
Adding Dependability Analysis Capabilities to

the MARTE Profile�

Simona Bernardi1, José Merseguer2, and Dorina C. Petriu3

1 Dipartimento di Informatica, Università di Torino, Italy
bernardi@di.unito.it

2 Departamento de Informática e Ingenieŕıa de Sistemas,
Universidad de Zaragoza, Spain

jmerse@unizar.es
3 Department of Systems and Computer Engineering,

Carleton University, Ottawa, Canada
petriu@sce.carleton.ca

Abstract. Dependability is a non-functional property that should be
assessed early in the software lifecycle. Although several UML profiles
exist for quantitative annotations of non-functional properties, none of
them provides concrete capabilities for dependability analysis of UML
system models. In this paper, we propose a dependability analysis and
modeling profile. The objective is twofold: to reuse proposals from the
literature on deriving dependability models from UML annotated speci-
fications and to be compliant with the recently adopted MARTE profile,
which provides a framework for general quantitative analysis concepts
that can be specialized to a particular analysis domain. The profile def-
inition process was done in several steps. Firstly, an in depth analysis of
the literature has been carried out to collect the information requirements
for the profile. Secondly, a domain model for dependability analysis was
defined independently of UML. Thirdly, the domain model was mapped
to UML extensions by specializing MARTE.

1 Introduction

The dependability of a system, as defined in [1] is the ability to avoid failures that
are more frequent and more severe than acceptable. The dependability encom-
passes a set of non-functional properties, called attributes of dependability, such
as: a) availability, the readiness for correct service; b) reliability, the continuity of
correct service; c) safety, the absence of catastrophic consequences on the users
and environment; d) maintainability, the ability to undergo modifications and
repairs.

� This work has been supported by the European IST project CRUTIAL-027513
(CRitical UTility InfrastructurAL resilience), the project DPI2006-15390 of the
Spanish ministry of Science and Technology, and the Discovery grant from the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC).

K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 736–750, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adding Dependability Analysis Capabilities to the MARTE Profile 737

Although there are several proposals in literature on extending Unified Mod-
eling Language (UML) models with dependability annotations, as reviewed in
Sect. 3 of this paper, each covers only a subset of dependability aspects. Com-
pared with the performance and schedulability analysis domains, which are sup-
ported by standard UML profiles such as Schedulability, Performance and Time
(SPT) [2] and MARTE [3], there is no similar standard profile for the depend-
ability analysis of UML-based models yet. Another Object Management Group
standard specifying UML extensions for a variety of non-functional properties,
the “Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms” (QoS&FT) [4], provides a flexible but heavy-weight mecha-
nism to define properties such as performance, security or reliability by means
of specific QoS catalogs. The annotation mechanism is supported by a two-step
process, which implies catalog binding and either the creation of extra objects
just for annotation purposes, or the specification of long Object Constraint Lan-
guage (OCL) expressions.

The main objective of this paper is to propose a UML profile for quantitative
dependability analysis of software systems modeled with UML with particular
focus on the following facets of dependability: reliability, availability and safety.
One of the requirements for such a profile is to reuse the best practices reported
in literature, and to unify the terminology and concepts for different dependabil-
ity aspects under a common dependability domain model. Another requirement
is to be compliant with the recently adopted MARTE profile [3] in two ways: a)
by using the Non-Functional Properties (NFP) framework and its correspond-
ing Value Specification Language (VSL) for defining dependability-specific data
types necessary for the profile definition; and b) by specializing general concepts
from MARTE’s generic quantitative analysis model (i.e., GQAM sub-profile) for
the dependability analysis domain. This paper builds on the previous work [5],
where a first attempt to extending UML with dependability analysis capabilities
was proposed.

We have adopted a systematic approach for the definition of the dependabil-
ity profile according to the recommendations from Selic [6] (see also Lagarde
et al.[7]). Firstly we define a conceptual domain model for dependability analy-
sis and modeling, which covers different dependability aspects, and reuses and
unifies the concepts from previous work, and secondly we map the domain con-
cepts to elements of a UML profile. The new proposed stereotypes extend either
UML meta-classes or MARTE stereotypes, and the stereotype attribute defi-
nitions use dependability-specific types defined in VSL. Our work proposes a
unified DAM profile, but does not discuss the different model transformation
techniques for generating different dependability models (Markov chains, Fault
Tree, Petri Nets, etc.). The proposed profile provides all the information neces-
sary to produce such models, but the actual model transformations represents
future work.

The paper is organized as follows: Sect. 2 gives an overview of the approach
followed for the profile definition; Sect. 3 gives a brief survey of related work
from literature; Sect. 4 introduces the dependability analysis (DA) conceptual

738 S. Bernardi, J. Merseguer, and D.C. Petriu

model, composed of different packages that cover separate dependability aspects;
Sect. 5 presents the proposed dependability profile; Sect. 6 gives an example of
profile application and Sect. 7 presents the conclusions.

2 Approach Overview

This section presents the process followed to define the dependability analysis
profile, in order to ensure that we produced a technically correct quality UML
profile that covers the necessary concepts according to the best practices reported
in literature.

Literature Review. The existing standard UML profiles for the analysis of non
functional properties of software systems have been analyzed, in particular the
SPT [2], QoS&FT [4] and MARTE [3]. None of them provides a comprehensive
support for dependability analysis, especially from a quantitative point of view.
We investigated the literature on dependability main concepts and taxonomy
(e.g., Avizienis et al. [1], Leveson [8], Lyu [9,10]) as well as on standard methods
used for the quantitative assessment of dependability (e.g., [11,12]). We also
surveyed the works from the literature proposing dependability modeling and
analysis of UML system specifications (about twenty papers). The output of
this preliminary step is a checklist of information requirements that a UML
profile for dependability analysis should satisfy reported in detail in [13].

Definition of Dependability Analysis (DA) Conceptual Model. We defined a DA
conceptual model to represent the main dependability concepts from the lit-
erature. Its construction required several refinement steps to consider all the
surveyed works. The final domain model is described in Sect. 4.
Completeness Assessment of the DA Domain Model. We verified whether all
the concepts considered in the survey have been included. If a concept was not
considered, we either repeated the refinement step or provided a motivation for
its exclusion.
Definition of the Dependability Analysis Modeling (DAM) Profile. Using the DA
conceptual model we defined: a) the DAM extensions (stereotypes and tags),
and b) DAM library containing dependability specific types. The objective is
to introduce a small set of stereotypes that can be easily used by the software
analyst. The DAM library has been defined by importing the MARTE library
and consists of basic and complex DA types.

DAM Profile Assessment. We verified whether the information requirements
from [13] are satisfied. If a requirement was not met, we went back to the previous
step in order to refine it.

3 Related Works

The brief survey from this section focuses on existing work from literature that
provides support for the quantitative dependability analysis of UML-based de-
signs. (A more detailed survey can be found in [13]).

Adding Dependability Analysis Capabilities to the MARTE Profile 739

Pataricza [14] extends the General Resource Modeling package of the SPT
profile with the notion of faults and errors to support the analysis of the effect
of local faults to the system dependability. The work includes permanent and
transient faults in the resources and error propagation to estimate which fault
may lead to a failure. Explicit fault injection behavioral models are also proposed
to represent faults as special virtual clients.

Addouche et al. [15] define a profile for dependability analysis of real-time
systems compliant with the SPT resource modeling. The UML extensions are
used to derive probabilistic time automata for the verification of dependability
properties via temporal logic formulas. The static model of the system is enriched
with new stereotyped classes associated with resources (but has the disadvantage
that new classes are introduced in the system model for dependability analysis
purposes).

Bernardi et al. [16] propose a set of UML Class Diagrams structured in pack-
ages for collecting dependability and real-time requirements and properties of
automated embedded systems with the use of COTS fault-tolerance (FT) mech-
anisms. The approach provides support for a semi-automatic derivation of de-
pendability analysis models, such as Stochastic Petri Nets and temporal logic.
In [17] is proposed a method to assess the quality of service of FT distributed
systems by deriving performability models from UML+SPT models.

The most comprehensive approach so far for reliability and availability analy-
sis of UML specifications has been proposed by Bondavalli et al. [18]. A profile
for annotating software dependability properties compliant with the taxonomy
and basic concepts from [1] is proposed. A model transformation process derives
Timed Petri Net models via an intermediate model from the annotated UML
models. The approach supports the specification of error propagation between
components, as well as independent and dependent failures. It is possible to dis-
criminate between normal and failure states and events. The main drawback of
this work is the introduction of unnecessary redundant information in the UML
model, as sometime the joint use of more than one stereotype is needed.

DalCin [19] proposes a UML profile for specifying dependability mechanisms,
aimed at supporting the quantitative evaluation of the FT strategy effective-
ness. However, the profile lacks support for modeling the interactions between
dependability mechanisms and system components. Pai and Dugan [20] present
a method to derive dynamic fault tree from UML system models. The method
supports the modeling and analysis of sequence error propagations that lead to
dependent failures, redundancies and reconfiguration activities.

The papers [21,22,23] address specifically the reliability analysis of UML-
based design. D’Ambrogio et al. [21] define a transformation of UML models into
fault tree models to predict the reliability of component-based software. Cortel-
lessa and Pompei [22] propose a UML annotation for the reliability analysis of
component-based systems, within the frameworks of the SPT and QoS&FT pro-
files. The annotations defined in [22] are used by Grassi et al. [23] where a model-
driven transformation framework for the performance andreliability analysis of
component-based systems is proposed. The method uses an intermediate model

740 S. Bernardi, J. Merseguer, and D.C. Petriu

that acts as bridge between the annotated UML models and the analysis-oriented
models. In particular, discrete time Markov process models can be derived for
the computation of the service reliability.

Jürjens et al. define a safety [24] and reliability [25] check list, based on UML
extension standard mechanisms, to support the identification of failure-prone
components in the software design.

The approaches [26,27,28] support the safety analysis of UML-based system
models. Pataricza et al. [26] use UML stereotypes to identify erroneous states
and error correcting transitions in state machine diagram, integrating the nor-
mal and the faulty behavior of a system component in a single state machine.
Goseva et al. [27] devise a methodology for the risk assessment of UML models
at architectural level; a Markovian model is constructed to estimate the scenario
risk factor from risk factors associated to software components and connectors.
Hassan et al. [28] introduce a methodology for the severity analysis of software
systems modeled with UML, which integrates different hazard analysis tech-
niques (Functional Failure Analysis - FFA, Failure Modes and Effects Analysis
- FMEA - and Fault Tree Analysis - FTA) to identify system level and com-
ponent/connector level hazards and to evaluate the cost of failure of system
execution scenarios, software components and connectors.

4 Dependability Analysis Conceptual Model

The DA conceptual model has been constructed considering the main depend-
ability concepts from the literature as well as standard methods used for the
dependability assessment. It is organized into a set of packages, as shown in
Fig. 1. The top-level package includes:

– The System Core model. It provides a description of the system to be ana-
lyzed, according to a component-based view of the system [1,9]. The model
includes also additional concepts for the description of redundancy structures
that may characterize a fault tolerant system [10].

– The Threats model introduces the threats [1,9,8] that may affect the system
at different levels as well as the relationships between the threats.

– The Maintenance model introduces the repair/recovery actions that are un-
dertaken in case of repairable systems [1,10].

Figures 2,3,4, and 5 show the Class Diagrams of the DA conceptual model; the
markups used for the classes will be explained in Sect. 5. The Core model (Fig. 2)
represents the context for carrying out dependability analysis. Actually, it is a
component-based description of the system to be analyzed that includes both
structural and behavioral views. From the structural point of view, the system
consists of a set of components that are bound together through connectors, i.e.,
logical/physical links, in order to interact. A component can be a sub-system
consisting of sub-components. The structure of the system is what enables it
to generate the behavior. The system delivers a set of high-level services, in
response to user service requests. Each high-level service is, then, the system

Adding Dependability Analysis Capabilities to the MARTE Profile 741

Maintenance

DA domain model

Threats

System Core

System
Redundancy

L0 L1

System
Core

Core

Fig. 1. Top-level package (L0), System Core package (L1)

Core

Dependability
Analysis Context

ServiceComponent

Step

<<user>>
ServiceRequest

components
services

1..*
1..*

*
requests
{ordered}

subComponents
* provides

requests

*

*

1..*

2

interacts-via *
steps
{ordered}

stateful
origin
isActive
failureCoverage
/percPermFault
/ssAvail
unreliability
/relialibility
missionTime
availLevel
reliabLevel
safetyLevel
complexity

execProb
/ssAvail
instAvail
unreliability
/reliability
missionTime
availLevel
reliabLevel
safetyLevel
complexity

accessProb
serviceProb[1..*]{ordered}

contextParams

*
basicServices

1..*

1..*
{(Component.provides->lowerBound()+
 Component.requests->lowerBound())>=1}

reliability =
1 - unreliability

Connector

coupling

1..*

1..* 1..*

0..1 0..1

Fig. 2. Core model

behavior as perceived by its users and it is carried out by the interaction of
system components, which provide and request basic services to each others. A
service is implemented by a sequence of steps that represent component states
and actions.

The Core model acts as a bridge between the DA concepts and the concepts
introduced in MARTE for general quantitative analysis. Indeed, several classes of
the Core model will be mapped to stereotypes that specialize the ones introduced
in the GQAM profile.

Observe that some classes of the DA conceptual model have attributes that
represent requirements, metrics, properties or input parameters used in depend-
ability analysis, according to the surveyed works from literature. A detailed
description of the meaning of the attributes and their types is given in [13].

A system may be characterized by redundancy structures. Software and hard-
ware redundancy are the typical means used to increase the FT of software
systems, e.g., by eliminating single points of failure. The System Redundancy
model (Fig. 3) represents FT components [10], e.g., used in [18] to specify the
role played by a component within a redundant structure. In particular, a redun-
dant structure may consist of several variants, i.e, modules with different design
that provide the same services, allocated over different spares, a controller, that
is responsible for the co-ordination of the variants, an adjudicator, that either

742 S. Bernardi, J. Merseguer, and D.C. Petriu

System Redundancy

RedundantStructure
SystemCore::

Core::
Component

FT
Component

2..*

Controller Variant Adjudicator Spare
multiplicity
dormancyFactorerrorDetectionCoverage

*

substitutesFor

multiplicity

1..*

Fig. 3. System Redundancy model

looks for a consensus of two or more outputs among the variants (“N-version soft-
ware” scheme) or applies an acceptance test to the variant outputs (“recovery
block” scheme).

Note that it is out of scope of this work to provide a support for the modeling of
FT architectures and, besides, this issue has been tackled by the QoS&FT profile
[4]. Rather, the introduction of the System Redundancy model is motivated by
the objective of providing a specific support for the quantitative dependability
analysis of those FT systems characterized by redundant structures.

The Threats model (Fig. 4) includes the threats that may affect the system,
namely the faults, errors, failures [1,9] and hazards [8]. We have introduced an
abstract concept of impairment, that can be specialized depending of the type
of analysis domain, i.e., failure for reliability/availability analysis and hazard
for safety. The model represents also the cause-effect relationships between the
threats and the relationships between the threats and the system core concepts.
Then, a fault is the original cause of errors and impairments, and affects system
components. A fault generator concept is added to represent a mechanism, used
for example in [17,14], to inject faults in the system and to specify the max
number of concurrent faults.

Errors are related to steps (i.e., states or actions) of the basic services provided
by the faulty components. When an error affects an external state of a faulty
component, that is the service interface of that component, then error propa-
gations may occur from the faulty component to the interacting ones, via the
corresponding connectors. Error propagations may be related to each others, for
example they occur according to a given order [20]: the error propagation rela-
tion indicates the sequence of error propagations. Errors may cause impairments
at different system level: 1) at service step level, then leading to failure/hazard
steps, when the service provided by the component becomes not correct, 2) at
component level, when the component is not able to provide any basic service,
3) at system level, when the impairment is perceived by the system users. Fi-
nally, multiple dependent impairments can affect a redundant structure, such as
when several redundant components fail in the same mode (i.e., common mode
failures [10]).

Adding Dependability Analysis Capabilities to the MARTE Profile 743

Threats

SystemCore::
Core::

Service

SystemCore::
Core::

Component

SystemCore::
Core::

Connector

SystemCore::
Core::
Step

 Fault
 Error

 Failure

Error
Propagation

effect

effect

cause cause
1..*

1..*

*

*

cause effect

*

*

1..*

*

from

to *
*

1..*

Fault
Generator

occurrenceRate
latency
occurrenceProb
occurrenceDist
persistency
duration

numberOfFaults

fault

probability

ErrorPropagation
Relation

propagationExpr

2..*

latency
probability

occurrenceRate
MTTF
MTBF
occurrenceDist
domain
detectability
consistency
consequence

Error
Step

fault

error

erroProperroProp
{ordered}*

error
*

*

*

impairment

cause
1..*

 Hazard

origin
severity
likelihood
/level
latency
accidentLikelihood
cost
guideword
accident

SystemCore::
SystemRedundancy::
RedundantStructurecommomMode

occurrenceProb
/risk

*

* *

Impairment

impairment
*

*

*

impairment*
*

*

Failure
Step

Hazard
Step

impairment*

effect
*

Fig. 4. Threats model

The Maintenance model (Fig. 5) concerns repairable systems and includes con-
cepts that are necessary to support the evaluation of system availability, that is
the maintenance actions undertaken to restore the system affected by threats.
According to [1,10], we distinguish repairs of system components, that involve
the participation of external agents (e.g., repairman, test equipment, etc) and re-
covery strategies, usually implemented in FT systems, that aim at transforming
the system anomalous states into correct states. In particular, the reconfiguration
steps imply the use of spare components [20]. The model represents the replace-
ment steps, in which faulty components are replaced by spares, and the reallocation
steps, in which software components are reallocated onto spares.

5 Dependability Analysis Modeling Profile

The process of mapping the conceptual model elements to profile elements has
been an iterative process, in which each class has been examined, together with
its attributes, associations and constraints, to identify the most suitable UML base
concepts for it. Such activity has been carried out by following the general guide-
lines in [6] and by specializing the UML extensions of the MARTE profile [3].

Figure 6(a) shows an overview of the DAM profile. It consists of an UML
extension package, including the set of dependability stereotypes and attributes,
and of a model library, in which basic and complex dependability types as-
sociated to the attributes are defined. Most of the dependability stereotypes
specialize the ones of the GQAM sub-profile of MARTE.

744 S. Bernardi, J. Merseguer, and D.C. Petriu

Maintenance

SystemCore::
Core::

Service

SystemCore::
Core::

Component

SystemCore::
Core::
Step

 Repair Recovery
*

1..*

*

External
Agent

 MTTR duration
 coverageFactor

executes *

Reconfiguration
Step

Replacement
Step

Reallocation
Step

SystemCore::
SystemRedundancy::

Spare

replace
{ordered}

with
{ordered}

map
{origin=sw,

 ordered}

onto
{origin=hw,
 sequence}

*repair

recovery

recovery

1..*

1..*

1..*

1..*

1..*

1..*

Maintenance
Action

rate
distribution

*

*

1..* *

*

{(ReplacementStep.replace->size()=
 ReplacementStep.with->size()}

{(ReallocationStep.map->size()=
 ReallocationStep.onto->size()}

Fig. 5. Maintenance model

<<profile>>
DAM

DAM_UML_Extensions

<<modelLibrary>>
DAM_Library

<<import>>

<<import>> <<modelLibrary>>
DAM::DAM_Library

Complex_DA_Types

Basic_DA_Types

<<import>>

<<modelLibrary>>
MARTE::MARTE_Library::

BasicNFP_Types

<<profile>>
MARTE::NFPs

<<import>>

<<apply>>

(a) (b)

<<profile>>
MARTE::VSL::DataType

<<apply>>

<<profile>>
MARTE::GQAM

Fig. 6. (a) DAM profile and (b) DAM library

A low level view of the DAM Library is shown in Fig. 6(b). Complex de-
pendability types are MARTE data-types which combine different basic NFP
types, from MARTE library, and/or basic dependability types. On the other
hand, basic dependability types can be either simple enumeration types (such
as CriticalLevel used to specify a failure consequence or an hazard severity) or,
in turn, specialization of basic NFP common types. An example, of the latter
is the DaFrequency, which is a basic NFP real type, introduced to specify, e.g.,
a failure occurrence rate as a real value together with a failure frequency unit
(e.g., 0.1−2 failures per hour). We have also applied the MARTE NFPs profile
to define new dependability types, e.g., DaFrequencyUnitKind which is an enu-
meration type including a set of frequency units of fault/failure occurrence rates
and of repair/recovery rates (see Fig. 7(c)).

The specialization of the concept of basic NFP common type allowed us to
reuse several properties of the super-type that enrich the annotation capabilities

Adding Dependability Analysis Capabilities to the MARTE Profile 745

<<stereotype>>
DaComponent

stateful: Boolean[0..1]
origin: Origin[0..1]
.....
complexity: NFP_Real[*]
fault: DaFault [*]
error:DaError [*]
failure: DaFailure [*]
hazard: DaHazard [*]
repair: DaRepair [*]

<<stereotype>>
MARTE::GRM::Resource

isActive: Boolean[0..1]

<<stereotype>>
DaService

execProb: NFP_Real[*]
.....
failure: DaFailure [*]
hazard: DaHazard [*]
recovery: DaRecovery [*]

<<stereotype>>
MARTE::GQAM::GaScenario

CriticalLevel

minor
marginal
major
catastrophic

<<enumeration>>

MARTE_Library::BasicNFP_Types::
NFP_Real

MARTE_Library::BasicNFP_Types::
NFP_CommonType

<<dataType>> <<nfpType>> DaCriticalLevel

value: CriticalLevel

{valueAttr=value}

<<dataType>> <<nfpType>> DaFrequency
<<dataType>> <<nfpType>>

unit: DaFrequencyUnitKind
precision:Real

{unitAttr=unit}

<<dataType>> <<nfpType>>

(a) (b)

(c)

<<tupleType>>
DaHazard

occurrenceProb: NFP_Real[*]
risk: NFP_Real[*]
origin: FactorOrigin[0..1]
severity: DaCriticalityLevel[*]
likelihood: DaLikelihood[*]
level: NFP_Real[*]
latency: NFP_Duration[*]
accidentLikelihood: DaLikelihood[*]
cost: DaCurrency[*]
guideword: Guideword[*]
accident: String[*]

<<tupleType>>
DaFault

occurrenceRate: DaFrequency[*]
latency: NFP_Duration[*]
occurrenceProb: NFP_Real[*]
.....

DaFrequencyUnitKind
<<unit>> ft/s
<<unit>> ft/ms {baseUnit=ft/s,convFactor=1E-3}
...
<<unit>> fail/s
<<unit>> fail/hr {baseUnit=ft/min,convFactor=1/60}
...
<<unit>> repair/s
....
<<unit>> rec/s
....

<<enumeration>>

Fig. 7. (a) stereotypes, (b) complex dependability types, (c) basic dependability types

at system model level, such as the expression property, that supports the speci-
fication of expressions using the VSL syntax, and the source property that can
be used to define the origin of the specification (e.g., a requirement, a metric or
an input parameter).

In the DAM profile definition, we have applied several suggestions and pat-
terns proposed in [7] that enable the creation of a profile from the conceptual
model which is consistent with the UML meta-model. Moreover, we adopted
the best practise of MARTE to keep track of the mapping between the concep-
tual model and the DAM profile. In particular, the name of each DAM extension
(stereotype, complex/basic dependability type) is the name of the corresponding
conceptual model element prefixed by Da, namely Dependability Analysis.

Domain classes are good candidates to become stereotypes but, eventually,
only a subset of them have been mapped to a stereotype (i.e., the dotted classes
in Figs. 2, 3, 4 and 5). Indeed, as in [7], we aimed at providing a small set of
stereotypes that will be actually going to be used in practical modeling situa-
tions. Then, abstract classes, e.g., FT Component (Fig. 3), have not been consid-
ered in the mapping process. Nevertheless, if an abstract class carries information
and it is specialized with concrete classes, such information has been considered
in the mapping of the latter as well as of the concrete classes associated with the
abstract class. This is the case, for example, of the abstract class Impairment,
where its attributes have been mapped to attributes of the complex dependabil-
ity types DaFailure and DaHazard. Moreover, the association-ends impairment
have been renamed and mapped to attributes of the stereotypes DaComponent,
DaService corresponding to concrete classes associated with the abstract class
(compare Figs. 4 and 7(a,b)). On the other hand, the classes modeling threats
and maintenance actions (i.e., classes with diagonal stripes in Figs. 4 and 5)
have been defined to characterize complex dependability concepts through their

746 S. Bernardi, J. Merseguer, and D.C. Petriu

attributes. Then, such classes have been mapped to complex dependability types
of the DAM library (Fig. 7(b)).

Each stereotype extends either a set of UML meta-classes or MARTE stereo-
type. To define extension associations for a given stereotype, we have applied the
general guidelines in [6], based on similarity of the semantics of the UML meta-
classes and of the stereotype. To facilitate the extension process we have exploited
the proposals in the surveyed literature, to identify the UML model elements anno-
tated with the same dependability properties as the ones characterizing the stereo-
type. Finally, if a semantically equivalent stereotype exists in MARTE, then we
have defined the dependability stereotype as a sub-stereotype of the former.

Attributes of a conceptual class have been mapped to attributes of the
corresponding UML extension (stereotype/complex dependability type). This
mapping activity implied the definition of a basic dependability type for each
attribute as well as the definition of its multiplicity. The mapping of associations
has been less trivial than that of attributes. We have often applied the reference
association pattern of Lagarde et al.[7]. An exemplification of such pattern is
given in Fig. 4, where the Component class is characterized by an association
with the Fault class supported by the association-end fault. The latter is used
to define the attribute fault of DaComponent, of complex dependability type
DaFault (Fig. 7(a)). Observe that association multiplicities have been mapped
to attribute value multiplicities.

It is worth to note that the conceptual model is characterized by several con-
straints written in OCL. Such constraints have been assigned to the DAM exten-
sions and represent constraints for the use of the profile atmodel specification level.
An excerpt of the DAM profile is depicted in Fig. 7: due to space limitation, not all
the attributes are shown. The whole set of DAM extensions can be found in [13].

6 Usage of the DAM Profile

The purpose of this section is to illustrate, through an example, the usage of
the DAM profile, as well as to demonstrate how an established methodology [27]

AVI AAI AATVVI VVT

Programming

PatientsHeart DoctorsProgrammer

In this example, it is assumed that
each scenario is represented by
only one UML sequence diagram.

<<DaService>>
{execProb=(value=0.29,source=assm), hazard=(risk=(value=$R_AVI, source=pred))}

<<DaService>>
{execProb=(value=0.15,source=assm), hazard=(risk=(value=$R_AAT, source=pred))}

<<DaService>>
{execProb=(value=0.15,source=assm),
 hazard=(risk=(value=$R_VVT, source=pred))}

<<DaService>>
{execProb=(value=0.01,source=assm),hazard=(risk=(value=$R_Pro, source=pred))}

<<DaService>>
{execProb=(value=0.20,source=assm), hazard=(risk=(value=$R_VVI, source=pred))}

<<DaService>>
{execProb=(value=0.20,source=assm), hazard=(risk=(value=$R_AAI, source=pred))}

Fig. 8. Use case diagram of the pacemaker

Adding Dependability Analysis Capabilities to the MARTE Profile 747

for dependability analysis benefits from the DAM profile. The methodology for
risk assessment proposed by Goseva et al. [27] introduces the safety related
parameters in a tabular form, i.e., no UML extensions are provided. This section
shows how these parameters can be added to a UML diagram using the DAM
profile, while the methodology steps proposed in [27] (which cannot be presented
here in detail due to space limitations) can still be applied.

Figure 8 depicts the use case diagram of the pacemaker example used in [27]
to illustrate the methodology. Each use case (UC) is later realized as a (set of)
UML sequence diagram(s) representing system scenario(s). We have attached to
the UCs, using the DAM profile, the original annotations that were given by the
authors in the tabular form. Note that the UCs are stereotyped as DaServices.
So, the corresponding attributes can properly describe their dependability prop-
erties. As an example, see the annotation in the AVI UC, where its execution
probability execProb, i.e., a software requirement describing an input depend-
ability model parameter (source=assm), is gathered in the UML model. Also,
it can be observed how the dependability metrics to be computed in the model
(i.e., the hazard risk factors) are considered as predicted values (source=pred).
Using the VSL syntax, variable names are preceded by the $ symbol, as the
$R AVI variable.

Figure 9 shows the components and connectors that make up the pacemaker
architecture1. In [27], the dependability input parameters complexity and coupling
are calculated from the software functional requirements. Indeed, the coupling of
a connector is derived from the UML SD, while the complexity of a component is
obtained from its associated state-chart. On the other hand, the characterization
of the hazards (severity, guideword, accident) affecting a component/connector is
the result of the FMEA technique, carried out by a domain expert.

Magnet

Programming

Heart

ATRIAL MODEL

<<component>>

VENTRICULAR

<<component>>

COMM.GNOME

<<component>>

REED SWITCH

<<component>>

COIL DRIVER

<<component>>

<<DaConnector>>
{coupling = (value=0.00039, source=assm);
 errorProp = (from=COMM.GNOME,to=VENTRICULAR);
 hazard = (
 severity = (value=marginal,source=assm),
 guideword = "incorrect command",
 accident = "incorrect operation mode and pacing rate"),
 risk = (value=$R_CG-VT, source=pred)}

<<DaComponent>>
{complexity = (value=0.3, source=assm);
 origin=sw;
 hazard = (
 severity = (value=marginal,source=assm),
 guideword = "misinterpreted bytes",
 accident = "heart triggered but device monitored"),
 risk = (value=$R_CG, source=pred)}

Heart

Fig. 9. The architecture of the pacemaker

For each scenario, the dependability metrics (risk factors) are estimated as
a product of the complexity (coupling) of the component (connector) and the
1 To avoid cluttering, only one component and one connector have been annotated.

748 S. Bernardi, J. Merseguer, and D.C. Petriu

hazard severity (the authors map the marginal severities to 0.5). The methodol-
ogy ranks the critical components/connectors using such information. Moreover,
considering these component (connector) risk factors together with a “control
flow graph” obtained from the functional software requirements, the methodol-
ogy is enabled to construct a Markov model for each scenario, where the scenario
risk factor can be computed. Finally, the scenario risk factors are used to get
the UCs risk factors as well as the overall system risk factor.

In conclusion, we observe that the DAM profile covers all the safety input
parameters and metrics proposed in [27]. Since the DAM profile is compliant with
the UML standard, it is possible now to enter all the annotations required for
the Goseva methodology by using any standard UML tool. The only additional
effort is the implementation of the model transformation which will take as input
UML models with DAM annotations and produce as output the Markov chain
model, following the approach proposed in [27].

7 Conclusion

In this paper we have proposed a profile to support dependability modeling and
analysis of UML designs. The proposed profile is compliant with the standard
MARTE profile, and has been built considering current dependability standards.
We have defined the profile by following the approach proposed by Selic [6] and
applying the patterns from Lagarde [7]. To the best of our knowledge, this is
the first attempt to provide a common conceptual UML model for different de-
pendability communities. We consider the profile as an open proposal, subject
to future refinements and extensions to address particular issues in the different
dependability domains (e.g., FT systems). Several reasons let us envision a great
potential for our proposal. First, the existing UML-based approaches for analyz-
ing dependability aspects of software systems surveyed in Sect. 3, can get direct
benefit from the profile. Indeed, our proposal offers a common modeling support
intended to covers all the information required by the existing methodologies.
As an example, we have illustrated how one of these proposals [27] can take
advantage of the profile. Future work includes the implementation of the model
transformations that take as input UML+DAM models and produce different de-
pendability models, by following the same approach as in the existing proposals.
On the other hand, the works that focus exclusively on modeling dependability
as opposed to analyzing it, can also be benefit from the profile by using its anno-
tations or even by extending it. Among such works, there are methodologies for
collecting dependability requirements, e.g. safety domain requirements in [29];
others target certification according to standard software requirements [30]; and
finally, there are traditional works in dependability analysis of software systems
outside the UML umbrella. In the last case, the challenge is not how to integrate
the DAM profile, but rather how to integrate the UML within the respective
methodology.

Adding Dependability Analysis Capabilities to the MARTE Profile 749

References

1. Avizienis, A., et al.: Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. on Dependable and Secure Computing 1(1), 11–33 (2004)

2. Object Management Group: UML Profile for Schedulability, Performance and Time
Specification. (January 2005) V1.1, f/05-01-02

3. Object Management Group: A UML profile for Modeling and Analysis of Real
Time Embedded Systems, Beta 1. (August 2007) Adopted Spec., ptc/07-08-04

4. Object Management Group: UML Profile for Modeling Quality of Service and Fault
Tolerant Characteristics and Mechanisms. (April 2008) V1.1, f/08-04-05

5. Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time
embedded systems. In: Proc. of WOSP, February 2007, pp. 115–124. ACM, New
York (2007)

6. Selic, B.: A systematic approach to domain-specific language design using UML.
In: 10th IEEE Int.l Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC 2007), pp. 2–9 (2007)

7. Lagarde, F., et al.: Improving UML profile design practices by leveraging con-
ceptual domain models. In: 22nd Int.l Conf. on Automated Software Engineering,
Atlanta (USA), November 2007, pp. 445–448. ACM, New York (2007)

8. Leveson, N.: Safeware. Addison-Wesley, Reading (1995)
9. Lyu, M.R. (ed.): Handbook of Software Reliability Engineering. IEEE Computer

Society Press, Los Alamitos (1996)
10. Lyu, M.: Software Fault Tolerance. John Wiley & Sons, Ltd., Chichester (1995)
11. Commission, I.E.: IEC-60300-3-1 standard: Dependability management
12. Commission, I.E.: IEC-61508 standard: Functional Safety of Electrical/ Electronic/

Programmable Electronic safety related problems
13. Bernardi, S., Merseguer, J., Petriu, D.: An UML profile for Dependability Analysis

and Modeling of Software Systems. Technical Report RR-08-05, Universidad de
Zaragoza, Spain (2008), http://www.di.unito.it/∼bernardi/DAMreport08.pdf

14. Pataricza, A.: From the General Resource Model to a General Fault Modelling
Paradigm? In: Workshop on Critical Systems, held within UML 2000 (2000)

15. Addouche, N., Antoine, C., Montmain, J.: UML models for dependability analysis
of real-time systems. In: Proc. International Conference on Systems, Man and
Cybernetics, October 2004, vol. 6, pp. 5209–5214. IEEE Computer Society, Los
Alamitos (2004)

16. Bernardi, S., Donatelli, S., Dondossola, G.: A class diagram framework for collect-
ing dependability requirements in automation systems. In: Proc. of 1st Int.l Sym-
posium on Leveraging Applications of Formal Methods, Cyprus (October 2004)

17. Bernardi, S., Merseguer, J.: QoS Assessment via Stochastic Analysis. IEEE Internet
Computing, 32–42 (May-June 2006)

18. Majzik, I., Pataricza, A., Bondavalli, A.: Stochastic Dependability Analysis of Sys-
tem Architecture Based on UML Models. In: Architecting Dependable Systems.
LNCS, vol. 2677, pp. 219–244. Springer, Heidelberg (2003)

19. Dal Cin, M.: Extending UML towards a Useful OO-Language for Modeling De-
pendability Features. In: Proc. of 9th Int.l Workshop on Object-Oriented Real-
Time Dependable Systems, Capri Island, Italy, October 2003, pp. 325–330. IEEE
Computer Society, Los Alamitos (2003)

20. Pai, G., Dugan, J.: Automatic Synthesis of Dynamic Fault Trees from UML system
models. In: Proc. of 13th Int. Symposium on Software Reliability Engineering,
Annapolis, MD, USA, November 2002, pp. 243–256. IEEE Computer Society, Los
Alamitos (2002)

http://www.di.unito.it/~bernardi/DAMreport08.pdf

750 S. Bernardi, J. Merseguer, and D.C. Petriu

21. D’Ambrogio, A., Iazeolla, G., Mirandola, R.: A method for the prediction of soft-
ware reliability. In: Proc. of the 6-th IASTED Software Engineering and Applica-
tions Conference (SEA 2002), Cambridge, MA, USA (November 2002)

22. Cortellessa, V., Pompei, A.: Towards a UML Profile for QoS: a contribution in
the reliability domain. In: Proceedings of the Fourth International Workshop on
Software and Performance (WOSP 2004), pp. 197–206 (January 2004)

23. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
Journal of Systems and Software 80(4), 528–558 (2007)

24. Jürjens, J.: Developing safety-critical systems with UML. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 360–372. Springer, Heidelberg
(2003)

25. Jürjens, J., Wagner, S.: Component-based Development of Dependable Systems
with UML. In: Atkinson, C., Bunse, C., Gross, H.-G., Peper, C. (eds.) Component-
Based Software Development for Embedded Systems. LNCS, vol. 3778, pp. 320–
344. Springer, Heidelberg (2005)

26. Pataricza, A., et al.: UML-based design and formal analysis of a safety-critical rail-
way control software module. In: Tarnai, G., Schnieder, E. (eds.) Proc. of FORMS
2003, Budapest (Hungary), pp. 125–132 (May 2003)

27. Goseva-Popstojanova, K., et al.: Architectural-level risk analysis using UML. IEEE
Transactions on Software Engineering 29(10), 946–960 (2003)

28. Hassan, A., Goseva-Popstojanova, K., Ammar, H.: UML Based Severity Analy-
sis Methodology. In: Proc. of Annual Reliability and Maintainability Symposium
(RAMS 2005), Alexandria, VA (January 2005)

29. Allenby, K., Kelly, T.: Deriving safety requirements using scenarios. In: 5th IEEE
International Symposium on Requirements Engineering (RE 2001), pp. 228–235.
IEEE Computer Society, Los Alamitos (2001)

30. Zoughbi, G., Briand, L., Labiche, Y.: A UML Profile for Developing Airworthiness-
Compliant (RTCA DO-178B), Safety-Critical Software. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574–588.
Springer, Heidelberg (2007)

	Adding Dependability Analysis Capabilities to the MARTE Profile
	Introduction
	Approach Overview
	Related Works
	Dependability Analysis Conceptual Model
	Dependability Analysis Modeling Profile
	Usage of the DAM Profile
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

