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Abstract. Constructing and executing distributed systems that can adapt to their
operating context in order to sustain provided services and the service qualities
are complex tasks. Managing adaptation of multiple, interacting services is par-
ticularly difficult since these services tend to be distributed across the system,
interdependent and sometimes tangled with other services. Furthermore, the ex-
ponential growth of the number of potential system configurations derived from
the variabilities of each service need to be handled. Current practices of writing
low-level reconfiguration scripts as part of the system code to handle run time
adaptation are both error prone and time consuming and make adaptive systems
difficult to validate and evolve. In this paper, we propose to combine model driven
and aspect oriented techniques to better cope with the complexities of adaptive
systems construction and execution, and to handle the problem of exponential
growth of the number of possible configurations. Combining these techniques
allows us to use high level domain abstractions, simplify the representation of
variants and limit the problem pertaining to the combinatorial explosion of pos-
sible configurations. In our approach we also use models at runtime to generate
the adaptation logic by comparing the current configuration of the system to a
composed model representing the configuration we want to reach.

1 Introduction

Context aware software systems that can automatically adapt to changes in their environ-
ments play increasingly vital roles in society’s infrastructures. The demand for adaptive
systems appears in many application domains, ranging from crisis management applica-
tions such as disaster and power management, to entertainment and business applications
such as mobile interactive gaming, tourist guiding and business collaborations.

However, constructing and executing adaptive systems are highly complex tasks fac-
ing several challenges. Adaptive software systems are typically deployed on distributed
platforms consisting of heterogeneous computing devices. The target platforms for a
single system can range from computer networks of any size to small portable devices,
such as phones or PDAs. Furthermore, a system is composed of components with vari-
able configurations that might have dependency relationships that need to be resolved
during adaptation; thus, compounding the complexity. Better techniques for taming the
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complexity of adaptive software during development are needed. Another challenge
in adaptive system construction and execution is the issue of combinatorial explosion.
Adaptive systems are often developed by defining several variation points, which rep-
resents points in the software where different variants of the implementation might be
chosen to derive the final system configuration. Resolving these variation points leads
to an exponential growth in the number of possible system configurations. This presents
a major problem, since reasoning on a huge number of configurations to find the best
possible configuration for the current context becomes too time consuming when con-
sidering the often strict requirements to response times these systems face.

Abstraction is the most fundamental principle applied in software engineering to
encounter a continuously wider range of problems and increasing complexity [21]. In
Model Driven Engineering (MDE), abstractions and transformations between levels are
used to manage complexity. For example, the Model Driven Architecture (MDA) speci-
fies three abstraction levels; a Computation Independent Model (CIM) describes the en-
vironment and specifies requirements; a Platform Independent Model (PIM) describes
the parts that do not change from one platform to another; and a Platform Specific
Model (PSM) includes descriptions of platform dependent parts. Another principle that
are commonly applied in software engineering to handle complexity are separation of
concern. Aspect Oriented Modeling (AOM) approaches provides advanced mechanisms
for separation of concern such as mechanisms for encapsulating crosscutting features
and for composing crosscutting features to form integrated models [9,13,14,15].

In this paper we present a new approach where we address challenges in adaptive
system construction and execution by combining certain aspect-oriented and model-
driven techniques. In particular we use:

– Aspect-Oriented Modeling techniques in order to tackle the issue of the combina-
torial explosion of variants. AOM allows us to encapsulate distinct variation points
into aspects which are separated from the base model of the system’s functionality.
Then, distinct aspects might be composed into the base model in order to obtain
different configurations. This approach allows us to reason on a limited and lin-
early increasing number of aspects, thus avoiding the problem of combinatorial
explosion seen in other approaches.

– Model-Driven techniques to automate and improve the creation of the reconfigu-
ration script needed to make the running system evolve from one configuration to
another. Currently the adaptation logic of adaptive middleware relies on the exe-
cution of low-level and hand-written reconfiguration scripts, which specify all the
possible transitions between the configurations. As these scripts decide how sys-
tems - possibly critical to safety - are manipulated at runtime, they require rigorous
validation. Such a process is both time consuming and, even worse, prone to human
errors. Instead of manually writing these scripts, we apply model driven techniques
to generate them by analyzing the different variants of the system. In addition we
apply model driven principles to provide models at run time for managing the exe-
cution of the adaptation at a more abstract level. This enable us to provide abstrac-
tions fine-tuned towards the adaptation task, reducing complexity. Furthermore, it
makes our approach applicable on many execution platforms since our models at
runtime is provided as platform independent models.
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The remainder of this paper is organized as follows. Section 2 introduces a running
example and presents some background. Section 3 presents our methodology for man-
aging dynamic variability. Section 4 details our approach using the running example.
Section 5 presents related works and Section 6 provides our conclusion.

2 Motivating Example

This section presents a brief background on management and support for variability in
the context of dynamic adaptive systems, based on [1,2]. We next discuss the limita-
tions of this approach and the solutions we propose. The discussion is in the context
of mobile computing environments applications which need to dynamically discover
services from a wide range of options that may be unknown during design. Such kind
of applications propose a simple yet powerful motivating example of systems that need
support for dynamic variability.

Traditionally, variability management has focused on variability that is solved at pre-
delivery time, i.e. from requirements to deployment. However, adaptive systems exhibit
degrees of variability that depend on runtime fluctuations in their contexts. This kind of
variability is called dynamic variability or runtime variability [1]. Reflective and adap-
tive middleware platforms offer powerful mechanisms to achieve dynamic variability to
enable adaptation at runtime. These mechanisms allow programmers to hard-code re-
configuration scripts to dynamically transform one component-based configuration into
another.

2.1 Dynamic Service Discovery for Mobile Applications

Mobile applications need to dynamically adapt according to changes in their operating
contexts. Mobile devices such as PDAs, mobiles, or laptops are capable of detecting
and notify the user about new available services according to his/her preferences. The
complexity arises from the fact that mobile adaptive applications are expected to sup-
port unanticipated variants associated with user preferences and properties of operating
contexts that inevitably will arise during execution. Furthermore, different designs for
service discovery protocols (SDPs) have been proposed. Hence, it may not be possible to
completely specify at design time user preferences, properties associated with the con-
texts, or which protocols will be used to advertise services in a given context execution.

Flores et al. presents in [8] a solution to overcome the challenges posed by heteroge-
neous service discovery protocols. The solution offers a common core architecture that
individual discovery protocols follow. Using the final architecture, discovery protocols
can be implemented and dynamically plugged into the middleware platform. Using this
solution, the service discovery interaction platform from our example can take different
roles that individual protocols could assume:

-User Agent (UA) to discover services on behalf of clients,
-Service Agent (SA) to advertise services, and,
-Directory Agent (DA) to support a service directory where SAs register their ser-

vices and UAs send their service requests. A DA also announces positive matches of
requests against advertisements.



AO and MDA for Managing Dynamic Variability 785

Fig. 1. Architecture of the Service Discovery Application

Depending on the required functionality, participating nodes might be required to
support 1,2, or the 3 roles at any time. The common architecture, which is shown in
Figure 1, has six components:

-Advertiser Component: used by SAs to advertise its services and by DAs to process
incoming service advertisements storing them in cache. This component also deals with
the maintenance of a directory overlay network.

-Request Component: used by UA and DAs to generate service requests.
-Reply Component: used by UAs and DAs to generate service replies.
-Cache Component: for common utility tasks such as management of temporary

data, service advertisements, and location of neighboring directories.
-Policy Component: this component stores and deals with user preferences, appli-

cation needs and/or inclusive context requirements.
-Network Component: for the transmission of messages.

Network, Cache and Policies components will always be present in any valid config-
uration. The other three components and their bindings will be part of the configuration
or not, depending on the roles the protocol might perform (i.e. SA, UA, or DA).

In [1,2], authors complement the solution shown above targeting the development
of adaptive systems. This approach uses the Genie toolkit [2], to design stable runtime
configurations, as well as the possible triggers that initiate the reconfigurations. In the
case of the example above, the UA, SA, and DA are the possible configurations to be
used by any specific SDP. At the end of the process, a state-machine model is produced
where each state represents a configuration and each transition represents a conditional
reconfiguration that transforms the source configuration into the target configuration.
Essentially, this state machine model drives the execution of the system. Using the Ge-
nie toolkit and the state machine model, designers can automatically generate XML
files that represent the adaptation policies associated to transitions. Such policies can
dynamically be introduced to change the behavior of the system during execution. Fig-
ure 2 illustrates the state machine model for the dynamic service discovery application
and an example of a generated adaptation policy associated with the arc (pointed by the
arrow from the top arc of the model to the generated policy).

2.2 Limitations of Existing Approaches

The approach described in [1,2] presents several limitations. First, the possible sys-
tem configurations need to be enumerated and fully specified. Secondly, the generated
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Fig. 2. Variants and transitions for the service discovery application

policies mainly specify the trigger events and which reconfiguration scripts have to be
loaded to adapt the system from one state mode (i.e. agent role) to another. These scripts
are currently hand-written using the API offered by the underlying execution platform.
Finally, each state mode represents the whole system, in a given configuration. This is
not enough in some cases. For example, in the case of the dynamic service discovery
application described above, there is another variability dimension associated with the
specific protocol to use such as ALLIA, GSD, SSD, SLP [8]. Each of these proto-
cols has its own terms and rules. Therefore, in order to get a service agent and a user
agent understanding each other, they need to use the same protocol. Taking into account
different protocols increments the number of configurations and rules needed.

2.3 Contributions

The contribution of our proposed approach is twofold. Firstly, we argue that the recon-
figuration scripts described above can also be inferred from the models, by comparing
the target configuration with the current configuration, for each transition that may be
triggered during runtime. The results of this comparison will allow the dynamic gener-
ation of the corresponding reconfiguration, i.e. the identification of the components that
should be added or deleted. This solution is possible as we proposed to keep a reference
model that represents the current system and the possible modified model that is the
result of the required adaptation. This will be detailed in the next sections. Secondly,
using Genie, each state mode represents the whole system as one configuration per do-
main (in the example above the service discovery domain). As discussed above, this is
not enough in some cases. Considering the complete enumeration of configurations for
different variability dimensions, such as different protocol, may be an unmanageable
task. In the following sections we will show how Aspect-Oriented Modeling techniques
allow the separation and composition of different views of the system reducing com-
plexity during the development.
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3 Overview of the Approach

The common practices in component-based dynamically adaptive systems (DAS) are to
handle dynamic adaptation at the code level. The adaptation rules and the transforma-
tions that have to be performed on the running system are hard-coded and mixed with
the code of the application [3,5,8]. This approach makes adaptive systems very difficult
to understand, validate and evolve.

The idea of the approach we propose in this paper is to combine model driven and
aspect-oriented techniques to handle the complexities of adaptive system construction
and execution. Models cope with complexity through abstractions and are used both to
specify the dynamic variability at design time and to manage run time adaptations. As-
pect oriented techniques are utilized to model the adaptation concerns separately from
the other aspects of the system. By utilizing model based abstractions and advanced sep-
aration of concerns in this way the adaptation becomes easier to design and understand,
possible to validate and allows to easily evolve the adaptation policies even at runtime.

Figure 3 presents the conceptual model of the proposed approach. From a method-
ological perspective the approach is divided in two phases; design time and runtime.

At design-time, the application base and variant architecture models are designed and
the adaptation model is built. At runtime, the adaptation model is processed to produce
the system configuration that should be executed. The following paragraphs details the
steps of Figure 3.

Because the potential number of configurations for an adaptive system grows expo-
nentially with the number of variation points, a main objective of the approach is to
model adaptive systems without having to enumerate all their possible configurations
statically. To achieve this objective, an application is modeled using a base model which
contains the common functionalities and a set of variant models which can be com-
posed with this base model. The variant models capture the variability of the adaptive

Fig. 3. Conceptual model of the approach
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application. The actual configurations of the application are built at runtime by select-
ing and composing appropriate variants. An adaptation model specifies which variant
have to be selected depending on the context of the running application.

The adaptation model is central to the approach as it captures all the information
about the dynamic variability and adaptation of the adaptive system. It is built from
the requirements of the system, refined during design and used at runtime to manage
adaptation. It is made of four main elements:

– Variants. This part of the model makes references to all the available variability
for the application. Depending on the complexity of the system, it can be a simple
list of variants, a data structure like a hierarchy or a complex feature model.

– Dependencies. The dependencies specify constraints on variants that can be used
in a configuration. For example, the use of a particular functionality (variant model)
might require or exclude others. These constraints reduce the total number of con-
figurations by rejecting invalid configurations.

– Context model. The context model is a minimal representation of the environ-
ment of the adaptive application to support the definition of adaptation rules. We
only consider elements of the environment relevant for expressing adaptation rules.
These elements are updated by sensors deployed on the running system.

– Adaptation rules. These rules specify how the system should adapt to its envi-
ronment. In practice these rules are relations between the values provided by the
sensors and the variants that should be used.

During runtime appropriate configurations of the application have to be built from the
base and variant models. To select the appropriate configuration, the reasoning framework
processes the adaptation model and makes a decision based on the current context. The
output of the reasoning framework is one or more options that match the adaptation rules
and satisfies the dependency constraints. For each of these options the complete model
of the corresponding configuration can be built at runtime using model composition.

Because the idea of the approach is to build configurations on demand rather than
enumerating all configurations, each new configuration has to be validated at runtime. The
role of the validation framework is to process the configuration proposed by the reasoning
framework in order to select the ones that are safe to deploy in the running system. The
validation framework checks that the architecture model of the configuration is correct
with respect to the constraints and protocols associated to the components it contains.

Once a configuration has been selected by the reasoning framework and checked
by the validation framework, it can be deployed in the running system. To ease the
adaptation of the running system, a model representing the system at a higher level of
abstraction is causally connected to it. This model is transformed to match the config-
uration that has been selected for adaptation. The running system is adapted thanks to
the causal connection. Because the connection goes in both directions, it also allows
checking that the system is actually running the required configuration.

From a change to the environment quite a few steps are required to be able to safely
adapt the system. These steps (especially model composition and validation) can require
some time to execute and thus delay the actual adaptation. In practice, this issue is
tackled by keeping track of the configurations that are validated and registering them
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for reuse. In extreme cases where predictable fast adaptation is required, a set of pre-
defined configuration can be specified, built and validated in advance.

4 Managing the Combinatorial Explosion of Configurations

The service discovery application described in section 2 has two different variability di-
mensions: the functionality and the discovery protocols. There are three variants for the
functionality: UA, SA and DA (= UA and SA). Four variants of the protocols (ALLIA,
GSD, SSD and SLP) can be supported separately or not. This leads to 45 configurations
(24-1 protocols and 3 functionalities) and potentially 1980 (45x44) different reconfigu-
rations. However, in the example of the service discovery application, the two variability
dimensions and their aspects are independent and triggered by distinct events. Thus, it
is possible to manage all the reconfigurations with 12 scripts, for respectively adding
and removing each aspects.

4.1 Using AOM to Represent the Variability

To avoid the combinatorial explosion, we propose to model the variants instead of the
configurations. This way, the number of models to be defined grows linearly with the
variability. The configurations can then be built by automatically combining the vari-
ants. In practice this is achieved using Aspect-Oriented Modeling techniques for archi-
tecture models. The application commonalities, i.e. the architecture elements which are
part of all configurations, are captured in a single base model. All the variants are then
defined as aspect models to be woven in the base model. From a particular selection
of variants, the corresponding configuration can be built automatically by weaving the
corresponding aspect models into the base model.

The specific AOM technique we use is the SMARTADAPTERS approach [14,15].
SMARTADAPTERS has formerly been applied to Java programs and UML class
diagrams [14]. More recently, we have generalized this approach to any domain meta-
model [15]. SMARTADAPTERS automatically generates domain-specific AOM frame-
works using an input domain-metamodel. In this paper, the domain metamodel we use
is a generic component model representing the main concepts needed to describe the
topology of running systems: components, binding, ports, etc.

In SMARTADAPTERS, an aspect is composed of three parts:i) a graft model, repre-
senting what we want to weave, ii) an interface model, representing where we want
to weave the aspect and iii) a composition protocol specifying how to weave the graft
model into the interface model. The graft model is a model fragment representing a
given concern. The interface model is a model fragment parameterized by roles allow-
ing the interface model to be matched in different base models. Finally, the composition
protocol is described by model transformation primitives that manipulate elements from
the graft and the interface models.

4.2 Application to the Service Discovery Example

For handling the functionalities of the service discovery, the application is separated
into a base model and two aspects. The base model contains the common components:
Policy, Cache and Network.
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The first aspect corresponds to the user agent (UA) role and is illustrated in the left
part of Figure 4. The graft model contains all the components and bindings needed to
realize the functionality of the UA role. The interface model contains all the base com-
ponents needed to integrate the graft model: Policy, Cache and Network. The composi-
tion protocol, represented by the interconnecting lines, specifies how to weave the graft
model into the interface model. It consists in binding components of the graft model to
components of the interface model, and vice-versa. Similarly, the second aspect corre-
sponds to the service agent (SA) role and is illustrated in the right part of Figure 4.

Fig. 4. User Agent and Service Agent aspect

These two aspects allow building the three functional configurations of the service
discovery application. Note that these two aspects use the same interface model. Weav-
ing only the User Agent aspect leads to the User Agent configuration, weaving only
the Service Agent aspect leads to the Service Agent configuration and weaving both
aspects leads to the Discovery Agent configuration.

We have illustrated the approach using the variability on the functionalities of the
application but the variability on the discovery protocols is handled similarly. Four as-
pects have to be defined for each of the four protocols and these aspects have to be
woven alternatively to build the corresponding configurations. As a result, the complete
service discovery application is modeled using a base model and 6 aspects instead of
the 45 models and/or the 12 scripts needed to specify all the configurations.

4.3 Discussion

Even with the simple example we described, our approach allows reducing by 50% the
number of artifacts (aspects or scripts) required to describe the variability of the appli-
cation. If the whole configuration models are required, (e.g., for validation purpose) we
reduce by 86% the number of models (6 aspects and 45 configurations) needed to describe
the whole space of configurations. The important property is that the number of models
grows linearly with the variability instead of exponentially when all configurations have
to be described. It is interesting to also notice that the aspect models are smaller and
simpler models than complete configuration models, as they focus on a single concern.

A consequence of the approach is that the adaptation rules do not have to select one
specific configuration but sets of variants to include or exclude. In the service discovery
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example, if the adaptation is specified by a state machine the adaptation rules for the
functionalities have to be duplicated for each discovery protocol. Using the proposed
approach the adaptation rules for functionalities and network protocols can be defined
separately since these two variability dimensions are independent.

In practice, engineers are used to state machines to represent and check adaptation
policies. The proposed technique uses aspects and more generic rules which might be
more difficult to understand and verify. This is especially true if there are complex in-
teractions between the variability dimensions and variants. To overcome this limitation,
the adaptation state machine of the application can be build automatically (completely
or partially) from the specification of the variants and the adaptation rules. This gives
an opportunity to the designer to check on his usual representation that the aspects and
rules yield the expected adaptation.

In this paper, we use the SmartAdapters [14] approach that proposes mechanisms for
checking aspects [16]. However, the approach proposed in this paper is not dependent
from any specific AOM approach. For example, we could use MATA [13] that proposes
to detect aspect interactions based on the graph theory.

5 Generating the Adaptation

In this section, we present our model-driven causal connection responsible for reflecting
changes from the model to the platform, and vice-versa. We illustrate our proposition
on the service discovery application and discuss the advantages and limitations of our
approach.

5.1 Using MDE to Generate the Adaptation Logic

A key characteristic of adaptive systems is their ability to automatically adapt a running
application. Our solution adopts a model-driven approach to runtime adaptation by us-
ing models at runtime, where the runtime model is connected to the executing system by
a causal connection. This causal connection allows us to manage the executing system
by manipulating its model. Our approach is similar to how reflection/reflective plat-
forms work, however, using higher level models adds the benefit of remaining platform
independent.

Figure 5 presents our approach to runtime adaptation and details the causal connection
depicted in Figure 3. A reference model is generated using reflection over the running
system, representing the current running configuration. This reference model conforms
to our core metamodel for representing component-based running systems. This meta-
model contains the core concepts needed to represent a component-based configuration
at runtime and is independent of any specific execution platform. The reference model
is updated using listeners that observe the architectural reconfigurations of the running
system, which allows us to update the model without instantiating it from scratch.

Adaptations are triggered by an adaptation need, usually caused by a context change.
In our approach, a reasoning framework decides on a set of aspects according to the new
context, and a new configuration the application should adapt to is created by weaving
these aspects. It is also possible to create a new configuration by a model transformation
or manually by modeling the modified model in a graphical editor.
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Fig. 5. Model-Driven adaptation at runtime

Once the new configuration is created, it is compared with the reference model (rep-
resenting the existing configuration). In the current implementation of our tool, we use
EMF Compare in order to compare models. It produces a diff and a match model
that specifies the differences and the similarities between the models. Note that this
model comparison makes our approach independent from any particular transformation
language. We browse both diff and match models to analyze the relevant changes be-
tween the reference model and the new configuration. During this analysis, we instanti-
ate some reconfiguration commands, responsible for adding and/or removing bindings
and/or components, etc. These commands are ordered according to their priority. In-
deed, the way the model is transformed does not really matter, provided that the mod-
ified model still conforms to the metamodel after transformation whereas the running
application should be adapted rigorously. In the final step, the ordered sequence of com-
mands is executed by the platform in order to actually adapt the running system.

As a verification step we check that the new reference model (which is automatically
derived through reflection) is identical to the configuration model we wanted to reach.
This is an important step as it allows us to verify that all the adaptation commands have
been executed successfully.

5.2 Application to the Service Discovery Example

Let us assume that due to a context change, the application is to be adapted from
the currently running User Agent configuration to the Service Agent configuration
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(Figures 5, 2 and 4). Looking at Figure 5, the former corresponds to the reference model
while the latter corresponds to the new configuration. The model comparison detects
several changes between these two configurations: i) the Reply and Request, as well
as their bindings, have been deleted; ii) the Advertiser component is introduced into
the runtime architecture and connected to the Cache, Policy and Network components.
Based on this information, we automatically instantiate a set of reconfiguration com-
mands in order to adapt the system at runtime. As an example, Listing 1.1 presents
a reconfiguration script that was generated for the Fractal platform [3]. This script is
written in FScript [6], a language that abstracts the Fractal API.

Listing 1.1. UA to SA reconfiguration script expressed in FScript [6]

1 action reconfigureUAtoSA(root, Request, Reply, Advertiser){
stop($Request);

3 stop($Reply);
/ / Remove t h e R e q u e s t component

5 unbind($Request/interface::network);
unbind($Request/interface::cache);

7 unbind($Request/interface::policy);
unbind($Request/interface::reply);

9 remove($root, $Request);
/ / Remove t h e R ep ly component

11 unbind($Reply/interface::network);
unbind($Reply/interface::cache);

13 unbind($Reply/interface::policy);
unbind($Reply/interface::request);

15 remove($root, $Reply);
/ / Add t h e A d v e r t i s e r component

17 add($root, $Advertiser)
bind($Advertiser/interface::network);

19 bind($Advertiser/interface::cache);
bind($Advertiser/interface::policy);

21 start($Advertiser);
}

5.3 Discussion

Our approach of using causally connected models during runtime for dynamic recon-
figuration has several advantages. First and foremost, we allow automatic generation
of reconfiguration scripts instead of having to write them by hand. In our example
reconfiguration example from the previous sub-section, 17 operations are needed to
reconfigure the application, as shown in Listing 1.1. These operations have to be or-
dered correctly to produce a consistent script. Our model-driven approach, based on
model comparison, allows us to automatically compute and order the reconfiguration
operations. Given that the transformations generating the reconfiguration scripts have
undergone rigorous testing, these scripts will produce less errors than humans - thus
increasing safety. In the service discovery application, we generate 6 scripts to handle
the variability on the functionalities (one for each transition in Figure 2).
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Second, we remain independent from any model transformation language. The
model comparison allows us to be totally disconnected from any tools for manipulating
models. Third, we validate target configurations before actually adapting the running
system, by checking static constraints and simulating the models [4] for example us-
ing Kermeta [17]. It improves the confidence of runtime adaptation, especially when
the underlying execution platform is not transactional and does not offer support for
rolling back to the previous consistent configuration. In fact, our causal link is strongly
synchronized from the running system to the model and delayed from the model to
the running system. Finally, our approach can be mapped to different reflective execu-
tion platforms. For example, we can monitor and adapt Fractal [3] and OpenCOM [5]
systems using the same kind of models.

While using a causally connected model to manipulate the running system has many
benefits, it also has a cost. Response times are often important for adaptive systems,
and calculating the diff model and automatically generating the reconfiguration scripts
from it takes more time than simply executing predefined scripts. A possible solution
to that problem is to pre-generate the critical scripts before the system execution. This
way, the adaptation can be performed very quickly and the causaly conected model
can be updated afterwards. Another solution to avoid model comparison would be to
directly connect a particular model transformation language (e.g. SmartAdapters) to our
causal link. This language would instantiate reconfiguration commands during model
transformation and execute these commands after transformation. However, this would
make our approach specific to a given model transformation language, while remaining
independent from the execution platform.

6 Related Works

Recent middleware platforms like Fractal [3] or OpenCOM [5] propose ways to adapt
a system at runtime, inspired by the work by Oreizy et al. [18] ten years ago. These
approaches do not really propose to manage variability at runtime but propose mecha-
nisms to reconfigure a system at runtime. We propose to map our causal link to any of
these platforms. Our metamodel can be seen as a dynamic ADL to describe the running
system. We can use any (aspect-oriented) model transformation languages to manip-
ulate the reference model. We are not limited to an ad-hoc imperative reconfiguration
language. Our causal link automatically computes the adaptation logic by comparing
the reference model to a modified model.

Many mechanisms for runtime variability management have been proposed. They
are mainly focused on exchange of runtime entities using parametrization, inheritance,
and preprocessor directives [10,19,20]. Our approach is more coarse-grained and uses
architecture based models for the management of whole sets of components, their con-
nections and semantics [1]. We can adapt running system via high level transformation
languages and graphical editors.

Of particular relevance to our work is MADAM/MUSIC [7,12] which uses the adap-
tation capabilities offered by middleware platforms, and treats dynamically adaptive
systems as dynamic software product lines [11] with the corresponding support for
variability management. The main variability mechanism consists in loading different
implementations for each component type (primitive or composite) of the architecture.
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By decomposing the system into a base model and several aspects, we reduce the com-
plexity related to the representation of variation points and their selection. We automati-
cally compute safe reconfiguration scripts to adapt the system from the reference model
to a target configuration. Finally our approach is generic: it can be mapped to differ-
ent execution platforms whereas MADAM is limited to mobile computing applications,
and we can use different model transformation languages to modify the reference model
e.g. AOM languages like SmartAdapters [14,15], MATA [13] or Kompose [9].

Wolfinger et al. [22] demonstrates the benefits of the integration of an existing prod-
uct line engineering tool suite with a plug-in platform for enterprise software. As in
our case, automatic runtime adaptation and reconfiguration are achieved by using the
knowledge documented in variability models. Our differences exist mainly because of
the different aims of each approach. Their work focuses on enterprise software while
our work covers the domains grid, mobile computing, and embedded systems. While
variability decisions in [22] are user-centered our variability decisions, based on the
Genie approach [1] are environment-centered.

7 Conclusion and Future Works

In this paper we have presented a novel combination of Model-Driven Engineering
(MDE) and Aspect-Oriented Modeling (AOM) to support dynamic variability. AOM al-
lows us to focus on variability dimensions with no need to consider the whole config-
uration. By composing aspects, it is possible to produce a wide range of configuration
models, while managing the combinatorial explosion of variants. Using a MDE approach,
we use these configuration models to generate the adaptation logic needed to adapt the
running system from one runtime configuration to another, instead of writing it by hand.

In future works, we plan to extend our core metamodel and monitor interesting prop-
erties of the running system, such as QoS-related properties, resource consumption, etc.
This will allow us to develop a reasoning framework that will automatically select and
weave the most adapted aspects. Another perspective is to pre-compile the most useful
reconfiguration scripts. For the moment, our causal link computes these scripts at run-
time. However, compiling the scripts implies that the model is not yet synchronized with
the running system and consequently we do not know which components and bindings
to adapt. Languages like FPath [6] may help us in retrieving the component we want to
adapt at runtime.
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