contributes to the achievement of a given quality represented by some quality attributes.

For example, let’s consider the “Indirection pattern” from [28]. The problem ad-
dressed by this pattern is the one of reducing direct coupling with objects which are
subject to change. The solution proposes to use an intermediate object to mediate
between other objects. We can find an application of this pattern in several cases, for
example the use case control object, the controller object in the MVC framework, etc.

In reality, this pattern only supports well-known modelling principles such as
modularity and low coupling. Moreover, we know that a modular system is easier to
maintain, which means that finally, the “indirection pattern” could be a solution to be
proposed problem if the value of a given specification regarding the “maintainability”
quality attribute is evaluated as low.

5 Quality Pattern Driven Conceptual Modelling Process

In this section we detail the way we combine the knowledge contained in the quality
meta-model, our quality patterns, and the design patterns extracted from the literature,
in order to guide information systems designers and more precisely conceptual
modellers.

Our approach is summarized in Figure 6. It consists of an iterative process con-
taining three main phases respectively quality attributes specification, quality meas-
urement, and quality improvement phases.

5.1 Quality Attributes Specification Phase

The objective of the first phase is to guide IS modellers formulating their quality
goals in terms of quality attributes. This phase is composed of two activities: the defi-
nition by the modeller of the quality goal to be achieved and the identification of the
quality attributes to be evaluated.

 Quality Patterns for Conceptual Modelling 149

User defined
quality goal

Identify quality
attributes

Identify quality
patterns

Compute quality
values

Identify design
patterns

Modify
specification

Quality Model Driven
Phase: Quality

attributes specification

Quality Pattern driven
Phase: Quality
measurement

Design Patterns
Driven Phase: Quality

improvement

Start

End

Fig. 6. The quality driven modelling process

For example, let’s consider the following user defined quality goal: “obtain a schema
easy to change”. This goal is vague and must be converted to precise quality attributes,
such as “modifiability” for example. This task could be performed by the mean of a set of
questions or could be guided by providing the modeler with a list of predefined quality
attributes. Each of the latter is accompanied by useful explanations helping in the selec-
tion of the suitable set of quality attributes to evaluate. The iteration proposed between
the two activities of this phase allows the refinement and/or the redefinition of the quality
goal according to the quality attributes suggested to the user.

5.2 Quality Measurement Phase

During this phase, our process helps matching the quality attributes, identified during
the precedent phase, to a set of quality patterns. The IS modeller has the choice to
select part or all of them. He/she is assisted during this choice by the description con-
tained in each pattern (problem solved, context of application, summary of the solu-
tion supported, etc.).

Once the quality attribute has been identified, the quality driven process suggests
defining it more precisely using the associated sub characteristics. The reason is due
to the fact that patterns are defined at the lowest level of quality attributes refinement
tree. At this last level, the objective is to associate metrics to those attributes.

For example, let’s consider the modifiability quality attribute as the one selected
during the first phase. The decomposition of this quality attribute into its sub charac-
teristics suggests two more precise quality attributes that are “maintainability” and
“extendibility” (see Figure 3).

If we suppose that the IS modeller is more interested in evaluating the maintain-
ability of his/her specification, the knowledge encapsulated in this quality pattern
provides him/her with a set of evaluation techniques enabling the measurement of a
set of metrics relevant to maintainability. The instantiation of the pattern on the
specification in hand will restrict the set of proposed alternative solutions. Indeed,
each evaluation technique has a specific context in which it could be applied. For

150 S. Si-Saïd Cherfi, I. Comyn-Wattiau, and J. Akoka

example, the dynamic analysis technique could be applied only if programming code
is available.

5.3 Quality Improvement Phase

Let’s consider again the maintainability quality attribute. One of the object oriented
principles directly related to maintainability is “don’t speak to strangers” also known as
the law of Demeter [29]. This principle also supports encapsulation and modularity.

There are several design patterns based on these principles. The indirection pattern
from [28], the visitor, or the Façade GoF patterns [23] are some examples. Of course,
all these patterns are not suitable for all the situations nor they are applicable at each
level of detail. The objective of our quality process is to include some guidelines to
assist IS modellers choosing the right pattern to use.

Once the design pattern is selected, it will include in its solution part a set of ad-
vises on how to restructure the specification.

The quality process depicted in Figure 6 includes a potential iteration on the design
pattern identification enabling a successive evaluation of several design patterns. It
also gives the possibility to reevaluate the quality of the specification in order to ver-
ify whether it has been improved.

5.4 A quality Driven Scenario

As an illustration of our quality pattern-driven process, we present below a scenario.

Improve my schema
according to

Modifiability
Implementability
portability

Decomposition into
sub characteristics (4)

A - Quality

IS Conceptual
modeller

Improve my schema
according to

Modifiability
Implementability
portability

Matching user goal
with quality attributes (2)

Quality attribute
Selection (3)

Quality attribute selection (4)

A - Quality attributes specification phase

“obtain a
schema easy
to change ”(1)

Knowledge base

Quality attribute refinement

Extendibility

Maintainability

Improve my schema
according to

Modifiability
Implementability
portability

Decomposition into
sub characteristics (4)

A - Quality

IS Conceptual
modeller

Improve my schema
according to

Modifiability
Implementability
portability

Matching user goal
with quality attributes (2)

Quality attribute
Selection (3)

Quality attribute selection (4)

A - Quality attributes specification phase

“obtain a
schema easy
to change ”(1)

Knowledge base

Quality attribute refinement

Extendibility

Maintainability

Quality attribute refinement

Extendibility

Maintainability

Extendibility

Maintainability

First of all, a conceptual modeller provides the following quality goal to achieve on his
conceptual specification: “obtain a schema easy to change”. We suppose that the word
“change” in the goal expression leads the process to propose him/her a set of quality
attributes related to change management: “modifiability”, “implementability” and
“portability”. Each of these quality attributes is associated with an explanation helping
the modeller to select the attribute corresponding to his/her needs.

The next step (corresponding to the curved arrow in phase A) results from the
decomposition of the “modifiability” quality attribute into its sub-characteristics.
The selection of the “maintainability” quality attribute corresponds to the end of
this first phase.

 Quality Patterns for Conceptual Modelling 151

IS
Conceptual

modeller

Quality patterns selection

Source code maintainability
Architecture maintainability
Ease of use maintainability

Knowledge baseMatching quality
attributes to
quality patterns (1)

Quality
pattern
selection (2)

Quality measurement

metric1 metric 2 …..
V1 v2 ……..

B - Quality measurement phase

Extraction of
knowledge
about the
quality patterns
to assist
selection (2)

IS
Conceptual

modeller

Quality patterns selection

Source code maintainability
Architecture maintainability
Ease of use maintainability

Knowledge baseMatching quality
attributes to
quality patterns (1)

Quality
pattern
selection (2)

Quality measurement

metric1 metric 2 …..
V1 v2 ……..

B - Quality measurement phase

Extraction of
knowledge
about the
quality patterns
to assist
selection (2)

During this phase, the quality process allows us to match the “maintainability”
quality attribute into three quality patterns extracted from the knowledge base,
more specifically from the solution part of all quality patterns.

Let’s suppose that the modeller selects the “architecture maintainability” quality
pattern. The next step is the measurement of quality using the metrics defined in
this pattern leading to a set of quality values provided to the modeller.

IS
Conceptual

modeller

Design patterns selection

Visitor
Façade
Indirection

Knowledge baseMatching quality
patterns to
design patterns
(1)design

pattern
selection (2)

Restructuring recommendation

To minimize the impact of change
-Use an object as an intermediate
-…….

C – Quality improvement phase

Extraction of
knowledge
about the
design
patterns to
assist
selection (2)

IS
Conceptual

modeller

Design patterns selection

Visitor
Façade
Indirection

Knowledge baseMatching quality
patterns to
design patterns
(1)design

pattern
selection (2)

Restructuring recommendation

To minimize the impact of change
-Use an object as an intermediate
-…….

C – Quality improvement phase

Extraction of
knowledge
about the
design
patterns to
assist
selection (2)

Finally, a set of design patterns corresponding to the quality pattern chosen and
used during the precedent phase is proposed to the modeller. Let’s suppose that
he/she decides to choose the “indirection” pattern (based on the explanations avail-
able in the pattern). During the next step, restructuring recommendations are pro-
vided in order to improve the specification in hand.

At this stage, the modeller could either be satisfied by the result or decide to reevalu-
ate the quality of his/her specification or decide to reject the recommendations pro-
vided by the process.

152 S. Si-Saïd Cherfi, I. Comyn-Wattiau, and J. Akoka

6 Conclusions

In this paper, we proposed a quality pattern-driven approach helping conceptual de-
signers to choose design patterns potentially improving their conceptual models. In
order to guide their choice, we propose a process dynamically linking quality patterns
and design patterns. The quality is defined through a refinement process starting from
high level quality goals. At each step of the process, the modellers are provided with
explanations and recommendations allowing them to make their choices easily. Our
main contribution can be characterized by the reconciliation of quality patterns and
design patterns through a guidance process. We argue that the proposed quality pat-
tern concept is a step forward towards standardization or at least a federation of ef-
forts in the domain of conceptual modeling quality evaluation. Moreover, our
approach proposes basic elements of a bridge between quality evaluation and quality
improvement throughout the conciliation of the two concepts of quality patterns and
design patterns into a single development approach. Our quality-driven approach
allows conceptual modellers to take into account quality considerations very early in
the IS life cycle and in an integrated manner.

Future directions of research include a concrete validation of the approach. It in-
cludes also the development of a more comprehensive set of quality patterns. Finally,
there is a need to integrate this quality approach into a CASE environment to effec-
tively exploit the contained knowledge and assistance.

References

1. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual Modeling.
IEEE Software 11(2) (1994)

2. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of Conceptual
Models: Current State and Future Directions. Data & Knowledge Engineering 55 (2005)

3. Si-Saïd Cherfi, S., Akoka, J., Comyn-Wattiau, I.: From EER to UML Conceptual Model-
ing Quality. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503. Springer, Heidelberg (2002)

4. Si-Saïd Cherfi, S., Akoka, J., Comyn-Wattiau, I.: Perceived vs. Measured Quality of Con-
ceptual Schemas: An Experimental Comparison. In: Grundy, J., Hartmann, S., Laender,
A.H.F., Maciaszek, L., Roddick, J.F. (eds.) ER 2007. CRPIT, vol. 83, pp. 185–190 (2007)

5. Akoka, J., Berti, L., Boucelma, O., Bouzeghoub, M., Comyn-Wattiau, I., Cosquer, M.,
Goasdoue, V., Kedad, Z., Nugier, S., Peralta, V., Si-Saïd Cherfi, S.: A Framework for
Quality Evaluation in Data Integration Systems. In: 9th International Conference on Enter-
prise Information Systems, Madeira, Portugal (2007)

6. Kolb, R., Bayer, J., Gross, H.-G., van Baelen, S.: Pattern-Based Architecture Analysis and
Design of Embedded Software Product Lines. Empress Project Report D.2.1/D.2.2 (2003),
http://www.empress-itea.org

7. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.: A
Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York
(1977)

8. Beck, K., Cunningham, W.: Using Pattern Languages for Object-Oriented Programs. In:
OOPSLA 1987 workshop on the Specification and Design for Object-Oriented Program-
ming (1987)

 Quality Patterns for Conceptual Modelling 153

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (1995)

10. Zdun, U., Avgeriou, P.: A Catalog of Architectural Primitives for Modeling Architectural
Patterns. Information and Software Technology 50, 1003–1034 (2008)

11. Girardi, R., Marinho, L.B., Ribeiro de Oliveria, I.: A System of Agent-Based Software Pat-
terns for User Modelling Based on Usage Mining. Interacting with Computers 17 (2005)

12. Kouskouras, K.G., Chatzigeorgiou, A., Stephanides, G.: Facilitating Software Extension
with Design Patterns and Aspect-Oriented Programming. J. Systems and Software (2008)

13. Berdun, L., Pace, J.A.D., Amandi, A., Campo, M.: Assisting Novice Software Designers
by an Expert Designer Agent. Expert Systems with Applications 34 (2005)

14. Tryfonas, T., Kearney, B.: Standardising Business Application Security Assessments with
Pattern-Driven Audit Automations. Computer Standards & Interfaces 30 (2008)

15. Bass, L., John, B.E.: Linking Usability to Software Architecture Patterns through General
Scenarios. J. Systems and Software 66 (2003)

16. Kim, D.K., El Khawand, C.: An Approach to Precisely Specifying the Problem Domain of
Design Patterns. J. Visual Languages and Computing 18 (2007)

17. Hsueh, N.L., Chu, P.H., Chu, W.: A Quantitative Approach for Evaluating the Quality of
Design Patterns. J. Systems and Software (2008)

18. Chatzigeorgiou, A., Tsantalis, N., Deligiannis, I.: An Empirical Study on Students’ Ability
to Comprehend Design Patterns. Computers & Education (2007)

19. Houdek, F., Kempter, H.: Quality Patterns – An Approach to Packaging Software Engi-
neering Experience. ACM Software Engineering Notes 22 (1997)

20. Basili, V.R., Caldiera, G., Rombach, H.: Goal Question Metric Paradigm. In: Encyclopedia
of Software Engineering, vol. 1. John Wiley & Sons, New York (1994)

21. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

22. Genero, M., Poels, G., Piattini, M.: Defining and Validating Metrics for Assessing the Un-
derstandability of Entity-Relationship Diagrams. Data Knowl. Eng. 64(3), 534–557 (2008)

23. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design Patterns: Abstraction and
Reuse of Object-Oriented Design. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707,
pp. 406–431. Springer, Heidelberg (1993)

24. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. J. Systems and
Software 23(2), 111–122 (1993)

25. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design Metrics as
Quality Indicators. IEEE Trans. Software Engineering 22(10), 751–761 (1996)

26. Arisholm, E., Briand, L.C., Føyen, A.: Dynamic Coupling Measurement for Object-
Oriented Software. IEEE Trans. Software Engineering 30(8), 491–506 (2004)

27. Kanellopoulos, Y., Dimopulos, T., Tjortjis, C., Makris, C.: Mining Source Code Elements
for Comprehending Object-Oriented Systems and Evaluating their Maintainability.
SIGKDD Explor. Newsl. 8(1) (2006)

28. Larman, C.: Applying UML and Patterns: an Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice Hall, Englewood Cliffs (2001)

29. Lieberherr, K., Holland, H., Riel, A.: Object-Oriented Programming: an Objective Sense
of Style. In: OOPSLA 1988 Proceedings (1988)

Automating the Extraction of Rights and

Obligations for Regulatory Compliance

Nadzeya Kiyavitskaya1, Nicola Zeni1, Travis D. Breaux2, Annie I. Antón2,
James R. Cordy4, Luisa Mich3, and John Mylopoulos1

1 Dept. of Information Engineering and Computer Science,
University of Trento, Italy

{nadzeya,nzeni,jm}@disi.unitn.it
2 Dept. of Computer Science,

North Carolina State University, U.S.A.
{tdbreaux,aianton}@ncsu.edu

3 Dept. of Computer and Management Sciences, University of Trento, Italy
luisa.mich@unitn.it

4 School of Computing, Queens University, Kingston, Canada
cordy@cs.queensu.ca

Abstract. Government regulations are increasingly affecting the
security, privacy and governance of information systems in the United
States, Europe and elsewhere. Consequently, companies and software de-
velopers are required to ensure that their software systems comply with
relevant regulations, either through design or re-engineering. We previ-
ously proposed a methodology for extracting stakeholder requirements,
called rights and obligations, from regulations. In this paper, we examine
the challenges to developing tool support for this methodology using the
Cerno framework for textual semantic annotation. We present the results
from two empirical evaluations of a tool called “Gaius T.” that is imple-
mented using the Cerno framework and that extracts a conceptual model
from regulatory texts. The evaluation, carried out on the U.S. HIPAA
Privacy Rule and the Italian accessibility law, measures the quality of
the produced models and the tool’s effectiveness in reducing the human
effort to derive requirements from regulations.

1 Introduction

In Canada, Europe and the United States, regulations set industry-wide rules for
organizational information practices [1]. Aligning information systems require-
ments with regulations constitutes a problem of major importance for organi-
zations. These regulations are written in legal language, colloquially referred to
as legalese, which makes acquiring requirements a difficult task for software de-
velopers who lack proper training [2]. In this paper, we focus on the challenges
software engineers face in analyzing regulatory rules, called rights and obliga-
tions. If engineers misinterpret these sentences, for example by overlooking an
exception or condition in a regulatory rule, incorrect rights or obligations may be

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 154–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automating the Extraction of Rights and Obligations 155

conferred to some stakeholders. Thus, extracting requirements from regulations
is a major challenge in need of methodological aids and tools.

The tool-supported process that we envision for extracting requirements from
regulations consists of three steps: (1) text is annotated to identify fragments
describing actors, rights, obligations, etc.; (2) a semantic model is constructed
from these annotations; and (3) the semantic model is transformed into a set
of functional and nonfunctional requirements. The first two steps are currently
supported by Breaux and Antón’s systematic, manual methodology for acquiring
legal requirements from regulations [3], [2], [4]. In this process, the requirements
engineer marks the text using phrase heuristics and a frame-based model [5],
[3] to identify rights or obligations, associated constraints, and condition key-
words including natural language conjunctions [2]. These rights and obligations
may be restated into restricted natural language statements [2], after which the
rules can be modeled in Description Logic using the Semantic Parameterization
process [4]. This Description Logic model can be queried and analyzed for am-
biguities and conflicts [4]. Our work seeks to add tool support to this process
to improve productivity, quality and consistency in the first step of the output.
To achieve this goal, we adopt the Cerno framework [6] for semantic annotation.
The framework initially requires the construction of linguistic markers to iden-
tify various concepts, on the basis of which it provides automated assistance to
engineers.

The Cerno framework has been extended to deal with some of the complexities
of regulatory text. The resulting extension is a new tool called Gaius T.1 The
contributions of this paper are to present Gaius T. with an empirical evaluation
that compares performance of Gaius T. with the performance of human analysts
using two regulatory documents written in different languages: the U.S. Health
Insurance Portability and Accountability Act (HIPAA) Privacy Rule [7] and the
Italian accessibility law (the Stanca Act) [8]. These contributions expand upon
a short paper [9], in which we first outlined our preliminary research plan and
first experiment with Gaius T.

The remainder of the paper is organized as follows. Section 2 discusses specific
challenges that must be addressed by any tool supported process in the domain of
regulations and policies, including Gaius T. In Section 3, we describe the Cerno
annotation framework and introduce the new tool-supported process with Gaius
T. Section 4 presents the design and evaluation through two case studies, with
related work appearing in Section 5 and our conclusion in Section 6.

2 Complexity of Regulatory Texts

A number of challenges complicate the automated annotation of regulatory
texts. For example, U.S. federal regulations are highly structured and written

1 Named after Gaius Terentilius Harsa, a plebeian tribune who played an instrumental
role in establishing the first formal code of laws through the Twelve Tablets in ancient
Rome (462BC) (http://en.wikipedia.org/wiki/Terentilius)

156 N. Kiyavitskaya et al.

in legalese. Despite this structure, the conventions of legalese are not always
used consistently, there are intended and unintended ambiguities, and individual
requirements are described across multiple sentences and paragraphs using cross-
references. We now discuss several of these challenges.

Legalese written in different languages and by different legislatures introduce
variability that must be addressed by automated tools. For example, the Italian
language uses more accents and apostrophes than the English language, which
affects how tools recognize important phrases. Similarly, Italian and English
use different natural language grammars to express rights and obligations. In
addition, the U.S. HIPAA Privacy Rule and the Italian Stanca Act use different
document structures that affect the identification of rights and obligations. As a
result, text processing tools that employ rules based on keywords, phrases and
syntax cannot be naively adapted to other languages and jurisdictions without
addressing these important issues.

In regulations, individual requirements can be elaborated in multiple sen-
tences, intermixed into a single sentence or distributed across multiple para-
graphs. For example, the HIPAA paragraph 164.528(a)(2)(ii) contains three
sub-paragraphs (A), (B), and (C) in one sentence: “the covered entity
must:(A). . . ;(B). . . ; and (C). . . ”, in which each sub-paragraph describes a sep-
arate, obligated action. This hierarchical sub-paragraph structure presents sev-
eral traceability challenges that our tool addresses by either identifying the
subject from an encapsulating paragraph that relates to requirements stated in
sub-paragraphs or by identifying which phrase fragments relate to a requirement
in an encapsulating paragraph.

Cross-references to other regulations is further complicate matters. These
cross-references elaborate [3], [2] and prioritize requirements [3] and may be
difficult to disambiguate because cross-references can appear to be syntacti-
cally circular. For instance, HIPAA paragraph 164.528 (a)(2)(i) describes an
obligation to suspend a right of an individual. This right is elaborated in a
separate paragraph, denoted by the phrase “as provided in 164.512(d)”. In
paragraph 164.528(a)(2)(ii) that follows, the phrase “pursuant to paragraph
(i)” refers back to the previous paragraph. Using Gaius T., each cross-reference
in the document is annotated in such way that it can be browsed later using
markup of the hierarchical document structure.

Finally, policies and regulations are prescriptive [10] rather than descriptive.
Because stakeholders cannot afford to overlook regulatory requirements, a higher
precision and recall for annotation or text-mining is required in this domain. We
address this issue in the empirical evaluation described later in this paper.

3 Semantic Annotation Process

This section introduces the Cerno framework for semi-automatic semantic an-
notation and also presents the Gaius T. extension, intended specifically for the
annotation of regulatory text [6].

Automating the Extraction of Rights and Obligations 157

Fig. 1. Semantic annotation process in Cerno

3.1 The Cerno Framework

Cerno is based on a lightweight text analysis approach that is implemented using
the structural transformation system TXL [11]. The architecture and the per-
formance of the tool are described in detail in a previous paper [6]. To annotate
input documents, Cerno uses context-free grammars to generate a parse tree
before applying transformation rules, which generate output in a pre-specified
format.

The process for generating semantic annotations in Cerno is based on a “de-
sign recovery” process borrowed from software reverse engineering [12]. As shown
in Fig. 1, this process uses a series of successive transformation steps:

Step #1. The input document is parsed in accordance with the document
structural grammar and a parse tree is produced. The parse result consists
of structures such as “document”, “paragraph”, “phrase” and “word”. The
grammar is described as an ambiguous context-free TXL grammar using
BNF-like notation (see an example in the next subsection in Fig. 2).

Step #2. Annotations are inferred using a domain-dependent annotation
schema. This schema contains a list of tags for concepts to be identified,
selected from the domain semantic model, and a vocabulary of indicators
related to each concept. Cerno assumes that the annotation schema is con-
structed beforehand either automatically using some learning methods or
manually in collaboration with domain experts. Indicator lists may include
literal words (see further in Fig. 5) or names of parsed entities. They also
can be positive, pointing to the presence of the given concept, or negative,
pointing to the absence of this concept.

Step #3. Annotated text fragments are selected with respect to a predefined
database schema template and stored in an external database. The database
schema template embodies the desired output format. It is manually derived
from the domain semantic model and represents fields of a target database.

Similar to Cerno, the methodology of Breaux and Antón uses a number of
phrase heuristics that guide the process of identifying rights or obligations [2]. We

158 N. Kiyavitskaya et al.

Table 1. Normative phrases in HIPAA

Concept type Indicators
Right <actor>...</actor> may ; <actor>...</actor> can ;

<actor>...</actor> could ; <policy>...</policy> permits ;
<actor>...</actor> has a right to ; <actor>...</actor>
should be able to

Cross-Reference Constraint set by <cross-reference> ;...

encode these heuristics into Cerno’s domain-dependent components and enrich
the framework with other domain- and task-specific knowledge. In this way,
we can facilitate the generation of a requirements model. Moreover, we seek to
formalize specific characteristics of legal documents and test the generality of
our framework. The extensions to the Cerno framerwork for legal documents are
further referred to as Gaius T.

3.2 Gaius T. for HIPAA

To evaluate Gaius T., we first annotate a fragment of the HIPAA Privacy Rule
in order to identify instances of rights, obligations, and associated constraints,
and then we evaluate the quality of the annotations obtained. The “objects of
concern” that we annotate consist of: right, obligation, exception, and some types
of constraints [2], in which a right is an action that a stakeholder is conditionally
permitted to perform; an obligation is an action that a stakeholder is condition-
ally required to perform; a constraint is the part of a right or obligation that
describes a single pre- or post-condition, and exceptions remove elements from
consideration in a domain.

The manual analysis of the Privacy Rule yielded a list of normative phrases
that identify many of these objects of concern [2], see examples in Table 1. All the
normative phrases were employed as positive indicators in the domain-dependent
indicators of Cerno’s Markup step. Some of the indicators are complex patterns
which combine both literal phrases and general concepts, thus assuming a pre-
liminary recognition of several basic constructs: cross-references can be internal
references that refer the reader of a regulation to another paragraph within the
same regulation or external references, a citation of another regulation, act or
law; policy is the name of the law, standard, act or other regulation document
which establishes rights and obligations; and actor is an individual or an organi-
zation involved. To recognize these objects, we extended the parse step of Cerno
with the corresponding object grammars.

Internal cross-references are consistently formatted throughout the Privacy
Rule which results in consistent identification by the tool using a set of patterns
shown in Fig. 2. However, due to the variety of reference styles used by different
laws, it is necessary to extend these patterns when analyzing a new law, as we
observed during our analysis of the Italian accessibility law.

To recognize instances of the actor and policy concepts, we exploit the fact
that the Privacy Rule uses standard terms, called a term-of-art, consistently
throughout the entire document. These terms are ritually defined in a separate
definitions section, such as HIPAA section 160.103 titled “Definitions of HIPAA”.

Automating the Extraction of Rights and Obligations 159

define citation
’§ [opt space] [number] [repeat enumeration] | ’paragraph [space] [repeat enumeration]

| ’paragraph [opt space] [decimalnumber] [repeat enumeration]
|[decimalnumber][repeat enumeration]

end define
define enumeration

’([id] ’) | ’([number] ’)
end define

Fig. 2. The grammar for cross-reference object

Actor: ANSI, business associate(s), covered entit(y/ies), HCFA, HHS, <...>;
Policy: health information, designated record set(s), individually identifiable health
information, protected health information, psychotherapy notes; <...>;

Fig. 3. Indicators for basic entities

<Right>A <Actor>covered entity</Actor> may deny an <Actor>individual</Actor>’s
request for amendment,</Right> if it determines that the <Information>protected health
information</Information> or record that is the subject of the request:
<Index>(i)</Index> Was not created by the <Actor>covered entity</Actor>,
<Exception>unless the <Actor>individual</Actor> provides a reasonable basis to believe
that the originator of <Information>protected health information</Information> is no
longer available to <Policy>act</Policy> on the requested amendment </Exception> ...

Fig. 4. A fragment of the result generated by Gaius T. for HIPAA Sec.164.526

For example, it contains terms such as “policy”, “business associate”, “act”, and
“covered entity”. Example indicators that are used to identify basic entities and
that were derived from the definitions section are shown in Fig. 3.

In the sections that we analyzed, we found other terms that we could general-
ize into a common, abstract type, including event, date, and information. Thus,
on the basis of the definition section, we derived a list of hyponyms for the basic
entities: actor and policy as well as event, date and information.

The Gaius T. regulatory analysis process for the Privacy Rule is organized
into three main phases: (1) Recognition of structural elements of the document:
section boundaries, section attributes which are number and title, sentence
boundaries (see [13]); (2) Identification of basic entities: actor, policy, event,
date, information and cross-reference; (3) Deconstruction of a rule statement to
identify its components and constraints. Fig. 4 illustrates an excerpt of anno-
tated text from HIPAA section 164.526(a)(2) resulting from the application of
Gaius T. Each embedded XML annotation is a candidate “object of concern.”
For instance, the “Index” annotation denotes the sub-paragraph index “(i)” and
the Actor annotation denotes the “covered entity”; the latter appears twice in
this excerpt.

3.3 Gaius T. for Italian Regulations

The Stanca Act [8] describes accessibility requirements governing web sites of
the Italian Public Administration to ensure accessibility for the disabled. The
Act includes technical requirements and general restrictions that web sites must

160 N. Kiyavitskaya et al.

Obligation: dov[ere], è fatto obbligo, farla osservare, promuov[ere], comport[are],
costituiscono motivo di preferenza, defin[ire];
AntiObligation: non dov[ere], non sia, non si applica, non si possono stipulare, non
esprim[ere];
Right: po[sso|uoi|uò|ssiamo|tete|ssono|ssa];
AntiRight: non po[sso|uoi|uò|ssiamo|tete|ssono|ssa];

Fig. 5. A sample of the syntactic indicators used to identify categories in Stanca

Art. 10 (Regolamento di attuazione)
<Obligation>
1. <Constraint>Entro novanta giorni dalla data di entrata in vigore della presente
<Policy>legge</Policy></Constraint>, con <Policy>regolamento</Policy>emanato ai
sensi dell’articolo 17, comma 1, della <Policy>legge</Policy>23 agosto 1988, n. 400,
sono definiti:
a) i criteri e i principi operativi e organizzativi generali per l’accessibilità;
b) i <Resource>contenuti</Resource>di cui all’articolo 6, comma 2;
c) i controlli esercitabili sugli operatori privati che hanno reso nota l’accessibilità dei
propri siti e delle proprie <Resource>applicazioni</Resource>informatiche;
d) i controlli esercitabili sui <Actor>soggetti</Actor>di cui all’articolo 3, comma 1.
2. Il <Policy>regolamento</Policy>di cui al comma 1 è adottato previa consultazione
con le associazioni delle <Actor>persone disabili</Actor>maggiormente rappresentative,
con le associazioni di sviluppatori competenti in materia di accessibilità e di
produttori di <Resource>hardware</Resource>e <Resource>software</Resource>e
previa acquisizione del parere delle competenti Commissioni parlamentari,
<Constraint>che <Action>devono</Action>pronunciarsi entro quarantacinque giorni dalla
richiesta</Constraint>, e d’intesa con la Conferenza unificata di cui all’articolo 8 del
<Policy>decreto</Policy>legislativo 28 agosto 1997, n. 281.</Obligation>

Fig. 6. A fragment of the annotated accessibility law

respect. The annotation schema for the accessibility law contains right, anti-
right, obligation, anti-obligation, exception, and some types of constraints, where
anti-rights and anti-obligations state that a right or obligation is not conferred
by a specific law, respectively [2].

For identification of actor instances in the Italian law, we adopted two so-
lutions: (1) some instances were mined manually from the definition section
“Definizioni”; (2) in order to acquire instances of actors not mentioned in the
definitions, we exploited the results provided by a Part of Speech Tagger (POS)
[14], i.e., all proper nouns we marked as actors. For resource instances, we fol-
lowed only the first solution reusing the terms stated in the definition section.

In order to identify action verbs, we adopted the following heuristic: annotate
all verbs in present tense, passive tense and impersonal tense. The verbs in the
listed forms also refer to obligations, in accordance with the instructions for
writing Italian legal documents [15]. Thus, the corresponding heuristic rule was
adapted for identifying obligations.

For rights, obligations and their antitheses, it is more difficult to identify
these statements in Italian than in English. For example, English modal verbs
(must, may, etc.) are consistently used to state prescriptions, such as “the
users must present their request,” while Italian regulations use present ac-
tive (“gli utenti presentano la domanda”), present passive (“la domanda
è presentata”) and impersonal tenses (“la domanda si presenta”) of verbs
to describe an obligation. The choice of the style highly depends on the

Automating the Extraction of Rights and Obligations 161

individual lawmaker. Each of these styles is equally recommended by the law
writing guidelines [15]. Therefore, in identification of rights and obligations, our
strategy included: (1) translation of normative phrases identified for the HIPAA;
(2) annotation of those sentences that contain verbs in the tenses that intrin-
sically express obligations as instances of obligation. A subset of the syntactic
indicators for the Italian law is shown in Fig. 5 and a fragment of the annotated
document in Fig. 6.

4 Empirical Evaluation

The proposed process for extracting rights and obligations was validated in a
comparative evaluation that compared the number of automated annotations
inferred by Gaius T. with the number of manually derived annotations. For the
HIPAA Privacy Rule, we also evaluated the productivity effect of using the tool.
The comparative evaluation was difficult to realize because in many cases manual
and automated annotations are not comparable because the granularity of these
annotations differed.

4.1 The HIPAA Document

After extending the framework as discussed in Section 3.2, we applied it to two
sections of the HIPAA Privacy Rule [7]: 160 (“General Administrative Require-
ments”) and 164 (“Security and Privacy”). Gaius T. parsed 33,788 words and
required 2.79 seconds on a personal computer based upon an Intel Pentium 4,
3 GHz processor, RAM 2 Gb, running Suse Linux. This results include over 1800
basic entities and 140 rights and obligations.

Due to the lack of a gold standard (i.e., a reference annotated document to
compare with), the annotation quality was evaluated manually by comparing
results acquired from section 164.520 “Notice of privacy practices for protected
health information”. We chose this section because we can compare the Gaius T.
results to the manual results reported by Breaux et al. [2]. The manual analysis
by an expert analyst of the reported fragments, containing a total of 5,978 words
or 17.8% of the Privacy Rule, took an average of 2.5 hours per section. The pre-
liminary analysis of the resulting annotations for section 164.520 is summarized
in Table 2. The number of rights, obligations, constraints and cross-references is
reported for the manual process [2] and for Gaius T.

There are several notable distinctions that we can discuss at this stage of the
analysis. Section 164.520 contains stakeholder rights whose description begins
in one paragraph and continues into a sub-paragraph. The latter-half of these
rights, and likewise for obligations, is called a continuation. Due to continuations,

Table 2. Comparative evaluation results for section 164.520 of HIPAA

Rights Obligations Constraints Cross-references
Gaius T. 12 15 5 31
Human 9 17 54 37

162 N. Kiyavitskaya et al.

there are two false-positives in the number of rights and obligations reported.
Furthermore, paragraphs 164.520(b)(1) and (b)(2) describe so-called “content
requirements” that detail the content of privacy notices. and were not included
in the number of stakeholder rights and obligations report by Breaux et al. [2].
Gaius T. identified four stakeholder rights in these two paragraphs. The total
number of constraints was limited to those due to internal cross-references.

The tool correctly identified nearly all instances of the concepts actor, policy,
event, information and date. It also correctly recognized section and subsection
boundaries, titles and annotated paragraph indices. These annotations may be
reused to manage cross-references and may provide useful input for the Semantic
Parameterization process. Gaius T. largely reduces human effort and time spent
for analysis by facilitating recognition of relevant text fragments.

In addition to the expert evaluation, we conducted an experiment inexperi-
enced users using Gaius T. The goal of this study was to test the usefulness of the
tool for non-experts in the regulatory text who may have to analyze such doc-
uments to generate requirements specifications for a new software system. The
problem is that requirements engineers are not always supported by lawyers when
designing new software. For this purpose, we selected section 164.520 of Privacy
Rule for annotation by a different group of people, who are not working with
rules and regulations directly. The experiment involved four junior researchers
from the software engineering area, two of whom were not from the group work-
ing on the tool. We motivated the participants by paying a wage per hour of
their work. All participants were non-native English speakers, received the same
training in semantic annotation for one hour, but none of them had earlier par-
ticipated in legal document analysis. A detailed explanation of the annotation
process and examples of the concepts to be identified were available. Moreover,
the participants were provided with a user-friendly interface to facilitate inser-
tion and modification of tags in the input documents.

In this experiment, the participants were given two different parts of section
164.520 to annotate, one of which was original text and the other augmented
with annotations generated by Gaius T. These parts were selected in such a way
as to have an approximately equal number of statements and comprised 1,205
words and 1,057 words respectively. The annotators were asked to incrementally
identify rule statements and their components in each of the two parts: first,
inserting markups on the original page for the unannotated part, and second,
modifying Gaius T.’s annotations in the part that was previously automatically
annotated. We measured the time spent for annotation of both parts by each
analyst and counted the number of different entities identified.

The quantitative results for this experiment are collected in Table 3 and in-
clude the number of entities collected by human annotators working with and
without tool support. Observing this table, we notice that when annotators were
assisted by Gaius T.: (a) the total number of entities identified was about 10
percent larger than when starting from the original document; however, t-test
results do not allow us to claim that this improvement is statistically significant;
(b) annotators were faster by about 12.3 per cent. The part of analysis that

Automating the Extraction of Rights and Obligations 163

Table 3. Number of extracted items for two fragments

Fragment 1 Fragment 2
Without tool With tool Without tool With tool

A1 A3 A2 A4 A2 A4 A1 A3
Obligations 10 2 13 13 9 12 10 13
Rights 3 9 0 2 6 4 2 1
Anti-Obligations 1 0 2 1 0 0 0 0
Anti-Rights 1 2 1 1 0 0 3 2
Constraints 36 23 18 16 36 32 41 19
Actors 45 14 56 19 22 11 17 50
Actions 25 14 27 18 28 22 24 44
Resources 32 34 29 14 22 14 31 27
Targets 1 5 4 0 9 10 11 5

Totals 154 103 150 84 132 105 139 161

Time in min 58 28 63 21 61 45 42 36

the annotators found the most complicated and time-consuming was relating
constraints contained in a rule statement to their corresponding subjects.

The evaluation results obtained thus far look promising, but larger studies
must be conducted to prove the observed improvement is statistically signifi-
cance. Most important, unlike human annotations, automatic annotations are
more consistent and much faster, and thus show promise as the technology im-
proves. Nevertheless, as a result of our experimental study, we observed a number
of current limitations of Gaius T. that should be addressed in future development
of the tool:

- Additional types of constraints should be considered. The reason for missing
some of constraints is that normative phrases for them are not explicitly
provided by the manual methodology. Therefore the future development of
the tool should involve revision of the annotation schema and indicators.

- Another problematic aspect in analyzing regulatory texts is that the concepts
expressing constraints require correctly identifying the subject or object to
which these constraints apply. This task is difficult for human analysts, es-
pecially if related fragments are scattered over a long statement. However,
Gaius T. can facilitate their work by identifying a constraint phrase and sub-
ject candidates and then suggest to a human to connect the given constraint
to the identified object that is most relevant.

- Identification of the subjects of conjunctions or disjunctions (“and”, “or”)
must be completed for the Semantic Parameterization process. This task is
problematic even for full-fledged linguistic analysis tools. In our case, we
propose to extend the tool to highlight such cases and prompt a human
analyst to resolve them manually.

4.2 The Italian Accessibility Law

After extending Gaius T. with features intended to support the analysis of Italian
law, we applied it to the full text of the Stanca Act, containing a total of 6,185
words. The automatic annotation required only 61 milliseconds on a personal
computer Intel Pentium 4, 3 GHz processor, RAM 2 Gb, running Suse Linux.

164 N. Kiyavitskaya et al.

Table 4. Quantitative evaluation summary for the accessibility law

Actors Actions Resources Policies Obligations Anti-obli- Rights Anti- Constraints
gations rights

Gaius T. 241 77 279 86 26 2 7 1 12
Human 170 55 58 3 24 2 9 0 32

As a result, a total of 683 basic entities and 36 rights and obligations were
identified.

Table 4 presents the results of this evaluation, consisting of the number of in-
stances of the concepts of interest that the tool identified compared to a single
human annotator. The tool outperformed the human annotator in identifying in-
stances of the concepts actor, policy, action, and resource. As for complex con-
cepts, the tool identified nearly all instances of rights and obligations, however
the performance was essentially lower for the constraint concept.

There were difficulties in analyzing the Italian text for both the human an-
notator and the tool that emerged in this study. For example, the subject is
frequently omitted, as in passive forms of verbs, or hidden by using impersonal
expressions, thus making it difficult to correctly classify phrases in the regulatory
fragment and find the bearer of a right or obligation. Surprisingly, the official
English translation of the accessibility law in most cases explicitly states this
information. Consider the use of verb phrases (in bold) to state the obligation
in Italian and English versions of the same fragment, below:

Italian statement: “Nelle procedure svolte dai soggetti di cui all’articolo 3,
comma 1, per l’acquisto di beni e per la fornitura di servizi informatici, i
requisiti di accessibilità stabiliti con il decreto di cui all’articolo 11 costi-
tuiscono motivo di preferenza a parità di ogni altra condizione nella
valutazione dell’offerta tecnica, tenuto conto della destinazione del bene o
del servizio.”

English translation: “The subjects mentioned in article 3, when carrying out
procedures to buy goods and to deliver services, are obliged, in the event
that they are adjudicating bidders which all have submitted similar offers,
to give preference to the bidder which offers the best compliance with the
accessibility requirements provided for by the decree mentioned in article 11.”

Overall, the annotation results suggest that the Gaius T. process for regula-
tion analysis is applicable to documents that are written in different languages.
The effort required to adapt the framework for the new application was rela-
tively small with respect to the implementation. This experiment also revealed
several language differences that we were able to quantify using Gaius T. In our
future work we plan to conduct a more extensive analysis that may remove other
language effects independently from legislator effects.

5 Related Work

The idea of using contextual patterns or keywords to identify relevant informa-
tion in prescriptive documents is not new. A number of methodologies based on

Automating the Extraction of Rights and Obligations 165

similar techniques have been developed. However, tools to realize and synthesize
these methods under a single framework are lacking. This review does not claim
to be an exhaustive survey and we focus only on several works that are most
related to our method with respect to the problem considered and our approach
used.

The SACD system [16] relates well to our approach. The tool, implemented
in Prolog, uses a combination of syntactic parsing and keyword-based rules, that
rely on the regularity of prescriptive documents, to generate a knowledge base
from the logical structure of regulatory text. Once the processing is completed,
SACD requires attention of the human specialist in revising the results provided.
Similar to Gaius T., SACD recognizes several layers in prescriptive texts: the
structural layer, called macrostructure; the logical layer, called microstructure;
and the domain layer describing domain-specific information.

Cleland-Huang et al. [17] suggested an algorithm for detection and classifica-
tion of non-functional requirements (NFRs). In a pilot experiment, the indicator
terms were mined from catalogs of operationalization methods for security and
performance softgoal interdependency graphs and then used to identify NFRs
in requirements specifications. Along similar lines, the EA-Miner [18] tool sup-
ports separation of aspectual and non-aspectual concerns and their relationships
by applying natural language processing techniques to requirements documents.
The identification criteria in EA-Miner is based on a domain specific lexicon
that was built observing related words. Similarly to these methods, we use nor-
mative phrases to identify the presence of regulatory requirements. However,
our tool further recognizes the paragraph structure of regulatory text, which
is necessary to acquire complete requirements from across continuations. The
challenge of continuations cannot be addressed by indicator terms alone. Antón
proposed the Goal-Based Requirements Acquisition Methodology (GBRAM) to
manually extract goals from natural language documents, including financial
and healthcare privacy policies [19]. Additional analysis of these extracted goals
led to new semantics for modeling goals [20], which distinguish rights and obli-
gations, and new heuristics for extracting these artifacts from text [2]. These
heuristics have been combined into a frame-based method for manually acquir-
ing legal requirements and priorities from regulations [3]. As discussed in this
paper, our tool incorporates several of these heuristics to identify rights and
obligations.

Wilson et al. [21] performed a detailed analysis of NASA requirements
documents to identify recommendations for writing clearer specifications. As
a part of this work, the authors discovered that good requirements specifica-
tions use imperative verbs (shall, must, etc.) to explicitly state requirements,
constraints or capabilities. They also introduced the notion of continuances, i.e.,
additional phrases that refine upon previously stated requirements. We observed
similar findings in language regularities in prescriptive documents that were in-
corporated into our set of heuristics to detect requirements. We also operate with
the notion of continuances, which we call continuations, across sub-paragraphs.

166 N. Kiyavitskaya et al.

6 Conclusions

Regulations and policies constitute rich sources of requirements for software
systems that must comply with these normative documents. In order to facilitate
alignment of software system requirements and regulations, systematic methods
and tools automating regulations analysis must be developed.

In [2], Breaux and Antón proposed a methodology for extracting stakeholder
requirements from regulations. This paper presents a tool intended to provide
automatic support for analyzing policy documents. The new tool-supported pro-
cess - named Gaius T. - exploits the findings of our earlier work on requirements
analysis, and exploits the Cerno framework to yield annotations marking in-
stances of concepts found in regulation texts. These instances include rights
and obligations that must be incorporated into software requirements to com-
ply with the law. Our envisioned process fits into a broader context, in which a
requirements engineer or other analyst must integrate requirements from multi-
ple regulations that affect a single product, service or system. We reserve this
broader integration challenge for future work and our current focus remains
on the immediate challenge of correctly identifying requirements from
regulations.

To verify to what extent the semantic annotation tool can be applied to the
domain of regulatory texts, we devised two empirical studies, involving annota-
tion of a fragment of the U.S. HIPAA regulations and the Italian accessibility
law, and compared the performance of the tool with manual identification of
instances of rights, obligations, and associated constraints. The results of this
study are encouraging, and have also revealed a number of useful extensions for
the tool and the tool-supported process. The phrase heuristics used are now ex-
tended for documents in English and Italian. We believe that our tool supported
process can be re-used in regulations developed for different areas of human
activity due to its modularity.

We are interested in developing reasoning facilities on the annotations us-
ing constraints of the domain meta-model, for instance, cardinality constraints.
Apart from the regulation compliance problem, another potential application of
this work may be in providing support to lawmakers in writing regulations in
terms of improved consistency and reduced ambiguity for use by engineers. We
believe that semi-automated tools such as the one proposed in this paper can be
effectively used to improve the overall quality of rules and regulations at many
levels.

Acknowledgments

This work has been funded, in part, by the EU Commission through the SEREN-
ITY project, the Natural Sciences and Engineering Research Council of Canada,
Provincia Autonoma di Trento through the STAMPS project and the U.S. Na-
tional Science Foundation ITR #032-5269.

Automating the Extraction of Rights and Obligations 167

References

1. Berghel, H.: The two sides of ‘ROI’: Return-on-investment vs. risk-of-incarceration.
Communications of ACM 48(4), 15–20 (2005)

2. Breaux, T.D., Vail, M.W., Antón, A.I.: Towards regulatory compliance: Extracting
rights and obligations to align requirements with regulations. In: Proc. of RE 2006,
Washington, DC, USA, pp. 46–55. IEEE Computer Society Press, Los Alamitos
(2006)

3. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Transactions on Software Engineering 34(1), 5–20 (2008)

4. Breaux, T.D., Antón, A.I., Doyle, J.: Semantic parameterization: A process
for modeling domain descriptions. ACM Transactions on Software Engineering
Methodology 18(2) (2009)

5. Breaux, T.D., Anton, A.I.: A systematic method for acquiring regulatory require-
ments: A frame-based approach. In: Proc. of RHAS-6, Pittsburgh, PA, USA,
September 2007, Software Engineering Institute (SEI) (2007)

6. Kiyavitskaya, N., Zeni, N., Mich, L., Cordy, J.R., Mylopoulos, J.: Text mining
through semi automatic semantic annotation. In: Reimer, U., Karagiannis, D. (eds.)
PAKM 2006. LNCS (LNAI), vol. 4333, pp. 143–154. Springer, Heidelberg (2006)

7. U.S.A. Government: Standards for privacy of individually identifiable health infor-
mation, 45 CFR part 160, Part 164 subpart E. In Federal Register 68(34), 8334–
8381, February 20 (2003)

8. Italian Parliament: Stanca Act, Law no. 4, January 9, 2004: Provisions to sup-
port the access to information technologies for the disabled. Gazzetta Ufficiale 13,
January 17 (2004)

9. Kiyavitskaya, N., Zeni, N., Breaux, T.D., Antón, A.I., Cordy, J.R., Mich, L., My-
lopoulos, J.: Extracting rights and obligations from regulations: Toward a tool-
supported process. In: Proc. of ASE 2007, pp. 429–432 (2007)

10. Moulin, B., Rousseau, D.: Knowledge acquisition from prescriptive texts. In: Proc.
3rd Int. Conf. on Industrial and engineering applications of artificial intelligence
and expert systems, pp. 1112–1121. ACM Press, New York (1990)

11. Cordy, J.R.: The TXL source transformation language. Science of Computer Pro-
gramming 61(3), 190–210 (2006)

12. Dean, T.R., Cordy, J.R., Schneider, K.A., Malton, A.J.: Using design recovery
techniques to transform legacy systems. In: Proc. of ICSM 2001, November 2001,
pp. 622–631 (2001)

13. Zeni, N., Kiyavitskaya, N., Mich, L., Mylopoulos, J., Cordy, J.R.: A lightweight
approach to semantic annotation of research papers. In: Kedad, Z., Lammari, N.,
Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 61–72.
Springer, Heidelberg (2007)

14. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proc. of
Int. Conf. on New Methods in Language Processing, Manchester, UK (1994)

15. Presidenza del Consiglio dei Ministri: Guida alla redazione dei testi normativi.
Gazzetta Ufficiale 101(2), 105 (2001)

16. Moulin, B., Rousseau, D.: Automated knowledge acquisition from regulatory texts.
IEEE Expert 7(5), 27–35 (1992)

17. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: The detection and classification
of non-functional requirements with application to early aspects. In: Proc. of RE
2006, Washington, DC, USA, pp. 36–45. IEEE Computer Society, Los Alamitos
(2006)

168 N. Kiyavitskaya et al.

18. Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: EA-Miner: a tool for automat-
ing aspect-oriented requirements identification. In: Proc. of ASE 2005, pp. 352–355.
ACM Press, New York (2005)

19. Antón, A.I., Earp, J.B., He, Q., Stufflebeam, W., Bolchini, D., Jensen, C.: Financial
privacy policies and the need for standardization. IEEE Security and Privacy 2(2),
36–45 (2004)

20. Breaux, T.D., Antón, A.I.: Analyzing goal semantics for rights, permissions, and
obligations. In: Proc. of RE 2005, pp. 177–186 (2005)

21. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated analysis of requirement
specifications. In: Proc. of ICSE 1997, May 1997, pp. 161–171. ACM Press, New
York (1997)

Location-Based Software Modeling and Analysis:

Tropos-Based Approach

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy
{raian.ali,fabiano.dalpiaz,paolo.giorgini}@disi.unitn.it

Abstract. The continuous growth of interest in mobile applications
makes the concept of location essential to design and develop software
systems. Location-based software is supposed to be able to monitor the
surrounding location and choose accordingly the most appropriate be-
havior. In this paper, we propose a novel conceptual framework to model
and analyze location-based software. We mainly focus on the social facets
of location adopting concepts such as actor, resource, and location-based
behavior. Our approach is based on Tropos methodology and allows the
analyst to elicit and model software requirements according to the differ-
ent locations where the software will operate. We propose an extension of
Tropos modeling and adapt its process to suit well with the development
of location-based software. The proposed framework also includes auto-
mated analysis techniques to reason about the relation between location
and location-based software.

1 Introduction

Advances in computing, sensing and communication technology have recently
led to the growth of interest in software mobility. Mobility emphasizes several
concerns (space, time, personality, society, environment, and so on) often not
considered by the traditional desktop systems [1]. Besides computing ubiquity,
the 21st century computing [2] is expected to have a core “mental” part: com-
puting systems act on behalf of humans executing tasks without prompting them
for and receiving their explicit requests, i.e. computing will realize the concept
of agency. Advances in technology do not necessarily imply the easiness of ex-
ploiting it, rather more challenges are introduced. Software systems can be given
more responsibility, and they can now actively support several decision making
processes. Appropriate software development methods and models need to be de-
veloped, or adapted, to cope with the new achievable innovative requirements.

Location-based software is characterized by its ability to reason about the
surrounding location, including the user, and adapt autonomously a behavior
that complies with the location settings. Consequently, we need to model and
analyze the variable locations that users can be part of, and define how location
influences software. To adopt one behavior, the software needs to reason on what
exists and what can be done, basing its choice on user preferences, cost, time,
priority, and so on [3].

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 169–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 R. Ali, F. Dalpiaz, and P. Giorgini

In the area of context modeling, the relation between context and its use is
not clearly considered (e.g. [4], [5] and [6]). We believe in the tight complemen-
tary relation between the variable behavior (both human and software ones) and
context. When the relation between context and its use is omitted, we cannot
answer questions like “how do we decide the relevant context?”, “why do we need
context?” and “how does context influence behavior adaptation?”. Modeling con-
text information has not to be a standalone activity, that is context has to be
elicited in conjunction with the analysis we do for discovering alternative behav-
iors. Salifu et al. [7] investigate the use of problem frames to handle variability in
context-aware software. In our work, we use goal analysis to elicit requirements
without assuming that requirements are already recognized. We also integrate
the goal and location models to enable useful automated analysis.

Software variability is a term commonly used to define a software provided
with different behaviors, whose variants can be produced guaranteeing low costs,
short time, and high quality [8]. Feature modeling is a well known modeling
technique exploited by product line engineering to derive a tailored product from
a family of possible products [9]. Location-based software is expected to select
autonomously among the different alternatives it supports depending on the
location settings. Lapouchnian et al. [10] propose techniques to design autonomic
software based on an extended goal modeling framework, but the relation with
the surrounding location is not focused on. A variant of this approach is proposed
by the same authors in [11], where the emphasis is on variability modeling under
the requirements engineering perspective, and on the classification of intentional
variability when decomposing a goal. In our work, we focus on the variability of
location, i.e. the unintentional variability, which influences the applicability and
the efficiency of each goal satisfaction alternative.

Goal models, mainly adopted by KAOS [12] and Tropos [13,14] methodolo-
gies, represent a paradigmatic shift from object orientation. While goal-oriented
analysis is more natural for the early stages of requirement analysis, the object-
oriented analysis fits well to the later stages [15]. With goal models, we take
a high level goal and start a top-down analysis to discover the more specific
subgoals and tasks that are needed to satisfy that goal. Goal model allows for
different alternatives to satisfy a goal, but it does not specify where each alterna-
tive can be adopted. Alternative behaviors and location variability are comple-
mentary. Supporting two alternative behaviors without specifying when to follow
each of them rises the question “why do we support two alternatives and not just
one?”. Conversely, considering location variability without supporting alterna-
tive behaviors rises the question “what can we do if the location changes?”.

In this paper, we introduce location-based Tropos as a variant of Tropos
conceptual modeling framework [13,14], for developing location-based software.
We deal with the social level of location, discuss how to model it and how
it influences the adaptation of a location-based behavior. We discuss Tropos
process for developing location-based software, and then suggest a new variant
of it. We introduce three automated analysis on the proposed models to check
software against location and vice versa.

Location-Based Software Modeling and Analysis: Tropos-Based Approach 171

The paper is structured as follows: Section 2 discusses location-based variabil-
ity and a variety of conceptual modeling challenges introduced by it, and classifies
the main features the location-based software in particular has to support. In
Section 3, we study Tropos conceptual modeling framework for location-based
software development. In Section 4, we introduce location-based Tropos, propos-
ing modifications on Tropos at both modeling and process levels. In Section 5,
we show several kinds of analysis on the new models, and in Section 6, we draw
conclusions and present future work.

2 Location Variability and Location-Based Software

One main concern of software mobility is the ability to perceive the location
where the user is, and then tailor a location-based bahavior to achieve user
objectives. Location-based software has not only to perceive the technical details
of computing environment (communication protocols, network roaming, data
interoperability, and so on), but also the social environment the user is part of.
The technical level will certainly be the base to handle the low level aspects of
software interoperability, related to the machine level. On the other hand, the
social level will be the base for tailoring human-oriented behaviors to achieve
user goals. In this work, we focus on modeling the social variability of location
and how it can be used to derive suitable behaviors for satisfying user goals.

Let us consider a passenger with the goal of buying a ticket in a railway sta-
tion. Each specific railway station enables different ways to buy tickets (e.g., a
passenger can buy a ticket through terminals, e-pay, offices, or through passen-
ger assistance clerks when passenger needs help). Each of these different ways
requires specific location properties. For example, buying through terminals re-
quires that a free terminal exists, has one language in common with the passen-
ger, and accept the money or the credit card the passenger has.

In order to satisfy user’s needs and goals, location-based software is supposed
to be able to select one appropriate behavior according to the location. The
behavior has to be compliant with the current state of the location, considering
the availability of resources and the existence of other users. Location may be
characterized by different dimensions, such as the degree of expertise each user
has (in using resources, and communicating with other users), the availability of
resources, and the rules that have to be used to coordinate the use of resources, or
regulate the interactions between users. In this vision, the conceptual modeling
of software system needs to deal with a variety of challenges, such as:

1. Location modeling constructs: We need to find an appropriate set of modeling
concepts that can capture efficiently a variable location.

2. Location relevancy: To build a location model, we need a systematic way
to decide what has to be modeled, i.e. what is relevant in a location to the
target software. E.g. when we model a railway station location, do we need
to include passengers current position, or expertise in using PDAs, in the
model? and how do we decide that?

172 R. Ali, F. Dalpiaz, and P. Giorgini

3. Location rules : Location, as a system, will impose rules for the interaction
among people and for the use of resources. Rules have to be integrated with
the location model and modeled using location constructs. E.g. a railway
station might impose the rule that only passengers who are foreigners or
over a certain age can ask for assistance, and passenger assistant must help
even if this implies stoping less priority activity the assistant is involved in.

4. Location-based behavior : To satisfy one of the user objectives, the current
location allows a certain set of behaviors. Modeling the relation between the
location and the corresponding possible behaviors is essential for location-
based software. E.g. buying a ticket through e-payment can be done only if
the station has a network and the passenger is allowed and able to access it.

5. Hierarchial behaviors construction: Modeling in a way to avoid “one location,
one behavior” enumeration, to exploit commonality of both locations and
behaviors fragments, and to enable a hierarchial construction of location-
based behavior. E.g. getting passenger position automatically is a shared
objective that needs an automatic positioning system in the station, and
this objective is needed to satisfy other objectives like guiding passengers or
listing the nearest terminals that in turn is needed for buying a ticket.

6. Location-based behaviors evaluation: Based on some payoff functions, each
behavior in each location has to be evaluated. We need to model the criteria
for evaluating alternative behaviors in variable locations. E.g. when a rail-
way station provides both terminals and e-pay, the software has to decide
which one to adopt, and consequently which tasks to do. We need modeling
constructs for the criteria on which such kinds of decisions can be taken.

Location-based software is supposed to support mainly five features (hierar-
chically represented using feature model in Fig. 1):

– Location identification: Representing what exists, where the mobile user is,
according to a pre-defined location model, i.e. instantiating the location
model. E.g. software will receive railway station description and instanti-
ate a railway station model that reflects the current station.

– Location-based behavior adaptation: Having an objective, and knowing the
current location, the software will reason and select a possible, and even
recommended, behavior through which the user objective can be achieved.
Behaviors include operational tasks that are done by software, and non-
operational ones the software assists, or simply asks, user to do. To tailor a
location-based behavior, the software has to support features like:

– Location-based information processing:
1. Information request : Software enables users to request location-based in-

formation explicitly, e.g. enabling passengers to ask for the train schedule
in the current railway station. Other information requests are implicitly
made when location changes, e.g. when train is not in the time, certain
information has to be presented to passenger.

2. Relevant information extraction: Filtering what is relevant, and com-
posing useful information. E.g. when a train is late, but it is not the

Location-Based Software Modeling and Analysis: Tropos-Based Approach 173

Fig. 1. Feature model for location-based software

passenger train, the warning has not to be shown. Also, when a pas-
senger asks how to buy a ticket, and has only cash money that are not
accepted by the railway station terminals, the location-based software
will exclude terminals from the possible ways of buying a ticket.

3. Information delivery: Communicating information to the user in a right
way. E.g. notifying the passenger assistant has not to be done by voice
message when the assistant is using his/her PDA for a phone call. Also,
a demo about using terminals should be interactive, only when the pas-
senger has a good expertise in using PDAs.

– Acting on behalf of user : Location-based software will represent the user
when interacting with other location actors, both in requesting and answer-
ing requests, and in using resources available in a location. E.g. when the
passenger asks for a help, the help request will be prepared and sent on
behalf of the passenger, including the information needed by the passenger
assistant to decide how to accomplish the help.

– Personalization: Location-based software will behave differently with dif-
ferent users. Software considers user personality as one location mobility
dimension. E.g. when both wireless and wired connections are available in a
railway station, and the passenger prefers reliable connection, the software
will lead passenger to wired connection terminal, and when passenger wants
more easy connection, the software will configure wireless one.

3 Tropos for Location-Based Software

Our approach is based on Tropos methodology [13,14], which offers an agent-
oriented conceptual framework for modeling both the social environment and the
system-to-be. Tropos starts its software development life cycle with the early re-
quirements phase. In this phase, the organization (location at the social level)

174 R. Ali, F. Dalpiaz, and P. Giorgini

is modeled as a set of actors that strategically depend on each other for satis-
fying their objectives, then the rationale of satisfying each actor own objectives
is modeled. If we take the railway station scenario, the strategic dependency
between railway station actors with respect to the goal Ticket is Issued will be
as shown in Fig. 2. Tropos early requirement fits well to project the social struc-
ture of the location at a higher level as a set of actors and resources. Taking into
consideration a variable location, this phase will not be sufficient enough and we
will need to adapt it to deal with points such as:

Fig. 2. A strategic dependency model for the railway station scenario

1. Tropos modeling supposes the existence of all modeled actors (terminal, e-
pay, offices, passenger assistant), and this assumption will not hold when we
consider a variable location, i.e. location structure is not static.

2. Tropos modeling has to consider actors and resources profiles to deal with
several location modeling difficulties:
(a) Tropos modeling is not able to differentiate between availability levels

of actors and resources. In such modeling, all railway station terminals
are equally available, but it is more useful to consider a terminal, that is
close to the passenger, more available than a terminal which is far away.

(b) Dependencies between actors are not required or achievable in every
location, and we can not specify that using the rigid form of describing
actors and resources in Tropos modeling. Credit card info can be required
when Ticket Issuing System enables payment through credit cards, and
when the passenger’s credit card is compatible with the supported ones.

(c) When more than one actor is available to satisfy one objective, there is
no way to differentiate between them, and then to choose the best. If
we consider Terminal and E-Pay as two Ticket Issuing Systems without
considering their profiles and matching them with passenger profile, these
two ticket issuing systems can not be differentiated.

3. Tropos proceeds, in the next step of early requirements phase, to analyze the
rationale of Ticket Issuing System to satisfy Ticket is Issued goal, and that
is not what we always need. Ticket Issuing System already exists, and we do
not need to develop a software for it, rather for Passenger to deal with this
already functioning system.

Location-Based Software Modeling and Analysis: Tropos-Based Approach 175

In Tropos late requirements phase, the system-to-be is introduced as a new
actor that takes some responsibilities, already identified in the first phase, and
provides an automated solution. The rational of the system-to-be actor is repre-
sented by a goal model, starting with a high level goal and finding alternative sets
of behaviors that lead to the satisfaction of that goal. Considering location-based
software, the rationale of the system-to-be actor is to find suitable behavior for
each possible location. In our railway station scenario, the developed location-
based software will be for passengers, and passenger assistants as mobile actors.
It will work as an automated location expert that operates on the user’s com-
puting device, and knows both its user and its location social structure.

In a way different from Tropos late requirements, the system-to-be actor is
not necessarily assigned an objective that is recognized in the first phase, and
is mainly developed to assist users in the already functioning system that is
modeled in the first phase. In our example, two system-to-be actors need to be
introduced, one for passenger and another for passengers assistant. The rationale
of these two location-based software actors is partially shown in Fig. 3. On this
goal-oriented rationale model, that represents well the alternative behaviors of
location-based software, we can also highlight several remarks:

1. The system-to-be has, in particular, two characteristics:
(a) It is naturally decentralized, that is a location-based software will be as-

signed for each mobile actor that might also deal with another location-
based software assigned to other actors. In our example, we need two
location-based software actors, one for Passengers, and another for Pas-
senger Assistants.

(b) The responsibilities given to the system-to-be actors fall into the cate-
gories we have listed in Section 2, and the rationale analysis concerns
how to assist the mobile users in an already functioning system. For ex-
ample, passengers location-based software will choose the way that fits
to them and to the station when they need to buy tickets, and it will
interact with passengers assistants on behalf of the passengers for a help.

2. Tropos goal analysis supports different alternatives to satisfy the high level
goals. What we need is a kind of location-based goal analysis, that adds
location properties to each alternative specifying where it can be adopted.
For example, in Tropos goal analysis shown in Fig.3, we do not specify where
each of the possible alternatives for having a ticket can be adopted.

3. The contribution to softgoals can be location-based, and is not always static.
The relation between the contribution and the location is omitted in the
current Tropos goal model. For example, the goal Wireless Connection con-
tributes better to the softgoal Reliable Connection when the passenger is
close to wireless network access points, than it does when user is far from it.

4. The autonomous selection amongst alternatives, when more than one are
available, needs to be specified based on some criteria. For example, in a
railway station where offices are opened, terminals are available, and pas-
senger has the ability to adopt each of these alternatives, we need to specify
the decision to be taken.

176 R. Ali, F. Dalpiaz, and P. Giorgini

Fig. 3. System-to-be actors goal model for the railway station scenario

4 Location-Based Tropos

In the previous section we have addressed the potential and the limitation of
Tropos with regards to location-based software development. Early requirements
conceptualization, that concerns modeling location, is not sufficient enough to
model variable location and needs mainly to consider actors and resources pro-
files. We have shown the system-to-be, introduced in the late requirements, as
a set of location-based software actors that assist mobile actors to satisfy their
needs in a location. We have also addressed the gap between Tropos goal-oriented
rationale and location, since we need mainly to associate between the goal sat-
isfaction alternatives and the locations where they can be adopted.

When the analyst builds the goal model shown in Fig. 3, a specific assumption
about the location, where each of the alternatives can be adopted, could be
thought about but was not explicitly represented in the model. Here we discuss

Location-Based Software Modeling and Analysis: Tropos-Based Approach 177

five variation points on Tropos goal model that might need location properties
to take location-based decision:

1. Location-based Or-decomposition: Or-decomposition is the basic variability
construct; in current Tropos the choice of a specific Or-alternative is left to
the actor intention, without considering location properties that can inhibit
some alternatives. E.g. the alternative By Terminal can be adopted when a
terminal is free, has one language in common with the passenger, and sup-
ports the cash money -in both of the type (coins, papers) and the currency-
or one credit card the passenger has. The alternative E-Pay can be adopted
when there is a wireless network in the railway station and the passenger’s
PDA supports WiFi, or when there is a wired network with a cable-based
connection terminals and the passenger’s PDA has cable connectivity.

2. Location-based contribution to softgoals : The value of contributions to soft-
goals can vary from one location to another. E.g. the goal Interactive Demo
contributes positively to the softgoal User Comfort when the user has good
expertise in using PDAs, and the used PDA has a touch screen, while the
contribution is negative in the opposite case. Also, the goal Wireless Connec-
tion contribution to the softgoal Reliable Connection depends on the distance
between passenger and WiFi access point to which passenger is connected.

3. Location-based dependency: In some locations, an actor might be unable to
satisfy a goal using its own alternatives. In such case, the actor might delegate
this goal to another actor that is able to satisfy it. E.g. delegation of the goal
Establish E-Pay to the actor Railway Website can be done when that web
site enables e-payment using one credit card in common with user’s credit
cards, and has a mobile device version.

4. Location-based goal activation: An actor, and depending on the location set-
tings, might find necessary or possible triggering (or stopping) the desire of
satisfying a goal. E.g. the goal Assistant Makes Decision is activated when
the assistant is not doing any particular activity, has one language in com-
mon with the requesting passenger, and close to that passenger.

5. Location-based And-decomposition: A sub-goal might (or might not) be
needed in a certain location, that is some sub-goals are not always mandatory
to fulfill the top-level goal in And-decomposition. E.g. The goal Show Demo
has to be satisfied when the passenger is not familiar with using terminals.

The goal analysis of location-based Tropos associates location properties to
each location-based variation point. In addition, this analysis helps to refine the
initial location model represented in the first phase. If we consider the location
properties in the above examples, we can identify how the location model of
Fig.2 can be refined. The resulted location model of the railway station scenario,
with respect to the location properties given in the examples above, is shown in
Fig. 4. This model adds mainly actors and resources profiles, and also introduces
new resources and actors that can influence tailoring location-based behavior.

There are two top-level classes in the location model: actors and resources
(Res in the figure). The actor Passenger is characterized by some attributes:

178 R. Ali, F. Dalpiaz, and P. Giorgini

Fig. 4. Location model for the railway station scenario

spoken Languages (we put it as a single attribute to simplify the diagram),
Position in the railway station, and Expertise in using PDAs. The passenger
might have three relevant resources: PDA, Credit Card, and Cash Money. The
resource PDA is characterized by an attribute Screen Type, defining if the PDA
has a touch screen or not, and it has a Can Connect association to the Network
it can connect to. A network can be specialized into Cable NT and Wireless.
Cable NT stands for wired networks, and it is composed of a set of network
terminals (NT Terminals), characterized by a Status that can be free, busy,
under maintenance, out of service, and so on. Wireless network is composed of
several wireless access points (Access Point); an Access Point has the attributes
Position and Coverage Range, used together to compute if a customer is covered
by an access point signal. The actor Assistant has a Current Activity he/she
is performing, a Position in the railway station, and spoken Languages. The
assistant’s relevant resources include only the assistant’s used PDA. The actor
Railway Website has the attributes E Pay Supported, to indicate if e-payments
are supported, and Has Mob Device Version, set to true when the website can
be browsed by PDAs. The Credit Card resource class represents the types of
credit cards passenger might use, and terminals and railway station website
might support. The actor Terminal might support multiple Languages, be in a
variable Status, and support Credit Card or Cash Money payment.

We describe now our proposed location-based Tropos process that leads the
production of our proposed models. We start by (i) modeling the social struc-
ture of a location class, before introducing the system to-be, using a strategic
dependency diagram. In this step, we identify roughly the main location actors

Location-Based Software Modeling and Analysis: Tropos-Based Approach 179

Fig. 5. A metamodel showing the proposed extension of Tropos

and the strategic dependencies between them. Then (ii), this diagram is exam-
ined to determine a set of mobile actors, i.e. actors who need location-based
software to assist them in the considered class of locations. The next step is to
(iii) assign a system-to-be actor to each mobile actor, and to model the rationale
of these system-to-be actors, using goal analysis. While doing the goal analysis,
system analyst (iv) decides those location-based variation points, and specifies
the location properties at each of them to help selecting between alternatives.
Location properties refine the location model, that consists initially of the ac-
tors and resources recognized in the first step. System analyst (v) will extract
new location model constructs (actors or resources properties and relations, new
resources or actors) that each location property at each location-based variation
point might contain, and keep updating the location model.

By following our proposed location-based Tropos process, we will have three
models: the first is the classical Tropos strategic dependencies model, the second
represents the location-based rationale of the system-to-be actors (Fig. 3 asso-
ciated with location properties at the location-based variation points), and the
third is the elicited location model (the model of Fig. 4). The metamodel of our
proposed extension of Tropos modeling is shown in Fig.5.

5 Reasoning on Location-Based Models

We propose various types of analysis for examining location-based software
against a specific location, and vice versa. A preliminary step consists of evalu-
ating the validity of location properties at the variation points of the goal model
on the current location instance. This step can be done automatically using an

180 R. Ali, F. Dalpiaz, and P. Giorgini

automated solver after formalizing the location and location-based goal models.
In [16], we used class diagram to represent location, and we formalized it besides
the location properties using Datalog¬. We used DLV solver to do the reasoning.
Here we discuss several kinds of automated analysis on our proposed models:

– Location-based goal satisfiability: This kind of analysis is aimed to verify if
a goal is achievable through one alternative in the current location instance.
The analysis can be performed using the goal reasoning algorithm proposed
by Giorgini et al. [17] on the goal model restricted by the evaluation of the
location properties. A strategy for evaluating satisfiability follows a top-down
approach: starting from a top-level goal, we should check that all (at least
one) sub-goals in and- (or-) decompositions can be achieved, or that the top-
level goal can be achieved via a makes (+1.0) contribution from an achievable
goal. For example, in a railway station where there is no positioning system,
offices are closed because of vacation, there is a kind of network compatible
with the passenger’s PDA connectivity, and the railway company website
supports one of the passenger’s credit cards for e-pay, the algorithm will
mark the root goal “Ticket is Issued” as a satisfiable goal. The algorithm
finds the alternative E-Pay satisfiable, because of the satisfiability of its
two And-decomposition subgoals. The alternative By Terminal can not be
satisfied due to the absence of any positioning system, and therefore the
unsatisfiability of its and-decomposition subgoal Lead to Terminal that can
not be satisfied by any of its alternatives in its turn. The alternative By
Offices can not be adopted, because it requires a location property Offices
are working, to be satisfied.

– Location properties satisfiability: This analysis checks if the current loca-
tion structure is compliant with the software goals. It is exploited to identify
what is missing in a particular location where some top-level goals have been
identified as unsatisfiable by location-based goal satisfiability analysis. When
a goal can not be satisfied, the analysis will identify the denying conditions
and suggest ways for solving the problem. For example, in a railway station
while passengers have PDAs with only wired connectivity feature, while rail-
way station does not provide cable-based connection terminals, the previous
analysis will mark Configure Connection as unsatisfiable goal. The reason is
that location properties on each of the two connection modalities, wireless
and wired, are not satisfied. Location properties satisfiability will reason on
what is needed to satisfy the Configure Connection goal, i.e. what is needed
to satisfy location properties on its alternative behaviors.

– Preferences analysis: This type of analysis requires the specification of pref-
erences over alternatives. As shown in [18], preferences can be specified using
softgoals. This analysis is useful in cases like:

• When some locations allow for several alternatives to satisfy a goal: The
selection will be based on the contributions (possibly location-based)
to the preferred softgoals. For example, in a railway station where both
Wireless Connection and Wired Connection can be satisfied,

Location-Based Software Modeling and Analysis: Tropos-Based Approach 181

location-based software will adopt the one preferred by its users. User
preferences can be specified over softgoals: when user gives more impor-
tance to Reliable Connection than Easy Connection, the Wired Connec-
tion alternative will be adopted, while Wireless Connection is adopted
when user cares Easy Connection more than Reliable Connection.

• When a certain location does not allow for any alternative to satisfy a
goal: The location properties satisfiability might provide several proposals
about the needed location modifications. The adopted modifications are
those that lead to satisfy more the preferences expressed over softgoals.
For example, in one railway station where Configure Connection can
not be satisfied due to the absence of wireless network, or cable based
terminals, the railway adminstration has to decide between establishing
wireless or wired network. When the railway station adminstration cares
more Reliable Connection, a wired network terminals has to be installed
over the station, while wireless access points will be installed when Easy
Connection is more preferred.

6 Conclusions and Future Work

In this paper, we have shown the particularity and importance of modeling
location variability for location-based software, and addressed some challenges
the conceptual modeling faces with this regards. We classified several features
location-based software in particular has to support. To develop location-based
software we relied on Tropos methodology, and have shown its potential and
limitation for developing such software. We have suggested to modify the con-
ceptualization and the process of Tropos to fit well with location-based software
development. We have shown three kinds of automated analysis on our pro-
posed location-based models. In this work, we have considered the social level of
a location class as a set of profiled actors and resources; our future work will be
towards refining this modeling by finding a set of common concepts that can con-
struct more specifically actors and resources profiles and relations. Consequently,
we will also need a formal language that is expressive enough to represent the
location-based models, and practical for the needed automated analysis.

Acknowledgement

This work has been partially funded by EU Commission, through the SEREN-
ITY project, by MIUR, through the MEnSA project (PRIN 2006), and by the
Provincial Authority of Trentino, through the STAMPS project.

References

1. Krogstie, J., Lyytinen, K., Opdahl, A., Pernici, B., Siau, K., Smolander, K.: Re-
search areas and challenges for mobile information systems. International Journal
of Mobile Communications 2(3), 220–234 (2004)

182 R. Ali, F. Dalpiaz, and P. Giorgini

2. Weiser, M.: The Computer for the Twenty-First Century. Scientific Ameri-
can 265(3), 94–104 (1991)

3. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile information
systems. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp.
575–578. Springer, Heidelberg (2008)

4. Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive com-
puting. In: Proc. Fourth IEEE Workshop on Software Technologies for Future Em-
bedded and Ubiquitous Systems (SEUS 2006), pp. 5–10 (2006)

5. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: Proc. Second IEEE Intl. Conference on Pervasive Com-
puting and Communications (PerCom 2004), p. 77 (2004)

6. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling
and reasoning using owl. In: Proc. Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, pp. 18–22 (2004)

7. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in
context. In: Proc. 15th Intl. Conference on Requirements Engineering (RE 2007),
pp. 211–220 (2007)

8. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer, Heidelberg (2005)

9. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Ann. Softw. Eng. 5,
143–168 (1998)

10. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design
of autonomic application software. In: Proc. 2006 conference of the Center for
Advanced Studies on Collaborative research (CASCON 2006), p. 7. ACM, New
York (2006)

11. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based vari-
ability acquisition and analysis. In: Proc. 14th IEEE Intl. Requirements Engineer-
ing Conference (RE 2006), pp. 76–85 (2006)

12. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sci. Comput. Program. 20(1-2), 3–50 (1993)

13. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

14. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis,
University of Toronto (1995)

15. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-oriented require-
ments analysis. Commun. ACM 42(1), 31–37 (1999)

16. Ali, R., Dalpiaz, F., Giorgini, P.: Modeling and analyzing variability for mobile
information systems. In: Gervasi, O., Murgante, B., Laganá, A., Taniar, D., Mun,
Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part II. LNCS, vol. 5073, pp. 291–306.
Springer, Heidelberg (2008)

17. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal
models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 167–181. Springer, Heidelberg (2002)

18. Liaskos, S., McIlraith, S., Mylopoulos, J.: Representing and reasoning with prefer-
ence requirements using goals. Technical report, Dept. of Computer Science, Uni-
versity of Toronto (2006), ftp://ftp.cs.toronto.edu/pub/reports/csrg/542

ftp://ftp.cs.toronto.edu/pub/reports/csrg/542

Risk Evaluation for Personal Identity Management
Based on Privacy Attribute Ontology

Mizuho Iwaihara1, Kohei Murakami1, Gail-Joon Ahn2,
and Masatoshi Yoshikawa1

1 Department of Social Informatics, Kyoto University, Japan
kmurakami@db.soc.i.kyoto-u.ac.jp, iwaihara@i.kyoto-u.ac.jp,

yoshikawa@i.kyoto-u.ac.jp
2 Department of Computer Science and Engineering, Arizona State University, USA

gahn@asu.edu

Abstract. Identity providers are becoming popular for distributed authentica-
tion and distributed identity management. Users’ privacy attributes are stored at
an identity provider and they are released to a service provider upon user’s con-
sent. Since a broad range of privacy information of different sensitiveness can be
exchanged in advanced web services, it is necessary to assist users by presenting
potential risk on financial and personality damage, before releasing privacy at-
tributes. In this paper, we present a model of privacy attribute ontology and risk
evaluation method on this ontology. Then we formalize several matching prob-
lems which optimize similarity scores of matching solutions under several differ-
ent types of risk constraints. We show sophisticated polynomial-time algorithms
for solving these optimization problems.

1 Introduction

A wide variety of new services are created on the web, by connecting existing web
services. To carry out services and/or businesses with their customers, many of service
providers (SP) require basic personal information of customers, such as name, address,
phone number, as well as more critical information such as credit card number. Identity
providers (IdPs) offer identity management functionalities, including user authentica-
tion and management of basic personal information. Since basic information such as
name and email/postal addresses are frequently asked, provisioning of these informa-
tion from IdP to SP through the user’s one-click action can save the user’s workload.
Liberty Alliance[10], OpenID[11] and CardSpace[1] are proposed identity management
standards which provide single sign-on and trust management. However, in these stan-
dards, users are still required to carefully examine requested attributes for sensitiveness
and criticality. Then users select appropriate identities to be used for the request, where
excessive exposure of identities and attributes should be avoided by users’ discretion.

Web services are rapidly evolving to cover every kind of social activities among
people, and categories of personal attributes are also growing beyond basic attributes.
Social network services are offering exchange of very personal attributes such as such
as age, ethnicity, religion, height and eye color. For example, orkut(www.orkut.com)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 183–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 M. Iwaihara et al.

has an registration form having 30 attributes for “social” page, 16 attributes for “profes-
sional” page, and 15 attributes for “personal” page. User-centric control of sharing of
personal information is required for healthy support of social activities, and an identity
provider of the near future should assist the user through categorization and evaluation
of attributes from the point of criticality and sensitiveness.

In this paper, we propose the concept of privacy attribute ontology (PAO), built on
the OWL web ontology language[12]. One of primal objectives of PAO is to provide a
taxonomy of privacy attributes. Each class of PAO corresponds to a sensitive attribute
or an identity, and an individual of the class corresponds to a value of the attribute.
IdP manages a PAO as a shared ontology among users as well as a personal informa-
tion database for each user. Also PAO provides risk evaluation functionality through
financial and personality risk values defined on PAO classes. When a service provider
presents a list of requested attributes, IdP matches the list with PAO classes, and then the
risk values of the requested attributes are evaluated from matched classes. Here we have
a number of issues to be solved. First, we need to design a matching algorithm that max-
imizes linguistic/structural similarities between PAO classes and requested attributes.
Secondly, the algorithm also needs to consider risk constraints such that matched classes
must not exceed given upper limits of risk values. The algorithm should select a low-
risk combination of identities and attributes associated to these identities, covering re-
quested attributes. In this optimization, we need to consider combination risks which
arise if a certain combination of classes is selected for release.

The contribution of this paper is summarized as follows: (1) We present a model of
privacy attribute ontology and risk evaluation method on this ontology. (2) We formal-
ize matching problems which optimize similarity scores of matching solutions under
three different types of risk constraints. (3) We show sophisticated polynomial-time
algorithms for solving the optimization problems of (2).

P3P (Platform for Privacy Preferences Project) [14] is a standard for describing and
exchanging privacy policies in XML format. While P3P is targeted at interpreting privacy
practices of service providers, our research is focused on identity providers and users for
managing linkages between privacy attributes and identities of different aspects.

Developing ontologies for privacy and trust management on the web has been dis-
cussed in the literature[4][5][7]. Our research is different in the way that we focus on
risk evaluation for attribute disclosure and selecting disclosing attribute values (individ-
uals) that have minimum risk values. Utilizing semantic web technologies for security
and trust management on the web is discussed in [4], which covers authentication, dele-
gation, and access control in a decentralized environment. But an ontology for assessing
privacy risk values is not considered.

Matching and aligning ontologies have been extensively studied for integrating
ontologies. As a linguistic approach, OntoGenie[13] uses WordNet[16] for extracting
ontologies from web pages. Structural similarity is considered in [9] for neural network-
based schema matching. Udrea et al.[15] combined data and structural matching as well
as logical inference to improve quality. Our algorithms utilize these linguistic and struc-
tural approaches. But we need to deal with the new problem of considering risk values
during matching. We have successfully solved ontology matching under various types
of risk constraints.

Risk Evaluation for Personal Identity Management 185

The rest of the paper is organized as follows. In Section 2, we introduce an existing
risk evaluation method for privacy information, and discuss automated risk evaluation
based on privacy attribute ontology. In Section 3, we formalize privacy attribute on-
tology. In Section 4, we discuss matching requested attributes with PAO classes, and
define optimization problems under certain risk constraints. In Section 5, we discuss
several issues that need to be solved, and present polynomial-time algorithms for the
optimization problems. Section 6 is a conclusion.

2 Risk Evaluation for Personal Identity Management

2.1 JNSA Privacy Risk Evaluation

Service providers holding customer’s privacy data are having risk of privacy leakage.
Several measures for evaluating risk of privacy leakage have been proposed. Japan
Network Security Association (JNSA) published surveys on information security in-
cidents[6]. The report also presents a method for estimating amount of compensation
if a certain portion of privacy data are leaked. The JNSA model is based on classifying
reported cases from court decisions and settlements, and the model was validated on
these cases. Its evaluation proceeds as follows:

The value of leaked privacy data of an individuation is evaluated in terms of (a) eco-
nomical loss and (b) emotional pain. The Simple-EP Diagram contains representative
privacy attributes according to the dimensions of (a) and (b). Given an attribute, an inte-
ger from 1 to 3 is chosen as the value for each dimension. Let x (resp. y) be the value for
(a) economical loss (resp. (b) emotional loss). Then the sensitiveness factor is defined
as EP = (10x−1 + 5y−1).

Given a collection of privacy attributes for an individual, we take maximum values
for x and y from the Simple-EP Diagram. Suppose a record of an individual consists
of the attributes: real name, address, birth date, sex, phone, medical diagnosis, bank
account and password. Then by the Simple-EP Diagram, the value (x, y) is equal to
(1, 1) for real name, address, birth date, sex, and phone. On the other hand (x, y) is
equal to (2, 1) for medical diagnosis, and (1, 3) for bank account and password. Since
the maximum value for x is 2 and the maximum value for y is 3, we obtain EP = 35.

Let the basic information value BIV be 500 points, and let the identifiability fac-
tor IF be defined as: IF = 6 if the individual can be easily identified (for exam-
ple, real name and address are included), IF = 3 if the individual can be identi-
fied by a certain effort (for example, real name is included, or address and phone
are included), and IF = 1 otherwise (for the case identification is difficult). The
leaked privacy information value LPIV is computed by: LPIV = BIV ∗ EP ∗ IF.
LPIV is designed to approximate the amount of compensation in Japanese yen paid to
each leakage victim. The LPIV is further adjusted to reflect other factors such as the
social status of the information holder and evaluation on the response after the incident.
However, these factors are not directly related to our goal.

The JNSA risk evaluation model can be a basis of risk evaluation for risk-aware iden-
tity management, from the points that the model can capture the emotional and finan-
cial losses according to a classification of privacy attributes, and it enables quantitative

186 M. Iwaihara et al.

comparison of the risks between attributes. However, the method requires human rea-
soning in determining values from the diagram.

2.2 Risk Evaluation at Identity Provider

The basic scenario of personal information management by an identity provider (IdP)
utilizing PAO proceeds as follows:

1. IdP manages and holds personal information of the user.
2. The user requests execution of a service to the service provider (SP). SP sends to

IdP requested attributes RA necessary for the service.RA includes basic identity
information as well as privacy attributes of the user.

3. IdP matches attributes of RA with classes of PAO, to compute releasing classes
RC. In the matching process, IdP evaluates risks of releasing information held in
RC, and IdP tries to findRC which has maximum conceptual similarities withRA,
whileRC satisfies a certain risk constraint imposed by the user.

4. RC is presented to the user. The user modifies and supplements RC if necessary.
Some requested attributes A may not be included in RC, because either A’s risk
is intolerable to the user or the user has declined release of of A. After SP and the
user agree onRC, the information onRC is sent from IdP to SP.

IdP manages a number of identities of the user, such as student ID, a number of
email addresses, citizenship, net identities used for blogs and social network services.
Some of these identities are anonymous, while others have solid identities. One identity
is associated with a number of attributes, as well as other identities. In selecting RC,
IdP needs to find low-risk combination of attributes and avoid linking of identities if it
is prohibited by the user.

2.3 Risk Evaluation Using Privacy Attribute Ontology

In the following, we summarize the basic notions of our risk evaluation method utilizing
PAO.

Risk value is a numerical scale of 1 to 5 representing severity of the risk, where 1 is least
severe and 5 is most severe. Risk values are categorized into financial and personality
risk values. PAO holds risk values in its classes. However, some classes may not have
risk values defined. If a risk value of C is undefined, then the risk value is inherited
from C’s super classes. If a class C is in the releasing class RC, then the risk values of
C become effective. The risk value of releasing classes RC is the maximum effective
risk value in the classes ofRC.

Financial risk value (f-risk value for short) is a risk value for financial damage to the
information subject (user). Credit card number, bank account number, and social secu-
rity number should have high financial risk values. We use rf (·) to denote the financial
risk value function on various constructs such as class C and releasing classes RC.

Personality risk value (p-risk value for short) is a risk value for personality damage
to the user, including emotional pain, damage to social reputation, and generic damage
caused by privacy breach. We use rp(·) to denote the personality risk value function.

Risk Evaluation for Personal Identity Management 187

Combined risk value rc(RC) combines f-risk and p-risk values by the function
rc(RC) = cr(rf (RC), rp(RC)) such that cr(x, y) = c1 log(Fx + Py) + c2, where
the risk values x and y are converted into an exponential scale by the exponential func-
tions of basesF andP , and the average of these values are converted back to risk values
by the logarithmic function. The bases F and P assign weights between the financial
and personality risk values, and we can choose F = 10 and P = 5 following the JNSA
model. Constants c1 and c2 shall be determined to let cr(x, y) have a range between 1
and 5.

Combination risk is a risk arising from combination of attributes. Some privacy at-
tributes, such as age and income, may be disclosed under an anonymous username, but
combining these attributes with the real name raises the risk of privacy breach. Thus the
user should be notified of such high risk combination. Also, the user holding a num-
ber of identities at IdP can choose one identity or a combination of identities to cover
requested attributes. In this scenario, the user should be advised of the risk in linking
several identities. For modeling combination risks, we need to introduce combination
risk classes to PAO.

Risk limit is a given upper limit on f-risk, p-risk or combined risk values. If the user
gives his/her tolerable risk limit, then disclosing attributes should not exceed the limit.
Here exists an optimization problem for finding most-similar matching between the
PAO classes and requested attributes, while satisfying the risk limit. Trustability of ser-
vice providers can be reflected to risk limits, in a way that when dealing with a ques-
tionable service provider, the user can define a lower, more cautious risk limit. Detailed
linkage between risk limits and existing trustability models is beyond the scope of the
paper.

3 Modeling Privacy Attribute Ontology

In this section, we formalize privacy attribute ontology. We follow the definitions of
OWL[12] as the underlying ontology model. A class represents a concept. A class is
associated with zero or more individuals belonging to that class. An ontology can be
represented as a directed graph, where nodes are labeled with a class name or an in-
dividual, and directed edges are labeled with link types. A link labeled type from an
individual to a class represents the membership relation between the individual and the
class. A link labeled subClassOf from class C1 to class C2 indicates that C1 is a
subclass of C2 meaning that C1 is a concept more specific than C2 and an individual
belonging to C2 also belongs to C1. A link labeled partOf from class C1 to class C2

indicates that C2 is a composite class composed of a number of component classes, in-
cluding C1. Formally, if a class C1 is connected to a class C2 through a directed path of
partOf and subClassOf links, then C1 is a component class of C2. partOf links
are not allowed to form a directed cycle. We define composite attributes for requested
attributes, similarly to composite classes.

PAO has two special link types namedfinancialRisk andpersonalityRisk,
representing the financial risk value rf(C) and and personality risk value rf(C) of a class

188 M. Iwaihara et al.

Fig. 1. Privacy attribute ontology

C, leading to individuals of real numbers in the range [1.0, 5.0]. An example of privacy
attribute ontology is shown in Figure 1, where risk values are shown as numbers of the
form rf : rp. Also, composite classes are depicted as black circles.

In PAO, we assume that each individual belongs to a single class. For an individual i
belonging to multiple classes, we can insert a virtual class between i and these classes,
to satisfy the single-class restriction. Thus this is not a tight restriction. Also, if some
risk values need to be defined on particular individuals, we create a class for such an
individual, and let all the risk values be defined on classes.

As discussed in Section 2.3, we introduce a combination risk class, which is a com-
posite class connected by partOf links from its component classes. In Figure 1, com-
bination risk classes are depicted as double circles. The risk value of a combination
risk class is applied if all of its component classes are selected for release. For exam-
ple, the class rn&bn represents that if real name and blog name are going to
be released, then its risk values 2:5 will be applied. These values are higher than that
of classes real name and blog name alone, indicating that combination of these
classes increase the risk values, or it can be interpreted that the user is not allowing
linking of these identities. Thus a combination risk class should have f-risk and p-risk
values no less than that of its component classes.

PAO can be shared by a group of users so that the users’ common knowledge on
risks can be reflected. However, each user may have different views on privacy, and
individuals in the ontology are also user-dependent. Thus personalization of PAO is
necessary. Personalization of PAO can be done by the following ways: (a) overriding
financial and/or personality risk values of a class, (b) adding individuals to a class, and
(c) adding a class as a subclass of an existing class. Sharing and personalization of PAO
is beyond the scope of this paper, so we do not elaborate on this direction any further.

4 Matching PAO and Requested Attributes

4.1 Matching Problems

Now we discuss evaluating risk of a set RA of requested attributes sent by a service
provider, utilizing PAO. Then using the risk evaluation method, we consider optimiza-
tion problems to find an optimum combination of releasing individuals that achieves
given risk constraints.

For associating individuals of PAO and requested attributes RA, we consider the
following two-staged approach: First find a bipartite matching between classes of PAO

Risk Evaluation for Personal Identity Management 189

andRA, then choose an individual from each class selected by the matching. A bipartite
matching finds a one-to-one mapping between classes andRA. Since we assumed that
each individual belongs to a single class, this process is straightforward.

We introduce similarity score σ(C, A) ≥ 0 on a PAO class C and a requested at-
tribute A ∈ RA. When σ(C, A) > β holds for a given lower threshold β, C and A are
regarded as distinct concepts. We discuss construction of σ by linguistic similarities in
Section 4.2. We construct a matching graph Gσ,β = (C,RA, E) which is a bipartite
graph such that C is the set of classes in PAO, RA is the set of requested attributes,
and E is the set of edges (Ci, Aj) such that Cj ∈ C, Aj ∈ RA, and σ(C, A) > β
is true. We also use the similarity function σ for edge weights of the bipartite graph
Gσ,β(C,RA, E). The weighted bipartite matching problem can be solved in O(N3)
time by the Hungarian method [8], where N is the number of nodes in Gσ,β . A match-
ing M on bipartite graph Gσ,β = (C,RA, E) is a bipartite subgraph (CM ,RAM , EM)
such that CCM ⊆ C, RA ⊆ RAM , EM ⊆ E, and no edge in EM conflicts each
other, that is, any two edges in EM are not adjacent at either end. Let σ(M) denote the
sum of the edge weights of EM . A matching M on Gσ,β is a maximum matching if
σ(M) ≥ σ(M ′) holds for any matching M ′ on Gσ,β .

Figure 2 shows an example of matching graphs. The nodes on the left are classes of
PAO, and the nodes on the right are requested attributes. Here, ’+’ sign means a com-
posite class or attribute, and ’-’ sign means a component class or attribute. Edge weights
are not displayed in the graph. A matching is shown as bold edges in Figure 2. Notice
that this matching includes edges (email, e-mail) and (address, address).
These associations may appear reasonable, but unacceptable because structural integrity
is ignored. The email class of PAO is a component of class blog account, while
address of PAO is a component of class shopping. These composite classes rep-
resent distinct identities, and component classes should not be intermixed. Intuitively,
a proper matching should preserve component-composite relationships. In Section 5.1,
we discuss this component integrity and present a solution. We note that combination
risk classes should be excluded from matching candidates, because they are just for
internally defining combinational risk values.

Recall that the combined risk value is determined by maximum f-risk value rf and p-
risk value rp found in releasing classes. In a matching M = (CM ,RAM , EM), the set
of matched classes CM is the releasing classes. Let rf (M) and rp(M) be the maximum
f-risk and p-risk values in M , respectively. Then the combined risk value rc(M) is
computed by cr(rf (M), rp(M)).

Requested attributes RA may not have any matchable class in C. Such a dangling
attribute can be reported by the matching algorithm. In this case, the system needs to
start a dialog with the user to create a new class in PAO for the attribute.

By using predefined parameters on risk limits and similarity score limits, a number
of optimization problems can be defined:

1. (similarity score maximization) Tolerable upper risk limits mf and mp are given
by the user, where mf > 0 and mp > 0 are maximum f-risk value and maximum
p-risk value, respectively. The optimization problem is to find a matching M such
that similarity score σ(M) is maximum and rc(M) ≤ cr(mf , mp) holds. The user
may specify mf = ∞ and/or mp = ∞ if he/she does not restrict one or both of

190 M. Iwaihara et al.

Fig. 2. Matching graph Fig. 3. Augmented matching graph

the risk values. Another version of the problem is similarity score maximization
under combined-risk limit mc, which is to find a maximum matching under the
constraint rc(M) ≤ mc. In this case, we need to test varying combinations of mf

and mp that satisfy cr(mf , mp) ≤ mc.
2. (risk minimization) This problem assumes that a lowerbound wmin for the total

similarity score is given. The problem is to find a matching M such that σ(M) >
wmin and the combined risk value rc(M) is minimum.

3. (combined score maximization) Let sc(M) be combined total score defined by
sc(M) = σ(M)/rc(M). The problem is to find a matching M that maximizes
sc(M). Unlike others, this problem does not have a predefined parameter.

Since specifying all the risk values is tedious, it is likely that some classes or individ-
uals may not be given risk values in PAO. For this issue, we utilize subClassOf links of
PAO for inferring risk values, based on the principle that a subclass inherits a missing
property value from its parent. Here we also adopt the principle of taking the highest
possible risk value, for conservative risk estimation.

(subClassOf rule) Let C be a class in PAO such that rf (C) is undefined. Let C1, . . . ,
Ck be classes in PAO such that there is a path Si of subClassOf links from C to
each Ci and Ci is the only class in Pi where rf (Ci) is defined. Then let rf (C) :=
max(rf (C1), . . . , rf (Ck)). For the case rp(C) is undefined, simply replace rf with rp.

Applying the subClassOf rule to every class that has an undefined risk value gives us
a unique PAO that has no undefined risk value, and this procedure can be done in linear
time.

4.2 Linguistic Similarity

We use Jaro-Winkler score[2] for string similarity and WordNet similarity [16] for score
on synonymity. Jaro-Winkler is effective for matching pairs having common substrings,
such as between e-mail, email, Email and netmail. WordNet is a lexical dictionary,
where words are ground into synonyms (synsets), each synset expressing a distinct
concept. WordNet similarity is measured by conceptual-semantic and lexical relations
between synsets. We use the sum of Jaro-Winkler score and WordNet score as the sim-
ilarity score σ between PAO classes andRA.

Risk Evaluation for Personal Identity Management 191

Table 1 shows an experimental result on matching names of PAO classes and at-
tributes from web sign-up forms. We constructed a PAO containing 186 classes. The
class names of this PAO are matched with two attribute sets from web sign-up forms
of eBay and PayPal, using the above similarity score σ. Case 2 is matches detected
by string similarity, which included pair “Primary telephone number” and “Primary
telephone”. Case 3 is matches detected by synonymity, which included pair “Secret
Question” and “Security Question”. Overall, the similarity score σ is showing enough
accuracy for matching requested attributes with PAO.

Table 1. Linguistic matching result on PAO having 186 classes

eBay PayPal
case total attributes 17 23

1 string match with PAO classes 7 15
2 attributes matched by string similarity(Jaro-

Winkler)
3/3 6/6

3 attributes matched by synonymity score (Word-
Net) (Excluding case 2)

3/5 1/2

4 attributes having no matching class in PAO 2 0
(detected matches)/(correct matches)

5 Matching Algorithms

5.1 Component Integrity and Two-Level Matching

First we formalize component integrity, and present a matching algorithm that achieves
a certain type of component integrity while maximizing similarity score. At this mo-
ment, we assume that mf = ∞ and mp = ∞ hold, namely no constraint is given on
risk values. We also assume that the PAO has no combination risk class. We extend the
algorithm later in this section.

(component integrity) Let us consider a matching M between PAO classes C and re-
quested attributes RA. A matching M is said to satisfy component integrity, if the
following holds: Let (C, A) and (D, B) be any pair of edges in M such that C, D ∈ C
and A, B ∈ RA. Then C is a component class of D if and only if A is a component
attribute of B.

Note that PAO can have a multi-level component class, i.e., a composite class can
be a component class of another class. PAO can also include a component class shared
by multiple composite classes. In such a DAG-structured PAO, imposing the above
component integrity becomes a hard problem:

Theorem 1. Given a bipartite graph Gσ,β = (C,RA, E) and a minimum weight w,
deciding whether Gσ,β has a matching M having weight σ(M) > w and satisfying
component integrity is NP-complete.

Proof. (sketch) Transformation from SET PACKING[3].

192 M. Iwaihara et al.

Thus it is intractable to enforce the above composite integrity. Also this integrity does
not consider link connectivities. In object-oriented modeling, link connectivities are
often used to add different perspectives to a class. For example, consider the follow-
ing subgraphs containing the class email in Figure 1: email → blog account, email →
shopping, and email. Note that the last subgraph is a singleton node. These subgraphs
represent e-mail of the blog account, email of the shopping identity, and emails of the
person, respectively. Thus each subgraph is representing a different concept.

Now let us consider the following multi-level nesting of composite classes for match-
ing: A class C is a level-k component class of D if (1) for k = 1, C is a component
class of D, and (2) for k > 1, C is a component class of a level-(k − 1) component
class of D.

We can adopt the interpretation such that for each different k, each path from a
composite class to its level-k component class represents a distinct concept. To treat
these paths as distinct concepts in matching, new nodes shall be created for each path
for varying k. However, since PAO can have shared component classes, the number of
such paths can be exponential to k. Thus considering all the paths to level-k compo-
nent classes as matching candidates is impractical. In the following, we resrict level
k to be 1, and augment the matching graph Gσ,β with new nodes representing pairs
of composite classes and their level-1 component classes. For each composite class D
and component class C, we create a new node labeled with the concatenation D.C.
Likewise, we create a new node labeled with the concatenation B.A for composite
attribute B and composite attribute A. Formally, let Ga

σ,β = (Ca,RAa, Ea) be the bi-
partite such that Ca = C ∪ {D.C |D, C ∈ C, C is a component class of D} , RAa =
RA ∪ {B.A |B, A ∈ RA, A is a component attribute of B}. The edge set Ea is ob-
tained by adding edge (D.C, B.A) to E for each new class D.C and new attribute
B.A satisfying σ(D.C, B.A) > β, and removing edge (C, A) from E where C and
A are component class and attributes, respectively. Here we remove the edge (C, A)
because it will be represented by the new component-level edge (D.C, B.A). We call
Ga

σ,β a composite-augmented graph. Also, we call a bipartite matching Ma on Ga
σ,β an

augmented matching.
For a class C shared by composite classes D1, . . . , Dm in Gσ,β , Ga

σ,β has duplicated
nodes C, D1.C, . . . , Dm.C. Thus an augmented matching Ma can include one or more
nodes from C, D1.C, . . . , Dm.C in its edges. The following realizes integrity of level-1
component classes in augmented matching:

(augmented component integrity) An augmented matching Ma is said to satisfy aug-
mented component integrity, if the following holds: Let (D.C, B.A) and (D1, B1)
be any pair of edges in Ma such that D1, C1 ∈ C, D.C ∈ Ca, A, B ∈ RA, and
B.A ∈ RAa. Then D1 = D holds if and only if B1 = B holds.

To satisfy augmented component integrity, we divide the matching of PAO and RA
into two phases: First, we take each composite class D and each composite attribute
B and solve matching between the component classes and attributes of D and C,
and then augment the (linguistic) similarity score σ(D, B) with the matching score
(component-level matching). Secondly, we solve matching between the component
classes and component attributes using the augmented scores (composite-level match-
ing). The matching algorithm PAOMatch is shown in Figure 4.

Risk Evaluation for Personal Identity Management 193

1. For each class D in C and for each attribute B in RA, compute augmented score
σa(D, B) as follows:

1.1 If either D or B is not a composite class/attribute, then let σa(D, B) = σ(D, B)
and goto Step 1.

1.2 /* Now D is a composite class and B is a composite attribute. */
Let Ci (i = 1, . . . , k) be the component classes of D. Let Aj (j = 1, . . . , m) be
the component attributes of B.

1.3 Let GDB be the bipartite graph such that its two node sets are {D.Ci} and
{B.Aj}, respectively, and each edge (D.Ci, B.Aj) has augmented weight
σa(D.Ci, B.Aj). If σa(D.Ci, B.Aj) is undefined for some i and j, then recur-
sively apply Step 1.1-1.4 to obtain σa(D.Ci, B.Aj).

1.4 Solve weighted bipartite matching on GDB to obtain matching MDB and its total
maximum weight wDB . Let σa(D, B) = σ(D, B) + λ · wDB . Here, 0 < λ < 1
is a pre-defined damping factor.

2. /* Now σa(D, B) is defined for each D and B. Note that Gσa,β does not include
augmented nodes. */
Solve weighted bipartite matching on Gσa,β , where edge weight σ is replaced by
σa, and obtain matching M .

3. Construct solution matching Ma as follows: For each matching edge (D, B) in M ,
add the matching MDB obtained at Step 1.3 to M .

Fig. 4. PAOMatch: Two-phased structural matching

Step 1 of PAOMatch computes maximum matching for each component class-
attribute pair. Then the resulting weight wDB is added to the linguistic similarity score
σ(D, B), to reflect structural similarity of the components of D and B (Step 1.4). Here,
damping factor 0 < λ < 1 is introduced to reflect the nesting level of component hi-
erarchy. A component class or attribute far from its composite root will have a reduced
influence to the score.

After solving maximum matching for each composite class and each composite at-
tribute, the top-level matching is carried out (Step 2). Here, we use Ga

σ,β to exclude
component classes and component attributes, since component-level matching is al-
ready done at Step 1.

Figure 3 shows application of PAOMatch. Gray nodes are augmented nodes created for
each component class/attribute at Step 1.3 of PAOMatch. At Step 1.4, Component-level
matching is done between the augmented nodes of composite classes{blogaccount,
shopping} and attribute{contact}. Using the scores of these matchings, composite-
level matching is carried out (Step 2). In Figure 3, edge (blogaccount,contact) is
chosen as one of the four composite-level edges. Thus edges (blogaccount.email,
contact.e-mail) and (blog account.country, contact.country) are
added at Step 3, as the result of component-level matching. On the hand, although
component-level edges (shopping.email, contact.e-mail), (shopping.
address, contact.address) are matched at component-level matching, they are
eventually discarded because their parents shopping and contact are not matched.
Notice thatblog name is matched to name at the composite level, not as the composite
class blog account.blog name.

194 M. Iwaihara et al.

Theorem 2. For a matching graph Gσ,β = (C,RA, E), let N be the number of nodes
and E be the number of partOf links in Gσ,β . Then PAOMatch returns a maximum
matching satisfying augmented component integrity in O(N3 + E3) time.

Proof. For augmented component integrity, suppose that augmented matching Ma in-
cludes edges (D.C, B.A) and (D1, B1) such that D1, C1 ∈ C, D.C ∈ Ca, A, B ∈ RA,
and B.A ∈ RAa. Now, assume that D1 = D holds. Since D.C is an augmented node,
the edge (D.C, B.A) must be added at Step 3 of PAOMatch as one of the edge in MDB .
Since matching at Step 2 guarantees that (D1, B1) is the only edge in Ma that is adja-
cent to D1 = D, the composite attribute B of MDB must be B1. The only-if part can
be shown by a symmetric argument.

For the time bound, first consider Step 1 of PAOMatch. LetD be the set of composite
classes in C, and let B be the set of composite attributes in RA. Weighted bipartite
matching is executed at Step 1.4 for each D ∈ D and for each B ∈ B. Let |D| (resp.
|B|) denote the number of component classes of D (resp. component attributes of B).
Then one execution of Step 1.4 takes O((|D| + |B|)3) time. The total time of Step 1.4
is bounded by

∑
D∈D,B∈B(|D|+ |B|)3 ≤ (

∑
D∈D |D|+

∑
B∈B |B|)3 = E3. For Step

2, bipartite matching is performed on Gσa,β , which has N nodes. Thus Step 2 takes
O(N3) time. Step 3 can be done in O(N + E) time. ��

5.2 Combination Risk Class and Inhibitor

Now consider combination risk classes. A combination risk class Dr is a composite
class having component classes C1, . . . , Ck, where Ci is a class in C or component-
composite classes, and the risk values rf (Dr) and rp(Dr) are given. These risk values
are applied when and only when all of Dr’s component classes are selected in an aug-
mented matching Ma. Thus combination risk classes can express high-risk combination
of privacy attributes.

Let us consider similarity score maximization where tolerable maximum limits are
imposed on f- and/or p-risk values, as we discussed in Section 4.1. If Dr exceeds the
risk limit, selecting all the component classes of Dr should be prohibited in the match-
ing. Now let Dr be the subset of combination risk classes such that Dr ∈ Dr exceeds
a given risk limit. We need to design an algorithm that finds a maximum matching that
avoids selecting all the component classes for each Dr ∈ Dr. To solve this problem,
we introduce a combination inhibitor Inh(Dr), which is a supplementary graph con-
structed by the algorithm CombInhibitor, shown in Figure 5.

Let us reconsider the running example, and assume that p-risk limit mp = 4 is
given. Then rn&bn is the only combination risk class in Figure 1 that should be inhib-
ited. CombInhibitor adds a component inhibitor for rn&bn to the augmented match-
ing graph. In Figure 3, the inhibitor node is labeled as !rn&ad. The combination in-
hibitor works as follows: The dashed edges attached to the inhibitor node have the
highest weight in the graph. Therefore, if both real name and shopping.address
are selected in a matching M , we can always make another matching M ′ by replac-
ing one of the matching edges, say, the one adjacent to real name, with (real
name, !rn&ad). Then M ′ should have a score higher than M . Therefore maximum
matching will give us a solution that avoids simultaneously selecting real name and

Risk Evaluation for Personal Identity Management 195

For each combination risk class Dr ∈ Dr , do:

1. Add the following bipartite subgraph Inh(Dr) = (Vh, Uh, Eh) to the augmented
matching graph Ga

σ,β(C,RA, E). Let C1, . . . , Ck be the component classes of
Dr .

1.1 The node set Vh equals the component classes {C1, . . . , Ck}, and the other node
set Uh equals the singleton set {Ah} containing a newly introduced inhibitor node
Ah.

1.2 The edge set Eh consists of k edges (C1, Ah), . . . , (Ck, Ah), where each edge
has an equal weight wh such that wh is any fixed value higher than the maximum
similarity score found in Gσ,β(C, RA, E).

Fig. 5. CombInhibitor(Dr , Ga
σ,β): Adding combination inhibitors

shopping.address. Thus we have succeeded in preventing p-risk value from ex-
ceeding 4. Formally, we have the following property:

Theorem 3. Suppose that a matching graph Gσ,β = (C,RA, E) is augmented with the
combination inhibitor Inh(Dr) for each Dr ∈ Dr, whereDr is a subset of combination
risk classes of Gσ,β . Then a maximum matching M of Gσ,β always includes an edge of
Inh(Dr) for any Dr ∈ Dr. Thus there is no maximum matching that includes all the
component classes of Dr.

Proof. (omitted due to space limitation)

By the above theorem, just adding combination inhibitor Inh(Dr) to the matching
graph can prevent application of the exceeded risk values of Dr. The supplementary
subgraphs introduced by combination inhibitors have a maximum total size equal to
the size of combination risk classes. Thus adding combination inhibitors multiplies the
graph size only by a constant factor. We also note that the total maximum weight in-
cludes the weight of inhibitor edges given by winh = (the number of inhibitors)* wh.
Thus we need to subtract winh from the matching weight wM to obtain the actual total
similarity score.

5.3 Finding Optimum Matching

We use the following monotonicity in matching solutions for searching on risk values.

Lemma 1. Let Ma
1 be a matching of graph Gσ,β such that Ma

1 satisfies risk limits rf

and rp. Then there is a matching Ma
2 such that Ma

2 satisfies risk limits r′f > rf and
r′p > rp, and σa(Ma

1) ≤ σa(Ma
2).

Proof. It is obvious that Ma
1 remains a matching under the weaker limits of r′f and r′p.

Thus at least Ma
1 satisfies the condition of Ma

2 of the lemma. ��

Let F (resp. P) be the number of distinct f-risk (resp. p-risk) values appearing in Ga
σ,β .

If we are using 5-digit risk values, then we have F ≤ 5 and P ≤ 5. Figure 6 shows
matching algorithms for the optimization problems defined in Section 4.1.

196 M. Iwaihara et al.

Algorithm MaxSim(Ga
σ,β, mf , mp) /* Similarity score maximization under risk limit

*/
Input Augmented bipartite graph Ga

σ,β, maximum f-risk mf , and maximum p-risk
mp, where mf and/or mf may be ∞. /*

Output Maximum augmented matching Ma of Ga
σ,β such that rf (Ma) ≤ mf and

rp(M
a) ≤ mp.

1. Remove from Ga
σ,β classes C such that rf (C) > mf or rp(C) > mp.

2. Let Dr be the set of combination risk classes Dr such that rf (Dr) > mf or
rp(Dr) > mp holds. Execute CombInhibitor(Dr , Ga

σ,β).
3. Apply PAOMatch to Ga

σ,β to obtain Ma.

Algorithm MaxSimCombinedRisk(Ga
σ,β , mc) /* Similarity score maximization under

combined-risk limit */
Input: Augmented bipartite graph Ga

σ,β , and maximum combined-risk mc.
Output: Maximum augmented matching Ma of Ga

σ,β such that
cr(rf (Ma), rp(M

a)) ≤ mc.
1. Assume that F < P . Otherwise in the following steps swap F with P , and swap

mf with mp.
2. For each value rf in F do:
2.1 Compute maximum rp such that cr(rf , rp) ≤ mc holds.
2.2 Call MaxSim(Ga

σ,β , rf , rp).
3. Report matching Ma that had maximum score at 2.2

Algorithm MinRisk(Ga
σ,β, wmin) /* Risk minimization under minimum similarity

score wmin. */
1. Assume that F < P . Otherwise in the following steps swap F with P , and swap

mf with mp.
2. For each value rf in F do:
2.1 Perform binary search on p-values to find minimum rp such that result Ma of

MaxSim(Ga
σ,β , rf , rp) has score no smaller than wmin.

3. Report the matching found in Step 2.1 such that its combined risk r is minimum.

Algorithm MaxCombined(Ga
σ,β) /* Combined score maximization. */

1. For each f-risk value pf and for each p-risk value pf , do:
1.1 Call MaxSim(Ga

σ,β, rf , rp).
2. Report matching Ma that had maximum combined score σ(Ma)/rc(M

a) in Step
1.1.

Fig. 6. Algorithms for maximum matching under given risk constraints

Theorem 4. Let F (resp. P) be the number of distinct f-risk (resp. p-risk) values ap-
pearing in augmented matching graph Ga

σ,β . Let R be F + P , and let N be the number
of nodes and E be the number of partOf links in Ga

σ,β . The following holds:

1. MaxSim(Ga
σ,β, mf , mp) solves similarity score maximization in O(N3+E3) time.

2. MaxSimCombinedRisk(Ga
σ,β, mc) solves similarity score maximization under

combined-risk limit mc in O((N3 + E3)R) time.
3. MinRisk(Ga

σ,β , wmin) solves risk minimization under minimum similarity score
wmin in O((N3 + E3)R log R) time.

Risk Evaluation for Personal Identity Management 197

4. MaxCombined(Ga
σ,β) solves combined score maximization in O((N3 + E3)R2)

time.

Proof. 1. In Step 1 of MaxSim(Ga
σ,β, mf , mp), classes C that violate the maximum

limit mf or mp are removed. If these classes C are not removed, it is easy to construct
a graph that has a maximum matching violating one of these limits. In Step 2, CombIn-
hibitor introduces combination inhibitors so that by Theorem 3, any matching of Ga

σ,β

will not include a combination risk class that violates the limits. If CombInhibitor is not
applied, it is easy to construct a graph that has a maximum matching that includes all
the component classes of a combination risk class which violates the limits. Thus the
matching obtained at Step 3 gives maximum score under the limits mf and mp. For the
time bound, Step 1 and Step 2 can be done in linear time and increase the size of Ga

σ,β

by a factor of a constant. Thus by Theorem 2, Step 3 can be done in O(N3 + E3) time.
2. For similarity score maximization under combined-risk limit mc, testing maximum
matching score among every combination of risk values rf and rp that satisfy the limit
mc guarantees that there will be no other matching that has a higher score while satis-
fying mc. We do not need to test on combinations r′f and r′p which have combined risk
values less than mc, since by Lemma 1, matching score satisfying r′f and r′p does not ex-
ceed the score satisfying rf ≥ r′f and rp ≥ r′p such that cr(rf , rp) ≤ cr(rf , rp) ≤ mc.
For the time bound, MaxSim(Ga

σ,β, rf , rp) is called F ≤ R times, which gives the
bound O((N3 + E3)R).
3. For risk minimization under minimum similarity score wmin, it is sufficient to test all
the combinations of f-risk and p-risk values that have matching Ma such that σa(Ma)≥
wmin holds. Again by Lemma 1, if a combination of rf and rp has a matching score
greater than the minimum limit wmin, then all the combinations such that r′f ≥ rf and
r′p ≥ rp also have matching score greater than wmin. This property allows us to perform
binary search on rf for each fixed rp. Thus MaxSim(Ga

σ,β, rf , rp) is called O(R log R)
at Step 2.2 and we have the time bound.
4. For combined score maximization, again it is sufficient to test all the combinations
of f-risk and p-risk values to find a matching Ma having maximum combined score
sc(Ma) = σ(Ma)/rc(Ma). Since the combined score sc = w/r does not have mono-
tonicity, we try MaxSim(Ga

σ,β, rf , rp) for O(R2) times. ��

6 Conclusion

In this paper, we proposed the concept of privacy attribute ontology for identity man-
agement involving complex attributes and identities. Our ontology model realizes risk
evaluation of matching attributes, and the algorithms presented in this paper solve max-
imum similarity matching under various types of risk constraints.

Acknowledgment

This work is in part supported by the Grant-in-Aid for Scientific Research of JSPS
(Japan Society for the Promotion of Science) (#18300031), and Strategic International
Cooperative Program of JST (Japan Science and Technology Agency). The work of

198 M. Iwaihara et al.

Gail-J. Ahn was partially supported by the grants from US National Science Foun-
dation (NSF-IIS-0242393) and the US Department of Energy Early Career Principal
Investigator Award (DE-FG02-03ER25565).

References

1. Microsoft Developer Network (MSDN) CardSpace page,
http://msdn.microsoft.com/CardSpace

2. Cohen, W., Ravikumar, P., Feinberg, S.: A Comparison of String Metrics for Matching
Names and Records. In: Proc. KDD Workshop on Data Cleaning and Object Consolidation
(2003)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

4. Kagal, L., Finin, T.W., Joshi, A.: A Policy Based Approach to Security for the Semantic
Web. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
402–418. Springer, Heidelberg (2003)

5. Jutla, D.N., Bodorik, P.: Sociotechnical Architecture for Online Privacy. IEEE Security &
Privacy 3(2), 29–39 (2005)

6. Japan Network Security Association, Surveys on Information Security Incidents (in
Japanese) (2006),
http://www.jnsa.org/result/2006/pol/insident/070720/

7. Kolari, P., Li Ding, S., Ganjugunte, L., Kagal, A.J., Finin, T.: Enhancing Web Privacy Pro-
tection through Declarative Policies. In: Proc. IEEE Workshop on Policy for Distributed
Systems and Networks(POLICY 2005) (June 2005)

8. Kuhn, H.W.: The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly 2, 83–97 (1955)

9. Li, W.-S., Clifton, C.: SEMINT: a Tool for Identifying Attribute Correspondences in Hetero-
geneous Database Using Neural Networks. Data Knowledge Eng. 33(1), 49–84 (2000)

10. Liberty Alliance Project Homepage, http://www.projectliberty.org/
11. OpenID Foundation, http://openid.net/
12. OWL Web Ontology Language Overview, W3C Recommendation 10 (February 2004),

http://www.w3.org/TR/owl-features/
13. Patel, C., Supekar, K., Lee, Y.: OntoGenie: Extracting Ontlogy Instances from WWW. In:

Proc. Huaman Language Technology for the Semantic Web and Web Services, ISWC 2003
(2003)

14. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification, W3C Working Group Note
(November 13, 2006)

15. Udrea, O., Getoor, L., Miller, R.J.: Leveraging Data and Structure in Ontology Integration.
In: Proc. ACM SIGMOD 2007, pp. 449–460 (2007)

16. WordNet — a Lexical Database for the English Language, Princeton University,
http://wordnet.princeton.edu/

http://msdn.microsoft.com/CardSpace
http://www.jnsa.org/result/2006/pol/insident/070720/
http://www.projectliberty.org/
http://openid.net/
http://www.w3.org/TR/owl-features/
http://wordnet.princeton.edu/

Beyond Control-Flow: Extending Business
Process Configuration to Roles and Objects

M. La Rosa1, M. Dumas1,2, A.H.M. ter Hofstede1, J. Mendling1, and F. Gottschalk3

1 Queensland University of Technology, Australia
{m.larosa,j.mendling,m.dumas,a.terhofstede}@qut.edu.au

2 University of Tartu, Estonia
marlon.dumas@ut.ee

3 Eindhoven University of Technology, The Netherlands
f.gottschalk@tm.tue.nl

Abstract. A configurable process model is an integrated representation of
multiple variants of a business process. It is designed to be individualized to
meet a particular set of requirements. As such, configurable process models
promote systematic reuse of proven or common practices. Existing notations
for configurable process modeling focus on capturing tasks and control-flow
dependencies, neglecting equally important aspects of business processes such
as data flow, material flow and resource management. This paper fills this gap by
proposing an integrated meta-model for configurable processes with advanced
features for capturing resources involved in the performance of tasks (through
task-role associations) as well as flow of data and physical artifacts (through
task-object associations). Although embodied as an extension of a popular
process modeling notation, namely EPC, the meta-model is defined in an abstract
and formal manner to make it applicable to other notations.

Keywords: Process model, configuration, resource, object flow.

1 Introduction

Reference process models such as the Supply Chain Operations Reference (SCOR)
model [18] or the SAP Reference Model [5], capture recurrent business operations in
their respective domains. They are packaged as libraries of models in several business
process modeling tools and are used by analysts to derive process models for specific
organizations or IT projects (a practice known as individualization) as an alternative to
designing process models from scratch.

Reference process models in commercial use lack a representation of variation points
and configuration decisions. As a result, analysts are given little guidance as to which
model elements need to be removed, added or modified to address a given requirement.
This shortcoming is addressed by the concept of configurable process models [15],
which captures process variants in an integrated manner. This concept is a step forward
towards systematic reuse of (reference) process models. However, existing configurable
process modeling languages focus on the control-flow perspective and fail to capture
resources, data and physical artifacts participating in the process.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 199–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 M. La Rosa et al.

This paper extends a configurable process modeling notation, namely Configurable
Event-driven Process Chains (C-EPCs), with notions of roles and objects. The pro-
posed extension supports the representation of a range of variations in the way roles
and objects are associated with tasks. We define a notion of valid configuration and an
algorithm to individualize a configurable process model given a valid configuration. By
construction, this algorithm ensures that the individualized process models are syntac-
tically correct. The paper also explores interplays that occur across the control-flow,
object flow and resource modeling perspectives during individualization. The proposal
has been applied to a comprehensive case study in the film industry, which is used as
an example throughout the paper.

The rest of the paper is structured as follows. Section 2 reviews previous work related
to the modeling of object flow and resources in business processes and the notion of
configurable process model. Section 3 introduces the working example and uses it to
illustrate a meta-model that extends EPCs with resource and object flow modeling.
Next, Section 4 explores the configuration of process models along the resource and
object flow perspectives. Section 5 presents a formal model of a fully-featured C-EPC,
which leads to the definition of an individualization algorithm. The paper concludes
with a summary and an outlook on open issues.

2 Background and Related Work

2.1 Integrated Process Modeling

Business processes can be seen from a number of perspectives, including the control-
flow, the data and the resource perspectives [9]. Control-flow is generally modeled in
terms of activities and events related by control arcs and connectors. The resource per-
spective, on the other hand, is commonly modeled in terms of associations between
activities and roles, where roles represent capabilities and/or organizational groups [1].
In UML Activity Diagrams (ADs) [6] and BPMN [19], this association is encoded by
means of swimlanes. Each activity is associated with a swimlane representing a role or
an organizational unit. UML ADs allow multiple swimlanes (or partitions) to be associ-
ated with an activity. In (extended) EPCs [17], symbols denoting roles or organizational
units can be attached to tasks. In this paper, we define sophisticated role-based resource
modeling features, which go beyond those found in UML ADs, BPMN and EPCs, and
we layer configuration features on top of them. A notation-independent discussion of
resource allocation for business processes is reported in [13,16].

The flow of data and physical artifacts is generally captured by associating objects
with activities. UML ADs support the association of object nodes with activity nodes
to denote inputs and outputs. One can associate multiple objects as input or as output of
an activity. The execution of an activity consumes one object from each of the activity’s
input object nodes and produces one object in each of its output object nodes. Similar
features are found in BPMN and extended EPCs. In this paper, we propose a more
fine-grained approach to object flow modeling and mechanisms to capture variability in
relation to tasks. Yet, we do not consider data mapping issues which are important for
executable languages such as ADEPTflex [14], BPEL [3] or YAWL [2].

Beyond Control-Flow: Extending Business Process Configuration 201

2.2 Configurable Process Modeling

Research on configurable business process models has focused on mechanisms for cap-
turing variability along the control-flow perspective. Rosemann & van der Aalst [15]
put forward the C-EPC notation where tasks can be switched on or off and routing
connectors can be made configurable and linked through configuration requirements.
Becker et al. [4] introduce an approach to hide element types in EPCs for configuration
purposes. Although the emphasis is on tasks and control-flow connectors, this approach
can also be used to show or hide resource or data types. However, this only affects
the view on the EPC, not its underlying behavior. Also, this approach does not enable
fine-grained configuration of task-role and task-object associations (beyond hiding). In
previous work, we have investigated a set of process configuration operators based on
skipping and blocking of tasks [7], and applied them to configure the control-flow of
executable process modeling languages, such as YAWL and BPEL [8].

We use EPCs as a base notation to define variability mechanisms along the data and
resource perspectives. Three reasons underpin this choice. First, EPCs are widely used
for reference process modeling (cf. the SAP reference model). Secondly, EPCs provide
basic features for associating data and roles to tasks, which we extend in this paper.
Finally, this choice allows us to build on top of the existing definition of the C-EPC
notation. Nonetheless, we define our extensions in an abstract manner so that they are
applicable beyond the scope of EPCs.

3 Working Example

The working example in Fig. 1 is an extract of a reference process model on audio edit-
ing for screen post-production, which has been developed and validated in collabora-
tion with subject-matter experts of the Australian Film Television & Radio School.1 We
chose this case study for the high level of creativity, and thus of variability, that charac-
terizes the screen business. Indeed, the whole editing phase can radically change if the
screen project aims to produce a documentary (usually without music) or a silent movie
(without spoken dialogs). Below we describe the process as if it were non-configurable,
to illustrate how we capture roles and objects participating in an EPC process. The con-
figuration aspects will be addressed later on, so for now we ignore the meaning of the
thick border of some elements in the picture.

EPC’s main elements are events, functions, control-flow connectors, and arcs linking
these elements. Events model triggers or conditions, functions correspond to tasks and
connectors denote splits and joins of type AND, OR or XOR. We extend these concepts
by associating roles and objects to functions, in an integrated EPC (iEPC). A role, de-
picted on a function’s left hand, captures a class of organizational resources that is able
to perform that function: e.g. the role Producer captures the set of all the persons with
this role in a given screen project. A role is dynamically bound to one concrete resource
at run-time (e.g. the Producer associated with function Spotting session will be bound
to Michelle Portland). A resource can be human or non-human (e.g. an information sys-
tem or a robot), but for simplicity, we only consider human resources in the example.

1 The school’s web-site can be accessed at www.aftrs.edu.au

www.aftrs.edu.au

202 M. La Rosa et al.

An object, depicted on a function’s right hand, captures a physical or software artifact
of an enterprise, that is used (input object) or produced (output object) by a function.
Each object in the process model is statically bound to a concrete artifact.

The first function is Spotting session, which starts once the shooting has completed.
Roles and objects are linked to functions either directly or via a connector. For example,
the OR-join between Composer and Sound Designer indicates that at least one of these
roles is required to perform this activity. Composer is needed if the project features
music, Sound Designer is needed if the project features sound, where sound consists of
dialogs, effects (FX) and/or atmospheres (atmos). Based on the screening of the Picture
cut, Composer and Sound Designer hold a Spotting session to decide what music or
sound should be added at which point of time. This information is stored in the cues
(e.g. Music cues for music). Picture cut is thus an input object, while the cues are output
objects connected via an OR-split that indicates that at least one set of cues is produced,
depending on the type of project. A spotting session may be supervised by at least two
roles among Producer, Director and Assistant Director that have creative authority in the
project. These roles are linked together by a range connector. This connector indicates
the upper bound and lower bound for a number of elements (roles or objects) that are
required (where k refers to the indegree for a join or to the outdegree for a split; in this
case k = 3).

Once the cues are ready, the design of music and/or sound starts. In the former, the
Composer records the project’s Music tracks (an output) following the Music cues and
using the Picture cut as a reference (an AND-join connects these two inputs). A Temp
music file may also be produced at this stage. This object is linked to the function via a
dashed arc, which indicates that an object, a role, or a combination thereof is optional,
whereas a full arc indicates mandatoriness. Sound design is usually more complex as it
involves the recording of the Dialog, FX and/or Atmos tracks, according to the respec-
tive cues on the Picture cut. The Editor or the Sound Designer are responsible for this
task. Similarly to Music design, a Temp sound file may also be produced.

Afterwards, the Composer and/or the Sound Designer provide the Director and usu-
ally the Producer with an update on the work-in-progress. Producer is an optional role.
At least one mandatory role is to be assigned to each function to ensure its execution.
Temp files may be used by the Composer and by the Sound Designer as a guide for
the Progress update (the OR-join between these two objects is thus optional). Gener-
ally, the result of this task is a set of notes describing the changes required; sometimes,
however, the Composer or the Sound Designer may prefer not to take notes. If changes
are needed, the Music and Sound design can be repeated as specified by the loop in the
model. In this case, the notes can be used as input to these tasks.

Upon completion of the design phase, the Mixer and the Composer mix the Music
tracks into a Music premix if the project has music, while the Mixer and the Sound De-
signer mix the Sound tracks into a Sound premix if the project has sound. The Producer
may supervise both mixings. In Picture editing, the Picture cut is edited by an Editor,
while a Negcutter is required if the cut is on Film. The cross below ‘Picture cut’ indi-
cates that the object is consumed by the function and is no longer available afterwards.
The process ends with Final mixing, where the Mixer with the Sound Designer and/or
the Composer release a Final mix using the available Premixes. A Deliverable may also

Beyond Control-Flow: Extending Business Process Configuration 203

Sound
premixing

Music
premixing

Sound premix

Design
finished

Shooting
finished

Spotting
session

x

Composer

S. Designer

Changes
required

x

Spotting
finished

Sound
design

Dialog tracks FX tracks Atmos tracks

Music
design

Design
startedV

V

V

V

V

 Atmos cues Effect cues

 Atmos cues Effect cues Dialog cues Music cues

Music premix

Composer

r2

r1

 S. Designer

Producer

r4

r3

Director

r5

Director

Producer

 Dialog cues Music cues A. Director

V

2:k

Picture cut

Picture cut

Music notes Sound notes

V

Sound notes Picture cut

Music
premixed

Editing
finished

Final
mixing

Editor

Negcutter
Edited picture

Picture
editing

Edited picture

Picture
edited

Music notes

Function

Connector

Conf. function

Conf. connector

Event

Optional role /
object / range
connector

Role Conf. optionality
for role
Conf. optionality
for objectObject

Conf. specialization
for role / object

Conf. consumption
for input object

Sound
premixed

Picture cut

Composer

Mixer

Producer

S. Designer

Mixer

Temp music file

Temp sound file

Temp sound fileTemp music file

Dialog tracks FX tracks Atmos tracks

Music tracks

Music tracks

Sound premixMusic premix

V

 Final mixDeliverable

S. Designer

V

Editor

Mixer

Composer

VV

Producer

V
Composer

S. Designer

V

r6

r7

r8

r10

r9

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

f2 f3

o1

o2 o3 o4 o5

o6 o7 o8

o9 o10

o11 o12

o13 o14 o15

o16

o17 o18 o19

o20 o21

o22 o23

o24

o25

o26 o27 o28

o29

o30

o31

o32 o33 o34

o35 o36

c1

c2

f5 f6

Progress
update

f4

c3

c11

c8

c9

c7

c13

c19
c20

V

V

V

V

e1

e2

e3

e4

e5

e6 e7

e8

e9

V

f7

f8

c4

c5

c6

c10

c12

c13

c14

c15

c16 c17

c18

f1

Fig. 1. The reference process model for audio editing

be released by overlaying the premixes onto the Edited picture, should a demo of the
video with the integrated audio be required.

Beside the process model, we use a ‘hierarchy model’ to represent all the roles and
objects referred to by the nodes of the process model. For example, in the editing pro-
cess there are five nodes for the role Producer and four for the object Picture cut. A
hierarchy model also captures the specializations that can be associated with a role or
object, by means of a specialization relation. Fig. 2 shows the hierarchy models for the
roles and objects of the editing process, where the specialization relation is depicted by
an empty arrow linking a special role (object) to its generalization. Typically, for a role
this relation represents a separation of tasks among its specializations (e.g., Executive
Producer, Line Producer and Co-Producer share the Producer’s duties). For an object, it
represents a set of subtypes (e.g. 16mm and 35mm are two types of Film). The hierarchy
models will be used later on in the configuration of the process model.

204 M. La Rosa et al.

Dialog tracks FX tracks Atmos tracks

Sound premixMusic premix

Picture cut

Temp music file Temp sound file

Deliverable

Tape

Analogue

Uncomp. digital

Compr. digital

Film

16mm

35mm

65mm

Sound notesMusic notes

Director

Composer

Sound Designer

Edited picture

Mixer

Music tracks

Final mixNegcutter

Producer

Editor

 Assistant Director

Line Producer

Executive Producer

Co-Producer

2nd A. Director

1st A. Director

3rd A. Director

Sound Editor

 Video Editor

FX Editor

Atmos Editor

Dialog Editor

Music cues

Effect cues

Atmos cues

Dialog cues

Paper

XML

Fig. 2. The role-hierarchy model and the object-hierarchy model for the process of Fig. 1

4 Exploring Integrated Process Configuration

A reference process model provides a generic solution that needs to be individualized
to fit a specific setting. For this reason, process configuration can be interpreted as a
restriction of the reference process model’s behavior [7,15]. Following this principle,
we configure an integrated process model by restricting the behavior of a set of variation
points (configurable nodes) identified in the reference process model. A variation point
can be any active node of a process model (function, role, object or connector), and is
represented via the use of a thick border. A configuration assigns each variation point
a (set of) configuration value(s) to keep or restrict the node’s behavior. Since arcs and
events are not active elements of a process model, they are not directly configurable.
However, as a result of configuring a variation point, neighboring events and arcs can
be affected (e.g. an event can be dropped). The extended iEPC meta-model that captures
these concepts is called Configurable iEPC (C-iEPC). In the following, we describe the
characteristics of each variation point.

Configurable functions can be left ‘activated’ (ON), or restricted to ‘excluded’
(OFF) or ‘optional’ (OPT). The second value removes the function from the pro-
cess model (i.e. the function is skipped from the process flow). The third value permits
deferring this choice until run-time, so that the decision whether to execute or skip the
function is made on an instance-by-instance basis. In the example, Music design is con-
figurable: it can be set to OFF if the Director has planned not to have any music in the
project, or to OPT to let the Director decide whether to have it or not, once the project
has started.

Configurable control-flow connectors can be restricted to a less expressive connector
type, or to a sequence of incoming control-flow nodes (in case of a join) or outgoing
nodes (in case of a split). The last option is achieved by removing the connector alto-
gether. An OR can be restricted to an XOR, to an AND or to a sequence. An XOR
can only be restricted to a sequence. An AND cannot be restricted. For instance, if
the project cannot afford the repetition of music and sound design, due to the costs

Beyond Control-Flow: Extending Business Process Configuration 205

involved, the configurable XOR-split (id. c14 of the example, can be set to the sequence
starting with event Design finished, so as to exclude the loop after function Progress
update. For further details on the configuration of the control-flow, we refer to [15].

Configurable roles and objects have two configuration dimensions: optionality and
specialization, i.e. they can take a value for each dimension. If a configurable role (ob-
ject) is ‘optional’ (OPT), it can be restricted to ‘mandatory’ (MND), or to ‘excluded’
to be removed from the process (OFF); if it is ‘mandatory’ it can only be restricted
to ‘excluded’. For example, if a project does not feature music, the participation of the
Composer and the production of Music cues can be excluded from the Spotting session.
Configurable roles and objects for which there exists a specialization in the hierarchy
model, can be restricted to any of their specializations. As per the hierarchy model of
Fig. 2, Picture cut can be specialized to Tape, if the project does not support an editing
on Film. Also, the Producer associated with Progress update can be specialized to Line
Producer and made mandatory, should the Director need creative support in this phase.
The availability of a specialization for a role or object, is depicted with a small pyramid
in the node’s right-hand side.

Configurable input objects have a further configuration dimension – usage, such that
those inputs that are ‘consumed’ (CNS) can be restricted to ‘used’ (USE). For instance,
we can restrict Picture cut to used if its specialization is Tape, as only a Picture cut on
Film is destroyed during the Picture editing.

Configurable range connectors have two configuration dimensions: optionality and
range restriction. The same rules for roles and objects govern the possible changes of
optionality values of a range connector. For example, the optional OR-join connecting
the temp files in Progress update, can be made mandatory if the temp files are always
used by this function. The range restriction is achieved by increasing the lower bound
and decreasing the upper bound, or a choice can be made for a single node (role or
object) to be associated with the function linked to the connector, effectively removing
the connector altogether. This is allowed if the lower bound is 1 and the node is in the
connector’s preset (in case of a join), or in its postset (in case of a split). For example, the
configurable range connector (2 : k) associated with Spotting session, can be restricted
to (3 : k) – all the supervisors have to partake in the Spotting session, or to (2 : 2)
– exactly two of them have to partake. This is consistent with the configuration of the
control-flow connectors, as the range connector subsumes any connector type. In fact,
an OR is equivalent to a (1 : k) range connector and can be restricted to an XOR (1 : 1),
to an AND (k : k), to a single node, but also to any other reduced range (e.g. 2 : k). An
XOR can only be restricted to a single node. An AND (k : k) cannot be restricted.

Under certain circumstances, a configuration node may not be allowed to be freely
set, and this may depend on the configuration of other nodes. In fact, there can be an
interplay between the configuration of functions and roles, or objects and functions,
determined by the domain in which the reference process model has been constructed.
For example, an Edited picture is needed in Final mixing only if a Delivery is produced,
otherwise it must be excluded. Configuration requirements capture such restrictions
in the form of logical predicates that govern the values of configurable nodes. In the
following, we classify these requirements according to the type of interplay and support

206 M. La Rosa et al.

this classification with examples taken from the model of Fig. 1 (where M , S and U
stand for the optionality, specialization and usage dimension, resp.):

Single Node requirements: constrain the configuration of a single node, i.e. no depen-
dency exists on other nodes. For example, the Picture cut associated with the Spotting
session cannot be excluded as this is the initial input object to the whole process [Req1].
Another example constraining the specialization of roles is given by the Editor in Sound
design, which cannot be specialized to Video Editor, due to the capabilities required by
associated the function [Req2]. Concerning the control-flow, the XOR-split (c14) after
Progress update cannot be set to the sequence starting with the event Changes required
only, as this would lead to skip the whole premixing phase [Req3].

Connector–Connector requirements: constrain the configuration of multiple connec-
tors. For instance, the two OR-joins for the roles and the input objects of Progress
update (id. c11 and c12) must be restricted the same way [Req4]. The configuration of
the former join allows the restriction of the run-time choice of which role is to partake
in Progress update, while the configuration of the latter allows the restriction of which
temp files to be used. Although the second connector is optional (i.e. no temp file may
be used), a configuration where, e.g., the first OR is restricted to AND and the second
one is restricted to a mandatory XOR must be denied. The reason is that if temp files
are available, these need to be linked to the roles Composer and Sound Designer that
will actually use them: the Composer will use the Temp music files, while the Sound
Designer will use the Temp sound files.

Function–Function requirements: constrain the configuration of multiple functions.
For example, an editing project deals with the editing of music and/or sound, so at least
one function between Music design and Sound design must be present [Req5]. Another
constraint exists, e.g., between Music premixing and Music design, as the former needs
to be dropped if the latter is excluded from the model [Req6].

Role–Role requirements: constrain the configuration of multiple roles. For example,
the Producer in Music premixing must be specialized in the same way as the Producer in
Sound premixing, since these roles are typically covered by the same person [Req7 (on
S)]. To run a Spotting session, at least one role between Composer and Sound Designer
need to be present [Req8 (on M)].

Object–Object requirements: constrain the configuration of multiple objects. For in-
stance, all the occurrences of the objects Picture cut and Edited picture must have the
same specialization as the object Deliverable, to ensure a consistent propagation of the
picture medium throughout the process [Req9 (on S)]. The Picture cut in Picture editing
is consumed if it is specialized to Film [Req10 (on S, U)], as in this case the medium
is physically cut (thus destroyed) and then spliced. Also, the exclusion of Dialog cues
from Sound design implies the exclusion of Dialog tracks, since these are produced
according to the cues [Req11 (on M)].

Connector–Node requirements: constrain the configuration of connectors and nodes.
For example, the exclusion of function Progress update implies the restriction of the
XOR-split (c14) to the sequence starting with Design finished, as at run-time the repe-
tition of the design phase depends on the result of Progress update [Req12].

Beyond Control-Flow: Extending Business Process Configuration 207

Function–Role requirements: constrain the configuration of functions and roles. For
instance, Music design must be excluded if the Composer is excluded from this func-
tion. On the other hand, if Sound Designer is excluded from Sound Design, this function
can still be performed by the Editor [Req13 (on M)].

Function–Object requirements: constrain the configuration of functions and objects.
For example, function Progress update cannot be excluded if Temp music file in Music
design or Temp sound file in Sound design are included, since the files are produced to
be later used by this function. Otherwise, if Progress update is set to optional, the files
cannot be made mandatory [Req14 (on M)].

Role–Object requirements: constrain the configuration of roles and objects. An ex-
ample is given by the role Negcutter, which is only required if the project is edited and
delivered on Film. Thus, if this role is mandatory, all the occurrences of Picture cut and
Edited picture, and the Deliverable, must be specialized to Film. In this case the Picture
cut in function Picture editing needs to be set to consumed [Req15 (on M, S, U)].

More complex requirements can be captured by combining requirements from the above
classes. Fig. 3 shows the audio editing process that was followed by Bill Bennett to di-
rect the feature film “Kiss or Kill”.2 This model is the result of configuring the reference
process model of Fig. 1 for an editing on Tape without music. Here, for instance, Music
premixing has been excluded and, as per Req6, so has been Music design. Similarly,
Progress update has been excluded, and thus, as per Req12, the loop capturing the repe-
tition of the design phase has also been removed. Moreover, the Editor in Picture editing
has been specialized to a Video Editor (this complies with Req2). Since the editing is
on Tape, the Picture cut in input to Picture editing has been set to ‘used’ and specialized
to Tape, and thus, as per Req15, the Negcutter has been excluded from this function.

Shooting
finished

Spotting
session

Spotting
finished

Dialog tracks

 S. Designer

Producer

Director

Picture cut
(Tape)

Editing
finished

 Video Editor Picture
editing

Picture
edited

Sound
premixed

Sound premix

 Final mix

S. Designer

S. Designer

 Editor

Mixer

V Sound
design

Design
finished

V

Picture cut
(Tape)

Edited picture
(Tape)

Picture cut
(Tape)

Deliverable
(Tape)

Final
mixing

Edited picture
(Tape)

Dialog cues
(Paper)

Dialog cues
(Paper)

Sound premix
S. Designer

Mixer
Dialog tracks

V Sound
premixing

Fig. 3. The audio editing process model configured for a project without music

5 Correctness and Configuration of Integrated Process Models

This section presents an algorithm to generate an individualized iEPC from a C-iEPC
with respect to a set of configuration values (i.e. a configuration). For example, this

2 Kiss or Kill, 1997 (Australia), http://www.imdb.com/title/tt0119467

http://www.imdb.com/title/tt0119467

208 M. La Rosa et al.

algorithm is able to generate the model shown in Fig. 3 from the model of Fig. 1 given
a valid configuration. In doing so, the algorithm ensures the preservation of syntactic
correctness, i.e. the individualized C-iEPC will be syntactically correct provided that
the original C-iEPC was syntactically correct. To define this algorithm, we first need to
define the notions of syntactically correct iEPC and valid configuration.

5.1 Integrated Business Process Model

In order to formally define the concepts of iEPC and correct iEPC, we first need to have
a formal definition of role and object-hierarchies. A role (object) hierarchy is essentially
a set of roles (objects) together with a specialization relation.

Definition 1 (Role-hierarchy Model). A role-hierarchy model is a tuple Rh = (R,
R
�), where:

– R is a finite, non-empty set of roles,

–
R
� ⊆ R × R is the specialization relation on R (

R
� is transitive, reflexive, acyclic3).

Definition 2 (Object-hierarchy Model). An object-hierarchy model is a tuple Oh =
(O,

O
�), where:

– O is a finite, non-empty set of objects, i.e. physical or software artifacts,

–
O
� ⊆ O × O is the specialization relation on O (

O
� is transitive, reflexive, acyclic).

If x1
R/O
� x2, we say x1 is a generalization of x2 and x2 is a specialization of x1

(x1 �= x2). For example, Dialog Editor is a specialization of Editor.
The definition of iEPC given below extends that of EPCs from [15], which focuses

on the control-flow only. Specifically, iEPCs add a precise representation of roles and
objects participating in the process. These roles and objects stem from the hierarchy-
models defined above. In an iEPC, each node represents an instance of a function, role
or object. The range connector is modeled by a pair of natural numbers: lower bound (n)
and upper bound (m). Indeed, an AND, OR and XOR correspond to a range connector
resp. with n = m = k, with n = 1, m = k and with n = m = 1. So we do not need
to model the logic operators with separate connectors for roles and objects, although
they can be graphically represented with the traditional EPC notation, as in Fig. 1.
For the sake of keeping the model consistent with previous EPC formalizations, the
range connector is not allowed in the control-flow, although a minimal effort would be
required to add this construct. The optionality of roles, objects and range connectors,
shown in the process as a property of the arc that links the node with the function,
is modeled in iEPC as an attribute of the node. The consumption of input objects is
modeled in the same way.

Definition 3 (iEPC). Let F be a set of functions, Rh = (R,
R
�) be a role-hierarchy

model and Oh = (O,
O
�) be an object-hierarchy model. An integrated EPC over

F,Rh,Oh is a tuple iEPC F,Rh,Oh = (E, FN , RN , ON ,nm, C, A, L), where:

3 No cycles of length greater than one.

Beyond Control-Flow: Extending Business Process Configuration 209

– E is a finite, non-empty set of events;
– FN is a finite, non-empty set of function nodes for the process;
– RN is a finite, non-empty set of role nodes for the process;
– ON is a finite set of object nodes for the process;
– nm = nf ∪ nr ∪ no, where:

• nf ∈ FN → F assigns each function node to a function;
• nr ∈ RN → R assigns each role node to a role;
• no ∈ ON → O assigns each object node to an object;

– C = CCF ∪ CR ∪ CIN ∪ COUT is a finite set of logical connectors, where:
• CCF is the set of control-flow connectors,
• CR is the set of range connectors for role nodes (role connectors),
• CIN is the set of range connectors for input nodes (input connectors),
• COUT is the set of range connectors for output nodes (output connectors),

where CCF , CR , CIN and COUT are mutually disjoint;
– A = ACF ∪ AR ∪ AIN ∪ AOUT is a set of arcs, where:

• ACF ⊆ (E × FN) ∪ (FN × E) ∪ (E × CCF) ∪ (CCF × E) ∪ (FN × CCF) ∪ (CCF ×
FN) ∪ (CCF × CCF) is the set of control-flow arcs,

• AR ⊆ (RN × FN) ∪ (RN × CR) ∪ (CR × FN) is the set of role arcs,
• AIN ⊆ (ON × FN) ∪ (ON × CIN) ∪ (CIN × FN) is the set of input arcs,
• AOUT ⊆ (FN × ON) ∪ (FN × COUT) ∪ (COUT × ON) is the set of output arcs,

where AR , AIN and AOUT are intransitive relations;
– L = lTC ∪ lNC ∪ lMC ∪ lMR ∪ lMO ∪ lUO is a set of label assignments, where:

• lTC ∈ CCF → {AND ,OR,XOR} specifies the type of control-flow connector,
• lNC ∈ (CR ∪ CIN ∪ COUT) → N × (N ∪ {k}) ∪ {(k, k)}, specifies lower bound and

upper bound of the range connector,
• lMC ∈ (CR ∪ CIN ∪ COUT) → {MND ,OPT} specifies if a role connector, an input

connector or an output connector is mandatory or optional,
• lMR ∈ RN → {MND ,OPT} specifies if a role node is mandatory or optional;
• lMO ∈ ON → {MND ,OPT} specifies if an object node is mandatory or optional;
• lUO ∈ OIN

N → {USE ,CNS} specifies if an input object node is used or consumed,
where OIN

N = dom(AIN) ∩ ON .

Given a connector c, let lN
C

(c) = (n, m) for all c ∈ C \ CCF . Then we use lwb(c) = n
and upb(c) = m to refer to lower bound and upper bound of c. If F , Rh and Oh are
clear from the context, we drop the subscript from iEPC . Also, we call all the function
nodes, role nodes and object nodes simply as functions, roles and objects, wherever this
does not lead to confusion.

We introduce the following notation to allow a more concise characterization of
iEPCs.

Definition 4 (Auxiliary sets, functions and predicates). For an iEPC we define the
following subsets of its nodes, functions and predicates:

– NCF = E ∪ FN ∪ CCF , as its set of control-flow nodes;
– NR = FN ∪ RN ∪ CR , as its set of role nodes;
– NIN = FN ∪ OIN

N ∪ CIN , as its set of input nodes;
– NOUT = FN ∪OOUT

N ∪COUT , as its set of output nodes, where OOUT
N = dom(AOUT)∩ON ;

– N = NCF ∪ NR ∪ NIN ∪ NOUT , as its set of nodes;
– ∀n∈Nα

α• n = {x ∈ Nα | (x, n) ∈ Aα}, as the α-preset of n, α ∈ {CF , R, IN ,OUT};
– ∀n∈Nα n

α•= {x ∈ Nα | (n, x) ∈ Aα}, as the α-postset of n, α ∈ {CF ,R, IN ,OUT};

210 M. La Rosa et al.

– Es = {e ∈ E | | CF• e| = 0 ∧ |e CF• | = 1} as the set of start events;

– Ee = {e ∈ E | | CF• e| = 1| ∧ |e CF• | = 0} as the set of end events;

– CS
CF = {c ∈ CCF | | CF• c| = 1 ∧ |c CF• | > 1} as the set of control-flow split connectors;

– CJ
CF = {c ∈ CCF | | CF• c| > 1 ∧ |c CF• | = 1} as the set of control-flow join connectors;

– linkα(x, y) =

⎧
⎨

⎩

(y, x) ∈ AR , if α = R, returns the role arc from y to x,
(y, x) ∈ AIN , if α = IN , returns the input arc from y to x,
(x, y) ∈ AOUT , if α = OUT , returns the output arc from x to y;

– degree(x) =

⎧
⎪⎨

⎪⎩

| R• x|, if x ∈ CR , returns the indegree of a role connector,

| IN• x|, if x ∈ CIN , returns the indegree of an input connector,

|x OUT• |, if x ∈ COUT , returns the outdegree of an output connector;
– p = 〈n1, n2, . . . , nk〉 is a control-flow path such that (ni, ni+1) ∈ ACF for 1 ≤ i ≤ k − 1.

For short, we indicate that p is a path from n1 to nk as p : n1 ↪→ nk. Also, P (p) =
{n1, . . . , nk} indicates the alphabet of p.

We can now define a syntactically correct iEPC.

Definition 5 (Syntactically Correct iEPC). An iEPC is syntactically correct if it ful-
fills the following requirements:

1. iEPC is a directed graph such that every control-flow node is on a control-flow path from a
start to an end event: let es ∈ Es and ee ∈ Ee, then ∀n∈NCF

∃p∈N+
CF

,p:es↪→ee
[n ∈ P (p)].

2. There is at least one start event and one end event in iEPC : |Es| > 0 and |Ee| > 0.
3. Events have at most one incoming and one outgoing control-flow arc:

∀e∈E [| CF• e| ≤ 1 ∧ |e CF• | ≤ 1].
4. Functions have exactly one incoming and one outgoing control-flow arc:

∀f∈FN
[| CF• f | = |f CF• | = 1].

5. Control-flow connectors have one incoming and multiple outgoing arcs or vice versa:
∀c∈CCF

[(| CF• c| = 1 ∧ |c CF• | > 1) ∨ (| CF• c| > 1 ∧ |c CF• | = 1)], (split, join),
Role connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈CR

[| R• c| > 1 ∧ |c R• | = 1], (join),
Input connectors have multiple incoming arcs and exactly one outgoing arc:
∀c∈CIN

[| IN• c| > 1 ∧ |c IN• | = 1], (join),
Output connectors have exactly one incoming arc and multiple outgoing arcs:
∀c∈COUT

[| OUT• c| = 1 ∧ |c OUT• | > 1], (split).

6. Roles have exactly one outgoing arc: ∀r∈RN
|r R• | = 1.

7. Objects have exactly one outgoing input arc or one incoming output arc:
∀o∈ON

[(|o IN• | = 1 ∧ | OUT• o| = 0) ∨ (|o IN• | = 0 ∧ | OUT• o| = 1)].
8. Functions are linked to at least a mandatory role or a mandatory role connector:

∀f∈FN
[∃

r∈R•f
[lMR (r) = MND] ∨ ∃

c∈R•f
[lMC (c) = MND]], it follows that | R• f | > 0.

9. Roles and objects linked to connectors are mandatory:
∀r∈RN

[r ∈ dom((RN × CR) ∩ AR) ⇒ lMR (r) = MND],
∀o∈OIN

N
[o ∈ dom((ON × CIN) ∩ AIN) ⇒ lMO (o) = MND],

∀o∈OOUT
N

[o ∈ dom((COUT × ON) ∩ AOUT) ⇒ lMO (o) = MND].
10. Upper bound and lower bound of range connectors are restricted as follows:

∀c∈CR ∪CIN ∪COUT
[1 ≤ lwb(c) ≤ upb(c) ∧ (lwb(c) ≤ degree(c) ∨ upb(c) = k)],

where n ≤ m iff (n ≤ m) ∨ (m = k) ∨ (n = m = k).

Beyond Control-Flow: Extending Business Process Configuration 211

In the remainder, we assume an iEPC fulfills the above requirements. The editing pro-
cess model of Fig. 1 is syntactically correct. However, Def. 5 does not prevent behav-
ioral issues (e.g. deadlocks) that may occur at run-time. It is outside the scope of this
paper to provide a formal definition of the dynamic behavior of iEPCs, as we only
consider structural correctness in the context of configuration. Hence, here we briefly
discuss its semantics for completeness, while for a formal definition we refer to a tech-
nical report [12].

The dynamic behavior of iEPC has to take into account the routing rules of the
control-flow, the availability of the resources and the existence of the objects participat-
ing in the process. A state of the execution of an iEPC can be identified by a marking
of tokens for the control-flow, plus a variable for each role indicating the availability
of the relative resource, and a variable for each object, indicating their existence. A
function is enabled and can fire if it receives control, if at least all its mandatory roles
are available and all its mandatory input objects exist. The state of roles and objects
is evaluated directly or via the respective range connectors. During a function’s execu-
tion, the associated roles become unavailable and once the execution is concluded, the
output objects are created (i.e. they become existent), and those ones that are indicated
as consumed, are destroyed. Initial process objects, i.e. those ones that are used by a
function that follows a start event (e.g. the Picture cut), exist before the execution starts.
A function does not wait for an optional role to become available. However, if such a
role is available before the function is executed, it is treated as a mandatory role.

5.2 Integrated Process Configuration

A C-iEPC is an extension of an iEPC where some nodes are identified as configurable,
and a set of requirements is specified to constrain their values.

Definition 6 (Configurable iEPC). A configurable iEPC is a tuple C-iEPC =
(E, FN , RN , ON ,nm, C, A, L, F C

N
, RC

N
, OC

N
, CC ,RSC), where:

– E, FN , RN , ON ,nm, C, A, L refer to the elements of a syntactically correct iEPC ,
– F C

N ⊆ FN is the set of configurable functions,
– RC

N ⊆ RN is the set of configurable roles,
– OC

N ⊆ ON is the set of configurable objects,
– CC ⊆ C is the set of configurable connectors,
– RSC is the set of configuration requirements.

All the auxiliary sets of Def. 4 are also defined for the configurable sets above. For ex-
ample, NC = F C

N
∪RC

N
∪OC

N
∪CC . A configuration assigns values to each configurable

node, according to the node type.

Definition 7 (Configuration). Let M = {MND ,OPT ,OFF} be the set of optionality
attributes, U = {USE ,CNS} the set of usage attributes, CT = {AND,OR,XOR}
the set of control-flow connector types and CTSCF = {SEQn | n ∈ NCF } the
set of sequence operators for control-flow. A configuration of C-iEPC is defined as
conf C−iEPC = (conf

F
, conf

R
, conf

O
, conf

C
), where:

– conf
F

∈ F C
N → {ON ,OPT ,OFF};

– conf
R

∈ RC
N → M × R, (M is used for optionality and R for role specialization);

212 M. La Rosa et al.

– conf
O

= conf
IN

∪ conf
OUT

, where:
• conf

IN
∈ OIN C

N → M ×O×U , (O is used for object specialization and U for usage);
• conf

OUT
∈ OOUT C

N → M × O;
– conf

C
= conf

C CF
∪ conf

C R
∪ conf

C IN
∪ conf

C OUT
, where:

• conf
C CF

∈ CC
CF → CT ∪ CTSCF , (CT is used for the connector’s type and CTSCF

to configure the connector to a sequence of nodes);
• conf

C R
∈ CC

R → M×((N×N)∪RN), (N and N are used for lower bound increment

and upper bound decrement, RN is used to configure a role connector to a single role);
• conf

C IN
∈ CC

IN → M × ((N × N) ∪ OIN
N), (OIN

N is used to configure an input

connector to a single input object);
• conf

C OUT
∈ CC

OUT → M × ((N×N)∪OOUT
N), (OOUT

N is used to configure an output

connector to a single output object).

We define the following projections over the codomain of conf C−iEPC :
Let x ∈ RC

N ∪ OOUT C

N , α ∈ {R,OUT} and conf α(x) = (m, s), then πM (x) = m and
πS (x) = s. Let x ∈ OIN C

N and conf
IN

(x) = (m, s, u), then πM (x) = m, πS (x) = s and
πU (x) = u; Let x ∈ CC

R ∪ CC
IN ∪ CC

OUT and α ∈ {R, IN ,OUT}, then if conf
C α

(x) =

(m, (p, q)), then πM (x) = m, πi(x) = p and πd(x) = q, otherwise if conf
C α

(x) = (m, y),
then πM (x) = m and πN (x) = y.

The restrictions on the values each configurable node can take, are captured by the
following partial orders, which are used in the definition of a valid configuration. For
example, the partial order on the optionality dimension, prevents a ‘mandatory’ node
from being configured to ‘optional’, while it allows the contrary.

Definition 8 (Partial Orders for Configuration). Let M, U,CT and CTSCF as in
Def. 7. The partial orders for configuration are defined as follows:

– �M = {MND ,OFF} × {MND} ∪ M × {OPT} (on optionality),
– �U = {(n, n) | n ∈ U} ∪ {(USE ,CNS)} (on usage),
– �CF = {(n, n) | n ∈ CT} ∪ {XOR,AND} × {OR} ∪ CTSCF × {XOR,OR} (on the

type of control-flow connectors).

With these elements, we are now ready to define the notion of valid configuration.

Definition 9 (Valid Configuration). A configuration conf C−iEPC is valid iff it fulfills
the following requirements for any configurable node:

1. Roles and objects can be restricted to MND or OFF if they are OPT , or to OFF if they
are MND (α ∈ {R, O}): ∀x∈RC

N ∪ OC
N

[πM (x) �M lMα (x)].
2. Roles and objects can be restricted to any of their specialization:

∀x∈RC
N ∪ OC

N
[πS (x)

α
� nm(x)].

3. Input objects that are CNS can be restricted to USE : ∀x∈OC
IN

[πU (x) �U lUO (x)].
4. Control-flow OR connectors can be restricted to XOR,AND or to SEQn; control-flow

XOR connectors can be restricted to SEQn:
∀x∈CC

CF ,n∈NCF
[conf

C CF
(x) �CF lTC (x) ∧ (conf

C CF
(x) = SEQn ⇒ ((x ∈ CS

CF ∧
(x, n) ∈ ACF) ∨ (x ∈ CJ

CF ∧ (n, x) ∈ ACF)))] (the sequence must be in the connector’s
postset in case of split or in its preset in case of join).
Also, the configuration to SEQn must allow at least one path from a start to an end event:
let es ∈ Es and ee ∈ Ee, then
∃p∈N+

CF
,p:es↪→ee

∀x∈CC
CF ∩P (p) [conf

C CF
(x) = SEQn ⇒ n ∈ P (p)].

Beyond Control-Flow: Extending Business Process Configuration 213

5. Range connectors can be restricted to MND or OFF if they are OPT , or to OFF if they
are MND: ∀x∈CC

R ∪ CC
IN ∪ CC

OUT
[πM (x) �M lMC (x)].

6. Range connectors can be restricted to a smaller range or to a single node (role or object):
• Range: ∀x∈CC

R ∪CC
IN ∪CC

OUT
:

– πi(x) = πd(x) = 0, if lwb(x) = upb(x) = k (the AND case cannot be restricted),

– lwb(x) + πi(x) ≤
{

upb(x) − πd(x), if upb(x) ∈ N,
degree(x) − πd(x), if lwb(x) ∈ N and upb(x) = k;

• Node (α ∈ {R, IN ,OUT}):
∀x∈CC

R ∪CC
IN ∪CC

OUT
[πC (x) = y ⇒ (linkα(x, y) ∧ lwb(x) = 1)] (the node must be in the

connector’s postset in case of split or in its preset in case of join, and the lower bound be 1).

Beside the structural requirements presented above, a configuration must fulfill the con-
figuration requirements RSC to be domain-compliant. We can express the configuration
requirements of the editing process model using the notation in Def. 7. We refer to the
nodes by their id., as shown in Fig. 1. For example, Req6 is conf

F
(f5) = ON ⇒

conf
F
(f2) = ON , Req7 is πS (r15) = πS (r18) and Req10 is πU (o30) = CNS ⇔

πS (o30)
O
� Film.

The individualization algorithm applies a valid configuration to a syntactically cor-
rect C-iEPC, to generate a syntactically correct iEPC. The algorithm consists of a series
of steps, each of which operates over a different type of element in a C-iEPC. The or-
der of the steps in the algorithm has been chosen in such a way that no unnecessary
operations are applied. For example, the control-flow connectors are configured first, as
this operation may lead to skipping certain paths of the process model including con-
nectors, events and functions. Then, all the roles, objects and range connectors that are

1. Apply control-flow connector configuration and remove arcs not involving sequences.
2. Remove nodes not on some path from an original start event to an original end event.
3. Replace functions switched off with an arc, and remove their roles, objects and connec-

tors.
4. Remove range connectors switched off, together with their roles and objects.
5. Remove roles and objects switched off.
6. Remove range connectors no longer linked to roles and objects.
7. Replace all range connectors with a degree of one with arcs.
8. Increment lower bound and decrement upper bound of configured range connectors.
9. Align lower and upper bound of range connectors with potential change in degree.

10. Apply configuration of optionality dimension to roles, objects and range connectors; con-
figuration of usage dimension to objects and configuration of specialization to roles and
objects.

11. Remove functions without mandatory role assignment.
12. Replace one-input-one-output connectors with arcs.
13. Insert XOR-split, XOR-join and arcs to allow a bypass path for optional functions.

Fig. 4. Individualization algorithm

214 M. La Rosa et al.

associated with functions no longer existing are removed as well. Finally, the remaining
roles and objects are configured.

The formal definition of this algorithm can be found in a technical report [10]. In the
report, we also prove that any iEPC yielded by the algorithm fulfils the properties of
syntactical correctness presented in Def. 5.

6 Conclusion

This work has addressed a major shortcoming in existing configurable process nota-
tions: their lack of support for the data and resource perspectives. In doing so, we pre-
sented a rich meta-model for capturing role-task and object-task associations, that while
embodied in the EPC notation, can be transposed to other notations. The study high-
lighted the intricacies that configurable process modeling across multiple perspectives
brings. We identified interplays between perspectives. And while we define conditions
to ensure syntactic correctness of individualized process models, we do not ensure se-
mantic correctness.

In future work, we will investigate techniques for preventing inconsistencies in the
individualized process models, such as object flow dependencies that contradict control
flow dependencies. Also, while the proposal has been validated on a case study con-
ducted with domain experts, further validation is required. The notion of configurable
process model brings significant advantages, but concomitantly induces an overhead to
the modeling lifecycle. In previous work [11] we have designed and implemented a tool,
namely Quaestio, that provides a questionnaire-based interface to guide users through
the individualization of configurable process models captured as C-EPCs. At present,
we are extending this questionnaire-based framework to deal with C-iEPCs. The next
step is to evaluate the framework by means of case studies in multiple domains and by
conducting usability tests.

Acknowledgments. We thank Katherine Shortland and Mark Ward from the AFTRS
for their valuable contribution to the design and validation of the reference models.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Sys-
tems. MIT press, Cambridge (2002)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. In-
formation Systems 30(4), 245–275 (2005)

3. Alves, A., et al.: Web Services Business Process Execution Language (WS-BPEL) ver. 2.0,
Committee Specification (January 31, 2007)

4. Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D.: Configurative Process
Modeling – Outlining an Approach to increased Business Process Model Usability. In: Pro-
ceedings of the 15th IRMA International Conference, New Orleans, Gabler (2004)

5. Curran, T., Keller, G.: SAP R/3 Business Blueprint: Understanding the Business Process
Reference Model, Upper Saddle River (1997)

6. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling Using UML. In: Dumas,
M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.) Process-Aware Information Systems,
pp. 85–117. Wiley, Chichester (2005)

Beyond Control-Flow: Extending Business Process Configuration 215

7. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H.: Configurable Process Models
– A Foundational Approach. In: Reference Modeling. Efficient Information Systems Design
Through Reuse of Information Models, pp. 59–78. Springer, Heidelberg (2007)

8. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable
Workflow Models. International Journal of Cooperative Information Systems 17(2), 177–
221 (2008)

9. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London (1996)

10. La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J., Gottschalk, F.: Beyond
Control-flow: Extending Business Process Configuration to Resources and Objects (2007),
Available at QUT ePrints, http://eprints.qut.edu.au/archive/00011240

11. La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-driven
Configuration of Reference Process Models. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer, Heidelberg (2007)

12. Mendling, J., La Rosa, M., ter Hofstede, A.H.M.: Correctness of Business Process Models
with Roles and Objects (2008), Available at QUT ePrints,
http://eprints.qut.edu.au/archive/00013172

13. Mühlen, M.z.: Organizational Management in Workflow Applications - Issues and Perspec-
tives. Information Technology and Management 5(3–4), 271–291 (2004)

14. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129 (1998)

15. Rosemann, M., van der Aalst, W.M.P.: A Configurable Reference Modelling Language. In-
formation Systems 32(1), 1–23 (2007)

16. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Resource
Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)

17. Scheer, A.W.: ARIS - Business Process Frameworks, 3rd edn. Springer, Berlin (1999)
18. Stephens, S.: The Supply Chain Council and the SCOR Reference Model. Supply Chain

Management - An International Journal 1(1), 9–13 (2001)
19. White, S.A., et al.: Business Process Modeling Notation (BPMN), Version 1.0 (2004)

http://eprints.qut.edu.au/archive/00011240
http://eprints.qut.edu.au/archive/00013172

Value-Driven Coordination Process Design

Using Physical Delivery Models�

Roel Wieringa1, Vincent Pijpers2, Lianne Bodenstaff1, and Jaap Gordijn2

1 University of Twente, Enschede, The Netherlands
{roelw,bodenstaffl}@ewi.utwente.nl

2 Free University, Amsterdam, The Netherlands
{pijpersv,gordijn}@few.vu.nl

Abstract. Current e-business technology enables the execution of in-
creasingly complex coordination processes that link IT services of dif-
ferent companies. Successful design of cross-organizational coordination
processes requires the mutual alignment of the coordination process with
a commercial business case. There is however a large conceptual gap
between a commercial business case and a coordination process. The
business case is stated in terms of commercial transactions, but the co-
ordination process consists of sequences, choices and iterations of actions
of people and machines that are absent from a business case model; also,
the cardinality of the connections and the frequency and duration of ac-
tivities are different in both models. This paper proposes a coordination
process design method that focusses on the the shared physical world
underlying the business case and coordination process. In this physical
world, physical deliveries take place that realize commercial transactions
and that must be coordinated by a coordination process. Physical deliv-
ery models allow us to identify the relevant cardinality, frequency and
duration properties so that we can design the coordination process to
respect these properties. In the case studies we have done so far, a phys-
ical delivery model is the greatest common denominator that we needed
to verify consistency between a business case and a coordination process
model.

1 Introduction

Current e-business technology enables the execution of increasingly complex
cross-organizational business processes that link IT services provided by dif-
ferent companies. The complexity of these networks makes it important to make
a business case that shows for each partner that it is economically sustainable
to participate in the network, and to make this case before operational details
of the coordination infrastructure are designed. A coordination process need be
designed only if the business case is positive for each of the partners. But it
is hard to design a coordination process based on a multi-party business case
only, because the conceptual gap between the two is very large [1]. Where a

� Research supported by NWO project 638.003.407.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 216–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Value-Driven Coordination Process Design Using Physical Delivery Models 217

business case makes an estimation of numbers of commercial transactions and
their monetary value over a period of time, a coordination process consist of
operational activities performed at particular times satisfying specific cardinal-
ity, frequency and duration constraints. But despite this conceptual gap, the
coordination process must be designed to be consistent with the business case,
and this alignment must be maintained during the entire period of cooperation
between the businesses.

Recent proposals to design coordination processes based on business case mod-
els [2,3,4] recommend that the process designer analyze a business case model
to identify transfers of ownership before designing the coordination activities
needed to implement a business case model. The reasoning is that the coor-
dination process must realize the ownership transfers involved in commercial
transactions, and that it therefore pays off to analyze ownership transfer first.
However, the concept of ownership is very complex. Asking a process designer to
analyze it before designing a coordination process does not simplify the process
design task. Moreover, important process design information such as cardinality,
frequency and duration properties of the coordination process are not uncov-
ered this way. In this paper we take a less complex route, that nevertheless
yields more information for the process designer. We start from the observa-
tion that the business case and coordination models are views on one shared
physical world, where physical deliveries take place (section 5). Each commer-
cial transaction is realized in physical deliveries, and the coordination process
must coordinate these deliveries. Physical delivery modeling makes it easier to
think about cardinality, frequency and duration properties of deliveries, and this
in turn makes it relatively simple to design coordination processes that realize
these deliveries (section 6). Our case studies provide support to the hypothesis
that physical delivery models provide a shared semantic structure for proving
mutual consistency between business case and coordination models (section 7).

In section 2 we describe our running example and in sections 3 and 6 we
present a business case model and coordination model of this example, respec-
tively. There are several notations for business case modeling, such as the e3-value
notation [5] used in this paper, REA [6] and BMO [7]. Our argument does not
depend on the notation used as long as the business case model contains estima-
tions of the value and number of commercial transactions between the business
partners over a period of time. We explain the e3-value notation in section 3.
Well-known notations for coordination modeling are Petri Nets [8], BPMN [9]
and UML activity diagrams. In this paper we use UML activity diagrams, be-
cause we want to show who is waiting for which activity, and which objects are
passed around.

2 Running Example

Our running example concerns electricity distribution in the Netherlands: Elec-
tricity suppliers provide electricity to consumers by obtaining it from producers

218 R. Wieringa et al.

and having a distributor deliver it at the consumer’s home. Consumers pay for
electricity as well as for the use of the distribution network, and see this in their
bill, where distribution is charged explicitly. However, they do all payments to
the supplier, which then forwards payment for the distribution to the distribu-
tor. In the Netherlands there is one electricity distribution network per geograph-
ical region, but there are several suppliers and producers the consumer can choose
from.

3 Value Modeling

An e3-value model of a networked business case consists of a diagram, called
a value model, that represents the businesses participating in the network for a
period of time, what they exchange of value in this time, plus a set of estimations
of the number and value of the exchanges, that allows us to calculate the net
present value (NPV) (see e.g. [10] for an explanation of the NPV concept) of
the revenue generated by these exchanges for each business. We call the time
period represented by the value model the time extent of the model, or extent for
short. The value model allows NPV estimations of revenue for the time extent
of the model only. It is possible to consider a sequence of value models over
subsequent time extents, where for example the first model represents initial
investments and start-up and the second model represents exploitation of this
initial investment.

Figure 1 shows a value model of electricity distribution. Rectangles represent
economic actors that can have needs and can offer something in value in return,
such as money, to meet those needs. Actors in a value model can be businesses
or consumers. Stacked rectangles represent market segments, which are sets of
economic actors with the same needs.

Fig. 1. Value model for electricity delivery. The value transfers have been numbered
for ease of reference.

Value-Driven Coordination Process Design Using Physical Delivery Models 219

Actors are connected by value transfers. If the source or destination of a
value transfer is a market segment, this means that all actors in this segment
can produce or consume this transfer. Value transfers are transfers of so-called
value objects. A value object can be a good, service, data, experience, or any-
thing else of value to the receiver. What are value objects depends on the
specific actors in case. Music may be of value to one actor and be a nuisance
to another. The arrow may even be reversed in different value models involv-
ing the same value object. For example, a hotel may offer a wireless access
provider the opportunity to provide wireless access to its guests—a captive mar-
ket, which is of value to the access provider, who therefore pays the hotel for
this. However, another hotel and another access provider, or the same two ac-
tors in another time period, may view this differently: The access provider takes
care of a service regarded by all guests as normal infrastructure, and there-
fore the hotel pays the provider for this. What, in a given time extent, is of
value to whom, is depends on the needs and desires of those actors in that time
period.

Value transfers enter or leave an actor through a value interface, which is a
unit of atomicity: In the time extent of the business case, when one transfer
occurs, the other occurs too in that same period. e3-value does not allow us to
say when these transfers occur, only that they occur in the time extent of the
business case. This is sufficient for the purpose of business case modeling, where
we only need to estimate how often commercial transactions occur in the time
extent of a business case, not when they occur.

Actors can have needs, represented by a dot placed inside the actor rectangle.
An actor can have this need any number of times in the time extent of the
model. When placed inside a market segment, the dot means that any actor
in this segment can have this need. The commercial transactions required to
meet a consumer need are linked by a dashed line called a dependency path
to the consumer need. A bull’s eye indicates the model boundary, i.e. further
transactions such as those with suppliers down the value chain are not considered
in this business case. This means that the business case developer does not view
these transactions as having any impact on this business case. In general, a
dependency path is an acyclic graph with and-or nodes. We will illustrate and-
nodes in the health insurance example.

We believe that each conceptual model should have a single purpose and
should contain all and only the information needed to fulfill this purpose. The
purpose of an e3-value model is to make a business case, and the graphical value
model of figure 1 and the supporting computational techniques (not treated here)
are exactly what is needed to do the NPV estimation of the revenue generated
for each of the business actors in the case. The value model shows what is
happening commercially, but does not tell us how this is done operationally. We
use coordination models for that.

220 R. Wieringa et al.

4 Cross-Organizational Case Coordination

In this section we use a variation of activity diagrams that retains the root
of these diagrams in statecharts [11]. As pointed out earlier, we choose this
statechart-like variation of activity diagrams because it makes explicit when
an actor is performing activity and when it is waiting for someone else to do
something. Figure 2 contains the legend.

Figure 3 shows a coordination process involving four named actors, a consumer
c, supplier s, producer p and distributor d (in the lower half of the diagram). The
process runs over a period of a year, i.e. the time extent of our business case. We
indicated the parts of the coordination process that correspond to commercial
transactions by dashed rounded rectangles. Payments 2 and 3 involve an monthly
interaction between supplier and consumer and a further yearly interaction (one
in this example) between the supplier and distributor. Payment 5 consists of
a quarterly interaction between supplier and distributor. Delivery of electricity
(value transfer (1)) and access to the distribution network (service provision(6))
are started in parallel to the payment procedures and stop at the end of the
contract period (1 year). The case handled in this coordination process is the
consumer need for electricity during one year.

The coordination model has no owner. No single actor is responsible for its
execution. It is the joint responsibility of all actors that it is executed, and if
each actor does what promised to do, then the coordination process occurs. The
process in figure 3 makes the assumption that all actors are trustworthy, i.e. do
what they should do. This is a simplifying assumption that we return to later.
First, we turn to the central topic of this paper, which is how we can design a
coordination process starting from a business case model.

Actvity state Wait state

Physical
object

Activity

Activity state

event /

Wait state

event /

Wait state

Object arrives /

Physical
object

In activity state
the actor is perforrming

an activity of non−zero duration

In a wait state,
the actor is doing nothing

for a period of time

A physical object flow.

On termination of the activity,
the state transition is taken

When the event hap[pens,
the activity is terminated and

the transition is taken

When the event happens,
the transition is taken

If the object flow
arrives,

the transition
is taken

Fig. 2. Legend for the version of activity diagrams used in this paper

Value-Driven Coordination Process Design Using Physical Delivery Models 221

Send electricity
delivery request

c: Consumer

d: Distributor

s: Supplier p: Producer

electricity
delivery
request

electricity
production

request

receive elelectricity
delivery rerquest /

Request
electricity
production

Request
electricity

distribution

Confirm
delivery
promise

send
invoice

Wait

end of month/

Delivery
confirmation

Wait for
confirmation

Invoice

Pay Payment

receive
payment
[not
end of
contract]/

Wait

Wait for electricity delivery request

Wait for
invoice

receive delivery
confirmation /

Receive
invoice /

Wait for electricity
production request

receive electricity
production request/

Produce

Wait

send
invoice

Pay

end of quarter/

receive payment /
[end of contract] Wait

receive
payment
[not
end of
contract]

Wait for
invoice

Invoice

receive
invoice/

Payment

Wait for
electricity distribution

request

electricity
distribution

request

receive
payment
[end of

contract]/

Distribute

send invoice

Wait

Invoice
Wait for
invoice

Pay

receive
invoice /

Payment

receive payment
[end of contract]

[end of conttract]/

Wait for production start

Production start

Production
start

Wait for
distribution

Distribution
start

[end of contract]/

Consume

distribution start

[end of contract]/

2, 3

5

3

6

4 1

Fig. 3. Coordination process for the electricity delivery scenario of figure 4. The com-
ment signs refer to value transfers.

222 R. Wieringa et al.

5 Physical Delivery Modeling

We define a physical delivery model as a representation of the physical events by
which business actors get access to a value object; a physical event is one that
can be described using the standard physical measurements (meters, kilograms,
Ampères, seconds). We will not use physical terms to describe physical objects
(“rectangular piece of paper”) but their socially defined names (“money”). But
the objects and flows indicated by these names must be physical.

We claim that coordination modeling is facilitated by making a physical deliv-
ery model first, because the business case and coordination model are both views
of a network of physical deliveries. Ultimately, every business case describes an
economic view on the physical world, and every process model describes events
in the physical world. Software is a state of hardware, and data is a state of the
physical world too. Money is physical too, realized by means paper, metal, or
computer hardware as digital money. Human services such as coaching, teaching,
consultancy, providing help through a help desk, providing financial services, etc.
consist of physical processes too, including people moving to places, advice being
produced in the form of sounds, reports being written, and money being passed
around or stored. Each of these processes has a physical realization, even though
we usually talk about them as disembodied entities with certain financial, logical
or semantic properties. But if there would be no physical events, none of these
disembodied entities and events would exist.

Commercial transactions are usually accompanied by a system of legal rights
and obligations, permissions and prohibitions that are treated by stakeholders
as non-physical. However, creation of these norms must be done by a physical
process (e.g. signing a document); we maintain physical evidence of the exis-
tence of these norms in the form of physical documents; and the norms govern
physically observable behavior of people and goods in the real world, such as
buying and selling, listening to music or watching a movie. The non-physicality
of these legal norms is a useful fiction that allows us to abstract from complex
physical processes.

Views such as a value model or a coordination process model represent part
of the shared conceptual models by which people organize themselves. But to
understand the relation between two models that are so fundamentally different,
we must understand what each of these models means in terms of a shared
physical world. We do this by means of physical delivery models, that will allow
us to understand which physical activities realize commercial transactions and
therefore need to be coordinated by a coordination process.

5.1 Physical Objects and Their Delivery

To help identifying the physical deliveries that realize commercial transactions,
we distinguish the following kinds of physical objects.

– Discrete goods are identifyable entities that can form a set. Examples are
physical products such as chairs and cars, but also inert physical entities

Value-Driven Coordination Process Design Using Physical Delivery Models 223

such as houses and airport runways. The distinguishing feature is that when
two physical goods are put together, they form a set of two elements.

– Cumulative goods do not preserve their distinctness when put together. When
you add water to water, the result is still water. Ultimately, cumulative goods
consist of atoms that form a set, but at the level of phenomena that interests
us for physical delivery modeling, we will be talking about cumulative goods
such as water or electricity. Where discrete goods can be measured by count-
ing them, cumulative goods must be measured by choosing a measurement
unit.

The distinction is not a metaphysical statement about the ultimate structure of
the physical world but a hint what to look for when modeling physical deliveries.
It is not important to allocate a physical object to exactly one of these two
categories: What is important is to identify the physical objects to be coordinated
in realizing commercial transactions. Cumulative goods can always be parceled
into discrete units. For example, teaching is cumulative, but we usually parcel
it into numbered lessons, which can be viewed as discrete goods.

Lexical objects are a particular kind of discrete goods, that have a meaning
for stakeholders. Lexical objects are physical information carriers such as paper
documents, states of a computer (digital documents), traffic signs, money coins,
paper money, digital money, etc.

5.2 Delivery Scenarios

Figure 4 shows a delivery model for the business case of figure 1. Rectangles
represent actors, which must be the same actors as those of the value model. We
treat actor names as type names, and individuals can be represented by declaring
proper names for them. So in figure 4 we represent four individuals named c, s,
d and p. If there would have been, say, two producers p1 and p2, then we could
have represented these as two distinct rectangles in the diagram, labeled by p1
and p2. And if we would have wanted to represent a set of producers of arbitrary
size, then we could have represented the Producer type as a rectangle without
a proper name for any individual producer.

c: Consumer

s: Supplier

d: Distributor

p: Producer

Money
12 times

Money
4 times

Electricity
1 year

Electricity
1 year

Money
1 time / year

 2

3

5

6

1

 3

4

Distribution network
one year

Fig. 4. Physical delivery scenario of an electricity consumer need. The numbers inside
comment boxes refer to value exchanges in figure 1.

224 R. Wieringa et al.

Figure 4 actually represents one delivery scenario. It shows what deliveries
must occur to satisfy the need of consumer c in the time extent of the business
case. This is the delivery scenario corresponding to the coordination scenario of
figure 3, which shows how this consumer need is handled.

Another consumer could receive electricity from two producers, one produc-
ing “green” electricity and one producing “dirty” electricity, which would repre-
sented in that delivery scenario by means of two producer boxes. Alternatively,
we could take the point of view of a particular supplier and show the network
of deliveries that this supplier is involved in. In the Netherlands, this supplier
would interact with many consumers and producers and with one distributor.
Each of these scenarios has important consequences for the internal business
processes performed by the actors.

In our delivery scenarios we will always take the point of one consumer, and
more in particular of one consumer need, because the business network exists to
satisfy this need. Our value and coordination models show the commercial and
operational feasibility of meeting this need. The delivery scenario of a consumer
need shows the deliveries in the network required to satisfy that need.

The delivery scenario abstracts from much of the infrastructure used to realize
the business case. For example, banks used to make payments are not represented
in figure 4. The reason is that a delivery model contains the same actors as a
business case model; and the business case of this example ignores the payment
infrastructure because the cost of using it does not impact the business case.

5.3 Types of Deliveries

Deliveries are represented by arrows pointing from provider to receiver. A phys-
ical delivery starts at the point in time when the receiver is able to physically
handle the delivered object, which we will call access. This can happen in two
ways: The physical object moves to the receiver, or the receiver moves to the
physical object. The money and electricity transfers in figure 4 are of the first
kind, because these are transported to the receiver. Delivery of the distribution
network is of the second kind. The consumer probably obtained access to the
electricity network because he/she moved into a house that is connected to the
network. Connection of a network to a house and movement of the consumer
into this house is out of scope of the business case and therefore out of scope of
physical delivery modeling.

We distinguish time-continuous from time-discrete delivery, represented by
double-headed and single-headed arrows, respectively. Time-continuous delivery
takes place over a period of time and time-discrete delivery takes place at one
instant of time of zero duration. All deliveries stop at some time, because our
value models, and therefore their corresponding delivery models, have a finite
time extent. But time-continuous deliveries stop some time after they are started,
whereas time-discrete deliveries stop at the point in time when they are started.
Labeling deliveries as time-continuous or time-discrete is choosing a granular-
ity of time, because what is taken to be time-discrete at one level of granularity is

Value-Driven Coordination Process Design Using Physical Delivery Models 225

a period at a lower level. The distinction is important because coordination for
these two kinds of deliveries must guarantee different timing properties.

Deliveries are named after the physical entity that the receiver receives ac-
cess to. This still leaves the modeler a choice what the physical entity received
actually is: energy, electrons, atoms, metal, paper, coins, bank notes, money, a
payment? All of these can be regarded as names of physical entities, albeit in-
creasingly abstract names. Choosing an abstraction level is unavoidable in any
modeling activity, but this is not an arbitrary choice. To choose a name, we first
rule out names of which the meaning depends on the value or process models, be-
cause the delivery model should only represent basic information that is needed
to understand these model. If we would now include in the delivery models infor-
mation that can only be understood by first understanding a value- or process
model, we would have introduced a vicious circularity. This rules out “payment”
as a delivery name, for this is defined in terms of a commercial transaction in
the value model.

Second, among the remaining possibilities we choose an abstraction that tells
us what stakeholders want to be able to observe in any realization of the business
case model. In all cases, energy, electrons and atoms are being delivered, but this
is not what stakeholders want to observe. The supplier wants to observe a delivery
of money from the consumer, and so this is the name of the delivery. In another
case, such as one in which coin collectors are described, we could have selected
“coins” as name for a delivery because this is what the collector wants to observe.
They want to observe this because this is the physical event that they are willing
to provide a reciprocal value object for, as indicated in the value model.

Because receivers are paying (in the form of some value object sacrificed by
the receiver) for the delivery, they usually not only want to observe but also to
measure the delivery. In the electricity example, the amounts of money trans-
ferred and of electricity delivered are what stakeholders want to measure when
the value model is realized. They want to measure these phenomena because
this is what the business case rests on; Participants can verify whether the busi-
ness case is satisfied by observing these deliveries. The commercial transactions
counted in the value model have a particular value that can then be observed at
the delivery points in a delivery model, i.e. at the points where deliveries enter
the receiver.

So the arrows in a delivery model represent observations, and possibly mea-
surements, that stakeholders want to make in physical reality. Figure 4 tells
us that in the time extent of the model, they expect to make 12 observations
of money transfer from consumer c to supplier s, 1 year of electricity delivery
of the distributor to the consumer, etc. The physical network is actually fitted
with measurement instruments (electricity meters, information systems) that
make and record these observations.

5.4 Frequency and Duration Properties

For one scenario, we can represent frequency and duration information. For time-
discrete delivery we can state how many times delivery occurs in the time-extent

226 R. Wieringa et al.

of the business case, and for time-continuous delivery we can state how long a
delivery takes place and how many times this takes place. Frequency and dura-
tion information provides us with an important guide for process design later.
For example, the delivery scenario of figure 4 shows that the supplier collects
consumer payments made monthly, and forwards them to the distributor 4 times
a year. This requires therefore the distributor to maintain stores (databases) of
information about payments and to execute a distributor process which processes
batches of consumer payments.

5.5 Cardinality Properties

Instead of modeling a scenario from the point of view of one actor we can repre-
sent cardinality properties of deliveries in a viewpoint-independent model. Fig-
ure 5 shows a delivery model that does not take the point of view of any actor.
All nodes represent types, except the distributor node because in our example
there exists only one distributor. The diagram represents cardinality properties
in the same way as is done in ER models [11]. The cardinalities in the diagram
have the following meaning;

Consumer

Supplier

d: Distributor

Producer

Money Money

ElectricityElectricity

Money

Distribution network

1
1..*

1

1

1

1

Fig. 5. Model of delivery cardinalities. See text for the semantics of cardinalities.

– Each consumer can transfer money to exactly one supplier. (Different con-
sumers may transfer money to different suppliers.) Each supplier may receive
money from any number of consumers.

– Each supplier can transfer money to at least one producer and each producer
can receive money from any number of suppliers.

– Each consumer can receive electricity from exactly one distributor, each
supplier can transfer money to exactly one distributor, and each producer
supplies electricity to exactly one distributor. This is the meaning of the
cardinality 1 at the distributor side of the connections to Distributor.

– Because we have named the distributor d, the model also says that all con-
sumers receive electricity from the same distributor, all suppliers transfer
money to the same distributor, that this is the same distributor that all
consumers receive electricity from, etc.

Value-Driven Coordination Process Design Using Physical Delivery Models 227

5.6 Semantic Relation between Value–, Delivery– and Coordination
Models

The physical delivery models provide a physical meaning to the commercial
transactions identified in a value model and the activities represented in a coor-
dination model. This is an informal meaning relation that the analyst can nev-
ertheless make as precise as needed. The physical meanings of the commercial
transactions in the electricity value model are listed in figure 6. These defini-
tions do not follow from the models. Rather, the models allow the analyst to
provide these definitions and use them to achieve a shared understanding with
all stakeholders.

– In commercial transaction (1, 2) of figure 1 the supplier ensures that the consumer
gets electricity and receives payment for this from the consumer. As shown in figures 3,
4 and 5, this is physically realized by the consumer transfering money to the supplier
12 times in the business case time extent (one year), and by the distributor delivering
electricity to the consumer during this period.

– In commercial transaction (3, 4), the distributor makes available its distribution infras-
tructure to the consumer and the consumer pays for this. This is a time-continuous
delivery of a discrete good, the distribution network. Payment by the consumer goes
in two deliveries via the supplier. The supplier sends money to the distributor once a
year.

– In commercial transaction (5, 6) the producer sells electricity to the supplier against
a payment. Since the supplier only buys the electricity in order to provide it to the
consumer, the producer delivers the electricity to the distributor, which can then pass
it on to the consumer.

Fig. 6. Informal semantics of commercial transactions in terms of physical delivery
models

6 Coordination Modeling

A coordination scenario is designed by first following the dependency path of a
consumer need in the value model, and modeling the delivery scenario required
to realize these transactions, including frequency and duration constraints. This
in turn is then used to create a coordination scenario such as shown in figure 3,
taking into account the meaning of each value transfer in terms of physical
deliveries. The coordination model scenario gives more detailed, operational in-
formation than the delivery scenario and shows that commercial transactions
occur according to well-known patterns, such as delivery of a service after a re-
quest for service, and payment after reception of an invoice. The coordination
scenario operationalizes deliveries in terms of a number of objects that cross the
boundaries between actors in figure 3, that realize the deliveries of the delivery
scenario of figure 4. The coordination process satisfies the frequency and duration

228 R. Wieringa et al.

– Each consumer needs to be able to pay one supplier (not necessarily the same supplier
for all consumers) by transferring money 12 times. Scenario example: Consumer c must
pay supplier s in 12 installments per year. Each consumer must be be able to access
the distribution network and receive electricity from distributor d for a year.

– Each supplier must be able to receive money from any number of consumers as payment
for electricity delivered and for the access to the distribution network, and forward the
distribution fee to the distributor d. Scenario example: supplier s must be able to receive
money payments from consumer c 12 times a year and forward the fee due to d once
a year. Each supplier must also be able to pay for electricity bought from one or more
producers. For example supplier s must pay producer p 4 times a year.

– Each producer must be able to receive money payments for electricity from any num-
ber of suppliers. Scenario example: Producer p must be able to receive payment for
electricity 4 times a year. Each producer must also be able to provide electricity to
distributor d. For example, producer p must be able to provide electricity to d for 1
year.

– The distributor must be able to supply electricity to any number of consumers through
its distribution network, provided by any number of producers. It must be able to
receive payments from suppliers for electricity delivered. Scenario example: It must be
able to receive a yearly payment from supplier s for electricity delivered to a client of
s.

Fig. 7. Coordination requirements for the business actors

requirements of the delivery scenario have been satisfied by loops (for payment
in installments) and by start and stop actions (for time-continuous delivery).

As pointed out before, a coordination process is not owned by any actor; it
is a joint responsibility to execute it, and it is actually executed by each actor
performing its own business processes. Moreover, other scenarios may be needed
to serve other consumers. A consumer who wants electricity from two producers
(a “green” and a “dirty” one) will have a different delivery scenario and therefore
a different coordination scenario, etc. Because these coordination scenarios are
performed by every business actor performing its own business processes, the
coordination scenarios are actually coordination requirements on these internal
business processes. And the viewpoint-independent cardinality model of figure 5
imposes additional requirements, concerning the number of partners that an
actor should be able to interface to. We summarize the coordination require-
ments requirements for each actor in figure 7, where the frequency and duration
requirements of the delivery scenario are stated as examples. Note that the mis-
matches in cardinality of received and provided deliveries indicate a requirement
to maintain buffers and do batch processing, for example for the supplier.

7 Discussion and Further Work

To summarize, we start from a situation where a business case has been made
that is positive for each partner, for example in the form of an e3-value model.

Value-Driven Coordination Process Design Using Physical Delivery Models 229

Before operationalizing this in terms of coordination scenarios, we propose mod-
eling delivery scenarios first.

We have shown that delivery modeling can be used in the electricity delivery
example, but can it be used in other examples? So far, we have done three other
cases with delivery modeling: a health care insurance case, international trade
with a bill of lading, and handling landing and docking at an international air-
port. These cases have a very diverse mix of commercial services and products
exchanged among partners, and in all cases delivery modeling simplified coor-
dination process design. Further case studies must indicate the limitations on
applicability of delivery modeling.

Modeling physical flows is actually a very old idea, common in logistics, and
used in earlier information system requirements methods such as ISAC and struc-
tured analysis in the 1970s [12]. Delivery modeling (and value modeling) are
particular ways to do early requirements engineering, in which we identify busi-
ness goals and needs to be supported by IT [13]. Current approaches to early
requirements concentrate on transforming dependencies between business goals
into system requirements and architectures and do not consider delivery coordi-
nation structures as we do [14].

There is some resemblance of delivery models to Jackson’s problem frames [15].
Both kinds of models structure the world into domains (business actors in delivery
models) that share phenomena at their interfaces (physically observable deliver-
ies in delivery models). However, where problem frames are used to show how a
machine inserted in a domain causes satisfaction of requirements, delivery models
are used to show what observable deliveries must occur to satisfy a business case.

Zlatev, Wombacher [16] and Bodenstaff [17] defined reduced models as se-
mantic structure in which to interpret e3-value models and coordination models
to prove that they are consistent. In the cases we have done so far, their reduced
models turned out to be our physical delivery scenario models, without the car-
dinality, frequency and duration constraints. We think the reason for this is that
reduced models represent the information shared by business case and coordina-
tion models, and that this shared information is exactly the physical deliveries
that realize the value model and that must be coordinated by the coordination
process. Further work is needed to show conclusively that reduced models are
physical delivery models. In order to evaluate the usability of our approach, we
plan to do an experimental evaluation of physical delivery modeling compared to
other approaches that use legal concepts to arrive at a coordination process [2,4].
Although we emphasized the difference between physical and legal activities, it
may turn out that for more complex models we may have to combine the two
approaches, for example if we include physical ownership certificates. Even in
this paper, some physical objects (coins, bills) are indicated by a legally defined
name (“money”).

In all our models we assume that all actors will do what they promise to do,
e.g. will perform their business processes according to coordination requirements.
In practice this is not a realistic assumption [18,19]. Actors may be unreliable
because they intend to get a free ride from others, or because they lack the

230 R. Wieringa et al.

resources to live up to their promises. Either way, we must assess the risk of
actors not satisfying the coordination requirements. The less trust we have in
an actor, the higher we will assess the risk of doing business with this actor.
For every trust assumption that we drop, we may have to add new business
actors (e.g. trusted third parties) to the business case, or new activities (e.g.
control mechanisms) to the coordination process, that will reduce the risk of the
cooperation [20]. In our future research we will investigate what role delivery
modeling can play in assessing trust assumptions and designing risk mitigation
mechanisms.

Another very interesting further development is to identify different elements
in a coordination process. In this paper we only introduced the parts of a coor-
dination process that realize value object deliveries. There are many additional
parts of a coordination process, such as activities to reduce the risk of fraud [20],
handling exceptions, setting up and tearing down communication connections,
setting up and tearing down membership of business networks, etc. [21].

Acknowledgment. We are grateful for the constructive comments of the refer-
ees on this paper.

References

1. Gordijn, J., Akkermans, J., Vliet, J.v.: Business modelling is not process modelling.
In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops 2000. LNCS,
vol. 1921, pp. 40–51. Springer, Heidelberg (2000)

2. Andersson, B., Bergholz, M., Grégoire, B., Johannesson, P., Schmitt, M.,
Zdravkovic, J.: From business to process models —a chaining methodology. In:
Latour, T., Petit, M. (eds.) CAiSE 2006, pp. 211–218. Namur University Press
(2006)

3. Pijpers, V., Gordijn, J.: Bridging business value models and process models in avi-
ation value webs via possession rights. In: 40th Hawaii International International
Conference on Systems Science (HICSS-40 2007), p. 175 (2007)

4. Weigand, H., Johannesson, P., Andersson, B., Bergholtz, M., Edirisuriya, A.,
Ilayperuma, T.: Value modeling and the transformation from value model to pro-
cess model. In: Doumeingts, G., Muller, J., Morel, G., Vallespir, B. (eds.) Enterprise
Interoperability: New Challenges and Approaches, pp. 1–10. Springer, Heidelberg
(2007)

5. Gordijn, J., Akkermans, H.: Value-based requirements engineering: exploring in-
novative e-commerce ideas. Requirements Engineering 8, 114–134 (2003)

6. Geerts, G., McCarthy, W.E.: An accounting object infrastructure for knowledge-
based enterprise models. IEEE Intelligent Systems and Their Applications, 89–94
(1999)

7. Osterwalder, A.: The Business Model Ontology - a proposition in a design science
approach. PhD thesis, University of Lausanne, Lausanne, Switzerland (2004)

8. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, 3 volumes. Springer, Heidelberg (1997)

9. OMG: Business Process Modeling Notation (BPMN) Specification (2006),
www.bpmn.org

www.bpmn.org

Value-Driven Coordination Process Design Using Physical Delivery Models 231

10. Horngren, C.T., Foster, G.: Cost Accounting: A Managerial Emphasis, 6th edn.
Prentice-Hall, Englewood Cliffs (1987)

11. Wieringa, R.: Design Methods for Reactive Systems: Yourdon, Statemate and the
UML. Morgan Kaufmann, San Francisco (2003)

12. Wieringa, R.: Requirements Engineering: Frameworks for Understanding. Wiley,
Chichester (1996), http://www.cs.utwente/nl/∼roelw/REFU/all.pdf

13. Mylopoulos, J., Fuxman, A., Giorgini, P.: From entities and relationships to social
actors and dependencies. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER
2000. LNCS, vol. 1920, pp. 27–36. Springer, Heidelberg (2000)

14. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Information systems 27(6), 365–389 (2002)

15. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Reading (2000)

16. Zlatev, Z., Wombacher, A.: Consistency between e3-value models and activity di-
agrams in a multi-perspective development method. In: Meersman, R., Tari, Z.
(eds.) OTM 2005. LNCS, vol. 3760. Springer, Heidelberg (2005)

17. Bodenstaff, L., Wombacher, A., Reichert, M.U., Wieringa, R.J.: Monitoring collab-
oration from a value perspective. In: Chang, E., Hussain, F.K. (eds.) 2007 Inaugural
IEEE International Conference on Digital Ecosystems and Technologies, Cairns,
Australia, vol. 1, pp. 134–140. IEEE Computer Society Press, Los Alamitos (2007)

18. Bergholtz, M., Jayaweera, P., Johannesson, P., Wohed, P.: A pattern and depen-
dency based approach to the design of process models. In: Atzeni, P., Chu, W., Lu,
H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 724–739. Springer,
Heidelberg (2004)

19. Wieringa, R., Gordijn, J.: Value-oriented design of correct service coordination pro-
cesses: Correctness and trust. In: 20th ACM Symposium on Applied Computing,
pp. 1320–1327. ACM Press, New York (2005)

20. Kartseva, V., Hulstijn, F., Gordijn, J., Tan, Y.H.: Modelling value-based inter-
organizational controls in healthcare regulations. In: Suomi, R., Cabral, R., Hampe,
J.F., Heikkila, A., Jarvelainen, J., Koskivaara, E. (eds.) Proceedings of the 6th IFIP
conference on e-Commerce, e-Business, and e-Government (I3E 2006). IFIP Inter-
national Federation for Information Processing, pp. 278–291. Springer, Heidelberg
(2006)

21. Gordijn, J., Eck, P.v., Wieringa, R.: Requirements engineering techniques for e-
services. In: Georgakopoulos, D., Papazoglou, M. (eds.) Service-Oriented Comput-
ing, pp. 331–352 (2008)

http://www.cs.utwente/nl/~roelw/REFU/all.pdf

Relaxed Compliance Notions in

Adaptive Process Management Systems

Stefanie Rinderle-Ma1, Manfred Reichert1, and Barbara Weber2

1 Ulm University, Germany
{stefanie.rinderle,manfred.reichert}@uni-ulm.de

2 University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

Abstract. The capability to dynamically evolve process models over
time and to migrate process instances to a modified model version are
fundamental requirements for any process-aware information system.
This has been recognized for a long time and different approaches for
process schema evolution have emerged. Basically, the challenge is to
correctly and efficiently migrate running instances to a modified process
model. In addition, no process instance should be needlessly excluded
from being migrated. While there has been significant research on cor-
rectness notions, existing approaches are still too restrictive regarding
the set of migratable instances. This paper discusses fundamental re-
quirements emerging in this context. We revisit the well-established com-
pliance criterion for reasoning about the correct applicability of dynamic
process changes, relax this criterion in different respects, and discuss the
impact these relaxations have in practice. Furthermore, we investigate
how to cope with non-compliant process instances to further increase the
number of migratable ones. Respective considerations are fundamental
for further maturation of adaptive process management technology.

1 Introduction

The ability to effectively deal with change has been identified as key functionality
for any process-aware information systems (PAISs). Through the separation of
process logic from application code, PAISs facilitate process changes significantly
[1]. In the context of long-running processes (e.g., medical treatment processes
[2]), PAISs must additionally allow for the propagation of respective changes
to ongoing process instances. Regarding the support of such dynamic process
changes, PAIS robustness is fundamental; i.e., dynamic changes must not violate
soundness of the running process instances. This cannot be always ensured, for
example, when ”changing the past” of an instance. As example consider Fig. 1
where change Δ inserts two activities X and Y together with a data dependency
between them. Applying Δ to instance I could lead to a situation where Y is
invoked though its input data has not been written by X. Another challenge in
the context of dynamic process changes concerns the treatment of the dynamic
change bug [3]; i.e., the problem to correctly adapt process instance states (e.g.,
markings in a Petri Net) when performing a dynamic change.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 232–247, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relaxed Compliance Notions in Adaptive Process Management Systems 233

A B C

YX

data

A X B Y C

dataChange

Process
Schema S:

Process Schema S’:

A B C

I on S:

Y not correctly supplied
after migration to S’

Activity States: Completed
Change

Fig. 1. Changing the Past

In response to these challenges adaptive PAISs have emerged, which allow
for dynamic process changes at different levels [4,5,6,7,8,9,10]. Most approaches
apply a specific correctness notion to ensure that only those process instances
may migrate to a modified process schema for which soundness can be ensured
afterwards. One of the most prominent criteria used in this context is compli-
ance [4,11]. According to it, a process instance may migrate to schema S′ if it is
compliant with S′; i.e., the current instance trace can be produced on S′ as well.
Different techniques have been introduced to efficiently implement this compli-
ance criterion [11,12]. Unfortunately, traditional compliance has turned out to
be too restrictive, particularly in connection with loop structures or uncritical
changes. Consequently, a large number of instances is excluded from being mi-
grated to a modified schema, even if this does not violate soundness.

In this paper we relax the traditional compliance criterion in different respects,
introduce new compliance classes and their properties, and discuss the impact
the different relaxations have in practice. Orthogonally, data flow consistency
in the context of compliance is discussed. Furthermore, we investigate how to
cope with non-compliant process instances to further increase the number of
migratable instances. In this context we extent existing approaches [11,8] based
on traditional compliance. Altogether respective considerations are fundamental
for further maturation of adaptive process management technology.

Section 2 introduces background information needed for the understanding
of our work. In Section 3 we revisit the compliance criterion as introduced in
[4,11], show how it can be relaxed in different ways to increase the number
of migratable instances, and discuss the properties of the resulting compliance
classes. Section 4 deals with the handling of non-compliant instances and presents
different policies in this context. In Section 5 we extend our considerations to
the data flow perspective. An example is given in Section 6. We discuss related
work in Section 7 and conclude with a summary and outlook in Section 8.

2 Backgrounds

For each business process to be supported (e.g., handling a customer request
or processing an insurance claim) a process type T represented by a process
schema S has to be defined. For a particular type several process schemas may
exist, representing the different versions and evolution of this type over time. In
the following, a single process schema is represented as directed graph, which

234 S. Rinderle-Ma, M. Reichert, and B. Weber

comprises a set of nodes – representing activities or control connectors (e.g.,
XOR-Split, AND-Join) – and a set of control edges (i.e., precedence relations)
between them. In addition, a process schema comprises sets of data elements and
data edges. A data edge links an activity with a data element and represents
a read or write access of this activity to the respective data element. Based on
process schema S at run-time new process instances can be created and executed.
Start or completion events of the activities of such instances are recorded in
traces. WIDE, for example, only records completion events [4], whereas ADEPT
distinguishes between start and completion events of activities [11].

Definition 1 (Trace). Let PS be the set of all process schemas and let A be the
total set of activities (or more precisely activity labels) based on which process schemas
S ∈ PS are specified (without loss of generality we assume unique labeling of activities).
Let further QS denote the set of all possible traces producible on process schema S ∈
PS. A particular trace σS

I ∈ QS of instance I on S is defined as σS
I = < e1, . . . , ek >

(with ei ∈{Start(a), End(a)}, a ∈ A, i = 1, . . . , k, k ∈ N) where the temporal order
of ei in σS

I reflects the order in which activities were started and/or completed over S.1

Adaptive process management systems are characterized by their ability to cor-
rectly and efficiently deal with (dynamic) process changes [12]. Before discussing
different levels of change, we give a definition on the topology of change.

Definition 2 (Process Change). Let PS be the set of all process schemas and
let S, S′ ∈ PS. Let further Δ = <op1, . . . , opn> denote a process change which applies
change operations opi, i=1,. . . ,n sequentially. Then:

1. S[Δ> S′ if and only if Δ is correctly applicable to S and S′ is the process schema
resulting from the application of Δ to S (i.e., S′ ≡ S + Δ)

2. S[Δ>S′ if and only if there are process schemas S1, S2, . . . , Sn+1 ∈ PS with S =
S1, S′ = Sn+1 and for 1 ≤ i ≤ n: Si[Δi>Si+1 with Δi = (opi)

In general, we assume that change Δ is applied to a sound (i.e., correct) process
schema S [13]; i.e., S obeys the correctness constraints set out by the particular
process meta model (e.g., bipartite graph structure for Petri Nets). This is also
called structural soundness. Furthermore, we claim that S′ must obey behavorial
soundness (i.e., any instance on S′ must not run into deadlocks or livelocks).
This can achieved in two ways: either Δ itself preserves soundness by formal
pre-/post-conditions (e.g., in ADEPT [7]) or Δ is applied and soundness of S′

is checked afterwards (e.g., by reachability analysis for Petri Nets).
Basically, changes can be triggered and performed at the process type and the

process instance level. Changes to a process type T may become necessary to
cover the evolution of real-world business processes captured by process schema
of this type [9,11,10]. Generally, process engineers can accomplish process type
changes by applying a set of change operations to the current schema version S
of type T [14]. This results in a new schema version S′ of T. Execution of future
process instances is usually based on S′. In addition, for long-running instances
it is often desired to migrate them to the new schema S′ in a controlled and
1 An entry of a particular activity can occur multiple times due to loopbacks.

Relaxed Compliance Notions in Adaptive Process Management Systems 235

efficient manner [11,12]. By contrast, changes of individual process instances are
usually performed by end users. They become necessary to react to exceptional
situations [7]. In particular, effects of such changes must be kept local, i.e.,
they must not affect other instances of same type. In both cases, structural and
behavioral soundness have to be preserved. The former can be guaranteed since
the underlying process schema has to be structurally correct again [11]. The
latter, however, has to be explicitly checked. This is accomplished by certain
correctness criteria which are subject to the following sections.

3 Revisiting Instance Compliance in Adaptive PAISs

Problems such as dynamic change bug (cf. Sect. 1) show that it is crucial to pro-
vide adequate correctness criteria in connection with dynamic process changes.
Basically, the challenge is to correctly and efficiently migrate process instances
to a modified schema. In particular, no instance should be unnecessarily ex-
cluded from such migration except this would lead to severe flaws (i.e., violation
of soundness) later on. We first summarize fundamental requirements any cor-
rectness notion for dynamic process change should fulfill. Let S be the process
schema which is transformed into another schema S′ by change Δ; i.e., S[Δ>S′.

Req. 1: Any criterion should guarantee correct execution of process instances
on S after migrating them to S′; i.e., soundness has to be preserved; e.g., by
ensuring correctly supplied inputs and correct instance states afterwards [12].
Req. 2: The criterion should be generally valid; i.e., it should be applicable
independent of a particular process meta model.
Req. 3: The criterion should be implementable in an efficient way.2

Req. 4: The number of process instances running on S, which can correctly
migrate to S′, should be maximized.

Following considerations start with the compliance criterion which is a widely
used correctness notion [4]. A detailed comparison of compliance and other cor-
rectness criteria can be found in [12]. In [12,15] it has been shown that this
criterion guarantees Req. 1. Furthermore it presumes no specific process meta
model, but is based on traces. Thus Req. 2 is fulfilled as well [11]. In addition,
compliance can be checked for arbitrary change patterns [1,14], contrary to cri-
teria which are only valid in connection with a restricted set of change patterns
[9]. We have also demonstrated that it can be implemented efficiently [11,12]
(cf. Req. 3). However, the traditional compliance criterion does not adequately
deal with Req. 4; i.e., it needlessly excludes certain instances from being mi-
grated, though this would be possible without affecting soundness. We relax this
criterion by introducing different compliance classes to increase the number of
migratable instances. Usually, one cannot decide on such relaxation automati-
cally, but has to consider the particular application context as well. However,
2 A discussion on the efficiency of correctness checks and a comparison of existing

correctness criteria can be found in [12]. In the context of compliance, for example,
it should be avoided to access whole trace information for each instance.

236 S. Rinderle-Ma, M. Reichert, and B. Weber

the possibility to choose between different compliance classes and to relax cor-
rectness constraints on demand enables us to provide advanced user support in
connection with process schema evolution.

3.1 Compliance Class TC: Traditional Compliance

The essence of the following criteria is the notion of compliance:

Definition 3 (Compliance). Let S, S′ ∈ PS be two process schemas. Further let
I be a process instance running on S with trace σS

I . Then: I is compliant with S′ iff σS
I

can be replayed on S′; i.e., all events logged in σS
I could also have been produced by an

instance on S′ in the same order as set out by σS
I .

In the context of process change, compliance can be used as basis for the following
correctness criterion:

Compliance Criterion 1 (Traditional Compliance TC). Let S be a process
schema and I be an instance on S with trace σS

I . Let further S be transformed into
another schema S′ by change Δ; i.e., S[Δ>S′. Then: If I is compliant with S′ (cf. Def.
3), this instance can correctly migrate to S′. Specifically, the instance state of I on S′

can be logically obtained by replaying σS
I on S′. This state is correct again [12,15].

Compliance Crit. 1 fulfills Req. 1–3 since it forbids changes not compliant with
instance histories (reflected by their traces). In special cases, changes of already
passed regions do not affect traces and are therefore not prohibited [11,12]. As-
sume, for example, that at process schema level activity X is inserted into a
branch of an alternative branching. If this branch is skipped for a particular
instance I at runtime, I will be compliant with the new schema even though its
execution has passed the insertion point of X. Reason is that activities of the
skipped branch and X do not write any entries into σS

I . Therefore trace σS
I can

be replayed on S’; i.e., I is compliant with the modified schema.
Crit. 1 does not meet Req. 4 in a satisfactory way since it is too restrictive in

several respects. Often instances are excluded from migration to the new schema
version even though this would not lead to violation of soundness. Consider, for
example, changes applied to loops. Even if an instance is compliant within the
current loop iteration, according to Crit. 1 it will be considered as non-compliant,
if at least one loop iteration took place. Thus, in the following we investigate how
traditional compliance can be relaxed to allow for more migratable instances.

3.2 Compliance Class LTC: Loop-Tolerant Compliance

Crit. 1 will unnecessarily restrict the number of migratable instances if the in-
tended process change affects loop constructs as the following example shows:
Example (Restrictiveness of Crit. 1 in conjunction with loops) Consider process
schema S from Fig. 2a and assume that activity X is inserted between activities
A and B (situated within a loop construct). Assume that instance I has trace σS

I

as shown in Fig. 2b. Following Crit. 1 change Δ cannot be propagated to I since

Relaxed Compliance Notions in Adaptive Process Management Systems 237

A B X

X

Change
A X B CX

Instance I on S:

Process Schema S’: a) Process Schema S:

A CX

C

b) S
I = <Start(A), End(A), Start(B), End(B), Start(A), End(A), Start(B), End(B), Start(A), End(A)>

c) S
I lp = <Start(A), End(A), Start(B), End(B), Start(A), End(A), Start(B), End(B), Start(A), End(A)>

B

X XOR-Split

Not compliant??

Fig. 2. Process Change Affecting Loop Construct

no trace entries for X have been written in the first two (already completed)
iterations of the loop within σS

I . According to Crit. 1, therefore, I is considered
as being non-compliant with new schema S′ even though migration of I to S′

would not violate soundness. Consequently, using Crit. 1 only instances which
are in the first iteration of the loop construct might be compliant with S′.

In most practical cases it would be too restrictive to prohibit change propaga-
tion for in-progress or future loop iterations only because their previous execution
is not compliant with the new schema. Think of, for example, medical treatment
cycles running for months or years [2]. Any process management system which
does not allow to propagate such schema changes (e.g., due to the development
of a new medical drug) to already running instances (e.g., related to patients
expecting an optimal treatment) would not be accepted by medical staff [2].
Therefore, we have to improve the representation of σS

I in order to exterminate
its current restrictiveness in conjunction with loops. The key to solution is to
differentiate between completed and future executions of loop iterations. From
a formal point of view there are two possibilities. The first approach (lineariza-
tion) is to logically treat loop structures as being equivalent to respective linear
sequences. Doing so allows us to apply Crit. 1 (with full history information).
However, this approach has an essential drawback – explosion of graph size. Thus
we adopt another approach which works on a projection on relevant trace infor-
mation, i.e., it maintains the loop construct, but restricts necessary evaluation
to relevant parts of the trace. In this context, relevant information includes the
actual state of a loop body, but excludes all data about previous loop iterations
(cf. Fig. 2c). Note that the projection on relevant information does not physi-
cally delete the information about previous loop iterations, but logically hides
them (i.e., traceability is not affected).

To realize the desired projection we logically discard all entries from the in-
stance trace produced by a loop iteration other than the actual one (if the loop
is still executed) or the last one (if the loop execution has been already finished).
For the sake of simplicity we presume nested loops here. However, the described
projection can be obtained for arbitrary loop structures as well. We denote this
logical view on traces as the loop-purged trace.

238 S. Rinderle-Ma, M. Reichert, and B. Weber

Definition 4 (Loop-purged Trace). Let S ∈ PS be a process type schema and
A be the set of activities based on which schemas are specified. Let further I be a process
instance running on S with trace σS

I =< e0, . . . , ek > (with ei ∈{Start(a), End(a)},
a ∈ A, i = 1, . . . , k, k ∈ N). The loop-purged trace σS

I lp can be obtained as follows:
In absence of loops σS

I lp is identical to σS
I . Otherwise, σS

I lp is derived from σS
I by

discarding all entries related to loop iterations other than the last one (completed loop)
or the actual one (running loop).

Based on this, we define the notion of loop compliance:

Compliance Criterion 2 (Loop-tolerant Compliance LTC). Let S be a
process schema and I be a process instance on S with trace σS

I . Let further S be trans-
formed into another schema S′ by change Δ; i.e., S[Δ>S′. Then: We will denote I as
loop-tolerant compliant with S′ if the loop-purged trace σS

I lp of I can be replayed on S′.
If I is loop-compliant with S’, it can correctly migrate to S′.

As shown in [15], Crit. 2 fulfills Req. 1 – 3. In addition, it potentially increases the
number of migratable instances when compared to Crit. 1. Thus it contributes to
Req. 4. In Sect. 3.4 we measure the effects of switching from Compliance Class
TC to Compliance Class LTC.

3.3 Compliance Class RLC: Relaxed Loop-Tolerant Compliance

Further relaxation of Compliance Class LTC (cf. Sect. 3.2) can be achieved when
exploiting the semantics of the applied change. Specifically, certain changes (e.g.,
deleting activities) can be applied independently of the particular instance traces
since their application does not affect behavorial soundness of instances. Con-
trary, inserting or moving activities within completed instance regions might af-
fect behavorial soundness (e.g., causing deadlocks or livelocks). Consider Fig. 3a:
Schema S is transformed into schema S′ by applying change Δ. More precisely,
Δ deletes two activities with a data dependency between them (in practice, for
example, the first deleted activity could collect some customer data, while the
second one just checks this data). Taking Crit. 1, instance I1 is compliant with
S′ whereas I2 is not; i.e., I2 is excluded from migration to S′. However, migrating
I2 to S’ would not result in any violation of soundness; i.e., the state of I2 on S′

would be correct and no deadlocks or livelocks would occur.
How to reflect the deletion of already completed activities within instance

traces? To preserve traceability, entries of such activities cannot be just physi-
cally deleted from traces. Instead, we logically discard them from traces (as for
the loop-purged trace representation):

Definition 5 (Delete-purged Trace). Let S ∈ PS be a process schema and
A be the set of activities based on which schemas are specified. Let further I be an
instance running on S with trace σS

I =< e0, . . . , ek > (with ei ∈{Start(a), End(a)},
a ∈ A, i = 1, . . . , k, k ∈ N). Assume that a sound schema S is changed into another
sound process schema S′ by change Δ (i.e., S[Δ>S′). The delete-purged trace σS

I dp is
obtained as follows: If Δ does not contain any delete operations σS

I dp is identical to σS
I .

Relaxed Compliance Notions in Adaptive Process Management Systems 239

A B C D E

data

A C E

a) Process Schem a S:

Change operation applied at process schem a level:
 = <deleteActivity(S, X, B), deleteActivity(S, D),

deleteDataElement(S, data),
deleteDataEdge(S, B, data, write),

deleteDataEdge(S, D, data, read)

Process Schem a S’:

A B C D E

A B C D E

I1 on S:

I2 on S:

Com pliant

Not com pliant??

I1 on S’:

A C E

b) Instance Traces:

I2 = <START(A), END(A), START(B), END(B), START(C), END(C), START(D), END(D)>
I2 dp = <START(A), END(A), START(B), END(B), START(C), END(C), START(D), END(D)>

data

data

Fig. 3. Changing the Execution History of Process Instances – Example

Otherwise, σS
I dp is derived from σS

I by (logically) discarding all trace entries related to
activities deleted by Δ. Note that σS

I dp can be produced on basis of loop-purged trace
σS

I lp as well (denoted by σS
I lp,dp).

Based on delete-purged and loop-purged traces, we define the notion of relaxed
(loop-tolerant) compliance:

Compliance Criterion 3 (Relaxed Loop-tolerant Compliance RLC).
Let S be a schema and I be an instance on S with trace σS

I . Let further S be a sound
schema which is transformed into another sound schema S′ by change Δ; i.e., S[Δ >S’.
Then: We denote I as relaxed loop-tolerant compliant with S’ if the loop-purged and
delete-purged trace σS

I lp,dp of I can be replayed on S′. If I is relaxed loop-tolerant com-
pliant, it can correctly migrate to S′.

Traceability of delete operations can be realized using flags or time stamps as
well. Consider the example depicted in Fig. 3b. Start/end events of the deleted
activities are not physically deleted from σI2 but logically discarded. Thus, it still
can be seen from σS

Idp
that activities B and C had been executed before, but then

were deleted. This is a different semantics from rolling back activities since effects
of the deleted activities are still present (no compensation activities are applied).
Based on σS

Idp
, I2 becomes compliant with S′. Thus the number of compliant

instances can be increased again (cf. Req. 4). Though Crit. 3 preserves soundness
of affected instances, it depends on the particular application scenario whether it
should be applied or not. In any case, based on the above considerations we are
able to identify relaxed loop-compliant instances and report them accordingly.
Final decision can be left to the process engineer.

3.4 Relation between Compliance Classes

Fig. 4 shows the different compliance classes discussed before. Obviously, the
number of compliant instances increases the less restrictive the compliance cri-
terion becomes. At the same time, the number of non-compliant process instances
decreases. Formally:

240 S. Rinderle-Ma, M. Reichert, and B. Weber

InstanceSet(TC)

InstanceSet(LTC)

InstanceSet(RLC)

InstanceSetS

InstanceSet(TC)

InstanceSetS

Migration Factor
MF(TC),(LTC)

Traditional
Compliance

Loop-tolerant
Compliance

Relaxed loop-
tolerant
Compliance

Fig. 4. Compliance Classes

Proposition 1 (Relation between Compliance Classes). Let S be a sound
process schema and InstanceSetS be a collection of instances running on S . Let further
Δ be a change which transforms S into another sound process schema S′. We denote
the set of instances which are compliant with S′ based on compliance class CClass ∈
{(TC), (LTC), (RLC)} as InstanceSetCClass. Then:

InstanceSet(TC) ⊆ InstanceSet(LTC) ⊆ InstanceSet(RLC) ⊆ InstanceSetS

To measure effects when relaxing a compliance class (e.g., TC to LTC), we use
the following metrics:

Definition 6 (Migration Factor). Assumptions as in Prop. 1. Then: The in-
crease in number of instances which can migrate to S′ when going from compliance
class CClass1 to compliance class CClass2 ((CClass1, CClass2) ∈ {(TC, LTC), (LTC,
RLC), (TC, RLC)}) can be measured by the migration factor

MFCClass1,CClass2 =
||InstanceSetCClass1| − |InstanceSetCClass2||

|InstanceSetS| (1)

4 On Dealing with Non-compliant Process Instances

Even though it is possible to increase the number of compliant instances by
switching to the next higher compliance class, the question remains how to deal
with non-compliant instances. At minimum it is required that non-compliant
instances may finish execution according to the schema they were started on or
migrated to earlier. In many cases, however, it is desired to allow instances to
migrate to the new process schema even though they are not compliant at first
sight. For example, this can be crucial in the context of new legal regulations.
Generally, it is desired to let as many instances as possible take benefit from
future process schema changes. This refers to currently applied optimizations,
but also to future ones (applied to the newly designed schema later on).

4.1 Relaxing Compliance

One possibility to deal with non-compliant instances is to relax the underlying
compliance criterion. This means to move instances from a stricter compliance
class to a relaxed one (cf. Fig. 5a). The effect of doing so can be measured by the
migration factor (cf. Def. 6). If relaxation of the compliance class is not possible,
non-compliant instances will have to be treated within their current compliance
class (cf. Fig. 5b). We discuss different possibilities in the following.

Relaxed Compliance Notions in Adaptive Process Management Systems 241

a) Relaxing Com pliance: b) Treating within Com pliance Class:

Com pliance Class/
M ethod

I II III

Partial Rollback x x

Delayed M igration x x

Adjusting Changes x x

InstanceSetCom pliance (I)

InstanceSetLoop Com pliance (II)

InstanceSetRelaxed Loop Com pliance (III)

InstanceSetS

InstanceSetS

Fig. 5. Strategies for Treating Non-Compliant Instances

4.2 Treatment within One Compliance Class

We present different strategies for treating non-compliant instances within their
particular compliance class; i.e., instances for which their execution ”has pro-
ceeded too far”. As illustrated in Fig. 5b, it depends on the kind of compliance
class whether the application of a particular strategy makes sense. Furthermore,
the applicability of the following strategies also depends on the semantics of the
applied change operation. Altogether, based on the classification presented in
Fig. 5b, the adaptive PAIS might suggest the following treatment strategies for
non-compliant instances.

Partial Rollback. Several approaches from literature suggest restoring compli-
ance of non-compliant instances by partially rolling them back in their execution
[8,16]; i.e., applying this policy for instances which have progressed too far results
in a compliant state. Thus a partial rollback is reasonable for compliance classes
TC and LTC since both are based on instance states. Contrary, the essence
of compliance class RLC is based on allowing changes of the past (specifically
delete operations). Hence, rollback to earlier instance states does not make sense
here. Generally, (partial) rollback of instances is connected with compensating
activities [8] (e.g., if a flight has been booked, the compensating activity will
be to cancel the booking). An obvious drawback is that it is not always pos-
sible to find compensating activities, i.e., to adequately rollback non-compliant
instances. Furthermore, even if compensating activities can be found, this will
be mostly connected with loss of work and thus will not be accepted by users.

Delayed Migration. An alternative approach to deal with a non-compliant
instance is to wait until it becomes compliant again: Assume that process change
Δ affects a loop construct3 within schema S. Assume further that for instance
I running on S this loop is currently being executed, but has proceeded too
far to be compliant. However, instance I becomes a candidate for migration
when the loop enters its next iteration; i.e., (relaxed) loop-tolerant compliance
might be satisfied with delay (delayed migration). Such instances can be held as
”pending to migration” until the loop condition is evaluated. As we have learned
in ADEPT2, implementing delayed migration is not as trivial as it looks like at

3 Thus delayed migration is applicable for compliance classes LTC and RLC.

242 S. Rinderle-Ma, M. Reichert, and B. Weber

first glance. At first, if an instance contained regularly or irregularly nested loops
several events (loop backs) might exist to trigger the execution of a previously
delayed migration. Furthermore, the interesting question remains how to deal
with pending instances when further schema changes take place.

Adjusting Change Operations. The above strategies are based on the idea
to reset non-compliant instances into a compliant state. Another approach is to
adjust the intended change itself instead of the instance states. We illustrate this
taking insert operations as example. However, this strategy can be also applied in
the context of other change patterns (e.g., move). The idea is to exploit specific
semantics of the insert operation [14]: When applying it, the user has to specify
the position where to insert the new activities. Basically, this position depends
on two kinds of constraints: first, data dependencies have to be fulfilled (e.g., an
activity writing data element d has to be positioned before an activity reading
d) and second, semantic constraints must be obeyed. Here we focus on handling
data dependencies. Semantic constraints can be treated similarly.

Basically, adjusting changes can take place at the process type and the process
instance level. Assume that a schema S is transformed into another process
schema S′ by change Δ. Let further I be an instance running on S which is
not compliant with S′. If Δ is adjusted to Δ′ at type level (transforming S
into S′′), all instances running on S will be checked for compliance with S′′

afterwards (global adjustment). Alternatively, Δ can be adjusted specifically for
I at instance level. The latter results in bias ΔI ; i.e., an instance-specific change
which describes the difference between the process schema, I is linked to, and
the instance-specific schema it is running on (instance-specific adjustment).

Global Adjustment: Consider Fig. 6 where change Δ1 inserts activities X and
Y with a data dependency between them into schema S. This results in schema
S′. Instance I running on S is not compliant with S′. Reason is that X would
be inserted before already completed activity B. As a consequence, if X is not
executed, data will not be written and inputs of Y will not be supplied correctly
in the sequel. However, aside any semantic constraints, activity X could be also
inserted between activities B and C (Δ2 transforming S into S′′). Reason is that
the writing activity (X) is still inserted before the reading one (Y). Thus all
data dependencies are still fulfilled. When applying Δ2, instance I will become
compliant with S′′.

Generally, more instances will become compliant with a changed process
schema, if added activities are inserted ”as late as possible”. Most important,
all data dependencies (or, additionally, semantics constraints) imposed by the
process schema and the intended change must be fulfilled. For the given example
this implies that activities X and Y can be inserted ”later in the process schema”
(i.e., as close to the process end as possible) as long as the data dependency be-
tween them is still fulfilled. Since a process schema might contain more than one
process end node, the formalization of ”later in a process schema” should not be
based on structural properties; i.e., we aim at being independent of a particular
process meta model. As for the compliance criterion, we use process traces in
this context. Due to lack of space we omit a formalization here.

Relaxed Compliance Notions in Adaptive Process Management Systems 243

A B C

YX

data

a) Change applied at process schem a level:
1 = <serialInsert(S, X, A, B), serialInsert (S, Y, B, C), addDataElement(S, data),

addDataEdge(S, X, data, write), addDataEdge(S, Y, data, read)

Process
Schem a S:

A X B Y C

data

Process Schem a S’:

b) Change applied at process schem a level:
2 = < serialInsert (S, X, B, C), serialInsert (S, Y, X, C),

addDataElement(S, data), addDataEdge(S, X, data, write), addDataEdge(S, Y, data, read)

1

A B C

YX

data

Process
Schem a S:

A B X Y C

data

Process Schem a S’’:

2

A B C

I on S:

A B X Y C

2 I on S’: data

A B C

I on S: 1

Non-com pliant w ith S’

Fig. 6. Global Adjustment of Change Operations – Example

When inserting two or more data-dependent activities as depicted in Fig. 6,
additional constraints must hold. More precisely, it cannot be allowed to move
the insertion position of the writing activity ”behind” the reading activity since
the resulting schema would not be correct anymore.

Instance-specific Adjustment: Consider the example depicted in Fig. 7. Con-
trary to the above example, we do not adjust schema change Δ1 but apply
adjusted instance-specific change ΔI(S) only to I at instance level. This results
in instance-specific schema SI . The bias between SI and S′ is captured within
ΔI(S′) and reflects moving X to the position between B and Y.

Instance-specific adjustment can be generalized to make any non-compliant
instance compliant with the changed process schema. The idea behind is the
following: Let S be a process schema which is transformed into S′ by change Δ.
Let further I be an instance on S. So far, Δ is propagated to I when migrating I
to S (i.e., I reflects Δ after its migration). However, if I is not compliant with S′,
Δ must not be applied to I. We still can migrate I to S′ but without propagating

A B C

YX

data

a) Change applied at process schem a level:
1 = <serialInsert(S, X, A, B), serialInsert (S, Y, B, C), addDataElement(S, data),

addDataEdge(S, X, data, write), addDataEdge(S, Y, data, read)>

Process
Schem a S:

A X B Y C

data

Process Schem a S’:

b) Change applied at process instance level:
I (S)= < serialInsert (S, X, B, C), serialInsert (S, Y, X, C),

addDataElement(S, data), addDataEdge(S, X, data, write), addDataEdge(S, Y, data, read)>

1

A B C

I on S:

A B X Y C

2 I on S’: data

c) BIAS at process instance level: I (S’)= <serialMove(S, X, B, X)>
Instance-specific schem a SI

Fig. 7. Instance-Specific Adjustment of Change Operations – Example

244 S. Rinderle-Ma, M. Reichert, and B. Weber

Δ to I. This can be achieved by storing an instance-specific bias ΔI(S′) which
has to be calculated; e.g., if Δ inserts activity X at schema level, ΔI(S′) will
contain the ”inverse” delete operation of X.

5 The Data Consistency Problem

So far, we have focused on relaxing compliance notions based on the underlying
instance traces to increase the number of migratable instances. For three dif-
ferent compliance classes we have shown that soundness is ensured for affected
instances. Having a closer look at data flow issues, however, it can be observed
that even Crit. 1 is not restrictive enough in some cases.

Example (Inconsistent Read Data Access): We consider the instance depicted
in Fig. 8a. Activity C has been started and therefore has already read data
value 5 of data element d1. Assume now that due to a modeling error read data
edge (C, d1, read) is deleted and new read data edge (C, d2, read) is inserted
afterwards. Consequently, C should have read data value 2 of data element d2

(instead of data value 5). This inconsistent read behavior may lead to errors if,
for example, the execution of this instance is aborted and therefore has to be
rolled back. Using any representation of trace σS

I as introduced so far (i.e., σS
I or

σS
I lp,dp), this erroneous case would not be detected. Consequently, this instance

would be classified as compliant.

read data

a) Process Instance I

Events START(A) END(A) START(B) END(B) START(C)
written
data
elem ents

- (d1,5)
(d2,1)

- (d2,2) -

read data
elem ents

- - - - (d1,5)

b) Data-Consistent Representation of
Execution History I

S dc

Com pleted Running

Δ = (deleteDataEdge(C, d1, read),
addDataEdge(C, d2, read))

A B C D

d1 d2

5 5
2

?

d3

w rite data
edge

value of data
object

1

Fig. 8. Data Consistency Problem

We need an adapted form of σS
I which also incorporates data flow aspects.

Definition 7 (Data-consistent Trace). Let the assumptions be as in Def. 1.
Let further DS be the set of all data elements relevant in the context of schema S. Then
we denote σS

I
dc as data-consistent trace representation of σS

I

with σS
I

dc = <e1, . . . , ek>:
ei ∈ {START(a)(d1,v1),...,(dn,vn) END(a)(d1 ,v1),...,(dm,vm)}, a ∈ A
where tuple (di, vi) describes a read/write access of activity a on data element

di ∈ DS with associated value vi (i = 0, . . . , k) if a is started/completed.

Using the data-consistent representation of σS
I the problem illutrated in Fig. 8a)

is resolved as the following example shows [11,15]:

Relaxed Compliance Notions in Adaptive Process Management Systems 245

Example (Consistent Read Data Access Using σS
I

dc
): Consider Fig. 8a. As-

sume that the data-consistent trace σS
I

dc is used instead of σS
I . Then the in-

tended data flow change Δ (deleting data edge (C, d1, read) and inserting data
edge (C, d2, read) afterwards) cannot be correctly propagated to I since entry
Start(C)(d1,5) of σS

I
dc cannot be reproduced on the changed schema.

The data-consistent representation σS
I

dc can be used as basis for all other
trace representations (cf. Def. 4 – 5). Thus data-consistent compliance works in
combination with the other compliance classes TC, LTC, and RLC.

6 Example and Practical Impact

Consider the example depicted in Fig. 9. Schema S is transformed into schema
S′ by deleting activities B and D and the data dependency between them as well
as by inserting activity X within the loop construct. Assume that instances Ik

(k = 1, . . . , 1000) are clustered according to their state: For k = 1, . . . , 100, at
maximum, activities A, E, and F are completed (indicated by the grey milestone)
whereas activities of the other parallel branch have not yet been executed. Par-
ticularly, the loop construct is within its first iteration. For k = 101, . . . , 200, the
loop has been executed more than once and activities B, C, and D have not yet
been executed. For k = 201, . . . , 800, activities of both branches have been exe-
cuted, but the parallel branching has not completed yet (i.e., G is not activated).
For k = 801, . . . , 1000 (not depicted), G is either started or completed.

If Crit. 1 is applied to instances I1, . . . , I1000, only I1, . . . , I100 are considered as
being compliant with S′. If relaxing to Compliance Crit. 2, additionally instances
I101, . . . , I200 become compliant. Thus a migration factor of MF(I),(II) = 0.1 is
achieved, i.e., 10 % more instances can migrate to S′. Finally, if we relax com-
pliance to Crit. 3, additionally, I201, . . . , I800 are considered as being compliant
with S′ and a migration factor MF(II),(III) = 0.6 results; i.e., 80% of all process
instances can migrate to S′. The remaining instances are non-compliant.

7 Related Work

There is a plethora of approaches dealing with correctness issues in adaptive
PAISs [9,5,10,17,11,8]. The kind of applied correctness criterion often depends
on the used process meta model. A discussion and comparison of the particular
correctness criteria is given in [12]. Aside from the applied correctness criteria,
mostly these approaches do neither address the question of how to increase the
number of migratable instances nor how to deal with non-compliant instances.
Most approaches which treat non-compliant instances are based on partial roll-
back [8,16] (cf. Sect. 4). An alternative approach supporting delayed migrations
of non-compliant instances is offered by Flow Nets [5]. Even if instance I on S is
not compliant with S′ within the actual iteration of a loop, a delayed migration
of I to the new change region is possible when another loop iteration takes place.

246 S. Rinderle-Ma, M. Reichert, and B. Weber

a) Process Schema S:

E F X

X

B C D

data

++A G

E F XX

C

++A G

Process Schema S’:

b) Instances Ik on S:

E F X

B C D

data

++A G1st iteration

k = 1, …, 100:
Ik

S = <A> OR Ik
S = <A, E> OR Ik

S = <A, E, F>

k = 1, … 100

E F X

B C D

data

++A Gnth iteration (n>1)

k = 101, … 200 k = 101, …, 200:
Ik

S = <A, E, F,…, E> OR
Ik

S = <A, E, F, …, E, F>

E F X

B C D

data

++A Gnth iteration (n 1)

k = 201, … 800

k = 201, …, 800:
Ik

S = <A, B> OR Ik
S = <A, E, B> OR Ik

S = <A, B, E>
OR Ik

S = <A, [B||E, F, …, E, F]> OR Ik
S = <A, B, C>

OR Ik
S = <A, E, B, C> OR Ik

S = <A, B, E, C>
OR Ik

S = <A, B, C, E>, OR
Ik

S = <A, [B||E, F, …, E, F]> OR
Ik

S = <A, B, C, D> OR Ik
S = <A, E, B, C, D>

OR Ik
S = <A, B, E, C, D> OR Ik

S = <A, B, C E, D>
OR Ik

S = <A, B, C, D, E>
OR Ik

S = <A, [B, C, D] || [E, F, …, E, F]>
where [1]||[2] means any permutation of 1 and 2

+ AND-Split/Join

Fig. 9. Example

Frameworks for process flexibility have been presented in [18,14]. In [18], dif-
ferent paradigms for process flexibility and related technologies are described.
[14] provides change patterns and evaluates different approaches based on them.
However, [18,14] do not address relaxed soundness criteria for process changes.

8 Summary and Outlook

This paper addressed the question of how to increase the number of process
instances which can migrate to a changed process schema. This is important in
the context of new legal regulations or process optimizations. Thus, we revisited
the notion of compliance – a widely-used correctness criterion in the context of
process change – and introduced several classes of relaxed compliance. We also
showed how the number of compliant instances can be increased by these re-
laxed notions. Furthermore, we discussed approaches dealing with non-compliant
process instances and introduced new strategies in this context. In addition, we
detected that traditional compliance is too relaxed in the context of data flow
correctness and provided an adequate criterion for data-consistent compliance.
Finally we presented a practical example. The concepts of loop-tolerant compli-
ance and data consistency have been implemented in our ADEPT demonstrator
[15]. Currently, the concepts are implemented within the full-blown adaptive
PAIS ADEPT2. In future work we will investigate the relaxation of compli-
ance more deeply: in addition to further relaxation classes, we will elaborate the
strategy of using ad-hoc changes to migrate any non-compliant process instance
(without instance-specific changes) to a changed process schema.

Relaxed Compliance Notions in Adaptive Process Management Systems 247

References

1. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

2. Lenz, R., Reichert, M.: IT support for healthcare processes – premises, challenges,
perspectives. Data and Knowledge Eng. 61(1), 39–58 (2007)

3. van der Aalst, W.: Exterminating the dynamic change bug: A concrete approach
to support worfklow change. Information Systems Frontiers 3, 297–317 (2001)

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24, 211–238 (1998)

5. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: COOCS 1995, pp. 10–21 (1995)

6. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: CoopIS 1999, pp. 104–114 (1999)

7. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. J. of Intelligent Information Systems 10, 93–129 (1998)

8. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9, 93–116 (2000)

9. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270, 125–203 (2002)

10. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS-34 (2001)

11. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

12. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering. 50, 9–34 (2004)

13. Dehnert, J., Zimmermann, A.: On the suitability of correctness criteria for business
process models. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 386–391. Springer, Heidelberg (2006)

14. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering (2008)

15. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis, Ulm
University (2004)

16. Reichert, M., Dadam, P., Bauer, T.: Dealing with forward and backward jumps in
workflow management systems. Software and Syst. Modeling 2, 37–58 (2003)

17. Rinderle, S., Reichert, M., Dadam, P.: Evaluation of correctness criteria for dy-
namic workflow changes. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske,
M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 41–57. Springer, Heidelberg (2003)

18. Mulyar, N., Schonenberg, M., Mans, R., Russell, N., van der Aalst, W.: Towards a
taxonomy of process flexibility (extended version). Technical Report BPM-07-11,
Brisbane/Eindhoven: BPMcenter.org (2007)

On Measuring Process Model Similarity Based

on High-Level Change Operations�

Chen Li1, Manfred Reichert2, and Andreas Wombacher3

1 Information System group, University of Twente, The Netherlands
lic@cs.utwente.nl

2 Institute of Databases and Information System, Ulm University, Germany
manfred.reichert@uni-ulm.de

3 Database group, University of Twente, The Netherlands
a.wombacher@utwente.nl

Abstract. For various applications there is the need to compare the
similarity between two process models. For example, given the as-is and
to-be models of a particular business process, we would like to know how
much they differ from each other and how we can efficiently transform
the as-is to the to-be model; or given a running process instance and
its original process schema, we might be interested in the deviations
between them (e.g. due to ad-hoc changes at instance level). Respective
considerations can be useful, for example, to minimize the efforts for
propagating the schema changes to other process instances as well. All
these scenarios require a method to measure the similarity or distance
between two process models based on the efforts for transforming the one
into the other. In this paper, we provide an approach using digital logic
to evaluate the distance and similarity between two process models based
on high-level change operations (e.g. to add, delete or move activities). In
this way, we can not only guarantee that model transformation results in
a sound process model, but also ensure that related efforts are minimized.

1 Introduction

Business world is getting increasingly dynamic, requiring from companies to con-
tinuously adapt business processes as well as supporting Process-Aware Informa-
tion Systems (PAISs) [3] in order to cope with the frequent and unprecedented
changes in their business environment [19]. Organizations and enterprises need
to continuously Re-engineer their Business Processes (BPR), i.e. they need to be
able to flexibly upgrade and optimize their business processes in order to stay
competitive in their market. Furthermore, PAISs should allow for process flexi-
bility, i.e., it must be possible for users to deviate from the pre-defined process
model at the instance level if required.

The pivotal research on process flexibility over the last years [1,11] has pro-
vided the foundation for dynamic process change to reduce the cost of change
� Supported by the Netherlands Organization for Scientific Research (NWO) under

contract number 612.066.512.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 248–264, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Measuring Process Model Similarity 249

in PAISs. Process flexibility denotes the capability to reflect externally triggered
change by modifying only those aspects of a process that need to be changed,
while keeping the other parts stable, i.e., the ability to change or evolve the
process without completely replacing it [11]. To compare two process models is
a fundamental task in this context. In particular, it becomes necessary to cal-
culate the minimal difference between two process models based on high level
changes. If we need to transform one model into another, for example, efforts can
then be reduced and the transformation can go smoothly; i.e. we do not need
to re-define the new process model from scratch, but only apply these high-level
changes either at process type or process instance level. Several approaches like
ADEPT [11], WASA [20] or TRAM [6], have emerged to enable process change
support in PAIS (see [13] for an overview).

Based on the two assumptions that (1) process models are block-structured
and (2) all activities in a process model have unique labels, this paper deals with
the following fundamental research question:

Given two process models S and S′, how much do they differ from each other
in terms of high-level change operations? And what is the minimal effort, i.e.
the minimal number of change operations needed to transform S into S′?

Clearly, our focus is on minimizing the number of high-level change operations
needed to transform process model S into process model S′. Soundness of the
resulting process model should be also not sacrificed. We apply the high-level
change operations as described in [11,19] in the given context. By considering
high-level changes, we can distinguish our approach from traditional similarity
measures like graph or sub-graph isomorphism [15]. Both only consider basic
change primitives like insertion or deletion of single nodes and edges.

Answering the above research question will lead to better cost efficiency when
performing BPR, since the efforts to implement the corresponding changes in
the supporting PAIS are minimized. At process instance level, we can reduce the
efforts to propagate process type changes to the running instances [13]. Finally
the derived differences between original process model and its process instances
can be used as a set of pure and concise logs for process mining [4].

In previous work, we have provided the technical foundation for users to flex-
ibly change process models at both the process type and the process instance
level. For example, users may dynamically insert, delete or move an activity
at these two levels [11]. In addition, snapshot differential algorithms [7], known
from database technology, can be used as a fast and secure method to detect the
change primitives (e.g. to add or delete nodes and edges) needed to transform
one process model into another.

Using this framework and snapshot differential algorithm, this paper applies
Digital Logic in Boolean Algebra [14] to provide a new method to transform
a process model into another one based on high-level change operations. This
method does not only minimize the number of changes needed in this context,
but also guarantees soundness of the changed process model, i.e. the process
model remains correct when applying high-level change operations. We fur-
ther provide two measures –process distance and process similarity –based on

250 C. Li, M. Reichert, and A. Wombacher

high-level change operations, which indicate how costly it is to transform process
model S into model S′, and how different S and S′ are.

The remainder of this paper is organized as follows: Sec. 2 introduces back-
grounds needed for the understanding of this paper. In Sec. 3 we discuss reasons
and difficulties for deriving high-level change operations. Sec. 4 describes an ap-
proach to detect the difference between two process models. Sec. 5 discuss related
work. The paper concludes with a summary and outlook in Sec. 6.

2 Backgrounds

Let P denote the set of all correct process models. A particular process model
S = (N, E, . . .) ∈ P is defined as a well-structured Activity Net [11]. N con-
stitutes a set of activities ai and E is a set of precedence relations (i.e. control
edges) between them. To limit the scope, we assume Activity Nets to be block
structured. Examples are depicted in Fig 1.

We assume that a process change (i.e. Activity Net Change) is accomplished
by applying a sequence of high-level change operations to a given process model
S over time [11]. Such change operations modify the initial process model by
altering the set of activities and/or their order relations. Thus, each application
of a change operation results in a new process model. We define process change
as follows:

Definition 1 (Process Change). Let P denote the set of possible process mod-
els and C the set of possible process changes. Let S, S′ ∈ P be two process models,
let Δ ∈ C be a process change, and let σ = 〈Δ1, Δ2, . . . Δn〉 ∈ C∗ be a sequence
of process changes performed on initial model S. Then:

– S[Δ〉S′ iff Δ is applicable to S and S′ is the process model resulting from
the application of Δ to S.

– S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[Δ〉Si+1 for
i ∈ {1, . . . n}.

Examples of high-level change operations and their effects on a process model
are depicted in Table 1. Issues concerning the correct use of these operations and
related pre-/post- conditions are described in [11]. If some additional constraints
are met, the high-level change operations depicted in Table 1 will be also ap-
plicable at process instance level. Although the depicted change operations are
discussed in relation to our ADEPT framework [11], they are generic in the sense
that they can be easily transferred to other process meta models as well. For
example, the change operations in Table 1 can be also expressed by the life-cycle
inheritance rule as used in the context of Petri Nets [16]. We are referring to
ADEPT in this paper since it covers by far most high-level change operations
and change patterns respectively when compared to other approaches [19]. It
further has served as basis for representing our method.

A trace t on process model S denotes a valid execution sequence t ≡<
a1, a2, . . . , ak > of activities ai ∈ N on S according to the control flow de-
fined by S. All traces process model S can produce are summarized in trace

On Measuring Process Model Similarity 251

Table 1. Examples of High-Level Change Operations

Change Operation Δ on S opType subject paramList
insert(S, X, A,B, [sc]) insert X S, A,B, [sc]
Effects on S: inserts activity X between activity sets A and B. It is a conditional insert
if [sc] is specified (i.e. [sc] = XOR)

delete(S, X, [sc]) delete X S, [sc]
Effects on S: deletes activity X from S, i.e. X turns into a silent one. [sc] is specified ([sc] =
XOR) when we block the branch with X, i.e. the branch which contains X will not be activated

move(S, X, A,B, [sc]) move X S, A,B, [sc]
Effects on S: moves activity X from its original position in S to another position between
activity sets A and B. (it is a conditional insert if [sc] is specified)

replace(S, X, Y) replace X Y
Effects on S: replaces activity X by activity Y

set TS . t(a ≺ b) is denoted as precedence relation between activities a and b in
trace t ≡< a1, a2, . . . , ak > iff ∃i < j : ai = a ∧ aj = b. Here, we only consider
traces composing ’real’ activities, but no events related to silent activities i.e.,
activity nodes which contain no operation and exist only for control flow pur-
pose, see Section 4.4. Finally, we will consider two process models as being the
same if they are trace equivalent, i.e. S ≡ S′ iff TS ≡ TS′ . The stronger notion
of bi-similarity [5] is not required in our context.

3 High-Level Change Operations

3.1 Complementary Nature of Change and Execution Logs

Most PAISs support ad-hoc deviations at instance level and record them in
change logs. Thus, they provide additional information when compared to tra-
ditional PAISs which only record execution logs (which typically document the
start and/or end time of activities). Change logs and execution logs document
different run-time information on adaptive process instances and are not inter-
changeable. Even if the original process model is given, it will be not possible to
convert the change log of a process instance to its execution log or vice-verse. As
example, take the original and simplified patient treatment process as depicted in
Fig. 1a: a patient is admitted to a hospital, where he first registers, then receives
treatment, and finally pays. Assume that, due to an emergency situation, for one

receive

treatmentAdmitted

a) S: original process model b) S’: final execution & change

register pay

register

receive

treatment

pay

AND-Split

AND-Joinadmitted

Δ=Move (S, register, admitted, pay)

S[Δ>S’

e=<admitted, receive treatment, register, pay>

Fig. 1. Change Log and Execution Log are not Interchangeable

252 C. Li, M. Reichert, and A. Wombacher

delEdge(StartFlow,A); delEdge(A,B);

delEdge(B,C); addEdge(B,A);

addEdge(A,C); addEdge(StartFlow,B)

delEdge(A,B); delEdge(B,C); delEdge(B,D);

delEdge(C, τ); delEdge(D,τ); delEdge(t,E);

delEdge(τ, F}; delNode(τ); addEdge(A,C);

addEdge(C,B); addEdge(B,D); addEdge(D,E);

addEdge(D,F); updateNodeType(D,

XorSplit); updateNodeType(B, empty);

GBA

C

D

E

F

DA C

E

F

B G

B

A C

D

E

F

G

Change Primitives

Change Primitives

Δ1=Move (S, C, A, B)

S1: model after change Δ1

Δ2=Move (S, A, B, C)

S[Δ1>S1

S[Δ2>S2

S: original process model S2: model after change Δ2

AND-Split

AND-Join

XOR-Split

XOR-Join

Snapshot difference

Fig. 2. High-level Change Operation and Corresponding change primitive

particular patient, we want to first start the treatment of this patient and allow
him to register later during treatment. To represent this exceptional situation in
the process model of the respective instance, the needed change would be to move
activity receive treatment from its current position to a position parallel to activ-
ity register. This change leads to a new model S′, i.e., S[σ〉S′ with σ =< move(S,
reveive treatment, admitted, pay) >. Meanwhile, the execution log e for this par-
ticular instance can be e =< admitted, receive treatment, register, pay > (cf. Fig.
1b). If we only have process model S and its execution log, it will be not possi-
ble to determine this change because the process model which can produce such
execution log is not unique. For example, a process model with the four activi-
ties contained in four parallel branches could produce this execution log as well.
On the contrary, it is generally not possible to derive the execution log from a
change log, because execution behavior of S′ is also not unique. For example, a
trace < admitted, register, receive treatment, pay > is also producible on S′ as
well. Consequently, change logs provide additional information when compared
to pure execution logs.

3.2 Why Do We Need High-Level Change Operations?

After showing the importance of change logs, we now discuss why we need high-
level change operations rather than change primitives (i.e., low-level changes at
edge and node level). Left side of Fig. 2 shows original process model S which
consists of a parallel branching, a conditional branching, and a silent activity τ
(depicted as empty node) connecting these two blocks. Assume that two different
high-level change operations are applied to S resulting in models S1 and S2: Δ1

moves activity C from its current location to the position between activities A
and B, which leads to S1 i.e., S[Δ1〉S1 with Δ1 = move(S, C,A,B). Δ2 moves A
to the position between B and C, i.e. S[Δ2〉S2 with Δ2 = move(S, A,B,C). Fig. 2
additionally depicts the change primitives representing snapshot differences be-
tween S and models S1 and S2, respectively. Using high-level change operations
offers the following advantages:

On Measuring Process Model Similarity 253

1. High-level change operations guarantee soundness: i.e., application of a high-
level change operation to a sound model S results in another sound model
S′ [11]. This also applies to our example from Fig. 2. By contrast, when
applying one single change primitive (e.g., deleting an edge in S) soundness
cannot be guaranteed anymore. Generally, if we delete any of the edges in
S, the resulting process model will not be necessarily sound.

2. High-level change operations provide richer syntactical meanings than
change primitives. Generally, a high-level change operation is built upon a
set of change primitives which collectively represent a complex modification
of a process model. As example take Δ1 from Fig. 2. This high-level change
operation requires 15 change primitives for its realization (deleting edges,
adding edges, deleting the silent activity, and updating the node types).

3. An important aspect, not discussed so far, concerns the number of change
operations needed to transform model S into target model S′. For example,
we need only one move operation to transform S to either S1 or S2. However,
when using change primitives, migrating S to S1 necessitates 15 change
primitives, while the second change Δ2 can be realized based on 6 change
primitives. This example also shows that change primitives do not provide
an adequate means to determine the difference between two process models.
Thus the required number of change primitives cannot represent the efforts
for process model transformations.

3.3 The Challenge to Derive High-Level Change Operations

After sketching the benefits coming with high-level change operations, this sec-
tion discusses challenges of deriving them. When comparing two process models,
the change primitives needed for transforming one model into another can be
easily determined by performing two snapshots and a delta analysis on them [7].
An algorithm to minimize the number of change primitives is given in [12]. How-
ever, when trying to derive the high-level change operations needed for model
transformation, several challenges occur. As example consider Fig. 3:

1. When performing two delete operations on S (i.e., Δ1 = delete(S, B) and
Δ2 = delete(S, C)), we obtain a new model S′′ (i.e., S[σ〉S′′ with σ =<
Δ1, Δ2 >), as well as an undetectable intermediate model S′ with S[Δ1〉S′
and S′[Δ2〉S′′. When examining the change primitives corresponding to each
high-level change operation, we first need to add edge (A,C) after the first
delete operation Δ1, and remove this edge (A,C) when applying the sec-
ond delete operation Δ2. However, when performing a delta analysis for
the original process model S and the resulting process model S′′, the two
change primitives (addEdge(A,C) introduced by the first delete operation and
delEdge (A,C) introduced by the second one) jointly have no effect on the
resulting process model S′′, i.e., they cannot be detected by snapshot anal-
ysis. Consequently, deriving high-level change operations based on change
primitives would be challenging because the change primitives required for
every high-level change do not always appear in the snapshot differences be-
tween the original and resulting models. In Fig. 3, none of the two change

254 C. Li, M. Reichert, and A. Wombacher

S’(Δ1>S’’

S(Δ1>S’
Δ1= Delete (S, B)

Δ2= Delete (S’, C)

delEdge(A,B), delEdge(B,C),

 addEdge(A,C), delNode(B)

delEdge(C,D), addEdge(A,D),

delEdge(A,C), delNode(C)

S(σ>S’’

σ =< Delete (S, B),

Delete (S, C) >

delEdge(A,B),

delEdge(B,C),

delEdge(C,D),

addEdge(A,D),

delNode(B)

delNode(C)

S’’ A D

S’ A C D

S A B C D

Fig. 3. Non-detectable Change Primitives

primitive sets associated with Δ1 or Δ2 constitute a sub-set of the change
primitive set associated with σ.

2. Even if there is just one high-level change operation, it will remain difficult
to derive it with delta algorithm. For example, in Fig. 3 the delta algorithm
shows that 15 change primitives are needed to transform S into S1. However,
the depicted changes can be also realized by just applying one high level move
operation to S.

4 Detecting the Minimal Number of High-Level Changes

In this section, we introduce our method to detect the minimal number of change
operations needed to transform a given process model S into another model S′.
As example, consider the process models S and S′ in Fig. 4.

4.1 General Description of Our Method

As mentioned in Section 1, the key issue of our work is to minimize the number
of change operations needed to transform a process model S = (N, E, . . .) ∈ P
into another model S′ = (N ′, E′, . . .) ∈ P . Generally, three steps are needed (cf.
Fig. 4) to realize this minimal transformation:

1. ∀ai ∈ N \N ′: delete all activities being present in S, but not in S′. This first
step transforms S to Ssame (cf. Fig. 4b).

2. ∀ai ∈ N
⋂

N ′: move all activities being present in both models to the loca-
tions as reflected by S′. Regarding our example, this second step transforms
Ssame to S′same (cf. Fig. 4c).

3. ∀ai ∈ N ′ \ N : insert those activities being present in S′, but not in S. As
depicted in Fig. 4, the third step transforms S′same to S′ (cf. Fig. 4d).

Insertions and deletions deal with changes of the set of activities. Here, we can
hardly do anything to reduce efforts (i.e., the number of required insert/delete
operations): New activities (ai ∈ N ′ \N) must be added and obsolete activities
(aj ∈ N \N ′) must be deleted.

The focus of minimality can therefore be shifted to the use of the move opera-
tion, which changes the structure of a process model, but not its set of activities.

On Measuring Process Model Similarity 255

S: original process model S’: destination process model

E

D

B
C

A
Z

F

GY

C

E

X

D

F

GBA

C

E

A

D

F

GB

Ssame: original model with shared activities S’same: destination model with shared activities

A

C

B

E

F

GD

S
te
p
1
: d
e
le
te

Transform

S to S’

Step2: move

S
te
p
3
: in
s
e
r
t

a)

b) c)

d)

Fig. 4. Three Steps to Transform S into S′

Since a move operation logically corresponds to a delete followed by an insert op-
eration, we can transform Ssame to S′same by maximally applying n = |N

⋂
N ′|

move operations. Reason is that n move operations correspond to deleting all
activities and then re-inserting them at their new positions. Correspondingly, n
is the maximal number of change operations needed to transform one process
model into another, both with same set of activities (Ssame and S′same in our
example from Fig. 4). To measure the complete transformation from S to S′, we
formally define process distance and process similarity as follows:

Definition 2 (Process Distance and Process Similarity). Let S = (N, E,
. . .), S′ = (N ′, E′, . . .) ∈ P be two process models. Let further σ = 〈Δ1, Δ2,
. . . Δn〉 ∈ C∗ be a sequence of change operations transforming S into S′ (i.e.
S[σ〉S′). Then the distance between S and S′ is given by d(S,S′) = min{|σ|
|σ ∈ C∗ ∧ S[σ〉S′}. Furthermore, process similarity between S and S′ equals to
1 − d(S,S′)

|N |+|N ′|−|N ⋂
N ′| , i.e., similarity equals to ((maximal number of changes -

minimal number of changes) / maximal number of changes).

4.2 Determining Required Activity Deletions and Insertions

To accomplish Step 1 and Step 3 of our method, we have to deal with the
change of the activity set when transforming S into S′. It can be easily detected
by applying existing snapshot algorithms [7] to both S and S′. As described in
Section 4.1, as first step we need to delete all activities ai ∈ N \N ′ contained in
S, but not in S′. Regarding our example from Fig. 4, we can derive as our first
high-level change operation Δ1 = delete(S, X). Similarly, activities contained in
S′, but not in S, are inserted in Step 3, after having moved the shared activities to
their respective position in S′ (S′same respectively). The parameters of the insert
operation, i.e. the predecessors and successors of the inserted activity, are just
like how they appear in S′. In this way, we obtain the last two change operations
for our example: Insert(S, Y, StartFlow, {A, B}) and Insert(S, Z, D, E).

256 C. Li, M. Reichert, and A. Wombacher

4.3 Determining Required Move Operations

We now focus on Step 2 of our method; i.e., to transform two process models
with same activity set using move operations. Here, we can ignore the activities
not contained in both S and S′ (cf. 4.2). Instead, we consider the two process
models Ssame and S′same respectively, as depicted in Fig. 4.

Determine the Order Matrix of a Process Model. One key feature of our
ADEPT change framework is to maintain the structure of the unchanged parts
of a process model [11]. For example, if we delete an activity, this will neither
influence the successors nor the predecessors of this activity, and also not their
control relation. To incorporate this feature in our approach, rather than only
looking at direct predecessor-successor relationships between two activities (i.e.
control flow edges), we consider the transitive control dependencies between all
pairs of activities; i.e., for every pair of activities ai, aj ∈ N

⋂
N ′, ai �= aj ,

their execution order compared to each other is examined. Logically, we check
execution orders by considering all traces a process model can produce (cf. Sec.
2). Results can be formally described in a matrix An×n with n = |N

⋂
N ′|. Four

types of control relations can be identified (cf. Def. 3):

Definition 3 (Order matrix). Let S = (N, E, . . .) ∈ P be a process model
with N = {a1, a2, . . . , an}. Let further TS denote the set of all traces producible
on S. Then: Matrix An×n is called order matrix of S with Aij representing
the relation between different activities ai,aj ∈ N iff:

– Aij = ’1’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(ai ≺ aj))
If for all traces containing activities ai and aj, ai always appears BEFORE
aj, we denote Aij as ’1’, i.e., ai is predecessor of aj in the flow of control.

– Aij = ’0’ iff (∀t ∈ TS with ai, aj ∈ t ⇒ t(aj ≺ ai))
If for all traces containing activity ai and aj, ai always appears AFTER aj,
then we denote Aij as a ’0’, i.e. ai is successor of aj in the flow of control.

– Aij = ’*’ iff (∃t1 ∈ TS , with ai, aj ∈ t1 ∧ t1(ai ≺ aj)) ∧ (∃t2 ∈ TS , with
ai, aj ∈ t2 ∧ t2(aj ≺ ai))
If there exists at least one trace in which ai appears before aj and at least
one other trace in which ai appears after aj, we denote Aij as ’*’, i.e. ai

and aj are contained in different parallel branches.
– Aij = ’-’ iff (¬∃t ∈ TS : ai ∈ t ∧ aj ∈ t)

If there is no trace containing both activity ai and aj, we denote Aij as ’-’,
i.e. ai and aj are contained in different branches of a conditional branching.

We revisit our example from Fig. 4. The order matrices of Ssame and S′same

are shown in Fig. 5. The main diagonal is empty since we do not compare an
activity with itself. As one can see, elements Aij and Aji can be derived from
each other. If activity ai is a predecessor of activity aj (i.e. Aij = 1), we can
always conclude that Aji = 0 holds. Similarly, if Aij ∈ {’*’,’-’}, we will obtain
Aji = Aij . As a consequence, we can simplify our problem by only considering
the upper triangular matrix A = (Aij)j>i.

On Measuring Process Model Similarity 257

Under certain constraints, an order matrix A can uniquely represent the pro-
cess model, based on which it was built on. This is stated by Theorem 1. Before
giving this theorem, we need to define the notion of substring of trace:

Definition 4 (Substring of trace). Let t and t′ be two traces. We define t is
a sub-string of t′ iff [∀ai, aj ∈ t, t(ai ≺ aj) ⇒ ai, aj ∈ t′ ∧ t′(ai ≺ aj)] and
[∃ak ∈ N : ak /∈ t ∧ ak ∈ t′].

Theorem 1. Let S, S′ ∈ P be two process models, with same set of activities
N = {a1, a2, . . . , an}. Let further TS , TS′ be the related trace sets and An×n,
A′n×n be the order matrices of S and S′. Then S �= S′ ⇔ A �= A′, if (¬∃t1, t′1 ∈
TS : t1 is a substring of t′1) and (¬∃t2, t′2 ∈ TS′ : t2 is a substring of t′2).

According to Theorem 1, there will be a one-to-one mapping between a process
model S and its order matrix A, if the substring constraint is met. A proof of
Theorem 1 can be found in [8]. A detailed discussion of the sub-string restriction
is given in Section 4.4. Thus, when comparing two process models, it is sufficient
to compare their order matrices (cf. Def. 3), since a order matrix can uniquely
represent the process model. This also means that the differences of two process
models can be related to the differences of their order matrices. If two activities
have different execution order in two process models, we will define the notion
of conflict as follows:

Definition 5 (Conflict). Let S, S′ ∈ P be two process models with same set of
activities N . Let further A and A′ be the order matrices for S and S′ respectively.
Then: Activities ai and aj are conflicting iff Aij �= A′ij . We formally denote this
as C(ai,aj). CF := {C(ai,aj) | Aij �= A′ij} then corresponds to the set of all
existing conflicts.

Fig. 5 marks up differences between the two order matrices in grey. The set of
conflicts is as follows: CF = {C(A,B), C(C,D), C(C,F), C(D,E), C(D,F), C(E,F)}.

Execution order Matrix Ssame Execution order Matrix S’same

A B

A

B

The first group of

activities and conflicts

C D E F

C

D

E

F

The second group of

activities and conflicts

Fig. 5. Order Matrices of Ssame and S′
same from Fig. 4

258 C. Li, M. Reichert, and A. Wombacher

Optimizing the Conflicts. To come from Ssame to S′same (c.f. Fig. 4), we have
to eliminate conflicts between these two models by applying move operations.
Obviously, if there is no conflict for the two models, they will be identical. Every
time we move an activity from its current position in Ssame to the position it has
in S′same, we can eliminate the conflicts this activity has with other activities.
For example, consider activity A in Fig. 4. If we move A from its position in Ssame

(preceding B) to its new position in S′same (A and B are contained in two different
branches of a conditional branching block), we can eliminate conflict C(A,B). As
shown in the order matrices, moving A requires two steps. First, set the elements
in the first row and first column of An×n (which corresponds to activity A) to
empty, since A is moved away. Second, reset these elements according to the new
order relation of A, when compared to the other activities from S′same. So every
time we move an activity, we are able to change the value of its corresponding
row and column in the order matrices, i.e., we change these values corresponding
to the original model to the values compliant with the target model. By doing
this iteratively, we can change all the values and eliminate all the conflicts so
that we finally achieve the transformation from Ssame to S′same.

A non-optimal solution would be to move all the activities involved in the
conflicts as set out by CF , from their positions in Ssame to the positions they
have in S′same. Regarding our example from Fig. 5, to apply this straightforward
method, we would need to move activities A, B, C, D, E and F from their positions
in Ssame to the ones in S′same. However, this naive method is not in line with our
goal to minimize the number of applied change operations. For example, after
moving activity A from its current position in Ssame to the position it has in
S′same, we do not need to move activity B anymore, because after applying this
change operation, there are no activities with which activity B still has conflicts.

Digital logic in Boolean algebra [14] helps to solve this minimization prob-
lem. Digital logic constitutes the basis for digital electronic circuit design and
optimization. In this field, engineers face the challenge to optimize the internal
circuit design given the required input and output signals. To apply such tech-
nique in our context, we consider each process activity as an independent input
signal and we want to design a circuit which can cover all conflicts defined by CF
(cf. Def 5). If activity ai conflicts to activity aj , we can either move one of them
or both of them from the positions they have in Ssame to the ones they have in
S′same. Doing so, the conflict will not exist any more. Reason is that every time
we move an activity from the position it has in Ssame to the position it has in
S′same, we reset the corresponding row and column of this activity in the order
matrix. A conflict can be interpreted as a digital signal: When the two input
signals ai and aj are both ”true”(this means we do not move activity ai and
aj), we cannot solve the conflict and the ’circuit’ shall give an output signal of
”false”. If we apply this to all conflicts in CF , we will obtain all ”false” signals.
Meanwhile, the ”circuit” should be able to tell us what will result in a ”true”
output (i.e., the negative of all ”false” signals). This ”true” output represents
which activities we need to move. Regarding our example from Fig. 5, given the
set of conflicts CF , our logic expression then is: AB+ CD+ CF + DE+ DF + EF.

On Measuring Process Model Similarity 259

C

E

A

D

F

GB

Ssame S’same

M
o
v
e
(S
,D
,{A
,B
}, {C
,E
})

move(S,B, Startflow, D, XOR)

M
o
v
e
(S
, F
, C
, G
)

a)

b) c)

d)

A

C

B

E

F

GD

A

E

B

C

F

GD

C

E

A B

F

GD

Fig. 6. Process Models After Every Move Operation

The complexity for optimizing the logic expression is NP-Hard [14]. Therefore
it is advantageous to reduce the size of the problem. Concerning our example,
we can cut down the optimization problem into two groups: one with activities
A and B, and conflict C(A,B); another one with activities C, D, E and F, and
the following set of conflicts {C(C,D), C(C,F), C(D,E), C(D,F), C(E,F)}. Such a
division can be achieved in O(n) time in the following three steps. Step 1: List
all conflicting activities, and set every activity as a group. Step 2: If conflicting
activities ai and aj (i.e., C(ai,aj)) are contained in two different groups, merge
the two groups. Step 3: Repeat Step 2 for all conflicts in CF . After these three
steps, we can divide the activities as well as the associated conflicts into several
groups. Regarding our example, the optimization problem can be divided into
two sub-optimization problems: AB and CD+ CF + DE + DF+ EF. We depict this
by the two small matrices in Fig. 5.

Optimizing logic expressions has been intensively discussed in Discrete Math-
ematics. Therefore we omit details here and refer to Karnaugh map [14] and
Quine-McCluskey algorithm [14]. We have implemented the latter in our proof-
of-concept prototype. Regarding our example in Fig. 4, the two optimization
results are AB = Ā + B̄ for the first group and CD + CF+ DE + DF + EF = D̄F̄ +
C̄ĒF̄ + C̄D̄Ē for the second group. We can interpret this result as follows. For the
second group, either we move activities D and F, or we move activities C, E and
F, or we move activities C, D and E from their position in Ssame to the positions
they have in S′same. Based on this we can transform Ssame into S′same since all
conflicts are eliminated. As can be seen from the order matrices, if we change
the value of the corresponding rows and columns of these activities in Ssame, we
can turn Ssame into S′same. Since we want to minimize the number of change
operations, we can draw the conclusion that activities D and F must be moved.
Same rule applies to the result of the first group. However, there is no differ-
ence whether to move either A or B since both operations count as one change
operation. Here, we arbitrarily decide to move activity B.

So far we have determined the set of activities to be moved. The next step is to
determine the positions where these activities need to be moved to. Operation
move(S, X,A,B, [sc]) will be independent from other move operations (i.e., it
does not matter in which order to move the respective activity) if its direct

260 C. Li, M. Reichert, and A. Wombacher

predecessors A and direct successors B do not belong to the set of activities to
be moved. Regarding our example from Fig. 4, activity F satisfies this condition
since its predecessor C and successor G are not moved. If this had not been the
case, we would have to introduce silent activities to put the moved activity to
its corresponding place in S′same. For example, if we want to first move B to its
position in S′same, we will have to introduce a silent activity after B and before
C and E. Only in this way, we can change the execution order of B to what it
appears in S′same. However, such silent activity will be not required if we first
move activity D to the position it has in S′same. A detailed discussion can be
found in [11].

According to the position the moved activities have in S′same, we can deter-
mine the parameters (i.e., the predecessors, successors and conditions) for every
move operation. In S′same, activity D has predecessors A and B, and successors E
and C. So one move operations therefore is move(S, D,{B,A},{C,E}). Similarly,
we obtain the other two move operations: move(S, B,StartFlow,D,XOR) and
move(S, F,C,G). The intermediate process models resulting after every move op-
eration are shown in Fig. 6. When comparing order matrices for each model in
Fig. 6, it becomes clear that every move operation changes the values of the row
and the column corresponding to the moved activity.

4.4 Coping with Silent Activities

A silent activity is an activity which does not contain any operation or action,
and which only exists for control flow purpose. There are two reasons why we
do not consider silent activities in our similarity measure:
1. The appearance of a silent activity can be random. We can add or remove

silent activities without changing the behavior of a process model, e.g., we
can replace a control flow edge in a process model by one silent activity or
even a block of silent activities without influencing process model behavior.

2. The existence of a silent activity also depends on other activities and is
subject to change as other activities change. As example consider Fig. 2.
When applying change Δ1 to S, the silent activity τ is automatically removed
after activity C is moved away.

There is one exception for which we need to consider silent activities. Consider
the two process models S1 and S2 in Fig. 7. If we ignore the silent activity τ
(depicted as an empty node) in S2, and derive the order matrix of S2, it will be
the same as the one of S1. Obviously, the two process models are not equivalent
since the trace sets producible by them are not identical. More precisely, TS2

contains one additional trace when compared to TS1 . In general, if one process
model can produce additional traces, which are the sub-string of other traces (cf.
Def.4), there must be some silent activities we cannot ignore. Or if the direct
predecessor and direct successor of one silent activity constitute an XORsplit
and XORjoin, we can also not ignore this silent activity (cf. S2 in Fig. 7).

Fig. 7 shows several process model transformations based on high-level change
operations. Here we can identify the difference between the two types of dele-
tion: delete(S4, D) and delete(S4, D,XOR) (cf. Fig. 7). The former one turns an

On Measuring Process Model Similarity 261

TS2 = {ABC, AC}

TS1 = {ABC}

S2S1 A B C A C

B

A C

B

D
TS3 = {AC}

S3
S4 A C

TS2 = {ABC, ADC}

Insert(S1, τ, A, C, XOR)

d
e
le
te
(
S
4
, D
, X
O
R
)

delete(S4
, D

)

replace(S2
, τ,

 D)

d
e
le
te
(
S
2
, B
)

in
s
e
rt
(S
3
,
B
,

A
,
C
,
X
O
R
)

Insert(S3,B,A,C)

Fig. 7. The Influence of Silent Activity

activity into a silent one (transforming S4 into S2), while the latter one blocks
the branch which contains activity D (transforming S4 to S1). When a branch
is blocked, we do not allow the activities of the branch to become activated
[16,11]. Since process models S1 and S2 have same order matrix, purely com-
paring order matrices (cf. Sect. 4) would not be sufficient in the given situation.
Reason is that here the order matrix does not uniquely represent the process
model, since the sub-string constraint (cf. Def.4) of Theorem 1 is violated. To
extend our method such that it can uniquely represent a process model without
the sub-string constraint, we must consider these special silent activities (i.e., a
silent activity which is direct predecessor of an XORsplit and direct successor of
an XORjoin) as well. They will appear in the order matrix and their execution
orders compared with other activities will be documented.

However, the existence of a silent activity is still very much dependent on other
activities, including the scenario described above. For example, if we delete B in
S2 as depicted in Fig. 7, we will transform S2 into S3, i.e., the silent activity will
be simultaneously deleted when B is deleted. We can identify this situation by
either examining the process model or the order matrix. In the process model,
a silent activity τ can be automatically deleted if there is another silent activity
τ ′ contained in the same block, but in another conditional branch (e.g., trans-
forming S2 to S3). In the order matrix, we can automatically remove a silent
activity τ if there is another silent activity τ ′ with same order relations to the
rest of the activities as τ has.

In general, if a silent activity has an XORsplit as direct predecessor and an
XORjoin as direct successor, we need to consider it when computing the order
matrix of a process model. However, these silent activities can automatically be
deleted when changing the process model. This requires us to perform additional
checks on the process model or order matrix (as described above) after every
change operation.

4.5 Summary

Taking our example from Fig. 4 (i.e., to transform S into S′), the following
six change operations are required: σ = {delete(S, X), move(S, F,C,G), move(S,
D,{A,B}, {C;E}), move(S, B,StartFlow,D,XOR), insert(S, Y,StartFlow,

262 C. Li, M. Reichert, and A. Wombacher

Figure 2 Figure 4
S S1 S2 S Ssame S'same S'

S 0 / 100% 1 / 86% 1 / 86% 4 / 50% 3 / 57% 3 / 57% 5 / 44%
Figure 2 S1 0 / 100% 2 / 71 % 4 / 50% 3 / 57% 3 / 57% 5 / 44%

S2 0 / 100% 5 / 38% 4 / 42% 3 / 57% 5 / 44%
S 0 / 100% 1 / 88% 4 / 50 % 6 / 40%

Figure 4 Ssame 0 / 100% 3 / 57% 5 / 44%

S'same 0 / 100% 2 / 78 %
S' 0 / 100%

Fig. 8. Distances and Similarities of Different Process Models

{A,B}), and insert(S, Z,D,E) }. Distance between the two models is six and
similarity is 0.4 (cf. Def.2). To illustrate our method and these numbers in more
detail, we compare the distances and similarities between the seven process mod-
els discussed so far: S, S1 and S2 from Fig. 2 and S, Ssame, S′same and S′ from
Fig. 4. Distance and similarity of two models are specified as distance/similarity
in each corresponding cell in Fig. 8. As the transformation is commutable, we
only fill in the upper triangle matrix. Taking Fig. 8, we can conclude:

1. Changing the activity set always leads to a modified distance. For example,
d(Sn,S′

same)
always equals d(Sn,S′) + 2, where Sn stands for a process model

other than S′ or S′same in Fig. 8. Reason is that S′ contains two unique
activities Y and Z when compared to S′same, while the rest are identical.

2. If three process models S, S′, and S′′ have same activity sets, we will ob-
tain d(S,S′′) ≤ d(S,S′) + d(S′,S′′). It is easy to understand this because some
activities could be moved twice when transforming S into S′ and S′ into S′′.

5 Related Work

Various papers have studied the process similarity problem and provided use-
ful results [17,16,21,2]. In graph theory, graph isomorphism[15] and sub-graph
isomorphism [15] are used to measure similarity between two graphs. Unfortu-
nately, these measures usually only examine edges and nodes and cannot catch
the syntactical issues of a PAIS (e.g., guarantee soundness of a process model,
differentiate AND-Split and XOR-Split, and handle silent activities). Algorithms
for measuring tree edit distances [2] shows similar disadvantages, i.e., syntacti-
cal issues of a PAIS are missing. In the database field, the delta-algorithm [7]
is used to measure the difference between the two models. It extends the above
mentioned approaches by assigning attributes to edges and nodes [12]. Still, it
can only catch change primitives, and will further run into problems when con-
sidering high-level change operations. Regarding Petri-nets and state automata,
similarity based on change is difficult to measure since these formalisms are not
very tolerant for changes. Inheritance rules [16] are one of the very few tech-
niques showing the transformation of a process model described as Petri-net.
Trace equivalence is commonly used to compare whether two process models are
similar or identical [5]. In addition, bisimulation [16,18] extends trace equivalence

On Measuring Process Model Similarity 263

by considering stronger notions. Also based on traces, [17] assign weights to each
trace based on execution logs which reflect the importance of a certain trace.
The edit distance [21] is also used to measure the difference between traces; the
sum of them represents the differences of two models. Some similarity measures
use two numbers (precision and recall) to evaluate the difference between pro-
cess models S1 and S2 [17,10]. None of these approaches measures similarity by a
unique and commutative number, based on the effort for process transformation.

6 Summary and Outlook

We have provided a method to quantitatively measure the distance and similarity
between two process models based on the efforts for model transformation. High-
level change operations are used to evaluate the similarity since they guarantee
soundness and also provide more meaningful results. We further applied digital
logic in boolean algebra so that the number of change operations required to
transform process model S into process model S′ becomes minimal. Respective
distance and similarity measures have already been applied in the filed of process
mining [9].

Additional work is needed to enrich our knowledge on process similarity. As a
first step, we will extend our method so that it is able to measure the similarity
between process models with additional constructs (e.g., loopbacks [11]) and
data flows. The next step will be to enrich the model with semantic relations
between activities and to give weight for each change operation, so that the
similarity measure can be further applied to practice.

References

1. Balabko, P., Wegmann, A., Ruppen, A., Clément, N.: Capturing design rationale
with functional decomposition of roles in business processes modeling. Software
Process: Improvement and Practice 10(4), 379–392 (2005)

2. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput.
Sci. 337(1-3), 217–239 (2005)

3. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems. Wiley & Sons, Chichester (2005)

4. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining
in adaptive process management systems. In: Meersman, L., Zahir, T. (eds.) OTM
2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)

5. Hidders, J., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Verelst, J.:
When are two workflows the same? In: CATS 2005, Darlinghurst, Australia, pp.
3–11. Australian Computer Society, Inc. (2005)

6. Kradolfer, M., Geppert, A.: Dynamic workflow schema evolution based on workflow
type versioning and workflow migration. In: COOPIS 1999, Washington, DC, USA,
p. 104. IEEE Computer Society, Los Alamitos (1999)

7. Labio, W., Garcia-Molina, H.: Efficient snapshot differential algorithms for data
warehousing. In: VLDB 1996, San Francisco, CA, USA, pp. 63–74 (1996)

264 C. Li, M. Reichert, and A. Wombacher

8. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based
on high-level change operations. Technical Report TR-CTIT-07-89, University of
Twente (2007)

9. Li, C., Reichert, M., Wombacher, A.: Discovering reference process models by min-
ing process variants. In: ICWS 2008 (to appear, 2008)

10. Pinter, S.S., Golani, M.: Discovering workflow models from activities’ lifespans.
Comput. Ind. 53(3), 283–296 (2004)

11. Reichert, M., Dadam, P.: ADEPTflex -supporting dynamic changes of workflows
without losing control. Journal of Intelligent Info. Sys. 10(2), 93–129 (1998)

12. Rinderle, S., Jurisch, M., Reichert, M.: On deriving net change information from
change logs - the deltalayer-algorithm. In: BTW, pp. 364–381 (2007)

13. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems: a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

14. Brown, S., Vranesic, Z.: Fundamentals of Digital Logic with Verilog Design.
McGraw-Hill, New York (2003)

15. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2005)

16. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tack-
ling problems related to change. Theor. Comput. Sci. 270(1-2), 125–203 (January)

17. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Process equiv-
alence: Comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

18. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43(3), 555–600 (1996)

19. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

20. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS 2001, Washington, DC, p. 7051 (2001)

21. Wombacher, A., Rozie, M.: Evaluation of workflow similarity measures in service
discovery. In: Service Oriented Electronic Commerce, pp. 51–71 (2006)

Recommendation Based Process Modeling

Support: Method and User Experience

Thomas Hornung1, Agnes Koschmider2, and Georg Lausen1

1 Institute of Computer Science, Albert-Ludwigs University Freiburg, Germany
{hornungt,lausen}@informatik.uni-freiburg.de

2 Institute of Applied Informatics and Formal Description Methods
Universität Karlsruhe (TH), Germany
koschmider@aifb.uni-karlsruhe.de

Abstract. Although most workflow management systems nowadays of-
fer graphical editors for process modeling, the learning curve is still too
steep for users who are unexperienced in process modeling. The effi-
ciency of users may decrease when starting process modeling with min-
imal expertise and no obvious modeling support. This paper describes
the first contribution towards a theoretically sound and empirically vali-
dated analysis of a recommender-based modeling support who is geared
towards both novices and expert users. The idea is to interpret process
descriptions as tags which describe the intention of the process. This
leads us to the notion of virtual documents or signatures. Based on these
signatures we provide a search interface to process models stored in a
repository. Additionally the user can invoke a recommendation function
during modeling time and the system automatically identifies and sug-
gests relevant process fragments. By adding two additional criteria, the
frequency of process reuse and structural correctness, we arrive at a full-
fledged modeling support system, which provides an easy to use interface
to the user while retaining a high fidelity to the user’s modeling inten-
tions. We validated our support system with a user experiment based on
real-life process models and our prototype implementation.

1 Introduction

Although most workflow management systems nowadays offer graphical editors
for process modeling, the learning curve is still too steep for users who are
unexperienced in process modeling. Pure awareness of the modeling language
syntax is often insufficient. Profound working knowledge of the user is required to
apply a modeling language in practice. [1] argues that user’s modeling expertise
is one main success factor of process modeling. Therefore, the user efficiency may
decrease when starting process modeling with minimal expertise and no obvious
modeling support.

To ensure a certain degree of modeling support, several authors proposed the
reuse of process models [2], [3] but yet with little impact on the modeling context
and user intention. Clearly, a full-fledged modeling support system is required,
which retains a high fidelity to the user’s modeling intentions.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 265–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

266 T. Hornung, A. Koschmider, and G. Lausen

This paper describes the first contribution towards a theoretically sound and
empirically validated analysis of a recommendation based modeling support,
which assists the user twofold in modeling goal-oriented processes. Firstly, the
user can search via a query interface for business processes or process parts
(logically coherent groups of elements belonging together, e.g. approval, billing
or assembly). The user can significantly save time in process modeling if a process
matches the user request. Secondly, we use an automatic tagging mechanism in
order to unveil the modeling objective of a user at process modeling time and
to better fulfill the user’s requirements. This feature of the modeling support
system should be used if the user is not sure how to complete the process. In
this case the results from the query can be unsatisfying due to the user’s vague
intention of the process model.

We validated our support system with an experiment using real-life process
models and our prototype implementation. The evaluation confirmed that the
modeling time and the number of operations of the reused processes can be
reduced when using our process support tool. The evaluation results highlight
which benefits users may have from our recommendation based modeling tool
support:

– The system increases the efficiency of the user because users need less ex-
pertise to appropriately model processes,

– The tagging-based system increases the quality of the process models by
highlighting the corresponding process parts that violate correctness criteria
(e.g., structural deadlocks, which occur if an alternative flow initiated by an
OR-split is synchronized by an AND-join),

– Our system overcomes the limitation of a controlled vocabulary for labeling
process element names since the system considers process fragments with
process vocabularies that are different from the one of the currently edited
business process.

The remainder of the paper is structured as follows. Section 2 compares our
approach with related work. Our tagging-based modeling support system will
be explained in detail with a running example in Section 3. Section 4 presents
our tagging algorithm and the creation of our process repository index. In Section
5 we will describe the business process search functionality and we will extend
the search functionality in order to consider relevance. The cumulative ranking
function and the complete recommendation algorithm is illustrated in Section
6. Initial evaluation results are presented in Section 7. Section 8 concludes the
paper with an outlook on future research.

2 Related Work

Existing work in this area can be differentiated in four categories: (1) process
reuse, (2) tagging, (3) process/service searching, and (4) research on ranking
mechanisms.

To ensure a certain degree of modeling support, several authors proposed the
reuse of process models [2], [3] but yet with little impact on the modeling context

Recommendation Based Process Modeling Support 267

and user intention. All this contributions lack an extensive query interface and a
recommendation function for process parts during process modeling. Addition-
ally, the proposed ranking functions are theoretic without empirical validation.

Concerning the annotation of resources with tags the approach of [4] is rele-
vant for our approach. This approach describes a method, which automatically
generates personalized tags for Web pages. The method of [4] relies on the idea,
that the personalized tags are generated based on the user’s Desktop documents.
In the current implementation we unveil the user intention during process mod-
eling with the edited process elements. We plan to evaluate the idea of [4] in
order to tag project documents, which also may help to reveal user requirements
during process modeling. We omitted this idea for the current implementation
as project documents are difficult to obtain.

Regarding the process searching area, the set of proposals found in the litera-
ture [5], [6], [7] and [8] do not provide adequate techniques for searching processes
concerning the user intention while reusing processes. For instance, the approach
of [6] extends a rudimental Web Service search by supporting more complex
service description search capabilities. [6] indexes business processes for efficient
matching in Web Service infrastructures where the input query is a business pro-
cess that is modeled as an annotated finite state automaton. This approach does
not focus on searching and indexing business processes but rather on searching
for complex service descriptions of services such as process aspects (by searching
for optional and mandatory requirements within the business processes).

Ranking functions have been defined for Semantic Web Service Discovery [9]
or for Information Retrieval [10] where the ranking functions are based on an
ontology structure or human interaction. As [11] argues that the effectiveness of
tags classifying blog entries are for manual tags less effective content descriptors
than automated ones we decided to disregard human interactions for the process
ranking at the moment.

To summarize, there are some approaches which partially use related meth-
ods to implement a modeling support system but on a rather theoretical level
without existing empirical validation. The aim of our work is to present a mod-
eling support system including a comprehensive query interface, recommender
and ranking function, which are theoretically sound and initially empirically
validated.

3 Running Example

Our current implementation of the support system is described in Figure 1. The
user wants to model a process describing the handling of order requests. Her
intention is to model this process from the perspective of customers. Via a query
interface the user searches for process parts concerning customer requests. The
results from the query were displayed according to a ranking function where the
user selected the appropriate recommendation due to her modeling intention and
inserted the recommendation into her workspace via drag and drop.

268 T. Hornung, A. Koschmider, and G. Lausen

Fig. 1. Possible user interaction scenarios for finding an appropriate process part

Subsequently, the user continued to model the business process. At some point,
she is not sure how to complete the process. Therefore she invokes the recom-
mender system, which can be done in two ways. The user can either search via
the query interface for fitting process parts (e.g., processes modeling customer
orders) or invoke the recommender system by highlighting the corresponding
elements for which the user wants to have a recommendation (in this figure the
corresponding element group is highlighted with a gray rectangle). For the second
alternative the recommender system automatically retrieves fitting process parts
according to the user’s modeling intention. The recommender component can
only be invoked after modeling process elements (in contrast to the query inter-
face, which is always accessible). Subsequently, the user can configure the process
(part) suggestions in her workspace by inserting or deleting elements and save
the modified process version in a process repository for further process reuse. In
the initial development of our prototype we have populated our repository with
21 Petri net processes from real word projects and processes from the research
literature concerning order and shipment procedures.

In the next two sections we present our process search algorithm.

4 Semantic Annotation of Business Process Models

Usually keyword extraction algorithms use as input documents and return a list
of significant keywords, which outline the content of a document. The number of
occurrences of each keyword implies a ranking in the sense that the keyword that
appears most often is more relevant to the document than keywords that appear
less often. We adopt the intention of keyword respectively tagging techniques to
improve searching for fitting business processes. The tag extraction and scoring
for business processes is inspired by the Term and Document Frequency measure,
which is very fast to compute (cf. [12]). Each place and transition in a Petri net
representation of a business process model is labeled with a description, which
specifies the purpose of each activity or state respectively. Therefore, we can
regard these words as tag candidates and thereby the whole Petri net as a virtual
document. This allows us to use standard Information Retrieval (IR) techniques

Recommendation Based Process Modeling Support 269

(cf. [13]) to build up an index over business process models. Here, we first remove
common English words from the set of tag candidates because they appear so
often in a typical natural language corpus that they do not convey any meaning
specific to the business process. This phenomenon is often referred to as Zipf’s
law, which states that the frequency of any word is inversely proportional to
its rank in the frequency table [14]. After stop word removal each keyword is
assigned a tag score for this business process based on a modified version of the
tf ∗ idf metric1:

TagScore(ti) := TF(ti)

ΣN
j=1tj

∗ log(|P |
|(pj :ti∈pj)|)

Here, TF(ti) is the frequency of the tag ti in transition or place labels, N is the
total number of distinct tag candidates (after stop word removal), |P | denotes
the total number of indexed business processes and |(pj : ti ∈ pj)| is the number
of business processes, where the tag ti appears. The purpose of the idf part
(log(|P |

|(pj :ti∈pj)|)) is to decrease the impact of words that are common over all
business processes. In order to bridge the gap between different modeling vocab-
ularies we determine for each keyword the set of synonyms via WordNet2 and
assign the same tag score to each word in the synonym set.

As mentioned above, the user can identify different distinct process fragments
and assign a title to them (e.g., order approval, complaints handling, order re-
ceipt). To make these fragments searchable as well, we index them in the same
way as if they were regular business processes and additionally store a pointer to
the business process with which they are associated, e.g. for a business process
which consists of three distinct process fragments, we would include four virtual
documents in our index: the whole process, and each fragment as well.

In the next section we illustrate the supported retrieval possibilities for our
annotated business processes and process fragments, whereas in Section 6 we de-
scribe the overall ranking algorithm used for recommending appropriate process
fragments.

5 Searching for Process Fragments

The user has the possibility to use a tag based search functionality at each
stage during the process modeling phase and can choose whether she wants to
search for process parts, whole business processes or both. Since we used the open
source Java search engine Lucene3 as the underlying index and search framework,
the scoring of the results is based on a mixture of the Vector Space Model
(VSM) and the Boolean model. The key idea of the VSM is to represent each
document, i.e. business process in our case, as a multi-dimensional vector, where
the dimension is the total number of unique keywords that occur over the whole
corpus, i.e. all indexed business processes. This vector constitutes the signature
1 Term frequency ∗ inverse document frequency.
2 http://wordnet.princeton.edu/
3 http://lucene.apache.org

http://wordnet.princeton.edu/
http://lucene.apache.org

270 T. Hornung, A. Koschmider, and G. Lausen

of the process which is later used for retrieval. A query is interpreted as a vector
in this space and the similarity of the query to documents is computed based
on the cosine similarity (cos(θ) = vquery∗vprocess

||vquery ||∗||vprocess||) between the two vectors.
More specifically, a business process bj would be represented by the vector bj =
[TagScore(t1), TagScore(t2),. . . , TagScore(tK)]. Because we have enriched each
tag with the additional synonym set, the dimension of the vector is not N , the
total number of unique tags (except stop words), but K = ΣN

i=1|SynSet(ti)|,
where SynSet(ti) denotes the set of all synonyms of ti.

Continuing our example from Section 3 the user is searching for both process
parts and entire business processes modeling customer orders (see Figure 2).
The user activated WordNet in order to suggest processes, where process objects
have been labeled with respect to a different vocabulary. The user can narrow
down the number of recommendations by the criteria First Element and Last
Element searching for a specific first or last element(s) in the process. An ad-
ditional search criterion is the process property, where cost signifies a low cost
process, resource indicates a process with full exploitation of resources, fault
is a process with minimal fault rate and standard signifies a standard process.
This four properties result from our practical process modeling experiences. If
required, the user can introduce more annotation properties.

The recommender system found 10 results, which match the user’s modeling
intention and displays them ranked by their Lucene score. If the user is interested
in a recommendation she can open a larger view of the process fragment by
double clicking on the picture.

Fig. 2. Query for all process fragments that are related to customer orders

Recommendation Based Process Modeling Support 271

Besides the standard Boolean operators, such as AND, OR, and NOT the user
can pose wildcard queries and perform fuzzy searches based on the Levenstein
distance, or Edit distance algorithm [15].

Additionally, in Figure 2 the user can preview related process parts for each
recommendation (see Show related process parts). The idea is that process parts
that succeed or precede the part in question and were used in the same modeling
domain the user is in at the moment (e.g. Manufacturing) can help to estimate
the degree of fitness of a recommended part.

Therefore each business process model and thus each process part that occurs
in this model is classified into a modeling domain before it is added to the process
repository. We assume that the number of possible domains is usually fixed
within a company and hence we can provide the user with an interface where
she can choose to which domain the process belongs. Additionally, the process
property can be provided in this stage. After a sufficient amount of process
models are in the repository we could use automatic classification techniques
such as a Näıve Bayes classifier [16] to automatically highlight a domain the
process model is most likely to belong to, or the most likely process property
respectively.

If the user now clicks on the Show related process parts button, the system
shows two ranked lists of related processes, i.e. the preceding and the succeeding
process parts.

6 Ranking of Recommendations

The process recommendations depicted in Figure 2 show results of a user query,
which are ranked according to the Lucene score. If the user invoked the query
search before starting modeling any node (and the suggested recommendations
have never been selected by someone else), then the recommendations will exclu-
sively be ranked as explained in Section 5. But the ranking mechanism changes
if the user invokes the recommender function or the query interface once she
already modeled process elements in her workspace. Then the ranking also de-
pends on the modeling context (e.g., activities which were modeled and the
control flow).

To completely rank fitting recommendations for the second scenario we extend
the Lucene score, which was introduced in Section 5, with two additional criteria.
Firstly, the frequency a user selected a specific process fragment in the past and
secondly the number of structural errors. In our scenario a structural error can
only occur in the interconnected process (to be composed of the edited business
process and the recommended process).

An interconnected business process is considered structurally correct if it com-
plies with the well-structuredness property [17]. This structural property for
business processes is violated if for example an alternative flow initiated by
an OR-split is synchronized by an AND-join. The benefit of this property is a
good process modeling style, which makes understanding of the processes models

272 T. Hornung, A. Koschmider, and G. Lausen

easy and supports the detection of undesirable deadlocks4. The verification of
structural properties is performed once for all process fragments that match the
automatically generated Lucene query mentioned above. For instance, the inter-
connection of the edited business process (excluding the highlighted elements)
with the first recommendation in Figure 2 would include a structural problem
(an AND-split is synchronized by an OR-join, which is specified in the literature
as a TP handle). Nevertheless, the user can insert this recommendation into her
workspace. But, she needs to decide how to improve this business process. We
assume, that the processes in the repository are already analyzed and thus we
exclude (structural) deadlocks for them.

In Figure 1 the user highlighted three elements for which she wants to have a
recommendation for both process fragments as well as whole business processes
(see Figure 2). To determine relevant process parts, we extract the labels of each
highlighted process object (place or transition) and remove common stop words,
which yields the set traw. The remaining query tag candidates traw are then
expanded with their related synonym sets, similarily as described in Section 5,
resulting in the set tquery

5. The initial process fragments are then determined
by querying the Lucene index, where the query term is the concatenation of all
tags in the set tquery . In the remainder of this chapter we present two additional
criteria which are used to tweak the rank of the thus found process fragments.

As already mentioned previously we assume that users independently declare
logically coherent process parts, which are stored with a title and optionally
a description and a process property in the repository. This runs the risk that
users store useless process parts in the repository because no consistency check is
applied in order to evaluate the usefulness (a process part with one element may
be regarded as useless). To remedy this we integrated the frequency a process
fragment has been selected in the past into our ranking. If process fragments
have been refreshed, respectively updated, the user will be informed about this
with a remark. The updated processes are assigned the same frequency score as
the old process version. If users decide against the updated process (and favor
more often another recommendation) then the frequency score will automatically
decrease over time.

To calculate the frequency a user selected a process we adapted the user count
algorithm presented in [18]. Let U and P be the set of all users and processes,
and pij is the number of selections of process j by the user i. The rating ruk1 for
the number of users u who have selected the process k is:

ruk1 :=
∑

i∈U tik

|U|

4 An undesirable deadlock is a situation where a process instance is waiting for a
progress, which cannot be performed because some task cannot be finished (a desir-
able deadlock is a situation where the process instance has finished its progress and
the instance can not be reinvoked again).

5 Note that |tquery| = ΣN
i=1|SynSet(trawi)|, where |traw| = N .

Recommendation Based Process Modeling Support 273

where tik is calculated by the following equation:

tik :=
{

0 (pik = 0)
1 (pik >= 1)

}

tik is 0 if the user i has never selected the process k ; otherwise it is 1.
The ranking ruk2 for the number of selections of all users is calculated by:

ruk2 :=
∑

i∈U pik

1+
∑

i∈U

∑
j∈P pij

The range of this value is [0, 1). The score freqScr for a user u selecting a process
p can then by determined as:

freqScr := ruk1+ruk2
2

Imagine the second process in Figure 2 has been selected more often than the first
one (e.g., 5 vs. 3 times). After reranking (due to the frequency) the recommender
system would list the process check client order higher than the process part
check client offer.

The covered fitting recommendations are further reranked by the criterion
of structural correctness [17]. Syntactically correct processes are ranked higher
than process recommendations that will cause undesirable deadlocks in case of
interconnection.

Due to capacity and resource restrictions we decided not to integrate a com-
plete deadlock verification, which would be performed when searching for fitting
processes and also whenever a user inserts a process fragment into her workspace.
Instead, we favor only the verification of structural errors, which can easily be
detected whenever the user inserts new nodes into her workspace. Structural
errors are generally easy to find and correct. Generally, the score of the cor-
rectness degree depends on the relative number of structural errors where TP
handles decrease the score less than PT handles (an OR-split is synchronized
by an AND-join). A score of 1.0 for the correctness degree indicates a com-
pletely structurally correct recommendation. The penalty for structural conflicts
is determined based on the frequency with which these conflicts occur for the
considered process fragments. More formally:

corrScr :=

{
1− 0.1 ∗ N

|PT |+|TP | for PT handles
1− 0.2 ∗ N

|PT |+|TP | for TP handles

}

,

where N is the number of all recommended process fragments, |PT | the number
of recommended process fragments which would result in PT handles if the
user would insert them into her workspace and |TP | is defined similarly for
TP handles. If the equation would result in a negative value for the structural
correctness metric, i.e. corrScr < 0, we define corrScr to be 0. The intuition is
that possible PT and TP handles are punished more severely if they occur rarely
and less severely if almost every recommended process fragment would result in
a TP or PT handle if inserted into the workspace.

The overall ranking for recommendations results from the following weighted
equation:

274 T. Hornung, A. Koschmider, and G. Lausen

Fig. 3. New order of recommendations after reranking

R := w1 ∗ searchScr + w2 ∗ corrScr + w3 ∗ freqScr

where Σn
i=1wi = 1, and the Lucene score is assigned the greatest weight, i.e. the

Lucene score has the most significant influence on the ranking.
The reranking of search results of Figure 2 gives the following final descending

order as shown in Figure 3. Process elements, which cause (in case of intercon-
nection) structural problems are highlighted with a gray rectangle. The choice
for these ranking criteria is supported by our evaluation. The interviewed per-
sons stated that element labels are the most important reason for choosing a
recommendation followed by the process result and process structure. The user
relevance feedback was unimportant. Instead the user appreciated the frequency
score and the configuration window.

Furthermore, the standard process parts are element groups consisting of up
to ten elements. From this point of view it makes no sense to consider the model
size, the density of process elements or the average connector degree in the
ranking, which have been identified by [19] as main factors for business process
understandability.

7 Evaluation

To validate our modeling support system we conducted an evaluation. We com-
pleted our evaluation after the tenth person because the last four persons did not
significantly change the recommendations. Instead they selected the processes
edited by preceding interviewed persons. Among the ten interviewed persons
were four beginners, two approved modelers and four advanced modelers. In the
initial development of our prototype we have populated our repository with pro-
cess models from real word projects concerning order and shipment processing.
Additionally, we collected a set of process models from the research literature
regarding the same application area. Before starting the evaluation the reposi-
tory contained 21 process models including 15 process parts (which we manually
declared from the 21 process models).

Recommendation Based Process Modeling Support 275

For these processes we build a questionnaire that should answer the following
questions:

– Can the modeling time be reduced using the modeling support system?
– Can the number of operations (deletion, insertion) be reduced when reusing

processes from the repository?

Mainly, the interviewed persons had experiences for improvement and documen-
tation purposes and stated that the most influences on their process modeling
are (modeling/enterprise) goals and requirements. All interviewees asked that
they are modeling from left to right6. Finally, most persons declared that they
are searching in the WWW or ask the corresponding persons for relevant in-
formation in order to model the business process. This statements confirmed
our presumption that users spent some time to find relevant information. We
therefore conclude, that a search capability is beneficial for process modeling.

Next, in the questionnaire we asked the users to model three business
processes. For the first and the third process we provided detailed information
about the process solution. The second process instruction was short: model a
business process for order approval.

Except one person all interviewees started their process modeling tasks with
the search interface. Subsequently, they inserted either all or only some elements
of a recommendation or even several elements from different recommendations
into their workspace. Then they finished their process modeling or continued
their searching. Table 1 shows the average search results for the three business
processes to be modeled. The average of searches performed for the first process
model is almost two, for the second is one and for the third is the middle number.
Next, the average of selected recommendations for the first and the third model
converges to two and for the second model lies in the middle between 1 and 2.

Table 1. Overview of performed searches and requested recommendations

Average Number of. . . 1st Model 2nd Model 3rd Model

. . . searches performed 1.8 1.0 1.5

. . . recommendations proposed 38 26.77 37.5

. . . recommendations viewed to find fitting process 5.3 3.55 3.6

. . . recommendations selected 1.7 1.22 1.6

We determined for all three process tasks the Pearson correlation coefficients.
None correlation coefficient is significant at a 95% confidence level (see Table
2). The only demonstrative correlation can be stated for the third process in-
struction. If we differentiate the number of searches performed according to the
user’s modeling experiences, then modeling beginners posed more queries than
advanced users. One reason could be unsatisfying recommendation results or
6 As mentioned previously, the current implementation supports both modeling tech-

niques (starting at the modeling trigger or at the modeling output).

276 T. Hornung, A. Koschmider, and G. Lausen

Table 2. Correlation parameters for the three modeling tasks in the questionnaire

task corr. parameter corr. coefficient p-value
1 user exp. vs. # selected rec. -0,0834 0,4093

user exp. vs. # searches performed 0,0891 0,4033
2 user exp. vs. # selected recommendations -0,2978 0,2017

user exp. vs. # searches performed 0,0891 0,4033
3 user exp. vs. # selected recommendations 0,408 0,1208

user exp. vs. # searches performed 0,5215 0,061

Table 3. Ranked process recommendations

Process Name Score Frequency Operations

1 CheckOrder 95.02 5 15

.

10 Handle Customer Order 48.85 3 20

their uncertainty which process to choose. Advanced modelers mostly decided
for one recommendation and customized it. But, the number of valid cases (in-
terviewed persons) is too small in order to make any generalizable claims.

If the interviewees decided to use the query interface then the user could
decide which recommendation to open. To realize this we prepended a table-
based result list as depicted in Table 3 including the Lucene Score, the Frequency
Score and the average number of operations (insertions and deletions) users have
performed after adding the recommended process part into their workspace. To
control the number of configurations we adopted the methods presented in [20]
for version control of workflow process definition. This prepended representation
of query results has two advantages. (1) Several users posed only meaningless
queries such as searching for elements labeled received order, which is modeled
in a variety of processes. Thus, this representation helps the user to find fitting
processes (due to the process name) even when the query was non-declarative. (2)
This representation is highly efficient compared to the view of recommendations
(like in Figure 3), which requires a lot more time to load all models. With this
prepended representation only the selected recommendations will be loaded in
the graphical view.

Figure 4 shows our evaluation results concerning our initial questions to be an-
swered by the questionnaire. The modeling time and the number of operations for
the three modeling examples in the questionnaire decreases by the number of in-
terviewee. The first person spent the most time to find a suitable process for reuse
and customized the recommendations. The following interviewees reused the pro-
cesses of the first person and edited them slightly. Subsequently, the last six inter-
viewees adopted the processes of their predecessors with minimal modifications.

We determined the Pearson correlation coefficients for the correlation parame-
ters time vs. number of processes and process parts in the repository and number
of operations vs. number of processes and process parts in the repository. Both

Recommendation Based Process Modeling Support 277

Fig. 4. Reduction of modeling time relative to interviewed persons

correlation parameters are significant at a 95 % confidence level (with a corre-
lation coefficient of -0,82 and -0,6). Consequently, we conclude that our support
system reduces modeling time and the number of operations, if suitable business
processes are available in the repository.

8 Conclusion and Future Work

We presented a system for supporting users at modeling time which is focused
on reducing both the modeling time and increasing the structural correctness at
an early stage by providing a search functionality for process fragments stored
in a repository. Additionally we proposed a novel recommendation algorithm
which ranks process fragments based on three different criteria. First, a modified
version of the Term and Document Frequency measure, which has been adapted
for business processes. Second on the reuse of process fragments and third on
the structural correctness of process parts. Our user evaluation suggests, that
the recommender system reduces the number of required editing operations and
of the modeling time.

For future work we plan to investigate a more elaborate multi-stage matching
procedure, e.g. combining the Term and Document Frequency with the results
of a Näıve Bayes classifier on process instances by using a voting prediction com-
biner (cf. [21]). Furthermore, as already mentioned in the related work section we
plan to tag user guides or project documentations to additionally unveil user’s
requirements.

References

1. Bandara, W., Gable, G.G., Rosemann, M.: Critical Success Factors of Business
Process Modeling. Technical report, Preprint series of Queensland University of
Technology (2007)

2. Madhusudan, T., Zhao, J.L., Marshall, B.: A Case-based Reasoning Framework
for Workflow Model Management. Data Knowl. Eng. 50, 87–115 (2004)

3. Kim, J.H., Suh, W., Lee, H.: Document-based Workflow Modeling: a Case-based
Reasoning Approach. Expert Syst. Appl. 23, 77–93 (2002)

278 T. Hornung, A. Koschmider, and G. Lausen

4. Paul, C.S., Nejdl, W., Handschuh, S.: P-TAG: Large Scale Automatic Generation
of Personalized Annotation Tags for the Web. In: WWW, pp. 845–854. ACM Press,
New York (2007)

5. Ghose, A., Koliadis, G.C.A.: Process Discovery from Model and Text Artefacts.
In: IEEE Congress on Services, pp. 167–174 (July 9-13, 2007)

6. Mahleko, B., Wombacher, A.: Indexing Business Processes Based on Annotated
Finite State Automata. In: International Conference on Web Services, pp. 303–311
(2006)

7. Shen, Z., Su, J.: Web service discovery based on behavior signatures. In: IEEE
International Conference on Services Computing, pp. 279–286. IEEE Computer
Society, Los Alamitos (2005)

8. Weijters, T., van der Aalst, W.: Process Mining: Discovering Workflow Models
from Event Based Data. In: BNAIC, pp. 283–290 (2001)

9. Skoutas, D., Simitsis, A.S.T.: A Ranking Mechanism for Semantic Web Service
Discovery. In: IEEE Congress on Services, pp. 41–48 (July 9-13, 2007)

10. Xu, J., Li, H.: AdaRank: a Boosting Algorithm for Information Retrieval. In: ACM
SIGIR, pp. 391–398. ACM, New York (2007)

11. Brooks, C.H., Montanez, N.: Improved Annotation of the Blogopshere via Auto-
tagging. In: WWW, Edinburgh, UK (2006)

12. Efthimiadis, E.N.: A User-centred Evaluation of Ranking Algorithms for Interac-
tive Query Expansion. In: ACM SIGIR, pp. 146–159. ACM, New York (1993)

13. Salton, G., Mcgill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York (1986)

14. Zipf, G.K.: Human Behaviour and the Principle of Least-Effort. Addison-Wesley,
Cambridge (1949)

15. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance
Metrics for Name-Matching Tasks. In: Proceedings of IJCAI 2003 Workshop on
Information Integration on the Web, pp. 73–78 (2003)

16. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
17. van der Aalst, W.M.: The Application of Petri Nets to Workflow Management.

The Journal of Circuits, Systems and Computers, 21–66 (1998)
18. Ohsugi, N., Monden, A.M.K.: A Recommendation System for Software Function

Discovery. In: APSEC, pp. 248–257 (2002)
19. Mendling, J., Reijers, H., Cardoso, J.: What Makes Process Models Understand-

able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

20. Zhao, X., Liu, C.: Version Management in the Business Process Change Context.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
198–213. Springer, Heidelberg (2007)

21. Bozovic, N., Vassalos, V.: Two-Phase Schema Matching in Real World Relational
Databases. In: ICDE Workshops, pp. 290–296 (2008)

On the Formal Semantics of Change Patterns in

Process-Aware Information Systems

Stefanie Rinderle-Ma1, Manfred Reichert1, and Barbara Weber2

1 Ulm University, Germany
{stefanie.rinderle,manfred.reichert}@uni-ulm.de

2 University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

Abstract. Due to a turbulent market enterprises should be able to
adapt their business processes in a quick and flexible way. This requires
adaptive process-aware information systems (PAISs) which are able to
support changes at different levels and of different process aspects. As
for process modeling languages, a multitude of approaches, paradigms,
and systems for realizing adaptive processes have emerged. This variety
makes it difficult for PAIS engineers to choose the adequate technology.
Therefore we introduced a set of commonly used process change patterns
which facilitate the comparison between different approaches and tools.
In this paper, we provide the formal semantics of these change patterns
to ground pattern implementation and pattern-based analysis of PAISs
on a solid basis. As challenge, we want to describe the formal seman-
tics of change patterns independent of a certain process meta model.
Altogether, our formalization will enable unambiguous and systematic
comparison of adaptive PAISs.

1 Introduction

For several reasons enterprises should provide flexible IT support for their busi-
ness processes and be able to adapt them in a quick and flexible way. Process-
aware information systems (PAISs) offer promising perspectives in this respect
based on a strict separation of process logic and application code. The need for
flexible and easily adaptable PAISs has been recognized for years and several
competing paradigms for addressing process changes and flexibility have been
developed (e.g., adaptive processes [1,2,3], case handling [4], declarative processes
[5], and late modeling [1,6]). Still, there is a lack of methods for systematically
comparing the change frameworks provided by existing process support systems.
This, in turn, makes it difficult to assess the maturity and the change capabilities
of those technologies, often resulting in wrong decisions and bad investments.

To make PAISs better comparable, workflow patterns have been introduced
[7]. These patterns enable analyzing the expressiveness of process modeling tools
and languages. Though workflow patterns enable building more flexible PAISs,
an evaluation of a PAIS regarding its ability to deal with changes needs a broader
view. In addition to the ability to pre-model flexible execution behavior based on

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 279–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 S. Rinderle-Ma, M. Reichert, and B. Weber

advanced workflow patterns), run-time flexibility has to be considered [2]. The
latter is addressed by exception handling patterns [8], which describe different
ways for coping with the exceptions that occur during process execution (e.g.,
activity failures). In many cases, changing the observable behavior of a running
instance is not sufficient, but the process structure has to be adapted as well [9].
In addition, exception handling patterns cover changes at the process instance
level, but are not applicable to process schema changes.

We extend existing workflow patterns by a set of patterns suitable for evaluat-
ing the run-time flexibility of PAISs. In [10,11] we have introduced 14 change pat-
terns. Extensive case studies have shown that these change patterns are common
and frequently applied in different domains [12]. Examples include the patterns
Insert, Move, and Replace. Further, we have evaluated different approaches
and tools with respect to their support of the different change patterns. As for
workflow patterns, however, it is crucial to provide a formal semantics for change
patterns; i.e., for each change pattern its effects must be precisely defined. Other-
wise, ambiguities in the semantics of a change pattern (e.g., whether an activity
is inserted in a serial or parallel manner) will hamper both their implementation
and the comparison of existing change frameworks. Workflow patterns have been
defined based on techniques with inherent formal semantics (e.g., Petri Nets [7]
or Pi-Calculus [13]). However, such formalisms cannot be used to define change
pattern semantics since we have to specify formal semantics of high-level change
operations instead of workflow constructs. Further, since change patterns can
be applied to different process meta models, their formal semantics should be
described independent of a certain meta-model.

This paper provides a formal semantics for the change patterns presented in
[10,12] to ground their implementation as well as pattern-based analysis of PAISs
on a solid basis. First, we classify change patterns based on their semantics. To
stay independent of a certain process meta model, we base change pattern se-
mantics on execution traces (trace for short) of processes. Further, we illustrate
it by examples and explanations. Together with workflow patterns, change pat-
terns with precise and formal semantics will push the breakthrough of flexible
PAISs in practice. Sect. 2 provides background information. In Sect. 3 we recall
the change patterns presented in [10,11] and classify them based on their se-
mantics. Sect. 4 provides the formal semantics for all 14 change patterns. Sect.
5 discusses related work and Sect. 6 concludes with a summary.

2 Backgrounds

This section introduces basic notions needed and recalls change patterns as pre-
sented in [10,11].

2.1 Basic Notions

Generally, for each business process to be supported (e.g., order handling), a
process type represented by a process schema has to be defined. For one par-
ticular process type several process schemes may exist representing the different

On the Formal Semantics of Change Patterns in PAISs 281

versions and evolution of this type over time. In the following, a process schema
corresponds to a directed graph, which comprises a set of nodes representing
process steps (i.e., activities) or control connectors (e.g, XOR-Split, AND-Join),
and a set of control edges between them. The latter specify precedence relations.
Activities can either be atomic or complex. While an atomic activity is associated
with an invokable application service, a complex activity contains a reference to
a sub process (schema). This enables the hierarchical decomposition of process
schemes. Most of the patterns considered in this paper are not only applicable
to atomic or complex activities, but also to sub process graphs with single entry
and single exit node contained within the process schema (also denoted as ham-
mocks [11]). In this paper, we use the term process fragment as a generalized
concept covering atomic activities, complex activities (i.e., sub processes) and
hammocks. If a pattern is denoted as being applicable to a process fragment, it
can be applied to all these objects.

2.2 Process Changes and Adaptation Patterns

Changes of a process schema can be applied at the process type as well as
the process instance level [2]. Process changes at the type level often necessi-
tate change propagation to already running process instances. Ad-hoc changes
of single process instances, in turn, are performed to deal with exceptional
situations during runtime. In particular, ad-hoc changes result in an adapted
instance-specific process schema [3]. The effects of such ad-hoc changes are usu-
ally instance-specific, and consequently do not affect any other ongoing process
instance.

Change patterns (cf. Fig. 1) allow for the structural modification of a process
schema at the type or instance level based on high-level change operations (e.g.,
to add an activity in parallel to another one). A high-level change operation, in
turn, is based on a set of low-level change primitives (e.g., to add a single node
or delete a single edge). Generally, change patterns can be applied to the whole
process schema, i.e., the change region can be chosen dynamically. Therefore,
change patterns are well suited for dealing with exceptions.

Design choices enable the parametrization of change patterns by keeping the
number of distinct patterns manageable. For example, whether an atomic activ-
ity, a complex activity, or a hammock is deleted constitutes one design choice for
the Delete Process Fragment pattern. Design choices which are not only relevant
for a particular pattern, but for a set of patterns, are described only once for the
entire pattern set. Typically, existing approaches only support a subset of the
design choices in the context of a particular pattern. We denote the combination
of design choices supported by a particular approach as a pattern variant. As
discussed in [10,14], general design choices valid for all change patterns are

(A) the scope of the change pattern; i.e., whether it is possible to apply the
pattern at process type or process instance level

(B) the level of granularity the change pattern operates on:
atomic activity (1), sub process (2), and hammock (3).

282 S. Rinderle-Ma, M. Reichert, and B. Weber

AP1: Insert Process Fragment AP8: Embed Process Fragment in Loop

AP2: Delete Process Fragment AP9: Parallelize Activities

AP3: Move Process Fragment AP10: Embed Process Fragment in Conditional Branch

AP4: Replace Process Fragment AP11: Add Control Dependency

AP5: Swap Process Fragments AP12: Remove Control Dependency

AP6: Extract Sub Process AP13: Update Condition

AP7: Inline Sub Process AP14: Copy Process Fragment

Fig. 1. Adaptation Patterns Overview

In this paper, we abstract from design choices (A) and (B) since they do
not affect the formal semantics of change patterns as defined by us. Regarding
Design Choice (A), for example, change pattern AP2 (Delete Process Fragment)
could be implemented in a different way for the process type and the process
instance level; e.g., replacing the activity to be deleted by a silent activity at
the instance level, while physically deleting it at the type level. Furthermore,
the applicability of change patterns at the instance level additionally depends
on the state of the respective instances [2]. This, however, does not influence the
formal semantics of pattern AP2 when defining it on basis of traces. Regarding
Design Choice (B), we assume that sub processes as well as hammocks can be
encapsulated within a complex activity. Then the formal semantics for applying
change patterns to activities can be easily transferred to design choices B[2]
and B[3] as well. Thus, in this paper, the definition of formal pattern semantics
refers to activities instead of process fragments. Exceptions are patterns AP6
(Extract Sub Process), AP7 (Inline Sub Process), and AP8 (Embed Process
Fragment in Loop), since AP6 and AP7 are applied to sub processes and AP8
to process fragments respectively (Design Choice (B)). Pattern-specific design
choices, however, influence the formal semantics of these patterns. Take the insert
pattern AP1 applied to an atomic activity as an example. To be able to exactly
decide on its semantics, it is necessary to specify whether the activity is inserted
in a serial, parallel, or conditional manner; i.e., the semantics of this change
pattern is determined by taking the respective design choice into account. Thus,
we consider design choices when formalizing patterns.

3 Semantics-Based Patterns Classification

To cluster formalization effects, we group change patterns according to their
semantics; i.e., patterns with similar or related semantics (and therefore formal-
ization) are summarized within one group.

Group 1 (Insertion patterns): Our first group consists of change patterns
AP1 (Insert Activity), AP3 (Move Activity), and AP14 (Copy Activity) (cf.
Fig. 2a).These patterns are more or less based on the insertion of an activity at
a certain position. How this position is determined constitutes pattern-specific
design choice (C); i.e., the activity can be inserted serially (C[1a]), in parallel

On the Formal Semantics of Change Patterns in PAISs 283

a) Group 1: Insertion Patterns
Process Schema S Process Schema S’
AP1 Insert Activity: An activity X is added to a process schema S.
Example:

AP3 Move Activity: An activity X is moved from its current position in process schema S to another
position within the same schema.
Example:

AP14 Copy Activity: An activity X is copied from its current position in process schema S to
another position of the same schema S.
Example:

b) Group 2: Deletion Patterns
Process Schema S Process Schema S’
AP2 Delete Activity: A process fragment is deleted from a process schema S.
Example:

c) Group 3: Replace Patterns
Process Schema S Process Schema S’
AP4 Replace Activity: A process fragment is replaced by another process fragment in process
schema S.

AP5 Swap Activities: Two existing process fragments are swapped in process schema S.
Example:

A B C B X CA

Design Choice C[1a] (Serial Insert)

A B CX

B

X

CA +
AND-Split

+
AND-Join

Design Choice C[1b] (Parallel Move)

A B CX

x
XOR-Split

x
XOR-Join

B

X’

CA

If cond = TRUE

X

Design Choice C[2] (Conditional Copy)

A B C CA

B C DA C B DA

Fig. 2. Insertion, Deletion, and Replace Patterns (Groups 1 to 3) – Examples

(C[1b]), or conditionally (C[2]). As example consider Fig. 2a. On the left side
source schemes are depicted to which AP1, AP3, and AP14 are applied assuming
a particular design choice C. In this example a new activity is embedded between
two single nodes. We generalize this later to activity sets as insertion patterns.

As can be seen from Fig. 2a, all patterns of Group 1 are based on the insertion
of an activity. Obviously, this holds for AP1. For moving an activity (AP3),
the respective activity is re-inserted after deleting it from its original position.
Finally, when copying an activity X, it remains at its original position and a
copy of X (with new label1) is inserted.

Group 2 (Deletion patterns): This group only contains one change pattern
since its formalization does not directly relate to any other pattern. Fig. 2b shows
the deletion of an activity from a process schema.

Group 3 (Replace patterns): Within the third group, we subsume change
patterns AP4 (Replace Activity) and AP5 (Swap Activities). As example, con-
sider Fig. 2c. Here activities B and C are swapped in schema S; i.e., activity B
is (logically) replaced by activity C and vice versa.

Group 4 (Embedding patterns): There are two change patterns AP8 (Embed
Process Fragment in Loop) and AP10 (Embed Process Fragment in Conditional
Branch) which form Group 4. Note that for both patterns a process fragment
is embraced by a new construct (i.e., a loop or conditional branching, cf. Fig.
3a). By applying one of these patterns, the respective process fragment is either

1 We claim unique labelling of activities.

284 S. Rinderle-Ma, M. Reichert, and B. Weber

a) Group 4: Embedding Patterns
Process Schema S Process Schema S’
AP8 Embed Process Fragment in Loop: Adds a loop construct to a process schema in order to
surround an existing process fragment.

AP10 Embed Process Fragment in Conditional Branch: An existing process fragment shall be only
executed if certain conditions are met.
Example:

b) Group 5: Order Changing Patterns
Process Schema S Process Schema S’
AP9 Parallelize Activities: Activities which have been confined to be executed in sequence so far are
parallelized in a process schema S.
Example:

AP11 Add Control Dependency: An additional control edge (e.g., for synchronizing the execution order
of two parallel activities) is added to process schema S.

AP12 Remove Control Dependency: A control edge is removed from process schema S.

AP13 Update Condition: A transition condition in the process schema is updated.
Example:

c) Group 6: Hierarchy Changing Patterns
Process Schema S Process Schema S’
AP6 Extract Sub Process: From a given process schema S a process fragment is extracted and
replaced by a corresponding sub process.
Example:

AP7 Inline Sub Process: A sub process to which one or more process schemes refer is dissolved.
Accompanying to this the corresponding sub process graph is directly embedded in the parent schemes.

A B C D x
XOR-Split

x
XOR-Join

C DB

condition

A

C D EBA C

B

EA +
AND-Split

+
AND-Join

D

x
XOR-Split

x
XOR-Join

B

X

CA

d < 50000

x
XOR-Split

x
XOR-Join

B

X

CA

d < 10000

C D EBA A P C

C DB

Fig. 3. Embedding, Order and Hierarchy Changing Patterns (Groups 4 to 6)

executed more often than before (AP8) or possibly not executed at all (AP10).
Thus, a similar semantical description can be found for both patterns.

Group 5 (Order Changing / Update Patterns) comprises all patterns
which either change the order of activities within a process schema or update
transition conditions. As example, consider AP9 (Parallelize Activities) as de-
picted in Fig. 3b. AP9 changes the execution order for a selected set of activities,
which are ordered in sequence before and parallelizes them within new schema
S’; i.e., execution order of these activities is relaxed within the new schema. The
same is achieved by removing control dependencies (AP12). Opposed to this,
AP11 (Add Control Dependency) tightens the execution order of activities; e.g.,
two activities ordered in parallel before are executed in sequence when adding a
control edge between them. Finally, AP13 (Update Condition) enables the modi-
fication of transition conditions. In Fig. 3b, for example, the transition condition
of a particular branch is updated to ”d < 10000” based on AP13.

Group 6 (Hierarchy Changing Patterns) comprises patterns which add or
remove levels from a process schema and thus change its hierarchical structure.
Pattern AP6 (Extract Sub Process) adds levels to a schema by extracting a
selected sub process from schema S and nesting it ”under” a new complex activity

On the Formal Semantics of Change Patterns in PAISs 285

P (cf. Fig. 3c). AP7 (Inline Sub Process) is the counter operation of AP6. It
removes levels from the process hierarchy by dissolving complex activities and
inlining the associated sub process schema into S.

4 Formalization of Adaptation Patterns

4.1 Basic Notions

First of all, we introduce basic notions needed for the following considerations. In
workflow literature, for example, the formal description of control flow patterns
has been based on Petri Nets [7] or Pi-Calculus [13]. Therefore these patterns
have an inherent formal semantics. Regarding change patterns, we aim at a for-
mal description independent of a particular process meta model. To achieve this,
we base the formal description of change patterns on the behavioral semantics of
the process schema before and after its change. One way to capture behavioral
semantics is to use traces [15].

Definition 1 (Trace). Let PS be the set of all process schemes and let A be the
total set of activities (or more precisely activity labels) based on which process schemes
S ∈ PS are specified (without loss of generality we assume unique labeling of activities
in the given context). Let further QS denote the set of all possible traces producible
on process schema S ∈ PS. A particular trace σ ∈ QS is then defined as σ = <
a1, . . . , ak > (with ai ∈ A, i = 1, . . . , k, k ∈ N) where the temporal order of ai in σ
reflects the order in which activities ai were completed over S2.

Furthermore, we define the following two functions:

– tracePred(S, a, σ) is a function which returns all activities within process schema S
completed before the first occurence of activity a within trace σ. Formally: tracePred:
S × A × QS �→ 2A with

tracePred(S,a, σ) =

8
>><

>>:

∅ if a �∈ {σ(i) | i ≤ |σ|}
(σ(i) denotes the ith item in σ, cf. Tab. 1)

{a1, . . . , ak} if σ =< a1, . . . , ak, a, ak+1, . . . , an >
∧ aj �= a ∀j = 1, ..., k

– Analogously, traceSucc(S, a, σ) denotes a function which returns all activities within
process schema S completed after the last occurence of activity a in trace σ. Formally:
traceSucc: S × A × QS �→ 2A with

traceSucc(S, a, σ) =

8
<

:

∅ if a �∈ {σ(i) | i ≤ |σ|}
{ak+1, . . . , an} if σ =< a1, . . . , ak, a, ak+1, . . . , an >

∧ aj �= a ∀j = k + 1, ..., n

Function tracePred (traceSucc) determines the predecessors (successors) of the
first (last) occurence of a certain activity within a trace; i.e., those activities
which precede (succeed) the considered activity due to a loop back are not
taken into account. Fig. 4 shows a schema with two loops, an example of a
corresponding trace, and the sets resulting from the application of tracePred
and traceSucc in different context.
2 A particular activity can occur multiple times within a trace due to loopbacks.

286 S. Rinderle-Ma, M. Reichert, and B. Weber

ED FCBA

 = <A1, B1,C1, D1, B2, C2, D2,E1, C3, D3, B3, C4, D4, E2,C5, D5,E2, F1>

tracePred(C,) = {A, B}; traceSucc(C,) = {D, E, F}
Xn: nth occurence of X in

tracePred(E,) = {A, B, C, D}; traceSucc(E,) = {F}

Fig. 4. Functions tracePred and traceSucc applied to trace

In addition to Def. 1, Table 1 contains useful notions which facilitate the
formalization of the change patterns.

Table 1. Useful notions based on Def. 1

Let σ =< a1, . . . , an >∈ QS be a trace on process schema S. Then:

|σ|: cardinality of σ

σ(i) = ai: ith item in trace σ

x ∈ σ ⇐⇒ ∃ i ≤ |σ| with σ(i) = x

B ⊆ σ ⇐⇒ ∀ b ∈ B: b ∈ σ

σ−
X → discard all items from σ which belong to set X

Example: σ−
{a1,an} = < a2, . . . , an−1 >

σ+
X → discard all items from σ not belonging to set X

example: σ+
{a1,an} = < a1, an >

4.2 Adaptation Pattern Semantics

Based on the meta model independent notions of Def. 1 and Tab. 1 we now
describe formal semantics of the different change patterns introduced in Sect. 3
(cf. Fig. 2+3). The given formal specifications do not contain any constraints
specific to a particular meta model. This has to be achieved separately by as-
sociating change operations with meta model-specific pre-/post-conditions. Our
specifications contain generally valid pre-conditions where necessary; e.g., a node
can only be deleted if it is present in the original schema. The post-conditions
specify the effects of applying the respective change pattern (i.e., its semantics).

Insertion Patterns (Group 1). The fundamental pattern of this group is AP1
(Insert Activity) since patterns AP3 (Move Activity) and AP14 (Copy Activity)
are based on the insertion of an activity as well (cf. Fig. 2). Thus, we first present
formal semantics for AP1. When formalizing the semantics of a change pattern
we first specify necessary preconditions for its application. Then we describe the
effects resulting from its application. To stay independent of a particular meta
model, the latter is accomplished based on traces; i.e., we describe the relation
between traces producible on original schema and modified schema.

Pattern Semantics 1 (Insert Activity, AP1). AP1 corresponds to high-level
operation op = Insert(S, x, A, B) �→ S’ where S and S’ denote process schemes before

On the Formal Semantics of Change Patterns in PAISs 287

and after change. Further A and B denote activity sets between which activity x shall
be inserted. Then the semantics of AP1 is given as follows:
(1) S does not contain a node with label x. Further, S contains activity sets A and B.
(2) ∀ μ ∈ QS′ : ∃ σ ∈ QS with μ−

{x} = σ and vice versa
(3) Considered design choices: Serial Insert (C[1]) and Parallel Insert (C[2]):

∀ μ ∈ QS′ with A ⊆ μ (i.e., all nodes of A contained in μ):
{μ+

A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A for ν ∈ N

=⇒
μ+

A∪B∪{x}(ν + |A|) = x ∧
{μ+

A∪B∪{x}(i) | i = ν + |A| + 1, . . . , ν + |A| + |B|} = B

(1) formalizes generic pre-conditions for inserting an activity in schema S; e.g.,
the activity to be inserted must not yet be present in S. (2) defines the relation
between traces on S and new schema S’. For each trace σ on S there exists a
corresponding trace μ on S’ for which μ−{x} = σ holds; i.e., when discarding
newly inserted activity x from μ, this trace equals σ and vice versa. This expresses
the close relation between traces producible on S and S’. It further indicates that
traces on S’ may additionally contain x whereas those on S do not.

Concerning AP1, we distinguish three design choices: Serial Insert (C[1a]),
Parallel Insert (C[1b]), and Conditional Insert (C[2]) (see Fig. 2). Regarding
design choices C[1a] and C[1b] the following conditions for newly inserted activity
x in traces μ on S’ hold (cf. Pattern Semantics 1): If all nodes of predecessor set
A are contained in trace μ on S’, then the entries of x and B will be present in μ
as well. When projecting μ onto the entries of activity set A ∪ B ∪ {x} (i.e.,
μ+

A ∪ B ∪ {x}), the entry of x is positioned directly after all entries of A and the
entries of B directly succeed the entry of x within the respective trace. Note that
the last condition (3) has to be modified in case of a conditional insert, since the
presence of entries of A in μ on S’ does not imply the presence of x.

Pattern Semantics 2 (Insert Activity, AP1 - Conditional Insert). Let
the preconditions be as in Pattern Semantics 1. Then
(3’) Considered design choice: Conditional Insert (C[2]):

∀ μ ∈ QS′ with x ∈ μ:
μ+

A∪B∪{x}(ν + |A|) = x
=⇒

{μ+
A∪B∪{x}(i) | i = ν, . . . , ν + |A| − 1} = A ∧

{μ+
A∪B∪{x}(i) | i = ν + |A| + 1, . . . , ν + |A| + |B|} = B

Condition (3’) implies that if x is present in μ on S’ the entries of predecessor set
A and successor set B will be contained in μ on S’ as well. Furthermore, in the
projection of μ onto the entries of activity set A ∪ B ∪ {x} (i.e., μ+

A ∪ B ∪ {x}),
the entries of A directly precede x and the entries of B directly succeed x.

Similarly, formal semantics for AP3 (Move Activity) can be defined. Condi-
tions (3) and (3’) which describe the position of x in μ (on S’) are equal to the
ones of AP1. However, there is a different pre-condition for AP3 (Move Activity):
x must be present in S in order to be moved afterwards. The relation between
traces on S and S’ is also different from AP1 (Insert Activity). Formally:

288 S. Rinderle-Ma, M. Reichert, and B. Weber

∀ σ ∈ QS : ∃ μ ∈ QS′ with σ−
{x} = μ−

{x} and vice versa

Traces on S as well as traces on S’ might contain x but at different positions.
Therefore we claim that the projections of these traces (i.e., the traces where x
will be discarded if present) have to be equal. Note that this reflects well the
semantics of the Move change pattern.

Finally, AP14 (Copy Activity) is related to AP1 (Insert Activity) as well.
Again the position of copied (and re-labelled) activity x’ can be formalized by
conditions (3) and (3’) as for AP1 (Insert Activity). Similar to AP3 (Move
Activity) the activity to be copied must be present in S (1). Additionally, labels
of the activity to be copied and the copied activity itself must be different from
each other and no activity with the new label must be already contained in S.
Copying an activity x (with new label x’) can be seen as inserting x’ at the
respective position. Therefore, the relation between traces on S and S’ can be
defined as for AP1, but based on x’; i.e., when discarding copied activity x’ from
μ (on S’), there exists an equal trace σ on S. Formally3:

∀ μ ∈ QS′ : ∃ σ ∈ QS with μ−
{x′} = σ and vice versa

Deletion Patterns (Group 2). The semantics of AP2 (cf. Fig. 2) comprises
preconditions and statements on the relation between traces on S and S’:

Pattern Semantics 3 (Delete Activity, AP2). AP2 corresponds to high-level
operation op = Delete(S, x) �→ S’ where S and S’ denote process schemes before and
after its adaptation and x denotes the activity to be deleted. The semantics of AP2 is
given as follows:

(1) Process schema S contains a node with label x.
(2) ∀ μ ∈ QS′ : x �∈ μ

(3) ∀ μ ∈ QS′ : ∃ σ ∈ QS with μ = σ−
{x} ∧

∀ σ ∈ QS: ∃ μ ∈ QS′ with σ−
{x} = μ

When deleting activity x, first of all, the process schema has to contain a node
with label x. As an effect resulting from the application of AP2, all traces μ on
S’ must not contain x. Finally, for all projections of σ on S where x is discarded
from σ we can find an equal trace on S’ and vice versa.

Replace Patterns (Group 3). We illustrate AP5 (Swap Activities, cf. Fig.
2) since it ”contains” the formalization for AP4 (Replace Activity). Note that
swapping x and y can be (logically) seen as replacing x by y and y by x.

Pattern Semantics 4 (Swap Activities, AP5). AP5 corresponds to high-level
operation op = Swap(S, x, y) �→ S’ where S and S’ denote process schemes before and
after the adaptation. Further x and y denote the activities to be swapped. The semantics
of AP5 is given as follows:
(1) Process schema S contains one node with label x and one with label y.
(2) ∀ σ ∈ QS : ∃ μ ∈ QS′ with |σ| = |μ| ∧

3 A complete formalization of AP3 and AP14 can be found in a technical report [11].

On the Formal Semantics of Change Patterns in PAISs 289

μ(i) =

8
<

:

σ(i) if σ(i) �∈ {x, y}
x if σ(i) = y
y if σ(i) = x

and vice versa
Alternatively we can formulate (2) as follows:

(2’) ∀ σ ∈ QS:
∃ μ ∈ QS′ : with |σ| = |μ| ∧ σ−

{x,y} = μ−
{x,y} ∧ (σ(k) = x =⇒ μ(k) = y)

and vice versa

To be swapped, activities x and y must be both contained in schema S (1). The
relation between trace σ on S and corresponding trace μ on S’ can be formalized
in two ways. In both cases, for all traces σ on S, there exists a corresponding
trace μ on S’ for which the cardinalities of σ and μ are equal. Regarding the
positions of swapped activities x and y, we can explicitly state that for all traces
σ on S, a trace μ on S’ can be found such that all entries of μ are equal to entries
of σ except at positions of x and y where the entries are swapped; i.e., at the
position of x in σ, μ contains y and vice versa (2). Alternatively, for all traces
σ on S there exists a corresponding trace μ on S’ for which the projections of σ
and μ resulting from discarding x and y are equal (2’). Further, μ contains the
entry of y at the position of x in σ and vice versa.

Embedding Patterns (Group 4). Formalization of pattern AP8 (Embed
Process Fragment in Loop, cf. Fig. 3) is as follows:

Pattern Semantics 5 (Embed Process Fragment in Loop, AP8). AP8
corresponds to high-level operation op = Embed in Loop(S, P, cond)�→ S’ where S and
S’ denote process schemes before and after its adaptation. Further P denotes the set
of activities to be embedded into a loop and cond denotes the loop backward condition.
Then the semantics of AP8 is given as follows:
(1) The sub graph on S induced by P has to be connected and must be a hammock,

i.e., have single entry and single exit node.
(2) QS ⊂ QS′

(3) ∀ μ ∈ QS′ : Let μ′ be the trace produced by discarding all entries of
activities in P (if existing) from μ except the entries of one arbitrary loop iteration
over P. Then μ′ ∈ QS holds.

As a first characteristics, we formalize the relation between QS and QS′ . If the
number of loop iterations is finite (i.e., the set of traces on a process schema
containing loops is finite as well), QS ⊂ QS′ holds (1). Reason is that for all
traces σ on S, a trace μ on S’ can be found with σ = μ but not vice versa (due
to the possibly iterative execution of the new loop).

To find a more specific characterization of the relation between QS and QS′ ,
for all traces μ on S’ trace projection μ′ is constructed as follows: All entries
of activities from P (if existing) are discarded from μ except the entries of one
arbitrary loop iteration; i.e., μ is projected onto a ”loop-free” version of itself.
Obviously, the resulting trace μ′ is a trace on S as well (i.e., μ′ ∈ QS).

290 S. Rinderle-Ma, M. Reichert, and B. Weber

For pattern AP10 (Embed Process Fragment in Conditional Branch), first
of all, precondition (1) for AP8 must hold as well (cf. Pattern Semantics 5).
Further, QS′ ⊆ QS holds. Due to the newly inserted conditional branch only
a subset of traces might be generated on S’ when compared to S. Finally, the
relation between traces on S and traces on S’ can be defined more precisely; i.e.,
for all traces σ on S, if we discard all entries of P from σ, the resulting projection
is contained in the set of traces on S’. Formally:

∀ σ ∈ QS : σ−
P ∈ QS′ (if cond = FALSE is possible)

Order Changing / Updating Patterns (Group 5). This group comprises
change patterns which change the execution order between activities or update
transition conditions (cf. Fig. 3). We describe AP9 (Parallelize Activities), since
AP12 (Remove Control Dependency) can be seen as special case of AP9. AP11
(Add Control Dependency) is the reverse operation to AP12. AP13 (Update
Condition) is explained afterwards.

Pattern Semantics 6 (Parallelize Activities, AP9). AP9 corresponds to
high-level operation op = Parallelize(S, P) �→ S’ where S and S’ denote process schemes
before and after its adaptation. Further P denotes the set of activities to be parallelized.
Then the semantics of AP9 is given as follows:
(1) Within schema S, the sub graph induced by P constitutes a sequence with single

entry and single exit node.
(2) ∀ σ ∈ QS: ∃ μ ∈ QS′ with σ = μ (i.e., QS ⊂ Q′

S)
(3) ∀ p, p′ ∈ P : ∃ μ1, μ2 ∈ QS′ with

(p ∈ tracePred(S’, p′, μ1) ∧ p′ ∈ tracePred(S’, p, μ2))
(assuming that the sequence defined by P can be enabled in S)

As a prerequisite of AP9, all activities to be parallelized must be ordered in
sequence (1). As a basic characterization of AP9, the set of traces on S is a subset
of the set of traces on S’ (2) since traces on S’ might contain entries reflecting a
sequential order of P, too, but also any other execution order regarding activities
from P (3). More precisely, every pair of activities contained in trace μ on S’ is
ordered in parallel in the new schema.

Regarding AP12 (Remove Ctrl Dependency), the formal semantics of AP9
is applied to exactly two activities. For AP11 (Add Control Dependency), the
conditions of AP12 hold in reverse direction, i.e., execution order is made stricter
on S’ such that QS′ becomes a subset of QS .

A different semantics has to be defined for AP13 (Update Condition):

Pattern Semantics 7 (Update Condition, AP13). AP13 corresponds to
high-level operation op = Update Ctrl Dependeny(S, x, y, newCond) �→S’ denote
process schemes before and after its adaptation. Further oldCond (newCond)
denotes the (transition) condition of control edge x → y in S’ before (after)
update. The semantics of AP13 is given as follows:
(1) oldCond =⇒ newCond: ∀ μ ∈ QS′ for which transition condition newCond

evaluates to TRUE: ∃ σ ∈ QS with μ = σ

On the Formal Semantics of Change Patterns in PAISs 291

(2) newCond =⇒ oldCond: ∀ σ ∈ QS for which transition condition oldCond
evaluates to TRUE: ∃ μ ∈ QS′ with μ = σ

(3) Otherwise, for all traces σ ∈ QS there exists a trace μ ∈ QS′ for which
the following holds: If we produce projections for σ and μ by discarding all
entries belonging to the conditional branch with updated condition,
these projections are equal.

More precisely, we can derive a statement about the relation of traces between
S and S’ if we know the relation between old and updated condition ((1) or (2)).
The projections of σ and μ as described in (3) can be easily accomplished based
on, for example, block-structured process meta models.

Process Hierarchy Changing Patterns (Group 6). AP6 (Extract Sub
Process) and AP7 (Inline Sub Process) are counterparts of each other (cf. Fig.
3). We illustrate AP6, the formal semantics of AP7 can be directly concluded.
When formalizing AP6 a challenge is to specify the relation between traces μ on
S’ and traces σ on S. Note that the entries of P in μ might have to be inlined
”instead of” the entry of x in σ. This becomes even more difficult in connection
with loops since x is possibly executed multiple times.

Pattern Semantics 8 (Extract Sub Process (AP6)). AP6 corresponds to
high-level operation op = Extract(S, P, x) �→ S’ where S and S’ denote process schemes
before and after its adaptation. Further P denotes the set of activities to be extracted
and x denotes the label of the abstract activity which substitutes the sub graph induced
by P (and refers to a corresponding sub process schema) on S’. Then the semantics of
AP6 is given as follows:
(1) The sub graph on S induced by P has to be connected and must be a hammock,

i.e., have single entry and single exit node.
(2) ∀ σ ∈ QS : ∃ μ ∈ QS′ with μ−

{x} = σ−
P ∧

∀ μ ∈ QS′ : ∃ σ ∈ QS: σ−
P = μ−

{x}
(3) Let z denote the single exit node of the sub graph induced by P.

Then: ∀ σ ∈ QS with σ−
P\{z}(k) = z: ∃ μ ∈ QS′ with μ(k) = x

(4) Let P denote the set of all traces over the sub graph induced by P and
let further π ∈ P. Then:
∀ μ ∈ QS′ with μ(νi) = x (i = 1, . . . , n, νi ∈ N): ∃ σ ∈ QS with

σ(k) =

8
>><

>>:

= μ(k) k = 1, . . . , ν1 − 1,
= μ(k − j ∗ |π| + j) k = νj + |π|, . . . , νj+1 − 1 ∧

k = νn + |π|, . . . , |μ| + n ∗ (|π| − 1)
= π(l) k = νi + l − 1

where j = 1, . . ., n-1; l = 1, . . . , |π|.

The relation between traces on S and on S’ can be formalized as follows: For all
traces σ on S we can find a trace μ on S’ for which the projections resulting from
discarding all entries of sub process P from σ and discarding the entry of x from
μ are equal (1). The interesting question is how to determine the position of x
on S’ when extracting P from S. For this, we build a projection of trace σ on
S by discarding all entries of activities in P except the one of single exit entry

292 S. Rinderle-Ma, M. Reichert, and B. Weber

z (2). Then we can find a trace μ on S’ for which the position of z within the
projection of σ determines the position of x in μ. The other direction (i.e., how
to determine the positions of activities in P on S), which is also important in
the context of AP7 (Inline Sub Process), is more challenging. We solve this by
constructing a trace σ on S for all μ on S’. First the position(s) of x in μ is (are)
determined (ν1, ..., νn). In the context of loops, this might be more than one
position. Then the activities of P are inserted at this (these) position(s) within
σ (3). The remaining part of σ can be constructed using the entries of μ, only
the positions have to be shifted accordingly.

5 Related Work

Flexibility in PAISs has been addressed in different ways including declarative
approaches [6], case-handling [4], and process changes at different levels [2,3,9].
Some approaches have additionally addressed instance-specific change and type-
level change within one system [2]. All this work shows how crucial it is to provide
sufficient solutions for flexible PAISs for applying them in practice. However,
there is no common understanding of change operations or change patterns in
all of these approaches such that for users it might be difficult to compare them
with respect to their particular needs.

The general idea of using patterns to compare PAISs has been proposed by the
workflow patterns project [7]. Based on respective patterns, the expressiveness of
different process meta models and thus tools can be compared. Further patterns
have been presented including data flow patterns [16], resource patterns [17],
exception handling patterns [8], and service interaction patterns [18]. Most of
them come along with a formal semantics, for example, based on languages such
as Petri Nets [7] or Pi-Calculus [13].

For the first time, change patterns have been (informally) introduced in [10,11]
and evaluated in [12]. However, no formal semantics of change patterns has been
provided so far, even though this is crucial for implementing and comparing
PAISs. This paper closes this gap.

6 Summary and Outlook

We have specified the formal semantics for process change patterns [10,11]. This
provides the basis for implementing the patterns in PAISs as well as for com-
paring PAISs with respect to flexibility since ambiguities are discarded. We first
classified the change patterns along similar semantics to facilitate the specifica-
tion of their semantics. For each pattern its formal semantics has been specified
based on traces to stay independent of a particular process meta model. Cur-
rently, we are formalizing the semantics of pre-defined change patterns [10,11]
as well. Such patterns include, for example, the Late Selection of Process Frag-
ments or the Late Modeling of Process Fragments. Our future work includes
change patterns for aspects other than control flow (e.g., data or resources) and
patterns for advanced change scenarios (e.g., adapting data flow when changing

On the Formal Semantics of Change Patterns in PAISs 293

control flow). Further, we will provide a reference implementation and use the
patterns for process refactoring [19].

References

1. Adams, M., ter Hofstede, A., Edmond, D., van der Aalst, W.: A Service-Oriented
Implementation of Dynamic Flexibility in Workflows.. In: Proc. Coopis 2006 (2006)

2. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

3. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10, 93–129 (1998)

4. Van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering 53, 129–162 (2005)

5. Pesic, M., Schonenberg, M., Sidorova, N., van der Aalst, W.: Constraint-Based
Workflow Models: Change Made Easy. In: CoopIS 2007, pp. 77–94 (2007)

6. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems 30, 349–378 (2005)

7. Van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14, 5–51 (2003)

8. Russell, N., van der Aalst, W., ter Hofstede, A.: Exception Handling Patterns in
Process-Aware Information Systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg (2006)

9. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey. Data and Knowledge Engineering 50, 9–34 (2004)

10. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

11. Weber, B., Rinderle, S., Reichert, M.: Change Support in Process-Aware Informa-
tion Systems - A Pattern-Based Analysis. Technical report, CTIT (2007)

12. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering (2008)

13. Puhlmann, F., Weske, M.: Using the Pi-Calculus for Formalizing Workflow Pat-
terns. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.)
BPM 2005. LNCS, vol. 3649, pp. 153–168. Springer, Heidelberg (2005)

14. Zhang, F., D’Hollander, E.: Using Hammock Graphs to Structure Programs. IEEE
Transactions on Software Engineering 30, 231–245 (2004)

15. Glabbeek, R.V., Goltz, U.: Refinement of actions and equivalence notions for con-
current systems. Acta Informatica 37, 229–327 (2001)

16. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data pat-
terns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

17. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

18. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: Bus-
sler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 302–318. Springer,
Heidelberg (2006)

19. Weber, B., Reichert, M.: Refactoring process models in large process repositories.
In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 124–139.
Springer, Heidelberg (2008)

Modeling and Querying E-Commerce Data in Hybrid
Relational-XML DBMSs

Lipyeow Lim, Haixun Wang, and Min Wang

IBM T. J. Watson Research Center
{liplim,haixun,min}@us.ibm.com

Abstract. Data in many industrial application systems are often neither com-
pletely structured nor unstructured. Consequently semi-structured data models
such as XML have become popular as a lowest common denominator to man-
age such data. The problem is that although XML is adequate to represent the
flexible portion of the data, it fails to exploit the highly structured portion of the
data. XML normalization theory could be used to factor out the structured por-
tion of the data at the schema level, however, queries written against the original
schema no longer run on the normalized XML data. In this paper, we propose
a new approach called eXtricate that stores XML documents in a space-efficient
decomposed way while supporting efficient processing on the original queries.
Our method exploits the fact that considerable amount of information is shared
among similar XML documents, and by regarding each document as consisting
of a shared framework and a small diff script, we can leverage the strengths of
both the relational and XML data models at the same time to handle such data ef-
fectively. We prototyped our approach on top of DB2 9 pureXML (a commercial
hybrid relational-XML DBMS). Our experiments validate the amount of redun-
dancy in real e-catalog data and show the effectiveness of our method.

1 Introduction

Real data in industrial application systems are complex. Most data do not fit neatly
into structured, semi-structured or unstructured data models. It is often the case that
industrial data have elements from each of these data models. As an example consider
managing product catalog data in E-Commerce systems. Commercial e-Commerce so-
lutions such as IBM’s Websphere Product Center (WPC) have traditionally used a ver-
tical schema [1,2] in a relational DBMSs to manage the highly variable product catalog
data. In addition to the vertical schema, the research community has proposed several
strategies for managing data with schema variability using relational DBMSs. These
include variations on the horizontal, the vertical, and the binary schema [3,4]. However,
the relational data model remains ill-suited for storing and processing the highly flexible
semi-structured e-catalog data efficiently. The flexibility of the XML data model, on the
other hand, appears to be a good match for the required schema flexibility and Lim et
al. [5] has proposed managing product catalog data using XML-enabled DBMS. How-
ever, the flexibility of XML in modeling semi-structured data usually comes with a big
cost in terms of storage especially for XML documents that have a lot of information in
common.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 294–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling and Querying E-Commerce Data 295

<ProductInfo>
<Model>

<Brand>Panasonic</Brand>
<ModelID>TH-58PH10UK</ModelID>

</Model>
<Display>

<ScreenSize>58in</ScreenSize>
<AspectRatio>16:9</AspectRatio>
<Resolution>1366 x 768</Resolution>
<Brightness>1200 cd/m2</Brightness>
<Contrast>10000:1</Contrast>
<PixelPitch>0.942mm</PixelPitch>

</Display>
...

</ProductInfo>

(a) Panasonic Plasma HDTV

<ProductInfo>
<Model>

<Brand>Philips</Brand>
<ModelID>42PFP5332D/37</ModelID>

</Model>
<Display>

<ScreenSize>42in</ScreenSize>
<AspectRatio>16:9</AspectRatio>
<Resolution>1024 x 768</Resolution>
<Brightness>1200 cd/m2</Brightness>
<Contrast>10000:1</Contrast>
<ViewingAngle>160(H)/160(V)</ViewingAngle>

</Display>
...

</ProductInfo>

(b) Philips Plasma HDTV

Fig. 1. Two XML fragment of Plasma HDTV product info from on-line retailer newegg.com.
Bold face denotes information that is unique to that XML document.

Example 1. Consider the XML fragments for the specifications of two plasma HDTV
product on the www.newegg.com website. Not only do the two XML documents
share many common structural elements (eg. “AspectRatio”, “Resolution”), they also
share many common values (eg. “16:9”, “1200 cd/m2”).

It is clear from Ex. 1 that XML descriptions of products in the same or similar
category have many structural elements and values in common resulting in storage inef-
ficiency. If minimizing storage were our only goal, XML compression methods (such as
XMill [6] and XGrind [7]) could be used to eliminate most of the storage inefficiency
at the expense of less efficient query processing due to the need for decompression.
Another approach would be to apply XML normalization [8,9,10] on these XML doc-
uments assuming a super-root. Unfortunately, applying XML normalization poses two
problems. First, XML normalization is a design-time process that requires both the
schema and the functional dependencies of the XML data to be specified. In many real
applications the functional dependencies are neither identified nor specified. In fact,
some applications do not even require a schema to be specified. When a schema is
specified, these schemas are typically part of industrial standards that do not admit any
modification by a normalization process. Second, queries written against the original
XML data no longer work against the normalized XML data1. This is a serious prob-
lem, because application developers typically write queries against the original XML
data. The goal of our work is to exploit the redundancy in the XML data in order to
support efficient storage of the data, efficient query processing over the data, and trans-
parency to the user, i.e., the user need not re-design the schema of the XML data or
rewrite the queries. In contrast to low-level compression methods and schema-based
normalization methods, we explore structural as well as value similarities among a set
of semi-structured data documents to create models that allow efficient storage and
query processing. To our advantage, commercial DBMSs are rolling out native XML

1 In theory, the queries on the original XML data could be transformed into queries on the
normalized XML data. Unfortunately, there is no known query transformation algorithm for
this purpose.

296 L. Lim, H. Wang, and M. Wang

Optional
XML Schema Input

Query

Query
Result

 eXtricate
Query Processor

Original E-Catalog XML Data

E-Catalog View
Decomposed
E-Catalog XML Data

 eXtricate
Data Modeller

Fig. 2. Overview of our EXTRICATE system

XML doc
shared

diff
 eXtricate
Data Modeller

Fig. 3. A collection of XML documents are de-
composed into a shared XML tree and a col-
lection of diff scripts. The shaded portion of
the XML trees denote common information.

support [11,12], which provides a new option to managing data with high schema vari-
ability [5]. We leverage such systems to build a hybrid model for semi-structured data.

Our Approach. In this paper, we propose a new approach called EXTRICATE to man-
age data with high schema variability. Fig. 2 presents the EXTRICATE system on a high
level. The EXTRICATE system consists of two main components: the EXTRICATE data
modeler and the EXTRICATE query processor. The EXTRICATE data modeler takes as
input the original XML collection, “extricates” a shared XML document (a model),
stores the original documents as differences from the shared XML document, and
generates a view of the decomposed data that has the same schema as the original data.
The EXTRICATE query processor takes as input user queries written against the original
data and transforms the query into a query processing plan for the decomposed data.

For concreteness, consider managing the electronic product catalog of an on-line
retailer using a hybrid relational-XML DBMS. The product information can be stored
in a table with an XML column using the following schema:

ecatalog (productID INT, categoryID INT, info XML).

Each product is uniquely identified by its productID. The categoryID encodes prod-
uct category information like “Electronics > Plasma / LCD / DLP TV >

Plasma TV > Panasonic” as a numerical identifier. The info field stores the de-
tailed product information in XML form. These XML data can be queried, using em-
bedded XPath expressions in SQL [11,13] or using XQuery. As motivated by Ex. 1, it is
safe to argue that products in the same category usually exhibit considerable structural
and value similarity. Conversely, products in different categories exhibit more differ-
ences both structurally as well as in terms of values. For instance, MP3 players have
attributes such as Storage Capacity, Supported Audio Formats, etc., that HDTVs typi-
cally do not.

Using EXTRICATE, the ecatalog table will be decomposed internally into two ta-
bles, namely:

categoryInfo (categoryID INT, sharedinfo XML)

productInfo (productID INT, categoryID INT, diff XML)

Modeling and Querying E-Commerce Data 297

The categoryInfo table stores the XML tree shared by all products in a particular
category. The productInfo table encodes each of the original XML document in the
info column as the diff or edit transcript from the shared XML tree of the associated
category. Each XML document is therefore decomposed into a shared XML tree and its
diff from the shared XML tree. Since the shared XML tree is stored once for all the
XML documents in the category, significant storage savings can be obtained for highly
redundant XML data.

From the perspective of the user of the e-catalog database, nothing has changed,
because the e-catalog data is presented to the user as a view, which has the same
schema as the original ecatalog table. Applications and queries on the ecatalog

table require no change either: EXTRICATE’s query processor will transform any query
against the original ecatalog table into queries against the categoryInfo table,
and if necessary, the productInfo table (some queries can be answered by accessing
categoryInfo only). The query transformation is carried out by a rule-based query
processor that is described in detail in Sect. 3.

Our Contributions. We summarize our contributions as follows:

– We propose a space-efficient and query-friendly model for storing semi-structured
data that leverages commercial DBMSs with native XML support. We show that
with the new model, we can dramatically reduce storage redundancy of XML data
and improve query performance at the same time.

– We propose a query transformation algorithm to automatically rewrite user queries
on the original data to queries on the data stored using our model without any user
intervention. In many cases, the transformed queries can be answered much more
efficiently than the original ones since they access much less amount of data.

– We show that our approach is friendly toward schema evolution, which occurs fre-
quently in applications such as e-commerce data management.

Paper Organization. Sect. 2 presents EXTRICATE’s data modeler. Query rewriting and
processing is discussed in Sect. 3. We discuss data maintenance issues related to schema
evolution in Sect. 5. Experimental results are presented in Sect. 6. We review related
work in Sect. 6 and conclude in Sect. 7.

2 Data Modelling

Our EXTRICATE data modeler is inspired by the predictive compression paradigm,
where the data is represented losslessly using a model that predicts the data approx-
imately and the residue that is the difference between the predicted data and the true
data. In an analogous fashion, EXTRICATE extracts a shared XML document from a
set of XML documents and represents each of the original document using the shared
document and the diff script. The shared XML document represents a “model” that pre-
dicts the XML documents in the collection. The diff script represents the “residue” that
is a set of differences between the document and the shared document. Since the shared
XML document is common to all the documents in the collection, we only need to

298 L. Lim, H. Wang, and M. Wang

1

2

Model

3

Display

4

Brand

5

ModeID

6

ScreenSize

7

AspectRatio

8

Resolution

9

Brightness

10

Contrast

16:9 1200 cd/m2 10000:1

(a) The shared XML tree.

diff

4 5 6 8 3

Panasonic TH-58PH10UK 58in 1366 x 768

PixelPitch

0.942nm

diff

4 5 6 8 3

Philips 42PFP5332D/37 42in 1024 x 768

ViewingAngle

160(H)/160(V)

(b) The diff’s.

Fig. 4. The decomposed representation of the two HDTV XML documents in Fig. 1

store it once. Hence the entire collection of XML documents is stored as a single shared
XML document and a collection of diff scripts, one diff script for each document in the
collection (see Fig. 3).

Continuing with the e-catalog example, recall that the product information has been
partitioned according to product categories and that the product information within the
same category have both structural and value similarities. The product information are
stored as XML documents and we will use a tree representation for XML documents
in our discussion. Conceptually, the EXTRICATE data modeler first finds a shared XML
tree for a collection of XML trees. The shared XML tree is the maximal sub-tree com-
mon to all the XML trees in the collection. The diff of each original XML tree from the
shared XML tree can then be computed using known tree diff algorithms [14,15,16,17].

Example 2 (A Data Modelling Example). Consider the XML documents (represented
as trees) of the two HDTV products shown in Fig. 1. The shared XML tree is shown in
Fig. 4(a) and the differences are shown in Fig. 4(b).

Observe that the shared XML tree (1) is a single connected tree, (2) contains values in
addition to structure. In practice, the shared tree may be further annotated with statistical
information (e.g., the min, max values of, say, the listprice element).

Observe that each diff document represents a set of insertion operations onto the
shared XML tree. Each of the two diff trees represents 4 insertions, as there are 4 child
nodes under the root node. The name of these child nodes are node identifiers (NIDs),
which identify the nodes or the location of insertion in the shared XML tree. These
NIDs on the shared XML tree may be either implicitly maintained by the DBMS or
explicitly annotated on the tree nodes.

Modeling and Querying E-Commerce Data 299

It is clear that by inserting each sub-tree in the diff as the child of the node in the
shared XML tree with the specified NID, the original XML document can be recovered.

A direct benefit of our decomposition is storage efficiency. Information common to
all product documents within a category is “extricated” and stored once in the shared
XML document, instead of being redundantly stored in every document. However,
in contrast to XML compressors (such as XMill [6] and XGrind [7]) the goal of our
method is not low-level compression: our decomposition method operates at the data
model level with a focus on efficient query processing. In other words, the decompo-
sition must be done in a query-friendly way, that is, we need to ensure queries on the
original table can be mapped to queries on the decomposed tables and processed effi-
ciently thereafter.

2.1 Finding the Shared XML Tree

In this section we discuss the first step of the decomposition process: finding the
(largest) shared XML tree, given a set of XML documents having similar structures
and values.

This problem is similar to the maximal matching problem [16] and is complementary
to the problem of finding the smallest diff between two XML trees. Efficient algorithms
exists for ordered trees [16]. For unordered trees, the problem is NP-hard [14], but
polynomial time approximate algorithms [14,15] exist. However, our problem differs
from the work mentioned above in that the the maximal matching need to be a connected
tree. The goal of the above-mentioned related work is to find the maximal common
fragments, i.e., a common forest among two XML trees in order to minimize the edit
distance between the two XML trees. In contrast, our goal is to find a single rooted tree
that is common to a collection of XML trees.

We discuss the case of finding shared XML documents for unordered trees, which is
more difficult than for ordered trees. One difficulty in finding a single shared tree among
a set of XML trees is that a set of unordered children nodes may have the same node
name. The difficulty can be illustrated by the two XML documents shown in Fig. 5.
The node B beneath A occurs twice in both documents. The largest shared document
is not unique for these two documents. One alternative will contain all nodes except for
node C, and the other all nodes except for node D. To find the largest shared document
among a set of documents, we must store all such alternatives at every step, which
makes the complexity of the entire procedure exponential.

In this work, we use a greedy approach. We find the shared document of two docu-
ments starting from their root nodes. Let n1 and n2 be the root nodes of two XML doc-

A

B B

C D

A

B B

C D

Fig. 5. A Shared XML document and the diff

300 L. Lim, H. Wang, and M. Wang

Algorithm 1. MATCHTREE(n1,n2)
Input: n1, n2: root node of the two XML tree
Output: r: a shared subtree
1: if n1 matches n2 then
2: r ← new node
3: copy n1 to r
4: let C1 = {child nodes of n1}
5: let C2 = {child nodes of n2}
6: let L = { node names common to C1 and C2}
7: for each node name l ∈ L do
8: let C1(l) = {nodes from C1 with name l} = {s11, · · · , s1m}
9: let C2(l) = {nodes from C2 with name l} = {s21, · · · , s2n}
10: for each (s1i, s2j) ∈ C1(l) × C2(l) do
11: rij ←MATCHTREE(s1i , s2j)
12: letM = {rij : ∀i, j}
13: whileM �= ∅ do
14: rpq ← arg maxrij∈M SizeOf(rij)

15: add rpq as a child node of r

16: remove rpk and rkq fromM, ∀k
17: return r

Algorithm 2. Finding the shared XML document in a set of XML documents
Input: D: a set of XML documents (represented by their root nodes)
Output: r: a shared XML document
1: Assume D = {d1, d2, · · · , dn}
2: s← d1
3: for each document d ∈ D do
4: s← MATCHTREE(s, d)

uments. Two nodes are said to match if they have the same node type, and either they
have same names (for element/attribute nodes) or they have the same values (for value
nodes). If n1 and n2 do not match, then the shared document is an empty document.
Otherwise, we recursively find matches for each of their child nodes. Special consider-
ation is given to the case where several child nodes have the same name and the child
nodes are unordered. Assume C1(l) = {s11, · · · , s1m} and C2(l) = {s21, · · · , s2n} are
two sets of child nodes with the same name that we need to match. We find recursively
the shared XML sub-tree for every pair (s1i, s2j) of the instances. Out of the m × n
shared XML trees, we pick the shared XML sub-tree rpq with the largest size and add
rpq as the child node of the current shared XML tree r. We remove all the shared trees
associated with either s1p or s2q from the candidate set M so that they will not be
chosen anymore. Then, we find the next largest in the remaining (m − 1)(n − 1) can-
didate shared XML sub-trees. We repeat this process until no shared sub-trees can be
found.

Algorithm 1 outlines the MATCHTREE procedure that finds a shared document be-
tween two XML documents. Based on the MATCHTREE procedure, Algorithm 2 finds
the shared document among a set of XML documents.

2.2 Finding the Differences

After the shared XML tree is found, the difference between each document in the orig-
inal collection and the shared XML tree can be found using existing tree diff algo-
rithms [14,15,16,17]. In addition to finding the differences, we optionally annotate the

Modeling and Querying E-Commerce Data 301

Algorithm 3. PROCESSQUERY(S, D, p)
Input: S shared trees, D diff’s, p XPath
Output: R satisfying productIDs
1: R← ∅
2: for all each shared tree s ∈ S do
3: let N be the set of NIDs of the maximal matching nodes
4: let p′ be the unmatched suffix of the XPath p
5: (N, p′)←MaxMatchXPath(s, p)
6: if p′ = ε then
7: /* p completely matched */
8: R← R ∪ fetchProductIDbyCat(catID(s))
9: else
10: for each diff d ∈ D s.t. catID(d)=catID(s) do
11: for each continuation node c ∈ fetch(N, d) do
12: if MatchXPath (c, p′) then
13: R← R ∪ fetchProductID(d)
14: return R

shared XML tree with statistics collected during the scan through each original docu-
ment for finding the differences.

Difference model. We model the differences between an original document and the
shared XML tree as a set of sub-tree insertions. In the most trivial case, a sub-tree can
just be a single value. Each insertion is represented using an XML fragment consisting
of a node specifying the node identifier (NID) that uniquely identifies the insertion point
in the shared XML tree. The subtree rooted at that node is the subtree to be inserted.
The fragments for all the insertions associated with a single original document are then
collected under root node <diff>, forming the XML representation for the diff (see
Fig. 4(b) for an example). A richer difference model may include deletions as well.
However, we do not discuss this option in this paper.

Optional annotations. We annotate the shared XML tree with two types of additional
information: node identifier (NID) annotation and value annotation. The NIDs are used
by the difference representation to specify insertion location. As discussed in the exam-
ple of Sect. 2, NIDs can be implicitly maintained by the DBMS or explicitly annotated
as attributes in the shared XML tree. In Fig. 4(a), the node labels 7 and 9 denote the
NIDs of the nodes AspectRatio, and Brightness respectively. These NID of
these nodes are used in the diff’s .

To facilitate efficient query processing, we may also optionally annotate nodes in the
shared XML tree with some simple statistics about the values associated with those nodes.
For example, consider the ScreenSize element in Fig. 4(a). Each of the two document
has a different value for ScreenSize. We can annotate the ScreenSize element in the
shared XML tree by the minimum and the maximum value (in this case42in and58in)
so that query predicates such as /productInfo/Display [ScreenSize < 10] can
be evaluated without accessing the diff’s. These value annotations are collected while
scanning the documents (for computing the diff) and added after the diff’s are processed.

3 Query Processing

In this section, we show how queries against the original set of XML documents can be
decomposed into queries against a set of shared trees and queries against their diff’s. We

302 L. Lim, H. Wang, and M. Wang

 XPath:
/productInfo[color = "Blue"]

true-tuples:
< 101, 1, *, {},{} >

maybe-tuples:

<104,5,5,[color="Blue"],{}>

Combine results

return { 1, 2, 3 }

SELECT productID
FROM productInfo
WHERE categoryID=101

true-tuples:
< 101, 1, *, {},{1,2} >

SELECT diffinfo
FROM productInfo
WHERE categoryID=104

 XPath: /diff/5/color="Blue"

true-tuples:
< 104, 5, *, {},{3}>

productInfo (5)

listprice (7) screensize (8)

Blue (4)

productInfo (1)

color (2) listprice (3)
categoryID sharedinfo

101

104

categoryInfo table

categoryID diffinfo

productInfo table

productID

101

104

101

1

2

3

1054

diff

3

10

diff

8

29

7

200

5

Blue

color

Fig. 6. Evaluating single constraint product search
queries. The numbers in parenthesis beside the
node labels denote the NIDs of the nodes.

categoryID info

ecatalog table

productID

101

104

101

1

2

3

1054
10

productInfo

color listprice

Blue

Blue 200 29

color

productInfo

listprice screensize

 XPath:
/productInfo[color = "Blue"]

return { 1, 2, 3 }

Fig. 7. Evaluating single constraint
product search queries on the original
ecatalog table.

focus on filtering queries because these are the most common type of query on e-catalog
data. A filtering query consists of a filtering condition specified in XPath on the XML
column in the original table and fetches the tuples (or a projection thereof) that satisfy
the filtering condition.

Algorithm 3 outlines the process of how filtering queries over documents of varied
schemata are processed using sub-queries over the shared documents and the diff’s. The
key idea is to first process the XPath filtering condition p on the shared trees S. For the
shared trees that completely satisfy the filtering condition, the associated set of diff’s
need not be checked, instead all the associated tuples can be returned as satisfying the
query. For the shared trees that contains partial matches to p, the associated diff’s need
to be consulted to complete the matching. The diff’s that complete the matching of the
remaining unmatched sub-path p′ satisfy the query and the corresponding tuple can be
returned. Note that in practice Algorithm 3 is implemented by leveraging SQL/XML
queries over a hybrid relational-XML DBMS.

Example 3 (A single-constraint query). Suppose we want to find all products in the
e-catalog that are blue in color. It is straightforward to ask such a query against the
original ecatalog table using the following filtering query specified in the SQL/XML
query language,

SELECT productID
FROM ecatalog AS C
WHERE XMLExists(‘$t/productInfo[color ="Blue"]’

Modeling and Querying E-Commerce Data 303

PASSING BY REF C.info AS "t").

The query in Example 3 scans each row of the ecatalog table and evaluates the
XMLExists predicate on the XML tree in the info field. If the predicate evaluates to
true, the productID field of the row is returned. The SQL/XML function XMLExists
returns true if a node matching the given XPath expression exists in the given XML
tree.

Fig. 6 illustrates the process of evaluating the sample query (Example 3) against the
two tables, categoryInfo and productInfo, in the e-catalog application. First, we
evaluate the XPath expression against categoryInfo table. The result is a sequence
of tuples that represent temporary matches. These temporary tuples fall into two types:
true-tuples and maybe-tuples. true-tuples contain return nodes that satisfy the entire
XPath expression. Since the predicate has been satisfied, the last matched node and the
remaining XPath fields are empty. maybe-tuples contain return nodes that may satisfy
the predicate when combined with the diff information.

For the true-tuples, all the documents in the category represented by the tuple satisfy
the query. We therefore retrieve their document IDs from the diff table. The maybe-
tuples, however, need to be further evaluated against the diff table in order to reject
or accept them. To do this, we use the categoryID and the NID of the last matched
node of each maybe-tuple to filter out irrelevant rows and nodes in the diff table. The
remaining XPath expression of each maybe-tuple is then evaluated on the filtered node
set from the the diff column. The maybe-tuples whose remaining XPath expression
are satisfied by some diff are then returned as true-tuples.

Note that when the path expression contains the wildcard element ‘//’, the above
procedure may not work as described. To see this, let the path expression be in the
form of “/a/b//c/d”. If it is split into two path expressions at the position between “a”
and “b” or between “c” and “d”, then no change to the above procedure is necessary.
There is, however, the possibility that the query dividing position occurs “inside” the ‘//’
element. Thus, any node x under the path “/a/b” in a shared document will satisfy the
prefix query. As a result, multiple queries in the form of “/x//c/d” will be issued against
the diff table. In particular, if “/a/b” is empty, we will query the diff tables directly
with the path expression “//c/d/”. This represents the worst case, wherein the shared
document table has no filtering power, and we need to process all of the diff tables for
the query. In other words, we degenerate into the case of querying against the original
table.

We focus on filtering queries, because they are arguably the most important type
of queries on semi-structured data such as the e-catalog, which consists of documents
of similar structures. In other applications, more complex types of queries may call for
more sophisticated query transformation and processing techniques. As future work, we
will study how to extend our simple algorithm to handle more query types and how to
balance the load between the query transformation and the query execution processes.

Discussion: Query Performance. The query performance of EXTRICATE is depen-
dent on the amount of redundancy in the XML documents. We briefly discuss this
relationship by comparing the processing steps for querying the categoryInfo and

304 L. Lim, H. Wang, and M. Wang

productInfo tables to those for just querying the ecatalog table. For ease of ex-
position, we focus on single constraint queries, because, conceptually, multi-constraint
queries are processed as multiple single constraint queries with an intersection opera-
tion at the end to combine the results.

Consider the high-level query processing plan for categoryInfo and
productInfo in Fig. 6 and for the original ecatalog table in Fig. 7. The most ex-
pensive operator in terms of running time is the XPath operator. The XPath operator is
a logical operator that retrieves nodes that satisfy a given XPath expression. In IBM’s
DB2 two physical operators [12,11] can be used to implement the XPath operator dur-
ing runtime: (1) the XML navigation operator (XNav), which traverses a collection of
XML trees in order to find nodes that match the given XPath expression, and (2) the
XML index scan operator (XIScan), which retrieves all matching nodes from an XML
index. In both cases, the running time of each physical operator is dependent on the
following data characteristics: (1) the number of rows in the XML column, and (2)
the size of the XML tree in each row. In our method, the data characteristics of the
categoryInfo and productInfo tables depends on the level of redundancy in the
product information of each category. In the following, we consider the worst case and
the best case scenarios, and show how we can reap the most benefits from our scheme.

Worst Case: no data redundancy. In the worst case, there is no data redundancy: the
shared XML document will be small, and all information stays with the diff documents.
Most queries will have to go through the diff documents. Thus, our method will have no
advantage over the method that processes the original ecatalog table directly. In this
case, we should not apply our method at all.

Best Case: full data redundancy. In this extreme case, all the product information
within a category is the same. The diff column of the productInfo table is empty
and the sharedinfo column of the categoryInfo table contains all the informa-
tion. However, the size of the categoryInfo table is much smaller than the size of
the ecatalog table (note that the XML document size remains unchanged). In the
processing plan for our method, the right branch (see Fig. 6) is never executed that
is, no maybe-tuples will be produced, because the XPath can always be evaluated
with certainty using the information in the categoryInfo table. Since the input size
(categoryInfo table size) of the XPath operator in our method is significantly smaller
than the input size (ecatalog table size) of the original method, our method will be
significantly more efficient.

Most real life semi-structured data, including the e-catalog data used in our example,
is likely to fall somewhere between the best and the worst case. We do not have control
over data redundancy, however, the redundancy of the diff information within each cat-
egory can be tuned by the data decomposition. In this paper, we assume that the data
schema designer is responsible for data partitioning.

In general, the performance of our method highly depends upon the data redundancy
level and the query workload. The higher the level of data redundancy level, the better
our method will perform. Also, the more queries in the workload that can be answered
by accessing the common documents only, the better our method will perform. As future
work, we are exploring how to solve two problems within the data modeler: (1) How to

Modeling and Querying E-Commerce Data 305

measure the level of data redundancy when a data partition is given, (2) Given a query
workload and a set of XML documents, how to form the best data partition so that our
method will achieve the optimal performance. Note that if each original XML document
is completely different from each other, no partitioning algorithm can produce partitions
with high redundancy and our method is not suitable for such cases.

4 E-Catalog Maintenance

One of the challenges of managing data of varied schemata is maintaining the data
when new objects, possibly of a different schema, are added. In our scheme, we need to
address issues that arise when new data categories are added or old data categories are
deleted. In this section, we show how to manage these tasks in our data model.

Deleting a category. Assume we want to remove an unwanted category whose
categoryID is 102. Users will issue SQL delete statement on the original ecatalog
view. Our EXTRICATE system will re-write the delete statement into corresponding
delete statements on the decomposed tables, categoryInfo and productInfo.

Deleting individual documents. To delete an individual document, we simple remove
a row that corresponds to the document in the productInfo table. Note that after many
documents in a document category are deleted, the shared XML tree for that category
may no longer be optimal (for instance, the remaining set of documents in the category
may have more sharing). Hence a re-organization using the EXTRICATE data modeller
may be necessary.

Adding individual documents of new category. When adding a collection of products
belonging to a new category, we must identify the the shared document for the new
category. We use the EXTRICATE data modeller to obtain the diff’s.

Adding an individual document of an existing category. Since the category of that
document already exists, there must be at least one product in that category and there
must be a shared XML tree for that category. When inserting a new document of that
category, we compute a diff between the new document and the shared XML tree, and
we store the diff output into the productInfo table. Because our difference model
only supports insertions at this point, when the new document requires deletions in
the shared document, we create new category for the new document. These documents
can be re-integrated with the original category during re-organization. Extending our
difference model to include deletions is part of our future work.

Adding a document with new product attributes. By new product attributes, we mean
that the product attributes are new to the documents in the same category that are cur-
rently in the database. Note that the new product attribute may be encoded as an XML
element or an XML attribute. Since the new product attribute does not occur in any other
documents in the database, it will be stored as part of the diff in the productInfo table.
No changes to the shared XML document is required. Note that XML (re-)validation
and migration issues are beyond the scope of this paper. Our simple strategy for han-
dling new attributes is therefore comparable to the vertical schema method in terms of
cost-efficiency.

306 L. Lim, H. Wang, and M. Wang

5 Experiments

We implemented a prototype of our method and investigated two issues in our experi-
ments: (1) the amount of redundancy in real e-catalog data, and (2) the performance of
EXTRICATE under different conditions. The EXTRICATE method exploits redundancy
in the data; therefore, analyzing and understanding the amount of redundancy in real
e-catalog data is essential. To investigate the performance of EXTRICATE, it is neces-
sary to generate synthetic data that simulates different levels of redundancy in order to
understand how our method performs under various conditions.

Redundancy in Real E-Catalog Data. We analyzed the product information of several
categories of products at the on-line store, www.bestbuy.com and present the analysis
on a representative subset of the data we collected.

In order to quantify the amount of redundancy in the data, we use the ratio of the
data set size (in bytes) between the original data set and the decomposed data set,

redundancy =
Size in bytes of original dataset

Size in bytes of decomposed dataset
, (1)

where the decomposed dataset is the size of all the shared XML document and the size
of all the diff’s produced by our method.

Table 1. Analysis of the redundancy in real e-catalog data

Source category electronics/televisions/HDTVs
No. of products 90
Size of original XML 296,267 bytes
No. of shared XML 26
Size of shared XML 30,537 bytes
Size of diff XML 210,244 bytes
Redundancy 1.23

We use the EXTRICATE data modeler to decomposed the product information for
all the HDTV products that we downloaded from www.bestbuy.com and measured the
redundancy of the decomposed data with respect to the original data. The key statistics
are tabulated in Table 1. We retained the website’s categorization of the HDTV products
into the “flat panel”, “projection”, and “up to 39 inches” sub-categories, and further par-
titioned the products in each of these sub-categories by their manufacturer Our results
validate our assumption that e-catalog data contains significant amount of redundancy
that can be exploited by EXTRICATE.

Performance of eXtricate. We investigate the performance characteristics of EXTRI-
CATE over data with different characteristics as well as over different types of queries.
Our goal is to understand how well our method performs on data and queries with dif-
ferent characteristics, and not so much on how well it performs on a single, specific set
of real data and queries.

Modeling and Querying E-Commerce Data 307

Data. We generated XML documents that are complete binary trees characterized by
depth. A complete XML tree of depth d, will have 2d−1 elements and 2d−1 leaf values.
We simulate the amount of shared data between two XML documents by specifying the
depth of the tree that is shared between them. For example, two XML trees of depth 6
with a shared depth of 4, will have common elements and structure up to a depth of 4.
The sub-trees hanging off depth 4 will be different. The XML documents we used in
our experiments have depth 6.

Each dataset consists of a number of XML documents from 4 categories. The amount
of redundancy in each dataset is determined by (1) the number of documents in each
category, and (2) the shared depth of the documents within each category.

Queries. We present our results for single constraint queries in this paper. We measure
the performance of the same query on the original dataset (denoted in the plots by
“query on original data”) and on the decomposed dataset. For the decomposed dataset,
we further measure the performance when the query requires both the shared documents
and the diff’s to answer the query (denoted in the plots by “query on shared + diff”),
and when the query only requires accessing the shared document to answer the query (
denoted in the plots by “query on shared”. We run each query 1000 times on a multi-
user machine running AIX unix and record the average elapsed time.

Performance vs Redundancy. We use the same approximate measure for redundancy
as shown in Eq. 1 and measure the running time of the 3 different query types on
different datasets with shared depth ranging from 2 to 5. The number of documents
in each category, i.e., the number of documents sharing a single shared document, is
set to 1000. We plot the running time against the redundancy of the data on Fig. 8(a).
We observe that EXTRICATE provides significant improvement in query performance
whether the diff’s are used or not. When the query can be answered just by looking at the
shared documents, the reduction in processing time is even more dramatic. Moreover,
the performance improvements are not sensitive to the size of the shared XML tree
among the documents in the same category.

Fig. 8(b) shows the same results in terms of speedup with respect to processing the
query on the original, non-decomposed dataset. Observe that (1) the speedup for queries
requiring access only to the shared document is much greater than the speedup for
queries requiring access to the diff documents, (2) the speedups are decreasing slightly
as the size of the shared tree increases. For queries requiring access only to the shared
tree, increasing the size of the shared tree would logically lead to a smaller speedup and
this is reflected in our experiments. For queries that require both the shared document
and the diff’s to answer, the decrease in speedup is mostly due to the increased process-
ing time on the larger shared trees, and to a lesser extent on the number of sub-trees
under the “〈diff〉” element in each diff document. The number of sub-trees under each
“〈diff〉” element increases (even though each sub-tree is smaller) as the shared depth
increases. When processing an XPath expression on the diff documents, this increases
the number of sub-trees on which to match the XPath expression. For example if the
shared depth is 5, the number of sub-trees in each diff document would be 24.

Performance vs Category Size. Another important factor affecting the amount of re-
dundancy in the data is the number of documents sharing a single shared tree (this
number is the same as the category size). We set the shared depth to 4 and vary the

308 L. Lim, H. Wang, and M. Wang

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

P
er

fo
rm

an
ce

 (
se

co
nd

s)

Data Redundancy

Performance vs Data Redundancy

query on original data
query on shared+diff

query on shared

(a) Running time on single constraint queries
over datasets with varying amount of shared
data.

 2

 4

 6

 8

 10

 12

 14

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

S
pe

ed
up

Data Redundancy

Speedup vs Data Redundancy

query on shared
query on shared+diff

(b) Speedup of running the single-constraint
queries on datasets with varying amount of
shared data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600

P
er

fo
rm

an
ce

 (
se

co
nd

s)

Category Size

Performance vs Category Size

query on original data
query on shared+diff

query on shared

(c) Running time for single-constraint
queries on datasets with varying number of
documents sharing a single shared sub-tree.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600

S
pe

ed
up

Category Size

Speedup vs Category Size

query on shared
query on shared+diff

(d) Speedup of running the single-constraint
queries on datasets with varying number of
documents sharing a single shared sub-tree.

Fig. 8. Performance of EXTRICATE over different conditions

number of documents within a category. The same queries were run and the elapsed
time plotted in Fig. 8(d). Observe that the processing time remain constant for queries
that only require access to the shared documents, because the table for shared docu-
ments is not affected by category size at all. When the category size is very small, the
performance of EXTRICATE is almost comparable to running the query against the orig-
inal data; however, when the category size becomes larger than 40, the speedup of our
method becomes significant.

The speedups are plotted in Fig. 8(d). Our results match our intuition that as the
number of documents sharing each shared document increases, the speedup increases.

6 Related Work

Managing e-catalog data using various relational DBMS strategies has been explored
in [1,3,4,2]. The horizontal schema approach stores all the product information in a sin-
gle table where the columns are the union of the attribute sets across all products and the
rows represents the products. The binary schema [3,4] approach creates one table for
each distinct attribute. Each table stores value-OID pairs. The vertical schema approach
uses only one table with three columns: OID , Attribute, and Value. Each product is

Modeling and Querying E-Commerce Data 309

represented as a number of tuples in this table, one for each attribute-value combina-
tion. These approaches all have serious problems with data sparsity, schema evolution,
usability, query processing complexity, difficulty in query optimization. Agrawal et al.
proposed creating a horizontal view on top of a vertical schema [1] to ease the difficulty
of writing queries on vertical schemata, but does not address the query performance
problems. A middle-ware solution called SAL, Search Assistant Layer, has also been
proposed in [2] to optimize queries written against vertical schemas. However, SAL is
not able to leverage the full capability of the query optimizer, because it is not integrated
with the DBMS engine.

On the XML front, a method using DBMS with native XML support to manage e-
catalog data was proposed in [5]. The schema evolution problem is addressed using
XML. Query performance is dependent on the XQuery/XPath processing engine inside
the DBMS engine. Our paper builds upon their approach by decomposing the XML
documents for storing product information in order to reduce storage redundancy and
improve query performance.

Our decomposition-based storage model is also motivated by data compression tech-
niques. While many XML compressors (such as XMill [6]) achieve higher compression
rate, their goal is solely to minimize storage space. Query processing require decompres-
sion. In contrast, our goal is two pronged: reduce redundancy in storage and provide effi-
cient query support. XGrind [7] is a query-friendly XML compressor that supports query
processing in the compressed domain; however, XGrind is still a low level compressor
relying on traditional encoding techniques (e.g., Huffman code) to encode strings in an
XML document. Our EXTRICATE system does not perform string-level encoding, but
models the redundancy in a collection of XML documents at a logical level.

XML normalization theory [8,9,10] also models the redundancy of XML data at the
logical level. The fundamental difference between EXTRICATE and XML normaliza-
tion is that XML normalization is a design-time process and requires the schema and
the functional dependencies to be fully specified, whereas EXTRICATE makes no as-
sumptions on the schema or the functional dependencies and is completely data-centric.
Moreover XML normalization does not address transformation of queries to run on the
normalized schema.

The problem of finding the intersection and diff of two XML trees is also a well
studied problem. The survey article by Cobena et al. [17] provides a comprehensive
description of all the techniques. In this paper, our focus is not on algorithms for find
the intersection and diff, but on using these algorithms in a novel way to solve data
management problems in E-commerce.

7 Conclusion

The native XML support in DBMSs promises to offer database users a new level of
flexibility in managing semi-structured and unstructured data in relational DBMSs.
However, this advantage may come with a significant cost in data storage and query
processing if we do not use it wisely.

In this paper, we demonstrate how to combine the strengths of relational DBMSs
and the flexibility of the XML support by a case study on managing E-commerce data.

310 L. Lim, H. Wang, and M. Wang

We argue that while the e-catalog data appears to be lacking a unified structure, they do
share common sub-structures and common values among different product descriptions,
and the degree of such sharing could be very high for products in the same category. The
extreme approach of storing each product description as a complete XML document
without any schema constraint will thus result in huge overhead in terms of both storage
and query processing. Handling the common parts and the differences separately leads
to a natural approach: We only use the freedom when we really need it.

References

1. Agrawal, R., Somani, A., Xu, Y.: Storage and querying of e-commerce data. In: VLDB.
Morgan Kaufmann, San Francisco (2001)

2. Wang, M., Chang, Y., Padmanabhan, S.: Supporting efficient parametric search of ecom-
merce data: A loosely-coupled solution. In: Chaudhri, A.B., Unland, R., Djeraba, C., Lind-
ner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 409–426. Springer, Heidelberg (2002)

3. Copeland, G.P., Khoshafian, S.: A decomposition storage model. In: SIGMOD, pp. 268–279.
ACM Press, New York (1985)

4. Khoshafian, S., Copeland, G.P., Jagodis, T., Boral, H., Valduriez, P.: A query processing
strategy for the decomposed storage model. In: ICDE, pp. 636–643. IEEE, Los Alamitos
(1987)

5. Lim, L., Wang, M.: Managing e-commerce catalogs in a DBMS with native XML support.
In: ICEBE. IEEE, Los Alamitos (2005)

6. Liefke, H., Suciu, D.: XMill: An efficient compressor for XML data. In: Chen, W., Naughton,
J.F., Bernstein, P.A. (eds.) SIGMOD, pp. 153–164 (2000)

7. Tolani, P., Haritsa, J.R.: XGrind: A query-friendly XML compressor. In: ICDE (2002)
8. Arenas, M., Libkin, L.: A normal form for XML documents. In: PODS, pp. 85–96 (2002)
9. Libkin, L.: Normalization theory for XML. In: Barbosa, D., Bonifati, A., Bellahsene, Z.,

Hunt, E., Unland, R. (eds.) XSym. LNCS, vol. 4704, pp. 1–13. Springer, Heidelberg (2007)
10. Arenas, M.: Normalization theory for XML. SIGMOD Rec. 35, 57–64 (2006)
11. Nicola, M., der Linden, B.V.: Native XML support in DB2 universal database. In: VLDB,

pp. 1164–1174 (2005)
12. Ozcan, F., Cochrane, R., Pirahesh, H., Kleewein, J., Beyer, K., Josifovski, V., Zhang, C.:

System RX: One part relational, one part XML. In: SIGMOD (2005)
13. Funderburk, J.E., Malaika, S., Reinwald, B.: XML programming with SQL/XML and

XQuery. IBM Systems Journal 41 (2002)
14. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorithmica 15,

205–222 (1996)
15. Wang, Y., DeWitt, D.J., yi Cai, J.: X-Diff: An effective change detection algorithm for XML

documents. In: ICDE, pp. 519–530 (2003)
16. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change detection in hierar-

chically structured information. In: SIGMOD, pp. 493–504. ACM Press, New York (1996)
17. Cobena, G., Abdessalem, T., Hinnach, Y.: A comparative study of XML diff tools (2002),

http://www.deltaxml.com/pdf/is2004.pdf

http://www.deltaxml.com/pdf/is2004.pdf

Approximate Probabilistic Query Answering
over Inconsistent Databases

Sergio Greco and Cristian Molinaro

DEIS, Univ. della Calabria, 87036 Rende, Italy
{greco,cmolinaro}@deis.unical.it

Abstract. The problem of managing and querying inconsistent
databases has been deeply investigated in the last few years. Most of
the approaches proposed so far rely on the notion of repair (a minimal
set of delete/insert operations making the database consistent) and con-
sistent query answer (the answer to a query is given by considering the
set of ‘repaired’ databases). Since the problem of consistent query an-
swering is hard in the general case, most of the proposed techniques have
an exponential complexity, although for special classes of constraints and
queries the problem becomes polynomial. A second problem with most of
the proposed approaches is that repairs do not take into account update
operations (they consider delete and insert operations only).

This paper presents a general framework where constraints consist of
functional dependencies and queries may be expressed by positive rela-
tional algebra. The framework allows us to compute certain (i.e. tuples
derivable from all or from none of the repaired databases) and uncertain
query answers (i.e. tuples derivable from a proper not empty subset of the
repaired databases). Each tuple in the answer is associated with a prob-
ability, which depends on the number of repaired databases from which
the tuple can be derived. In the proposed framework, databases are re-
paired by means of update operations and repaired databases are stored
by means of a “condensed” database, so that all the repaired databases
can be derived by “expanding” the unique condensed database. A con-
densed database can be rewritten into a probabilistic database where
each tuple is associated with an event (i.e. a boolean formula) and, thus,
a probability value. The probabilistic query answer can be computed
by querying the so obtained probabilistic database. As the complexity
of querying probabilistic databases is #P -complete, approximate proba-
bilistic answers which are computable in polynomial time are considered.

1 Introduction

The problem of managing and querying inconsistent databases has been deeply
investigated in the last few years. Most of the approaches proposed so far rely
on the notion of repair (a minimal set of delete/insert operations making the
database consistent) and consistent query answer (the answer to a query is given
by considering the set of ‘repaired’ databases). Since the problem of consistent
query answering is hard in the general case, most of the proposed techniques
have an exponential complexity, although for special classes of constraints and
queries (e.g., functional dependencies and queries consisting in checking if a tuple

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 311–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 S. Greco and C. Molinaro

belongs to all the repaired databases) the problem becomes polynomial. Another
problem with most of the proposed approaches is that repairs do not take into
account update operations (they just consider delete and insert operations).

The next example shows how inconsistent databases are repaired and queried
under the assumption that the only operations performed to repair the databases
are insertion and deletion of tuples.

Example 1. Consider the relation schema affiliation(Emp,Dept,City) with the
functional dependency fd : Dept → City, stating that a department is located
in a unique city. Consider now the following inconsistent relation affiliation:

affiliation
Emp Dept City
john cs rome
bob cs milan

According to most of the approaches proposed so far, the above database can be
repaired by means of tuple deletions, thus the following repaired databases can
be obtained:

affiliation1 = { affiliation(john, cs, rome) }
affiliation2 = { affiliation(bob, cs, milan)}

Consider the query Q = πEmp(σDept=‘cs′affiliation) asking for the employees
of the department cs. The consistent query answer [3,5,13] gives the employees
john and bob as undefined, as john works for cs according to the first repaired
database only, whereas bob works for cs according to the second repaired database
only. �

In the previous example, if we suppose that each tuple has an “unreliable” value
only on the attribute City and the remaining values are “reliable”, then we would
expect that the previous query gives both john and bob as certain, as the query
does not regard the attribute City. Indeed, repairing inconsistent databases by
means of tuple deletion eliminates useful information present in deleted tuples,
e.g. information which is not involved in a constraint violation.

In order to cope with this problem, this paper presents a framework wherein
inconsistent databases are repaired by means of tuple updates, as shown in the
following example.

Example 2. Consider the inconsistent database affiliation of Example 1. It can
be repaired by assigning the same value on the attribute City to each tuple, that
is we assign a unique city to the department cs. This value can be either rome
or milan, as these values come from the source database. Thus, there exist two
repaired databases, namely:

affiliation1 = { affiliation(john, cs, rome), affiliation(bob, cs, rome) }
affiliation2 = { affiliation(john, cs, milan), affiliation(bob, cs, milan) }

Consider the query Q of Example 1. By assuming the above repaired databases,
Q gives the employees john and bob as certain, as they are derivable from all
the repaired databases. �

Approximate Probabilistic Query Answering over Inconsistent Databases 313

The technique presented in this paper allows us to compute certain (i.e. tu-
ples derivable from all or from none of the repaired databases) and uncertain
answers (i.e. tuples derivable from a proper not empty subset of the repaired
databases). Moreover, each tuple in the answer is associated with a probability,
which depends on the number of repaired databases from which the tuple can be
derived (although the framework can be easily adapted so that the probabilities
are determined by other criteria).

Example 3. Consider the following relation emp :

emp
Name Dept
john cs
john math
bob cs
bob physics

which is inconsistent w.r.t. the functional dependency fd : Name → Dept and
the query Q = πDept(emp) asking for the departments of the employees. The
intuition suggests that cs should be the most probable department as each em-
ployee could work for it, whereas math and physics should be less probable as
only john could work for the former and only bob could work for the latter. The
probabilistic answer gives {(cs, 3/4), (math, 2/4), (physics, 2/4)} according to
the previous consideration. Observe that, under the standard notion of consis-
tent query answer, the departments cs, math and physics are undefined and
there is no discrimination among them. �

Thus, the proposed approach allow us to exploit better information in the source
inconsistent database in two main aspects: (i) repairing by means of tuple up-
dates, which is more fine-grained than the approaches based on tuple deletions,
allows us to preserve useful information in the source database; (ii) probabilistic
query answering allow us to discriminate among undefined tuples.

Related Work. Andritsos et al. [2] presented an approach for querying dirty
databases containing duplicate tuples (i.e. inconsistent databases that violates
a set of key constraints) where each duplicate is associated with a probabil-
ity of being in the clean database. A technique for querying dirty databases is
proposed. It consists in rewriting a query into an SQL query that computes
each answer with the probability that the answer is in the clean database. The
rewriting cannot be obtained in general as it is applicable only to a special class
of select-project-join queries, called rewritable queries. The main difference be-
tween the approach presented in this paper and the one introduced in [2] is
that we consider a more general framework, namely a special class of functional
dependencies and positive relational algebra queries, and compute approximate
probabilistic answers (i.e. answers whose associated probabilities are approxi-
mated), whereas the technique proposed by Andritsos et al. computes (exact)
probabilistic answers for more restricted constraints and queries (key constraints
and a subset of SPJ queries).

314 S. Greco and C. Molinaro

In [8] it has been shown that for every conjunctive query, the complexity
of evaluating it on a probabilistic database is either PTIME or #P-complete,
and an algorithm for deciding whether a given conjunctive query is PTIME
or #P-complete is given. The problem of querying and managing probabilistic
databases has been dealt with also in [7,9].

An approach for repairing inconsistent databases by means of tuple updates
has been proposed in [17,4,18]. Specifically, [17] presents a notion of update-
based repairing, and the construction of single databases, called nuclei, that can
replace all (possibly infinitely many) repaired databases for the purpose of con-
sistent query answering. The construction of nuclei for full dependencies and
conjunctive queries is shown. Consistent query answering and constructing nu-
clei is generally intractable under update-based repairing. In [4] an approach for
repairing inconsistent databases is proposed. In such a framework, a database
which violates a set of functional and inclusion dependencies is repaired by mod-
ifying attribute values and by inserting new tuples. Each update operation has
a cost. As finding a repaired database with minimum cost in this model is NP-
complete, a heuristic approach is proposed.

Organization. The paper is organized as follows. Section 2 recalls some basic
notions on querying and repairing inconsistent databases, and the probabilistic
relational model presented in [12]. Section 3 presents our definition of repaired
databases and a “condensed” form to represent the set of all repaired databases.
Section 4 presents a notion of probabilistic query answering and shows how
to compute an approximation of it in polynomial time. Finally, in Section 5
conclusions are drawn.

2 Preliminaries

It is assumed that the reader is familiar with relational databases and database
queries [1,16]. This section first introduces preliminary notions on querying and
repairing inconsistent databases, then presents the probabilistic relational model
proposed in [12].

Querying and Repairing Inconsistent Databases. Database schemata contain
knowledge on the structure of data, i.e. they give constraints on the form the
data must have. The relationships among data are usually defined by constraints
such as functional dependencies, inclusion dependencies and others. Generally, a
database DB has an associated schema 〈DS, IC〉 defining the intentional prop-
erties of DB: DS denotes the structure of the relations, while IC denotes the set
of integrity constraints expressing semantic information over data. A database
instance is inconsistent if it does not satisfy integrity constraints.

An id-repaired1 database is a consistent instance minimally different from
the original one. Thus, given a database DB and a set of integrity constraints
IC, DB′ is an id-repaired database derived from DB if DB′ |= IC and the

1 id-repaired database stands for repaired database obtained by means of insert and
delete operations.

Approximate Probabilistic Query Answering over Inconsistent Databases 315

pair (DB′ − DB,DB − DB′) is minimal, i.e. there is no database DB′′ �= DB′
such that DB′′ |= IC and both containements DB′′ − DB ⊆ DB′ − DB and
DB − DB′′ ⊆ DB − DB′ hold. Thus, an id-repaired databases DB′ is obtained
from DB by means of a minimal set of insert and delete operations. Given a
database DB and a set IC of integrity constraints, DBid(DB, IC) denotes the
set of all the possible id-repaired databases for 〈DB, IC〉, that is the set of all
repaired databases which are obtained by means of insert and delete operations.

A (relational) query Q is a pair (g,P), where g is a predicate symbol denot-
ing the output relation and P is the program (e.g. set of RA expressions) used to
compute g. Given a databaseDB, a set IC of integrity constraints and a relational
query Q, the consistent answer [3] of Q over 〈DB, IC〉, denoted as Q(DB, IC),
gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)− and Q(DB, IC)u.
[4] These contain, respectively, the tuples which are true (i.e. belonging to
[4]

⋂
DBi∈DBid(DB,IC) Q(DBi)), false (i.e. not belonging to

⋃
DBi∈DBid(DB,IC)

Q(DBi)) and undefined (i.e. tuples which are neither true nor false).
In [13] it has been shown that given a database DB, a set of integrity con-

straints IC and a query Q = (g,P), then 1) checking if there exists a repair for
DB such that the answer of Q is not empty is in ΣP

2 and NP-hard, 2) checking
whether the consistent answer of Q is not empty is in ΠP

2 and coNP-hard. In the
same work it has been shown that when special constraints such as functional
dependencies are considered, the problem of checking, for a given ground tuple
t, whether (i) t ∈ Q(DB, IC)+ is coNP-complete, (ii) t ∈ Q(DB, IC)− is coNP-
complete, (iii) t ∈ Q(DB, IC)u is NP-complete. The problem becomes polyno-
mial only when restricted functional dependencies and queries are considered
(e.g. at most one functional dependency per relation and ’simple’ conjunctive
queries [6]).

Probabilistic Relational Model. We recall the probabilistic relational model pre-
sented in [12] (see also [9,10]). A probabilistic relation corresponds to an ordinary
relation where the membership of a single tuple in the relation is affected by a
probabilistic event. We distinguish between basic and complex events. Tuples of
base relations are associated with basic events. Special events are the certain
event �, which is associated with deterministic tuples, and the impossible event
⊥, which is associated with tuples that are not in the database. Each basic event
e is associated with a (fixed) probability value denoted by p(e); the probability
of � is 1, whereas the probability of ⊥ is 0. When new relations are derived
by means of Probabilistic Relational Algebra (PRA) operators, each tuple in a
derived relation depends on the tuples of the argument relation(s) from which it
was derived. In order to express this relationship, we use complex events, which
are Boolean combinations of events. Starting from the probabilities for the basic
events, the probabilities of complex events can be computed by means of a func-
tion P . The probability associated with a general event e is denoted by Pr(e)
and is equal to p(e) if e is a basic event, whereas is equal to P(e) if e is a complex
event. Observe that the function P takes into account the dependencies among
basic events.

This model is based on an intensional semantics; this means that each tuple
of a relation is associated with an event expression and the PRA operators

316 S. Greco and C. Molinaro

also manipulate these expressions. The issue of associating probabilities with
these expressions is dealt with separately. A probabilistic relational model based
on an extensional semantics was proposed in [11]. In this model probabilities
are attached to tuples; when applying an operator of the relational algebra,
the probabilities of the result tuples are computed as a function of the tuple
probabilities in the argument relation(s). This approach doesn’t always work.

A probabilistic tuple tp on a relation schema R(W) is a pair 〈t, e〉, where t
is a tuple over R(W) and e is an event. A probabilistic relation on a relation
schema R(W) is a set of probabilistic tuples tp = 〈t, e〉 such that t is defined
over R(W). A probabilistic database DBp is a set of probabilistic relations plus
a probabilistic function Pr. In the following, for a given probabilistic tuple tp,
t denotes the corresponding standard tuple; analogously, r and DB denote the
(standard) relation and database corresponding to the probabilistic relation rp

and the probabilistic database DBp, respectively.
The PRA operators are defined as follows.

– Selection. Let rp be a probabilistic relation

σθ(rp) = {〈t, e〉 | 〈t, e〉 ∈ rp ∧ t ∈ σθ(r)}

– Projection. Let rp be a probabilistic relation over R(W) and A be a subset
of W

πA(rp) = {〈t, e〉 | t ∈ πAr ∧ e =
∨

〈t′,e′〉∈rp∧ t′[A]=t

e′}

– Cartesian product. Let rp and sp be probabilistic relations

rp × sp = {〈tr.ts, er ∧ es〉 | 〈tr, er〉 ∈ rp ∧ 〈ts, es〉 ∈ sp}

– Union. Let rp be a probabilistic relation over R(W) and sp be a probabilistic
relation over S(W)

rp ∪ sp = {〈t, e〉 | t ∈ r ∪ s ∧ e =
∨

〈t,e′〉∈rp∨〈t,e′〉∈sp

e′}

– Difference. Let rp be a probabilistic relation over R(W) and sp be a proba-
bilistic relation over S(W)

rp − sp = {〈t, e〉 | 〈t, e〉 ∈ rp∧ � ∃〈t, e′〉 ∈ sp} ∪
{〈t, er ∧ ¬es〉 | 〈t, er〉 ∈ rp ∧ 〈t, es〉 ∈ sp}

Observe that the operators σ, π,×,∪ and − are overloaded as we have used the
same operators of standard relational algebra.

Example 4. Consider the probabilistic database DBp consisting of the following
probabilistic relations emp and dept:

emp
EName Dept
john cs e1

john math e2

dept
DName City

cs rome d1

math rome d2

Approximate Probabilistic Query Answering over Inconsistent Databases 317

Consider now the query:

Q = πCity(σEName=‘john′∧Dept=DName(emp× dept))

asking for the cities where john works. In the evaluation of Q, firstly the cartesian
products emp× dept is computed, giving the result below:

EName Dept DName City
john cs cs rome e1 ∧ d1

john cs math rome e1 ∧ d2

john math cs rome e2 ∧ d1

john math math rome e2 ∧ d2

Next, the selection operation σEName=‘john′∧Dept=DName(emp × dept) is com-
puted and the following result is obtained:

EName Dept DName City
john cs cs rome e1 ∧ d1

john math math rome e2 ∧ d2

Finally, the projection operation πCity(σEName=‘john′∧Dept=DName(emp×dept))
is computed, giving the result:

City
rome (e1 ∧ d1) ∨ (e2 ∧ d2)

Thus, the answer contains rome, whose associated event is (e1 ∧ d1) ∨ (e2 ∧ d2);
this means that john works in rome if either (i) he works for the department
cs (event e1) and cs is located in rome (event d1), or (ii) he works for the
department math (event e2) and math is located in rome (event d2). �

We point out that, given a probabilistic database DBp and a query Q, the proba-
bility associated with the tuples in Q(DBp) is computed by means of the function
Pr which takes into account the relations among basic events.

Example 5. Consider the probabilistic database DBp and the query Q of Exam-
ple 4. Given the probabilities for the basic events e1, e2, d1, d2 and assuming that
all events are mutually independent Q(DBp) gives the tuple rome along with
its probability, namely Pr((e1 ∧ d1) ∨ (e2 ∧ d2)) = Pr(e1)× Pr(d1) + Pr(e2)×
Pr(d2)− Pr(e1)× Pr(d1)× Pr(e2)× Pr(d2). �

3 Repairing

We assume two disjoint, infinite sets dom and var of constants and variables
respectively. Each variable V has a domain dom(V) ⊆ dom of possible values.
A symbol is either a constant or a variable.

A condensed tuple ct over a relation schema R(W), where W is a set of
attributes, is a total mapping from W to dom ∪ var; a condensed relation
over R(W) is a set of condensed tuples over the same schema R(W), whereas a

318 S. Greco and C. Molinaro

condensed database is a set of condensed relations. The value of ct on an attribute
A in W is denoted ct(A); this is extended so that for Z ⊆ W , ct[Z] denotes the
condensed tuple z over Z such that ct(A) = z(A) for each A ∈ Z. The set of
variables in ct is denoted by var(ct), whereas the set of constants in ct is denoted
by const(ct). Analogously, for a given relation r (resp. database DB), var(r) and
const(r) (resp. var(DB) and const(DB)) denote respectively the sets of variables
and constants in r (resp. DB). Moreover, ct (resp. r, DB) is said to be ground
if var(ct) = ∅ (resp. var(r) = ∅, var(DB) = ∅). Ground condensed tuples (resp.
relations, databases) are also called simply tuples (resp. relations, databases).

A (ground) substitution for a set of variables {V1, . . . , Vk}, k ≥ 0, is a set of
pairs {V1/c1, . . . , Vk/ck} where c1, . . . , ck are constants such that ci ∈ dom(Vi)
for i = 1..k. We also use the notation θ[1] = {V | V/c ∈ θ} and θ[2] = {c | V/c ∈
θ} to denote the sets of variables and constants in θ, respectively. θ(V) = c if
there is a pair V/c ∈ θ, otherwise θ(V) = V .

The application of a substitution θ to a condensed tuple ct = 〈p1, . . . , pn〉 is
θ(ct) = 〈θ(p1), . . . , θ(pn)〉. Analogously, the application of a substitution θ to a
condensed relation cr is θ(cr) = {θ(ct) | ct ∈ cr}, whereas the application of θ
to a condensed database DBc is θ(DBc) = {θ(cr) | cr ∈ DBc}.

Given a condensed relation cr (resp. database DBc), G(cr) (resp. G(DBc))
denotes the set of all the (ground) relations (resp. databases) that can be ob-
tained from cr (resp. DBc) by replacing all the variables in cr (resp. DBc) with
constants belonging to the domains associated with variables.

Definition 1. Canonical functional dependencies. Let R(W) be a relation
schema and FD be a set of functional dependencies in standard form2 over
R(W). FD is said to be in canonical form if ∀X → A ∈ FD does not exist a
functional dependency Y → B ∈ FD such that A ∈ Y . �

In the rest of the paper, we consider sets of functional dependencies in canonical
form.

Let R(W) be a relation schema, FD be a set of functional dependencies over
R(W) and r be an instance of R(W). An update operation for r is a pair u = (t, t′)
of tuples over R(W) s.t. t ∈ r ∧ t �= t′. The intuitive meaning of u = (t, t′) is
that t is replaced by t′, i.e. the updated relation obtained from r by applying
u is u(r) = r − {t} ∪ {t′}. Given a set of update operations U , then we define
the sets U− = {t | ∃(t, t′) ∈ U} and U+ = {t′ | ∃(t, t′) ∈ U}. We say that U is
coherent if it does not contain two distinct update operations (t, t′) and (t1, t2)
such that either t = t1 or t = t2, that is (i) the same tuple t cannot be replaced
by two distinct tuples t′ and t2, and (ii) a tuple t which is replaced by a tuple t′

cannot be used to replace in turn a tuple t1.
Given a set U of update operations for r, we denote by U(r) the updated

relation obtained from r by applying all the update operations in U , i.e. U(r) =
r−U− ∪U+. Moreover, we define the set update(U) = {(t, A) | ∃(t, t′) ∈ U , A ∈
W s.t. t(A) �= t′(A)}. If a pair (t, A) is in update(U), then we say that U modifies
the value of the tuple t on the attribute A.

2 We consider functional dependencies of the form X → A, where X is a set of
attributes whereas A is an attribute.

Approximate Probabilistic Query Answering over Inconsistent Databases 319

We say that the value of a tuple t ∈ r on an attribute A ∈ W is uncertain
if there exists a tuple t′ ∈ r and a functional dependency fd : X → A ∈ FD
such that {t, t′} �|= fd, that is t[X] = t′[X] and t(A) �= t′(A). A set U of update
operations for r is said to be feasible (w.r.t. r) if it modifies only uncertain values.

Definition 2. Repair and repaired database. Let R(W) be a relation schema,
FD be a set of functional dependencies over R(W) and r be an instance of
R(W). A repair for 〈r,FD〉 is a coherent and feasible set U of update operations
for r such that (i) U(r) |= FD and (ii) there is no set of update operations U ′
such that update(U ′) ⊂ update(U) ∧ U ′(r) |= FD. The set of all the possible
repaired relations for 〈r,FD〉 is denoted as DBU(r,FD). �

Thus, a repair is a minimal set of attribute value modifications which makes a
database consistent by modifying only uncertain values. Repaired relations are
consistent relations derived from the source relation by means of repairs.

Given an inconsistent database DB and a set FD of functional dependencies,
a repaired database is obtained by repairing each inconsistent relation in DB.
We denote by DBU(DB,FD) the set of all the repaired databases for 〈DB,FD〉.
Example 6. Consider the relation schema emp(Name, Dept, City) with the func-
tional dependencies FD = {Name → City, Dept → City}. Consider now the
following inconsistent relation r:

emp
Name Dept City
john math milan
john cs rome
bob cs venice

mary physics naples

Intuitively, in order to make the relation consistent the first three tuples should
have the same value on the attribute City. There are three possible repairs for
〈r,FD〉:

U1 = { (emp(john, cs, rome), emp(john, cs, milan)),
(emp(bob, cs, venice), emp(bob, cs, milan)) }

U2 = { (emp(john, math, milan), emp(john, math, rome)),
(emp(bob, cs, venice), emp(bob, cs, rome)) }

U3 = { (emp(john, math, milan), emp(john, math, venice)),
(emp(john, cs, rome), emp(john, cs, venice)) }

By applying the above repairs on r, the following repaired relations are obtained:

r1 = { emp(john, math, milan), emp(john, cs, milan),
emp(bob, cs, milan), emp(mary, physics, naples) }

r2 = { emp(john, math, rome), emp(john, cs, rome),
emp(bob, cs, rome), emp(mary, physics, naples) }

r3 = { emp(john, math, venice), emp(john, cs, venice),
emp(bob, cs, venice), emp(mary, physics, naples) }

Therefore DBU(r,FD) = {r1, r2, r3}. �

320 S. Greco and C. Molinaro

It is worth noting that, in the previous example, each repair updates the value
of the attribute City so that all conflicting tuples have the same value for this
attribute. The minimality guarantees that only values appearing in conflicting
tuples are used. For instance, the following set of update actions

U = { (emp(john, math,milan), emp(john, math, naples)),
(emp(john, cs, rome), emp(john, cs, naples)),
(emp(bob, cs, venice), emp(bob, cs, naples)) }

makes the database consistent, but as it is not minimal, it is not a repair.

Definition 3. Condensed representation. Let R(W) be a relation schema, FD
be a set of functional dependencies over R(W) and r be an instance of R(W).
A condensed representation of all the repaired relations derivable from 〈r,FD〉,
denoted rFD , is a condensed relation s.t. G(rFD) = DBU(r,FD) and var(rFD)
is minimal modulo renaming of variables. �

DBFD denotes the condensed database “representing” all the repaired databases
derivable from 〈DB,FD〉, i.e. the condensed database such that G(DBFD) =
DBU(DB,FD).

Example 7. Consider the inconsistent database r and the functional dependen-
cies FD of Example 6. A condensed representation of all the possible repaired
relations derivable from 〈r,FD〉 is the following condensed relation rFD :

emp
Name Dept City
john math Y
john cs Y
bob cs Y

mary physics naples

Y ∈ {rome, milan, venice}

as G(rFD) = DBU(r,FD) and the set of variables introduced in rFD is mini-
mal. �

Theorem 1. Given a database schema DS, a set FD of functional dependencies
over DS and an instance DB of DS, then DBFD can be computed in polynomial
time. �

4 Querying

In this section we present a definition of probabilistic answer to queries over
inconsistent databases. In particular, we first introduce the definition of proba-
bilistic answer, where each tuple in the answer is associated with a probability
(e.g., the fraction of repaired databases from which the tuple can be derived).
Next, we show how to compute probabilistic query answer by querying a proba-
bilistic database obtained from the condensed representation of all the repaired
databases. Finally, we present how to compute an approximation of such an
answer in polynomial time.

Approximate Probabilistic Query Answering over Inconsistent Databases 321

Definition 4. Probabilistic query answer. Given a database DB, a set FD of
functional dependencies and a relational query Q, the probabilistic answer of Q
over 〈DB,FD〉, denoted as Qp(DB,FD), is defined as follows

Qp(DB, FD) = { (t, pt) | ∃DBi ∈ DBU(DB, FD) s.t. t ∈ Q(DBi),

pt = |{DBi|DBi∈DBU(DB,FD)∧t∈Q(DBi)}|
|DBU(DB,FD)| } �

The probabilistic answer gives a set of tuples along with their probabilities,
where the probability of a tuple t is defined as the percentage of the repaired
databases which give t by applying Q over them. It is worth noting that, un-
like standard consistent answers, probabilistic answers allow us to discriminate
among undefined tuples, giving them a measure of uncertainty. The tuples in
a probabilistic answer can be ranked according to their probabilities, e.g. by
decreasing probability.

Moreover, as the number of repaired databases can be exponential in the size
of the database, the complexity of computing probabilistic answers using the
formula of Definition 4 is also exponential. Next, we present a different method
for computing probabilistic query answers over inconsistent databases.

Given two condensed tuples ct1 and ct2 and a substitution θ, we say that
ct1 subsumes ct2 (or equivalently, ct2 is an instance of ct1) under θ, written as
ct1 �θ ct2, if ct2 = θ(ct1) and θ[1] ⊆ var(ct1). Moreover, we say that ct1 �θ ct2
if ct2 is ground. Observe that for any two distinct tuples ct1 and ct2, ct1 �θ ct2
implies that ct2 ��θ ct1.

The following definition introduces the concept of probabilistic relation de-
rived from a (possibly inconsistent) relation.

Definition 5. Derivation of probabilistic relations. Let r be a relation and FD
a set of functional dependencies over a relation schema R(W). Let rFD be the
condensed representation for 〈r,FD〉, then rp

FD denotes the probabilistic relation
derived from rFD as follows:

rp
FD = {〈t, et〉 | ∃ct ∈ rFD ∧ ∃θ s.t. ct �θ t ∧ et =

∧

X/c ∈θ

X/c}

where p(et) = p(
∧

X/c ∈θ X/c) is computed by considering the standard proba-
bilistic function and assuming that

– two events X/c1 and X/c2, where c1 �= c2, are disjoint;
– two events X/c1 and Y/c2, with X �= Y , are independent;
– Pr(X/c) = 1

|dom(X)| . �

Observe that, as said before, for deterministic tuples (i.e. probabilistic tuples
〈t, et〉 such that et is empty), it is assumed that et = � so that Pr(�) = 1. We
recall that a condensed representation rFD of a set of repaired relations contains
variables in place of uncertain values. In order to obtain a consistent repaired
relation from rFD , for each variable we have to replace every occurrence of it
with the same value (taken from its domain). This consideration is reflected by
the first assumption in the previous definition. The second assumption states
that values assigned to different variables are independent. As a variable V has

322 S. Greco and C. Molinaro

n = |dom(V)| possible values, the probability of an event V/c (i.e. the value c is
assigned to the variable V) is 1

n , as stated by the last assumption in the above
definition.

It is worth noting that the definition above does not take into account the
number of occurrences of a value. In order to also consider the number of
occurrences of values, the above probability function could be rewritten as
Pr(X/c) = #c

X
/#X , where #cX is the number of occurrences of c in the source

relation corresponding to X in the condensed relation and #X is the number of
occurrence of X in the condensed relation. Clearly, if each value occurs once the
probability function coincides with the one of Definition 5.

Example 8. Consider the database schema r(A, B, C) with the functional
dependency fd = A → B and the instance R = {r(a1, b1, c1), r(a1, b2, c2),
r(a1, b1, c3)}. The two repaired databases R1 = {r(a1, b1, c1), r(a1, b1, c2),
r(a1, b1, c3)} and R2 = {r(a1, b2, c1), r(a1, b2, c2), r(a1, b2, c3)} are obtained by
replacing, respectively, the unique occurrence of b2 with b1 and the two occur-
rences of b1 with b2. As the derived condensed relation is Rfd = {r(a1, X, c1),
r(a1, X, c2), r(a1, X, c3)} with X ∈ {b1, b2}, we have that Pr(X/b1) = 2/3 and
Pr(X/b2) = 1/3. �

Given a probabilistic relation rp
FD , rb

FD denotes the set of tuples {t|〈t, et〉 ∈
rp

FD}. Given a condensed representation DBFD of all the repaired databases for
〈DB,FD〉, the probabilistic database derived from DBFD will be denoted by
DBp

FD , whereas DBb
FD denotes the set of relations {rb

FD |rp
FD ∈ DB

p
FD}.

Example 9. Consider the inconsistent relation affiliation and the functional de-
pendencies fd of Example 1. A condensed representation of all the repaired
databases for 〈affiliation, {fd}〉 is as follows:

affiliationfd

Emp Dept City
john cs X
bob cs X

X ∈ {rome, milan}

The above condensed relation can be “expanded” into the following probabilistic
relation:

affiliationp
fd

Emp Dept City
john cs rome X/rome
john cs milan X/milan
bob cs rome X/rome
bob cs milan X/milan

where X/rome and X/milan are disjoint events and the probability of each of
them is 0.5. The relation affiliationb

fd is equal to the projection of affiliationp
fd

over the attributes Emp, Dept and City. �

Approximate Probabilistic Query Answering over Inconsistent Databases 323

Theorem 2. Given a database DB and a set of functional dependencies FD,
DBU(DB,FD) = DBid(DBb

FD ,FD). �

The previous theorem states that the repaired databases for 〈DB,FD〉 obtained
by means of tuple updates, can be computed by repairing the database DBb

FD
by means of insertion and deletion of tuples.

Theorem 3. Given a database DB, a set FD of functional dependencies and a
relational query Q, then

Qp(DB,FD) = Q(DBp
FD) �

The previous theorem states that given a databaseDB, a set FD of functional de-
pendencies and a relational query Q, the probabilistic query answer Qp(DB,FD)
can be computed as follows:

– firstly, a condensed representation of all the repaired databases for 〈DB,FD〉,
namely DBFD , is derived;

– next, DBFD is converted into a probabilistic database DBp
FD ;

– finally, the intensional evaluation of Q over DBp
FD is computed and proba-

bilities to each tuple in the answer are assigned.

As computing the probability of an event e of an answer tuple is a #P-
complete problem, next we present an approach for computing approximate
probabilistic answers in polynomial time.

Approximate Probabilistic Query Answering. In this section we consider
positive relational queries, that is queries using the relational operators σ, π,
× and ∪. Moreover, we assume that PRA operators compute events written as
DNF formulae, that is events are of the form C1 ∨ . . . ∨ Cn, where each Ci is
a conjunction of events of the form X/cX and events appearing more than one
time in a conjunction are considered once.

Given an event e = C1 ∨ . . . ∨ Cn, its probability Pr(e) can be computed by
applying the well-known inclusion-exclusion formula, i.e.

Pr(e) =
n∑

k=1

(−1)k+1
∑

1≤i1<...<ik≤n

Pr(Ci1 ∧ . . . ∧ Cik
)

where the probability of a conjunction of events C = e1 ∧ . . . ∧ ek is equal to
Pr(e1) × . . . × Pr(ek) if C does not contain two events X/c1 and X/c2 with
c1 �= c2, otherwise it is equal to 0.

The issue of approximating an inclusion-exclusion formula has been dealt
with in [15,14]. In particular, a method to approximate an inclusion-exclusion
formula in polynomial time has been proposed in [14]. Specifically, given an event
e = C1 ∨ . . . ∨ Cn and the probabilities of all the j-wise conjunctions of Ci for

j = 1..k, Pr(e) can be approximated with an error of e−Ω(k2
nlogn). We denote by

Prk(e) the so obtained approximation of Pr(e).

324 S. Greco and C. Molinaro

Definition 6. Approximate probabilistic answer. Given a database DB, a set
FD of functional dependencies and a relational query Q, the k-approximate
probabilistic answer of Q over 〈DB,FD〉, denoted as AQk(DB,FD), is defined
as follows

AQk(DB,FD) = {〈t, at〉 |∃〈t, et〉 ∈ Q(DBp
FD) and at = Prk(et)} �

Theorem 4. Given a database DB, a set FD of functional dependencies and a
relational query Q, the k-approximate probabilistic answer of Q over 〈DB,FD〉
can be computed in polynomial time. �

5 Conclusions

This paper has presented a general framework for querying inconsistent
databases where constraints consist of functional dependencies and queries may
be expressed by positive relational algebra. The framework allows us to compute
certain (i.e. tuples derivable from all or from none of the repaired databases) and
uncertain query answers (i.e. tuples derivable from a proper not empty subset of
the repaired databases). Each tuple in the answer is associated with a probabil-
ity, which depends on the number of repaired databases from which the tuple can
be derived. In our framework database are repaired by means of update opera-
tions and repaired databases are stored by means of a “condensed” database, so
that all repaired databases can be derived by “expanding” the unique condensed
database. A condensed database can be rewritten into a probabilistic database
where each tuple is associated with an event (i.e. a boolean formula) and, thus, a
probability value. The probabilistic query answer can be computed by querying
the so obtained probabilistic database. As the complexity of querying probabilis-
tic databases is #P -complete, techniques computing approximate probabilistic
answers in polynomial time have been used.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1994)

2. Andritsos, P., Fuxman, A., Miller, R.J.: Clean Answers over Dirty Databases: A
Probabilistic Approach. In: Proc. Int. Conf. on Data Engineering, vol. 30 (2006)

3. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. Symp. on Principles of Database Systems, pp. 68–79 (1999)

4. Bohannon, P., Flaster, M., Fan, W., Rastogi, R.: A Cost-Based Model and Ef-
fective Heuristic for Repairing Constraints by Value Modification. In: SIGMOD
Conference, pp. 143–154 (2005)

5. Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Proc. Int. Conf.
on database Theory, pp. 1–17 (2007)

6. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Information & Compututation 197(1-2), 90–121 (2005)

7. Dalvi, N., Suciu, D.: Management of Probabilistic Data Foundations and Chal-
lenges. In: Proc. ACM Symp. on Principles of Database Systems, pp. 1–12 (2007)

Approximate Probabilistic Query Answering over Inconsistent Databases 325

8. Dalvi, N., Suciu, D.: The Dichotomy of Conjunctive Queries on probabilistic Struc-
tures. In: Proc. ACM Symp. on Principles of Database Systems, pp. 293–302 (2007)

9. Dalvi, N., Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. In:
Proc. Int. Conf. on Very Large Data Bases, pp. 864–875 (2005)

10. Dey, D., Sarkar, S.: A Probabilistic Relational Model and Algebra. ACM Tran-
sanctions on Database Systems 21(3), 339–369 (1996)

11. Fuhr, N.: A Probabilistic Relational Model for the Integration of IR and Databases.
In: Int. Conf. on Research and Development in Information Retrieval, pp. 309–317
(1993)

12. Fuhr, N., Rolleke, T.: A Probabilistic Relational Algebra for the Integration of
Information Retrieval and Database Systems. ACM TODS 15(1), 32–66 (1997)

13. Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Re-
pairing Inconsistent Databases. IEEE TKDE 15(6), 1389–1408 (2003)

14. Kahn, J., Linial, N., Samorodnitsky, A.: Inclusion-Exclusion: Exact and Approxi-
mate. Combinatorica 16(4), 465–477 (1996)

15. Linial, N., Nisan, N.: Approximate Inclusion-Exclusion. In: Symposium on the
Theory of Computing, pp. 260–270 (1990)

16. Ullman, J.K.: Principles of Data and Knowledge-Base Systems, vol. 1, 2. Computer
Science Press, New York (1988)

17. Wijsen, J.: Database Repairing Using Updates. ACM Transactions on Database
Systems 30(3), 722–768 (2005)

18. Wijsen, J.: Project-Join-Repair: An Approach to Consistent Query Answering Un-
der Functional Dependencies. In: Proc. FQAS Conf., pp. 1–12 (2006)

Conjunctive Query Containment
under Access Limitations

Andrea Cal̀ı1,3 and Davide Martinenghi2

1 Oxford-Man Institute of Quantitative Finance
University of Oxford, UK

2 Dip. di Elettronica e Informazione
Politecnico di Milano, Italy
3 Computing Laboratory
University of Oxford, UK

andrea.cali@comlab.ox.ac.uk, martinen@elet.polimi.it

Abstract. Access limitations may occur when querying data sources
over the web or heterogeneous data sources presented as relational ta-
bles: this happens, for instance, in Data Exchange and Integration, Data
Warehousing, and Web Information Systems. Access limitations force
certain attributes to be selected in order to access the tables. It is
known that evaluating a conjunctive query under such access restrictions
amounts to evaluating a possibly recursive Datalog program. We address
the problem of checking containment of conjunctive queries under access
limitations, which is highly relevant in query optimization. Checking con-
tainment in such a setting would amount to checking containment of
recursive Datalog programs of a certain class, while, for general Datalog
programs, this problem is undecidable. We propose a decision procedure
for query containment based on the novel notion of crayfish-chase, show-
ing that containment can be decided in co-nexptime, which improves
upon the known bound of 2exptime. Moreover, by means of a direct
proof, our technique provides a new insight into the structure of the
problem.

1 Introduction

In Data Exchange and Integration [11,14,24], Data Warehousing, and Web In-
formation Systems, querying heterogeneous data sources, possibly on the web,
is a crucial issue. In this scenario, it is often the case that data sources impose
access limitations, i.e., they require that the query that is executed on them has
a special form. In particular, in the relational case, certain (fixed) attributes are
required to be selected, i.e., associated to a constant. This is true, for instance,
when the data source is accessible through a web form, that requires some fields
to be filled in, or in some legacy databases.

The presence of access limitations significantly complicates query processing;
in particular, as shown in [23,17,19], it requires the evaluation of a recursive
query plan, which can be suitably expressed in Datalog.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 326–340, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Conjunctive Query Containment under Access Limitations 327

Example 1. Consider the following relational sources: r1(Title,City ,Artist),
representing information about concerts, with song title, city of perfor-
mance, and artist name, and requiring the second attribute to be selected;
r2(Artist ,Nation,City), representing name, nationality and city of birth of
artists, and requiring the first attribute to be selected. In this case, given the
conjunctive query

q(A) ← r2(A, italian, modena)

asking for names of Italian artists born in Modena, we notice that q cannot be
immediately evaluated, since r2 requires the first attribute to be bound to a
constant (selected). However, the two attributes named City in r1 and r2 both
represent city names, and similarly the attributes named Artist represent artist
names.1 In such a case, we can use names of artists extracted from r1 to access
r2 and thus extract tuples that may contribute to the answer. More precisely, we
start from the constant ‘modena’, present in the query, and access r1; this will
return tuples with new artist names; such constants (artist names) can be used
to access r2. In turn, new tuples from r2 may provide new constants representing
city names, that can be used to access r1, and so on. Once this recursive process
has terminated, we have retrieved all obtainable tuples that contribute to the
answer.

Since accessing sources may be costly, especially on the web, an important issue is
how to optimize query evaluation. Query containment [15,6] is a well-recognized
problem in query evaluation and optimization, in particular in Data Integration
and Exchange; containment between two queries q1, q2 holds if the result of q1 is
always a subset of the result of q2, independently of the database on which the
queries are evaluated.

In this paper we address the problem of checking containment of conjunctive
queries in the presence of access limitations on the data sources. In particular:

1. We clearly state the problem in the case of access limitations, showing that it
amounts to checking containment between two recursive Datalog programs
(problem that is, in general, undecidable).

2. We introduce a novel formal tool to check containment of a conjunctive query
into another under access limitations, namely the crayfish-chase, that is a set
of databases that are representative of all databases that provide an answer
to a query. The crayfish-chase is in general an infinite set.

3. We give a direct proof of the decidability of containment in this setting,
by showing that, in order to check containment, it is sufficient to consider
databases in the crayfish-chase whose size does not exceed a certain limit.

4. We provide an upper bound to the complexity of conjunctive query contain-
ment, showing that it can be decided in co-nexptime, which improves the
known bound of 2exptime.

Finally, besides achieving a better worst-case complexity upper bound, the new
technique provides an insight into the query containment problem, that paves
1 In the following, this will be represented by the notion of abstract domain.

328 A. Cal̀ı and D. Martinenghi

the way to the investigation of the containment problem under limitations for
more expressive classes of queries, and under database dependencies.

2 Preliminaries

In this section we present the formal framework in which we address the problem
of query containment.

We consider relations as sets of facts whose arguments are values belong-
ing to given domains. Instead of using concrete domains, such as Integer or
String, we deal with abstract domains, which have an underlying concrete do-
main, but represent information at a higher level of abstraction, which, referring
to Example 1, distinguishes, e.g., strings representing artist names from strings
representing song titles. Access limitations on a relation are constraints that
impose that certain attributes must be selected (bound to a constant) for the
relation to be accessed. More formally, a schema with access limitations is a pair
〈R, Λ〉, where (i) R is a set of relational predicates, each with an associated ar-
ity; (ii) every attribute of a relational predicate r ∈ R has exactly one abstract
domain; (iii) Λ is a set of access limitations, that specifies, for every attribute
of every relational predicate, whether it is an input or an output attribute; in
order to access a relation in a query, all input attributes must be selected. For
convenience of notation, we indicate the access limitations of each relation as a
sequence, of ‘i’ and ‘o’ symbols written as a superscript in the signature of the
relation; an ‘i’ (resp., ‘o’) indicates that the corresponding argument is an input
(resp., output) argument. A signature has the form rΛr (A1, . . . , An), where r is
the relation name, n is the arity of r, Λr its access limitations, and each Ai is
an abstract domain. A relation over such a signature is a set of facts of the form
r(c1, . . . , cn) such that each ci is a value belonging to abstract domain Ai. A
(database) instance of a schema S is a union of relations, one over each signa-
ture in S, i.e., it is a set of facts. In the following, we assume two fixed domains:
a non-empty set Δ of constants and, for technical reasons, an infinite domain
ΔF of fresh constants. We call concrete those databases whose values belong to
Δ and virtual those databases whose values belong to ΔF ; we also assume that
constants in ΔF cannot appear in queries. We sometimes indicate a sequence of
terms (i.e., variables or constants) t1, . . . , tn as t, its length n as |t|, and similarly
a tuple 〈t1, . . . , tn〉 as 〈t〉, and its length n as |〈t〉|. A conjunctive query (CQ) q
of arity n over a schema S is written in the form

q(X) ← conj (X , Y)

where |X| = n, q(X) is called the head of q, conj (X , Y) is called the body of q
and is a conjunction of atoms involving the variables in X and Y and possibly
some constants, and the predicate symbols of the atoms are in S; 〈X〉 is denoted
as head(q), the set of atoms in the body is denoted as body(q), and |q| denotes
|body(q)|. The set of constants appearing in q is denoted const(q), the set of
variables var(q). A set of atoms N is connected if the non-directed graph (N ,A)
is connected, where N is the set of nodes, and A is the set containing exactly

Conjunctive Query Containment under Access Limitations 329

ρ1 : q(A) ← r̂2(A, italian, modena)
ρ2 : r̂1(T, C, A) ← r1(T, C, A), domC(C)
ρ3 : r̂2(A, N, C) ← r2(A,N, C), domA(A)
ρ4 : domT (T) ← r̂1(T, C, A)
ρ5 : domC(C) ← r̂1(T, C, A)
ρ6 : domA(A) ← r̂1(T, C, A)
ρ7 : domA(A) ← r̂2(A,N, C)
ρ8 : domN (N) ← r̂2(A,N, C)
ρ9 : domC(C) ← r̂2(A,N, C)
ρ10 : domN (italian)
ρ11 : domC(modena)

Fig. 1. Datalog program for Example 2

all arcs between any two atoms in N that share a variable or a constant. A CQ
q is connected if body(q) is. Every maximal subset of body(q) that is connected
is called a connected part of q.

In the following we shall extensively use the notion of mapping from terms to
terms, and typically we will map variables to terms, or fresh constants in ΔF

to constants in Δ. The term resulting from the application of such a mapping
μ to a term t is written μ(t); note that μ also induces a mapping from a tu-
ple θ = 〈t1, . . . , tn〉 to another tuple indicated μ(θ) = 〈μ(t1), . . . , μ(tn)〉, from
a fact f = r(t1, . . . , tn) to another fact indicated μ(f) = r(μ(t1), . . . , μ(tn)),
and from a database D = {f1, . . . , fm} to another database indicated μ(D) =
{μ(f1), . . . , μ(fm)}. A substitution mapping (or, simply, substitution) is a map-
ping from terms to terms that sends every constant into itself2; a substitution is
grounding for a set of variables V if it sends each variable in V into a constant.

Given a database D, the answer q(D) to a CQ q on D is the set of tuples 〈c〉
of constants, with |c| = |head(q)|, such that there is a substitution that sends
body(q) to facts of D and head(q) to 〈c〉.

In the presence of access limitations on the sources, queries cannot be eval-
uated as in the traditional case, as will be shown in Example 2. Given a query
over the data sources, an algorithm exists [17] that retrieves all the obtainable
tuples in the answer to the query. Such an algorithm consists in the evaluation
of a suitable Datalog program which extracts all obtainable tuples starting from
a set of initial values, each with an associated abstract domain, as described in
Example 1. The Datalog program, whose construction is sketched in Example 2,
encodes the limitations on the sources that must be respected during evaluation
of the query. The evaluation of the Datalog program is done as follows: start-
ing from a set of initial values, that must include those appearing in the query,
we access all the relations we can, according to their access limitations. With
the new facts obtained (if any), we obtain new values with which we can re-
peat the process and access the relations again, until we have no way of making
new accesses. The program extracts all facts obtainable while respecting the ac-
cess limitations, but there may be facts in the sources that cannot be retrieved.

2 Substitutions are sometimes written in postfix notation. Here we use infix notation.

330 A. Cal̀ı and D. Martinenghi

Given a query q posed over a schema S = 〈R, Λ〉, a set of constants I ⊆ Δ,
and a database D for S, we denote the answers obtained through the recursive
evaluation described above as ans(q,S, D, I). The tuples or facts extracted from
D starting from I and respecting Λ are said to be Λ, I-obtainable. Notice that
in general ans(q,S, D, I) ⊆ q(D).

Example 2. Consider again Example 1, with roio
1 (T, C, A) and rioo

2 (A, N, C).
The Datalog program generated by the algorithm of [17] for the query
q(A) ← r2(A, italian, modena) is shown in Figure 1. The query is rewritten
over the caches (rule ρ1) defined in the cache rules ρ2 and ρ3; these also ensure
that the facts that are stored in the caches are retrieved from the sources ac-
cording to the access limitations. Rules ρ4 − ρ9 are the domain rules. Finally,
ρ10, ρ11 are facts assigning the right abstract domain to the initial constants.

We now come to the problem of containment. Since, in the presence of access
limitations, the only way of accessing the sources to answer a query is to extract
the facts recursively as described above, we will define the containment between
two CQs by considering this query answering technique. As for the set of ini-
tial constants, in principle we may have additional constants with respect to
those appearing in the two queries; therefore, as set of initial constants, we shall
consider a superset of the union of the constants appearing in the two queries.

Definition 1. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1)∪ const(q2) ⊆ I ⊆ Δ; we say that q1 is contained in q2 under
Λ with respect to I, denoted q1 ⊆Λ,I q2, if, for every database D for R, we have
ans(q1,S, D, I) ⊆ ans(q2,S, D, I).

From the previous definition, it follows that checking containment would amount
to checking containment between two recursive Datalog programs, which in gen-
eral is an undecidable problem [1]. However, in the following we will show that,
due to the special form of the programs, checking containment under access
limitations is indeed decidable.

3 Containment under Access Limitations

We start by observing that query containment under access limitations is essen-
tially different from ordinary query containment, because, although the latter
entails the former, the converse does not hold, as shown in Proposition 1.

Proposition 1. Let q1 and q2 be two CQs over a schema 〈R, Λ〉, and I a set
of constants such that I ⊇ const(q1) ∪ const(q2). If q1 ⊆ q2 then q1 ⊆Λ,I q2, but
the converse does not hold.

Proof. Assume, w.l.o.g., that q1 and q2 have no variables in common. For
each obtainable answer tuple 〈t〉 to q1, there is a corresponding instance of
body(q1) whose facts are Λ, I-obtainable, i.e., there is a grounding substitu-
tion μt for var(q1) such that the facts in μt(body(q1)) are Λ, I-obtainable and

Conjunctive Query Containment under Access Limitations 331

μt(head(q1)) = 〈t〉. Since containment is assumed, there exists a substitution λ
such that λ(body(q2)) ⊆ body(q1), and λ(head(q2)) = head(q1). But then, for
each answer tuple 〈t〉 to q1 there is also an instance of body(q2) whose facts
are Λ, I-obtainable that generates the same answer tuple 〈t〉. To see this, it suf-
fices to note that the facts in μt(λ(body(q2))) are Λ, I-obtainable since those in
μt(body(q1)) are, and that 〈t〉 = μt(λ(head(q2))).

To see that the converse does not hold, consider a schema with two rela-
tions rii

1 (A, B) and roi
2 (B, C) and the queries q1(B) ← r1(a, B) and q2(B) ←

r1(a, B), r2(B, C) . For every I ⊇ {a} that does not contain any constant of ab-
stract domain B, we have that q1 ⊆Λ,I q2. Indeed, when evaluating q1, the only
Λ, I-obtainable facts for r1 are those whose second argument is some constant
b that occurs as first argument in a fact for r2, i.e., b is also an answer to q2.
However q1 �⊆ q2, since there is at least one database D such that q1(D) �⊆ q2(D)
(take, e.g., D = {r1(a, b)}).

We now present the foundations of our novel technique to check containment
of CQs under access limitations. Similarly to what is done for containment of
CQs under inclusion and functional dependencies [15], in order to check the
containment of a query q1 into another query q2, we characterize the set of all
databases that provide an answer tuple for q1 by constructing, starting from q1,
a set of databases called chase. In our case, the chase is constructed according to
the access limitations. With the chase at hand, we can evaluate q2 over a finite set
of databases in the chase of q1 in order to check the existence of a counterexample
to containment, i.e., a database D that provides an answer tuple to q1 that is
not in the answer to q2 in D.

The chase of a CQ under access limitations is defined as follows. Each database
of the chase starts from the frozen body of the query, i.e., the image of the body
of the query according to some grounding substitution that sends variables to
fresh constants. Then, according to the access limitations, we go back in the
extraction process, adding facts that may lead to the extraction of the previous
ones, and we continue to do that until all the facts we choose to add come from
relations whose input arguments are filled in by initial values. Since we proceed
somehow backwards, we call our chase crayfish-chase.

For convenience, we first need a preprocessing step (constElim) to eliminate
constants in the query, as illustrated in Figure 2. The intuition is that a con-
stant acts as a relation, called artificial relation, whose content is accessible and
amounts only to the constant itself. Under this assumption, the constant-free
query and the original one are equivalent, as specified in Proposition 2.

Proposition 2. Let q be a CQ over a schema S, I a set such that const(q) ⊆
I ⊆ Δ, and (S′, q′) = constElim(S, q, I). Let D be a database for S and let D′

be as D plus one fact �c(c) for each artificial relation �c in S′ with associated
constant c. Then q(D) = q′(D′).

Definition 2 (crayfish-chase). Consider a CQ q over a schema S = 〈R, Λ〉
and a set I such that const(q) ⊆ I ⊆ Δ. The crayfish-chase of q, denoted
cchase(q,S, I), is the set of all finite databases that can be constructed as follows.

332 A. Cal̀ı and D. Martinenghi

INPUT: a schema S , a CQ q over S , and a set I such that const(q) ⊆ I ⊆ Δ
OUTPUT: a schema S ′, a CQ q′ over S ′

– Let S ′ := S , q′ := q
– For each constant a ∈ I with abstract domain A

• Add signature �o
a(A) for the new artificial relation �a to S ′

• Replace all occurrences of a in q′, if any, with a fresh new variable Xa

• If a occurs in q, add the conjunct �a(Xa) to the body of q′

– Return (S ′,q′)

Fig. 2. Algorithm constElim for elimination of constants

Each database D ∈ cchase(q,S, I) is represented as a forest, the nodes of which
are facts of D; each node n has a level, denoted level(n), that is a non-negative
integer. The set of nodes at level h in a database D will be called level h of D.
The depth of D, denoted depth(D), is the maximum level of nodes in D.

1. Let (S′, q′) = constElim(S, q, I).
2. We fix a single injective substitution mapping μ for all databases of

cchase(q,S, I) that sends each variable in var(q′) into a fresh new constant
in ΔF , and thus body(q′) into a set of facts; such facts will be level 0 of D.
Each tree of the forest will be rooted at a node of level 0.

3. We call μ(head(q)) the head of the crayfish-chase, denoted
head(cchase(q,S, I)).

4. For each fact f = r(c1, . . . , cn) at level k, and for each input attribute of r,
say the i-th, there is exactly one fact f ′ = r′(c′1, . . . , c′m) such that ci = c′j, for
some position j corresponding to an output attribute of r′ having the same
abstract domain as ci’s. If f is at level k, then f ′ must be at level k +1, and
an arc (f, f ′) is in D. All other constants in f ′ must be fresh new constants
in ΔF , not appearing elsewhere in any of the levels less than or equal to
k + 1.

5. Each leaf of D is a fact of a (possibly artificial) relation without input argu-
ments.

The databases in the crayfish-chase of a query q, as stated in Lemma 1, are rep-
resentative of all concrete databases that return an answer to q while respecting
the access limitations, i.e., they are sufficient to retrieve all obtainable answers
to q and yet do not add any other answer.

Definition 3. A mapping λ from ΔF to Δ is said to be compatible with a virtual
database D (in short, D-compatible), if λ sends each constant ζ occurring in D
in a fact �c(ζ) of an artificial relation �c into the corresponding constant c.

Lemma 1. Let S be a schema, q a query over S, and I a set of constants
such that const(q) ⊆ I ⊆ Δ. (a) For every concrete database D such that there
exists a tuple t ∈ ans(q,S, D, I), there exists a database D′ ∈ cchase(q,S, I)
and a D′-compatible mapping λ from ΔF to Δ such that λ(D′) ⊆ D and
t ∈ ans(q,S, λ(D′), I).

Conjunctive Query Containment under Access Limitations 333

0

1

2

3

4

r1(ζ0, ζ1, ζ2)

�a(ζ0) r2(ζ3, ζ1)

r1(ζ4, ζ5, ζ3)

�a(ζ4)

r1(ζ0, ζ1, ζ2) �a(ζ0)

r2(ζ3, ζ1)

�a(ζ0)

r3(ζ6)

r2(ζ6, ζ5)

r3(ζ0)

�a(ζ3)

Fig. 3. Database forests in the crayfish-chase cchase(q, S , I) of Example 3

(b) Conversely, for every database D′ ∈ cchase(q,S, I) and for every D′-
compatible mapping λ from ΔF to Δ such that λ(D′) is concrete, if there
exists a tuple t′ ∈ ans(q,S, λ(D′), I), then there is a database D such that
t′ ∈ ans(q,S, D, I).

Proof (sketch). (a) If t can be obtained in D, this means that there is a grounding
substitution μ for var(q) such that μ(head(q)) = t and all the facts in μ(body(q))
are obtainable and in D. Therefore, each fact in μ(body(q)) either has constants
from I in all its input positions, or, inductively, for each constant c not from
I in an input position there is some obtainable fact in D with c in an output
position. But this models exactly a tree of a database of cchase(q,S, I), with the
only difference that here there may be more than one constant not from I in
common in two facts, which can be captured by a mapping λ.
(b) This holds by construction: by applying λ to D′ one obtains a database D
with t′ in the answer to q.

Example 3. Assume we have a schema S with the following relations:
riio
1 (A, B, A), rio

2 (A, B), ro
3(A). Consider the query q(X2) ← r1(a, X1, X2) and

the set I = {a}. First of all, we transform the query by eliminating the constants:
we get q′(X2)← r1(X0, X1, X2), �a(X0), where �a is an auxiliary predicate with
signature �o

a(A); no other auxiliary predicates are introduced. After freezing the
query, we obtain two facts in the frozen body: r1(ζ0, ζ1, ζ2) and �a(ζ0); the head
of cchase(q,S, I) is 〈ζ2〉. Every database in cchase(q,S, I) is a forest of exactly
two trees rooted at r1(ζ0, ζ1, ζ2) and �a(ζ0) respectively, since these two facts
constitute the level 0 of every database in the chase; every tree rooted in �a(ζ0)
will consist of only one node; two possible databases (forests) are depicted in
Figure 3, separated by a dashed vertical line on which we have indicated the
depth of the different levels.

We now show that, when considering q1 ⊆Λ,I q2, once we have the crayfish-chase
of q1, the evaluation of q2 over a database in the above chase can ignore the
access limitations, as long as the same set of initial constants is used.

334 A. Cal̀ı and D. Martinenghi

Lemma 2. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, a set I ⊆ Δ,
and a database D ∈ cchase(q1,S, I); then ans(q2,S, D, I) = q2(D).

Proof. Straightforward, since all facts in D are, by construction, Λ, I-obtainable.

Lemma 3. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ. Then q1 ⊆Λ,I q2 if and only if, for
every database D ∈ cchase(q1,S, I), head(cchase(q1,S, I)) ∈ ans(q2, D,S, I).

Proof (sketch). “⇐” Consider a generic concrete database B such that there
exists a tuple t in ans(q1,S, B, I); by Lemma 1, there exist a database D ∈
cchase(q1,S, I) and a mapping λ from ΔF to Δ compatible with D such that
λ(D) ⊆ B and t ∈ ans(q1,S, λ(D), I). Now, by hypothesis, there exists a map-
ping μ that sends body(q2) to facts of D, and head(q2) to head(cchase(q1,S, I));
we have that λ(μ(body(q2))) ⊆ B and λ(μ(head(q2))) = t. This proves that
t ∈ ans(q2,S, B, I) and thus that q1 ⊆Λ,I q2, since B was generic.

“⇒” Trivial, from the definition of containment under access limitations.

Now we come to the main result in this section, that follows trivially as a corollary
of Lemma 2 and Lemma 3, stating that examining the databases of a crayfish-
chase provides us with a necessary and sufficient condition to test containment
of CQs under access limitations.

Theorem 1. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set I
such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ. Then, q1 ⊆Λ,I q2 if and only if, for
every database D ∈ cchase(q1,S, I), head(cchase(q1,S, I)) ∈ q2(D).

Notice that the previous theorem does not provide any direct strategy for check-
ing containment; indeed, given a CQ over a schema S, and a set I of initial
constants, the number of databases in cchase(q1,S, I) may be infinite. Also, no-
tice that, although all databases in cchase(q1,S, I) are of finite size, there is in
general no fixed bound on such size.

4 Decidability and Complexity

In this section we give a direct proof of decidability of checking containment
between CQs under access limitations that exploits the notion of crayfish-chase.
This will be done by showing that, while checking q1 ⊆Λ,I q2, when we look for a
substitution that sends body(q2) to facts in some database D ∈ cchase(q1,S, I)
(and head(q2) to head(cchase(q1,S, I))), it is sufficient to consider databases in
cchase(q1,S, I) whose depth does not exceed a certain limit, depending on the
schema and the queries. In particular, Lemma 5 states that in order to find a
counterexample showing that q1 �⊆Λ,I q2, we need to consider only databases of
the crayfish-chase of q1 of limited depth. This allows us to provide an improved
upper bound for the complexity of this problem, as shown in Theorem 2. This
requires some preparatory lemmas and definitions.

We first show that two facts sharing a constant in a database of a crayfish-
chase cannot be more than one level apart.

Conjunctive Query Containment under Access Limitations 335

Lemma 4. Consider a database D in a crayfish-chase. If two nodes n1 and n2

in D have a constant in common, then |level(n1)− level(n2)| ≤ 1.

Proof. If n1 = n2 the claim trivially holds. By construction of the crayfish-chase,
the constants that appear at some level k of D cannot appear in any level greater
than k + 1. In particular, all constants in output arguments are not propagated
to the next level, while those in input arguments occur only in output fields in
the next level, and therefore disappear after two levels. Therefore, either n1 and
n2 are connected by an arc (and thus their levels are at a distance of 1), or each
of them lies on a level less than 2 (not necessarily connected by an arc, since
different nodes of level 0 may share constants).

As a consequence of Lemma 4, a connected part of n atoms of a query cannot
be mapped on more than n contiguous levels.

Corollary 1. Consider a CQ q over a schema S = 〈R, Λ〉, a set I such that
const(q) ⊆ I ⊆ Δ, and a database D ∈ cchase(q, Λ, I). Let P be any connected
part of q′, where (S′, q′) = constElim(S, q, I); if there exists a substitution μ
sending variables to constants in ΔF that sends the atoms in P into facts of
D, then max{pi,pj}⊆P(|level(μ(pi))− level(μ(pj))|) ≤ |P|, i.e., μ(P) lies onto at
most |P| contiguous levels on D.

Henceforth, we shall denote with subtree(c) the subtree (of a given tree) having
node c as root, and containing all descendants of c; with k-subtree(c), k a positive
integer, we denote the subtree rooted in c, and containing all descendants of c
up to level level(c)+ k− 1. Lemma 5, below, shows that if a query does not map
onto a database of a crayfish-chase, then there is a (possibly different) database
of the chase which has limited depth and onto which the query still cannot
be mapped. To construct this database, we trim redundant parts by using the
notion of subtree replacement.

Definition 4 (Subtree replacement). Let D be a virtual database of a
crayfish-chase, and consider two nodes n1 = r(c1, . . . , ck) and n2 = r(d1, . . . , dk)
in D, such that n2 is a descendant of n1. Let μ be a mapping from ΔF to ΔF

that sends di into ci for 1 ≤ i ≤ k and every other constant into itself. Then,
a replacement of subtree(n1) with subtree(n2) in D is the result of replacing
subtree(n1) with μ(subtree(n2)).

Lemma 5. Consider two CQs q1, q2 over a schema S = 〈R, Λ〉, and a set
I such that const(q1) ∪ const(q2) ⊆ I ⊆ Δ; if there exists a database D ∈
cchase(q1,S, I) such that head(cchase(q1,S, I)) �∈ q2(D), then there exists a
database D′ ∈ cchase(q,S, I) such that head(cchase(q1,S, I)) �∈ q2(D′), and such
that depth(D′) ≤ 2 · |R|+ |q2| − 3.

Proof.
Case (1): q2 is connected.

Subcase (1a). There is only one relation r among those in q2 such that, for
every database B ∈ cchase(q1,S, I), if q2 can be mapped onto facts of B, the

336 A. Cal̀ı and D. Martinenghi

π1

c

b b

π1

Fig. 4. Subtree replacement of subtree(b) with subtree(c) (Lemma 5)

d

e

σde

|q2|

Fig. 5. Second phase of iterative subtree replacement (Lemma 5)

mapped fact f with smallest level has relation r and no mapped fact with a
different relation has level equal to level(f).

Since q2 is connected, if it is mapped onto a database, by Corollary 1,
it will be mapped onto facts whose level is between level(f) and level(f) +
|q2| − 1.

Take now any path π1 from a node at level 0 to a leaf of D. For simplicity,
we say that a relation r occurs in a path π (and that π contains r), if a
fact of the form r(ζ) occurs in it π. Since q2 cannot be mapped onto D
by hypothesis, a fortiori q2 cannot be mapped onto any of the |q2|-subtrees
rooted in any of the occurrences of r in π1. Let b be the node of π1 with the
occurrence (if any) of r with the smallest level (call a its parent if b is not at
level 0) and let c be the one with the greatest level. We apply the replacement
of subtree(b) with subtree(c), as shown in Figure 4. In the obtained database,
q2 continues to be not mappable, since (i) facts have been removed from D,
and (ii) only one potential ”join” has been added (that between c and a in
D), which is irrelevant to q2, since a’s relation is certainly different from r,
and r was assumed to be the only possible predicate at the smallest level
of facts of the image of q2 (and r does not occur above b in π1). This step
is repeated for every path in which r occurs. After this, in all paths from a
node at level 0 to a leaf of the obtained database, r occurs at most once and
q2 is still not mappable.

Conjunctive Query Containment under Access Limitations 337

To complete the transformation, we apply the following steps as long as
possible to every path π2 from a node at level 0 and a leaf.
– If π2 does not contain r, we a apply subtree replacement, in the same

way as was done for r above, for any relation occurring more than once
in π2; again, non-mappability of q2 onto the database is preserved. At
the end of the process, each such path will have at most length |R| − 1.

– If π2 contains r, let d be the node at level 0, and e the node with r; the
segment σde of π2 from d to e contains r only in e. If there is another
relation s occurring more than once in σde, we apply the replacement of
the subtree rooted at the occurrence of s in σde closest to d with the one
with the occurrence in σde closest to e, as shown in Figure 5; again, non-
mappability is preserved; besides, after all such replacements, σde has
length at most |R|. We apply in the same way all possible replacements
to remove multiple occurrences of a relation in all subtrees rooted in
a node of subtree(e) lying at level level(e) + |q2| − 1. Thus, the |q2|-
subtree(e) (shaded in Figure 5) on which q2 cannot be mapped is kept
and the distance between e and the leaves will eventually be at most
(|q2| − 1) + (|R| − 1) = |q2|+ |R| − 2.

In total, the obtained database D′ has depth at most |R|+(|q2|+|R|−2)−1 =
2 · |R|+ |q2| − 3 and q2 cannot be mapped onto D′.

Subcase (1b): There is more than one relation that can be on the smallest level
of the mapped facts of q2 in a crayfish-chase database; let call F the set of
such relations. For each path in D from a node of level 0 to a leaf, consider the
occurrence with smallest level among the relations in F . For that relation,
we apply the replacement of the first occurrence with the last occurrence on
the path. Since it was the first occurrence of a relation in F , the join added
with the replacement will not introduce mappability of q2. After all such
replacements are applied, in each path from level 0 to a leaf, the relation, say
r, of the occurrence, say a, with smallest level among the relations in F will
occur only once. With this in mind, we proceed as in subcase 1a to eliminate
all multiple occurrences of relations above a in the path, still preserving
non-mappability, so that eventually level(a) will be at most |R| − 1. Also,
we safely apply all possible replacements to remove multiple occurrences
of a relation in all subtrees rooted in a node of subtree(a) lying at level
level(a) + |q2| − 1, since in any such subtree r does not occur, and thus q2

cannot be mapped onto (and we know that q2 cannot be mapped onto the
|q2|-subtree(a), which is kept). In the end we still obtain a database D′ with
depth at most 2 · |R|+ |q2| − 3 such that q2 cannot be mapped onto D′.

Case (2): q2 is not connected. We proceed as in the case of a connected query,
and apply the same argument on one of the connected parts of q2. Clearly, if a
connected part of q2 cannot be mapped, q2 cannot be mapped either.

Finally, we characterize the computational complexity of our query containment
problem, by providing an upper bound for it.

Theorem 2. Containment of conjunctive queries under access limitations is
decidable in co-nexptime.

338 A. Cal̀ı and D. Martinenghi

Proof (sketch). By virtue of Theorem 1 and Lemma 5, in order to check con-
tainment, only databases of a limited depth need to be checked. There are only
finitely many such databases that are different modulo isomorphism.

Let q1 ⊆Λ,I q2 be the containment to be decided for a schema S = 〈R, Λ〉. We
use a nondeterministic algorithm that guesses a database D ∈ cchase(q1,S, I)
with maximum number of levels δ = 2 · |R| + |q2| − 3 that is a witness of non-
containment; by Lemma 5, we know that we do not need to consider databases of
bigger depth for this purpose. The guessed database has at most O(W δ) nodes,
where W is the maximum arity of the relations inR; notice that each node has at
most W children, each of which can be chosen in at most |R| ·W different ways.
The database D can therefore be guessed in exponential time (w.r.t. δ) by a
nondeterministic algorithm. After that, checking, on the same nondeterministic
branch, whether q2(D) yields head(cchase(q,S, I)) can be done in polynomial
time in the size of D, i.e., in exponential time w.r.t. δ. Therefore a witness for
non-containment can be guessed in nexptime, from which the thesis follows.

5 Related Work

The issue of processing queries under access limitations has been widely in-
vestigated in the literature [23,17,19,18,12,10]; in particular, [12] considers the
optimization of non-recursive plans, [10] addresses the problem in the case of
query answering using views, and [23] presents a polynomial-time algorithm to
decide whether a CQ can be answered in the presence of access limitations. Re-
cursive query plans were introduced in [22,17]; in particular, [22] addresses the
problem of query containment under access limitations.

The problem of checking containment of two CQs under access limitations
was shown to be decidable in [22] in the setting of data integration systems
using the local-as-view approach by reducing this problem to containment of a
recursive Datalog program in a non-recursive one; the optimal complexity for
this problem is 3exptime [7]. In [18], the authors propose an encoding of CQs
with access limitations into monadic Datalog programs; containment between
monadic Datalog programs was shown to be decidable in 2exptime in [8], which
immediately provides a 2exptime upper bound for containment of CQs under
access limitations. The same upper bound is easily obtained by combining the
results from Section 3 with the complexity of checking containment of a Datalog
program in a CQ; such problem was shown to be decidable in 2exptime (tight
bound) in [7]. In this paper, we improve upon this upper bound by providing an
algorithm that checks containment in co-nexptime, as mentioned in the position
paper [4] and informally presented in [3].

In [16], the author addresses the issue of stability, i.e., determining whether
the complete answer to a query (the one that would be obtained with no ac-
cess limitations) can always be computed despite the access limitations. [25]
addresses the problem of ordering subgoals for non-recursive Datalog queries in
oder to make the query executable from left to right complying with the access
limitations. In [2], a run-time optimization technique, that exploits the infor-
mation about database dependencies that hold on the sources, is presented; [5]

Conjunctive Query Containment under Access Limitations 339

uses the structure of the query to minimize the accesses needed to retrieve all
obtainable answers to a query. [9] solves the (quite general) problem of query an-
swering using views [13] under integrity constraints and under access limitations
by reducing it to the same problem under integrity constraints only; various ex-
tensions to the query languages are provided. In [20], the authors analyze the
complexity of determining the feasibility of a query, i.e., determining whether
there exists an equivalent query that is executable as is, while respecting the
access limitations. [21] studies the complexity of the feasibility problem for CQs,
UCQs, CQ¬s and UCQ¬s.

6 Conclusions

We have addressed the problem of containment of CQs in the case where ac-
cess limitations are present on the relational schema. This problem is highly
relevant in query optimization. In the presence of access limitations, the eval-
uation of a query is in general inherently recursive and can be encoded in a
Datalog program. The problem of containment would then amount to checking
containment between two Datalog programs, which is undecidable. However, in
this particular case, containment checking is indeed decidable, and we have pro-
vided an improved upper bound to the complexity of the problem by exhibiting
a nondeterministic algorithm that solves it.

With our crayfish-chase technique we have provided a direct proof of decid-
ability that we plan to use for further investigations. In particular, we intend to
extend our results to more general classes of queries, and to extend the prob-
lem by introducing integrity constraints on the schema. The combination of
our crayfish-chase with the well-known chase based on inclusion and functional
dependencies seems a promising direction of research. We also plan to extend
the results presented in this paper by finding a lower complexity bound for the
problem of query containment.

Acknowledgments. A. Cal̀ı was supported by the EPSRC project “Schema
Mappings and Automated Services for Data Integration and Exchange”
(EP/E010865/1). D. Martinenghi acknowledges support from Italian PRIN
project “New technologies and tools for the integration of Web search services”.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ.
Co., Reading (1995)

2. Cal̀ı, A., Calvanese, D.: Optimized querying of integrated data over the Web. In:
Proc. of the IFIP WG8.1 Working Conference on Engineering Information Systems
in the Internet Context (EISIC 2002), pp. 285–301. Kluwer Academic Publisher,
Dordrecht (2002)

3. Cal̀ı, A., Calvanese, D.: Containment of conjunctive queries under access limita-
tions (extended abstract). In: Proc. of SEBD 2006, pp. 131–138 (2006)

340 A. Cal̀ı and D. Martinenghi

4. Cal̀ı, A., Calvanese, D.: Optimising query answering in the presence of access lim-
itations (position paper). In: Proc. of the 2nd Workshop on Logical Aspects and
Applications of Integrity Constraints (LAAIC 2006). IEEE Computer Society, Los
Alamitos (2006)

5. Cal̀ı, A., Calvanese, D., Martinenghi, D.: Optimization of query plans in the pres-
ence of access limitations. In: Arenas, M., Hidders, J. (eds.) EROW 2007 (ICDT
workshop), Informal proceedings, pp. 33–47 (2007)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. of STOC 1977, pp. 77–90 (1977)

7. Chaudhuri, S., Vardi, M.Y.: On the equivalence of recursive and nonrecursive dat-
alog programs. J. of Computer and System Sciences 54(1), 61–78 (1997)

8. Cosmadakis,S.S.,Gaifman,H.,Kanellakis,P.C.,Vardi,M.Y.:Decidableoptimization
problems for database logic programs. In: Proc. of STOC 1988, pp. 477–490 (1988)

9. Deutsch, A., Ludäscher, B., Nash, A.: Rewriting queries using views with access
patterns under integrity constraints. In: Proc. of ICDT 2005, pp. 352–367 (2005)

10. Duschka, O.M., Levy, A.Y.: Recursive plans for information gathering. In: Proc.
of IJCAI 1997, pp. 778–784 (1997)

11. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. Theor. Comp. Sci. 336(1), 89–124 (2005)

12. Florescu, D., Levy, A.Y., Manolescu, I., Suciu, D.: Query optimization in the pres-
ence of limited access patterns. In: Proc. of ACM SIGMOD, pp. 311–322 (1999)

13. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10(4), 270–
294 (2001)

14. Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective.
In: Proc. of PODS 1997, pp. 51–61 (1997)

15. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under func-
tional and inclusion dependencies. J. of Computer and System Sciences 28(1),
167–189 (1984)

16. Li, C.: Computing complete answers to queries in the presence of limited access
patterns. VLDB Journal 12(3), 211–227 (2003)

17. Li, C., Chang, E.: Query planning with limited source capabilities. In: Proc. of
ICDE 2000, pp. 401–412 (2000)

18. Li, C., Chang, E.: Answering queries with useful bindings. ACM Trans. on Database
Systems 26(3), 313–343 (2001)

19. Li, C., Chang, E.: On answering queries in the presence of limited access patterns.
In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 219–233.
Springer, Heidelberg (2000)

20. Ludäscher, B., Nash, A.: Processing first-order queries under limited access pat-
terns. In: Proc. of PODS 2004, pp. 307–318 (2004)

21. Ludäscher, B., Nash, A.: Processing union of conjunctive queries with negation
under limited access patterns. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 422–440. Springer, Heidelberg
(2004)

22. Millstein, T.D., Levy, A.Y., Friedman, M.: Query containment for data integration
systems. In: Proc. of PODS 2000, pp. 67–75 (2000)

23. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns. In: Proc. of PODS 1995 (1995)

24. Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis,
P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1996)

25. Yang, G., Kifer, M., Chaudhri, V.K.: Efficiently ordering subgoals with access
constraints

Automatic Extraction of Structurally Coherent

Mini-Taxonomies

Khalid Saleem and Zohra Bellahsene

LIRMM - UMR 5506 CNRS University Montpellier 2,
161 Rue Ada, F-34392 Montpellier

{saleem,bella}@lirmm.fr

Abstract. Today, ontologies are being used to model a domain of knowl-
edge in semantic web. OWL is considered to be the main language for
developing such ontologies. It is based on the XML model, which inher-
ently follows the hierarchical structure. In this paper we demonstrate an
automatic approach for emergent semantics modeling of ontologies. We
follow the collaborative ontology construction method without the direct
interaction of domain users, engineers or developers. A very important
characteristic of an ontology is its hierarchical structure of concepts. We
consider large sets of domain specific hierarchical structures as trees and
apply frequent sub-tree mining for extracting common hierarchical pat-
terns. Our experiments show that these hierarchical patterns are good
enough to represent and describe the concepts for the domain ontology.
The technique further demonstrates the construction of the taxonomy
of domain ontology. In this regard we consider the largest frequent tree
or a tree created by merging the set of largest frequent sub-trees as the
taxonomy. We argue in favour of the trustabilty for such a taxonomy and
related concepts, since these have been extracted from the structures be-
ing used with in the specified domain.

Keywords: Ontology Learning, Mini-taxonomies, Collaborative Ontol-
ogy Construction, Tree Mining, Large Scale.

1 Introduction

Semantic web provides a platform where machines can move one step further
and understand the contextual meaning of the data. One of the most promising
technique in this regard has been the ontology. Its utilisation has been demon-
strated from simple schema matching for data integration [16] to large scale
complex web services management [2] 1. Ontologies are also making their way
into social resource sharing systems, which evolve on user actions and interac-
tions. Currently such environments use data structures like folksonomies [12],
consisting of arbitrary keywords to resources by users, presenting a lightweight
knowledge representation technique.

1 Web Service Modeling Ontology - http://www.w3.org/Submission/WSMO/

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 341–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

342 K. Saleem and Z. Bellahsene

There have been several works concerned with ontology engineering, elabo-
rating manual and semi-automatic techniques. Ontologies have been build from
scratch and from already available data content, in the form of text [3], web [6,
14,20], tables [19], relational schemas [13], XML schemas and documents [9]. In
all these works the ontological constructs have been the same; terms, concepts,
concept hierarchies, relations and rules or logic. These features of an ontology
have been described in detail by Paul Buitelaar et al. [3] as an ontology learning
layer cake. These ontology features have a direct relation to the layered approach
of semantic web [1].

In this paper we propose a novel approach for finding domain ontology con-
cepts as mini-taxonomies, using tree mining technique. The approach is further
extended to build a base taxonomy for the domain ontology. Mining techniques
extract frequent patterns from a large repository of data and growing frequent
patterns mining predict possible extensions of these patterns. The function of
tree mining is to find sub-tree patterns that are frequent in the given set of trees.
A sub-tree pattern starts with one node and is incrementally augmented. There
are different techniques [5] which mine rooted, labeled, embedded or induced,
ordered or unordered sub-trees.

Contributions
Our approach presents a methodology for extracting mini-taxonomies, repre-
senting domain concepts, as frequent sub-trees from the given set of hierarchical
structures. These hierarchical structures can be existing ontology taxonomies,
XML schemas or some folksonomy having tree like data structure. For simplicity
we use the word schema for these structures. The main features of our approach
are as follows.

1. The approach is almost automatic, based on a tree mining technique support-
ing large scale scenarios. To support tree mining, we model input schemas
as rooted ordered (depth-first) labelled trees.

2. The technique builds clusters of similar terms based upon labels similarity of
input schemas’ elements. The similarity is computed using label’s syntactic,
lexical and contextual (hierarchical) occurrence in the schema. Each cluster
is represented by a single symbol i.e., the most frequent label in the input
set of schemas, in each cluster.

3. It proposes ontology concepts as mini-taxonomies which are extracted using
tree mining technique researched in [21].

4. It generates similar hierarchical patterns from extracted mini-taxonomies, in
conjunction with similar terms clusters.

5. The approach automatically produces a trustable basic domain taxonomy
from the given set of domain specific schemas, implying domain community
consensus over it.

6. The approach was implemented as a prototype. We report on experiments
using different real (COURSES 2) and synthetic scenarios, demonstrating
quality of generated mini-taxonomies using precision measure.

2 http://www.cise.ufl.edu/research/dbintegrate/thalia/

Automatic Extraction of Structurally Coherent Mini-Taxonomies 343

The remainder of the paper is organized as follows. Section 2 presents the
background of ontology engineering. In section 3 we discuss our work in relation
to previous works in the domain of ontology learning and collaborative knowledge
acquisition. In Section 4 we give detail of our approach, Automatic Extraction of
Structurally Coherent Mini-Taxonomies (ExSTax). Section 5 demonstrates an
example, using synthetic set of hierarchical structures to support our technique.
Section 6 presents the experimental evaluation along with discussion on the
results. Section 7 outlines future perspective and concludes.

2 Ontology Engineering Overview

Discussion on ontology building and utilisation has been around since early 90s.
Ontology has been defined in [10] as an explicit, formal specification of a shared
conceptualisation of a domain of interest. Formalization aspect highlights the
machine readability of the ontology and shared conceptualization points toward
its acceptance by the players of the domain. Initial ontology development en-
deavors resulted in the form of DAML3 and OIL4 languages. Today the features
of the two languages have been extended to OWL5, based on XML model.

Initial focus in ontology design has been the manual technique but with the
passage of time more and more semi-automatic techniques have emerged, facili-
tated by ontology editing tools6. The semi-automatic approach is named as the
ontology learning process.

Ontology learning is a combination of tasks organised as a layered approach, in
the manner of increasing complexity. The tasks are enumerated by Paul Buitelaar
et al. in [3] as term extraction, synonym and translation detection, concept
formulation, concept hierarchies, relations, rule derivation and axiomatization.

Concept hierarchy, also called taxonomy (is-a relation), is a tree structure of
classifications for a given set of ontological objects. It is considered to be the
ontology backbone. At the top of this structure is a single classification, the
root node, that applies to all objects. Nodes below this root are more specific
classifications that apply to subsets of the total set of classified objects. So
for instance, in common schemes of books, the root is called ”Book” followed
by nodes for the type: Art, Science, Fiction, Sports, etc. And each instance of
”Book” concept can have properties like author, title, publisher etc. (Figure 1)

Our work is a step toward automatic conceptualisation of an ontology for a
certain domain, already populated with large set of user defined hierarchical meta
data structures for diverse applications. For example XML schemas, taxonomies
etc. or entities from which hierarchical structures can be extracted, like web
based query interface forms.

3 DAML: Darpa Agent Markup Language - http://www.daml.org/
4 OIL: Ontology Interface Layer - http://www.ontoknowledge.org/oil/
5 OWL: Web Ontology Language - http://www.w3.org/TR/owl-features/
6 Protege is a free, open source ontology editor and knowledge-base framework;

http://protege.stanford.edu/

344 K. Saleem and Z. Bellahsene

Fig. 1. Ontology taxonomy example

3 Related Work

One of the foremost technique applied for ontology learning has been term ex-
traction from text. Similar terms are clustered together for further analysis and
inception of inter term relations or taxonomy. These methods have their roots in
natural language processing research [4]. Buitelaar et al. present their OntoLT
approach as a plug-in for protege ontology editing tool. The authors define pre-
conditions using XPATH expressions over the XML based linguistic annotations.
The rules help in constructing or extending an ontology. The preconditions re-
volve around the linguistic constructs in a sentence. For example if the subject
in the sentence corresponds to a certain morphological stem of a word.

Terms similarity computation has been researched in two ways. Primarily by
using readily available lexical resources like Wordnet7. And secondly, by devising
clustering algorithms based on the syntactic similarity of the terms. Information
retrieval techniques [18] based on term indexing and data mining methods [11]
provide the space for such algorithms.

There is no definite definition available for concept formation. Our approach
follows the hierarchical representation of concepts [7] which can be extended,
upon receiving further information about the concept. The extension idea has
been pruned in [15] as binary relation extraction of terms and recommendations
have been made for use of data mining co-occurrence algorithms. These methods
can ultimately provide an incremental approach for ontology learning.

World wide web has also been extensively exploited in this regard. [20] de-
scribe a tool which prunes the web resources like Wikipedia, Wiktitionary, along
with domain corpus for domain ontology learning. These resources are exploited
against a set of candidates extracted from a set of ontology instances using the
linguistic context. Another work by Maedche et al. [14] explains two algorithms,
top-down and bottom-up approaches, for deducing taxonomic relations from the
web based on heuristics. Our approach presents a similar top-down method, by
applying tree-mining on the available hierarchical structures in a domain. In [9],
the authors present the use of semi-structured schemata (XML and RDF based
resources) for constructing a domain ontology, manually and semi-automatically.

Another interesting research for ontology generation is the use of tables ex-
tracted from web and other resources. Authors in [19] argue that the extraction
of relational knowledge from tables is much easier than exploiting the text cor-
pus. The research describes a comprehensive framework for assembling human
created tables. The approach canonicalises each table information, generates a
mini-ontology from it and then incrementally merges the mini-ontologies.
7 http://wordnet.princeton.edu

Automatic Extraction of Structurally Coherent Mini-Taxonomies 345

Social collaborative networks present a new range of emerging semantics on
the web. In such environments users set up lightweight conceptual structures,
assigning arbitrary keywords, called tags, to resources. Such conceptual struc-
tures are also called folksonomies. Research work in [12] presents a data mining
technique for discovering shared conceptualisations in folksonomies. The tech-
nique extends the data mining task of discovering all closed itemsets to frequent
tri-concepts (user, tag and resource) extraction. With social networks gaining
more ground, standards are also evolving for them. FOAF 8(Friend of a Friend)
ontology standard is one such example, providing structural data model for the
folksonomies. Thus paving the way for tree mining techniques in the social net-
work environments.

4 Our Approach: ExSTax

In this section we present our approach, ExSTax, for detection of ontological con-
cepts as mini-taxonomies, from the available domain specific hierarchical struc-
tures. We discuss the architecture, the related definitions and methods in length
to clarify the novelty of our method.

4.1 Definitions

Following are the basic definitions supporting the implementation of our tech-
nique.

Definition 1 (Hierarchical Structure/Schema): A Hierarchical Structure
S = (V, E) is a rooted, labeled tree [21], consisting of nodes V = {0, 1, . . . , n},
and edges E = {(x, y) | x,y ∈ V }. One distinguished node r ∈ V is called the
root, and for all x ∈ V , there is a unique path from r to x. Further, lab:V → L
is a labeling function mapping nodes to labels in L = {l1, l2, . . .}.

In further text we will refer to hierarchical structure as tree. Tree nodes bear
two kinds of information: the node label, and the node number allocated during
depth-first traversal. Labels are linguistically compared to calculate label sim-
ilarity (Definition 2, Label Semantics). Node number is used to calculate the
node’s tree context (Definition 3, Node Scope).

Definition 2 (Label Semantics): A label l is a composition of m strings,
called tokens. We apply the tokenisation function tok which maps a label to a
set of tokens Tl={t1, t2, . . . , tm}. Tokenisation [8] helps in establishing similarity
between two labels.
tok : L → P(T), where P(T) is a power set over T={t1, t2, . . .}.

Example 1 (Label Equivalence): ‘FirstName’, tokenised as {first,name}, and
‘NameFirst’, tokenised as {name, first}, are equivalent, with 100 % similarity. •

8 http://xmlns.com/foaf/0.1/

346 K. Saleem and Z. Bellahsene

Label semantics correspond to the meaning of the label (irrespective of the node
it is related to). It is the composition of meanings attached to the tokens mak-
ing up the label. As shown by Examples 1 and 2, different labels can represent
similar concepts. We denote the concept related to a label l as C (l).

Example 2 (Synonymous Labels): ‘WriterName’, tokenisedas{writer,name},
and ‘AuthorName’, tokenised as {author, name} are equivalent (they represent the
same concept), since ‘writer‘ is a synonym of ‘author‘. •

Fig. 2. Input hierarchical structure with scope

Definition 3 (Node Scope): In tree S each node x ∈ V is numbered ac-
cording to its order in the depth-first traversal of S (the root is numbered 0).
Let SubT ree(x) denote the sub-tree rooted at x, and x be numbered X , and let
y be the rightmost leaf (or highest numbered descendant) under x, numbered Y .
Then the scope of x is scope(x)=[X,Y]. Intuitively, scope(x) is the range of nodes
under x, and includes x itself, see Figure 2. The count of nodes in SubT ree(x)
is Y −X + 1.

4.2 Scope Properties

Scope properties describe the contextual placement of a node [21]. Property test-
ing involves simple integer comparisons. We utilise these properties in frequent
sub-tree detection.

Given x [X,Y], xd[Xd,Yd], xa[Xa,Ya], and xc[Xc,Yc]:
Property. 1: Descendant (x,xd), xd is a descendant of x: Xd>X ∧ Yd≤Y
Property. 2: Ancestor (x,xa), complement of Property 1, xa is ancestor of x:
Xa<X ∧ Ya≥Y
Property. 3: Cousin (x,xc) with non-overlapping scope, xc is cousin of x: Xc>Y.

Example 3 (Scope Properties Use): Let us consider Figure 2. We perform
the descendant node check on nodes [2,2] and [5,5] with respect to writer[1,2].
Node [2,2] is a descendant of [1,2], using Property 1, and node [5,5] is not a
descendant of [1,2]. Conversely speaking writer[1,2] is an ancestor of node [2,2]
and not of node [5,5] according to Property 2. Consider node writer[1,2] and
node publisher[4,5]. The two nodes are cousin nodes since they satisfy the
Property 3. •

Automatic Extraction of Structurally Coherent Mini-Taxonomies 347

4.3 Architecture

The architecture of our approach for ontology taxonomy learning through tree
mining is shown in Figure 3. The approach is composed of five modules:
(i) Pre-Phase, (ii) Similar Terms Computation and Clustering, (ii) Concepts
Formulation, (iv) Similar Mini-Taxonomies Generation and (v) Trustable Base
Taxonomy Construction, supported by a repository which houses oracles and
concepts’ taxonomies.

The system is fed a set of hierarchical structures (schemas). Pre-Phase module
processes the input as trees, calculating the depth-first node number and scope
(Definition 3) for each of the nodes in the input schema trees. At the same time,
for each tree a listing of nodes is constructed, sorted in depth-first traversal order.
As the trees are being processed, a sorted global list of distinct node labels, over
the whole set of input, is created [17].

In Similar Terms Computation and Clustering module, similarity is derived
for the tree nodes labels of the input trees. We tokenise the labels and expand the
abbreviated tokens using an abbreviation oracle. Currently, we utilise a domain
specific user defined abbreviation table. Further, token similarity is supported
by a manually defined domain specific synonym table. Label comparison is based
on similar token sets or similar synonym token sets. The architecture is flexible
enough to employ additional abbreviation, synonym oracles or arbitrary string
matching algorithms. To further refine the similarity, we employ the structural
aspect also. Labels’ instances at nodes in different trees are compared for an-
cestor level label instance similarity (Property 2). Any such existence helps in
re-enforcing the similarity of current pair of labels and remove any ambiguity
[17]. Based on the similarity, the terms are clustered together.

Fig. 3. Architecture for tree mining ontology concepts and taxonomy

348 K. Saleem and Z. Bellahsene

In our approach concept is considered to be a small tree structure, referred
as a mini-taxonomy and Concepts Formulation module discovers these mini-
taxonomies. We utilise an extended version of frequent sub-tree mining approach
described in [21] for this purpose. Once the set of mini-taxonomies have been
extracted, the set is fed to the Similar Mini-Taxonomies Generation module.
At this stage all possible similar mini-taxonomies are generated with the help
of already computed similar labels clusters. The set of largest possible frequent
sub-trees, from the output of concepts formulation module, acts as the input
of Trusted Base Taxonomy Construction module. If there is just one tree, it is
considered as the base taxonomy else all the sub-trees in the set are merged
together to produce the base taxonomy.

The Repository is an indispensable part of the system. It houses oracles: the-
sauri and abbreviation lists. It also stores extracted terms, inter-term similarity,
mini-taxonomies representing concepts and trustable base taxonomy. And it pro-
vides persistent support to the taxonomy learning process.

4.4 ExSTax Algorithm and Data Structures

The algorithm implemented for the Concept Formulation process acts as the
kernel of our approach. It presents an iterative nature, extracting growing fre-
quent sub-trees from a given set of trees. The sub-tree frequency support in the
forest of trees is a user defined parameter. The algorithm takes as input the list
of labels, with similar labels linked together to form a cluster (each cluster can
have one or more labels). First task performed by the algorithm is to compute
the frequency of each label in the forest of trees (Figure 5a). Next, with in each
cluster, the label with the highest frequency in the forest of input trees is taken
as the symbol representing the cluster. The frequency of the cluster symbol is
computed by adding frequencies of all the labels in the cluster. Logically, all
nodes labels in a cluster are replaced by the cluster symbol in the input set of
trees (Figure 5b).

We consider symbol as the representation of a sub-tree. For example the sym-
bol for a sub-tree with one node is the node label, and the symbol representing
the tree S1 in Figure 4 is ”book-author-name//publisher-name//title” (- and /
delimiters are used to signify the downward and upward traversal with in the
tree, respectively).

From here on the process executes similar to frequent sub-tree mining algorithm
given in [21]. In the first iteration, the process finds frequent sub-trees with size 1
(Figure 5b), and creates the vertical list data structure for further joining, referred
to as join-list. Join-list entry is a composition of three elements; (i) tree number in
which the sub-tree occur, (ii) the nodes numbers sequence representing the sub-
tree which is the prefix of the rightmost node in the sub-tree, and (iii) scope of
the right most node in the sub-tree. Only sub-trees with frequency equivalent or
greater than the threshold are kept in the list. Threshold frequency is computed
as ’support multiplied by number of input schemas divided by hundred’.

In second pass, a new list of join-lists is created. Each frequent size 1 sub-
tree is joined with every other size 1 sub-tree in the first join-list. The joining

Automatic Extraction of Structurally Coherent Mini-Taxonomies 349

process first evaluates the similarity of element (i) and (ii) of the sub-tree join-
list entries. If the pair passes the similarity test, it is subjected to Property 2
test. If the pair passes the Property 2 i.e., descendant test is true for the pair, a
new symbol for the sub-tree of size 2 is created. If the sub-tree symbol does not
exist in the second list, it is added to the list. The join-list entry of the symbol
is added to its respective list. Like wise subsequent size 2 sub-trees are added
to the list. At end of this iteration, frequency of each sub-tree is computed and
only sub-trees with equivalent or higher frequency then threshold are kept in the
list. The iterative process keeps executing till the sub-tree list does not have any
frequent sub-tree. For joining sub-tree of size 2 or greater, Property 3 (cousin
test) is also evaluated for computing a perspective candidate sub-tree symbol.

The last list of sub-trees contain either one or more sub-trees. This list acts
as the input for computing the base taxonomy for the given set of hierarchical
structures.

5 A Mini-Taxonomies Extraction Example

Figure 4 shows four trees after Pre-Phase. A list of labels created in this traversal
is enumerated in Figure 5a with the similar labels clusters. Incremental execution
of ExSTax algorithm is demonstrated in Figure 5b. There are six iterations before
the algorithm stops, when it is not possible to generate much larger frequent sub-
tree. The sub-tree generated in the last iteration can be considered as the base
taxonomy for the given set of hierarchical structures. Figure 6 illustrates the
taxonomy structure generated for the scenario.

The six iterations are presented in the six panels of Figure 5b. First iteration
takes into account sub-trees of size one. Since there is no prefix sub-tree, the
prefix data structure is empty. Each sub-tree symbol’s vertical list entry is paired
with other symbols’ vertical list entries. The joining of vertical lists results in
a structure of size two i.e., one sub-tree can only be descendant of the other in

Fig. 4. Input set of 4 trees for learning base taxonomy using tree mining

350 K. Saleem and Z. Bellahsene

Fig. 5. List of frequent sub-trees symbols, size 1 to 6 with 50% support in the input
trees

this case. The sub-trees which are present in at least two of the input trees (50%
support), are added to the second list. In vertical list entry, last number in prefix
entry denotes the number of the right most node of the prefix sub-tree (Figure
5b).

In subsequent iterations, both descendant test (Property 1) and cousin test
(Property 3) are applied to come up with frequent sub-trees. Consider the cre-
ation of mini-taxonomy ”book-author/pub” from the second iteration in the ex-
ample by joining subtrees of size 2. Let symbol ”book-author” list, list A, is
joined to symbol ”book-pub” list, list B. List A, entity 1,0,[1,2] is joinable to
list B entity 1,0,[3,4], since the schema and prefix elements of the two entities
are similar. Property 1, descendant test, is not true for the two entities but the
cousin test is true i.e., the right most node scopes are not overlapping (Property
3). Similarly list A, entity 3,0,[3,3] is joinable to list B entity 3,0,[6,6] and it also
pass the Property 3. Thus supporting the 50 percent threshold frequency, and

Automatic Extraction of Structurally Coherent Mini-Taxonomies 351

Fig. 6. Trusted extracted taxonomy

imply that the sub-tree with symbol ”book-author/pub” is a frequent sub-tree of
size 3.

Panels3-5present thesymbolsof extractedfrequentsub-trees(mini-taxonomies)
of sizes 3 to 5.The last panel ofFigure 5bgives sub-treewith symbol composed of six
labels. There are two vertical list elements, supporting the 50% support condition.
The sub-tree (Figure 6)is present in input structures 1 and 2 (Figure 4).

6 Evaluation

The prototype implementation uses Java 5.0. A PC with Intel Xeon, 2.33 GHz
processor and 2 GB RAM, running Windows XP was used. We have selected two
data sets9, BOOKS (synthetic) and COURSES (real), as the input hierarchical
structures for our experiments.

Table 1. Characteristics of schema trees used in the experiments

Domain BOOKS COURSES

Number of Schemas 176 42

Average nodes per schema 8 8

Largest schema size 14 17

Smallest schema size 5 2

Schema Tree Depth 3 4

We examined the semantic quality of generated mini-taxonomies using the
precision measure. Our target was to generate semantically meaningful taxo-
nomic structures. Therefore, we manually scrutinized the generated tree pat-
terns and computed the share of semantically applicable sub-trees among all
found. With reference to Figure 4 structure S1, a sub-tree structure ”book[0,5]-
name[2,2]/name[4,4]” is considered to be invalid, since it is semantically mean-
ingless. Based on these considerations we show the precision measure computed
from the experiments. Figure 7 shows the precision of 8 sets of input structures
comprising of 8, 16, 50, 75, 100, 125, 150 and 176 sizes taken from BOOKS. The
results are computed for three different tree mining support values 37, 50 and
75 percent.

9 http://www.lirmm.fr/PORSCHE/TaxonomyLearning/

352 K. Saleem and Z. Bellahsene

 0

 0.2

 0.4

 0.6

 0.8

 1

Books(8)

Books(16)

BOoks(50)

Books(75)

Books(100)

Books(125)

Books(150)

Books(176)

P
r
e
c
i
s
i
o
n

Different Scenarios

Mini-Taxonomies Semantic Quality

37% 50% 75%

Fig. 7. Precision of ExSTax for eight sets of hierarchical structures from Books domain

In the other experiment performed on COURSES domain of XML schema
instances, with support value set to 25 percent, we retrieved precision nearly
equal to 1. And the base taxonomy generated in this experiment was Course-
Title/Instructor/Room/Time.

Discussion
The experimental results show the precision measure for Books domain, to be be-
tween 0.65 and 0.8. Thus supporting the validity of our idea of mini-taxonomies
extraction. The number of mini-taxonomies generated increased with decrease
in the value of tree mining support parameter and vice versa. Therefore we se-
lected the support values range (37-75), whose results could be verified manually.
Secondly, it is quite difficult to estimate the recall measure in the experiments
because of the large number of possible outputs. Devising a system for this pur-
pose is out of the scope of current work. Another observation made during the
execution is that ExSTax algorithm shows exponential scalability with respect
to the size of input tree structures. Since we are concerned with the semantic
validity of the output, we have not taken into account the time performance
complexity of the algorithm.

7 Conclusion and Future Work

We have introduced a novel technique based on tree mining, for ontology taxon-
omy learning. The core idea behind this paper is to demonstrate the applicability
of tree mining techniques for ontology taxonomy extraction in large scale sce-
nario. The technique inherently supports the collaborative ontology learning by
holistically exploiting the already available hierarchical structures in the domain.

We have investigated its scalability with respect to number of schemas. The ex-
perimental results demonstrate that our approach scales to hundreds of schemas.

Automatic Extraction of Structurally Coherent Mini-Taxonomies 353

The linguistic matching of node labels uses tokenisation, abbreviations and syn-
onyms. Our method provides an almost automated solution to the large scale
domain specific taxonomy learning problem.

Our results point to significant future research. Foremost, our work is directed
for development of a mining solution for learning all aspects of domain ontol-
ogy, comprising of term extraction, synonym and translation detection, concept
formulation, concept hierarchies, relations, rule derivation and axiomatization.
Further, we tend to do research for finding valid patterns missing from the gen-
erated set, to estimate the recall measure. We are also planning to investigate
the application of our approach in P2P architectures and domain specific large
scale social network environments. Another issue for the future is a benchmark
for automatic ontology learning tools in a large scale scenario. To further benefit
from tree mining, we are going to evaluate the advantage of the automatically
extracted mini-taxonomies for the discovery of n:m complex mappings in context
of research described in [7].

References

1. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge
(2004)

2. Arpinar, I.B., Aleman-Meza, B., Zhang, R., Maduko, A.: Ontology-driven web
services composition platform. In: IEEE CEC (2004)

3. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: An overview.
In: Ontology Learning from Text: Methods, Evaluation and Applications Frontiers.
IOS Press, Amsterdam (2005)

4. Buitelaar, P., Olejnik, D., Sintek, M.: A protege plug-in for ontology extraction
from text based on linguistic analysis. In: Bussler, C.J., Davies, J., Fensel, D.,
Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053. Springer, Heidelberg (2004)

5. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview.
Fundamenta Informaticae 66(1-2), 161–198 (2005)

6. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations
from heterogeneous sources of evidence. In: ECAI WorkShop Ontology Learning
and Population (2004)

7. Embley, D.W., Xu, L., Ding, Y.: Automatic direct and indirect schema mapping:
Experiences and lessons learned. ACM SIGMOD Record 33(4), 14–19 (2004)

8. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an imple-
mentation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer,
R. (eds.) ESWS 2004. LNCS, vol. 3053. Springer, Heidelberg (2004)

9. Gomez-Perez, A., Manzano-Macho, D.: Deliverable 1.5: A survey of ontology learn-
ing methods and techniques. Technical report, Universidad Politecnica de Madrid
(2003)

10. Gruber, T.: Towards principles for the design of ontologies used for knowledge
sharing. Human and computer Studies J. 43, 907–928 (1994)

11. He, B., Chang, K.C.-C., Han, J.: Discovering complex matchings across web query
interfaces: a correlation mining approach. In: KDD, pp. 148–157 (2004)

12. Jasche, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared
conceptualizations in folksonomies. Web Semantics: Science, Services and Agents
on World Wide Web 6(1), 38–53 (2008)

354 K. Saleem and Z. Bellahsene

13. Li, M., Du, X.-Y., Wang, S.: Learning ontology from relational database. In: IEEE
ICMLC (2005)

14. Maedche, A., Pekar, V., Staab, S.: Ontology learning part one – on discovering
taxonomic relations from the web. In: Web Intelligence (2002)

15. Maedche, A., Staab, S.: Ontology learning. In: Staab, S., Studer, R. (eds.) Hand-
book of Ontologies. Springer, Heidelberg (2004)

16. Noy, N.F.: Semantic integration: A survey of ontology-based approaches. ACM
SIGMOD Record 33(4), 65–70 (2004)

17. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: Performance oriented schema medi-
ation. Information Systems-Elsevier 33 (2008)

18. Schutze, H.: Word space. In: NIPS, pp. 895–902 (1993)
19. Tijerino, Y.A., Embley, D.W., Ding, Y., Nagy, G.: Towards ontology generation

from tables. World Wide Web 8, 261–285 (2005)
20. Weber, N., Buitelaar, P.: Web-based ontology learning with isolde. In: ISWC Work-

Shops Web Content Mining with Human Language (2006)
21. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta

Informaticae 66(1-2), 33–52 (2005)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 355–368, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analysis and Reuse of Plots Using Similarity and Analogy

Antonio L. Furtado, Marco A. Casanova,
Simone D.J. Barbosa, and Karin K. Breitman

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de S. Vicente, 225 – Rio de Janeiro, Brasil – CEP 22451-900

{furtado,casanova,simone,karin}@inf.puc-rio.br

Abstract. A plot is a partially ordered set of events. Plot analysis is a relevant
source of knowledge about the agents’ behavior when accessing data stored in
the database. It relies on logical logs which register the actions of individual
agents. This paper proposes techniques to analyze and reuse plots based on the
concepts of similarity and analogy, borrowed from cognitive science and lin-
guistics. The concept of similarity is applied to organize plots as a library, and
to explore the reuse of plots in the same domain. By contrast, the concept of
analogy helps reuse plots across different domains. The techniques proposed in
this paper find applications in areas such as computer games and emergency re-
sponse information systems, as well as some traditional business applications.

Keywords: Temporal database, log, plot, narrative, similarity, analogy.

1 Introduction

Literary research addresses narratives at successive levels. The most basic level, the
fabula, is defined as "a series of logically and chronologically related events that are
caused or experienced by actors" [3]. A series of events is often called a plot, a notion
that can be usefully transposed to the context of information systems. Intuitively,
plots are the stories [25,26] that happen in the underlying mini-world and, as a result,
produce state-changes in its database representation. More precisely, an event repre-
sents the result of the execution of some domain-oriented operation by an authorized
agent, and a plot is a partially ordered set of events. What logically relates the events,
and determines the precedence among them, is the interplay between the pre- and
post-conditions in terms of which operations are defined. The pre- and post-
conditions, in turn, reflect the integrity constraints and business rules prevailing in the
application domain involved.

Plot analysis is a rich source of knowledge about the agents’ behavior when ac-
cessing data stored in the database. It relies on (logical) database logs, also called
audit trails, which register the actions of individual agents. A trivial example of a log
is a bank account statement, which records the sequence of actions executed against
the account. A second example comes from storytelling engines, such as LOGTELL
[9,10], which model the world as a database and are based on a set of pre-defined
actions and plots [10]. A log in this case is the trace of events generated by composing
a story interactively. In the context of an emergency response information system

356 A.L. Furtado et al.

[27], a log registers the actions taken when handling an emergency, or during a train-
ing exercise [8].

The thrust of this paper is to propose techniques to analyze and reuse plots applying
the concepts of similarity and analogy, borrowed from cognitive science and linguistics
[5,18]. We used these notions to explore database conceptual design techniques and
query interfaces at previous stages of our research project [7,4]. In the present paper, we
first discuss how to extract plots from logs. Then, we explore the concept of similarity
to organize a plot library that helps reuse plots in the same domain. By contrast, we
apply the concept of analogy to reuse plots across different domains.

Returning to our examples, we sometimes spend countless hours analyzing our
bank account statement (our account log) to figure out recurrent similar groups (simi-
lar plots) of funds transfers, deposits, withdrawals and payments (the events in bank-
ing applications). Plots in this case are typically simple, say, a set of withdrawals and
payments followed by a deposit or funds transfer to balance the account. For example,
we may be overspending on certain weekends, which come after the (forgotten) due
dates of a number of bills. If similar groups of events repeat month after month, i.e.,
similar plots reoccur every month, then we ought to change our spending pattern.
Usually, such groups of events are not treated as plots because the relationships be-
tween the events are too simple: the withdrawals and payments merely precede the
deposit or funds transfer. One may therefore use traditional data mining techniques to
detect the pattern of recurring events.

As a second example, from the domain of digital storytelling, consider the
LOGTELL engine which features a built-in planner that creates new plots from a
library of pre-defined operations and plots. By analyzing plot similarities, the game
designer may come out with recurrent patterns that he may reuse to generate new
plots in other domains, by analogy. An entirely compatible approach has been pro-
posed a long time ago in literary theory by the Russian researcher Vladimir Propp
[24]. In order to specify the genre of fairy-tales, he described a set of 31 functions,
comparable to what we are calling domain-oriented, or more appropriately here,
genre-oriented operations, which he claimed to be enough to account for a large sam-
ple extracted from an anthology of fairy-tales compiled by Alekxandr Afanas'ev [1].
Propp’s research in fact focused on finding analogous plots in different fairy-tales.

The third example comes from the domain of emergency response information sys-
tems, where logs are an essential resource [8]. A plot in this case is a set of interre-
lated actions that an emergency team must perform to mitigate a specific accident
scenario during an emergency, such as to isolate and clean an area affected by the
spill of a hazardous material. An analysis of the log of actions taken during the re-
sponse to an accident may help settle legal disputes. Furthermore, if plots generated as
responses to similar accident scenarios exhibit similar inappropriate sequences of
mitigating actions, then the analysis is an indication that the emergency teams,
equipment or procedures must be revised. Similarly, emergency response information
systems are valuable tools to train emergency teams on how to react to accidents. In
this case, the logs will be the result of simulated accidents. An analysis of the plots
extracted from the logs will help assess how prepared the teams are, or else if some
procedure is not appropriate, which is detected when the teams repeatedly generate
similar inappropriate sequences of mitigating actions as a response to similar acci-
dents. Plot analogy may also be a valuable pedagogical strategy to train the teams,
i.e., if a team is trained in one type of accident, one might try to transpose, by

 Analysis and Reuse of Plots Using Similarity and Analogy 357

analogy, the scenario and the plot mastered by the team to a different scenario and a
different group of interrelated actions.

The practical relevance of the concepts of similarity and analogy, central to our
work, has been amply recognized. Winston [29] is an early reference that describes a
theory of analogy with applications to AI systems. Metaphors [18] have been used to
improve human-computer interface design [5], in particular, and software design, in
general [20]. The use of similarity and analogy in the context of database design has
been explored in [7,4]. The plot extraction technique we adopt follows the AI tradi-
tion [15]. Our approach differs from research, such as [21], which focuses on the
mining of rules from sequence databases, which are mostly based on statistical confi-
dence levels. The notion of plot similarity we adopt also differs from the notion of
process similarity introduced in [2], which computes a coefficient that indicates how
dissimilar two processes are. Aalst et al. [28] describe an algorithm to extract a proc-
ess model from such a log and represent it in terms of a Petri net. Their approach
differs from ours in so far as the plot extraction technique, described in Section 2.3, is
based on the semantics of the operations, expressed by pre- and post-conditions.

The paper is organized as follows. Section 2 introduces plots and related concepts,
and outlines an algorithm to extract plots from logs. Section 3 discusses how to reuse
plots in the same domain, employing the concept of similarity. Section 4 considers the
reuse of plots across different domains, resorting to the notion of analogy. Section 5
contains the conclusion.

2 Basic Concepts and Techniques

2.1 Informal Characterization of the Basic Concepts

In this section, we informally introduce the basic concepts we use throughout the
paper. Our notation is based on Prolog, from which we borrow variables, constants
and literals [7,11]. Section 2.2 contains rigorous definitions for the main concepts.

Our database conceptual schema follows the usual conventions of the Entity-
Relationship model [6]. In addition, the schema contains a repertoire of domain-
oriented operations, defined through their pre- and post-conditions, as proposed in the
STRIPS system [12]. In order to preserve the integrity constraints regulating the mini-
world represented in the database, an operation can execute only if its pre-conditions
currently hold, and the effect of its execution corresponds precisely to its post-
conditions. A complementary requirement is that the state of the database may change
only by executing an operation from the predefined repertoire.

To illustrate these concepts, we introduce a simple example schema in the domain
of products and components:

product component
pno product
cno ctype defective component
iscompof component product
repair(pno,cno)
order(ctype,cno)
replace(pno,cno1,cno2)

358 A.L. Furtado et al.

where instances of product are identified by pno, and instances of component,
which is a weak entity [6], are identified via the iscompof relationship combined
with the discriminating attribute cno. The value of attribute ctype indicates the type
of a component, and the Boolean attribute defective exclusively qualifies those
components that have been found to be defective.

Using the Prolog-based notation introduced in [7], the specification of the Prod-
uct schema would be:

Schema: Product
Clauses --
 entity(product, pno)
 attribute(product, pno)
 entity(component, [pno/cno-iscompof-pno, cno])
 attribute(component, cno)
 attribute(component, ctype)
 attribute(component, defective)
 relationship(iscompof, component/n/total, product/1/total)
 operation(order, [ctype, cno])
 pre(order(A, B), [])
 post(order(A, B), [ctype(B, A), ¬defective(B)])
 operation(replace, [pno, cno, cno])
 pre(replace(A, B, C),
 [iscompof(B, A), ctype(B, D), ctype(C, D)])/diff(B, C)
 post(replace(A, B, C),
 [¬iscompof(B, A), iscompof(C,A)])/diff(B, C)
 operation(repair, [pno, cno])
 pre(repair(A, B), [defective(B)])
 post(repair(A, B), [¬defective(B)])

A database conceptual schema may also include goal-inference rules of the form
S→G, where S is a situation and G a goal, both of which are sets of literals. Such
rules capture the motivation of an agent who, observing that a certain situation S
holds, would be expected to execute the appropriate operations to reach a state where
the goal G holds.

The conceptual schema we just introduced may include, for example, the goal-
inference rule S→G, where

S = [iscompof(X, Y), ctype(X, Z), defective(X)]
G = [iscompof(W, Y), ctype(W, Z), ¬defective(W)]

To conclude, we define events, logs and plots. An event is a statement of the form
o(p1,...,pn), where o is an operation name and (p1,...,pn) is the parameter list of the
operation, which is a list of (Prolog) terms. An event o(p1,...,pn) is ground iff the pa-
rameter list does not contain variables.

A log is a sequence of ground events.
A plot is a pair P=(E,D), where E is a set of events and D ⊆ E×E is a partial order

over E. A plot P=(E,D) is ground iff all events in E are ground.
The relation D defines a set of precedence dependencies over E and captures the

idea that, if an event e1 contributes, as a result of its post-conditions, to the pre-con-
ditions of another event e2, then e1 must precede e2 in the plot.

The precedence dependencies in a plot are denoted with the help of tags. More pre-
cisely, a plot is denoted as two lists: a list of expressions of the form t:e, where t is a
constant, called a tag, and e is an event; and a list of expressions of the form t-u,

 Analysis and Reuse of Plots Using Similarity and Analogy 359

where t and u are tags used in the first list. Tags are just a notational convenience, so
that the plots P1 and P2 below are treated as equivalent plots:

P
1
 = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]

P
2
 = [[f7: replace(pr,c3,c4),f8: order(ct,c4)],[f8-f7]]

As will be argued in the next sections, it is in general a useful practice to record a
plot P together with an associated goal-inference rule. We therefore define an indexed
plot as a triple (S,G,P), where P is a plot and S→G is a situation-goal rule, called the
circumstance associated with P.

2.2 Formal Characterization of the Basic Concepts

In this section, we define the syntax and semantics of the basic concepts that support
the Prolog implementation of the plot techniques described in this paper. For brevity,
we use standard concepts from first-order languages without definition. We refer the
reader to [10] for the details.

A static ER language E is a many-sorted first-order language whose alphabet con-
tains a set D of database symbols to describe database conceptual objects.

A substitution is a function θ that maps variables of E into terms of E (of the same
sort). A substitution θ is ground iff it maps variables of E into variable-free terms of
E. A substitution is total iff it is defined for all variables of E; otherwise, it is partial.
If otherwise indicated, we assume that a substitution is total.

An expression φ is a formula or a term of E. Given a substitution θ, we use φθ to
denote the expression obtained by applying θ to φ. A (ground) instance of φ is an
expression obtained by applying a (ground) substitution to φ.

A literal is an expression of the form p(t1,…,tn) or of the form ¬p(t1,…,tn), where p
is an n-ary predicate symbol of E and t1,…,tn is a list of terms of E. A database literal
is a literal whose predicate symbol is in D, and a database fact is a ground positive
database literal.

A structure M for E assigns to each symbol s of E an interpretation sM as for first-
order languages. The notion that M satisfies a formula of E is also defined as usual. A
possible fact of M is a database fact of E that is satisfied by M. A possible database
state of M is a set of possible facts of M.

Let G be a conjunction (or a set) of ground database literals, K be a conjunction (or
a set) of database literals, and s be a possible database state. Then,

• s satisfies G for M, denoted s ⊨M G, iff g∈s, for each ground literal g that oc-
curs in G

• s satisfies K for M, denoted s ⊨M K, iff s ⊨M G, for each ground instance G of
K

A static ER schema is a pair S=(E,C) such that E is a static ER language and C is a
set of formulas of E, called the axioms of S, that includes ER constraints, which cap-
ture ER concepts, and domain constraints, which capture properties of the application
domain. A model of S is a structure of E that satisfies all axioms in C.

360 A.L. Furtado et al.

A dynamic ER language L is a static ER language whose alphabet is extended to
include a new set of symbols, the operation names, with an associated arity, and
whose set of expressions is extended to include operation specifications, events, and
situation-goal rules.

An operation specification for an n-ary operation name o is an expression O of the
form {P}o(x1,…,xn){Q}, where x1,…,xn is a list of distinct variables, and P and Q are
sets of database literals. We say that o(x1,…,xn) is the input declaration, P is the pre-
condition and Q is the post-condition of O.

A structure M for L is defined as for static ER languages, except that M assigns to
each operation name o a set oM of pairs of possible database states of M.

Let O be an operation specification for an n-ary operation name o and assume that
O is of the form {P}o(x1,…,xn){Q}. Let θ be a ground substitution of L. Then, a pair
(s,t) of possible database states in oM satisfies Oθ for M iff

• s ⊨M Pθ (the pre-conditions are satisfied in s for M)

• t ⊨M Qθ (the post-conditions are satisfied in t for M)
• for every possible database fact f of M, if neither f nor ¬f occur in Qθ, then

t ⊨ f iff s ⊨ f (which is the frame requirement: preservation of satisfaction
from s to t for ground database literals that are neither established nor negated
by the post-condition Qθ, which is ground by assumption)

Furthermore, M satisfies Oθ iff every pair (s,t) of possible database states in oM sat-
isfies Oθ for M. Finally, M satisfies O iff M satisfies every ground instance of O.

An event is an expression e of the form o(t1,…,tn), where o is an n-ary operation
name of L and t1,…,tn is a list of terms of L. The parameter substitution of e is the
partial substitution θe that maps xi into ti, for i∈[1,n], and is undefined for the other
variables of L. We define an interpretation in M for e as the set eM consisting of all
pairs (s,t) of possible database states in oM such that (s,t) satisfies Oρ for M, where

ρ =θe◦ϕ, for some ground substitution ϕ.
Let e be an event of the form o(t1,…,tn), O be the operation specification for o, and

θe be the parameter substitution of e. Then, Oθe is the specification for e induced by O.
A structure M satisfies Oθe with respect to O iff M satisfies every ground instance Oρ

of O, where ρ = θe◦ϕ, for some ground substitution ϕ.
A temporal database of a structure M is a sequence S=(s0,s1,…) of possible data-

base states of M.
A situation-goal rule is an expression of the form S→G, where S and G are sets of

database literals. A temporal database S=(s0,s1,…) of M satisfies S→G, denoted

S⊨M S→G, iff there are p and q, with 1≤ p ≤ q ≤ |S|, such that sp⊨M S and sq⊨M G.
A dynamic ER schema is a pair D=(L,A) such that L is a dynamic ER language and

A is a set of formulas of L, called the axioms of T, that includes ER constraints, do-
main constraints, operation specifications and situation-goal rules, such that, for each
operation name o of L, there is exactly one operation specification for o in A . A
model of D is a structure for L that satisfies all axioms in A.

 Analysis and Reuse of Plots Using Similarity and Analogy 361

Let e be an event of L and assume that e is of the form o(t1,…,tn). One can prove
that, if M is a model of D, then M satisfies Oθe with respect to the (unique) operation
specification for o that occurs in A.

We prefer to introduce logs and plots as meta-level concepts, rather than expres-
sions of dynamic ER languages, to avoid complex syntactical structures. Let L be a
dynamic ER language and M be a structure of L in what follows.

A log is a possibly empty finite sequence E=(e1,e2,…,en) of ground events of L. A

temporal database S=(s0,s1,…) of M satisfies E=(e1,e2,…,en), denoted S ⊨M E, iff
|S| > n and, for each i∈[1,n], (si-1,si)∈ei

M (i.e, ei caused the transition from si-1to si).
A plot is a pair P=(PE,PD), where PE is a finite set of events and PD ⊆ PE×PE is a

partial order over PE. A log E=(e1,e2,…,en) is consistent with P=(PE,PD) iff there is a
ground substitution θ such that, for each event e in PE, the ground instance eθ of e
occurs in E and, for every e1,e2∈PE, if (e1,e2)∈PD, then e1θ precedes e2θ in E.

A temporal database S=(s0,s1,…) of M satisfies P=(PE,PD), denoted S⊨M P, iff
there is a log E=(e1,e2,…,en) such that S satisfies E and E is consistent with P. Finally,
a plot P is consistent with a set Π of situation-goal rules with respect to a structure M
iff, for every temporal database S of M, if S satisfies P then S also satisfies Π.

2.3 Extracting Indexed Plots from a Log

In this section, we briefly introduce an algorithm to extract indexed plots from a log.
The details of the algorithm can be found in [13].

The algorithm takes as input a goal-inference rule S→G and a log L, and outputs an
indexed plot (SP,GP,P). The first step of the algorithm uses a simulation process that
essentially recapitulates the evolution of the database while traversing the log. A sub-
sequence M is extracted from the log L iff, prior to the execution of the first event in
M, the situation S holds and, after the execution of the last event in M, a state is
reached where G holds. This process may generate ground instances SP and GP of S
and G, respectively. A plot P is obtained from M by a filtering process that keeps only
the events whose post-conditions contribute to GP and in addition, proceeding back-
wards recursively, those events that contribute to pre-conditions of events already
included in P. The algorithm then outputs the indexed plot (SP,GP,P).

For example, consider the goal-inference rule S→G, where

S = [iscompof(X, Y), ctype(X, Z), defective(X)]
G = [iscompof(W, Y), ctype(W, Z), ¬defective(W)]

and suppose that S and G are found to hold, respectively, before the first event, and
immediately after the last event of the sub-sequence of the log shown below:

... order(ct,c4) ... replace(pr,c3,c4) ...

In view of the pre- and post-conditions of order and replace, defined in Section
2.1, the algorithm then outputs the indexed plot (SP,GP,P), where

S
P
 = [iscompof(c3, pr), ctype(c3, ct), defective(c3)]

G
P
 = [iscompof(c4, pr), ctype(c4, ct), ¬defective(c4)]

P

 = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]

362 A.L. Furtado et al.

3 Using Similarity to Organize and Reuse Plots

3.1 The Notion of Plot and Indexed Plot Similarity

A similarity mapping ρ is a bijective mapping between terms, that is, a set of pairs
(u,v) of terms such that any two pairs are equal on the first component iff they are
equal on the second component. Let K be a set of literals, e be an event, P=(E,D) be a
plot, and κ be a situation-goal rule of the form S→G. Then, the expression Kρ denotes
the set { lρ / l∈K }, the expression eρ denotes the event obtained by replacing each
term u that occurs in e by v, if (u,v)∈ρ, the expression Pρ denotes the plot (F,G) such
that F={ eρ / e∈E } and G={ (eρ,fρ) / (e,f)∈D }, and the expression κρ denotes the
situation-goal rule Sρ→Gρ.

Two plots P and P’ are similar iff there is a similarity mapping ρ such that P’=Pρ.
Likewise, two situation-goal rules S→G and S’→G’ are similar iff there is a similar-
ity mapping ρ such that S’=Sρ and G’= Gρ. Given two indexed plots (S1,G1,P1) and
(S2,G2,P2), we say that:

• (S1,G1,P1) and (S2,G2,P2) are sgp-similar iff there is a similarity mapping ρ
such that S2=S1ρ, G2=G1ρ and P2=P1ρ

• (S1,G1,P1) and (S2,G2,P2) are sg-similar iff S1→G1 and S2→G2 are similar situa-
tion-goal rules

• (S1,G1,P1) and (S2,G2,P2) are p-similar iff P1 and P2 are similar plots

For example, consider I1=(S1,G1,P1), I2=(S2,G2,P2) and I3=(S3,G3,P3), where

S
1
 = [iscompof(c3, pr), ctype(c3, ct), defective(c3)]

G
1
 = [iscompof(c4, pr), ctype(c4, ct), ¬defective(c4)]

P
1
 = [[f1: order(ct,c4), f2: replace(pr,c3,c4)],[f1-f2]]

S
2
 = [iscompof(c1, pr), ctype(c1, ct), defective(c1)]

G
2
 = [iscompof(c2, pr), ctype(c2, ct), ¬defective(c2)]

P
2
 = [[f7: order(ct,c2), f8: replace(pr,c1,c2)],[f7-f8]]

S
3
 = [iscompof(c3, pr), ctype(c3, ct), defective(c3)]

G
3
 = [iscompof(c3, pr), ctype(c3, ct), ¬defective(c3)]

 P3 = [[f1: repair(pr,c3)], []]

Then, the plans P1 and P2 are similar. Indeed, P2 =P1ρ, where ρ is the similarity
mapping that maps c4 into c2 and c3 into c1. To verify whether the precedence de-
pendencies agree, it suffices to find a renaming of the tags of one of the plots that can
render the sets of precedence dependencies of the two plots equal, as discussed in
Section 2.1 (note that tags were not considered when introducing similarity mapping,
since they are just a notational convenience and are not required to define plots).
Likewise, the situation-goal rules S1→G1 and S2→G2 are similar, with ρ again as the
similarity mapping. The indexed plots I1 and I2 are p-similar, sg-similar and sgp-
similar. Moreover, I3 is sg-similar to both I1 and I2, but not sgp-similar.

Finally, given two plots P=(E,D) and P’=(E’,D’), we say that a plot Q is a most
specific generalization (m.s.g.) [13,16] of P and P’ iff there are similarity mappings θ

 Analysis and Reuse of Plots Using Similarity and Analogy 363

and θ’ such that Q=Pθ=P’θ’, θ and θ’ map terms into variables and θ and θ’ are the
least such similarity mappings. Note that Q is trivially similar to both P and P’.

For example, plot P4 is an m.s.g. of plots P1 and P2 above, where

P
4
 = [[f1: order(ct,X), f2: replace(pr,X,Y)],[f1-f2]]

Indeed, P4=P1θ=P2θ’, where θ maps constants c4 and c3 into variables X and Y,
respectively, and θ’ maps constants c2 and c1 into variables X and Y, respectively
(and tags f7 and f8 into f1 and f2, respectively).

The notion of m.s.g. extends to indexed plots by applying the similarity mappings
also to the circumstances. Thus, I4=(S4,G4,P4) is an m.s.g. of I1 and I2 above, where

S
4
 = [iscompof(X, pr), ctype(X, ct), defective(X)]

G
4
 = [iscompof(Y, pr), ctype(Y, ct), ¬defective(Y)]

P
4
 = [[f1: order(ct,Y), f2: replace(pr,X,Y)],[f1-f2]]

3.2 Indexed Plot Libraries

The data administrator (DA) may apply the plot extraction algorithm of Section 2.3 to
search the database log for a plot P responding to a goal-inference rule S→G. The
entire set of (Sp,Gp,P) indexed plots collected by the DA constitutes a library of plots
(LP). Note that the LP will contain only ground indexed plots, extracted by the algo-
rithm of Section 2.3. Furthermore, note that the LP may in fact contain similar plots,
such as I1=(S1,G1,P1), I2=(S2,G2,P2) in the example of Section 3.1.

The DA may reduce such redundancy by replacing indexed plots which are sgp-
similar by their most specific generalization, thereby constructing a library of typical
plots (LTP). The DA may indeed directly construct the LTP as follows. As for the LP,
suppose that the DA applies the plot extraction algorithm to search the log for an
indexed plot (Sp,Gp,P) responding to a previously specified goal-inference rule S→G.
Before adding (Sp,Gp,P) to the LTP, the DA searches the LTP for an indexed plot
(Sq,Gq,Q) which is sgp-similar to (Sp,Gp,P). If one such indexed plot is found, the DA
replaces (Sq,Gq,Q) in the LTP by the most specific generalization of (Sp,Gp,P) and
(Sq,Gq,Q).

If applied to the indexed plots I1=(S1,G1,P1), I2=(S2,G2,P2) and I3=(S3,G3,P3), listed
in Section 3.1, this strategy will keep I3=(S3,G3,P3) and, since I1 and I2 are similar,
will replace I1 and I2 by their m.s.g. I4=(S4,G4,P4), also defined in Section 3.1.

To search the LTP, an interested agent supplies two lists, Ls and Lg. The library will
return any indexed plot (Sp,Gp,P) such that (Ls,Lg) matches (Sp,Gp) in the sense that
every literal in Ls unifies with some literal in Sp, and every literal in Lg unifies with
some literal in Gp. As a consequence of unification, variables (not all, in some cases)
in Sp and Gp – and consequently in P – will be consistently replaced by constants
present in Ls or Lg. In other words, (Ls,Lg) is a more concrete circumstance which
must fit in the more general (Sp,Gp) circumstance to justify the use of the associated
plot P, which could then be used as an executable plan.

For example, assume that the LTP contains the indexed plots I3=(S3,G3,P3) and
I4=(S4,G4,P4), defined above. Consider the pair of lists (Ls,Lg), where

364 A.L. Furtado et al.

Ls = [iscompof(c3, pr), ctype(c3, ct)]
Lg = [iscompof(Z, pr), ¬defective(Z)]

Searching the LTP with (Ls,Lg) yields I3=(S3,G3,P3) and I4=(S4,G4,P4).
However, note that P3 and P4, even though they were designed to operate the re-

quired transition to a state where G holds, are not equivalent with respect to their full
effects. A wise precaution is to ascertain beforehand all that may be caused by run-
ning each plot, in view of possible undesired side-effects. This can be accomplished
by simulating the execution of each plot, after supplying a context, defined as a set of
literals, which captures aspects of the current state s0. Simulation can employ a well-
known recursive backward-chaining algorithm [13], which incidentally is the basis for
simple plan-generators following STRIPS formalisms.

For example, consider the context C, where:

C = [iscompof(c3, pr),ctype(c3, ct),defective(c3)]

Then, the result of choosing to apply either P3 or P4 would be R3 or R4, where:

 R

3
 = [¬defective(c3), ctype(c3, ct), iscompof(c3, pr)]
R
4
 = [¬iscompof(c3, pr), ctype(c3, ct), ctype(Y, ct),

 ¬defective(Y), iscompof(Y, pr)]

The fact that P4 contains a variable Y, even after the simulated execution, and the
fact that the variable figures in the result obtained certainly deserve attention. We can
understand that, when placing the order, the foreman in charge of the product can
only indicate the component type (the value of attribute ct). The value of the dis-
criminating attribute cno will remain undetermined until the order is fulfilled, typi-
cally through the intermediacy of an agent involved with inventory management.
Such problems can only be handled in multi-agent environments, a topic outside the
scope of the present paper, wherein a plot would result from the combination of par-
tial plots, each one including appropriate communicative acts [17], to be executed by
different agents.

4 Plot Analogy

4.1 The Notion of Plot Analogy

The database schema introduced in Section 2.1 provides an example of weak entity. It
has several typical features which recur in many other application domains. In [7], we
argued that database conceptual design, especially if complex notions such as weak
entities are involved, can be significantly facilitated by deriving new schemas from
previously specified analogous schemas.

In this section, with the help of an example, we describe how to extend the analogy
mapping introduced in [7] to cover domain-oriented operations, specified using pre-
and post-conditions.

Given the schema of section 2.1, we first define a Weak Entity schema pattern,
which a database designer may at any future time use to create new schemas:

 Analysis and Reuse of Plots Using Similarity and Analogy 365

Pattern: Weak Entity
Example scheme: Product
Clauses --

 entity(A, B)
 attribute(A, B)
 entity(C, [B/D-E-B, D])
 attribute(C, D)
 attribute(C, F)
 attribute(C, G)
 relationship(E,
 C/n/total, A/1/total)

operation(H, [F, D])
pre(H, [I, J], [])
post(H, [I, J],
 [[F, J, I], [¬G, J]])
operation(K, [B, D, D])
pre(K, [L, M, N],
 [[E, M, L], [F, M, I],
 [F, N, I]])/diff(M, N)
post(K, [L, M, N],
 [[¬E, M, L], [E, N, L]])
 /diff(M, N)
operation(O, [B, D])
pre(O, [L, J], [[G, J]])
post(O, [L, J], [[¬G, J]])

Mappings --
 A:product
 B:pno
 C:component
 D:cno
 F:ctype

G:defective
E:iscompof
H:order
K:replace
O:repair

Suppose that a database designer wants to build a Team schema, involving teams
and their members, and recognizes (or is told) that the intuitive mental image of the
prospective schema "looks very much like" what occurs in the Product schema: mem-
bers of teams are like components of products, reflecting the well-known "an organi-
zation is a machine" metaphor [22]. This motivates the introduction of the is-like
analogy mapping, a meta-level relationship. In this example, the declaration “Team
is-like Product” establishes that Product can be taken as a source schema on which
the definition of the target schema Team can be partly accomplished [14].

We developed an interactive prototype tool to experiment with these notions. It
prompts the designer to answer questions of the form: "What corresponds to
<name>?", where <name> figures in the supposedly known source schema. The tool
will use the names that the designer types to instantiate the variables in the mapping
component of the Weak Entity pattern.

In our example, the mapping correspondences, to be saved for future use, are:

product team
pno tno
component member
cno mno
ctype spec

defective unprepared
iscompof ismembof
order hire
replace reassign
repair train

Using these mappings, the tool will then create the Team schema:

Schema: Team

Clauses --
 entity(team, tno)
 attribute(team, tno)

entity(member,
 [tno/mno-ismembof-tno,
 mno])
 attribute(member, mno)
 attribute(member,spec)
 attribute(member,

 unprepared)

relationship(ismembof,
 member/n/total,
 team/1/total)

366 A.L. Furtado et al.

operation(hire,[spec, mno])
 pre(hire(A, B), [])
 post(hire(A, B),
 [spec(B,A), ¬unprepared(B)])
operation(reassign,
 [tno, mno, mno])
 pre(reassign(A, B, C),
 [ismembof(B, A),
 spec(B, D), spec(C, D)])

 /diff(B, C)
 post(reassign(A, B, C),
 [ismembof(B, A),
 ismembof(C,A)])/diff(B,C)
operation(train, [tno, mno])
 pre(train(A, B)[unprepared(B)])
 post(train(A, B),
 [unprepared(B)])

In general, analogy mappings are not total in either direction. For some elements of
the source schema, the designer may reply that there is no corresponding element in
the target schema. On the other hand, after closing the dialogue, the designer may
declare additional elements that are specific to the target schema. Indeed, in more
semantically rich cases, it is often convenient to proceed along successive dialogues,
employing a series of source schemas, which can be interpreted as an attempt to cover
different aspects by resorting to different metaphors [18].

Once it has been so derived, the Team schema (alone or as part of the design of a
larger schema) is ready to be used, employing the terminology appropriate to its dis-
tinct application domain. One can imagine that project leaders will be among the
agents, instead of the foremen of the source domain.

Analogy brings in the possibility to perform comparisons, queries, etc., that go
across the two domains. For brevity, we shall consider just one example.

Imagine that a certain John, with a specialty designated as spec_s3, and who is
currently a member of team Ta, is found to be unprepared. What can be done in this
situation? This recalls the case of component c3 of product pr, when c3 was marked
as defective. Can we transpose to John what was done to c3?

There are two possibilities for c3:

P
1
 = [[f1:repair(pr, c3)], []]

P
2
 = [[f1:order(ct,c4), f2:replace(pr,c3,c4)],[f1-f2]]

from which the analogous plots below can be readily derived:

P
1
'= [f1:train(Ta, John)], []]

P
2
'= [f1:hire(spec_s3, Peter),
 f2:reassign(Ta, John, Peter)], [f1-f2]]

In words, one can either submit the unprepared John for training, or look for
someone else with the same specialization and perform a substitution. This kind of
argument has a flavor of case-based reasoning [19,23,30], since it involves the adap-
tation of a previously used strategy to handle a different, but analogous problem.

4.2 Reusing Plots from the LTP across Domains by Analogy

We shall now see how analogy can play a helpful role in a multi-domain environment.
If one is dealing simultaneously with more than one application domain, it is neces-
sary to insert the name of the domain in question in the LTP entries.

For example, suppose the LTP only contains entries related to the Product schema,
from which the new Team schema was derived. Recall that the mapping information
indicating the correspondence between names in the two schemas, gathered in the
course of the derivation process, is stored for future use.

 Analysis and Reuse of Plots Using Similarity and Analogy 367

Suppose that a team leader, an agent in the mini-world of the Team schema, tries to
access the LTP using the pair of lists (Ls,Lg) as concrete circumstance, where

Ls = [ismembof(John, Ta), spec(John, spec_s3),
 unprepared(John)]
Lg = [ismembof(John, Ta), ¬unprepared(John),
 spec(John, spec_s3)]

A first direct attempt to perform a match inevitably fails, since there are still no en-
tries for Team in the LTP. But since it has been declared that “Team is-like Product”,
and because the analogy mappings were kept, a search for analogous Product entries
is automatically processed, producing the following two plots:

P
1
 = [[f1:train(Ta, John)], []] ;

P
2
 = [[f1:hire(spec_s3, X), f2:reassign(ta, John, X)],

 [f1-f2]]

5 Concluding Remarks

We argued that plots, indexed by the situation-goal circumstances that motivate their
enactment, provide a compact representation for the real-life stories happening in the
mini-world of management information systems. Using the concept of similarity, we
first illustrated how to organize plots from the same domain in a library of typical
plots, which are ready for reuse. Then, using the concept of analogy, we discussed
how to reuse such plots across different domains.

Experiments with prototype implementations, based on logic programming, have
been of much help to test our approach. We are developing more robust implementa-
tions that combine the techniques outlined in this paper with an emergency response
information system that will establish a transition from such early prototype tools to
practical applications. More research is also required for, among other objectives,
defining more complex similarity criteria, and for developing efficient methods to
handle multi-agent environments.

References

1. Afanas’ev, A.: Russian Fairy Tales. N. Guterman (trans.). Pantheon Books, New York
(1945)

2. Bae, J., Caverlee, J., Liu, L., Rouse, W.B., Yan, H.: Process Mining by Measuring Process
Block Similarity. In: Proc. Workshop on Business Process Intelligence (BPI at BPM), Vi-
enna (2006)

3. Bal, M.: Narratology - Introduction to the Theory of Narrative. U. Toronto Press (2002)
4. Barbosa, S.D.J., Breitman, K.K., Furtado, A.L., Casanova, M.A.: Similarity and Analogy

over Application Domains. In: Proc. XXII SBBD, João Pessoa, Brazil (October 2007)
5. Barbosa, S.D.J., de Souza, C.S.: Extending software through metaphors and metonymies.

Knowledge-Based Systems 14 (2001)
6. Batini, C., Ceri, S., Navathe, S.: Conceptual Design – an Entity-Relationship Approach,

Benjamin Cummings (1992)
7. Breitman, K.K., Barbosa, S.D.J., Casanova, M.A., Furtado, A.L.: Conceptual modeling by

analogy and metaphor. In: Proc. CIKM 2007, Lisbon, Portugal (November 2007)

368 A.L. Furtado et al.

8. Carvalho, M.T., Freire, J., Casanova, M.A.: The Architecture of an Emergency Plan De-
ployment System. In: Proc. III Workshop Brasileiro de GeoInformática, Rio de Janeiro,
Brasil, October 2001, pp. 19–26 (2001)

9. Ciarlini, A.E.M., Furtado, A.L.: Understanding and Simulating Narratives in the Context
of Information Systems. In: Proc. 21st. International Conference on Conceptual Modeling,
Tampere, Finland (October 2002)

10. Ciarlini, A.E.M., Veloso, P.A.S., Furtado, A.L.: A Formal Framework for Modelling at the
Behavioral Level. In: Proc. 10th European-Japanese Conference on Information Modelling
and Knowledge Bases (2000)

11. Fernandes, A., Ciarlini, A.E.M., Furtado, A.L., Hinchey, M.G., Breitman, K.K., Casanova,
M.A.: Adding Flexibility to Workflows through Incremental Planning. Innovations in Sys-
tems and Software Engineering (2007)

12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2(3-4) (1971)

13. Furtado, A.L., Ciarlini, A.E.M.: Constructing Libraries of Typical Plans. In: Proc. 13th Int.
Conf. on Computer Advanced Information System Engineering (2001)

14. Holyoak, K., Thagard, P.: Mental Leaps. MIT Press, Cambridge (1996)
15. Kautz, H.A.: A Formal Theory of Plan Recognition and its Implementation. In: Allen, J.F.,

et al. (eds.) Reasoning about Plans. Morgan Kaufmann, San Francisco (1991)
16. Knight, K.: Unification: A Multidisciplinary Survey. ACM Comp. Surveys 21(1) (March

1989)
17. Labrou, Y., Finin, T.: History, State of the Art and Challenges for Agent Communication

Languages. In: Informatik – Informatique, vol. 1 (2000)
18. Lakoff, G., Johnson, M.: Metaphors We Live By. U. Chicago Press (1980)
19. Leake, D.: Case-Based Reasoning. MIT Press, Cambridge (1996)
20. Lippert, M., Schmolitzky, A., Züllighoven, H.: Metaphor Design Spaces. In: Marchesi, M.,

Succi, G. (eds.) XP 2003. LNCS, vol. 2675. Springer, Heidelberg (2003)
21. Lo, D., Khoo, S.-C., Liu, C.: Efficient Mining of Recurrent Rules from a Sequence Data-

base. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947.
Springer, Heidelberg (2008)

22. Morgan, G.: Images of organization. Sage Publications, Thousand Oaks (1998)
23. Muñoz-Avila, H., Cox, M.: Case-based plan adaptation: An analysis and review. IEEE In-

telligent Systems (2007)
24. Propp, V.: Morphology of the Folktale. Laurence, S (trans.). U. Texas Press, Austin (1968)
25. Schank, R.: Tell me a Story. Northwestern University Press (1990)
26. Turner, M.: The Literary Mind. Oxford University Press, Oxford (1996)
27. Van de Walle, B., Turoff, M.: Emergency response information systems: emerging trends

and technologies special section – Introduction. Comm. of the ACM 50(3), 29–31 (2007)
28. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering

Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineer-
ing 47(2), 237–267 (2004)

29. Winston, P.H.: Learning and reasoning by analogy. Comm. of the ACM 23, 689–703
30. Yang, Q., Cheng, H.: Case Mining from Large Data Bases. In: Proc. 2003 Int. Conf. on

Case-based Reasoning, Trondheim, Norway (2003)

Discovering Semantically Similar Associations (SeSA)
for Complex Mappings between Conceptual Models

Yuan An and Il-Yeol Song

College of Information Science and Technology, Drexel University, USA
{yan,isong}@ischool.drexel.edu

Abstract. There is an increasing demand for discovering meaningful relation-
ships, i.e., mappings, between conceptual models for interoperability. Current
solutions have been focusing on the discovery of correspondences between el-
ements in different conceptual models. However, a complex mapping associating
a structure connecting a set of elements in one conceptual model with a structure
connecting a set of elements in another conceptual model is required in many
cases. In this paper, we propose a novel technique for discovering semantically
similar associations (SeSA) for constructing complex mappings. Given a pair of
conceptual models, we create a mapping graph by taking the cross product of
the two conceptual model graphs. Each edge in the mapping graph is assigned
a weight based on the semantic similarity of the two elements encoded by the
edge. We then turn the problem of discovering semantically similar associations
(SeSA) into the problem of finding shortest paths in the mapping graph. We ex-
periment different combinations of values for element similarities according to
the semantic types of the elements. By choosing the set of values that have the
best performance on controlled mapping cases, we apply the algorithm on test
conceptual models drawn from a variety of applications. The experimental re-
sults show that the proposed technique is effective in discovering semantically
similar associations (SeSA).

1 Introduction

A mapping between two conceptual models specifies a meaningful relationship between
the two conceptual models. Semantic mappings have been used increasingly in achiev-
ing interoperability [11], capturing data semantics [3], and enabling various operations
in the generic model management framework [4]. A mapping can be a simple cor-
respondence between two elements in different conceptual models. For example, if a
concept C1 in one ontology is “equivalent” to a concept C2 in another ontology, then we
could specify the mapping between C1 and C2 as C1�C2, where we use the symbol
“�” to indicate the correspondence. Moreover, a mapping can be a complex relation-
ship between a structure/association connecting multiple elements in one model and a
structure/association connecting multiple elements in another model. For example, the
born in association between the concept Person and the concept Country in one on-
tology somehow is “equivalent” to the composition of the association born in between
the concept Person and the concept City and the association located in between the
City and the concept Country in another ontology. A complex mapping relationship is
often expressed in a declarative formula with precise semantics.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 369–382, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

370 Y. An and I.-Y. Song

Discovering mappings between models is a very difficult problem in both the
database community [17] and the artificial intelligence community [1]. Nevertheless,
great effort has been put into the problem of discovering correspondences between
model elements, e.g., solutions for schema matching [16] and ontology mapping [10]. A
few attempts take database schemas as their subjects and propose solutions for inferring
complex mappings between database schemas [14,5]. There is little effort, however, for
deriving complex mappings between conceptual models in the literature.

A conceptual model (abbreviated as CM) uses modeling constructs such as concepts,
relationships, attributes, and constraints to describe a subject matter based on well-
defined abstraction mechanisms. Example CMs include Entity-Relationship diagrams,
UML class diagrams, and OWL ontologies. Many data-centric applications require so-
lutions to the problem of discovering complex CM mappings to fulfill their goals, for
example, data translation over the semantic web [8], data management in peer-to-peer
systems [9], and deriving schema mappings using CMs [2]. Current solutions rely on
humans to specify the complex CM mapping formulas when they are required - a time-
consuming and error-prone task. With the increasing complexity of various CMs in
many applications, it is desirable to automate the process. In this paper, we deal with
the above discovery problem. We propose a solution to the problem of discovering se-
mantically similar associations (SeSA) between pairs of corresponding concepts. Our
method takes as input two CMs and a set of correspondences between concepts in the
CMs, and generates pairs of semantically similar associations (SeSA). Each association
is between a pair of concepts in a CM. The following example illustrates the need for a
complex mapping and describes the input and output of our solution.

Example 1. Figure 1 shows two different CMs, CM1 and CM2, describing Person, City,
and Country, where we use rectangles for concepts, circles for attributes, and lines for
relationships. The CM1 contains two relationships between two concepts Person and
Country: a many-to-one (functional) relationship born in and a many-to-many rela-
tionship worked in, both indicated by the cardinality constraints. The concept Person
has an attribute pName, and Country has an attribute countryName. On the other
hand, CM2 describes three relationships born in, located in, and hasBeenTo as well
as three concepts Person, City, and Country. Some concepts have attributes.

Suppose that mappings between CM1 and CM2 are sought for information exchange
(imagine that CM1 is an ontology used by an information system wanting to load data
from another system using ontology CM2 or vice versa). The creation of complex

Country Person City
born_in

pName countryName pName countryName

1..1 1..* 1..1

CM 1: CM 2:

Person Country
1..*

born_in located_in

1..11..*

worked_in hasBeenTo0..*1..* 0..*1..*

Fig. 1. Two Different CMs

Discovering Semantically Similar Associations (SeSA) 371

mappings between two CMs is inherently difficult to automate. To alleviate the prob-
lem, we take a two-step approach: (1) specifying simple correspondences between el-
ements in the two CMs; (2) inferring complex mappings between semantically similar
structures.

In this paper, we assume that a user can specify correspondences between atomic
elements in different CMs manually or using existing schema matching and ontol-
ogy mapping tools [16,10]. In particular, we consider correspondences specified be-
tween concepts (which can be inferred from correspondences between attributes.) For
instance, we assume that the following correspondences have been specified: CM1:
Person �CM2:Person, CM1:Country �CM2:Country, where we use prefixes
CM1 and CM2 to distinguish terms in different CMs. Given two pairs of corresponding
concepts, our solution infers a list of pairs of associations. Each pair consists of an as-
sociation between the pair of concepts in the first CM and an association between the
corresponding pair of concepts in the second CM. For example, given the above corre-
spondences, our solution is expected to produce the pair of associations
〈

CM1:Person -- born_In ->- CM1:Country ,

CM2:Person -- born_In ->- CM2:City -- located_in ->- CM2:Country
〉,
and the pair of associations
〈

CM1:Person -- worked_in -- CM1:Country ,

CM2:Person -- hasBeenTo -- CM2:City --located_in->- CM2:Country
〉,

where we use a notation “-- born_In ->- ” to indicate that born_in is a many-
to-one (functional) relationship, and a notation -- hasBeenTo -- to indicate that
hasBeenTo is a many-to-many relationship, and so on. In each pair, the two associa-
tions are “semantically similar” in terms of their cardinality constraints.

Furthermore, we can express a pair of SeSA as a mapping statement in a declarative
language (see [3]) or an executable query in a particular query language (e.g., SPARQL
[15]). �

Although in a wide range of applications discovering complex mappings between CMs
is important and necessary, solutions to the problem are rare in the literature. This is due
to many challenges involved including: how to determine the most likely associations
between two concepts when there are multiple connections between them in a com-
plex CM, how to define the “semantic similarity” between two associations in different
CMs, how to efficiently discover “semantically similar” associations from complex CM
graphs, and how to rank the mappings if there are many candidates returned by a so-
lution. In this paper, we aim to discover an association δ1 between a pair of concepts
〈C1, C2〉 in a CM and an association δ2 between a pair of concepts 〈D1, D2〉 in an-
other CM when given correspondences C1 �D1 and C2�D2. We expect that δ1 and
δ2 are “semantically similar”. More complex associations connecting more than two
concepts can be constructed by using the pair-wise associations so we leave it for the

372 Y. An and I.-Y. Song

future work. In addition, we do not take the linguistic information encoded in the names
of elements into consideration, which will be incorporated in the future work as well.
Essentially, we seek for associations that are “semantically similar” in terms of the se-
mantic types of relationships between concepts. For example, an ISA relationship is
semantically similar to an ISA relationship, a partOf relationship is semantically sim-
ilar to a partOf relationship, and so on. To effectively discover “semantically similar”
associations from complex CMs, we create a mapping graph by taking the cross prod-
uct of two CM graphs. We then turn the mapping discovery problem into a problem of
finding some optimal structures in a graph, which can be solved by applying efficient
graph-theoretic algorithms.

Our major contributions are: (1) we propose an innovative approach for discovering
SeSA between CMs by using efficient graph-theoretic algorithms; and (2) we demon-
strate the effectiveness of the proposed solutions through real world CMs. The rest of
the paper is organized as follows. We contrast our approach with related work in Section
2. In Section 3 we present formal notations used later on. We describe the principles in
Section 4 and the mapping discovery algorithm in Section 5. In Section 6 we report on
experimental studies. Finally, we summarize the results of this work and conclude the
paper in Section 7.

2 Related Work

A schema mapping tool infers meaningful relationships between a source and a target
database schema from element correspondences. Typical schema mapping tools rely
on integrity constraints, especially referential integrity constraints, to assemble “log-
ically connected elements”. These logical elements, together with the element corre-
spondences, then give rise to mappings between the schemas. A representative schema
mapping tool is Clio [14]. It is natural to ask whether we could utilize the mapping tech-
niques developed in schema mapping tools by viewing the CMs as (relational) database
schemas. Unfortunately, this approach does not work as illustrated below.

Let us view the CMs (consider CMs with only binary relationships for now) as re-
lational schemas consisting of unary tables for concepts, binary tables for relationships
and attributes. For example, in Example 1, the CM CM1 could be viewed as a schema
consisting of unary table CM1:Person(x1), binary tables such as CM1:born in(x1,x2)
and CM1:Country(x2), and the obvious foreign key constraints from binary to unary
tables; and the same view applies to the CM CM2 thus creating various tables includ-
ing CM2:Person(y1), CM2:born in(y1, y2) CM2:City(y2), CM2:located in(y2, y3),
CM2:Country(y3) and again the obvious foreign key constraints. Suppose that ele-
ment correspondences were given between the columns of unary tables Person and
Country. Then one could in fact try to apply directly the schema mapping techniques
to the problem. A desired mapping in Example 1 would not be produced due to the
following reasons: (i) The schema mapping techniques (e.g., [14]) work by taking each
table and using a chase-like algorithm to repeatedly extend it with columns that appear
as foreign keys referencing other tables. Such “logical associations” in the source and
target are then connected by queries. Specifically, for the CM CM2 this would lead
to logical relations such as CM2:Person ∧ CM2:born in ∧ CM2:City and CM2:City

Discovering Semantically Similar Associations (SeSA) 373

∧ CM2:located in ∧ CM2:Country, but not the entire connection from Person to
Country through the intermediary concept City. (ii) The semantics that CM1:born in is
many-to-one relationship leads us to prefer a many-to-one relationship/association be-
tween CM2:Person and CM2:Country in CM2. The schema mapping techniques (e.g.,
[14]) do not use such semantics to pair up “logical associations”.

The previous work [2] proposes a semantic approach for deriving schema mapping
expressions by using the semantics of the modeling constructs in a CM. That work an-
alyzes the graphical structures and the semantics of relationships (cardinalities, ISA,
partOf, etc.,) of the CMs associated with input schemas to eliminate/downgrade un-
reasonable options that arise in mappings between database schemas. In this paper, we
focus on the problem of discovering complex mappings between CMs and propose a
novel technique which is different from the previous work.

Schema/ontology matching (e.g., [16,7,12,10]) identifies semantic relations between
model elements based on their names, data types, constraints, and model structures.
The primary goal is to find the one-to-one correspondences between model elements.
We aim at the discovery of complex relationships between sets of model elements.

3 Conceptual Models (CMs) and Mappings between CMs

Conceptual Models. We consider in this paper the type of CMs, e.g., UML class di-
agrams, that are often used to describe static aspects of an application. However, we
do not restrict ourselves to any particular language for describing CMs. Instead, we
use a generic conceptual modeling language (CML), which contains many common as-
pects of most semantic data models (e.g., ER diagrams), UML class diagrams, ontology
languages such as OWL, and description logics. Specifically, the language allows the
representation of entities/classes/concepts (unary predicates over individuals), object
properties/relationships (binary predicates relating individuals), and datatype proper-
ties/ attributes (binary predicates relating individuals with values such as integers and
strings). Concepts are organized in the familiar ISA hierarchy. Relationships, and their
inverses, are annotated with types such as partOf and subject to cardinality constraints,
which here allow 1 as lower bounds (called total relationships), and 1 as upper bounds
(called functional relationships). For n-ary relationships connecting more than two en-
tities, and relationships with attributes, we represent them by “reified relationships” [6]
concepts whose instances represent tuples, connected by so-called “roles” to the tuple
elements.

A CM can be represented in a labeled graph called CM graph. We construct the CM
graph from a CM as follows: We create a concept node labeled with C for each concept
C, and an edge labeled with p from the concept node C1 to the concept node C2 for
each binary relationship p linking C1 to C2; for each such p, we annotate it with type
information such as partOf or reified role. For each subclass C1 of a class C2, create an
edge labeled with ISA connecting C1 to C2 with cardinality 1..1 (a C1 must be a C2),
and 0..1 on the inverse. Graphically, we use rectangles to represent concepts/classes
and a line to represent relationships. Textually, a many-to-many relationship p between
concepts C and D is written as C ---p--- D , while a many-to-one (functional)

relationship p is written as C ---p->-- D .

374 Y. An and I.-Y. Song

In this paper, we assume that attributes are globally unique, simple, and single-valued
(complex and multi-valued attributes can be transformed into concepts with simple and
single-valued attributes.) We use circles to represent attributes. Each attribute is con-
nected to the concept where the attribute belongs to. Since in this paper we focus on
discovering associations between concepts, we will strip off attribute nodes in our illus-
trations in later sections.

CM Mappings. A declarative mapping statement over a pair of CMs 〈CM1, CM2〉
is of the form CM1:E1 ⇔ CM2:E2, where E1 and E2 are expressions representing
associations over CM1 and CM2, respectively. Since the symbol “⇔” can be interpreted
as subset, superset, or equivalent operator according to the particular application, a more
generic mapping statement is written as a two-tuple 〈E1, E2〉. In the sequel, we will use
associations directly in a mapping statement as 〈δ1, δ2〉. The algorithm for translating
an association into a conjunctive formula is provided in [3].

4 Principles for Mapping Discovery

We now turn to the task for discovering “semantically similar” associations between
CMs. First, we present the principles underlying our approach.

The problem we are addressing is formulated as follows. Given two simple corre-
spondences v1:C1 �D1 and v2:C2�D2 linking two pairs of concepts 〈C1, C2〉 and
〈D1, D2〉 in conceptual models CM1 and CM2, respectively, find an association δ1 be-
tween C1 and C2 and an association δ2 between D1 and D2 such that δ1 and δ2 are
“semantically similar.” The problem is graphically described in Figure 2

A simple case is that both as-

2

CM1:

C1

C2

δ1

CM2:

D1

D2

δ2

v1

v

Fig. 2. The Mapping Discovery Problem

sociations δ1 and δ2 are direct
relationships, i.e., δ1 is a rela-
tionship between 〈C1, C2〉 and
δ2 is a relationship between
〈D1,D2〉. To determine whether
two relationships are seman-
tically similar, we analyze the
types of the relationships, e.g.,
partOf, and the cardinality con-
straints imposed on the
corresponding concepts participating in the relationships. Our first principle is to use
the semantic information encoded in the types of relationships and the cardinality con-
straints imposed on the relationships to discover semantically similar relationships.

However, for a complex CM, an association between two concepts may consist of a
sequence of relationships through a set of intermediary concepts. Our goal is to discover
SeSAs that are not just single relationships. For instance, each of the two pairs of asso-
ciations discovered in Example 1 contains an association consisting two relationships
that connect Person to Country in CM2.

Our second principle is to analyze the semantic information encoded in the types of
the relationships as well as the cardinality constraints imposed on the relationships to
discover pairs of SeSAs. Given a CM graph G1 = (V1, E1), an association δ1 in G1 is

Discovering Semantically Similar Associations (SeSA) 375

an alternating sequence of different nodes and edges δ1 = 〈v1, �1, v2, �2, v3..., vm, �m,
vm+1〉, where vi ∈ V1 and �i = (vi, vi+1) ∈ E1 for i ∈ {1, ..., m}. Likewise, for a CM
graph G2 = (V2, E2), we can represent an association δ2 as an alternating sequence of
different nodes and edges as δ2 = 〈u1, γ1, u2, γ2, u3..., un, γn, un+1〉, where ui ∈ V2

and γi = (ui, ui+1) ∈ E2 for i ∈ {1, ..., n}. Intuitively, the following associations δ1

and δ2 are semantically similar:

1. δ1=〈v1〉, δ2=〈u1〉, and v1�u1;
2. δ1=〈v1〉, δ2=〈u1, γ1, u2〉, v1�u1, v1�u2, and γ1 is a functional or ISA relation-

ships; or δ1=〈v1, �1, v2〉, δ2=〈u1〉, v1�u1, v2�u1, and �1 is a functional or ISA
relationships;

3. δ1=〈v1, �1, v2〉, δ2=〈u1, γ1, u2〉, v1�u1, v2�u2, and �1 and γ1 are two relation-
ships that both are (i) the type of partOf relationships; (ii) ISA; (iii) many-to-one;
or (iv) many-to-many;

4. δ1=〈v1, �1, v2〉, δ2=〈u1, γ1, u2, ..., un, γn, un+1〉, v1�u1, v2�un+1, and γi, i =
{1, .., n} have the same semantic type as �1, e.g., γi, i = {1, .., n} are all many-to-
many relationships if �1 is many-to-many; or the symmetric case when δ1 and δ2

get exchanged.
5. δ1=〈v1, �1, v2,..., vm, �m, vm+1〉, δ2=〈u1, γ1, u2, ..., un, γn, un+1〉, v1�u1,

vm+1�un+1, and there is a partition of δ1=〈δ1
1 , δ1

2 , ..., δ1
k〉 and a partition of

δ2=〈δ2
1 , δ2

2 , ..., δ2
k〉 such that δ1

j and δ2
j , j = {1, .., k} are semantically similar.

The above conditions 1-4 describe several base cases for semantically similar asso-
ciations (SeSA). Condition 5 states that two associations are considered semantically
similar if they can be divided recursively into partitions in the same size, and the cor-
responding components of the partitions are semantically similar. The description pro-
vides guidelines for designing an algorithm; however, challenges are involved. First,
what is the degree of similarity between two associations? Intuitively, the similarity be-
tween two “compatible” relationships should be greater than that between two paths
with more than one relationships. Second, there are too many ways to enumerate asso-
ciations between two concepts in a single CM graph. Which associations are the most
likely ones in terms of mapping? Third, there are too many ways to enumerate the par-
titions of a single associations. How to divide an association into partitions? Can an
edge/node be divided? How to efficiently decide whether two associations are semanti-
cally similar according to the condition 5?

To address these challenges, we turn to efficient graph-theoretic algorithms. The first
step is to encode our mapping problem in terms of a single graph structure. We utilize
the notion of cross product for two graphs which encodes certain relationships between
the two graphs. We need to extend the notion of cross product to encode mapping rela-
tionships between two CM graphs.

5 Mapping Discovery Algorithm

In graph theory, the cross product G = G1 × G2 of two graph G1 = (V1, E1) and
G2 = (V2, E2) is the graph G = (V, E), where V = V1×V2 and t = (viui, vjuj) ∈ E
for vi, vj ∈ V1 and ui, uj ∈ V2 if only if e = (vi, vj) ∈ E1 and r = (ui, uj) ∈ E2.

376 Y. An and I.-Y. Song

We extend the definition of the cross product of two graphs to the notion of mapping
graph by allowing t = (viui, vjuj) ∈ E if vi = vj and r = (ui, uj) ∈ E2, or
e = (vi, vj) ∈ E1 and ui = uj .

Definition 1 (Mapping Graph). The mapping graph M = G1 ⇔ G2 of two graph
G1 = (V1, E1) and G2 = (V2, E2) is the graph M = (V, E), where V = V1 × V2 and
t = (viui, vjuj) ∈ E for vi, vj ∈ V1 and ui, uj ∈ V2 if only if one of the following
conditions is satisified: (1) e = (vi, vj) ∈ E1 and r = (ui, uj) ∈ E2; (2) vi = vj and
r = (ui, uj) ∈ E2; or (3) e = (vi, vj) ∈ E1 and ui = uj .

Example 2. Figure 3 (a) shows two graphs G1 = (V1, E1) and G2 = (V2, E2) that
both are simple paths with three nodes. Figure 3 (b) shows the cross product of the two
graphs G = G1 × G2, while Figure 3 (c) shows the mapping graph of the two graph
M = G1 ⇔ G2. �

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

G1 G2

v1

v2

v3

u1

u2

u3

(a) (b) (c)

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

G=G 1xG2 M=G 1< = > G2

e1

e2

r1

r2

t1

t2t3
t4

t5

t6

t7

t8
t9

t10

t11t12

t16

t13
t14

t15 t17 t18

t19 t20

Fig. 3. Cross Product and Mapping Graph

An edge in the mapping graph M = (V, E) encodes either a pair of edges or a node
and an edge in the original graphs. For example, the edge t2 = (v1u1, v2u2) ∈ M in
Figure 3 (c) encodes the edge e1 = (v1, v2) ∈ E1 and the edge r1 = (u1, u2) ∈ E2; the
edge t1 = (v1u1, v1u2) ∈ M in Figure 3 (c) encodes the node v1 ∈ V1 and the edge
r1 = (u1, u2) ∈ E2. Moreover, a path in the mapping graph encodes a way to map the
source graph to the target graph. For example, the path 〈(v1u1, t2, v2u2, t15, v3u3)〉 ∈
M in Figure 3 (c) maps in a “one-to-one” fashion the elements of the original path G1

to the elements of the path G2.
For two conceptual models CM1 and CM2, if we are given two pairs of concepts

〈C1, C2〉 and 〈D1, D2〉, then a path between the two nodes C1D1 and C2D2 in the
mapping graph M=CM1 ⇔ CM2 gives rise to an association δ1 between C1 and C2

and an association δ2 between D1 and D2.
However, the mapping graph encodes all pairing ups between all possible associa-

tions connecting 〈C1, C2〉 in CM1 and all possible associations connecting 〈D1, D2〉 in
CM2. In addition, the mapping graph also encodes pairing ups between possible parti-
tions of an association and possible partitions of another association. For a very dense

Discovering Semantically Similar Associations (SeSA) 377

mapping graph, the number of paths between any pair of nodes is quite huge. Therefore,
we need to address the problem of discovering the paths in the mapping graph which
probably encode those SeSA that are desirable.

The solution is to assign weights to the edges of the mapping graph and discover
an optimal structure such as shortest/longest/heaviest paths in the mapping graph. The
weight of an edge in the mapping graph denotes the semantic similarity of the two
elements encoded by the edge. We assign the similarity as a real number between 0 and
1. We use letter α for highest similarity, e.g., the similarity between two ISA edges,
letter β for the similarity between an ISA edge and a functional relationship, letter λ
for compatible similarity, e.g., the similarity between a node and a functional edge, and
letter μ for the least similarity. Table 1 shows the categorization of pairs of elements
and the similarity values that are assigned to the pairs.

Table 1. Assigning Similarity to Pair of Elements 〈e1, e2〉 of two Conceptual Models CM1 and
CM2

〈e1, e2〉, e1 ∈ CM1 e2 ∈ CM2 Similarity 〈e1, e2〉, e1 ∈ CM1 e2 ∈ CM2 Similarity
e1=ISA edge 0 ≤ α ≤ 1 e1=ISA edge 0 ≤ β ≤ 1
e2=ISA edge e2=functional edge
e1=many-to-many edge 0 ≤ α ≤ 1 e1=a node 0 ≤ λ ≤ 1
e2=many-to-many edge e2=functional edge
e1=many-to-one edge 0 ≤ α ≤ 1 e1=reified role edge 0 ≤ α ≤ 1
e2=many-to-one edge e2=reified role edge
e1=partOf edge 0 ≤ α ≤ 1 other 0 ≤ μ ≤ 1
e2=partOf edge

Example 3. Figure 4 (b) shows the mapping graph of the two graphs G1 = (V1, E1)
and G2 = (V2, E2) in Figure 4 (a).

Both G1 and G2 contain a functional relationship edge which is indicated by an ar-
row, e.g., e1 = (v1, v2) ∈ E1, and a many-to-may relationship edge. Weights enclosed
by parentheses are assigned to the edges of the mapping graph in Figure 4 (b). To reduce
clumsiness, we only show two edge labels: t2 and t15 in the Figure.

We compute the similarity between the two original paths by computing the weights
of the paths that encode the two original paths. The weight of a path is the product of
the weights of the edges along the path. The path 〈(v1u1, t2, v2u2, t15, v3u3)〉 ∈ M
has the heaviest weight α2. By taking the weight of the heaviest paths, we obtain the
similarity between the two original paths as α2. �

Equipped with the weighted mapping graph, we design the mapping discovery algorithm
as to discover the heaviest paths between two given nodes, where the weight of a path
is the product of the weights of the edges along the path. This is justified by our pref-
erence to the paths with fewer edges. Each edge has a greater weight/similary value.
To compute the heaviest paths, we take the logarithm of the edge weights and negate the
results. After this, the traditional algorithms for computing shortest paths in a graph, e.g.,
Dijkstra’s algorithm, will produce the expected results. Figure 5 presents the procedure

378 Y. An and I.-Y. Song

15

v1u1

(a) (b)

G1 G2

v1u2
v1 u1

v2 u2

v3 u3

v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

e1

e2

r1

r2

(λ) (μ)

(λ)
(α) (μ) (μ) (μ)

(λ)(λ)

(μ)

(λ) (μ)

(μ) (μ)
(μ)

(α) (α)

(μ)

(λ) (μ)

t2

t

Fig. 4. Weight Assignments to a Mapping Graph

discSeSA(), which takes as input two CMs and two simple correspondences linking a
pair of concepts in the first CM to a pair of concepts in the second CM. The results of
the discSeSA() are pairs of desired associations. A resulted pair of associations are con-
sidered as “semantically similar” because they have the highest similarity based on the
appropriate similarities assigned to the edges in the mapping graph.

6 Experimental Results

We now report our experimental results. The purpose of the experiments is three-fold:
(1) selecting the values for the parameters α, β, λ, and μ which are presented in Table
1, (2) applying the proposed technique to various CMs in different applications, and
(3) testing the efficiency and effectiveness of the proposed algorithm. The algorithm is
implementated in JAVA and the experiments were conducted on a PC with an Intel Core
2 Duo processor and 2G memory.

Data Set. The test data sets (see Table 2) in our experiments were collected from a
variety of applications. The CMs Sdb0, Sdb1, Sdb2, and Sdb3 are four versions
of the conceptual model for describing a biological sample database extracted from
the industrial GeneExpress Data Management (GXDM) project described in [13]. In
this paper, we used controlled mapping cases based on these four CMs to empirically
determine the values of the similarity parameters that would have the best performance.
We experimented the mappings between Sdb0 and Sdb1, betwen Sdb1 and Sdb2, and
between Sdb2 and Sdb3. The remaining three pairs of test CMs in our experiments
were collected from our previous work in [2].

Table 2 shows the characteristics of the test CMs. For each pair, the table lists the
numbers of nodes and the numbers of edges of the first and second CMs.

Selecting Values for the Similarity Parameters. The key to the proposed technique
is to assign weights to the edges in the mapping graph. The value of a weight is based

Discovering Semantically Similar Associations (SeSA) 379

Procedure: discSeSA(G1, G2, L)
Input: conceptual model graphs G1 = (V1, E1), G2 = (V2, E2), and simple correspon-
dences L={C1�D1, C2�D2 | C1, C2∈V1, D1, D2∈V2}
Output: {〈δ1, δ2〉| δ1 is an association between C1 and C2, δ2 is an association between
D1 and D2, and δ1 and δ2 have the highest similarity}
Steps:

1. Create the mapping graph M = (V, E) = G1 ⇔ G2 of the input CM graphs, where
V = V1 × V2 and E is the set of edges of the mapping graph;

2. For each edge e = (viui, vjuj) ∈ E, vi, vj ∈ V1, ui, uj ∈ V2

(a) Assign a weight to e according to Table 1; the two elements encoded by the edge
e are either two edges (vi, vj) ∈ E1, (ui, uj) ∈ E2, or a node and an edge, e.g.,
vi = vj .

3. End for
4. For each edge e ∈ E, let w be the weight of e

(a) Let w = − lg w
5. End for
6. Let P = shorestPath(M)a.
7. Let A = makeAssociates(P)b.
8. return A.

a shortestPath() computes the shortest paths of a weighted graph.
b makeAssociation(P) splits each path in P into two associations in the original graphs.

Fig. 5. discSeSA Procedure

Table 2. Characteristics of Test Data

First CM # Nodes # Edges Second CM # Nodes # Edges Time for Creating Avg. Time for

Mapping Graph (sec) Discovering SeSA (sec)

Sdb0 68 73 Sdb1 54 58 7.8 1.9

Sdb1 54 58 Sdb2 74 80 9.5 2.2

Sdb2 74 80 Sdb3 49 56 8.0 1.8

Bibliographic 75 80 DBLP 7 10 0.32 0.068

Amalgam1 7 14 Amalgam2 26 27 0.13 0.028

Factbook 52 112 Mondial 26 55 4.6 1.7

on the semantic similarity between two elements encoded by an edge. Table 1 presents
the categorization of pairs of elements and the similarity values that are assigned. The
values denoted by the letters α, β, λ, and μ are real numbers between 0 and 1. We
hypothesized that different values assigned as element similarity might have differ-
ent performance in terms of discovering SeSA. We conducted experiments to verify
the hypothesis and hopefully to select the set of values that had the best performance
on our controlled experiments. First, we assigned each parameter an array of possi-
ble values as follows. Let α = {0.9, 0.8, 0.7, 0.6, 0.5}, β = {0.8, 0.6, 0.5, 0.4, 0.2},
λ = {0.8, 0.6, 0.5, 0.4, 0.2}, and μ = {0.01}. Second, we chose a number of pairs
of concepts in each of the following CMs: Sdb0, Sdb1, Sdb2, and Sdb3, and tested
mappings between Sdb0 and Sdb1, between Sdb1 and Sdb2, and between Sdb2 and

380 Y. An and I.-Y. Song

Fig. 6. Experimental Results for Selecting Similarity Values

Sdb3. Third, we combined the values from the four arrays under the constraints α ≥ β
and α ≥ λ, which indicate that the highest similarity value should not be less than other
similarity values. Finally, for each combination of the values, we measure the perfor-
mance of the algorithm using this set of values for assigning weights as described in the
following.

To measure the performance of the algorithm, for each mapping case, we manually
chose pairs of associations based on our understanding and expectation on the CMs.
These selected pairs of associations acted as the “gold standard” when we compared the
results generated by the algorithm using different similarity values. We were concerned
with the following two questions: Did the algorithm generate all the expected pairs of
associations? Did the algorithm generate pairs of associations that were not manually
selected. The first concern is related to the traditional recall measure, while the second
concern is about the precision measure. Specifically, let R be the set of “gold standard”
pairs and let P be the set of pairs generated by the algorithm. The precision and recall
measures are computed as: precision = |P∩R|

|P | and recall = |P∩R|
|R| . To measure the

overall performance, we take the harmonic mean of precision and recall which is called
F-Measure, calculated as follows:

F measure = 2
1

precision + 1
recall

.

Using the controlled mapping cases with expected results, we measure the perfor-
mance of the algorithm with different similarity values in terms of the F-measures. Fig-
ure 6 shows the average F-meaures for all combinations of values over the controlled
experiments. The x-axis lists the combinations of the values in the form of (α, β, λ, μ).
There were 91 combinations of values tested (the total number of combinations is 125
but some combinations were not considered due to the given constraints.) The highest
peak of the average F-measure curve appears at the point on the x-axis which corre-
sponds to the combination {α = 0.8, β = 0.5, λ = 0.6, μ = 0.01}. The ups and downs

Discovering Semantically Similar Associations (SeSA) 381

of the curve indicate that different values assigned as element similarity indeed had
different performance.

Results of Applying the Algorithm. With the set of selected values for similarity,
we applied the algorithm to the mapping pairs in our test data sets including SDB0,..,
SDB3 again. The last two columns of Table 2 contain the times for creating mapping
graphs and discovering SeSA for the test pairs. In terms of time complexity, it took sev-
eral seconds to create a mapping graph for some pairs of CMs in our test set. However,
the mapping graph of a certain pair only needs to be created once and can be reused
many times. The process of discovering SeSA spent a couple of seconds to produce the
final results. It employed the standard shortest path algorithm, e.g., Dijkstra’s algorithm.

To evaluate the effectiveness of the algorithm, we continue to use the notion of re-
call and precision. This time, we conducted a post-inspection to measure the recall and
precision. Specifically, for a mapping case, we inspected the pairs of associations gen-
erated by the algorithm against the CMs. For precision, we checked whether each pair
in the result set indeed contained two “semantically similar“ associations. For recall,
we checked whether there were other “semantically similar” associations that were not
returned by the algorithm. The inspection results showed that the algorithm is effective
in discovering SeSA. In particular, precisions for all mapping cases were 100%, while
the average recall over all mapping cases is about 90%. The imperfect recall is due to
the algorithm’s preference to heaviest (shortest) paths. For example, in the pair of CMs,

CIA factbook and Mondial, both CMs contain a relationship City -- capital->-

Country and a path City -- capital ->- Province --located_in->-

Country . The algorithm generates the two relationships as a pair of SeSA exclud-
ing the two paths. A solution would be to set the similarity α = 1; however, this setting
would disable α as a damper factor for longer paths. We plan to extend the algorithm by
using an additional parameter for controlling the content of the result set in our future
work.

7 Conclusions

In this paper, we studied the problem of discovering semantically similar associations
(SeSA) in two different conceptual models. Our method finds an association between
a pair of concepts in one conceptual model and a “semantically similar” association
between a pair of concepts in another conceptual model. We are motivated by the need
of specifying complex semantic mappings between CMs for many applications that
require interoperability such as data management over the semantic web and peer-to-
peer systems. We proposed a novel technique for discovering desirable SeSA by using
efficient graph-theoretic algorithms. Our solution is unique in that we turn the problem
of discovering SeSA into a problem of finding shortest paths in a special graph called
mapping graph. We create a mapping graph by taking the cross product of the two input
CM graphs. Our contributions include experiments for evaluating the efficiency and
effectiveness of the proposed algorithm. Experimental results showed that the technique
was effective in discovering SeSA in our experiment setting. We plan to incorporate the

382 Y. An and I.-Y. Song

linguistic information in the names of elements into the mapping discovery approach in
the future work.

References

1. AAAI. AI Magazine, Special Issue on Semantic Integration 26(1) (2005)
2. An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discovering

Schema Mapping Expressions. In: Proceedings of International Conference on Data Engi-
neering (ICDE), pp. 206–215 (2007)

3. An, Y., Borgida, A., Mylopoulos, J.: Discovering the Semantics of Relational Tables through
Mappings. Journal on Data Semantics VII, 1–32 (2006)

4. Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In: CIDR
(2003)

5. Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, V.S., Pottinger, R.: HePToX: Marring XML
and Heterogeneity in Your P2P Databases. In: Proceedings of International Conference on
Very Large Data Bases (VLDB), pp. 1267–1270 (2005)

6. Dahchour, M., Pirotte, A.: The Semantics of Reifying n-ary Relationships as Classes. In:
Information Systems Analysis and Specification, pp. 580–586 (2002)

7. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: Imap: discovering complex
semantic matches between database schemas. In: SIGMOD 2004: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pp. 383–394. ACM Press,
New York (2004)

8. Halevy, A., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infrastructure for
semantic web application. In: Proceedings of International Conference on World Wide Web
(WWW), pp. 556–567 (2003)

9. Halevy, A.Y., Ives, Z.G., Suciu, D., Tatarinov, I.: Schema Mediation in Peer Data Manage-
ment Systems. In: Proceedings of the International Conference on Data Engineering (ICDE),
pp. 505–516 (2003)

10. Kalfoglou, Y., Scholemmer, M.: Ontology Mapping: The State of the Art. The Knowledge
Engineering Review 18(1), 1–31 (2003)

11. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of the ACM
Symposium on Principles of Database Systems (PODS), pp. 233–246 (2002)

12. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-Based Schema Matching. In: Pro-
ceedings of the International Conference on Data Engineering (ICDE), pp. 57–68 (2005)

13. Markowitz, V., Topaloglou, T.: Applying Data Warehousing Concepts to Gene Expression
Data Management. In: BIBE 2001, pp. 65–72 (2001)

14. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating web data. In:
VLDB, pp. 598–609 (2002)

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Working Draft
4 (2006), http://www.w3.org/TR/rdf-sparql-query

16. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10, 334–350 (2001)

17. SIGMOD. SIGMOD Record, Special Issue on Semantic Integration 33(4) (2004)

http://www.w3.org/TR/rdf-sparql-query

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 383–396, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Adverbial Approach for the Formal Specification of
Topological Constraints Involving Regions with Broad

Boundaries

Lotfi Bejaoui1,2,3,4, François Pinet3, Michel Schneider3,4, and Yvan Bédard1,2

1 Centre for Research in Geomatics (CRG), Laval University, Quebec (QC) Canada
lotfi.bejaoui.1@ulaval.ca

2 Industrial Research Chair in Geospatial Databases for Decision Support, Laval University,
Quebec (QC), Canada

yvan.bedard@scg.ulaval.ca
3 Cemagref-Clermont-Ferrand, France
francois.pinet@cemagref.fr

4 Dept. Computer Sciences, Blaise-Pascal University, Clermont-Ferrand, France
michel.schneider@isima.fr

Abstract. Topological integrity constraints control the topological properties of
spatial objects and the validity of their topological relationships in spatial data-
bases. These constraints can be specified by using formal languages such as the
spatial extension of the Object Constraint Language (OCL). Spatial OCL al-
lows the expression of topological constraints involving crisp spatial objects.
However, topological constraints involving spatial objects with vague shapes
(e.g., regions with broad boundaries) are not supported by this language. Shape
vagueness requires using appropriate topological operators (e.g., strongly Dis-
joint, fairly Meet) to specify valid relations between these objects; otherwise,
the constraints cannot be respected. This paper addresses the problem of the
lack of terminology to express topological constraints involving regions with
broad boundaries. We propose an extension of Spatial OCL based on a geomet-
ric model for objects with vague shapes and an adverbial approach for topologi-
cal relations between regions with broad boundaries. This extension of Spatial
OCL is then tested on an agricultural database.

1 Introduction

Internal spatial data quality is judged by several components, including completeness
and logical consistency [14, 24]. Logical consistency is defined as the number of
features, relationships, or attributes that have been correctly encoded in accordance
with the integrity constraints [7, 19, 21] for the feature data specification [14]. Integ-
rity constraints are defined at the conceptual level through specific tools [1]. In spatial
databases, additional integrity constraints are required to control topological proper-
ties of geometries (e.g., line simplicity), semantic aspects (e.g., a house has one level
at least), and topological relations (e.g., agricultural spread parcels should be disjoint
or adjacent) in addition to basic constraints (e.g., domain constraints) [13, 22]. In this
paper, we are interested in integrity constraints involving topological relations in
transactional databases.

384 L. Bejaoui et al.

Formal specification of topological integrity constraints requires using an unambigu-
ous formal language adapted to spatial databases. A spatial database-oriented language
should allow the specification of both alphanumeric and spatial constraints [10, 16].
Currently, an extension of the Object Constraint Language (OCL) called Spatial OCL
[10, 16] allows formal expression of spatial integrity constraints. Spatial OCL is based
on the 9-Intersection model [11]. OCL provides a framework to define integrity con-
straints on classes' attributes or to differentiate between classes by using the navigation
concept. This language has several advantages. First, it is easier to write an OCL con-
straint than its corresponding SQL query. Second, it is considered a subset of UML and
based on the object-oriented paradigm commonly used in the software engineering
domain. However, Spatial OCL cannot define topological constraints involving objects
with vague shapes such as regions with broad boundaries [3, 4, 6, 8, 9, 17, 23]. These
objects cannot be presented through crisp shapes [25] and therefore their topological
relations cannot be identified by applying a spatial model for crisp objects such as the 9-
Intersection model [11] or the CBM method [5]. For example, an integrity constraint
may state that “a pollution zone A should not overlap a pollution zone B.” The topologi-
cal operator overlap cannot have the same definition as in the 9-Intersection model [11],
because pollution zones can be viewed as regions with broad boundaries. They are not
composed of the same topological invariants as crisp regions (they have broad bounda-
ries instead linear ones) [18, 26]. Then, these regions with broad boundaries can overlap
each other with different strengths: weakly, fairly, strongly, or completely. A classifica-
tion of integrity constraints involving objects with vague shapes has been proposed in
[2]. In this paper, we address the problem of the lack of terminology in Spatial OCL [10,
16] to express topological constraints involving objects with vague shapes. The main
objective of this paper is to extend Spatial OCL in order to support topological con-
straints for regions with broad boundaries. We aim to extend the meta-model of Spatial
OCL by proposing new types for objects with vague shapes and new topological opera-
tors adapted to regions with broad boundaries.

The paper is organized as follows. In section 2, we briefly review the notion of ob-
jects with vague shapes. Then, we present a spatial model for regions with broad
boundaries and qualitative identification of their topological relations according to the
Qualitative Min-Max (QMM) model presented in [3]. In section 3, we review related
works on the specification of topological constraints, especially the approach using
Spatial OCL [10, 16]. In section 4, we present our extension of Spatial OCL in order
to formally express topological relations between regions with broad boundaries by
using the QMM model [3]. Section 5 presents an example of a spatial database storing
information about agricultural spreading activities. Some spatial objects stored in this
database such as spread parcels have vague shapes, and therefore their topological
constraints are expressed by using the extension of Spatial OCL. Section 6 presents
the conclusions of this work.

2 Objects with Vague Shapes

2.1 Categorization of Spatial Objects with Vague Shapes

According to [12, 15], shape vagueness refers to the difficulty of distinguishing the
shape of one object from its neighborhood. It is an intrinsic property of an object that

 An Adverbial Approach for the Formal Specification 385

has a spatial extent in a known position but does not have a well-defined shape (e.g., a
pollution zone, a lake, a forest stand, etc.) [12]. We distinguish three basic types of
spatial objects with vague shapes: broad points, lines with vague shapes (i.e., lines
with broad boundaries, lines with broad interiors or broad lines), and regions with
broad boundaries. Figure 1 shows an example of each one of these types of objects. A
region has a vague shape when it is surrounded by a broad boundary instead of a
sharp one (Figure 1c); we refer to these as regions with broad boundaries (e.g., a
pollution zone). A line has a vague shape when its boundary (endpoints) and/or its
interior are broad (Figure 1b; e.g., the itinerary of an historic explorer). For lines, we
make a distinction between broad interior and broad boundary as we consider them
specializations of linear shape vagueness. This distinction is also useful for points
because a point does not have a boundary; it is only composed of an interior. A point's
shape corresponds to the elementary space portion, which refers to its interior (Figure
1a). A broad point arises when there is a difficulty to distinguish the punctual object
from its neighborhood (e.g., a mountain peak).

(a) A broad point (b) A line with a vague shape (c) A region with a broad boundary

Fig. 1. Examples of objects with vague shapes

Figure 2 shows our general categorization of objects with vague shapes. Three

types of objects with vague shapes are specified: region with a broad boundary, line
with a vague shape and broad point. Shape vagueness for lines can be a property of
their boundaries (endpoints) and/or interiors. A line has a broad boundary when one
of the endpoints at least is broad. A line with a vague shape can also correspond to a
line where the interior is partially or completely broad; we speak about lines with
broad interiors. The constraint Overlap means that a line may combine different types
of shape vagueness. A line can have a broad boundary and a broad interior at the same
time. Finally, a line can be completely broad when there is a difficulty to distinguish
each point of the line from its neighborhood.

Broad lineLine with broad interiorLine with broad boundary

Broad pointLine with vague shapeRegion with broad boundary

Object with vague shape

Overlap

Fig. 2. Categorization of objects with vague shapes

386 L. Bejaoui et al.

2.2 Regions with Broad Boundaries and Their Topological Relations

In this paper, we define a region with a broad boundary according to the QMM model
[3]. A region with a broad boundary is then composed by two crisp subregions: (1) a
maximal extent Amax (i.e., the representation of the region when the boundary is con-
sidered as far as possible) and (2) a minimal extent Amin (i.e., the representation of the
region when the boundary is considered as close as possible). These two extents
should are related by one of the following topological relations: Equal1(Amin, Amax) or
Contains(Amin, Amax) or Covers(Amin, Amax) (Figure 3). The broad boundary refers to
the difference between these two extents. This difference may include area every-
where around the minimal extent (i.e., regions with completely broad boundaries),
may include area in some locations but not others around the minimal extent (i.e.,
regions with partially broad boundaries) or empty everywhere around the minimal
extent (i.e., regions with no broad boundaries, or crisp regions). In Figure 3b, we
present an example of a region with a partially broad boundary. The boundary is par-
tially broad because the difference between the maximal extent and the minimal one
is empty in some locations. Figures 3a and 3c, represent an example of a crisp region
and another one of a region with a completely broad boundary, respectively.

(a) A crisp region (b) A region with a partially broad boundary

Minimal extent = Maximal extent

(c) A region with a completely
broad boundary

Minimal extent
Maximal extent

Minimal extent

Maximal extent

Fig. 3. Regions with broad boundaries

In order to specify topological relations between two regions with broad bounda-
ries, we apply the 9-Intersection model [11] to identify the subrelations between the
minimal and maximal extents of regions involved [3]. These subrelations are de-
scribed through a 4-Intersection matrix including the values R1(Amin, Bmin), R2(Amin,
Bmax), R3(Amax, Bmin), and R4(Amax, Bmax), where A and B are two regions with broad
boundaries. Each cell of the 4-Intersection matrix receives one of the eight possible
topological relations between two simple crisp regions (i.e., Disjoint, Overlap, Meet,
Equal, Contains, Inside, Covers, Covered by). The 4-Intersection matrix corresponds
to the following representation:

Amin R1(Amin, Bmin) R2(Amin, Bmax)

Amax R3(Amax, Bmin) R4(Amax, Bmax)

Bmin Bmax

By considering eight possible values in a matrix' cells, 409684 = matrices can be dis-
tinguished. However, the definition of regions with broad boundaries specifies that only

1 The spatial relations (i.e., Equal, Contains, Covers) used in this definition are those defined in

(Egenhofer and Herring, 1990).

 An Adverbial Approach for the Formal Specification 387

three relations between minimal and maximal extents are possible: Equal(Amax, Amin),
Contains(Amax, Amin), or Covers(Amax, Amin). Thus, the contents of the matrix's cells are
not mutually independent. For example, if the maximal extents are disjointed, it is in-
consistent to have an Overlap relation between the minimal extents. By studying the
possible consistency of matrices describing topological relations, we deducted that only
242 topological relations are possible between two simple regions with broad bounda-
ries [3]. With regards to the content of a matrix, a topological relation can be classified
into different clusters. Since eight values are possible in each cell of the 4-Intersection
matrix, eight basic clusters can be distinguished: DISJOINT, CONTAINS, COVERS,
COVEREDBY, INSIDE, MEET, OVERLAP, and EQUAL. In [3], we used four adverbs
in order to qualify the membership of one relation to the clusters involved: weakly (only
one of the matrix's cells has the same name as the cluster), fairly (two of the matrix's
cells have the same name as the cluster), strongly (three of the matrix's cells have the
same name as the cluster), and completely (all of the matrix's cells have the same value).
Then, we distinguish for each basic cluster four subclusters which refer to the four lev-
els of membership specified above: weakly, fairly, strongly and completely. Figure 4
presents some relations which belong to different subclusters of CONTAINS and
DISJOINT clusters according to the contents of their respective matrices.

g p

> >
Fairly Disjoint Strongly Disjoint

Disjoint

DisjointDisjoint

Disjoint

Completely Disjoint

Disjoint

OverlapDisjoint

Disjoint Disjoint

OverlapContains

Disjoint Disjoint

OverlapContains

Overlap

Strongly contains

Contains

ContainsContains

Overlap

Completely contains

Contains

ContainsContains

Contains Covers

ContainsContains

Overlap

Fairly contains

Disjoint

ContainsContains

Overlap

Weakly contains

Weakly Disjoint

Fig. 4. Qualification of a topological relation between two regions with broad boundaries

In Figure 4, the fourth topological relation of the first line belongs with different
strengths to the following clusters: weakly to DISJOINT cluster, weakly to
CONTAINS cluster, and fairly to OVERLAP cluster. Hereafter, we integrate this ad-
verbial approach into the object constraint language Spatial OCL.

3 Specification of Topological Constraints in Spatial Databases

3.1 Integrity Constraints in Spatial Databases

In spatial databases, additional integrity constraints are required to insure consistency
of spatial objects [7, 21, 22]. In this paper, we are interested in topological constraints.
These constraints control the validity of topological relations between spatial objects.
We study formal expression of these constraints for regions with broad boundaries by
using an extension of Spatial OCL.

388 L. Bejaoui et al.

3.2 OCL and Spatial OCL

OCL is a formal language that can be used to model invariants on UML models [16,
20]. These invariants can correspond to the integrity constraints of a database. Integ-
rity constraints are defined in an UML class diagram. They correspond to conditions
that must be satisfied for all instances of a class at any time. The class ruled by the
constraint is called context. The principle of navigation consists in specifying integ-
rity constraints which involve objects of different classes by using their associations.
The following constraint specifies that the distance of an agricultural spread parcel
from the closest lake must be greater than 100 meters:

Context Spreading_Parcel inv:

self.distance_lake > 100

In order to define spatial integrity constraints, Duboisset et al. [10] and Pinet et al.
[16] proposed an extension of OCL's meta–model. This extension consists in adding
geographic basic types (i.e., point, line, and region) to the meta-model of OCL (Fig-
ure 5). Moreover, topological relations can be expressed through Spatial OCL by
using eight new topological operators added to the language: overlaps, contains, is
inside, are adjacent, covers, is covered by, are disjoint, and are equal. These opera-
tors correspond to the topological relations defined in the 9-Intersection model [11].
For example, the topological constraint “buildings and roads should not overlap each
other” is specified as follows:

Context road inv:

Building.allInstances forAll(b|Self.geometry aredisjoint(b)or

self.geometry areAdjacent(b))

Additional OCL extensions are required to deal with topological constraints for re-
gions with broad boundaries. For example, how can we express a topological con-
straint which specifies that "two pollution zones should be completely disjoint or
fairly meet each other"? We need more tolerant topological operators than those cur-
rently used in Spatial OCL. Hereafter, we propose an extension of the Spatial OCL in
order to support the formal expression of topological constraints between regions with
broad boundaries. We call this extension Adverbial Spatial OCL for Objects with
vague shapes (AOCLOVS for short). AOCLOVS is based on the QMM spatial model [3]
and It consists of integrating a set of keywords of Spatial OCL in order to express the
strength of topological relations specified in a constraint.

4 Adverbial Spatial OCL for Objects with Vague Shapes
(AOCLOVS)

In Spatial OCL [10, 16], geographic types are generalized through an abstract type
called BasicGeoType. BasicGeoType allows definition of constraints on spatial attrib-
utes called geometry. Each value of geometry attribute value is a bag of elements; the
type of each element is BasicGeoType. In order to consider vague shapes, we propose

 An Adverbial Approach for the Formal Specification 389

two abstract subclasses of geometries generalized by BasicGeoType: a type for Ob-
jects with vague shapes (OVSType) and another one for Objects with Crisp Shapes
(OCSType). OVSType is a generalization of three basic types of objects with vague
shapes: broad point, line with a vague shape and region with a broad boundary. A
region with a broad boundary is composed by two crisp polygons (i.e., this relation is
expressed through an aggregation between the type Region with a broad boundary
and the type Polygon), which represent the minimal extent and maximal extent of the
object, respectively. Figure 5 shows a general extension that covers three basic types
of objects with vague shapes. In this paper, we focus on the topological constraints
only for regions with broad boundaries.

Fig. 5. Extension of the meta–model of Spatial OCL

The qualitative approach proposed in the QMM model [3] distinguishes 40 clusters
(eight basic clusters and 32 subclusters) of topological relations between regions with
broad boundaries (Section 2.2). Consequently, the proposed Spatial OCL extension
introduces forty new topological operators adapted to regions with broad boundaries.
These operators provide a qualitative evaluation of the strength of a topological rela-
tion. These operators can appear in OCL expressions when objects have the OVSType
(Object with Vague Shape Type) and more precisely Region with a broad boundary
type. A region with a broad boundary is considered valid when it verifies the next
conditions:

1. Each one of the minimal extent and maximal extent verifies the closeness and
connectedness conditions of a simple crisp region.

2. The minimal and maximal extents of a region with a broad boundary are related
by one of the following topological relations: Contains (max, min), Covers (max,
min), or Equal (max, min) (cf. section 2.2).

These last conditions are the invariants of the spatial model. We call these invari-
ants meta-constraints, which control the validity of a region declared as a Region with
a broad boundary (RBB).

390 L. Bejaoui et al.

5 Example in Agricultural Spreading Activities

Agricultural spreading activities consist of putting an organic substance on or into the
soil in order to improve its agricultural productivity. In France, this activity is strictly
controlled by public organizations, because substances used in spreading can be dan-
gerous for ecological systems if they are not reasonably applied. The quantities and
types of these substances depend on several criteria such as the parcel emplacement
and soil type. For that, farmers should declare the areas to be spread and their refer-
ences (i.e., they declare an outline for the area to be spread). Then, data about spread-
ing activities are stored into a national spatial database. This database is accessed by a
GIS-based tool available on the Web. The GIS-Based tool allows retrieving and up-
dating of data describing spreading outlines declared by farmers. Farmers use the
GIS-based tool to declare the areas of parcels before drawing their respective geome-
tries on the screen through a GIS-based interface. The areas computed by the GIS tool
for the drawn geometries of parcels are generally different from those declared by the
farmer. Thus, a spread parcel has a theoretic geometry and an approximately drawn
one. The difference between these two geometries corresponds to the broad boundary
of a parcel. A spread parcel is a region with a broad boundary where the inner geome-
try corresponds to its minimal extent and the outer one corresponds to its maximal
extent. The theoretic geometry is reconstructed from the drawn one by using the dif-
ference between the theoretic area and that of the drawn geometry. The area of a theo-
retic geometry should be equal to the drawn area.

Additionally, a spread parcel may be composed of one or several capacity zones
that correspond to the parcel’s subparts where the spreading is allowed with condi-
tions (e.g., preserving the soil quality). Figure 6 shows an example of the theoretic
geometry of a spread parcel (PTheo), the drawn geometry of the same spread parcel
(PDr), the theoretic geometry of a capacity zone Z1 (Z1PTheoc), and the drawn geome-
try of a capacity zone Z1 (Z1PDr). In this paper, we present a part of the conceptual
schema of our spatial database (Figure 7). The class Parcel refers to an agricultural
parcel contained by a spreading perimeter. A parcel is described by an identifier, a
declared area, an area computed from the drawn geometry (Draw_area), and geome-
try with a vague shape composed by the drawn geometry and the theoretic one. Ca-
pacity zones are also defined as regions with broad boundaries. Finally, a spreading
perimeter is a global area containing one or several spread parcels. Figure 7 presents a
part of the class diagram of the spatial database storing data about agricultural spread-
ing activities.

A Spreading perimeter
PDr

PTheo

Z1PDr

Z1PTheo

Fig. 6. An example of spatial data stored in the spreading agricultural database

 An Adverbial Approach for the Formal Specification 391

capacity_zone

1 1..*

parcel

1

*

SpreadingPerimeter

Capacity_zone
Parcel

Comment
Label
Area
Department_num
Id_Perimeter

Capacity

Id_Zone

Vague_geometry
Drawn_area
Declared_area

Id_Parcel

Vague_geometry

Fig. 7. Class diagram of the agricultural spreading database

5.1 Formal Expression of Constraints

The constraints presented below are expressed by using the AOCLOVS and they prin-
cipally concern the spread parcels and their capacity zones. In this section, the maxi-
mal extent of one spread parcel refers to the theoretic geometry whether it covers or
contains the drawn area, which is the minimal extent of the region in this case. In the
same way, the drawn geometry refers to the maximal extent whether it covers or con-
tains the theoretic geometry, which refers to the minimal extent in this second case.
The minimal extent refers to the intersection of the theoretic geometry and the drawn
one if they overlap each other. In this last case, the maximal extent refers to the union
of the theoretic geometry and the drawn one.

Constraint 1: In a spreading outline, the parcels declared by farmers should be
disjointed or meet each other. In the same way, the drawn geometries of these
parcels, which have been manually drawn through a GIS-based tool, should also
verify one of the topological relations: Disjoint or Meet. In our database, a parcel
is an object with a vague shape, because a broad boundary results from the differ-
ence between the theoretic and drawn geometry. The topological relation between
two parcels is valid when it belongs to one of the following subclusters: completely
Disjoint (i.e., when both minimal and maximal extents are disjointed), completely
Meet (i.e., when both minimal and maximal extents meet each other), strongly
Disjoint and weakly Meet (i.e., when maximal extents meet each other but minimal

392 L. Bejaoui et al.

extents are disjointed), or fairly Disjoint and fairly Meet (i.e., when maximal ex-
tents meet each other, minimal extents are disjointed, and one of the minimal ex-
tents meets one of the maximal extents):

Context Parcel inv:

Parcel.allInstances forAll (b| self<>b implies
self.vague_geo completely Meet(b.vague_geo) or
self.vague_geo completely Disjoint(b.vague_geo) or
(self.vague_geo strongly Disjoint(b.vague_) and self.vague_geo weakly
Meet(b.vague_geo)) or (self.vague_geo fairly Disjoint(b.vague_geo) and
self.vague_geo fairly Meet(b.vague_geo)))

Constraint 2: A spread parcel is composed by one or several capacity zones. A ca-
pacity zone is inside, and covered by or equal to the drawn geometry of the parcel
involved. The same relations should be respected between respective theoretic geome-
tries of a parcel and each of its capacity zones. Indeed, the topological relation be-
tween a parcel and each of its capacity zones (both represented as regions with broad
boundaries) is valid if it belongs to one of the following subclusters: completely Con-
tains, completely Covers, strongly Contains and weakly Covers, strongly Contains
and weakly Overlap, fairly Contains and fairly Covers, fairly Contains and weakly
Covers and weakly Overlap, strongly Covers and weakly Contains, fairly Contains
and fairly Covers, or strongly Covers and weakly Overlap:

Context Parcel inv:

self.vague_geo forAll (b| self.capacity_zone.vague_geo exists(d|
(b.vague_geo completely Contains(d.vague_geo)) or
(b.vague_geo completely Covers(d.vague_geo)) or (b.vague_geo strongly
Contains(d.vague_geo) and b.vague_geo weakly Covers(d.vague_geo)) or
(b.vague_geo strongly Contains(d.vague_geo) and b.vague_geo weakly
Overlap(d.vague_geo)) or (b.vague_geo fairly Contains(d.vague_geo) and
b.vague_geo fairly Covers(d.vague_geo)) or (b.vague_geo fairly
Contains(d.vague_geo) and b.vague_geo weakly Covers(d.vague_geo) and
b.vague_geo weakly Overlap(d. vague_geo)) or (b.vague_geo strongly
Covers(d.vague_geo) and b.vague_geo weakly Contains(d.vague_geo)) or
(b.vague_geo fairly Contains(d.vague_geo) and b.vague_geo fairly
Covers(d.vague_geo)) or (b.vague_geo strongly Covers(d.vague_geo) and
b.vague_geo weakly Overlap(d.vague_geo))))

Constraint 3: Inside one spread parcel, two different capacity zones should verify
one of the following specifications: completely Disjoint, completely Meet, (strongly
Disjoint and weakly Meet) or (fairly Disjoint and fairly Meet).

Context Capacity_zone inv:

self.allInstances forAll (a,b| a<>b and a.parcel=b.parcel implies a.
vague_geo completely Meet(b.vague_geo) or a.vague_geo completely
Disjoint(b.vague_geo) or (a.vague_geo strongly Disjoint(b.vague_geo)
and a.vague_geo weakly Meet(b.vague_geo)) or (a.vague_geo fairly
Disjoint(b.vague_geo) and a.vague_geo fairly Meet(b.vague_geo)));

Constraint 4: P is a spreading perimeter composed by N spread parcels. The sum of
areas of minimal extents of spread parcels is less than or equal to the area of P. How-
ever, the sum of areas of maximal extents of spread parcels is greater than or equal to

 An Adverbial Approach for the Formal Specification 393

the declared area of P. The expression "self.parcel.vague_geo.minimal_ex-
tent.area sum()" provides the sum of areas of minimal extents of parcels belonging
to the spreading perimeter involved. In other words, this function makes the same
thing for maximal extents of capacity zones in one spread parcel.

Context SpreadingPerimeter inv:

self.parcel.vague_geo.minimal_extent.area sum()≤ self.area and

self.parcel.vague_geo.maximal_extent.area sum()≥ self.area

5.2 Implementation of AOCLOVS

In this work, OCL expressions can be automatically translated into SQL code by
using a constraint editor called OCL2SQL initially developed by Tudresden Univer-
sity before to be extended by [10, 16], first for topological constraints for crisp re-
gions and next, in the present paper, for regions with broad boundaries. Figure 8
shows the architecture of OCL2SQL application. It is a Java application in which
constraints are defined in an UML class diagram stored in an xmi file. The constraints
are written by using AOCLOVS specifications to be verified according the class dia-
gram involved. OCL2SQL editor translates these constraints in SQL language,
wherein new topological operators are defined as PL/SQL functions managed by the
DBMS (Database Management System) Oracle. For example, the next constraint
specifies that two pollution zones should be strongly disjointed. For this constraint we
give the correspondent SQL code. The SQL script generated by OCL2SQL is then
executed on the data stored in an Oracle spatial database in order to retrieve possible
inconsistencies.

Constraint 5:
Context Pollution_zones inv:

Parcel.allInstances forAll (b| self<>b implies self.vague_geo
strongly Disjoint(b.vague_geo)

Oracle Spatial SQL:
select * from OV_Pollution_Zone SELF
where not (not exists ((select PK6 from OV_ Pollution_Zone) minus
 select PK6 from OV_ Pollution_Zone SELF2 where (SELF.PK6 = SELF2.PK6) OR
 stronglyDisjoint((select PK4 from OV_VAGUE_GEO
 where PK4 in (select GEOMETRY_PK4 from
 OV_ Pollution_Zone where PK6 = SELF2.PK6)),
 (select PK4 from OV_VAGUE_GEO where PK4 in
 (select GEOMETRY_PK4 from OV_ Pollution_Zone

 where PK6 = SELF2.PK6)) , OV_VAGUE_GEO)=0));

Figure 8 schematizes the architecture of the extension of OCL2SQL, which covers
topological constraints involving regions with broad boundaries. This figure is
adapted from [10].

394 L. Bejaoui et al.

Spatial OCL2SQL editor + adverbial extension for regions with broad boundaries

UML Class diagram
(exported in an xmi file)

Geographic metadata for
geometric attributes

Topological constraints in
OCL on the UML model

- SQL queries/triggers for Oracle Spatial
- Definition of new SQL spatial operators
(e.g., fairlyDisjoint, stronglyMeet, etc)

Using of other platforms in order to store data and
check topological constraints for regions with broad
boundaries (MySQL, SQL Server, etc.)

Fig. 8. Architecture of the application used to check the OCL constraints (this figure is adapted
from [10])

6 Conclusion

Respecting topological constraints is an important aspect of internal spatial data qual-
ity. Topological constraints can be expressed through Spatial OCL [10, 16], which
integrates the 9-Intersection model to specify topological relations. However, Spatial
OCL lacks syntactical tools to express topological constraints for objects with vague
shapes. In this paper, we addressed the problem of formal specification of topological
constraints for objects with vague shapes and especially regions with broad bounda-
ries. For that, we presented a spatial model for regions with broad boundaries, where
topological relations are identified according to subrelations between their minimal
and maximal extents [3]. Then, topological relations are qualitatively classified by
exploring similarity between subrelations identified. Four adverbs are used to describe
the strength of a topological relation between two regions with broad boundaries:
weakly, fairly, strongly, or completely.

This paper makes three main contributions. First, the meta-model of Spatial OCL
has been extended in order to consider new data types covering spatial objects with
vague shapes. We proposed a new abstract type called OVSType (Object with Vague
Shape Type), which can be specialized into broad point, line with a vague shape, and
region with a broad boundary. Second, our adverbial approach for topological rela-
tions between regions with broad boundaries has been integrated into Spatial OCL.
Forty new topological operators have been proposed as additional keywords of Spatial
OCL in order to deal with topological constraints involving regions with broad
boundaries. We have called this extension Adverbial spatial OCL for Objects with
Vague Shapes (AOCLOVS for short). Third, AOCLOVS has been integrated into the
constraint editor OCL2SQL, which automatically generates Oracle Spatial SQL code
of the topological constraints from their AOCLOVS expressions. This framework has

 An Adverbial Approach for the Formal Specification 395

been tested using a spatial database storing data about agricultural spreading activi-
ties. Some constraints have been specified for this database. These constraints princi-
pally involve spread parcels and their capacity zones presented as regions with broad
boundaries.

In the future, we aim to extend this approach in two main directions. First, we will
generalize our framework in order to specify topological relations involving different
objects with vague shapes (i.e., broad points, lines with vague shapes, and regions
with broad boundaries). Second, we will study the specification of topological con-
straints involving regions with vague complex shapes (e.g., regions with several ker-
nels, regions composed by several subregions with broad boundaries).

References

1. Bédard, Y., Larrivée, S., Proulx, M.J., Nadeau, M.: Modeling Geospatial Databases with
Plug-Ins for Visual Languages: A Pragmatic Approach and the Impacts of 16 Years of Re-
search and Experimentations on Perceptory. In: Wang, S., et al. (eds.) ER Workshops
2004. LNCS, vol. 3289, pp. 17–30. Springer, Heidelberg (2004)

2. Bejaoui, L., Bédard, Y., Pinet, F., Salehi, M., Schneider, M.: Logical consistency for vague
spatiotemporal objects and relations. In: The 5th International Symposium on Spatial Data
Quality (ISSDQ 2007), Enschede, Netherlands (June 2007)

3. Bejaoui, L., Bédard, Y., Pinet, F., Schneider, M.: Qualified topological relations between
objects with possibly vague shape. International Journal of Geographical Information Sci-
ences (to appear, 2008)

4. Burrough, P.A., Frank, A.U.: Geographic Objects with Indeterminate Boundaries. Taylor
& Francis, London (1996)

5. Clementini, E., Di Felice, P.: A Comparison of Methods for Representing Topological Re-
lationships. Information Sciences 3, 149–178 (1995)

6. Clementini, E., Di Felici, P.: Approximate topological relations. International Journal of
Approximate Reasoning 16, 173–204 (1997)

7. Cockcroft, S.: A Taxonomy of Spatial Data Integrity Constraints. Geoinformatica 1(4),
327–343 (1997)

8. Cohn, A.G., Gotts, N.M.: The ’egg-yolk’ representation of regions with indeterminate
boundaries. In: Burrough, P., Frank, A. (eds.) Proceedings of the GISDATA Specialist
Meeting on Spatial Objects with Undetermined Boundaries, pp. 171–187. Taylor & Fran-
cis, Abington (1996)

9. Dilo, A.: Representation of and reasoning with vagueness in spatial information: A system
for handling vague objects. PhD thesis, ITC, Netherlands, p. 187 (2006)

10. Duboisset, M., Pinet, F., Kang, M.A., Schneider, M.: Precise modeling and verification of
topological integrity constraints in spatial databases: from an expressive power study to
code generation principles. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J.,
Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 465–482. Springer, Heidelberg (2005)

11. Egenhofer, M., Herring, J.: A mathematical framework for the definition of topological re-
lations. In: Brassel, K., Kishimoto, H. (eds.) Proceedings of the Fourth International Sym-
posium on Spatial Data Handling, Zurich, Switzerland, pp. 803–813 (1990)

12. Erwig, M., Schneider, M.: Vague regions. In: Scholl, M.O., Voisard, A. (eds.) SSD 1997.
LNCS, vol. 1262, pp. 298–320. Springer, Heidelberg (1997)

13. Frank, A.U.: Tiers of ontology and consistency constraints in geographical information
systems. Int. J. of Geographical Information Science 15(7), 667–678 (2001)

396 L. Bejaoui et al.

14. Guptill, S.C., Morrison, J.L.: Spatial data quality. In: Guptill, S.C., Morrison, J.L. (eds.)
Elements of spatial data quality, Elsevier Science Inc., New York (1995)

15. Hazarika, S.M., Cohn, A.G.: A taxonomy for spatial vagueness, an alternative egg-yolk in-
terpretation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 92–107.
Springer, Heidelberg (2001)

16. Pinet, F., Duboisset, M., Soulignac, V.: Using UML and OCL to maintain the consistency
of spatial data in environmental information systems. Environmental modelling & soft-
ware 22(8), 1217–1220 (2007)

17. Reis, R., Egenhofer, M.J., Matos, J.: Topological relations using two models of uncertainty
for lines. In: Proceeding of the 7th international Symposium on Spatial Accuracy Assess-
ment in Natural Resources and Environmental Sciences, Lisbon, Portugal, 5 - 7 July, pp.
286–295 (2006)

18. Rodriguez, A.: Inconsistency Issues in Spatial Databases. In: Bertossi, L., Hunter, A.,
Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 237–269. Springer, Hei-
delberg (2005)

19. Salehi, M., Bédard, Y., Mir, A.M., Brodeur, J.: Classification of integrity constraints in
spatiotemporal databases: toward building an integrity constraint specification language.
International Journal of Geographical Information Science (submitted, 2007)

20. Schmid, B., Warmer, J., Clark, T.: Object Modeling with the OCL: the Relational Behind
the Object Constraint Language, p. 281. Springer, Heidelberg (2002)

21. Servigne, S., Ubeda, T., Puricelli, A., Laurini, R.: A Methodology for Spatial Consistency
Improvement of Geographic Databases. GeoInformatica 4(1), 7–34 (2000)

22. Souris, M.: Contraintes d’intégrité spatiales. In: Devillers, R., Jeansoulin, R. (eds.) Qualité
de l’information géographique, Lavoisier, pp. 100–123 (2006)

23. Tang, T.: Spatial object modeling in fuzzy topological spaces: with applications to land
cover change. PhD thesis, University of Twente (2004) ISBN 90-6164-220-5

24. Van Oort, P.: Spatial data quality: from description to application. In: Publication on Ge-
odesy 60, Delft, December 2006, Geodetic Commission, Netherlands (2006)

25. Yazici, A., Zhu, Q., Sun, N.: Semantic data modeling of spatiotemporal database applica-
tions. Int. J. Intell. Syst., 881–904 (2001)

26. Zhan, F.B., Lin, H.: Overlay of Two Simple Polygons with Indeterminate Boundaries.
Transactions in GIS 7(1), 67–81 (2003)

Capturing Temporal Constraints

in Temporal ER Models

Carlo Combi1, Sara Degani1, and Christian S. Jensen2

1 Department of Computer Science - University of Verona
Strada le Grazie 15, 37134 Verona, Italy
{carlo.combi,sara.degani}@univr.it

2 Department of Computer Science - Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg Øst, Denmark

csj@cs.aau.dk

Abstract. A wide range of database applications manage information
that varies over time. The conceptual modeling of databases is frequently
based on one of the several versions of the ER model. As this model does
not provide built-in means for capturing temporal aspects of data, the
resulting diagrams are unnecessarily obscure and inadequate for docu-
mentation purposes. The TimeER model extends the ER model with
suitable constructs for modeling time-varying information, easing the
design process, and leading to easy-to-understand diagrams. In a tempo-
ral ER model, support for the specification of advanced temporal con-
straints would be desiderable, allowing the designer to specify, e.g., that
the value of an attribute must not change over time. This paper extends
the TimeER model by introducing the notation, and the associated se-
mantics, for the specification of new temporal constraints.

Keywords: Conceptual modeling, database design, entity-relationship
models, temporal databases, temporal data models, temporal constraints.

1 Introduction

A wide range of database applications manage information that varies over time:
travel applications such as airline, train, and hotel reservations; record-keeping
applications such as medical records; and financial applications like banking
account management are some examples. Frequently, in the database design pro-
cess for such applications, traditional data models are used; one of the several
versions of the Entity-Relationship (ER) model is a common choice [1,3]. The
ER model is easy to understand and use, and it allows one to define database
schemata by means of easy-to-comprehend diagrams. Nevertheless, it does not
explicitly support the management of time-varying information, and it is mainly
left to the application designers and developers to discover and implement the
temporal concepts meaningful for the application itself; this makes the design
process more complex and leads to difficult-to-understand database diagrams.
For this reason, a wide range of temporal extensions of the ER model have been

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 397–411, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 C. Combi, S. Degani, and C.S. Jensen

developed by the research community over the years [6]. These extensions al-
low a more natural and elegant design of temporal databases, providing means
for capturing the temporal aspects of the recorded data. Existing temporal ER
extensions, however, do not consider some advanced temporal aspects in data
modeling, such as, for example, specifying that an attribute cannot change over
time, or that an entity identifier cannot be re-used for different entities in dif-
ferent times. In this paper, we extend the temporal data model TimeER [3,7],
introducing new notations for the specification of advanced temporal constraints,
thus enhancing the expressiveness and temporal support of the model. In parti-
cular, we propose some extensions to the notion of key constraint; we apply the
concept of time-invariance to attributes and relationships; finally we introduce
new temporal superclass/subclass relationship constraints. We are not aware of
any other temporal ER model that supports the temporal constraints defined in
this paper.

The paper is structured as follows. Section 2 introduces the TimeER model
and a temporal relational model that we will use to define the semantics of the
new temporal constraints; in Sect. 3, we describe a motivating example taken
from a clinical scenario; in Sect. 4, we define new advanced temporal constraints
for the TimeER model; Section 5 describes the semantics of the temporal key
constraint defined in Sect. 4; finally, Sect. 6 offers concluding remarks and iden-
tifies directions for future research.

2 Background

In the following, we describe the main aspects of the TimeER model; further-
more, we present a temporal relational data model that will be used for the
definition of the semantics of the new temporal constraints.

2.1 The TimeER Model

The Time Extended ER (TimeER) model [3,7] extends the EER model described
by Elmasri and Navathe [1]. Existing ER constructs with their usual semantics
are retained, and new notation providing implicit temporal support is added.
More specifically, built-in temporal support is included for entities, relationships,
and attributes. Four types of temporal aspects of information can be captured
in a TimeER diagram, namely valid time, transaction time, lifespan, and user-
defined time [8]. Table 1 indicates which aspects of time may be associated with
each database concept. Note that TimeER offers support for both lifespan and
valid time for relationships, as a relationship can be perceived as an entity that
exists in its own right, or as a “complex attribute” of the involved entities.
Temporal aspects are captured adding annotations to the modeling constructs:
LS indicates lifespan support, VT indicates valid-time support, TT indicates
transaction-time support, LT indicates lifespan and transaction time support,
and finally BT indicates both valid and transaction time support. In Sect. 3, we
describe an example that illustrates how temporal information is represented in
a TimeER diagram.

Capturing Temporal Constraints in Temporal ER Models 399

Table 1. Association of aspects of time to TimeER database concepts

Entity
types

Relationship
types

Super/subclass
relationships

Attributes

Lifespan Yes Yes (entity view) No No

Valid time No Yes (attribute view) No Yes

Transaction time Yes Yes No Yes

2.2 The Surrogate-Based Relational Model

In the following, we describe the surrogate-based relational model. A mapping
from TimeER modeling constructs to the surrogate-based relational model is
defined in [4].

Domains of Attributes. The surrogate-based relational model supports the lexi-
cal domains of the standard relational model: DD = {D1, . . . , Dn}. Further, it
supports a domain of surrogates, termed the E-domain, and three time domains,
DLS (lifespan domain), DV T (valid time domain) and DTT (transaction time
domain).

Surrogates are system-generated unique internal identifiers; their values can-
not be modified by the users of the model. Attributes defined over the E-domain
are called E-attributes, and attributes defined over the time domains are termed
time attributes. As a convention, the names of E-attributes end with the chara-
cter ø; the names of time attributes are LSs, LSe, VTs, VTe, TTs, TTe, where s
and e indicates start and end of the considered temporal dimension, respectively.

Relations. The surrogate-based relational model has two types of relations, E-
relations and A-relations. E-relations are used to represent TimeER entity types
and also relationship types that are considered to exist in their own right. An
E-relation has a single E-attribute and a number of time attributes, depend-
ing on the time support specified for the corresponding entity type. A-relations
represent entity or relationship attributes. An A-relation references, through a
surrogate, the E-relation corresponding to the entity type the represented at-
tributes belong to. If the represented attribute is temporal, the A-relation has
also a number of time attributes.

Keys and Constraints. In traditional relational models, a primary key normally
serves two roles: it is a lexical identifier, and it models existence. In the surrogate-
based data model, lexical identification and existence are separated: E-relations
only have a primary key, as the term ”primary key” is used to exclusively model
existence; A-relations have a unique identifier termed ”key” [4]. At any point
in time, null-values are not allowed in E-relations (Entity Integrity Constraint),
and all surrogates referenced from an A-relation must exist in the corresponding
E-relation (Referential Integrity Constraint). Pairs of time attributes are used to

400 C. Combi, S. Degani, and C.S. Jensen

record the starting and the ending chronons of time intervals. The semantics of
temporal aspects is enforced through the definition of a number of constraints on
the database. For example, the valid time of any tuple of an A-relation must be
included in the lifespan of the referenced tuple of the corresponding E-relation.
These constraints are not enforced automatically by the data model, but must
be enforced by explicit specifications, e.g., using assertions.

3 Motivating Example

We proceed to briefly introduce a motivating example taken from the clinical
context. The TimeER diagram in Fig. 1 models a clinical database that stores
information about patients, their admission into the hospital, drugs, and physi-
cians. A patient is identified by an SSN (Social Security Number) and is charac-
terized by name, address, and birth place; it must be considered that the SSN
of a patient could change over time if, e.g., the patient changes name for some
reasons. Information about changes of patients’ addresses are recorded, too. The
hospital records the patients’ hospitalization history, and when this information
is current in the database. Each hospital admission is characterized by a code
and by the admission reason. Three different kinds of hospital admission are pos-
sible: emergency admission, regular admission, and day-hospital admission. For
each emergency admission, the database stores information about the assigned
bed number and the emergency level, and about possible changes of bed; for
each regular admission, information about the assigned bed number (and possi-
ble changes to it) and the reservation number are recorded. Moreover, for each
day-hospital admission the database stores information about the reservation
number.

The hospital mantains data about drugs and about each single drug package.
Each drug is identified by its National Drug Code (NDC) and is characterized
by a name and by the drug class (prescription drug or over-the-counter drug);
the NDC of a drug can neither vary over time, nor be re-assigned to a different
drug. For each drug package, the tracking code is recorded; the tracking code
of a drug package cannot vary over time; moreover, it cannot be re-assigned to
other drug packages before six years from its assignement. Information about
patient allergies to drugs are stored too; it must be considered that once a drug
allergy is recognized, it cannot disappear.

Physicians make diagnoses on patients; each physician is identified by a code
and is characterized by a name. The hospital keeps track of diagnosis histories,
and also of when this information is recorded in the database. Physicians can
be either hospital physicians or general practitioners; the basic information of a
physician needs to remain in the database even in the case the physician decides
to resign.

The TimeER model allows one to represent several temporal aspects of the
above example. First of all, changes of the address of a patient are captured
through the VT annotation for the attribute address of the entity Patient.
Changes of bed of a patient are modeled similarly. Moreover, the TimeER model

Capturing Temporal Constraints in Temporal ER Models 401

Pat ien t

D r u g

A l l e r g y

Phys i c i an

H o s p i t a l p h y s i c i a n

G e n e r a l p r a c t i t i o n e r

D i a g n o s i s

P a c k a g e

D r u g p a c k a g e

U n d e r g o e s

A d m i s s i o n

R e g u l a r

E m e r g e n c y

S S N

N a m e

B i r t h p l a c e

I D N a m e

N D C B T

N a m e

C l a s s B T

T r a c k i n g c o d e

C o d e

D a y H o s p i t a l

A d d r e s s V T

R e a s o n

B e d n . V T E m e r g e n c y l e v e l

B e d n . V T

R e s e r v a t i o n n .

R e s e r v a t i o n n .

L S

L S

L S

L T

B T B T

d

d

Fig. 1. A TimeER diagram modeling a clinical database

allows one to keep track of the hospitalization history of a patient, and of when
that information is available in the database, through the BT annotation for
the relationship Undergoes. Similarly, the Diagnosis relationship is annotated
with BT to record patient diagnosis history and the time during which the in-
formation is available in the database. The existence-times of entities Patient,
Physician, and Drug package are recorded by the LS annotation for the respec-
tive entities; moreover, for the entity Drug existence-time and time of occurence
in the database are stored by the LT annotation.

Nevertheless, we can observe that some of the database requirements cannot
be properly expressed by TimeER constructs. First of all, TimeER keys have
a snapshot-reducible semantics [7], as it is ensured that any key at any point
in time uniquely identifies an entity; this notion, however, is not sufficient to
constrain a key value to be time-invariant, as is required for the Tracking code
attribute of the entity Drug package; moreover, it does not allow one to express
the fact that a key value cannot be assigned to two different entities at two
different points in time, as is required for the NDC attribute of the entity Drug.
The notion of time-invariance cannot be expressed for regular attributes either;
this would be desiderable for the attribute Birth place of the entity Patient,
as the birth place of a person does not change over time; moreover, TimeER

does not provide means to express the fact that a drug allergy of a patient
cannot disappear over time. Finally, TimeER superclass/subclass relationship
constraints do not allow one to express, for example, that the kind of admission
of a patient cannot change over time.

402 C. Combi, S. Degani, and C.S. Jensen

4 Introducing New Temporalities in TimeER

In this section we introduce the main contribution of the paper, namely the de-
finition of advanced temporal constraints for TimeER diagrams. First, we con-
sider the key constraint, and we define different versions of it, considering its tem-
poral aspects. Then we apply the notion of time invariance to attributes and re-
lationships. Finally, we define new temporal constraints over superclass/subclass
relationships. Figure 2 shows how the diagram in Fig. 1 can be modified to also
capture the new constraints.

Pat ien t

D r u g

A l l e rgy (T I)

Phys i c i an

H o s p i t a l p h y s i c i a n

G e n e r a l p r a c t i t i o n e r

D i a g n o s i s

P a c k a g e

D r u g p a c k a g e

U n d e r g o e s

A d m i s s i o n

R e g u l a r

E m e r g e n c y

S S N

N a m e

B i r t h p lace (T I)

I D N a m e

N D C (T) B T

N a m e

C l a s s B T

T r a c k i n g c o d e (T I)

C o d e (T I)

D a y H o s p i t a l

A d d r e s s V T

R e a s o n

B e d n . V T E m e r g e n c y l e v e l

B e d n . V T

R e s e r v a t i o n n .

R e s e r v a t i o n n .

(T)

d (T)

L S

L S

L S

L T

B T B T

(T I)
d

Fig. 2. The TimeER diagram modeling the clinical database with the new constraints

4.1 Key Constraints

As the traditional ER model, the TimeER model allows one to indicate that
a set of attributes represents the key of an entity type. TimeER keys have
a snapshot-reducible semantics. In a temporal ER model, however, it may be
desiderable to have the possibility of specifying different kinds of key constraints,
considering the relationship between key attributes and time. In the follow-
ing, we first describe the notion of snapshot-reducible key as defined in the
TimeER model. Therefore, we define and compare two advanced notions of
key constraint, namely the time-invariant key constraint and the temporal key
constraint.

Capturing Temporal Constraints in Temporal ER Models 403

Definition 1 (Snapshot-Reducible Key). An entity snapshot-reducible key
(or simply entity key) is a group of the entity’s attributes that has to satisfy
the following constraint: at any point in time, the mapping from the entity set
to the corresponding set composed of groups of values for the key attributes is
one-to-one.

Definition 1 states that a snapshot-reducible key, at any point in time, uniquely
identifies an entity. The concept of snapshot-reducible key is defined in terms of
conventional keys and snapshot reducibility: snapshot reducibility ensures, for
example, that at any point in the valid time domain, a single-valued attribute,
for which valid time is captured, has only one value for an entity; combining
this with the conventional key constraint, we have that any key attribute at any
point in time uniquely identifies an entity.

An example scenario describing the application of the snapshot-reducible key
constraint is represented by the entity Patient in Fig. 2. The Social Security
Number of a patient can be updated over time; for example, a foreigner moving
to Italy could change his surname on the basis of the Italian surname attribu-
tion rules, which are different from those of the patient’s original country; as
a consequence, the Social Security Number, too, has to be modified. Then, the
SSN key attribute has a snapshot-reducible semantics, as its value for a specific
entity has to be unique at each single point in time, but it may vary over time.

For a snapshot-reducible key, it is ensured that at any point in time, each
entity has a different value for the key attribute; however, for two different
points in time, the same key value could identify two different entities, or an
entity could be identified by two different values of the key. Considering this
aspect, we introduce in the TimeER model the possibility of specifying two
more restrictive kinds of key. We call the first one time-invariant key, and it is
defined as follows.

Definition 2 (Time-Invariant Key). An entity time-invariant key is a group
of the entity’s attributes with the following properties: it is a snapshot-reducible
key, and the values of the key attributes of an entity do not change over time in
the valid-time domain.

The second point in Definition 2 states that an entity is identified by the same
time-invariant key value for all times in the valid-time domain: if we fix a single
point in the transaction-time domain (if required) and then consider two different
points in the valid-time domain, the same entity cannot have two different values
for the key attribute. In other words, two entities identified by different time-
invariant key values are different entities.

An example of application of time-invariant key is represented by the Tracking
code key attribute of the entity Drug package in Fig. 2. The tracking code is a
unique number associated with each drug package that cannot be repeated for
at least six years. This means that two drug packages identified by different
tracking codes are different packages, but the same tracking code could identify
two different drug packages at two different valid-time instants. It follows that
the Tracking code key has a time-invariant semantics.

404 C. Combi, S. Degani, and C.S. Jensen

If an entity key is defined as time-invariant, it cannot have two different values
for the key attributes at two different valid-time points, but the key value can
be reassigned to different entities over time. We introduce a third kind of key
constraint in TimeER that is even more restrictive than the time-invariant key,
as it also prevents the reassignement of key values over time. It is defined as
follows.

Definition 3 (Temporal Key). An entity temporal key is a group of the en-
tity’s attributes with the following properties: it is a time-invariant key, and the
values of the key attributes of an entity cannot be reassigned to a different entity
in the valid-time domain.

The first and the second point of Definition 3 imply that two entities identified
by different time-invariant key values are different entities; the third point im-
plies that two entities identified by the same time-invariant key value are the
same entity. The NDC attribute of the entity Drug in Fig. 2 is an example of a
temporal key. Indeed, the National Drug Code is a number unique to every drug
type that can neither vary over time for a specific drug type, nor be reassigned
to a different drug.

The graphical notation for the three kinds of key is the following. To indicate
that an entity attribute is a snapshot-reducible key, the key attribute name is
underlined. For a time-invariant key, the label (TI) is placed to the right of the
attribute name, and it is underlined together with the attribute name; for a
temporal key, a (T) is used in the same way.

For all the three kinds of keys it is possible to specify, besides valid time,
transaction time, too. Specifying the valid time for a time-invariant or a temporal
key does not serve the purpose of keeping track of changes of the key value
in the valid-time domain; however, even though a temporal key value cannot
vary over time, specifying its valid time can be useful, as it enables the capture
of the starting and the ending instants of validity of the value. Moreover, the
specification of transaction time for time-invariant key attributes allows one to
view previously current database states.

4.2 Time-Invariant Attributes

Similarly to how we applied the notion of time-invariance to entity keys, we can
apply this notion to simple attributes.

Definition 4 (Time-Invariant Attribute). A time-invariant attribute is an
attribute whose value does not change over time in the valid-time domain.

This means that, (possibly) given a fixed point in the transaction-time domain,
a time-invariant attribute of a given entity cannot have two different values for
two different points in the valid-time domain. Time-invariant attributes model
entity and relationship properties that do not vary over time. A simple example

Capturing Temporal Constraints in Temporal ER Models 405

is the attribute Birth place of the entity Patient in Fig. 2. As the birth place of
a person does not change over time, the attribute is specified as time-invariant.

As we can see in the figure, the graphical notation for time-invariant attributes
is the label (TI) placed to the right of the attribute name. Valid and/or trans-
action time can be specified also for time-invariant attributes.

4.3 Time-Invariant Relationships

The notion of time-invariance can be applied to entity relationships, too.

Definition 5 (Time-Invariant Relationship). A relationship between two
entities is time-invariant if, once it has been established, it holds as long as both
involved entities exist in the mini-world.

Definition 5 implies that a time-invariant relationship can start at any point
during the existence of the involved entities, but that, after the starting instant,
it has to hold for all the time during which the involved entities exist in the
modeled reality.

In Fig. 2, the entity Patient is related to the entity Drug by means of the
relationship Allergy . It can be observed that once a drug allergy is recognized,
it cannot disappear; therefore, each instance of the relationship Allergy holds as
long as the involved Patient and Drug instances exist in the modeled reality. It
follows that the relationship Allergy is time-invariant.

A time-invariant relationship R is represented by placing the label (TI) in the
right corner of the diamond representing R. Temporal support can be specified
also for time-invariant relationships.

4.4 Superclass/Subclass Participation Constraints

The TimeER model allows one to specify snapshot totality and disjointness con-
straints over superclass/subclass relationships, which state that the traditional
totality and disjointness constraints, respectively, must hold at each single point
in time. In many situations, however, the notions of snapshot totality and dis-
jointness constraints are not adequate to express the actual semantics of the
superclass/subclass relationship. We therefore define the advanced notions of
temporal totality constraint, temporal disjointness constraint, and time-invariant
superclass/subclass relationship.

Definition 6 (Temporally-Total Superclass/Subclass Relationship).
Let E and E1, . . . , En be TimeER entities such that E is a superclass and
E1, . . . , En are subclasses of E. If the superclass/subclass relationship is tem-
porally total, then each member of the superclass is a member of at least one of
the subclasses for at least one time instant in its lifespan.

A temporally total superclass/subclass relationship is represented by placing the
label (T) near the double line that represents the total participation constraint.

406 C. Combi, S. Degani, and C.S. Jensen

A situation, in which the temporal totality constraint is necessary to express
the actual semantics of a superclass/subclass relationship, is represented by the
superclass Physician and its subclasses in Fig. 2. The modeled database keeps
track of hospital physicians and general practitioners; suppose that the hospital
inserts data about a physician through occurrences of either entity General prac-
titioner or entity Hospital physician. If a physician resigns, for example to start
working privately, the basic information about the entity still needs to remain
in the database; therefore, from the instant of the physician’s resignation, the
entity becomes an instance of the superclass only. It follows that each physician
recorded in the database must be a general practitioner or a hospital physician
for at least one time instant in its lifespan. This condition can be expressed by
means of the temporal totality constraint.

Definition 7 (Temporally-Disjoint Superclass/Subclass Relationship).
Let E and E1, . . . , En be TimeER entities such that E is a superclass and
E1, . . . , En are subclasses of E. If the superclass/subclass relationship is tem-
porally disjoint then an instance e of E is a member of at most one of the
subclasses for all times in its lifespan.

A temporally disjoint superclass/subclass relationship is represented by placing
the label (T) in the circle containing the specification of the disjointness con-
straint.

As an example, consider the superclass/subclass relationship given by the
entity Physician and its subclasses in Fig. 2. Suppose that the considered hospital
does not allows a hospital physician to become a general practitioner, and vice–
versa. In this case, the superclass/subclass relationship is temporally disjoint, as
for all its lifespan, an instance of Physician can be a member of at most one of
the two subclasses General practitioner and Hospital physician.

Definition 8 (Time-Invariant Superclass/Subclass Relationship). A su-
perclass/subclass relationship is time-invariant if each member of the superclass
that belongs to one or more subclasses is a member of those subclasses for all of
its lifespan.

From the definition, it follows that the existence time of each instance of the
subclasses is equal to the existence time of the corresponding instance of the
superclass.

An example of time-invariant relationship is shown in Fig. 2, by the superclass
Admission and its subclasses. A patient admission can only be an emergency ad-
mission, a regular admission, or a day hospital admission at a time, and the kind
of admission cannot change over time. Therefore, an instance of the entity Ad-
mission is an instance of one of its subclasses Emergency admission, Regular ad-
mission, or Day hospital for all its lifespan; it follows that the superclass/subclass
relationship is time-invariant. A time-invariant superclass/subclass relationship
is represented by placing the label (TI) in the circle representing the super-
class/subclass relationships.

Capturing Temporal Constraints in Temporal ER Models 407

5 Semantics

The semantics of the TimeER constraints defined in Sect. 4 can be expressed
by means of their mapping to the surrogate-based relational model, presented in
Sect. 2.2. In the following, we give the semantics for the temporal key constraint.

5.1 Semantics of the Temporal Key Constraint

In order to define the semantics of the temporal key constraint through its map-
ping to the target relational model, we first recall how entity types and their at-
tributes are mapped to relations of the surrogate-based relational model [4]. For
a temporal entity type, an E-relation is created as the union of the E-attribute
and the time attributes corresponding to the temporal support specified for the
entity type. Moreover, for each temporal attribute, an A-relation is created as the
union of the E-attribute, the attribute itself, and the associated time attributes.

Some constraints apply to the relations created by the mapping [4]. First of all,
it must be enforced that the information recorded by the A-relation is snapshot
reducible: for A-relations recording valid time only, this means that no two tuples
of the A-relation containing the same E-attribute can have overlapping valid-
time intervals; similar constraints apply for A-relations recording transaction
time only or both valid time and transaction time.

A temporal constraint must hold to ensure that attributes of temporal entities
cannot be associated with time intervals for which the entities do not exist or
are not registered in the database. For example, if the tuples in an A-relation
representing temporal attributes record valid-time only, then the valid-time in-
tervals have to be included in the lifespan interval recorded by the tuple of the
E-relation with the same value of the E-attribute. Similar constraints apply for
all the combinations of temporal support for the A-relation and the E-relation.

As an example, Table 2 represents the result of the mapping of the entity
Drug in Fig. 2 and of its attributes. The attributes that are overlined in the
relations indicate the primary keys of the relations, while attributes that are
underlined constitute keys of the relations. The term primary key exclusively
indicates existence; consequently, only E-relations have primary keys. The unique
identifier of an A-relation is simply termed a key. In the example, the primary
key of the E-relation Drug includes the LSs timestamp attribute; the reason
is that the surrogate-based relational model allows an entity to reborn in the
database. It is worth noting that (possibly non temporally continuous) histories
of entities and their attribues can be suitably derived through joins between the
E-relation and the A-relations representing the considered entity. The attributes
that the user may have specified as a key for an entity type in the diagram
are indicated by the symbol “u.k.” in a relation. Foreign keys of relations are
indicated by the symbol “f.k.” following the attribute names.

A further constraint must be enforced to ensure that, for each instant of
validity of the value of an entity attribute, a corresponding value exists in the
A-relation representing the user-defined key. Constraint 1 ensures this in the
case where the user-defined key is a temporal key.

408 C. Combi, S. Degani, and C.S. Jensen

Table 2. The result of the mapping of the entity Drug in Figure 2

Drug
drugø LSs LSe

Drug NDC
drugø f.k. NDC u.k. VTs VTe TTs TTe

Drug name
drugø f.k. name

Drug class
drugø f.k. class VTs VTe TTs TTe

Constraint 1. Let E be a TimeER entity with a temporal key for which valid
time only is captured. Let R be the A-relation storing the temporal key of E, and
let ri be a tuple variable over R. Let S be an A-relation representing an attribute
of E, and let si be a tuple variable over S. Let Rø and Sø be the foreign key
of R and S, respectively, referring to the surrogate attribute of the E-relation
representing E. Then:

∀si ∈ S ∃ri ∈ R(si.Sø= ri.Rø ∧ [si.V Ts, si.V Te] ⊆ [ri.V Ts, ri.V Te])

Constraint 1 can be straightforwardly defined for the cases in which transaction
time also is captured for the A-relation recording the entity attribute and/or for
the A-relation recording the temporal key.

We therefore define the mapping of the temporal key constraint as Con-
straint 2 and Constraint 3; these constraints apply to the relation representing
the temporal key attribute. Constraint 2 applies in the case where valid time
only is captured for the temporal key attribute, and Constraint 3 applies when
both valid time and transaction time are captured.

Constraint 2. Let E be a TimeER entity with a temporal key for which valid
time only is captured. Let R be the A-relation storing the temporal key of E, and
let ri, rj be tuple variables over R. Let X be the group of attributes of R that
represents the temporal key of E. Let Rø be the foreign key of R referring to the
surrogate attribute of the E-relation representing E. Then:

∀ri, rj ∈ R ((ri.Rø = rj .Rø ⇔ ri.X = rj .X) ∧
((ri.X = rj .X ∧ [ri.V Ts, ri.V Te] ∩ [rj .V Ts, rj .V Te] 	= ∅) ⇒ ri = rj)).

Constraint 3. Let E be a TimeER entity with a temporal key for which both
valid and transaction time are captured. Let R be the A-relation storing the
temporal key of E, and let ri, rj be tuple variables over R. Let X be the group of
attributes of R that represents the temporal key of E. Let Rø be the foreign key
of R referring to the surrogate attribute of the E-relation representing E. Then:

∀ri, rj ∈ R (((ri.Rø = rj .Rø ∧
[ri.TTs, ri.TTe] ∩ [rj .TTs, rj .TTe] 	= ∅) ⇔ ri.X = rj .X)∧
((ri.X = rj .X ∧ [ri.V Ts, ri.V Te] ∩ [rj .V Ts, rj .V Te] 	= ∅ ∧

[ri.TTs, ri.TTe] ∩ [rj .TTs, rj .TTe] 	= ∅) ⇒ ri = rj))

Capturing Temporal Constraints in Temporal ER Models 409

As an example, Table 3 shows an instance of the relation Drug NDC of Table 2
that satisfies Constraint 3. Indeed, for each single point in the transaction-time
domain, the mapping from the set of the NDC attribute values to the Drug
entity set is one-to-one. Table 4, on the contrary, shows an instance that violates
Constraint 3, as the key value of the entity with surrogate-value ø1 varies over
time; moreover, the key value 00002-7597-01 that, during the valid-time interval
[1, 20], is assigned to the entity with surrogate value ø2, is the value for the key
attribute of the entity identified by the surrogate value ø3 during the valid-time
interval [21, NOW].

Table 3. An example of satisfaction of temporal key constraint

Drug NDC
drugø f.k. NDC u.k. VTs VTe TTs TTe

ø1 50242-0040-62 1 NOW 1 10
ø1 60575-4112-01 1 NOW 11 UC
ø2 00002-7597-01 1 NOW 1 UC

Table 4. An example of violation of temporal key constraint

Drug NDC
drugø f.k. NDC u.k. VTs VTe TTs TTe

ø1 50242-0040-62 1 10 1 UC
ø1 60575-4112-01 11 NOW 11 UC
ø2 00002-7597-01 1 20 1 UC
ø3 00002-7597-01 21 NOW 21 UC

The notion of temporal key constraint can be defined by means of suitable
temporal functional dependencies derived from those proposed in the literature
[9] for a bitemporal data model, and by introducing the temporal natural join
operator.

Intuitively, if X and Y are sets of non-timestamp attributes of a relation
schema S, a temporal functional dependency X

T−→ Y exists on S if, conside-
ring an instance of S as a collection of snapshot relations, the corresponding
conventional functional dependency X −→ Y holds on each such snapshot in
isolation. Moreover, a strong temporal functional dependency X

Str−→ Y exists on
S if, (possibly) fixed a transaction time instant, if the value of X does not vary
in two different valid time instants, then the value of Y does not vary as well.
Finally, a strong temporal equivalence X

Str←→ Y exists on S if X
Str−→ Y and

Y
Str−→ X .
Table 5a shows an instance of the Drug class relation with the schema de-

scribed in Table 2, and an instance of the Drug NDC relation that satisfies the
temporal key constraint; Table 6b shows the result of a temporal natural join

410 C. Combi, S. Degani, and C.S. Jensen

over these two instances. A temporal natural join is a binary operator that ge-
neralizes the snapshot natural join to incorporate one or more time dimensions.
Tuples in a temporal natural join are merged if their explicit join attribute va-
lues match, and they are temporally coincident in the given time dimensions. We
can notice that the following temporal functional dependencies hold for the S

relation: Drugø Str←→ NDC and NDC T→ S, where S is the set of all the attributes
of relation S.

Table 5.

Drug NDC
drugø f.k. NDC u.k. VTs VTe TTs TTe

ø1 50242-0040-62 1 NOW 1 10
ø1 60575-4112-01 1 NOW 11 UC
ø2 00002-7597-01 1 NOW 1 UC

Drug class
drugø f.k. class VTs VTe TTs TTe

ø1 Prescription 1 NOW 1 10
ø1 Over-the-counter 1 NOW 11 UC
ø2 Prescription 1 NOW 1 UC

(a) Satisfaction of temporal key constraint

S = Drug NDC �T Drug class
drugø f.k. NDC u.k class VTs VTe TTs TTe

ø1 50242-0040-62 Prescription 1 NOW 1 10
ø1 60575-4112-01 Over-the-counter 1 NOW 11 UC
ø2 00002-7597-01 Prescription 1 NOW 1 UC

(b) The temporal natural join over the relations in Table 6a

The temporal key constraint can therefore be defined as follows.

Definition 9. Let E be an entity, and let A1, . . . , An be the A-relation schema
that represent the attributes of E. Let Eø be the surrogate attribute of E, and
let X be the set of attributes representing the key of E. Let S be the relation
schema derived from the temporal natural join of A1, . . . , An. Then X is termed
temporal key if Eø Str←→ X and X

T→ S.

6 Summary and Research Directions

In this paper we extended the expressiveness of the TimeER model [3,7] with
new constructs for specifying advanced temporal constraints. More specifically,
we focused on enabling the expression of different temporal semantics of at-
tributes and relationships, for keys, and for superclass/subclass relationships.

Capturing Temporal Constraints in Temporal ER Models 411

Furthermore, we demonstrated how it is possible to define the semantics of the
temporal constraints by means of a surrogate-based relational model.

As for future work, we will focus on the completeness of the proposed extension
of TimeER with respect to the requirements of database designers. Moreover,
we will evaluate our proposal with respect to real-world conceptual design tasks,
through the use of a prototype implementing the described constraints.

References

1. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn., Ben-
jamin/Cummings (1994)

2. Gregersen, H.: TimeERplus: A Temporal EER Model Supporting Schema Changes.
In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp.
41–59. Springer, Heidelberg (2005)

3. Gregersen, H.: The Formal Semantics of the TimeER model. In: 3rd Asia-Pacific
Conference on Conceptual Modelling, vol. 53, pp. 35–44. Australian Computer So-
ciety, Hobart (2006)

4. Gregersen, H., Mark, L., Jensen, C.S.: Mapping Temporal ER Diagrams to Rela-
tional Schemas. Technical report TR–39, TimeCenter (1998)

5. Gregersen, H., Jensen, C.S.: On the Ontological Expressiveness of Temporal Exten-
sions to the Entity-Relationship Model. In: 1st International Workshop on Evolution
and Change in Data Management, pp. 110–121. Springer, Paris (1999)

6. Gregersen, H., Jensen., C.S.: Temporal Entity Relationship Models - a Survey. IEEE
Trans. Knowl. Data Eng. 11, 464–497 (1999)

7. Gregersen, H., Jensen, C.S.: Conceptual Modeling of Time-Varying Information. In:
2nd International Conference on Computing, Communications and Control Tech-
nologies, Austin, pp. 248–255 (2004)

8. Jensen, C.S., Dyreson, C.E. (eds.): Dagstuhl Seminar 1997. LNCS, vol. 1399, pp.
367–405. Springer, Heidelberg (1998)

9. Jensen, C.S., Snodgrass, R.T.: Temporally Enhanced Database Design. In: Advances
in Object-Oriented Data Modeling, pp. 163–193. MIT Press, Cambridge (2000)

Temporal Constraints in
Non-temporal Data Modelling Languages

Peter McBrien

Dept. Computing, Imperial College London, London SW7 2AZ
pjm@doc.ic.ac.uk

Abstract. It is common to find that the definition or common usage of a data
modelling language causes there to be restrictions placed on the evolution of data
values that are associated with schemas expressed in that modelling language.
This paper terms these restrictions temporal constraints, and defines three types
of temporal constraint which are argued to be useful modelling concepts, cap-
turing important real-world semantics about objects and their relationships. By
reviewing how these temporal constraints are implied by either the definition or
usage of UML and the relational modelling languages, this paper will use the
temporal constraints to give precise definitions of modelling concepts that to date
have been left only vaguely and partially understood. It will also consider the im-
plementation of these constraints in SQL.

Keywords: Data modelling, dynamic behaviour, conceptual modelling, tempo-
ral constraints.

1 Introduction

This paper reviews what will be termed the temporal constraints (which are also
known as dynamic constraints) of data modelling languages, which we define to mean
the restrictions that are placed on the evolution of the extent of a schema expressed in a
data modelling language. In particular, this paper describes constraints on the evolution
of the extent in transaction time [1] which may be implemented without the necessity
of keeping a transaction time database. Hence we are considering temporal constraints
which may be applied in a non-temporal data modelling language.

To illustrate the concept of temporal constraints in non-temporal data modelling lan-
guages, consider the UML schema in Fig. 1. A normal interpretation of this schema
is that once an instance x has been created of the passenger class, then it will not be
possible that later the same x appears as an instance of cargo class. More generally, the
normal interpretation of object oriented modelling languages is that an object identifier
cannot be associated with two different classes and refer to the same thing. However,
this interpretation is not to be found in the definition of the UML modelling language
[2], and indeed some research work has been conducted into programming languages
which remove this restriction [3]. Another example is found in the UML association
construct, where the definition of UML makes it unclear if a instance tyre could exist
after the deletion of aircraft, and if is does, whether it could then be assigned to another
aircraft.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 412–425, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Temporal Constraints in Non-temporal Data Modelling Languages 413

.

.

disjoint, complete

.

.

max tons

cargo

.

.

seats

passenger

.

.

model
maker

aircraft type

.

.

reg
miles

aircraft
0..1

� fixed on

.

.

serial no
type
miles

engine
2..4

.

.

serial no
landings

tyre

class:〈〈aircraft type〉〉
attribute:〈〈aircraft type,model〉〉
attribute:〈〈aircraft type,maker〉〉
class:〈〈passenger〉〉
attribute:〈〈passenger,seats〉〉
class:〈〈cargo〉〉
attribute:〈〈cargo,max tons〉〉
generalisation:〈〈aircraft type,{disjoint,complete},passenger,cargo〉〉
class:〈〈aircraft〉〉
attribute:〈〈aircraft, reg〉〉
attribute:〈〈aircraft,miles〉〉

composition:〈〈 ,aircraft type,aircraft,1..1,0..N〉〉
class:〈〈tyre〉〉
attribute:〈〈tyre,serial no〉〉
attribute:〈〈tyre, landings〉〉
aggregation:〈〈 ,aircraft, tyre,0..1,0..N〉〉
class:〈〈engine〉〉
attribute:〈〈engine,serial no〉〉

attribute:〈〈engine, type〉〉
attribute:〈〈engine,miles〉〉
association:〈〈fixed on,aircraft,engine,0..1,2..4〉〉

Fig. 1. Suml : A UML schema for a database of a aircraft fleet, together with its description as a
set of schema objects

Related work will be considered in detail at the end of the paper in Section 4. One
contribution of this paper is to define in Section 3 a set of temporal constraints that
restrict the evolution of instances of a schema expressed (and stored as) a non-temporal
data modelling language. The definitions are made in a manner that allows them to be
defined on any data modelling language that fits a certain structure that this paper re-
views in Section 2, which has already been shown [4,5] to be sufficient to support the
relational, UML, ER, ORM and XML modelling languages. A second contribution of
the paper is to discuss the extent to which these temporal constraints are (sometimes
rather vaguely) already implied by the definitions of data modelling languages, by dis-
cussing in depth how the temporal constraints can be applied to UML and the relational
data model.

An advantage gained in defining precisely the temporal modelling constraints and
identifying temporal constraints in schemas is that it reveals where there is the possi-
bility of inconsistencies when data is transferred between the schemas of information
systems that have been built around different data modelling languages. For example,
the relational schema in Fig. 2 would be regarded as equivalent to the UML schema
in Fig. 1 under conventional UML to relational mapping approaches [6]. Indeed, at
any one time, it will be possible to map instances of one schema into instances of the
other schema. However, there are evolutions of the instances of the relational schema
that would not be permitted in the instances when mapped into the UML schema. For
example, in the relational schema it would be possible to delete an entry x from the

414 P. McBrien

.

.

cargo
.

. jmodel
.

. jmax tons passenger
.

. jmodel
.

. jseats

aircraft
type .

.

jmodel
.

.

jmaker

��

aircraft
.

.

jreg
.

.

jmiles
.

.

jmodel

�

engine
.

.

jserial no
.

.

jreg
.

.

jtype
.

.

jmiles

�

tyre
.

.

jreg
.

.

jserial no
.

.

jlandings

�

table:〈〈aircraft type〉〉
column:〈〈aircraft type,model〉〉
column:〈〈aircraft type,maker〉〉
table:〈〈passenger〉〉
column:〈〈passenger,model〉〉
column:〈〈passenger,seats〉〉
table:〈〈cargo〉〉
column:〈〈cargo,model〉〉
column:〈〈cargo,max tons〉〉
table:〈〈aircraft〉〉
column:〈〈aircraft,model〉〉
column:〈〈aircraft, reg〉〉
column:〈〈aircraft,miles〉〉
table:〈〈tyre〉〉
column:〈〈tyre, reg〉〉
column:〈〈tyre,serial no〉〉
column:〈〈tyre, landings〉〉

table:〈〈engine〉〉
column:〈〈engine,serial no〉〉
column:〈〈engine, reg〉〉
column:〈〈engine, type〉〉
column:〈〈engine,miles〉〉
primary key:〈〈engine,serial no〉〉
primary key:〈〈aircraft, reg〉〉
primary key:〈〈aircraft type,model〉〉
primary key:〈〈cargo,model〉〉
primary key:〈〈passenger,model〉〉
primary key:〈〈tyre,serial no〉〉
foreign key:〈〈〈〈aircraft,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈passenger,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈cargo,model〉〉,〈〈aircraft type,model〉〉〉〉
foreign key:〈〈〈〈tyre, reg〉〉,〈〈aircraft, reg〉〉〉〉
foreign key:〈〈〈〈engine, reg〉〉,〈〈aircraft, reg〉〉〉〉

Fig. 2. Srel
1 : A relational schema for a database of a aircraft fleet, together with its description as

a set of schema objects

passenger table, and insert it into the cargo table, whilst leaving the instance x un-
changed in aircraft type, and hence have the same instance of an aircraft type change
from passenger to cargo types. As already discussed, this is normally not permitted in
object-oriented models.

2 Models and Schemas

Using the notation of AutoMed [7], a modelling language, or model, m contains a
set of modelling constructs, where each construct c is used to represent some class
of data structure that holds set, bag or list of data values, and/or constraints on sets,
bags or lists of data values. A schema s comprises of a set of schema objects, where
each schema object o is typed to some construct c. To date, almost without excep-
tion, researchers have considered that any given information system uses a single mod-
elling language. Such single modelling language schemas can then be described by
sm = {c1:〈〈o1〉〉,c1:〈〈o2〉〉, . . . ,cn:〈〈om−1〉〉,cn:〈〈om〉〉}.

When a schema object has some collection of data associated with it, we call the
data the extent of the schema object. The data associated with such extensional schema

Temporal Constraints in Non-temporal Data Modelling Languages 415

objects o can be returned by the function Ext(o). Using the classification of modelling
constructs in [8], there are three classes of construct for which schema objects carry an
extent:

– nodal constructs may be used to define schema objects that are present in a schema
independently of other schema objects. For example, a UML class is a nodal con-
struct, since schema objects such as class:〈〈aircraft type〉〉 and class:〈〈aircraft〉〉 in
Suml may exist without any other classes in the UML schema. A relational table
is also a nodal construct, since schema objects such as table:〈〈aircraft type〉〉 and
table:〈〈aircraft〉〉 may exist without any other tables in the relational schema.
Typically, the instances of a UML class are identified using object identifies, so we
might find that
Ext(class:〈〈aircraft〉〉) = {〈100〉,〈101〉, . . .}
Ext(class:〈〈aircraft type〉〉) = {〈200〉,〈201〉, . . .}
In predicate logic, these extents would cause the term class:〈〈aircraft〉〉(X) to bind
X to first 100, then 101, etc.
Relational tables are typically identified using natural keys [10] (i.e. keys made
up of attributes which have a meaning in the real-world, such a post codes, peoples
names, tax numbers, etc), so we might find
Ext(table:〈〈aircraft〉〉) = {〈G-CWQS〉,〈G-FDWC〉, . . .},
i.e. the registration codes of the aircraft.

– link-nodal constructs are used to define schema objects that can only exist when
connected to other schema objects, but contain data that is not present in the schema
objects they are connected to. For example, in UML attribute:〈〈aircraft,miles〉〉 is
a link-nodal construct, since it can only exist when connected to class:〈〈aircraft〉〉.
A relational column such as column:〈〈aircraft,miles〉〉 is also link nodal since it
can only exist when connected to table:〈〈aircraft〉〉. The definition of link-nodal
constructs implies that the following rule about the extent of link-nodal schema
objects is always true:
link-nodal:〈〈E,A〉〉(X ,Y)→ nodal:〈〈E〉〉(X)
Hence, given the extent of class:〈〈aircraft〉〉 and the above rule, we might find that
Ext(attribute:〈〈aircraft,miles〉〉) = {〈100,2945321〉,〈101,506834〉, . . .}, and give
the extent of table:〈〈aircraft〉〉 and the above rule we might find that
Ext(column:〈〈aircraft,miles〉〉) = {〈G-CWQS,2945321〉,〈G-FDWC,506834〉, . . .}
Note that a peculiarity of the natural key based modelling languages is that the link-
nodal schema object used to define the key will contain duplicates, so we might find
Ext(column:〈〈aircraft, reg〉〉)={〈G-CWQS,G-CWQS〉, 〈G-FDWC,G-FDWC〉, . . .}.

– link constructs are used to define schema objects that can only exist when con-
nected to two or more other schema objects, and contain data that is also present
in the schema objects they are connected to. For example, the UML schema object
association:〈〈fixed on,aircraft,engine〉〉 is a link construct, since it has to be con-
nected to class:〈〈aircraft〉〉 and class:〈〈engine〉〉. The definition of link-nodal con-
structs implies that the following rule about the extent of link-nodal schema objects
is always true:

416 P. McBrien

link:〈〈R,E1,E2〉〉(X ,Y)→ nodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y))
Hence, given the extent of class:〈〈aircraft〉〉 and class:〈〈aircraft type〉〉 above, we
might find
Ext(composition:〈〈 ,aircraft type,aircraft〉〉) = {〈200,100〉, 〈200,101〉, . . .}.
Note that there are no examples of link constructs found in the relational model.

A fourth type of construct is used to define constraint schema objects that have no
associated extent, but place restrictions on the extents of the schema objects that appear
within the constraint schema object. Figs. 1 and 2 illustrate the representation of a UML
schema and a relational schema as a set of schemes. The UML schema includes a gen-
eralisation constraint schema object, and the relational schema includes primary key
and foreign key schema objects, but null/notnull constraints have been omitted from
the schema for brevity, since they are not used in this paper.

3 Temporal Constraints

We will identify in the following subsections three temporal constraints that have to
some extent already implicitly been used in data modelling languages, but to date have
not been explicitly identified as general modelling concepts in their own right that may
be applied to any non-temporal data modelling language, though as we will see, some-
times have been made available for specific modelling constructs in specific modelling
languages.

To accurately characterise the concepts, we will use discrete linear temporal logic
[11] to define when certain properties hold. In the discrete linear model of time, we
view the state of the information system passing through a (possibly infinite) series
of states, where each state has one successor (next time) state, and one predecessor
(previous time) state. In the terminology of temporal databases, we are modelling the
transaction time [1] of the information system (but note that in this paper, we do not
assume that we keep a transaction time history of the states of the information system).

The temporal logic we use in this paper is first order predicate logic with the addition
of two binary operators, Until and Since, and hence is often referred to as US-Logic.
The statement A UntilB means that A holds at every time up to and including the time
when B holds. From this operator, a number of derived unary and binary operators can
be defined (where� represents truth, and holds in every state):

A≡ A Until�
A WhileB≡ A Until¬ B

A≡�UntilA
A≡ A While�

which we illustrate with the following examples:

1. 〈〈A〉〉(X) means that in the next time there is an instance X of schema object 〈〈A〉〉.
Hence the formula 〈〈A〉〉(X)→ 〈〈A〉〉(X) means that if X is an instance of 〈〈A〉〉
at any time, then it will be an instance of 〈〈A〉〉 at the next time, and 〈〈A〉〉(X)→
¬ 〈〈A〉〉(X) means that if X is an instance of 〈〈A〉〉 at any time, then it will not be
an instance of 〈〈A〉〉 at the next time.

Temporal Constraints in Non-temporal Data Modelling Languages 417

2. 〈〈A〉〉(X)While 〈〈B〉〉(X) holds if X is an instance of 〈〈A〉〉 for the entire period that
X continues to be an instance of 〈〈B〉〉.

3. 〈〈A〉〉(X) means that in some future time there is an instance X of schema object
〈〈A〉〉. Hence the formula 〈〈A〉〉(X) → 〈〈A〉〉(X) means that if X is an instance
of 〈〈A〉〉 at any time, then X will be an instance of 〈〈A〉〉 at some future time, and
〈〈A〉〉(X)→¬ 〈〈A〉〉(X) means that if X is an instance of 〈〈A〉〉 at any time, then it
will never be an instance of 〈〈A〉〉 again.

4. 〈〈A〉〉(X) means that in all future times there is an instance X of schema object
〈〈A〉〉. Hence the formula 〈〈A〉〉(X)→ 〈〈A〉〉(X) means that if X is an instance of
〈〈A〉〉 at any time, then it will so for ever more, and 〈〈A〉〉(X)→¬ 〈〈A〉〉(X) means
that if X is an instance of 〈〈A〉〉 at any time, there will be some time in the future
when it is not an instance.

3.1 Monogamy and Lifetime Monogamy

In general, the concept of monogamy involves something being related to just one
other thing at any one time. In data modelling, this concept is captured using op-
tional or mandatory cardinality constraints — i.e. cardinality constraints with an up-
per bound of one. For example, association:〈〈fixedon,aircraft,engine〉〉 in Fig. 1 makes
class:〈〈engine〉〉 have a monogamous relationship with class:〈〈aircraft〉〉, meaning each
engine can only be fixed on one aircraft at a time. In our representation of data
modelling, we can say that an instance of a nodal schema object appearing in some
link-nodal or link schema object is monogamous for that schema object if one of the
following rules hold, which in essence state that there cannot be two instances of the
link-nodal or link schema object for the same monogamous schema object instance.

monogamous(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→¬∃Z.link:〈〈R,E1,E2〉〉(X ,Z)∧Y �= Z

monogamous(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→¬∃Z.link:〈〈R,E1,E2〉〉(Z,Y)∧Y �= Z

monogamous(nodal:〈〈E〉〉, link-nodal:〈〈E,A〉〉) def=
link-nodal:〈〈E,A〉〉(X ,Y)→¬∃Z.link-nodal:〈〈E,A〉〉(X ,Z)∧Y �= Z

Hence for Fig. 1, we can state:
monogamous(class:〈〈engine〉〉,association:〈〈fixedon,aircraft,engine〉〉)
monogamous(class:〈〈tyre〉〉,aggregation:〈〈 ,aircraft,tyre〉〉)
monogamous(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
Note that this definition of monogamy does not prevent serial monogamy, i.e. an

instance of the nodal class being monogamous at any one time, but changing its rela-
tionships over time. For UML associations, this definition is intuitively correct. For ex-
ample, it would allow a class:〈〈engine〉〉 instance to be moved from one class:〈〈aircraft〉〉
to another. However, the definition of UML aggregation and composition are defined
to usually imply that members of the aggregation are not allowed to change from one
group to another [2]. Here we suggest that this ‘usually’ be strengthened to a lifetime
monogamous temporal constraint, that prevents serial monogamy. Once a certain value
Y has been associated with a schema object in its connection with a particular instance
X of some other schema object, then during one period of existence of X there may not
be some different value Z used instead of Y . Specifically:

418 P. McBrien

lifetime monogamous(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→
(¬∃Z.link:〈〈R,E1,E2〉〉(X ,Z)∧Y �= Z)Whilenodal:〈〈E1〉〉(X)

lifetime monogamous(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→
(¬∃Z.link:〈〈R,E1,E2〉〉(Z,Y)∧X �= Z)Whilenodal:〈〈E2〉〉(Y)

lifetime monogamous(link-nodal:〈〈E,A〉〉) def=
link:〈〈E,A〉〉(X ,Y)→

(¬∃Z.link:〈〈E,A〉〉(X ,Z)∧Y �= Z)While nodal:〈〈E〉〉(X)
i.e. lifetime monogamy for a nodal schema object in a link or link-nodal schema object
implies monogamy for the duration of a single lifespan of the nodal schema object. We
will interpret the semantics of UML modelling to imply for Fig. 1:

lifetime monogamous(class:〈〈tyre〉〉,aggregation:〈〈 ,tyre,aircraft〉〉)
lifetime monogamous(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
The first line above means that an instance of class:〈〈tyre〉〉 can only ever be associ-

ated with one class:〈〈aircraft〉〉 during one period of existence of a tyre, i.e. a tyre can
only be used on one aircraft, but there is no constraint of which of the tyre or the aircraft
existed first, and the tyre can be taken off the aircraft without destroying either the tyre
or the aircraft. The second line means that an instance of class:〈〈aircraft〉〉 can only ever
be associated with one class:〈〈aircraft type〉〉.

Note that the UML concept of readOnly implies that a value must be set during ob-
ject initialisation, and hence implies a mandatory cardinality constraint in combination
with a lifetime monogamous temporal constraint. Note that the relational model has
no constructs that imply the lifetime monogamous constraint on link schema objects
or link-nodal schema objects, and UML does not provide the constraint in conjunction
with optional cardinality constraints. However, this does not mean the it would not be
useful to introduce a specific lifetime monogamous temporal constraint to these models.
For example, if attribute:〈〈aircraft, reg〉〉 were lifetime monogamous, one could build a
plane without a registration code, register it, and later cancel the registration code be-
fore scraping the aircraft, but ensure that one never assigns a different registration code
to the aircraft. This would also be readily implemented in SQL using triggers to control
the updating of a column, such that a state column was set to true when a data column
was set to null, prohibiting any further setting of data column value.

3.2 One-Off

The oneoff temporal constraint means that once a schema object instance is deleted,
the same instance cannot exist again. For nodal schema objects, this constraint is easily
characterised as
oneoff(nodal:〈〈E〉〉) def=

nodal:〈〈E〉〉(X)∧¬ nodal:〈〈E〉〉(X)→¬ nodal:〈〈E〉〉(X)
stating that if X is an instance of nodal:〈〈E〉〉 at any time, and at the next time it is not
an instance of nodal:〈〈E〉〉, then there will be no future time when X is an instance of
nodal:〈〈E〉〉. The oneoff temporal constraint is often associated with nodal schema ob-
jects in object-oriented models, where once a class instance has been deleted, the same
class instance cannot be restored. For example, once instance 〈100〉 has been deleted of

Temporal Constraints in Non-temporal Data Modelling Languages 419

class:〈〈aircraft〉〉, there would not in the future be an instance 〈100〉 of class:〈〈aircraft〉〉.
By contrast, models such as the relational models when based natural keys do not sup-
port the oneoff temporal constraint. This is because a relational database has no mecha-
nism to stop a natural key being reinserted into the database after it has previously been
deleted.

.

.

cargo
.

. jtid
.

. jmax tons passenger
.

. jtid
.

. jseats

aircraft
type .

.

jtid†
.

.

jmodel
.

.

jmaker

��

aircraft
.

.

jaid†
.

.

jreg
.

.

jmiles
.

.

jtid

�

engine
.

.

jeid†
.

.

jserial no
.

.

jaid
.

.

jtype
.

.

jmiles

�

tyre
.

.

jaid
.

.

jtyid†
.

.

jserial no
.

.

jlandings
�

Fig. 3. Srel
2 : A variant of Srel

1 using auto-increment keys, marked with a † in the diagram. Note
that cargo and passenger do not have auto-increment keys, since they inherit the value of the key
from aircraft type)

If the relational system uses auto-increment keys, then the behaviour would be more
similar to that of the object oriented system. Fig. 3 presents a version of Fig. 2 where
auto-increment keys have been used (and Fig. 4 the SQL definitions of some of the
tables), and then we can state

oneoff(table:〈〈aircraft〉〉)
oneoff(table:〈〈aircraft type〉〉)
oneoff(table:〈〈engine〉〉)
oneoff(table:〈〈tyre〉〉)

since once a key value has been generated for an auto-increment key, the value will not
be generated again in the future. A problem remains with the tables implementing the
subclasses passenger and cargo, which are unable to use auto-increment keys. We can
solve this problem with our implementation of the final temporal constraint presented
in the next subsection.

Definition of oneoff for link-nodal and link schema object takes a similar form to
that for nodal schema objects:

oneoff(link-nodal:〈〈E,A〉〉) def=
link-nodal:〈〈E,A〉〉(X ,Y)∧¬ link-nodal:〈〈E,A〉〉(X ,Y)→
¬link-nodal:〈〈E,A〉〉(X ,Y)Whilenodal:〈〈E〉〉(X)

oneoff(link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)∧¬ link:〈〈R,E1,E2〉〉(X ,Y)→
¬link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y)

Neither UML nor the relational models have constructs that imply oneoff to link-
nodal or link schema objects, and the semantics of such a constraint would only be of
use in relatively few circumstances. For example, if we added to the UML schema in

420 P. McBrien

CREATE TABLE aircraft type
(mid INT PRIMARY KEY,

maker VARCHAR(20)
)

CREATE TABLE passenger
(mid INT PRIMARY KEY REFERENCES aircraft type ON DELETE CASCADE,

seats INT
)

CREATE TABLE cargo
(mid INT PRIMARY KEY REFERENCES aircraft type ON DELETE CASCADE,

max tons INT
)

CREATE FUNCTION delete aircraft type() RETURNS TRIGGER
AS ’BEGIN

DELETE FROM aircraft type WHERE aircraft type.tid=OLD.tid;
RETURN NULL;
END’ LANGUAGE plpgsql;

CREATE TRIGGER passenger subclass aircraft type AFTER DELETE ON passenger
FOR EACH ROW EXECUTE PROCEDURE delete aircraft type();

CREATE TRIGGER cargo subclass aircraft type AFTER DELETE ON cargo
FOR EACH ROW EXECUTE PROCEDURE delete aircraft type();

Fig. 4. Definition using the Postgres RDBMS SQL language of triggers being used to implement
the final temporal constraints

Fig. 1 oneoff(attribute:〈〈aircraft, reg〉〉), then an aircraft could change its registration
number, but not revert to a previously used registration number. It should be noted that
the general implementation of oneoff is costly in storage terms, since it requires a trans-
action time history be kept a schema object declared as one-off so that a check can be
made each time a new instance is created that the instance had not been present at some
time in the past. The specific case of oneoff being applied to object identifiers and auto-
increment keys is not costly in storage terms since only a single variable incrementing
new values need be kept in order to ensure unique values over time.

3.3 Final

The final temporal constraint means that once a instance of a schema object has been
created, then that instance will remain until one of the instances of the schema objects
it is dependent upon is deleted. Specifically, for nodal schema objects, we state:

final(nodal:〈〈E1〉〉,nodal:〈〈E2〉〉)
def=

nodal:〈〈E2〉〉(X)→ nodal:〈〈E2〉〉(X)Whilenodal:〈〈E1〉〉(X)

Temporal Constraints in Non-temporal Data Modelling Languages 421

meaning that once a instance exists in nodal:〈〈E2〉〉, it must continue to exist whilst
the same values exists in nodal:〈〈E1〉〉. UML generalisations imply the final temporal
constraint between the child and parent nodes. For the schema in Fig. 1 we can state:

final(class:〈〈aircraft type〉〉,class:〈〈passenger〉〉)
final(class:〈〈passenger〉〉,class:〈〈aircraft type〉〉)
final(class:〈〈aircraft type〉〉,class:〈〈cargo〉〉)
final(class:〈〈cargo〉〉,class:〈〈aircraft type〉〉)
Hence, when an instance of class:〈〈passenger〉〉 is deleted, then so must the instance

of class:〈〈aircraft type〉〉, and vice versa.
There is no modelling construct in the relational model that directly implies final

on its schema objects, but there is some limited support for implementing the final
constraint. Firstly, if we added the SQL constraint ON DELETE CASCADE to primary
keys of table:〈〈passenger〉〉 and table:〈〈cargo〉〉, as illustrated by the table definitions in
Fig. 4, then we would be able to state:

final(table:〈〈aircraft type〉〉,table:〈〈passenger〉〉)
final(table:〈〈aircraft type〉〉,table:〈〈cargo〉〉)

since deleting a row from table:〈〈aircraft type〉〉 will cause the cascading of a delete on
table:〈〈passenger〉〉 or table:〈〈cargo〉〉. Secondly, if we added the SQL trigger for each
of the passenger and cargo table, as illustrated by the trigger definitions in Fig. 4, which
executes a function that deletes the same identifier from the parent aircraft type table,
then a deletion of either table:〈〈passenger〉〉 or table:〈〈cargo〉〉 would trigger a deletion
of table:〈〈aircraft type〉〉. The presence of such a trigger then allows us to state:

final(table:〈〈passenger〉〉,table:〈〈aircraft type〉〉)
final(table:〈〈cargo〉〉,table:〈〈aircraft type〉〉)
In defining the final constraint for link-nodal constructs, there are two cases to con-

sider. Applying the first rule below to a UML attribute or a relational column would mean
that once a value was assigned to the attribute/column it could not be changed. For exam-
ple final(attribute:〈〈aircraft, reg〉〉) would mean that a registration number of a aircraft
could not be changed. Interestingly, this modelling concept is absent from the UML1

and relational languages, but is present in some object oriented programming languages
which UML targets (for example the final keyword in Java and readonly keyword in C#).

final(link-nodal:〈〈E,A〉〉) def=
link-nodal:〈〈E,A〉〉(X ,Y)→ link-nodal:〈〈E,A〉〉(X ,Y)Whilenodal:〈〈E〉〉(X)

final(link-nodal:〈〈E1,A1〉〉, link-nodal:〈〈E2,A2〉〉)
def=

link-nodal:〈〈E1,A1〉〉(X ,Y)∧ link-nodal:〈〈E2,A2〉〉(Z,Y)→
link-nodal:〈〈E2,A2〉〉(Z,Y)While link-nodal:〈〈E1,A1〉〉(X ,Y)

The second rule causes a value appearing in one link-nodal that is also appearing in
a second link-nodal to cause the same second value to continue to exist whilst the first
continues to exist. For example, if we stated on Srel

2
final(column:〈〈aircraft,tid〉〉,column:〈〈aircraft type,tid〉〉)

1 It is interesting to note that the semantics of final would appear to match the semantics of the
addOnly property of link nodal and link constructs available in some versions of UML prior to
UML 2.0. Also removed in UML v2.0 was the concept of createOnly, which stated that values
could be added once but no more to a property. Both addOnly and createOnly forbid changes.

422 P. McBrien

then we would have the same semantics present in the relational model as we gave to the
UMLcompositionconstructabove,andaircraftswouldnotbeabletochangeaircraft types.

For link constructs, there again two types of final constraint. Applied to a UML
association, the first rule below says that once an instance of the association has been
created it remains in existence whilst both of the classes it associates exist. The second
two rules strengthen the rule to say that the instance of the association will continue in
existence until just one of the classes it associates is deleted.

final(link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→
link:〈〈R,E1,E2〉〉(X ,Y)While (nodal:〈〈E1〉〉(X)∧nodal:〈〈E2〉〉(Y))

final(nodal:〈〈E1〉〉, link:〈〈R,E1,E2〉〉)
def=

link:〈〈R,E1,E2〉〉(X ,Y)→ link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E1〉〉(X)
final(nodal:〈〈E2〉〉, link:〈〈R,E1,E2〉〉)

def=
link:〈〈R,E1,E2〉〉(X ,Y)→ link:〈〈R,E1,E2〉〉(X ,Y)Whilenodal:〈〈E2〉〉(Y)
In UML, the composition construct often implies a coincidence in lifetimes of the

classes in the composition. We propose to restrict this definition to stating that the mem-
ber class of a composition is final in the composition. In Fig. 1, this means we can state:

final(class:〈〈aircraft〉〉,composition:〈〈 ,aircraft type,aircraft〉〉)
meaning that once an aircraft has been assigned to an aircraft type, it cannot be changed
to another aircraft type. We would not want to associate the final temporal constraint
with UML aggregations. For example, if final(aggregation:〈〈 ,aircraft,tyre〉〉) was de-
clared for the UML schema, then once 〈100,107〉 has been added as an instance, it
would remain until the tyre 〈107〉 was deleted from class:〈〈tyre〉〉, preventing us from
removing instances from aggregations.

4 Related Work

There has been a considerable amount of work conducted into the modelling of tem-
poral constraints in temporal data models (for example [12,13,14,15,16]). By contrast,
this paper considers temporal constraints that may be used, or are already implied, in
existing non-temporal data models.

In the field of data modelling, the most comprehensive previous treatment can be
found in [17,18], which deal with the temporal behaviours of nodal and link-nodal con-
structs, but not of link constructs. Also, [17,18] do not explicitly relate their definitions
to specific modelling languages, though the relationship with ER and UML modelling
is clear. In [17], for nodal constructs, the concept of permanent constraint is defined
where an object, once it exists, must stay in existence whilst the information system
remains in operation.

permanent(nodal:〈〈E〉〉) def=
link:〈〈E〉〉(X)→ nodal:〈〈E〉〉(X)
This is similar to the final constraint, with the difference that the final constraint is

always defined relative to some other object. We argue that this is more intuitive, since
is corresponds to the real world concept of something entering its final state, yet not
necessarily continuing to exist forever.

Temporal Constraints in Non-temporal Data Modelling Languages 423

In [17], there is the concept of frequency being single or multiple. Applied to
entities the concept of single corresponds to exactly to the definition of one-off in
this paper. However, applied to attributes, it differs from one-off in allowing an at-
tribute to change value and then return to value during its single existence (where the
definition of one-off states that a particular value may be used only once). The au-
thors also introduce concept of durability, which may be durable or instantaneous,
where instantaneous means that an object only exists for one chronon in the tempo-
ral model. This is a common distinction in temporal data models, since it allows in-
stantaneous schema objects to be stored with one time value per instance (the time of
the instance occurred at), whilst durable schema objects require a pair of time values
representing the interval the instance exists for (or set of such pairs if there is set of
intervals).

In [18], there was a discussion of how generalisations could be classified into static
if sub-class memberships could not evolve over time, or dynamic if they could. In [19],
the concept of temporal behaviour of UML associations is defined, and characterised
as static or dynamic depending on whether the values on the association for a par-
ticular class may be changed. There is also consideration to the definition of delete
propagations across associations.

Work on the temporal constraints on nodal objects has also been conducted in the
field of ontologies. In [20,21] a classification of unary predicates (equivalent to our
nodal constructs) into rigid, anti-rigid, and non-rigid was introduced. The rigid con-
straint takes the same definition as the permanent constraint in [17]:

rigid(nodal:〈〈E1〉〉)
def=

nodal:〈〈E1〉〉(X)→ (nodal:〈〈E1〉〉(X))
Recently, it has been proposed that ORM be extended to include this distinction [22].

The definition of rigid shares the flaw we discussed in relationship to the permanent con-
straint from [17]. This flaw was recognised in [23], which proposed existential rigidity,
where a value appearing in nodal:〈〈E1〉〉 forces the value to also appear in some related
nodal:〈〈E2〉〉:
existential rigid(nodal:〈〈E1〉〉,nodal:〈〈E2〉〉)

def=
nodal:〈〈E1〉〉(X)→ (nodal:〈〈E1〉〉(X)→ nodal:〈〈E2〉〉(X))

If we applied this to our relational model as:
existential rigid(table:〈〈aircraft type〉〉,table:〈〈passenger〉〉
existential rigid(table:〈〈aircraft type〉〉,table:〈〈cargo〉〉)

then we would have to implement a temporal history of data instance from tables
table:〈〈passenger〉〉 and table:〈〈cargo〉〉 (which are the relational tables implementing
the subclasses of table:〈〈aircraft type〉〉), since if a value where to be deleted and rein-
serted into table:〈〈aircraft type〉〉 then we would need to ensure that if also appeared in
the correct subclass table.

From the above discussion, it can be seen that the definitions in this paper are the first
to be made across all types of modelling construct, and also the first to be defined in
a manner that is implementable without the necessity of maintaining a full transaction
time history of data.

424 P. McBrien

5 Summary and Conclusions

In this paper, we defined three temporal constraints called lifetime monogamy, oneoff,
and final, that may be used to model the changes that are permitted to the extents as-
sociated with schema objects in static non-temporal data modelling languages. Loosely
speaking, (i) lifetime monogamy models the concept that mandatory or optional re-
lationships are restricted further to disallow serial monogamy, (ii) oneoff models the
concept that things cannot be reincarnated, and (iii) final models the concept that once
a value has been assigned, it cannot be changed.

We have given precise definitions of these three constraints in linear temporal logic,
and have discussed how some of these constraints are already fully or partially implied
by constructs found in the UML and relational languages. Our definitions are made
in terms of very general modelling concepts of nodal, link-nodal and link modelling
constructs, and this approach has previously been shown to be capable of representing
a wide variety of modelling languages [8,4].

The precise definitions of temporal constraints serve to give two advantages. First,
the modelling constructs of UML and the relational model are better understood, lead-
ing to a more accurate modelling of the real world when using these languages.
Secondly, the definitions serve to expose the differences that exist between modelling
languages, and allow action to be taken to overcome these differences. We illustrated
this second advantage by describing how SQL CASCADE and TRIGGER constructs
can be used to implement the temporal constraints, and hence make a relational based
system be capable of holding a schema that corresponds more exactly with a UML
schema than is the case in current approaches to UML to relational mapping.

To shorten the presentation, we have restricted the class of modelling languages dis-
cussed to those with binary link schema objects and with link and link-nodal schema
objects that only connect with nodal schema objects. However the extension of the work
to remove those restrictions is straightforward.

References

1. Jensen, C., et al.: A consensus glossary of temporal database concepts. SIGMOD
Record 23(1), 52–64 (1994)

2. Group, O.M.: Unified Modeling Language: Superstructure 2.1.1. Technical report, OMG
(2007)

3. Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., Giannini, P.: More Dynamic Ob-
ject Re-classification: FickleII. ACM Transactions On Programming Languages and Sys-
tems 24(2), 153–191 (2002)

4. Boyd, M., McBrien, P.: Comparing and transforming between data models via an intermedi-
ate hypergraph data model. Journal on Data Semantics IV, 69–109 (2005)

5. McBrien, P., Poulovassilis, A.: A semantic approach to integrating XML and structured data
sources. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068,
pp. 330–345. Springer, Heidelberg (2001)

6. Cabibbo, L., Carosi, A.: Managing inheritance hierarchies in object/relational mapping tools.
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 135–150.
Springer, Heidelberg (2005)

Temporal Constraints in Non-temporal Data Modelling Languages 425

7. Boyd, M., Kittivoravitkul, S., Lanzanitis, C., McBrien, P., Rizopoulos, N.: AutoMed: A BAV
data integration system for heterogeneous data sources. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

8. McBrien, P., Poulovassilis, A.: A uniform approach to inter-model transformations. In: Jarke,
M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 333–348. Springer, Heidelberg
(1999)

9. Date, C., Darwen, H., McGoveran, D.: Relational Database: Selected Writings 1994–1997.
Addison-Wesley, Reading (1998)

10. Date, C.: Object identifiers vs. relational keys. In: [9], ch. 12, pp. 457–476
11. Fisher, M., Gabbay, D., Vila, L. (eds.): Handbook of Temporal Reasoning in Artificial Intel-

ligence. Elsevier, Amsterdam (2005)
12. Artale, A., Parent, C., Spaccapietra, S.: Modeling the evolution of objects in temporal infor-

mation systems. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 22–42.
Springer, Heidelberg (2006)

13. Finger, M., McBrien, P.: Temporal conceptual-level databases. In: Temporal Logics: Mathe-
matical Foundations and Computational Aspects, vol. 2, pp. 409–435. OUP (2000)

14. Gregersen, H., Jensen, C.: Temporal entity-relationship models: a survey. IEEE Trans.
KDE 11(3), 464–497 (1999)

15. Spaccapietra, S., Parent, C., Zimanyi, E.: Modeling time from a conceptual perspective. In:
Proc. CIKM, pp. 432–440 (1998)

16. McBrien, P., Seltveit, A., Wangler, B.: An entity-relationship model extended to describe
historical information. In: Proceedings of CISMOD 1992, Bangalore, India, pp. 244–260
(1992)

17. Costal, D., Olivé, A., Sancho, M.R.: Temporal features of class populations and attributes in
conceptual models. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 57–70. Springer,
Heidelberg (1997)

18. Olivé, A., Costal, D., Sancho, M.R.: Entity evolition in IsA hierarchies. In: Akoka, J.,
Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 62–
80. Springer, Heidelberg (1999)

19. Albert, M., Pelechano, V., Fons, J., Ruiz, M., Pastor, O.: Implementing UML association,
aggregation, and composition. A particular interpretation based on a multidimensional. In:
Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 143–158. Springer, Heidel-
berg (2003)

20. Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-level categories. In: Proc. of 4th
KR, pp. 270–280 (1994)

21. Guarino, N., Welty, C.: Ontological analysis of taxonomic relationships. In: Laender, A.H.F.,
Liddle, S.W., Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 210–224. Springer, Heidel-
berg (2000)

22. Halpin, T.: Subtyping revisited. In: Proper, H., Halpin, T., Krogstie, J. (eds.) Proc. EMMSAD
2007, pp. 128–138 (2007)

23. Anderson, W., Menzel, C.: Modal rigidity in the ontoclean methodology. In: Proc. FOIS, pp.
119–127 (2004)

Integrated Model-Driven Development of

Goal-Oriented Data Warehouses and Data Marts

Jesús Pardillo and Juan Trujillo

Lucentia Research Group,
Department of Software and Computing Systems,

University of Alicante, Spain
{jesuspv,jtrujillo}@dlsi.ua.es

Abstract. A corporate data warehouse is a repository that provides
decision makers with a large amount of historical data concerning the
overall enterprise strategy. In order to customize the data warehouse,
many organizations develop concrete data marts focused on a particular
department or business process. However, their integrated development
is still an open problem for many organizations due to the technical and
organizational challenges involved during the design of these repositories
as a complete solution. Therefore, we present here a design approach
in order to build both the corporate data warehouse and data marts
from user’s requirements in an integrated way. Our approach consists on
linking information requirements to specific data marts elicited by us-
ing the goal-oriented requirement engineering, which are automatically
translated into the implementation of the corresponding data repositories
by means of model-driven engineering techniques. Its great advantage is
that user’s requirements are captured since the very-early development
stages of a data-warehousing project in order to automatically translate
them into the entire data-warehousing platform.

Keywords: data warehouse, data mart, customization, model-driven en-
gineering, goal-oriented requirement engineering, conceptual modeling.

1 Introduction

A data-warehousing architecture defines a set of data repositories and their re-
lationships to support the decision-making process in a given organization. Sev-
eral architectural options [1,2,3,4,5] and methodologies [6,7,8,9,10] have been
proposed to develop these repositories. Specifically, there are two foundational
data-warehousing alternatives that have been broadly discussed [11]: the top-
down approach originally stated by Inmon [12] and the bottom-up stated by
Kimball [13]. The basis of these approaches consists on which data reposito-
ries should be developed first: a corporate data warehouse where organization’s
data are stored and integrated in a single repository (top-down) or departmental
data marts where data are aggregated and customized for particular information
needs (bottom-up). Although the first one is considered the most elegant solution

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 426–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrated Model-Driven Development 427

from a theoretical point of view, it is usually hard to implement since the project
scope involves the whole organization [1], and thus, the second approach is more
suitable for agile developments despite the problems that arise during data-mart
integration [1,14]. Both approaches fail when they try to derive the second data
repositories (i.e., data marts or corporate data warehouse, respectively) due to
the inherent high cost or the technical problems. In order to overcome these lim-
itations, Kimball [13] also proposed a bus architecture articulated by conformed
dimensions. These dimensions mean 90 percent of the integration efforts spent
in order to tie data marts together [13]. They are obtained by agreement of the
whole organization, hence, supporting truly cross-departmental decision-making
processes. Despite it all, this proposal is designed at the logical level (i.e., by
using relational schemata), therefore, it does not provide suitable mechanisms
to drive complex developments such as methodologies [6,7,8,9,15,16] based on
conceptual modeling [17,18,19,20] can actually do.

However, we claim that the surrounding architectural debate [11] has been
overlooked by the current development approaches mainly based on conceptual
modeling. These approaches have focused on capturing information requirements
by means of the multidimensional modeling [13,14] that organize data in terms
of facts and dimensions of analysis, but without specifying how data reposito-
ries (i.e., corporate data warehouse and their dependent data marts) are built
from them. For instance, departmental data marts can be built from different
development teams in isolation. Thus, they lack in incorporating conformity
issues to solve the integrated development of data marts and corporate data
warehouses. In order to assure cross-departmental information needs such as the
answered by drill-across operations during the “on-line analytical processing”
(OLAP) [14].

In this paper, we present an approach based on goal-oriented requirement
engineering [21] and model-driven engineering [22] technologies to solve the ar-
chitectural debate [11] by supporting the Kimball’s insights [13] at the concep-
tual level. This proposal is based on our previous works [23,9,15,16,17] in order
to propose a modeling framework, in terms of goals that the data warehouse
should achieve together with the required information for conforming analy-
sis dimensions; and also, a transformation architecture based on the “model-
driven architecture” (MDA) [24] approach to automatically derive both the
corporate data warehouse and its dependent data marts in an integrated way.
Thus, we enable decision makers to response their cross-departmental informa-
tion needs.

The remaining text is organized as follows: the next section introduces the
motivating example in order to illustrate common conformity problems. Section 3
presents our goal-oriented model-driven approach for the integrated development
of data warehouses. The related development platform and our example-scenario
implementation is outlined in Section 4. Then, Section 5 discusses the related
work. The last section expounds conclusions and outlines future work.

428 J. Pardillo and J. Trujillo

2 Background

Current development approaches [6,7,8,9,10] lack for specifying organizational
concerns of the data warehousing with regards to the architectural debate [11].
Their practitioners design several schemata for each data mart that are not
aligned by any criteria, i.e., they are developed in isolation. As a result, devel-
opers obtain schemata where data structures are ill-defined due to non-unified
data representations such as in the example scenario of Fig. 1. These schemata1

show the multidimensional models of two independent data marts to support de-
cision making on inventory and sales business processes. It illustrates a common
situation that occurs when developers do not deal with integration issues.

Fig. 1. Data models of independent data marts: retail inventory and sales example

The multidimensional modeling is the foundation of data warehouses [13,14]
where data under analysis are arranged in facts (represented as in Fig. 1) and
dimensions (Z

X

Y

) around analysts can describe them, resembling the well-known
star-like structures [13]. Both facts and dimensions are also represented by means
of measures (FA) and aggregation hierarchies () based on different aggregation
levels (B), respectively. Despite both facts are described by similar dimensions
(i.e., by date, product, and store), decision makers cannot drill across them to
fulfill their cross-departmental information needs since they are not integrated.

Regarding date and store dimensions (explicitly shown in Fig. 1), several
misconceptions arise. On the one hand, (i) calendar-day and fiscal-date aggre-
gation levels compromise the same concept but they are specified by different
attributes2, (ii) (calendar) years and (fiscal) years are different but they are
equally named, and (iii) fiscal dates also need to be aggregated into quarters.
On the other hand, (iv) stores are described at different granularities [13] in
each data mart (i.e., ZIP aggregation level in inventory and the city level in
the sales fact), and (v) cities are aggregated into different levels in each model
1 The multidimensional models herein are based on the UML profile presented in [17].
2 By convention, concepts are equally named only if they have the same representation.

Integrated Model-Driven Development 429

(i.e., countries for retail stores and states for sales stores). Hence, in the current
approaches, drilling across these dimensions is not possible [13,25].

Kimball in [13] proposes the conformity of dimensions by agreement between
every data-mart development team, later providing a foundational definition of
conformed dimensions: “two dimensions are conformed if the fields that you use
as common row headers have the same domain” [26]. However, this definition
is oriented at the logical level [19], where name matching of logical structures
(i.e., tables, columns, and rows) is necessary to enable drill-across operations
by sorting and merging relational database structures. For this reason, some au-
thors [25,27] generalize the conformity constraints at the conceptual level. For
example, [25] supports conformity by finding functional dependencies between
dimensions instances. On the other hand, other authors [28] in the literature es-
tablish more general schema equivalences in terms of their information capacity.

In the sake of simplicity, we assume an adaptation of the definition in [26] for
the conceptual level: sharing dimensions between conceptual multidimensional
models implies that we can reuse them through data marts in order to enable
cross-departmental decision-making processes. Therefore, our approach is based
on discovering by agreement the information needs through data marts and
combine them into a master conformed template that fulfills all these needs.
Even more, with our approach we can also provide the integrated development of
the corporate data-warehouse that populates the data marts; and thus, reducing
the expensive efforts involved in data integration [29].

3 Integrated Development of Model-Driven
Goal-Oriented Corporate Data Warehouses and Data
Marts

In this section, we present a development approach for data warehouses based on:
(i) discovering information needs for each data mart by applying goal-oriented
requirement engineering techniques [21], (ii) conforming the obtained dimension-
related requirements by using a conformity authority that assures agreement and
commitment between every data-mart stakeholder, (iii) providing a conceptual
framework to model the underlying data repositories, and (iii) automatically
translating the information requirements obtained since the very-early stages of
development to the final implementation by using a model-driven engineering
approach [22], specifically the well-known MDA proposal [24] that has been
successfully employed in our previous work [23,9,15,16].

3.1 Goal-Oriented Reasoning for Conforming Data Marts

Kimball [13] advocates a “dimension authority” as the responsible stakeholder
for managing conformed dimensions by defining, maintaining, and publishing
them to each data mart; hence, conformity means an organizational commit-
ment instead of meaning only a technical decision. Nevertheless, this author
does not provide any mechanisms to support it. Therefore, we propose to enrich

430 J. Pardillo and J. Trujillo

Fig. 2. Stakeholders and their resource dependencies in a data-mart development

the organizational modeling in goal-oriented approaches [9,7,8] by also taking
into account conformity issues by explicitly establishing a dimension authority.
It is worth mentioning that we can response data-mart needs, but also integrate
them into the strategic policies of the whole organization.

Fig. 2 sketches the general overview of the involved stakeholders in a data-
mart development after including a dimension authority3. The process starts
with the elicitation of the information requirements for a particular decision
maker in the department (e.g., a sales or inventory manager in Fig. 2). By us-
ing goal-modeling terminology [21], a data-mart developer intentionally depends
(represented as) on other organizational actors (), i.e., decision makers, in
order to obtain the resource () of their particular information requirements.
These dependencies are modeled by means of strategic-dependency diagrams
like the shown in Fig. 2. Then, a data-mart developer depends on the dimension
authority to conform dimensions as a result of the corporate agreement. On the
other hand, for this aim, the dimension authority needs the dimensions to be
conformed for the different data-mart teams. Hence, data marts can deploy data
structures already conformed that enable decision makers to fulfill their infor-
mation needs. Due to the achieved conformity, data-mart coalescing queries [27]
can be employed during cross-departmental decision-making processes.

As we stated, conformity issues require mechanisms to manage the involved
rationale about which decisions are taken to obtain conformed dimensions. Fol-
lowing our previous work [9], every stakeholder has a rationale in order to ac-
complish their strategic dependencies in the organization. Thus, we can apply
the same principles for also modeling the rationale of the dimension authority by
means of strategic-rationale diagrams [21]. Fig. 3 illustrates a rationale for our
running example (see Fig. 1). In [9], we describe how to derive data-warehouse
information requirements by hierarchically reasoning from strategic goals to de-
cisional ones, and then, to informational goals.

We employ our goal-modeling framework for data warehouses to discover di-
mensions in each data mart such as calendar or fiscal dates (see Fig. 3). For each
dimension, a data-mart developer conforms the discovered dimensions to the
3 These goal diagrams are based on i* notation [21] which we adapt to UML in [9].

Integrated Model-Driven Development 431

Conformity
Date be

Conformed

Conformity
[Fiscal Date]

«decision»
Date & Day
be Merged

«decision»
Years be

Categorized

Conform
Date

«context»
Day

«context»
Year

«context»
Calendar

«context»
Fiscal

[Calendar Date]

Dimension
Authority

Inventory
Manager

Sales
Manager

Goal
Discovery

Goal
Discovery

Calendar Date
Requirements

Calendar Date
Requirements

Fig. 3. Example dimension authority’s rationale to conform date dimensions

project’s dimension authority. For this aim, resource dependencies (e.g., confor-
mity on calendar date) are modeled in the strategic-dependency diagram. Then,
dimension authority’s rationale (represented as) is employed to conform the
date dimensions of both data marts. The related date conformities depend on
the same goal () actually being that date be conformed. Then, the means
for achieving this end () is the task itself () to conform date, which is
decomposed () in two additional goals in our scenario.

On the one hand, date and day aggregation levels (see Fig. 1) mean the
same entity but with different representations; and thus, the dimension author-
ity decides (�decision � goal4) that these levels be merged resulting the new
conformed day context (�context � resource)5. On the other hand, calendar and
fiscal years are identically represented but they really have different occurrences
(e.g., a fiscal year usually covers two calendar years), therefore, the dimension
authority decides to conform them by specifying a general year context that is
specialized in calendar or fiscal years regarding which occurrence is stored.

3.2 Conceptual Modeling of the Data-Warehousing Architecture

In this section, we enrich our conceptual modeling framework for data ware-
houses [17] in order to tailor the represented schemata for specific data reposito-
ries, i.e., data marts or the corporate data warehouse itself. First, we extend the
previous three-layer packaging architecture [17] by also including the deploying
data repositories (i.e., data marts and corporate data warehouse). Fig. 4 shows
the relationships between the different packages. The entire model of a corporate

4 These stereotyped elements belong to our i* -based [21] modeling framework [9].
5 Contexts [9] are translated later into the dimension’s aggregation hierarchies.

432 J. Pardillo and J. Trujillo

Fig. 4. Packaging architecture to model an integrated data-warehousing solution

data warehouse is composed (represented as [24]) of all the data-mart models.
Furthermore, each model of a departmental data mart is composed of several
star packages (a conceptualization of a logical star schema [13,30]), and each
one is additionally composed of several fact packages6. Moreover, we define a
dimension library as a catalog for publishing master conformed dimensions that
can be obtained from the dimension authority’s rationale (explained in the next
section) and reused in each data-mart model. Hence, it is composed of several
dimension packages containing the project’s conformed dimensions that are im-
ported (�import � dependency relationships [24]) by the star packages in order
to describe the contained facts.

Specifically, Fig. 5 shows the library of master conformed dimensions ob-
tained from the dimension authority’s rationale of our running example. It is
worth noting that the dimension library is the foundation to automatically de-
rive the dependent data-mart schemata later in an integrated way. For instance,
the required date dimensions (i.e., calendar and fiscal) are combined into the
conformed date dimension that allows describing inventory and sales facts by
the commitment of every particular information requirements: by merging day
and date aggregation levels, and categorizing years. On the other hand, confor-
mity on store dimensions is achieved by means of the <ZIP, city, state, and
country> aggregation hierarchy.

In addition to the dimension library, we have defined an extension of the
well-known “unified modeling language” (UML) [24] to specify the modeling
elements exposed in our packaging architecture (Fig. 4). This extension is de-
fined as a UML profile [24] where we specify stereotypes such as �DataMart
� or �CorporateDW � to represent the multidimensional models of data marts
and corporate data warehouse, respectively7. Complementarily, these stereotypes
have tag definitions to describe their particular properties, e.g., {dependent }
data marts or {conformed } dimensions8. The proposed packaging architecture
is applied to our example scenario and shown in Fig. 6. Inventory and sales data
marts are modeled as packages (properly stereotyped) which depend (�import �

dependencies) on the corresponding {conformed } dimensions (properly tagged)
that are contained in the retail dimension library. Even more, the retail

6 See [17] for further references about the packaging mechanisms sketched herein.
7 Stereotype icons are hidden in order to highlight only their semantics.
8 Due to the space constraints, we omit a formal description of this modeling extension.

Integrated Model-Driven Development 433

«library»
Retail

Dimensions

«dimensionPackage»
Date {conformed}

«dimensionPackage»
Store {conformed}

Product
{conformed}

Promotion
{conformed}

«dimensionPackage» «dimensionPackage»

Fig. 5. Dimension library for modeling conformed dimensions of the retail data marts

Fig. 6. Integrated data-warehousing model for retail inventory and sales analysis

corporate data warehouse is modeled as a package containing every data mart
(with relationships) in the data-warehousing architecture. With the pro-
vided conceptual modeling framework, we can translate the previously exposed
goal reasoning into multidimensional models. They conceptualize data structures
required not only to deploy data marts but also the entire corporate repository.

3.3 Conceptual Modeling Mapping: From Goals to Data Structures

Any of the presented models (i.e., goal-based or multidimensional ones) can be
mapped in order to automatically derive data structures for both corporate data
warehouse and its dependent data marts. Fig. 7 shows the model-transformation
architecture to this aim. The transformation chain begins from i* diagrams [21]
to our conceptual modeling framework. Their mappings are based on our previ-
ous work [9], where every �measure � and �context � resources discovered dur-
ing the goal-oriented reasoning are automatically translated into fact measures
and dimensions, respectively, contained in a unique multidimensional model.

434 J. Pardillo and J. Trujillo

Fig. 7. Model-driven architecture for data warehousing based on conformed dimensions

In this paper, we decompose the transformation process into measure–fact
and context–dimension mappings. Whereas the mappings presented in [9] are
oriented to generate a single data repository in isolation, information require-
ments to be translated herein are spread on: (i) rationales of data-mart decision
makers for measure–fact mappings, and (ii) dimension authority’s rationale for
context–dimension mappings. Thus, we translate the dimension authority’s ra-
tionale, which holds contexts of analysis, to the conceptual library which con-
tains the translated conformed dimensions. This transformation is automatically
done by using the model mappings of [9]. However, together with each obtained
dimension, we also map it into the required package structure (see Fig. 4).

The mapping of decision maker’s rationales, such as inventory manager’s, im-
plies a model merging with the dimension library (shared by data marts across
every department). As we show in Fig. 6, since conformed dimensions are already
mapped into the dimension library, each context discovered in these rationales
(conformed by the dimension authority) is translated into an �import � depen-
dency from the related fact to the conformed dimension. Thus, it is assured that
facts in each data mart can be drilled across the conformed dimensions. More-
over, the model of entire (corporate) data warehouse that contains every data
mart is also automatically derived from the whole strategic-dependency model
(Fig. 2). Once again, the packaging scaffolding (Fig. 4) is also taken into account
for deriving the models of data marts and the corporate data warehouse.

On the other hand, from the conceptual modeling of data repositories, we
also automatically derive the deployment metadata that implement them. These
transformations are carried out by model mappings adapted from [23,15,16]. Es-
sentially, the involved mappings match every multidimensional concept with
both data structures of the data repository and client metadata to query it fol-
lowing a multidimensional view. Specifically, facts and dimensions, together with
their measures and aggregation hierarchies, are mapped at the logical level [19]
into the corresponding tables and columns of a star schema [13,30] concerning
the relational model. Given the model of the corporate data warehouse that
collects all the dependent data marts, by applying the mappings in [15,16], we
obtain the data structures which implements the corporate repository. Given

Integrated Model-Driven Development 435

a data-mart model, we obtain the corresponding aggregated and customized
version of the entire repository. It is worth noting that these data structures
are conformed by their dimensions, therefore, we can automatically obtain their
deployment counterparts in an integrated way. Even more, based on our previ-
ous work [23], we also automatically generate the required metadata to query
them by using OLAP applications [14]. With this mapping, we overcome the
tedious process of manually define client metadata from the deployed databases.
Therefore, decision making processes involving the whole organization can be
effectively done. Due to the space constraints, we omit a formal description of
the presented mappings based on our previous works [23,9,15,16].

4 Development Platform and Implementation

Our proposal is based on the best-known initiative for model-driven engineer-
ing [22], namely the “model-driven architecture” (MDA) [24]. The related stan-
dards that we employ are also shown in Fig. 7. On the one hand, for goal-oriented
requirement engineering, we employ i* diagrams [21] supported by our UML pro-
file presented in [9]. With regards to multidimensional modeling of data ware-
houses, we use the UML profile presented in [17] enriched for their architectural
modeling as we have previously described. In addition, the “common warehouse
metamodel” (CWM) [24] is employed to represent the deployed data structures
for both the underlying databases and OLAP applications [14] in a vendor-
independent manner. On the other hand, model transformations are specified in
the “query/view/transformation” (QVT) [24] language that contains a declara-
tive part for enabling us to easily design the required model mappings. Our trans-
formation chain, speaking in the QVT terminology, is divided into three stages
concerning each modeling framework: “computer-independent model” (CIM),
“platform-independent model” (PIM), and “platform-specific model” (PSM).
Hence, they allow us to smoothly isolate the deployment platform by means of
different abstraction levels, tackling complex projects such as data warehousing.

All the modeling frameworks and model transformations concerning our pro-
posal have been implemented in the Eclipse9 development platform. Specifically,
we employ several of its plugins implementing the MDA standards: for instance,
the “model development tools” (MDT) for supporting UML and UML profiles,
the “eclipse modeling framework” (EMF) for specifying CWM metadata rep-
resentations in a vendor-independent manner, medini QVT and SmartQVT in
order to specify and launch model-to-model QVT mappings with its declar-
ative or imperative part, respectively, or MOFScript to design model-to-code
Mof2Text [24] mappings to automatically implement the final data-warehousing
solution. We have combined them to provide an “integrated development envi-
ronment” (IDE) to manage data-warehousing projects based on model-driven
engineering. By using this tool, we have implemented the running example as
a proof of concept of our approach (see Fig. 8). Specifically, in the left-hand
side of the figure, the inventory data mart is modeled, in this case, in order to
9 URL: http://www.eclipse.org (March 2008)

http://www.eclipse.org

436 J. Pardillo and J. Trujillo

Fig. 8. Our IDE based on the Eclipse platform for model-driven data warehousing

automatically transform it into the deployment OLAP metadata (shown as the
right-hand side), by means of applying the QVT mapping at the center of Fig. 8.

5 Related Work

We can divide the development approaches for data warehouses that appear in
the literature into those that present methods or guidelines to capture informa-
tion requirements such as [6,7,8,9] and those that present modeling frameworks
for data structures that response these requirements [17,18,19,20]. Specifically,
only few authors [7,8,9] have investigated goal-oriented approaches like the pre-
sented herein. However, none of them try to capture conformity issues between
decision maker’s requirements or derive multidimensional data models for every
involved data repository in an entire data-warehousing architecture. Thus, re-
searchers have investigated the conceptual modeling of data warehouses mainly
focused on intraschema properties such as additivity [31] and aggregation hier-
archies [32].

However, research community has made great efforts to the related issues
of data integration and view materialization [29]. For instance, [30] recognizes
three kinds of multi-star data models (i.e., constellation, galaxy, and star clus-
ter), however they are focused on the logical structures. Thus, real conformity
mechanisms or data-repository deployments are not established. At the concep-
tual level, the best efforts for modeling interschema properties have been done
by [20,25,27]. In [25], several kinds of relationships between facts and dimen-
sions to drill across different schemata are discussed. Nevertheless, this model is
oriented to complex data relationships that decision makers do not usually re-
quire [33]. Once again, there are not mechanisms in order to achieve agreement
and commitment between data-mart stakeholders. In addition, [27] proposes the

Integrated Model-Driven Development 437

“dimension compatibility” notion to drill across data marts; nevertheless, it is
not oriented to the integrated development of the involved data repositories.

Finally, the proposed library of conformed dimensions is a similar conception
to the design pattern approach that has been investigated by [34] in order to pro-
pose dimensional patterns for data warehouses. However, these patterns act as
design guidelines, and they do not mean suitable conformity mechanisms to en-
able integrated architectural deployments. It is worth noting that other authors
such as [35] also propose automatic mechanisms to generate OLAP schemata,
however these mechanisms are not conceived for solving the conformity among
dimensions neither driving an entire data-warehousing architecture.

6 Conclusion

With this work, we present an approach to design a whole architecture for data
warehousing in an integrated way since the very-early stages of development.
The great benefits of our proposal are the following:

– We capture information requirements at the early development stages, hence,
we can anticipate risks at the very beginning of every project.

– The proposal is based on goal-oriented requirement engineering [21] that
allows developers to align particular information needs with the strategic
policies of the whole organization.

– We coordinate the agreement and commitment between distributed data-
mart stakeholders to conform their multidimensional models, also providing
artifacts to document these conformity agreements.

– The usage of models can drive complex developments [22] such as data-
warehousing architectures since their inception to the final deployment.

– Developing a data-warehousing architecture without paying attention to the
underlying software platforms, delegating this knowledge to the scaffolding
model-transformation architecture.

– Providing reusable assets for multidimensional models by means of a catalog
of conformed dimensions enabling the design of modular systems.

– The automatic deployment of both corporate data warehouse and depen-
dent data marts in an integrated way. It means a practical solution to the
architectural debate [11].

– Enabling cross-departmental queries by automatically generating the OLAP
metadata supported by conformed dimensions for each involved data mart.

Further investigations can be carried out in order to enrich the proposed
approach, for instance, providing semantics-aware frameworks for conformity
reasoning and information-requirement discovery, or suitability metrics to com-
pare the ideal dimensions obtained from the data-mart requirements with the
master conformed dimensions that we design. We plan to formalize the specifi-
cation of the underlying methodology in a process-oriented modeling language,
accompanied by the appropriate empirical validation.

438 J. Pardillo and J. Trujillo

Acknowledgements

This work has been supported by the ESPIA (TIN2007-67078) project from the
Spanish Ministry of Education and Science, and by the QUASIMODO (PAC08-
0157-0668) project from the Castilla-La Mancha Ministry of Education and Sci-
ence (Spain). Jesús Pardillo is funded by the Spanish Ministry of Education and
Science under FPU grant AP2006-00332.

References

1. Watson, H.J., Annino, D.A., Wixom, B.H., Avery, K.L., Rutherford, M.: Current
Practices in Data Warehousing. Inf. Syst. Manage. 18(1), 1–9 (2001)

2. Jukic, N.: Modeling Strategies and Alternatives for Data Warehousing Projects.
Commun. ACM 49(4), 83–88 (2006)

3. Cabibbo, L., Torlone, R.: An Architecture for Data Warehousing Supporting Data
Independence and Interoperability. Int. J. Cooperative Inf. Syst. 10(3), 377–397
(2001)

4. Jarke, M., Jeusfeld, M.A., Quix, C., Vassiliadis, P.: Architecture and Quality in
Data Warehouses: An Extended Repository Approach. Inf. Syst. 24(3), 229–253
(1999)

5. Samos, J., Saltor, F., Sistac, J., Bardés, A.: Database Architecture for Data Ware-
housing: An Evolutionary Approach. In: Quirchmayr, G., Bench-Capon, T.J.M.,
Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 746–756. Springer, Hei-
delberg (1998)

6. Luján-Mora, S., Trujillo, J.: Applying the UML and the Unified Process to the
design of Data Warehouses. J. Comput. Inform. Syst. 17(2), 12–42 (2006)

7. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: DOLAP, pp. 47–56 (2005)

8. Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing Data
Marts for Data Warehouses. ACM Trans. Softw. Eng. Methodol. 10(4), 452–483
(2001)

9. Mazón, J.N., Pardillo, J., Trujillo, J.: A Model-Driven Goal-Oriented Requirement
Engineering Approach for Data Warehouses. In: ER Workshops, pp. 255–264 (2007)

10. Sen, A., Sinha, A.P.: A Comparison of Data Warehousing Methodologies. Commun.
ACM 48(3), 79–84 (2005)

11. Breslin, M.: Data Warehousing Battle of the Giants: Comparing the Basics of the
Kimball and Inmon Models. Bus. Intel. J. 9(1), 6–20 (2004)

12. Inmon, W.H.: Building the Data Warehouse. Wiley, Chichester (2005)
13. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Di-

mensional Modeling. Wiley, Chichester (2002)
14. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technol-

ogy. SIGMOD Record 26(1), 65–74 (1997)
15. Mazón, J.N., Pardillo, J., Trujillo, J.: Applying Transformations to Model Driven

Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081,
pp. 13–22. Springer, Heidelberg (2006)

16. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. Dec. Support Syst. (in press, 2007)

17. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)

Integrated Model-Driven Development 439

18. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: A Conceptual
Model for Data Warehouses. Int. J. Cooperative Inf. Syst. 7(2-3), 215–247 (1998)

19. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse model-
ing. In: DMDW, p. 6 (2000)

20. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Inf. Syst. 31(6), 541–567 (2006)

21. Yu, E.S.K., Mylopoulos, J.: Understanding “Why” in Software Process Modelling,
Analysis, and Design. In: ICSE, pp. 159–168 (1994)

22. Bézivin, J.: Model Driven Engineering: An Emerging Technical Space. In: GTTSE,
pp. 36–64 (2006)

23. Pardillo, J., Mazón, J.N., Trujillo, J.: Model-driven OLAP Metadata for Data
Warehouses. In: BNCOD (in press, 2008)

24. Object Management Group: Model Driven Architecture (MDA), Unified
Modeling Language (UML), Common Warehouse Metamodel (CWM),
Query/View/Transformation Language (QVT), MOF Model to Text Trans-
formation Language (Mof2Text) (March 2008), http://www.omg.org

25. Abelló, A., Samos, J., Saltor, F.: On relationships offering new drill-across possi-
bilities. In: DOLAP, pp. 7–13 (2002)

26. Kimball, R.: The Soul of the Data Warehouse, Part Two: Drilling Across. Intel.
Enterprise Mag. (April 2003)

27. Cabibbo, L., Torlone, R.: On the Integration of Autonomous Data Marts. In: SS-
DBM, pp. 223–231 (2004)

28. Hurtado, C.A., Mendelzon, A.O., Vaisman, A.A.: Updating OLAP Dimensions. In:
DOLAP, pp. 60–66 (1999)

29. Vassiliadis, P.: Gulliver in the land of data warehousing: practical experiences and
observations of a researcher. In: DMDW, pp. 12–1 (2000)

30. Moody, D.L., Kortink, M.A.R.: From enterprise models to dimensional models: a
methodology for data warehouse and data mart design. In: DMDW, p. 5 (2000)

31. Horner, J., Song, I.Y., Chen, P.P.: An analysis of additivity in OLAP systems. In:
DOLAP, pp. 83–91 (2004)

32. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)

33. Pedersen, T.B.: How Is BI Used in Industry?: Report from a Knowledge Exchange
Network. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS,
vol. 3181, pp. 179–188. Springer, Heidelberg (2004)

34. Jones, M.E., Song, I.Y.: Dimensional modeling: Identification, classification, and
evaluation of patterns. Dec. Support Syst (in press, 2007)

35. Niemi, T., Nummenmaa, J., Thanisch, P.: Constructing OLAP Cubes Based on
Queries. In: DOLAP (2001)

http://www.omg.org

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 440–454, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Design Metrics for Data Warehouse Evolution

George Papastefanatos1, Panos Vassiliadis2, Alkis Simitsis3, and Yannis Vassiliou1

1 National Technical University of Athens, Athens, Hellas
{gpapas,yv}@dbnet.ece.ntua.gr

2 University of Ioannina, Ioannina, Hellas
pvassil@cs.uoi.gr

3 Stanford University and HP Labs, California, USA
alkis@{db.stanford.edu,hp.com}

Abstract. During data warehouse design, the designer frequently encounters the
problem of choosing among different alternatives for the same design construct.
The behavior of the chosen design in the presence of evolution events is an im-
portant parameter for this choice. This paper proposes metrics to assess the
quality of the warehouse design from the viewpoint of evolution. We employ a
graph-based model to uniformly abstract relations and software modules, like
queries, views, reports, and ETL activities. We annotate the warehouse graph
with policies for the management of evolution events. The proposed metrics are
based on graph-theoretic properties of the warehouse graph to assess the sensi-
tivity of the graph to a set of possible events. We evaluate our metrics with ex-
periments over alternative configurations of the same warehouse schema.

1 Introduction

How good is the design of a data warehouse? What makes the design of a data ware-
house good or bad? Typically, such questions are answered by a set of empirical rules,
such as ‘are your dimensions aligned?’, ‘is the warehouse following a typical design
pattern, such as star or snowflake?’, ‘are the partitions and indexes of the warehouse
built appropriately?’, and so on. All these recipes are based on practical observations
of the past, as well as rules of thumb that have been established by expert practitioners
and although valuable, they simply transfer the lessons learned the hard way in the
“craft” of data warehouse design.

At the same time, the scientific community is not in possession of a fundamentally
established theory for the evaluation of the quality of a data warehouse. So far, the
researchers have dealt with metrics that evaluate the design quality of the database
schema with respect to high level goals, such as completeness, understandability, etc.
both at the conceptual [16] and the logical level [3, 9]. Although structural properties
of the database or the warehouse (e.g., number of dimensions or foreign keys) are
considered, the employed approaches restrict themselves to constructs internal to the
database without taking into account the incorporation of constructs surrounding the
database into their models, nor the fact that a software construct, and especially an
information system, evolves over time. Since software maintenance makes up for at
least 50% of all resources spent in a project, maintainability is an important factor for

 Design Metrics for Data Warehouse Evolution 441

the determination of the quality of a design. The problem is quite hard, since changes
in the schema of a database-centric system (and thus, a data warehouse) affect both its
internals but also, the surrounding deployed applications. Thus, the minimal interde-
pendence of these software modules results in higher tolerance to subsequent changes
and should be measured with a principled theory. Related work for view redefinition
[5, 8, 10] and data warehouse evolution [2, 4, 6, 7] has provided rewriting techniques
and theoretical cost models; yet, a well founded model that captures all the environ-
ment of a warehouse and objectively assess its vulnerability to changes is missing.

In this paper, we propose a set of metrics with two major characteristics. Firstly,
they act as predictors for the vulnerability of a software module of a data warehouse
(either internal, e.g., a dimension table, or external, e.g., an aggregated measure in a
user’s report) to future changes to the structure of the warehouse. Secondly, they
facilitate the assessment of the quality of alternative designs of the warehouse with a
particular viewpoint on the evolution of the data warehouse.

To achieve the abovementioned goal, we base our approach on two pillars.
First, we model the whole environment of the warehouse as a graph. We do not re-

strict the modeling to fact and dimension tables along with their interrelationships and
any available views, but we extend the modeling to incorporate all the elements of an
information system. To this end, we add queries as integral parts of the configuration
of a data warehouse. In practice, a typical database is surrounded by forms, reports,
web pages, stored procedures, and triggers deployed on the database server. Each of
these software artifacts hides a list of queries via which it communicates with the
database and exchanges queries and data with it. In addition, a data warehouse com-
prises a set of extract-transform-load (ETL) scripts, necessary for its population and
refreshment with fresh source data. Queries constitute a convenient abstraction that
captures the “skeleton” of all these applications w.r.t. their interrelationship to the
database. We model the whole environment as a graph, with relations, attributes,
constraints, queries, and query operands being the nodes of the graph, while the part-
of or querying relationships are modeled as the edges connecting these nodes.

Second, our treatment for the evolution of the warehouse over time is based on
events such as ‘rename measure’, ‘add dimension attribute’, ‘delete dimension table’,
and so on. All these events are applied over the corresponding node and propagated
over the appropriate subset of the graph. This way, given an evolution event, we can
detect all the affected nodes. Moreover, we can define policies to regulate how a node
will react to the possible change; e.g., a node can block -veto- an event, state the dele-
tion of a dimension table, and isolate subsequent software modules that depend upon
it from the effects of the change. We have built a what-if analysis tool that assesses
potential evolution scenarios based on the above principles.

Based on these two pillars (detailed in Sections 2 and 3, respectively), in this paper,
we provide a set of metrics for the assessment of the vulnerability of all the design struc-
tures in a data warehouse environment (Section 4). We exploit the graph and provide
metrics like the degrees (in, out, and total) of a node, the transitive degrees of a node
(standing for the extent to which other nodes transitively depend upon it), and the degrees
of a summarized variant of a module (e.g., a view) that abstract the internal semantics of
the module and focus on its coupling to the rest of the environment. We also provide an
information theoretic definition of a module’s entropy that simulates the extent to which
the vulnerability of a node is surprising. Finally, we extensively experiment with various

442 G. Papastefanatos et al.

configurations in the setup of a reference warehouse (Section 5) and assess both the ef-
fectiveness of the proposed metrics (i.e., how well do they actually predict the impact of
evolution events to a design construct) and how different design alternatives for the same
schema behave w.r.t. evolution.

2 Graph Based Modeling for Data Warehouses

In this section, we summarize our graph modeling technique that uniformly covers
relational tables, views, ETL activities, database constraints, and SQL queries as first
class citizens. The proposed modeling technique represents all the aforementioned
database parts as a directed graph G=(V,E). The nodes represent the entities of our
model and the edges represent the relationships among these entities. Originally, the
model was introduced in [12] and here, we provide only a short summary.

Each relation R(Ω1,Ω2,…,Ωn) in the database schema is represented as a directed
graph, which comprises: (a) a relation node, R, representing the relation schema; (b) n
attribute nodes, Ωi∈Ω, i=1..n, one for each of the attributes; and (c) n schema rela-
tionships, ES, directing from the relation node towards the attribute nodes, indicating
that the attribute belongs to the relation.

The graph representation of a Select - Project - Join - Group By (SPJG) query in-
volves a new node representing the query, named query node, and attribute nodes
corresponding to the schema of the query. The query graph is a directed graph con-
necting the query node with all its schema attributes, via schema relationships. In
order to represent the relationship between the query graph and the underlying rela-
tions, we resolve the query into its essential parts: SELECT, FROM, WHERE, GROUP BY,
HAVING, and ORDER BY, each of which is eventually mapped to a subgraph. The edges
connected the involved attribute and operand nodes are annotated as map-select, from,
and where relationships. Aliases in the FROM clause (mostly needed in self-joins for
our modeling) are annotated with alias edges. The direction of the edges is from the
query node to the attribute nodes. WHERE and HAVING clauses are modeled via a left-
deep tree of logical operands to represent the selection formulae; all the involved
edges are annotated as where and having relationships, respectively. Nested queries
are part of this modeling, too.

For the representation of aggregate queries, we employ two special purpose nodes:
(a) a new node denoted as GB∈GB, to capture the set of attributes acting as the aggre-
gators; and (b) one node per aggregate function labeled with the name of the em-
ployed aggregate function; e.g., COUNT, SUM, MIN. For the aggregators, we use edges
directing from the query node towards the GB node that are labeled <group-by>,
indicating group-by relationships, EG. Then, the GB node is connected with each of
the aggregators through an edge tagged also as <group-by>, directing from the GB
node towards the respective attributes. These edges are additionally tagged according
to the order of the aggregators; we use an identifier i to represent the i-th aggregator.
Moreover, for every aggregated attribute in the query schema, there exists an edge
directing from this attribute towards the aggregate function node as well as an edge
from the function node towards the respective relation attribute.

 Design Metrics for Data Warehouse Evolution 443

Fig. 1. (a) Graph and (b) abstract representation of an example aggregate query [12]

Both edges are labeled <map-select> and belong to EM, as these relationships in-
dicate the mapping of the query attribute to the corresponding relation attribute
through the aggregate function node. The representation of the ORDER BY clause of the
query is performed similarly.

Functions used in queries are denoted as a special purpose node Fi∈F having the
name of the function. Each function has an input parameter list comprising attributes,
constants, expressions, and nested functions, and one (or more) output parameter(s).
Views are considered either as queries or relations (materialized views). An ETL
activity is modeled as a sequence of SQL views. DML statements are denoted as
queries. Fig. 1 depicts the proposed graph representation for the following query:

Q: SELECT EMP.Emp# as Emp#, Sum(WORKS.Hours) as T_Hours
 FROM EMP,WORKS WHERE EMP.Emp#=WORKS.Emp# GROUP BY EMP.Emp#

Modules. A module is a sub-graph of the overall graph in one of the following pat-
terns: (a) a relation with its attributes and all its constraints, (b) a view with its attrib-
utes, functions and operands, and (c) a query with all its attributes, functions and
operands. Modules are disjoint with each other and connected through edges con-
cerning foreign keys, map-select and so on. Within a module, we distinguish top-level
and low-level nodes. Top level nodes are used to signify the identity of the module;
for that purpose, query, relation and view nodes are used as top-level nodes. Low-
level nodes comprise the rest of the module. Edges are classified into provider and
part-of relationships. Provider edges are intermodule relationships (e.g., EM, EF),
whereas part-of edges are intramodule relationships (e.g., ES, EW). In Fig. 1, the graph
comprises 3 modules corresponding to the query and the relations subgraphs.

Zoom in/out. Abstracting the graph into a modular representation at a coarser level of
detail (zoom-out) involves the following steps: (a) for each query, view or relation
module, all low-level nodes and intramodule edges are suppressed and only the re-
spective top-level node is retained, and, (b) all inter-module edges apart from from
and foreign key edges are dropped. A surviving edge between two modules is anno-
tated with a weight corresponding to the number of the edges that originally con-
nected the two modules. We call this weight the strength of the edge as it assesses

444 G. Papastefanatos et al.

how tightly the involved modules are coupled. Fig. 1(b) depicts the abstract modular
representation of Fig. 1(a).

3 Evolution in Data Warehouses

Data warehouse evolution is about changes and means to handle occurring changes.

Events. In our setting, we assume the following classes of occurring events:

C1. A dimension is removed, or renamed (DEL, UPD Dimension Table)
C2. The structure of a dimension table is updated (ADD, DEL, UPD Dimension

Attribute)
C3. A fact table is completely decoupled from a dimension (DEL FK), or decoup-

led from one dimension and coupled to another (UPD FK)
C4. The measures of a fact table change (ADD, DEL, UPD measure)

An update can signify a change of data types or a renaming of a construct (our
practical experience [12] indicates that it mostly refers to the latter.) We do not check
for additions of fact or dimension tables, because such events do not result in a direct
impact to any other logical warehouse construct per se. Given these changes that can
occur to a data warehouse, their basic impact is that all software modules that use
these database structures must be rewritten. The impact can be both syntactic (in the
sense that all views and queries using a deleted attribute will crash) and semantic (in
the sense that a new attribute in a relation or a modified condition in a view might
require a rewriting of all the queries that use it). Assume for example that an attribute
FullName is split to attributes FirstName and LastName or a view condition ‘Year =
2007’ is altered to ‘Year > 2006’. The former change has syntactic impacts to all the
queries using the attribute and the latter has semantic impact, since some of the que-
ries using the view require exactly values of 2007, whereas some others will serve the
purpose with any value greater than 2006.

Handling of events. Given an event posed to one of the warehouse constructs (or,
equivalently, to one of the nodes of the graph of the warehouse that we have intro-
duced), the impact involves the possible rewriting of the constructs that depend upon
the affected construct either directly, or transitively. In a non-automated way, the
administrator has to check all of these constructs and restructure the ones he finds
appropriate. This process can be semi-automated by using our graph-based modelling
and annotating the nodes and the edges of the graph appropriately with policies in the
event of change. Assume for example, that the administrator guarantees to an applica-
tion developer that a view with the sum of sales for the last year will always be given.
Even if the structure of the view changes, the queries over this view should remain
unaffected to the extent that its SELECT clause does not change. On the contrary, if a
query depends upon a view with semantics ‘Year = 2007’ and the view is altered to
‘Year > 2006’, then the query must be rewritten.

The main idea in our approach involves annotating the graph constructs (relations,
attributes, and conditions) sustaining evolution changes (addition, deletion, and modi-
fication) with policies that dictate the way they will regulate the change. Three kinds
of policies are defined: (a) propagate the change, meaning that the graph must be

 Design Metrics for Data Warehouse Evolution 445

reshaped to adjust to the new semantics incurred by the event; (b) block the change,
meaning that we want to retain the old semantics of the graph and the hypothetical
event must be vetoed or, at least, constrained, through some rewriting that preserves
the old semantics; and (c) prompt the administrator to interactively decide what will
eventually happen. In [13] we have proposed a language that greatly alleviates the
designer from annotating each node separately and allows the specification of default
behaviors at different levels of granularity with overriding priorities. Assume that a
default behavior for the deletion of view attributes is specified via the language of
[13]. This policy can later be overridden with a directive for the behavior of the at-
tributes of view V (again via the same language). Again, this policy can in turn be
overridden with a specification for the behavior of attribute V.A.

Given the annotation of the graph, there is also a simple mechanism that (a) deter-
mines the status of a potentially affected node on the basis of its policy, (b) depending
on the node’s status, the node’s neighbors are appropriately notified for the event.
Thus, the event is propagated throughout the entire graph and affected nodes are noti-
fied appropriately. The STATUS values characterize whether (a) a node or one of its
children (for the case of top-level nodes) is going to be deleted or added (e.g., TO-BE-
DELETED, CHILD-TO-BE-ADDED) or (b) the semantics of a view have changed, or (c)
whether a node blocks the further propagation of the event (e.g., ADDITION-
BLOCKED).

4 Metric Suite

Various approaches exist in the area of database metrics. Most of them attempt to
define a complete set of database metrics and map them to abstract quality factors,
such as maintainability, good database design, and so on. In this section, we introduce
a metric set based on the properties of the warehouse graph for measuring and evalu-
ating the design quality of a data warehouse with respect to its ability to sustain
changes. Metrics are based on properties of the aforementioned graph model.

4.1 Degree-Related Metrics

The first family of metrics comprises simple properties of each node in the graph. The
main idea lies in the understanding that the in-degree, out-degree and total degree of a
node v demonstrate in absolute numbers the extent to which (a) other nodes depend
upon v, (b) the dependence of v to other nodes and (c) v is interacting with other nodes
in the graph, respectively. Specifically, these metrics are:

− In-degree, DI(v), Out-degree, DO(v), Degree, D(v), of a node v, with the simple
semantics that have already been mentioned. These metrics have been introduced
in [15] and assess the dependence and the responsibility of each node.

− In Transitive, Out Transitive, Transitive degree. The simple degree metrics of a
node v are good measures for finding the nodes that are directly dependent on v or
on which v directly depends on, but they cannot detect the transitive dependencies
between nodes. Thus, if we consider the graph G(V,E), the transitive degrees of a
node v∈V with respect to all nodes yi∈V are given by the following formulae:

446 G. Papastefanatos et al.

TDI(v) = ∑ ∑
∈ ∈Vy vypathsp

p

i i

ecount
),(

)(, for all distinct edges ep ∈paths of the form (yi,v)

TDO(v) = ∑ ∑
∈ ∈Vy yvpathsp

p

i i

ecount
),(

)(, for all distinct edges ep ∈paths of the form (v,yi)

TD(v) = TDI(v) + TDO(v)

− Zoomed-out degree. Assuming the degrees of the detailed graph can be computed,
one can measure the degrees of the nodes of the zoomed-out graph. As already
mentioned in section 2, zooming-out annotates edges with strengths, so the fol-
lowing formulae can be defined:

DIs(v) = ∑
i

iestrength)(, for all edges ei of the form (y,v)

DOs(v) = ∑
i

iestrength)(, for all edges ei of the form (v,y)

Ds(v) = DIs(v) + DOs(v)

− Zoomed-out transitive degree: Similarly to above, we may extend the transitive
degrees to the zoomed-out graph, so the following formulae can be defined:

TDIs(v) = ∑ ∑
∈ ∈Vy vypathsp

p

i i

estrength
),(

)(, for ep ∈paths of the form (yi,v)

TDOs(v) = ∑ ∑
∈ ∈Vy yvpathsp

p

i i

estrength
),(

)(, for ep ∈paths of the form (v,yi)

TDs(v) = TDIs(v) + TDOs(v)

There are several other variants of these graph-based measures that we do not ex-
plore here. We can define Category-constrained degrees, which constrain degrees by
edge categories. For example, we might be interested only in the number of part-of
outgoing edges of a relation. We can also measure the importance of modules (e.g.,
using the frequency of a query’s execution) and obtain weighted variants of the
aforementioned metrics.

4.2 Entropy – Based Metrics

Entropy is used to evaluate the extent to which a part of a system is less likely to be
affected by an evolution event than other parts [1]. Given a set of events A=[A1,…, An]
with probability distribution P={p1,…,pq}, respectively, entropy is defined as the
average information obtained from a single sample from A:

() ∑
=

−=
n

i
ii ppAH

1
2log

Assume a node v in our graph G(V,E). We define the probability that v∈V is af-
fected by an arbitrary evolution event e over a node yk∈V as the number of paths from
v towards yk divided by the total paths from v towards all nodes in the graph, i.e.,

 Design Metrics for Data Warehouse Evolution 447

 P(v|yk) =

∑
∈Vy

i

k

i

yvpaths

yvpaths

),(

),(, for all nodes yi ∈V.

The information we gain when a node v is affected by an event occurred on node yk

is
)|(

1
log))|((2

k
k yvP

yvPI = and the entropy of node v wrt the whole graph is then:

() ∑
∈

−=
Vy

ii

i

yvPyvPvH)|(log)|(2
, for all nodes yi ∈V.

The above quantity expresses the average information we gain, or equivalently the
amount of “surprise” conveyed, if node v is affected by an arbitrary evolution event
on the graph. Observe that high entropy values correspond to nodes with a higher
dependence with the rest of the graph. For instance, a query defined over only one
relation has an entropy value of 0, whereas a query defined over a view which in turns
accesses two relations has an entropy value of log23.

Moreover, we can apply the exact same technique to the zoomed out-graph
Gs(Vs,Es), by defining the probability of a node v∈Vs to be affected by an evolution
event over a node yk∈Vs as:

Ps(v|yk) =

∑ ∑

∑

∈ ∈

∈

s
i i

k

Vy yvpathsp
p

yvpathsp
p

estrength

estrength

),(

),(

)(

)(
 , for all nodes yi ∈Vs.

with ep∈Es being the edges of all the paths of the zoomed out graph stemming from v
towards yk. Similarly, the entropy of node v∈Vs is:

() ∑
∈

−=
s

i Vy
i

s
i

ss yvPyvPvH)|(log)|(2
, for all nodes yi ∈Vs.

5 Evaluation – Experiments

Goals. There are two major goals in our experiments. First, we have investigated the
extent to which the proposed metrics good indicators for the prediction of the effect
evolution events have on the warehouse. A clear desideratum in this context is the
determination of the most suitable metric for this prediction under different circum-
stances. A second goal involves the comparison of alternative design techniques with
respect to their tolerance to evolution events.

Experimental setup for the first goal. To achieve the goal of determining the fittest
prediction metric, we need to fix the following parameters: (a) a data warehouse
schema surrounded by a set of queries and possibly views, (b) a set of events that alter
the above configuration, (c) a set of administrator profiles that simulate the intention
of the administrating team for the management of evolution events, and (d) a baseline
method that will stand as an accurate estimate of the actual effort needed to maintain
the warehouse environment.

448 G. Papastefanatos et al.

We have employed the TPC-DS [14] schema as the testbed for our experiments.
TPC-DS is a benchmark that involves six star schemas (with a large overlap of shared
dimensions) standing for Sales and Returns of items purchased via a Store, a Catalog
and the Web. We have used the Web Sales schema that comprises one fact table and
thirteen dimension tables. The structure of the Web Sales schema is interesting in the
sense that it is neither a pure star, nor a pure snowflake schema. In fact, the dimen-
sions are denormalized, with a different table for each level; nevertheless, the fact
table has foreign keys to all the dimension tables of interest (resulting in fast joins
with the appropriate dimension level whenever necessary). Apart from this “starified”
schema, we have also employed two other variants in our experiments: the first in-
volves a set of views defined on top of the TPC-DS schema and the second involves
the merging of all the different tables of the Customer dimension into one. We have
isolated the queries that involve only this subschema of TPC-DS as the surrounding
query set of the warehouse. The views for the second variant of the schema were
determined by picking the most popular atomic formulae at the WHERE clause of the
surrounding queries. In other words, the aim was to provide the best possible reuse of
common expressions in the queries.

We created two workloads of events to test different contexts for the warehouse
evolution. The first workload of 52 events simulates the percentage of events ob-
served in a real world case study in an agency of the Greek public sector. The second
workload simulates a sequence of 68 events that are necessary for the migration of the
current TPC-DS Web sales schema to a pure star schema. The main idea with both
workloads is to simulate a set of events over a reasonable amount of time. Neither the
internal sequence of events per se, nor the exact background for deriving the events is
important; but rather, the focus is on the events’ generation that statistically capture a
context under which administration and development is performed (i.e., maintenance
of the same schema in the first case, and significant restructuring of a schema in the
latter case). The distribution of events is shown in Table 1.

We have used an experimental prototype, HECATAEUS [11], for the identification of
the impact of hypothetical evolution events. We have annotated the graph with poli-
cies, in order to allow the management of evolution events. We have used three anno-
tation “profiles”, specifically: (a) propagate all, meaning that every change will be
flooded to all the nodes that should be notified about it, (b) block all, meaning that a
view/query is inherently set to deny any possible changes, and (c) mixture, consisting
of 80% of the nodes with propagate policies and 20% with blocking. The first policy
practically refers to a situation without any annotation. The second policy simulates a
highly regulatory administration team that uses HECATAEUS to capture an evolution
event as soon as it leaves its source of origin; the tool highlights the node where the
event was blocked. The third policy simulates a rather liberal environment, where
most events are allowed to spread over the graph, so that their full impact can be ob-
served; yet, 20% of critical nodes are equipped with blocking policies to simulate the
case of nodes that should be handled with special care.

Summarizing, the configuration of an experiment involves fixing a schema, a set of
policies and a workload. We have experimented with all possible combinations of
values. The measured metrics in each experiment involve the execution of the work-
load of evolution events in the specified configurations and the measurement of the

 Design Metrics for Data Warehouse Evolution 449

Table 1. Distribution of events

Operation Distribution 1 Distribution 2
Rename Measure 29% (15) 0% (0)
Add Measure 25% (13) 0% (0)
Rename Dimension Attribute 21% (11) 0% (0)
Add Dimension Attribute 15% (8) 37% (25)
Delete Measure 6% (3) 0% (0)
Delete Dimension Attribute 4% (2) 44% (30)
Delete FKs 0% 13% (9)
Delete Dimension Table 0% 6% (4)

affected nodes. Specifically, each node of the graph is monitored and we get analytic
results on how many times each node was affected by an event. This measurement
constitutes the baseline measurement that simulates what would actually happen in
practice. This baseline measurement is compared to all the metrics reported in Section
4, being evolution-agnostic or not.

Experimental Setup for the second goal. The second goal of our experiments is to
compare alternative designs of the warehouse with each other – i.e., we want to find
which design method (pure star, TPC-DS with or without views) is the best for a
given designer profile (which is expressed by the policies for the management of
evolution). Thus, the comparison involves the compilation of the baseline measure-
ments, grouped per policy profile and alternative schema. We measure the total num-
ber of times each node was affected and we sum all these events. The intention is to
come up with a rough estimation of the number of rewritings that need to be done by
the administrators and the application developers (in this setting, it is possible that a
query or view is modified in more than one of its clauses). A second measurement
involves only the query part: we are particularly interested in the effort required by
the application developers (which are affected by the decisions of the administration
team), so we narrow our focus to the effect inflicted to the queries only.

5.1 Effectiveness of the Proposed Metrics

In this experiment, we evaluate the effectiveness of the proposed metrics using the
first distribution of events. We have constructed the following nine configurations by
fixing each time a value for the schema and the policy. The schema takes one of the
values {Web Sales (WS), Web Sales extended with views (WS-views), star variant of
Web Sales (WS-star)} and the policy takes one of the values {Block-All, Propagate-
All, Mixture}. In the rest, we discuss our findings organized in the following catego-
ries: (a) Fact Tables, (b) Dimension Tables, (c) Views, and (d) Queries.

Facts. Our experiments involved a single fact table. We observed that the number of
events that occurred to the fact table does not change with the overall architecture.
The presence of more or less dimensions or views did not affect the behavior of the
fact table; on the contrary, it appears that the main reasons for the events that end up
to the fact table, are its attributes. Therefore, the main predictor for the behavior of the
evolution of the fact table is its out-degree, which is mostly due to the part-of relation-
ships with its attributes.

450 G. Papastefanatos et al.

Dimension Tables. Evolution on dimension tables can also be predicted by observing
their out-degree, since this property practically involves the relationship of the dimen-
sion with its attributes as well as its relationship via foreign keys with other dimen-
sions. Figure 2 depicts this case for the original web sales schema and its star variant,
for which all customer-related dimensions have been merged into one dimension. Our
baseline (depicted as a solid line with triangles) involves the actual number of times a
node belonging to a dimension table was affected.

Fig. 2. Events affecting dimensions: (a) WS schema, (b) WS-star schema

Total no. events on Views (schema=WS-views, policy=block)

0

10

20

30

40

50

60

70

80

90

100

ALL_SALES

PROM
OTIO

NAL_S
ALE

CUSTOM
ER_C

UST_A
DDRESS

DAYS30

DAYS30
_6

0

DAYS60
_9

0

DAYS90
_1

20

DAYS12
0

W
EBSA

LES_
IT

EM
_DATEDIM AT PT

NumberAffected

StrengthOut

StrengthTotal

Total no. events on Views (schema=WS-views, policy=block)

0

10

20

30

40

50

60

70

80

90

100

ALL_SALES

PROM
OTIO

NAL_S
ALE

CUSTOM
ER_C

UST_A
DDRESS

DAYS30

DAYS30
_6

0

DAYS60
_9

0

DAYS90
_1

20

DAYS12
0

W
EBSA

LES_
IT

EM
_DATEDIM AT PT

NumberAffected

StrengthOut

StrengthTotal

Fig. 3. Events affecting views: (a) WS-star and WS schema, (b) WS-views schema

Despite the spikes at the heavily correlated date dimension, out-degree is a predictor,
keeping in mind that it is the actual trend that matters and not the values themselves.

Views. Views behave practically uniformly for all configurations, independently of
schema or policy. Observe Fig. 3 where we depict our findings concerning views. It is
clear that strength of out-degree (strength-out) and total strength are the best predictors
for the evolution of views with the former being an interestingly accurate predictor in all
occasions. Figure 3(a) is a representative of all the six configurations for the original web
sales schema and its star variant. The policy makes no difference and all six experiments
have resulted in exactly the same behavior. The rest of the metrics miss the overall trend
and are depicted for completeness. Fig. 3(b) shows a representative graphical representa-
tion of the metrics, showing that the strength of the out-degree is consistently effective,
whereas the total strength shows some spikes (mainly due to views that are highly

 Design Metrics for Data Warehouse Evolution 451

connected to the sources, although these sources did not generate too much traffic of
evolution events after all). The rest of the metrics behave similarly with Fig. 3(a).

Queries. Queries are typically dependent upon their coupling to the underlying DBMS
layer. As a general guideline, the most characteristic measure of the vulnerability of
queries to evolution events is their transitive dependence. A second possible metric
suitable for a prediction is the entropy; however, it is not too accurate. Other metrics do
not seem to offer good prediction qualities; the best of them, out-degree, does not ex-
ceed 70%. Recall that the baseline for our experiment is the actual number of events that
reached a query (depicted as a solid line decorated with triangles in Fig. 4 and 5). Fi-
nally, we stress that the trend makes a metric successful and not the precise values.

Total no. events on Queries (schema=WS, policy=block)

0

5

10

15

20

25

30

Q3 Q9 Q8 Q4 Q6 Q1 Q2 Q5

NumberAffected
TranDegreeOut
Entropy In
DegreeOut

Total no. events on Queries (schema=WS-star, policy=mixture)

0

5

10

15

20

25

30

Q3 Q9 Q8 Q4 Q7 Q6 Q1 Q2 Q5

NumberAffected
DegreeOut
Entropy In
TransDegreeOut

Fig. 4. Events affecting queries: (a) WS schema, (b) WS-star schema

Total no. events on Queries (schema=WS-views, policy=propagate)

0

5

10

15

20

25

30

35

Q3 Q9 Q8 Q4 Q6 Q10 Q1 Q2 Q5 Q7

NumberAffected
Entropy In
DegreeOut
TransDegreeOut

Total no. events on Queries (schema=WS-views, policy=mixture)

0

5

10

15

20

25

30

35

Q3 Q4 Q8 Q6 Q1 Q2 Q5 Q9 Q7

NumberAffected
Entropy In
TransDegreeOut
DegreeOut

Fig. 5. Total number of events affecting queries: (a) Behavior for the WS-views with propagate
policy; (b) Behavior for the WS-views schema with mixture policy

Fig. 4 shows two characteristic plots for the original web sales schema and its star
variant. Each plot is a representative of the other plots concerning the same schema,
with the trends following quite similar behavior. In all cases, transitive dependence
gives a quite successful prediction, with around 80% accuracy. It is noteworthy that in
the case of the 20% of failures, though, the metric identifies a query as highly vulner-
able and in practice, the query escapes with few events. Fortunately, the opposite does
not happen, so a query is never underestimated with respect to its vulnerability. En-
tropy is the second best metric and due to its smoothness, although it follows transi-
tive dependence’s behavior, it misses the large errors of transitive dependence,
although it also misses the scaling of events, for the same reason.

452 G. Papastefanatos et al.

Total no. affected query nodes

0

50

100

150

200

250

300

350

400

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views
 Web Sales Star

Total no. affected nodes

0

100

200

300

400

500

600

700

800

900

1000

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views
 Web Sales Star

Fig. 6. Comparison of WS, WS-views, WS-star design configurations for distribution 1: (a) only
affected queries and (b) all affected nodes

Total no. affected query nodes

0

20

40

60

80

100

120

140

160

180

200

Block Propagate Mixture

 Web Sales
 Web Sales w/ Views

Total no. affected nodes

0

100

200

300

400

500

600

700

Block Propagate Mixture

 Web Sales
Web Sales w/ Views

Fig. 7. Comparison of WS, WS-views design configurations for distribution 2: (a) only affected
queries; (b) all affected nodes

Queries are quite dependent on the policy and schema: views seem to block the
propagation of events to the queries. Fig. 5(b) shows a significant drop for the values
of affected queries when the policy is a mixture of propagation and blocking policies.
The propagate-all policy depicted in Fig. 5(a) presents the flooding of the events,
which involves more than double the number of occurrences as compared to the num-
bers of Fig. 5(b) for 80% of the cases. A block-all policy involved only 3 of the 10
queries and it is not depicted for lack of space). Interestingly, the transitive degree has
a success ratio of 80%, as opposed to the rather unsuccessful out-degree.

5.2 Comparison of Alternative Design Configurations

We compared the three alternative design configurations of our system in order to
come up with an estimation of the number of rewritings that need to be done by the
administrators and the application developers, and to assess the effect that a different
schema configuration has on the system. Thus, we measured the number of affected
nodes and specifically, the number of affected query nodes for the nine different con-
figurations of policy sets and schemata. The first distribution of events was applied to
all schemas, whereas the second was applied only to WS and WS-views.

Fig. 6 describes the effect that a design alternative has on how affected system con-
structs are in the case of evolution. A star schema has less maintenance effort than the
other variants due to its reduced size. Clearly, the presence of views augments the

 Design Metrics for Data Warehouse Evolution 453

effort needed by the administration team to maintain them (shown in the increased
number of affected nodes of Fig. 6b), which is because nodes belonging to views are
extensively affected. Still, the interference of views between the warehouse and the
queries serves as a “shield” for absorbing schema changes and not propagating them
to queries. The drop in query maintenance due to the presence of views is impressive:
whatever we pay in administration effort, we gain in development effort, since the cost
of rewritings in terms of human effort mainly burdens application developers, who are
obliged to adapt affected queries to occurred schema changes. The case of schema
migration strengthens this observation (Fig. 7). As for the different policy sets, we
observe that blocking of events decreases the number of affected nodes in all configu-
rations and saves significant human effort. It is, however, too conservative, con-
straining even the necessary readjustments that must be actually made on queries and
views. On the other hand, propagate and mixture policy sets have an additional over-
head, which is balanced by the automatic readjustments that are held on the system.

6 Conclusions

In this paper, we have proposed a set of metrics for the evaluation of the vulnerability
warehouse modules to future changes and for the assessment of the quality of alterna-
tive designs of the warehouse. We have learned that out-degrees help as predictors for
the fact and the dimension tables of the warehouse; the strength of out-degree
(strength-out) and total strength are very good predictors for the evolution of views;
the transitive dependence and entropy are good predictors for the vulnerability of
queries. As far as warehouse design is concerned, we have an elegant theory to char-
acterize the trade-offs between administration and development costs that result from
the choice of adding views or “starifying” the schema of a warehouse.

Further experimentation and novel metrics along with theoretical validation of the
proposed ones are clear topics for future work.

References

1. Allen, E.B.: Measuring Graph Abstractions of Software: An Information-Theory Ap-
proach. In: METRICS (2002)

2. Bellahsene, Z.: Schema evolution in data warehouses. Knowl. and Inf. Syst. 4(2) (2002)
3. Berenguer, G., et al.: A Set of Quality Indicators and their Corresponding Metrics for Con-

ceptual Models of Data Warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005.
LNCS, vol. 3589. Springer, Heidelberg (2005)

4. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional Data-
bases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676. Springer, Hei-
delberg (1999)

5. Fan, H., Poulovassilis, A.: Schema Evolution in Data Warehousing Environments - A
Schema Transformation-Based Approach. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling,
T.-W. (eds.) ER 2004. LNCS, vol. 3288. Springer, Heidelberg (2004)

6. Favre, C., Bentayeb, F., Boussaid, O.: Evolution of Data Warehouses’ Optimization: A
Workload Perspective. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654. Springer, Heidelberg (2007)

454 G. Papastefanatos et al.

7. Golfarelli, M., Lechtenbörger, J., Rizzi, S., Vossen, G.: Schema versioning in data ware-
houses: Enabling cross-version querying via schema augmentation. Data Knowl.
Eng. 59(2), 435–459 (2006)

8. Gupta, A., Mumick, I.S., Rao, J., Ross, K.: Adapting materialized views after redefinitions:
Techniques and a performance study. Information Systems (26) (2001)

9. Levene, M., Loizou, G.: Why is the snowflake schema a good data warehouse design? In-
formation Systems Journal 28(3), 225–240 (2003)

10. Nica, A., Lee, A.J., Rundensteiner, E.A.: The CSV algorithm for view synchronization in
evolvable large-scale information systems. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso,
G. (eds.) EDBT 1998. LNCS, vol. 1377. Springer, Heidelberg (1998)

11. Papastefanatos, G., Anagnostou, F., Vassiliadis, P., Vassiliou, Y.: Hecataeus: A What-If
Analysis Tool for Database Schema Evolution. In: CSMR (2008)

12. Papastefanatos, G., Vassiliadis, P., Simitsis, A., Vassiliou, Y.: What-if Analysis for Data
Warehouse Evolution. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS,
vol. 4654. Springer, Heidelberg (2007)

13. Papastefanatos, G., et al.: Language Extensions for the Automation of Database Schema
Evolution. In: ICEIS (2008)

14. The TPC BENCHMARKTM DS (April 2007),
http://www.tpc.org/tpcds/spec/tpcds1.0.0.d.pdf

15. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activities as graphs. In:
DMDW (2002)

16. Wedemeijer, L.: Defining Metrics for Conceptual Schema Evolution. In: FMLDO (2000)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 455–468, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Domain Engineering Approach for Situational
Method Engineering

Anat Aharoni and Iris Reinhartz-Berger

Department of Management Information Systems,
University of Haifa, Haifa 31905, Israel

anatah@mis.haifa.ac.il, iris@mis.haifa.ac.il

Abstract. Methodologies are one of the most significant key factors to the suc-
cess of project development. Since there is no single methodology that can be
uniquely pointed as “the best", the discipline of situational method engineering
(SME) promotes the idea of creating method components, rather than complete
methodologies, and tailoring them to specific situations at hand. In this paper
we present a holistic approach, called ADOM-SME, for representing method
components and tailoring them into situational methodologies. This approach,
whose roots are in the area of domain engineering (also known as product line
engineering), supports specifying the five main methodological aspects (prod-
ucts, work units, stages, producers, and model units), as well as instantiating
them into endeavour concepts, using a single frame of reference. Furthermore,
the proposed approach enriches the standard metamodel for development meth-
odologies, ISO/IEC 24744, by supporting the creation of valid situational meth-
odologies and guiding their tailoring.

Keywords: Method Engineering, Situational Method Engineering, Meta-
modeling, ISO/IEC 24744, Domain Engineering, Product Line Engineering.

1 Introduction

The need for effective, appropriate, and flexible software development processes has
increased as the complexity and variety of computer-based systems rose. Further-
more, the need to make method engineering more adaptable and flexible, taking into
consideration organizational, technical, and human-related constraints and require-
ments, became important. The situational method engineering (SME) discipline [11,
15, 23] promotes the idea of creating method components rather than complete meth-
odologies and tailoring them to specific situations at hand. Recently, efforts have been
made for standardizing the area of (situational) method engineering, yielding the
OPEN Process Framework (OPF) [21, 32], OMG's Software Process Engineering
Metamodel (SPEM) [18], and ISO/IEC 24744 [5, 13]. ISO/IEC 24744, which is the
most recent work and incorporates experience from earlier SME approaches, defines a
metamodel for development methodologies. This standard refers to both methodolo-
gies and their instances (in the form of endeavours), as well as to five aspects of the
modeled method components or methodologies: work units (the process aspect), work
products (the artifact aspect), producers (the people aspect), stages (the temporal

456 A. Aharoni and I. Reinhartz-Berger

aspect), and model units (the language aspect). All these aspects are described and
specified using an object-oriented terminology, concentrating on the methodology
structural aspects and paying less attention to the behavioral aspects. A designated
graphical notation for ISO/IEC 24744 was proposed in [7]. This notation covers all
concepts described by ISO/IEC 24744, but does not support the endeavour activities.

This paper introduces an approach for representing methodologies and method
components that also supports the integration and tailoring of method components
into complete methodologies that best suit specific situations. This approach does not
violate ISO/IEC 24744, but rather enriches it in order to support the creation of valid
situational methodologies and guide their tailoring. It adapts a domain engineering
approach, called Application-based DOmain Modeling (ADOM) [25, 30], to the spe-
cial needs of the SME field. ADOM-SME is based on a three layered framework:
application, domain, and language. The application layer includes the SME meta-
model, which is a variation of that presented in ISO/IEC 24744. The domain layer
includes the different method components and the developed situational methodolo-
gies. Finally, the language layer includes any modeling language that can be used for
both describing metamodels and method component models. We chose to use Object-
Process Methodology (OPM) [3] as the underlying language in this paper due to its
balance treatment of structure and behavior specification, its formality (expressed
through a metamodel [24]), and its accessibility to different types of users. OPM
combines ideas from object-oriented and process-oriented approaches into a single
frame of reference, enabling expression of mutual relationships and effects between
objects and processes. Thus, ADOM-SME enables specifying in a single model work
units, work products, producers, stages, and model units, as well as the structural and
procedural relationships among them.

The rest of the paper is organized as follow. Section 2 reviews recent works in the
area of situational method engineering. Section 3 briefly describes ADOM and OPM,
while Section 4 introduces and exemplifies the ADOM-SME approach and explains
how it supports the different SME activities. Finally, Section 5 concludes and refers to
future research plans.

2 Literature Review

Situational Method Engineering (SME) [15, 23] deals with customizing and tailoring
methodologies to specific situations. For this purpose, SME approaches treat method-
ologies as composed of method components, which are stored along with their usage
features in method bases. Method engineers are responsible for searching, retrieving,
and tailoring method components from those method bases according to the situations
that they are facing. A situation in this context can be defined as a vector of characteris-
tics that relate to the organization, the project, the developing team, the customer, etc.

Two main aspects of method components and methodologies are structural (product-
related) and behavioral (process-related). Most of the current software development
methodologies and a significant part of SME approaches focus on just a single aspect.
The software process improvement community, centered on standards such as SPICE
[12] and CMM [29], believes that these aspects are not completely separated and the
quality of software products, for example, can be improved by improving the quality of

 A Domain Engineering Approach for Situational Method Engineering 457

the processes that yield them [12]. Other approaches believe that complex systems can-
not be viewed as predictable processes and, hence, they suggest concentrating on the
products, which are changed less often. Gonzalez-Perez and Henderson-Sellers [6]
further claim that products are more people-oriented and better at dynamically reorgan-
izing the work to be done.

Recently, more works have recognized the need to model both process and product
aspects of methodologies. Some of them offer connection points for "plugging in" the
complementary components, while others refer to the process and product aspects as
elementary constituents of the approach. OMG's Software Process Engineering
Metamodel (SPEM) [18], for example, is used for describing a concrete software
development process or a family of related software development processes. Process
enactment, i.e., planning and executing projects, is outside the scope of SPEM, al-
though some examples of enactment are included for explanatory purposes. The
OPEN Process Framework (OPF) [21, 32] is a free, public domain, industry-standard
approach for the production of endeavor-specific development methods. It consists of
a repository of reusable method components documented as hierarchical linked Web
pages, including construction and usage guidelines. Its metamodel describes the or-
ganizational structure of the repository and includes six types of method components:
Endeavor, Language, Producer, Stage, Work Product, and Work Unit. However, OPF
mainly concentrates on the methodology layer at the expense of the endeavour layer
and its relationships to the methodology layer. Recently, OPF's metamodel was reor-
ganized to fit ISO/IEC 24744. OOSPICE [19] is an expansion of the Software Process
Improvement and Capability dEtermination (SPICE) approach that covers Compo-
nent-based Development (CBD). OOSPICE refers only to the methodology layer and
focuses on the processes, technology and quality concerns in component-based soft-
ware development, neglecting the specification of structural and product aspects of
methodologies. Its metamodel is directed at supporting the need for methodologies to
be generated at various capability levels [8].

Incorporating experience from different works in the field, ISO/IEC 24744 [5, 13]
defines a metamodel for development methodologies that refers to three modeling
layers: metamodel, methodology, and endeavour. While the methodology layer is
relevant to method engineers and includes models that are constrained and directed by
the chosen metamodel, the endeavour layer is relevant to developers and includes
models that are constrained and directed by the method in use. Instantiation relations
(specified as belonging to the "powertype" class) are defined between these layers,
such that an element in the endeavour (methodology) layer is a "powertype" instance
of an element in the methodology (metamodel) layer. In particular, methodology
elements are specialized into resources, which can be used as they are at the endeav-
our layer, and templates, which need to be instantiated at the endeavour layer. Five
classes of templates and correspondingly five classes of endeavour elements are de-
fined for representing work units, work products, producers, stages, and model units.
All these concepts, including the behavioral ones such as work units and stages, are
expressed via class diagrams (in UML 1.4.2 notation), text tables, and a natural lan-
guage, hurting the (semi-) formality of the methodology procedural aspects represen-
tation. The designated graphical notation for ISO/IEC 24744 that is proposed in [7]
associates for each methodological concept a different symbol. Pre-conditions and
post-conditions of actions are expressed as free textual expressions that are linked to

458 A. Aharoni and I. Reinhartz-Berger

the corresponding action symbols. A methodology may be specified in this notation
via several diagram types: lifecycle diagrams, which represent the overall structure of
a method; enactment, which represent a specific enactment of a method and its rela-
tionship to the method specification; process diagrams, which describe the details of
the processes used in a method; and action diagrams, which describe the usage inter-
actions between tasks and work products. The notation specification does not explic-
itly refer to consistency issues between these types of diagrams. In particular, the
same element can appear in several diagram types, playing different roles and exhibit-
ing various (contradicting) features.

Mirbel [16] divided SME approaches into three categories according to the differ-
ent objectives they aim to achieve. The first category focuses on documenting the
methodologies and their components (e.g., [22]). The second category deals with
retrieving method components and evaluating their similitude (e.g., [2]). The focus of
the third category is defining guidelines for reusing, tailoring, and customizing the
different method components in daily developer tasks (e.g., [14]). Most SME ap-
proaches focus just on one activity, hence, belonging to a single SME category. OPF
and SPEM, for example, mainly focus on the representation of method components.
ISO/IEC 24744 also concentrates on the representation of method components, but
provides implicit mechanisms for retrieving method components and basically tailor-
ing them (e.g., the classes element kind, conglomerate, reference, and source).

To summarize, the main shortcomings of existing SME approaches are: (1) sup-
porting mainly the methodology layer, partially neglecting the endeavour layer which
is needed for the developers who use situational methodologies, (2) using an object-
oriented modeling language, specifying procedural aspects structurally, (3) applying
multi-view approaches, potentially rising consistency problems, and (4) concentrating
on just a single SME activity, making other activities more difficult and decreasing
the ability for smooth transition between the different SME activities. The purpose of
this paper is to present a holistic approach which overcomes these shortcomings with-
out violating the ISO/IEC 24744 standard.

3 ADOM and OPM

The Application-based DOmain Modeling (ADOM) approach [25, 30] aims at han-
dling both reuse and validation of application models according to the domain knowl-
edge. Its framework includes three layers: application, domain, and language. The
application layer consists of models of particular applications, including their struc-
ture and behavior. The intermediate domain layer consists of specifications of various
domains, i.e., families of applications that share common features as well as exhibit
variability. Examples of domains that can be included in the domain layer are web
applications, multi agent systems, and process control systems. The domain specifica-
tions capture the knowledge gained in specific domains in the form of concepts, fea-
tures, and constraints. Finally, the language layer includes meta-models of modeling
languages, such as UML. ADOM is a quite general approach and can be applied to
different modeling languages. However, when applying ADOM to a specific model-
ing language, this language is used in both domain and application layers, easing the
inter-layer tasks by employing the same terminology in both layers.

 A Domain Engineering Approach for Situational Method Engineering 459

In the context of SME, development methodologies and processes can be consid-
ered as a domain. Thus, the application layer, which corresponds to the endeavour
layer in ISO/IEC 24744, includes the different method components and the developed
situational methodologies, while the domain layer, which corresponds to the method-
ology layer in ISO/IEC 24744, includes the SME metamodel.

ADOM's reuse process is mainly done by configuration and specialization, such
that the constraints enforced by the domain layer provide guidance to the reuse
process and the development of models in the application layer. Configuration is the
selection of a subset of existing elements from a domain model for the purpose of
specifying a lawful specific application model. ISO/IEC 24744 refers to this type of
operations through resources, which are methodology elements. Specialization, on the
other hand, is the result of applying general knowledge derived from a domain model
into a specific application model. In [28] five possible specialization operations are
identified: refinement, sub-typing, contextual adoption, omission, and inclusion.
ISO/IEC 24744 refers to this type of operations through templates, which are also
methodology elements that are "powertype" instantiated by endeavour elements. The
ADOM approach also explicitly enforces constraints among the different layers: the
domain layer enforces constraints on the application layer, while the language layer
enforces constraints on both the application and domain layers. Furthermore, as op-
posed to ISO/IEC 24744, the ADOM approach explicitly refers to validation issues
and, in particular, whether an application model is considered as a valid instantiation
of a domain model. More on this issue can be found at [25].

As noted, ADOM can be used with various modeling languages in order to support
different development tasks, such as business modeling, requirement elicitation, and
analysis and design. Indeed, the only requirement of ADOM from the associated
modeling language is to have a classification mechanism that enables categorizing
elements according to other elements (UML stereotypes are an example for such
mechanism). However, ADOM promotes using the same modeling languages, tech-
niques, and methods in both domain and application layers. The reasons for this are:
(1) treating domain models similarly to application models utilizes to the fullest the
expressiveness of the modeling language. In particular, it extends the ability to spec-
ify behavioral constraints or templates with respect to several domain analysis meth-
ods, and (2) using the same terminology in both layers makes the inter-layer tasks
easier. In particular, the creation and validation of application models according to
domain models in ADOM is quite straight-forward, consequently resulting in a more
accessible approach for the developers and a simpler approach for tool developers.

In this work we choose to use Object-Process Methodology (OPM) which supports
the coexistence of structural and behavioral specifications in the same model, in order
to support handling the five main methodological aspects presented by ISO/IEC
24744: product, process, producer, stage, and model unit. OPM [3] is a holistic ap-
proach to the modeling, study, development, and evolution of systems, supported by a
CASE tool called OPCAT [20]. The main elements in OPM are entities and links.
Entities generalize objects, processes, and states. Objects are things that exist, while
processes are things that transform objects by creating or destroying them, or by
changing their states. Two main features of OPM entities are affiliation, which deter-
mines whether the entity is systemic or external (environmental), and essence, which

460 A. Aharoni and I. Reinhartz-Berger

determines whether the entity is physical or informational. Links, which connect entities
(objects, processes, or states), can be structural or procedural. Structural links express
static, structural relations between pairs of objects or processes. Aggregation, generaliza-
tion, characterization, and instantiation are the four fundamental structural relations in
OPM. General structural relations can take on any semantics, which is expressed textu-
ally by their user-defined tags. The behavior of a system is manifested in OPM in three
major ways: (1) processes can transform (generate, consume, or change the state of)
objects, (2) objects can enable processes without being transformed by them, and (3)
objects can trigger events that (at least potentially, if preconditions are met) invoke proc-
esses. For each such way, different procedural links are defined.

The complexity of an OPM model is controlled through three refinement/ abstrac-
tion processes, which enable the user to recursively specify and refine the system
under development to any desired level of detail without losing legibility and com-
prehension of the complete system: in-zooming/out-zooming concentrates on behav-
ioral and procedural refinement/abstraction, unfolding/folding focuses on structural
refinement/abstraction, and state expressing/suppressing shows/hides the possible
states of an object. These mechanisms enable smooth transition between the different
development stages. Furthermore, a set of rules guarantees that the various diagrams
in the same model are consistent with each other (these rules are enforced by OP-
CAT). Soffer et al. [27] proved that OPM is ontologically complete according to the
Bunge-Wand-Weber (BWW) evaluation framework, which aims to be a theoretical
foundation for understanding the modeling of information systems.

In OPM, each entity exhibits two additional features: role and multiplicity indica-
tor. Like UML stereotypes, a role is a model entity whose information content and
form are the same as those of the basic model entity, but its meaning and usage are
different. Roles are used within an application model in order to associate an entity to
its domain counterpart. They are recorded in the upper left corner of the entity frame.

A special kind of role, called tailoring info, may appear in a domain model, indi-
cating the tailoring information of the corresponding elements. As will be explained
in Section 4, the tailoring info should get values in the application model rather than
be specialized or configured and is used for retrieval purposes. As the number of
tailoring info attributes may be very large, separate XML or SGML files can be main-
tained instead (or in addition to) the visual representation of the tailoring info in the
domain models. The exact lists of features that characterize the different types of
method components is derived from works that were done in the area of SME, such as
[16, 17], from practitioners, and from the element kinds in ISO/IEC 24744.

A multiplicity indicator, specified in the domain model, constrains the number of
application elements that can be configured or specialized from the same domain
element in any application in the domain. The multiplicity indicators of OPM entities
(objects, processes, and states) are recorded in the lower right corner of their frame
and is optionally many (0..m) by default, i.e., when not explicitly appear. The multi-
plicity indicators of links are specified closely to the link ends, similarly to cardinal-
ities in application models, and they are mandatory single (1..1) by default, in order to
preserve cardinality conventions from the application layer. Note that while link car-
dinality refers to the number of instantiations of a certain application concept in the
data layer, multiplicity indicators of links refer to the number of instantiations of a
certain domain concept (i.e., type) in the application layer.

 A Domain Engineering Approach for Situational Method Engineering 461

4 ADOM-SME and Its Supported Activities

In this section, we explain how the different SME activities are supported in the
ADOM-SME approach. Section 4.1 refers to the domain (methodology) layer, while
Section 4.2 refers to the creation and representation of method components in the
application (endeavour) layer. Finally, the retrieval and tailoring activities are the
focus of Section 4.3.

4.1 The Methodology Layer in ADOM-SME

Fig. 1 is the top-level diagram in the domain (methodology) layer of ADOM-SME. It
includes the five methodological aspects mentioned in ISO/IEC 24744. However, as
opposed to ISO/IEC 24744 where all these concepts are represented by object classes,
work units and stages are represented in the proposed approach as process classes,
emphasizing their procedural and behavioral nature. Due to the OPM ability to char-
acterize objects by processes and processes by objects, one can specify the behavior
of objects and associate informational features to processes. Furthermore, as opposed
to work products and model units that are systemic (internal) and informational ob-
jects, producers are environmental (external) and physical objects that represent hu-
man stakeholders or groups of such. Similarly to the "actionType" class in ISO/IEC
24744, ADOM-SME has means for expressing the relationships between processes
and products: if a process creates a product than a result link connects them, if a proc-
ess modifies a product than an effect link connects them, and if a process only reads a
product than an instrument link connects them. However, the expressive of ADOM-
SME goes beyond that of ISO/IEC 24744 in representing other relationships between
the different concepts: a process can consume (destroy) a product, a product or a pro-
ducer can trigger a process, and a process (product) can consist of other processes
(products). Pre-conditions and post-conditions are expressed as objects (possibly in
specific states) that are linked via in-coming or out-going links to processes.

Partial Legend:

 informative, systemic object
 physical, environmental object
 process

 state
 generalization link
 characterization link
 aggregation link
 bi-directional structural link
 agent link
 instrument link
 effect link
 consumption/result link

 "or" relaionship

Fig. 1. The top level domain (methodology) model in ADOM-SME

462 A. Aharoni and I. Reinhartz-Berger

Due to space limitations, we concentrate here on the procedural aspects of the
methodology which ADOM-SME uniquely treats, namely work units and stages. A
work unit may be triggered by producers and use model units in order to affect (cre-
ate, destroy, or modify) work products. Unfolding the work unit concept, Fig. 2 shows
three specializations of work units: process, task, and technique. A process is a large-
grained work unit operating within a given area of expertise. Tasks and techniques are
small-grained work units: tasks focus on what must be done in order to achieve given
purposes, and techniques refer to how to achieve these purposes. A process consists of
(sub-) processes or tasks, and a technique may be mandatory, recommended, discour-
age, forbidden, or optional for a certain task [9]. Each work unit may need to save
different types of statuses and periods. This is modeled in the domain (methodology)
layer as two (mandatory many) attributes that a work unit should exhibit. In addition,
work units exhibit four tailoring info attributes: Min Capability Level, which refers to
the minimal requirements for the maturity of the organization regarding the perform-
ance of a given work unit; Unit Source, which indicates the methodologies from
which the work unit is derived, Project Duration, which specifies the duration of
projects to which the given work unit is suitable; and Flexibility to Changes, which
specifies the forgivingness of the given work unit to frequent client changes. For
clarity purposes, the tailoring info attributes are grayed, separating them from "regu-
lar" attributes in the methodology layer.

In ISO/IEC 24744, stages are used for specifying the temporal aspect of method-
ologies and method components. Stages are divided into stages with duration, which
are managed intervals of time within endeavours, and instantaneous stages, which are
managed points in time within endeavours. We extend this usage in order to support
tailoring of several work units into more meaningful method components. In other
words, stages include different work units and guide their execution. Four common
ways to tailor work units are sequentially, concurrently, incrementally, and iteratively.
Fig. 3 exemplifies concurrent stages, in which the work units are executed independ-
ently and/or in parallel, and iterative stages, in which single work units are executed
several times in order to improve the created work products. Both stages are

Fig. 2. Unfolding the work unit concept in the domain (methodology) layer of ADOM-SME

 A Domain Engineering Approach for Situational Method Engineering 463

(a) (b)

Fig. 3. (a) Zooming into a concurrent stage. (b) Zooming into an iterative stage.

specializations of the Stage concept. Note that in OPM the vertical axis within an in-
zoomed process defines the execution order: the sub-processes of a sequential process
are depicted in the in-zoomed frame of the process stacked on top of each other with
the earlier process on top of a later one, while sub-processes of a parallel process
appear side by side, at the same height.

4.2 The Endeavour Layer in ADOM-SME

In the application layer of ADOM-SME, the different (specific) method components
and situational methodologies are specified, using the domain model terminology,
rules, and constraints. For this purpose, each element in an application (endeavour)
model is associated with domain (methodology) elements as its roles, such that an
application element has to fulfill all the constraints induced by its associated roles
(domain elements) in the domain layer. Furthermore, all the tailoring info attributes of
a domain element have to get values (in the form of states) in the corresponding in-
stantiated application elements.

Fig. 4 demonstrates an endeavour method component taken from RUP [26]. All the
roles of systemic, informational objects in these figures are specializations of work
products as specified in the methodology layer. Fig. 4 (a) zooms into the "Require-
ment Extraction" process, modeling its conventions, documents, required participants,
and the main tasks. Fig. 4 (b) unfolds the task called "obtain an understanding of the
domain" to show its recommended and optional techniques. Finally, Fig. 4(c) speci-
fies the situations to which the requirement extraction process is suitable: the organi-
zation capability level is at least 2, the project duration is at least one year, and the
flexibility to changes is low. The unit source of this component is RUP.

4.3 Retrieving and Tailoring Method Components in ADOM-SME

As noted, in the domain layer of ADOM-SME, the different methodological concepts
exhibit tailoring info attributes which are instantiated in the application (endeavour)
layer, specifying the exact situations (or ranges of situations) to which a given method
component suits. The requirement extraction process from Fig. 4, for example, is
suitable for CMMI requirements for Maturity Level of at least 2 [10], for customers
who do not impose changes frequently, and for projects that are planned to be devel-
oped more than one year.

464 A. Aharoni and I. Reinhartz-Berger

(a) (b)

(c)

Fig. 4. (a) The "Requirement Extraction" process in-zoomed. (b) The "Obtain an Understanding
of the Domain" task unfolded, showing its recommended and optional techniques. (c) The
"Requirement Extraction" process unfolded, showing its tailoring info.

For carrying out the retrieval and tailoring activities, we treat the different method
components as semantic Web services. Their inputs, outputs, pre- and post-conditions,
and triggers are automatically translated to OWL-S [1], while the methodology layer
serves as their ontology. Current semantic web services discovery solutions were devel-
oped in the context of automatic service composition. Thus, the “client” of the discovery
procedure is an automated computer program rather than a human, with little tolerance,
if any, to inexact results. However, in our case, method components which might be
semantically distanced from each other can be manually glued by method engineers.
Hence, we chose to use a semantic approach to approximate service retrieval, called
OPOSSUM [31]. OPOSSUM's model relies on a simple and extensible keyword-based
query language, and enables efficient retrieval of approximate results, including ap-
proximate service compositions. In order to retrieve compositions that contain method
components from different methodologies, dependencies between method components
are to be inferred. OPOSSUM treats two types of inferring dependencies between Web
services (method components in our case): flow and empirical. Two method compo-
nents q and p are flow-dependent if the output of q can be used as an input of p. Note

 A Domain Engineering Approach for Situational Method Engineering 465

that the ontology (i.e., the domain model) is used for helping the tool find "correct"
input-output matches. Parameter relaxation, concept hierarchy relaxation, instance re-
laxation, and property relaxation are used for inferring flow dependencies. Empirical
dependencies are used when prior knowledge of relations between Web services exists.
In particular, we can infer empirical dependencies from stages in the method base that
integrate different work units. OPOSSUM handles the following constructs for inferring
empirical dependencies: sequence, if-then-else, repeat-until, split, and split+join.

When working with OPOSSUM, the method engineers define queries that specify
the situations to which methodologies have to be created: the different types of tailor-
ing info attributes are presented to the method engineers and they need to choose the
relevant characteristics and their suitable values. Furthermore, the method engineers
can decide whether the tailoring info will be checked for every method component or
for complete compositions using aggregated functions, such as min, max, sum, avg,
and count. The method base is first searched for method components that satisfy the
component-related tailoring info conditions. Then, OPOSSUM runs on the retrieved

(a)

(b)
Fig. 5. (a) The "Iterative Requirement Extraction" stage. (b) The "Requirement Extraction
while On Site Customer" stage.

466 A. Aharoni and I. Reinhartz-Berger

method components, yielding a ranked list of possible compositions. These composi-
tions are presented to the method engineers as stages that tailor the different work
units. The sequence construct, for example, is represented by the sequential stage, the
split+join construct is represented by the concurrent stage, and the repeat-until con-
struct is represented by the incremental or iterative stages, depending on the resolu-
tion of the work products that it modifies. Fig. 5 exemplifies two tailoring results: in
Fig. 5 (a) the "Requirement Extraction" process is tailored iteratively since this proc-
ess appears so in the context of other methodologies, such as RUP, causing OPOS-
SUM infer an empirical dependency between an iterative stage and the requirement
extraction process. In Fig. 5 (b), the same process is tailored concurrently to the "On
Site Customer" work unit, taken from XP [4]. These components are tailored in paral-
lel due to the absence of matching between their inputs and outputs. Note that the
similar triggers and effects of these work units (e.g., Client and Contract) are perco-
lated to the wrapping stage "Requirement Extraction while On Site Customer", im-
proving the model readability. In both figures, the "signature" of the requirement
extraction process is the same and is achieved by out-zooming Fig 4 (a).

After yielding the ranked list of compositions from OPOSSUM, compositions that
violate the composition-related tailoring info are removed. The method engineer, for
example, may require getting compositions in which the maximal project duration of
their work units is 10 years. Compositions that violate this constraint are removed at
this step.

5 Conclusions and Future Work

As there is no single universally applicable development methodology, the impor-
tance of SME approaches that support representing, retrieving, and tailoring method
components to given situations has been increased. The proposed holistic ADOM-
SME approach, whose roots are in domain engineering, overcomes several main
shortcomings of existing SME approaches. First, ADOM-SME enables specifying
both structural and behavioral aspects of the method components, as well as express-
ing the relationships between them. Second, the tailoring info attributes, defined in the
methodology layer and used in the endeavour layer, support defining situations to
which a specific method component suits, while the stage concept provides ways to
tailor method components. Third, using OPOSSUM, approximate method component
compositions are achieved, enabling the method engineer manually gluing and devel-
oping the missing parts. Finally, the ADOM-SME approach is supported by a case
tool that helps maintaining the diagrams consistent and enables validating the endeav-
our models against the methodology models.

As for the future, we plan to extend the repository of method components with
methodologies from the literature and from the industry. We further plan to improve
and empirically test the tailoring activity. Currently OPOSSUM treats the method
components as close boxes (services) and does not refer to their inner structure and
behavior. Looking into the method components may enable other, more sophisticated
tailoring options. These options and their suitability to different situations will be
questioned with experts and practitioners.

 A Domain Engineering Approach for Situational Method Engineering 467

References

1. Ankolekar, A., Martin, D.L., Zeng, H.J.R., Sycara, K., Burstein, P.M., Lassila, O., Mcil-
raith, S.A., Narayanan, S., Payne: DAML-S: Semantic markup for web services. In: Pro-
ceedings of the International Semantic Web Workshop (SWWS), pp. 411–430 (2001)

2. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly techniques for method engineering.
In: Pernici, B., Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 381–400. Springer,
Heidelberg (1998)

3. Dori, D.: Object-Process Methodology – A Holistic System Paradigm. Springer, Heidel-
berg (2002)

4. Extreme Programming Web Site (2006), http://www.extremeprogramming.org
5. Gonzalez-Perez, C.: Supporting Situational Method Engineering with ISO/IEC 24744 and

the Work Product Pool Approach. In: Proceedings on Situational Method Engineering:
Fundamentals and Experiences, pp. 7–18 (2007)

6. Gonzalez-Perez, C., Henderson-Sellers, B.: A work product pool approach to methodology
specification and enactment. J. Syst. Software (2007), doi:10.1016/j.jss.2007.10.001

7. Gonzalez-Perez, C., Henderson-Sellers, B.: Notation for ISO/IEC 24744,
http://www.sqi.gu.edu.au/sc7-mirror/N3751-N3800/
07N3781%20MOS-006%20ISO_IEC%2024744%20Notation%
20-%20NWI%20Form%20V1.0.pdf

8. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assessable
software development methodologies. Software Qual. J (in press, 2004)

9. Graham, I., Henderson-Sellers, B., Younessi, H.: The OPEN Process Specification. Addi-
son-Wesley, Reading (1997)

10. Grundmann, M.: A CMMI Maturity Level 2 assessment of RUP, http://
www.ibm.com/developerworks/rational/library/dec05/grundmann/

11. Henderson-Sellers, B.: SPI – A Role for Method Engineering. In: Proceedings of the 32nd
EUROMICRO Conference on Software Engineering and Advanced Applications (2006)

12. Humphrey, W.S.: Managing the Software Process. MA.ISO/IEC, 2004. ISO/IEC 15504-1.
Software Process Assessment – Part 1: Concepts and Vocabulary. Addison-Wesley, Read-
ing (1989)

13. ISO/IEC. ISO/IEC 24744, Software Engineering – Metamodel for Development Method-
ologies, 1st edn. (2007)

14. Mirbel, I., de Rivieres, V.: Adapting Analysis and Design to Software Context: the JECKO
Approach. In: Bellahsène, Z., Patel, D., Rolland, C. (eds.) OOIS 2002. LNCS, vol. 2425,
pp. 223–228. Springer, Heidelberg (2002)

15. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering 11(1), 58–78 (2006)

16. Mirbel, I.: Rethinking ISD methods: Fitting project team members profiles. I3S technical
report I3S/RR-2004-13-FR (2004),
http://www.i3s.unice.fr/~mirbel/publis/im-isd-04.pdf

17. Mirbel, I.: Method chunk federation (2006),
http://www.i3s.unice.fr/~mh/RR/2006/RR-06.04-I.MIRBEL.pdf

18. OMG, Software Process Engineering Metamodel Specification, Version 1.1 (2005),
http://www.omg.org/docs/formal/05-01-06.pdf

19. OOSPICE, http://www.oospice.com/
20. OPCAT inc. OPCAT web site, http://www.opcat.com/,

http://www.objectprocess.org/
21. OPEN Process Framework (OPF) Web Site, http://www.opfro.org/

468 A. Aharoni and I. Reinhartz-Berger

22. Punter, H.T., Lemmen, K.: The MEMA-model: towards a new approach for Method Engi-
neering. Information and Software Technology 38(4), 295–305 (1996)

23. Ralyté, J., Deneckere, R., Rolland, C.: Towards a generic model for situational method en-
gineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

24. Reinhartz-Berger, I., Dori, D.: A Reflective Metamodel of Object-Process Methodology:
The System Modeling Building Blocks. In: Green, P., Rosemann, M. (eds.) Business Sys-
tems Analysis with Ontologies, pp. 130–173. Idea Group, Hershey (2005)

25. Reinhartz-Berger, I., Sturm, A.: Enhancing UML Models: A Domain Analysis Approach.
Journal on Database Management (JDM) 19(1), 74–94 (2007); special issue on UML
Topics

26. Schach, S.R.: An Introduction to Object-Oriented Analysis and Design with UML and the
Unified Process. McGraw-Hill/Irwin (2004)

27. Soffer, P., Golany, B., Dori, D., Wand, Y.: Modelling Off-the-Shelf Information Systems
Requirements: An Ontological Approach. Requirements Engineering 6(3), 183–199 (2001)

28. Soffer, P., Reinhartz-Berger, I., Sturm, A.: Facilitating Reuse by Specialization of Refer-
ence Models for Business Process Design. In: The 8th Workshop on Business Process
Modeling, Development, and Support (BPMDS 2007), in conjunction with CAiSE 2007
(2007)

29. Software Engineering Institute, CMMI-SE/SW/IPPD/SS, V1.1, Continuous. CMMI for
Systems Engineering/Software Engineering/Integrated Product and Process Develop-
ment/Supplier Sourcing, Continuous Representation, version 1.1 (2002)

30. Sturm, A., Reinhartz-Berger, I.: Applying the Application-based Domain Modeling Ap-
proach to UML Structural Views. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W.
(eds.) ER 2004. LNCS, vol. 3288, pp. 766–779. Springer, Heidelberg (2004)

31. Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A Semantic Approach to Approximate
Service Retrieval. ACM Transactions on Internet Technology 8(1) (2007), OPOSSUM is
available at: http://dori.technion.ac.il/

32. Zowghi1, D., Firesmith, D.G., Henderson-Sellers, B.: Using the OPEN Process Frame-
work to Produce a Situation-Specific Requirements Engineering Method. In: Proceedings
of SREP 2005, pp. 29–30 (2005)

Retune: Retrieving and Materializing Tuple

Units for Effective Keyword Search over
Relational Databases

Guoliang Li, Jianhua Feng, and Lizhu Zhou

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, P.R. China

{liguoliang,fengjh,dcszlz}@tsinghua.edu.cn

Abstract. The existing approaches of keyword search over relational
databases always identify the relationships between tuples on the fly,
which are rather inefficient as such relational relationships are very rich
in the underlying databases. Alternatively, this paper proposes an alter-
native way by retrieving and materializing tuple units for facilitating the
online processing of keyword search. We first propose a novel concept
of tuple units, which are composed of the relevant tuples connected by
the primary-foreign-key relationships. We then demonstrate how to gen-
erate and materialize the tuple units, and the technique for generating
the tuple units can be done by issuing SQL statements and thus can
be performed directly on the underlying RDBMS without modification
to the database engine. Finally, we examine the techniques of indexing
and ranking to improve the search efficiency and search quality. We have
implemented our method and the experimental results show that our
approach achieves much better search performance, and outperforms the
alternative literatures significantly.

1 Introduction

Keyword search is a proven and widely accepted mechanism for querying in
textual document systems and World Wide Web. The database research com-
munity has recently recognized the benefits of keyword search and has been
introducing keyword search capability into relational databases [4,6,20], XML
databases [7,10,17,18,27,29], graph databases [11,15], and heterogenous data
sources [19,21].

Traditional query processing approaches on relational and XML databases are
constrained by the query constructs imposed by the query languages such as SQL
and XQuery. Firstly, the query languages themselves are hard to comprehend
for non-database users. Secondly, these query languages require the queries to be
posed against the underlying, sometimes complex, database schemas. These tra-
ditional querying methods are powerful but unfriendly to the non-expert users.
Fortunately, keyword search is proposed as an alternative means for querying the
underlying databases, which is simple and yet familiar to most internet users as
it only requires the input of some keywords. Although keyword search has been

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 469–483, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

470 G. Li, J. Feng, and L. Zhou

proven to be effective for textual documents (e.g. HTML documents), the prob-
lem of keyword search on the structured data (e.g. relational databases) and the
semi-structured data (e.g. XML documents) is not straightforward.

The alternative approaches of keyword search over relational databases can
be broadly classified into two categories: those based on candidate networks;
and others based on Steiner trees. The Steiner tree based methods first model
tuples in the relational database as a graph, where nodes are tuples and edges
are primary-foreign-key relationships, and then identify the minimum Steiner
trees to answer keyword queries. The Steiner tree based methods have been
proved to be an NP-hard problem [6]. The candidate network based methods
generate and extend the candidate networks to identify the answers. However,
most of the existing literatures always compute the relevant tuples on the fly
and neglect that the relevant tuples can be identified and materialized off-line.
Alternatively, we generate and materialize the relevant unites off-line so as to
facilitate the online processing of keyword queries.

Based on above observations, in this paper, we emphasize on the efficiency and
effectiveness of keyword search over relational databases by summarizing and in-
dexing tuples in the underlying relational databases. We propose the concept of
tuple units to effectively answer keyword queries. We generate and materialize
the tuple units, which are composed of relevant tuples connected by primary-
foreign-key relationships. We identify the most relevant and meaningful tuple
units to answer keyword queries. Moreover, we examine the techniques of index-
ing and ranking to enhance the search efficiency and search accuracy. To achieve
our goal, we propose Retune, Retrieving and matErializing Tuple UNits for
Effective keyword search over relational databases, to effectively and efficiently
answer keyword queries. To summarize, we make the following contributions:

• We propose the concept of tuple units to efficiently and effectively answer
keyword search over relational databases. We generate and materialize the
tuple units off-line so that we can efficiently identify the most relevant tuple
units to answer keyword search online according to the materialized units.

• We introduce the technique of generating the tuple units by issuing SQL
statements, which can be performed directly on the underlying RDBMS
without modification to the database engine and thus can be easily incorpo-
rated into RDBMS.

• We examine the techniques of indexing and ranking to enhance the search
efficiency and search quality.

• We have implemented Retune in MYSQL and SQL Server. The experimen-
tal results show that Retune achieves better search efficiency and accuracy,
and outperforms state-of-the-art methods significantly.

The remainder of this paper is organized as follows. We review related work in
Section 2. Section 3 presents our proposal Retune. In section 4, we examine the
techniques of indexing and ranking to improve the search efficiency and quality.
Section 5 reports some experimental results. We make a conclusion in Section 6.

Retune: Retrieving and Materializing Tuple Units 471

2 Related Work

The alternative approaches of keyword search over relational databases can
be broadly classified into two categories: those based on candidate networks
[4,12,13]; and others based on Steiner trees [6,8,11,15,23,25]. DISCOVER [13],
BANKS [6] and DBXplorer [4] are systems built on top of relational databases.
DISCOVER and DBXplorer output trees of tuples connected through primary-
foreign-key relationships that contain all the input keywords of a given keyword
query, while BANKS identifies the connected trees, namely, Steiner trees, in a
labeled graph by using an approximation to the Steiner tree problem, which is
proved to be an NP-Complete problem. Hristidis et al [12] studied the problem
of keyword proximity search in terms of disjunctive semantics. Kacholia et al
[15] presented a technique of bidirectional expansion to improve the search effi-
ciency. Liu et al [22] proposed a novel ranking strategy to solve the effectiveness
problem for relational databases, which employs the phrase-based and concept-
based models to improve the search effectiveness. Sayyadian et al [25] introduced
schema mapping into keyword search and proposed a method to answer keyword
search across heterogenous databases. Ding et al [8] employed a technique of dy-
namic programming to improve the search efficiency of identifying the Steiner
trees. He et al [11] proposed a partition based method to improve the search
efficiency by adopting a novel BLINKS index. Guo et al [9] proposed data topol-
ogy search to retrieve meaningful structures from much richer structural data -
biological databases. Markowetz et al [24] studied the problem of keyword search
over relational data streams.

However, the existing methods always compute the relevant tuples on the
fly and neglect that the relevant tuples can be identified and materialized off-
line so as to facilitate the online processing of keyword queries. Although Su
et al [28] proposed a technique of indexing relational databases to improve the
search efficiency, their proposal is orthogonal to our work. Firstly, they modeled
the relational databases as a tree structure by connecting the tables through
primary-foreign-key relationships, joined the relational tables based on the tree
structures, and took the tuples in the joined result as the answers. Alternatively,
we group the relevant joined tuples and identify the most meaningful and rele-
vant tuple units as the answers instead of the scattered tuples. Secondly, they
only consider the document relevance in IR literature to rank answers but ne-
glect the rather rich structural information, which is at least as important as
the textual information, and even more crucial in most of cases. Instead, we pro-
pose a novel ranking method by taking into both the textual information from
the IR point of view and the structural information from the DB viewpoint.
Finally, our techniques of indexing and ranking can be performed directly on
underlying RDBMS without modification to the database engine and thus can
be incorporated into RDBMS.

Our prior work EASE [21] and SAILER [19] studied the problem of
effective keyword search on heterogenous data sources. We presented a novel
technique of progressive ranking for effective keyword search over relational
databases [20].

472 G. Li, J. Feng, and L. Zhou

3 Materializing Tuple Units

The existing methods of keyword search over relational databases usually iden-
tify the relevant tuples connected through primary-foreign-key relationships by
retrieving the Steiner trees or by computing candidate networks on the fly. How-
ever, they are inefficient as it is rather hard to identify the answers on the fly
which capture rather rich structural information. In this paper, we propose an
alternative method to identify and materialize the relevant tuples off-line so as
to facilitate the online processing of keyword queries.

3.1 Notations

This section introduces some notations for ease of presentation. Given a database
D with m relational tables, R1,R2,· · · ,Rm, let Ri

κ−→Rj denote that Ri has a
foreign key κ which refers to the primary key of Rj . Two relational tables Ri

and Rj are connected, denoted as, Ri�Rj , if, i) Ri
κ−→Rj ; or ii) Rj

κ−→Ri; or
iii) ∃Rk, Ri�Rk and Rk�Rj . Without loss of generality, we suppose any
two relational tables are connected in this paper. If some relational tables are
not connected, we decompose the tables into some groups of connected tables
and apply our method on the decomposed groups.

The relational table Ri is called a link relational table if there is no relation
table Rj , such that, Rj

κ−→Ri. That is, Ri only contains foreign keys to connect
other relational tables but does not contain any primary key.

For example, consider the database with three relational databases in Table 1,
we have Write AID−−→Author and Write PID−−→Paper; and Write�Paper. Write is a link
relational table as it has no primary key.

3.2 Tuple Units

Given a database D with m connected relational tables, R1,R2,· · · ,Rm, for each
tuple ti∈Ri, we generate the tuple units composed of the relevant tuples which
have close relationships with ti, i.e., the tuples connecting with ti through the
primary-foreign-key relationships. To formally describe the tuple unit, we intro-
duce a concept as follows.

Definition 1. (Tuple Unit) Given a database D with m connected relational
tables, R1,R2,· · · ,Rm, and a tuple ti∈Ri, the tuple unit w.r.t. ti are composed
of the tuples in ��j �=iRj��Ri, where Ri is the table with only a tuple of ti.

We note that ��j �=iRj��Ri denotes the join results of ti with the other relational
tables (except Ri). ��j �=iRj��Ri can be obtained through iteratively joining the
connected tables with ti as follows. We first find the relational tables which
have primary-foreign-key relationships with Ri, and then join Ri with such
tables to generate an intermediate table, where Ri is a table with only a tuple
of ti. Subsequently, we identify other tables which have primary-foreign key
relationships with the intermediate table and join them together. Iteratively,

Retune: Retrieving and Materializing Tuple Units 473

Table 1. An Example Database
Author Write

AID Name

a1 X. Zhou
a2 X. Lin
a3 J. Yu
a4 L. Guo
a5 J. Shanmugasundaram
a6 F. Shao
a7 V. Hristidis
a8 Y. Papakonstantinou
a9 A. Balmin

AID PID

a1 p1
a2 p1
a2 p2
a3 p2
a4 p3
a4 p4
a5 p3
a6 p4
a7 p5
a7 p6
a8 p5
a9 p6

Paper
PID Title Conf Year

p1 Spark: Top-k keyword query in relational databases SIGMOD 2007
p2 Finding top-k min-cost connected trees in databases ICDE 2007
p3 Topology search over biological databases ICDE 2007
p4 XRank: Ranked keyword search over xml documents SIGMOD 2003
p5 Discover: Keyword search in relational databases VLDB 2002
p6 Keyword proximity search on xml graphs ICDE 2003

Table 2. Tuple Units

(a) Tuple Units on Table Author (b) Tuple Units on Table Paper

Tuple Unit AID Name PID Title · · ·
Ta1 a1 · · · p1 · · · · · ·
Ta2 a2 · · · p1 · · · · · ·

· · · p2 · · · · · ·
Ta3 a3 · · · p2 · · · · · ·
Ta4 a4 · · · p3 · · · · · ·

· · · p4 · · · · · ·
Ta5 a5 · · · p3 · · · · · ·
Ta6 a6 · · · p4 · · · · · ·
Ta7 a7 · · · p5 · · · · · ·

· · · p6 · · · · · ·
Ta8 a8 · · · p5 · · · · · ·
Ta9 a9 · · · p6 · · · · · ·

Tuple Unit PID Title AID Name · · ·
Tp1 p1 · · · a1 · · · · · ·

· · · a2 · · · · · ·
Tp2 p2 · · · a2 · · · · · ·

· · · a3 · · · · · ·
Tp3 p3 · · · a4 · · · · · ·

· · · a5 · · · · · ·
Tp4 p4 · · · a4 · · · · · ·

· · · a6 · · · · · ·
Tp5 p5 · · · a7 · · · · · ·

· · · a8 · · · · · ·
Tp6 p6 · · · a7 · · · · · ·

· · · a9 · · · · · ·

for each tuple ti∈Ri (1≤i≤m), we can identify the tuple unit w.r.t. ti through
navigating and joining the connected tables.

We observe that the tuple unit w.r.t. ti contains the most relevant information
of ti, and each tuple unit represents a meaningful and integral unit and thus can
be adopted to answer keyword queries. To better understand the concept of tuple
units, we give a running example as described in Example 1.

Example 1. Consider the database in Table 1. Given tuple ta2 in Author, to
generate the tuple unit w.r.t. ta2 , we first identify the tables which have primary-
foreign-key relationships with Author, i.e., Write, and join ta2 with Write. We
then iteratively find the table, Paper, which has primary-foreign-key relation-
ships with Write. Finally, we join them together and get the tuple unit w.r.t.
ta2, i.e., Ra2��Write��Paper as illustrated in Table 2. Similarly, we can get all
such tuple units as shown in Table 2. We note that the tuple unit Ta2 w.r.t. ta2

474 G. Li, J. Feng, and L. Zhou

Table 3. Views and Tuple Units

(a) View (b) Group on AID (c) Group on PID

AID PID Name Title · · ·
a1 p1 · · · · · · · · ·
a2 p1 · · · · · · · · ·
a2 p2 · · · · · · · · ·
a3 p2 · · · · · · · · ·
a4 p3 · · · · · · · · ·
a4 p4 · · · · · · · · ·
a5 p3 · · · · · · · · ·
a6 p4 · · · · · · · · ·
a7 p5 · · · · · · · · ·
a7 p6 · · · · · · · · ·
a8 p5 · · · · · · · · ·
a9 p6 · · · · · · · · ·

AID PID Name Title · · ·
a1 p1 · · · · · · · · ·
a2 p1 · · · · · · · · ·

p2 · · · · · · · · ·
a3 p2 · · · · · · · · ·
a4 p3 · · · · · · · · ·

p4 · · · · · · · · ·
a5 p3 · · · · · · · · ·
a6 p4 · · · · · · · · ·
a7 p5 · · · · · · · · ·

p6 · · · · · · · · ·
a8 p5 · · · · · · · · ·
a9 p6 · · · · · · · · ·

AID PID Name Title · · ·
a1 p1 · · · · · · · · ·
a2 · · · · · · · · ·
a2 p2 · · · · · · · · ·
a3 · · · · · · · · ·
a4 p3 · · · · · · · · ·
a5 · · · · · · · · ·
a4 p4 · · · · · · · · ·
a6 · · · · · · · · ·
a7 p5 · · · · · · · · ·
a8 · · · · · · · · ·
a7 p6 · · · · · · · · ·
a9 · · · · · · · · ·

contains the overall information related to Author a2. While the tuple unit Tp1
w.r.t. tp1 contains the overall information with respect to Paper p1.

More importantly, the number of tuple units w.r.t. a tuple ti is no larger than
the number of tuples in the underlying database. We give the upper bound of
the number of tuples in any tuple unit as formalized in Lemmas 1 and 2.

Lemma 1. The number of tuples in the tuple unit w.r.t. ti is no larger than∑
j �=i|Rj |.

Proof. (Sketch) We first prove that, given any two relational tables, Rp and Rq,
such that Rp

κ−→Rq, we have |Rp
κ
��Rq|≤(|Rp|+|Rq|), as for each tuple tp∈Rp,

there is one and only tuple tq∈Rq, tp and tq are connected. Accordingly, it is
easy to figure out that |��j �=iRj��Ri|≤

∑
j �=i|Rj |.

Lemma 2. The total number of tuples in all tuple units is no larger than
m

∑m
i=1|Ri|.

Proof. Based on Lemma 1, the number of tuple units w.r.t. a relation table is
no larger than

∑m
i=1|Ri|. Hence, the total number of tuples in all tuple units is

no larger than m
∑m

i=1|Ri|.

Generally, the number of tuple units is much smaller than the total number of
tuples in the underlying databases, as tuple units group relevant tuples together.
Recall Example 1, we note that the tuple units w.r.t. the tuples in Write can be
omitted, as such tuple units are subsumed by the tuple units w.r.t. the tuples
in Author or Paper. This is because Write only contains the foreign key but
does not contain any primary key. Based on these observations, we only need
to preserve the tuple units w.r.t. the tables that have primary keys, i.e., those
non-link relational tables.

Lemma 3. Given a database D with m connected relational tables, R1,R2,· · · ,
Rm. Consider Ri is a link relational table and Ri

κ−→Rj . Given any tuple ti∈Ri,

Retune: Retrieving and Materializing Tuple Units 475

suppose ti
κ−→tj(tj∈Rj), we have Tti⊆Ttj , where Tti and Ttj respectively represent

the tuple units w.r.t. ti and tj. Tti⊆Ttj denotes that tuples in Tti must be in Ttj .

Proof. As ti
κ−→tj , it is easy to figure out that, for any tuple tk∈Rk(1≤k≤m), if

tk is connected with ti, tk must be connected to tj through primary-foreign-key
κ. Thus, the tuples in Tti must be in Ttj . Hence, Tti⊆Ttj .

Based on above observations, we need not preserve the tuple units for the link
relational tables as they are contained in other tuple units as formalized in
Lemma 3. For example, given the database in Table 1, the tuple units w.r.t.
Write must be contained in those of Author and Paper. Hence, we only preserve
the tuple units w.r.t. Author and Paper as shown in Table 2 and Table 3.

3.3 Views and Tuple Units

As described in above sections, we can identify the tuple units through navigat-
ing and joining the connected relational tables. In this section, we propose an
alternative method to identify the tuple units using views.

We first join all the connected relational tables through the primary-foreign-
key relationships to create a view V1. It is easy to figure out that each tuple
in V represents a meaningful and integral unit. We then group the tuples in V
according to the primary keys in underlying databases, and each group is exactly
a tuple unit. Finally, we materialize the grouped results to preserve the tuple
units for facilitating the online processing of keyword queries.

For example, in Table 1, we can join the three tables to create a view as
shown in Table 3(a). There are two primary keys, AID and PID. We group the
tuples in the view based on AID and PID, and accordingly get the tuple units
as illustrated in Table 3(b) and Table 3(c).

Note that we only need to create views on the top of underlying relational
databases but do not maintain the physical data. For each primary key, we group
the tuples in the view so as to maintain the tuple units w.r.t. the primary key.
More importantly, we note that the database-enabled method has the following
key features,

1. We can use SQL-based methods to create and materialize the tuple units,
which are views on top of the underlying relational databases.

2. The interrelationships between tuples connected by primary-foreign keys are
identified and materialized off-line, and thus Retune can facilitate the online
processing of keyword search over relational databases.

3. The tuple units are more meaningful to answer keyword queries over
relational databases as they capture the meaningful and integral
information.

1 We may also employ left-join or right-join in some cases. For example, given two
relational tables, Ri, Rj , and Ri

κ−→Rj . If there exists a value v in attribute κ of Rj ,
but v is not referred by any value of attribute κ in Ri, we right-join Ri with Rj .

476 G. Li, J. Feng, and L. Zhou

4 Indexing and Ranking

We have presented how to identify and materialize the tuple units in Section 3.
This section proposes a novel technique of indexing and ranking to improve the
search efficiency and search quality.

A straightforward way to score and rank the tuple units is to employ the
TF · IDF -based method. We can model every tuple unit as a document and
take the terms in the tuple units as keywords, and accordingly the technique
of indexing and ranking in IR literature can be borrowed and incorporated to
answer keyword queries over tuple units.

Suppose that we have gotten the total set (denoted as U) of the tuple units
in a given underlying relational database, and there are p distinct tuple units
and q keywords in U . Given a tuple unit u∈U and a keyword ki (1≤i≤q) in
u, we denote tf(ki,u) as the term frequency of ki in u, which is the number of
occurrences of ki in u; we denote idf(ki) as the inverse document frequency of ki,
where idf(ki)= p+1

Oki
+1 and Oki is the number of such tuple units which contain

ki; we denote ntl(u) as the normalized term length, where ntl(u)= |u|
∑

u′∈U |u′|
n

and

|u| denotes the number of terms in u.
In traditional IR literature, the ranking methods usually integrate the three

metrics to score a tuple unit w.r.t. a keyword query K={k1,k2,· · · ,kn}, as illus-
trate in Equations 1 and 2, where s is a constant and usually set to 0.2 [22].

ScoreIR(K, u) =
n∑

k=1

ScoreIR(ki, u) (1)

ScoreIR(ki, u) =
(1 + ln(1 + tf(ki, u))) ∗ ln(idf(ki))

(1 − s) + s ∗ ntl(u)
(2)

However, the TF ·IDF -based method in IR literature may induce ineffective-
ness, as the tuple units capture some structural information, which is rather rich
in relational databases, as opposed to the textual information in text documents.
Moreover, the structural information is at least as important as the textual in-
formation, even much more crucial in most of cases. To address this issue, we
propose a novel ranking method in Section 4.1.

4.1 Structural Relevance Ranking

This section introduces a novel ranking approach, structural relevance ranking,
to score the relevant tuple units so as to effectively answer keyword queries.

Besides the document relevance in IR literature, we should also incorporate
the structural compactness of a tuple unit into the ranking function, which
evaluates the overall compactness of tuple units. Given a tuple unit u and any
two terms in u, tx and ty. We can classify tx and ty into three categories according
to their relationships in the tuple unit as follows.

Retune: Retrieving and Materializing Tuple Units 477

(i) tx and ty are in the same tuple/record and share the same attribute;
(ii) tx and ty are in the same tuple/record but are not in the same attribute;

(iii) tx and ty are in different tuples/records in u.

It is easy to figure out that, tx and ty in category (i) are much more relevant
than those in category (ii), which in turn are more relevant than those in category
(iii). Based on this observation, we set the distance between two keywords ki

and kj in a tuple unit u, denoted as du(tx, ty), as described in Equation 3.

du(tx, ty) =

⎧
⎨

⎩

0 tx and ty in category (i);
1 tx and ty in category (ii);
2 tx and ty in category (iii).

(3)

Accordingly, given a pair of keywords tx and ty in a tuple unit u, we evaluate
their relevance Rel

u(tx, ty) by considering the distance between tx and ty.

Rel
u(tx, ty) =

1
(du(tx, ty) + 1)2

(4)

We note that, given two input keywords ki and kj , there may be multiple
corresponding terms in the tuple unit. We take the sum of all the Rel

u(tx, ty)
as the relevance of ki and kj w.r.t. u, denoted as Score

u
DB(ki, kj), as formalized

in Equation 5, where tx and ty is the occurrences of ki and kj respectively.

Score
u
DB(ki, kj) =

∑

tx∈Occur(ki),ty∈Occur(kj)

Rel
u(tx, ty). (5)

where Occur(ki) denotes the set of occurrences of ki in tuple unit u.
Accordingly, we can compute the structural compactness of a tuple unit u

w.r.t. a keyword query K={k1,k2,· · · ,kn} as follows,

ScoreDB(K, u) =
∑

1≤i<j≤n

Score
u
DB(ki, kj) (6)

We not that the relevance function, i.e., Equation 4, has a key feature that if
tx and ty, and ty and tz are highly relevant, we have tx and tz are also highly
relevant as formalized in Lemma 4. Thus, the relevance function is a good metric
to capture the structural compactness.

Lemma 4. Given three terms in any tuple unit u, tx, ty and tz, we have

Rel
u(tx, tz) ≥ min(Rel

u(tx, ty),Rel
u(ty , tz)). (7)

Proof. Without loss of generality, we suppose Rel
u(tx, ty)≤Rel

u(ty, tz).

If tx and ty are in category (iii), it is obvious that,
Rel

u(tx, tz) ≥ min(Rel
u(tx, ty),Rel

u(ty, tz)),
as Rel

u(tx, tz)≥Rel
u(tx, ty)= 1

(du(tx,ty)+1)2 = 1
9 .

If tx and ty are in category (ii), ty and tz are in category (i) or (ii), as
Rel

u(tx, ty)≤Rel
u(ty, tz), thus tx and tz are in category (i) or (ii). Hence,

478 G. Li, J. Feng, and L. Zhou

Rel
u(tx, tz) ≥ min(Rel

u(tx, ty),Rel
u(ty, tz)).

If tx and ty are in category (i), ty and tz must be in category (i), as Rel
u(tx, ty)

≤Rel
u(ty, tz), thus tx and tz must be in category (i). Hence,

Rel
u(tx, tz) ≥ min(Rel

u(tx, ty),Rel
u(ty, tz)). �

We integrate the two scores, ScoreIR (Equation 1) and ScoreDB (Equation
6), to rank the relevant tuple units as described in Equation 8, which takes
into consideration the document relevance from the IR point of view and also
considers the structural compactness of a tuple unit from the DB perspective.

Score(K, u) = ScoreIR(K, u) + ScoreDB(K, u) (8)

4.2 Indexing

Traditional IR literatures usually employ the inverted lists to index the tuple
units. The entries of inverted lists are keywords and each entry keeps the tuple
units, which contain the keyword, and the corresponding score. The tuple units
w.r.t. entry ki are sorted by ScoreIR(ki,u) in descending order, where u∈{uj|uj

contains keyword ki}.
In addition, to preserve the structural information, we maintain the inverted

lists for any keyword pair. For each keyword pair ki and kj , we preserve the tuple
units, which contain the two keywords and the corresponding score. Similarly,
the tuple units are also sorted by Score

u
DB(ki, kj) in descending order.

Accordingly, given a keyword query K={k1,k2,· · · ,kn}, we first retrieve the
inverted lists of Ii(1≤i≤n), which is composed of the tuple units that contains
keyword ki, and then get the inverted lists of I(i,j)(1≤i<j≤n), which is composed
of the tuple units that contains both ki and kj . Then, we compute the score of
each relevant tuple unit and get the top-k answers by maintaining a heap. The
heap preserves the tuple units with the top-k highest scores. If a new tuple unit u
has a score larger than that of u′ with the minimal score in the heap, we replace
u′ by u; otherwise, we discard u. Iteratively, we can get the top-k answers.

Alternatively, to improve the search efficiency, we employ the database capa-
bility to effectively and progressively compute the top-k answers. We maintain a
relational score table according to the assigned scores so as to facilitate the on-
line processing of keyword queries. The score table preserves the scores, and the
attributes of score table are keywords and keyword pairs, and the tuples/records
are the corresponding scores of each tuple unit.

To answer a keyword queryK={k1, k2, · · · , kn}, we construct a view VK on top
of score table by taking k1, k2, · · · , kn and <k1, k2>,<k1, k3>,· · · ,<kn−1, kn> as
the attributes, and the score of each tuple on them as the tuples/records. Thus,
we can issue a SQL statement to answer query {k1, k2, · · · , kn},

Select top k Unit From VK
Order By sum(k1, k2, · · · , kn,<k1, k2>,<k1, k3>,· · · ,<kn−1, kn>) Desc.

Accordingly, we can employ the capabilities of RDBMS to identify the top-k
answers and seamlessly incorporate our method into RDBMS. We note that there

Retune: Retrieving and Materializing Tuple Units 479

Table 4. Score Table
S

Score Keyword Search Database · · · <Keyword,Search> <Database,Keyword> <Database,Search> · · ·
Tp1 0.49 0.19 0.49 · · · 0 1 0 · · ·
Tp5 0.54 0.54 0.54 · · · 1 1 1 · · ·
Ta4 0.43 0.43 0.17 · · · 1+0.11 0.11 0.11+1 · · ·
· ·

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

65432

E
la

ps
ed

 T
im

e
(m

s)

(a) # of keywords (Top-1)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 0

 500

 1000

 1500

 2000

 2500

 3000

65432

E
la

ps
ed

 T
im

e
(m

s)

(b) # of keywords (Top-10)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 0

 1000

 2000

 3000

 4000

 5000

 6000

65432

E
la

ps
ed

 T
im

e
(m

s)

(c) # of keywords (Top-20)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

Fig. 1. Search Efficiency on DBLP

 0

 200

 400

 600

 800

 1000

 1200

 1400

65432

E
la

ps
ed

 T
im

e
(m

s)

(a) # of keywords (Top-1)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

65432

E
la

ps
ed

 T
im

e
(m

s)

(b) # of keywords (Top-10)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 0

 400

 800

 1200

 1600

 2000

 2400

65432

E
la

ps
ed

 T
im

e
(m

s)

(c) # of keywords (Top-20)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

Fig. 2. Search Efficiency on IMDB

are many studies of answering top-k queries in relational databases [5,14,26].
We can borrow them to return the top-k answers. Moreover, the score table is a
sparse table as there are many zeros, thus we can employ our techniques [30] to
get the top-k answers in the sparse table.

Example 2. Consider the database in Table 1, we construct the score table as
shown in Table 4. To answer keyword query K={Keyword, Search, Database}, we
create the view VK by projecting the six columns from the score table, and then
we can return the top-k query by issuing a SQL statement,

Select top k Unit From VK Order By sum (Keyword, Search, Database,
<Database,Keyword>, <Keyword,Search>, <Database,Search>) Desc.

5 Experimental Study

We have implemented our proposal in real database systems, such as MYSQL
5.0.22 and SQL Server 2005. We reported some obtained experiential results on
MYSQL [3] in this section2. We compared our algorithm with state-of-the-art
algorithms, Bidirectional Expansion approach (abbreviated as BIE) [15], and
BLINKS [11]. We employed the DBLP [1] and IMDB (a movie database) [2]

2 We omitted the experimental results on SQL Server 2005 due to space constraints.

480 G. Li, J. Feng, and L. Zhou

 50

 60

 70

 80

 90

 100

top-20top-15top-10top-5top-1

T
op

-k
 R

el
ev

an
cy

 (
%

)

Top-k

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 50

 60

 70

 80

 90

 100

65432

T
op

-k
 R

el
ev

an
cy

 (
%

)

of keywords (Top-10)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 50

 60

 70

 80

 90

 100

top-20top-15top-10top-5top-1

T
op

-k
 R

el
ev

an
cy

 (
%

)

Top-k

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

 50

 60

 70

 80

 90

 100

65432

T
op

-k
 R

el
ev

an
cy

 (
%

)

of keywords (Top-10)

BIE
BLINKS

Retune (IR)
Retune (DB+IR)

(a) DBLP (b) IMDB

Fig. 3. Search Accuracy

datasets to compare these algorithms. The raw file of DBLP is about 420MB.
IMDB contains about one million anonymous ratings of approximately 3900
movies made by 6040 users. All the experiments were conducted on an Intel(R)
Core(TM)2@2.0GHz computer with 2GB of RAM running Windows XP, and all
the algorithms were implemented in C++.

5.1 Search Efficiency

This section evaluates the search efficiency of various algorithms. We selected one
hundred keyword queries for each dataset and evaluated the selected algorithms
on them. Figure 1 and Figure 2 illustrate the experimental results.

To better understand the performance of our ranking method, we tested our
algorithm with IR ranking method (Retune (IR)) and DB+IR ranking method
(Retune(DB+IR)). We observe that our algorithms achieve better search per-
formance than the existing state-of-the-art methods, which gives us rich confi-
dence that the materialized views can improve the search efficiency as we need
not identify answers on the fly by discovering the relationships between tuples.
Moreover, we employ the database capability to improve the search efficiency.
Although Retune (DB+IR) costs a little longer time than Retune (IR), Re-

tune (DB+IR) archives better search quality than Retune (IR), which will be
described in Section 5.2.

5.2 Search Quality

This section evaluates the quality of a search technique in terms of accuracy
and completeness using standard precision and recall metrics, where the correct
results are the answers returned by the corresponding schema-aware languages
such as SQL. Precision measures search accuracy, indicating the fraction of re-
sults in the approximate answer that are correct, while recall measures com-
pleteness, indicating the fraction of all correct results actually captured in the
approximate answer. To compute precision and recall, we first selected one hun-
dred SQL queries and then transformed them to keyword queries by taking the
terms of SQL queries as keywords. Finally, we took the answers of SQL queries
as the accurate results to compute the precision and recall. As users are usu-
ally interested in the Top-k answers, we employed the metric, Top-k precision

Retune: Retrieving and Materializing Tuple Units 481

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

(a) Recall (DBLP)

BIE
BLINKS

Retune(IR)
Retune(DB+IR)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
10.90.80.70.60.50.40.30.20.10

Pr
ec

is
io

n

(b) Recall (IMDB)

BIE
BLINKS

Retune(IR)
Retune(DB+IR)

Fig. 4. Precision-Recall Graph

to evaluate the usability, which measures the ratio of the number of relevant
answers among the first k answers with highest scores of an algorithm to k.

The obtained experimental results of the average Top-k precision for those
selected queries are illustrated in Figure 3. As expected, Retune (DB+IR)
always achieves more than 90% precision, which is about 10-30% higher than
the existing alternative literatures for various queries and different datasets.
We note that Retune(DB+IR) achieves the best performance. This reflects
the effectiveness of our ranking method by taking into account both structural
compactness from DB viewpoint and textual relevancy from IR perspective.

To further evaluate the ranking mechanism, we compared the overall pre-
cision and recall. Figure 4 shows the precision/recall graph. We observe that
Retune outperforms alternative methods and always achieves higher precision
than state-of-the-art proposals on whatever values of recall. Moreover, the pre-
cision of alternative methods falls sharply with the increase of recall, while that
of Retune varies slightly. This demonstrates the effectiveness of our method.

6 Conclusion

We have studied the problem of effective keyword search over relational
databases by retrieving and materializing tuple units. We proposed the con-
cept of tuple units to answer keyword queries, which contain the most relevant
tuples and thus can be taken as the answers of keyword queries. Tuple units
can be identified and materialized off-line, and thus can improve the search ef-
ficiency significantly. More importantly, we can use the capabilities of RDBMS
to effectively identify the tuple units and our proposed methods can be easily
incorporated into the traditional RDBMS. We also presented a novel ranking
method by taking into consideration the structural compactness of relevant tu-
ple units from database point of view. We have implemented our proposal in real
systems, and the experimental results show that our method achieves the best
performance and outperforms state-of-the-art approaches significantly.

Acknowledgement

This work is partly supported by the National Natural Science Foundation of
China under Grant No.60573094, the National High Technology Development

482 G. Li, J. Feng, and L. Zhou

863 Program of China under Grant No.2007AA01Z152 and 2006AA01A101,
the National Grand Fundamental Research 973 Program of China under Grant
No.2006CB303103, and Basic Research Foundation of Tsinghua National Labo-
ratory for Information Science and Technology (TNList).

References

1. http://dblp.uni-trier.de/xml/
2. http://www.grouplens.org/
3. http://www.mysql.com/
4. Agrawal, S., Chaudhuri, S., Das, G.: Dbxplorer: A system for keyword-based search

over relational databases. In: ICDE, pp. 5–16 (2002)
5. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for topk algo-

rithms. In: VLDB (2007)
6. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword

searching and browsing in databases using banks. In: ICDE, pp. 431–440 (2002)

7. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: Xsearch: A semantic search engine
for xml. In: VLDB, pp. 45–56 (2003)

8. Ding, B., Yu, J.X., Wang, S., et al.: Finding top-k min-cost connected trees in
databases. In: ICDE (2007)

9. Guo, L., Shanmugasundaram, J., Yona, G.: Topology search over biological
databases. In: ICDE (2007)

10. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword
search over XML documents. In: SIGMOD, pp. 16–27 (2003)

11. He, H., Wang, H., Yang, J., Yu, P.: Blinks: Ranked keyword searches on graphs.
In: SIGMOD (2007)

12. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search
over relational databases. In: VLDB, pp. 850–861 (2003)

13. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in relational
databases. In: VLDB, pp. 670–681 (2002)

14. Hua, M., Pei, J., Fu, A.W.C., Lin, X., Leung, H.-F.: Efficiently answering top-k
typicality queries on large databases. In: VLDB (2007)

15. Kacholia, V., Pandit, S., et al.: Bidirectional expansion for keyword search on graph
databases. In: VLDB, pp. 505–516 (2005)

16. Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword
proximity search. In: PODS (2006)

17. Li, G., Feng, J., Wang, J., Zhou, L.: Efficient keyword search for valuable lcas over
XML documents. In: CIKM (2007)

18. Li, G., Feng, J., Wang, J., Zhou, L.: Race: Finding and ranking compact connected
trees for keyword proximity search over xml documents. In: WWW (2008)

19. Li, G., Feng, J., Wang, J., Zhou, L.: Sailer: An effective search engine for unified
retrieval of heterogeneous XML and web documents. In: WWW (2008)

20. Li, G., Feng, J., Zhou, L.: Progressive ranking for efficient keyword search over
relational databases. In: BNCOD (2008)

21. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: An effective 3-in-1 keyword
search methord for unstructured, semi-structured and structured data. In: SIG-
MOD (2008)

22. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational
databases. In: SIGMOD, pp. 563–574 (2006)

http://dblp.uni-trier.de/xml/
http://www.grouplens.org/
http://www.mysql.com/

Retune: Retrieving and Materializing Tuple Units 483

23. Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: Top-k keyword query in relational
databases. In: SIGMOD (2007)

24. Markowetz, A., Yang, Y., Papadias, D.: Keyword search on relational data streams.
In: SIGMOD (2007)

25. Sayyadian, M., LeKhac, H., Doan, A., Gravano, L.: Efficient keyword search across
heterogeneous relational databases. In: ICDE (2007)

26. Schnaitter, K., Spiegel, J., Polyzotis, N.: Depth estimation for ranking query opti-
mization. In: VLDB (2007)

27. Shao, F., Guo, L., Botev, C., Bhaskar, A., Chettiar, M., Yang, F., Shanmugasun-
daram, J.: Efficient keyword search over virtual xml views. In: VLDB (2007)

28. Su, Q., Widom, J.: Indexing relational database content offline for efficient
keyword-based search. In: IDEAS (2005)

29. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in XML
databases. In: SIGMOD, pp. 527–538 (2005)

30. Yu, B., Li, G., Sollins, K., Tung, A.K.H.: Effective keyword-based selection of
relational databases. In: SIGMOD, pp. 139–150 (2007)

Model Driven Specification of Ontology

Translations�

Fernando Silva Parreiras1, Steffen Staab1, Simon Schenk1,
and Andreas Winter2

1 ISWeb — Information Systems and Semantic Web,
Institute for Computer Science, University of Koblenz-Landau

Universitaetsstrasse 1, Koblenz 56070, Germany
{parreiras,staab,sschenk}@uni-koblenz.de

2 Institute for Computer Science, Johannes-Gutenberg-University Mainz
Staudingerweg 9, Mainz 55128, Germany

winter@uni-mainz.de

Abstract. The alignment of different ontologies requires the specifica-
tion, representation and execution of translation rules. The rules need
to integrate translations at the lexical, the syntactic and the semantic
layer requiring semantic reasoning as well as low-level specification of ad-
hoc conversions of data. Existing formalisms for representing translation
rules cannot cover the representation needs of these three layers in one
model. We propose a metamodel-based representation of ontology align-
ments that integrate semantic translations using description logics and
lower level translation specifications into one model of representation for
ontology alignments.

1 Introduction

The reconciliation of data and concepts from different ontologies and data repos-
itories in the Semantic Web requires the discovery, the representation and the
execution of ontology translation rules. Though most research attention is now
devoted to the discovery of alignments between ontologies, a shallow inspection
of ontology alignment challenges already reveals that there does not exist one
easily accessible way of representing such alignments as translation rules [1].

The reason is that alignments must address ontology translation problems at
different layers [2] [1]:

1. At the lexical layer it is necessary to arrange character sets, handling token
transformations.

2. At the syntactic layer it is necessary to shape language statements according
to the appropriate ontology language grammar.

3. At the semantic layer it is necessary to reason over existing ontological
specifications and data in both the source and the target ontologies.

� This work is supported by CAPES Brazil and EU STReP-216691 MOST.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 484–497, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Driven Specification of Ontology Translations 485

For addressing ontology translation problems at the semantic layer, exist-
ing frameworks provide reasoning in one or several logical paradigms, such as
description logics [3] [4] or logic programming [5] [6] [7]. For addressing ontol-
ogy translation problems at lexical and syntactic layers, alignment frameworks
take advantage of platform-specific implementations, sometimes abstracted into
translation patterns [8] [9] or into logical built-ins [7].

Such hybrid approaches, however, easily fail to provide clarity and accessi-
bility to the modelers who need to see and understand translation problems at
semantic, lexical and syntactic layers. Indeed, modelers need to manage different
languages: (1) an ontology translation language to specify translation rules and
(2) a programming language to specify built-ins, when the ontology translation
language does not provide constructs to completely specify a given translation
rule. This intricate and disintegrated manner draws their attention away from
the alignment task proper down into diverging technical details of the translation
model.

Filling the gap in ontology translation domain between ontology mapping
languages and general purpose programming languages helps to improve pro-
ductivity, since modelers will not have to be aware of platform-specific details
and will be able to exchange translation models even when they use different
ontology translation platforms. Moreover, maintenance and traceability would
be facilitated because mapping knowledge is not longer embedded in source code
of programming languages anymore.

We propose an platform independent approach for ontology translation based
on model-driven engineering (MDE) of ontology alignments. The framework in-
cludes a language to specify ontology translations, the Model-Based Ontology
Translation Language (MBOTL). In order to reconcile semantic reasoning with
idiosyncratic lexical and syntactic translations, we integrate these three differ-
ent translation problems into a representation based on a joint metamodel. The
joint metamodel comprises, among others, the OWL-DL metamodel and the
OCL metamodel to support specification, representation and execution of ontol-
ogy translations.

The paper is organized as follows: The running example and the requirements
for ontology translation approaches are explained in Section 2. Our solution
is described in Section 3, followed by examples in Section 4. In Section 5 we
discuss the requirements evaluation and in Section 6 we present related work.
The conclusion, Section 7, finishes the paper with an outlook to future work.

2 Running Example and Requirements

We consider two ontologies of bibliographic references from the test library of
the Ontology Alignment Evaluation Initiative (OAEI) [1] to demonstrate the
solution presented in this paper: the reference ontology (#101) and the Karlsruhe
ontology (#303). Canonical mappings covered by examples in this paper and
snippets of the source and target ontologies using the Manchester OWL Syntax
are shown in Fig. 1. Please refer to OAEI for complete ontologies.

486 F. Silva Parreiras et al.

InBook

Publication,
pages xs-2:integer,

Publication

title xs-2:string

Book

Publication,
date xs2:string,
author Person

Person

name xs-2:string,
email xs-2:string

Class:
SubClassOf:

Class:
SubClassOf:

only
only

Class:

Class:

Conference

Event,

Event

location xs-2:string,
date xs-2:string

Class:
SubClassOf:

only

Class:
SubClassOf:

only

SubClassOf:

only
only

SubClassOf:
only
only

Conference

organizer Institution,
location 1 owl:Thing,
name 1 Literal

date
Reference Conference

Date

Date
day gDay,

year gYear

Book
Reference,

date Date,
title 1 Literal
author 1 owl:Thing

Class:
SubClassOf:

only
max

exactly

ObjectProperty:
Domain: or
Range:

Class:
SubClassOf: only

only

Class:
SubClassOf:

only
exactly

exactly

month gMonth,

InBook
Part,

pages 1 owl:Thing,
title 1 Literal

Chapter
Part,

foaf:Person

only

Class:
SubClassOf:

min
exactly

Class:
SubClassOf:

Class:

ObjectProperty:
Domain:

or
Range:

Class:
SubClassOf: only

only

location

Reference Conference
Address

Address
city string,

country string

ObjectProperty:
Domain:
Range:

DataProperty:
Domain:
Range:

DataProperty:
Domain:
Range:

pages
Part

PageRange

endPage
PageRange

nonNegativeInteger

startPage
PageRange

nonNegativeInteger

ObjectProperty:
SubPropertyOf:

ObjectProperty:
Domain:
Range:

Class:
SubClassOf:

only
only

author
humanCreator

humanCreator
Reference

PersonList

PersonList
rdf:List,

rdf:first foaf:Person,
rdf:rest (PersonList or {rdf:nil})

Reference Ontology (#101) Karlsruhe Ontology (#303)

Fig. 1. Ontology mapping challenge for the running example

By examining the mapping between ontology #101 and ontology #303, it
becomes clear that translations are required in order to completely realize the
mapping. Individuals of the classes Chapter and InBook in ontology #101 are
translated into individuals of the class InBook in the ontology #303. Values
of the object property month having a Gregorian month, e.g., ‘‘--01’’, are
translated into the equivalent unabbreviated form, e.g., ‘‘January’’. Values of
the data property pages in ontology #303 can be calculated by subtracting the
value of the data property initialPage from the value of the property endPage
in ontology #101.

We define the translation rules explained above by the following logical rules.
All variables are treated as universally quantified and prefixed with a question
mark. Let builtin: notShortened be a built-in function that returns the unab-
breviated month, builtin: toUpper be a built-in function to capitalize strings,
builtin:− be a subtractor function, s be the namespace prefix of the source on-
tology #101, and t be the namespace prefix of the target ontology #303, the
translation rules can be written as follows:

t: InBook(?x) ∧ t: month(?x, ?m) ∧ t: title(?x, ?n) ∧ t: pages(?x, ?p)←
(s: InBook(?x) ∨ s: Chapter(?x)) ∧ s: month(?x, ?y) ∧

builtin: notShortened(?y, ?m)∧ s: title(?x, ?z) ∧ builtin: toUpper(?z, ?n)∧
s: pages(?x, ?w) ∧ s: startPage(?w, ?a) ∧ s: endPage(?w, ?e) ∧

builtin:−(?e, ?a, ?p).(1)

Model Driven Specification of Ontology Translations 487

The translation rule of authors is not trivial as well. While in ontology #101
the authors are collected by recursively matching the property first of the class
PersonList, in ontology #303 it is a matter of cardinality of the object property
author. Let list:contains be the built-in able to filter a list structure into object
properties, the referred rule can be written as follows:

t: Book(?x) ∧ t: author(?x, ?u) ←
s: Book(?x) ∧ s: author(?x, ?y) ∧ list: contains(?y, ?u). (2)

However, built-ins are black boxes that conceal knowledge about algorithms,
compromising traceability and maintenance. Therefore, an approach able to
specify rules and built-ins without code specifics is required.

From inspecting these examples, we illustrate requirements for a platform in-
dependent ontology translation approach addressing translation problems at the
following ontology translation layers proposed by Corcho and Gómez-Pérez [2]
based on Euzenat [1]: the lexical layer, the syntactic layer, the semantic layer
and the pragmatic layer. Since the pragmatic layer addresses the meaning of
representation in context, it is similar to the semantic layer from the point of
translation decisions. In this paper, we refer to both layers as semantic layer.

1. The lexical layer deals with distinguishing character arrangements, including:
(a) Transformations of element identifiers. They are required when different

principles are applied to name objects, for example, when transforming
the value of the data property title into capital letters (Rule 1).

(b) Transformations of values. They are necessary when source and target
ontologies use different date formats, for example transforming a Grego-
rian month into an unabbreviated form (Rule 1).

2. The syntactic layer covers the anatomy of the ontology elements according
to a defined grammar. The syntactic layer embraces:
(a) Transformations of ontology element definitions. They are needed when

the syntax of source and target ontologies are different, e.g., when trans-
forming from OWL 1.0 RDF syntax1 into OWL 1.0 XML syntax2.

(b) Transformations of datatypes. They involve the conversion of primitive
datatypes, e.g., converting string datatype to date datatype.

3. The semantic layer comprises transformations dealing with the denotation
of concepts. We consider two different aspects:
(a) Inferred knowledge. Reasoning services are applied to deduce new knowl-

edge, for example, inferring properties from class restrictions.
(b) Transformations of concepts. It takes place when translating ontology

elements using the same formalism, e.g, translating a concept from Karl-
sruhe’s OWL ontology for bibliographic references into on or more con-
cepts in the INRIA’s OWL ontology.

1 http://www.w3.org/TR/rdf-syntax-grammar/
2 http://www.w3.org/TR/owl-xmlsyntax/

http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/owl-xmlsyntax/

488 F. Silva Parreiras et al.

The translation problems are classified in non-strict layers, e.g., one rule com-
monly addresses more than one translation problem. For example, in Rule 2,
the built-in toUpper solves a translation problem at the lexical layer, the trans-
lation of months happens at the syntactical layer and is achieved by the built-
in notShortened and, finally, the translation of the union of individuals of the
classes Chapter and InBook in ontology #101 into individuals of the class InBook
in ontology #303 appears at the semantic layer.

An orthogonal classification of ontology translation problems is given by Dou
et al. [6]. From their point of view, ontology translation problems comprise
dataset translation, ontology-extension generation and querying through differ-
ent ontologies. This paper concentrates on dataset translation, i.e., translation
of instances, leaving the model driven engineering of the remaining problems for
future work.

3 A Model Driven Framework for Ontology Translations

The proposed ontology translation approach relies on advances in Model
Driven Engineering (MDE) with support for Description Logic reasoning ser-
vices [10] [11]. We define here the Model-Based Ontology Translation Language
(MBOTL) comprising (1) a textual concrete syntax used to write translation
rules, (2) an integrated metamodel as abstract syntax to represent the trans-
lation rules as models, (3) an extensible model library to provide built-in con-
structs, (4) model transformations yielding translational semantics and (5) a
pilot implementation with model transformations to the target framework im-
plementing ontology translation, in this case SPARQL and Java. Please, refer to
the project web site [12] for complete specifications of these artifacts.

3.1 Concrete Syntax

While visual notations are effective in communicating models, textual notations
are preferable to express more complex structures. The following subsections
present the anatomy of the translations rules, alluding to the requirements pre-
sented in Section 2.

Dealing with Translation Problems at Semantic Layer. In order to ex-
tract information from the source ontology, we need a query language able to
determine which datasets are to be translated. We use OCL expressions to for-
mulate queries. Indeed, OCL has been used in MDE for specifying constraints
and queries that are side effect free operations. As OCL is originally designed to
be used with UML or MOF, we have extended OCL to be used with OWL [11],
i.e., to support reasoning operations.

Ontology translation problems at the semantic layer are treated by querying
individuals of the source ontology using OCL queries and matching target in-
dividuals. Queries are part of the input pattern in a transformation rule, that
has an output pattern as well with variables binding the elements. Variables are

Model Driven Specification of Ontology Translations 489

declared and used as in classical programming. These assumptions have been
used by model transformation languages like OMG MOF Query/View/Trans-
formation (QVT) and the Atlas Transformation Language (ATL) [13]. We base
MBOTL upon the ATL concrete syntax to specify ontology translations because
it is simpler and more intuitive.

The example depicted in Fig. 2 illustrates the concrete syntax. A rule
Conference2Conference is defined for translating individuals of the class
Conference in ontology #101 into individuals of the class Conference in ontol-
ogy #303.

Conference2Conference

s : _101!Conference

t : _303!Conference (
location s.location.city.concat(', ')

.concat(s.location.country),
...

),

rule {

from

to

<-

}

Ontology Element

Property Expression

Matched Rule

Out Pattern

In Pattern

Operation Expression

Variables

1

3

5

7

9

11 Assignment Operator

Fig. 2. Example of a Translation Rule

In OCL, a dot-notation is used to navigate through properties. In the scope
of our extension of OCL, a property can be an OWL data property, an OWL
object property, a predefined operation or a helper. A helper is an user defined
side effect free query operation belonging to a defined class in one of the given
ontologies.

For example, in the expression s.location, s is a reference to an individual
of the class Conference with location resulting in a value of the class Address.
The navigation can also end with an operation evaluation, as depicted in Fig. 2,
where the operation concat is used to concatenate the properties city and
country.

Addressing Translation Problems at Lexical and Syntactic Layers. On-
tology translation problems at lexical and syntactic layers are supported by
means of employing operations or helpers. For example, for the type string,
the operation toUpper() returning an string object with capital letters is avail-
able. Thus, the evaluation of s.title.toUpper() capitalizes the value of the
property title.

The operation toUpper() is an example of predefined operation. The set
of predefined operations is available in the OCL library (M1 layer). These

490 F. Silva Parreiras et al.

operations are applicable to any type in OCL. Additionally, it is possible to
specify ad hoc operations, the so-called helpers.

3.2 Metamodels

The textual concrete syntax for ontology translation specification presented in
the previous section has an integrated metamodel as equivalent abstract syntax.
The integrated metamodel consists of the following metamodels: MOF meta-
model, OCL metamodel, OWL metamodel [14], and part of the ATL meta-
model [13]. As a matter of space, we do not present the complete metamodels in
this paper, but noteworthy fragments. A detailed version is available online [12].

Variable

(from OCL)

InPatternElement

OutPatternElement

PatternElement

OutPattern +elements

OclModelElement

(from OCL)

MatchedRule

OclModel

(from OCL)
0..* +elements0..*

Module

1
+inModels

+outModelsLibrary

Helper
InPattern +elements

OclExpression

(from OCL)

+filter

Unit

1..*

1..*1

10..1

0..1

1

1

*

*

*

Fig. 3. Fragment of the ATL Metamodel

The translation metamodel (Fig. 3) allows for describing translations be-
tween two ontologies by means of a model. A translation is characterized as a
Module relating source ontologies (inModels) and target ontologies (outModels).
A MatchedRule is a specific translation rule that has a pattern for the input
model (inPattern) and a pattern for the output model (outPattern). The
InPattern has one or more elements that are OCL variables (Variable). Vari-
ables are bound to model elements (OclModelElement). The InPattern has an
OclExpression acting as query to refine individuals of the OclModelElement.

Since each expression in OCL has a type, we need a type metamodel (Fig. 4).
The expression evaluation produces a value of type of the expression . The type
TUClass is the particular composition of the OWL class with the MOF class.
This composition allows for applying side effect free operations into individuals
of OWL classes, e.g., reasoning operations.

Figure 4 depicts additionally another part of the integrated metamodel,
namely the package Expressions of the extended OCL metamodel. The class

Model Driven Specification of Ontology Translations 491

Type

InvalidType

TUClass

(from TwoUse)

DataType

(from TwoUse)

CollectionType
PrimitiveType

(from TwoUse)

OclExpression

CallExp

+source

+appliedElement

Property

(from OWL)

PropertyCallExp

+referredProperty

+referringExp

Operation

(from MOF)

OperationCallExp

+referredOperation

+referringExp

VariableExp

Parameter

(from MOF)

Variable
+referredVariable

+referringExp

+representedParameter

+variable

*

0..1

*

*

*

0..1

0..1

Fig. 4. Snippet of the package Type and package Expressions of the OCL metamodel

OclExpression enables MBOTL to define the abstract syntax for OCL expres-
sions. The integration with the OWL metamodel is accomplished by expressions
of type PropertyCallExp. Such expression allows for navigating through OWL
properties, as explained in Sect. 3.1.

The operation call expressions (OperationCallExp) support the declaration
of built-in operations and helpers. An operation call expression evaluates to
the result of a class operation, providing that such operation is side effect free.
This resource is particularly relevant in the scope of ontology translation, i.e., it
enables queries to invoke built-in reasoning operations or helpers.

3.3 Model Libraries

The model libraries define a number of datatypes, class identifiers and operations
that must be included in the implementation of MBOTL. These constructs are
instances of an abstract syntax class. The foundation library exists at the M1
level, where the abstract syntax (metamodel) exists at M2 level. The foundation
library is composed of the XML Schema Datatypes library, the RDF library, the
OWL library and the OCL library.

Examples of M1 objects of the XML Schema datatypes library are the
datatypes gDay, gMonth and gYear, having the M2 class RDFS::RDFSDatatype
as metaclass. In the RDF library, for example, the M1 object nil has the M2
class RDFS::RDFList as metaclass. In the OWL library, interesting M1 objects
are Thing and Nothing, both having the M2 class OWL::OWLClass as meta-
class. These three libraries are based on the foundation library for RDF and
OWL described in the ODM specification [14].

An example of M1 object of the extended OCL library is the construct oclAny.
All types inherit the properties and operations of oclAny, except collection types.

492 F. Silva Parreiras et al.

This invariant allows for attributing predefined operations to classes. The OCL
library is based on the standard OMG OCL library.

3.4 Semantics

The semantics of MBOTL is defined by the semantics of the languages compris-
ing the integrated metamodel (Sect. 3.2).

MBOTL is translated into a target language (SPARQL and Java). Regarding
the target languages, the semantics of SPARQL is described by algebraic se-
mantics whereas the semantics of Java can be defined by providing an Abstract
State Machine [15]. More specifically, the SPARQL basic graph pattern is de-
scribed according to an entailment regime. Indeed, SPARQL-DL [16] provides
an entailment regime for OWL-DL.

3.5 Ontology Translation Process

In order to guide the user from the ontology translation specification until the
running code, the ontology translation process covers the following steps:

1. Specification of Ontology Translation. The ontology translation rules and
helpers are specified by the user using MBOTL.

2. Specification of Model Transformations. In order to have a running im-
plementation of ontology translation, the ontology translation specification
model is transformed into models for a given platform. The model trans-
formation specification mapping the MBOTL model onto platform specific
models must be specified here. Our framework provides model transforma-
tions from MBOTL into SPARQL and Java as target platforms. Notice that
other target platforms like F-Logic (Ontobroker) can be considered.

3. Transformation into Target Platform. Three transformations take place at
this step. Firstly, the ontology translation specification in the concrete syn-
tax (MBOTL file) is injected into a model conforming with the integrated
metamodel, i.e, the ontology translation specification model. The second
transformation is responsible for generating models according to the tar-
get metamodels, e.g., SPARQL and Java metamodels. Thirdly, SPARQL
queries in the SPARQL concrete syntax and Java code are extracted from
the SPARQL and Java MOF-based models.

3.6 Implementation

The implementation comprises (1) the environment to specify ontology transla-
tions and (2) transformations into ontology translation engines in order to realize
ontology translation.

We have an implementation covering the MDE process for parts of MBOTL
and we are currently working towards a comprehensive solution. Our implemen-
tation uses the Generative Modeling Technologies (GMT) project [17] under the
Eclipse Modeling Framework. The Textual Concrete Syntax component (TCS)

Model Driven Specification of Ontology Translations 493

[18] of the Eclipse GMT is used to specify the concrete syntax used to write
dataset translations (1). Furthermore, such component allows for automatically
translating the specification into a model conforming with the proposed inte-
grated metamodel, i.e., the ontology translation specification model.

Taking the ontology translation specification model as source model, we use
the Atlas Transformation Language [13] framework including Textual Concrete
Syntax (TCS) to define model transformations into models for an ontology
translation platform (2). We are currently using SPARQL and Java as target
languages and the Jena framework as ontology translation solution. The Jena
framework includes an API for OWL ontologies and reasoners, as well as a
SPARQL engine.

Elements of the ontology translation specification model concerning transla-
tion problems at the semantic layer are transformed by ATL into SPARQL CON-
STRUCT queries. The SPARQL engine can be extended using custom SPARQL
filter functions — as foreseen as an extension hook in the SPARQL standard, but
alsousing so calledpredicate functions.Predicate functions arenotmatchedagainst
the knowledge base like normal RDF predicates, but evaluated in Java code. Filter
and predicate functions are used to handle translation problems at the lexical and
syntactic layer.These functions aredefined in theontology translation specification
model andhave the Java code automatically generatedby theATL transformation.

The next section illustrates our approach by addressing the translation prob-
lems presented in Section 4, specifying the translation rules and transforming
the ontology translation specification into SPARQL and Java code.

4 Application

This section presents rules integrating translations problems at semantic, syntac-
tic and lexical layers, according the problems presented in Section 2. For further
details and examples please refer to the Technical Report [12].

The classes Chapter and InBook in ontology #101 are translated into the class
InBook in the ontology #303. The translation rule uses a helper to transform a
Gregorian month, e.g., ‘‘--01’’, into its equivalent unabbreviated form, e.g.,
‘‘January’’. This helper is applicable only to the gMonth datatype. Using
MBOTL, we can specify both the rule and the helper — and hence lexical,
syntactical and semantical translations — using an integrated framework. The
helper is shown on top of listing 1.1, followed by the translation rule.

Listing 1.1. Semantic, syntactic and lexical translations with MBOTL

1 he lpe r context 101 ! gMonth
def : notShortened () : String =

Sequence{’January ’ , ’February ’ , ’March’}−>at (
Sequence{’--01’ , ’--02’ , ’--03’}−>indexOf (s e l f . t oS t r i n g ()))

5

r u l e ChapterInBook2Inbook {
from

494 F. Silva Parreiras et al.

s : 101 ! Part (s . owl I s In s tanceOf (Chapter) or
s . owl I s In s tanceOf (Inbook))

10 to
t : 303 ! Inbook (

t i t l e <− s . t i t l e . toUpper () ,
pages <− s . pages . endPage − s . pages . startPage ,
month <− s . date . month . notShortened () ,

15)
}

After we have been able to specify all aspects of the mapping in MBOTL,
it is translated into suitable languages for execution. Our implementation uses
SPARQL queries for semantic mappings and Java code for syntactic translations.

As we can see from the examples, helpers are used for lexical and syntactical
translations and semantic translations.

5 Requirements Evaluation and Discussion

In response to the requirements deduced in Sect. 2, Table 1 shows use cases
according to each requirement and where to find the corresponding examples in
this paper.

Table 1. Satisfying ontology translation requirements

Requirement Use Case Implementation
(Sect. 2)

1.(a) converting to capital letters Listing 1.1, Line 12
1.(b) converting date formats Listing 1.1, Line 14
2.(b) converting gMonth to String Listing 1.1, Line 14

3.(a)(b) Union of Chapter and InBook Listing 1.1, Line 8-9

Translation problems of lexical nature, like converting a string to an upper case
string, are managed by using predefined OCL operations applied to specific types
of objects, in this example a string type. It is also possible to write functions, i.e.,
helpers, to perform ad hoc operations. For example, the helper notShortened
(Listing 1.1) allows for converting date formats, i.e., replacing a value of gMonth
type to the unabbreviated form.

Translation problems inherent in the syntactic layer are handled distinctly.
While datatype conversions are achieved by invoking predefined operations, like
toString() (Listing 1.1), the translation from OWL RDF/XML to OWL XML
can be accomplished by injectors and extractors to serialize the models (not
shown in this paper).

Translation problems at the semantic layer, regarding datasets of ontologies
with different vocabularies but the same formalism is demonstrated by the run-
ning example. In Listing 1.1, the individuals of the class Chapter in ontology

Model Driven Specification of Ontology Translations 495

#101 and the individuals of the class InBook are translated into individuals of
the class InBook in ontology #303.

Limitations. Our approach has some restrictions reflected by the ATL meta-
model, i.e., it is possible to realize only unidirectional translations. A bidirec-
tional translation must be accomplished by two unidirectional translations.

Moreover, at the current state of development, it is not possible to validate
translation models. In other words, it is not possible to test the translation model
without transforming it into the target platform (SPARQL and Java).

6 Related Works

Since a lot of work has been done in the field of ontology alignment, we group
works according to semantic, syntactic and lexical layers.

Among works covering lexical and syntactic translations, Model transforma-
tion languages like OMG QVT and ATL [13] allow for defining how to transform
MOF-based models using declarative and imperative constructs. Nevertheless,
their semantics does not support reasoning over OWL ontologies. Our contribu-
tion extends ATL by integrating with the OWL metamodel and rewriting OCL
semantics to support querying OWL ontologies.

The work of Atzeni et al. [19] is based on a metamodel approach with models
described in terms of the constructs they involve, taken from a given set of
predefined ones. However, the work is in the scope of databases and does not
support reasoning at the semantic layer.

Among works covering semantic reasoning capabilities, C-OWL [3] and the
ontology mapping system proposed by Haase and Motik [4] are formal solu-
tions for ontology mapping with DL expressiveness. The mappings are based on
subsumption relationships of concepts between ontologies. Notwithstanding, the
usage of built-ins to express lexical and syntactic translation problems is not
possible. A metamodeling-based approach of Haase and Motik [4] is provided
by Brockmans et al. [20]. Although the usage of built-ins in mapping rules is
allowed, the latter approach does not provide means do specify built-ins without
recourse to programming languages, whereas MBOTL allows for specifying ad
hoc functions by means of helpers.

Covering lexical, syntactic and semantic translations, MAFRA [8] and
RDFT [9] are frameworks enabling dataset translations. Nonetheless, both are
based on RDF Schema and neither they provide the expressiveness of OWL-DL
nor support reasoning capabilities of DL inference engines.

OntoMorph [5] and the framework proposed by Dou [6] for ontology transla-
tion rely on First Order Logic (FOL) expressiveness to specify translation rules.
Our approach counts on the decidable subset of FOL, i.e., Description Logics
with complete and sound automated reasoning services for addressing semantic
translation problems. Moreover, while the first solution relies on PowerLoom
and the latter on Web-PDDL, we propose a platform independent model-based
translation language, flexible enough to be used with different knowledge repre-
sentation system.

496 F. Silva Parreiras et al.

OntoMap [7] is a mapping solution allowing for visual specification of map-
pings, with a limited number of translation functions. Snoogle [21] is an ontology
translation tool that enables the use of SWRL rules to express translations and
alignments between geospatial ontologies. While in both approaches it is possible
to use custom plug-ins, the user has to write functions using Java and the Jena
framework. In contrast, our approach allows for specifying mapping rules and
functions in a platform independent and integrated way.

Corcho and Gómez-Pérez [22] propose ODEDialect, a set of declarative lan-
guages to specify ontology translations. However, it is platform specific approach
based on Java that exposes users to complexity of programming languages,
whereas MBOTL allows modelers to concentrate on business logics instead.

7 Conclusion

This paper presents a solution for ontology translation specification that aims
at being more expressive than ontology mapping languages and less complex
and fine-grained than programming languages. The solution is comprised of
a concrete syntax, an integration metamodel covering OWL, MOF, OCL and
ATL metamodels and model transformations from MBOTL into SPARQL and
Java. We validate our solution against canonical ontology translation problems
grouped into three layers: lexical, syntactic and semantic.

Future Work. Future areas of investigation involve different ontology translation
problems like query translation and ontology-extension generation. The applica-
tion of the proposed solution in networked environments is of particular interest
for the field of distributed ontologies as well as the integration with the ontology
mapping metamodel. Therefore, we plan to integrate the Eclipse Plug-ins into
the Neon toolkit3.

References

1. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
2. Corcho, Ó., Gómez-Pérez, A.: A layered model for building ontology translation-

systems. Int’l Journal on Semantic Web & Information Systems 1(2), 22–48 (2005)
3. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:

C-OWL: Contextualizing Ontologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

4. Haase, P., Motik, B.: A mapping system for the integration of OWL-DL ontologies.
In: Proc. of IHIS 2005, pp. 9–16. ACM Press, New York (2005)

5. Chalupsky, H.: OntoMorph: A Translation System for Symbolic Knowledge. In:
Proc. of KR 2000, Colorado,USA, pp. 471–482. Morgan Kaufmann, San Francisco
(2000)

6. Dou, D., Macdermot, D., Qi, P.: Ontology translation on the semantic web. LNCS
Journal of Data Semantics 2(3360), 35–57 (2004)

3 http://www.neon-toolkit.org/.

http://www.neon-toolkit.org/

Model Driven Specification of Ontology Translations 497

7. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the
automotive industry. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003)

8. Omelayenko, B.: RDFT: A mapping meta-ontology for business integration. In:
Proc. ofWorkshop on Knowledge Transformation for the Semantic for the Semantic
Web (KTSW 2002) at ECAI 2002, pp. 77–84 (2002)

9. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA - a mapping framework for
distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)

10. Brockmans, S., Colomb, R.M., Kendall, E.F., Wallace, E., Welty, C., Xie, G.T.,
Haase, P.: A model driven approach for building OWL DL and OWL full ontologies.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 187–200. Springer, Hei-
delberg (2006)

11. Silva Parreiras, F., Staab, S., Winter, A.: TwoUse: Integrating UML models and
OWL ontologies. Technical Report 16/2007, Universität Koblenz-Landau (2007),
http://isweb.uni-koblenz.de/Projects/twouse/tr16.2007.pdf

12. Parreiras, F.S., Staab, S., Schenk, S., Winter, A.: MBOTL - A Model-based On-
tology Translation Language (2008),
http://isweb.uni-koblenz.de/Research/MBOTL

13. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844. Springer, Heidelberg (2006)

14. OMG: Ontology Definition Metamodel (October 2006), http://www. omg.org/cgi-
bin/doc?ptc/07-09-09.pdf

15. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

16. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: Proceed-
ings of the OWLED 2007, Innsbruck, Austria, June 2007, vol. 258, CEUR-WS.org
(2007)

17. The Eclipse Foundation: GMT Project (2007), http://www.eclipse.org/gmt/
18. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual

concrete syntaxes in model engineering. In: Proc. of 5th Int. Conf. of Generative
Programming and Component Engineering, GPCE 2006, pp. 249–254. ACM, New
York (2006)

19. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-Independent Schema and Data
Translation. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopou-
los, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 368–385. Springer, Heidelberg (2006)

20. Brockmans, S., Haase, P., Stuckenschmidt, H.: Formalism-Independent Specifica-
tion of Ontology Mappings - A Metamodeling Approach. In: Meersman, R., Tari,
Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 901–908. Springer, Heidelberg (2006)

21. Ressler, J., Dean, M., Benson, E., Dorner, E., Morris, C.: Application of ontology
translation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 830–842. Springer,
Heidelberg (2007)

22. Corcho, O., Gómez-Pérez, A.: ODEDialect: a set of declarative languages for im-
plementing ontology translation systems. In: Int.Workshop on Semantic Intelligent
Middleware for the Web and the Grid at ECAI 2004, Valencia, Spain (2004)

http://isweb.uni-koblenz.de/Projects/twouse/tr16.2007.pdf
http://isweb.uni-koblenz.de/Research/MBOTL
http://www.eclipse.org/gmt/

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 498–511, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Dealing with Usability in Model Transformation
Technologies*

Jose Ignacio Panach1, Sergio España1, Ana M. Moreno2, and Óscar Pastor1

1 Technical University of Valencia
Department of Information Systems and Computation

Camino de Vera s/n, 46022, Valencia, Spain
{jpanach,sergio.espana,opastor}@dsic.upv.es

2 Technical University of Madrid
Computing Science School

28660 Boadilla del Monte, Madrid, Spain
ammoreno@fi.upm.es

Abstract. Nowadays, the concept of Model Transformation Technology (MTT)
is widely accepted in the Software Engineering community. These technologies
have the capability of generating software code (solution space) from a concep-
tual model that specifies the system abstractly (problem space). Most MTTs
disregard interaction modelling (and specifically usability modelling), even
though usability is as important as functionality to produce high-quality soft-
ware. The issue of ensuring usability has been researched from several perspec-
tives. One of these perspectives is based on elaborating the information to be
discussed with the user to gather usability needs and the modifications to be
done in software design to support those needs. We adopt this perspective by
using guidelines to capture usability requirements and architectural usability
patterns. The main contribution of this paper is to propose a strategy to include
existing usability features inside a complete Model Transformation Technology,
from abstract modelling to code generation. In order to reach this goal, new
conceptual primitives have to be defined using as a source the description of the
usability features. The analyst uses these primitives to model the functionality
of the usability features. Once the strategy is defined in general terms, it is ap-
plied to a specific Model Transformation Technology: the OO-Method.

1 Introduction

If we look back on software development history from a global perspective, the ab-
straction level has been continuously rising from the solution space to the problem
space. At the beginning, software systems were built in a low-level, machine-
understandable code. Then, new programming languages got progressively closer to
the developer’s cognitive models and provided a higher abstraction level, with the ob-
jective of improving efficiency and understandability. According to this evolution,

* This work has been developed with the support of MEC under the projects SESAMO

TIN2007-62894. co-financed by FEDER and TIN2005-00176.

 Dealing with Usability in Model Transformation Technologies 499

modern Software Engineering (SE) is interested in providing strategies based on
sound Model Transformation Technologies, where the main idea is to obtain the final
software product by means of a transformation process. Model Transformation Tech-
nology bridges the gap between the models at different abstraction levels. In essence,
Model Transformation Technologies take a model as input and generate another
model as output. Model Transformation Technology is a part of the Model Driven
Development (MDD) approach. MDD is simply the notion that we can construct a
model of a system that we can then transform into the real thing [16]. In many MDD
approaches, the system is modelled by means of a conceptual model. The modelling
language that supports the conceptual model offers a set of conceptual primitives1. A
model compiler is an automated tool that receives the conceptual model and generates
the software system code. This idea is represented by different proposals, such as the
MDA standard [15], the Conceptual-Schema Centric-Development challenge [22],
and the Extreme Non-Programming approach [18]. More importantly, tools have
started to enter the game with industrial solutions (OlivaNOVA [5], AndroMDA [1]).

In this work, within this context of elevating the abstraction level in software de-
velopment, we are interested in the study of a basic aspect for software quality [11]:
usability. ISO 9241-11 [10] defines usability as “the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specific context of use”. Usability benefits have been pointed out by
several authors [3][8]. However, in the SE community, the main focus is generally
placed on data and functional modelling, disregarding usability aspects [3].

Usability is a very wide concept. Human-Computer Interaction literature provides
many different recommendations to improve the usability of a software system. In
[12], authors present three groups of recommendations:

1. Usability recommendations with impact on the user interface (UI). These rec-
ommendations refer to presentation issues with slight modifications of the UI
design (e.g. buttons, pull-down menus, colours, fonts, layout).

2. Usability recommendations with impact on the development process. These can
only be taken into account by modifying the whole development process. For
example, those that intend to reduce the user cognitive load require involving
the user in the software development.

3. Usability recommendations with impact on the architectural design. These in-
volve building certain functionalities into the software to improve user-system
interaction. These set of usability recommendations are referred to as Func-
tional Usability Features (FUFs). Examples of these FUFs are providing can-
cel, undo and feedback facilities. A big amount of rework is needed to include
these features in a software system, unless they are considered from the first
stages of the software development process [12]. User needs related to FUFs can
be gathered by means of requirements elicitation guidelines [14] and the archi-
tectural design that they involve can be described by means of design patterns
(aka architectural usability patterns) [13].

1 In the context of this paper, a conceptual primitive is an element of the modelling language

that allows to abstractly represent some aspect of the system. For instance, in a class diagram,
the class is the main conceptual primitive; furthermore, we also consider conceptual primi-
tives the class attribute and the class service.

500 J.I. Panach et al.

In this paper, we will focus on FUFs. We are interested in studying how to incor-
porate FUFs in Model-Driven Development (MDD) approaches. In order to incorpo-
rate the FUFs, their corresponding usability requirements guidelines and architectural
usability patterns have been studied. As a result, a set of changes to extend the model-
ling language with new conceptual primitives and to modify the model compiler have
been identified.

One of the most remarkable benefits of using an MDD approach to address FUFs is
the ease with which the system usability is improved: whenever a usability defect is
found once the software system has been generated, the developer does not need to
change the architecture of the system nor fix the defect in the source code, as in clas-
sical approaches. In our approach, the defect can be fixed by changing the conceptual
model; that is, using the usability-related conceptual primitives. Then, the model
compiler will generate the software again, now including components that fulfill the
desired usability features. In this way, architectural usability patterns and the func-
tionality that supports the business logic are appropriately intertwined in the code.

This paper takes the OO-Method [23] as an example of Model Transformation
Technology. The OO-Method is an MDA-compliant, object-oriented software pro-
duction method that generates computerised information systems automatically. We
have chosen it because an industrial tool called OlivaNOVA [5] supports the method,
thus allowing us to perform challenging experiments in practice.

The paper is structured as follows. Section 2 reviews the literature on usability mod-
elling. Section 3 explains the MDA paradigm. Section 4 describes our approach to in-
clude usability modelling in a MTT. Section 5 shows a practical application of this
approach to the OO-Method. Finally, section 6 shows the conclusions of this work.

2 Usability Modelling in the Literature

As far as authors know, there is no model transformation-based software development
method that treats features directly in a Usability Model that is independent of the rest
of the models that make up the conceptual model. Normally, methods deal with us-
ability indirectly, via the models that represent the user-system interaction. Some
modelling tools offer a model to represent the interaction that leads to improve par-
ticular usability features. Many modelling techniques and tools follow this trend and
propose the task model as an abstract interaction model from which an abstract inter-
face model is derived. DiaTask [28] derives a dialog graph from a task model. The
dialog graph is composed by views and transitions. Each view is an abstraction of a
single subdialog of the described user interface. A transition is a directed relation be-
tween an element of a view and a view. An interface prototype that reflects the navi-
gational structure is generated from the dialog graph. UI Pilot [26] enables designers
to create the initial specifications for the screens of website, desktop or mobile appli-
cations. UI Pilot is based on the use of wireframes (simple annotated descriptions of
interface elements). Wireframes have proven effective in communicating require-
ments between design and engineering teams. UsiXML [30] is an XML-based inter-
face description language. Their authors propose a task model as a primary interaction
model that is used to derive interface models later. The UsiXML suite of tools allows
interface sketching and generation.

 Dealing with Usability in Model Transformation Technologies 501

Many tools support the Concur Task Tree (CTT) notation [24] for interaction mod-
elling. The UsiXML suite supports CTT models. TERESA (Transformation Environ-
ment for inteRactivE Systems representAtions) [19] is a tool that supports CTT
modelling and generates interfaces for different types of devices. In turn, SUIDT
(Safe User Interface Design Tool) [2] is a tool that automatically generates interfaces
using several interrelated models, some of which are based on the CTT notation. The
above mentioned tools are only focused on interface modelling, disregarding the
modelling of the software system functionality. CTT notation is widely employed in
the Human Computer Interaction community, but it does not support functionality
modelling. We advocate integrating three axes of system descriptions, as the OO-
Method does: system memory, system reaction and user-system interaction.

Another tool that is worth mentioning is VAQUITA [4], which is aimed at web en-
vironments. The tool uses mapping rules to reverse-engineer an HTML page and ob-
tains an interface model. Then, the interface model can be modified in order to
improve usability. However, the holistic perspective of modelling and a precise model
transformation-based, complete software production process is missing.

Finally, there are several UML-based approaches where interaction and functional-
ity modelling have been integrated. This is the case of UMLi [29] and WISDOM [21].
UMLi is a set of user interface modelling primitives that extend UML to provide
greater support for UI design. This way, some usability attributes can be improved.
However, UMLi models are so detailed that the modelling turns out to be very diffi-
cult, thus hampering its industrial application. WISDOM is a software engineering
approach that enriches UML with the necessary stereotypes to allow user-centred de-
velopment. It also has a detailed user interface design. Three of its models are con-
cerned with interaction modelling at different stages: the Interaction Model (analysis),
the Dialog Model and the Presentation Model (both in design). The WISDOM nota-
tion simplifies the application of UML with regard to UMLi. However, neither of the
two methods considers the generation of full functional systems.

3 MDA Environments

In 2001, the Object Management Group proposed an increasingly popular paradigm:
the Model Driven Architecture (MDA) [15]. This de facto standard defines how to
apply Model Driven Development. Three viewpoints were proposed:

1. A Computation Independent Model (CIM) focuses on the environment and the
requirements of the system.

2. A Platform Independent Model (PIM) focuses on the operation of the system,
which stays constant across any possible technological platform.

3. A Platform Specific Model (PSM) aims to provide the platform-dependent
viewpoint with those features that are specific to a platform.

As defined by the Object Management Group, a model transformation is the proc-
ess of converting one model to another model of the same system [15]. Commonly,
the target model is in a lower abstraction level than the source model and, therefore, it
is closer to the final implementation. By means of consecutive transformations, we
end up with an executable model of the system: the Code Model.

502 J.I. Panach et al.

Transformations can be applied manually, with computer assistance, or automati-
cally. Transformation rules have to be unambiguously specified using some language,
regardless of the degree of automation. Again there is a wide choice, ranging from
natural language descriptions to QVT [17] specifications. Among the several model
transformation approaches that can be used, the Metamodel Transformation deserves
our special attention (see Figure 1). The definition of transformation rules is a hard
task but it benefits analysts in many ways:

• Complete support for the software life cycle from requirements to maintenance.
• Reduction of software development costs. Analysts put their main effort in the

analysis stage. Subsequent stages are facilitated by automatically deriving initial
models that are refined by the analysts. This saves time and resources.

• Quality improvement. Code generation reduces the possibility of error.
• The same model can be transformed into code for several programming languages.

Fig. 1. Metamodel Transformation

The advantages of using a model transformation approach have more weight than
the effort required to define transformation rules. For this reason, several Model
Transformation Technologies have recently appeared in order to generate code from
conceptual models [22][6]. We could say that “conventional” SE focuses on system
structure and system behaviour, but it does not do a good job from the interaction
modelling perspective in general, and from the usability point of view in particular.
Some proposals such as [27][6] aim to integrate the usability engineering process with
the SE process. These proposals show that these two perspectives (interaction and SE)
do not often understand the goals and needs of others, pointing at several integration
problems: lack of coordination; lack of provision for change; lack of synchronization
of development schedules; lack of communication among different developer roles;
lack of constraint mapping and dependency checks.

In the next section, we provide a concrete proposal that contributes to solve these
problems and to accomplish the integration of interaction modelling and SE.

4 Projecting Usability to an MDA-Based Method

This section explains a strategy for adapting an MDA-based software development
method in order to address usability. Our proposal is focused on Functional Usability
Features (FUFs) because they have a wide impact on design [12]. At the requirements

 Dealing with Usability in Model Transformation Technologies 503

stage, analysts use requirements guidelines to elicit user needs regarding FUFs [13].
At the design stage, architectural usability patterns help developers to support the
FUFs [14]. All in all, the rationale behind our approach is the following:

• Usability requirements guidelines contribute to define the different configuration
possibilities of a specific usability feature (the details of the user needs). Feature
configuration has to be modelled by means of conceptual primitives. Consequently,
usability requirements guidelines have been studied to define conceptual primitives
that represent FUF configurations.

• Architectural usability patterns offer an abstract design solution to include, in the
system architecture, the components that support the usability feature. This pro-
posal can be used to define the code generation strategy of the MTT.

As Figure 2 shows, we have proposed a four-step strategy to embed these FUFs in
an MDA-based method. The first step is to study how the usability features can im-
prove the usability of the generated systems. To fulfil this goal, we study the usability
requirements guidelines to identify Ways of Use (WoU in Figure 2). The same feature
may have several applications in the system. We define Way of Use as a specific ap-
plication of a FUF in the final interface. We take the Structured Text Entry FUF as an
example. It allows the specification of restrictions on data entry. Three Ways of Use
are defined for this FUF: (1) this FUF can specify the widget type to enter data with a
specific format (checkbox, radiobutton, listbox, etc.); (2) this FUF can define a mask
that specifies the required format of an input text; (3) also, this FUF can define default
values in order to help the user to enter information.

The second step is the definition of one or several usability properties for each
Way of Use. Usability properties are options of the FUF that are used to adapt it to
the user’s requirements related to usability. For example, in the first Way of Use of
the Structured Text Entry FUF, we can define a usability property for selecting the
type of widgets and another one for organizing the widgets on the screen. We con-
sider two types of usability properties:

• Non-configurable usability properties have the same value in all generated sys-
tems. It is unnecessary to configure these properties because they do not offer any
alternative. For example, if commonly accepted usability guidelines determine that
each action should be accompanied by a progress bar to indicate when it will fin-
ish, the analyst’s decision is not involved. This is a non-configurable usability
property of the Progress Feedback FUF.

• Configurable usability properties with different configuration alternatives that
depend on the analyst’s decisions. For example, in the Structured Text Entry FUF,
the analyst decides the type of the widget and its organization on the screen. There-
fore, this FUF has two configurable usability properties.

The third step for including usability features in an MDA environment is to specify
which models (or views) have to be modified in order to support each usability prop-
erty. The conceptual model may be composed of several views. Each view models the
system from one perspective. For instance, in a given MDA-based method, one view
may be used to model persistence and another view to model interaction. Usability
properties are modelled in these views by means of conceptual primitives. Each con

504 J.I. Panach et al.

FU
N

C
TI

O
N

A
L

U
SA

B
IL

IT
Y

FE
A

TU
R

E

W
AY

S
O

F
U

SE

Fig. 2. Strategy to include Functional Usability Features in a MTT

figurable usability property requires the definition of new conceptual primitives. In
other words, the source metamodel of the MDA-based method has to be enriched with
new conceptual primitives. For instance, the configurable usability property of the
Structured Text Entry which represents the type of the widget is represented by means
of a conceptual primitive. This primitive specifies the widget type in the view which
represents the interaction of the system. Non-configurable usability properties do not
need new conceptual primitives because the knowledge to generate code to support
their corresponding functionality can be embedded in the model compiler.

The fourth and last step is to improve the transformation rules of the model com-
piler in order to ensure that it can generate code that supports the functionality of the
usability features, taking the conceptual model as input. For that aim, architectural us-
ability patterns can be helpful. The incorporation of usability features involves adding
new classes and services to the generated code. Both types of properties imply
changes in the model compiler. With regard to configurable properties, new transfor-
mation rules have to be defined to map the new conceptual primitives to programming
language code. With regard to non-configurable properties, the model compiler will
also generate their corresponding code. For instance, the non-configurable property of
the Progress Feedback which states that all actions should have a progress bar implies
including code to calculate the remaining time of the action execution.

We can conclude that the incorporation of usability features concerns the entire
code generation process of an MDA environment. Once the usability features are ad-
dressed, all the code that implements the functionality of these features together with
the business logic can be generated automatically by means of the model compiler.

5 A Practical Application in the OO-Method

This paper applies the Functional Usability Features to the OO-Method. The main ad-
vantage of the OO-Method is that an industrial implementation of the method

 Dealing with Usability in Model Transformation Technologies 505

(OlivaNova [5]) provides a model compiler that generates fully functional systems
from the OO-Method conceptual model. Moreover, the OO-Method conceptual model
is abstract and platform-independent. These characteristics make it the most appropri-
ate MDA environment to illustrate our proposal.

5.1 The OO-Method, an MDA Environment

This section argues that the OO-Method [23] is MDA [15] compliant. Following the
MDA paradigm, the OO-Method is based on the creation of abstract models and the
application of model transformations. The equivalence between the OO-Method and
the MDA models is the following:

• The OO-Method conceptual model corresponds to the MDA Platform Independent
Model. The OO-Method conceptual model is composed of four views:

− The Object Model specifies the system structure in terms of classes of objects and
their relations. It is modelled as an extended UML class diagram.

− The Dynamic Model represents the sequences of events that can occur to a class of
objects and the interaction between object classes.

− The Functional Model specifies how events change object states. The behaviour of
the system is modelled by the Functional and Dynamic Models working together.

− The Interaction Model models the interaction between the system and the user.
This model has two views: the Abstract Interaction Model and the Concrete Inter-
action Model [25]. The Abstract Interaction Model defines the interface without
taking into account concrete aspects of visualization. It represents the interface in-
dependently of the types of interaction and the peculiarities of the platform. The
Concrete Interaction Model specifies details of the interface. It is a user-interface
model that specifies the interface representation in terms of elements that can be
perceived by the end user. The Concrete Interaction Model is not supported yet by
OlivaNOVA because it is currently under research.

• The architectural knowledge embedded in the model compiler corresponds to the
MDA Platform Specific Model.

• The MDA Code Model corresponds to the generated code that supports the system.

5.2 Dealing with Usability in the OO-Method

This section shows an instantiation of the strategy to include FUFs in the OO-Method
Model Transformation Technology. To achieve this goal, it is necessary to adapt the
FUFs to the OO-Method. We explain this adaptation, following the steps defined
above: (1) define the Ways of Use of the FUFs; (2) define the usability properties of
each Way of Use; (3) extend the conceptual model with new conceptual primitives in
order to model configurable usability properties; (4) extend the model compiler to
support the new conceptual primitives and non-configurable usability properties.

For the sake of brevity, this section focuses on the changes implied by a usability
feature called Warning. This feature is used to specify which information needs to be
elicited and specified in order to ask for user confirmation in case the action requested
has irreversible consequences. This FUF contributes to prevent user errors. The re-
quirements guidelines of the FUF elicits the information necessary to identify the
actions where this feature should be applied and how to prevent the user for the

506 J.I. Panach et al.

consequences of those actions (generally by means of a message asking the user to
accept or reject the action execution). The architectural usability pattern proposes to
the developer a set of software components to include such feature in a software de-
sign.

5.2.1 Defining the Ways of Use of the FUF
Studying the requirements guidelines of the Warning FUF we can state that this feature
only has one Way of Use: action warning - to notify the user before executing a poten-
tially erroneous action. Some business rules recommend advising the user before exe-
cuting an erroneous or irreversible action whenever a certain condition is satisfied. For
example, in an invoicing system, the system should advise the user if an invoice with a
total amount greater than 10.000 €€ is going to be emitted; this amount is infrequent, so it
could be an error. This Way of Use is not currently supported by the OO-Method.

5.2.2 Defining the Usability Properties of the Way of Use
After studying the corresponding requirements guideline, the following usability
properties have been defined for the action warning Way of Use: the business service
associated to the warning, the condition, the text to show, and a set of format options
for text visualization (see next step for more detail).

5.2.3 Extending the Conceptual Model with New Conceptual Primitives
All the usability properties of this Way of Use are configurable by the analyst. There-
fore, the OO-Method conceptual model needs to be extended to support these proper-
ties. Two views are affected by the Warning FUF: the Object Model and the Concrete
Interaction Model.

• Object Model: this view is extended with new conceptual primitives to model the
following configurable usability properties:

− The service in which the FUF is applied.
− The condition that should be satisfied to show the warning message.
− The text that will be shown to the user when the condition holds true.
• Concrete Interaction Model: this view needs new conceptual primitives to model

the following configurable usability properties:
− Whether or not the window is obtrusive2.
− The window type: alert, information or error.
− Text font.
− Size.
− Colour.
− Alignment.

In order to facilitate the analyst’s work, these conceptual primitives should have a
default value in case the analyst does not want to configure them. Default values
should be the values that are most frequently used for each conceptual primitive. The
analyst can change these default values to adapt the conceptual primitives to the

2 The term obtrusive is used to define a window that does not allow any other user interaction

until the window is closed. Sometimes this is referred to as ‘modal’.

 Dealing with Usability in Model Transformation Technologies 507

user’s requirements. By default, the Warning feature is implemented by an obtrusive
window of the alert type, with Arial font, size 10, black colour and centred alignment.

The inclusion of these conceptual primitives in the OO-Method implies changes in
OlivaNOVA [5], the industrial tool that implements the OO-Method. Changes related
to the Warning FUF affect the Object Model and the Concrete Interaction Model:

• Object Model. This view should allow specifying which services have an associ-
ated warning message, the condition, and the text for this message. Figure 3 shows
a window prototype3 where the analyst can model these usability properties.

− Define the condition that, if fulfilled, triggers the warning message. The condition
is edited using a wizard and the following elements can participate: (1) class attrib-
utes; (2) arguments of the service or transaction related to the warning message; (3)
user functions defined by the analyst; (4) standard functions that are already in-
cluded in OlivaNOVA to work with basic data types such as boolean, numeric,
string and date types; (5) operators for basic data types.

− Define the warning message that the system shows if the condition holds true.
− Define explanatory commentaries for the developing team.
Concrete Interaction Model. Once the analyst has modelled the functionality of the

Warning FUF in the Object Model, the next step is to model by means of the Concrete
Interaction Model how the warning message is shown to the user. Figure 4 shows a
non-functional prototype with the conceptual primitives used by the analyst to model
the warning visualization. The tree view on the left-hand side shows the services that
have an associated warning message. For each warning message, the analyst can
change the primitives on the right-hand side.

Fig. 3. Prototype to model the Warning usability feature in the Object Model

3 These non-functional prototypes are only meant to illustrate the changes needed in the Oli-

vaNOVA tool to support the Warning FUF.

508 J.I. Panach et al.

Fig. 4. Prototype to model the Warning usability feature in the Concrete Interaction Model

5.2.4 Extending the Model Compiler
Every conceptual primitive that composes the OO-Method conceptual model at the
problem-space level is mapped to a piece of software code that represents it at the so-
lution-space level. The architectural usability pattern can help in this task. The new
conceptual primitives that are included to deal with the usability features should be re-
lated to a set of transformation rules in order to generate code that implements their
functionalities. Although non-configurable properties do not have associated concep-
tual primitives, they need transformation rules too. Both facts imply changes in the
automatic code-generation strategy. In order to abstractly represent these changes, we
have used two types of diagrams (Figure 2): Class Diagram and Sequence Diagram.
Class diagrams are used to represent the (software) classes associated to an architec-
tural usability pattern, the relations among them, and the class methods that will im-
plement the functionality offered by the usability feature. Sequence diagrams are used
to express the sequence of actions that are going to be carried out by the classes that
appear in the class diagram. The functionality of each FUF is represented by a single
class diagram, while each Way of Use is represented by a sequence diagram.

OlivaNOVA can generate applications in C# and Java. We have focused on C#. To
illustrate our approach, we offer the diagrams for the Warning feature (Figures 5 and 6).

Fig. 5. Class diagram for Warning usability feature

 Dealing with Usability in Model Transformation Technologies 509

New (software) classes needed to implement the feature appear with grey back-
ground. Classes with some methods that have been modified to add the usability feature
appear with a background crossed by diagonal lines. Finally, those classes that do not
change appear with white background. These classes are:

• ClassX action. For each class of the Object Model (at the analysis stage), the model
compiler creates a class of this type (at the implementation stage). We have infor-
mally used the letter X to abstractly represent the set of all these classes. This class
checks the condition associated to the warning message.

• FormX. There is a class of this type for each service modelled in the conceptual
model. The class FormX represents the set of all the forms used by the user to exe-
cute services. This class receives a notification from ClassX action when the condi-
tion holds true, and it invokes Alert manager to show the warning to the user.

• Alert manager. This new class is created from scratch to show a window in which
the user can decide whether or not she/he wants to execute the action.

Fig. 6. Sequence diagram for Warning pattern

Figure 6 shows the sequence diagram (which represents the Way of Use of the
Warning feature) whenever the condition to show the message holds true. When a
user wants to execute an action, the Service wrapper class receives the request. This
class launches the request to the ClassX action (which is implemented in the server).
This class is in charge of verifying whether any warning message associated with the
action exists; if so, it checks whether the condition is satisfied. When the condition is
satisfied, the class Alert manager asks the user whether or not she/he wants to execute
the action. If the user decides to execute the action, the class FormX will trigger the
action. These changes in the model compiler make it possible to generate code to sup-
port the functionality of the Warning feature.

510 J.I. Panach et al.

6 Conclusions

This paper discusses a strategy for including usability features with functional impli-
cations in a Model Transformation Technology. Our proposal is based on the use of
already existing Functional Usability Features (FUF) that contain the information
needed to specify and design such features. This method is based on the idea of ab-
stracting the information contained in such usability features in order to include it in a
conceptual model. Thanks to this abstraction, a model compiler can automatically
generate the code for a specific programming language taking as input the conceptual
model. This code supports the functionality of the usability features together with the
functionality of the whole system. This automation reduces the development rework
in case a usability defect is found in the implemented system. Notice how this pro-
posal clearly helps to provide practical support to the existing tendency of addressing
the treatment of usability in the early stages of the software development process.
Therefore, it represents a starting point to improve the integration of usability and SE.

The proposed strategy consists of four steps that have to be taken for each FUF: (1)
to study the FUF usability requirements guideline and to identify Ways of Use: each
Way of Use is a particular application of the feature in a system; (2) to identify usabil-
ity properties in each Way of Use: briefly, each property is an option of the FUF; (3)
to extend the conceptual model with new conceptual primitives to represent configur-
able usability properties abstractly; (4) to change the transformation rules of the
model compiler to support the code generation related to the new primitives and the
non-configurable usability properties, using as input the architectural usability pattern.

This approach has been applied to the OO-Method using the Warning feature. The
OO-Method is chosen as an example of Model Transformation Technology due to the
high level of abstraction of its conceptual model. Taking as input the OO-Method
conceptual model, a model compiler generates fully functional software systems.
Both the OO-Method conceptual model and the model compiler need to be modified
to incorporate the functionality of the usability features. The paper discusses the in-
clusion of the Warning FUF. Moreover, the changes to support such feature in Oli-
vaNOVA (a industrial suite of tools that supports the OO-Method) are detailed.

As future work, this strategy should be applied not only to the Warning but also to
the rest of the Functional Usability Features in order to incorporate them in the OO-
Method. The inclusion of all these usability features should improve the usability of
the systems generated with the OO-Method. To assess this issue, an empirical evalua-
tion will be made. It will consist of usability tests with end users.

References

1. AndroMDA (2008) (Last visit: March 2008), http://www.andromda.org/
2. Baron, M., Romania, G.P.: SUIDT: A task model based GUI-Builder. Task MO-dels and

DIAgrams for user interface design (TAMODIA), 64–71 (2002)
3. Bias, R.G., Mayhew, D.J.: Cost-Justifying Usability. An Update for the Internet Age (2005)
4. Bouillon, L., Vanderdonckt, J., Souchon, N.: Recovering Alternative Presentation Models

of a Web Page with VAQUITA. CADUI 2002, France, pp. 311–322 (2002)
5. CARE Technologies S.A (2008) (Last visit: March 2008), http://www.care-t.com
6. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. In: WWW9, Amsterdam, pp. 137–157 (2000)

 Dealing with Usability in Model Transformation Technologies 511

7. Chrusch, M.: Seven Great Myths of Usability. In: Interactions, pp. 13–16 (2000)
8. Donahue, G.M.: Usability and the Bottom Line. IEEE Softwa. 18(11), 22–30 (2001)
9. Ferré, X., Juristo, N., Moreno, A.: Framework for Integrating Usability Practices into the

Software. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547.
Springer, Heidelberg (2005)

10. ISO 9241-11: Ergonomic Requirements for Office work with Visual Display Ter-minals.
Part 11: Guidance on Usability (1998)

11. ISO/IEC 9126-1 (2001): Software engineering - Product quality - 1: Quality model
12. Juristo, N., Moreno, A.M., Sánchez-Segura, M.: Analysing the Impact of Usability on

Software Design. Journal of System and Software 80(9), 1506–1516 (2007)
13. Juristo, N., Moreno, A.M., Sánchez-Segura, M.: Guideliness for Eliciting Usability Func-

tionalities. IEEE Transactions on Software Engineering 33(11), 744–758 (2007)
14. Juristo, N., Lopez, M., Moreno, A., Sánchez-Segura, M.: Improving Software Us-ability

Through Architectural Patterns. In: ICSE Workshop Bridging the Gaps Between Software
Engineering and Human-Computer Interaction, Portland, USA, pp. 12–19 (2003)

15. MDA Guide V1.0.1 (2008) (Last visit: March 2008),
http://www.omg.org/docs/omg/03-06-01.pdf

16. Mellor, S.J., Clark, A.N., Futagami, T.: Guest Editors’ Introduction: Model-Driven Devel-
opment. IEEE Software 20, 14–18 (2003)

17. MOF QVT (Last visit: March 2008), http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01
18. Morgan, T.: Business Rules and Information Systems-Aligning IT with Business Goals (2002)
19. Mori, G., Paterno, F., Santoro, C.: Design and Development of Multidevice User Inter-

faces through Multiple Logical Descriptions. IEEE Transactions on Software Engineering
20. Nielsen, J.: Return on Investment for Usability. Alertbox (2003),

http://www.useit.com
21. Nunes, N.J.: Wisdom: a software engineering method for small software development

companies. Software 17(5), 113–119 (2000)
22. Olive, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information

Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

23. Pastor, O., Molina, J.: Model-Driven Arquitecture in Practice, Valencia. Springer, Heidel-
berg (2007)

24. Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task Models. In: Diaper, D.,
Stanton, N., Stanton, N.A. (eds.) The Handbook of Task Analysis for Human-Computer Inter-
action, London, United Kingdom, pp. 483–501. Lawrence Erlbaum Associates, Mahwah (2004)

25. Pederiva, I., Vanderdonckt, J., España, S., Panach, I., Pastor, O.: The Beautification Process in
Model-Driven Engineering of User Interfaces. In: Baranauskas, C., Palanque, P., Abascal, J.,
Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4663. Springer, Heidelberg (2007)

26. Puerta, A., Micheletti, M., Mak, A.: The UI pilot: a model-based tool to guide early inter-
face design, San Diego, California, USA, pp. 215–222. ACM Press, New York (2005)

27. Pyla, P., Pérez-Quiñones, M., Arthur, J., Hartson, H.: Towards a Model-Based Framework
for Integrating Usability and Software Engineering Life Cycles. In: INTERACT 2003
(2003), eprint arXiv:cs/0402036

28. Reichart, D., Forbrig, P., Dittmar, A.: Task models as basis for requirements engineering
and software execution. In: Conference on Task models and diagrams, Prague, Czech Re-
public, pp. 51–58. ACM Press, New York (2004)

29. Silva, P.P., Paton, N.W.: User Interface Modeling in UMLi. IEEE Software 20(4), 62–69
(2003)

30. Vanderdonckt, J., Limbourg, Q., et al.: USIXML: a User Interface Description Language
for Specifying Multimodal User Interfaces. In: Proceedings of W3C Workshop on Multi-
modal Interaction WMI 2004, Sophia Antipolis, Greece (2004)

Ontology Coordination: The iCoord Project

Demonstration�

Silvana Castano, Alfio Ferrara, Davide Lorusso, and Stefano Montanelli

Università degli Studi di Milano
DICo - Via Comelico, 39, 20135 Milano - Italy

{castano,ferrara,lorusso,montanelli}@dico.unimi.it

The increasing complexity of knowledge-intensive applications, such as informa-
tion integration, semantic search, semantic web services, collaborative knowl-
edge sharing and exchange, demands more and more for ontology coordination
systems with functionalities for knowledge discovery and acquisition to enable
enhanced ontology design, maintenance, and querying functionalities [1,2].

Goal of the demo is to show iCoord, a comprehensive peer-oriented ontology
coordination system. iCoord provides a suite of complementary and inter-related
components where three coordination services, namely the harvesting engine, the
matching engine, and the assimilation engine, are exploited to support the pro-
cesses of ontology design, ontology alignment, and knowledge discovery and as-
similation (see Figure 1). The knowledge & mapping repository is used for storing
and maintaining over time the knowledge of the peer, also coordinated with out-
side peers through ontology mappings. For knowledge coordination, iCoord pro-
vides a coordination GUI to enforce i) similarity-based search, where both local
and remote data can be accessed by exploiting the knowledge & mapping repos-
itory, ii) ontology alignment, where the discovered mappings with outside peers

Similarity-based
Search

iCoord
Coordination
GUI

Ontology
Alignment

Coordination-
enhanced

Ontology editing Knowledge &
Mapping

Repository

Matching
Engine

Coordination
Services

Harvesting
Engine

Assimilation
Engine

Networked
Contents
Access

Web
Crawling/Search

Semantic
Routing

External
Knowledge

Sources
(Semantic Web,
Web directories,

Specialized
P2P networks)

Fig. 1. Architectural overview of iCoord

� This paper has been partially funded by the BOEMIE Project, FP6-027538, 6th EU
Framework Programme.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 512–513, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ontology Coordination: The iCoord Project Demonstration 513

can be refined/recomputed through the matching engine, and iii) coordination-
enhanced ontology editing, where the expert-user is supported in the process of
visualizing/changing/evolving its own local knowledge by relying on external
knowledge using the harvesting and assimilation engines.

Demonstration organization. We will focus on the iCoord functionalities for
coordination-enhanced ontology design. Starting from a probe query defined by
the expert-user and abstracting a concept skeleton that is missing in the local
peer knowledge, iCoord invokes the harvesting engine to discover those outside
peers that are capable of providing similar knowledge (see Figure 2(A)). Collect-
ing the results of harvesting, we will show how iCoord will support the selection
of the most interesting external contents by using the HMatch ontology matching
engine [3]. Finally, we will show how the local peer knowledge can be interac-
tively enriched through reuse/integration of concept/data retrieved from outside
by relying on the assimilation engine (see Figure 2(B)) 1.

(A) Harvesting (B) Assimilation

Fig. 2. iCoord screenshots: (A) harvesting and (B) assimilation

References

1. Bouquet, P., Serafini, L. (eds.): Proceedings of the ISWC Workshop on Meaning
Coordination and Negotiation (MCN 2004), Hiroshima, Japan (2004)

2. De Baer, P., Kerremans, K., Temmerman, R.: Facilitating Ontology (Re)use by
Means of a Categorization Framework. In: Proc. of the OTM Workshop on Agents,
Web Services and Ontologies Merging (AweSOMe 2006), Montpellier, France (2006)

3. Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications. Journal on Data Semantics V (2006)

1 A prototype version of iCoord is available on-line for this demonstration at the fol-
lowing URL: http://islab.dico.unimi.it/iCoord-demo/.

Designing Similarity Measures for XML

Ismael Sanz, María Pérez, and Rafael Berlanga

Universitat Jaume I de Castelló, Spain
{isanz,maria.perez,berlanga}@uji.es

Abstract. In this demonstration we will show a series of tools that
support a methodology [1] for the design of complex similarity functions
in the context of heterogenous XML systems.

1 Introduction

The existence of highly complex, publicly available XML-based databases has
motivated research into multi-similarity XML applications, which support multi-
ple notions of similarity to tailor queries to users with diverse information needs.
Such applications arise e.g. in the integration and merging of highly heteroge-
neous XML databases, and in systems handling objects with complex structures
such as protein data, music retrieval systems, or shape databases. Until now,
little attention has been paid to the problem of designing suitable similarity
measures for such applications.

[1] introduces a methodology to support the design of similarity functions
for heterogeneous XML-based information systems, based on the following four
steps: (1) Characterize a set of relevant XML collections and queries that de-
scribe the information needs of users. (2) Establish a candidate set of similarity
measures. (3) Evaluate the suitability of the candidate measures. According to
the result of this assessment it may be the case that (i) the measure may need
some adjustment, which implies a change in the measure and the re-evaluation of
the candidate set; or that (ii) deficiencies in the specification of the information
needs are detected, which may cause the candidate set to change completely. (4)
Finally, the final set of measures is obtained, and the indexing requirements are
established and targeted for physical implementation and optimization

2 Outline of the Demonstration

We have implemented a set of tools, the XML Collection Workshop, which uses
techniques that help in each of the steps of the previously sketched methodol-
ogy. We will use two different collections: The ASSAM1 highly heterogeneous
collection, whose documents span several different domains, and a collection of
large, publicly-avaliable XML databases containing Bioinformatics-related data

The demonstration will proceed through the following steps:
1 http://moguntia.ucd.ie/repository/datasets/

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 514–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://moguntia.ucd.ie/repository/datasets/

Designing Similarity Measures for XML 515

(a) Part of a generated model opened for
editing

(b) Correlation between candidate mea-
sures, shown as a heatmap and a corre-
sponding hierarchical clustering

Fig. 1. Screenshots of the XML Collection Workshop

1. Characterization of XML collections. Using the ASSAM collection as a case
study, we will demonstrate how to create a simplified, probabilistic model of
a highly complex XML collection using a probabilistic model described in
[2].

2. Design of test collections and associated queries. We will show how to use a
GUI-based tool, depicted in Figure 1(a), to display the model generated by
the previous step, and edit it interactively to generate an XML test collection
and a a set of queries which are suitable for testing candidate measures.

3. Semi-automatic selection of measures. The selected candidate measures will
include a representative set of features: structural matching, text retrieval ap-
proaches, and Bioinformatics-specific algorithms. Using the Bioinformatics-
based use case, we will show how to select appropriate measures using several
assessment criteria. First, we will use a correlation measure to prune redun-
dant candidates; for example, Figure 1(b) graphically displays a clustering
of a set of candidate measures based on the the Kmin distance [3], after
performing a run of experiments on the collection and queries generated
in the previous step. Then, we will apply standard techniques such as the
F1-measure to study the quality of the remaining candidates.

References

1. Sanz, I., Pérez, M., Berlanga, R.: Measure selection in multi-similarity XML appli-
cations. In: Third International Workshop on Flexible Database and Information
System Technology (FlexDBIST-2008) (2008)

2. Sanz, I., Mesiti, M., Guerrini, G., Berlanga, R.: Fragment-based approximate re-
trieval in highly heterogeneous XML collections. Data & Knowledge Engineer-
ing 64(1), 266–293 (2008)

3. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top-k lists. SIAM Journal on
Discrete Mathematics 17(1), 134–160 (2003)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 516–517, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SESQ: A Model-Driven Method for Building Object
Level Vertical Search Engines

Ling Lin1, Yukai He1, Hang Guo1, Ju Fan1, Lizhu Zhou1, Qi Guo2, and Gang Li2

1 Tsinghua University, Beijing, China
linling03@mails.tsinghua.edu.cn

2 Sohu Research and Development Division, Beijing, China
glassguo@sohu-rd.com

Abstract. In vertical search engine research, many works have been reported.
But most of them focus on its key issues such as crawling, extraction, and query
and few of them give a total solution for building a complete vertical search en-
gine from scratch in a systematic method. To address this issue, we propose a
model-driven method and its supporting tool SESQ. Based on a user defined ER
schema for a target domain, the tool can help to build a complete search engine
by integrating tasks of crawling, extraction, data management and query within
one unified framework.

Keywords: model-driven method, schema, object-level vertical search engine.

1 Introduction

Object-level vertical Search Engine (OVSE for short)[1] is a computer system capable
of finding data of a specific domain from the Web and presenting the data in a struc-
tured format. Many successful systems such as MSN Shopping, Yahoo! Shopping,
Libra, and related techniques for Web crawling[2,3] and data extraction[4-6] have
been reported; however few of them give a total solution for building a complete
vertical search engine from scratch in a systematic method. To address this problem,
we propose a model-driven method for OVSE building and its supporting tool SESQ
system. With limited user input of schema, crawling seeds and extraction rules, SESQ
helps to build an OVSE in an easy and stepwise way [7,8,9].

The whole model-driven method and the supporting role of SESQ depicted in Fig.2
for the building process can be summarized as follows. (1) First, the user defines the
ER model schema of interested domain. (2) Second, using model-aligned data in-
stances and keywords as crawling seeds and extraction patterns, the Searcher harvests
web pages and the Extractor extracts relevant objects and relationships from the Web.
(3) Next, the extracted data are organized in local databases managed by the Storage
Manager and Query Manager. (4) Finally, the interactive user interface for data query
and navigation are customized according to the schema and the OVSE is ready for
use. Fig. 1 shows the interactive GUI of querying book instances acquired from online
book shopping websites. The domain schema is illustrated on the GUI to help the
users understand the data structure and compose a structured query easily.

 SESQ: A Model-Driven Method for Building Object Level Vertical Search Engines 517

2 Demonstration Plan

Part 1. Vertical Search Engine Building Demo. We plan to take the C-BOOK
search engine as an example to illustrate how to build a vertical search engine. We
will first input the schema definition, seeds and extraction rules of C-BOOK to SESQ,
and then run SESQ on sampling Web pages and illustrate the process of crawling,
extraction and database materialization.

Part 2. User Interface Demo. This part will show the functions supported by query
interface using C-PAPER (a scientific paper OVSE built by SESQ) and C-BOOK. It
will include keyword and structured queries, navigation of entities through relation-
ship, entity ranking, categorization and statistical analysis as well.

Extractor Searcher

Storage
Manager

Query
Manager

GUI

Web

Database

Domain Model

Schema

Website
Schemata

Data
Instances

 Fig. 1. Query GUI of C-BOOK Fig. 2. Architecture of SESQ

References

1. Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-Level Ranking: Bringing Order to Web
Objects. In: WWW 2005 (2005)

2. Chakrabarti, S., Berg, M., Dom, B.: Focused Crawling: a new Approach to Topic-Specific
Web Resource Discovery. In: WWW 1999 (1999)

3. Ester, M., Kriegel, H.P., Schubert, M.: Accurate and Efficient Crawling for Relevant Web-
sites. In: VLDB 2004 (2004)

4. Crescenzi, V., Mecca, G., Merialdo, P.: Automatic Web Information Extraction in the
RoadRunner System. In: Workshop DASWIS of ER 2001 (2001)

5. Zhu, J., Nie, Z., Wen, J.R., Zhang, B., Ma, W.Y.: Simultaneous record detection and attrib-
ute labeling in web data extraction. In: SIGKDD 2006 (2006)

6. Zhao, H., Meng, W., Wu, Z., Raghavan, V., Yu, C.: Fully Automatic Wrapper Generation
for Search Engines. In: WWW 2005 (2005)

7. Lin, L., Li, G., Zhou, L.: Meta-Search Based Web Resource Discovery for Object-Level
Vertical Search. In: WISE 2006 (2006)

8. Guo, Q., Zhou, L.: Schema driven topic specific web crawling. In: DASFAA 2005 (2005)
9. Lin, L., Zhou, L.: Leveraging Webpage Classification for Data Object Recognition. In:

IEEE/WIC/ACM Web Intelligence 2007 (2007)

HealthSense: An Application for Querying Raw

Sensor Data�

Fabrice Camous, Dónall McCann, and Mark Roantree

Interoperable Systems Group,
School of Computing, Dublin City University,

Dublin, Ireland
{fcamous,dmccann,mroantree}@computing.dcu.ie

1 Background

New sensing technologies and the decreasing cost of Information and Communi-
cation Technologies (ICTs) make possible the development of electronic Health
(eHealth) monitoring systems. The challenges of such systems include the rep-
resentation of data extracted from various sensor devices by knowledge workers
through semantic enrichment and integration. Also, the data must be stored in
a format suitable for querying and further analysis. This paper describes the
demonstration of the HealthSense system which captures and queries personal
health data extracted from wearable sensors. Figure 1 illustrates the transforma-
tion process. There are 4 layers, representing data in different formats, separated
by the 3 processors that transform them. A detailed description of the 3 proces-
sors was presented in [1].

2 The HealthSense Demonstration

The demonstration includes:

– the wearing of sensor devices and recording of data,
– the extraction of sensor data to a laptop,
– the use of HealthSense to enrich, integrate, and store sensor data, and
– the querying of the stored data from an XML database using XPath.

2.1 The Sensor Devices

– Polar S625XTM heart-rate monitor: this consists of a fabric band which
fits around a person’s chest and detects and logs their heart rate.

– BodyMedia SenseWear R©: this sensor array is worn around the upper arm
and measures. It uses motion sensors and galvanic skin response sensors to
measure activity.

– Deluxe Wrist Blood Pressure Monitor HL168JC: this device can store
up to 90 blood pressure and pulse readings.

– iPod Nano 4G with Nike R©+ IPod Sport kit: this sensor records the
distance covered during a walk or run and caloric consumption.

� The RSS SENSE project is funded by Enterprise Ireland Ref. PC/2007/112.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 518–519, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

HealthSense: An Application for Querying Raw Sensor Data 519

Physical Layer Delivery Layer Semantic Layer Query Layer

Batching
Processor

Enrichment
Processor

Integration
Processor

ID XML database

Fig. 1. System Architecture

2.2 Data Extraction, Enrichment and Integration

Device-specific software is used to extract and store the raw sensor data on
the laptop hard disk. At this point, data is in a raw format not yet queryable
in a standard way. The HealthSense application running on the laptop is used
to batch, semantically enrich, integrate, and store the data locally in a XML
database. Processing time depends on the size of the files. Table 1 shows exam-
ples of processing times from file upload to database storage for different groups
of files. A complete analysis of processing times for enrichment and integration
is found in [1]. For storage, we use the eXist XML database [2]. Our innova-
tion arises from the fact that we can enrich data from any sensor device using
our generic device manager, and our integration process can pivot on a num-
ber of different characteristics including time, individuals or sensor readings [1].
Once the data is stored in eXist, it is directly queryable using the XPath query
language.

Table 1. Processing times from file upload to database storage

Raw Sensor Files Upload to Stored File
Storage (sec) Size

1 Polar (3KB), 1 BodyMedia (173KB) 3.90841 388KB

1 Nike iPod (8KB), 1 Polar (13KB), 1 BodyMedia (437KB) 7.31041 1060KB

1 Nike iPod (8KB), 2 Polar (23KB), 1 BodyMedia (1099KB) 12.22107 2424KB

References

1. Camous, F., McCann, D., Roantree, M.: Capturing Personal Health Data From
Wearable Sensors. In: Proc. of the 2nd Intl. Workshop on SensorWebs, Databases
and Mining in Networked Sensing Systems (to appear, 2008)

2. Meier, W.: Index-Driven XQuery Processing in the eXist XML Database. In: XML
Prague 2006 (2006)

Visual SQL:

Towards ER-Based Object-Relational Database
Querying

Bernhard Thalheim

Computer Science Institute, Christian-Albrechts-University Kiel,
Olshausenstrasse 40, 24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Database Querying and Programming Based on Visual
SQL

Query formulation is still a difficult task whenever a database schema is large
or complex. The user has to entirely understand the schema before a correct
and complete formulation of the query will be found. Furthermore, users may
overlook types in the SQL schema that must be used in the query. Visualization
based on Visual SQL leads to higher conceptual correctness and conceptual
completeness.

Visual SQL is at the same time

• as powerful as SQL-2 and SQL:1999,
• is well-founded and has a well-defined semantics [Tha03],
• simpler to use and to comprehend, and
• less error-prone in complex settings.

Visual SQL shows what we would gain after realization of Chen’s dream on ER
database systems. It demonstrates the power of visual programming already for
existing database technology. There have already been reported several project
(for the analysis of these projects, proposals and tools see [Tha03]) but none of
them covered the complete SQL:1999 or SQL-2 standard. It is more powerful
than the editors for MS Access and Oracle.

Visual SQL eases usability (understandability, learnability, operability, at-
tractiveness) [JT03]. Users do not have to have the ability to formulate a query
while having complete understanding of a large database schema, of the impact
of specific values such as null values and of the integrity constraints.

The Cottbus and Kiel teams have developed the Visual SQL editor and a re-
translator from SQL-2 to Visual SQL. The editor has been used in a number of
projects and for teaching purposes in universities and high schools in Germany
and New Zealand. It has a German, English and Chinese version. The database
schema is typically given on the basis of DBMain schemata. The re-translator
has been used in project aiming to document already existing SQL code. The
largest SQL query that has been cracked through the re-translator consists of
more than 250 dense lines of SQL code. The version 1.5 of the system has been

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 520–521, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Visual SQL: Towards ER-Based Object-Relational Database Querying 521

exhibited at CeBIT 2006. The version 1.6 is available from teaching path of the
website http://www.informatik.uni-kiel.de/∼fiedler/.

A Demonstration Example

Let us compare the facilities of Visual SQL with SQL-92 based on the database
schema used in [Tha00].

We consider the following query:
Provide data on students who have successfully completed those courses which

have successfully been given or which are currently given by the student’s super-
visor?

Fig. 1. Comparison of Visual SQL query formulation and SQL-2 representation

References

[JT03] Jaakkola, H., Thalheim, B.: Visual SQL - high-quality er-based query treat-
ment. In: Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS,
vol. 2814, pp. 129–139. Springer, Heidelberg (2003)

[Tha00] Thalheim, B.: Entity-relationship modeling – Foundations of database tech-
nology. Springer, Berlin (2000)

[Tha03] Thalheim, B.: Visual SQL - An ER-based introduction to database program-
ming. Technical Report Preprint I-8/2003, Institut für Informatik, BTU Cot-
tbus (2003)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 522–523, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SAMSTAR: An Automatic Tool for Generating Star
Schemas from an Entity-Relationship Diagram

Il-Yeol Song1, Ritu Khare1, Yuan An1, Suan Lee2, Sang-Pil Kim2, Jinho Kim2,
and Yang-Sae Moon2

1 College of Information Science and Technology, Drexel University,
Philadelphia, PA19104, U.S.A.

{songiy,rk84,yuan.an}@drexel.edu
2 Department of Computer Science, Kangwon National University,

192-1 Hyoja-dong, Chuncheon, Kangwon 200-701, Korea
{salee,spkim,jhkim,ysmoon}@kangwon.ac.kr

1 Introduction

While online transaction processing (OLTP) databases are modeled with Entity-
Relationship Diagrams (ERDs), data warehouses constructed from these OLTP DBs
are usually represented as star schema. Designing data warehouse schemas, however,
is very time consuming. We present a prototype system, SAMSTAR, which automati-
cally generates star schemas from an ERD. The system takes an ERD drawn by
ERwin Data Modeler as an input and generates star schemas. SAMSTAR uses the
Connection Topology Value [1] which is the syntactic structural information embed-
ded in an ERD. SAMSTAR displays the resulting star schemas on a computer screen
graphically. With this automatic generation of star schema, this system helps design-
ers reduce their efforts and time in building data warehouse schemas.

2 The System Architecture

The SAMSTAR system consists of three modules: Graphic Input Module, Star
Schema Generation Module, and Graphic Output Module. The overall architecture of
the system is shown in Fig. 1.

The Graphic Input Module reads an ERD in a graphical form drawn by ERwin
Data Modeler, in which the ERD is stored in the XML file format. The module trans-
forms XML files for the ERD into DOM (Document Object Model) trees by an XML
parser of JAXP (Java API for XML processing) of Sun Microsystems, Inc. It then
extracts entities, relationships, and attributes through JAXP methods from the DOM
trees.

The Star Schema Generation Module extracts facts and dimensions of star schemas
from an ERD by using the SAMSTAR algorithm introduced in our early work [1].
This algorithm utilizes syntactic structural information, called Connection Topology
Value (CTV), for each entity in ERDs. The CTV of an entity is calculated by the
function of the topology value of direct and indirect M:1 relationships. The algorithm
automatically selects entities with higher CTVs as facts, because a fact in star schema
is connected by many dimensions.

 SAMSTAR: An Automatic Tool for Generating Star Schemas 523

The resulting star schemas are graphically displayed on the screen by the Graphic
Output Module. This module is implemented by using JGraph which is an open
source for graphic visualization library [2].

Fig. 1. The Overall Architecture of the System

3 Demonstration Plan

This demonstration shows both the process that the system extracts star schemas from
an ERD and resulting star schemas in real time. We will use several ERDs used by
other authors who published star schema design methodologies. Users will be able to
compare the resulting star schemas automatically extracted by our system with the
results of those previous works, which need much human interaction. These compari-
sons will help users appreciate how effective the resulting star schemas of our system
are and how efficient the system is in constructing star schemas.

References

1. Song, I.-Y., Khare, R., Dai, B.: SAMTAR: A Semi-Automated Lexical Method for Generat-
ing Star Schemas from an Entity-Relationship Diagram. In: 10th ACM Int’l Workshop on
Data Warehousing and OLAP (DOLAP 2007), pp. 9–16. ACM, New York (2007)

2. JGraph site, http://www.jgraph.com

Constraint-Aware XSLT Evaluation�

Ming Li, Murali Mani, and Elke A. Rundensteiner

Department of Computer Science, Worcester Polytechnic Institute
Worcester, MA 01609, USA

{minglee,mmani,rundenst}@cs.wpi.edu

XML has been widely accepted as the standard data representation for web
applications. The XML Stylesheet Language for Transformations (XSLT) [7][3] is
an increasingly popular language for query-like operations on XML documents,
including data filtering and reconstruction. When handling XML documents
with large size, the main memory buffer requirement in XSLT evaluation can
be significant, which also leads to a significant CPU consumption due to the
manipulation cost on the buffered data and the processor thrashing caused by
excessive use of virtual memory.

XML input data followings pre-defined semantic constraints such as the Docu-
ment Type Definition (DTD) and XML schema [1] in many real-life applications,
shown by the following two scenarios:

News Dissemination. In such scenario, the news server retrieves and inte-
grating news from a large number of sources (such as different reporter devices,
different broadcast agencies and government sources) and disseminates messages
to subscribers. The sources may all agree with a pre-defined schema.

Network Record Archiving. In such scenario, the archiving system collects
statistics from different network traffic monitors. The statistic records, repre-
sented as XML documents, are usually generated by a work-flow engine or simply
a customized program, which follow a pre-defined schema.

Such semantic knowledge of the XML data enables us to on the fly predict
the non-occurrence of a given pattern within a bound context, which helps to
avoid data buffering and thus achieving a minimized memory footprint in XSLT
evaluation. Let us consider an XSLT program as below:

<xsl : template match = ‘‘/’’>
<html> <head> <title> News Data </title> </head>
<body> <table> <xsl : apply-templates select = ‘‘root/news’’/> </table> </body>
</html> </xsl : template>
<xsl : template match = ‘‘news’’>
<xsl : for-each select = ‘‘location[contains(@name,‘Boston’)]’’> <tr>
<td> <table> <xsl : apply-templates select = ‘‘entry’’/> </table> </td>
<td> <table> <xsl : apply-templates select = ‘‘comment’’/> </table> </td>
</tr> </xsl> </xsl : template>
<xsl : template match = ‘‘entry’’> <xsl : value-of select = ‘‘.’’/> </xsl : template>
<xsl : template match = ‘‘comment’’> <xsl : value-of select = ‘‘.’’/> </xsl : template>

When processing XML documents, most prevalent XSLT processors applied a
DOM-based processing strategy [3] or a streaming-based processing strategy [5],
� This work has been partially supported by the National Science Foundation under

Grant No. NSF IIS-0414567.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 524–525, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint-Aware XSLT Evaluation 525

where the latter is more advanced memory-wise. With a streaming-based pro-
cessing strategy, while semantic knowledge is not available, the earliest we can
perform predicate filtering on locations, output the extracted entry and comment
fragments then release the corresponding buffer for each bound news element is
after the news has been completely received.

Assume we are given the semantics of the news element type as the DTD
below:
<!ELEMENT news ((location, entry, advertisement)*, advertisement*, comment*)>

By such XML constraint knowledge, if two consecutive advertisement subele-
ments are met within an news element, no more location can occur under this
news can be guaranteed. If none of the received locations within the news is equal
to “Boston”, buffered entries of the binding can be purged from memory and
furtherly parsed comments can be directly dropped without any buffering be-
cause this news is guaranteed to be unqualified. More examples on such semantic
optimization can be referred in [4].

State-of-the-Art. [5] proposes a streaming-based processing model using doc-
ument projection techniques, which can be applied in XSLT evaluation. However,
semantic optimization is not considered in their work. A limited number of XML
processing engines [6][2] have looked at the semantic optimization opportunity
for XML query processing, which can be utilized in XSLT evaluation. However,
these methods do not fully support the possible optimizations arisen by given
constraint knowledge.

CALF System. We propose CALF (Constraint-Aware Engine for Evaluating
XSLT with Minimized Memory Footprint) in this demonstration. Given the
DTD of the input XML document, CALF processes the document in a streaming
fashion. It on the fly detects the Pattern Non-Occurrence (PNO) constraints [4]
and then adjusts the evaluation strategy dynamically to achieve better buffering
and CPU performance.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language 1.0, 4th edn. (2006), http://www.w3.org/TR/REC-xml/

2. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling
of event processors and buffer minimization for queries on structured data streams.
In: VLDB, pp. 228–239 (2004)

3. Li, C., Bohannon, P., Korth, H.F., Narayan, P.P.S.: Composing xsl transformations
with xml publishing views. In: SIGMOD Conference, pp. 515–526 (2003)

4. Li, M., Mani, M., Rundensteiner, E.A.: Semantic query optimization for processing
xml streams with minimized memory footprint. In: EDBT Workshops (2008)

5. Marian, A., Siméon, J.: Projecting xml documents. In: VLDB, pp. 213–224 (2003)
6. Su, H., Rundensteiner, E.A., Mani, M.: Automaton meets algebra: a hybrid

paradigm for xml stream processings. DKE Journal, 576–602 (2006)
7. W3C. XSLT Tutorial, http://www.w3schools.com/xsl

http://www.w3.org/TR/REC-xml/
http://www.w3schools.com/xsl

A Quality Circle Tool for Software Models

Hendrik Voigt and Thomas Ruhroth

Universität Paderborn, Institut für Informatik
33098 Paderborn, Germany

{hvoigt,ruhroth}@uni-paderborn.de

Abstract. The quality management of software models is an important
issue. As a preparative task, the quality circle requires quality planning.
After that a software model can repeat the sequence: quality measure-
ment, quality analysis, and quality improvement. Until now, existing
tools lack support for all these activities at once. Therefore, we devel-
oped and implemented concepts that provide the full quality circle for
software models. The considered models are mainly represented in the
syntax of UML class and statechart diagrams and their semantics are for-
mally defined. The formal semantics of the considered software models
allows us to improve them while preserving their external behavior.

1 Introduction

The quality management of software models should take place as early as possible
during software development. This helps to reduce costs for the detection and
correction of defects, since it would be more expensive later on.

Concerning the quality management of software models, we focus on four
strongly interrelated activities: quality planning, quality measurement, quality
analysis, and quality improvement. Quality planning is the process of develop-
ing a quality plan for a project by establishing quality objectives, documenting
desired qualities, and describing how these are measured. Quality measurement
is concerned with deriving values for measures that quantify or qualify certain
quality attributes. The measurement results are analyzed in order to diagnose
certain quality problems. The correction of the detected quality problems is
performed during the quality improvement activity.

If both the quality plan and the software model are available then the software
model can enter the quality circle and repeat the quality measurement, quality
analysis, and quality improvement activities.

Our tool features all these quality management activities (tool and its doc-
umentation available at: http://www.cs.uni-paderborn.de/index.php?id=7425).
In the next section we briefly introduce the basic concepts that we have applied
to the quality management activities described above.

2 Quality Circle

Quality Planning: For the development of quality plans we apply the Model
Quality Plan (MQP) approach (cp. [4]). First, the context factors of a software

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 526–527, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Quality Circle Tool for Software Models 527

model are documented to find out what is specific to the considered software
model (e.g. used modeling language, diagram types, development phase or de-
velopment dependencies). Second, the context factors are used for identifying
information needs specified by goals and questions. Third, the quality model
is defined. Forth, the measurement of the bottom level of the quality model is
documented by Object Constraint Language (OCL) queries.

Developing Software Models: Before the quality measurement can take place, at
least one software model must be available. We consider software models that
are based on the modeling language UML/Z. The syntax of UML/Z is mainly
derived from UML class and statechart diagrams. Its semantic is formally given
by CSP-OZ [1].

Quality Measurement: After the software models that should be evaluated and an
applicable MQP are specified, the MQP can be used to process the quality mea-
surement. Our tool determines values for measures by interpreting OCL queries.
Subjective measurements that involve human judgment are not supported, yet.

Quality Analysis: The purpose of the quality analysis is to find out, how the de-
fects of a software model indicated by the quality measurement can be corrected.
More generally spoken, we deal with the symptom/therapy constellation. Our
quality measurement provides indicators that help us to diagnose symptoms. The
quality improvement includes the therapies. The indicators (symptoms) given by
the quality measurement are linked to these therapies in order to suggest possible
solution strategies.

Quality Improvement: Refactoring is one widely used therapy technique in qual-
ity improvement. Applying refactorings means that you change the internal
structure of a program or of a software model, but you don’t chance its ex-
ternal behavior. While many works ensures the property of behavior preserving
using tests (e.g. [2]), we use refactorings that are proven correct a priori.

The formal semantic definition of UML/Z models given by CSP-OZ enables
us to prove the preservation of behavior by reusing refactorings for CSP-OZ
specifications [3]. These refactorings can simply be transformed to refactorings
for UML/Z models.

References

1. Fischer, C.: Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD thesis, University of Oldenburg (2000)

2. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, Reading (1999)

3. Ruhroth, T.: Refactoring Object-Z Specifications. In: 18th Nordic Workshop on
Programming Theory (2006)

4. Voigt, H., Engels, G.: Kontextsensitive qualitätsplanung für software-modelle. In:
Kühne, T., Reisig, W., Steimann, F. (eds.) Modellierung 2008, 12.-14. März 2008,
Berlin, GI- (edn). Lecture Notes in Informatics, LNI, pp. 165–180 (2008)

Generating and Optimizing Graphical User

Interfaces for Semantic Service Compositions

Eran Toch1, Iris Reinhartz-Berger2, Avigdor Gal1, and Dov Dori1

1 Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology

erant@tx.technion.ac.il, dori@ie.technion.ac.il, avigal@ie.technion.ac.il
2 Department of Information Systems

University of Haifa
iris@mis.hevra.haifa.ac.il

1 Background

Semantic Web service composition is a discovery process in which a given set
of requirements are fulfilled by dynamically locating and assembling semanti-
cally annotated services [5,6]. Semantic annotation of Web services is a set of
models that describe its properties (e.g., inputs, outputs, process), in a formal
language such as OWL-S [2]. These models provide an unambiguous description
of service properties by relating them to concepts belonging to Web ontologies.
While dynamic service composition provides a flexible applications which can
change according to service failures and other factors, it raises several questions
regarding the way users interact with the generated applications. Specifically, it
raises a challenge for usability, which is defined as the effectiveness, efficiency
and satisfaction in which users perform tasks using a given system [1].

In traditional software development processes, the user interface is manually
designed, implemented and tested in order to ensure its usability. In contrast,
in dynamically composed applications, the functionality is not established dur-
ing the design of the system. Therefore, the user interface cannot be designed,
let alone tested, for usability. The conclusion is that the user interface should
be generated dynamically as well, reflecting the temporal functionality of the
application.

The field of automatic generation of user interfaces attempts to formally de-
fine the elements of user interfaces, including presentation and interaction [4].
However, they do not deal with usability optimization as they presume the mod-
els are designed with usability in mind. Therefore, this approach will not suffice
for dynamic compositions, as these compositions are not optimized for usabil-
ity. The contribution of our work is in suggesting a method for optimizing the
usability of dynamically composed applications, using formal methods.

2 Optimization by Model Transformation

In order to address the problem of usability in dynamically-created compositions,
we present Liquid-Interface, a framework for user-interface generation and

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 528–529, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating and Optimizing Graphical User Interfaces 529

optimization1. The framework generates Web-based user interfaces by analyzing
the semantic properties of compositions defined in OWL-S [2]. Liquid-Interface
applies an optimization technique to improve the usability of the user-interface,
and specifically the way users navigate the applciation.

Liquid-Interface derives semantic concepts from the service description, visu-
ally expressing them using interface widgets. For example, concepts that express
dates are displayed using a calendar, and concepts that have a bounded set
of values (e.g. countries or currencies) are displayed as combo-box lists. Other
semantic characteristics are expressed using user interface elements, including
cardinality, concept generalization, multi-lingual concepts, and input validity
checks.

Navigation optimization modifies the process execution order of the origi-
nal OWL-S [2] model according to a set of user interaction design patterns [3].
We created a taxonomy of user interaction design patterns, which are relevant
to navigation, and expressing them using formal mathematical models. For ex-
ample, the Flat and Narrow Tree design pattern defines optimal measures to
link distribution between the pages. The patterns are used in order to assign
a usability score to a configuration of the application’s navigational properties.
These properties include the number of links between processes, the number of
fields within a process, and so fourth. The optimization process searches for a
configuration with an optimal accumulative score. Heuristic methods are used
in order to bound the search space. The Liquid-Interface framework exhibit an
open architecture that allows new design patterns to be defined and added dy-
namically to the optimization process. Preliminary results prove the feasibility of
our approach, and reveal interesting relations between design patterns, including
patterns that contradict, or reinforce, each other.

References

1. ISO 9241-11. Ergonomic requirements for office work with visual display terminals,
part 11: Guidance on usability (1998)

2. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McIlraith, S.A.,
Narayanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: Daml-s: Seman- tic
markup for web services. In: Proceedings of the International Semantic Web Work-
shop (SWWS), July 13 2001, pp. 411–430 (2001)

3. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons, Inc.,
Chichester (2001)

4. Khushraj, D., Lassila, O.: Ontological approach to generating personalized user
interfaces for web services. In: International Semantic Web Conference, pp. 916–927
(2005)

5. Klusch, M.: Semantic service coordination. In: Schuldt, H., Schumacher, M., Helin,
H. (eds.) CASCOM - Intelligent Service Coordination in the Semantic Web, ch. 4,
Birkhaeuser Verlag (2008)

6. Toch, E., Gal, A., Reinhartz-Berger, I., Dori, D.: A semantic approach to approxi-
mate service retrieval. ACM Trans. Inter. Tech. 8(1), 2 (2007)

1
The Framework can be used and downloaded at: http://dori.technion.ac.il/liquidInterface

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 530–531, 2008.
© Springer-Verlag Berlin Heidelberg 2008

REMM-Studio+: Modeling Variability to Enable
Requirements Reuse

Begoña Moros1, Cristina Vicente-Chicote2, and Ambrosio Toval1

1 Departamento de Informática y Sistemas
Universidad de Murcia, 30100 Espinardo (Murcia), Spain

{bmoros,atoval}@um.es
2 Departamento de Tecnologías de la Información y las Comunicaciones
Universidad Politécnica de Cartagena, 30202 Cartagena (Murcia), Spain

cristina.vicente@upct.es

Abstract. Requirements reuse has been recently pointed out as one of the most
pressing needs and grand challenges in Requirements Engineering. To cope
with this demand, this work presents a systematic requirements reuse approach
in the Model-Driven Software Development context. The proposal revolves
around REMM, a Requirements Engineering MetaModel, which has been re-
cently extended to provide variability modeling mechanisms, which enable re-
quirements reuse. The REMM-Studio+ graphical modeling tool, built to support
the new modeling capabilities of REMM, now enables the specification of both
(1) catalogs of reusable requirements models (modeling for reuse), and
(2) specific product requirements, by reusing previously defined requirements
(modeling by reuse).

Keywords: Model-Driven Software Development, Requirements Engineering,
Requirements MetaModel (REMM), Requirements Variability and Reuse.

1 Motivation for Building REMM-Studio+

It is well known that the higher the level of abstraction at which reuse takes place, the
larger its benefits. Moreover, requirements reuse has been recently pointed out as one
of the most pressing needs and grand challenges in Requirements Engineering
(RE) [1]. The proposal we present here is aimed at coping with this demand. It is
based on the adoption of a Model-Driven Software Development (MDSD) approach
for RE, which revolves around the definition of a requirements metamodel, called
REMM (Requirements Engineering MetaModel) [2, 3]. REMM allows designers to
explicitly model (1) the main concepts involved in the RE process and the relation-
ships existing between them, and also (2) the variation points of a requirements speci-
fication to enable its reuse [3]. The REMM-Studio+ graphical modeling tool,
presented here, has been implemented on top of REMM, and it is aimed at enabling
requirements modeling, validation and reuse.

 REMM-Studio+: Modeling Variability to Enable Requirements Reuse 531

2 Requirements Reuse in REMM-Studio+

REMM-Studio+ is an improved version of the tool already presented in [2], which
now provides two new model editors, as detailed next. Both editors provide model
validation facilities against REMM and against some OCL and JAVA constraints.

2.1 Modeling for Reuse in REMM-Studio+

The graphical editor supporting requirements modeling for reuse, allows requirements
engineers to define a repository, which contains reusable requirements models organ-
ized in catalogs. These catalogs store reusable requirements belonging to the same
domain or profile. Variation points can be introduced in reusable requirements models
by including any number of parameters in their specification. Each parameter is char-
acterized by a name and a type, which could be a number, a string or a value from an
enumerated set of values. Further details can be found in [3].

2.2 Modeling by Reuse in REMM-Studio+

The graphical editor supporting requirements modeling by reuse, allows requirements
engineers to specify new product requirements. Product requirements can be created
from scratch or from a reusable requirement specification, imported from a previously
defined repository. In the last case, the tool provides the means for: (1) loading the re-
pository and importing any of the reusable requirements stored in its catalogs,
(2) selecting the requirements to be reused, and (3) instantiating their parameters (if
any). When a reusable requirement is selected, all those related to it are also auto-
matically included in the current product catalog. Thus, inter-requirements relation-
ships are explicitly taken into account at reuse time. Further details in [3].

Acknowledgments

This work has been partially funded by the Spanish CICYT projects DEDALO
(TIN2006-15175-C05-03) and MEDWSA (TIN2006-15175-C05-02).

References

1. Cheng, B.H.C., Atlee, J.M.: Research Directions in Requirements Engineering. In: ICSE
2007, Minneapolis, USA, pp. 285–303 (2007)

2. Vicente-Chicote, C., Moros, B., Toval, A.: REMM-Studio: an Integrated Model-Driven En-
vironment for Requirements Specification, Validation and Formatting. JOT 6(9), 437–454
(2007)

3. Moros, B., Vicente-Chicote, C., Toval, A.: Metamodeling Variability to Enable Require-
ments Reuse. In: EMMSAD 2008, Montpellier, France (2008)

A Conceptual-Model-Based Computational

Alembic for a Web of Knowledge�

David W. Embley1, Stephen W. Liddle2,
Deryle Lonsdale3, George Nagy4, Yuri Tijerino5,

Robert Clawson1, Jordan Crabtree1, Yihong Ding1, Piyushee Jha4,
Zonghui Lian1, Stephen Lynn1, Raghav K. Padmanabhan4, Jeff Peters1,
Cui Tao1, Robby Watts1, Charla Woodbury1, and Andrew Zitzelberger1

1 Department of Computer Science
2 Department of Information Systems

3 Department of Linguistics and English Language
Brigham Young University, Provo, Utah, 84602

4 Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, New York, 12180

5 Department of Applied Informatics
Kwansei Gakuin University, Kobe-Sanda, Japan

The current web is a web of linked pages. Frustrated users search for facts by
guessing which keywords or keyword phrases might lead them to pages where
they can find facts. Can we make it possible for users to search directly for facts
embedded in web pages? Instead of a web of human-readable pages containing
machine-inaccessible facts, can the web be a web of machine-accessible facts
superimposed over a web of human-readable pages? Ultimately, can the web
be a WoK (a Web of Knowledge) that can provide direct answers to factual
questions and support these answers by referencing and highlighting relevant
base facts embedded in source pages?

Answers to these questions call for distilling knowledge from the web’s wealth
of heterogeneous digital data. But how? Our computational alembic must turn
raw symbols contained in web pages into knowledge and make this knowledge
accessible via the web. Further, the computational alembic must successfully
break down barriers to WoK creation and usage. Currently, several barriers are
too high: the barrier of creating machine-readable content (i.e., of creating pop-
ulated ontologies); the barrier of annotating human-readable, web-page content
with respect to ontologies; and the barrier of learning to query machine-readable
content. Thus, WoK creation and usage faces three main technical challenges:
(1) automatic or sufficiently easy creation of ontologies, (2) automatic or suf-
ficiently easy annotation of web pages with respect to these ontologies, and
(3) simple, but accurate, query specification, usable without specialized train-
ing. Meeting these basic challenges can simplify WoK content creation and access
to the point that the vision of a web of knowledge can become a reality.

� This material is based upon work supported by the National Science Foundation
under grant no. 0414644 and grant no. 0414854.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 532–533, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Conceptual-Model-Based Computational Alembic 533

Conceptual modeling plays a foundational role in creating a computational
alembic to actualize these ideas. An ontology is a conceptualization of a real-world
domain in terms of objects, relationships, generalizations, specializations, and ag-
gregations with constraints over these conceptualizations. Indeed an ontology can
be thought of as a conceptual model grounded formally in a logic system. Au-
tomatic and semi-automatic ontology generation from data-rich, semi-structured
web pages is akin to reverse engineering structured data into conceptual mod-
els. Automatic and semi-automatic annotation of web pages can proceed bottom-
up—can occur as a by-product of ontology generation via reverse engineering. Or
annotation can proceed top-down—can come from extraction ontologies in which
instance recognizers attached to conceptual object sets and relationship sets ex-
tract data on web pages with respect to conceptual models comprised of these
object and relationship sets. For query processing, conceptual models grounded
in description logics form a template to which free-form queries can be matched
to yield formal queries that can be processed by standard query engines.

Conceptual-modeling research can help actualize the WoK vision by:

– providing an answer to the question about how to turn syntactic symbols
into semantic knowledge;

– showing how to establish a workbench with toolkits to convert heterogeneous
digital data into knowledge under the auspices of an ontology;

– exploring the synergistic interplay among ontology, epistemology, and logic
for the advancement of knowledge to provide new ways to think computa-
tionally about what knowledge is and how knowledge is acquired; and

– providing a basis for untrained users to query and reason over fact-filled
ontologies.

Our WoK Demo1 illustrates the foundational presence of conceptual modeling
in creating a WoK. Specifically, it shows how to create ontologies and annotate
pages with respect to these ontologies, and it shows how to query and display an-
notated content. Ontology creation and usage in HTML-page annotation can be
automatic, semi-automatic, or human specified in a user-friendly mode of interac-
tion. User confirmation and correction is always possible, so that the user has the
last say, but in many cases, automatically created ontologies and automatically
annotated web pages are immediately usable within the WoK. Query specifica-
tion can range from free-form conjunctive queries to a formal query language.
Applications include scientific data (e.g., genes), geopolitical data (e.g., Canadian
demographic statistics), family-history data (e.g., genealogical information), and
commodity sales and services (e.g., car sales and apartment rentals).

1 See www.deg.byu.edu and www.tango.byu.edu.

MDBE: Automatic Multidimensional Modeling

Oscar Romero and Alberto Abelló

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

{oromero,aabello}@lsi.upc.edu

Abstract. The goal of this demonstration is to present MDBE, a tool
implementing our methodology for automatically deriving multidimen-
sional schemas from relational sources, bearing in mind the end-user
requirements. Our approach starts gathering the end-user information
requirements that will be mapped over the data sources as SQL queries.
Based on the constraints that a query must preserve to make multidi-
mensional sense, MDBE automatically derives multidimensional schemas
which agree with both the input requirements and the data sources.

Keywords: Multidimensional Design, Design by Examples, DW.

1 Introduction

Traditionally, the design of the multidimensional (MD) conceptual schema of a
data warehouse (DW) has been performed manually, but automating this pro-
cess is essential to not depend on the expert’s ability to apply the methodology
chosen, and to avoid the tedious task of analyzing the data sources. Nowadays,
some methodologies to derive the MD conceptual schema from the data sources
have been presented, but most of them must be carried out manually and just a
few of them automate the process. Automatable methods always rely on a thor-
ough analysis of the relational sources, and they mainly share three limitations:
end-user requirements are not considered, design patterns used to identify po-
tential subjects of analysis are based on weak heuristics and they demand data
source schemas normalized up to third normal form.

Our methodology [1] was conceived to overcome these limitations. The MDBE
tool automatically derives MD conceptual schemas from relational sources bear-
ing in mind the end-user requirements. Thus, being able to compare information
requirements with actual information availability. Our approach starts gather-
ing the end-user information requirements since a DW must give support to the
information necessities of a decision maker. These requirements, properly formal-
ized, are mapped over the data sources, and based on the constraints they must
preserve to make MD sense, MDBE automatically derives conceptual schemas
fulfilling the input requirements. Moreover, MDBE is able to identify implicit
MD knowledge according to how the relational concepts are related in the logical
schema. In short, MDBE properly tag factual and dimensional data with formal
rules derived from the requirements and because of this, it is also able to cope
with denormalized schemas.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 534–535, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MDBE: Automatic Multidimensional Modeling 535

Fig. 1. MDBE overview

2 A MDBE Overview

The MDBE tool demands the MD requirements to lead the whole process. To
do so, it is compulsory to translate them to a formal language understandable
by computers. In our approach, requirements are translated into SQL queries
over the relational data sources of the organization. Each SQL query, altogether
with the data sources logical schema, would be the input of MDBE (see Fig. 1).
As output, MDBE presents a MD schema derived from the data sources, which
allows to retrieve data demanded in the input information requirement.

First step decomposes the input query and creates a MD graph corresponding
to the query (i.e., relational tables and attributes as well as those relationships
among them stated in the query). Our objective in this first step is to identify
MD roles (i.e. facts, measures, dimensions and levels), whereas the second step
aims to analyze the relationships among concepts to infer if indeed, this graph
(i.e. the input query) makes MD sense. We say a query makes MD sense if it re-
trieves data derived from a valid sequence of MD operators over a MD schema.
For this purpose, we carried out a study to identify which constraints should
be guaranteed by a query in order to represent a combination of MD operators.
These constraints may be summarized as follows: data retrieve should be (1) free
of data summarizability anomalies, and (2) able to be placed in a MD space. If
these constraints are guaranteed then, we may find a set of MD operators retriev-
ing that data from the schema represented by the current graph. Eventually, the
output MD schema is directly derived from the graph created along the process.
Notice, however, that each query gives rise to a potential MD schema and the
last step (not yet implemented) would embrace to conciliate those results in a
minimum set of conceptual schemas meeting all the requirements.

Acknowledgments

This work has been partly supported by the Ministerio de Educación y Ciencia
under project TIN 2005-05406.

Reference

1. Romero, O., Abelló, A.: Multidimensional Design by Examples. In: Tjoa, A.M.,
Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 85–94. Springer, Heidelberg
(2006)

Oryx – Sharing Conceptual Models on the Web

Gero Decker, Hagen Overdick, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,hagen.overdick,weske}@hpi.uni-potsdam.de

In recent years, the complexity of software systems has risen sharply, so that
the role of conceptual modeling is more important than ever. To capture this
complexity, different groups of individuals are now involved in modeling different
aspects of the system, rather than a few people modeling internals of a software
system. These different groups of persons concentrate their modeling effort on
different aspects of the system and use different modeling techniques, for instance
UML structure diagrams and the Business Process Modeling Notation.

Conceptual models are developed in a collaborative way, models are shared,
reviewed, and finally agreed upon. In process modeling, for instance, experts from
different companies discuss their business processes and how these interact.

In this paper we report on Oryx, an extensible modeling framework that makes
use of Web 2.0 technologies. In Oryx, each model artifact is identified by a URL,
so that models can be shared by passing references, rather than by exchanging
model documents in email attachments. Since models are created using a browser
and models are just “a bookmark away”, contribution and sharing of conceptual
models is eased. Oryx is realized as web-oriented solution that runs in off-the-
shelf web browsers. Oryx supports the following use cases.

Support for Multiple Languages. Modeling takes a central role in various
disciplines of computer science. They are domain-specific abstractions used for
documentation and exchange of ideas, decisions, and operation guidelines, but
also as blueprint for system design and development. Even within one individual
domain there is a wide range of notations in use.

Meta-Information and Feature Extensions. Much effort is spent on using
models for building new systems. An obvious example is a process model, which
is instantiated by a workflow engine resulting in a system behavior according
to the encoded process specification. Execution environments typically require
large sets of meta-information augmenting. For instance, in case Web service are
used to execute processes, technical configurations need to be represented. To do
so, there must be a strategy how to extend models and how to provide plugins
operating on these extensions.

Data Portability. Models are relevant to many stakeholders, e.g. system archi-
tects, developers, customers, and end-users. Their individual use-cases for models
varies to a large extent. Consequently, stakeholders will use different tools when
working with a model, e.g. the software architect needs an editor, the analyst
uses a validator, the developer wants input to a code-generator, and end-users
need a viewer to get an understanding of the model. Data portability means to
use well documented data formats that can be used by different tools.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 536–537, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Oryx – Sharing Conceptual Models on the Web 537

Fig. 1. Oryx supports the Business Process Modeling Notation

Oryx itself is realized as set of Javascript routines loaded into a modern web
browser. Models are represented in RDF format.

Language Support via Stencil Sets. Stencil sets provide explicit typing,
connection rules, visual appearance, and other features differentiating a model
editor from a generic drawing tool. While there currently is a focus on business
processes, it is also possible to create stencil sets for other modeling languages.

Feature Extensions via Plugins. Plugins allow for both generic as well as
notation specific extensions. E.g. even element selection and cut & paste are
plugin features, as they are not needed for an Oryx viewer. More advanced
plugins realized allow for complex model checking.

Data Portability beyond Oryx. Any model element is addressable via a
URI. The returned representation will normally turn into an Oryx editor. Yet,
the same representation can be accessed and processed by other systems.

Oryx is an extensible framework for conceptual modeling on the web. In re-
search collaborations, extensions have already been added easily. Oryx is avail-
able under MIT license. The Oryx homepage can be found at http://oryx-
editor.org. Interested parties are welcome to use Oryx and to contribute to it.

Acknowledgements. The authors thank the Oryx team at HPI for their work.

References

1. Business Process Modeling Notation (BPMN) Specification, Final Adopted Specifi-
cation. Technical report, Object Management Group (OMG) (February 2006)

2. Vossen, G., Hagemann, S.: Unleashing Web 2.0: From Concepts to Creativity. Mor-
gan Kaufmann, San Francisco (2007)

http://oryx-
editor.org

Providing Top-K Alternative Schema Matchings

with OntoMatcher

Haggai Roitman, Avigdor Gal, and Carmel Domshlak

Technion - Israel Institute of Technology
Haifa, 32000 Israel

{haggair@tx,avigal@ie,dcarmel@ie}.technion.ac.il

Uncertainty management at the core of data integration was motivated by new
approaches to data management, such as dataspaces [2] and the use of fully-
automatic schema matching takes an increasingly prominent role in this field. Re-
cent works suggested the use, in parallel, of several alternative schema matching,
as an uncertainty management tool [3,1]. We offer in this work OntoMatcher,
an extension of the OntoBuilder [4] schema matching tool to support the man-
agement of multiple (top-K) schema matching alternatives.

Figure 1 provides an illustration of the OntoMatcher architecture, putting
it in the perspective of the OntoBuilder matching tool. In Phase 1, OntoBuilder
generates a dictionary of terms by extracting labels and field names from Web
forms, and then it recognizes unique relationships among terms, and utilize them
in its matching algorithms (Phase 2).

Phases 3 and 4 are at the focus of this demonstration. The result of Phase 2 is
a set of similarity matrices, one for each selected matcher. Each matrix represents
the matcher’s similarity scores between fields of Web forms (selected in Phase
1). In Phase 3, OntoMatcher allocates queues to maintain a ranked list of local
best matchings between the pair of Web forms, as ranked by a single matcher.
OntoMatcher accesses (possibly in parallel) the set of matching queues and
generates a set of K matchings with the highest similarity scores from the set of
local best matchings in the queues. OntoMatcher associates a probability with

Fig. 1. OntoMatcher Architecture

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 538–539, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Providing Top-K Alternative Schema Matchings with OntoMatcher 539

each matching, estimating the chance of this matching being the exact matching.
Using a predefined human-judged exact matching, that can be generated using a
user-friendly utility tool integrated in OntoBuilder, OntoMatcher can evaluate
(Phase 4) the generated matchings from Phase 3 against the exact matching and
report the precision and recall of each generated matching.

We demonstrate algorithms to provide a user with top-K alternative schema
matchings, in a decreasing order of confidence. Given a user defined K, the sys-
tem produces K alternative mappings and assigns a probability estimate based
on the similarity measure, as assigned by an ensemble of matchers.

To justify our method, we use the monotonicity principle, as formally intro-
duced in [5,6]. Intuitively speaking, a schema matcher is monotonic if its ranking
of all possible matchings is “similar” to that of some oracle, ranking matchings
according to the number of correct attribute correspondences in a matching.

We demonstrate the applicability of our ideas using deep-Web schemata. The
demo user can select the schemata of choice, determine which matching algo-
rithms to use and how to set up the matcher ensemble.OntoMatcher can be con-
figured to use different local aggregation functions and allows to define a global
aggregation function over the set of local matching similarity values to deter-
mine the ranking score of each matching that the tool generates. OntoMatcher
further allows to select the number of required schemata alternatives.

Weprovideavisualization tool, todemonstrate thedifferencesbetween the alter-
native matchings. Our online presentation (available from OntoBuilder site
http://ie.technion.ac.il/OntoBuilder) shows theOntoMatcher user-friendly GUI
that dynamically illustrates how the different Top-K probabilistic matchings are
generated. The demo provides a detailed view of the current top-ranked match-
ing in every matcher’s local queue, including the details of current local and global
matching scores.TheGUIprovides also thedetailsof eachTop-K generatedmatch-
ing including the global scores of each matched pair, a view of the matching as a
bipartite graph, and its precision and recall compared to the exact matching. Fi-
nally, the user can select to view the probability pie-chart of the Top-K generated
matchings.

References

1. Dong, X., Halevy, A., Yu, C.: Data integration with uncertainty. In: Proceedings of
the International conference on Very Large Data Bases (VLDB), pp. 687–698 (2007)

2. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new ab- strac-
tion for information management. SIGMOD Record 34(4), 27–33 (2005)

3. Gal, A.: Managing uncertainty in schema matching with top-k schema mappings.
Journal of Data Semantics 6, 90–114 (2006)

4. Gal, A.: Why is schema matching tough and what can we do about it? SIGMOD
Record 35(4), 2–5 (2007)

5. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for model-
ing and evaluating automatic semantic reconciliation. VLDB Journal 14(1), 50–67
(2005)

6. Gal, A., Modica, G., Jamil, H., Eyal, A.: Automatic ontology matching using appli-
cation semantics. AI Magazine 26(1), 21–32 (2005)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 540–541, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Role and Request Based Conceptual Modeling –
A Methodology and a CASE Tool

Yair Wand, Carson Woo, and Ohad Wand

Sauder School of Business,
The University of British Columbia

yair.wand@ubc.ca, carson.woo@ubc.ca, ohad.wand@gmail.com

Abstract. This paper contains a brief description of the R2M (Role and Request
Modeling) method and its supporting visual modeling CASE (Computer
Assisted Software Engineering) tool. R2M is a modeling method for creating
Conceptual Models of work systems using a combination of ontological and ob-
ject-oriented concepts. The ontological principles serve to define the meaning
of modeling constructs in terms of domain semantics, and to derive rules guid-
ing the modeling process. The R2M CASE tool is a graphical software tool that
supports the creation of models according to the R2M method. Guided by the
principles of R2M, the tool helps assure the semantic integrity of models, and
enables management of complex models via decomposition (i.e. including more
details at lower abstraction levels). The tool can help ensure consistency be-
tween different modelers and completeness of models.

Keywords: conceptual modeling, business analysis, CASE tool.

The object-oriented approach is arguably the most common design and implementation
paradigm now in use. This is evidenced by the popularity of UML (the Unified Modeling
Language). However, the use of object-concepts in Conceptual Modeling of organiza-
tional domains has not been widely adapted. A main reason is that there are no generally
accepted semantics of objects as constructs to model organizational domains [1].

To address the issue of assigning organizational domain semantics to object-
oriented constructs we have used ontological principles. These principles can be used
both to define the meaning of object-oriented concepts and to suggest rules to guide
ontologically-sound modeling. Specifically, we suggest that objects represent active
things (actors) and object classes represent organizational roles. In an organizational
context the actors (human or otherwise) interact to accomplish a goal. The dynamics
of the modeled domain can then be represented in terms of state changes of individual
actors and of interactions between actors that assume certain roles. This view led us to
suggest a set of modeling rules which address two issues: first - the mapping of do-
main phenomena to a model; and second - semantic integrity constraints over the
constructed models. Based on these rules, we developed a modeling procedure – Role
and Request Modeling (R2M) – that assures the ontological validity of constructed
models and assists the modeler in identifying situations that require further clarifica-
tions about the domain (thus leading to “domain exploration rules”). The R2M ap-
proach is notation independent.

 Role and Request Based Conceptual Modeling – A Methodology and a CASE Tool 541

To facilitate the use of R2M we have developed a CASE tool that provides a
graphical environment for modeling organizational work systems. Models are created
by placing shapes on a canvas and adding connections between them. Shapes repre-
sent roles and the connections represent interactions or relations between the roles.
The models in the CASE tool are not merely pictures where the meaning is provided
only by the user. Rather, the CASE tool is “aware” of the semantic meaning of the
model, and embeds rules that reflect the ontological concepts and principles of the
R2M method. These can be used to validate the created models and enforce their se-
mantic correctness. Therefore, to a model user, the shapes and connections in models
always have a precise semantic and domain meaning.

The semantic validation capability of the CASE tool identifies errors within the
model and provides explanatory messages to the user. As the errors are corrected by
the user, the model becomes semantically correct and the messages disappear.

Organizational work systems may be complex, including many roles and interac-
tions. R2M provides decomposition to manage such complexity. Decomposing a
“composite” role displays its constituent “component” roles and the interactions be-
tween them that are necessary to fulfill the composite’s services. These components
are not visible at the level where the composite interacts with other roles. Conversely,
only roles with which the components interact are visible at the decomposition level.
The CASE tool supports decomposition to any level of detail and ensures model in-
tegrity between levels.

Experience with the R2M method and CASE tool in both teaching situations and
practical cases has shown that the method led to consistency of models across model-
ers. Furthermore, semantic errors identified by the tool were often an indication to
seek additional information about the modeled domain, thus leading to more complete
and accurate models. The domain mapping, semantic integrity, decomposition, and
domain exploration rules facilitate more effective and efficient creation of models
with improved consistency and quality.

R2M supported by the CASE tool can be used in the context of early requirements
discovery in projects that require an understanding of how an organizations’ work
systems function. Additional uses of R2M can be seen in references [2] and [3].

References

1. Wand, Y., Woo, C.: Object-Oriented Analysis - Is It Really that Simple? In: Proceedings of
the Third Workshop on Information Technologies and Systems WITS 1993, Orlando, Flor-
ida, pp. 186–195 (1993)

2. Wand, Y., Woo, C., Hui, S.: Developing Business Models to Support Information System
Evolution. In: Proceedings of the Ninth Workshop on Information Technologies and Sys-
tems WITS 1999, Charlotte, North Carolina, pp. 137–142 (1999)

3. Wand, Y., Woo, C., Jung, D.: Object-Oriented Modeling: From Enterprise Model to Logical
Design. In: Proceedings of the Tenth Annual Workshop on Information Technologies and
Systems WITS 2000, Brisbane, Australia, pp. 25–30 (2000)

AutoMed Model Management

Andrew Smith, Nikos Rizopoulos, and Peter McBrien

Dept. of Computing, Imperial College London,Exhibition Road, London SW7 2AZ

Abstract. Model Management (MM) is a way of raising the level of abstrac-
tion in metadata intensive application areas. The key idea behind Model Manage-
ment is to develop a set of generic algorithmic operators that work on schemas
and mappings between schemas, rather than individual schema elements. In this
demonstration we present a new approach to the implementation of MM oper-
ators based on schema transformation that provides some important advantages
over existing methods.

1 Introduction

Current work on MM is focused on instance based implementation of the MM
operators [1]. The tool presented in this demonstration, extends the AUTOMED data
integration system [2] to create a schema transformation-based Model Management
System (MMS) that supports instance based semantics, and is capable of manipulating
schemas from a wide range of modelling languages. AUTOMED has the following ad-
vantages over existing systems: (i) ModelGen is designed in a manner that is readily
applicable to a wide range of data modelling languages [3], ER, SQL, XML and CSV
schemas can be translated by the prototype used in this demonstration; (ii) the imple-
mentation of Match allows for a wider set of semantic correspondences, eg. equiva-
lence, disjointness and incompatibility, than other methods [4]; (iii) mappings in our
mapping language can be composed by simply adding them together, whereas in other
approaches this composition is a complex task.

2 Demonstration

We use the data integration technique Both-As-View (BAV) [5] as the mapping
language in our MMS. A BAV mapping is made up of a sequence of bidirectional
transformations that together describe precisely how instances of each schema object
in the source schema are mapped to instances in the target schema and vice verse. BAV
has a number of advantages over other mapping languages currently used in MMSs [1].
BAV mappings are bidirectional so their inverse is directly available. BAV also allows
us to differentiate between partially and completely defined schema objects, by provid-
ing two primitives for both addition and deletion. add and delete are used when we can
completely define the extent of the object we wish to add or remove, and extend and
contract are used when we cannot. We can take advantage of the detailed information
contained in BAV mappings when implementing the MM operators. For example, the
algorithm to implement Extract which returns those instances of a schema that takes

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 542–543, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

AutoMed Model Management 543

1. 〈sint, sint sny, sint slon〉 =

Merge(sny, slon, Match(slon, sny))

2. sint s′ = User defined view creation

3. 〈x, s′ x〉 = ModelGen(s′, XML)

4. x x′ = User defined XML additions

5. x′ sint = Invert(sint s′ ◦ s′ x ◦ x x′)

6. 〈xd, x′ xd〉 = Diff(xd, x′ sint)

7. 〈sd, xd sd〉 = ModelGen(xd, SQL)

8. sd sint = Invert(x′ xd ◦ xd sd) ◦ x′ sint

9. 〈sm, sm sd, sm sint〉 = Merge(sd, sint, sd sint)

10. sm si = User defined SQL update

11. x′ si = ((x′ sint ◦ Invert(sm sint))⊕
(x′ xd ◦ xd sd ◦ Invert(sm sd))) ◦ sm si

12. 〈xe, x′ xe〉 = Extract(x′, x′ si)

Fig. 1. Demonstration Example

part in a given mapping, need only investigate schema objects added to the schema with
the extend primitive.

Fig. 1 illustrates the example scenario shown in the demonstration along with the
MM script that we will run. Our system includes a GUI that allows inspection and
querying of all the schemas and mappings created by the script. To consolidate the de-
tails of all employees working in an organisation local databases in the NY and London
offices are integrated using the Match and Merge operators to create sint. A view of
sint is created that contains only the IDs and names of the employees which is translated
into XML using the ModelGen operator to give to another department. This schema
is changed by that department to better meet their needs to produce schema x′. These
changes need to be incorporated into the original database. The Diff operator followed
by a ModelGen is used to produce an SQL schema that contains the instances of x′ that
do not appear in sint. This is then combined with the original schema using Merge.
The merged schema, sm, is improved by a database designer to produce schema si. The
XML view used in the other department must now be updated so that it only contains
data that can be derived from si. The Extract operator creates this new XML view.

References

1. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: SIG-
MOD Conference, pp. 1–12 (2007)

2. Boyd, M., Kittivoravitkul, S., Lazanitis, C., McBrien, P.J., Rizopoulos, N.: AutoMed: A BAV
Data Integration System for Heterogeneous Data Sources. In: Persson, A., Stirna, J. (eds.)
CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

3. Smith, A., McBrien, P.: A generic data level implementation of modelgen. In: BNCOD (to
appear, 2008)

4. Magnani, M., Rizopoulos, N., McBrien, P., Montesi, D.: Schema integration based on uncer-
tain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor,
Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)

5. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation rules.
In: ICDE, pp. 227–238 (2003)

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 544–546, 2008.
© Springer-Verlag Berlin Heidelberg 2008

QUINST: A Metamodeling Tool

Xavier Burgués1, Xavier Franch1, and Josep M. Ribó2

1 Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1-3 (Campus Nord, A0). E-08034 Barcelona, Catalunya, Spain

{diafebus,franch}@lsi.upc.edu
2 Universitat de Lleida (UdL)

Jaume II, 69. E-25001 Lleida, Catalunya, Spain
josepma@diei.udl.cat

Abstract. We present a metamodeling tool to support a modeling methodology
which we have succesfully applied in the field of software quality. As a distin-
guishing and general purpose functionality, it implements the concept of in-
duced associations, which are introduced by the tool when the user instantiates
metaclasses related by inducing metaassociations in the metamodel.

1 Introduction

Software quality is a topic of highest relevance in the current practice of software
engineering, not only at the product level but also at the process level. That is, not
only the software developed but all software-related artifacts (such as specifications,
designs, testing documents...) are in the scope of software quality. As a result, we may
find a huge number of proposals to deal with quality, so diverse in nature such as
software process assessment and improvement, analysis of data models like UML
class diagrams or ER models, measurement of OO designs, and so on.

All of these proposals share a core of common concepts, e.g. metrics, quality factor,
etc., but it is not obvious to identify similarities and differences between them. This
difficulty hampers the understanding of the quality frameworks, their further extension
or evolution, and their comparison when it becomes necessary to choose one in a given
context. Several authors claim that ontologies, conceptual models or similar descriptions
are needed in order to precisely define the concepts, processes, languages and tools
related to software quality [1, 2]. In this context, we propose in [3] a conceptual frame-
work for structuring quality models. The framework is integrated into the Meta Objects
Facility (MOF) architecture [4] as an extension of the UML metamodel. It benefits from
the concept of induced associations [5], a mechanism that is not easy to get imple-
mented by existing tools.

To support the framework, the stepwise construction of quality models following
the methodology outlined in [3] and to implement induced associations, we have
developed the software tool QUINST (Quality models by instantiation) which is the
object of this paper.

 QUINST: A Metamodeling Tool 545

2 The Modeling Methodology

Our framework to address software quality is based on a generic model which is, in
fact, a metamodel defined as an extension of the UML metamodel. Taking the generic
model as the root, a hierarchy of quality (meta)models may be defined step by step,
defining new models starting from previous ones. Each step may add a new class as
an instantiation of some metaclass of the generic model, perform a refinement (adding
a specialisation of some existing class or a new association) or combine two or more
previously defined models. As a consequence of the existence of inducing metaasso-
ciations in the generic model, these steps may imply the addition of induced associa-
tions in the model being constructed.

From the generic model, we may obtain virtually hundreds of reference models,
one for each consolidated approach that has been defined in the software quality
literature. The important thing is that each of these reference models takes as few
assumptions as possible, not compromising therefore its use unnecessarily. These
first-level reference models can then be refined to introduce details. This allows to
structure quality proposals in such a way that details are introduced progressively,
making understanding easier.

A general strategy we have adopted is to use first-level reference models to repre-
sent the general structure of the approach, and second-level ones to indicate particular
elements. Another strategy consists on using this refinement concept for distinguish-
ing among normative or mandatory parts of a proposal (defined at the first-level) from
optional or recommended parts (defined at lower levels). Once the target level of
detail has been reached, we can combine the lower-level reference models to obtain
new ones embracing all the aspects of quality.

We think that this modeling methodology is a general purpose one, not only useful
in the software quality domain. As the second version of QUINST allows changing
the metamodel we will be able to check if our approach is or not suitable to some
other contexts.

3 The Metamodeling Tool

QUINST’s functionally is suited to follow the methodology explained in section 2.
During edition, there are two class diagrams available to the user. The model at the
left is the generic model and the one in the right is the model being edited. In this
situation, the user may:

• Instantiate metaclasses of the generic model. A new class is incorporated into the
model, together with any induced association depending on the already existing
classes.

• Add a new class as a specialisation of an existing one. As before, the new class will
be automatically related with others if induced associations must be generated. In
this case, QUINST will also generate the corresponding association ends redefini-
tions as specified in [5].

• Add a new association.
• Save the model in its current state.

546 X. Burgués, X. Franch, and J.M. Ribó

QUINST allows also performing the combination of two existing models taking
into account the inclusion of new induced associations if required between a class of a
model and a class of the other one.

Models may be retrieved and navigated forward and backward following the hier-
archy of instantiation/refinement/combination steps. Searching may be done depend-
ing on the software domain of application of the models.

The tool is able to work with MOF-M0 objects and links also: the user may edit a
model, choose a class and create instances of it. He may also create links between
instances of classes related by some association.

Used in metamodeling mode, the tool allows the modification of the metamodel,
adding or deleting metaclasses and metaassociations. When a metaassociation is in-
troduced, it may be defined as an inducing or non-inducing one.

Packaging of the tool and instructions in order to make it easy to download and install
is ongoing and will be available from http://www.lsi.upc.edu/~diafebus/QUINST/
index.html.

4 Conclusions

We have presented a methodology to create a hierarchy of quality models in an in-
cremental way. The starting point is a metamodel which serves as the guide to
QUINST, a tool that assist in the construction of the hierarchy and that deals with
induced associations. We think, as we argue in [5], that this concept is useful to im-
prove the accuracy of metamodels. We also think that this hierarchical organisation is
a suitable way to deal with situations where there is a set of approaches to some do-
main that share a couple of concepts and it is desirable to clarify similarities and dif-
ferences between the approaches.

References

1. Olsina, L., Martín, M.A.: Ontology for Software Metrics and Indicators: Building Process
and Decisions Taken. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140. Springer, Heidelberg (2004)

2. Kitchenham, B., Hugues, R., Linkman, S.G.: Modeling Software Measurement Data. IEEE
Transactions on Software Engineering 27(9) (2001)

3. Burgués, X., Franch, X., Ribó, J.M.: A MOF-compliant approach to software quality mod-
eling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER
2005. LNCS, vol. 3716. Springer, Heidelberg (2005)

4. MOF 2.0 Core Final Adopted Specification. Document ptc/03-10-04
5. Burgués, X., Franch, X., Ribó, J.M.: Improving the accuracy of UML metamodel exten-

sions by introducing induced associations. Software and Systems Modeling (July 2007),
doi:10.1007/s10270-007-0062-z

An Implementation of a Query Language with

Generalized Quantifiers�

Antonio Badia, Brandon Debes, and Bin Cao

University of Louisville
{abadia,b.debes,bin.cao}@louisville.edu

1 Generalized Quantification

It is well known that SQL’s syntax sometimes forces users to write queries in
an awkward way. Together with the danger of formulating an incorrect query,
complex queries pose a challenge to the optimizer. A well studied example is
that of universal quantification [1,2]. As an example, assume two relations:
student(sid) and teaches(pid,sid), which denotes that professor pid is a
teacher of student sid. Consider the question “find the professors teaching all
students.” Since SQL does not directly support the quantifier all, most textbooks
express this question using two subqueries, NOT EXISTS and NOT IN.

Generalized quantification is an extension of traditional first-order languages
by the introduction of quantifiers as a definable class; that is, one where different
symbols with different meanings are introduced in the language to go beyond the
traditional existential and universal quantifier. Intuitively, English determiners
and noun phrase modifiers (like most, all but 2, half, at least 3,...) can be seen
as quantifiers. The language QLGQ is designed to express queries using these
GQs. For instance, the example above would be expressed with the quantifier
all in a very simple way:

{y | all({x |student(x)}, {x |teaches(y, x)})}.

2 Implementation to Be Demonstrated

The goal of our implementation is to provide a method for defining quantifiers
and a process that accepts as input a query written in QLGQ and returns as
output an equivalent SQL query. Our system can also run the query against a
specified database, using ODBC or, by default, our local TPC-H instance.

We offer an interface (fig. 1) where users can define their own quantifiers in
a simple language. Our interpreter uses these definitions to generate the cor-
rect relational algebra expression for each QLGQ query. Thus our language is
extendible [3]. The process of running a query, then, consists of three essential
steps performed in sequence: parse, interpret, and transform/run.

First, upon submission from the query interface (fig. 2), the user’s query is run
through a QLGQ parser. Syntactic errors are caught and the query is checked
� This research was sponsored by the NSF under grant CAREER IIS-0347555.

Q. Li et al. (Eds.): ER 2008, LNCS 5231, pp. 547–548, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

548 A. Badia, B. Debes, and B. Cao

against the database to verify that relations exist and have correct arities. A
valid query results in a parse tree that is used as the input to the next phase.

In the second step, the valid QLGQ parse tree is translated into relational
algebra extended with aggregation and grouping. Since we allow the users to
define their own quantifiers, the formulas for the quantifiers are retrieved here
and used in the translation. In some cases, depending on the definition of the
quantifier used, optimizations are performed on this tree before proceeding.

For the final phase of the process, the software walks the extended relational
algebra tree from root to leaves transforming it to standard SQL recursively. As
an option of this step the resultant query can be run against the database. The
result of each of these intermediate steps is retained and presented to the user
to provide a degree of transparency into the workings of the query process. The
generated SQL queries are deeply optimized but quite complex and unlike what
most users would write, nicely demonstrating the motivation for a language that
expresses such quantified questions in a more concise way.

We will demonstrate for session participants the current features of our soft-
ware as well as discuss with them some possibilities for future development. We
will also make our full source code available to interested parties and discuss
with them the technical details of our approach.

Fig. 1. Quantifier definition interface Fig. 2. QLGQ query entry interface

References

1. Graefe, G., Cole, R.: Fast algorithms for universal quantification in large databases.
ACM Trans. Database Syst. 20(2), 187–236 (1995)

2. Rantzau, R., Mangold, C.: Laws for rewriting queries containing division operators.
In: Proc. of ICDE, p. 21 (2006)

3. Badia, A.: Extending description logics with generalized quantification. In: Proc. of
ISFIS, pp. 94–102 (1999)

Author Index

Abelló, Alberto 534
Aharoni, Anat 455
Ahn, Gail-Joon 183
Akoka, Jacky 142
Ali, Raian 169
An, Yuan 114, 369, 522
Antón, Annie I. 154

Badia, Antonio 547
Barbosa, Simone D.J. 355
Bédard, Yvan 383
Bejaoui, Lotfi 383
Bellahsene, Zohra 341
Berlanga, Rafael 514
Bodenstaff, Lianne 216
Borgida, Alex 55
Bowers, Shawn 41
Breaux, Travis D. 154
Breitman, Karin K. 355
Burgués, Xavier 544

Cai, Yi 69
Cal̀ı, Andrea 326
Camous, Fabrice 518
Cao, Bin 547
Casanova, Marco A. 355
Castano, Silvana 512
Cherfi, Samira Si-Säıd 142
Clawson, Robert 532
Combi, Carlo 397
Comyn-Wattiau, Isabelle 142
Cordy, James R. 154
Crabtree, Jordan 532

Dalpiaz, Fabiano 169
Debes, Brandon 547
Decker, Gero 536
Degani, Sara 397
Ding, Yihong 532
Domshlak, Carmel 538
Dori, Dov 528
Dumas, Marlon 199

Embley, David W. 532
Ermolayev, Vadim 98
España, Sergio 498

Fan, Ju 516
Feng, Jianhua 469
Ferrara, Alfio 512
Franch, Xavier 544
Furtado, Antonio L. 355

Gal, Avigdor 528, 538
Gangemi, Aldo 128
Giorgini, Paolo 169
Gordijn, Jaap 216
Gottschalk, Florian 199
Greco, Sergio 311
Guizzardi, Giancarlo 83
Guo, Hang 516
Guo, Qi 516

He, Yukai 516
Hilsbos, Margaret 114
Hornung, Thomas 265

Iwaihara, Mizuho 183

Jensen, Christian S. 397
Jha, Piyushee 532
Jiang, Lei 55

Keberle, Natalya 98
Khare, Ritu 114, 522
Kim, Jinho 522
Kim, Sang-Pil 522
Kiyavitskaya, Nadzeya 154
Koschmider, Agnes 265

La Rosa, Marcello 199
Lausen, Georg 265
Lee, Suan 522
Leung, Ho-fung 69
Li, Chen 248
Li, Gang 516
Li, Guoliang 469
Li, Ming 524
Lian, Zonghui 532
Liddle, Stephen W. 532
Lim, Lipyeow 294
Lin, Ling 516
Lonsdale, Deryle 532

550 Author Index

Lorusso, Davide 512
Lynn, Stephen 532

Madin, Joshua S. 41
Mani, Murali 524
Martinenghi, Davide 326
Matzke, Wolf-Ekkehard 98
McBrien, Peter 412, 542
McCann, Dónall 518
Mendling, Jan 199
Mich, Luisa 154
Molinaro, Cristian 311
Montanelli, Stefano 512
Moon, Yang-Sae 522
Moreno, Ana M. 498
Moros, Begoña 530
Murakami, Kohei 183
Mylopoulos, John 55, 154

Nagy, George 532
Ng, Wilfred 26
Norrie, Moira C. 15

Overdick, Hagen 536

Padmanabhan, Raghav K. 532
Panach, Jose Ignacio 498
Papastefanatos, George 440
Pardillo, Jesús 426
Pastor, Óscar 1, 498
Pérez, Maŕıa 514
Peters, Jeff 532
Pijpers, Vincent 216
Pinet, François 383
Presutti, Valentina 128

Reichert, Manfred 232, 248, 279
Reinhartz-Berger, Iris 455, 528
Ribó, Josep M. 544
Rinderle-Ma, Stefanie 232, 279
Rizopoulos, Nikos 542
Roantree, Mark 518
Roitman, Haggai 538
Romero, Oscar 534
Ruhroth, Thomas 526
Rundensteiner, Elke A. 524

Saleem, Khalid 341
Sanz, Ismael 514
Schenk, Simon 484
Schildhauer, Mark P. 41
Schneider, Michel 383
Sheth, Amit 12
Silva Parreiras, Fernando 484
Simitsis, Alkis 440
Smith, Andrew 542
Song, Il-Yeol 114, 369, 522
Staab, Steffen 484

Tao, Cui 532
ter Hofstede, Arthur H.M. 199
Thalheim, Bernhard 520
Tijerino, Yuri 532
Toch, Eran 528
Toval, Ambrosio 530
Trujillo, Juan 426

Vassiliadis, Panos 440
Vassiliou, Yannis 440
Vicente-Chicote, Cristina 530
Voigt, Hendrik 526

Wagner, Gerd 83
Wand, Ohad 540
Wand, Yair 540
Wang, Haixun 294
Wang, Min 294
Watts, Robby 532
Weber, Barbara 232, 279
Weske, Mathias 536
Wieringa, Roel 216
Winter, Andreas 484
Wombacher, Andreas 248
Woo, Carson 540
Woodbury, Charla 532

Yoshikawa, Masatoshi 183

Zeni, Nicola 154
Zhou, Lizhu 469, 516
Zitzelberger, Andrew 532

	Title Page
	Preface
	Program Chairs’ Message
	ER 2008 Conference Organization
	Table of Contents
	Conceptual Modeling Meets the Human Genome
	Will Genome Conceptual Modelling Really Make Things Better?
	A Conceptual Schema for the Human Genome
	A Model for Chromosomes
	A Conceptual Schema Proposal for the Human Genome

	Conclusions
	References

	Relationship Web: Spinning the Web from Trailblazing to Semantic Analytics
	References

	PIM Meets Web 2.0
	Introduction
	Data Management for Web 2.0
	PIMSystems
	Integrating PIM and Web 2.0
	Conclusions
	References

	Developing Preference Band Model to Manage Collective Preferences
	Introduction
	Preliminaries
	The POM Operators
	Implementation Issues
	Phase 1: How to Obtain and Store POMs?
	Phase 2: How to Use the POM Operators to Formulate Queries?
	Phase 3: How to Generate Preference Bands?

	Applications of Preference Bands
	Related Work
	Concluding Remarks
	References

	A Conceptual Modeling Framework for Expressing Observational Data Semantics
	Introduction
	Modeling Observational Data
	Observation Instances
	Observation Types and Models
	Annotation
	Data Summarization

	Related Work
	Summary and Future Work
	References

	Towards a Compositional Semantic Account of Data Quality Attributes
	Introduction
	Motivating Examples
	Nature of Data Quality
	Nature of Senses
	Defining Data Quality
	Symbol Aspect
	The Meaning Aspect
	The Purpose Aspect
	The Trust Aspect

	Mapping Data Quality Attributes
	Accuracy, Precision and Currency
	Relevance, Completeness and Timeliness
	Reliability and Believability

	Related Work
	Conclusion
	References

	A Formal Model of Fuzzy Ontology with Property Hierarchy and Object Membership
	Introduction
	Background and RelatedWork
	Classical View of Concept Representation in Cognitive Psychology
	FormalModels of Fuzzy Ontology

	Limitations of Previous Models
	A Novel Formal Model of Fuzzy Ontology with Property Hierarchy
	A Conceptual Model of Fuzzy Ontology
	Two Kinds of Measurements of Objects Possessing Properties
	Concepts Represented by N-Properties and L-Properties

	Fuzzy Membership of Objects in Concepts
	Measuring Degrees of Objects Possessing Defining Properties of Concepts
	Calculation of Object Fuzzy Memberships in Concepts

	An Illustrating Example
	Conclusion
	References

	What’s in a Relationship: An Ontological Analysis
	Introduction
	Background: The Unified Foundational Ontology (UFO)
	Tropes and Objects
	Qualia and Quality Structures
	Relations and Relators
	Universals

	An Ontological Foundation for Conceptual Modeling Relations
	Representing Formal and Material Relations
	An Alternative to Association Classes

	A Critical Comparison to the BWW Approach
	Final Considerations
	References

	An Upper Level Ontological Model for Engineering Design Performance Domain
	Introduction
	Modeling Requirements
	Related Work and Modeling Choices
	PSI Upper Level Ontology
	Ontology Engineering Methodology
	Ontology Implementation and Evaluation
	Concluding Remarks and Outlook
	Bibliography

	A Multi-level Methodology for Developing UML Sequence Diagrams
	Introduction
	Research Setting and Related Literature Review
	A Multi Level SQD Development
	The Object Framework Level
	Responsibility Assignment Level
	Visual Pattern Level

	Conclusion
	References

	Content Ontology Design Patterns as Practical Building Blocks for Web Ontologies
	Introduction
	Background

	Content Ontology Design Patterns (CPs)
	CP Creation and Usage
	CP Creation
	The Information Realization CP
	The Time Indexed Person Role Pattern
	CP Usage

	Conclusion and Remarks
	References

	Quality Patterns for Conceptual Modelling
	Introduction
	State of the Art
	The Quality Driven Approach
	Quality Patterns and Design Patterns
	Quality Pattern
	Design Pattern

	Quality Pattern Driven Conceptual Modelling Process
	Quality Attributes Specification Phase
	Quality Measurement Phase
	Quality Improvement Phase
	A quality Driven Scenario

	Conclusions
	References

	Automating the Extraction of Rights and Obligations for Regulatory Compliance
	Introduction
	Complexity of Regulatory Texts
	Semantic Annotation Process
	The Cerno Framework
	Gaius T. for HIPAA
	Gaius T. for Italian Regulations

	Empirical Evaluation
	The HIPAA Document
	The Italian Accessibility Law

	Related Work
	Conclusions
	References

	Location-Based Software Modeling and Analysis: Tropos-Based Approach
	Introduction
	Location Variability and Location-Based Software
	Tropos for Location-Based Software
	Location-BasedTropos
	Reasoning on Location-Based Models
	Conclusions and Future Work
	References

	Risk Evaluation for Personal Identity Management Based on Privacy Attribute Ontology
	Introduction
	Risk Evaluation for Personal Identity Management
	JNSA Privacy Risk Evaluation
	Risk Evaluation at Identity Provider
	Risk Evaluation Using Privacy Attribute Ontology

	Modeling Privacy Attribute Ontology
	Matching PAO and Requested Attributes
	Matching Problems
	Linguistic Similarity

	Matching Algorithms
	Component Integrity and Two-Level Matching
	Combination Risk Class and Inhibitor
	Finding Optimum Matching

	Conclusion
	References

	Beyond Control-Flow: Extending Business Process Configuration to Roles and Objects
	Introduction
	Background and RelatedWork
	Integrated Process Modeling
	Configurable Process Modeling

	Working Example
	Exploring Integrated Process Configuration
	Correctness and Configuration of Integrated Process Models
	Integrated Business Process Model
	Integrated Process Configuration

	Conclusion
	References

	Value-Driven Coordination Process Design Using Physical Delivery Models
	Introduction
	Running Example
	Value Modeling
	Cross-Organizational Case Coordination
	Physical Delivery Modeling
	Physical Objects and Their Delivery
	Delivery Scenarios
	Types of Deliveries
	Frequency and Duration Properties
	Cardinality Properties
	Semantic Relation between Value–, Delivery– and Coordination Models

	Coordination Modeling
	Discussion and Further Work
	References

	Relaxed Compliance Notions in Adaptive Process Management Systems
	Introduction
	Backgrounds
	Revisiting Instance Compliance in Adaptive PAISs
	Compliance Class TC: Traditional Compliance
	Compliance Class LTC: Loop-Tolerant Compliance
	Compliance Class RLC: Relaxed Loop-Tolerant Compliance
	Relation between Compliance Classes

	On Dealing with Non-compliant Process Instances
	Relaxing Compliance
	Treatment within One Compliance Class

	The Data Consistency Problem
	Example and Practical Impact
	Related Work
	Summary and Outlook
	References

	On Measuring Process Model Similarity Based on High-Level Change Operations
	Introduction
	Backgrounds
	High-Level Change Operations
	Complementary Nature of Change and Execution Logs
	Why Do We Need High-Level Change Operations?
	The Challenge to Derive High-Level Change Operations

	Detecting the Minimal Number of High-Level Changes
	General Description of Our Method
	Determining Required Activity Deletions and Insertions
	Determining Required Move Operations
	Coping with Silent Activities
	Summary

	Related Work
	Summary and Outlook
	References

	Recommendation Based Process Modeling Support: Method and User Experience
	Introduction
	Related Work
	Running Example
	Semantic Annotation of Business Process Models
	Searching for Process Fragments
	Ranking of Recommendations
	Evaluation
	Conclusion and Future Work
	References

	On the Formal Semantics of Change Patterns in Process-Aware Information Systems
	Introduction
	Backgrounds
	Basic Notions
	Process Changes and Adaptation Patterns

	Semantics-Based Patterns Classification
	Formalization of Adaptation Patterns
	Basic Notions
	Adaptation Pattern Semantics

	Related Work
	Summary and Outlook
	References

	Modeling and Querying E-Commerce Data in Hybrid Relational-XML DBMSs
	Introduction
	Data Modelling
	Finding the Shared XML Tree
	Finding the Differences

	Query Processing
	E-Catalog Maintenance
	Experiments
	Related Work
	Conclusion
	References

	Approximate Probabilistic Query Answering over Inconsistent Databases
	Introduction
	Preliminaries
	Repairing
	Querying
	Conclusions
	References

	Conjunctive Query Containment under Access Limitations
	Introduction
	Preliminaries
	Containment under Access Limitations
	Decidability and Complexity
	Related Work
	Conclusions
	References

	Automatic Extraction of Structurally Coherent Mini-Taxonomies
	Introduction
	Ontology Engineering Overview
	Related Work
	Our Approach: ExSTax
	Definitions
	Scope Properties
	Architecture
	ExSTax Algorithm and Data Structures

	A Mini-Taxonomies Extraction Example
	Evaluation
	Conclusion and Future Work
	References

	Analysis and Reuse of Plots Using Similarity and Analogy
	Introduction
	Basic Concepts and Techniques
	Informal Characterization of the Basic Concepts
	Formal Characterization of the Basic Concepts
	Extracting Indexed Plots from a Log

	Using Similarity to Organize and Reuse Plots
	The Notion of Plot and Indexed Plot Similarity
	Indexed Plot Libraries

	Plot Analogy
	The Notion of Plot Analogy
	Reusing Plots from the LTP across Domains by Analogy

	Concluding Remarks
	References

	Discovering Semantically Similar Associations (SeSA) for Complex Mappings between Conceptual Models
	Introduction
	Related Work
	Conceptual Models (CMs) and Mappings between CMs
	Principles for Mapping Discovery
	Mapping Discovery Algorithm
	Experimental Results
	Conclusions
	References

	An Adverbial Approach for the Formal Specification of Topological Constraints Involving Regions with Broad Boundaries
	Introduction
	Objects with Vague Shapes
	Categorization of Spatial Objects with Vague Shapes
	Regions with Broad Boundaries and Their Topological Relations

	Specification of Topological Constraints in Spatial Databases
	Integrity Constraints in Spatial Databases
	OCL and Spatial OCL

	Adverbial Spatial OCL for Objects with Vague Shapes (AOCLOVS)
	Example in Agricultural Spreading Activities
	Formal Expression of Constraints
	Implementation of AOCLOVS
	Conclusion
	References

	Capturing Temporal Constraints in Temporal ER Models
	Introduction
	Background
	The $\'TimeER$ Model
	The Surrogate-Based Relational Model

	Motivating Example
	Introducing New Temporalities in \TimeER
	Key Constraints
	Time-Invariant Attributes
	Time-Invariant Relationships
	Superclass/Subclass Participation Constraints

	Semantics
	Semantics of the Temporal Key Constraint

	Summary and Research Directions
	References

	Temporal Constraints in Non-temporal Data Modelling Languages
	Introduction
	Models and Schemas
	Temporal Constraints
	Monogamy and Lifetime Monogamy
	One-Off
	Final

	Related Work
	Summary and Conclusions
	References

	Integrated Model-Driven Development of Goal-Oriented Data Warehouses and Data Marts
	Introduction
	Background
	Integrated Development of Model-Driven Goal-Oriented Corporate Data Warehouses and Data Marts
	Goal-Oriented Reasoning for Conforming Data Marts
	Conceptual Modeling of the Data-Warehousing Architecture
	Conceptual Modeling Mapping: From Goals to Data Structures

	Development Platform and Implementation
	Related Work
	Conclusion
	References

	Design Metrics for Data Warehouse Evolution
	Introduction
	Graph Based Modeling for Data Warehouses
	Evolution in Data Warehouses
	Metric Suite
	Degree-Related Metrics
	Entropy – Based Metrics

	Evaluation – Experiments
	Effectiveness of the Proposed Metrics
	Comparison of Alternative Design Configurations

	Conclusions
	References

	A Domain Engineering Approach for Situational Method Engineering
	Introduction
	Literature Review
	ADOM and OPM
	ADOM-SME and Its Supported Activities
	The Methodology Layer in ADOM-SME
	The Endeavour Layer in ADOM-SME
	Retrieving and Tailoring Method Components in ADOM-SME

	Conclusions and Future Work
	References

	\Retune: Retrieving and Materializing Tuple Units for Effective Keyword Search over Relational Databases
	Introduction
	Related Work
	Materializing Tuple Units
	Notations
	Tuple Units
	Views and Tuple Units

	Indexing and Ranking
	Structural Relevance Ranking
	Indexing

	Experimental Study
	Search Efficiency
	Search Quality

	Conclusion
	References

	Model Driven Specification of Ontology Translations
	Introduction
	Running Example and Requirements
	A Model Driven Framework for Ontology Translations
	Concrete Syntax
	Metamodels
	Model Libraries
	Semantics
	Ontology Translation Process
	Implementation

	Application
	Requirements Evaluation and Discussion
	Related Works
	Conclusion
	References

	Dealing with Usability in Model Transformation Technologies
	Introduction
	Usability Modelling in the Literature
	MDA Environments
	Projecting Usability to an MDA-Based Method
	A Practical Application in the OO-Method
	The OO-Method, an MDA Environment
	Dealing with Usability in the OO-Method

	Conclusions
	References

	Ontology Coordination: The iCoord Project Demonstration
	References

	Designing Similarity Measures for XML
	Introduction
	Outline of the Demonstration
	References

	SESQ: A Model-Driven Method for Building Object Level Vertical Search Engines
	Introduction
	Demonstration Plan
	References

	HealthSense: An Application for Querying Raw Sensor Data
	Background
	The HealthSense Demonstration
	The Sensor Devices
	Data Extraction, Enrichment and Integration

	References

	Visual SQL: Towards ER-Based Object-Relational Database Querying
	References

	SAMSTAR: An Automatic Tool for Generating Star Schemas from an Entity-Relationship Diagram
	Introduction
	The System Architecture
	Demonstration Plan
	References

	Constraint-Aware XSLT Evaluation
	References

	A Quality Circle Tool for Software Models
	Introduction
	Quality Circle
	References

	Generating and Optimizing Graphical User Interfaces for Semantic Service Compositions
	Background
	Optimization by Model Transformation
	References

	REMM-Studio$\^+:$ Modeling Variability to Enable Requirements Reuse
	Motivation for Building REMM-Studio$\^+$
	Requirements Reuse in REMM-Studio$\^+$
	Modeling for Reuse in REMM-Studio$\^+$
	Modeling by Reuse in REMM-Studio$\^+$

	References

	A Conceptual-Model-Based Computational Alembic for a Web of Knowledge
	MDBE: Automatic Multidimensional Modeling
	Introduction
	A MDBE Overview
	Reference

	Oryx – Sharing Conceptual Models on the Web
	References

	Providing Top-K Alternative Schema Matchings with \OntoMatcher
	References

	Role and Request Based Conceptual Modeling – A Methodology and a CASE Tool
	References

	AutoMed Model Management
	Introduction
	Demonstration
	References

	QUINST: A Metamodeling Tool
	Introduction
	The Modeling Methodology
	The Metamodeling Tool
	Conclusions
	References

	An Implementation of a Query Language with Generalized Quantifiers
	Generalized Quantification
	Implementation to Be Demonstrated
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

