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Abstract. Some analysis and design methods for complex software sys-
tems lead to the specification of components (classes) by slices. It is the
case of the use-case slicing technique proposed by Jacobson and Ng, and
of view-based modelling proposed by Nassar et al. The composition of
class slices is known from the literature to be closer to aspect composi-
tion than to traditional interface-based composition, but remains largely
an open problem.

In this paper we propose a set of constructs to support the behavioral
specification and composition of class slices, based on the idea of non-
intrusive event observation. This allows slices to be specified separately
– for example by different design teams – and to be integrated later
without changes. The proposal is made in the context of VxUML, a
language which supports view-based and use-case-driven separation of
concerns.

1 Introduction

When tackling the complexity of large software systems, separation of concerns
is essential for keeping the development process, the produced models and the
code manageable. The separation of concerns can be done in different ways, but
the objectives are always the same: being able to identify relatively independent
“parts”, so that they can be distributed to different actors of the process, be
designed and built independently and, at the end, be integrated with the least
possible effort and in a way which allows for future maintenance and evolution.

Traditional software decomposition methods rely upon a notion of compo-
nent. A component is an entity which fulfills one or more functions in the overall
system architecture and provides access to these functions via some form of
interface. In general one end-user functional requirement is fulfilled by the col-
laboration of several components, and one component participates in fulfilling
several requirements. In some extreme cases, small bits of functionality related to
one requirement are spread over a very large number of components (a situation
called scattering), and some components contain, beside their core functional-
ity, bits of scattered functionality tightly interwoven (tangling). Such examples
provided the motivation for aspect oriented programming [12].
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Recently there have been proposals for methods which aim to keep different
concerns about end-user functional requirements separate throughout analysis,
design and implementation. In general, this is done by superimposing a structure
for functional decomposition over a (sufficiently resilient) component architec-
ture. In this work, we concentrate on two related proposals: the use-case slicing
approach of [9] and the view-driven approach of [15]. As we show in Section 2,
both methods lead to designing objects (classes) as a composition of slices.

The subject of this work is the behavioral specification and composition of
such object slices. The problem is known (see for ex. [9]) to be closer to aspect
composition than to traditional interface-based composition. We propose a new
behavior specification construct based on event observation and we show that
this leads to good results in terms of slice coupling and support for incremental
design (addition of slices).

The level of specification that we aim at is that of detailed, executable design
models. We focus in particular on design models where state machines are used
as operational behavior specifications for objects, something that is common in
the design of reactive systems (e.g., embedded software, protocol layers, etc.).
We integrate our proposal in VxUML, an executable UML profile which supports
operational state machines and class slices (along the lines of [15]).

The paper is structured as follows: Section 2 discusses the motivation for this
work, which comes from the necessity of flexible mechanisms for specifying and
composing use-case slices and view-based slices. Section 3 describes the central
concepts of our proposal: events and probes. Section 4 discusses (on an example)
how these concepts are used for object slice specification and composition. We
end the paper by comparing our proposal to some existing approaches (Section
5), and by drawing conclusions and the main lines of future work.

2 Object Slices: Background and Open Issues

In this section we briefly introduce the two design methods that we consider in
this work, which both lead to the specification of classes as a composition of
slices. We use as running example a hotel management system (the example also
used throughout [9]). For brevity, we do not introduce the overall architecture
and the whole set of requirements; we concentrate instead on the relevant aspects
of one class, Room, which is involved in the realization of most of this system’s
use cases (reservation, customer check-in, check-out, maintenance, etc.)

We consider in particular the case of reactive objects, for which the behavior
of slices is defined using state machines. Because slices can be cohesively attached
to each-other, this leads to problems that are discussed at the end of the section
on a motivating example.

2.1 Use-Case Slicing

Use-case slicing is an analysis and design discipline introduced in [9]. Its main
prescription is that, for every identified use case of a system and for every com-
ponent (class) participating in it, the aspects of the component pertaining to
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<<non use case specific>>
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Analysis/design model: use case slices structure

Fig. 1. Packaging of use case slices (as recommended in [9])

that use case are to be kept separate from the aspects pertaining to other use
cases and from the aspects that are not use-case-specific. This prescription holds
for analysis, design and implementation components. A use-case slice is a mod-
elling element which contains the aspects specific to one use case, from all the
involved classes.

Only the high-level principles for packaging slices are described in [9]. Fig-
ure 1 (extracted from the hotel management example) illustrates the main lines
of the approach. For every use case identified in the requirements, there is a
corresponding package in the analysis (and in the design) model, stereotyped
as <<use case slice>>, containing the use-case-specific parts of every involved
class (we call these class slices). Additionally, the analysis (design) model can
contain component specifications limited to their non-use-case-specific features.
Dependency relations (<<trace>>) allow to trace back from every slice to the
originating use case from the requirements model.

The precise behavior specification and composition mechanisms for use-case
slices are not further detailed in [9]. Moreover, executable object behavior de-
scriptions based on state machines are not explicitly addressed. State machines
are mentioned as a means to analyze object lifecycle, but they are left aside in
detailed design.

2.2 View-Based Slicing

View-based slicing is an analysis and design discipline defined in [15]. It is based
on the idea that a complex system usually has many external actors interacting
with it, and that the concerns of the different actors can in general be separated
and handled independently throughout system analysis and design.
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Fig. 2. Structure of a multi-view class in VUML [15]

While the separation lines are different from those recommended in use-case
slicing, the principle of constructing each component (class) as a composition of
slices containing distinct functionality remains the same. This is visible in the
structure of the models (see the example in Figure 2): each multi-view class is
specified via a base (grouping functionality that is not specific to any actor) and
a set of actor-specific slices called views.

In the original view-based approach described in [15], only behavior specifica-
tions based on operations are discussed. Views are assumed to contain operations
dedicated to a specific actor. This implies that the functionality captured in dif-
ferent views is strictly orthogonal, which is not always the case: the requests
from different actors impact one another in general. Like for use-case slices,
operational state machine specifications were not explicitly addressed.

2.3 State Machines: Semantic Choices

As we noted before, we are interested in the case where the complete executable
specification of objects (slices) is given in terms of UML state machines. The
UML standard [18] explicitly leaves open certain questions concerning the se-
mantics of state machines, like the concurrency model (i.e. the semantics of
active/passive objects, their relation to control threads), the precise semantics
of object interaction primitives (how calls are handled by active objects, what
is the relation between calls and state machine, etc.) or the concrete syntax of
actions (used in transition effects and method bodies).

In order to have a semantically well-founded proposal, we have to make choices
with respect to the aforementioned UML semantic variation points. In previous
work we have participated to the definition of an executable profile for UML
called Omega UML [6], for which we have developed execution and simulation
tools [17]. The semantics of Omega UML is appropriate for the concepts pro-
posed in this paper and convenient for rapid prototyping. Therefore we decided
to integrate the same semantics into the VUML profile [15], resulting in an
executable version of it to which we refer as VxUML.
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For a complete definition of the Omega profile, we refer the reader to [6,
17]. Let us only note that the Omega concurrency and communication model
corresponds largely to the semantics of UML in the Rhapsody tool [7] and that
the concrete action syntax relies on conventions widely used in imperative object
oriented languages (for example in Ada 2005).

2.4 Slices and State Machines: Problem and Motivating Example

As we already remarked, slices are closer to aspects than to stand-alone objects.
This is because objects are loosely connected (in good designs), while slices are by
construction tightly connected. A slice that extends the functionality of another
slice cannot in general be specified based only on a black-box description of the
extended slice, as it has to plug in at specific points of its behavior. However, it
is desirable to be able to develop such slices independently, and in a way that
allows integrating them without modifying the extended slice.

In the context of the hotel management system, we consider the example of a
new view (and a corresponding use-case) being added to the requirements: the
room maintenance view. We place the requirements on it:
– The maintenance can be triggered by various conditions (specific request

from the manager or the front-desk clerk, elapse of a period, etc.). All the
conditions are not specified a priori and it should be easy to add new ones.

– If the maintenance is triggered while the Room is unoccupied, a thorough
check is performed.

– If the maintenance is triggered while the Room is occupied, maintenance
is put on hold. If after N time units (days) the room is still occupied, a
lightweight maintenance check is performed. A thorough check is performed
only when the customer checks out.

These requirements can be realized by adding a Room Maintenance slice to the
Room class. Figure 3 shows an informal analysis model of the state machine for
Room Maintenance. The actual maintenance procedures are not detailed further.

idle

do: thorough check procedure

thorough
check

Do Maintenance /
[Room is free] /[Room is occupied] /

Room becomes free /

wait for thorough check

wait for
check

do: light check procedure

lightweight
check

after(N) /

Fig. 3. Analysis state machine of the Room Maintenance slice
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Explicit message-based communication is ill-adapted to specifying this type
of slice: it implies modifying the other slices of Room (and possibly other classes)
to introduce explicit calls for requesting maintenance (Do Maintenance trigger)
and for signaling when the Room becomes free, as well as to ensure that check-
in is delayed while the Room is in thorough check.

Our objective is to define the mechanisms allowing to write a self-contained
executable specification of this slice without modifying the rest of the system.
The idea is to let the slice specify precisely what events from the rest of the
system it needs to observe, and how it reacts to them.

3 Behavior Specification Based on Event Observation

In this section we define the two essential notions of our proposal:

– event : a run-time entity which designates the occurrence of a particular
condition in the execution of a software system/component, together with
the relevant data for that occurrence.

– probe: a modelling construct which, for a given system execution, corresponds
to an ordered set of events and allows to refer to these events in the system
model (e.g., as triggers for some behavior).

While we introduce these notions in the context of VxUML, their definition is
sufficiently generic so they can be appended to any language provided with a
structural operational semantics (SOS, in the sense of [19]).

3.1 Events

We relate events to the smallest (i.e. indivisible) state changes described by the
semantics of a model/language. In case of a structural operational semantics,
events correspond to the transitions of the semantic labeled transition system
(LTS) associated with a model.

SOS terminology. In SOS[19] the semantics of a program (or system model)
is a labeled graph (LTS) whose vertices represent “global states” of the program,
and whose edges (also called transitions) represent the smallest (atomic) steps
executed by the program to go from one state to another. The graph paths which
start in a global state identified as initial represent the possible executions of
the program.

For a concurrent object-oriented language like VxUML, a global state includes
the attribute values, states and request queues for all existing objects, as well
as execution context (call stack, etc.) for all threads (activity groups). An LTS
transition corresponds to the execution of an individual action by one object,
such as: consuming an operation request from the queue, starting to fire a state
machine transition, executing an assignment, issuing an operation request, etc.
Note that an LTS transition is not to be confused with a state machine transition
(from the state machine associated to a UML class): the latter is usually executed
as a sequence of LTS transitions.
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C : q
[g]op(x)/α−−−−−−−−→ q′

ω ∈ C
ω.loc = q
ω.v(g) = t
ω.w = op(d).z

Ω
?op(d)−−−−−→ Ω

[
ω.loc �→ α
ω.w �→ z
ω.v �→ ω.v[x �→ d]

]

Fig. 4. The triggered operation input transition rule

A global state is represented by an algebra whose signature obeys to some nam-
ing rules which give it a meaning. The LTS corresponding to a program/model
is implicitly defined by a series of rules that may be used to construct it induc-
tively. This means that transitions are not defined explicitly, but instead, a set
of transition rules define the conditions under which a transition between two
global states exists.

VxUML Events. In the case of VxUML, the semantics involves several types
of atomic steps, each defined by a specific transition rule1. They include: ob-
ject creation, object destruction, consuming an operation call, starting to fire
a state machine transition, executing an assignment, issuing an operation call,
returning a result from an operation, returning control from an operation, ter-
minating a state machine transition (entering a state), and several others. Each
LTS transition of one of the kinds mentioned above constitutes an event.

Event Data and Meta-Data. Every transition (event) in the SOS is defined
in a particular context, and depends on a set of elements from the model (the
program) and from the run-time that are specifically designated in the transition
rule inducing it.

We take for example (Figure 4) the VxUML transition rule which defines
an object performing a triggered operation input and subsequently firing a state
machine transition. (For brevity, we do not include the whole VxUML SOS. Only
the relevant elements of the rule are explained here, to the extent necessary for
understanding the argument.)

The premise of the transition rule contains the contextual elements on which
the application of the rule (and hence the event) depends. In particular, the
triggered operation input event described here depends on:

– The existence of a class C in the model, containing a state machine, con-
taining a transition from a state q to a state q′, triggered by an operation

1 In order to simplify the presentation, we consider here that the semantics of VxUML
is directly defined as an SOS. This is in reality not the case, the semantics being
given by a set of mapping rules to a different language (IF [3]), for which, in turn,
SOS semantics is defined in [13].
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op, guarded by a boolean expression g and having as effect a sequence of

statements α. (This is the meaning of C : q
[g]op(x)/α−−−−−−−−→ q′.)

– The existence at run-time, in the global system state Ω, of an object ω of
class C (ω ∈ C). ω should be precisely in state q (ω.loc = q) and should have
a request queue w containing in front position a request for op with a data
parameter d (ω.w = op(d).z). Moreover, the value of the guard g under the
current attributes valuation v must yield true (ω.v(g) = t).

Under these conditions, the transition rule states (in the bottom part) that a
triggered operation input from the global state Ω is possible, and what the global
state after this event is.

If the event is used as an interaction mechanism, i.e. it is observed by some
other object, then the (model) meta-data and the (run-time system state) data
mentioned above characterizes the event and needs also to be observable.

Note that the (meta-)data elements vary from one event type to another.
For the operation input shown before, it includes: the concerned object (ω), its
class (C), the machine state in which it was before the input (q), etc. For a
different type of event, for example object creation, a different set of (meta-)data
is relevant: the creator object, the class and reference of the created object, etc.

This context data constitutes what we call the event parameters. The probe
construct, defined below as the language mechanism for manipulating events,
offers access to these parameters.

3.2 Probes

A probe is a modelling construct which serves to identify and manipulate events
that are relevant for a particular goal. In particular, we use probes for modelling
implicit interaction between objects (see Section 3.3).

Analogy to Exception Objects. Probes must provide access to the event
data and meta-data as outlined in Section 3.1. This is achieved by considering
probes as being objects themselves. Their attributes store the relevant data of
the last event matching them at any time during execution. A very good analogy
from commonly used languages are implicitly raised exception objects in C++
or Java: they can be used for communication and for triggering behavior (when
they are “caught”), and they are also objects themselves, with attributes carrying
information about the context in which they were raised. The difference is that
the activation of a probe by an event does not disrupt the normal execution if
not used (“caught”).

Elementary Probes. We argue that all interesting probes can be constructed
based on (1) a limited number of elementary probes (roughly corresponding to
the transition rules of the SOS) and (2) a set of operations derived from common
set operations (union, intersection, complementing, projection).

We saw that events correspond to transitions from the semantic LTS. As such,
each event has a kind, which is the transition rule of the SOS from which it is
derived. We define elementary probes to correspond to these event kinds.
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Since a model execution is a path E = (e1, e2, ...) in the semantic LTS, i.e. a
sequence of events, a probe corresponds to a sub-sequence of these events. An
elementary probe P corresponds to a sub-sequence EP = (ek1 , ek2 , ...) such that
all eki are of kind P .

For example, in the case of VxUML, there will be an elementary probe Ptoinput

corresponding to the triggered operation input rule in Figure 4. This probe can
be used to observe every event of type triggered operation input. We note that the
number of SOS transition rules (and hence, the number of elementary probes) is
usually quite small even for complex languages (around 15 for VxUML depending
on how the semantics is defined).

Probe Operators. The semantic model of a probe is a time-ordered sub-
sequence of the whole sequence of events generated in a system execution (E).
It is natural to allow probes to be composed using sequence operators: union,
intersection, complement, projection.

The semantics of probe union, intersection and complement is self-
explanatory. The projection operation allows to obtain from a probe P (with
semantic model EP) another probe P ′ whose semantic model EP′ is a subse-
quence of EP , based on a boolean condition on the event parameters.

Hereafter are two examples using the operators (for simplicity, we use the
standard mathematical notations for probe operators):

– for identifying the triggered operation inputs that affect only a particular
variable x one can take a projection of the elementary probe Ptoinput (sup-
pose the .store meta-data is a list of the attributes affected by an input):

Ptoinput(x) = Ptoinput

∣∣∣x∈.store

– for identifying the events that lead to modifying a particular variable x, one
can take the union of Ptoinput(x) (defined before) and of the probe matching
assignments which affect x:

Pmod x = Ptoinput(x) ∪ Passign

∣∣∣x∈.store

Implicit Projections. In principle, the probe construct is orthogonal to all the
other constructs of VxUML – in the sense that it serves a different purpose and
it is not structurally related (contained into, etc.) to any other existing language
construct. Therefore, in our model probes are defined as top-level constructs, on
par with classes.

However, often one is interested in observing a particular kind of events only
in a particular context (e.g., the inputs performed by one particular object).
In principle, the projection operator presented before is sufficient for specifying
the context, although in practice this may be syntactically awkward (for our
example, one needs to explicitly designate the identity of the concerned object,
raising the question of how this identity is referred to in the probe definition).
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Therefore, it may sometimes be useful to define probes not as top-level con-
structs but within a context (e.g., inside a class), meaning that there is an
implicit projection of the probe based on the context. This does not augment
the expressive power of probes defined before, and is only syntactic sugar.

3.3 Behavior Specification and Composition with Probes

The purpose of introducing probes is to be able to identify events and use them
for the behavioral specification of objects (slices). This is done by a construct
allowing an object (slice) to wait for the arrival of an event e matching a probe
P . The natural place for such a construct is in the trigger of state machine
transitions – therefore wait(P) is defined as a new type of trigger.

Defining the semantics of probe update (i.e. the updating of P ’s attributes
upon arrival of e) and activation (i.e. the triggering of a wait(P) transition)
implies making some choices. Among others, we have to decide whether the
implicit communication that takes place between the object (slice) that produces
the event and the one that waits for it is asynchronous (i.e. there is a memory
of the activation status) or synchronous.

The semantics that we chose in VxUML is fully synchronous: e, the update of
o, and the activation of subsequent transitions are executed atomically. In this
semantics, the wait trigger works similarly to condition variables from Hoare’s
monitors [8] (also known from Java’s wait and notifyAll primitives). For space
reasons we refrain from further motivating our choices and from giving the com-
plete SOS semantics.

3.4 UML Representation

This is a brief overview of the conventions employed for representing probes in
VxUML (see examples in the next section):

– A probe defined in the context of a classifier is represented by a UML Prop-
erty stereotyped as <<probe>>. If the probe is global (defined at top level)
and there is no top level “system” class in the model, then the probe may
be represented by an UML InstanceSpecification.

In both cases, a probe is characterized by a name and a type. The type is
either an elementary probe type like OperationCallProbe, or the abstract
type Probe – when the probe may match events of different types, e.g., in
case of unions.

– When the probe is defined by an expression with set operators, the ex-
pression is modeled as a constraint attached to the Property (or Instance-
Specification); in particular, the syntax for projection expressions is “when
boolean-condition”.

– A probe declaration can be placed inside a class (slice), meaning that there
is one actual probe per instance of the class. In this case, the keyword this
is used in the projection condition to denote the corresponding instance.
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Room Maintenance

maintenanceCount : Integer = 0

Room Maintenance

{ when sender = CustomerMainForm and
   operation.name = "FileComplaint" and
   sender.room = this }

<<probe>>
DoMaintenance : OperationCallProbe

(a)

count : Integer

Room Occupancy

{ when operation.name = "CheckOut" }

<<probe>>
RoomCheckOut : OperationCallProbe

{ when operation.name = "CheckIn" and
result = true }

<<probe>>
RoomCheckIn : OperationReturnProbe

(b)

occupiedavailable

wait(RoomCheckOut) /
count := count + (now-entry).toDays()

wait(RoomCheckIn) /
entry := now

{ when state.name="available" and
             count div 50 > maintenanceCount }

<<probe>>
DoMaintenance : StateEntryProbe

idle

wait(DoMaintenance)
/ maintenanceCount := count div 50

...

Fig. 5. Specification of the Room Maintenance slice with probes

4 Solution for Composition of Object Slices

The probe construct defined in the previous section is well-adapted for specifying
use-case or view-based slices, as it allows to isolate the specification of the tight
coupling between object slices in a way that the behavior specification of the
slices themselves is not cluttered. We examine this on the Room maintenance
example introduced in Section 2. As it was mentioned, the main problem is link-
ing the behavior of this slice with that of other slices, in particular for triggering
the Do Maintenance transition. We consider two examples:

– Room maintenance is triggered by a single event: whenever the Customer
lodged in the Room files a complaint. In this case, one can simply use a
DoMaintenance probe which monitors the operation call representing this
action. Figure 5 (a) shows the declaration of the probe.

– Room maintenance is triggered by a more complex condition: whenever the
Room is left by a customer, and it has been occupied for more than 50
days since the last maintenance. The test for this condition can be either
embedded in the Room Maintenance slice, or it can be isolated in a separate
slice specifically created for this purpose. In any case, the other slices need
not be modified.

Figure 5(b) shows the model corresponding to the second alternative. The
new slice, called Room Occupancy, uses two probes for customer check-in and
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check-out, and counts the total occupation days in the count variable. The
Room Maintenance slice, via the DoMaintenanceprobe, monitors whether the
total occupation grows past a multiple of 50 when a customer checks out.

Note that in both examples, the executable (design) state machine of Room
Maintenance slice remains very close to the analysis model from Figure 3 (the
overall structure is the same, only the “informal” transition triggers are refined
to probe triggers).

As it was mentioned in Section 2, one of the reasons for designing systems in
slices is to be able to distribute the design tasks to independent actors/teams.
Our experience shows that this type of process is well supported, since the slices
may in general be designed based on undefined probes in a first time (using
the abstract Probe type). Integration is done at the end by concretizing the
definitions of probes.

A Note on Changing Requirements. In real projects requirements often
change on the fly, and the design evolves with them. This means that slices
can lately be added to a model, but also that the specification of existing slices
may change over time (by adding new states, changing state names, adding
transitions, etc.).

Probes provide support for the late definition of interfaces and bindings be-
tween object and/or slices (in the extreme case, at the very end of the develop-
ment cycle, as suggested above). This form of modularity provides isolation in
case of changing specifications. This means that the impact of a slice change on
the rest of the system is often reduced to changing the definitions of the probes
with which it interacts.

A Note on Spread Aspects. The Room Maintenance example is prototyp-
ical for what occurs in “localized” slices, i.e. slices that realize a functionality
involving only a few objects (this is the case of functional use-case slices from
[9] or of view-based slices).

In typical examples for aspect oriented programming, a functionality (usually
an infrastructure-related one, like logging or access control) may be spread over
a multitude of objects. Although there is no place for a full example, we maintain
that our framework can be very effective for specifying such aspects. A logging
functionality for example can be concentrated in a unique logger object, which
observes all the relevant events throughout the system. In this case, probes are
used for implicit communication between objects, instead of slices.

5 Related Work and Comparisons

Observation-Driven Specification. In [6] we defined an event-based frame-
work for specifying execution timing constraints, using a dedicated declarative
language. This work is a distant evolution of the ideas from [6], as the notions
of event and probe defined here allow a generalized use of observation as object
(slice) interaction mechanism.
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Observation-driven behavior specification has to our knowledge not been pro-
posed previously in the context of object-oriented modelling and programming
languages. We took some inspiration in the concept of observer, introduced in
[10] as a property specification formalism (and re-used in several other verifica-
tion tools). Related ideas can also be found, under very different forms, in other
domains like system tracing and debugging (see for example DTrace and the D
language [14]) or autonomous agents.

Aspect-Oriented Programming. Although targeting the particular problem
of designing systems by slices (view or use-case driven), our work has to be com-
pared with results from the area of aspect-oriented modelling and programming.
Indeed, designing systems by slices, like realizing cross-cutting concerns, inher-
ently leads to tightly coupled components. Similarly to aspect-oriented frame-
works, we are trying to cope with this by making part of the coupling implicit.

The body of literature dedicated to aspect models and languages is wide
and growing rapidly. An important classification criterion for aspect frameworks
concerns the constructs for defining joinpoints and their expressive power. In our
framework, by combining event observation with the control structure of state
machines, aspects can be triggered not only by individual events but by arbitrary
patterns of events, with arbitrary conditions based on event data, etc. This is in
general more expressive than what can be achieved in most “classical” aspect-
oriented models, like the one of AspectJ [11], in which joinpoints are based
mostly on syntactic conditions. However, a few recent proposals are closer to
ours, in that they propose event (trace) based joinpoint models [20, 1], sometimes
combined with a form of dynamic (run-time) weaving (e.g., [5, 16]).

In [20, 1, 16], joinpoints (sometimes called tracecuts because they are based
on a multi-event trace) are defined in a declarative way, for example as a regular
expression on events, and concern only sequential programs. The computational
model that is closest to ours is the Concurrent Event-Based AOP (CEAOP)
defined in [5], and which is based on the same principles of parallel composition
of system components and aspects, and of event based synchronization. The main
difference is that we define the characteristics of events and the probe construct,
whereas in [5] events are just simple (uninterpreted) synchronization labels.

Aspects for state machine-based specifications are relatively less studied than
their operation-oriented counterparts. SDMATA [21] is a transformation-based
framework in which joinpoints are specified as state diagram patterns, and ad-
vices are specified as operations (element addition/deletion) on these patterns.
The latest versions of the Motorola Weavr [4] introduce a similar framework,
with a joinpoint model based on the structure of state machine diagrams and
the possibility to modify this structure in aspects. Writing pattern-based as-
pects requires more than common programming skills and some knowledge of
the structure of the UML state machines metamodel. Also, in our framework
aspects are interfaced with the rest of the system based on a clearly determined
set of observable events, whereas in SDMATA and in Veavr aspects are written
in terms of the structure (i.e. implementation) of the state machines on which
they are superposed. For this reason, we expect our observation-based aspects
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to be somewhat less sensitive to implementation changes in the rest of the sys-
tem. On the negative side, these frameworks allow writing more intrusive aspects
(by modifying and deleting elements – states, transitions, actions, etc.), while
our framework offers only limited possibilities for this: for example, using the
dynamic priority rules of Omega UML [6], one can give a higher priority to an
aspect than to (a part of) the extended system, so that the extended system is
blocked while the aspect executes, or use standard mechanisms in the aspect to
terminate the execution of another object/slice.

Another framework that is somewhat related to ours is that of composition
filters with superimposition [2]. Message filters are handlers which may intercept
messages addressed to an object and perform some user-defined computation
which can end by calling the corresponding method, by forwarding the message
another object, or by taking any other course of action. However, in [2] filters
only intercept messages that were explicitly sent to an object, and therefore there
is no equivalent to the main feature of our proposal, which is to allow implicit
communication between objects through observation.

6 Conclusions

This paper presents a modelling framework in which event observation is used as
first-class object interaction mechanism. This is achieved mainly by formalizing
the notion of event and its characteristics, and by defining a new modelling con-
struct, the probe, which is used to match events and to manipulate event data.

The main (and motivating) application is the specification of tightly coupled
components, such as those appearing in design methods based on use-case slicing
or on view-based slicing. Frequently, the coupling between two components is
unidirectional (observed-observer) and in such cases our framework reduces the
burden of the designer by making part of this coupling implicit, and by avoiding
most of the impact on the specification of the observed component.

We prototyped the constructs presented in this paper in a tool which trans-
lates (a subset of) VxUML to IF specifications [3]. This task was eased by the
fact that IF is mainly dedicated to simulation and formal property verification,
and it is easy to add a centralized event monitor to the platform. If the target
is the final implementation, event observation must be done more efficiently,
e.g. by code instrumentation based on a publish-subscribe pattern. We are cur-
rently experimenting with such an implementation. Among the difficulties we
encounter, we note that the probe concept (in particular, access to event meta-
data) requires reflective support in the language in order to be fully satisfactory.
Therefore, we orient our prototyping efforts on languages which offers such sup-
port (Java, Python).
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