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Abstract. In this paper we propose a method to derive OCL invari-
ants from declarative specifications of model-to-model transformations.
In particular we consider two of the most prominent approaches for speci-
fying such transformations: Triple Graph Grammars and QVT. Once the
specification is expressed in the form of invariants, the transformation
developer can use such description to verify properties of the original
transformation (e.g. whether it defines a total, surjective or injective
function), and to validate the transformation by the automatic genera-
tion of valid pairs of source and target models.

1 Introduction

Model-Driven Development (MDD) is a software engineering paradigm where
models are the core asset. They are used to specify, simulate, test, verify and
generate code for the application to be built. Most of these activities include the
specification and execution of model transformations. The transformation of a
model conformant to a meta-model into another one conformant to a (different)
meta-model is called a model-to-model (M2M) transformation.

There are two main approaches to M2M transformation: operational and
declarative. The former is based on rules or instructions that explicitly state
how and when the elements of the target model should be created from elements
of the source one. In declarative approaches, some kind of (visual or textual)
patterns describing the relations between the source and target models is pro-
vided, rather than a program specifying how to create and link their elements.
These patterns are complemented with additional information, e.g. to express
relations between attributes in source and target elements, as well as to constrain
when a certain relation should hold (frequently the OCL standard is used for
this purpose [17]). Declarative approaches are higher-level than operational ones
and they are inherently bidirectional because they do not specify any causality.
Thus, they bring together in a single specification forward (i.e. source-to-target)
and backward (i.e. target-to-source) transformations.

K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 37–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



38 J. Cabot et al.

Whereas several notations have been proposed for specifying M2M transfor-
mations [1, 14, 17, 19], there is a lack of methods for analysing the correctness
of declarative M2M specifications in an integral way, taking into account the
relations and constraints expressed by the transformation, as well as the meta-
models and their well-formedness rules.

In this paper, we propose validation and verification techniques based on the
extraction of implicit transformation invariants deduced from the declarative
description of the transformations. These invariants state the conditions for a
valid mapping between source and target elements and we express them in OCL.
We call these invariants, together with the source and target meta-models, a
transformation model [6]. To show the wide applicability of the technique, we
study how to create this transformation model from two common notations for
M2M transformations: QVT [17] and Triple Graph Grammars (TGGs) [19].

Once the transformation model is automatically derived we can determine sev-
eral correctness properties of the original transformation by analyzing the trans-
formation model with any available tool for the verification of static UML/OCL
class diagrams (see [2, 7, 9, 21]). In particular, in this work we use our UML-
toCSP tool [9] for the analysis. The tool translates the transformation model
into a constraint satisfaction problem that can be processed with constraint
solvers to check different aspects of the model. For example, whether it is satis-
fiable (i.e. there is at least one valid pair of related source and target models),
total (whether all valid source models have a valid related target model) or de-
terministic (whether a source model has just one valid target model).

We also use UMLtoCSP for validation, because the tool is able to automati-
cally generate valid pairs of source and target models, or a valid target model for
a given or partially specified source model. These generated pairs help designers
in deciding whether the defined transformation reflects their intention.

Paper Organization. Section 2 introduces TGGs and the method for extract-
ing invariants. Section 3 presents such method for QVT. Section 4 shows the
use of the invariants for validation and verification of transformations. Section 5
compares with related work and Section 6 ends with the conclusions.

2 From TGG Rules to OCL Invariants

Triple Graph Grammars (TGGs) [19] were proposed as a means to specify trans-
formations between two languages (i.e. meta-models) in a declarative way. TGGs
build on the notion of graph grammar [18]. A graph grammar is made of a set
of rules, each having graphs in their left and right hand sides (LHS and RHS),
plus an initial graph (i.e. the model to be transformed). The application of a
rule to a graph is only possible if an occurrence of the LHS (a match morphism)
is found in it. Once such occurrence is found, it is replaced by the RHS. It may
be possible to find several matches for a rule, and then one is chosen at random.
The execution of a grammar is also non-deterministic: at each step, one rule is
randomly chosen and its application is tried. The execution ends when no match
is found for any rule. A M2M transformation by graph transformation has an
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operational style, as the rules specify how to build the target model assuming
the source already exists or vice versa, thus being unidirectional.

TGGs are an attempt to increase the level of abstraction of a M2M specifica-
tion, being more declarative and bidirectional. TGGs are made of rules working
on triples graphs. These consist of two graphs called source and target, related
through a correspondence graph. Any graph model can be used for these three
graphs, from standard unattributed graphs (V ; E; s, t : E → V ) to more complex
attributed graphs. The nodes in the correspondence graph (the mappings) have
morphisms1 to the nodes in the source and target graphs.

Definition 1 (Triple Graph). A triple graph TrG = (Gs, Gc, Gt, cs : VGc →
VGs , ct : VGc → VGt) is made of two graphs Gs and Gt called source and target,
related through the nodes of the correspondence graph Gc.

In the previous definition, VGx is the set of nodes of graph Gx. Morphisms cs
and ct relate two nodes in the source and target graphs, such that x ∈ VGs is
related to y ∈ VGt iff ∃n ∈ VGc with cs(n) = x and ct(n) = y. We often depict
a triple graph by 〈Gs

cs← Gc
ct→ Gt〉, and use TrG|x (for x = {s, c, t}) to refer to

the x component of TrG. Next, we define triple graph morphisms as a triple of
graph morphisms that preserve the correspondence functions cs and ct.

Definition 2 (Triple Graph Morphism). A triple graph morphism f =
(fs, fc, ft) : TrG1 → TrG2 is made of three graph morphisms fx : TrG1|x →
TrG2|x (with x = {s, c, t}) such that fs|V ◦ cs1 = cs2 ◦ fc|V and ft|V ◦ ct1 =
ct2 ◦ fc|V , where fx|V is morphism fx restricted to nodes.

We use triple morphisms for three purposes: (i) to define the relation between
the LHS and RHS of a TGG rule; (ii) to identify an occurrence (a match) of the
LHS in the host graph and (iii) to type a triple graph.

Fig. 1. Example meta-model triple

A triple graph is typed by
a meta-model triple [12] or
TGG schema, which contains the
source and target meta-models,
and declares the types of map-
pings between the elements of
both languages. Fig. 1 shows
an example meta-model triple
for a simplified translation be-
tween class diagrams and rela-
tional schemas. The class dia-
gram meta-model includes the derived relation AllParents to navigate directly
to all ancestors of a given class. The correspondence meta-model declares three
classes: C2T is used to map classes and tables, whereas A2Co and A2Ch relate
attributes and columns. This last mapping is used to relate an attribute from

1 A morphism corresponds to the mathematical notion of (total) function between two
sets, or in general between two structures (graphs, triple graphs, etc.).
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a parent class to a column of a table associated with a child class. The dotted
arrows specify the allowed morphisms from the correspondence to the source
and target models. These can be treated as normal associations with cardinality
1 on the side of the source/target class and ∗ on the side of the correspon-
dence class. The meta-model includes OCL constraints ensuring uniqueness of
attribute names for each class, and similarly for tables.

A typed triple graph is represented as (TrG, type : TrG → MM), where the
first element is a triple graph and the second a morphism to the meta-model
triple. Morphisms between typed triple graphs must respect the typing morphism
and can be so called clan-morphisms to take inheritance into account [12]. For
simplicity of presentation, we omit the typing in the following definitions.

Besides a meta-model triple, a M2M transformation by TGGs consists of a
set of declarative TGG rules that describe the synchronized evolution of two
models. Thus, TGG rules have triple graphs in its LHS and RHS, so as to allow
manipulating both models synchronously. We use OCL in TGG rules to define
attribute conditions.

Definition 3 (Declarative TGG Rule). A declarative TGG rule p=(r : →
〈Ls

csl← Lc
ctl→ Lt〉〈Rs

csr← Rc
ctr→ Rt〉, ATTCOND) is made of a triple morphism r,

and a set ATTCOND of OCL constraints expressing attribute conditions.

In the previous definition, the rule’s LHS is 〈Ls
csl← Lc

ctl→ Lt〉, and the RHS is

〈Rs
csr← Rc

ctr→ Rt〉, as r is a triple morphism, the rule is non-deleting. Fig. 2 shows
three example TGG declarative rules. They are shown using a compact notation
where the LHS and the RHS are presented together, the elements created by the
rule (RHS-LHS) are marked as {new}, and the elements of the LHS which are
preserved are untagged. Rule Class-Table declares that every time a persistent
class is created, a table with the same name is created simultaneously, and vice
versa. Attribute-Column specifies that creating an attribute of a class which is
already related to a table should create a related column with the same name
in that table, and vice versa. Finally, ParentAttribute-Column creates a new
column in the table associated to a child class for all attributes in each ancestor
class. Note that a M2M specification by TGGs is declarative and bidirectional
as rules do not specify any direction, but synchronously create and relate source
and target elements.

Fig. 2. Some TGG rules for the class-to-relational transformation
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From this declarative specification, an algorithm was proposed in [19] to gen-
erate low-level operational TGG rules to perform forward and backward trans-
formations, and to relate two existing graphs. The LHS of a forward rule is

〈Rs
csl← Lc

ctl→ Lt〉 and its RHS is equal to the RHS of the declarative rule. For
example, the forward rule for rule Attribute-Column has objects c, m1, t and a
in its LHS, and creates the co object related to t and mapped to a through the
new mapping m2. Note that a causality has to be assigned to the expressions in
the attribute condition section, so that the attribute values for the created ob-
jects can be derived from the ones in the LHS. This presents practical problems,
which we avoid by compiling the TGG rules into OCL invariants and using a
constraint solver, as shown in the next subsection.

2.1 From Declarative TGG Rules to OCL Invariants

The invariant extraction procedure enrichs the transformation model with a set
of invariants that capture the semantics embodied by the TGG rules. Intuitively,
the invariants must guarantee that the target model is a valid transformation of
the source according to the set of rules that can be applied on the source model,
and similar for target. A rule is enabled source-to-target in any subgraph of the
source model that matches the LHS of the forward operational rule and satisfies
the attribute conditions for the source model, and similar for target-to-source.
Rules can be fired whenever they are enabled. Thus, for each subgraph where the
rule is enabled source-to-target, the invariants should make sure that (a) there is
a subgraph of the target model which enables the same rule target-to-source, (b)
there are mapping objects connecting both subgraphs as defined in the rule and
(c) the union of both subgraphs satisfies any remaining attribute conditions. For
each rule p, we call the invariant checking (a) and (b) for the source model checkp

s ;
the one checking (a) and (b) for the target model checkp

t ; and the one checking (c)
for both models checkp

c . The invariants capture this semantics using expressions
like “any subgraph matching the LHS of the forward/backwards rule is connected
to the mapping objects” or “given a mapping object, the source/target models it
connects must satisfy the attribute condition”.

Next definitions describe our extraction procedure and the structure of the
generated invariants. Our procedure makes two assumptions: (i) all rules create
at least one element in the correspondence graph and (ii) each type of mapping
is created by at most one rule.

Definition 4 (Invariant Extraction). Given a declarative TGG rule p =

(r : 〈Ls
csl← Lc

ctl→ Lt〉 → 〈Rs
csr← Rc

ctr→ Rt〉, ATTCOND):

– ∀n ∈ VRx , for x = {s, t}, s.t. ∃m ∈ VRc − r(VLc) with cs(m) = n or
ct(m) = n, add invariant checkp

x to type(n).
– ∀m ∈ VRc − r(VLc), add invariant checkp

c to type(m).

Invariant checkp
s checks the existence of triple graph TrGs = 〈Rs

csl← Lc
ctl→

Lt〉, together with terms in ATTCOND consisting of elements in TrGs only.
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Similarly, invariant checkp
t checks the existence of TrGt = 〈Ls

csl← Lc
ctl→ Rt〉,

and evaluates the terms in ATTCOND that consider elements in TrGt only.
Note the similarity with the pre-conditions for forward/backwards operational
TGG rules. In addition, checkp

c checks the existence of R and evaluates terms in
ATTCOND made of elements in R− r(L), not evaluated by previous constraints.

Definition 5 (checkp
s Invariant). Given TGG rule p = (r : 〈Ls

csl← Lc
ctl→

Lt〉 → 〈Rs
csr

← Rc
ctr

→ Rt〉, ATTCOND), then ∀n ∈ VRs − r(VLs) s.t. ∃m ∈
VRc − r(VLc) with cs(m) = n, the following invariant is generated:

context type(n) –– checkp
s invariant

inv : if existsp
n then self.cor1−>size() = 1 and ... self.corm−>size() = 1

else self.cor1−>size() = 0 and ... self.corm−>size() = 0 endif

context type(n)::existsp
n() –– Helper for checkp

s : checks existence of TrGs

body: type(ni) :: allInstances()−>exists(ni|...
type(nj) :: allInstances()−>exists(nj |...

�
∀nk ∈ VTrGs − {n}

ni.rolej−>includes(nj) and...
� ∀e ∈ ETrGs s.t. ni

s← e
t→ nj

...and ATT s
COND)...)...)...)

where corj = type(mj) (j = {1...m}) with mj ∈ Rc − r(Lc) and csr(mj) =
n, rolej is the role in the meta-model allowing to navigate from ni to nj and
ATT s

COND ⊆ ATTCOND is the biggest subset of constraints involving elements
in TrGs only. In existsp

n, if some edge has n as source or target we use self .

If association end rolej has cardinality 1, then we do not use ni.rolej−> includes
(nj) but simply ni.rolej = nj For all nodes n ∈ Ls (instead of Rs−r(Ls)) that are
connected to a newly created correspondence element, a similar invariant is gener-
ated with the form if existsp

n then self.cor1−>size() >= 1 and ...self.corm−>
size() >= 1 else self.cor1−>size() = 0 and ...self.corm−> size() = 0 endif.
This is necessary, as the node in the source graph already exists, so that it can be
added further morphisms from the correspondence node. In the case of the invari-
ant in Definition 5 it can receive just one morphism, as both nodes are created at
the same time.

Invariants checkp
t are generated in a similar way, but considering nodes n ∈

VRt − r(VLt) and then traversing the graph TrGt = 〈Ls
csl← Lc

ctl→ Rt〉. For nodes
created in the correspondence graph, invariants are generated as follows.

Definition 6 (checkp
c Invariant). Given TGG rule p = (r : 〈Ls

csl← Lc
ctl→

Lt〉 → 〈Rs
csr

← Rc
ctr

→ Rt〉, ATTCOND), then ∀n ∈ Rc − r(Lc) the following
invariant is generated:

context type(n) –– checkp
c invariant

inv : type(ni) :: allInstances()−>exists(ni|...
type(nj) :: allInstances()−>exists(nj|...

�
∀nk ∈ VTrGc − {n}

ni.rolej−>includes(nj) and...
� ∀e ∈ ETrGc s.t. ni

s← e
t→ nj

...and ATT c
COND)...)...)...)
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with TrGc = 〈Rs
csr← Rc

ctr→ Rt〉 and ATT c
COND = ATTCOND − (ATT s

COND ∪
ATT t

COND) the set of attribute conditions not evaluated by previous constraints.

Lets consider the example rules. As all elements are created in rule Class-Table,
an invariant is added to each one of the three involved classes. The one in the
mapping checks that the source and target elements (a class and a table) it
relates exist, and that the names match. The invariant for the class checks that
it is persistent and, if (and only if) this is the case, a mapping object is connected
to it. Finally, the invariant for tables checks that there is a mapping.

context C2T –– checkClass−Table
c invariant

inv : Class :: allInstances()−>exists(c|Table :: allInstances()−>exists(t|
self.class = c and self.table = t and c.name = t.name))

context Class –– checkClass−Table
s invariant

inv : if self.is persistent then self.c2T−>size() = 1
else self.c2T−>size() = 0 endif

context Table inv : self.c2T−>size() = 1 –– checkClass−Table
t invariant

Note that some invariants can be simplified, e.g. the one for C2T is equivalent
to self.class.name = self.table.name. From Attribute-Column we generate
invariants for the attribute, column and A2Co classes, as all are created. The
one in the mapping checks that the attribute and the column it relates exist,
that they belong to a related class and table, and that their names match. The
invariant for the attribute checks that it is mapped to the corresponding mapping
element. It does not have to check that the attribute is related to a table, as this
is ensured by the association cardinality constraint in the meta-model. Finally,
the invariant for the column checks only its relation to a mapping.

context A2Co –– checkAttribute−Column
c invariant

inv : Attribute :: allInstances()−>exists(a|Class :: allInstances()−>exists(c|
C2T :: allInstances()−>exists(m1|Table :: allInstances()−>exists(t|

Column :: allInstances()−>exists(co|
self.attribute = a and a.class = c and c.c2T = m1 and m1.table = t
and self.column = co and co.table = t and a.name = co.name)))))

context Attribute –– checkAttribute−Column
s invariant

inv : if self.existsAttribute−Column
a then self.a2Co−>size() = 1

else self.a2Co−>size() = 0 endif

context Attribute::existsAttribute−Columns

a ()
body: Class :: allInstances()−>exists(c|C2T :: allInstances()−>exists(m1|

self.class = c and c.c2T = m1))

context Column –– checkAttribute−Column
t invariant

inv : if self.existsAttribute−Column
co then self.a2Co−>size() = 1

else self.a2Co−>size() = 0 endif

context Column::existsAttribute−Column
co ()

body: Table :: allInstances()−>exists(t|C2T :: allInstances()−>exists(m1|
self.table = t and t.c2T = m1))
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3 From QVT-Relations to OCL Invariants

QVT-Relations is a declarative M2M transformation language part of the OMG
QVT standard [17]. In this language, a bidirectional tranformation consists of a
set of top-level relations between two models. Each relation defines two domain
patterns, one for each model, and a pair of optional when and where arbitrary
OCL predicates. These optional predicates define the link with other relations
in the transformation: the when clause indicates the conditions under which the
relation needs to hold and the where clause provides additional conditions, apart
from the ones expressed by the relation itself, that must satisfied by all model
elements in the relation.

Domain patterns can be viewed as graph patterns that must be matched to
a set of model elements of the appropriate type, i.e. similar to the LHS/RHS of
TGGs. However, there are differences in the matching process as patterns may
contain variables, where some of them may be still free while others may be
previously bound to model elements, e.g. resulting from the evaluation of when
clauses or other expressions in the relation, depending on the execution direction
of the transformation. Bound variables and constant expressions restrict the
possible matches for the pattern. Instead, free variables become bound to the
elements matching the pattern. These values may be used afterwards to constrain
the value of further pattern expressions.

As an example, consider the rule Class-Table expressed as the QVT relation
shown in Fig. 3. When executed in the UML→RDBMS direction the relation

Fig. 3. Example of a QVT relation

states that for each persistent
class (i.e. each class satisfying the
is persistent condition imposed by
the first domain pattern) there
must exist a table with a name
equal to the value of the cn vari-
able. This variable has been ini-
tialized with the name of the class
matching the first pattern. Addi-
tionally, to complete this part of the transformation, we require in the where
clause that all attributes of c are mapped to table columns of t as stated in the
relation Attribute-Column (inside Attribute-Column, variables c and t will be
bound). When executed in the RDBMS→UML direction the variable cn takes
the table name as a value and it is used to constrain the possible classes that can
be a match for the first pattern. This variable binding process must be simulated
by our generated invariants.

3.1 Extracting the OCL Invariants

Many concepts of QVT-Relations resemble the elements appearing in TGG rules
(see [11] for a comparison). Therefore, the procedure for extracting the implicit
invariants in a QVT-Relations transformation is similar to that explained in
the previous section for TGG rules. For our purposes, the two main differences
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are that in QVT-Relations related elements in both models are not linked by
correspondence nodes and that relationships between different relations can be
made explicit by invoking them in the when and where clauses. Due to space
limitations, in this section we will focus on explaining these two aspects.

The absence of correspondence nodes forces us to integrate all conditions
relating elements of both models into the checkp

s and checkp
t invariants. In

TGG rules, these two invariants were mainly used to check that if the model
contained a match for the LHS pattern of the operational forward/backwards
rule, the required correspondence node existed. But here, the invariants must also
take care of checking that when the LHS is a match, the RHS pattern is satisfied
as well. To deal with the when and where clauses of a a relation r, we rewrite
r as follows: (when clause and rsource) implies (rtarget and where clause), where
rsource and rtarget refer to the source and target patterns in r. Which domain
is the source and which the target depends on whether we are generating the
checkp

s or the checkp
t invariant. For each different relation r′ referenced in any

of these clauses, we create an auxiliary OCL query operation r′(x1, . . . , xn) that
returns true iff the objects x1, . . . , xn passed as arguments to the operation would
satisfy the relation r′.

Following these guidelines, the two invariants generated for the previous Class-
Table relation are the following:

context Class –– checkClass−Table
s invariant

inv : self.is persistent = true implies
(Table::allInstances()−>exists(t | t.name=self.name and

Attribute-Column(self,t) ))

context Table –– checkTable−Class
t invariant

inv : Class::allInstances()−>exists(c | c.name=self.name and
Attribute-Column(c, self))

4 Analysing the Extracted Invariants

The analysis of the OCL invariants extracted from a transformation specifica-
tion can reveal insightful information regarding its correctness. In this section,
we show how this analysis can be applied to two problems: (i) Validation of
transformations: identifying transformations whose definition does not match
the designer intent; and (ii) Verification of correctness properties of transforma-
tions: finding defects in the transformation, e.g. whether it is underspecified.

A key notion in our analysis will be the transformation model : the union of
both the source and target metamodels, together with their integrity constraints
(i.e. well-formedness rules), and the extracted OCL transformation invariants.
The goal of this representation is leveraging existing UML/OCL verification and
validation tools for the analysis of model transformations. For example, there are
several tools addressing the consistency or satisfiability problem for UML/OCL
models [2,9,21,7]: given a UML class diagram annotated with OCL constraints,
decide whether there exists a legal instance of the model (i.e. an instance that
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satisfies all graphical and OCL constraints). Several approaches to this problem
proceed constructively by automatically computing the legal instance, which
is provided to designers as the output of the tool. As we will discuss in this
section, many interesting problems on transformations can be reformulated as
consistency problems on the transformation model.

4.1 Validation of Model Transformations

Validation tools clarify the question “is it the right transformation?” by allowing
designers to test if the transformation behaves as expected.

The most basic level of validation for transformations is the ability to “exe-
cute” the transformation in one direction: given a source (target) model provided
by the designer, generate the corresponding target (source) model. This execu-
tion is not trivial because declarative transformations define what is the target
model corresponding to a source model, without focusing on how it is computed.
Some relevant information like the order in which individual transformation rules
should be applied is generally omitted.

Thanks to the extracted invariants, it is possible to execute the transformation
without converting it into an imperative form beforehand. Intuitively, we will use
a UML/OCL consistency checking tool to find an instance of the transformation
model satisfying the source and target meta-model well-formedness rules, plus
the transformation invariants, plus an additional constraint: that the instantiated
source model is equal to the one provided by the designer. This way, we obtain
a legal transformation model containing the initial source model plus a valid
corresponding target model.

The input model can be described as an OCL invariant that restricts the pos-
sible set of legal instances to just one, the corresponding to that specific model.
For instance, in our example, if the designer wants to execute the transformation
using a source model with a single persistent class called “Company” with no
attributes, in our validation process we would generate this additional invariant:

context Class inv:
Class::allInstances()−>size() = 1 and Attribute::allInstances()−>isEmpty() and
Class::allInstances()−>exists ( cl | cl.name = “Company” and cl.is persistent )

This invariant is passed to the solver along with the rest of the invariants.
With this alternative, current tools do not need to be extended to cope with
the automatic execution of model transformations. Computing an instance that
satisfies both the source model invariant and the transformation invariants will
yield the corresponding target model automatically. In a similar way, designers
can check which source model/s would generate a specific target model.

A second validation level is the ability to transform partially specified models.
For instance, in our running example a designer might want to know whether
it is possible to generate a table with three columns without having to fully
define an example model, a tedious and time-consuming task [20]. To help in
this matter, we can use a similar approach to the one presented so far, but using
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a weaker invariant to specify the designer-provided input model. In this case, the
UML/OCL consistency solver is free to add new elements to the input source
model when searching for a legal target model.

As an example, we have used the tool UMLtoCSP [9] for UML/OCL model
consistency checking to validate the TGG and QVT transformations defined as
our running example. When validating different scenarios, we have identified two
situations where the behavior might not be the one intended by a designer:

1. Persistent classes without attributes: These classes are translated into
a table with no columns. Probably there should be an invariant stating that
persistent classes should have at least one attribute. This scenario was found
when using the following invariant as partial description of the source model:

context Class inv:
Class::allInstances()−>exists( x | x.is persistent and x.attr−>isEmpty() )

2. Persistent classes with non-persistent ancestors: The third rule of the
TGG generates a column for each attribute of each ancestor, regardless of
whether they are persistent or not. Probably we should restrict columns to
the attributes of persistent ancestors only. This scenario was detected using
the model partially described by the invariant:

context Class inv:
Class::allInstances()−>exists( x | x.is persistent and not x.parent.is persistent
and not x.parent.attr−>isEmpty() )

Fig. 4 (2) and (3) show the instantiation which illustrates the problems in
both scenarios, as computed automatically by the tool UMLtoCSP [9].

4.2 Verification of Model Transformations

The verification of transformations answers the question “is the transformation
right?”, e.g. are there any defects in the transformation? Up to now, existing
methods for the verification of model transformations have focused on lower-
level model transformation definitions (see Section 5) and thus, defects are not
detected until later stages of the development process.

This verification problem can be expressed in terms of the transformation
model because, like any other model, it is expected to satisfy several reasonable
assumptions. For instance, it should be possible to instantiate the model in
some way that does not violate any integrity constraint (including the OCL
invariants). Moreover, it may be desirable to avoid unnecessary invariants in
the model. Failing to satisfy these criteria may be a symptom of an incomplete,
over-constrained or incorrect model, something which reflects potential defects
in the original M2M transformation.

We can study quality notions of transformations at two levels: considering
the role of individual rules within the transformation (R) or considering the
transformation as a whole (T). Some properties can be studied at both levels,
depending on where we place our focus, the entire model or an individual rule.
The complete list of quality properties is the following:
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(1)

(2)

(3)

Fig. 4. Verification and validation using UMLtoCSP: (1) verifying satisfiability, (2)
validating a scenario where a persistent class has no attributes, (3) validating a scenario
where a persistent class has a non-persistent superclass

Satisfiable (T/R): There should be at least one source model with a target
model satisfying the transformation invariants.

Total (T): Each source model has at least one corresponding target model.
Deterministic (T/R): Each source model has at most one corresponding tar-

get model.
Exhaustive (T): It is possible to generate each target model from at least one

source model.
Injective (T): It is possible to generate each target model from at most one

source model.
Non-redundant (R): Given a rule, there is at least one correspondence be-

tween source/target models that cannot be fulfilled if the rule is removed.
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By rewriting these properties in terms of UML/OCL consistency, we can check
them using existing tools. For example, satisfiability of the transformation is di-
rectly equivalent to the consistency problem, i.e. a transformation is satisfiable
iff its transformation model is satisfiable. As an example, Fig. 4 (1) illustrates the
verification of satisfiability on our running example using UMLtoCSP. The tool
automatically proves the property by finding a legal pair of source and target
models. The tool depicts a legal instance of the metamodel Class which is con-
nected through the correspondance nodes to a legal instance of the metamodel
Relational.

Other quality properties have to be decomposed into two or more consistency
problems, affecting either only the source model, only the target model or the
entire transformation model. For example, we can prove that a transformation is
not total if we find a counterexample, a legal instance of the source model with
no corresponding instance in the target model. To find the counterexample, first
we need to generate a legal instance x of the source model. Then, we check if
the entire transformation model is consistent when an additional invariant is
added: the source model must be instantiated to x. If it is inconsistent, we have
found our counterexample, otherwise, we keep generating new instances for x
until we find our counterexample or we conclude no counterexample exists. A
similar procedure can be used to check all the other quality properties.

If we are using a bounded verification tool like UMLtoCSP to generate le-
gal instances, the search for counterexamples is limited to a bounded space.
The designer defines this space by establishing the set of possible values for at-
tributes and upper bounds to the number of objects and links to be considered.
Bounding the search space ensures that the approach terminates (the tool al-
ways provides some answer) but as a consequence it becomes incomplete (when
no counterexample is found, the result is inconclusive: there may be a coun-
terexample outside the bounded search space). On the other hand, there are
other UML/OCL verification approaches which are complete, like the theorem
prover HOL-OCL [7], but may not terminate so they may require user assistance
to complete proofs. Designers can select the tool which better fits their needs
according to this trade-off.

5 Related Work

The term transformation model was coined in [6] where the authors described its
benefits. The work of [1] presents a similar approach based on the mathematical
concept of relation between the source and target models. In both works, trans-
formation models are supposed to be manually specified by the designers. Our
work can be seen as a continuation of these approaches, as we derive transfor-
mation models automatically from declarative M2M transformations, and show
the feasability of such transformation models and which kinds of analysis can be
done, in particular by using a constraint solver.

With respect to the analysis of transformations, our work offers new veri-
fication techniques. Current analysis techniques (especially for graph transfor-
mations [13, 18, 8]) were developed for standard (i.e. operational) rules and not
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declarative TGG rules. This implies that we could adapt them to operational
TGG rules, but we cannot analyse declarative TGG rules with them. Besides,
our method also opens the door to the verification of QVT transformations.

Our analysis approach, consisting in the translation of the M2M transforma-
tion to a formal domain is similar to other approaches: [5] and [3] transform the
rules into Alloy; [4] translates them into Petri graphs and [22] into Promela for
model-checking. However, again, these approaches are targeted to operational
rules and/or present limitations with respect to the expressivity of the meta-
models and the input transformation language.

The emphasis of MDD is revealing an urgent need to develop validation
and verification techniques especially targeted for M2M transformations. For
example, the work in [23] analyses meta-model coverage (i.e., which parts of
the source/target model are not transformed) similar to our analysis of to-
tal/surjective transformations. There are also some works to develop frameworks
for transformation testing, like [16] or to check the semantically equivalence be-
tween the initial model and the generated code [10]. We believe that our work
can be regarded as a complementary contribution to this community effort.

6 Conclusions and Future Work

We have presented a new method for the analysis of declarative M2M transfor-
mations based on the automatic extraction of invariants implicit in the trans-
formation definition. These invariants together with the definition of the source
and target meta-models comprise a transformation model. Since this transfor-
mation model can be regarded as a standard UML/OCL class diagram, it can
be processed with all kinds of methods and tools designed for managing class
diagrams, spawning from direct application execution, to verification/validation
analysis, to metrics measurement and to automatic code generation. The ob-
tained results can then be interpreted in terms of the original transformation
specification.

In particular, we have used our UMLtoCSP tool, to verify and validate declar-
ative M2M transformations. This approach has the advantage that the M2M
specification does not need to be operationalized for its analysis or execution.

Our method focuses on TGG and QVT but we believe it is feasible to extend
it to cope with other similar transformation languages. Note that the extraction
of invariants may serve as a means for the integration of different declarative
M2M transformation languages, like QVT and TGGs.

In our future work, we will evaluate techniques to improve performance in the
verification of complex transformations. We also plan to develop and adapt new
techniques for transformation models that help us to perform an incremental
execution of the model transformation and to detect and resolve inconsistencies
due to simultaneous changes to both models.

Acknowledgments. Work supported by the Spanish Ministry of Education and
Science, projects MOSAIC (TSI2005-08225-C07-06), MODUWEB (TIN2006-
09678) and TIN2005-06053, and an UOC-IN3 research grant.



V&V of Transformations 51

References

1. Akehurst, D.H., Kent, S., Patrascoiu, O.: A relational approach to defining and im-
plementing transformations between metamodels. Journal on Software and System
Modeling 2(4), 215–239 (2003)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

3. Anastasakis, K., Bordbar, B., Kuster, J.M.: Analysis of model transformations via
Alloy. In: ModeVVa 2007, pp. 47–56 (2007)

4. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

5. Baresi, L., Spoletini, P.: On the use of Alloy to analyze graph transformation
systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G.
(eds.) ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006)
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