
K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 874–888, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Ontology Guided Evolution of Complex Embedded
Systems Projects in the Direction of MDA

Lars Pareto1, Miroslaw Staron1, and Peter Eriksson2

1 IT University of Göteborg, 412 96 Göteborg, Sweden
{lars.pareto,miroslaw.staron}@ituniv.se

2
 Ericsson Software Research, Ericsson AB, Sweden

peter.r.eriksson@ericsson.com

Abstract. Implementation of MDA in large, product developing organizations
involves changing processes, practices, tools, and communication infrastruc-
tures. The paper presents a case study, in which modeling related needs of a
unit within Ericsson were compared to features of current and envisioned MDA
tools, using qualitative methods. The paper’s main contribution is an ontology
defining areas and sub-areas of improvement associated with the introduction of
MDA in complex embedded systems projects. The ontology is grounded in in-
terviews with senior modellers at Ericsson and in survey publications from
within the field of MDA. It identifies 26 improvement areas concerned with
model content, modeling activities, and the management of modeling projects.
The ontology has been presented to stakeholders within the unit studied, with
positive feedback: appreciated were its groundedness, traceability, holistic
scope, and potential as platform and checklist for several recurrent analysis and
communication tasks related to software process improvement within Ericsson.

1 Introduction

To implement MDA in a large organization with products on the market is, in many
senses, a wicked problem [1]: required changes are plentiful and interrelated; data on
which to base estimates of costs, benefits and risks are scarce; the implementation target
is moving. Yet, many companies realize that their future software development requires
better utilization of modeling technologies—they are just unsure about the path.

The purpose of this paper is to support organisations in this situation—large, prod-
uct developing companies that strive to increase their use of modeling in the direction
of the MDA vision, but whose decision making regarding this stutter because of too
many risks and constraints.

The paper approaches this problem from the perspective of practicing software en-
gineers in commercial, complex embedded systems projects, already using UML for
informal modeling. Our view of such projects is captured by the conceptual frame-
work in Fig. 1: we view software as produced by engineers in specialized roles (Re-
quirement engineer, etc.), who are steered by processes (defining who should produce
what when for whom), and who communicate under the constraints of a communica-
tions infrastructure (consisting of model repositories and tools); the project is steered
by business goals (such as reducing the time to market for new products) and subject

 Ontology Guided Evolution of Complex Embedded Systems Projects 875

to business constraints (such as bounds on development costs). We view project im-
provement as the matter of engineering features of internal processes and infrastruc-
ture towards several requirement sources (needs of every role, business goals, and
business constraints), utilizing features of modeling technologies and process frame-
works developed outside the project. By complex embedded system we mean a large,
special purpose, real-time, multiple processor, computer system that is part of a lar-
ger, technical system.

Fig. 1. Improvement variables in complex embedded systems projects

The research question addressed in this paper is which improvement areas projects of
this kind face when implementing MDA. Put precisely: which areas of improvement do
requirement engineers, system engineers, architects, designers, developers, and test
engineers, developing and maintaining complex embedded systems, need to be con-
cerned with when proceeding from informal UML-based software development to
MDA? By MDA, we mean the use of domain specific UML dialects and model trans-
formations for specification and realization of software. (Stahl [2] gives an overview.)

The paper addresses this question by an exploratory, holistic, single case, case
study [3]. The unit of study is a subproject within Ericsson developing embedded
software for a constituent part of a mobile-communications-network product. The
main outcome of the study is an ontology defining improvement areas associated with
the introduction of MDA in complex embedded systems projects.

The paper is organised as follows: we describe our research design (Sec. 2), our
case (Sec. 3), our study of this case (Sec. 4–5), the ontology resulting from this study
(Sec. 6), and the use of it in process evolution (Sec. 7); we discuss limitations of our
study (Sec. 8), and related work (Sec. 9); finally, we summarize or findings and draw
conclusions about the approach (Sec. 10).

876 L. Pareto, M. Staron, and P. Eriksson

2 Research Design

Our epistemological position is interpretative research [4]; our research strategy is
qualitative research [5]; our data analysis method is grounded theory in the tradition
of Strauss [6]. The research design is outline in Fig. 2. Data collection has proceeded
by semi-structured interviews and selection of written sources from within the model-
ing research community. Data analysis techniques used are open coding (conceptuali-
zation of data sources using descriptive codes), categorization (grouping of codes
with commonalities into categories), and axial coding (relating categories to subcate-
gories). Our application of these techniques has been guided by technology roadmap-
ping [7] (that emphasizes the modeling of needs and technological options in a
common framework). The analysis outcome is a simple, informal ontology with in-
clusion hierarchy [8] (also known as a taxonomy) characterizing areas and sub-areas
of improvement associated with the introduction of MDA in complex embedded sys-
tems projects. Analytic generalization [3] has been used to obtain an ontology pre-
sumably useful for complex embedded systems projects in general. The ontology’s
validity relies on the grounded approach and feedback from practitioners.

Fig. 2. Research design

Research has been collaborative [9], and involved three Ericsson insiders (a senior
technical specialist, a software architect, and a project manager), and two outsiders
(one software engineering researcher with a background in stereotype-based language
customization, and another with a background in software quality and programming
language semantics). Insiders have facilitated the study, defined the problem, set the
scope, selected informants, and given recurring feedback on the study’s development;
outsiders have designed the study, conducted data collection and analysis, framed the
study, and communicated the results.

Our choice of a single case case-study is partly due to the revelatory nature [3] of
our research question (we seek to elicit areas of software process improvement in a
certain situation, rather to confirm or refute an hypothesis), and partly due to our use
of enquiry based qualitative research (which is limited to small samples): distributing
available resources over the study of several cases had been at the cost of penetration
of individual level needs and inconsistent with our choice of method.

The particular unit was chosen because the Ericsson insiders were familiar with,
and had a direct stake in improving this unit: this improves the quality of sampling,
the data analysis, and eases the validation results (compared to the choice of some
unfamiliar unit).

 Ontology Guided Evolution of Complex Embedded Systems Projects 877

3 The Case and Its Context

Ericsson has a long tradition in model driven development: the use of software mod-
els with associated semantics dates back to 1967, with the AKE switch, first delivered
in 1971, built using such [10]. Ericsson contributed to development of SDL [11] dur-
ing the 70s, and applied SDL extensively during the 80s; use case based modeling
was pioneered by Ericsson in the 80s [12]; in the 90s, Ericsson was an early adopter
of RUP [13]; today, MDD plays a central role in several Ericsson product lines, and
model based software engineering is recognized as a prioritized area of improvement.

The project, to which the unit belongs, uses UML for requirements modelling, sys-
tem design, systems architecture work, software architecture-work, detailed software
design, and software implementation. Other notations are also used: requirement
engineers also use textual use cases and supplementary requirements specifications;
hardware designers use block diagrams, and Mealy/Moore state machines (of their
trade). Where UML is used, it is often complemented with text based notations, e.g.,
for signal and protocol specification, and with informal text-based specification
documents for aspects not easily expressed in standard UML, e.g., non-functional
requirements or configurations.

The unit operates in the following technical context: it develops the software part
of a subsystem; the software runs on in-house developed, multi-processor hardware
(involving digital signal processors, field programmable gate arrays, and ordinary
processors); it is subject to real-time constraints (response time, throughput, and space
bounds), compatibility constraints (RTOSes and in-house developed platforms), and
special run-time requirements (monitoring, configuration, upgrading, and rollbacks).

The project has a conventional line organisation. The unit itself has approximately
100 engineers situated on a single location; the whole project is much larger and dis-
tributed over several locations. The unit is divided into six sub-units: two responsible
for software specification, three for software implementation and maintenance, and
one for integration and validation.

4 The Unit’s Needs

4.1 Interviews with Engineers

Informants were selected by the insiders, using the following criteria: the scope of
their experience should be wide; they should have worked with model driven devel-
opment in their daily work, they should understand model driven development from
the perspective of several roles (and those of architects and designers in particular).

The enquiries were semi-structured interviews revolving around the following set
of questions:

What, do you think, Ericsson hopes to achieve by model driven development?
Do you believe in this for Ericsson as a whole / for your project / for your role?
What improvements of your project do you spontaneously associate with model
driven developments? Which deteriorations do you associate? Is there some slave-
work / double work, do you think, that could be automated/eliminated? Do you see

878 L. Pareto, M. Staron, and P. Eriksson

any obviously inefficient practices that ought to be improvable? What’s your view
on the use of modelling for the activities in this list: requirements work, architec-
ture work, detailed design, estimation, function testing, subsystem testing, docu-
mentation work, maintenance, code generation, configuration/run-time-use, change
request handling, defect handling? How could modelling be used in the near fu-
ture? Do you have any vision for your own, work/for the work of others? Are you
aware of any modelling success stories inside or outside Ericsson?

Questions were designed to, in an non-leading way, bring out the personal attitude
and perceived goals of model driven development, to trigger an open-ended explora-
tion of the informants perceived own needs, those of others, and company objectives.
To avoid discussions on the differences between MDA and model driven develop-
ment, questions purposely referred to the latter. The need for MDA was probed for
indirectly, through questions to reveal a need for automation.

Interviews lasted 1-2h each, and the resulting transcriptions amounted to 60 pages
of 10 pt, singly spaced text files. A summary of the interviews is given in Table 1. In
addition to the interview transcripts (S1,...,S4), notes from a preparatory meeting, in
which four designers discussed what to bring forward in an upcoming meeting with a
tool vendor, was added as a supplementary data sources for needs (S5).

4.2 Interpretation of Interviews

Interview transcripts were coded in search for needs—a concept prevalent in technol-
ogy roadmapping—in a broad sense: we included direct needs expressed by the in-
formants themselves and indirect needs inferred from their descriptions of situations
or problems; in addition to unsatisfied needs, we included satisfied needs, not to be
overlooked in process change; we included realistic needs whose satisfaction seemed
plausible as well as wishful needs whose satisfaction seemed to require advances
beyond state of the art. The scope of the identified needs was model based software
engineering and management, which is a larger scope than MDA technologies, but
necessary to consider when implementing MDA.

To make the set of needs intellectually manageable and to facilitate communication
of our results to non-analysts within Ericsson, interpretation was subject to the follow-
ing principles, which emerged during the interpretation: each need should be (1) abstract
enough to fit on a single line, but (2) concrete enough to suggest a specific improvement
(or a set of specific improvements); (3) needs shall be distinct, by which we mean that
all passages in the data sources referring to the same phenomenon are represented by a
single need; (4) unless 2 is violated, similar needs should be coalesced into one more
abstract needs; (5) needs that apply to several roles should be generalized into such.

We illustrate the interpretation process and these principles through the need
Subsystem level cohesion analysis

which is the analysts interpretation of the following two passages of text (in their
contexts):

 “It’s like, should I introduce a new compo-
nent, or should I put the function into this old
one”

 “we really tried to understand the problem
[...] to avoid the solution from being too
scattered”

 Ontology Guided Evolution of Complex Embedded Systems Projects 879

This need is indirect: from a particular work situation, the analyst has recognized
that engineers are concerned with component cohesion, concluded that analytic tools
for reasoning about cohesion would be helpful, and phrased this as a need; later, the
phenomenon has reappeared in a slightly different work context, similar enough to be
an instance of the same need (possibly along with other needs). The need is unsatis-
fied: the unit’s engineers do not use tools for cohesion analysis in their daily work.
The need is realistic: several theories and tools for cohesion analysis of models are
available.

Further, the need satisfies principles 1–5: it is short, it points into a concrete domain,
i.e., model quality metrics, it represents several instances of the phenomenon in the text,
and it entails needs of architects and designers. The need could be further improved with
respect to principle 5 by removing the restriction to subsystem level, as cohesion analy-
sis is a likely concern at the system and implementation levels too.

In all, 269 distinct needs were identified in 36254 words originating from 7
engineers in 3 roles, at system (S) and subsystem (SS) level. The number of inferred
needs and examples of needs for each data source are given in Table 1. (Some needs
were mentioned by several informants, and one informant represented in two data
sources, which is why summing columns 3 and 5 results in larger numbers than those
above.)

Table 1. Some of the Unit's needs and the underlying data sources

S1 May 14, 2007 Architect (SS) 14 588 words; 20 pages 143 needs
Subsystem design- and implementation models shall be distinct. E-sketching using UML. UML for use
case analysis. UML for reverse engineering. UML for refactoring. OO framework design supported by
workflow. Deployment modeling. Implementation modeling should be optional. …
S2 May 16, 2007 System Eng (SS) 8 297 words; 11 pages 67 needs
Open formats for models. Tool integration flexible. Vendor independence. Documentation globally search-
able. Documentation should be structured for large information volumes. Baseline handling for reading
users should be simple. Requirements tracing from model. Model oriented description at system level. Text
search into model database should be global. ...
S3 May 16, 2007 Developer (SS) 11 994 words; 17 pages 85 needs
Subsystem level analysis modelling. Subsystem level cohesion analysis. Subsystem level architecture
knowledge among designers. Analysis modeling and implementation modeling shall be distinct.
Education in work-task specific modelling. Clear separation between specification and white box interface
synchronization.
S4 July 7, 2007 Architect (S,SS) 845 words; 2 pages 18 needs
Better definition which elements are in diagrams. Overview mechanisms for complex models. Links be-
tween information in legacy elements and system model. Improved inspections of models. Guidelines for
managing documentation update. Auto-generation of documents from design models. Guidelines for model
walkthroughs. Specifications written at the same level of abstraction. Single point of adding information in
model. System model is the primary source of information. ...
S5 April 27, 2007 1 Sys., 3 Dev. (SS) 510 words, 8 pages 22 Needs
Better definition which elements are in diagrams. Overview mechanisms for complex models. Links be-
tween information in legacy elements and system model. Improved inspections of models. Guidelines for
managing documentation update. Auto-generation of documents from design models. Guidelines for model
walkthroughs. Specifications written at the same level of abstraction. Single point of adding information in
model. System model is the primary source of information. Requirements modeling using deployment
diagrams. System model is the primary source of information. Align legacy documents and new tooling. ...

880 L. Pareto, M. Staron, and P. Eriksson

Fig. 3. Categorization process (left) and outcome (right)

4.3 Categorization of Needs

The categorization of the needs was iterative, incremental, and interleaved with the
interpretation of needs and the categorization of features (left part of Fig. 3): codes
resulting from an initial interpretation of the transcripts (leftmost grey arrow) were
grouped into areas of improvement (leftmost black arrow) and named; categories
were then restructured and renamed (leftmost circulation-symbol) for consistency
with those emerging from the analysis of the survey publication, which was con-
ducted in parallel; categorisation and restructuring were repeated several times, when
new data sources were interpreted or old data sources re-interpreted.

To make the category system suited for process improvement work (i.e., comprehen-
sible, credible, maintainable, and usable) categorization was subject to the following
principles: (1) categories should have concrete, suggestive names capturing the underly-
ing phenomena (rather than abstract names capturing too much); (2) categories should
be given meaning by characterizing definitions along with traceable connection to the
underlying data sources; (3) categories should be coarse enough to allow quick classifi-
cation of needs; (4) within categories, sub-categories should be used to group elements
with closer relationships to each other; (5) categories should be general enough to serve
as containers for both needs and features (thereby making needs and features easier to
compare); (6) deep-hierarchies should be used sparingly (as an overuse makes category
system difficult to comprehend and maintain); (7) categories should be role centric (to
make the responsibility for satisfying needs more clear).

The categorization process involved (in addition to the grouping of needs and in-
troduction of names and characterizing definitions) coalescing, subdividing, widen-
ing, narrowing, and renaming categories; it involved re-categorization and renaming
of codes to better realize interpretation and categorization principles.

The process eventually resulted in the ontology outlined in the right part of Fig. 3
(and which is further described in Section 6). Improvement areas are found at four
levels of abstraction: 3 general areas, 26 areas, 80 subareas, and 269 needs.

 Ontology Guided Evolution of Complex Embedded Systems Projects 881

5 Features of MDA Technologies and Processes

5.1 Literature Search

The literature study addressed the following main question:

Which are the features of current and envisioned MDA processes and tools?

Sampling was restricted to survey publications; these were selected to cover both
technical and managerial aspects from the perspectives of modeling researchers, mod-
ellers in industry, and suppliers of modeling tools. An overview of the publications
used in our analysis is given in Table 2.

5.2 Interpretation of Survey Publications

Interpretation of survey publications used the following principles: (1-5) principles
similar to the five used in the interpretation of transcripts; (6) process features with no
other distinct phenomena than the use of a technology feature, should be implicitly
defined by the latter; (7) process and technology features should not be kept apart. We
motivate 6 by the following example of two possible features:

“Automated model metrics is used” (Process feature)
“Automated model metrics” (Technology feature)

Any technology feature has an obvious corresponding process feature, whose pres-
ence would clutter the ontology through redundance. We motivate 7 by the following
process feature:

“Software product lines” (Process feature and technology feature)

This feature comes with certain commitments to both process (configuration is done
by compilers rather than people) and technology (feature diagrams, connected to
model to model transformations, and composition infrastructure in certain ways), thus
it is a compact carrier of both concerns. Encouraging analysts to view all codes from
both angles gives a more compact representation better coverage, and quicker classi-
fication compared to keeping process and technology features apart.

Interpretation of the survey publications, along these principles, resulted in 214
features, some of which are given in Table 2.

Table 2. Process- and technology features and the underlying data sources

S6 MDD practices within Mototorola [14] 39 features
Data reuse between design and testing activities. Testing by co-simulation. Automatic test generation.
Automatic code generation. Standardized and non-proprietary modeling languages....
S7 MDD research roadmap [15] 61 features
Models describe the system at multiple levels of abstraction. Formal semantics. Generation of con-
figuration files. Synchronization transformation (Model-Code). Verification by simulation modelling. ...
S8-10 Modelware Metrics, Projects, Frameworks [16-21] 69 features
Maturity levels definition. Models used for production of documentation. Platform independent and
platform specific models separate. Generation of implementation infrastructure....
S11 MDD technologies and tools [2] 30 features
Aspect models. Bidirectional transformation. Code and document generation automated.
Config. by feature models. Domain specific modeling. M2C weaving. ...

882 L. Pareto, M. Staron, and P. Eriksson

5.3 Categorization of Features

Categorization of features followed the same steps as, and was interleaved with, the
categorization of needs. Initially, separate category system were maintained, but dur-
ing the course of analysis the two were merged, for the following reasons: there was a
large overlap in concepts; a common system eliminated the task of relating the two
system and that of keeping them consistent; viewing needs and feature as members of
the same category had analytic power (it enabled the analyses describe in Section 7.2,
and simplified identification of sub-categories).

6 Ontology of MDA Implementation Improvement Areas

6.1 General Areas and Areas

The ontology is a hierarchy, in which general areas and areas form a tree, but in
which sub-areas crosscut (technically a graph). Each node consists of a name and
characterizing definition and is associated with a subset of all features and needs.
There is a strict inclusion order: any need or feature that belongs to a sub-area also
belongs to the ancestors of this node. The topmost two levels of the ontology, the
general areas and areas, are given in Table 3 on next page: the three general areas

Fig. 4. Histogram showing the distribution of the needs and features over modeling areas

 Ontology Guided Evolution of Complex Embedded Systems Projects 883

(Content, Activity, Management) are subdivided into 26 areas (Artefact content, etc.)
each with a characterizing definition of the areas concern. The number of needs and
features associated with each of these areas are given by the histogram in Fig. 4: the
area Artefact Content contains 31 needs and 32 features, etc.

Table 3. Improvement areas when implementing MDA in complex embedded systems projects

Content Activity Management
Information
in models

Operations
on models

Socio-technical aspects
 of modeling

Artefact content
The syntax and semantics
of the artefact kinds, and
their use.

Artefact linkage
How artefacts (models,
code, interface files,
scripts, metamodels, ...) at
different levels of model-
ing (requirements level,
system level, subsystem
level, implementation
level) in different activities
(specification, implemen-
tation, testing, documenta-
tion) should be linked.

Artefact versioning
Information related to the
evolution of models.

Editing
Reading, writing, modifying models.

Viewing
Navigating and searching own models and
those of others.

Code generation
Automatic production of programming
code in text based languages from models.

Report Generation
Automatic production of documentation,
and specifications from models.

Test Data Generation
Automatic generation of test scripts or test
data from models.

Model Transformation
Automatic transformation of models from
one kind or use to another kind or use.

Round Trip Engineering
Co-existing manual development of mod-
els and code.

Compiling/linking/tracing code
Integration of models with their target
system incarnations.

Reverse Engineering
Creation of model from source code.

Reuse
Libraries of models and patterns.

Verification - rule checking
Well-formedness of models wrt. rules.

Verification - metrics analysis
Computation of model metrics.

Verification – simulation
Off-line execution of models.

Model based analysis
Use of models to reason about the system
built or the project building it.

Infrastructure
Servers and tools for producing us-
ing/sharing/reusing/distributing/archiving
models/artifacts and the integration of
these.

Process
Who should produce what model when for
whom.

Strategies
Tactics for introducing, executing, and
optimizing the use of modeling.

Knowledge development
Education (in tools, practices, abstract
thinking) and internal knowledge transfer
(of technologies, architectural principles,
design rules).

Communication
Exchange of information between roles.

Commitment
Managers and engineers engagement in the
introduction and improvement of modeling.

Culture
Relative values of artefacts, roles, and tasks
among managers and engineers.

 External Relations
The technology suppliers’ responsiveness to
organization’s needs; negotiation position.

Business drivers
Economical incentives for using model
driven development instead of something
else.

884 L. Pareto, M. Staron, and P. Eriksson

Subareas
The third level of the ontology, the subareas, is given in Table 4 for the general area
Content:

Table 4. Improvement subareas for the artefact-content, -linkage, and -versioning areas

Content
Artefact
Content

Artefact
Linkage

Artefact
Versioning

Artefact Kinds
The type of diagrams used (class-
, sequence-, timing-, etc.).

Abstraction
The levels of abstraction at
which the diagrams are used;
whether abstraction is respected.

Annotation
Information not intrinsically part
of the diagram (e.g., links and
author tags).

Modeling Areas
What are diagrams are used for
(e.g., code generation, design).

Modeling Tasks
Specific tasks that require spe-
cific content.

Artefact Semantics
Precision in and variability of
meaning.

Conventions
The uphold of good common
modeling practices.

Customization
Degree to which diagram-types
can be adapted to company
specific needs.

Degree of modelling
Degree to which modeling is put
to use in a certain area (infor-
mal, formal, executable, com-
plete, incomplete).

Connectivity/ integration
How diagrams are attached to
each other by the infrastructure.

Separation of Concerns
The degree to which aspect views
are distinguished in models.

Consistency
Syntactic consistency across
diagrams with respect to names
and structure.

Principality
The recognition of some linked
artefacts as authorative.

Pollution reduction
Stopping lower level concepts
from leaking into higher level
models.

Propagation
Changes to one model automati-
cally causing updates in other.

Isolation
The ability to restructure two
linked models at one end only.

Model-Code Interfacing
Embedding of models in code,
and the embedding of code in
models.

Access
Ease with which artefacts devel-
oped by other groups may be
obtained /updated.

Cohesion
The degree to which related
parts are held together.

Linkage visibility
Whether, how, and where links
appear in user interfaces.

Conflict avoidance/resol.
Detecting and handling concur-
rent changes in models.

Change book-keeping
Versioning information, e.g.,
tags, branches, log appears.

Change impact analysis
Detecting which artefacts in
which branches would be af-
fected by a change to one.

Baseline handling
Annotation of artefacts as be-
longing to baselines, and re-
trieval of such.

Access
Ease with which artefacts may be
obtained from own repositories
and those of other groups.

Branch & Merge
Forking, synchronizing tracks;
bringing tracks together.

Volatility
The recognition of some artefacts
as temporary throwaways.

Reuse
The distinction of artefacts as ge-
neral/special, shared/project-
specific and stable/changeful.

Granularity
Scope of syntactic units that are
versioned (Model tree, Diagram,
Single Transition).

Isolation
Repository structure constraining
the artefact structure.

 Ontology Guided Evolution of Complex Embedded Systems Projects 885

7 Ontology Guided Evolution

Our main use of the ontology has been in the context of technology roadmapping.

7.1 Technology Roadmapping

Technology roadmapping [7] is a technique widely used in industry for technology
strategy work. By a combination of analytical and collaborative activities, a time-
based chart comprising a number of layers representing both commercial and techno-
logical perspectives—a roadmap—is built and maintained. Our exploration of
technology roadmapping focussed on its analytical activities and relied on the ontol-
ogy in the following ways.

A roadmap was obtained by (1) categorization of needs and features along the tem-
poral dimensions in Table 5, and (2) by presenting needs and features in a matrix
display [22] with categories of Table 3 as rows, and those of Table 5 as columns.

Table 5. Temporal Categories used in Roadmapping

Done Piloted/planned Vision within WoW Vision beyond WoW
Needs already satisfied

within unit.
Needs soon to be

satisfied.
Needs whose solutions

are compatible with
present WoW.

Needs whose solutions
require major changes of
present ways of working.

67 needs 34 needs 107 needs 59 needs
Mature/straightforward Emerging Researched Vision

Features available in
shelfware / books or

whose implementation is
standard.

Features of tech-
nologies / proc-
esses with early
adopters in ind.

Features of technolo-
gies / processes that

have gained use in the
research community.

Features that are visions
even to researchers.

100 features 26 features 66 features 34 features

7.2 Ontology Based Analyses

We used the ontology in two analysis tasks associated with roadmapping: estab-
lishment of linkages [7] between needs and features, i.e., a relation defining which
needs are are supported by which features; identification of gaps [7] in sets of features
and needs, i.e., missing needs and features that would be present in an ideal roadmap.

Both linkages and gaps were established by crosswise comparison of needs and
features and incremental definition of a relation x isSupportedBy y, stating, for
example, that “feature selection tool support” isSupportedBy “software product
lines”. Linkages are the needs-feature pairs 〈x,y〉 associated by this relation. Gaps in
features manifest themselves as needs not linked to a feature, e.g., in our set of needs
and features, the need “fine grained version control” is not linked to a supporting feature,
which points out a potential gap in the feature set. Gaps in needs manifest themselves
as features not linked to a need, e.g., the feature “instance modelling of signals”, which has
proved valuable in contexts similar to that of the unit, did not support any need, thus
pointed out a potential gap in the set of needs.

Notice that what this detects are potential gaps in needs: it may well be that a fea-
ture is not needed; features solving a certain need may not have been invented yet. To
turn potential gaps into actual ones is always a matter of additional data collection and
interpretation.

886 L. Pareto, M. Staron, and P. Eriksson

7.3 Feedback from the Unit

The ontology has been presented to participants in, and closely related to, the unit at 7
occasions (Jun 06, Jun 18, Dec 13, Feb 20, Mar 14, April 11, April 22) in oral form
(workshops, seminars, presentations, status meetings) and in written forms (posters,
spreadsheets, slides), sometimes as categories sometimes in roadmap form.

The general feedback is that the approach is interesting and promising and that
strategy work at this level of detail would be a valuable supplement: inquiries and
qualitative data analysis is already used for improvement work, but not to this extent;
particularly appreciated was that needs and features are anchored in data sources, and
that the knowledge database is common, shared, and updateable.

Several work situations that could benefit from having an ontology were recog-
nized by the unit: engineers and managers could quickly get ideas about what is on
the market and what people would like to see in their processes; engineers and man-
agers communicating with tool vendors would have a checklist of requirement areas
and specific requirements to point at; process engineers could use the areas to subdi-
vide and coordinate process improvement efforts; technology boards would have a
good starting point for their analyses; engineers would find it easier to relate to tech-
nology strategy work. The approach was found promising not only for introduction of
MDA, but software process improvement work in general.

Naturally, there was also critique: acute needs that engineers face every day (such
as better layout-editors) tend to dominate over the long-term needs (such as better
separation of concern in models); the sheer size of the roadmap made it difficult to
comprehend; needs were too plentiful and detailed to guide improvement work; it
was not obvious how an ongoing analysis activity at this level of technical detail
would fit in the present organization; some unsatisfied identified were already satis-
fied in other units; the needs model was incomplete with respect to the project as a
whole; needs were not ranked according to benefits to the organisations (some would
lead to really big savings); to be really useful, a roadmap should also contain strate-
gic information telling what to improve next.

8 Threats to Validity

Our research design is sensitive to following sources of errors, many of which are
intrinsic to interpretative, case study research: (e1) both needs and features are dy-
namic entities, i.e., the ontology is an interpretation of a snapshot of a situation that
will change; (e2) needs-related sampling is restricted to 7 out of 100 engineers, so the
characterization of needs is hardly complete; (e3) feature-related sampling is restricted
to survey publications, thus recent advancements may not be represented; (e4) the
needs are influenced by the conceptions of the informants, and (e5) the analysts; (e6)
the features are influenced by the conceptions of the analysts, and (e7) the authors of
the survey publications; (e8) sampling and interpretation may be consciously or un-
consciously biased to researcher concerns; (e9) analytic generalization from a single
project within a single unit may yield an ontology incomplete with respect to im-
provement areas of other projects, and (e10) yield areas associated with the unit stud-
ied rather than complex embedded systems projects in general.

The following precautions have been taken to reduce the effect of these sources:
for e1, abstraction has been used (in the formulation of needs, features, and areas) to
eliminate conceptual details not likely to withstand time; for e2 we have chosen

 Ontology Guided Evolution of Complex Embedded Systems Projects 887

informants with long experience in modelling, a wide perspective of the problems,
and complementary views; for e3, we only chose (at the time) recent survey publica-
tions; for e4, we used open questioning from many perspectives and interpretation in
search for indirectly expressed needs; for e2-3 we developed a method to detect gaps in
roadmaps; for e5-6, needs, features, areas, and their relationships have been incremen-
tally modelled using a qualitative data analysis tools and a common case study data-
base shared by all analysts; analysts have met in four half-day sessions to discuss and
revise concepts; concepts have been put to test in three analysis tasks; for e7-8 emerg-
ing concepts have been presented to the unit, and the feedback taken into account. To
handle e9-10 requires a multiple case study, which is future work.

As for the validity of our approach: we have handled the critique of the roadmap
by positioning the use of our ontology in software process improvement work as a
well-developed starting points for recurring, organization specific ontology develop-
pment in a changing world, rather than a universal ontology carved in stone; to inves-
tigate whether recurring ontology development is a cost effective complement to
present process improvement activities is future work.

9 Related Work

The use of knowledge modeling techniques in software process improvement work is
standard (see [23] for an overview), as is the use of ontologies for knowledge model-
ing [24]. We are not aware of any ontologies that give an empirically grounded holis-
tic characterization of the improvement areas associated with introduction of MDA:
Lange identifies 8 areas of activities supported by UML modeling tools [20] (which
have been included in our ontology), but does not cover model content and manage-
rial aspects; Störrle identifies 6 general areas and 18 specific operations of models
[25], but does not characterize managerial and content aspects.

10 Summary and Conclusions

We have identified needs and features of concern to requirement engineers, system
engineers, architects, designers, developers, and test engineers, proceeding from infor-
mal UML-based software development to MDA in the context of complex embedded
systems development within Ericsson (Table 1–2). We have categorized the needs and
features found to obtain a simple, informal ontology that defines improvement areas and
subareas concerned with model content, modeling activities, and the management of
modeling projects (Table 3-4). We have exemplified how the ontology may be used for
roadmapping (Sec. 7.1), and defined methods to detect gaps in knowledge about fea-
tures and needs (Sec. 7.2). We have identified 4 specific work situations within Ericsson
that would benefit from using the ontology (Sec. 7.3). We have assessed the validity of
the ontology for practical use (Sec 8.) and found it to be relevant and potentially useful.
This, and experiences of ontology- driven and roadmap driven improvement work in
other fields, allow us to conclude that, with the provided ontology, analysis methods,
and underlying roadmap strategy at hand, MDA introduction in complex embedded
systems projects becomes easier than in the absence of these aids.

Future work includes refining categories to reduce conceptual overlap, testing the
ontology in actual software process improvement work, incorporating needs and fea-
tures relevant to other units and organizations, and studying the cost effectiveness of
the approach.

888 L. Pareto, M. Staron, and P. Eriksson

Acknowledgments. This work has been supported by Ericsson Software Research
through Ericsson’s Software Architecture and Quality Centre (SAQC).

References
1. Churchman, C.W.: Wicked problems. Management Science 14(4), 141–142 (1967)
2. Stahl, T., Völter, M.: Model-driven software development: technology, engi-

neerig,management. Wiley, Chichester (2006)
3. Yin, R.K.: Case study research: design and methods. Sage Publications, ThousandOaks

(2003)
4. Walsham, G.: Interpretive case studies in IS research: nature and method. Eur. J.Inf. Systs.

4(2), 74–81 (1995)
5. Wohlin, C., Höst, M., Henningsson, K.: Empirical research methods in softwareengineer-

ing. In: Empirical methods and studies in software engineering. LNCS,vol. 2765. Springer,
Heidelberg (2003)

6. Strauss, A., Corbin, J.: Basics of qualitative research: techniques and procedures for de-
veloping grounded theory. Sage Publications, Thousand Oaks (1998)

7. Phaal, R., et al.: Technology roadmapping –a planning framework for evolution and revo-
lution. Technological forecasting and social change 71, 5–26 (2003)

8. van Rees, R.: Clarity in the usage of the terms ontology, taxonomy and classification. In:
CIB workgroup 78 conference, Auckland, Australia (2003)

9. Adler, N., Shani, A.B., Styhre, A.: Collaborative research in organizations. Sage Publica-
tions, Thousand Oaks (2004)

10. Jacobson, I.: Object oriented software engineering: a use case driven approach. Addison-
Wesley, Reading (1992)

11. Rockstrom, A.S.: SDL-CCITT specification and description language. IEEE Transaction-
son communications 30(6), 1310–1318 (1982)

12. Jacobson, I.: Object-oriented development in an industrial environment. ACM SIGPLAN
Notices 22(12), 183–191 (1987)

13. Börjesson, A.: Making software process improvement happen, Doctoral dissertationIT
University of Gothenburg (2006)

14. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context -a Mo-
torola case study. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS,vol. 3713,
pp. 476–491. Springer, Heidelberg (2005)

15. France, R., Rumpe, B.: Model-driven development of complex software: a research road-
map. In: 29th Int. conf. on software engineering, Minneapolis, USA (2007)

16. FP6-IP 511731 MODELWARE D1.1-2 QoS Support in MODELWARE (2006)
17. FP6-IP 511731 MODELWARE D2.2 MDD Engineering Metrics Definition (2006)
18. FP6-IP 511731 MODELWARE D2.3 MDD Maturity Levels Definition (2006)
19. FP6-IP 511731 MODELWARE D2.5 MDD Engineering Metrics Baseline (2006)
20. FP6-IP 511731 MODELWARE D2.6 MDD Maturity Model (2006)
21. FP6-IP 511731 MODELWARE D2.8 MDD Process Framework (2006)
22. Miles, M.B., Huberman, A.M.: Qualitative data analysis. SAGE Publications, Thousand

Oaks (1994)
23. Komi-Sirviö: Development and evaluation of software process improvement methods.

Doctoral dissertation University of Ooulu (2004)
24. Djurić, D., Gašević, D., Devedžić, V.: Ontology modeling and MDA. Journal of bject

Technology 4(1), 109–128 (2005)
25. Störrle, H.: A PROLOG-based Approach to Representing and Querying UML Models. n:

Workshop on Visual Languages and Logic (VLL), Coeur d’Al`ene, Idaho, USA (2007)�

	Ontology Guided Evolution of Complex Embedded Systems Projects in the Direction of MDA
	Introduction
	Research Design
	The Case and Its Context
	The Unit’s Needs
	Interviews with Engineers
	Interpretation of Interviews
	Categorization of Needs

	Features of MDA Technologies and Processes
	Literature Search
	Interpretation of Survey Publications
	Categorization of Features

	Ontology of MDA Implementation Improvement Areas
	General Areas and Areas

	Ontology Guided Evolution
	Technology Roadmapping
	Ontology Based Analyses
	Feedback from the Unit

	Threats to Validity
	Related Work
	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

