
A General Approach for Scenario Integration�

Hongzhi Liang1, Zinovy Diskin2,3, Juergen Dingel1, and Ernesto Posse1

1 School of Computing, Queen’s University, Canada
{liang,dingel,eposse}@cs.queensu.ca

2 Department of Computer Science, University of Toronto
3 Department of Electrical & Computer Engineering, University of Waterloo

zdiskin@swen.uwaterloo.ca

Abstract. An approach to integrating UML Sequence Diagrams is pre-
sented. It rests on a well-established theory, is generalizable to a large
class of requirements engineering models, and supports many different
kinds of scenario integration operations. An implementation of the ap-
proach as an Eclipse extension is described. Lessons learned from the
implementation and during first, preliminary experiments to study the
practical aspects of the approach, are discussed.

1 Introduction

The need to integrate software artifacts seems inherent to modern software de-
velopment. On the one hand, the development may be distributed over several
teams to leverage different expertise, experience or capabilities. On the other
hand, breaking a task into smaller, more manageable pieces often is an effective
means to deal with the kind of complexity that comes from, e.g., large numbers
of stakeholders, views, features, or platforms. In each case, the separately devel-
oped artifacts need to be assembled as efficiently as possible into a consistent
whole in which the parts still function as described.

While support for integration is required for a large variety of artifacts to, e.g.,
support separation of development or concerns, it appears particularly necessary
for models of requirements. This is because requirements models are especially
prone to change and evolution. This phenomenon is widely accepted within the
software engineering community and much work has been done to address it.

Many approaches aimed at mitigating the effect of changing requirements ap-
pear to rely on some kind of integration. For instance, in [11] use case slices
need to be composed, gradually refined and kept synchronized. Consequently,
support for the integration of a different, possibly more detailed and separately
developed, model into other models is required. In some situations this integra-
tion may be adequately realized through a simple kind of replacement operation;
however, to achieve the traceability needed for large-scale, distributed develop-
ment, a less destructive form of integration may be necessary. Moreover, the
� This work was supported by NSERC, the Ontario Centres of Excellence, IBM CAS

Ottawa, Bell Canada through the Bell University Labs and partially by the Ontario
Research Fund.

K. Czarnecki et al. (Eds.): MoDELS 2008, LNCS 5301, pp. 204–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A General Approach for Scenario Integration 205

refined part of a model may have complex relationships with its context that
need to be preserved by the refinement.

Another class of approaches is based on role modeling, that is, the identifica-
tion of the parts of an object that address a particular concern such as perform-
ing a task or maintaining an invariant. Changing requirements can then often
be dealt with either by adding a role to an object or by modifying a single role
without affecting the others. Role-based software development methodologies
include Reenskaug’s Object Oriented Role Analysis Method (OOram) [21] and
VanHilst’s Role-Oriented Programming (ROP) [27]. Both methodologies feature
a “synthesis” step in which the implementation of an object is obtained from its
roles. Again, possibly separately developed models of requirements describing
the roles need to be integrated to produce a description of the overall behavior
of the object. Typically, roles are not disjoint, that is, they can “overlap” in
complex ways. For instance, two different collaborations may require the same
interaction with an object. Indeed, a look at [21,27] shows it is exactly these
kinds of relationship between roles that complicate the synthesis step. The inte-
gration must properly deal with these relationships and, for instance, avoid the
creation of duplicated parts in the integrated model in case of overlap among
the integration participants.

Despite the apparent need for the integration of models of requirements, rel-
atively little concrete support for this activity seems to exist. A lot of the ex-
isting work on the topic of model integration either assumes a large degree of
disjointness between models (e.g., the work on composition operations for UML
Sequence Diagrams and Interaction Overview Diagrams), or targets very specific
notations with no clear potential for a more general application. For instance, all
three methodologies mentioned above remain relatively silent on how exactly the
integration of the requirements models is to be achieved. In [11], the composi-
tion of use case slices is performed on the code level using, e.g., AspectJ. UML’s
package merge is mentioned as a mechanism to compose slices on the model
level although package merge is currently not defined on interactions [5]. More-
over, no indication is given of how synchronization between separately evolving
models can be accomplished. OOram cautions the developer to take care that
the result of the synthesis model is “consistent with the meanings of all its base
models” [21, page 124]. However, no exact definition of the synthesis operation
is provided. In [27], the transparent composition of roles on the code level is
discussed in detail, while the model level is discussed much more informally.
For another example, consider the “combine” operation offered in IBM Rational
Software Architect (RSA) V7.0 which is intended to support the integration of
different models, but appears limited to class and object diagrams [15].

This paper describes our work towards filling this gap and pursues the fol-
lowing questions: How would an integration operation look like that properly
deals with overlap between models and is generalizable to different kinds of re-
quirements models? How could this operation be applied to a particular kind of
model such as UML Sequence Diagrams? How could it be supported through
tools? Which additional work is necessary to realize the vision of a general model

206 H. Liang et al.

integration operation? In particular, we present an approach to integrating a core
subset of UML Sequence Diagrams which rests on a well-established theory, is
generalizable to a large class of models, and supports many different kinds of sce-
nario integration operations. Our approach uses category theory as a mathemati-
cal framework in which UML Sequence Diagrams are represented as typed graphs
and integration is achieved through the explicit representation of the relation-
ships between models via structure-preserving maps and a colimit construction.
This construction results in an intuitive and versatile operation which not only
provides traceability “for free” (the original models can easily be identified in
the integration result), but also serves as an effective mechanism to structure the
implementation and implement consistency checking. Moreover, the approach is
generalizable to other diagrams used to represent requirements (e.g., Message
Sequence Charts, Communication Diagrams). An Eclipse-based implementation
of the approach is described. Lessons learned from the implementation and dur-
ing first, preliminary experiments, e.g., to study different scenario integration
patterns and the overall use of the approach, are discussed.

The remainder of this paper is structured as follows: The representation of
UML Sequence Diagrams as typed graphs and the integration operation are
described in Sections 2 and 3. The implementation is sketched in Sections 4.
Related work is discussed in Section 5, while conclusions are given in Section 6.

2 Sequence Diagrams as Typed Graphs

In general, a scenario is a record of possible message exchanges between commu-
nicating objects. Figure 1(a) presents an example: a Sale scenario specified by a
UML Sequence Diagram [18]. The Sale, and any other scenario has a structural
base: a set of interacting objects and (implicitly) the types of messages they can
exchange. Objects are explicitly specified in the boxes on the top of the lifelines.
Messages are arrows from senders to receivers labeled with message names. In
fact, some typing is implicit there. For example, it is reasonable to consider the
two messages initialOffer and counterOffer as two different occurrences of the
same message type offer between a Seller and a Buyer.

Sequence Diagrams have many advantages, but they are not directly amenable
to formal manipulations. Since Sequence Diagrams (and an overwhelming ma-
jority of other modeling languages) are diagrammatic, a formalization based on
graph-based structures seems to be advantageous. Fortunately, the graph-based
formalisms possess other desirable properties: they (i) are amenable to effective
algebraic manipulations, (ii) are expressive and provide a base for generic speci-
fications, (iii) have solid theoretical support provided by category theory and by
a large body of work in graph rewriting, (iv) have tool support. In this paper, we
present an informal description of a formalization for the core subset of Sequence
Diagrams. A more formal description can be found in [7].

In our formalization, a Sequence Diagram, as in Fig. 1(a), is represented
as a typed graph, that is a chain of two type mappings between three graphs

G0
τ1← G1

τ2← G2

A General Approach for Scenario Integration 207

Object Graph,
(G1,)

(b)

b:Buyer

offer : SB

deal : SB

pay : SB

s:Seller

Sequence Graph,
(G2,

Class Graph,
G0

Seller BuyerSB

Class

ActiveCls PassiveCls

1
1

(a)

sd Sale

s : Seller b : Buyer

initialOffer

counterOffer

deal

pay

Self

wait : Self

exec : Self

wait : Self

exec : Self
/live : Self /live : Self

S6:

counter : offer : SB

: exec : Self
S0:s:Seller initial : offer : SB

: deal : SB

: pay : SB

S2:

S3:

B1:
B2:
B3:

B4:

S1:
B0:b:Buyer

: wait : Self

S5:
S4:

Fig. 1. A sample sequence diagram (a), and its typed graph (b)

as shown in Fig. 1(b). Graph G0, or class graph, is shown in the bottom cell of
Fig. 1(b) and is very similar to a UML Class Diagram, except that the edges
represent dynamic rather than static associations [24]. We therefore interpret
them as message channels, e.g., the SB message channel between Seller and
Buyer. A root node called Class is contained in every class graph. A special
message channel Self is represented as a self-association on Class. For concurrent
systems, an object of a class may or may not own a thread of control. In other
words, an object can be specified as either an active object having its own thread
of control or a passive object without the control [22]. To distinguish these two
different types of object, we introduce two sub-classes of the root Class, ActiveCls
and PassiveCls. Inheritance is also used in our formalization to support sub-
classing and association inheritance. For example, by introducing ActiveCls as
a sub-class of Class, the message channel Self is inherited by ActiveCls.

Graph G1, or object graph, whose nodes are objects participating in inter-
actions and whose edges are dynamic links (instances of dynamic associations)
or message types between objects, is shown in the middle cell of Fig. 1(b)1.
Note that nodes and edges of this graph are typed (or labeled) by classes and

1 More accurately, buyer and seller are roles (formal parameters in the interaction)
that real objects could play. To simplify wording, we will call them objects when it
will not lead to confusion.

208 H. Liang et al.

message channels of Graph G0 by mapping τ1. We assume that an object of
ActiveCls can be in one of two states: “executing” or “blocked and waiting for
a response”. To capture this, we introduce two special message types exec and
wait as instances of self-association Self. Similarly, exec and rest (not used
in Fig. 1) are introduced to capture the states of “executing” and “ready and
really doing nothing” of an object of PassiveCls. A derived message type, /live,
is also shown in Fig. 1(b). A derived element is one that can be computed from
other elements as a result of some algebraic operation. To be precise, we define
/live = {exec|wait}∗, i.e., any sequential composition of exec and wait arrows
results in /live. In our formalization, although derived elements contain no new
semantic information, they either facilitate the understanding of scenarios, or
are even required for proper scenario integration. We borrow from UML and
prefix the names of derived elements by “/”.

Graph G2, called sequence graph, is a partial order of events and messages
typed over Graph G1 by mapping τ2, where nodes are event occurrences labeled
by objects (to which these events happened) and arrows are message occurrences
labeled by message types. The top cell of Fig. 1(b) shows the corresponding
sequence graph of scenario in Fig. 1(a). Labels of all event occurrences besides
S0 and B0 are omitted. If an arrow in G2 is labeled by exec, wait or rest, then
it will be attached to the lifeline of a single object (the one to which the self-
association in G0 is attached). For instance, all vertical arrows in our example
sequence graph are labeled with either exec or wait. Intuitively, labeling an
arrow by exec or wait (rest) means, respectively, that in the time period
between the source and target event occurrences the object is executing some
procedure or doing nothing (is either blocked or ready). In the case of exec,
this is the procedure triggered by the message coming into the source event.
To help us distinguish between arrows typed with wait (rest) or exec, we use
the following concrete syntax for them: the former are shown with dotted (e.g.,
between B0 and B1) and the latter with bold (e.g., between S0 and S1) arrows.

To summarize, we formalize Sequence Diagrams as three layers of directed,
labeled graphs containing dynamic and static information, where lower layers
serve as types for the higher layers. Such layered, typed structures are useful
to support, e.g., consistency checking. Moreover, unlike formalizations based on,
e.g., partially ordered multisets, our formalization retains the graphical nature
of Sequence Diagrams. More precisely, there is an obvious similarity between the
formalization and what is being formalized, which increases learnability.

3 Scenario Integration

We introduce scenario integration via a running example reminiscent of the role
composition process required by OOram or ROP. Suppose we want to build a
model (scenario) which integrates two copies of the Sale scenario into a brokered
sale model: a BrokeredSale (BS) is a composition of two Sales, called the Whole-
Sale (WS) and the RetailSale (RS). We want this integrated scenario to satisfy
the following requirements:

A General Approach for Scenario Integration 209

(i) The Retailer is the Buyer in WholeSale, and it is the Seller in RetailSale.
(ii) The Retailer’s role requires two activities in addition to those of the sale

transactions: a Retailer must do some thinking and some banking.

In order to integrate the two given scenarios we need to merge the corre-
sponding class, object and sequence graphs. These three operations are in fact
instances of the same generic operation of merging graphs, which we now sketch2.

Given two typed graphs to be merged, we need to specify the overlapping
elements (i.e., nodes and edges). That is, we need to establish a correspondence
between these graphs of those elements which are supposed to be identified. To
do this, a first approach, found in tools such as RSA [15], is to use heuristics like
identifying elements by name. Such approach however, is not general enough. In
particular it does not deal with requirements such as (i). A more general approach
(arguably the most general approach) is to create a third graph, which we call
the head, representing those common elements, and possibly containing new
elements. We then specify how this third graph establishes the correspondence
by defining a pair of maps which map elements of the head to elements of each of
the original graphs. We call such maps arms. The head graph and the associated
arms are called the span of the two original graphs. From the span, the merged
graph will be generated.

Going back to the problem, we first look at how object graphs are merged,
and then we consider sequence graphs. The merge of class graphs is obtained in
an analogous manner.

Integration of object graphs. Fig. 2 shows the object graphs to be merged
(WSOG for the WholeSale and RSOG for the RetailSale) together with the span
(the head being the Retailer graph ROG at the bottom) and the merged graph
on top, satisfying the requirements (i) and (ii). The dashed arrows represent the
correspondence mappings.

The head graph contains a new object r:Retailer with two self loops thinking
and banking. There is a map from r:Retailer in ROG to b:Buyer in WSOG, rep-
resenting the requirement that the retailer plays the role of buyer in WholeSale,
and a map from r:Retailer in ROG to s:Seller in RSOG, representing the require-
ment that the retailer plays the role of seller in RetailSale. Hence, requirements
(i) and (ii) are captured.

The merged object graph is BSOG. Fig. 2 also shows how the elements of
WSOG and RSOG are mapped to the elements of the resulting graph BSOG. We
now sketch how this graph is obtained. For full details, please see [7].

First, we form the disjoint union of the two original graphs and the head
graph (WSOG, RSOG and ROG.) Let us call this A. The mappings from the
head graph (the arms) determine an equivalence relation on A where overlapping
elements are identified. Then we partition the set of nodes of A according to this
equivalence. That is, we group all equivalent nodes into sets. The collection
of all these sets is the partition. In our example, we obtain three sets: A1 =
2 A detailed technical description of this operation can be found in many sources, e.g.,

[23] and our own technical report [7].

210 H. Liang et al.

BrokeredSaleOG

(BSOG)
banking :

Self

r:Retailer

thinking :
Self

offer : SB

deal : SB

pay : SB

s:Seller

b:Buyer

offer : SB

deal : SB

pay : SB

s:Seller

RetailSaleOG

(RSOG)

b:Buyers:Seller

RetailerOG

(ROG)

banking :
Self

r:Retailer

thinking :
Self

b:Buyer

pay : SB

deal : SB

offer : SB

pay : SB

offer : SB

deal : SB

WholeSaleOG

(WSOG)

Fig. 2. The span of the WSOG and RSOG object graphs and the merged graph on top

{r:Retailer::ROG, b:Buyer::WSOG, s:Seller::RSOG}, A2 = {s:Seller::WSOG} and
A3 = {b:Buyer::RSOG}, where we write x : Class::Graph for the object x of
type Class in graph Graph.

The merged graph consists of a node for each of these sets. Hence we have
a node for the Retailer, one for the Seller from WSOG and one for the final
Buyer from RSOG. Edges of the merged graph are obtained in a similar fashion.
The merged graph will also contain all edges from the WSOG and RSOG graphs,
as well as new edges from the head graph, such as thinking and banking, which
are not present in the two original graphs. These edges are present in the cor-
responding node of the merged graph. With the merged graph, we also obtain
mappings from WSOG and RSOG into BSOG, describing how the former are em-
bedded in the latter and providing useful traceability information.3

Integration of sequence graphs. Now suppose that we have some additional
requirements for our BrokeredSale scenario:

(iii) The RetailSale follows the WholeSale.
(iv) After buying from the whole-seller, the Retailer does some thinking. After

this, he/she begins the process of retail selling, which is followed by some
banking.

(v) The Retailer pays the whole-seller after he/she receives payment from the
retail Buyer.

These are behavioral requirements and so they are to be captured by the
result of merging the sequence graphs for the WholeSale and RetailSale.

As with object graphs, to merge sequence graphs we need to specify the points
of overlap, and we do this by providing a span, i.e. a head graph and the asso-
ciated arms defining the correspondence.

3 In the terminology of Category Theory, the merged graph and the associated map-
pings form a pushout of the span.

A General Approach for Scenario Integration 211

/retail:live
:Self

R2:

R3:

R4:

: thinking : Self

R5:

: banking : Self

selling:exec
:Self

R0:

R1:

buying:exec
:Self

R6:

R7:

R8:

R9:

R10:

retail:wait:Self

/buying:live
:Self

counter : offer : SB

S0:s:Seller

initial : offer : SB

: deal : SB

: pay : SB

S2:

S3:

S6:

B1:

B2:

B3:

B4:

S1:

B0:b:Buyer

S5:

S4:

WholeSaleSG

(WSSG)

RetailerSG

(RSG)

/selling:live
:Self

counter’ : offer : SB

S0':s:Seller

initial’ : offer : SB

: deal : SB

: pay : SB

S2':

S3':

S6':

B1':

B2':

B3':

B4':

S1':

B0':b:Buyer

S5':

S4':

RetailSaleSG

(RSSG)

Fig. 3. The span of the sequence graphs WSSG and RSSG to be merged

Fig. 3 shows the sequence graphs to be merged with their span. The graph
WSSG is the sequence graph for the WholeSale, RSSG is the sequence graph for
the RetailSale, and RSG is the sequence graph showing the lifeline of the Retailer,
and thus it is the head of the span. Each graph is typed over its corresponding
object graph.

By explicitly defining the correspondence between the two sequence graphs
as a span in terms of the Retailer’s lifeline, we capture requirements (iii) - (v).
In this graph, we are able to define new elements which where not present in
either of the sale scenarios, such as the thinking and banking arrows. We also
introduce arrows buying and selling which, while not present in the sale scenarios
as individual arrows, correspond to a composition of arrows in their respective
graphs. For example, the arrow buying in RSG from R0 to R1 is mapped to the
new derived arrow /buying in WSSG, which is the composition of the arrows from
B0 to B3. Hence, the arrow buying can be seen, from the point of view of the
retailer, as an abstraction of a sequence of actions that occur in the whole sale.
Furthermore, we map a composition of arrows (/retail) in RSG to a single arrow
(retail) in WSSG. Note that this composite arrow /retail includes the selling
arrow (which itself is associated to the composite /selling in RSSG.) This allows
us to ensure that the RetailSale occurs within the retail process and before the
Retailer pays the whole-seller, thus satisfying requirements (iii) - (v).

As with the object graph, we build the merged sequence graph by computing
the equivalence relation induced by the span. This yields the sequence graph
shown in Fig. 4(a). Note the derived (dashed-bold) arrows among the elements
of this graph. When two arrows, where one is basic (in one graph) and the
other is derived (in another graph) are glued together in the merge, the result
is a derived arrow because it can be derived exactly in the same way as it
is derived in its component graph. For example, the arrow retail was basic in

212 H. Liang et al.

WSSG but becomes derived in the merge after gluing it with the derived arrow
/retail, because all the operands for its derivation are present in the merged
graph. Derived arrows in the merged graph are useful for traceability, but apart
from that they can be safely removed. We call this last step of the integration
normalization. In our example normalization is fairly trivial but it can be more
complicated without posing any fundamental problems4. A sequence diagram
equivalent to the merged graph without derived arrows is shown in Fig. 4(b).

General process. The example we have just considered suggests the following
general process for scenario integration:

1. Formalization: We define a universe of typed graphs and specify the scenarios
to be integrated (the views) as typed graphs in this universe.
2. Specification of view correspondences: We define the correspondence between
views by providing spans, which consist of 1) head graphs, i.e., typed graphs which
contain elements (nodes and edges) that represent the overlap of the views, and
2) arms, i.e., mappings specifying the roles that elements of a head graph play in
each view. The head graphs can contain new information which was not present
in the original views.
3. Merge: For each graph of the typed graphs (class, object, sequence) the merged
graph is obtained by computing the equivalence induced by the span, and the
corresponding partition of the (disjoint) union of the views.
4. Normalization: In each merged graph, we eliminate redundant arrows, i.e.
arrows which can be derived from basic (non-composite) edges.

A fundamental property of the merge operation is that the resulting graph
contains exactly all of the information from the original graphs and the head
graph: nothing is lost because views are mapped into the merge, and nothing
extra is acquired owing to the universal property of pushout. It is also worth
noting that while the example described the integration of just two scenarios,
this pattern is applicable to any number of scenarios to be merged5.

Integration and refinement. Model refinement can be understood in terms
of integration: given a model A, a refinement A′ of A can be seen as the result of
merging A with a model B specifying details of A. For example, the BrokeredSale
scenario can be seen as a refinement of the WholeSale scenario, where the retail
activity has been detailed by merging the RetailSale scenario via RSG.

With such a view of refinement as integration, the relationships between the
refined part of a model and its context are preserved by the operation of re-
finement. Nevertheless, this notion of refinement contrasts with the notion of
refinement as proposed in, e.g., the STAIRS framework [9]. In STAIRS, the
meaning of a sequence diagram is defined by the set of traces that any imple-
mentation must satisfy, and refinement is defined in terms of containment of
sets of traces. We present an orthogonal view of refinement, where an action

4 See [3,6] for more details.
5 This is achieved by computing general colimits, of which pushouts are a particular

example.

A General Approach for Scenario Integration 213

(a)

: thinking : Self

: banking : Self

counter : offer : SB

: deal : SB

initial : offer : SB

counter' : offer : SB

: deal : SB

: pay : SB

S2':

S3':

R6 = S6':

S1':

S5':

S4':

initial' : offer : SB

S2:

S3:

S6:

S1:

S5:

S4:

S0: R0 = B0

B1:

B2:

R1 = B3:

R2:

R3:

R4:
R5 = S0'

R7:

R8:

R9:

R10: = B4:

B4':

B3':

B2':

B1':

B0':

: pay : SB

/retail:live
:Self

/buying:live
:Self

/selling:live
:Self

(b)BrokeredSaleSG (BSSG)

r : Retailers : Seller b : Buyer

initialOffer

counterOffer

deal

pay

thinking

initialOffer

counterOffer

deal

pay

banking

BrokeredSaleSD (BSSD)

Fig. 4. Result of merge as a typed graph (a) and as Sequence Diagram (b)

or sequence of actions (and therefore the corresponding trace) is refined by a
sequence of actions (resp. a trace) by expansion, i.e., an action (an arrow in the
sequence graph) can by refined by a composition of actions (arrows.)

Our preliminary evaluations indicate that this view of refinement can be useful
for model management in general and for the formalization and support for de-
velopment methodologies that require the manipulation of requirements models
(e.g., the methodology in [11] and OOram) in particular.

4 Implementation

A prototype implementation has been built as an Eclipse extension. This allows
us to take full advantage of other existing Eclipse-based modeling tools (e.g., IBM
RSA) which implement editing, visualization, import and export of Sequence
Diagrams. We also rely on the EMF, UML2 and GMF frameworks.

The architecture of the prototype follows our general process described in Sec-
tion 3. The main components of the prototype and the data flow among them
are depicted in Fig. 5. Our prototype assumes that the Sequence Diagrams and
the head of the merge are created by the user with the help of existing modeling
tools, such as RSA. After importing the Sequence Diagrams, the SD2TG Trans-
former will automatically convert them into typed graphs. A variety of different
existing transformation tools could have been used to develop this component.
We have chosen TXL [25]. An Ecore-to-TXL grammar generator has been im-
plemented to provide general support for writing TXL-based model-to-model

214 H. Liang et al.

Eclipse EMF UML2 GMF Transformation Tool

U
M

L M
odeling

T
ool

SD2TG
Transformer

TG
Editor

TG2SD
Transformer

TG
MergerMapping

Editor

Input
TGs

Merged
SDs

Input
SDs

Merged
TGs

Mappings
Manager

Fig. 5. The architecture of the prototype SD Integration Tool

transformations. The users interactively create mappings or correspondences
between Sequence Diagrams with the help of the Mapping Editor. The corre-
spondences between Sequence Diagrams are then translated to correspondences
between typed graphs. Strictly speaking, a mapping editor operating on typed
graphs directly rather than Sequence Diagrams would be more efficient, thus
obviating the need for transforming mappings. Instead, the current implemen-
tation hides the typed graph representation from the users. As a consequence,
it is likely more user-friendly as the users can work with familiar concepts, i.e.,
Sequence Diagrams. We are also working on an expert mode which allows users
to work on typed graphs directly. In this expert mode, the similarity between a
Sequence Diagram and its typed graph will be very helpful. Next, the TG Merger
takes typed graphs and mappings between them, and produces a merged typed
graph. Finally, before the merged result can be visualized by a UML modeling
tool, the TG2SD Transformer transforms merged typed graphs back to Sequence
Diagrams. Again, the transformation has been implemented in TXL.

An interactive graphical editor, TG Editor, based on the Eclipse Graphical
Modeling Framework (GMF), is also provided. It allows for the creation, modifi-
cation, and display of typed graphs. Moreover, it allows for the merge results to
be validated through the examination of the typed graphs. To facilitate the over-
all Sequence Diagram integration process and to manage the data flows between
components, the Manager has been implemented as an Eclipse wizard.

4.1 Evaluation and Observations

To evaluate the correctness of the implementation, we have run the prototype
on a set of tests. The tests include, for instance, variations of the brokered sale.
The merged results produced by the prototype were then visualized in RSA.
Finally, the visualized results were manually inspected and compared with the
expected results. These preliminary evaluation results show that the prototype
was correctly implemented according to our general merge process. A more com-
prehensive evaluation involving different case studies and applications to some
of the methodologies mentioned in the introduction are currently in progress.

A General Approach for Scenario Integration 215

We have made the following observations during the implementation and the
evaluation of our prototype:
• An important step during integration is the discovery and specification of the
correspondences between views. We agree with [2] that an explicit representation
of these correspondences is unavoidable for a general and manageable notion of
model integration. More work is necessary to alleviate the burden of discovering
and specifying these relationships. A promising idea may be the use of high-
level merge patterns. The identification of these patterns is subject of future
work, but the brokered sale example, for instance, suggests that combinations
and variations of, e.g., lifeline composition and refinement will be relevant here.
By turning the identified patterns into user fillable templates, correspondences
between views could be described in more high-level terms while the details are
automatically generated. A complementary way to help identifying correspon-
dences could be an activity similar to data schema matching [20].
• The UML Sequence Diagram syntax is slightly insufficient for the specification
of the view correspondences. More precisely, it is impossible to select a portion of
a lifeline between two occurrences that is not covered by an execution specifica-
tion (in our formalization, the portion of the lifeline is a wait or rest message).
A UML profile for typed graphs has been implemented as part of the prototype
to remedy this situation. It can be optionally applied to Sequence Diagrams and
allows a portion of a lifeline to be stereotyped as either a wait, rest or derived
message.
• The mathematical theory underlying our approach helped us structure our
implementation, i.e., the prototype is clearly divided into several cohesive com-
ponents and Java packages, each implementing a separate portion of the theory.
Moreover, the prototype inherits some powerful properties from the theory. For
instance, traceability between input and merged elements is easily achieved by
our tool by following the span and the computed pushout. Finally, the typing
information provided by typed graphs greatly facilitates consistency checking.
• Our approach to integration is quite general. Although we showed a two-way
merge example, our merge process and prototype tool actually support multi-way
merge with any number of scenarios and heads. Moreover, the merge process is
not limited to Sequence Diagrams (or MSCs), but can be easily extended to other
kinds of models, e.g., Communication Diagrams or Class Diagrams. In principle,
every type of diagram representable as a directed, typed graph is amenable to
our integration approach.

5 Related Work

The composition of behavior models has already been explored in different con-
texts. For instance, UML2 offers Interaction Overview Diagrams (IOD) [18],
while MSCs have been generalized to high-level MSCs [10]. These diagrams
are essentially graphs whose nodes represent scenarios and edges show the con-
trol flow between them. Thus, behaviors specified by nodes are considered non-
overlapping. In contrast, we address the issue of how to specify overlap between

216 H. Liang et al.

scenarios, and then integrate them without duplication. A similar problem has
been studied in semantic data modeling for a long time, where it is called schema
or view integration (see the recent survey [1] and a widely cited paper [19]). Most
work in view integration is non-generic in the sense that definitions and algo-
rithms depend on the use of a particular modeling language. However, a general
and data-model independent approach to the problem can be designed with cat-
egory theory means [6]. The categorical framework has been used for schema
merging in the contexts of database design [3] and metadata management [6],
for early requirement engineering [23], and for software merge [17].

While view integration is well studied in the context of data modeling, only a
few papers attempt to tackle the issue in behavior modeling [26,4], including a
categorical approach to merging MSCs in [12]. The most important distinction
of our approach is that we work with views augmented with derived elements
because information considered basic in one view may be derived in another. This
phenomenon is crucial to the integration problem and gives rise to an effective
notion of refinement. Another distinction is that we allow for the specification of
new information not captured by views during the identification of their overlap.
In [12], categorical machinery is employed for merging partially-ordered multisets
representing MSCs. Thus, the formalization in [12] is “string-based”, rather than
graph-based like ours. We argue that this change in representation makes the
integration procedure less transparent and more difficult to learn. Finally, only
injective morphisms are considered in [12], which might be a serious yet not
relevant restriction. On the other hand, [12] considers also control structures in
scenario modeling (high-level MSCs), which we leave for future work.

Recently, graph grammars have been proposed for the integration of aspects
into different kinds of models (e.g., class diagrams, state machines, and sequence
diagrams) [28,29]. A pattern language is used for the specification of the over-
lap between models and aspects. Compared to our work, the use of a pattern
language to specify the relationships between models makes the approach more
user-friendly. However, it also makes it less general and versatile because pos-
sibly quite different pattern languages need to be defined for different diagram
types; since the pattern language needs to strike a delicate balance between ex-
pressiveness and usability, this step may not be straight-forward. Finally, our
approach does not exclude the use of patterns and, moreover, may benefit from
them. Yet we prefer to start with a general expression of model relationships
and leave the identification of suitable patterns for a later stage of development.

Some work on the synthesis of state-based behavior models from scenarios
involve the integration of scenarios as a by-product (see [16] for a survey).
These approaches allow for complex forms of integration, and the labeling mech-
anism in [14] is clearly akin to our idea of explicit mappings (“arms”). However,
our approach also allows us to include new information in the correspondence
“head”, which is not contained in any of the integrated models. As our brokered
sale example illustrates, this new information can provide a new useful context
into which the merged scenarios are placed. In addition, our approach inherits
some useful properties from the underlying colimit operation (traceability and

A General Approach for Scenario Integration 217

universality), which the majority of scenarios-from-state-machines procedures
do not seem to offer.

Tools supporting tasks related to model management, particularly, model
merging already exist, e.g., AMW [8] and Epsilon [13]. Conceivably, they could
have been used to aid in the construction of our prototype. However, we chose
to implement it without the use of existing merge tools because we wanted to
study our approach in its purest form, unencumbered by the issues that can
arise when encoding one theory in another. Moreover, we wanted to see to what
extent the theory and its properties would be leveraged on the implementation
level. We acknowledge, however, that the manual specification of mappings sup-
ported by AMW is similar to ours and could have been used for our mapping
editor. In future work, it would be interesting to investigate the combination
of AMW’s automatic mapping generator or Epsilon’s rule-based matching with
our categorical approach.

6 Conclusions

We have presented an approach to integrating scenario-based models, particu-
larly UML Sequence Diagrams, based on the colimit construction known from
category theory. Our formalization of Sequence Diagrams as typed graphs re-
tains the graphical nature of Sequence Diagrams, yet is amenable to algebraic
manipulations and consistency checking. The approach provides traceability and
guarantees that nothing is lost and nothing extra is acquired in the merge. More-
over, the algorithm is generalizable for other kinds of models and any number
of models to be merged.

A prototype tool following the approach has been implemented. Initial evalu-
ation has shown that the ideas presented in this paper represent promising steps
towards more rigorous management of requirement models. However, the sup-
port for discovery and specification of model relationships needs to be improved.

References

1. Aleksandraviciene, A., Butleris, R.: A comparative review of approaches for data-
base schema integration. Advances in Information Systems Development (2007)

2. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: 1st International Workshop on Global Integrated
Model Management (GaMMa 2006), Shanghai, China (May 2006)

3. Cadish, B., Diskin, Z.: Heterogenious view integration via sketches and equations.
In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, Springer,
Heidelberg (1996)

4. Desharnais, J., Frappier, M., Khédri, R., Mili, A.: Integration of sequential scenar-
ios. IEEE Trans. Softw. Eng. 24(9), 695–708 (1998)

5. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge.
Software and Systems Modeling (2008), doi:10.1007/s10270-007-0073-9

6. Diskin, Z.: Mathematics of generic specifications for model management. In: En-
cyclopedia of Database Technologies and Applications, Idea Group (2005)

218 H. Liang et al.

7. Diskin, Z., Dingel, J., Liang, H.: Scenario integration via higher-order graphs. Tech-
nical Report 2006-517, Queen’s University (2006),
http://www.cs.queensu.ca/TechReports/Reports/2006-517.pdf

8. Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. In: Sympos. on Applied Computing (2007)

9. Haugen, Ø., Husa, K., Runde, R., Stølen, K.: STAIRS: towards formal design with
sequence diagrams. Software & Systems Modeling 4(4), 355–367 (2005)

10. ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC) (2000)
11. Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use Cases.

Addison-Wesley Professional, Reading (2004)
12. Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. In: 9th Int.Workshop on

Formal Methods for Industrial Critical Systems. ENTCS, pp. 209–226 (2004)
13. Kolovos, D., Paige, R., Polack, F.: Merging Models with the Epsilon Merging Lan-

guage (EML). In: Int. Conf. on Model Driven Engineering, Languages and Systems
(MoDELS 2006) (2006)

14. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to statecharts. In: Int.
Workshop on Distributed and parallel embedded systems, Norwell, MA, USA
(1999)

15. Letkeman, K.: Ad-hoc modeling - Fusing two models with diagrams,
http://www.ibm.com/developerworks/rational/library/07/0410 letkeman

16. Liang, H., Dingel, J., Diskin, Z.: A comparative survey of scenario-based to state-
based model synthesis approaches. In: 5th International Workshop on Scenarios
and State Machines, SCESM 2006 (2006)

17. Niu, N., Easterbrook, S.M., Sabetzadeh, M.: A category-theoretic approach to
syntactic software merging. In: Int. Conf. on Software Maintainance (2005)

18. Object Management Group. Unified Modeling Language: Superstructure. version
2.1.2 Formal/2007-11-04 (2007)

19. Pottinger, R., Bernstein, P.: Merging models based on given correspondences. In:
Proc. Very large databases, VLDB 2003 (2003)

20. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

21. Reenskaug, T.: Working With Objects: The OOram Software Engineering Method.
Manning (1995)

22. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Addison-Wesley, Reading (2004)

23. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: 13th Int.Conference on Requirement Engineering (2005)

24. Stevens, P.: On the Interpretation of Binary Associations in the Unified Modeling
Language. Software and Systems Modeling 1(1) (2002)

25. TXL. About TXL (2007), http://www.txl.ca/nabouttxl.html
26. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: 12th ACM SIG-

SOFT Int.Symposium on FSE, pp. 43–52. ACM Press, New York (2004)
27. VanHilst, M.: Role-Oriented Programming for Software Evolution. Ph.D. disserta-

tion, Univ. of Washington, Dept. of Computer Science and Engineering (1997)
28. Whittle, J., Jayaramana, P.: MATA: A Tool for Aspect-Oriented Modeling based

on Graph Transformation. In: Aspect-Oriented Modeling Workshop (2007)
29. Whittle, J., Moreira, A., Araújo, J., Rabbi, R., Jayaraman, P., Elkhodary, A.: An

Expressive Aspect Composition Language for UML State Diagrams. In: Engels,
G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735.
Springer, Heidelberg (2007)

http://www.cs.queensu.ca/TechReports/Reports/2006-517.pdf
http://www.ibm.com/developerworks/rational/library/07/0410_letkeman
http://www.txl.ca/nabouttxl.html

	A General Approach for Scenario Integration
	Introduction
	Sequence Diagrams as Typed Graphs
	Scenario Integration
	Implementation
	Evaluation and Observations

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

