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Abstract. The Object Constraint Language (OCL) is a central element
in modeling and transformation languages like UML, MOF, and QVT.
Consequently approaches for MDE (Model-Driven Engineering) depend
on OCL. However, OCL is present not only in these areas influenced by
the OMG but also in the Eclipse Modeling Framework (EMF). Thus the
quality of OCL and its realization in tools seems to be crucial for the suc-
cess of model-driven development. Surprisingly, up to now a benchmark
for OCL to measure quality properties has not been proposed. This pa-
per puts forward in the first part the concepts of a comprehensive OCL
benchmark. Our benchmark covers (A) OCL engine accuracy (e.g., for
the undefined value and the use of variables), (B) OCL engine determi-
nateness properties (e.g., for the collection operations any and flatten),
and (C) OCL engine efficiency (for data type and user-defined opera-
tions). In the second part, this paper empirically evaluates the proposed
benchmark concepts by examining a number of OCL tools. The paper
discusses several differences in handling particular OCL language fea-
tures and underspecifications in the OCL standard.

1 Introduction

The Object Constraint Language (OCL) [1,2] is a central ingredient in modeling
and transformation languages. Thus, approaches for Model-Driven Engineer-
ing (MDE) rely on it. OCL is supported in commercial tools like MagicDraw,
Together, or XMF Mosaic and in open source tools like ATL [3] or Eclipse MDT
OCL [4]. In many approaches, OCL is used as an assembler-like technology un-
derlying model-centric software development. Of course, OCL has a higher de-
gree of abstraction than conventional assemblers, but transformation technology
is based on OCL like classical programming languages rely on assemblers.

The Object Constraint Language is employed for determining model proper-
ties, for checking the applicability of transformations, and in form of imperative
OCL for performing transformations. For example, the QVT standard includes
an important part on imperative OCL. Transformation approaches assume that
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the integrated OCL engine works correctly. The OCL core is also employed in
language extensions like temporal OCL [5] or real-time OCL [6]. A correct and
complete realization of OCL is essential for each single tool and indispensable in
tool chains. Although the OCL standard offers two approaches for defining the
semantics, the quality and conformance of concrete OCL implementations have
to be guaranteed. Our experience proves that already basic OCL expressions are
treated differently in different OCL engines.

In the first part of this paper we introduce the concepts of a comprehensive
OCL benchmark. The benchmark is divided into several parts which treat ac-
curacy, determinateness, and efficiency aspects. Our benchmark covers relevant
features of the underlying modeling language and most features of OCL. It cur-
rently includes about 950 OCL expressions handling invariants and operation
definitions as well as pre- and postconditions.

In the second part of this paper we will apply the benchmark to a num-
ber of OCL engines: ATL OCL [3], Dresden OCL [7], Eclipse MDT OCL [4],
OCLE [8], Octopus [9], RoclET [10], and USE [11]. Further OCL engines like
Kermeta OCL [12], KMF [13], OSLO [14], VMTS OCL [15] and other tools would
have been possible candidates as well. The evaluation results are presented in
anonymous form, because our aim is to show the applicability and validity of
the benchmark concepts. We do not want to recommend or to discourage the
use of a particular tool, but would like to emphasize the need for a benchmark
which can help to build correct OCL implementations.

As indicated in Fig. 1, our OCL benchmark consists of 7 parts: The parts
B1 to B5 treat accuracy, the part B6 deals with determinateness, and the part
B7 handles efficiency. The parts B1, B2, and B3 include a UML model in order to
check class and object diagram capabilities, invariants, pre- and postconditions,
and state-dependent queries. B1 presents core features by checking invariants,
B2 adds enumerations and pre- and postconditions, and B3 deals with advanced
features like ternary associations and navigation therein. The parts B4 and B5
are based on state-independent queries covering the majority of OCL standard
collection operations and their properties. B4 concentrates on the three-valued
OCL logic, and B5 features laws between collections operations.

To give an impression of the different evaluations in the examined OCL en-
gines, let us take some examples from the details discussed further down and
consider the term Set{1,2,3}->collect(i|Seq{i,i*i}) (Sequence abbrevi-
ated by Seq). We obtained three different answers from three OCL engines:

Accuracy B1 Core (data types, invariants, properties, binary associations)
B2 Extended core (enumerations, pre- and postconditions, queries)
B3 Advanced modeling (ternary associations, association classes)
B4 Three-valued logic (e.g., 1/0=1 or true)
B5 OCL laws (e.g., select versus reject)

Determinateness B6 OCL features with non-deterministic flair (e.g., any, flatten)

Efficiency B7 Evaluation for data type, user-defined and collection operations

Fig. 1. Overview on the 7 Parts of the OCL Benchmark



448 M. Gogolla, M. Kuhlmann, and F. Büttner

(A) Bag{Seq{1,1}, Seq{2,4}, Seq{3,9}}, (B) Seq{Seq{2,4}, Seq{1,1},
Seq{3,9}} and (C) Bag{1,1,2,4,3,9}. The answer (A) is the only correct rep-
resentation of the expected result. Among the remaining three OCL engines,
one engine could not handle two or more variables in iterate expressions, an-
other engine did not treat nested variables with identical names correctly, and,
for a given SET and an appropriate expression EXPR, the last engine calcu-
lated SET=EXPR correctly as true, but evaluated SET->one(e|e) to true and
EXPR->one(e|e) to false.

The structure of the rest of the paper is as follows. Sections 2, 3, and 4 han-
dle accuracy, determinateness, and efficiency, respectively. Section 5 presents the
details of the empirical evaluation of the OCL engines. In Sect. 6 the paper is fin-
ished with a conclusion and future work. The technical details of the benchmark,
i.e., all models, constraints, and queries, can be found in [16], and all details of
the evaluation results are presented (partly in German) in [17].

2 OCL Engine Implementation Accuracy

Implementation accuracy is a measurement for the completeness and the cor-
rectness of the realization of OCL (and the needed modeling language features)
in an OCL engine. Accuracy relates to syntactic and semantic features and is
essential, because in tool chains each single tool must rely on the correct and
complete OCL handling in the preceding tools. High accuracy is the premise for
compatibility of OCL tools. Therefore situations like the following ones should
be prevented: (1) The parser of the first tool does not accept the OCL expres-
sions written with the second tool, or (2) the third tool accepts the syntax of
the first tool, but shows different evaluation results.

2.1 Accuracy in the Modeling Language and in OCL

OCL constraints and queries refer to a context like a class or an operation.
Therefore an OCL engine must provide support for a subset of the underlying
modeling language. The most common features are class diagrams and object
diagrams for state-dependent evaluation. Our benchmark assumes that central
MOF resp. UML class diagram features are supported, e.g., classes, attributes,
associations (binary, ternary, reflexive), roles, multiplicities, association classes,
and enumerations.

All central OCL features must be available in an OCL engine and are there-
fore used in our benchmark. Central in this respect are, for example, object
properties (attributes and roles), collection operations, and navigation with the
collect shortcut. An OCL engine must be able to evaluate state-dependent
expressions (e.g., Person.allInstances()->select(age>18)) and state-
independent expressions (e.g., Set{1..9}->collect(i|i*i)). As indicated in
the OCL standard, query evaluation by returning a result value and a result
type is an important task of an OCL engine.
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State-dependent expressions refer to objects, their attributes and roles. Typ-
ically these kinds of expressions are used in OCL pre- and postconditions spec-
ifying side-effected operations and OCL invariants. Our benchmark covers the
mentioned OCL elements. The OCL standards 1.3 and 2.0 show minor differences
for certain syntactic constructs. For example, according to OCL 1.3 all instances
of a class are retrieved by allInstances, but in OCL 2.0 allInstances() is
used. Our benchmark therefore formulates one constraint in particular syntactic
variations in order to check for support of OCL 1.3 and OCL 2.0.

Beside checking for completeness of OCL features, a correct and consistent
evaluation of OCL constraints and queries is required. The basis for an accu-
rate evaluation of a complex expression is the correct implementation of every
individual OCL operation. Such tests are put into practice by applying OCL
collection operations, OCL data type operations and enumeration literals in
complex terms. For OCL collection operations, the laws and relationships from
[18] are our starting point.

2.2 Core Benchmark (B1)

The core benchmark checks rudimentary OCL and modeling language features.
With regard to the modeling language, the applied model includes a class with
simple attributes, a side-effect free user-defined operation and a reflexive binary
association as shown in Fig. 2. The model is instantiated with an object diagram
in order to check the capabilities of object creation, value assignment, handling
of String, Integer and Boolean literals as well as link insertion and deletion.
The core benchmark avoids special and advanced features like enumerations,
empty collections and the undefined value and provides several different syntactic
variations for the same expression.

Frequently used OCL operations and constructs are added to the model
through the invariants, e.g., basic boolean predicates, the operations collect
and flatten, let expressions, nested collections and navigation with the col-
lect shortcut. Using the collect shortcut means to apply a property to a
collection of objects which is understood as a shortcut for applying the

Fig. 2. Class Diagram of the Core Benchmark Model
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property inside a collect call, e.g., Person.allInstances().name is a shortcut
for Person.allInstances->collect(name). Because not all considered OCL
engines provide support for OCL queries, we restricted the core benchmark to
invariants. Therefore, the core benchmark involves so-called query invariants
which compare the query with the expected result in order to obtain a boolean
expression.

Up to six different syntactic notations are provided for each invariant. Ide-
ally the parser of an OCL engine accepts all variants, but at least one of them
has to be accepted. Three choices arise from the naming and typing of vari-
ables in collection operations: Iterator variables can be explicitly defined (e.g.,
Person.allInstances()->reject(p|p.gender=’male’)); additionally they
can be typed (e.g., Person.allInstances()->reject(p:Person|p.gender=
’male’)), and several operations also accept implicit variables (e.g.,
Person.allInstances()->reject(gender=’male’)). The number of choices is
doubled when we incorporate the notation of allInstances() without paren-
theses as it is permitted in OCL 1.3.

After the syntactic check the evaluation accuracy is identified with the aid of
an example object diagram representing a snapshot of a valid system state. All
core invariants are designed to be fulfilled in context of this system state.

2.3 Extended Core Benchmark (B2)

While the core benchmark only checks basic model elements, the extended core
benchmark adds enumerations, side-effected operations with pre- and postcon-
ditions and state-dependent queries. Focus of the queries is object access (in-
cluding cases treating the undefined value) and navigation as well as handling
of enumeration literals and enumeration type attributes as shown in Fig. 3.

Fig. 3. Class Diagram of the Extended Core Benchmark Model
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In this scenario several successive object diagrams are constructed to represent
an evolving system. Each pair of successive states represents the execution of an
operation specified in the extended model. We do not dictate whether user-
defined operations should be directly executable, for example as Java methods,
or whether they can be simulated on the modeling level. But in each case we
demand the possibility to evaluate pre- and postconditions in context of one pair
of system states.

2.4 Advanced Modeling Benchmark (B3)

Navigating ternary and higher-order associations and association classes is an
advanced chapter in the OCL standard [1]. Higher-order associations are some-
times needed for concise modeling and are common in database modeling.

Fig. 4. Class Diagram of the Advanced Model

For this reason, the accuracy benchmark B3 is based on a model specifying a
ternary reflexive association class. A link, i.e., an instance of the association class
Exam, is identified by a triple of persons. Each person is allowed to attend exams in
different roles. The following expression navigates within the ternary association.

let ada = Person.allInstances()->any(name=’Ada’) in
ada.examiner[recorder]

The brackets indicate the direction from which an association is navigated.
Therefore the above expression results in the set of examiners being present in
an exam in which Ada is the recorder. In contrast, ada.examiner[examinee]
results in all persons being an examiner of the examinee Ada.

2.5 Three-Valued Logic Benchmark (B4)

OCL offers a sophisticated handling of undefined values. This induces a three-
valued logic which is tested in the fourth part B4 of the accuracy benchmark.
Following the semantics defined in [1], B4 systematically checks the correct im-
plementation of boolean OCL operations with context-free queries.
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We emphasize that the OCL standard explicitly requires that, for example,
‘True OR-ed with anything is True’ and ‘False AND-ed with anything is False’.
This means that in these cases the undefined value is not allowed to be propagated.

2.6 OCL Laws Benchmark (B5)

Benchmark B4 was set up to check systematically the correct implementation
of individual operations, with focus on collection operations. The analysis of se-
mantic properties between OCL operations presented in [18] provides a basis for
this benchmark. Each test case checks for the equivalence of two different OCL
expressions, i.e., it tests whether the laws between two operations as exposed in
[18] holds. If an OCL evaluation engine negates an equivalence, an erroneous im-
plementation of at least one participating operation is indicated. The following
example shows a law considered in the benchmark. The variable e represents a
boolean OCL expression.

let c = sourceCollection in
c->exists(i|e) = c->select(i|e)->notEmpty()

Another important aspect is the use of the general collection operation
iterate for substituting other operations. An example is shown below.

let c = sourceCollection in
c->exists(i|e) = c->iterate(i;r:Boolean=false|r or e)

For checking a law in the benchmark we have to substitute corresponding ex-
pressions by concrete source collections (c) and OCL subexpressions (e). In the
case of boolean expressions a very simple form (i<4) is sufficient for testing, be-
cause we only need an expression which can result to true and to false depending
on the value of the iterator variable. The complexity of the expression provoking
the boolean value is irrelevant. A correct evaluation of the subexpressions has
to be assured by other parts of the benchmark.

In contrast, the source collections have to be systematically chosen, because sev-
eral inconsistencies do not occur until a particular element constellation is present.
On this account each law is instantiatedwith (1) sets, bags and sequences, (2) empty
collections, singleton collections andcollectionswithmanyelements, (3) collections
including the undefined value and excluding the undefined value as well as (4) col-
lections including elements which fulfill the boolean expression and collections ex-
cluding these elements. In case of bags and sequences we additionally differentiate
between (5) collections excluding equal elements and collections including equal
elements which (6) fulfill or not fulfill the boolean expression. The combination of
these six situations results in 29 cases for each equivalence. In some test cases like
the one checking the law between the operations collect and iterate this num-
ber varies, because of the absence of a boolean expression, i.e., the cases 4 and 6 are
not relevant. An example case is shown below.

let c = Set{-1,0,1,2} in
c->collect(i|i*i) =
c->iterate(i;r:Bag(Integer)=Bag{}|r->including(i*i))
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3 OCL Engine Determinateness Properties (B6)

This part of the benchmark deals with OCL engine implementation properties
for non-deterministic OCL features and operations for which the OCL standard
allows a choice in the implementation like any or flatten. The aim of this
benchmark is to reduce the freedom for implementation choice as far as possible.

In OCL there are at least five possibilities for converting sets and bags to
sequences. Here, we will only discuss the ones for sets because the conversions
for bags are analogous to the set conversions. Roughly speaking, sets can be made
into sequences by using (1) asSequence, (2) iterate, (3) any, (4) flatten or
(5) sortedBy. In the expressions below, intSet is an arbitrary OCL expression
with type Set(Integer), e.g., Set{1..12}.
(1) intSet->asSequence()
(2) intSet->iterate(e:Integer;

r:Sequence(Integer)=Sequence{}|
r->including(e))

(3) intSet->iterate(u:Integer;
r:Tuple(theSet:Set(Integer),theSeq:Sequence(Integer))=

Tuple{theSet:intSet,theSeq:Sequence{}}|
let e=r.theSet->any(true) in

Tuple{theSet:r.theSet->excluding(e),
theSeq:r.theSeq->including(e)}).theSeq

(4) Sequence{intSet}->flatten()
(5) intSet->collect(e:Integer|Sequence{0,e})->

sortedBy(s:Sequence(Integer)|s->first())->
collect(s|s->last())

The first possibility is the direct conversion with asSequence. The second term
uses an iterate over the integer set with an element variable and successively
builds the sequence by appending the current element. The basic idea behind the
third term is to choose an arbitrary element with any and to append this element
to the result sequence. The fourth term calls flatten on a sequence possessing
the integer set as its only element. The fifth possibility uses sortedBy to give an
order to a bag of integer sequences. Each of the five terms represents a particular
way to produce a sequence from a set. We are using the notion determinateness in
this context because the OCL engine has to determine the order in the sequence.
Our benchmark tests whether the orders produced by terms 2 to 5 coincide
with the direct order given by asSequence. The benchmark part B6 checks also
minor other points, for example, whether the following two properties hold which
consider operation applications to a given set and its corresponding bag.

aSet->any(true) = aSet->asBag()->any(true)
aSet->asSequence() = aSet->asBag()->asSequence()

We understand such determinateness properties as points of underspecifica-
tion in the OCL standard. Our benchmark gives the possibility to reduce this
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underspecification and with this the amount of freedom for the OCL engine
implementor.

4 OCL Engine Efficiency (B7)

In this section we propose OCL expressions checking the evaluation efficiency
in an OCL engine. The expressions are assumed to be evaluated in the different
engines and the evaluation time has to be recorded. In order to have easily
measurable and reliable evaluation times the expressions are usually evaluated
in an iterate loop not only once but many times. The expressions in this section
are divided on the one hand into expressions concerning the OCL standard data
types Boolean, String, Integer and Real and on the other hand into expressions
of a small model of towns and roads in between.

The expressions for the data types compute (A) the truth tables of the Boolean
connectives available in OCL, (B) the inverse of a longer String value, (C) the
prime numbers as Integer values up to a given upper bound, and (D) the square
root of a Real number. As an example consider the following OCL expression
for the prime numbers up to 2048.

Sequence{1..2048}->iterate(i:Integer;
res:Sequence(Integer)=Sequence{}|
if m.isPrime(i) then res->including(i) else res endif)

The operation isPrime(i) is defined in a singleton class MathLib as specified
below. The operation is called on the singleton object m of class MathLib.

isPrime(arg:Integer):Boolean=
if arg<=1 then false else

if arg=2 then true else isPrimeAux(arg,2,arg div 2) endif endif
isPrimeAux(arg:Integer,cur:Integer,top:Integer):Boolean=
if arg.mod(cur)=0 then false else

if cur+1<=top then isPrimeAux(arg,cur+1,top) else true endif
endif -- algorithm inefficiency irrelevant for benchmark

The expressions for the example model with towns and roads consider the
underlying data structure as a graph with objects (nodes) and links (edges). They
compute (A) the transitive closure, i.e., the directly and indirectly reachable
nodes of a given node, and (B) the connected components of the graph, i.e., the
maximal node sets in which all nodes are connected directly or indirectly. The
example model has a single class and a single association as displayed in Fig. 5.

An example state with 42 towns and 42 roads is built up. The underlying
graph has 5 connected components with 1, 2, 3, 13 and 23 nodes. In the example
state the following OCL expression for the transitive closure is evaluated.

Set{1..1024*1024}->iterate(i:Integer;
res:Bag(Set(Town))=Town.allInstances->collect(t|t.connectPlus())|
res)
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Fig. 5. Class Diagram for Towns and Roads

The operations connectPlus() computes all towns directly or indirectly reach-
able from the current node with the roles fst and snd. All details, i.e., models,
invariants, and queries, of this part and the other parts of the OCL benchmark
can be found in [16].

5 Empirical Evaluation of the Benchmark

The aim of this empirical evaluation of OCL engines is (A) to show the applicabil-
ity of the benchmarks concepts developed before and (B) to make a contribution
for improvements of current OCL engines. We want to emphasize the applicabil-
ity of the benchmark and will therefore not go into details concerning the single
tools. OCL engine developers can find all details in the cited material and are
encouraged to perform our benchmark by themselves.

The OCL benchmark presented in this paper comprises 949 test cases,
composed of 71 invariants and 878 query expressions. 121 expressions are state-
dependent and 828 context-free. We checked 7 OCL evaluation engines including
two code generators. One of the tools was only partly checked because of resource
limitations. 401 accuracy and determinateness queries (46, 8%) were correctly
evaluated by all engines except the aforementioned tool. All evaluation results
of performed checks can be found in [17] (partly in German).

5.1 Core Benchmark (B1)

Even though benchmark B1 only includes very basic modeling language and OCL
constructs and expressions, it reveals several problems. No evaluation engine
accepts all syntactic variations. In general all tools except for one either demand
parentheses for the operation allInstances or forbid them. Additionally 5 of 6
engines require typing of let variables.

Before checking the first OCL invariants one of the tools showed grave restric-
tions in context of the modeling language features, because no well-formedness
rules of the UML metamodel are checked. Thus the tool, for example, does not
require unique attribute names within a class definition.
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If we disregard the syntactic variations the benchmark B1 checks 18 invari-
ants. Assuming that an invariant is regarded as correctly evaluated when at least
one notation is syntactically accepted and the corresponding expression results in
true, only one tool evaluates all invariants correctly (18/18). The other tools eval-
uate from 6 to 16 expressions correctly (6/18, 6/18, 14/18, 14/18, 16/18). Respon-
sible for these results are small discrepancies in the implementations. One parser
does not accept range expressions in constructors of collections (e.g., Set{1..9}),
another parser incorrectly treats string literals, because it handles quotation
marks as part of the string. The same tool implements the operation substring

with character numbers running from 0 to self.size()-1, while the OCL stan-
dard requires numbers from 1 to self.size(). Another noticeable problem is the
general handling of iterator variables. Some tools do not permit equal variable
names in nested collection operations (e.g., c->select(p|...any(p|...)...)).
One of them additionally forbids implicit variables in case of nested operations
(e.g., c->select(...any(...)...)). Even more demonstrative, more than half of
the tested OCL engines do not have the ability to handle more than one iter-
ator variable inside the operation iterate (e.g., c->iterate(x,y|...)) or other
operations like forAll. On the other hand a tool which allows for more than
one iterator variable evaluates the corresponding query incorrectly, because it
implicitly flattens nested collections (e.g., Bag{Sequence{’Ada’,18}} results in
Bag{’Ada’,18}). The latter example shows a sequence with elements having a
different basic type. This constellation is however allowed, because both ele-
ments have the same super type OclAny. Three engines do not define a common
super type and throw a type mismatch exception.

5.2 Extended Core (B2) and Advanced Modeling Benchmark (B3)

The extension of benchmark B1 uncovers further restrictions. Some of them
are not profound, while others clearly decrease the accuracy of the respective
tools. One tool does not provide for query expressions, so they have to be em-
bedded as boolean expressions into invariants (e.g., Set{1,2,3}->collect(i|i*i)
is transformed to Set{1,2,3}->collect(i|i*i)=Bag{1,4,9}). Another tool com-
pletely ignores postcondition definitions.

Many test cases directly access the identifiers of objects. Since no tool sup-
ports this feature except for one, the expressions can be adapted. The following
example shows the adaption of a test case using the object identifier ada which
represents the Person Ada.

let o:OclAny=ada in o is transformed to
let ada=Person.allInstances()->any(name=’Ada’) in

let o:OclAny=ada in o

Although enumerations are lightweight extensions of a UML model, several
tools have problems applying enumeration values. Whereas enumeration literals
are generally correctly handled, enumeration type attributes eventually prevent
a correct evaluation. In one case it is not possible to compare enumeration type
attribute values among each other. In another case the comparison of enumera-
tion type attribute values and enumeration literals fails.
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A special bug emerges in one tool. Here the essential substitution property
for equality is violated. An expression in the form of SET->one(e|e) results in
true as well as EXPR=SET, but the expression EXPR->one(e|e) results in false.

Benchmark B3 discovers more obvious limitations and checks advanced mod-
eling and OCL features. 6 of 7 tools do not support ternary associations and 3
tools do not provide for association classes at all.

5.3 Three-Valued Logic Benchmark (B4)

Benchmark B4 emphasizes a fact that already appeared in benchmark B2. Only
one of the tested OCL engines sophisticatedly treats the undefined value. All
other tools show in different ways a behavior which is not conformant to the
OCL standard. One engine sometimes throws an exception if an operation is
invoked on an undefined value, but the boolean operations are correctly imple-
mented. Another engine does in some cases explicitly not allow for operation
calls which result in an undefined value (e.g., the invocation of the operation
last on an empty sequence). If, nevertheless, the undefined value occurs in a
subexpression the whole expression will be undefined. A third engine does not
allow undefined values in collections, i.e., it filters them out. So an expression
like Set{undefinedValue}->includes(undefinedValue) results in false.

Especially the implementation of the boolean operations is analyzed in bench-
mark B4. In case of 4 tools we have to differentiate between the left hand side
and the right hand side of a boolean operator. If the left hand side already deter-
mines the resulting value, the whole expression is correctly evaluated (e.g., false
and undefinedValue results in false, true or undefinedValue results in true and
false implies undefinedValue results again in true). Otherwise the expression is
either not evaluable or results in undefined.

The inconsistent treatment of the undefined value continues in benchmark
B5 and B6. Only 3 of 6 OCL engines evaluate all queries correctly in pres-
ence of the undefined value, but the other half produces at least partly wrong
results. One tool completely refuses the evaluation if one or more undefined el-
ements are included in a source collection. Another tool primarily fails in case
of sequences including undefined values. A third tool only implements some op-
erations like iterate and collect correctly. In contrast, operations like exists

and one need at least one value which fulfills the boolean subexpression (e.g.,
Sequence{undefinedValue,1,4}->exists(i|i<4)). Other operations generate the
undefined value in either case.

5.4 Laws (B5) and Determinateness Benchmark (B6)

Benchmark B5 and B6 discover additional problems. One tool, a code generator,
does not support tuple types, and implements the including (as well as iterate

and forAll) and implies erroneously. The former operation is transformed into a
Java method which on the one hand declares primitive type parameters, on the
other hand requires object type arguments in the methods body. An example
extract of a corresponding method is shown below.
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private Set including(..., boolean b1, boolean b2) {
...
if ( !result.contains(new Boolean((b1.booleanValue() ||

b2.booleanValue()))) ) { ... } ... }

The latter operation and its right hand side is simply unconsidered during the
transformation process if the left hand side is not explicitly parenthesized (e.g.,
expr1 and expr2 implies expr3 results in expr1 and expr2).

One tool does not regard the binding of boolean operations and predicates.
They are evaluated from left to right (e.g., in case of (expr1 implies expr2 and

expr3) the subexpression (expr1 implies expr2) is evaluated first). Another tool
exhibits a bug which is easily overlooked. Collections used as components of
tuples strangely include the null value falsifying several evaluation results. Yet
another tool generally does not evaluate the operation size invoked on sequences,
and additionally shows many unexplainable errors.

6 Conclusion

This paper proposes a comprehensive benchmark for OCL engines. OCL is em-
ployed as a basic technology in model-centric development approaches. The qual-
ity of an OCL engine is therefore crucial for the success of transformation-driven
techniques. We have empirically evaluated our benchmark by considering a num-
ber of different OCL engines.

On the one hand, the results have shown incompatibilities following from
different interpretations of the OCL standard. On the other hand, the benchmark
has discovered faulty implementations of OCL features. The benchmark can help
to harmonize the implementation of OCL features in different tools in order to
allow for consistent modeling and transformation support. It can be applied as
quality measure in OCL engine development.

After having carried out this benchmark, we can state a number of helpful
preliminaries for performing OCL benchmarks in the future. An OCL engine
should support (A) an import feature for class diagrams including operation
definitions, invariants and pre- and postconditions as well as for system states in
which evaluations are performed, (B) checking of boolean OCL expressions in the
context of a system state, (C) evaluation of OCL expressions in the context of a
system state and presentation of results, and (D) composition of the above steps
in a single command line script so that comprehensive checks (our benchmark
covers about 950 expressions) can be carried out in an automatic way.

Not all OCL engines considered in this paper offer the above functionality:
RoclET does only allow to check invariants; ATL OCL concentrates on trans-
formations with OCL conditions to be checked; both engines do not offer the
direct evaluation of OCL expressions in a system state. Our goal is that OCL
tool builders provide a suitable infrastructure with their tools and self-commit
to perform a benchmark like ours on their own. Last, but not least, our bench-
mark has to be completed because not all relevant modeling language features
(e.g., qualifiers) or all OCL features (e.g., ordered sets) are covered yet. Feedback
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from OCL engine users and developers will give us the possibility to improve and
supplement our benchmark.
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