
Automatically Generating Behavioral Models of

Adaptive Systems to Address Uncertainty�

Heather J. Goldsby and Betty H.C. Cheng

Department of Computer Science and Engineering
Michigan State University, 3115 Engineering Building

East Lansing, Michigan 48824 USA
{hjg,chengb}@cse.msu.edu

Abstract. Increasingly, high-assurance applications rely on dynami-
cally adaptive systems (DASs) to respond to environmental changes,
while satisfying functional requirements and non-functional preferences.
Examples include critical infrastructure protection and transportation
systems. A DAS comprises a collection of (non-adaptive) target systems
(represented as UML models) and a set of adaptations that realize tran-
sitions among target systems. Two sources of uncertainty inherent to
DASs are: (1) predicting the future execution environment, and (2) us-
ing functional and non-functional trade-offs to respond to the changing
environment. To address this uncertainty, we are inspired by living or-
ganisms that are astonishingly adept at adapting to changing environ-
mental conditions using evolution. In this paper, we describe a digital
evolution-based approach to generating models that represent possible
target systems suitable for different environmental conditions, enabling
the developer to identify the functional and non-functional trade-offs be-
tween the models, and then assisting the developer in selecting target
systems for the DAS.

1 Introduction

Increasingly, high-assurance applications rely on dynamically adaptive systems
(DASs) to react and respond to environmental changes, while continuing to
meet functional requirements and make non-functional trade-offs. Examples in-
clude critical infrastructure protection and transportation systems. In an effort
to promote separation of concerns, we consider a DAS to comprise a collection
of (non-adaptive) target systems and a set of adaptations that realize transitions
among target systems in response to environmental changes. We use the term
domain to refer to a specific set of environmental conditions to be handled by
a given target system (e.g., noisy network, sensor failure, and low battery could
all be true for one domain). Model-driven engineering, which successively refines
� This work has been supported in part by NSF grants EIA-0000433, CNS-0551622,

CCF-0541131, IIP-0700329, CCF-0750787, Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, Siemens Corporate Research, and a
Quality Fund Program grant from Michigan State University.

K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 568–583, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatically Generating Behavioral Models of Adaptive Systems 569

models from analysis to design and then automatically generates code [1], can
be leveraged to support rigorous development of a DAS by modeling each of the
target systems as a UML model (i.e., a class diagram and a behavioral model
comprising a set of interacting state diagrams) and adaptations as transitions
among them.1 There are two key sources of uncertainty inherent to applications
warranting adaptation: (1) predicting the future execution environment, and (2)
using the trade-offs in non-functional characteristics and functional behavior to
respond to the changing environmental conditions. To address these uncertainty
issues, we can learn from nature. Living organisms are astonishingly adept at
adapting to changing environmental conditions using evolution. In this paper, we
harness the power of evolution [2] to automatically generate a suite of behavioral
models that represent possible target systems suitable for a variety of combina-
tions of environmental conditions not explicitly specified by the developer. We
then automatically identify the non-functional characteristics and latent func-
tional properties (“corner properties” or implicit, not required behavior) of the
models [3], thereby assisting the developer in identifying trade-offs between the
models in order to select the models to use as target systems.

Several architecture-based modeling approaches (e.g., [4, 5, 6]) capture the
functional properties and non-functional characteristics of a DAS in architec-
ture models that are used at run time to adapt the system, e.g., by adding,
removing, or swapping a component. Although these approaches use a DAS
to switch between different system configurations that have differing functional
properties and non-functional characteristics, these system configurations must
be modeled manually and do not support code generation. Additionally, sev-
eral approaches manage imprecision during software development by having the
developer manually create models that represent alternative interpretations of
requirements (e.g., [7]) or by using fuzzy logic to represent requirements [8].
Lastly, several approaches are able to synthesize behavioral models from scenar-
ios (e.g., [9, 10, 11]) and/or from formally specified properties (e.g., [11, 12]).
Because these approaches were designed for non-adaptive systems, they do not
explicitly address changing execution environments and do not assist the devel-
oper in making functional and non-functional trade-offs.

This paper introduces an approach to MDE for a DAS that explicitly address
unpredictable execution environments and supports trade-off analysis to address
the changing environmental conditions. First, in order to address the unknown
execution environment, we automatically generate a suite of models, where each
model satisfies the overall functional invariant, but has different functional and
non-functional behavior that makes it more suitable for a potentially unique
domain that was not explicitly specified. Next, to assist the developer in dis-
tinguishing the generated solutions and making informed trade-offs, we provide
an automated means to explicitly identify the non-functional characteristics and
latent behavior of the generated models. For example, our approach can be used
to discover that one model is more fault-tolerant and energy efficient, whereas,

1 Because UML is the de facto standard for object-oriented modeling languages, gen-
erating UML models facilitates their review and use by the MDE community.

570 H.J. Goldsby and B.H.C. Cheng

another is more secure and resource intensive. The developer then selects the set
of generated models to use as target systems for the DAS.

We use digital evolution-based techniques to support this process by gener-
ating a suite of models that represent possible target systems. Digital evolu-
tion [13] is a branch of evolutionary computation in which a population of self-
replicating computer programs (i.e., digital organisms) exists in a user-defined
computational environment and is subject to mutations and natural selection.
To generate models, we constructed Avida-MDE (Avida for Model Driven
Engineering),2 which enables digital organisms to generate UML models that
represent target system behavior. Mutations produce organisms that generate
different behavioral models. Natural selection gives rise to a population of or-
ganisms that generate behavioral models that increasingly satisfy the functional
system invariants with different behavioral characteristics that make it better
suited for handling a particular domain.

We illustrate our approach by applying it to GridStix, an adaptive flood
warning system [14]. The remainder of the paper is organized as follows. Sec-
tion 2 presents relevant background information. Then Section 3 introduces
GridStix as our running example and presents our approach. Section 4 describes
Avida-MDE in detail. Section 5 describes results from applying Avida-MDE to
GridStix. Section 6 discusses related work. Finally, in Section 7, we present con-
clusions and discuss future work.

2 AVIDA

Avida [13] is an evolutionary computation platform in which self-replicating
digital organisms evolve in a fashion with more parallels to natural evolution
than other forms of evolutionary computation (e.g., genetic algorithms and ge-
netic programming). Specifically, whereas other evolutionary computation ap-
proaches, such as the genetic algorithm and genetic programming, evaluate each
individual in the population and explicitly select individuals to move to the next
generation, the evolution of digital organisms is more open-ended. The organisms
are asynchronously evaluated; if an organism exhibits desirable behavior, then
the relative amount of resources that the organism receives is increased. Because
the evaluation is not used to explicitly select organisms to survive, poorly per-
forming organisms may continue to exist in the population and could eventually
produce a novel solution. Until recently, Avida has been used primarily to study
biological evolution [13].

Figure 1 depicts an Avida population and the structure of an individual
organism. Each digital organism comprises a circular list of instructions (its
genome) that is executed atop its virtual CPU. The Avida instruction set is
designed so that random mutations will always yield a syntactically correct pro-
gram, albeit one that may not perform any meaningful computation. An Avida
environment comprises a number of cells, where a cell is a compartment in which
an organism can live. Each cell can contain at most one organism, and the size
2 Avida is a digital evolution platform used to study biological evolution [13].

Automatically Generating Behavioral Models of Adaptive Systems 571

organism
Legend

D send−msg

u h−copy
u h−copy

u h−copy
z if−label

D send−msg

p sub
p sub

k shift−r

q nand
h push

b nop−B
e if−less

m inc
C rotate−r

s h−alloc

A set−flow
y get−head
e if−less
o add
y get−head
a nop−A
t h−divide

D send−msg
c nop−C
F get−id
z if−label

i swap−stk
v h−search

w mov−head
f if−grt
F get−id
E retrieve−msg

u h−copy
z if−label

u h−copy

Details of one organismPopulation of organisms

cell

C rotate−r

send−msg

Read
Cell

Interface

Stacks

LS
GS

Registers

CX
BX
AX

Heads

CPU

Instruction
Flow−control

Write

Fig. 1. Elements of AVIDA platform

of an Avida population is bounded by the number of cells in the environment.
Organisms are self-replicating, that is, the genome itself must contain the instruc-
tion to create an offspring. Random mutations are introduced during replication.
Mutation types include: replacing the instruction with a different one, inserting
an additional, random instruction into the offspring’s genome, and removing an
instruction from the offspring’s genome. For Avida-MDE, a mutation might
change the label on a state diagram transition. When an organism replicates, a
cell to contain the offspring is selected from the environment, and any previous
inhabitant of the target cell is replaced (killed and overwritten) by the offspring.

Developers use tasks to describe desirable organism behavior. For example,
we define a task that evaluates whether the generated behavioral models sat-
isfy functional properties (e.g., invariant safety-critical properties). Performing
a task increases an organism’s merit, which determines how many instructions
its virtual CPU is allowed to execute relative to the other organisms in the pop-
ulation. For example, an organism with a merit of 2 will, on average, execute
twice as many instructions as an organism with a merit of 1. Because the pop-
ulation has a fixed maximum size, to have the best chance of surviving in the
population, an organism must have as much merit as its peers. This competition
for survival ensures that, over time, the population comprises organisms that
increasingly satisfy more tasks.

3 Approach

To address uncertainty within the development of DASs, we propose a four step
process with corresponding digital evolution-based tool support. We illustrate
our approach using GridStix, an adaptive flood warning system [14].

3.1 Running Example: An Adaptive Flood Warning System

GridStix is an adaptive flood warning system deployed to monitor the River
Ribble in Yorkshire, England [14]. Floods are an increasing and costly problem
faced by the United Kingdom. The amount of damage caused by a flood is corre-
lated with both the depth of the water and the amount of time between the flood

572 H.J. Goldsby and B.H.C. Cheng

ShortestPathNode

DigiCamSensor

PressureSensor

UpstreamNode
queries depth

queries speed

1

1

11 1

11

queries speed
1

queries depth

1
1

1
1

A
B

C D E
N

A − D: neighboring nodes
E: gateway node

River Ribble

N: current node

a. Node Depoyment b. Elided Object Diagram

 river flow

Node
transmits
prediction

FewestHopNode

transmits
prediction

Fig. 2. GridStix Application

prediction and the flood. GridStix is a light-weight grid-computing flood moni-
toring system that comprises a set of nodes (e.g, A-E and N). Figure 2 provides
an overview of GridStix and an elided portion of the corresponding object dia-
gram. For this case study, we generate models that represent the target systems
of one Node (N). A Node monitors the status of the river using its PressureSen-
sor (depth sensor) and DigiCamSensor (digital camera river flow speed sensor).
The node then queries an additional UpstreamNode (A) and uses the information
from the UpstreamNode and the depth and speed it sensed to make a prediction.
Lastly, the node transmits the prediction to a neighboring node (B, C, or D)
that forwards it to a gateway node (E) that is connected to a modem and is
responsible for sending the predictions off-site for additional processing. Three
potentially conflicting non-functional objectives of a node are: (1) energy effi-
ciency (EE) because a node has a limited power supply, (2) fault-tolerance (FT)
because a node is deployed remotely, and (3) prediction accuracy (AC) because a
node should avoid failures or false alarms. A node is able to adapt its behavior in
a number of different ways that affect its non-functional attributes. In this case
study, we enable a node to dynamically change its CPU speed, select a different
routing algorithm to transmit information, e.g., shortest path (N→B→C→D→E)
vs. fewest hop (N→D→E), and use a different physical network infrastructure to
transmit predictions (e.g., bluetooth, wireless, GPRS – General Packet Radio
Service, a packet-based wireless communication service).

3.2 Model-Driven Engineering for Dynamically Adaptive Systems

To provide context for our approach, we briefly describe the model-driven engi-
neering process (depicted in Figure 3) for constructing a DAS [15]. At the Goal
phase, the functional goals (e.g., Goal) of the dynamically adaptive system are
identified [15]. At the Requirements phase, the domains (Di and Dj), i.e., environ-
mental conditions, and invariants (INV) of the DAS are identified. Additionally,
adaptations among these domains are captured as dotted-line arrows. At the De-
sign Models phase, design models (e.g., Mi, Mj , Mij , Mji) are constructed, where
Mi and Mj represent designs for target systems, and Mij and Mji are design
models capturing the behavior of the system during adaptation, where all of
the models satisfy the invariants (INV). Each of the design models has a set of
latent functional properties (e.g., LFi, LFj, LFij) and non-functional characteris-
tics (e.g,. NFi, NFj, NFij) that make it more suitable for a specific domain. The

Automatically Generating Behavioral Models of Adaptive Systems 573

Requirements

Goals

Design Models

Implementation

M

M

... ...D i D j

Mj
ij

ji

INVijLF , NF ij

...

Goal

...Mi

LF , NF i i LF , NF i i

Fig. 3. MDE Process for a DAS

invariants and latent functional properties are specified as linear temporal logic
(LTL) formulae and the non-functional characteristics are specified using a nu-
meric value. At the Implementation phase, code can be automatically generated
from the design models using code generators.

In this paper, we describe an approach to generating design models, Mi, of
target systems. Each design model Mi should minimally satisfy INV, but it may
also exhibit non-functional characteristics (NFi) and latent functional properties
(LFi), all of which collectively make the behavior of Mi particularly well-suited to
handle domain Di. As a means to address uncertainty in execution environments,
our approach also helps to discover additional domains based on viable, but not
previously specified combinations of environmental conditions.

3.3 Process

Figure 4 provides a graphical depiction of our approach, where shading levels
indicate different combinations of functional properties and non-functional char-
acteristics. In the following, we provide additional detail about how the process
addresses uncertainty within the development of DASs.

 properties (LFi)
(4) Select target (3) Identify latent functional

 using utility functions system models for
 each domain. characteristics (NFi).

 with non−functional
(1) Generate models (Mi) (2) Cluster by domain (Di)

3
3

D 1B

D 1A

D 2 NF

D 1

D 2

i

Mi

LF , NF i i

Mi

D 2

D
D

Fig. 4. Approach overview

574 H.J. Goldsby and B.H.C. Cheng

Step 1: Generate models with non-functional characteristics. The model
generation step addresses the uncertainty present in the unknown environment
of the DAS. Specifically, Avida-MDE automatically generates a suite of models
(e.g., Mi), each of which minimally satisfy the developer-specified invariants (INV),
but may also contain additional behavior that makes it suitable for domains that
were not explicitly provided. The developer provides the following inputs:

– UML Class/Object Diagram: The UML class/object diagram (e.g., a
detailed version of Figure 2 b.) describes the structure of the system includ-
ing the classes, attributes, operations, associations, and possible attribute
values. This information is used by Avida-MDE to construct state diagram
elements; for example, the class operations can be used as events and/or
actions on the transitions, and boolean expressions involving the class at-
tributes can express guards for the transitions.

– UML State Diagrams: For each class/object, the developer may option-
ally provide a state diagram describing existing behavior. In general, Avida-
MDE can be used to generate new state diagrams or extend existing state
diagrams [16].

– Invariants: Invariant functional properties (INV), specified in LTL, describe
the desired behavior of the generated models. For example, a natural lan-
guage representation of an LTL GridStix functional property [17] is “Glob-
ally, it is always the case that if a node makes a prediction, then eventually
the node will transmit the prediction to one of its neighbors.”

– Scenarios: Scenarios describe the possibilities for target system behavior.
To account for the uncertainty in the execution environment, the developer
specifies a set of required functional scenarios that must be supported by the
generated models. Additionally, the developer specifies a set of non-functional
based scenarios, where each one of the non-functional based scenarios speci-
fies a different way to achieve the same functional objective (i.e., send pre-
diction) with differing non-functional characteristics (i.e., send prediction us-
ing GPRS). One scenario from the non-functional based scenarios set must
be supported by a generated model. For example, Figure 5 depicts a set of
two non-functional based scenarios (1, 2) and one required scenario (3) for
the GridStix system. The two non-functional based scenarios (1, 2) both set
the CPU speed and query the PressureSensor. However, each scenario sets the
CPU speed to different values and thus affects both energy efficiency (i.e., run-
ning slower conserves battery power) and accuracy (i.e., running faster is more
accurate). The required scenario (3) probes the DigiCamSensor.

At a high level, the use of non-functional based scenarios enable Avida-MDE
to automatically generate innovative behavioral models that address previously
unspecified combinations of environmental conditions by integrating the behav-
ior represented by all or parts of the non-functional based scenarios, required
scenarios, and some additional behavior in such a way that the invariants are
satisfied. Additionally, a model’s potentially unique non-functional characteris-
tics are calculated based on the non-functional based scenarios it supports and

Automatically Generating Behavioral Models of Adaptive Systems 575

:PressureSensor

R
eq

ui
re

d
sc

en
ar

io

Set CPU to 200 and query the
PressureSensor to obtain depth
measurement.

Query the DigiCamSensor to
obtain speed measurement.

Set CPU to 100 and query the
PressureSensor to obtain depth
measurement.

:DigiCamSensor
N

on
−

fu
nc

ti
on

al
 b

as
ed

 s
ce

na
ri

o
se

t

CPUSpeed:=100

[]/getDepth()
setDepth()

CPUSpeed:=200

[]/getDepth()
setDepth()

[]/getSpeed()
setSpeed()

Comments

2. Balanced: FT=0, EE=.5, AC=.5

3. Required: FT=0, EE=0, AC=0

1. Energy Efficient: FT=0, EE=1,
 AC =0

:Node

Fig. 5. GridStix Scenario Diagrams

also the number of states and transitions it uses. If Avida-MDE is unable to
successfully generate any behavioral models, then this may indicate an inconsis-
tency among the information provided by the developer.

Step 2: Cluster by domain using utility functions. To assist the developer
in leveraging non-functional trade-offs between the models to address changing
environmental conditions, we provide an automated means to cluster the gener-
ated models by a high-level description of the domains provided by the developer.
Moreover, our key insight is that for each known high-level domain, a developer
has a set of non-functional preferences that reflect their understanding of the
domain’s environmental conditions and can be used to identify a domain model
set, a set of models whose non-functional characteristics make it suitable for a
domain. To select models for a domain model set, we use a similar approach
to that used by the Rainbow framework [18]. Specifically, we capture the devel-
oper’s non-functional preferences for a given domain using a utility formula. The
domain model set for a given domain comprises a set of models that maximize
the utility function, but do so using different trade-offs between non-functional
characteristics.

For example, the GridStix developers previously identified three high-level
domains [14]: (1) normal conditions, (2) increased flow, and (3) flood. For the normal
conditions, because the river is calm and a flood is unlikely, energy efficiency may
be more important than fault-tolerance or accuracy, as captured by the following
utility formula: 0.6∗EE + 0.2∗ FT + 0.2∗ AC. Similarly, utility formulae are
specified for the increased flow and flood domains. These utility formulae are
used to cluster the generated models by domain. Models whose utility function
evaluation are below a developer-specified and application-specific threshold do
not reflect useful behavior, and hence are not an element of any domain model
set and are therefore discarded. The coloring in Figure 4 indicates the non-
functional characteristic differences between the models; as such, the models with
light coloring are clustered in domain model set D1, the models with moderate

576 H.J. Goldsby and B.H.C. Cheng

coloring are clustered for domain D2, and the models with dark coloring are
clustered for domain D3.

Step 3: Identify latent functional properties. Within a domain model set,
all of the models satisfy the invariants (INV), and their respective non-functional
characteristics (NFi) satisfy the developer’s utility function for the domain (Di).
To further distinguish the models within a domain model set, we provide an
automated approach to discovering their latent functional behavior (e.g., LFi).

Avida-Marple [3] is a digital-evolution based tool that we previously de-
veloped to discover latent temporal logic properties. Within Avida-Marple,
digital organisms generate properties by instantiating the five most commonly
occurring specification patterns [19] in the form of LTL. The pattern place-
holders are instantiated with boolean propositions created using class attribute
and operation information from the class diagram (specified also as an input
to Avida-MDE). During the Avida-Marple evolutionary process, organism
mutations produce different LTL properties that may be satisfied by the UML
model. Natural selection gives rise to a population of organisms that produce
increasingly more relevant properties, where relevancy can refer to a type of
property or the use of a specific attribute or operation. For the GridStix case
study, we considered stronger properties more relevant because they revealed
more information about the model; here, stronger means those properties that
made stronger claims, such as universality, or those that contained conjunctive
expressions. In essence, Avida-Marple discovers latent functional properties
that developers may not otherwise specify or even consider. These latent func-
tional properties may uncover unwanted behavior that could either be used to
refine the requirements for generation or disqualify a model from representing
a target system. For easier readability, these latent functional properties are
presented to the developer in natural language [17].

Step 4: Select target system models for each domain. Using the non-
functional characteristics and the latent functional properties, the developer
identifies one or more models within each domain model set to use as a target sys-
tem. This step has three parts. First, the developer eliminates models that have
unwanted latent functional behavior (LFi).3 Second, the developer infers sub-
domains, a fine-grained set of environmental conditions that were not explicitly
specified by the developer, from the generated models. These sub-domains are
indicated by clusters of models that use similar non-functional characteristics to
satisfy the utility function of a domain model set. For example, within the Flood
conditions domain, we identified two sub-domains that describe Node behavior
when a neighboring node is submerged and when it is not submerged. Therefore,
the identification of sub-domains addresses uncertainty in the execution environ-
ment by enabling the developer to identify combinations of environmental con-
ditions that may not otherwise have been considered. In cases where there are
no obvious sub-domains, then we consider that domain to be a simple domain.

3 If all of the models have unwanted latent functional properties, then the developer
should return to Step 1 and refine the input specifications accordingly.

Automatically Generating Behavioral Models of Adaptive Systems 577

Third, the developer selects one model within each simple domain or sub-domain
to use as a target system. These selected models can be incorporated into the
model-driven engineering process for DASs as inspiration for a human-created
model, manually modified and then used to generate code, or used to generated
code directly.

4 Using Digital Evolution to Generate Models

Avida-MDE enables developers to generate innovative behavioral models for
target systems. Specifically, mutations produce behavioral models that develop-
ers might not otherwise discover, while natural selection pressures organisms to
generate models that meet developer requirements, i.e., invariants. This blend
of innovation and requirements satisfaction is especially pertinent for generat-
ing target systems that must respond to varying environmental conditions in
a resilient and robust fashion. In previous work [16], we developed a prelimi-
nary version of Avida-MDE to generate behavioral models, but did not address
non-functional model characteristics or look for latent properties to differentiate
models. In the following, we describe the three major ways in which we extended
the Avida platform to create Avida-MDE.

Configuration. Avida-MDE accepts the four configuration inputs specified by
the developer, i.e., UML class diagram, UML state diagrams, invariants (in LTL),
and scenarios (in a sequence diagram). These inputs serve three purposes: (1) The
invariants and scenarios are requirements for the behavioral models. (2) The UML
state diagrams describe existing behavior to be extended through generation. (3)
The UML class diagram and scenario diagram provide the alphabet from which
state diagram transitions are created. Specifically, for each scenario, the messages
form a list of transition labels. In addition, for each class, a list of triggers (oper-
ations), a list of guards (expressions built using attributes), and a list of actions
(the operations of classes related to it via associations) are extracted. Because the
Avida-MDE alphabet includes triggers, guards, and actions (described by the
class diagram), organisms are able to generate additional and potentially more
interesting viable transitions, not otherwise considered by the developer.

New Instructions. To enable organisms to manipulate state diagrams, we
developed a new set of Avida instructions that are reusable across all DAS ap-
plications specified by the configuration step. These instructions, when mutated
into an organism’s genome, are used to (1) select alphabet elements to use to
create a transition, (2) construct a transition, and (3) construct a loop. Specif-
ically, the selection instructions use different strategies for selecting alphabet
elements to use to create a transition. The internal representation of an organ-
ism’s alphabet is lists of states, transition labels, triggers, guards, and actions.
Each list has an index that initially points to the first list element. (The list
of states has two indices – one for the origin state and one for the destination
state.) An organism selects an alphabet element by having the list index point
to it. There are two transition construction instructions, where the first adds

578 H.J. Goldsby and B.H.C. Cheng

the transition described by the current origin state, destination state, and tran-
sition label, and the second, adds the transition described by the current origin
state, destination state, trigger, guard, and action. When the parent organism
replicates, its genome is mutated by randomly adding, deleting, and inserting
these instructions at a pre-defined probability. Thus, it is likely that the model
generated by an offspring is not the same as the model generated by its parent.

New Tasks. We defined a set of tasks to reward Avida organisms for generating
a behavioral model that meets the developer-specified invariants and scenarios.
Prior to replication, an organism and the model that it generates are evaluated
by the tasks. An organism that performs these tasks will have a better chance
of survival and will eventually dominate the population.

The scenario task (checkScenario) rewards an organism for generating a model
that supports key scenarios defined by the developer. For each scenario, the de-
veloper must specify the messages between objects and may optionally include a
start state for each object and specify whether the scenario should iterate. The re-
ward for a required scenario is the percentage of the execution path supported by
the state diagrams. Additionally, the reward for a non-functional based scenarios
set is the maximum percentage of coverage of a given scenario among the scenar-
ios used in the set. For example, using the non-functional based scenarios set in
Figure 5, if an organism generated a behavioral model that supported 67% of the
Energy Efficient scenario and 33% of the Balanced scenario, then the reward for this
non-functional based scenarios set would be 67% of the maximum reward value.

A property task (checkProperty) rewards organisms that generate state dia-
grams that adhere to a formally specified property. These tasks constrain the
behavior of the interacting state diagrams. To enable Avida-MDE to determine
if the generated state diagrams satisfy a stated property, we extended Avida to
use external third party tools. Specifically, the checkSyntax task uses Hydra, an
existing UML formalization engine [20], to translate a UML model into Promela,
the specification language for the model checker Spin [21]. Next, the checkWit-
ness task uses Spin to verify that at least one execution path (i.e., a witness
trace) through the Promela model satisfies the functional property specified by
the developer in Linear Temporal Logic (LTL). Lastly, if the checkWitness for a
given property passes, then the checkProperty task uses Spin to verify that the
Promela specification satisfies the same functional property. Additional details
on the external and previously developed analysis process can be found in [20].

5 Case Study

In this section, we provide further details about applying our approach to Grid-
Stix and discuss our results. The objective of our case study is to generate target
systems that describe the behavior of the Node object as it interacts with its sen-
sors, queries an upstream node, makes a prediction regarding the state of the
river, and transmits information to a neighboring node.

Automatically Generating Behavioral Models of Adaptive Systems 579

Step 1: Generate models with non-functional characteristics. We pro-
vide the following information to use Avida-MDE to generate target systems
for GridStix:

– A detailed version of the UML Object diagram (in Figure 2 b.);
including operations, attributes, and attribute values to be used for the or-
ganism alphabet.

– Functional invariant(s): “Globally, it is always the case that if a node
makes a prediction, then eventually this prediction is transmitted to either its
shortest path neighbor or its fewest hop neighbor.” This invariant, specified
in LTL [17], is checked by the checkSyntax, checkWitness, and checkProperty
tasks.

– State diagrams describe the behavior of all of the classes except Node.
Because our case study focuses on the behavior of Node, these other state
diagrams will not be extended by Avida-MDE.

– Three required functional scenarios describe: (1) querying the Node’s
DigiCam to monitor river speed, (2) querying the depth sensed by the Up-
streamNode, and (3) querying the speed sensed by the UpstreamNode. Addi-
tionally, we specified two sets of non-functional based scenarios. The first set
provides three computational speed alternatives (two of which are depicted
in Figure 5). The second set provides six alternative ways to send data. The
messages defined by these scenarios were used as a portion of the organism
alphabet. Additionally, a checkScenario task was used to reward organisms
for supporting the scenarios.

Using these inputs, forty Avida-MDE experiments were run in parallel to
account for the stochastic nature of the evolutionary process. All of the experi-
ments ran for 10 hours; we started the experiments at the end of a work day and
the results were available by the beginning of the next work day. In total, 779
unique models were generated. For a given model, the value of a non-functional
characteristic (i.e., energy efficient (EE), fault-tolerant (FT), or accuracy (AC)) is
calculated by summing the values of that characteristic across the scenarios that
it supports. For example, if a model supported scenarios 1 and 3 in Figure 5,
then the value of EE would be 1.

Step 2: Cluster by domain using utility functions. Next, to manage the
non-functional trade-offs, we partitioned the generated models into three domain
model sets, one for each of the three high-level domains from the developer (i.e.,
normal conditions, increased flow, and flood). Specifically, we first specified a utility
function for each domain:

– Normal conditions utility = 0.6∗EE + 0.2∗FT + 0.2∗AC. We prefer that the
nodes are energy efficient to preserve battery life.

– Increased flow utility = 0.33∗EE + 0.34∗FT + 0.33∗AC. We prefer that the
nodes are a balance of fault-tolerant, accurate, and energy efficient.

– Flood utility = 0.2∗EE + 0.0∗FT + 0.8∗AC. We prefer that the nodes are
accurate because the conditions are critical.

580 H.J. Goldsby and B.H.C. Cheng

We then selected models that maximize the respective utility formula of each
domain. Specifically, we selected 3 models from the normal conditions domain
model set, 2 models from the increased flow conditions domain model set, and 3
models from the flood conditions domain model set. These models will be further
evaluated to identify latent properties and possible sub-domains.

Step 3: Identify latent functional properties. Next, we used Avida-
Marple to identify the latent functional behavior of the 8 selected models.
For example, two of the discovered latent properties for one of the models in the
normal conditions domain model set are:

1. Globally, it is always the case that if Node.CPUSpeed < 100 holds, then
FewestHopNode.received == 0 eventually holds. (The shortest hop node
always receives the prediction.)

2. Globally, it is always the case that if Node.CPUSpeed > 200 holds, then
FewestHopNode.received == 1 eventually holds. (When the CPU speed is
over 200, the fewest hop node receives the prediction.)

These properties together specify that the Node always sends its prediction to
the ShortestPathNode, but also sends its prediction to the FewestHopNode if the
CPUSpeed is greater than 200. This behavior implies that the Node is generally
energy efficient (sending to the ShortestPathNode), but also has some innate fault-
tolerance that is achieved by sending to the FewestHopNode only when the CPU
speed is running quickly.

Step 4: Select target system models for each domain. Using the la-
tent functional behavior identified as part of Step 3, we noted that 2 of the
8 models selected from the three domain model sets contained unwanted la-
tent behavior. Thus, we eliminated them. The two models in the Increased Flow
domain model set achieved the same utility value using similar non-functional
characteristics; neither had unwanted latent behavior. To minimize model com-
plexity, we selected the model with the fewest transitions. We repeated this
evaluation process for the Flood domain model set, which also had two similar
models. For the normal conditions domain model set, the two generated models
satisfied their utility function similarly, but with differing non-functional char-
acteristics. Specifically, based on the utility function parameters, we identified
two sub-domains, where one sub-domain was more energy efficient and the other
sub-domain was more fault-tolerant. The latent functional properties discovered
for these two models reaffirmed our identification of sub-domains and explained
why the models had differing non-functional characteristics. For example, the
latent functional properties for the normal conditions - fault-tolerant sub-domain
were previously described and indicate that it transmits predictions to both its
shortest path and its fewest hop neighbor. Thus far, we have focused on func-
tional and non-functional properties to illustrate the differences between the
models generated by Avida-MDE to satisfy the same invariant requirements.
These differences are, in fact, due to both the different transitions (i.e., guards,
triggers, actions) that get generated for each diagram, as well as the differ-
ent topological structures of the diagrams (e.g., number of states, number of

Automatically Generating Behavioral Models of Adaptive Systems 581

A

Increased Flow Flood Normal Conditions − Normal Conditions −
 energy efficient

B C D

 fault−tolerant

Fig. 6. Generated Target Systems

transitions, the connectivity between states, etc.). For example, Figure 6 high-
lights the amount of variation present in our generation process by depicting the
varying topologies of the four generated models selected as target systems

6 Related Work

While there has been significant progress in synthesizing state diagrams from
scenarios and/or properties, to the best of our knowledge, our approach is the
only one to generate multiple solutions (in the form of models) for interacting ob-
jects, while considering functional properties and non-functional characteristics.
In general, scenario-based synthesis techniques [9, 10, 11] accept a set of sce-
narios (i.e., a sequence diagrams) as input and produce a set of communicating
state diagrams as output. The sequence diagram messages form the alphabet.
Property synthesis techniques establish a one-to-one mapping between a formally
specified property and a state diagram [12], where each state diagram represents
all possible behaviors that satisfy the property.

Our approach addresses the uncertainty present in the development of DASs
and thus differs from the synthesis approaches in three key ways: First, in ad-
dition to the alphabet formed by the scenario messages, Avida-MDE also uses
an evolving alphabet that is created by combining the triggers, guards, and ac-
tions inferred from the class diagram (described in Section 4). One ramification
of this alphabet is that Avida-MDE generates different transitions than those
generated from the alphabets of other approaches. As a result, the generated
behavioral model has the potential to be less intuitive and perhaps offer more
resiliency than those created with traditional techniques. Second, in contrast
to the synthesis approaches, Avida-MDE generates a suite of behavioral mod-
els that all satisfy the functional invariant, but have differing latent functional
properties and non-functional characteristics. Third, to assist the developer in
performing trade-off analysis, our approach clusters the models by non-functional
preferences for a domain, identifies the latent functional properties, and infers
sub-domains that identify unspecified combinations of environmental conditions.

7 Discussion

In this paper, we have presented an approach to addressing environmental un-
certainty with a digital-evolution based approach to generating models for the

582 H.J. Goldsby and B.H.C. Cheng

development of a DAS. Next, we reflect upon our technique and provide sugges-
tions for using it as part of the development process. It is possible to scale Avida-
MDE to larger applications by increasing the length of the organism genome,
increasing the number of organisms in a population, or by increasing the number
of experiments run in parallel. Additionally, the performance of Avida-MDE is
dependent upon many factors including the size of the model, number of exper-
iments run, duration of experiments, and available computational resources. To
use our approach effectively, developers should focus on describing what the DAS
should do, rather than how the DAS should achieve this behavior. This strategy
enables Avida-MDE organisms to have the most flexibility to generate innova-
tive models that comply with developer requirements. However, determining the
appropriate level of detail for the developer-specified requirements is frequently
an iterative process (as is the case with traditional development techniques). If
Avida-MDE generates too few models, then the topology information as spec-
ified by the scenarios should be relaxed. However, if Avida-Marple discovers
unwanted latent behavior common to all of the generated models, then the in-
variant and/or scenario requirements should be refined.

Numerous directions for future work are possible. One possibility is to ex-
plore how digital-evolution based techniques can be used to identify the quies-
cent states, or states within the target system from which the DAS can adapt
safely [22]. A second possibility is to enable organisms to instantiate design pat-
terns and thus potentially create more modular and extensible designs. Another
possibility is to use Avida-MDE to generate the adaptation logic (e.g., Mij , Mji)
that describes how the DAS transitions between target systems.

References

[1] Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2) (2006)

[2] McKinley, P., Cheng, B.H., Ofria, C., Knoester, D., Beckmann, B., Goldsby, H.:
Harnessing digital evolution. IEEE Computer 41(1), 54–63 (2008)

[3] Goldsby, H.J., Cheng, B.H.C.: An automated approach to detecting unwanted
latent behavior in models of high assurance systems. Technical report, Michigan
State University (May 2008) (submitted for publication)

[4] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

[5] Gorlick, M.M., Razouk, R.R.: Using weaves for software construction and analysis.
In: ICSE 1991: Proceedings of the 13th International Conference on Software
Engineering, pp. 23–34. IEEE Computer Society Press, Los Alamitos (1991)

[6] Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: Schafer, W., Botella, P. (eds.) ESEC 1995. LNCS, vol. 989, pp.
137–153. Springer, Heidelberg (1995)

[7] Noppen, J., van den Broek, P., Aksit, M.: Software development with imperfect
information. Soft Computing 12, 3–28 (2008)

[8] Yen, J., Lee, J.: Fuzzy logic as a basis for specifying imprecise requirements. In:
Second IEEE International Conference on Fuzzy Systems (1993)

Automatically Generating Behavioral Models of Adaptive Systems 583

[9] Whittle, J., Jayaraman, P.K.: Generating hierarchical state machines from use
case charts. In: 14th IEEE International Requirements Engineering Conference
(RE 2006), Washington, DC, USA, pp. 16–25 (2006)

[10] Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: Generating statechart mod-
els from scenario-based requirements. In: Formal Methods in Software and Sys-
tems Modeling (2005)

[11] Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties
and scenarios. In: ICSE 2007: Proceedings of the 29th International Conference
on Software Engineering, pp. 34–43 (2007)

[12] Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD 2006:
Proceedings of the Formal Methods in Computer Aided Design (2006)

[13] Ofria, C., Wilke, C.O.: Avida: A software platform for research in computational
evolutionary biology. Journal of Artificial Life 10, 191–229, International Society
of Artificial Life (ISAL) (2004)

[14] Hughes, D., Greenwood, P., Coulson, G., Blair, G., Pappenberger, F., Smith, P.,
Beven, K.: An intelligent and adaptable flood monitoring and warning system. In:
Proceedings of the 5th UK E-Science All Hands Meeting (AHM) (2006)

[15] Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: ICSE 2006: Proceeding of the 28th International Conference on Software
Engineering, pp. 371–380 (2006) (Best Paper Award)

[16] Goldsby, H.J., Cheng, B.H.C., McKinley, P.K., Knoester, D.B., Ofria, C.A.: Dig-
ital evolution of behavioral models for autonomic systems. In: Proceedings of the
5th International Conference on Autonomic Computing (ICAC 2008), Chicago,
Illinois (June 2008) (Best Paper Award)

[17] Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: Proceedings of the IEEE International Requirements Engi-
neering Conference (RE 2005), Paris, France (August 2005)

[18] Cheng, S.W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: ICSE 2006 Workshop on Software Engineering
for Adaptive and Self-Managing Systems, Shanghai, China (May 2006)

[19] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the 21st International Conference
on Software Engineering, pp. 411–420 (1999)

[20] McUmber, W.E., Cheng, B.H.C.: A general framework for formalizing UML with
formal languages. In: Proceedings of the IEEE International Conference on Soft-
ware Engineering (ICSE 2001), Toronto, Canada (May 2001)

[21] Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2004)

[22] Zhang, J., Yang, Z., Cheng, B.H., McKinley, P.K.: Adding safeness to dynamic

adaptation techniques. In: Proceedings of ICSE 2004 Workshop on Architecting

Dependable Systems, Edinburgh, Scotland, UK (May 2004)

	Automatically Generating Behavioral Models of Adaptive Systems to Address Uncertainty
	Introduction
	AVIDA
	Approach
	Running Example: An Adaptive Flood Warning System
	Model-Driven Engineering for Dynamically Adaptive Systems
	Process

	Using Digital Evolution to Generate Models
	Case Study
	Related Work
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

