


Gauge Theory of Weak Interactions

Fourth Edition



Greiner
Quantum Mechanics
An Introduction 4th Edition

Greiner
Quantum Mechanics
Special Chapters

Greiner � Müller
Quantum Mechanics
Symmetries 2nd Edition

Greiner
Relativistic Quantum Mechanics
Wave Equations 3rd Edition

Greiner � Reinhardt
Field Quantization

Greiner � Reinhardt
Quantum Electrodynamics
4th Edition

Greiner � Schramm � Stein
Quantum Chromodynamics
3rd Edition

Greiner � Maruhn
Nuclear Models

Greiner � Müller
Gauge Theory of Weak Interactions
4th Edition

Greiner
Classical Mechanics
Systems of Particles
and Hamiltonian Dynamics
2nd Edition

Greiner
Classical Mechanics
Point Particles and Relativity

Greiner
Classical Electrodynamics

Greiner � Neise � Stocker
Thermodynamics
and Statistical Mechanics



Walter Greiner � Berndt Müller

Gauge Theory
of Weak Interactions

With a Foreword by
D.A. Bromley

Fourth Edition
With 121 Figures,

and 75 Worked Examples and Exercises



Prof. Dr. Dr. h. c. mult. Walter Greiner
Frankfurt Institute
for Advanced Studies (FIAS)
Johann Wolfgang Goethe-Universität
Ruth-Moufang-Str. 1
60438 Frankfurt am Main
Germany
greiner@fias.uni-frankfurt.de

Dr. Berndt Müller
Department of Physics
Duke University
Durham, NC 27708-0305
USA
mueller@phy.duke.edu

Title of the original German edition: Theoretische Physik, Ein Lehr- und Übungsbuch, Band 8: Eichtheorie
der schwachen Wechselwirkung © Verlag Harri Deutsch, Thun, 1986

ISBN 978-3-540-87842-1 e-ISBN 978-3-540-87843-8
DOI 10.1007/978-3-540-87843-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009936117

© Springer-Verlag Berlin Heidelberg 1993, 1996, 2000, 2009
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protec-
tive laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L., Spain

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:greiner@fias.uni-frankfurt.de
mailto:mueller@phy.duke.edu


Foreword to Earlier Series Editions

More than a generation of German-speaking students around the world have worked
their way to an understanding and appreciation of the power and beauty of modern
theoretical physics – with mathematics, the most fundamental of sciences – using
Walter Greiner’s textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of sci-
ence in a series of closely related textbooks is not a new one. Many older physicists
remember with real pleasure their sense of adventure and discovery as they worked
their ways through the classic series by Sommerfeld, by Planck and by Landau and
Lifshitz. From the students’ viewpoint, there are a great many obvious advantages to
be gained through use of consistent notation, logical ordering of topics and coherence
of presentation; beyond this, the complete coverage of the science provides a unique
opportunity for the author to convey his personal enthusiasm and love for his subject.

The present five-volume set, Theoretical Physics, is in fact only that part of the
complete set of textbooks developed by Greiner and his students that presents the
quantum theory. I have long urged him to make the remaining volumes on classical
mechanics and dynamics, on electromagnetism, on nuclear and particle physics, and
on special topics available to an English-speaking audience as well, and we can hope
for these companion volumes covering all of theoretical physics some time in the
future.

What makes Greiner’s volumes of particular value to the student and professor alike
is their completeness. Greiner avoids the all too common “it follows that . . . ” which
conceals several pages of mathematical manipulation and confounds the student. He
does not hesitate to include experimental data to illuminate or illustrate a theoretical
point and these data, like the theoretical content, have been kept up to date and top-
ical through frequent revision and expansion of the lecture notes upon which these
volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including
something like one hundred completely worked examples in each volume. Nothing is
of greater importance to the student than seeing, in detail, how the theoretical concepts
and tools under study are applied to actual problems of interest to a working physi-
cist. And, finally, Greiner adds brief biographical sketches to each chapter covering
the people responsible for the development of the theoretical ideas and/or the experi-
mental data presented. It was Auguste Comte (1798–1857) in his Positive Philosophy
who noted, “To understand a science it is necessary to know its history”. This is all
too often forgotten in modern physics teaching and the bridges that Greiner builds to
the pioneering figures of our science upon whose work we build are welcome ones.

Greiner’s lectures, which underlie these volumes, are internationally noted for their
clarity, their completeness and for the effort that he has devoted to making physics an
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vi Foreword to Earlier Series Editions

integral whole; his enthusiasm for his science is contagious and shines through almost
every page.

These volumes represent only a part of a unique and Herculean effort to make all
of theoretical physics accessible to the interested student. Beyond that, they are of
enormous value to the professional physicist and to all others working with quantum
phenomena. Again and again the reader will find that, after dipping into a particular
volume to review a specific topic, he will end up browsing, caught up by often fasci-
nating new insights and developments with which he had not previously been familiar.

Having used a number of Greiner’s volumes in their original German in my teach-
ing and research at Yale, I welcome these new and revised English translations and
would recommend them enthusiastically to anyone searching for a coherent overview
of physics.

Yale University D. Allan Bromley
New Haven, CT, USA Henry Ford II Professor of Physics
1989



Preface to the Fourth Edition

It is a pleasure to see the positive resonance of our book, which now necessitates a
fourth edition. We have used this opportunity to correct misprints and errors, and to
extend and improve the discussion of many of the exercises and examples.

The examples on neutrino mass (7.4), double β decay (7.8 and 7.9) and solar neu-
trinos (7.10) have been updated in the light of the experimental results obtained in the
last years. Neutrino physics has become a tremendously active and exciting area of
research, and we can expect to see conclusive experimental results on neutrino masses
and oscillation parameters in the near future. We hope that our text will help students
to appreciate these developments.

Again, we thank all colleagues and readers for their comments and information
about misprints in the book, and we appreciate the cooperation with the publishing
team at Springer-Verlag, and with Dr. Stefan Scherer, in the preparation of this fourth
edition.

Frankfurt am Main Walter Greiner
August 2009
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Preface to the Third Edition

Again, we take this opportunity to correct misprints and errors and add new examples
and exercises.

We thank several colleagues and students for helpful comments, particularly Dr.
Joachim Reinhardt who helped me to improve some exercises and examples and Dipl.-
Phys. Constantin Loizides who helped in the preparation of this third edition. Finally,
we acknowledge the agreeable collaboration with Dr. H. J. Kölsch and his team at
Springer-Verlag, Heidelberg.

Frankfurt am Main Walter Greiner
July 2000
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Preface to the Second Edition

We are pleased to note that our text Gauge Theory of Weak Interactions has found
many friends among physics students and researchers so that the need for a second
edition has arisen. We have taken this opportunity to make several amendments and
improvements to the text. A number of misprints and minor errors have been corrected
and explanatory remarks have been added at various places. In addition to many other
smaller changes the Sects. 6.4 on Cabibbo’s theory of flavour mixing, 7.4 on the prop-
erties of allowed beta decay, 9.3 on the SU(5) Gauge Theory, and 9.5 on the scale
of the SU(5) symmetry breaking have been expanded. Several new examples and ex-
ercises in Chaps. 6, 7, and 9 have been added, e.g., on parity violation in inelastic
lepton–nucleon scattering or on the running coupling constant in quantum field the-
ory.

We thank several colleagues and students for helpful comments. We also thank
Dr. E. Stein and Dr. Steffen A. Bass who have supervised the preparation of the sec-
ond edition of the book. Finally we acknowledge the agreeable collaboration with
Dr. H. J. Kölsch and his team at Springer-Verlag, Heidelberg.

Frankfurt am Main and Durham, NC, USA Walter Greiner
December 1995 Berndt Müller
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Preface to the First Edition

Modern theoretical physics has, over the past twenty years, made enormous progress,
which may well be compared to the dramatic developments that occurred during the
first few decades of this century. Whereas the discoveries of the early twentieth cen-
tury (quantum mechanics, special and general relativity) concerned the foundations of
modern physics, remaking the very concepts on which our view of the laws of nature
are based, the recent breakthroughs have provided an almost complete understanding
of the basic principles of the fundamental interactions among elementary particles.
These principles are laid down in the so-called “Standard Model of Particle Physics”
which successfully describes all established experimental data in physics.

At present, we know four fundamental interactions among elementary particles:
the strong nuclear interaction (mediated by the exchange of mesons or – at a deeper
level – of gluons), the electromagnetic interaction (mediated by photon exchange), the
weak nuclear interaction (mediated by the exchange of the recently discovered W and
Z bosons and, like the strong interaction, of short range), and gravity. Experimental
searches have so far failed to uncover forces other than those four, although we cannot
exclude the existence of other, very weak or short-ranged interactions.

The search for a common origin of all interactions is an ultimate (maybe the ul-
timate) goal of physics. Ever since Einstein’s failed search for a unified field theory,
it has been the dream of theoretical physicists to condense all laws of physics into a
single fundamental equation, which contains all known interactions as special cases.
This development had had its first dramatic success with Maxwell’s theory of elec-
tromagnetism, which had combined the laws of electricity and magnetic interactions
into a single set of equations which, in modern notation, take the beautifully sim-
ple form: ∂νFμν = jμ, ∂νF̃ μν = 0. The disparate phenomena of electricity and mag-
netism suddenly had become recognized as inseparable parts of a more general in-
teraction. Maxwell’s equations had predicted the existence of electromagnetic waves.
These were discovered shortly afterwards and today form the basis of the global com-
munication network, without which modern life and modern science could not be
imagined.

A comparable breakthrough occurred twenty years ago when Glashow, Salam,
Weinberg, and others recognized a deep relation between the electromagnetic and
the weak nuclear interaction and showed that they could be derived from a unified
theory. These lecture notes deal with the ideas and insight that led to this modern
unification, and introduce the student to the phenomena that played a central role in
this development. We begin with a detailed exposition of Fermi’s theory of beta decay
and discuss the successes and shortcomings of this remarkable theory. The impor-
tance of the consideration of fundamental symmetries is illustrated by the violation
of parity invariance, leading up to the (V–A) theory of weak interactions. Numerous
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Preface to the First Edition xi

solved problems and examples demonstrate various aspects of the weak interaction
and provide an opportunity to apply the newly learned material.

The central part of the lectures introduces us to the concept of gauge theories, based
on the generalization of the symmetry principle to local symmetries. The present vol-
ume may be regarded as continuation of volume 2 of this series: “Quantum Mechanics
– Symmetries”, extending the concepts of continuous symmetry groups to gauge trans-
formations. The application of the gauge principle to weak isospin and hypercharge
results in the unified electroweak gauge theory. The concepts of spontaneous sym-
metry breaking, charged and neutral currents, and mixing angles, are introduced and
discussed in broad detail. Many aspects are illustrated with examples selected from
current research fields, such as the problem of neutrino mixing with its application to
the solar neutrino flux. Additional chapters are concerned with the applications of the
electroweak gauge theory to hadronic decays and to the nuclear beta decay, where the
presentation is systematically based on the quark model first introduced in volume 2.
A separate chapter deals with the phenomenon of CP violation.

Only a few years after the formulation of the electroweak gauge theory, it was dis-
covered that the strong interactions are also based on a set of equations that closely
resembles those of the unified electroweak theory. This immediately fostered spec-
ulations that electroweak and strong interactions could be the low-energy manifes-
tations of a “grand unified” gauge theory. The last section of our book contains an
extended introduction on the principles underlying the search for such unified theo-
ries. We discuss the SU(5) model of Georgi and Glashow, the simplest unified gauge
theory, and show how model building is constrained by experimental data. The pre-
sentation is broad and self-contained as usual in this series, introducing the student
to the new concepts and formal techniques without unnecessary ballast. A detailed
derivation of proton decay is presented, and the question of anomaly freedom is dis-
cussed. The book concludes with an outlook on supersymmetric unification in the
light of recent precision measurements of the electroweak and strong gauge coupling
constants.

These lectures make an attempt to familiarize the student with the developments of
modern particle physics by providing a conceptually simple, yet rigorous introduction
combined with hands-on experience through exercises and examples. They grew out
of advanced graduate courses presented at the Johann Wolfgang Goethe-Universität
in Frankfurt am Main and the Vanderbilt University in Nashville, Tennessee during
the years 1982–85. The volume is designed as a self-contained introduction to gauge
theories. Of course, much of the material is based on the framework of relativistic
quantum field theory; it is desirable that the student has at least a working familiarity
with the theory of quantum electrodynamics (volume 4 of this series). Some important
and often used equations and relations are collected in appendices.

Our special gratitude goes to Dr. Matthias Grabiak and Professor Dr. Andreas
Schäfer for their help with the examples and exercises. Several students have helped
to convert the material from the stage of informal lecture notes to a textbook. For this
first English edition we have enjoyed the help of Dipl.-Phys. Jürgen Augustin, Dipl.-
Phys. Maria Berenguer, Dr. Oliver Graf, Dipl.-Phys. Christian Hofmann, cand. Phys.
Markus Hofmann, Dipl.-Phys. André Jahns, Dipl.-Phys. Kyong-Ho Kang, Dipl.-Phys.
Ullrich Katcher, Dipl.-Phys. Jürgen Klenner, cand. Phys. Yaris Pürsün, cand. Phys.
Matthias Rosenstock, Dipl.-Phys. Jürgen Schaffner, Dipl.-Phys. Alexander Scherdin,
cand. Phys. Christian Spieles and Dipl.-Phys. Mario Vidović. Miss Astrid Steidl drew
the graphs and pictures. To all of them we express our sincere thanks.
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We would especially like to thank Dipl. Phys. Raffaele Mattiello and Dr. Béla
Waldhauser for their overall assistance in the preparation of the manuscript. Their
organizational talent and advice in technical matters have contributed decisively to the
successful completion of this work.

Frankfurt am Main, July 1993 Walter Greiner
Durham, USA, July 1993 Berndt Müller
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All the known interactions that occur in nature can be reduced to four interactions
between material particles. Listed in order of decreasing strength, these are: the strong
(nuclear) interaction, electromagnetism, the weak (nuclear) interaction, and gravity
(see Table 1.1). The interaction strength varies with distance between the force centers.
This is illustrated in the figure accompanying Table 1.1.

Interaction-potentials
between force centers
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2 1 The Discovery of the Weak Interaction

Table 1.1. Comparison of known interactions

Interaction Relative strength Range

Gravitation 10−41 ∞
Weak nuclear 10−15 �1 fm
Electromagnetic 10−2 ∞
Strong nuclear 1 ≈1 fm

In contrast to the strong interaction, the weak interaction operates between all par-
ticles. It causes reactions which make these particles ultimately decay into the stable
leptons and hadrons, that is, electrons, neutrinos, and protons. Characteristic in these
reactions is the change in charge of the particles which undergo the reactions. The
small strength of the weak interaction goes along with its small range. Unlike all other
interactions, the weak interaction does not produce bound states, as do the strong
interaction, which is responsible for the formation of atomic nuclei, the electromag-
netic interaction, which binds together atoms and molecules, and gravity, which is the
source of binding of objects on an astronomical scale. In order to better understand
our modern theory of the weak interaction it is convenient to start with a short review
of the history of its discovery.

Fig. 1.1. The uranium series.
Within the long decay chain it
was presumably the β decay
of 234

91 Pa to 234
92 U (from UX2

to UII) which was responsi-
ble for the blackening of Bec-
querel’s photographic plate

Fig. 1.2. Form of the continu-
ous β spectrum
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1.1 The Universal Fermi Interaction

In the year 1896 Henri Becquerel discovered that uranium crystals are able to taint
a photographic film if they are brought into contact with it. In subsequent years Bec-
querel, Kaufmann, and Rutherford succeeded in showing that uranium ore – like
some other materials – emits fast, electrically charged rays (so-called beta rays), which
are electrons moving with approximately the speed of light. As we know today, these
beta rays originate from the decay of protactinium 234

91 Pa into uranium 234
92 U and other

nuclear decays. After the establishment of the modern concept of atomic structure
(nucleus and electron cloud) around 1910, it was first assumed that the electrons emit-
ted in the beta decay with energies up to 2.5 MeV were present in the nucleus before
the decay. This was difficult to understand, because according to Bohr’s model of the
atom the electrons ought to move predominantly in orbits well outside the nucleus.
With the discovery of the neutron (Chadwick 1932) it became evident that the elec-
tron is created at the instant that the neutron transforms into a proton, which made this
problem obsolete.

Another difficulty in the comprehension of β decay consisted in the fact that the
electrons are emitted with a continuous energy spectrum. Since the initial and final
nuclei have well-defined energies, this would mean a violation of energy conservation
(see Exercise 1.1).

EXERCISE

1.1 Kinematics of Two-Body Decays

Problem. Using the relativistic energy–momentum relation, show that in the decay of

Fig. 1.3. Notation in two-par-
ticle decay

a particle of mass M at rest into two-particles of masses m1 and m2, the two particles
must have a definite energy.

Solution. For the solution of the problem we consider the rest system of the initial
particle. Its energy–momentum vector is in this case

pμ = (M,O) . (1)

After the decay the two decay products fulfill the relations

p
μ
1 = (E1,p1) with E2

1 = m2
1 + p2

1 , (2a)

p
μ
2 = (E2,p2) with E2

2 = m2
2 + p2

2 . (2b)

Energy–momentum conservation then requires that

pμ = p
μ
1 + p

μ
2 . (3)

The spatial components yield

O = p1 + p2 , i.e. p2 = −p1 . (4)

Inserting this into the time component gives

M = E1 + E2 = (m2
1 + p2

1)
1/2 + (m2

2 + p2
1)

1/2 . (5)
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Some transformations lead to

p2
1 = M2

4
− m2

1 + m2
2

2
+ (m2

1 − m2
2)

2

4M2
, (6)

that is, p2
1 is unequivocally determined. Then E1 and E2, according to (2a), (2b), are

given by

E1 = M

2
+ m2

1 − m2
2

2M
, E2 = M

2
+ m2

2 − m2
1

2M
. (7)

Pauli therefore proposed in 1930 that an additional particle should be emitted be-
sides the electron in the decay of the neutron. This particle, nowadays called the anti-
neutrino1 ν, should carry no electric charge and have a low mass:

n → p + e− + ν .

Since the neutron, proton, and electron each carry spin �/2, conservation of angular
momentum could be maintained if the neutrino was also assigned spin �/2. We thus
deal with a three-particle decay. The energy liberated in the decay of the free neutron,
(mn − mp)c

2 = 1.2934 MeV, is statistically distributed over the neutrino and electron.
According to today’s experiments, however, the rest mass of the neutrino is less than
20 eV, but not equal to zero (see Fig. 1.4). For the latest considerations we refer to
Chap. 7, Fig. 7.6, but for the time being, let us assume the neutrino to be massless.

Fig. 1.4. The so-called Fer-
mi–Kurie plot of the β spec-
trum of tritium (3H). The in-
sertion in the upper right cor-
ner proves that some elec-
trons carry the full decay en-
ergy. This leads to the con-
clusion that the neutrino must
be (nearly) massless. The en-
ergy set free for the elec-
tron and neutrino in the β de-
cay of 3H → 3He + e− + ν̄

is 18.1 keV. This manner of
representation of the β decay
spectrum was introduced by
F.N.D. Kurie in 1936

The decay of the neutron is shown graphically in Fig. 1.5. In 1934 Fermi extended
Pauli’s idea to a quantitative theory of β decay. He did this by postulating that the

1 It was discovered in the 1950s and 1960s that neutrinos form a family of particles with similar
properties. Each neutrino is left-handed (see below) and accompanied by its antiparticle, the anti-
neutrino, which is right-handed. In addition, there is a different type of neutrino associated with each
species of charged lepton (electron, muon, tau-lepton). The particle originally postulated by Pauli to
account for the properties of nuclear β decay, is the electron-antineutrino νe.
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Fig. 1.5. Decay of the neutron into an electron e− , an antineutrino ν, and a proton p: (a) in
terms of physical particles, (b) in formal (field theoretical) terms

decay process can be described by adding to the Hamiltonian an interaction term con-
taining the wave functions of the four free particles:

HF = H 0
n + H 0

p + H 0
e + H 0

ν +
∑

i

Ci

∫
d3x(upÔiun)(ueÔiuν)

︸ ︷︷ ︸
interaction term

. (1.1)

Here up, un, ue, and uν denote the wave functions of the four particles, the bars on
up and ue indicate the (Dirac) adjoint, and the quantities Ôi are appropriate opera-
tors which characterize the decay and which are weighted by the constants Ci . Since
neutrinos are massless and the electron mass is low compared to the kinetic energies
in β decay, the theory must be formulated relativistically, which means that the wave
functions must be taken as solutions of the free Dirac equation
(

iγ μ
∂

∂xμ
− mk

)
uk(x) = 0 (k = p,n, e, ν) , (1.2)

that is, as four-component spinors. The γ μ are the Dirac matrices.2

The interaction term in (1.1) follows the current–current coupling, which is well
known from electrodynamics. Here the term “current” has to be interpreted very gen-
erally, since (upÔiun) can be a vector current, for instance if Ôi = γ μ, but it can also
be a scalar, for instance if Ôi = 1 (we refer to Exercise 1.2). In any case, however, the
operators Ôi must be 4 × 4 spin matrices. The question arises whether the elements
of these matrices should be numbers or differential operators. It can be shown that in
the interaction term the 4 × 4 differential operators can be reduced to (constant) 4 × 4
matrices. Indeed, since we are dealing with plane waves, (1.2) allows to express the
differentials iγ μ ∂

∂xμ
uk(x) by mkuk(x).

Table 1.2. Elementary fermion transition operators

Ôi Transformation Number
property of Ψ ÔiΨ of matrices

1 Scalar (S) 1
γμ Vector (V ) 4
σμν = i

2 [γμ,γ ν ]− Tensor (T ) 6
γμγ5 Axial vector (A) 4
γ5 = −iγ0γ1γ2γ3 Pseudoscalar (P ) 1

= iγ 0γ 1γ 2γ 3

2 All conventions referring to the Dirac equation correspond to those W. Greiner: Relativistic Quan-
tum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin, Heidelberg, 2000). They are also used for
instance, in J.D. Bjorken, S.D. Drell in Relativistic Quantum Mechanics (McGraw-Hill, New York,
1964); see also Appendices A.1 and A.2.
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As is well known, the Hamiltonian transforms like the time component of the four-
momentum vector. In the interaction term,

∫
d3x means integration over the spatial

coordinates x1, x2, x3. Then

(upÔiun)(ueÔiuν)

must be a Lorentz scalar. Of course the quantities Ψ ÔiΨ must be well behaved under
Lorentz transformations in order to make the above expression a scalar. In Exercise 1.2
we will show that under these general conditions the sole possibilities for the Ôi are
the 16 matrices 1, γ μ, σμν , γ μγ5, and γ5.

EXERCISE

1.2 Lorentz Transformation of Dirac Operators

Problem. Let (upÔiun)(ueÔiuν) = χ be a Lorentz scalar. Show that for the opera-
tors Ôi there are the five possibilities given above (1, γ μ, σμν, γ μγ5, γ5) and no
others.

Solution. Obviously it is necessary that Ψ ÔiΨ has a well-defined transformation
behavior. We therefore examine the behavior of these bilinear forms under Lorentz
transformations â:

xν
′ = aνμx

μ . (1)

As demonstrated in relativistic quantum mechanics,3 a Dirac wave function transforms
according to

Ψ ′(x′) = S(a)Ψ (x) (2)

with the transformation matrix

S(a) = exp[−i/4σμν (a
μν − gμν )] , (3)

which has the following properties:

S−1(a)γ νS(a) = aνμγ
μ , (4)

S−1(a) = γ0S
†γ0 . (5)

Let us consider first Ψ 1̂Ψ = ΨΨ . With (1), (5) and Ψ = Ψ †γ0 we obtain

Ψ ′(x′)Ψ ′(x′) = Ψ ′†
(x′)γ0Ψ

′(x′)

= Ψ †(x)S†γ0SΨ (x)

= Ψ †(x)γ0γ0S
†γ0SΨ (x)

= Ψ †(x)γ0S
−1SΨ (x)

= Ψ †(x)γ0Ψ (x) = Ψ (x)Ψ (x) . (6)

3 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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This proves the first line of Table 1.2. Similarly we conclude for the other lines, for
example,

Ψ ′(x′)γ μΨ ′(x′) = Ψ ′†
(x′)γ0γ

μΨ ′(x′)

= Ψ †(x)S†γ0γ
μSΨ (x)

= Ψ †(x)γ0γ0S
†γ0γ

μSΨ (x)

= Ψ †(x)γ0S
−1γ μSΨ (x)

= aμν Ψ
†(x)γ0γ

νΨ (x)

= aμν Ψ (x)γ
νΨ (x) . (7)

ThusΨγμΨ transforms as a vector. Only in the case of axial vectors and pseudoscalars
does something new occur. We consider therefore

Ψ ′(x′)γ5Ψ
′(x′) = Ψ ′†

(x′)γ0γ5Ψ
′(x′)

= Ψ †(x)S†γ0γ5SΨ (x)

= Ψ †(x)γ0S
−1γ5SΨ (x) . (8)

Here we must distinguish two different cases. We denote the proper Lorentz transfor-
mations by S
 and the space inversion (parity transformation) by Sp.

1. S = S
.
Because γ μγ5 + γ5γ

μ = 0, using (3) one can easily convince oneself that, because
σμν = i/2[γ μ, γ ν],

[S
, γ5 ] = 0 .

Then we have immediately that

Ψ
′
(x′)γ5Ψ

′
(x′) = Ψ (x)γ5Ψ (x) . (9)

2. S = Sp = γ 0 =

⎛

⎜⎜⎝

1
−1

−1
−1

⎞

⎟⎟⎠.

Here the commutation gives Spγ5 = γ 0γ5 = −γ5γ
0 = −γ5Sp. Thus the sign

changes:

Ψ
′
(x′)γ5Ψ

′(x′) = −Ψ (x)γ5Ψ (x) . (10)

We can combine these two results as follows:

Ψ ′(x′)γ5Ψ
′(x′) = det(a)Ψ (x)γ5Ψ (x) , (11)

because for proper Lorentz transformations det(a) = +1. For the inversion, on
the other hand, det(a) = −1. These are exactly the transformation properties of a
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pseudoscalar. Analogously one can show that

Ψ ′(x′)γ5γ
νΨ ′(x′) = det(a)aνμΨ (x)γ5γ

μΨ (x) , (12)

which is thus an axial vector.
The 16 matrices 1, γ μ, σμν , γ μγ5, and γ5 are linearly independent and form a basis

in the vector space of the 4 × 4 matrices. Any other 4 × 4 matrix can be expressed as a
linear combination of those 16 matrices. Combinations like Ôi = γ μ +σμν , however,
lead to mixed terms which are not scalars:

(up(γμ + σμα)un)(ue(γ
μ + σμα)uν)

= (upγμun)(ueγ
μuν) + (upσμαun)(ueσ

μαuν)

+ (upγμun)(ueσ
μαuν) + (upσμαun)(ueγ

μuν) . (13)

The expressions in the second line are the desired scalars, whereas those in the last
line are vectors. Quantities for Ôi different from 1, γ μ, σμν , γ μγ5, and γ5 are thus
impossible, which is the desired result.

Since in nuclear β decay protons and neutrons move non-relativistically, the matrix
elements can be simplified in the nucleonic part of the Hamiltonian. As is well known,
a Dirac spinor can be decomposed into two two-component quantities φ and χ ,

Ψ =
(
φ

χ

)
,

where the components of the two-spinor φ in the non-relativistic limit are much larger
than the components of χ , and in this limit

S,V → φ†
pφn , T ,A → φ†

pσφn , P → 0 . (1.3)

We convince ourselves of these facts in Exercise 1.3.

EXERCISE

1.3 The Non-relativistic Limit of the Transition Operators

Problem. Prove the limiting cases given above.

Solution. The γ μ are defined as

γ 0 = β =
(

1 0
0 −1

)
,

γ5 =
(

0 1
1 0

)
, γi = βαi , (1)

αi =
(

0 σi
σi 0

)
, i = 1,2,3 .
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We begin with the terms S and V , and systematically neglect all terms containing the
small components χp and χn:

S = upun = (φ†
p , χ

†
p )

(
φn

−χn

)

= φ†
pφn − χ†

pχn → φ†
pφn , (2)

V = {upγ
0un , upγun }

=
{
(φ†

p , χ
†
p )

(
φn

χn

)
, (φ†

p , χ
†
p )α

(
φn

χn

)}

= {φ†
pφn + χ†

pχn , φ
†
pσχn + χ†

p σφn } → {φ†
pφn,0} . (3)

This proves S,V → φ
†
pφn.

Let us next turn to the limit for the tensor coupling T . Using the definition σμν =
i/2[γ μ, γ ν]− and the relation σiσj −σjσi = 2iεijk σk , one can easily check that σ ij =
(σk 0

0 σk

)
, where i, j, k = 1,2,3 or a cyclical permutation thereof. With this we have

(upσ
ijun) = (φ†

p , χ
†
p )

(
1 0
0 −1

)(
σk 0
0 σk

)(
φn

χn

)

= φ†
pσkφn − χ†

pσkχn . (4)

Furthermore, σ 0i = iαi = i
( 0 σi
σi 0

)
is valid, as well as

upσ
0iun = i{φ†

pσiχn + χ†
pσiχn } → 0 . (5)

Thus, as claimed above, the non-relativistic limit yields

T = (upσ
μνun) → (φ†

pσkφn) . (6)

The axial vector coupling A is treated just as easily. In view of

γ5

(
φn

χn

)
=
(
χn

φn

)
, (7)

the 0 component vanishes in the limit χ → 0:

upγ0γ5un = (φ†
p , χ

†
p )

(
χn

φn

)

= φ†
pχn + χ†

pφn → 0 , (8)

and for the space-like components we obtain

upγ
iγ5un = (φ†

p , χ
†
p )αi

(
χn

φn

)

= φ†
pσiφn + χ†

pσiχn → φ†
pσiφn . (9)
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Thus

A = upγ
μγ5un = {upγ0γ5un, upγ

iγ5un } → φ†
pσiφn . (10)

Finally P → 0 remains to be proved, which is trivial:

P = upγ5un = (φ†
p , χ

†
p )γ

0
(
χn

φn

)

= φ†
pγ

0χn + χ†
p γ

0φn → 0 , (11)

since all terms contain a small component of the Dirac wave function.

The relevant non-vanishing cases are called Fermi transitions:

S,V → φ†
pφn , (1.4)

and Gamow–Teller transitions:

T ,A → φ†
pσφn . (1.5)

In the latter case obviously the spin of the decaying nucleus may change, whereas
the nuclear spin remains unchanged in the case of a Fermi transition. Both cases are
actually observed in nature, that is, the Fermi Hamiltonian (1.1) must contain some
combination of S–V and T –A couplings. It is possible to show that oscillations would
occur in the electron spectrum, if S and V couplings were simultaneously present, and
the same would be true for T and A couplings at the same time. Since such effects
are not observed, it follows that only the couplings S and T , or S and A, or V and T ,
or V and A are realized. Measurements of the lifetimes of several nuclei lead to the
conclusion that the strength constants of Fermi and of Gamow–Teller transitions are
about equal in magnitude, being nearly equal to

G ≈ 10−4 MeV fm3 ,

or in natural units (� = c = 1) – see Appendix A.1 –

G ≈ 10−11(MeV)−2 ≈ 10−5m−2
p .

From 1938 on, more particles were discovered that decay by the weak interaction:

μ± → e± + ν + ν

π± → μ± + ν/ν
(1.6)

K± → π0 + μ± + ν/ν

Λ0 → p + e− + ν etc. .

In all cases almost the same constant G appears. This is why one speaks of the uni-
versal Fermi interaction, responsible for the β decay of many unstable elementary
particles.
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1.2 The Non-conservation of Parity

With the K mesons, however, a serious puzzle was soon encountered. It was found that
the K+ meson, apart from the final state π0μ+ν, can also decay into two pions, π+π0,
and into three pions, π+π+π−. On the other hand, it was well known that the pion
has negative internal parity. Since all pions are emitted with angular momentum 
 = 0
(this follows from their angular distribution), the spatial part of the wave function of
pions has positive parity. Thus the total parity of the final state is determined by the
number of pions:

π±π0 has positive parity (−1)2 = +1 ,
(1.7)

π+π+π− has negative parity (−1)3 = −1 .

At first it was supposed that there were two different particles, with the mass and
charge of the K+ meson, one with positive and the other with negative internal parity.
They were called τ and θ and one talked about the τ–θ puzzle.

Fig. 1.6. Angular-momentum
balance in the β decay of 60Co

T.D. Lee and C.N. Yang, however, pointed out4 that there was another, revolution-
ary way out of the dilemma: the violation of parity conservation in K+ decay. Indeed, a
serious examination revealed that there was no evidence for parity being conserved in
β decay. A short time after that, C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes,
and R.P. Hudson proved, in a now famous experiment,5 that parity conservation is
indeed violated in the β decay of atomic nuclei. Wu and her collaborators examined
the decay of 60

27Co into 60
28Ni under emission of an electron and an antineutrino. To un-

derstand the experiment, one must know that a 60
27Co nucleus has spin 5� and positive

parity (J P = 5+) in the ground state, whereas 60
28Ni has spin 4� and also positive parity

(J P = 4+). During β decay the nuclear spin thus changes by one unit and therefore
after what we learned at the end of Exercise 1.3, it must be a Gamow–Teller transition.

Fig. 1.7. During a reflection
the directions of the angular
momentum vectors and the
magnetic field remain the same,
whereas the directions of emis-
sion change

In addition one must know that the transition from 60Co to 60Ni is a so-called allowed
decay, that is, a decay which occurs with the fullest possible strength. As we will
learn in Chap. 7, this means that the wave function of the emitted particles (e and ν̄)
must be large in the region of the nucleus. On the other hand, this is possible only if
their total angular momentum with respect to the nucleus is 1/2 � (only s1/2 and p1/2

waves have a non-vanishing probability to be found at the place of the nucleus). In
order to probe parity invariance, one must first prepare an initial situation which under
reflection does not pass over into itself. To ensure this, the cobalt nuclei were arranged
in a strong magnetic field at a temperature of 0.01 K (this was the most difficult part
of the whole experiment; it was carried out by Ambler and Hayward of the National
Bureau of Standards at Washington, DC). To conserve angular momentum, the spins
of the emitted electron and neutrino must then point in the same direction. When the
angular distribution of the electrons was measured, it was found that the electrons are
predominantly emitted opposite to the nuclear spin, that is, they showed an anisotropy
in their emission probability relative to the directed magnetic field. This result is in
clear contradiction to parity invariance, whereas, during a reflection, the momentum
vector of the electron reverses its direction, whereas the (axial) angular momentum

4 T.D. Lee, C.N. Yang: Phys. Rev. 104, 254 (1956); Nobel Lectures on Physics (1942–62) (Elsevier,
Amsterdam, 1964), p. 387.
5 C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes R.P. Hudson: Phys. Rev. 105, 1413 (1957).
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vector of the nuclear spin, as well as the magnetic field, keeps its direction. The ex-
periment thus showed that the β decay of atomic nuclei proceeds in a manner which
is not reflection invariant. Owing to conservation of angular momentum, the spin of
the electron emitted in the experiment must always point in the direction of nuclear
polarization (see Fig. 1.6). The fact that the direction of emission of the electron is
predominantly opposite to the nuclear spin can also be expressed as follows: electrons
are predominantly polarized opposite to the direction of their motion, that is, they have
negative helicity.

EXERCISE

1.4 Properties of the Helicity Operator

Problem. Show that the helicity operator Λ̂ = Σ̂ · p/p (with p = |p| and Σ̂ = (σ 0
0 σ

)
)

commutes with the Dirac Hamiltonian Ĥ = α · p + βm and has the eigenvalues ±1.

Solution. The 4 × 4 Pauli matrices Σ̂i obey the same commutation relations as the
normal 2 × 2 matrices σi :

Σ̂iΣ̂k = iεiklΣ̂l + δik , (1a)

Σ̂iΣ̂k + Σ̂kΣ̂i = 2δik . (1b)

With this we obtain

Λ̂2p2 = (Σ̂ · p)2 =
3∑

i,k=1

(Σ̂iΣ̂kpipk)

= 1

2

3∑

i,k=1

(Σ̂iΣ̂k + Σ̂kΣ̂i)pipk = p2 , (2)

where we have split the expression into two identical parts and exchanged the labeling
of the indices i, k in the second one. Λ̂2 = 1 now implies that the eigenvalues can only
be ±1.

The first part of the problem is approached as follows. First we note that

α = γ5Σ̂ = Σ̂γ5 , (3)

which leads to

[αi, Σ̂k] = αiΣ̂k − Σ̂kαi

= γ5Σ̂iΣ̂k − Σ̂kΣ̂iγ5

= i
3∑

l=1

(εiklγ5Σ̂l − εkilΣ̂lγ5)

= 2i
3∑

l=1

εiklαl . (4)
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We now obtain

[α · p, Σ̂ · p] =
3∑

i,k=1

[αi, Σ̂k]pipk = 2i
3∑

ikl=1

εiklαlpipk = 0 (5)

because of the antisymmetry of εikl . Furthermore, since Σ̂i commutes with β , it fol-
lows that [Λ̂, Ĥ ] = 0.

Now the question arises whether the preference of the negative value of helicity has
anything to do with the initial polarization of the 60Co nuclei, or whether it is a general
property of β decay. Systematic measurements of the polarization of emitted electrons
reveal that they always have negative helicity. In β+ decay, where positrons are emit-
ted (for example 22Na →22 Ne + e+ + νe), the opposite is true: the positrons have
positive helicity.

Fig. 1.8. The angular distrib-
ution of the electrons in the
60Co decay

Under the assumption that only electrons of negative helicity are emitted, the angu-
lar distribution in the experiment of Wu et al. can be explained. To do so, it is sufficient
to restrict the argument to two-spinors. Let the 60Co nuclei be polarized in the direc-
tion of the negative z axis (see Fig. 1.8). If the electrons are emitted at an angle θ
relative to the z axis, then (provided the x-axis direction is chosen conveniently) their
momentum is

p = p(ez cos θ + ex sin θ) . (1.8)

The helicity operator is then

Λ̂θ = Σ̂ · p

p
= Σ̂z cos θ + Σ̂x sin θ

=
(
σz cos θ + σx sin θ 0

0 σz cos θ + σx sin θ

)

=

⎛

⎜⎜⎝

cos θ sin θ 0 0
sin θ − cos θ 0 0

0 0 cos θ sin θ
0 0 sin θ − cos θ

⎞

⎟⎟⎠ . (1.9)

The condition

Λ̂θχ
(±)
θ = ±χ

(±)
θ (1.10)

leads to the eigenfunctions χ(±)
θ (we only need to consider the upper two components

of the 4-spinor; the two lower ones are exactly equal). They are

χ
(+)
θ =

(
cos 1

2θ

sin 1
2θ

)
, χ

(−)
θ =

(
− sin 1

2θ

cos 1
2θ

)
. (1.11)

Because of spin conservation, as we have already noted, the only part that can con-
tribute is that polarized in the same direction as the 60Co nuclei, that is, in the direction
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of the negative z axis. The amplitude of the emission of an electron of negative he-
licity, and thus with the spinor χ(−)

θ , is therefore given by the overlap with the spinor

χ
(−)
θ=0 = ( 0

1

)
. The emission probability is consequently proportional to

W(θ) = ∣∣〈χ(−)
θ=0 |χ(−)

θ 〉∣∣2 = cos2 1

2
θ = 1

2
(1 + cos θ) . (1.12)

W(θ) is largest in the direction of the positive z axis; however, in the opposite direction
it vanishes. This is just what Wu et al. observed in their experiment.

Fig. 1.9. Angular distribution
of electrons in the decay of
60Co relative to the plane of
polarization

EXERCISE

1.5 Rotation of Helicity Eigenfunctions

Problem. Show that the eigenvectors χ(±)
θ of Λ̂θ are obtained from the eigenvectors

of σz by a rotation about the y axis through the angle θ .

Solution. The quantum-mechanical operator, which rotates a spin- 1
2 spinor through

an angle θ about an axis given by the unit vector n, is given by

R̂ξ (θ,n) = exp

(
− i

2
θn · σ

)

= n cos
θ

2
− i(n · σ ) sin

θ

2
. (1)

The second form follows from the Taylor-series expansion of the exponential function
together with (n · σ )2 = 1. For a rotation around the y axis we thus obtain

R̂y(θ) = cos
θ

2
− iσy sin

θ

2
=
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
. (2)

Application of this operator to the unit spinors

χ(+) =
(

1
0

)
, χ(−) =

(
0
1

)
(3)
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yields, as asserted,

R̂y(θ)χ
(+) =

(
cos θ2
sin θ

2

)
= χ

(+)
θ , (4a)

R̂y(θ)χ
(−) =

(
− sin θ

2

cos θ2

)
= χ

(−)
θ . (4b)

The helicity of the emitted neutrino or antineutrino cannot be measured directly, be-
cause neutrinos are not influenced by magnetic fields. One must therefore rely on
inferring the neutrino spin and momentum from the spin and recoil momentum of the
daughter nucleus. M. Goldhaber, L. Grodzins, and A. Sunyar succeeded in doing
this in a beautiful experiment.6 They observed the decay of 152Eu into 152Sm, in which
the nucleus captures an electron from the K shell and emits a neutrino:

152
63 Eu(0−) + e− →152

62 Sm∗(1−) + ν . (1.13)

The excited state of 152Sm, characterized by ∗ at the symbol Sm for samarium, sub-
sequently emits a photon, thus passing over to the ground state which has spin and
parity 0+:

152Sm∗(1−) →152 Sm(0+) + γ . (1.14)

Fig. 1.10. Schematic repre-
sentation of the experiment
of Goldhaber, Grodzins, and
Sunyar

Let us assume that the neutrino is emitted to the right, in the direction of the positive
z axis (see Fig. 1.10); the nucleus then recoils to the left. Goldhaber et al. then looked
at γ rays, which had the full Doppler shift corresponding to the recoiling nucleus, and
thus had been emitted along the negative z axis (in doing so, they spared themselves
the effort of detecting the recoil nucleus!). They observed that these γ quanta are
always right circularly polarized,7 that is, they have helicity λ = −1. In the case of
a right circularly polarized wave, if one looks towards the wave, the electric field
vector runs clockwise, whereas in the case of a left circularly polarized wave it runs
counter-clockwise. Note that helicity λ = −1 for the photon means that the projection
of its spin on the z axis is +1! The projection of nuclear spin on the right-hand side of
reaction (1.14) must therefore bem = +1, because of conservation of the z component
of angular momentum. The captured electron had angular momentum + 1

2 ; only in this
way can the captured electron e− together with the emitted neutrino ν give the nuclear

6 M. Goldhaber, L. Grodzins, A.W. Sunyar: Phys. Rev. 109, 1015 (1958).
7 For a definition of circular polarization see, for example, J.D. Jackson: Classical Electrodynamics
(Wiley, New York, 1975) or J.M. Eisenberg and Walter Greiner: Nuclear Theory, Vol. II: Excitation
Mechanisms (North-Holland, Amsterdam, 1985); see also Walter Greiner: Classical Electrodynamics
(Springer, Berlin, Heidelberg, New York, 1998).
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spinm = +1. The projection of the neutrino spin on the z axis must equal − 1
2 ; because

of the inverse direction of motion relative to the photon its helicity is thus also λ = −1.
Antineutrinos, correspondingly, have positive helicity, as other experiments re-

vealed. If parity were conserved in β decay, particles of both helicities would be
emitted with equal probability. In the case of a slight violation of parity invariance,
one of the helicities would be slightly preferred. However, as we have discussed, the
experiments revealed that only a single helicity appears: electrons and neutrinos are
always created left-handed (λ = −1), positrons and antineutrinos are always created
right-handed (λ = +1). This corresponds to the strongest possible violation of parity:
one says that parity violation is maximal.

Now we return to the question of the precise form of the interaction term in the
Hamiltonian (1.1). The experiments showed that in the part containing the electron
and neutrino spinors,

ūeÔiuν , (1.15)

only those parts of the wave function that have negative helicity can appear. This can
be formally achieved with the help of the projection operators

P̂± = 1 ± Λ̂

2
, (1.16)

which project the components of positive and negative helicity, respectively, out of an
arbitrary spinor. Let us decompose a four-spinor into these two components:

u = u(+) + u(−) , Λ̂u(±) = ±u(±) . (1.17)

Then

P̂+u = u(+) , P̂−u = u(−) (1.18)

holds. Now the difficulty is that Λ̂ = Σ · p/p, and hence also P̂±, is not Lorentz
invariant. To obtain the correct expression, we bear in mind that the electrons emitted
in β decay are highly relativistic, that is E ≈ p 
 m0 (for the massless neutrinos this
will be true exactly). Using the Dirac equation

(α · p + βm0)u = Eu (1.19)

and Exercise 1.4, (3),

α = γ5Σ̂ = Σ̂γ5 , (1.20)

we obtain

P̂±u = 1

2
(1 ± Λ̂)u = 1

2
(1 ± Σ̂ · p/p)u

= 1

2

(
1 ± γ5

α · p

p

)
u = 1

2

(
1 ± γ5

E − βm0

p

)
u

≈ 1

2
(1 ± γ5)u . (1.21)
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We can thus save Lorentz invariance if, instead of the projection operators P̂± (1.16),
we use the operators

P̂ ′± = 1

2
(1 ± γ5) , (1.22)

which are called projection operators on states of positive and negative chirality. For
the neutrinos (if they really have vanishing rest mass) relation (1.22) is exact, that is,
the replacement of P̂± by P̂ ′± makes no difference. For electrons, P̂± and P̂ ′± differ
considerably if the electron momentum is small. The statement that electrons always
have negative helicity can thus be only approximately correct. However, in the case
of nuclear β decay the fraction with positive helicity is usually so small that it is
hard to detect. Later, when we discuss the β decay of the pion (Sect. 4.2), we will
realize that it is just this small contribution of the component with positive helicity but
negative chirality which allows the pion decay at all. Once again we emphasize that
these conclusions are based solely on the requirement of Lorentz invariance of the β-
decay Hamiltonian. Lorentz invariance is considered the superior symmetry guiding
us to the correct form of the β-decay Hamiltonian.

According to these considerations we must replace the spinors in (1.17) by their
components with negative chirality,

ūeÔiuν → (P̂ ′−ue)Ôi(P̂
′−uν) . (1.23)

We find that

(P̂ ′−u) = (P̂ ′−u)†γ 0 = u†P̂
′†

− γ 0

= u†
(

1 − γ5

2

)†

γ 0 = u† 1 − γ5

2
γ 0

= u†γ 0 1 + γ5

2
= ūP̂ ′+ , (1.24)

because γ †
5 = γ5 and γ5γ

0 = −γ 0γ5. The modified form of the electron–neutrino term
thus reads

ūeÔ
′
iuν (1.25)

with

Ô ′
i = P̂ ′+Ôi P̂

′− . (1.26)

Now it is our task to calculate the helicity-projected parts Ô ′
i of the five operators S,

V , T , A, and P (compare also Exercise 1.6). The results are summarized in Table 1.3.
Thus we conclude that only V and A coupling can be of relevance in the description
of the weak interaction.

The restriction to the experimentally observed helicity components excludes all
couplings except V and A, which yield the same result up to a sign (see Table 1.3). If
we neglect the factor 1/2, the only possible coupling is thus

γ μ(1 − γ5) = γ μ − γ μγ5 . (1.27)
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Table 1.3. Properties of helicity-projected fermion transition operators

Ôi Ô ′
i

S 1 0
V γμ γμP̂ ′− = 1

2γ
μ(1 − γ5)

T σμν 0
A γμγ5 −γμP̂ ′− = − 1

2γ
μ(1 − γ5)

P γ5 0

It is obviously of V–A type (pronounced “V minus A”); one thus speaks of V–A cou-
pling.8

Lorentz invariance of the total Hamiltonian (1.1) requires the nucleonic part

ūpÔiun

to be a combination of V and A couplings as well. To determine the exact form,
one must carefully compare the life-times of Fermi transitions (these measure the V
component, see Exercise 1.3) and Gamow–Teller transitions (A component), and, in
addition, one must measure the angular distribution of the emitted electrons. Exten-
sive experimental analysis has led to the conclusion that the experiments are correctly
described if the coupling assumes the form9

ūpγ
μ(CV + CAγ5)un , (1.28)

with

CA/CV = −1.255 ± 0.006 . (1.29)

The complete expression for the interaction is therefore given by

Hint(n,p, e,ν) = G√
2

∫
d3x
[
ūpγ

μ(CV + CAγ5)un
]

× [ūeγμ(1 − γ5)uν
]

. (1.30)

The appearance of the factor
√

2 has historical reasons; it could readily be absorbed
in the (coupling) constant G. The constant of nuclear vector coupling, CV , is often
combined with G into a single coupling constant

Gβ = GCV , (1.31)

which is called the Fermi constant of nuclear β decay.
That the violation of parity is not only a property of nuclear β decay, but generally

occurs in decays mediated by the weak interaction, had been shown shortly after Wu’s

8 R.P. Feynman, M. Gell-Mann: Phys. Rev. 109, 193 (1958); R.E. Marshak, E.C.G. Sudarshan: Phys.
Rev. 109, 1860 (1958); J.J. Sakurai: Nuovo Cimento 7, 649 (1958).
9 J.C. Hardy, I.S. Towner: Nucl. Phys. A 254, 221 (1975).
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experiment in two brilliant experiments.10 Both groups started with the decay chain

π+ → μ+ + νμ
(1.32)

μ+ → e+ + νe + ν̄μ ,

where they made use of the twofold action of parity violation. Here we introduced
the distinction between electron neutrinos, νe, and muon neutrinos, νμ, which will be
further explained at the end of this section. Lepton quantum numbers le (for the elec-
tronic family) and lμ (for the muonic family) are listed in Table 1.4. Note that each
of these lepton quantum numbers is conserved in the reactions (1.32). In the π+ de-
cay of (1.32) the neutrino has purely negative helicity. Owing to angular-momentum
conservation, the muon must have negative helicity, too, in the pion rest frame (see
Fig. 1.11). As we have learned, this is possible because the muon, as a heavy parti-

Fig. 1.11. Helicities in the de-
cay of the pion. Since it is a
two-body decay, the neutrino
(νμ) and positive muon (μ+ )
move in opposite directions

cle, moves non-relativistically (v/c ≈ 0.27). If one selects muons according to their
direction of motion, they are completely polarized. The subsequent decay of the po-
larized muons leads to an anisotropic angular distribution of the positrons, in analogy
to Wu’s experiment with polarized 60Co nuclei. This can be easily measured. In β

decay only left-handed neutrinos are produced. Since the neutrino interacts neither
strongly nor electromagnetically, there is consequently no practical source of right-
handed neutrinos and no way of proving or disproving their existence. (Of course,
right-handed neutrinos would interact by gravitation, if they existed, and could by this
means be produced, for example in the cosmic big bang or by black holes. However,
their detection would be virtually impossible.)

Table 1.4. Lepton quantum numbers

e− e+ νe ν̄e μ− μ+ νμ ν̄μ


e +1 −1 +1 −1 0 0 0 0

μ 0 0 0 0 +1 −1 +1 −1

Finally, as an experimental result11 it was found in 1962 that there are two kinds
of neutrinos, νe and νμ, which differ in their electron and muon number, 
e and 
μ
respectively. In (1.32) we have already introduced this distinction. When muon neu-
trinos interact with matter, they always produce muons but never electrons:

νμ + n → μ− + p , νμ + n �→ e− + p .

The existence of separate muon and electron quantum numbers had been predicted
earlier by Schwinger and Nishijima,12 because muons decay weakly (μ → eν̄eνμ)
but not electromagnetically (μ → e +γ ). The origin of this quantum number is still not
understood. However, it was found that there is at least one more separate “generation”
of leptons: τ (1784 MeV) and ντ (see Sect. 2.6 for an extended discussion).

10 R.L. Garwin, L.M. Ledermann, M. Weinrich: Phys. Rev. 105, 1415 (1957); J.I. Friedmann,
V.L. Telegdi: Phys. Rev. 105, 1681 (1957).
11 G. Danby, J.M. Gaillard, E. Goulianos, L.M. Ledermann, M. Mistry, M. Schwartz, J. Steinberger:
Phys. Rev. 9, 36 (1962).
12 K. Nishijima: Nuovo Cimento 5, 732 (1957).
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EXERCISE

1.6 Left-Handed Dirac Operators

Problem. Calculate the operators Ô ′
i .

Solution. First we need the two relations

γμγ5 = −γ5γμ ,
(1)

(γ5)
2 = 1 .

With their aid the following equations, which quite generally hold for projection op-
erators, can be proved:

P̂ ′+P̂ ′− = 1

2
(1 + γ5)

1

2
(1 − γ5) = 0 ,

P̂ ′−P̂ ′+ = 0 ,
(2)(

P̂ ′+
)2 = 1

4
(1 + γ5)

2 = 1

2
(1 + γ5) = P̂ ′+ ,

(
P̂ ′−
)2 = P̂ ′− .

We further see that

P̂ ′+γ μ = 1

2
(1 + γ5)γ

μ = γ μ
1

2
(1 − γ5)

= γ μP̂ ′− ,
(3)

γ5P̂
′− = γ5

1

2
(1 − γ5) = 1

2
(γ5 − 1)

= −P̂ ′− .

Now we can start calculating:

P̂ ′+1P̂ ′− = 0 , (4a)

P̂ ′+γ μP̂ ′− = γ μ(P̂ ′−)2 = γ μP̂ ′− , (4b)

P̂ ′+σμνP̂ ′− = i

2
P̂ ′+
(
γ μγ ν − γ νγ μ

)
P̂ ′−

= i

2

(
γ μP̂ ′−P̂ ′+γ ν − γ νP̂ ′−P̂ ′+γ μ

)

= 0 , (4c)

P̂ ′+γ μγ5P̂
′− = γ μP̂ ′−γ5P̂

′− = −γ μ
(
P̂ ′−
)2

= −γ μP̂ ′− , (4d)

P̂ ′+γ5P̂
′− = −P̂ ′+P̂ ′− = 0 . (4e)
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EXERCISE

1.7 The Weyl Equation

Problem. Show that the four-spinor Ψ ′ = P̂ ′−Ψ has only two linearly independent
components. Use this to deduce the Weyl equation,

iψ̇ = σ · ∇ψ ,

for the two-spinor ψ , which composes the four-spinor Ψ ′ = (+ψ

−ψ

)
.

Solution. We look at the eigenvalues and eigenvectors of the matrix P̂ ′− = (1 −γ5)/2:

0 = det
(
P̂ ′− − λ1

)= det

(
1 − γ5

2
− λ1

)

= det

⎛

⎜⎜⎝

1
2 − λ 0 − 1

2 0
0 1

2 − λ 0 − 1
2

− 1
2 0 1

2 − λ 0
0 − 1

2 0 1
2 − λ

⎞

⎟⎟⎠

=
(

1

2
− λ

)4

− 1

4

(
1

2
− λ

)2

+
(

1

4

)2

− 1

4

(
1

2
− λ

)2

=
[(

1

2
− λ

)2

− 1

4

]2

= λ2(λ − 1)2 . (1)

The eigenvalues are thus λ = 0 and λ = 1, each occurring twice, that is, the matrix is
of rank two. The eigenvectors of

1

2
(1 − γ5) = 1

2

⎛

⎜⎜⎝

1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎞

⎟⎟⎠ , (2)

for λ = 1 are

φ1 =

⎛

⎜⎜⎝

1
0

−1
0

⎞

⎟⎟⎠ , φ2 =

⎛

⎜⎜⎝

0
1
0

−1

⎞

⎟⎟⎠ , (3a)

and for λ = 0

φ3 =

⎛

⎜⎜⎝

1
0
1
0

⎞

⎟⎟⎠ , φ4 =

⎛

⎜⎜⎝

0
1
0
1

⎞

⎟⎟⎠ . (3b)



22

Exercise 1.7

1 The Discovery of the Weak Interaction

If we expand Ψ into φ1 to φ4, we obtain

Ψ ′ = 1

2
(1 − γ5)Ψ (x) = 1

2
(1 − γ5)

4∑

i=1

ψi(x)φi

=
4∑

i=1

ψi(x)λiφi = ψ1(x)φ1 + ψ2(x)φ2

=

⎛

⎜⎜⎝

ψ1(x)

ψ2(x)

−ψ1(x)

−ψ2(x)

⎞

⎟⎟⎠ . (4)

Thus, in ψ1(x) and ψ2(x), Ψ ′ has two independent components. If we decompose the
Dirac spinor Ψ ′ into two two-spinors φ and χ ,

Ψ ′ =
(
φ

χ

)
, (5)

then obviously, according to (4)

φ = −χ =
(
ψ1

ψ2

)
. (6)

The Dirac equation for massless particles (which are the only kind of particle that can
have the left-handed spinor P̂ ′−Ψ as an eigenfunction, see (1.21)), is

iΨ̇ ′ = −α · ∇Ψ ′ , (7)

or, written as two-spinors,

iφ̇ = −σ · ∇χ , (8a)

iχ̇ = −σ · ∇φ . (8b)

It can thus, because of (6), be rewritten as a single equation,

iφ̇ = σ · ∇φ , (9)

which is called the Weyl equation. Instead of calculating with the helicity-projected
Dirac spinor Ψ ′ for the neutrinos, we can also state: the neutrinos obey the Weyl-
equation.

1.3 Biographical Notes

BECQUEREL, Henri Antoine, physicist, ∗ 15.12.1852 in Paris, †25.8.1908 in Le Croisie
(France), professor at the Ecole Polytechnique. He discovered natural radioactivity in uranium
and its salts; also discovered the Faraday effect in gases. He shared the 1903 Nobel Prize in
physics with Pierre and Marie Curie.
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BOHR, Niels Henrik, theoretical physicist, ∗ 7.10 1885, †18.11.1962, in Copenhagen. Bohr
spent most of his scientific career in Copenhagen, where he received his doctorate in 1911 and
became university professor in 1916. His Institute for Theoretical Physics (supported by the
Carlsberg brewery) became the focus of the development of quantum mechanics in the 1920s
and 1930s. He developed the first quantum model of the atom, the Copenhagen interpretation
of quantum mechanics and the liquid drop model of the atomic nucleus. He received the Nobel
Prize for physics in 1922. During the second World War Bohr saved many Jewish scientists
from persecution by the Nazi regime.

CHADWICK, James, ∗ 20.10.1891 in Manchester, †24.7.1974 in Cambridge, professor at the
University of Liverpool, was a student of Ernest Rutherford and Hans Geiger. In 1932 he dis-
covered the neutron by bombarding beryllium with alpha particles in an ionization chamber.
For this he was awarded the Nobel prize in 1935.

FERMI, Enrico, ∗ 29.9.1901 in Rome, †28.11.1954 in Chicago, from 1927 he was professor of
theoretical physics at the University of Rome. He was awarded the Nobel prize in 1938 for the
discovery of artificial radioactive elements and the nuclear reactions induced by slow neutrons.
In 1935 he had to emigrate to the USA, where from 1941 on he was the scientific leader of
the nuclear reactor/atomic bomb projects in New York, Chicago, and Los Alamos. Fermi holds
an eminent place in the physics of the twentieth century, because he made equally outstanding
contributions in theoretical and experimental physics.

FEYNMAN, Richard, theoretical physicist, ∗ 11.5.1918 in New York, †15.2.1988 in Pasadena,
received his doctorate at Princeton in 1942. After working on the nuclear bomb in Los Alamos,
he became professor at Cornell and since 1950 at the California Institute of Technology. Feyn-
man made seminal contributions to many areas of theoretical physics: he developed quantum
electrodynamics, the V−A theory of weak interactions and the quark-parton model. He invented
the path-integral formulation of quantum mechanics, and contributed to the theory of liquid he-
lium. The Nobel Prize in physics was awarded to him in 1965 together with Schwinger and
Tomonaga.

GAMOW, George, ∗ 4.3.1904 in Odessa, †19.8.68 in Boulder (Colorado), professor of physics
at George Washington University (St. Louis) and the University of Colorado. Besides his work
on beta decay he made pioneering contributions to the explanation of alpha decay of nuclei (the
tunneling effect) and applications of nuclear physics to astrophysical problems. In connection
with the problem discussed here, see Phys. Rev. 51, 288 (1937).

GOLDHABER, Maurice, physicist, ∗ 18.4.1911 in Lemberg (then in Austria), studied in
Berlin, after 1933 in Cambridge, emigrated to the United States in 1938. From 1945 he was
professor at the University of Illinois, after 1950 senior scientist at Brookhaven National Lab-
oratory, since 1961 its director. He made many important discoveries in nuclear and particle
physics, including the moderation of neutrons by certain materials.

KAUFMANN, Walter, ∗ 5.6.1871 Elberfeld (Germany), †1.1.1947 in Freiburg im Breisgau
(Germany), professor at the Physics Institute at the University of Königsberg (Prussia), de-
termined the charge-to-mass ratio of β particles; in 1901 he showed that the electron mass rises
with increasing velocity.

LEE, Tsung-Dao, theoretical physicist, ∗ 25.11.1926 in Shanghai, came to the United States
in 1946, received his Ph.D. from the University of Chicago in 1950. Since 1953 professor at
Columbia University. Together with Yang he refuted the law of parity conservation for which
he shared in the 1957 Nobel Prize in physics. He also made many contributions to particle
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hydrogen bomb”, the construction of which he decisively influenced.

WEYL, Hermann, ∗ 9.11.1885 in Elmshorn (Germany), †5.12.1955 in Zürich, received his
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Leptonic Interactions 2

2.1 The Current–Current Interaction (Charged Currents)

Let us first consider only the weak interactions between leptons. Today three leptonic
hierarchies (e,μ, τ ) are known; the experimental data are listed in Table 2.1. To recall,
parity violation in nuclear β decay suggested an interaction of the form (see (1.30))

Hint = G√
2

∫
d3x
[
ūp(x)γα(CV + CAγ5)un(x)

][
ūe(x)γ

α(1 − γ5)uνe(x)
]

(2.1)

where the leptonic contribution

ūe(x)γ
α(1 − γ5)uνe(x) (2.2)

contains terms that resemble the electromagnetic current

jα(x) = eΨ̄ (x)γ αΨ (x) . (2.3)

Table 2.1. Experimental data for leptons

Lepton e νe μ νμ τ ντ

mass (MeV) 0.511 <17 × 10−6 105.66 <0.27 1784 ± 4 <35
lifetime (s) ∞ ∞ 2.2 × 10−6 ∞? 3 × 10−13 ?

By analogy with the electromagnetic current, we therefore introduce the total weak
leptonic current by adding the currents of the three leptonic families:

J (L)α (x) = ūe(x)γα(1 − γ5)uνe(x) + ūμ(x)γα(1 − γ5)uνμ(x)

+ ūτ (x)γα(1 − γ5)uντ (x)

= J (e)α (x) + J (μ)α (x) + J (τ)α (x) . (2.4)

To describe the mutual weak interaction of leptons we generalize (2.1) by postulating
that

H
(L)
int = G√

2

∫
d3xJ (L)†α (x)J α(L)(x) . (2.5)

The consequences of this step are non-trivial. SinceH(L)
int is quadratic in J (L)α , each lep-

tonic hierarchy interacts with itself as well as with each of the other two. The follow-
ing diagrams are some examples for such possible processes (see also Exercise 2.1).

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
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Neutrino–electron scattering:

J (e)α

†
Jα(e) = [ūνeγα(1 − γ5)ue

][
ūeγ

α(1 − γ5)uνe

]
.

Muon decay:

J (μ)α

†
Jα(e) = [ūνμγα(1 − γ5)uμ

][
ūeγ

α(1 − γ5)uνe

]
.

Muon production in muon-neutrino–electron scattering:

J (e)α

†
Jα(μ) = [ūνeγα(1 − γ5)ue

][
ūμγ

α(1 − γ5)uνμ
]

.

On the other hand, a process like

is not allowed. This means that νμ and e can interact only via the creation of a muon,

which is an immediate consequence of the specific form of the currents J (i)μ , allowing
for a neutrino converting into a charged lepton (or vice versa!), but prohibiting an
interaction without a conversion of particles. This property of the interaction is usually
expressed by calling the currents (2.4) charged currents (more accurate by charged
transition currents) since the charge of the particle of a particular leptonic hierarchy
changes by one unit. In the electromagnetic current (2.3) the charge of the particle
does not change, it is therefore called a neutral current. We shall later see that neutral
currents also appear in the context of the gauge theory of weak interaction.

EXERCISE

2.1 Neutrino–Electron Exchange Current

Problem. Prove that Jμ(e)
† = ūνeγμ(1 − γ5)ue .

Solution. With γ5
† = γ5 we find

J
μ

(e)
† = [ūeγ

μ(1 − γ5)uνe

]†

= uνe
†(1 − γ5)γ

μ†
ū†

e

= ūνeγ
0(1 − γ5)γ

μ†
γ 0†

ue . (1)

Using the identity

γ μ
† = γ 0γ μγ 0 , (2)

that is, γ i
† = −γ i , γ 0† = γ 0, yields the desired result:

J
μ

(e)
† = ūνeγ

0(1 − γ5)γ
0γ μue
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= ūνe(1 + γ5)γ
μue

= ūνeγ
μ(1 − γ5)ue , (3)

where we have used the fact that γ5 anticommutes with all other γ matrices.

2.2 The Decay of the Muon

Of all pure leptonic processes, muon decay was the first to be investigated with high
accuracy. Muon decay occurs because of the general hypothesis (2.5) for the weak
interaction of leptons. Its observation, therefore, is a very important check of the gen-
eralization (2.5) of the original Fermi theory of weak interactions. It is therefore ap-
propriate to begin our study with this particular process. Since the decay implies a
change in the state of the muon, and because the interaction that causes it is weak, it
can be described in the framework of time-dependent perturbation theory.

The quantum mechanical wavefunction obeys a Schrödinger equation,

i
∂Ψ (x, t)

∂t
= Ĥ (x, t)Ψ (x, t)

which – after eliminating the space coordinates x – simply reads

i
∂Ψ (t)

∂t
= Ĥ (t)Ψ (t) . (2.6)

We now study the time development appropriate for our case (2.5) of weak interaction.
Starting at t0 with the initial wavefunction Ψi = Ψ (t0), we obtain after a time step �t0

Ψ (t1) = Ψ (t0 + �t0) = Ψ (t0) − i�t0Ĥ (t0)Ψ (t0)

= (1 − iĤ (t0)�t0)Ψ (t0) .

After a next time step �t1 we get

Ψ (t2) = Ψ (t0 + �t0 + �t1) = Ψ (t1) − i�t1Ĥ (t1)Ψ (t1)

= Ψ (t0) − i�t0Ĥ (t0)Ψ (t0)

− i�t1Ĥ (t1)Ψ (t1) ,

and after N steps

Ψ (t) = Ψ (tN) = Ψ (t0 + �t0 + �t1 + · · · + �tN−1)

= Ψ (t0) − i�t0Ĥ (t0)Ψ (t0)

− i�t1Ĥ (t1)Ψ (t1)

...

− i�tN−1Ĥ (tN−1)Ψ (tN−1)
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= Ψ (t0) − i
N−1∑

i=0

�tiĤ (ti)Ψ (ti)

≈ Ψ (t0) − i

t∫

t0

Ĥ (t ′)Ψ (t ′)dt ′ , (2.7)

where higher-order terms in Ĥ were neglected.

Now, the S-matrix element Sfi for a transition from an initial state |Ψi 〉 to a final

state |Ψf 〉 �= |Ψi 〉 is defined as1

Sfi = lim
t→∞ 〈Ψf |Ψi(t)〉

= lim
t→∞

t0 →−∞

〈
Ψf

∣∣∣∣Ψi(t0) − i

t∫

t0

Ĥ (t ′)Ψi(t
′)dt ′
〉

= δfi − i

∞∫

−∞
〈Ψf |Ĥ (t ′)|Ψi(t

′)〉dt ′ . (2.8)

Only Ĥint of Ĥ = Ĥ0 + Ĥint contributes to the integral, because of the supposed or-

thogonality of initial and final state, 〈Ψf |Ψi 〉 = 0.

Specializing to the case of the muon decay, the lowest-order transition amplitude is

Sfi = −i

+∞∫

−∞
dt H (L)

int (μ
− → e−ν̄eνμ) . (2.9)

As discussed in Sect. 2.1, the relevant part of H(L)
int contributing to this process is

−i
G√

2

∫
d3x
[
ūνμ(x)γμ(1 − γ5)uμ(x)

][
ūe(x)γ

μ(1 − γ5)uνe(x)
]

. (2.10)

For this first-order approximation we may choose free wave functions to describe the

four particles with four-momenta p,p′, k, k′ and spins s, s′, t, t ′, respectively. Accord-

ing to the Feynman rules the (outgoing) antineutrino is represented by an (incoming)

wave function with negative energy (see Fig. 2.1). Employing the form of the plane

1 See W. Greiner: Quantum Mechanics – An Introduction, 4th ed. (Springer, Berlin, Heidelberg,
2001), and W. Greiner and J. Reinhardt: Field Quantization, 1st ed. (Springer, Berlin, Heidelberg,
1996).
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waves of Appendix A.2 we have2

Fig. 2.1. Momenta and spins
for the muon decay. The anti-
neutrino ν̄e is represented by
an incoming wave with nega-
tive energy and negative mo-
mentum, i.e. negative four-
momentum

uμ(x) = (2EμV )
−1/2uμ(p

′, s′) exp(−ip′
μx

μ) ,

ue(x) = (2EeV )
−1/2ue(p, s) exp(−ipμx

μ) ,
(2.11)

uν̄e(x) = (2EνeV )
−1/2vνe(k, t) exp(+ikμx

μ) ,

uνμ(x) = (2EνμV )
−1/2uνμ(k

′, t ′) exp(−ik′
μx

μ) ,

where

Eμ = p′ 0
, Ee = p0, Eνe = k0, Eνμ = k′ 0 (2.12)

and u(p, s), v(p, s) denote the spinor parts (E positive!)

u(p, s) = (E + m)
1
2

(
χs

σ ·p
E+m

χs

)
,

(2.13)

v(p, s) = (E + m)
1
2

( σ ·p
E+m

χs

χs

)

with the two-component unit spinors χs . Substituting this expression into the matrix
element (2.9) yields

S(μ− → e−ν̄eνμ) = − iG√
2

∫
d4x

exp[i(k′
μ − p′

μ + pμ + kμ)x
μ]

[16(k′0V )(p′0V )(p0V )(k0V )] 1
2

× [ūνμ(k′, t ′)γμ(1 − γ5)uμ(p
′, s′)
]

× [ūe(p, s)γ
μ(1 − γ5)vνe(k, t)

]

= −i(2π)4
G√

2

δ4(p + k + k′ − p′)
[16V 4k′0k0p′0p0 ] 1

2

× [ūνμ(k′, t ′)γμ(1 − γ5)uμ(p
′, s′)
]

× [ūe(p
′, s)γ μ(1 − γ5)vνe(k, t)

]
. (2.14)

To obtain the transition probability, (2.14) must be multiplied with its Hermitian con-
jugate. This gives a factor

[
δ4(p + k + k′ − p′)

]2 = δ4(p + k + k′ − p′)δ4(0) , (2.15)

which is replaced by

V T

(2π)4
δ4(p + k + k′ − p′) (2.16)

according to the usual prescription, which can be derived heuristically (although math-
ematically oversimplified) as follows:

δ4(0) = lim
q→0

δ4(q) = lim
q→0

∫
d4y

(2π)4
eiyμqμ =

∫
d4y

(2π)4
= V T

(2π)4
. (2.17)

2 Note that we are using the index “μ” for two different purposes: it denotes the muon wave function
uμ and energy Eμ, and it occurs as a four-vector index, such as in pμ,xμ, γμ. Although this is
somewhat unfortunate, we must get used to this double meaning.
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V and T are understood to be macroscopic quantities so that the physical process takes
place entirely within the finite space-time volume V T . In practice, the two neutrinos
cannot be observed, that is, we need to sum or integrate over all possible final states.
Furthermore, to obtain the transition probability within a small interval of momentum,
we multiply by the density of the electron final states within an interval V d3p/(2π)3.
Finally we divide by T to get the decay rate, that is, the transition probability per unit
time interval. Following these steps we find that

dW = 1

T

V d3p

(2π)3
V

∫
d3k

(2π)3
V

∫
d3k′

(2π)3
∑

t,t ′
|S(μ− → e−ν̄eνμ)|2

= G2

2

1

(2π)5
d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0 δ
4(p + k + k′ − p′)

∑

t,t ′
|M|2 , (2.18)

where

M = [ūνμγ μ(1 − γ5)uμ
][
ūeγμ(1 − γ5)vνe

]
. (2.19a)

The expression |M|2 consists of two similar factors for the muonic and electronic
transition currents. If we writeM = MμEμ withMμ = (ūνμγ

μ(1 −γ5)uμ) andEμ =
(ūeγμ(1 − γ5)uνe), (2.19a) becomes

∑

t,t ′
|M|2 =

∑

t,t ′
(MμEμ)(M

νEν)
† =
∑

t,t ′
(MμMν†

)(EμE
†
ν ) . (2.19b)

Let us first focus on the muonic factor, making use of Exercise 2.1:

Xμν(μ) = MμMν†

=
∑

t ′

[
ūνμ(k

′, t ′)γ μ(1 − γ5)uμ(p
′, s′)
]

× [ūνμ(k′, t ′)γ ν(1 − γ5)uμ(p
′, s′)
]†

=
∑

t ′
ūνμ(k

′, t ′)γ μ(1 − γ5)uμ(p
′, s′)ūμ(p′, s′)

× γ ν(1 − γ5)uνμ(k
′, t ′) . (2.20)

In order to evaluate this expression we make use of some helpful formulas for Dirac
spinors and γ matrices (see Appendix A.2),3

∑

t ′
uνμ(k

′, t ′)αūνμ(k′, t ′)β = (/k′ + mν)αβ = /k′
αβ , (2.21)

where α,β denote the spinor indices and mν = 0. Since the summation is not over the
initial muon states, we have (see Appendix A.2)

uμ(p
′, s′)αūμ(p′, s′)β =

[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]

αβ

, (2.22)

3 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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with the spin four-vector

s′
μ =
(

p′ · s′

m
, s′ + (p′ · s′)p′

m(E′ + m)

)
, (2.23)

where s′ is the spin vector with respect to the rest frame. Here s′ is a unit vector so
that s′μs′

μ = −1. Inserting the relations (2.21) and (2.22) into (2.20) we obtain the
following expression for the muonic contribution to the transition currents Xμν(μ):

Xμν(μ) =
∑

t ′
ūνμ(k

′, t ′)πγ μπ�(1 − γ5)�α

[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]

αβ

× γ νβσ (1 − γ5)στ uνμ(k
′, t ′)τ

= γ μπ�(1 − γ5)�α

[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]

αβ

γ νβσ (1 − γ5)στ /k
′
τπ . (2.24)

Summing over the first and last index π means that we have to evaluate the trace of
the (4 × 4) matrix:

Xμν(μ) = Tr

{
γ μ(1 − γ5)(/p

′ + mμ)

(
1 + γ5/s

′

2

)
γ ν(1 − γ5)/k

′
}

. (2.25)

Since γ αγ5 = −γ5γ
α and Tr{AB} = Tr{BA} this yields

Xμν(μ) = 1

2
Tr
{
(/p′ + mμ)(1 + γ5/s

′)γ ν/k′(1 + γ5)γ
μ(1 − γ5)

}
. (2.26)

Now we make use of the property that any trace of a product of an odd number of γ
matrices vanishes (see Appendix A.2). Since γ5 = iγ 0γ 1γ 2γ 3 it consists of an even
number of γ matrices. Furthermore it holds that (1 − γ5)

2 = 2(1 − γ5), so that (2.26)
becomes

Xμν(μ) = Tr
{
(/p′ + mμ)(1 + γ5/s

′)γ ν/k′γ μ(1 − γ5)
}

= Tr
{
/p′γ ν/k′γ μ(1 − γ5) + /p′γ5/s

′γ ν/k′γ μ(1 − γ5)

+ mμγ
ν/k′γ μ(1 − γ5) + mμγ5/s

′γ ν/k′γ μ(1 − γ5)
}

. (2.27)

Obviously the second and the third terms are “odd”; therefore they do not contribute.
The remaining first and last terms are “even”. Taking into account that γ5(1 − γ5) =
−(1 − γ5), we find that

Xμν(μ) = Tr
{
/p′γ ν/k′γ μ(1 − γ5) − mμ/s

′γ ν/k′γ μ(1 − γ5)
}

= Tr
{
(/p′ − mμ/s

′)γ ν/k′γ μ(1 − γ5)
}

. (2.28)

In Appendix A.2 it is shown that successive application of γ μγ ν + γ νγ μ = 2gμν

yields the general relations

Tr{γ αγ βγ σ γ τ } = 4(gαβgστ − gασ gβτ + gατ gβσ )
(2.29)

Tr{γ αγ βγ σ γ τ γ5 } = −4iεαβστ .

Using this for the trace, (2.28) gives the final result for the muonic part of the transition
currents:
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Xμν(μ) = 4
[
(p′ − mμs

′)νk′μ − (p′ − mμs
′)αk′

αg
μν + (p′ − mμs

′)μk′ν

+ iεανβμ(p′ − mμs
′)αk′

β

]
. (2.30)

The electronic contribution (2.19)–(2.20) is evaluated in a similar manner, which gives

Xμν(e) = EμE
†
ν

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)

][
ūe(p, s)γν(1 − γ5)vνe(k, t)

]†

= Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}

= 4
[
(p − mes)μkν − (p − mes)

α kαgμν + (p − mes)νkμ

− iεαμβν(p − mes)
αkβ
]

. (2.31)

The final result for the squared invariant matrix element (2.19b) is the product of
the two expressions (2.30) and (2.31) which, after some work, is formed to be (see
Exercise 2.3)
∑

t,t ′
|M|2 = Xμν(μ)Xμν(e) = 64(p′ − mμs

′)αkα(p − mes)
βk′
β . (2.32)

EXERCISE

2.2 Proof of (2.31)

Problem. Prove the first part of (2.31)

Xμν(e) = Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}
.

Solution. Starting from the expression (2.31) and performing the t summation, we
arrive at

Xμν(e) =
∑

t

EμE
†
ν

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)

][
ūe(p, s)γν(1 − γ5)vνe(k, t)

]†

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)v̄νe(k, t)γν(1 − γ5)ue(p, s)

]

= ūe(p, s)γμ(1 − γ5)

[∑

t

vνe(k, t)v̄νe(k, t)

]

︸ ︷︷ ︸
=/k−mνe =/k

γν(1 − γ5)ue(p, s)

= ūe(p, s)π (γμ)π�(1 − γ5)�α/kαβ(γν)βσ (1 − γ5)στ ue(p, s)τ . (1)

With the identity (see (2.22))

ūe(p, s)πue(p, s)τ =
[
(/p + me)

(1 + γ5/s)

2

]

τπ

(2)
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we obtain

Xμν(e) = (γμ)π�(1 − γ5)�α/kαβ(γν)βσ (1 − γ5)στ

[
(/p + me)

(
1 + γ5/s

2

)]

τπ

= Tr

{
γμ(1 − γ5)/kγν(1 − γ5)

[
(/p + me)

(
1 + γ5/s

2

)]}

= Tr
{
(/p + me)(1 + γ5s)γμ/kγν(1 − γ5)

}
(3)

where we have used the relation

γμ(1 − γ5)/kγν(1 − γ5) = γμ/k(1 + γ5)γν(1 − γ5)

= γμ/kγν(1 − γ5)
2

= γμ/kγν2(1 − γ5)

and the trace identity Tr{AB} = Tr{BA}. This expression (3) transforms to (2.27) if
we replace

/p → /p′ ,

me → mμ ,

/s → /s′ ,
(4)

γμ → γ ν ,

/k → /k′ ,

γν → γ μ .

Therefore we may simply rewrite (2.28) by substituting for the muonic quantities the
corresponding electron quantities:

Xμν(e) = Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}
. (5)

EXERCISE

2.3 Calculation of the Averaged Decay Matrix Element

Problem. Evaluate
∑ |M|2 in (2.32) by using the following relation for the antisym-

metric Levi-Civita tensor,

εαβμνεᾱβ̄μν = 2(δα
β̄
δ
β
ᾱ − δαᾱ δ

β

β̄
) ,

and the property that any product of εαβμν with a tensor that is symmetric in the
indices μ, ν vanishes (see also Exercise 2.4).

Solution. Introducing the following abbreviations

(p′ − mμs
′)ν ≡ q ′

ν , (1)

(p − mes)μ ≡ qμ , (2)
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qαk
α ≡ (q · k) , (3)

and using the relations (2.30)–(2.32) we rewrite
∑

t,t ′ |M|2 as follows:

∑

t,t ′
|M|2 = 16

[
q ′νk′μ − (q ′ · k′)gμν + q ′μk′ν − iεανβμq ′

αk
′
β

]

× [qμkν − (q · k)gμν + qνkμ + iεαμβνq
αkβ
]

= 16
[
(q ′ · k)(q · k′) − (q · k)(q ′ · k′)

+ (q ′ · q)(k′ · k) − iεαμβνq
′νk′μqαkβ

− (q ′ · k′){(q · k) − (q · k) · 4 + (q · k)}
+ (q ′ · q)(k′ · k) − (q · k)(q ′ · k′) + (q ′ · k)(k′ · q)
− iεαμβνq

′μk′νqαkβ + iεανβμq ′
αk

′
βqμkν

+ iεανβμq ′
αk

′
βqνkμ − εαβνμq ′

αk
′
βεᾱβ̄μνq

ᾱkβ̄
]

= 16
[
2(q ′ · k)(q · k′) + 2(q ′ · q)(k′ · k)

−iεαμβν(q
′μk′ν + q ′νk′μ)qαkβ

︸ ︷︷ ︸
=0

+iεανβμ(qμkν + qνkμ)q
′
αk

′
β︸ ︷︷ ︸

=0

+ εαβμνεᾱβ̄μνq
′
αk

′
βq

ᾱkβ̄
]

= 32
[
(q ′ · k)(q · k′) + (q ′ · q)(k′ · k) + (δα

β̄
δ
β
ᾱ − δαᾱ δ

β

β̄
)q ′
αk

′
βq

ᾱkβ̄
]

= 32
[
(q ′ · k)(q · k′) + (q ′ · q)(k′ · k)

+ (q ′ · k)(k′ · q) − (q ′ · q)(k′ · k)]

= 64(q ′ · k)(k′ · q) . (4)

Returning to the original notation (3) this result is equivalent to (2.32).

EXERCISE

2.4 A Useful Relation for the Levi-Civita Tensor

Problem. Prove the formula

εαβμνεᾱβ̄μν = 2(δα
β̄
δ
β
ᾱ − δαᾱ δ

β

β̄
)

that was applied in the Exercise 2.3.

Solution. The totally antisymmetric Levi-Civita tensor εαβμν is defined as

εαβμν =
{

sgn(P̂ ) if (αβμν) = P̂ (0123)

0 otherwise
, (1)

where P̂ denotes a permutation of the indices (0123). εαβμν vanishes if two of its
indices are equal.
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Since εᾱβ̄μ̄ν̄ = gᾱαgβ̄βgμ̄μgν̄νε
αβμν is non-zero if and only if (ᾱβ̄μ̄ν̄) is a permu-

tation of (0123), we then have for example for (ᾱβ̄μ̄ν̄) = (0123),

ε0123 = g0αg1βg2μg3νε
αβμν

= 1 · (−1)3ε0123 = 1 × (−1)3 = −1 , (2)

and a similar relation for all other non-vanishing components of the covariant Levi-
Civita tensor, that is,

εαβμν = −εαβμν . (3)

Now consider the desired contraction with respect to the indices μ,ν,

εαβμνεᾱβ̄μν . (4)

For fixed values of α, ᾱ, β, β̄ , only those terms contribute that contain tensor compo-
nents with third and fourth indices different from α, ᾱ, β, β̄ . Furthermore, since the
third and fourth indices are the same for both the covariant and the contravariant ten-
sor, an additional condition is that either

α = ᾱ , β = β̄ (5a)

or

α = β̄ , β = ᾱ . (5b)

In each of the two cases (5a) and (5b) only two possible combinations for the values
of the indices μ,ν remain, namely those of the two numbers (0123) that differ from α

and β . We then have the following relations:

Case A:

α = ᾱ , β = β̄ : εαβμνεᾱβ̄μν =
∑

μ,ν

εαβμνεᾱβ̄μν

=
∑

μ,ν

εαβμνεαβμν

= 2 · 1 · (−1)

= −2 . (6a)

Case B:

α = β̄ , β = ᾱ : εαβμνεᾱβ̄μν =
∑

μ,ν

εαβμνεβαμν

= −
∑

μν

εαβμνεαβμν

= −(−2)

= +2 . (6b)
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Therefore the final result is

εαβμνεᾱβ̄μν =

⎧
⎪⎨

⎪⎩

−2 , α = ᾱ, β = β̄

+2 , α = β̄, β = ᾱ

0 , otherwise

= 2{δα
β̄
δ
β
ᾱ − δαᾱ δ

β

β̄
} , (7)

which was to be shown.

For calculating the decay rate dW we proceed by inserting the result of (2.32) into
the expression for dW (2.18). In order to perform the required integration, we need to
evaluate the integral

Iαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk
′
βδ

4(p + k + k′ − p′) . (2.33)

Iαβ is manifestly Lorentz covariant. This is obvious because δ4(p + k + k′ − p′)
and d3p/2p0 = ∫−∞ d4pδ(p2 − m2

0)θ(p0) are Lorentz invariant. The latter has been
shown in Quantum Electrodynamics.4 Since the variables k and k′ are integrated over
only the two second-rank tensors gαβ and (p′ −p)α(p

′ −p)β = qαqβ can occur in the
result. Note that the vector q = (p′ − p) is different from that defined in Exercise 2.3!
We keep this in mind and proceed with the ansatz

Iαβ = Aq2gαβ + Bqαqβ , (2.34)

where q2 = qαqα was split off in order to have A and B dimensionless. From (2.34)
we construct the following invariants:

gαβIαβ = (4A + B)q2 , (2.35a)

qαqβIαβ = (A + B)q4 . (2.35b)

To proceed, we now distinguish two cases:
(i) The vector q = p′ − p is time-like, that is q2 > 0. With this condition we can

always perform a proper Lorentz transformation, such that

q̃ν := aνμq
μ = (q̃0,0) (2.36)

defines the reference system. With respect to this reference frame we have

gαβIαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk
′αδ3(k + k′)δ(k0 + k′0 − q̃0)

=
∫

d3k

2k0

∫
d3k′

2k′0
[
(k0)2 − (k′ · k)

]
δ3(k + k′)δ(k0 + k′0 − q̃0)

4 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg
2009), equation (3.72).
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=
∫

d3k

4(k0)2
2(k0)2δ(2k0 − q̃0) , (2.37)

since k′ = −k and consequently k′0 = k0 = |k| = |k′ |. The integral can further be
simplified by substituting x = 2k0,

gαβIαβ = 2π

∞∫

0

(k0)2 dk0δ(2k
0 − q̃0) = π

4

∞∫

0

x2 dxδ(x − q̃0) . (2.38)

For positive q̃0 the argument of the δ function has its zero value within the integration
interval. By means of the Θ function

Θ(x) =
{

1 for x > 0

0 for x < 0
, (2.39)

the above result can be expressed as

gαβIαβ = π

4
(q̃0)2Θ(q̃0) . (2.40)

In order to rewrite this in a Lorentz invariant form we remark that for time-like four-
vectors qμ the sign of the zeroth component q0 remains unchanged under proper
Lorentz transformations, that is, Θ(q̃0) = Θ(q0). Furthermore, with respect to our
chosen reference frame we have q̃2 = (q̃0)2 = q2. Hence the result (2.40) can be
stated in the Lorentz invariant form

gαβIαβ = π

4
q2Θ(q0) for q2 > 0 . (2.41)

Similarly we obtain

qαqβIαβ = (q̃0)2I00

= (q̃0)2
∫

d3k

2

∫
d3k′

2
δ3(k + k′)δ(k0 + k′0 − q̃0)

= 1

4
(q̃0)2

∫
d3kδ(2k0 − q̃0)

= π(q̃0)2
∫
(k0)2 dk0δ(2k0 − q̃0) = π

8
(q̃0)4Θ(q̃0)

= π

8
q4Θ(q0) for q2 > 0 . (2.42)

(ii) The vector qμ is space-like, that is q2 < 0. In this case the argument of the δ
function, (k + k′ − q), is non-zero everywhere. This property can be understood by
recalling that, owing to the vanishing mass of the neutrinos, it holds that

k2 = k′ 2 = 0 ,
(2.43)

k · k′ = k0k′0 cos θ ,

where θ is the angle between k and k′. Consequently we have

(k + k′)2 = 2(k0k′0 − k · k′) = 2k0k′0(1 − cos θ) ≥ 0 , (2.44)
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which implies that qμ = kμ + k′μ cannot be satisfied. Therefore

Iαβ = 0 for q2 < 0 . (2.45)

The results of (2.41), (2.42) and (2.45) may be summarized as follows:

gαβIαβ = π

4
q2Θ(q0)Θ(q2) (2.46a)

qαqβIαβ = π

8
q4Θ(q0)Θ(q2) . (2.46b)

Equating these expressions with (2.35) gives

4A + B = π

4
Θ(q0)Θ(q2) , (2.47a)

A + B = π

8
Θ(q0)Θ(q2) , (2.47b)

yielding the solution

A = π

24
Θ(q0)Θ(q2) , (2.48a)

B = π

12
Θ(q0)Θ(q2) . (2.48b)

Substituting in (2.34) we finally obtain

Iαβ = π

24
(q2gαβ + 2qαqβ)Θ(q

0)Θ(q2) . (2.49)

The decay rate of a muon with polarization s′ into an electron with polarization s is
given in terms of (2.18), (2.32) and (2.49); thus we find that

dW = G2

2

1

(2π)5
d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0
∑

t,t ′
δ4(p + k + k′ − p′)|M|2

= G2

2

1

(2π)5
64d3p

2p′02p0
Iαβ(p

′ − mμs
′)α(p − mes)

β

= G2

3

πd3p

(2π)5p′0p0

[
(p′ − p)2(p′ − mμs

′)α(p − mes)α

+ 2(p′ − p)α(p
′ − mμs

′)α(p′ − p)β(p − mes)
β
]

× Θ(p′0 − p0)Θ((p′ − p)2) . (2.50)

Note that the effect of time dilatation, which accompanies the observation of the muon
lifetime, becomes obvious from (2.50). For a moving muon we have p′0 = γmμ

with the Lorentz factor γ = (1 − v2/c2)−1/2. As can be seen from the expression
for dW (2.50), dW ∝ 1/γ , implying that the decay rate decreases considerably for
fast-moving muons, that is, the life-time τμ ∝ γ is prolonged. To proceed we switch
to the rest frame of the muon, which is characterized by pα ′ − pα = (mμ − p0,−p).
Since

(p′ − p)2 = (mμ − p0)2 − p2 = (mμ − p0)2 − (p02 − m2
e)

= −2p0mμ + m2
μ + m2

e , (2.51)
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the condition (p′ − p)2 > 0 for a non-vanishing dW yields the restriction

p0 <p0
max = (mμ

2 + me
2)/2mμ , (2.52)

which consequently requires p′0 − p0 > 0, since

p′0 − p0 = mμ − p0 >mμ − p0
max = (mμ

2 − me
2)/2mμ > 0 . (2.53)

The condition p0 <p0
max in (2.52) and (2.53) assures that the firstΘ(p′

0 −p0) function
in (2.50) is automatically fulfilled. Therefore we may replace the product of the two
Θ functions in (2.50) by Θ(p0

max − p0). Furthermore, with respect to the rest frame
of the muon, it holds that sμ′ = (0, s′), so that the final result is

dW(s′) = G2

3

π d3p

(2π)5p0

{[
(mμ − p0)2 − p2][(p0 − mes

0) + s′ · (p − mes̃)
]

+ 2[mμ − p0 − s′ · p][(mμ − p0)(p0 − mes
0) + p · (p − mes̃)

]}

× Θ(p0
max − p0) . (2.54)

Here s̃ = s + (ps)p

me(p0 +me)
is the space component of the electron spin vector (2.23).

EXERCISE

2.5 The Endpoint of the Electron Energy Spectrum in Muon Decay

Problem. Show that the highest electron energy is given in terms of (2.52) by energy
and momentum conservation.

Solution. The highest energy of the electron corresponds to the largest value of its
momentum. The latter is obtained if both neutrinos are emitted in one direction while
the electron is scattered in the other direction (Fig. 2.2), that is,

Fig. 2.2. Configuration for
which the electron reaches its
maximum value of momen-
tum

p = −(k + k′) . (1)

Because k0 = |k| and k′0 = |k′ | it holds that

mμ = p0
max + k0 + k′0 = p0

max + |k| + |k′ |
= p0

max + |pmax |
= p0

max + [(p0
max)

2 − m2
e

] 1
2 . (2)

Inverting this relation gives

p0
max = m2

μ + m2
e

2mμ

= 52.83 MeV ,

(3)

|pmax | = m2
μ − m2

e

2mμ

,

which agrees exactly with the conditions (2.52) and (2.53).
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2.3 The Lifetime of the Muon

To determine the muon lifetime τμ we sum over the electron spin orientations s, aver-
age over the spin orientation of the muon s′, and integrate over the electron momen-
tum p:

1

τμ
= Wμ = 1

2

∑

s,s′

∫
dW

= 2
G2

3

π

(2π)5

∫
d3p

p0

{[
(mμ − p0)2 − p2]p0 + 2(mμ − p0)

× [(mμ − p0)p0 + p2]}Θ(p0
max − p0)

= 2
G2

3

∫
πd3p

(2π)5p0
[−4mμ(p

0)2 + 3p0(m2
μ + m2

e) − 2mμm
2
e ]

× Θ(p0
max − p0) . (2.55)

In deriving (2.55) we used the fact that the averaging over s gives 〈s〉 = 0 so that also
〈s0 〉 = 1

m
〈p · s〉 = 0 (cf. (2.23)). If we employ the following identity:

∫
d3p[...]Θ(p0

max − p0) = 4π

|pmax |∫

0

|p|2 d|p|[...] , (2.56)

and take into account that p2 = (p2
0 − m2

e) and therefore that

d|p|/dp0 = p0/|p| ,

we can rewrite Wμ in the form

Wμ = 2G2

3(2π)3

p0
max∫

me

dp0
√
(p0)2 − m2

e

[−4mμ(p
0)2 + 3p0(m2

μ + m2
e) − 2mμm

2
e

]

= G2mμ
5

192π3
[1 − 8y + 8y3 − y4 − 12y2 lny] , (2.57)

with the abbreviation y ≡ m2
e/m

2
μ. The contributions involving y lead only to small

corrections, namely

Wμ = G2m5
μ

192π3
(1 − 1.87 × 10−4) . (2.58)

From (2.57) it is obvious that the decay rate would vanish if y = 1. This reflects the
fact that in this (academic) case the muon would be stable since |pmax | = 0, so that
there would be no phase space available for the final-state electron.
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Fig. 2.3. Vertex correc-
tion (a), self-energy (b),
and bremsstrahlung (c)
contributions

The result (2.58) does not include the so-called radiative corrections, which also
need to be considered. These effects are represented by diagrams in which one of
the charged particles interacts with the electromagnetic field (see Fig. 2.3). The
bremsstrahlung diagram has to be included since, owing to the vanishing photon mass,
photons with arbitrary small energies may be emitted. On the other hand, because of
the limited experimental resolution, it is impossible to distinguish the muon decay ac-
companied by emission of an extremely “soft” photon from a decay without radiation.
This contribution exactly cancels the divergent terms in the self-energy diagrams for
very soft photons (infrared divergence).5 The calculation of these contributions leads
to a modification of the decay rate W by a factor6

1 − α

2π

(
π2 − 25

4

)
= 0.9958 . . . . (2.59)

Hence, the radiative corrections are of greater importance than the influence of the
finite mass of the electron. The final result for the muon decay rate is now given by

Wμ = 1

τμ
= G2m5

μ

192π3

(
1 − α

2π

(
π2 − 25

4

)
− 8

m2
e

m2
μ

. . .

)
. (2.60)

Using this formula we may calculate the value of the Fermi coupling constant G by
taking into account the experimental value for the average life time of the muon

τμ = (2.19703 ± 0.00004) × 10−6 s ,

i.e.

Wμ = τ−1
μ = 2.996 × 10−16 MeV . (2.61)

With the most accurate value for the muon mass

mμ = (105.658387 ± 0.000034) MeV (2.62)

5 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
6 S.M. Berman: Phys. Rev. 112, 267 (1958); M. Roos and A. Sirling: Nucl. Phys. B 29, 296 (1971);
L.D. Landau, E.M. Lifschitz: Theoretical Physics (Pergamon, Oxford, 1974), Vol. IVb, p. 147.
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we obtain

G = (1.166 37 ± 0.000 02) × 10−11 MeV−2 . (2.63)

Since G is not a dimensionless quantity, a direct comparison with the electromagnetic
coupling constant is not possible. The effective strength of the weak interaction obvi-
ously increases with growing mass of the particles. This is evident from the inverse
lifetime of the muon which, because of the uncertainty relation, corresponds to the
uncertainty of its rest mass. The ratio of its value to the rest mass itself,

τ−1
μ

mμ

= Wμ

mμ

≈ 1

192π3
(Gm2

μ)
2 (2.64)

manifests the role of Gm2
μ as an effective coupling strength. For curiosity’s sake we

may now evaluate the mass M for which the effective coupling constant equals the
fine-structure constant α:

GM2 = α → M =√α/G = 25 GeV . (2.65)

The experimental investigation of this energy region has become possible with the
large particle accelerators of DESY (Hamburg), SLAC (Stanford), CERN (Geneva),
and Fermilab (Chicago). As we will soon see, these investigations have revealed new
information concerning the nature of the weak interaction.

EXERCISE

2.6 Myon Decay for Finite Neutrino Masses

Problem. Generalize the relation (2.49),

Iαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk
′
βδ

4(k + k′ − q)

= π

24

(
q2gαβ + 2qαqβ

)
,

which is valid for q2, q0 > 0, to the case of non-vanishing rest masses m,m′, of the
two decay products with the four-momenta kα, k′

β .

Solution. As in (2.34) we make the ansatz

Iαβ = Aq2gαβ + Bqαqβ , (1)

which implies the relations (2.35),

gαβIαβ = (4A + B)q2 , (2a)

qαqβIαβ = (A + B)q4 . (2b)

For the calculation of these two Lorentz invariants, we take the frame of reference in
which qα consists of a time-like component only,

q̃α =
(
q̃0 =

√
q2,O

)
.
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Thus, with

k0 = [k2 + m2]1/2
, k′0 = [k′2 + m′ 2]1/2

, (3)

and after performing the k′ integration, we get

gαβIαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk
′αδ3(k + k′)δ(k0 + k′0 − q̃0)

= 1

4

∫
d3k
[√

(k2 + m2)

√
(k2 + m′ 2)

]−1

×
[√

(k2 + m2)

√
(k2 + m′ 2) + k2

]

× δ
(√

(k2 + m2) +
√
(k2 + m′ 2) − q̃0

)
. (4)

We substitute the sum of the two square roots in the argument of the δ function by x,

x = [k2 + m2]1/2 + [k2 + m′ 2]1/2
, (5)

and transform to polar coordinatesmentum space. The volume element transforms into

|k | d |k |√
(k2 + m2)

√
(k2 + m′ 2)

= dx

x
, (6)

and by squaring (5), we have

m2 − m′ 2 − x2 = −2x
[
k2 + m′ 2]1/2

,

k2 = (x2 − m2 + m′ 2
)2

4x2
− m′ 2 (7)

= (x2 − m2 − m′ 2
)2

4x2
− m2m′ 2

x2
.

Squaring (5) also yields the relation

k2 + [k2 + m2]1/2[
k2 + m′ 2]1/2 = (x2 − m2 − m′ 2

)

2
. (8)

Equations (5)–(8) now give

gαβIαβ = π

∫ ∞

0

dx

x
|k| 1

2
(x2 − m2 − m′ 2

)δ(x − q̃0)

= π

4(q̃0)2

(
(q̃0)2 − m2 − m′ 2)[(

(q̃0)2 − m2 − m′ 2)2 − 4m2m′ 2]1/2

= π

4q2
(q2 − m2 − m′ 2

)
[
(q2 − m2 − m′ 2

)2 − 4m2m′ 2]1/2
, (9)

where the expression in its last form again is written in a manifestly Lorentz invariant
form. In the same way we get for the second invariant

qαqβIαβ = (q̃0)2

4

∫
d3k

∫
d3k′δ(k + k′)δ(k0 + k′ 0 − q̃0)
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= (q̃0)2

4

∫
d3kδ
(√

(k2 + m2) +
√
(k2 + m′ 2) − q̃0

)

= π(q̃0)2

∞∫

0

dx

x
|k|[k2 + m2]1/2[

k2 + m′ 2]1/2
δ(x − q̃0) . (10)

Combining (7) and (8) gives

[
k2 + m2]1/2[

k2 + m′ 2]1/2

= x2 − m2 − m′ 2

2
− (x2 − m2 − m′ 2

)2

4x2
+ m2m′ 2

x2

= (4x2)−1[x4 − (m2 + m′ 2
)2 + 4m2m′ 2]

= (4x2)−1[x4 − (m2 − m′ 2
)2
]

, (11)

which facilitates the final calculation,

qαqβIαβ = π

8(q̃0)2

[
(q̃0)4 − (m2 − m′ 2

)2
]

× [((q̃0)2 − m2 − m′ 2)2 − 4m2m′ 2]1/2

= π

8q2

[
q4 − (m2 − m′ 2

)2
]

× [(q2 − m2 − m′ 2
)2 − 4m2m′ 2]1/2

. (12)

In addition, the δ function of (4) tells us that the results (9) and (12) are valid only
for q̃0 =√q2 >m + m′. This is expressed by the fact, that the expression under the
square root in (9) and (12) may be written as follows:

(q2 − m2 − m′ 2
)2 − 4m2m′ 2

= [q2 − (m + m′)2
][
q2 − (m − m′)2

]
, (13)

which is easily checked. The radicand in (12) becomes negative for q2 < (m + m′)2.
With the aid of definition (2) the quantities A and B can be determined:

A = (3q2)−1
(
gαβIαβ − qαqβ

q2
Iαβ

)

= π

24q6

[
q2 − (m + m′)2

]1/2[
q2 − (m − m′)2

]1/2

× [2q2(q2 − m2 − m′ 2
) − q4 + (m2 − m′ 2

)2
]
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= π

24q6

[
q2 − (m + m′)2

]3/2[
q2 − (m − m′)2

]3/2

= π

24

[
1 − (m + m′)2

q2

]3/2[
1 − (m − m′)2

q2

]3/2

, (14)

B = (3q2)−1
(

4
qαqβ

q2
Iαβ − gαβIαβ

)

= π

12q6

[
q2 − (m + m′)2

]1/2[
q2 − (m − m′)2

]1/2

× [2q4 − 2(m2 − m′ 2
)2 − q2(q2 − m2 − m′ 2

)
]

= π

12

[
1 − (m + m′)2

q2

]1/2[
1 − (m − m′)2

q2

]1/2

×
[

1 + m2 + m′ 2

q2
− 2

(m2 − m′ 2
)2

q4

]
. (15)

The final result is thus

Iαβ = π

24

[
1 − (m + m′)2

q2

]1/2[
1 − (m − m′)2

q2

]1/2

×
[
gαβq

2
(

1 − (m + m′)2

q2

)(
1 − (m − m′)2

q2

)

+ 2qαqβ

(
1 + m2 + m′ 2

q2
− 2

(m2 − m′ 2
)2

q4

)]

× Θ
(
q2 − (m + m′)2

)
. (16)

In the limit m = m′ = 0 one again gets (2.49) as is to be expected. For later use we
note the special case m′ = 0 (that is, one of the two particles is a neutrino),

Iαβ(m) = π

24

(
1 − m2

q2

)2[
q2
(

1 − m2

q2

)
gαβ

+ 2

(
1 + 2m2

q2

)
qαqβ

]
Θ(q2 − m2) . (17)

2.4 Parity Violation in the Muon Decay

We now want to discuss two experiments which prove the violation of reflection in-
variance in muon decay. The first experiment observes the decay of unpolarized muons
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and measures the average helicity of the emitted electrons. In the second experiment
one starts with polarized muons, which are produced by pion decay (see (1.32) and
the subsequent equations), and measures only the angular distribution of the electron
momenta with respect to the spin direction of the decaying muons.

Let us start with the first experiment. For unpolarized muons the expression (2.54)
has to be averaged over s′. Therefore all terms containing s′ vanish:

dW̃ = 1

2

∑

s′
dW(s′)

= G2

3

πd3p

(2π)5p0
Θ(p0

max − p0)
{[

3(mμ − p0)2 − p2]

× (p0 − mes
0) + 2(mμ − p0)(p2 − mep · s̃)

}
, (2.66)

where s̃ is the space-like component of the spin four-vector sα . The four-vector of the
electron spin also satisfies (2.23), and we get

mes
0 = p · s ,

(2.67)
p · s̃ = (p · s)

[
1 + |p|2

me(p0 + me)

]
= p0

me
(p · s) ,

where s is the spin vector defined in the muon rest frame. The two possible eigenstates
of the helicity operator Λ̂ = σ · p/|p| correspond to the values

p · s = ± |p| . (2.68)

Remember that the spin vector s within relativistic quantum mechanics (2.23) is nor-
malized to 1, i.e. s · s = 1, so that sμsμ = −1.7 In the first case, electron spin and
direction of motion are parallel and in the second case antiparallel; the corresponding
helicities are (+1) and (−1), respectively. Because of (2.66) we obtain the following
average value of the helicity operator:

〈Λ〉 = dW̃ (p · s = |p|) − dW̃ (p · s = − |p|)
dW̃ (p · s = |p|) + dW̃ (p · s = − |p|)

= −2|p|[3(mμ − p0)2 − p2 + 2(mμ − p0)p0 ]
2[3(mμ − p0)2p0 − p2p0 + 2(mμ − p0)p2 ] . (2.69)

We demonstrate this simply for the nominator only:

[
3(mμ − p0)2 − |p|2](p0 − |p|) + 2(mμ − p0)(p2 − p0 |p|)

−
[[

3(mμ − p0)2 − |p|2](p0 + |p|) + 2(mμ − p0)(p2 + p0 |p|)
]

= [3(mμ − p0)2 − |p|2](−2|p|) + 2(mμ − p0)(−2p0 |p|)
= −2|p|[3(mμ − p0)2 − |p|2 + 2(mμ − p0)p0] .

7 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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Applying the value (2.52) for the maximum electron energy, the expression (2.69) can
be written in the form

−|p|mμ(3p0
max − 2p0 − m2

e/mμ)

mμp0(3p0
max − 2p0 − m2

e/p
0)

= −1 + O

(
m2

e

(p0)2

)
. (2.70)

Let us quickly verify this result by inserting

p2 = (p0)2 − m2
e

and

p0
max = m2

μ + m2
e

2mμ

or mμ = 2p0
max − m2

e

mμ

,

which yields for nominator N :

N = −2|p|(3m2
μ − 6mμp

0 + 3(p0)2 − (p0)2 + m2
e + 2mμp

0 − 2(p0)2
)

= −2|p|
(

3m2
μ − 4mμp

0 + m2
e

mμ

mμ

)

= −2|p|mμ

(
3

(
2p0

max − m2
e

mμ

)
− 4p0 + m2

e

mμ

)

= −4|p|mμ

(
3p0

max − 2p0 − m2
e

mμ

)
,

and for the denominator D:

D = 2
(

3m2
μp

0 − 6mμ(p
0)2 + 3(p0)3 − (p0)3 + p0m2

e

+ 2mμ(p
0)2 − 2mμm

2
e − 2(p0)3 + 2p0m2

e

)

= 2mμp
0
(

3mμ − 4p0 + 3
m2

e

mμ

− 2
m2

e

p0

)

= 2mμp
0
(

3 · 2p0
max − 4p0 − 2

m2
e

p0

)

= 4mμp
0
(

3p0
max − 2p0 − m2

e

p0

)

and, therefore,

〈Λ〉 = −|p|
p0

3p0
max − 2p0 − m2

e
mμ

3p0
max − 2p0 − m2

e
p0

.

The result (2.70) is most interesting. We notice that for energies p0 
 me the electron
is predicted to be in an almost completely left-handed state. For the average electron
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helicity in the kinematically allowed energy interval [me,p
0
max ], with p0

max ≈ 100me,
the experimentally observed value is8

〈Λ〉 = −1.00 ± 0.13 . (2.71)

The fact that the electron is limited to a left-handed state follows directly from
the interaction (2.10), because the electronic transition current can be written
as Ūeγ

μ(1 − γ5)Uνe = 1
2U2(1 − γ5)γ

μUνe . Thus, the electron, like the electron
neutrino, has negative helicity. High-energy electrons are thus negatively polar-
ized.

Next we consider the experiment in which the angular distribution of the electrons
emitted in the decay of polarized muons is measured. Since the electron helicity is not
observed, we must sum over the electron spin in (2.54). The value of the muon spin is
assumed to be fixed. Let us begin with the expression (2.50), which we denote once
more

dW = G2

3

πd3p

(2π)5p′0p0

[
(p′ − p)2(p′ − mμs

′)α(p − mes)α

+ 2(p′ − p)α(p
′ − mμs

′)α(p′ − p)β(p − mes)
β
]
Θ(p0

max − p0) .

We remember that due to the discussion following (2.51)–(2.53) the two step functions
in (2.50) can be abbreviated by Θ(p0

max − p0). Now the summation of the expression
in the bracket [. . .] over the electron spins yields
∑

±s

[. . .] = 2(p′ − p)2(p′ − mμs
′)αpα + 4(p′ − p)α(p

′ − mμs
′)α(p′ − p)βp

β .

It is easier to continue the calculation in the rest frame of the muon, for which p′ν =
(mμ,0), s′ν = (0, s′) holds. Then

∑

±s

[. . .] = 2
[
(mμ − p0)2 − p2][mμp

0 + mμs′ · p]

+ 4
[
(mμ − p0)mμ − mμs′ · p

][
(mμ − p0)p0 + p2] .

Inserting p2 = p2
0 − m2

e , p0
max = (m2

μ + m2
e)/2mμ, s′ · p = 1 · |p| cos θ and separating

terms proportional to cos θ yields

∑

±s

[. . .] = 4m2
μ

[
m2
μ + m2

e

2mμ

− p0
]

[p0 + s′ · p]

+ 4m2
μ

[
(mμ − p0) − s′ · p

][
p0 − m2

e

mμ

]

= 4m2
μ

[
p0
(
p0

max − p0 + mμ − p0 − m2
e

p0
+ m2

e

mμ

)

+ |p| cos θ

(
p0

max − p0 − p0 + m2
e

mμ

)]

8 Review of Particle Properties in: Review of Modern Physics (April 1988); J. Duclos, J. Heintze,
A. de Rujula, V. Soergel: Phys. Lett. 9, 62 (1964).
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= 4m2
μp

0
[(

3p0
max − 2p0 − m2

e

p0

)
+ |p|
p0

cos θ

(
p0

max − 2p0 + m2
e

mμ

)]
.

Therefore, the decay rate summed over the electron spin is given by

dW̄ =
∑

s

dW(s)

= 2G2

3(2π)3
mμ|p|p0dp0 sin θdθ

[
3p0

max − 2p0 − m2
e

p0

+ |p|
p0

cos θ

(
p0

max − 2p0 + m2
e

mμ

)]
Θ(p0

max − p0) . (2.72)

Here θ denotes the angle between the muon spin s′ and the electron momentum p. The
volume element of the electron momentum space has been used according to (2.56) in
the form

d3p = 2π |p|2d|p| sin θdθ = 2π |p|p0dp0 sin θdθ . (2.73)

Equation (2.72) does not yet contain the electromagnetic corrections. If one consid-
ers the corrections of the order α = e2/�c � 1/137, some terms are added to dW̄ .
But the parity-violating structure, which is expressed in the factor cos θ in (2.72), is
not changed. The agreement between the predicted angular distribution dW̄ and the
experimentally measured one is better than 0.5%.

EXERCISE

2.7 Average Helicity and Parity Violation

Problem. Calculate the helicity expectation value averaged over the whole energy
region and show that the result 〈Λ〉 = −1 is evidence for the violation of parity invari-
ance.

Solution. (a) We set |p| = p and

dW̃ (p · s = ±|p|) = dW̃±(p) . (1)

The probability of an electron being emitted with momentum p is

dW̃+(p) + dW̃−(p) . (2)

The average of the expectation values is therefore

〈Λ〉 =
∫ [〈Λ〉(dW̃+(p)) + 〈Λ〉(dW̃−(p))]

∫ [dW̃+(p) + dW̃−(p)]

=
∫ [dW̃+(p) − dW̃−(p)]

Wμ

. (3)
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Wμ is already known from (2.57); we only need to calculate the numerator. With the
help of (2.66)–(2.68) we get

∫ [
dW̃+(p) − dW̃−(p)

]

= − 2

3
G2π(2π)−5

∫
d3p

p0
Θ(p0

max − p0)p
[
3(mμ − p0)2 − p2 + 2(mμ − p0)p0]

= − 2

3
G2π(2π)−54π

p0
max∫

me

p2dp0[3(mμ − p0)2 − p2 + 2(mμ − p0)p0]

= − 2

3
G2(2π)−3mμ

p0
max∫

me

dp0[(p0)2 − m2
e

][
3mμ − 4p0 + m2

e

mμ

]
. (4)

Performing the integral yields

∫ [
dW̃+(p) − dW̃−(p)

]

= − 2

3
G2(2π)−3mμ

{(
mμ + m2

e

3mμ

)[
(p0

max)
3 − 3m2

ep
0
max + 2m3

e

]

− (p0
max)

4 + 2m2
e(p

0
max)

2 − m4
e

}

= − G2m5
μ

24(2π)3

(
1 − 40

3
y + 2

√
y3 − 30y2 + 32

3
y

√
y5 − 1

3
y4
)

, (5)

where again y = (me/mμ)
2. Applying (2.57) we obtain in lowest order in y

〈Λ〉 � − 1 − 40
3 y

1 − 8y

� −1 + 16

3
× m2

e

m2
μ

+ · · ·

� −0.999 88 . (6)

Fig. 2.4. Parity violation in
muon decay

(b) Obviously (almost) all the electrons emitted in muon decay have negative he-
licity (λ = −1). A space reflection (see Fig. 2.4) would give the electrons positive
helicity (λ = +1). In the case of parity invariance of the process, one would therefore
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measure equal numbers of electrons with positive and negative helicity. This is not the
case; thus parity invariance must be broken.

EXERCISE

2.8 Angular Distribution and Parity Violation

Problem. Show that the violation of parity is due to the appearance of cos θ in (2.72),
describing the angular distribution.

Solution. We can write the angular distribution as

dW̄

dp0dθ
= sin θ

[
A(p0) + B(p0) cos θ

]
, (1)

where A(p0) and B(p0) are given by comparison with (2.72). The geometry is dis-
played in Fig. 2.5. If we perform a space reflection, θ changes to θs = π − θ , and

sin θ → sin θs = sin θ ,
(2)

cos θ → cos θs = − cos θ

thus the angular distribution becomes

dW̄

dp0dθs
= sin θ{A(p0) − B(p0) cos θ} . (3)

Fig. 2.5. Parity violation in an
angular distribution

dW̄/dp0dθs and dW̄/dp0dθ differ from each other in the sign of the term proportional
to cos θ : the angular distribution is not parity invariant. This argument is supported by
geometrical considerations. The figure shows the intensity of the emitted electrons for
B(p0) = 0: no electrons are emitted in the direction of s′. If B(p0) > 0 and B(p0) <
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A(p0), the distribution is deformed and not reflection invariant, because sin θ cos θ =
1
2 sin(2θ).

Fig. 2.6. Angular distribution
of electrons with respect to the
muon spin: (a) without viola-
tion of parity; (b) with viola-
tion of parity

EXERCISE

2.9 Electron Helicity in Muon Decay

Problem. Show, for the limit p0 
 me, that for the decay of a muon with spin s′ in
its rest system, the emission of an electron with spin s is given by dW ∼ sin2(θ/2),
where dW is calculated in the limit p0 
 me and θ denotes the angle between the
electron spin s and momentum p of the electron.

Solution. We start from (2.23) inserted in (2.54) (m = me) and neglect systematically
all terms with me. It is important to recognize that terms like mes

0 or mep · s̃ do
not contain the effective electron mass. Remember, s̃ is the space component of the
electron spin vector (2.23)! In this spirit we have

|p| =
√
(p0)2 + m2

e ≈ p0 , (1)

so we can write

dW ≈ G2

3

πd3p

(2π)5p0mμ

Θ(p0
max − p0)

×
[
mμ(mμ − 2p0)

(
p0 − p · s + s′ · p − (p · s)(p · s′)

p0

)

+ 2(mμ − p0 − p · s′)
[
(mμ − p0)(p0 − p · s) + p0(p0 − p · s)

]]

= G2

3

πd3p

(2π)5mμ

Θ(p0
max − p0)

(
1 − p · s

p0

)
mμ
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×
[
(mμ − 2p0)

(
1 − p · s′

p0

)
+ 2(mμ − p0 − p · s′)

]

= G2

3

d3p

(2π)5
Θ(p0

max − p0)

(
1 − p · s

p0

)

×
[

3p0
max − 2p0 − p · s′

p0
p0

max

]
. (2)

In the last step we have applied (2.52) for the matrix elements of the electron

p0
max = m2

μ + m2
e

2mμ

� 1

2
mμ . (3)

The coefficient in (2) which contains the spin s of the electron gives the desired angular
dependence:

1 − p · s

p0
= 1 − |p|

p0
cos θ � 2 sin2 θ

2
. (4)

The maximum of the distribution is at θ = π , that is the electrons are preferentially
polarized against their momentum (negative helicity). The result (4) is in accordance
with the angular distribution in (1.12), which we calculated from the β decay of cobalt,
if we take θ = π − θ (here the z axis points downwards!). This is another confirmation
of the heuristic consideration in relation to the experiment of Wu et al. (see Sect. 1.2).

In the limit p0 → p0
max the last factor takes the form

3p0
max − 2p0 − p0

max
p · s′

p0
→ p0

max

(
1 − p · s′

p0

)
, (5)

that is, the preferential emission of the electron is opposite to the polarization of the
muons. This is easy to see for the case p0 = p0

max in Fig. 2.2, where the two neutrinos
are emitted in the same direction while the electron goes in the opposite direction.
Because ν̄e and νμ have opposite helicities, the sum of their angular momenta is equal
to zero. The result is that the electron must acquire the spin of the decaying muon.
Because of its negative helicity the electron is preferentially emitted opposite to the
muon spin.

EXERCISE

2.10 CP Invariance in Muon Decay

Problem. The term J
α†
(e) J

(μ)
α in the current–current coupling is responsible for the

decay of the positive muon, μ+. Show that this leads to a change of the sign of the
spin-dependent terms in the squared transition amplitude (2.32). On the basis of these
results discuss the connection between violation of the invariance under spatial reflec-
tion and the invariance under charge conjugation.
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Fig. 2.7. Decay of a μ+ parti-
cle7

Solution. (a) The S-matrix element for the μ+ decay is given by9

S(μ+ → e+νeν̄μ)

= −i
∫

d4x
G√

2

[
ūμ(x)γ

μ(1 − γ5)uνμ(x)
][
ūνe(x)γμ(1 − γ5)ue(x)

]
. (1)

As now all particles are antiparticles, except the νe, the spinors are given in analogy
to (2.11) by

uμ(x) = vμ(p
′, s′) exp(ip′

μx
μ)(2p′0V )−1/2 ,

ue(x) = ve(p, s) exp(ipμx
μ)(2p0V )−1/2 ,

(2)
uνe(x) = uνe(k, t) exp(−ikμx

μ)(2k0V )−1/2 ,

uνμ(x) = vνμ(k
′, t ′) exp(ik′

μx
μ)(2k′0V )−1/2 .

The calculation proceeds exactly as before up to (2.18), (2.19), because the δ function
does not change when the sign of its argument is inverted. Thus we obtain

dW(μ+) = G2

2

1

(2π)5
d3p

2p′02p0

×
∫

d3k

2k0

∫
d3k′

2k′0 δ
4(p + k + k′ − p′)

∑

t,t ′
|M2 | , (3)

with

M = [v̄μγ μ(1 − γ5)vνμ
][
ūνeγμ(1 − γ5)ve

]
. (4)

The only difference compared to μ− decay is in the spinors which enter into the
transition amplitude M , where all particles are replaced by antiparticle spinors and
vice versa.

∑
t,t ′ |M|2 separates again into two similar contributions for the muonic

and electronic particles. First we repeat the calculation from (2.20) to (2.30) for the
muonic part. Here we need the analogous relation to (2.21) (see Appendix A.2),
∑

t ′
vνμ(k

′, t ′)αv̄νμ(k′, t ′)β = /k′
αβ , (5)

and to (2.22),

v̄μ(p
′, s′)πvμ(p′, s′)τ =

[
(/p′ − mμ)

1 + γ5/s
′

2

]

τπ

. (6)

With these expressions we find that

Xμν(μ) =
∑

t ′
v̄μ(p

′, s′)πγ μπρ(1 − γ5)ρα

× vνμ(k
′, t ′)αv̄νμ(k′, t ′)βγ νβσ (1 − γ5)στ vμ(p

′, s′)τ

= Tr

{
γ μ(1 − γ5)/k

′γ ν(1 − γ5)(/p
′ − mμ)

(
1 + γ5/s

′

2

)}
. (7)

9 M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
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With a cyclical permutation we take the last two factors to the front; we also permute
/k′ with (1 − γ5), changing the sign in (1 − γ5). We thus obtain

Xμν(μ) = 1

2
Tr
{
(/p′ − mμ)(1 + γ5/s

′)γ μ/k′(1 + γ5)γ
ν(1 − γ5)

}
. (8)

This result is distinct from (2.26) by the sign of mμ and also by permutation of the
Lorentz indices μ and ν. Hence we can skip all subsequent calculations and write
down directly the analogue of (2.30):

Xμν(μ) = 4
[
(p′ + mμs

′)μk′ν − (p′ + mμs
′)αk′

αg
νμ

+ (p′ + mμs
′)νk′μ + iεαμβν(p′ + mμs

′)αk′
β

]
. (9)

For the electronic part the same relation holds; compared to (2.31) it changes the sign
of me, and μ and ν have to be permuted:

Xμν(e) =
∑

t

ūνe(k, t)γμ(1 − γ5)ve(p, s)v̄e(p, s)γν(1 − γ5)uνe(k, t)

= 4
[
(p + mes)νkμ − (p + mes)

αkαgνμ

+ (p + mes)μkν + iεανβμ(p + mes)
αkβ
]

. (10)

The permutation can be reversed, because by constructing |M|2 we sum over the in-
dices μ and ν. What remains is just the change of the sign of mμ and me in (2.32):
∑

t,t ′
|M|2 = Xμν(μ)Xμν(e)

= 64(p′ + mμs
′)αkα(p + mes)

βk′
β . (11)

As the spin vectors sμ and s′μ enter only in the combination mμs
′ or mes, we can also

easily get the result (11) from (2.32) by inversion of the spin vectors: s, s′ → −s,−s′.
(b) Equation (11) follows from (2.32) if we invert the sign of the charge of the

decaying muon, that is, it follows from the operation of charge conjugation. We thus
see that the β decay of the muon is not invariant against charge conjugation.

An interesting point is that (11) could also be obtained by space reflection. On being
reflected, the momentum vector p′ changes its sign, whereas the axial spin vector (in
the rest system) s′ does not change:

p′α = (p′0,p′) → (p′0,−p′) , (12)

s′α =
(

p′ · s′

mμ

, s′ + (p′ · s′)
mμ(p′0 + mμ)

p′
)

→
(

− p′ · s′

mμ

, s′ + (p′ · s′)
mμ(p′0 + mμ)

p′
)

, (13)

and

kα = (k0,k) → (k0,−k)

or

kα = (k0,−k) → (k0,k) . (14)
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With these we obtain the following change to (2.32):

(p′ − mμs
′)αkα

=
(
p′0 − p′ · s′

mμ

)
k0 −

(
p′ − mμs′ − p′ · s′

p0 + mμ

p′
)

· k

→
(
p′0 + p′ · s′

mμ

)
k0 +

(
−p′ − mμs′ − (p′ · s′)

p′0 + mμ

p′
)

· k

= (p′ + mμs
′)αkα (15)

and analogously

(p − mes)
βk′

β → (p + mes)
βk′

β . (16)

We can thus conclude that the weak interaction (of the leptons) behaves under charge
conjugation Ĉ in the same way as under space reflection P̂ . Since according to this the
simultaneous application of Ĉ and P̂ yields the identity, that is, everything remains
invariant, it means that the weak interaction is invariant under the product ĈP̂ . (We
shall see later, in Chap. 8, how the weak interaction among quarks can lead to a slight
violation of CP invariance.)

2.5 The Michel Parameters

We now ask how far the muon decay confirms the V–A theory. For this purpose we
write down the most general form of the coupling matrix element,

H̃μ− →e−ν̄eνμ = G√
2

∫
d3x
∑

i

[
ūνμ(x)Ôiuμ(x)

]

× [ūe(x)Ô
i(Ai + A′

iγ5)uνe(x)
]

, (2.74)

and allow this time every type of coupling Ôi = (S,V,T,A,P). It is customary to
use other constants Ci,C′

i instead of Ai,A′
i . The two sets of constants are related to

each other through the transformation (the so-called Fierz transformation, see Supple-
ment 2.12):

Ci =
∑

j

ΛijAj , C′
i =
∑

j

ΛijA
′
j ,

(2.75)
(Λij ) = 1

4

⎛

⎜⎜⎜⎜⎝

1 4 6 4 1
1 −2 0 2 −1
1 0 −2 0 1
1 2 0 −2 −1
1 −4 6 −4 1

⎞

⎟⎟⎟⎟⎠
.

With Ci and C′
i , we can write the coupling in the form

H̃ = G√
2

∫
d3x
∑

i

[
ūe(x)Ôiuμ(x)

][
ūνμ(x)Ô

i(Ci + C′
iγ5)uνe(x)

]
. (2.76)
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One easily checks that pure vector coupling minus axial vector coupling in (2.74)
results also in a vector minus axial vector coupling in (2.76) up to the minus sign,
while the other couplings in (2.74) result in complicated superpositions in (2.76). This
circumstance may seem to endow the V–A law with particular significance. However,
four other combinations have comparable properties, as can be found by diagonalizing
the matrix Λij . The possibility of using the invariance under transpositions among the
fields as a basis for singling out the correct coupling was explored extensively without
decisive results.10

The advantage of the notation (2.76) is that the wave function of the observable
particles – the electron and the muon – are connected in one matrix element, whereas
the wave functions of the two neutrinos are separated in the second spinor matrix
element. In the interaction (2.74) or (2.76) only the conservation of electron and muon
number, and Lorentz invariance, is assumed. Let us introduce the abbreviation

ai = |Ci |2 + |C′
i |2 . (2.77)

Since the factor G stands in front of the expression (2.76), the proper coupling con-
stants are given by GCi or GC′

i , respectively. It is obvious that a variation of the value
of G can be compensated by a multiplication of all constants Ci,C′

i with a common
factor. If we determine G by experiment, the Ci,C′

i are no longer independent, that is,
they must satisfy a normalization condition. We choose this condition to be

aS + 4aV + 6aT + 4aA + aP = 16 . (2.78)

It is necessary to calculate the muon decay once more, but now with all types of
coupling allowed. We assume that the μ− is polarized before the decay, but we do
not observe the polarizations of the three decay products (see (2.54) and also Exer-
cise 2.9, but remember that those results were valid for V–A coupling only). With the
abbreviation

x = p0

p0
max

= 2mμp
0

m2
μ + m2

e
(2.79)

and the emission angle θ of the electron with respect to the muon spin

cos θ = p · s

|p| , (2.80)

we get after a lengthy calculation the following electron spectrum:

Fig. 2.8. The angle of electron
emission relative to the spin s′
of the muon

dW

dΩdp0
= G2mμ

12π4
|p|p0

{
3(p0

max − p0) + 2

3
ρ

(
4p0 − 3p0

max − 1

3

m2
e

mμ

)

+ 3
me

p0
η(p0

max − p0) − ξ
|p|
p0

cos θ

[
(p0

max − p0)

+ 2

3
δ(4p0 − 3p0

max − m2
e/mμ)

]}
θ(p0

max − p0) . (2.81a)

10 See many papers beginning with C. Gitchfield: Phys. Rev. 63, 417 (1943) through to E. Ca-
ianello: Nuovo Cimento 8, 749 (1952), in which references to earlier work can be found. See also
E.J. Konopinski: The Theory of Beta Radioactivity (Oxford University Press, London, 1966).
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The details of this calculation are layed down in Exercise 2.11. If we neglect the mass
of the electron and make use of definition (2.79) this becomes

dW

dΩ dx
= G2mμ

5

192π4
x2
{

1

1 + 4η me
mμ

[
4(x − 1) + 2

3
ρ(4x − 3) + 6

me

mμ

1 − x

x
η

]

− ξ cos θ

[
(1 − x) + 2

3
δ(4x − 3)

]}
. (2.81b)

In this formula ρ, η, ξ , and δ are the so-called Michel parameters

ρ = 1

16
(3aV + 6aT + 3aA) , ξ = −1

16
(4b′ + 3a′ − 14c′) ,

(2.82)
η = 1

16
(aS − 2aV + 2aA − aP) , δ = −1

16ξ
(3b′ − 6c′) ,

where

a′ = 2 Re{CSC′
P

∗ + C′
SC∗

P } ,

b′ = 2 Re{CVC′
A

∗ + C′
VC∗

A } , (2.83)

c′ = 2 Re{CTC′
T

∗ } .

The parameters are chosen in such a way that if one integrates over x from 0 to 1
then ρ and δ disappear. Therefore the lifetime of the muon is independent of ρ and δ.
For a pure V–A coupling, which was assumed during the discussion in Sects. 2.2, 2.3,
and 2.4, we get

CS = C′
S = CT = C′

T = CP = C′
P = 0 ,

(2.84)
CV = C′

V = −CA = −C′
A = 1 .

Considering Supplement 2.12, (23), one gets

M = [ūeγμuμ][ūνμγ μ(1 − γ5)uνe

]+ [ueγ5γμuμ][uνμγ5γ
μ(1 − γ5)uνe

]

= [ūeγμ(1 − γ5)uμ
][
ūνμγ

μ(1 − γ5)uνe

]
. (2.85)

By inserting this value into (2.82) we obtain the prediction of the V–A theory for the
Michel parameters:

ρ = 3

4
, ξ = 1 , η = 0 , δ = 3

4
. (2.86a)

The experimental values are derived from a careful measurement of the electron spec-
trum (or the positron spectrum in the case of the μ+ decay) and of the angular distri-
bution. Equation (2.81) tells us that ρ must be fitted to the whole spectrum, whereas
η is mainly sensitive to low energies (x → 0). It is not surprising, therefore, that η
is the most uncertain of the parameters. ξ can be obtained by integrating the angular
distribution over the energy, whereas δ can be determined by measuring the energy
dependence of this distribution. The best experimental values are

ρ = 0.7517 ± 0.0026 ,

η = −0.12 ± 0.21 ,
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(2.86b)
ξ = 0.972 ± 0.013 ,

δ = 0.7551 ± 0.0085 .

These values are in very good agreement with the predictions (2.85) of the V–A theory;
see also Fig. 2.9.

Fig. 2.9. Experimental deter-
mination of the Michel para-
meter � since 1950. The curve
shows the improvement of the
experiments, but perhaps also
the prejudice of the experi-
mentalists

EXERCISE

2.11 Muon Decay and the Michel Parameters

Problem. Calculate the muon decay with the general interaction (2.76) in the same
manner as in Sect. 2.2 and derive (2.81) by summing over the polarizations of the
outgoing particles.

Solution. To derive (2.81) we repeat the steps which lead us from (2.10) to (2.18).
The normalization and the phase-space factor are obtained in the same manner. The
only difference occurs in the matrix element M . With (2.76) this is given by

M =
∑

i

[ūeÔiuμ][ūνμÔi(Ci − C′
iγ5)uνe

]
. (1)

First we calculate the part of |M|2 which stems from the neutrinos. We sum over the
unobservable neutrino spins and get

X(ν) =
∑

t,t ′

[
ūνμ(k

′, t ′)Ôi(Ci − C′
iγ5)uνe(k, t)

]

× [ūνμ(k′, t ′)Ôk(Ck − C′
kγ5)uνe(k, t)

]

=
∑

t,t ′

[
ūνμ(k

′, t ′)Ôi(Ci − C′
iγ5)uνe(k, t)

]

× [ūνe(k, t)γ0(C
∗
k − C′

k
∗
γ

†
5 )(Ô

k)†γ0uνμ(k
′, t ′)
]

=
∑

t,t ′

[
ūνμ(k

′, t ′)Ôi(Ci − C′
iγ5)uνe(k, t)

]

× [ūνe(k, t)(C
∗
k + C′

k
∗
γ5)(Ô

k)uνμ(k
′, t ′)
]

(2)
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where we have inserted γ 2
0 = 1 in front of (Ôk)† and used Supplement 2.12, (3), which

yields

γ0γ
†
5 γ0 = −γ5 . (3)

With (2.21) we get

X(ν) = Tr
{
Ôi(Ci − C′

iγ5)/k(C
∗
k + C′

k
∗
γ5)Ô

k/k′} . (4)

Because

γ5γμ = −γμγ5 (5)

and the trace is invariant under cyclic permutations, this form may be transcribed to

X(ν) = Tr
{
(Ci + C′

iγ5)(C
∗
k + C′

k
∗
γ5)Ô

k/k′Ôi/k
}

= Tr
{{CiC∗

k + C′
iC

′
k

∗ + (CiC
′
k

∗ + C′
iC

∗
k )γ5 }Ôk/k′Ôi/k

}

= Tr
{
(Aik + Bikγ5)Ô

k/k′Ôi/k
}

= Tr
{
(Aik ± Bikγ5)Ô

i/kÔk/k′} , (6)

where we have + for Ô = Ŝ, P̂ , T̂ and − for Ô = V,A, and the following abbrevia-
tions have been introduced:

Aik = CiC
∗
k + C′

iC
′
k

∗
,

(7)
Bik = CiC

′
k

∗ + C′
iC

∗
k .

Notice that X(ν) is non-zero only if both Ôi and Ôk contain either an even or an
odd number of γ matrices. Otherwise the trace in (6) vanishes. This property will be
useful for the evaluation of X(μ, e), since we can then restrict our consideration to
the corresponding combinations of Ôi and Ôk . In determining X(μ, e) we assume
that the electron spin is not observed, and we therefore sum over the spin orientations.
Furthermore we make the approximation of neglecting the electron mass.

We then find

X(μ, e) =
∑

s

[
ūe(p, s)Ôiuμ(p

′, s′)
][
ūe(p, s)Ôkuμ(p

′, s′)
]†

=
∑

s

[
ūe(p, s)Ôiuμ(p

′, s′)
][
ūμ(p

′, s′)Ôkue(p, s)
]

= Tr

[
Ôi(/p

′ + mμ)
1 + γ5/s

′

2
Ôk/p

]
. (8)

If both Ôi and Ôk contain an even or an odd number of γ matrices, X(μ, e) reduces
to

X(μ, e) = 1

2
Tr
{
Ôi/p

′Ôk/p
}+ 1

2
mμ Tr

{
Ôiγ5/s

′Ôk/p
}

. (9)

All other terms in (8) do not contribute, since a trace consisting of an uneven number
of γ matrices vanishes.
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Let us now consider the particular combinations of Ôi and Ôk in detail. For this
purpose we again employ the formulas listed in Appendix A.2, especially

(γ5)
2 = 1 and γ5γμ = −γμγ5 .

• Ôi = Ôk = 1:

X(μ, e) = 1

2
Tr{/p/p′ } = 2(p · p′) ,

X(ν) = Tr{(ASS − BSSγ5)/k/k
′ } = 4ASS(k · k′) . (10)

• Ôi = iγ5, Ôk = 1:

X(μ, e) = 1

2
mμ Tr{iγ5γ5/s

′/p} = 2imμ(p · s′) ,

X(ν) = Tr{(APS − BPSγ5)iγ5/k/k
′ }

= −4iBPS(k · k′) . (11)

• Ôi = 1, Ôk = iγ5:

X(μ, e) = 1

2
mμ Tr{γ5/s

′ · iγ5/p} = −2imμ(p · s′) ,

X(ν) = Tr{(ASP − BSPγ5)/kiγ5/k
′ }

= +4iBSP(k · k′) . (12)

• Ôi = iγ5, Ôk = iγ5:

X(μ, e) = 1

2
Tr{iγ5/p

′ · iγ5/p} = 2(p · p′) ,

X(ν) = Tr{(APP − BPPγ5)iγ5/kiγ5/k
′ }

= 4APP(k · k′) . (13)

Collecting together (10)–(13), we obtain
∑

i,k=S,P

X(μ, e)X(ν) = 8(k · k′)
[
(ASS + APP)(p · p′)

+ (BPS + BSP)mμ(p · s′)
]

, (14)

or, adopting the abbreviations (2.77) and (2.83),

∑

i,k=S,P

X(μ, e)X(ν) = 8(k · k′)
[
(aS + aP)(p · p′) + a′mμ(p · s′)

]
. (15)

(Note that according to the convention (23) of Supplement 2.12 it holds that BPS +
BSP = −a′.)

• Ôi = γ μ, Ôk = γ ν :

X(μ, e) = 1

2
Tr{γμ/p′γν/p} + 1

2
mμ Tr{γμγ5/s

′γν/p}
= 2(p′

μpν + pμp
′
ν − gμνp · p′) + 2imμεσντμs

′σpτ , (16)
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X(ν) = Tr{(AVV + BVVγ5)γ
μ/kγ ν/k′ }

= 4AVV
[
kμk′ν + kνk′μ − gμν(k · k′)

]+ 4iBVVε
μανβkαk

′
β . (17)

Evaluating the products leads to

X(μ, e)X(ν) = 8AVV
[
(p′ · k)(p · k′) + (p′ · k′)(p · k)

− (p · p′)(k · k′) + (p · k)(p′ · k′)

+ (p · k′)(p′ · k) − (p · p′)(k · k′)

− (p · p′)(k · k′) − (p · p′)(k · k′)

+ 4(p · p′)(k · k′)
]

− 8mμBVVεσντμε
μανβs′σpτ kαk′

β

= 16AVV
[
(p′ · k)(p · k′) + (p′ · k′)(p · k)]

− 8mμBVVεσντμε
μανβs′σpτ kαk′

β . (18)

The last term does not contribute, since, in the course of the further evaluation, kαk′
β

yields the symmetric tensor Iαβ which is contracted with εμανβ ; thus there is no need
to evaluate this term further. The next three cases may be treated in just the same way.

• Ôi = γ5γ
μ, Ôk = γ ν :

X(μ, e) = 1

2
Tr
{
γ5γμ/p

′γν/p
}+ 1

2
mμ Tr

{
γ5γμγ5/s

′γν/p
}

= −2iεμσντp
′σpτ − 2mμ

[
s′
μpν + s′

νpμ − gμν(s
′ · p)] ,

X(ν) = Tr
{
(AAV + BAVγ5)γ5γ

μ/kγ ν/k′}
(19)

= −4iAAVε
μανβkαk

′
β + 4BAV

[
kμk′ν + kνk′μ − gμν(k · k′)

]
,

X(μ, e)X(ν) = −16mμBAV
[
(k · p)(k′ · s′) + (k · s′)(k′ · p)]

− 8AAVεμσντ ε
μανβp′σpτ kαk′

β .

• Ôi = γ μ, Ôk = γ5γ
ν :

X(μ, e) = 1

2
Tr
{
γμ/p

′γ5γν/p
}+ 1

2
mμ Tr

{
γμγ5/s

′γ5γν/p
}

= 2iενσμτp
′σpτ − 2mμ

[
s′
μpν + s′

νpμ − gμν(s
′ · p)] ,

X(ν) = Tr
{
(AVA + BVAγ5)γ

μ/kγ5γ
ν/k′}

(20)
= −4iAVAε

νβμαkαk
′
β + 4BVA

[
kμk′ν + kνk′μ − gμν(k · k′)

]
,

X(μ, e)X(ν) = −16mμBVA
[
(k · p)(k′ · s′) + (k · s′)(k′ · p)]

+ 8AVAενσμτ ε
νβμαp′σpτ kαk′

β .

• Ôi = γ5γ
μ, Ôk = γ5γ

ν :

X(μ, e) = 1

2
Tr
{
γ5γμ/p

′γ5γν/p
}+ 1

2
mμ Tr

{
γ5γμγ5/s

′γ5γν/p
}

= 2
[
p′
μpν + p′

νpμ − gμν(p · p′)
]+ 2imμεμσντ s

′σpτ ,
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X(ν) = Tr
{
(AAA + BAAγ5)γ5γ

μ/kγ5γ
ν/k′}

(21)
= 4AAA

[
kμk′ν + kνk′μ − gμν(k · k′)

]− 4iBAAε
νβμαkαk

′
β ,

X(μ, e)X(ν) = 16AAA
[
(k · p)(k′ · p′) + (k′ · p)(k · p′)

]

− 8mμBAAεμσντ ε
νβμαs′σpτ kαk′

β .

Combining the last four results, we find that
∑

i,k=V,A

X(μ, e)X(ν)

= 16(AVV + AAA)
[
(k · p)(k′ · p′) + (k · p′)(k′ · p)]

− 16mμ(BAV + BVA)
[
(k · p)(k′ · s′) + (k · s′)(k′ · p)]+ Xαβkαk

′
β

= 16(aV + aA)
[
(k · p)(k′ · p′) + (k · p′)(k′ · p)]

+ 16mμb
′[(k · p)(k′ · s′) + (k · s′)(k′ · p)]+ Xαβkαk

′
β . (22)

Here Xαβ contains all terms which are antisymmetric in the indices α and β . In the
course of further evaluation kαk′

β yields the symmetric tensor Iαβ and therefore the

term containing Xαβ will vanish. Again, with respect to the convention (23) of Sup-
plement 2.12, we have b′ = −(BVA + BAV).

• Ôi = σμν , Ôk = σ μ̄ν̄ :
This case requires the evaluation of

Tr{σμνγ ασ μ̄ν̄γ β} . (23)

For this purpose we first consider

Tr{iγ μγ νγ αiγ μ̄γ ν̄γ β} . (24)

We use

σμν = i

2
(γ μγ ν − γ νγ μ) (25)

and antisymmetrize (24) with respect to the indices μ and ν (that is, exchange μ and
ν, subtract the result from the original term, and finally divide by 2) and then with
respect to the indices μ̄ and ν̄. Finally, by repeated application of (A.33), we obtain

− Tr{γ μγ νγ αγ μ̄γ ν̄γ β}
= −(gμν Tr{γ αγ μ̄γ ν̄γ β} − gμα Tr{γ νγ μ̄γ ν̄γ β}

+ gμμ̄ Tr{γ νγ αγ ν̄γ β} − gμν̄ Tr{γ νγ αγ μ̄γ β} + gμβ Tr{γ νγ αγ μ̄γ ν̄})

= −4
[
gμν(gαμ̄gν̄β − gαν̄gμβ̄ + gαβgμ̄ν̄)

− gμα(gνμ̄gν̄β − gνν̄gμ̄β + gνβgμ̄ν̄)

+ gμμ̄(gναgν̄β − gνν̄gαβ + gνβgαν̄)

− gμν̄(gναgμ̄β − gνμ̄gαβ + gνβgαμ̄)

+ gμβ(gναgμ̄β − gνμ̄gαν̄ + gνν̄gαμ̄)
]

. (26)
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Owing to the procedure of antisymmetrization with respect to μ and ν, as well as to
μ̄ and ν̄, all terms proportional to gμν and gμ̄ν̄ vanish, so that we are left with

− Tr{σμνγ ασ μ̄ν̄γ β}
= 4
[
(gμμ̄gνν̄ − gμν̄gνμ̄)gαβ − gμμ̄(gναgν̄β + gν̄αgμβ)

+ gμν̄(gναgμ̄β + gμ̄αgνβ) + gμ̄ν(gμαgν̄β + gν̄αgμβ)

− gν̄ν(gμαgμ̄β + gμ̄αgμβ)
]

. (27)

For later purposes it is worth mentioning that this term is simply the antisymmetrized
form of

8gμμ̄{gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ} . (28)

This is easily checked by multiplying (27) or (28) by a term which itself is antisym-
metric with respect to μ, ν and μ̄, ν̄; the two corresponding results are identical.

In order to evaluate the quantity X(μ, e)X(ν) we need to consider

Tr{σμνγ ασ μ̄ν̄γ β} Tr{σμνγ�σμ̄ν̄γσ }
= 8gμ̄μ̄(gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ)

× 4
[
(gμμ̄gνν̄ − gμν̄gνμ̄)g�σ

− gμμ̄(gν�gν̄σ + gν̄�gνσ ) + gμν̄(gν�gμ̄σ + gμ̄�gνσ )

+ gμ̄ν(gμ�gν̄σ + gν̄�gμσ ) − gν̄ν(gμ�gμ̄σ + gμ̄�gμσ )
]

= 32
(
gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ

)

× [3gνν̄g�σ − 4(gν�gν̄σ + gν̄�gνσ )

+ gν�gν̄σ + gν̄�gνσ + gν�gν̄σ + gν̄�gνσ − 2gνν̄g�σ
]

= 32(gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ)(gνν̄g�σ − 2gν�gν̄σ − 2gν̄�gνσ )

= 32
(
4gαβg�σ − 2gαβg�σ − 2gαβg�σ − 2gαβg�σ

+ 4δα� δ
β
σ + 4δασ δ

β
� − 2gαβg�σ + 4δασ δ

β
� + 4δα� δ

β
σ

)

= 128
(−gαβg�σ + 2δα� δ

β
σ + 2δα� δ

β
σ

)
. (29)

The evaluation of (6), or of (9), furthermore contains terms of the form

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} . (30)

However, these can be reduced to (27) by employing the relation

γ5σ
μν = i

2
εμν�τ σ�τ , (31)

so that we obtain

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} = i

2
εμν�τ Tr{σ�τ γ ασ μ̄ν̄γ β}

= i

2
εμν�τ × 4

[
(δμ̄� δ

ν̄
τ − δμ̄τ δ

ν̄
�)g

αβ − δμ̄� (δ
α
τ g

ν̄β + δβτ g
ν̄α)
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+ δν̄�(δ
α
τ g

μ̄β + δβτ g
μ̄α) + δμ̄τ (δ

α
�g

ν̄β + δβ� g
ν̄α)

− δν̄τ (δ
α
σ g

μ̄β + δβσ g
μ̄α)
]

= 4i(εμνμ̄ν̄gαβ − εμνμ̄αgν̄β − εμνμ̄βgν̄α + εμνν̄αgμ̄β + εμνν̄βgμ̄α) . (32)

Another typical term that occurs in X(μ, e)X(ν) is

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} Tr{σμνγ�σμ̄ν̄γσ } . (33)

However, it is easily verified that this contribution vanishes. The first factor is again
antisymmetric with respect to μ and ν and also to μ̄ and ν̄. Thus, for the second trace
we may substitute the expression (28), which leads to

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} · Tr{σμνγ�σμ̄ν̄γσ }

= 4i(εμνμ̄ν̄gαβ − εμνμ̄αgν̄β − εμνμ̄βgν̄α + εμνν̄αgμ̄β + εμνν̄βgμ̄α)

×8gμμ̄(gνν̄g�σ − 2gν�gν̄σ − 2gνσ gν̄�)

= −32i(εβνν̄α + εανν̄β)(gνν̄g�σ − 2gν�gν̄σ − 2gνσ gν̄�) = 0 , (34)

Using (28) and the relation

εμνγωε
μνλτ = 2(δλωδ

τ
γ − δλγ δ

τ
ω) , (35)

we finally evaluate the following expression

Tr{γ5σμνγ�σμ̄ν̄γσ } Tr{γ5σ
μνγ ασ μ̄ν̄γ β}

= − 1

4
εμνγωε

μνλτ Tr{σγωγ�σμ̄ν̄γ�} Tr{σλτ γ ασ μ̄ν̄γ β}

= 1

2
(δλγ δ

τ
ω − δλωδ

τ
γ )Tr{σγωγ�σμ̄ν̄γσ } Tr{σλτ γ ασ μ̄ν̄γ β}

= Tr{σγωγ�σμ̄ν̄γσ } Tr{σγωγ ασ μ̄ν̄γ β}
= Tr{σμνγ�σμ̄ν̄γσ } Tr{σμνγ ασ μ̄ν̄γ β} . (36)

This result exactly coincides with the one we previously obtained in (29). Now we
have all the ingredients necessary to consider the contribution of tensor coupling Ôi =
σμν , Ôk = σ μ̄ν̄ .
With respect to (6) we obtain

X(ν) = ATT Tr{σμνγ ασ μ̄ν̄γ β}kαk′
β − BTT Tr{γ5σ

μνγ ασ μ̄ν̄γ β}kαk′
β

= aT Tr{σμνγ ασ μ̄ν̄γ β}kαk′
β − c′ Tr{γ5σ

μνγ ασ μ̄ν̄γ β}kαk′
β , (37)

where we have again adopted the abbreviations (2.77) and (2.83). The contribution of
the massive leptons is given by

X(μ, e) = 1

2
Tr{σμνγ�σμ̄ν̄γσ }p′�pσ + 1

2
mμ Tr{γ5σμνγ�σμ̄ν̄γσ }s′�pσ . (38)
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All other terms vanish, since they contain an uneven number of γ matrices. We recall
that the expression (33) does not contribute, so that we obtain

∑

T

X(ν)X(μ, e) = 1

4

[
1

2
aTkαk

′
βp

′�pσ Tr{σμνγ ασ μ̄ν̄γ β} Tr{σμνγ�σμ̄ν̄γσ }

− 1

2
mμc

′kαk′
βs

′�pσ Tr{γ5σ
μνγ ασ μ̄ν̄γ β}

× Tr{γ5σμνγ�σμ̄ν̄γσ }
]

. (39)

Here we have introduced a factor 1
4 in order to avoid double counting of σμν , or σ μ̄ν̄ ,

since the sum includes σμν as well as σνμ = −σμν !
Equation (39) may be further reduced by using (29) and (36):

∑

T

X(ν)X(μ, e)

= 16aTkαk
′
βp

′�pσ (−gαβg�σ + 2δα� δ
β
σ + 2δασ δ

β
� )

− 16mμc
′kαk′

βs
′�pσ (−gαβg�σ + 2δα� δ

β
σ + 2δασ δ

β
� )

= 16aT
[−(k · k′)(p · p′) + 2(k · p)(k′ · p′) + 2(k · p′)(k′ · p)]

− 16mμc
′[−(k · k′)(s′ · p′) + 2(k · s′)(k′ · p) + 2(k · p)(k′ · s′)

]
. (40)

With the following argument we can conclude that all other combinations of Ôi and
Ôk do not contribute: if for example we identify Ôi with V or A, then Ôk can neither
be S nor P nor T, since otherwise X(ν) in (6) would contain an uneven number of γ
matrices. On the other hand, all remaining combinations lead to an X(ν) which is an-
tisymmetric with respect to the exchange of k and k′, for example, for the combination
“ST”,

Tr
{
(AST − BSTγ5) · 1 · /kσμν/k′}

= 4iAST(k
μk′ν − kνk′μ) + 4BSTε

αμνβkαk
′
β . (41)

As we have already mentioned in connection with (18), such terms do not contribute
to the decay rate.

Combining the previous results (15), (22) and (40) as well as the terms of (41), we
find that

∑

i,k

X(ν)X(μ, e)

= {8gαβ[(aS + aP)(p · p′) − a′mμ(p · s′)
]

+ 16(aV + aA)
[
pαp′β + p′αpβ

]+ 16mμb
′[pαs′β + s′αpβ

]

+ 16aT
[−gαβ(p · p′) + 2pαp′β + 2p′αpβ

]

− 16mμc
′[−gαβ(s′ · p) + 2s′αpβ + 2pαs′β]

+ Yαβ
}
kαk

′
β , (42)
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where Yαβ is an antisymmetric tensor which contains terms like Xαβ of (22) as well
as the contribution corresponding to (41).

In (2.18) we now replace

∑

t,t ′
|M|2

by X(μ, e)X(ν) of (42) thereby abbreviating the last term by Zαβkαkβ ′ . This results
in

dW = G2

2

1

(2π)5
d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0 δ
4(p + k + k′ − p′)Zαβkαk′

β . (43)

Now, utilizing (2.51)–(2.53), we employ (2.49), according to which it holds that

Iαβ ≡
∫

d3k

2k0

∫
d3k′

2k′0 kαk
′
βδ

4(k + k′ − q)

= π

24

(
q2gαβ + 2qαqβ

)
Θ
(
p0

max − p0) . (44)

The quantity

dW = G2

2(2π)5
d3p

(2p′02p0)
IαβZ

αβ (45)

is now easily evaluated. Neglecting the electron rest mass, the rest frame of the muon
is again characterized by

p′0 = mμ , p′ = 0 ,

(p · p′) = mμp
0 , (p′ · s′) = 0 , (46)

(p · s′) = −p · s′ = − |p| cos θ = −p0 cos θ .

Introducing q = p′ − p, from these relations we obtain

π

24
(q2gαβ + 2qαqβ

)
gαβ = π

24
6mμ

(
mμ − 2p0) ,

π

24
(q2gαβ + 2qαqβ)p

αp′β = π

24

(
3m3

μp
0 − 4m2

μ(p
0)2
)

, (47)

π

24
(q2gαβ + 2qαqβ)p

αs′β = − π

24
mμ(mμ − 4p0)(p0) cos θ

and finally

dW = G2

2

1

(2π)5
d3p

2p′ 02p0

π

24
Θ
(
p0 − p0

max

)

× {[48(aS + aP) + 96aT + 96(aV + aA)
]
m3
μp

0

− [96(aS + aP) + 64aT + 128(aV + aA)
]
m2
μ(p

0)2

+ (48a′ − 32b′ − 32c′)m3
μp

0 cos θ

− (96a′ − 128b′ + 64c′)m2
μ(p

0)2 cos θ
}

. (48)
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Neglecting the electron mass implies that

p0
max = mμ

2
, (49)

so that

p0 = xp0
max = x

mμ

2
(50)

and

d3p = |p|2d|p|dΩ = (p0)2 dp0dΩ = m3
μ

8
x2dx dΩ . (51)

We collect all these expressions and substitute them into (48). The final result is

dW = G2m5
μ

192π4
x2dx dΩ

1

16

{[
3(aS + aP) + 6aT + 6(aV + aA)

]

− [3(aS + aP) + 2aT + 4(aV + aA)
] · x + [3a′ − 2b′ − 2c′ ] cos θ

− [3a′ − 4b′ + 2c′ ]x cos θ
}
Θ(1 − x) . (52)

This agrees with (2.81b), as is easily verified by inserting the Michel parameters and
using (2.78).

MATHEMATICAL SUPPLEMENT

2.12 The Fierz Transformation

Within the framework of the Fermi theory there are two different but equivalent
ways of describing a reaction ψ1 + ψ2 → ψ3 + ψ4, namely

(ψ̄3�̂ψ1)(ψ̄4�̂ψ2) and (ψ̄4�̂ψ1)(ψ̄3�̂ψ2) . (1)

The properties of the Clifford algebra11 allow us to form 16 matrices

{1, γμ,σμν, γ5γμ, iγ5 } = : {Ô1, . . . , Ô16 } . (2a)

{1, γ μ,σμν, γ5γ
μ, iγ5 } = : {Ô1, . . . , Ô16 } . (2b)

which form a basis for any 4 × 4 matrix. Furthermore it holds that

γ0Ô
†
i γ0 = Ôi . (3)

Hence we may expand �̂ in terms of the Ôi .

16∑

i=1

Ciψ̄3Ôiψ1ψ̄4Ô
iψ2

11 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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or

16∑

i=1

C′
i ψ̄4Ôiψ1ψ̄3Ô

iψ2 . (4a)

The requirement for Lorentz invariance demands that

C2 = · · · = C5 , C6 = C7 = · · · = C11 , C12 = · · · = C15 . (4b)

Since the two representations (4a) are equivalent, these expressions must be identical
for arbitrary values of ψ1, ψ2 ,ψ3, and ψ4. In terms of the particular components this
implies that

16∑

i=1

Ci(Ôi)γ α(Ô
i)δβ =

16∑

i=1

C′
i (Ôi)δα(Ô

i)γβ . (5)

In the following steps we will solve this equation for Ci , which requires the deter-
mination of the transformation matrix Λij connecting the two representations, that
is,

Ci =
∑

j

ΛijC
′
j . (6)

The transformation from the C′
j to the Ci (or vice versa) is called the Fierz transfor-

mation.
Multiplying (5) by (Ol)αγ (Ol)

βδ and summing over α, β , γ , and δ yields

16∑

i=1

Ci Tr{ÔiÔ
l} Tr{ÔiÔl} =

16∑

j=1

Tr{Ôj Ô
lÔj Ôl}C′

j . (7)

We employ the following formulas (see Appendix A.2):

Tr{1} = 4 ,

Tr{σμν} = Tr{γμ} = Tr{iγ5 }
= Tr{γ5γν} = 0 ,

Tr{γμγ ν} = 4gμ
ν ,

Tr{γ μσμν} = Tr{γ μiγ5 } = Tr{γ μγ5γν} = 0 ,

Tr{σμνσλ�} = − 1

4
Tr{[γμ, γν]γ λγ � − [γμ, γν]γ �γ λ}

= −{gμνgλ� + gμ
�gν

λ − gμ
λgν

�

− gμνg
λ� − gν

�gμ
λ + gν

λgμ
�

− gμνg
�λ − gμ

λgν
� + gμ

�gν
λ

+ gμνg
�λ + gν

λgμ
� − gν

�gμ
λ}

= 4{gμλgν� − gν
λgμ

�} ,

Tr{σμνγ5γ
λ} = Tr{σμν iγ5 } = 0 ,
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Tr{iγ5γμiγ5γ
ν} = Tr{γμγ ν} = 4gμ

ν = 4δμν ,

Tr{iγ5γμγ5 } = 0 ,

Tr{γ5γ5 } = 4 .

All these relations may be combined to give

Tr{ÔiÔl} = 4δi lεl , εl =
{

+1 for l = 1, . . . ,11

−1 for l = 12, . . . ,16
. (8)

Inserting (8) into (7), we then have

Cl = 1

16

16∑

j=1

C′
j Tr{Ôj Ô

lÔj Ôl} . (9)

There remains the evaluation of

Λ̃lj = 1

16
Tr{Ôj Ô

lÔj Ôl} = Λ̃jl . (10)

In order to solve for Λ̃jl we consider the particular cases separately.
• j = 1:

Λ̃1l = 4εl
1

16
= 1

4
εl , (11)

according to (8).
• j = 2, . . . ,5; l = 2, . . . ,5:

Λ̃jl = 1

16
Tr{γj−2γ

l−2γ j−2γl−2 } = 1

4
{2δjl − 1} ,

(12)
(Λ̃jl) = 1

4

⎛

⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞

⎟⎟⎠ ,

where the index j labels the rows and l the columns.
• l = 6, . . . ,11:

Ôl = iγνγμ (ν �= μ) ,

Ô6 = iγ0γ1 , Ô7 = iγ0γ2 ,

Ô8 = iγ0γ3 , Ô9 = iγ1γ2 ,

Ô10 = iγ1γ3 , Ô11 = iγ2γ3 ,

Λ̃jl = − 1

16
Tr{γj−2γ

νγ μγ j−2γνγμ} (13)

= − 1

8
δνj−2 Tr(γ μγ j−2γνγμ) + 1

16
Tr(γ νγj−2γ

μγ j−2γνγμ)

= − 1

8
δνj−2 Tr(γ j−2γνγμγ

μ) + 1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ)
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− 1

16
Tr(γ νγ μγj−2γ

j−2γνγμ)

= − 1

8
δνj−2 Tr(γ j−2γν) + 1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ) − 1

16
Tr(γ νγ μγνγμ) .

For the first term we get

− 1

8
δνj−2 Tr

(
γ j−2γν

)= − 1

8
δνj−2 · 4δj−2

ν = − 1

2
δνj−2 .

To evaluate the last two terms we take into consideration that μ �= ν and therefore
γμγν = −γνγμ, yielding

1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ) = − 1

8
δ
μ
j−2 Tr(γ νγ j−2γμγν)

= − 1

8
δ
μ
j−2 Tr(γνγ

νγ j−2γμ)

= − 1

8
δ
μ
j−2 Tr(γ j−2γμ)

= − 1

8
δ
μ
j−2 · 4δj−2

μ

= − 1

2
δ
μ
j−2 ,

in which we have used the fact that the trace is constant under cyclic permutation. For
the third term we then obtain

− 1

16
Tr(γ νγ μγνγμ) = 1

16
Tr(γ νγνγ

μγμ)

= 1

16
Tr(1) = 1

4
,

and, in summary, we finally have

Λ̃jl = 1

4
(1 − 2δj−2,ν − 2δj−2,μ) ,

(14)
(Λ̃jl) = 1

4

⎛

⎜⎜⎝

−1 −1 −1 +1 +1 +1
−1 +1 +1 −1 −1 +1
+1 −1 +1 −1 +1 −1
+1 +1 −1 +1 −1 −1

⎞

⎟⎟⎠ .

• l = 12, . . . ,15:

Λ̃jl = 1

16
Tr{γj−2γ5γ

l−12γ j−2γ5γl−12 } ,

(15)
(Λ̃jl) = 1

4

⎛

⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞

⎟⎟⎠ .

• l = 16:

Λ̃jl = − 1

16
Tr{γj−2γ5γ

j−2γ5 } = 1

4
. (16)
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• j = 6, . . . ,11; l = 6, . . . ,11:

Ôj = iγνγμ with μ> ν ,

Ol = iγ�γλ with λ > � ,

Λ̃jl = 1

16
Tr{γνγμγ �γ λγ νγ μγ�γλ}

= 1

16

[−2δνμ Tr{γμγ λγ νγ μγ�γλ} + 2δλν Tr{γμγ �γ νγ μγ�γλ}

− 2δμ
� Tr{γ λγ μγ�γλ} + 2δμ

λ Tr{γ �γ μγ�γλ} − Tr{γ �γ λγ�γλ}]
(17)

= 1

16

[+2δμ� · 4(2δνλ − 1) + 2δνλ · 4(2δμ� − 1) − 8δμ� − 8δμλ + 4
]

= 1

4

[
1 − 2(δν� + δνλ + δμ� + δμλ) + 4δν�δμλ + 4δνλδμ�

]
,

Λ̃jl = 1

4

⎛

⎜⎜⎜⎜⎜⎜⎝

+1 −1 −1 −1 −1 +1
−1 +1 −1 −1 +1 −1
−1 −1 +1 +1 −1 −1
−1 −1 +1 +1 −1 −1
−1 +1 −1 −1 +1 −1
+1 −1 −1 −1 −1 +1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

• l = 12, . . . ,15:

Λ̃jl = − 1

16
Tr{γνγμγ5γ

l−12γ νγ μγ5γl−12 } .

Together with (14) it follows that

Λ̃jl = 1

4

⎛

⎜⎜⎜⎜⎜⎜⎝

+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1
−1 +1 +1 −1
−1 +1 −1 +1
−1 −1 +1 +1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (18)

• l = 16:
From (8) it follows that

Λ̃j,16 = − 1

16
Tr(Ôj Ô

j ) = − 1

4
. (19)

• j = 12, . . . ,15; l = 12, . . . ,15:

Λ̃jl = 1

16
Tr{γj−12γ

l−12γ j−12γl−12 }

= 1

4
{2δjl − 1} ,

(20)

Λ̃jl = 1

4

⎛

⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞

⎟⎟⎠ .
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• l = 16:

Λ̃j,16 = − 1

16
Tr{γ5γj−12γ5γ5γ

j−12γ5 } = − 1

4
. (21)

• j = 16; l = 16:

Λ̃16,16 = 1

16
4 = 1

4
. (22)

According to (4a) we may combine the Ci , Cj as follows:

CS = C1 ,

CV = C2 = C3 = C4 = C5 ,

CT = C6 = · · · = C11 , (23)

CA = −C12 = · · · = −C15 ,

CP = −C16 ,

where the negative signs correspond to the convention. Similarly (6) now reads as
follows:

Ci =
∑

j

C′
j Λ̃ij

= Λ̃i1C
′
1 +

5∑

j=2

Λ̃ijC
′
j +

11∑

j=6

Λ̃ijC
′
j +

15∑

j=12

Λ̃ijC
′
j + Λ̃i,16C

′
16

= Λ̃i1CS +
(

5∑

j=2

Λ̃ij

)
CV +

(
11∑

j=6

Λ̃ij

)
CT −

(
15∑

j=12

Λ̃ij

)
CA − Λ̃i,16CP .

Thus it follows that

ΛIJ =
∑

j in J

εI εJ Λ̃ij with i in I , (24)

where

εI =
{

+1 for S,V,T

−1 for A,P
. (25)

From (11)–(22) it follows that

ΛIJ = 1

4

⎛

⎜⎜⎜⎜⎝

1 4 6 4 1
1 −2 0 2 −1
1 0 −2 0 1
1 2 0 −2 −1
1 −4 6 −4 1

⎞

⎟⎟⎟⎟⎠
. (26)

This is the standard representation of the Fierz transformation and the one most com-
monly used. It is easily checked that Λ2 = 1, and therefore Λ = Λ−1, i.e. Λ is its own
inverse.
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An alternative form is obtained from (22) and (23) by introducing

S(3,1; 4,2) := (ψ̄31ψ1)(ψ̄41ψ2) ,

V(3,1; 4,2) := (ψ̄3γμψ1)(ψ̄4γ
μψ2) ,

T(3,1; 4,2) := 1

2
(ψ̄3σμνψ1)(ψ̄4σ

μνψ2) , (27)

A(3,1; 4,2) := (ψ̄3γ5γμψ1)(ψ̄4γ
μγ5ψ2) ,

P(3,1; 4,2) := (ψ̄3γ5ψ1)(ψ̄4γ5ψ2) ,

and replacing (5) by
∑

I=S,V,T,A,P

CI I (3,1; 4,2) =
∑

J=S,V,T,A,P

C′
J J (4,1; 3,2) . (28)

The transformation of the matrices I and J is then given by

I (3,1; 4,2) =
∑

J

ΛJI J (4,1; 3,2) ,

and because Λ is self-inversive it also follows that

J (4,1; 32) =
∑

ΛIJ I (3,1; 42) .

2.6 The Tau Lepton

In the year 1975 a further lepton was discovered at Stanford (SLAC) by Perl, which
has been named the τ lepton.12 With a mass of 1784 ± 3 MeV it is almost 20 times
heavier than the muon. Its lifetime is

Tτ = (3.4 ± 0.5) × 10−13 s . (2.87)

The scheme of τ lepton decay is completely analogous to muon decay, which we have
discussed in detail. Since both the electron and the muon have smaller masses than the
τ lepton, both decay processes are possible:

τ− → μ− + ν̄μ + ντ , (2.88a)

τ− → e− + ν̄e + ντ . (2.88b)

In addition, the τ lepton may also decay into strongly interacting particles, especially
into three or more pions together with a τ neutrino. These hadronic processes con-
tribute about 65% to the total decay probability of the τ lepton (see Table 2.2); how-
ever, we will not consider them here but will rather focus on the leptonic processes.

12 M.L. Perl et al.: Phys. Rev. Lett. 35, 148 (1975); M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299
(1980); G.S. Abrams, M.L. Perl et al.: Phys. Rev. Lett 43, 1555 (1979).
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Table 2.2. Decay probabilities of the τ lepton

Decay %

τ− →e−ν̄eντ 16.4 ± 1.8
μ−ν̄μντ 16.0 ± 1.7
π−ντ 10.3 ± 1.2
ρ−ντ 22.1 ± 2.4
K−ντ 1.3 ± 0.5
π−ρ0ντ 5.4 ± 1.7

further hadronic decays 26.0 ± 1.3

Besides the properties that result from its rather large mass, the τ lepton behaves
just like an electron or muon. This fact is sometimes termed e–μ–τ universality. For
example, the τ lepton is observed with large accuracy to be point-like. Its internal
extension amounts to less than 0.004 fm. Furthermore the electron and muon spectra
observed in the decay processes (2.88) may be analyzed in terms of Michel parame-
ters, in analogy to the case of muon decay, which we have already treated. The result
is13

ρτ = 0.742 ± 0.035 ± 0.020 , (2.89)

which is a strong argument for V–A coupling (ρ = 0.75) and unambiguously excludes
V+A coupling (ρ = 0), as well as pure V or A coupling (ρ = 0.375). This behavior
also becomes obvious from Fig. 2.10, which compares the observed electron spectrum
with the predictions of the V–A and V+A theory.

Fig. 2.10. Electron spectrum
of the τ decay

From a detailed analysis of the shape of the high-energy end of the muon spectrum,
an upper limit for the mass of the τ neutrino can be inferred (see Fig. 2.11). The most
accurate value today is

mντ ≤ 70 MeV (2.90)

13 H. Albrecht et al. [ARGUS Collaboration]: Phys. Lett. B246 (1990) 278–284.
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However, it is not unlikely that its rest mass vanishes. If we assume that the weak
current of the τ particles is of the familiar form

J (τ)μ (x) = ūτ (x)γμ(1 − γ5)uντ (x) , (2.91)

we immediately obtain the decay rates into the leptonic channels (2.88) by simply
adopting the formula (2.57) for the muonic decay. Again, we set me = 0, but do not
neglect the muon mass:

Fig. 2.11. The number of the
observed electrons and muons
is depicted as a function of
the momentum.14 Here pc =
0.65 GeV is the lower limit
of the momentum observed in
the experiment. Each curve
stands for one value of the
mass of the τ neutrino. The
dashed curve is for V+A cou-
pling and mντ = 0

Wτ− →e−νeντ = G2m5
τ

192π3
= Wμ− →e−νeνμ

(
mτ

mμ

)5

, (2.92a)

Wτ− →μ−νμντ = G2m5
τ

192π3

(
1 − 8

m2
μ

m2
τ

)

= Wμ− →e−νeνμ

(
mτ

mμ

)5(
1 − 8

m2
μ

m2
τ

)
. (2.92b)

Inserting the value mτ/mμ = 16.86, we obtain

Wτ→e = 0.620 × 10+12 s−1 , (2.93a)

Wτ→μ = 0.603 × 10+12 s−1 . (2.93b)

The ratio of these quantities is

Wτ→μ

Wτ→e
=
(

1 − 8
m2
μ

m2
τ

)
= 0.972 . (2.94)

On the other hand, the experimental determination of the relative probability for these
two decay processes, compared with the total decay rate, yields the following val-
ues:15

Bτ→e = Wτ→e/Wτ = (17.7 ± 0.4) ,
(2.95)

Bτ→μ = Wτ→μ/Wτ = (17.8 ± 0.4) .

These values yield the experimental ratio

Bτ→μ

Bτ→e
= 0.9 ± 0.1 , (2.96)

which agrees with the theoretical prediction (2.94) within the accuracy of the ex-
periment. By inserting (2.95) in (2.92a) we can give a theoretical prediction for the
lifetime of the τ lepton:

Tτ = Bτ→e

Wτ→e
= (2.6 ± 0.2) × 10−13s , (2.97)

14 M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
15 Review of particle properties in M. Aguilar-Benitez et al.: Phys. Rev. D 45, Part II (June 1992).
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which at least does not contradict the experimental value (2.87). From this it follows
that the coupling constant G occurring in (2.92a) cannot differ significantly from the
coupling constant G of muon decay.

To summarize, we conclude that according to the actual data the τ lepton fits per-
fectly into the family of leptons (e, μ, τ ). The only differences between these leptons
are their masses and a quantum number that guarantees the separate conservation of
the electronic, muonic, and τ -leptonic particle numbers. In particular, the leptons ex-
hibit a completely universal behavior in electromagnetic and weak interactions.

EXAMPLE

2.13 The Discovery of the Tau Lepton

The τ lepton was discovered at the SPEAR storage ring by the magnetic detector of the
SLAC–LBL collaboration (Stanford Linear Accelerator Center – Lawrence Berkeley
Laboratory).16 The principle of a storage ring is that particle and antiparticle beams
circulate within the ring in opposite directions and are forced to overlap in the region of
the detector (see Fig. 2.12). The detector was constructed in such a way that electrons,
muons, and photons, as well as hadrons, could be detected and identified within a large
solid angle. In addition, the trajectories of the charged particles in the magnetic field
allowed for a determination of their momentum.

Fig. 2.12. Schematic picture
of the storage ring facility
SPEAR at SLAC

Through investigations of electron–positron collisions a number of events of the
form

e+ + e− →
{

e+ + μ−
e− + μ+

}
+ at least 2 unobserved particles

were observed – until 1975 a total number of 105 events. These processes could not be
understood in terms of a conventional interpretation, especially since the possible un-
certainty in particle identification by the detector had already been taken into account,
that is to say, the most unfavorable assumption was made, namely that all processes
with three observed charged particles implied the production of hadrons only. Thus
every “electron” or “muon” was claimed to be a misinterpretation of the detector.
This allowed an estimate to be made of how reliable particle identification was. It was
therefore possible to evaluate, from the number of observed events in which a lepton
and a hadron, or two hadrons, occurred, the number of misinterpreted e–μ events.
It followed that of the 139 events originally observed, 34 were spurious and had to

16 G.J. Feldman and M.L. Perl: Phys. Rep. 19, 233 (1975).
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be subtracted. The immediate conclusion was that the uncertainty in particle identi-
fication could not explain all these events. One might argue that at least one of the
observed particles was a charged particle, a photon, or a neutral pion decaying into
two photons, but one not reaching the effective region of the detector. On the other
hand, such processes would imply the occurrence of corresponding events in which
the particle is actually detected. However, this was not the case.

The sole remaining explanation was the interpretation of the e–μ events in terms
of the production of hardly detectable particles such as neutrons, K0

L (see Chap. 8), or
neutrinos. However, the K0

L is ruled out by the reasonable assumption that the produc-
tion rates for K0

L and K0
S are equal. The latter could easily be identified by its decay

products π+ and π−. However, up until 1976 only a single event had been observed.

Fig. 2.13. Cross section for
electron–muon events in stor-
age ring experiments

A characteristic feature of the e–μ events is their threshold energy of about
3.6–4 GeV, that is, they do not occur at lower energies (see Fig 2.13). Another signif-
icant property is that with increasing energy the electron and muon are preferentially
emitted collinearly in opposite directions. This strongly suggests the production of a
particle–antiparticle pair,

e+ + e− → τ+ + τ− .

Owing to momentum conservation, the two particles should be emitted in exactly
opposite directions. Hence, a higher energy implies that the particles have a larger
momentum. Subsequently, the two particles decay into an electron (positron) or a
muon which is emitted isotropically with respect to the rest frame of the corresponding
τ particle. However, the larger the velocity of the τ particle, the less the direction of
emission with respect to the τ particle’s rest frame contributes to the emission actually
observed within the lab system, whereby the latter is then essentially determined by
the direction of emission of the τ particle.

The observed threshold energy leads to the conclusion that the mass of the τ par-
ticle lies in the range 1.6–2 GeV. In order to characterize the nature of the τ particle,
there were in practice two options: either it is a lepton that decays according to

τ− → ντ + e− + ν̄e , τ− → ντ + μ− + ν̄μ ,
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and similarly for the antiparticle τ+, or it is a boson with the following decay channels:

τ− → e− + ν̄e , τ− → μ− + ν̄μ ,

as are observed for example, in the decay of negatively charged pions. The latter in-
terpretation, however, could certainly be ruled out by the analysis of the momentum
distribution of produced electrons (positrons) and muons (the specific form of this
distribution also contradicts the interpretation of the observed particle in terms of a
neutron).

Therefore the sole explanation that remained was the classification of the τ particle
as a new, heavy lepton. Figure 2.14 illustrates how the total process results in the
observed e–μ events. Since 1975 the properties of the τ lepton have been extensively
studied, its mass has been accurately determined to be 1784 ± 3 MeV, its Michel
parameters were obtained17 as ρ = 0.731 ± 0.031, ξ = 1.03 ± 0.11, ξδ = 0.63 ± 0.09,
and thus the V–A coupling of its decay has been verified in detail.

Fig. 2.14. Production and de-
cay of the τ lepton

2.7 Biographical Notes

FIERZ, Markus, ∗ 20.6.1912 in Basel (Switzerland), †20.6.2006 in Küsnacht (Switzerland),
professor at the University of Basel 1944–1960, since 1960 successor of W. Pauli at the ETH
Zürich, in 1969 appointed director of the Theoretical Division at CERN, Geneva.

LEVI-CIVITA, Tullio, mathematician, ∗ 29.3.1873 in Padua (Italy), †29.12.1941 in Rome. In
1898 he became professor of mechanics in Padua, since 1918 at the University of Rome. He
developed differential and tensor calculus, which laid the basis for Einstein’s general theory
of relativity. He introduced the idea of parallel transport and developed the theory of curved
spaces.

MICHEL, Louis, ∗ 4.5.1923 in Roanne (France), †30.12.1999 in Bures-sur-Yvette (France),
professor at the Ecole Polytechnique in Paris, since 1962.

PERL, Martin, L. ∗ 1927 in New York. Attended New York city schools. After military services
in World War II, he received a Bachelor in Chemical Engineering degree from the Polytechnic
Institute of Brooklyn in 1948. After several years working for the General Electric Co. as a
chemical engineer, he went to graduate school in physics at Columbia University, studied under

17 H. Albrecht et al. (51 authors): The ARGUS Collaboration, DESY-preprint 97-194.
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I. I. Rabi, and received his Ph.D. in 1955. From 1955 to 1963 he did research and taught at the
University of Michigan. Since 1963 he has been at the Stanford Linear Accelerator Center at
Stanford University where he is a Professor of Physics and Group Leader. In 1990–1992 he was
a Distinguished Visiting Professor at the University of Michigan.
His major research interest is experimental elementary particle physics. Other research interests
are optical and electronic devices, and the application of small drop technology. He is also
interested in applying these technologies to industry, biology, and medicine.
He received the 1995 Nobel Prize in Physics in recognition of his discovery of the tau lepton,
the heaviest known member of the electron–muon–tau sequence of charged leptons. Finding the
tau lepton subsequently led to the discovery of the three generations of elementary particles, an
essential ingredient in what has now become the Standard Model of fundamental particles and
interactions. He has published 250 papers in physics and science editions and edited or authored
five books including Reflectors on Experimental Science which he wrote in 1996.
In addition to the 1995 Nobel Prize in Physics, he received the 1982 Wolf Prize in Physics.
He is a fellow of the American Physical Society and a member of the U.S. National Academy
of Science and American Academy of Arts and Science. He holds honorary degrees from the
University of Chicago in 1990 and Polytechnic University in 1996.
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The Fermi theory of weak interactions is patterned according to the well-known
current–current coupling of quantum electrodynamics. All observations could – up
to now – be classified and understood within this scheme. Nevertheless, as we shall
see, the Fermi theory contains severe difficulties and is therefore unsatisfactory. In
order to reveal these difficulties we shall discuss first another phenomenon of weak
interactions, i.e. the neutral currents.

3.1 Neutral Currents

We have noted that there are no scattering processes of the form νμe− → νμe− or

Fig. 3.1. Neutrino–electron
scattering is not possible in
the context of V–A theory, as
developed so far

ν̄μe− → ν̄μe− in the framework of Fermi’s theory with V–A coupling. One therefore
has to carefully investigate experimentally whether such scattering occurs in nature.
These experiments are extremely difficult, because the expected cross sections (if any)
lie in the range 10−41–10−44 cm2 (10−17–10−20 barn). Only with the high neutrino
currents in modern accelerators (Fermilab near Chicago, CERN-SPS) and high neu-
trino energies (several hundred GeV) did such experiments become practical at all.

In fact many such processes were observed; the best experimental values for the
cross sections are:

1

Eνμ
σ(νμe− → νμe−) = (1.45 ± 0.26) × 10−42 cm2/GeV , (3.1a)

1

Eν̄μ
σ (ν̄μe− → ν̄μe−) = (1.3 ± 1.0) × 10−42 cm2/GeV . (3.1b)

The existence of such so-called “neutral” currents can therefore be regarded as being
firmly established. Here the name “neutral current” has the following origin. If one
starts from the conservation of electron and muon numbers separately, the only possi-
ble interpretation of the scattering process νμe− → νμe− is that at the interaction point
the incoming electron turns into the outgoing electron and the incoming μ neutrino
turns into the outgoing μ neutrino. The obvious method to implement this process in
our theory is therefore to supplement the leptonic current J (L)μ by expressions of the
form

ūνμγα(1 − γ5)uνμ , (3.2a)

ūeγα(gV − gAγ5)ue . (3.2b)

Here we have made use of the fact that in any event neutrinos must have negative he-
licity. The current (3.2a) does not contain a charged particle at all, that is it is really

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8_3, © Springer-Verlag Berlin Heidelberg 2009
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“neutral”, while in (3.2b) the charge of the particle is conserved, which one also some-
what sloppily refers to as “neutral” (in this sense the electromagnetic current ūγ αu is
“neutral” for all particles!). Important is the fact that the incoming particle changes its
charge in the charged transition currents as occurs in (2.1) and (2.4). This is not the
case with neutral currents.

3.2 Scattering of a Muon Neutrino by an Electron1

We now calculate the cross section for νμe− → νμe−, starting from the currents (3.2).
The relevant interaction term is:

Hint(νμe− → νμe−)

= G√
2

∫
d3x
[
ūνμγ

α(1 − γ5)uνμ
][
ūeγα(gV − gAγ5)ue

]
. (3.3)

Because the cross section is incredibly small, it is impossible to observe the helicity

Fig. 3.2. Momenta and spins
for neutrino–electron scatter-
ing

of the electrons before or after the scattering process. Hence it is sufficient to calculate
the averaged cross section, where one averages or sums over all helicities. In addition,
it is convenient to integrate over all momenta of the outgoing particles, since these are
also not measurable in practice (the momentum p′ of the electron could in principle
be measured, but the statistics of such a differential experiment would be completely
insufficient).

We then obtain the following result (the details of the calculation are the subject of
Exercise 3.1):

σ̄ = G2

8π2

1

16(k · p)
∫

d3k′

k′
0

∫
d3p′

p′
0
δ4(p′ + k′ − p − k)

1

2

∑

s,s′
t,t ′

|M|2 , (3.4)

where

M = [ūνμ(k′, t ′)γ α(1 − γ5)uνμ(k, t)
][
ūe(p

′, s′)γα(gV − gAγ5)ue(p, s)
]

. (3.5)

The individual parts of the matrix elements are now evaluated exactly as in the case of
muon decay (cf. Chap. 2). We start with that of the neutrino:

∑

t,t ′
ūνμ(k

′, t ′)γ α(1 − γ5)uνμ(k, t)ūνμ(k, t)γ
β(1 − γ5)uνμ(k

′, t ′)

= Tr{γ α(1 − γ5)/kγ
β(1 − γ5)/k

′ } = 2 Tr{γ α/kγ β(1 − γ5)/k
′ }

= 2kμk
′
ν Tr{γ αγ μγ βγ ν(1 + γ5)}

= 8
[
kαk′β − gαβ(k · k′) + kβk′α − iεαμβνkμk

′
ν

]
. (3.6)

1 F.J. Hasert, H. Faissner, et al.: Phys. Lett. 46B, 121 (1973).
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Analogously we find that for the electronic part

∑

s,s′
ūe(p

′, s′)γα(gV − gAγ5)ue(p, s)ūe(p, s)γβ(gV − gAγ5)ue(p
′, s′)

= Tr{γα(gV − gAγ5)(/p + me)γβ(gV − gAγ5)(/p
′ + me)}

= Tr{γα/pγβ/p′(gV + gAγ5)
2 + γαγβm

2
e(gV + gAγ5)(gV − gAγ5)}

= Tr{γα/pγβ/p′(g2
V + g2

A + 2gAgV γ5)} + m2
e Tr{γαγβ}(g2

V − g2
A)

= 4
[
(g2
V + g2

A)(pαp
′
β + pβp

′
α − gαβpμp

′μ) + 2igAgV εαμβνp
μp′ν

+ m2
e(g

2
V − g2

A)gαβ
]

, (3.7)

where we have made use of the fact that the trace of an odd number of γ matrices
vanishes.

The product of both results yields (we again write (p · k) instead of pαkα etc.)

1

2

∑

s,s′,t,t ′
|M| = 32(g2

V + g2
A)
[
(p · k)(p′ · k′) + (p′ · k)(p · k′)

]

+ 64gAgV
[
(p · k)(p′ · k′) − (p′ · k)(p · k′)

]

− 32(g2
V − g2

A)m
2
e(k · k′)

= 32(gV + gA)
2(p · k)(p′ · k′) + 32(gV − gA)

2(p′ · k)(p · k′)

− 32(g2
V − g2

A)m
2
e(k · k′) . (3.8)

Now we again need the integral (2.33), which is found in Exercise 2.6, (17):

Iαβ =
∫

d3k′

2k′
0

d3p′

2p′
0
k′
αp

′
βδ

4(k′ + p′ − k − p)

= π

24

[
1 − m2

e

(k + p)2

]2

×
{
gαβ
(
(k + p)2 − m2

e

)+ 2(k + p)α(k + p)β

[
1 + 2m2

e

(k + p)2

]2}

× Θ
(
(k + p)2 − m2

e

)
. (3.9)

If we set α = β and sum over α, we get

∫
d3k′

2k′
0

d3p′

2p′
0
(k′ · p′)δ4(k′ + p′ − k − p) = π

4
(k + p)2

[
1 − m2

e

(k + p)2

]2

= π

4
s

(
1 − m2

e

s

)2

, (3.10)

where s = (k + p)2. Furthermore, we need the integral

I =
∫

d3k′

2k′
0

d3p′

2p′
0
δ4(p′ + k′ − p − k)(k · k′) . (3.11)
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In the centre-of-mass frame of the incoming particles k + p = 0 and k0 +p0 = E. Also
for neutrinos k′μ = (k′0,k′) with |k′ | = k′

0, similarly |k| = k0. For k′ we introduce
polar coordinates with respect to k, with

k · k′ = k0k
′
0 cos θ . (3.12)

Then it follows that

I =
∫

d3k′

2k′
0

δ
(√

k′2 + m2
e + k′

0 − E
)

2
√

k′2 + m2
e

k0k
′
0(1 − cos θ)

= k0

∫
dΩ(1 − cos θ)

∞∫

0

dk′
0 k

′2
0

δ
(√

k′2
0 + m2

e + k′
0 − E

)

4
√
k′2

0 + m2
e

. (3.13)

To evaluate the integral over k′
0 we need the root of the argument of the δ function:

g(k′
0) =
√
k′2

0 + m2
e + k′

0 − E = 0 =⇒ k′
0 = E2 − m2

e

2E
. (3.14)

Using the chain rule for the δ function (assuming that g(x) has only a single root),
∫

dxf (x)δ(g(x)) = f (x)

|g′(x)|
∣∣∣∣
g(x)=0

, (3.15)

we obtain the following result:

I = 1

4
k0

∫
dΩ(1 − cos θ)

k′2
0√

k′2
0 + m2

e

√
k′2

0 + m2
e

k′
0 +
√
k′2

0 + m2
e

∣∣∣∣∣∣
k′

0 = E2 −m2
e

2E

= 1

4
k0

∫
dΩ(1 − cos θ)

(E2 − m2
e)

2

4E3

= 4π

4

k0E

E2

(E2 − m2
e)

2

4E2
= π

k0E

E2

(E2 − m2
e)

2

4E2
. (3.16)

This result, which is up to now only valid in the centre-of-mass frame, can be written
in a Lorentz invariant fashion if we consider that (since k2 = 0)

kαp
α = kα(k + p)α

c.m.frame−→ k0(k
0 + p0) = k0E (3.17)

and

s ≡ (k + p)2
c.m.frame−→ (k0 + p0)

2 = E2 . (3.18)

Thus the variable s is the square of the centre-of-mass energy, it fulfills the relation

s = (k + p)2 = k2 + p2 + 2kαp
α = 2kαp

α + m2
e . (3.19)

Hence in the rest frame of the electron before the collision, it holds that

s = 2k0p
0 + m2

e = 2Eνμme + m2
e = me(2Eνμ + me) . (3.20)
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With the relations (3.17)–(3.18), (3.16) takes the form

I = π(k · p)(s − m2
e)

2

4s2
, (3.21)

which is valid in all frames of reference.
The step function in (3.9) is obviously irrelevant, since we trivially have

(k + p)2 = s > m2
e > 0 . (3.22)

We therefore drop it. Inserting the averaged transition probability (3.8) into (3.4) and
using (3.9), (3.10) (3.21), (3.22), we get

σ̄ = G2

4π2

{
(gV + gA)

2πs

(
1 − m2

e

s

)2

+ (gV − gA)
2π

6

(
1 − m2

e

s

)2

×
[
(s − m2

e) + 2[(k + p) · p][(k + p) · k](1 + 2m2
e

s

)

(k · p)
]

− (g2
V − g2

A)
π(s − m2

e)
2

s2
m2

e

}

= G2

4π
s

(
1 − m2

e

s

)2[
(gV + gA)

2 + 1

3
(gV − gA)

2
(

1 + m2
e

s
+ m4

e

s2

)

− (g2
V − g2

A)
m2

e

s

]
. (3.23)

In the last step we have applied relation (3.18) several times, as well as the relations
k2 = 0 and p2 = m2

e . Ordering terms yields the result

σ̄ = G2

3π
s

(
1 − m2

e

s

)2{
(g2
V + gAgV + g2

A) − (g2
V + 4gAgV − 5g2

A)
m2

e

8s

+ 1

2
(gV − gA)

2m
4
e

s2

}
. (3.24)

For large scattering energies, me can be neglected compared to the centre-of-mass
energy E = √

s:

σ̄ (νμ + e− → νμ + e−) � G2s

3π
(g2
V + gV gA + g2

A) . (3.25)

3.3 ν̄μ–e− Scattering

For ν̄μ–e− scattering one simply has to exchange kμ and k′
μ (the incoming antineutrino

corresponds to an outgoing neutrino of negative energy). Then σ̄ (ν̄μ + e− → ν̄μ + e−)
follows in analogy to (3.8):

1

2

∑

s,s′,t,t ′
|M|2 = 32(gV + gA)

2(p · k′)(p′ · k)

+ 32(gV − gA)
2(p′ · k′)(p · k) − 32(g2

V − g2
A)m

2
e(k · k′) .

(3.26)



86 3 Limitations of Fermi Theory

We would have obtained the same expression if we had replaced gA by −gA in the
final results of the previous section. This procedure yields, for example,

σ̄ (ν̄μ + e− → ν̄μ + e−) = G2s

3π
(g2
V − gAgV + g2

A) (3.27)

for large scattering energies.
Now, according to (3.20), s ≈ 2meEνμ or 2meEν̄μ , if Eνμ or Eν̄μ , respectively,

denotes the scattering energy of the (anti)neutrino in the laboratory frame. The exper-
iment therefore has to be compared with the theoretical prediction

σ̄

Eν/ν̄
= 2G2me

3π
(g2
V ± gAgV + g2

A) . (3.28)

With the value of G from muon decay we have G2me = 2.707 × 10−41 cm2/GeV,
and hence comparison with the experiment (3.1) yields

g2
V + gV gA + g2

A = 0.252 ± 0.045 ,
(3.29)

g2
V − gV gA + g2

A = 0.226 ± 0.174 .

Both expressions are of the same order in the limits of experimental errors. This tells
us that gV gA has to be small compared to (g2

A + g2
V ), that is either gA or gV is small

compared to one. We therefore obtain two possible solutions:

gV ≈ 0 , gA ≈ ±0.5 , (3.30a)

gV ≈ ±0.5 , gA ≈ 0 . (3.30b)

Which of the two coupling types, (mainly) pure A or pure V coupling, is realized
in nature we cannot decide on the basis of experiments concerning electron–neutrino
scattering alone. For this we need further experiments which are sensitive to neutral
weak currents (see examples for further explanation). At present the best data values
are2

gV = 0.043 ± 0.063 , gA = −0.545 ± 0.056 . (3.31)

Hence the experiments give evidence of a nearly pure axial vector coupling for the
neutral weak current of the electron. The values for gV , gA in (3.30), (3.31) will
be naturally understood within the Weinberg–Salam theory – see the discussion af-
ter (4.108).

EXERCISE

3.1 Muon Neutrino–Electron Scattering Cross Section

Problem. Derive (3.4) for the neutrino–electron scattering cross section.

Solution. The coordinate-dependent spinor wave functions in the incoming and out-
going channel read:

2 T.E. Kim, P. Langacker, M. Levine, H.H. Williams: Rev. Mod. Phys. 53, 211 (1981).
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incoming =
{
ue(x) = (2p0V )−1/2ue(p, s) exp(−ipμxμ)

uνμ(x) = (2k0V )−1/2uνμ(k, t) exp(−ikμxμ) ,
(1a)

outgoing =
{
ue(x) = (2p′0V )−1/2ue(p

′, s′) exp(−ip′
μx

μ)

uνμ(x) = (2k′0V )−1/2uνμ(k
′, t ′) exp(−ik′

μx
μ) .

(1b)

With these wave functions we obtain the following expression for the scattering matrix
element

S(νμe− → νμe−) = −i
∫

dtHint(νμe− → νμe−)

= −i
G√

2

∫
d4x
[
ūνμ(x)γα(1 − γ5)uνμ(x)

]

× [ūe(x)γ
α(gV − gAγ5)ue(x)

]

= −i
G√

2
(2π)4

δ4(p′ + k′ − p − k)√
16V 4k0p0k′0p′0

× (ūνμ(k′, t ′)γα(1 − γ5)uνμ(k, t)
)

× (ūe(p
′, s′)γ α(gV − gAγ5)ue(p

′, s′)
)

. (2)

Here we have used (3.3) for the interaction Hamiltonian and performed the space-time
integration over the plane waves, yielding the δ function.

According to the standard rules for Feynman graphs (see Appendix A.3) we get the
scattering cross section by first calculating the transition rate per unit volume,

W(νμe− → νμe−) = 1

V T
|S(νμe− → νμe−)|2 , (3)

and then normalizing on unit flux of incoming neutrinos, as well as dividing by the
density of target electrons. The neutrino flux in the laboratory system is given by
(Appendix A.3)

Jν =
√
(kνpν)2 − m2

νm
2
e

k0p0V
= kμp

μ

k0p0V
. (4)

The normalization of the spinors (1) is chosen such that one particle is present in
volume V :

�e = 1

V
. (5)

To obtain a physical cross section we still have to sum over all observed final states.
Since one has to sum over all scattered particles the formula for the total cross section
is given by

σst (νμe− → νμe−) = V

∫
d3p′

(2π)3
V

∫
d3k′

(2π)3
∑

s′,t ′

W(νμe− → νμe−)
JνV −1

. (6)

Here the indices s, t denote that this is the cross section for certain polarizations of
electron and neutrino before scattering. When averaging over initial spin states we
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have to pay attention to the fact that electrons can assume two spin states, while neu-
trinos appear in only one state of negative helicity:

σ̄ = 1

2

∑

s,t

σst (νμe− → νμe−) . (7)

If we combine (2)–(7) and furthermore make use of the relation (cf. (2.15), (2.16))
(
(2π)4δ4(p′ + k′ − p − k)

)2 → V T (2π)4δ4(p′ + k′ − p − k) , (8)

we obtain

σ̄ = G2

2π2

1

16(k · p)
∫

d3k′

2k′
0

∫
d3p′

2p′
0
δ4(p′ + k′ − p − k)

1

2

∑

ss′,t t ′
|M|2 , (9)

where M is given by (3.5).

3.4 High-Energy Behavior of Neutrino–Electron Scattering

The first problem of Fermi’s theory of beta decay is the existence of weak neutral
currents, which it did not predict. Nevertheless, we have observed that these can be
easily introduced into the theory. The generalization, however, appears to be quite
crude and not very elegant. The second problem of Fermi’s theory lies in the fact that
the cross section for neutrino-lepton scattering in general increases with the square of
the centre-of-mass energy, that is with s (see (3.17), (3.25), (3.27)). This holds also
for the “normal” processes with charged currents, like the two displayed in Fig. 3.3.

Fig. 3.3. Neutrino–electron
scattering in Fermi theory.
Each scattered particle
changes its charge

In these two cases one finds the following expressions for the averaged cross sec-
tions (cf. Exercises 3.2 and 3.3):

σ̄ (ν̄ee− → e−ν̄e) = G2

3π
s

(
1 − m2

e

s

)(
1 + m6

e

s3

)
, (3.32)

σ̄ (νie
− → l−

i νe) = G2

π
s

(
1 − m2

i

s

)2

, i = e,μ, τ . (3.33)

When calculating the cross section for νi + e− → l−
i + ν one furthermore observes

that it is completely isotropic (this is not valid for ν̄e + e− → e− + ν̄e). Hence only the
partial wave with angular momentum zero (s wave) contributes to the scattering! This
can be intuitively understood: the current–current coupling of the Fermi interaction
allows scattering only if both particles are located at the same point. Thus neutrino and
electron have to come very close together during the scattering process; the collision
must be central. This demands a vanishing relative angular momentum.
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The general partial wave analysis is explicitly treated in a later section. Here we
only use the result, that is (3.80) and (3.81). The differential cross section in the centre-
of-mass system is

(
dσ

dΩcm

)

λ′
1,λ

′
2λ1,λ2

= 1

p2

∣∣∣∣
∑

J

(2J + 1)dJλλ′(θ)T Jλ′
1,λ

′
2,λ1,λ2

∣∣∣∣
2

, (3.34)

if the two particles have helicities λ1λ2 before and λ′
1λ

′
2 after the collision. Here p is

the absolute value of the momentum of the particles in the centre-of-mass frame (cf.
Exercise 3.4)

p2 = 1

4s

(
(s − m2

1 − m2
2)

2 − 4m2
1m

2
2

) s→∞−→ s

4
, (3.35)

and λ = λ1 − λ2 , λ′ = λ′
1 − λ′

2. T denotes the matrix elements of the transition oper-
ator T̂ , which is defined in (3.67).

As we already know, an important consequence of the V–A coupling is that mass-
less particles experience an interaction only if they have negative helicity. For particles
with non-vanishing mass, the operator (1 −γ5) projects approximately on negative he-
licity if the particles move relativistically, that is p 
 m, as was shown in (1.21). It
therefore holds that

T J
λ′

1λ
′
2,λ

′
1λ

′
1

s→∞−→ T J−1−1,−1−1δλ′
1 −1δλ′

2 −1δλ1 −1δλ2 −1 . (3.36)

In the following we therefore simply write T without indices.
Hence, after averaging over initial helicities, we see that the scattering cross section

in the limit of high energies is given by

dσ

dΩCM

s→∞−→ 1

4p2

∣∣∣∣
∑

J

(2J + 1)dJ00(θ)T
J

∣∣∣∣
2

= 1

s

∣∣∣∣
∑

J

(2J + 1)PJ (cos θ)T J
∣∣∣∣
2

= 1

s

∣∣∣∣∣
∑

J

√
4π

2J + 1
YJ0(cos θ)T J

∣∣∣∣∣

2

, (3.37)

where (3.35) and YJ0 = √
(2J + 1)/4πPJ was used. The unitarity of the scattering

operator, Ŝ†Ŝ = 1, means that the scattering probability in each single partial wave
reaches at most the value 1. The contribution of the s wave (J = 0) to the total cross
section is therefore limited:

σ̄ = 4π
dσ̄

dΩ
(J = 0) = 4π

s

∣∣T J=0
∣∣2 ≤ 4π

s
. (3.38)

This value is called the unitarity bound.
Since the calculated averaged cross section of the reaction νie− → l−

i νe is exactly
isotropic, the sole contribution to the scattering comes from the s wave according
to (3.37). We therefore have the physical constraint (s 
 m2

i )

σ(νie
− → liνe) = G2s

π
≤ 4π

s
,

yielding the condition

s ≤ 2π

G
= (734 GeV)2 . (3.39)
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The critical value is reached when every particle in the centre-of-mass frame obtains
an energy of about 367 GeV. We are, however, still far from reaching this value ex-
perimentally; because of (3.20), s ≈ 2meE

lab
ν in the electron rest frame, the critical

neutrino energy in the laboratory system is

Ecrit
ν = 5.27 × 108 GeV . (3.40)

The fact that the cross section σ ∝ G2s/π can formally exceed the unitarity bound
does not imply that unitarity is actually violated, since σ was calculated from pertur-
bation theory. Hence it only implies that one has to consider higher-order terms of the
perturbation series (multiple scattering) or, in other words, that one cannot simply use
plane waves for the scattering particles. Typical processes are depicted in Fig. 3.4. To
study the high-energy behavior of the theory, one therefore has to calculate higher-
order processes. This will lead us to another difficulty of the Fermi theory, as we shall
see in a moment.

Fig. 3.4. Contributions of
the higher order to neutrino–
electron scattering

EXERCISE

3.2 The Spin-Averaged Cross Section for Antineutrino–Electron Scattering

Problem. Calculate the spin-averaged cross section for antineutrino–electron scat-
tering according to Fig. 3.3a and the angular distribution in the centre-of-mass frame.

Solution. We use the same notation as in the first section of this chapter. The spinors
for the incoming and outgoing particles are then as follows

incoming =
{
ue(x) = (2p0V )−1/2ue(p, s) exp(−ipμxμ)

uν̄e(x) = (2k0V )−1/2vνe(k, t) exp(+ikμxμ)
, (1a)

outgoing =
{
ue(x) = (2p′0V )−1/2ue(p

′, s′) exp(−ip′
μx

μ)

uν̄e(x) = (2k′0V )−1/2vνe(k
′, t ′) exp(+ik′

μx
μ)

. (1b)

Writing down the interaction Hamiltonian, one has to pay attention to the fact that in
the spirit of the Feynman rules the antineutrino with (kμ′, t ′) is an “incoming” parti-
cle of negative energy, while the incoming antineutrino with (kμ, t) is an “outgoing”
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particle. Here the only possibility is

Hint(ν̄ee− → ν̄ee−) = G√
2

∫
d3xJ (e)†α (x)J α(e)(x) (2)

with the scattering matrix element

S(ν̄ee− → ν̄ee−) = −i
G√

2
(2π)4

δ4(p′ + k′ − p − k)√
16V 4k0p0k

′
0p

′
0

M , (3)

where

M = [ūνe(k, t)γα(1 − γ5)ue(p, s)
][
ūe(p

′, s′)γ α(1 − γ5)uνe(k
′, t ′)
]

. (4)

Fig. 3.5. Notation for the cal-
culation of antineutrino–elec-
tron scattering

Here we have already performed the space-time integration. We can literally copy
from Exercise 3.1 all steps which lead from (3) to the averaged cross section. If we
want to get the angular distribution of the scattering, we must not, however, integrate
over the scattering angle of the antineutrino and therefore have to separate the integral
over d3k′ into an integral over d|k′ | and the angular part dΩ (here we work in the
centre-of-mass frame):

dσ̄

dΩ
(ν̄ee− → ν̄ee−)

= V

∫
d3p′

(2π)3
V

∫
d|k′ |
(2π)3

|k′ |2 1

2

∑

s,s′,t,t ′

|S|2k0p0V

(k · p)V −1(V T )

= G2

2π2

1

16(k · p)
∫

d3p′

2p′
0

∫ |k′ |2d|k′ |
2k′

0

× δ4(p′ + k′ − p − k)
1

2

∑

s,s′,t,t ′
|M|2 (5)

with the matrix element M from (4). The result (5) corresponds exactly to Exer-
cise 3.1, (3). The matrix element splits into parts, containing physically incoming and
outgoing particles. For the first we find, analogously to (3.6)

∑

s,t

v̄νe(k, t)γα(1 − γ5)ue(p, s)ūe(p, s)γβ(1 − γ5)vνe(k, t)

= Tr{γα(1 − γ5)(/p + me)γβ(1 − γ5)/k}
= 2 Tr{γα(/p + me)γβ(1 − γ5)/k}
= 2pμkν Tr{γαγμγβγν(1 + γ5)}
= 8
[
pαkβ − gαβ(p · k) + pβkα + iεαμβνp

μkν
]

, (6)
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where we have dropped the term proportional to me since it contains an odd number
of γ matrices. The second term of M yields
∑

s′,t ′
ūe(p

′, s′)γ α(1 − γ5)vνe(k
′, t ′)v̄νe(k

′, t ′)γ β(1 − γ5)ue(p
′, s′)

= Tr{γ α(1 − γ5)/k
′γ β(1 − γ5)(/p

′ + me)}
= 2 Tr{γ α/k′γ β(1 − γ5)(/p

′ + me)}
= 2k′

μp
′
ν Tr{γ αγ μγ βγ ν(1 + γ5)}

= 8
[
k′αp′β − gαβ(k′ · p′) + k′βp′α − iεαμβνk′

μp
′
ν

]
. (7)

A comparison shows that (6) emerges from (3.6) by substituting k → p, k′ → k. Anal-
ogously, (7) follows from (3.7) by substituting p → k′, with gV = gA = 1. With these
substitutions we obtain, in analogy to (3.8),

1

2

∑

s,s′,t,t ′
|M|2 = 128(k′ · p)(p′ · k) . (8)

Since the scattering angle θ is to be measured in the centre-of-mass system, we con-
tinue the calculation in this reference system:

p + k = p′ + k′ = 0 , (9)

s = (p + k)2 = (p0 + k0)
2 = (p′

0 + k′
0)

2 . (10)

The identity of both expressions before and after scattering is guaranteed by the δ
function in (5). For the same reason, and because k2 = k′2 = 0, it follows that

(k′ · p) = [k′ · (p′ + k′ − k)
]= (k′ · p′) − (k′ · k) , (11a)

(p′ · k) = [(p + k − k′) · k]= (p · k) − (k′ · k) . (11b)

By taking the squares, we find that the definition of s (10) yields

(p · k) = 1

2
(s − m2

e) = (k′ · p′) . (12)

Finally, because k0 = |k|, k′
0 = |k′ |, we have

(k · k′) = k0k
′
0 − k · k′ = k0k

′
0(1 − cos θ) . (13)

With the help of (11)–(13) we obtain:

(k′ · p)(p′ · k) =
[

1

2
(s − m2

e) − k0k
′
0(1 − cos θ)

]2

. (14)

To express k0 and k′
0 in terms of s we combine (9) and (10),

k0 = √
s −
√

p2 + m2
e

= √
s −
√

k2 + m2
e

= √
s −
√
k2

0 + m2
e (15)
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and solve for k0, giving

k0 = (2
√
s)−1(s − m2

e) = k′
0 . (16)

The last equality holds, since (15) is also valid for k′
0. Then we have

(k′ · p)(p′ · k) = 1

4
(s − m2

e)
2
[

1 − 1

2

(
1 − m2

e

s

)
(1 − cos θ)

]2

= 1

16
(s − m2

e)
2
[

1 + m2
e

s
+
(

1 − m2
e

s

)
cos θ

]2

. (17)

The differential cross section is therefore given, according to (5) and (8), by

dσ̄

dΩ
= G2

8π2
(s − m2

e)

[
1 + m2

e

s
+
(

1 − m2
e

s

)
cos θ

]2

×
∫

d3p′

p′
0

∞∫

0

k′
0 dk′

0 δ
4(p′ + k′ − p − k) . (18)

Here we have again made use of (12) and the relation k′
0 = |k′ |. The remaining inte-

grals are easily performed by splitting the space-time δ function into time-like and the
three-dimensional spatial parts:

δ(p′
0 + k′

0 − p0 − k0) = δ(p′
0 + k′

0 − √
s) , (19a)

δ3(p′ + k′ − p − k) = δ3(p′ + k′) , (19b)

where we have exploited (9) and (10). Now, because |k′ | = k′
0, the momentum integral

yields

∞∫

0

k′
0 dk′

0

∫
d3p′(p′2 + m2

e

)−1/2
δ
(
k′

0 +
√

p2 + m2
e − √

s
)
δ3(p′ + k′)

=
∞∫

0

k′
0 dk′

0

(
k′

0
2 + m2

e

)− 1
2 δ
(
k′

0 +
√

k′
0

2 + m2
e − √

s
)

=
∞∫

me

(x2 − m2
e)

2x2
δ(x − √

s)dx = (s − m2
e)

2s
, (20)

where x = k′
0 +
√
k′

0 + m2
e has been substituted. The differential cross section is then

dσ̄

dΩ
(ν̄ee− → ν̄ee−) = G2

16π2
s

(
1 − m2

e

s

)2[
1 + m2

e

s
+
(

1 − m2
e

s

)
cos θ

]2

. (21)

In the limit s 
 m2
e we have

dσ̄

dΩ

∣∣∣∣
θ=0

≈ G2s

4π2
,

dσ̄

dΩ

∣∣∣∣
θ=π

≈ 0 . (22)

This is easily understood if we consider that the antineutrino has positive helicity, and
in the limit of high energies only the negative helicity state of the electron participates
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Fig. 3.6. Allowed and forbidden antineutrino–electron scattering. Note that spins cannot flip,
because the projection of the angular momentum on the scattering axis is conserved. In the case
of νμ − e− scattering this argument is not applicable, since the total helicity in the initial and
final state vanishes

in the interaction. The situation is depicted in the Fig. 3.6 as seen for the centre-of-
mass frame. The total cross section is obtained via the formula

∫
dΩ(a + b cos θ)2 = 2π

+1∫

−1

d(cos θ)(a + b cos θ)2

= 2π

(
a2 cos θ + ab cos2 θ + b2/3

cos3 θ

)∣∣∣∣
+1

−1

= 4π

(
a2 + b2

3

)
, (23)

as

σ̄ (νee− → νee−) = G2

3π
s

(
1 − m2

e

s

)2(
1 + m2

e

s
+ m4

e

s2

)

= G2

3π
s

(
1 − m2

e

s

)(
1 + m6

e

s3

)
. (24)

Thus (3.32) has been derived.

EXERCISE

3.3 The Spin-Averaged Cross Section of Muon Neutrino–Electron Scattering

Problem. Calculate the spin-averaged cross section for muon neutrino–electron scat-
tering according to Fig. 3.3b. Show that the cross section is isotropic in the centre-of-
mass frame.

Solution. In this case we deal exclusively with particles; the spinors are therefore
given by

ue(x) = (2p0V )
−1/2ue(p, s) exp(−ipμx

μ) ,

uνμ(x) = (2k0V )
−1/2uνμ(k, t) exp(−ikμx

μ) ,
(1)

uμ(x) = (2p′
0V )

−1/2uμ(p
′, s′) exp(−ip′

μx
μ) ,

uνe(x) = (2k′
0V )

−1/2uνe(k
′, t ′) exp(−ik′

μx
μ) .
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Scattering according to the Hamiltonian

Hint(νμe− → μ−νe) = G√
2

∫
d3x J (e)+

α (x)J α(μ)(x) (2)

yields the scattering matrix element

S(νμe− → μ−νe) = −i
G√

2
(2π)4

δ4(p′ + k′ − p − k)√
16V 4k0p0k

′
0p

′
0

M , (3)

where

M = [ūνe(k
′, t ′)γα(1 − γ5)ue(p, s)

][
ūμ(p

′, s′)γ α(1 − γ5)uνμ(k, t)
]

. (4)

Fig. 3.7. Notations for muon
neutrino–electron scattering

The computation proceeds completely analogously to that in Exercise 3.2; hence we
obtain (|k′ | = k′

0)

dσ̄

dΩ
(νμe− → μ−νe)

= G2

8π2

1

16(k · p)
∫

d3p′

p′
0

∫
k′

0 dk′
0 δ

4(p′ + k′ − p − k)
1

2

∑

s,s′,t,t ′
|M|2 . (5)

Since the neutrino is massless, the calculation for the electronic part of
∑ |M|2 is

similar to (6) of Exercise 3.2. We only have to replace k by k′:
∑

s,t ′
uνe(k

′, t ′)γα(1 − γ5)ue(p, s)ue(p
′, t ′)γβ(1 − γ5)uνe(k

′, t ′)

= 8
[
pαk

′
β − gαβ(p · k′) + pβk

′
α + iεαμβνp

μk′ν] . (6)

For the muonic part we are able to use Exercise 3.2, if we substitute k for k′ and mμ

by me. This yields
∑

s′,t
uμ(p

′, s′)γ α(1 − γ5)uνμ(k, t)uνμ(k, t)γ
β(1 − γ5)uμ(p

′, s′)

= 8
[
kαp′β − gαβ(k · p′) + kβp′α − iεαμβνkμp

′
ν

]
. (7)

Combining (6) and (7), it follows as in Exercise 3.2 that

1

2

∑

s,s′,t,t ′
|M|2 = 128 × (k · p)(p′ · k′) . (8)

As in Exercise 3.2, (12), we have (p′ · k′) = 1
2 (s − m2

μ); thus we obtain, this time
without lengthy intermediate calculation,

dσ

dΩ
(νμe− → μ−νe) = G2

π2

1

2
(s − m2

μ)

∫
d3p′

p0

∫
dk′

0 δ
4(p′ + k′ − p − k) . (9)
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To compute the momentum integral we refer to Exercise 3.2, and consider the fact that
the muon mass mμ in the final state enters instead of me:

∞∫

0

dk′
0 k

′
0

∫
d3p′

√
p′2 + m2

μ

δ
(
k′

0 +
√

p′2 + m2
μ − √

s
)
δ3(p′ + k′)

= s − m2
μ

2s
. (10)

As a final result we therefore obtain in the centre-of-mass frame

dσ

dΩ
(νμe− → μ−νe) = G2s

4π2

(
1 − m2

μ

s

)2

, (11)

that is, the cross section does not depend on the scattering angle θ . Integrating over all
angles yields a factor 4π ; hence we have

σ(νμe− → μ−νe) = G2

π
s

(
1 − m2

μ

s

)2

(12)

in agreement with (3.33) for i = μ.
For neutrinos of other leptonic families (e, τ ) the calculation proceeds identically,

but the Hamiltonian (2) is in general given by

Hint(νie
− → li ν̄e) = G√

2

∫
d3x J (e)

†

α J α(i) , i = e,μ, τ . (13)

For the final result one simply has to replace the muon mass everywhere by the mass
mi of the charged lepton li .

One more remark: In the case i = e, that is for νee → νee, the above equation de-
scribes only the scattering by the charged weak current. In principle one has to add the
scattering by the neutral weak current, which cannot be experimentally distinguished
from the former. A similar scattering process was studied in Exercise 3.1. Since the
final states cannot be distinguished, both scattering matrix elements have to be added
coherently!

EXERCISE

3.4 High-Energy Scattering

Problem. Derive (3.35).

Solution. The variable s is defined as the square of the total energy in the centre-of-
mass frame (cf. (3.18)); hence it holds that

s = (E1 + E2)
2 =
(√

m2
1 + p2 +

√
m2

2 + p2
)2

, (1)

since |p1 | = |p2 | = p in the centre-of-mass frame. This relation must now be solved
for p. By performing the multiplication on the right-hand side, we first of all obtain

s = m2
1 + m2

2 + 2p2 + 2
√
m2

1 + p2
√
m2

2 + p2 , (2)
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and from this

(s − m2
1 − m2

2 − 2p2)2 = 4(m2
1 + p2)(m2

2 + p2)

= (s − m2
1 − m2

2)
2 − 4p2(s − m2

1 − m2
2)

2 + 4p4

= 4m2
1m

2
2 + 4(m2

1 + m2
2)p

2 + 4p4 . (3)

Here some terms cancel, leaving

(s − m2
1 − m2

2 − 2p2) − 4p2s = 4m2
1m

2
2 (4)

and hence

p2 = 1

4s

[
(s − m2

1 − m2
2)

2 − 4m2
1m

2
2

]
. (5)

In the limit s → ∞ one can neglect the masses of the particles, and (3.35) follows
from (5):

p2 → s

4
(s → ∞) . (6)

3.5 Supplement: Scattering Formalism for Spin- 1
2 Particles

The description of the scattering of spin- 1
2 particles is more complicated than that of

spinless particles owing to the possibility of spin flips. In a relativistic description we
have the further complication that a Lorentz transformation in general changes the
direction of the spin vector. When considering the polarization of the electron in the
muon decay we took this into account by defining the spin direction in the rest frame
and then properly transforming to the laboratory frame (2.23)

s
μ

(0) = (0, s) → sμ =
(

p · s

m
, s + (p · s)p

m(E + m)

)
. (3.41)

Defining the spin vector in the rest frame of the particle has the disadvantage that
in a scattering process between two particles four different spins appear (two before
and two after the collision), which are defined in four different reference frames and
first have to be transformed to a common reference frame, for example the centre-of-
mass frame. To define the spin vector in the respective rest frame has the additional
disadvantage of failing for neutrinos, since one cannot define a rest frame for massless
particles.

For these reasons it is convenient in relativistic particle physics to classify states of
a particle by means of the helicity instead of its spin vector. We have already encoun-
tered the helicity operator

Λ̂ = Σ · p

|p| with 2J = Σ (3.42)

in Chap. 1 when we discussed the neutrino states. The helicity specifies the component
of the spin- 1

2 Σ in the direction of the particle momentum p. Note that Ĵ = 1
2 Σ̂ , which
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implies that the eigenvalues of the helicity operator are ±1. It is true that the helicity
is not a Lorentz invariant quantity, but being a scalar product of two 3-vectors it is at
least rotationally invariant, and it also has the advantage of being properly defined for
massless particles. The trick is simply to use the direction of motion of the particle in
the observer’s frame as a reference axis to fix the direction of the spin vector.

For massive particles one can use both types of description. To this end we start
from the rest frame of the particle. We assume that the particle has rest mass m and
spin s. Then the particle states are described by the projection μ of the spin onto the z
axis; we denote it in the form

|p = 0,μ〉 , −s ≤ μ ≤ s . (3.43)

For Dirac particles, in the coordinate representation, these states are given by

|p = 0,μ〉 = (2mV )− 1
2

(
χμ
0

)
, χ+ 1

2
=
(

1
0

)
, χ− 1

2
=
(

0
1

)
. (3.44)

In the standard treatment one obtains the corresponding state, where the particle moves
with non-vanishing momentum p, by a Lorentz transformation L(p). According to
Appendix A.4, for Dirac particles this transformation is accomplished by a unitary
transformation

Û (L(p)) = exp(iξn · K̂) = exp

[
ξn ·
(
t∇ + x

∂

∂t
− 1

2
α

)]
, (3.45)

where ξ = artanh(p/p0) is the rapidity and n = p/p is the unit vector in the direction
of motion (p ≡ |p|). Therefore we have

|p,μ〉 = Û(L(p))|p = 0,μ〉 . (3.46)

We now look for a transformation that transforms eigenstates of the z component of
the spin into helicity eigenstates. We proceed in several steps. At first we consider the
special case where the particle moves in the z direction as seen from the observer’s
frame. The helicity eigenstates in this system are just the eigenstates of the spin projec-
tion onto the z axis. One obtains them from the corresponding states in the rest frame
by applying the transformation Û (L(pez)), since this transformation commutes with
the operator Ĵz. We therefore have

|pez,μ〉 = Û (L(pez))|p = 0,μ = λ〉 . (3.47)

From this state one can generate the helicity eigenstate of a particle moving in an
arbitrary direction by applying a convenient rotation operator. Let

n = p

p
= (sin θ cosφ, sin θ sinφ, cos θ) (3.48)

be the corresponding direction vector. Then one can define the desired helicity state

|p, λ〉 = R̂(φ, θ,−φ)Û(L(pez))|p = 0,μ = λ〉 , (3.49)

where according to Appendix C the rotation is described by

R̂(φ, θ,−φ) = exp

(
− i

2
φŝz

)
exp

(
− i

2
θ ŝy

)
exp

(
+ i

2
φŝz

)
. (3.50)
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The Euler angles of the so-defined rotation are chosen in such a way that ez transforms
into the unit vector n. The third angle which describes the first rotation around the z
axis can be arbitrarily chosen and is fixed here by demanding that R̂(φ,0,−φ) = 1
for all φ. Now we still have to construct the spin eigenstate corresponding to the rest
frame, which has to be inserted into (3.49). This state is found by inverting (3.46).
Combining everything one gets

|p, λ〉 = R̂(φ, θ,−φ)Û(L(pez))Û (L
−1(p))|p,μ = λ〉 , (3.51)

where, of course, L−1(p) = L(−p). Since R̂(φ, θ,−φ) exactly transforms the vector
pez into the vector p, we have

R̂(φ, θ,−φ)Û(L(pez))R̂
−1(φ, θ,−φ) = Û (L(p)) . (3.52)

Hence we can also write (3.51) in the form

|p, λ〉 = Û (L(p))R̂(φ, θ,−φ)Û(L−1(p))|p,μ = λ〉 . (3.53)

The interpretation of this formula is obvious: one obtains the helicity eigenstate from
the corresponding spin state (in the observer’s frame) by first transforming into the
rest frame, then rotating in the direction of motion, and finally returning to the original
reference frame.

Fig. 3.8. Two-body helicity
states for spin- 1

2 particles.
λ = 0 if the spin points along
the direction of motion. The
second case shows λ = 1

The next step consists in constructing states of good helicity for two particles. Here
we are interested in the centre-of-mass representation, where p1 + p2 = 0. Since both
momenta point in opposite directions and have equal absolute values, this state is
uniquely determined by the quantities

p = |p1 | = |p2 | ,

(θ,φ) = (θ1, φ1) = (π − θ2, φ2 ± π) ,

λ1 , λ2 .

(3.54)

For this state the following relation holds:

|p, θ,φ,λ1, λ2 〉 = |p1, λ1 〉|p2, λ2 〉 = |p1, λ1 〉| − p1, λ2 〉 . (3.55)

As the total helicity of the two-particle state one defines

λ = λ1 − λ2 . (3.56)

Note that λ changes sign when the two particles are exchanged. Our Dirac wave func-
tions (see Appendix A.2) are normalized in such a way that for one-particle states the
relation

〈p′, λ′ |p, λ〉 = (2π)3

V
δ3(p − p′)δλλ′ (3.57)

is fulfilled. Accordingly the two-particle states satisfy

〈p′
1, λ

′
1 |p1, λ1 〉〈p′

2, λ
′
2 |p2, λ2 〉

= (2π)6

V 2
δ3(p1 − p′

1)δ
3(p2 − p′

2)δλ1λ
′
1
δλ2λ

′
2

. (3.58)
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Transforming to new coordinates Pα = (pα1 + pα2 ) and kα = 1
2 (p

α
1 − pα2 ), we have

δ3(p1 − p′
1)δ

3(p2 − p′
2) = δ3(P − P ′)δ3(k − k′) , (3.59)

since θ,φ and θ ′, φ′ are just the polar angles of the relative momenta of the two parti-
cles. This transformation holds, since for a coordinate transformation from the set of
N variables xi to the set yα , from the normalization condition
∫
δ(yα)d

Ny =
∫
δ(xi)d

Nx

one can derive the relation

δ(yα(xi)) =
∣∣∣∣det

(
∂yα

∂xi

)∣∣∣∣
−1

δ(xi) .

Hence the centre-of-mass systems of the incoming and outgoing particles coincide. In
the common centre-of-mass system it then holds that |k| = p (cf. (3.54)), |k′ | = p′,
and therefore

δ(|k| − |k′ |) = δ(P 0 − P 0 ′
)
dP 0

d|k| (3.60)

with

dP 0

d|k| = d

dp

(√
M2

1 + p2 +
√
M2

2 + p2
)

= pP 0

p0
1p

0
2

= p
√
s

p0
1p

0
2

, (3.61)

where s = P 2 as usual.
Inserting this into (3.59), we obtain a four-dimensional δ function for the centre-

of-mass momentum. It is therefore convenient to separate the plane-wave part of the
centre-of-mass motion:

|p, θ,φ,λ1, λ2 〉 = (2π)3

V

( √
s

pp0
1p

0
2

) 1
2 |θ,φ,λ1, λ2 〉|P 〉 , (3.62)

with the orthogonality relations

〈θ ′, φ′, λ′
1, λ

′
2 |θ,φ,λ1, λ2 〉 = δ(cos θ − cos θ ′)δ(φ − φ′)δλ1λ

′
1
δλ2λ

′
2

, (3.63a)

〈P ′ |P 〉 = δ4(P − P ′) . (3.63b)

Thus the norm of the state (3.62) agrees with the right-hand side of (3.58), as one may
readily prove by calculation.

According to our general rules, the differential cross section is given by the square
of the transition amplitude integrated over all final states and divided by the space-
time volume V T , as well as by the flux of incoming particles J p and the density of
target particles. In the centre-of-mass frame (p2 = −p1 ≡ −p)

J p = v1 − v2

V
V −1 = 1

V 2

(
p1

p0
1

− p2

p0
2

)

= p

V 2

(
1

p0
1

+ 1

p0
2

)
= p

√
s

V 2p0
1p

0
2

. (3.64)
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Hence in the centre-of-mass frame we obtain

dσ

dΩ
= V 2p0

1p
0
2

p
√
sV T

V

∫
d3p′

1

(2π)3
V

∞∫

0

d|p′
2 ||p′

2 |2

(2π)3

× |〈p′, θ,φ,λ′
1, λ

′
2 |Ŝ − 1|0,0, λ1, λ2 〉|2

= V 4p0
1p

0
2

p
√
s(2π)6V T

∫
d3P ′

∞∫

0

dp′p′2 (2π)12

V 4

( √
s

pp0
1p

0
2

)2

× |〈P ′ |〈θ,φ,λ′
1, λ

′
2 |Ŝ − 1|0,0, λ1, λ2 〉|P 〉|2 . (3.65)

Here we have assumed that the particles enter along the z axis θ = φ = 0, and are
scattered in the direction (θ,φ). Ŝ is the scattering operator and is given by

Ŝ = lim
t→∞ T

[
exp

(
−i

t∫

−t

dt ′Ĥ
)]

, (3.66)

where T denotes the time-ordered product of operators. Since the centre-of-mass en-
ergy is conserved during the scattering process if external fields are absent, the scat-
tering matrix element differs from zero only if P ′ = P . Therefore it is convenient to
introduce the so-called transition matrix (T matrix) by the following definition

〈P ′, αf |Ŝ − 1|P,αi〉 = 2iδ4(P − P ′)〈αf |T̂ |αi〉 , (3.67)

where we have abbreviated further quantum numbers of the initial and final state by
ai and af respectively. If we insert this definition into (3.65) and again make use of
the symbolic relation (2π)4δ4(0) = V T , we obtain

dσ

dΩ
= s

1
2 (2π)2 · 4

p3p0
1p

0
2

∫
d3P ′

∞∫

0

dp′p′2δ4(P − P ′)

× |〈θ,φ,λ′
1, λ

′
2 |T̂ |0,0, λ1, λ2 〉|2 . (3.68)

Because of (3.60), (3.61) we have

δ4(P − P ′) = δ3(P − P ′)δ(p − p′)
p0

1p
0
2

p
√
s

(3.69)

so that we get the differential cross section in the centre-of-mass system after perform-
ing the momentum-space integrals:

dσ

dΩ
= (4π)2

p2
|〈θ,φ,λ′

1, λ
′
2 |T̂ |0,0, λ1, λ2 〉|2 . (3.70)

We have therefore found the general expression for the relativistic two particle scat-
tering cross section.

The dependence of the transition matrix element in (3.70) on the scattering an-
gle becomes clearer, if one performs a partial-wave decomposition. This is done by
transforming the functions |θ,φ,λ1, λ2 〉, while specifying a certain direction of the
relative momentum, into a superposition of functions with good angular momentum,
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or, in other words, by projecting on good angular momentum. The functions which
accomplish this are the Wigner D functions,3

|J,M,λ1, λ2 〉 =
√

2J + 1

4π

2π∫

0

dφ

×
+1∫

−1

d cos θDJ∗
Mλ(φ, θ,−φ) |θ,−φ,λ1, λ2 〉 , (3.71)

where again λ = λ1 − λ2.
The inversion is given by

|θ,φ,λ1, λ2 〉 =
√

2J + 1

4π

∑

J,M

DJ
Mλ(φ, θ,−φ) |J,M,λ1, λ2 〉 . (3.72)

The new functions fulfill the eigenvalue equations

Ĵ 2 |J,M,λ1, λ2 〉 = J (J + 1)|J,M,λ1, λ2 〉 , (3.73a)

Ĵz|J,M,λ1, λ2 〉 = M|J,M,λ1, λ2 〉 , (3.73b)

and their orthogonality relation is given by

〈J ′,M ′, λ′
1, λ

′
2 |J,M,λ1, λ2 〉 = δJJ ′δMM ′δλ1λ

′
1
δλ2λ

′
2

. (3.74)

Since angular momentum is conserved in a scattering process of two particles, only
terms with J = J ′ and M = M ′ contribute to the T matrix. Furthermore the value of
the matrix element has to be independent of M , otherwise a certain spatial distribution
would be preferred. Hence we can write

〈θ,φ,λ′
1, λ

′
2 |T̂ |0,0, λ1, λ2 〉 =

∑

J ′,M ′

∑

J,M

√
(2J ′ + 1)

4π

(2J + 1)

4π

× DJ ′ ∗
M ′λ′(φ, θ,−φ)DJ

Mλ(0,0,0)〈J ′,M ′, λ′
1, λ

′
2 |T̂ |J,M,λ1, λ2 〉

=
∑

J,M

(2J + 1)

4π
DJ∗
Mλ′(φ, θ,−φ)DJ

Mλ(0,0,0)

× 〈J ′,M ′, λ′
1, λ

′
2 |T̂ |J,M,λ1, λ2 〉 . (3.75)

With

DJ
m′m(α,β, γ ) = e−iαm′

dJm′m(β)e
−iγm (3.76)

and

dJm′m(0) = δm′m (3.77)

this can be further simplified to yield

∑

J

(2J + 1)

4π
e−i(λ−λ′)φdJλλ′(θ)〈J,λ,λ′

1, λ
′
2 |T̂ |J,λ,λ1, λ2 〉 . (3.78)

3 See E.M. Rose: Elementary Theory of Angular Momentum (Wiley, New York, 1957).
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As already mentioned, the matrix element cannot depend on the value of M ; hence we
can write it symbolically in the form

〈J,λ′
1, λ

′
2 ||T̂ ||J,λ1, λ2 〉 (3.79)

and choose the most convenient value of M , for example M = λ as in (3.78), to evalu-
ate it. In the centre-of-mass frame the differential cross section therefore assumes the
simple form

dσ

dΩ
= |f (θ,φ)|2 (centre-of-mass frame) (3.80)

with

f (θ,φ) = 1

p
e−i(λ−λ′)φ∑

J

(2J + 1)dJλλ′(θ)〈J,λ′
1, λ

′
2 ||T̂ ||J,λ1, λ2 〉 . (3.81)

The unitarity of the scattering operator (3.66), Ŝ†Ŝ = 1, leads to the following formal
equation for the operator of the T̂ matrix, which is defined by (3.67):

Ŝ = 1̂ + 2iT̂ → T̂ − T̂ † = 2iT̂ †T̂ . (3.82)

The matrix elements of the scattering operator satisfy the unitary constraint

|Tf i | ≤ 1 . (3.83)

This can be readily shown by calculating the matrix elements of the unitary relation
Ŝ†Ŝ = 1, given explicitly by

∑
n S

∗
niSnf = δif , and estimating the following

(a) i = f :

δij = 1 =
∑

n

|Sni |2 ≥ |Sii |2 = |1 + 2iTii |2 . (3.84)

Let Tii = x + iy. Then it follows that |1 + 2iTii |2 = |1 + 2ix − 2y|2 = (1 − 2y)2 +
4x2 ≤ 1 or −2y + 4y2 + 4x2 ≤ 0. For fixed y this is fulfilled if |x| ≤

√
1
2y(1 − 2y).

Hence one concludes that y ≤ 1
2 and, therefore, |Tii |2 = x2 + y2 ≤ 1

2y ≤ 1
4 or |Tii | <

1
2 < 1.

(b) i �= f :

1 =
∑

n

|Sni |2 ≥ |Sf i |2 = 4|Tf i |2 → |Tf i | ≤ 1

2
< 1 (3.85)

Of course, one has to assume orthonormality and the closure relation for the functions
which form the basis of the representation of Ŝ.

3.6 Divergences in Higher-Order Processes

We concluded in one of the previous sections of this chapter that the high-energy
behavior of Fermi’s theory is determined by higher-order processes. However, if one
tries to calculate such processes a new difficulty arises. Let us for instance consider the
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contribution of the diagram in Fig. 3.9 to neutrino–electron scattering. The interaction
Hamiltonian at both vertices is

Hint(νee− → e−νe) = G√
2

∫
d3x J (e)†α J α(e)(x) . (3.86)

Fig. 3.9. Neutrino–electron
scattering in second order

According to standard Feynman rules (see Appendix A.3), inner fermion lines are
represented by Dirac propagators; the contribution to the scattering matrix element is
therefore

S(2)(νee− → e−νe)

= −i
G2

2
(2π)4

δ4(p′ + k′ − p − k)√
16V 4k0p0k

′
0p

′
0

×
∫

d4q

(2π)4

[
ue(p

′, s′)γα(1 − γ5)
1

/p + /q
γβ(1 − γ5)ue(p, s)

]

×
[
uνe(k

′, t ′)γ α(1 − γ5)
1

/k − /q − me
γ β(1 − γ5)uνe(k, t)

]
. (3.87)

As required, we have integrated over the 4-momentum qμ exchanged in the first scat-
tering. One observes that this integral over q diverges, since only two powers of q
appear in the denominator

S(2) � G2
∫

d4q

q2
� G2

∞∫

0

q3dq

q2
� G2

∞∫

0

qdq . (3.88)

Such divergences in Feynman graphs of higher order in the Fermi coupling constantG
are in principle nothing new; they also appear in quantum electrodynamics.4 A typical
divergent graph is the self-energy of the photon in lowest order (“vacuum polariza-
tion”), where a quadratically divergent integral over the intermediate momentum q

also arises (Fig. 3.10). In this case, however, the quadratic divergence can be elimi-
nated by demanding gauge invariance for the photon propagator. What remains is a

Fig. 3.10. Vacuum polarization
in QED

logarithmic divergence of the form
∫

dq/q which can be absorbed by renormalizing
the electric charge (“charge renormalization”). This procedure is not applicable to the
divergence (3.88), since there is no gauge principle in Fermi’s theory which could
reduce the order of divergence. In higher-order processes even worse divergences ap-
pear. One says that Fermi’s theory is not renormalizable.5 The reason for the diver-
gence of the integral in (3.87) lies in the nature of the interaction vertex between the

4 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 2nd ed. (Springer, Berlin, Heidelberg,
1994).
5 This statement should be handled with care. Strictly speaking it means only that Fermi’s theory is
not renormalizable in successive orders of perturbation theory. If one were able to sum all orders ex-
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electron and neutrino, namely that both particles interact only if they are at the same
place. The sole q dependence therefore arises from the propagators of the particles
in the intermediate state, but the current–current coupling does not contribute any q
dependence. However, if electron and neutrino were interacting by means of an “in-
termediate” boson W (as in the electron–electron scattering of QED), as illustrated in
Fig. 3.11, one would have an effective Fermi coupling constant which would depend
on the momentum transfer:

Fig. 3.11. Electron–neutrino
scattering by means of a posi-
tively charged intermediate bo-
son (W+ )

Geff(q
2) = g2

q2 − M2
W

→ g2

q2
(q → ∞) . (3.89)

Here g is a dimensionless coupling constant for the νe − e − W vertex. The second
interaction point in a graph of type Fig. 3.9 contributes another q dependence through
the momentum transfer (p′ − p − q):

Geff((p
′ − p − q)2) = g2

(p′ − p − q)2 − M2
W

→ g2

q2
(q → ∞) . (3.90)

Now we would have four additional powers of q in the denominator and the diagram
would finally behave as:

S(2) � g4
∫

d4q

q2

(
1

q2

)2

� g4
∫

dq

q3
, (3.91)

which is no longer divergent at the upper boundary (q → ∞). Hence with the help of
an intermediate boson one could construct a consistent theory of weak interactions.

Unfortunately we know from Fermi’s theory that the coupling must have vector
character (or axial-vector character). The intermediate boson W has to couple to the
vector currents jμ and hence must be described by a vector field, that is, it must be a
spin-1 particle similar to the photon in quantum electrodynamics. As shown in Exam-
ple 4.6, the propagator for a spin-1 particle has the form

D(M)
μν (q

2) = −
gμν − qμqν

M2
W

q2 − M2
W

→ qμqν

q2M2
W

→ const

M2
W

(q2 → ∞) . (3.92)

The appearance of the momentum q in the numerator just destroys the whole effect
of introducing an intermediate propagator. Such a theory would therefore also be non-
renormalizable. The renormalizability of quantum electrodynamics derives from the
fact that the photon has vanishing rest mass; in this case the propagator again has a
different form (see Example 4.6), namely

D(M=0)
μν (q2) = −

gμν − qμqν

q2

q2
→ const

q2
(q2 → ∞) . (3.93)

plicitly, it might eventually happen that the complete theory contains no divergences. (As an example
of such behavior we refer to the integral

∫∞
0 dxe−x = 1. If we expand the function e−x in terms of

the power series e−x = 1 − x + x2/2! − x3/3! . . . , which is convergent for every x, the integral over
each single term of the series diverges!) In a somewhat different context it was recently conjectured
that point-like four-fermion interactions may, indeed, be renormalizable under certain conditions.
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Now we are in a dilemma: the theory would only be renormalizable with massless
vector bosons, but we require the mass MW �= 0 for the intermediate bosons to regain
Fermi’s theory in the limit of small momentum transfer. For q2 → 0 it should, of
course, hold that

Geff(q
2) ≡ g2Dμν(q

2) → G . (3.94)

This condition is not fulfilled for the propagator with MW = 0, whereas for a massive
boson, with conveniently chosen values of g and MW, we have

Geff(q
2) → g2

M2
W

= G (q2 → 0) . (3.95)

A way out is provided by an ingenious trick often called the Higgs mechanism, which
should actually be referred to as the Brout–Englert–Higgs mechanism.6 One starts
with a massless boson W but couples it to a new spin-0 field φ, the Higgs field, by
means of an interaction term g2φ2Wμ. If now the scalar field φ assumes a constant
value φ0 = MW/g everywhere in space, one obtains in this way a term g2φ2

0Wμ(x)

in the wave equation for the W boson which plays the same role as a mass term
M2

WWμ(x).

Fig. 3.12. Neutral current
coupling by means of a neu-
tral intermediate boson Z0

We also have to remember the existence of the neutral currents. To describe the
process νμe− → νμe− one obviously requires a neutral boson Z0 (see Fig. 3.12). In
all we therefore need the charged bosons W+, W− and the neutral Z0. S. Weinberg
and A. Salam realized that, since the Z0 boson is originally massless and neutral, it has
nearly the same properties as the photon! One can therefore expect the theory really
to make sense only if we start from the beginning with the three intermediate bosons
of the weak interaction W+, W−, Z0 together with the photon γ and develop a unified
theory of “electroweak” interactions from there.
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SALAM, Abdus, theoretical physicist, ∗ 29.1.1926 in Jhang (Pakistan), †21.11.1996 in Oxford
(England). He received his Ph.D. in 1952 from the University of Cambridge and became profes-
sor of Imperial College, London in 1957; since 1964 he is director of the International Center
of Theoretical Physics at Trieste (Italy). His main work is on the two-component theory of the
neutrino and on symmetry properties of elementary particles, for which he shared in the 1979
Nobel Prize in physics with Glashow and Weinberg.

WEINBERG, Steven, theoretical physicist, ∗ 3.5.1933 in New York. He received his Ph.D.
from Princeton in 1957, became professor at the University of California in Berkeley in 1960,
later at the Massachusetts Institute of Technology, Harvard University, and since 1982 professor
at the University of Texas in Austin. He made many contributions to the theory of elementary
particles, including the unified electroweak theory, the theory of strong interactions, and to
particle cosmology. He shared in the 1979 Nobel Prize in physics with Glashow and Salam.

6 This technique was independently “invented” by several theorists: (a) F. Englert and R. Brout:
Phys. Rev. Lett. 13, 321 (1964) first; (b) P.W. Higgs (Phys. Rev. Lett. 13, 508 (1964) and Phys. Rev.
145, 1156 (1966)). The paper by Englert and Brout is more general and detailed. A paper by Kibble
is pedagogically useful: T.W. Kibble: Phys. Rev. 155, 1554 (1967).
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4.1 The Higgs Mechanism

In this chapter we shall reformulate Fermi theory as a quantum field theory involving
the exchange of massive vector bosons that mediate the weak interactions, and incor-
porating charged and neutral currents in a unified way. First we have to learn how
to convert a theory involving massless vector bosons into a theory of massive parti-
cles, without disturbing the favorable high-energy behavior of a massless propagator.
We shall proceed by discussing the methodical approach first, before performing a
detailed calculation.

The propagator of a massless spin-1 particle,

iDμν(q
2,M2 = 0) = −i

gμν − qμqν/q
2

q2 + iε
≡ −i

Pμν(q)

q2 + iε
, (4.1)

differs from the Feynman propagator of a massive spin-1 particle,

iDμν(q
2,M) = −i

gμν − qμqν/M
2

q2 − M2 + iε
, (4.2)

in that the former contains the operator projecting onto transverse states

Pμν(q) = gμν − qμqν

q2
, (4.3)

since

qμPμν(q) = Pμν(q)q
ν = 0 , (4.4)

whereas in the case of massive spin-1 particles we get the relation

qμDμν(q
2,M) = +i

qν

M2
. (4.5)

That is, the propagator contains longitudinal parts which increase, even for M → 0.
The longitudinal parts, which increase together with q , yield the disturbing prop-

erty of a theory of massive spin-1 particles, namely that Feynman graphs including
closed loops diverge faster than logarithmically. As a result, the divergences cannot
be absorbed into renormalization constants, that is, the massive spin-1 quantum field
theory is not renormalizable.1 Therefore we have to think of a ‘trick’ to incorporate

1 A more detailed study reveals that the theory remains renormalizable if the massive vector bosons
couple only to a conserved fermion current. However, as we have learned in Chap. 1, the weak
interaction couples to a mixture of vector and axial-vector currents, which is not conserved.

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8_4, © Springer-Verlag Berlin Heidelberg 2009
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boson masses without destroying transversality. To this end we add an interaction of
the massless spin-1 particle with another field (which we will specify later on). There-
fore we get the following graphical representation of the exact propagator Gμν(q

2):

where Πμν(q
2) denotes the tensor of vacuum polarization. In terms of Feynman

graphs Πμν contains all one-particle irreducible graphs, that is, graphs which can-
not be split up into two separated parts by cutting just a single line. For instance, the
following graphs are irreducible:

whereas the polarization graph

is reducible. This can easily be seen by cutting the photon line in the centre of
the diagram. The contribution from this graph (c) is included in the third term
iD(iΠ)iD(iΠ)iD of the expanded exact propagator Gμν(q

2). Taking (4.1) we have
explicitly

iGμν(q
2) = iDμν(q

2) + iDμα(q
2)iΠαβ(q2)iDβν(q

2) + · · ·

= −i
Pμν(q)

q2
+ (−i)

Pμα(q)

q2
iΠαβ(q2)(−i)

Pβμ(q)

q2
+ · · · . (4.6)

In QED it can be shown2 that gauge invariance, that is charge conservation, requires
that the vacuum polarization tensor Πμν is purely transverse; the common notation is
therefore

Πμν(q
2) = (gμνq

2 − qμqν)Π(q
2) = q2Pμν(q

2)Π(q2) . (4.7)

When inserting this result into (4.6) we can make use of Pμν ’s being a projection
operator, which can therefore be applied several times without changing the result:

Pα
μ (q)Pαν(q) =

(
gαμ − qμq

α

q2

)(
gαν − qαqν

q2

)

= gμν − qμqν

q2
− qμqν

q2
+ qμq

α

q2

qαqν

q2

= gμν − qμqν

q2
= Pμν(q) . (4.8)

2 See W. Greiner and J. Reinhard: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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We then sum the resulting geometrical series:

iGμν(q
2) = −i

Pμν(q)

q2
− i

Pμν(q)

q2
Π(q2) − i

Pμν(q)

q2
Π2(q2) . . .

= −i
Pμν

q2

[
1 − Π(q2)

]−1 = iDμν(q
2)
[
1 − Π(q2)

]−1
. (4.9)

This result is important: even the exact propagator remains transverse! This behavior
was caused by the transversality of the polarization tensor Πμν . In fact, this property
results from the gauge invariance of the theory (in this case QED), which directly
yields current conservation and consequently the relation3

qμΠμν(q
2) = qνΠμν(q

2) = 0 . (4.10)

Thus we draw the conclusion that we have to formulate the theory of the intermediate
boson in a gauge-invariant way. If it were possible to construct the theory in a such
way that for q2 → 0 we had

Π(q2) → M2/q2 , (4.11)

we would obtain the low-momentum limit q2 → 0 of the propagator,

iGμν(q
2) = −i

Pμν(q)

q2(1 − M2/q2)
= −i

Pμν(q)

q2 − M2
. (4.12)

In effect, for small q2 we would have a transverse propagator with mass! In the case of
q2 
 M2, Π(q2) would then have a totally different behavior, but this would not be in
contradiction to the experimental data obtained at low energies. All we must demand is
that in the q2 → 0 limit the propagator behaves like a propagator of a massive particle.

The effect just mentioned, of a totally different behavior for small momenta com-
pared to large ones, is well known from the classical electrodynamics of continuous
media. In a conducting liquid (electrolyte) charges are screened; the characteristic
length (Debye length) corresponds to the inverse of the mass M : λD = �c/M . This
means that in an electrolyte the longitudinal photons, being massless at the beginning,
gain mass in the static case (ω → 0). For large frequencies this is no longer the case,
because the particles of the electrolyte cannot follow the rapidly changing fields.

EXERCISE

4.1 The Debye Effect

Problem. Show that in an electrolyte every charge is screened according to

φ(r) ∝ e−μr

r

3 More rigorously, in QED one demands that the vacuum polarization tensor obey (4.10), in order to
eliminate quadratic divergences.
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with

μ2 = 8πe2n0/(kBT )

given by the average density n0 of the charged particles in the electrolyte and by the
temperature T of the system.

Solution. We consider a point charge e in the electrolyte (which could even be one
of the ions of the electrolyte!) with

φ(r) , r = |x − x′ | , (1)

being the electrostatic potential in the vicinity of the charge, which has to be deter-
mined. The density of like-charged particles, n+(r), around the charge is given by the
Boltzmann distribution

n+(r) = n0 exp

(
−eφ(r)

kBT

)
, (2a)

whereas the density of the oppositely charged particles is given by

n−(r) = n0 exp

(
+eφ(r)

kBT

)
, (2b)

where n0 denotes the equilibrium density of the charged particles in the electrolyte.
The term ±eφ(r) is just the local potential energy of the charged particles.

Fig. 4.1. In the electrolyte a
positive charge attracts the
negatively charged particles
and repels the positive ones.
This yields a screening of the
central charge

A second relation between φ and n originates from the Poisson equation,

∇ 2φ(r) = −4πe
(
n+(r) − n−(r)

)− 4πeδ3(r) . (3)

Inserting (2) into (3) and expanding the exponential for small φ yields

∇ 2φ(r) = +4πen02 sinh

(
eφ(r)

kBT

)
− 4πeδ3(r)

≈ 8πe2n0

kBT
φ(r) − 4πeδ3(r) . (4)

With

μ2 = 8πe2n0

kBT
(5)

we obtain the modified Poisson equation

(∇ 2 − μ2)φ(r) = −4πeδ3(r) , (6)
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with the solution

φ(r) = e

r
exp(−μr) . (7)

Thus the medium screens the charge which generates the field. Formally, (6) corre-
sponds to the equation of a potential due to a massive field, for instance occurring in
Yukawa theory, where μ denotes the pion mass. The (longitudinal) photons obtain a
mass through the interaction with the charged particles of the electrolyte. (This behav-
ior is only valid in the static limit. In the case of rapidly changing fields the situation
changes.)

The simplest model which is capable of generating massive intermediate bosons is
the Higgs–Kibble model.4 Before turning to a discussion of this model, we must learn
how to identify masses of physical particles in a non-linear boson theory.

EXAMPLE

4.2 Creation of Mass in Interacting Fields

We start with a set of N interacting scalar fields φi , for which the Lagrangian reads

L(x) =
N∑

j=1

1

2
(∂μφj (x))(∂

μφ∗
j ) − U(φi(x)) . (1)

The function U is some polynomial of the fields φi . Now we shall determine the
particle spectrum of the theory in the simplest limit of weak excitations. A simple
mechanical example may serve as an intuitive guide to the solution of this problem.
We consider a non-relativistic particle moving in a potential V (x). In order to deter-
mine the lowest quantum-mechanical states, we approximate the potential V (x) in the
vicinity of its minimum by a harmonic oscillator (see figure) and determine the excited
states of the oscillator. The potential V (x) of this example corresponds to

∫
d3r

[∑

j

1

2
|∇φj |2 + U(φi)

]
. (2)

The analogue of the coordinate x of the particle is given by the fields φi(r). The
term (2) has a minimum for fields φi(x) = φ

(0)
i , being constant in space, chosen in

such a way that U(φ(0)i ) attains a minimum. For varying fields, U(φi(x)) is generally

larger than U(φ(0)i ). Furthermore, the first part of (2), denoting the kinetic energy of
φi , yields an additional positive contribution.

4 P.W. Higgs: Phys. Lett. 12, 132 (1964), Phys. Rev. Lett. 13, 508 (1964), and Phys. Rev. 145, 1156
(1966); T.W. Kibble: Phys. Rev. 155, 1554 (1967); F. Englert and R. Brout: Phys. Rev. Lett. 13, 321
(1964).
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Fig. 4.2. Approximation by
an oscillator potential

We now expand U(φi) around φ(0)i in terms of a Taylor series:

U(φi) = U(φ
(0)
i ) + 1

2

N∑

j,k=1

∂2U

∂φj∂φk

∣∣∣∣
φi=φ

(0)
i

(φj − φ
(0)
j )(φk − φ

(0)
k )

+ 1

6

N∑

j,k,l=1

∂3U

∂φj∂φk∂φl

∣∣∣∣
φi=φ

(0)
i

(φj − φ
(0)
j )(φk − φ

(0)
k )(φl − φ

(0)
l )

+ · · · (3)

The term linear in φi − φ
(0)
i vanishes, since φ(0)i determine a minimum of U , and

hence

∂U

∂φj

∣∣∣
φi=φ

(0)
i

= 0 . (4)

Now we transform the symmetric matrix

(M2)jk ≡ ∂2U

∂φj∂φk

∣∣∣∣
φi=φ

(0)
i

(5)

onto its principal axes by introducing the fields

φ̃α =
N∑

j=1

Rαj (φj − φ
(0)
j ) . (6)

The rotational matrix Rαj obeys the relation5

∑

α

RαjRαk = δjk ,

(7)∑

j

RαjRβj = δαβ .

Therefore we can directly derive

N∑

i=1

[
φ̇2
i − |∇φi |2]=

N∑

α=1

[ ˙̃
φ2
α − |∇φ̃α|2] . (8)

5 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. 3rd printing (Springer,
Berlin, Heidelberg, 2001).
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Furthermore, from (7) we can deduce the inverse of (6):

φj − φ
(0)
j =

N∑

α=1

Rαj φ̃α . (9)

Thus we get

N∑

j,k=1

(M2)jk(φj − φ
(0)
j )(φk − φ

(0)
k )

=
N∑

α,β=1

(∑

j,k

(M2)jkRαjRβk

)
φ̃αφ̃β . (10)

By supposition, the transformation Rαj diagonalizes the matrix M2, so we write

N∑

j,k=1

(M2)jkRαjRβk = M2
αδαβ . (11)

M2
α are the eigenvalues of M2. Using (3), (5), (10), and (11) we can denote the change

of the function U for an infinitesimal variation of the fields φ̃α :

δU = 1

2

N∑

α=1

M2
α(δφ̃α)

2 . (12)

For a negative eigenvalue M2
γ of the matrix M2, the special choice

δφ̃α

{
�= 0 for α = γ

= 0 otherwise
(13)

would yield a negative δU . This contradicts the requirements of U attaining a mini-
mum at φi − φ

(0)
i . Thus the eigenvalues M2

α have to be greater than or equal to zero.
The Lagrangian can be written in terms of φ̃:

L = 1

2

N∑

α=1

[ ˙̃
φ2
α − |∇φ̃α|2 − M2

αφ̃
2
α

]+ O(φ̃3) + U(φ
(0)
i ) . (14)

The last term is just a negligible constant. By neglecting all terms of third or higher
order in φ̃, the variation of the action with respect to φ̃α yields the equations of motion:

¨̃
φα − �φ̃α + M2

αφ̃α ≡ �φ̃α + M2
αφ̃α = 0 . (15)

Taking no account of higher-order terms, (14) describes a set of N Klein–Gordon
fields φ̃α , yielding N particles with masses Mα by quantization. The third-order and
higher-order terms can then be treated as perturbations generating interactions among
the N particles.
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In the Higgs–Kibble model the initially massless vector field is coupled to a com-
plex (charged) scalar field φ called the Higgs field. We choose minimal coupling
in order to proceed analogously to gauge-invariant electrodynamics. Introducing
Fμν = ∂μAν − ∂νAμ, we have for the Lagrangian

L = − 1

4
FμνF

μν + |(∂μ − igAμ)φ|2 − U(|φ|2) , (4.13)

U(|φ|2) being some convenient polynomial of |φ|2 given below. In order to formulate
the quantum theory of the fields Aμ,φ, we first neglect the electromagnetic interaction
and consider just the part of the Lagrangian containing the scalar field:

Lφ = |∂μφ|2 − U(|φ|2) = |φ̇|2 − |∇φ|2 − U(|φ|2)

= φ̇φ̇∗ − ∇φ · ∇φ∗ − U(φφ∗) . (4.14)

Now we can determine the particle spectrum according to Example 4.2. To this end
we calculate the classical vacuum by determining the minimum value of the function

U(|φ|) = −μ2 |φ|2 + h|φ|4 , (4.15)

shown in Fig. 4.3. It is given by

|φ0 | =
√
μ2/2h ≡ λ/

√
2 . (4.16)

Therefore the general solution is

φ0 = 1√
2
λeiα . (4.17)

We choose α = 0, that is, we consider the solution φ0 = λ/
√

2. This does not imply
some limitation, since the general solution (4.17) can be generated by applying a phase
transformation

φ → eiαφ . (4.18)

This does not change the physics, because only real quantities such as |φ|2 are mea-
surable.

Nevertheless, by fixing α = 0 we have chosen a distinct phase. We therefore cannot
perform a phase transformation without simultaneously changing the vacuum expec-
tation value of the Higgs field. Though the Lagrangian density is invariant with respect
to a phase transformation, the vacuum state is not, which breaks the symmetry. This
effect is commonly called spontaneous symmetry breaking. (It has nothing to do with
the violation of parity invariance by the weak interaction. The latter is explicitly in-
corporated in the Lagrangian.)

Now we expand φ around the value λ/
√

2, setting

φ(x) = 1√
2

(
λ + χ(x) + iθ(x)

)
, (4.19)

or

Re{φ(x)} = 1√
2

(
λ + χ(x)

)
,
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(4.20)
Im{φ(x)} = 1√

2
θ(x) ,

with two real fields χ and θ . Hence we get

|φ̇|2 = 1

2
|χ̇ + iθ̇ |2 = 1

2
χ̇2 + 1

2
θ̇2 , (4.21)

and correspondingly

|∇φ|2 = 1

2

(|∇χ |2 + |∇θ |2) . (4.22)

Furthermore,

U(φ) = h|φ|4 − μ2 |φ|2

= 1

4
h|λ + χ + iθ |4 − 1

2
μ2 |λ + χ + iθ |2

= 1

4
h
[
(λ + χ)2 + θ2]2 − 1

2
μ2[(λ + χ)2 + θ2]

= 1

4
h
[
λ2 + 2λχ + χ2 + θ2]2 − 1

2
μ2[λ2 + 2λχ + χ2 + θ2]

=
(

1

4
hλ4 − 1

2
μ2λ2

)
+
(

1

4
h2λ2 − 1

2
μ2
)
(2λχ + χ2 + θ2)

+ 1

4
h4λ2χ2 + 1

4
h4λχ(χ2 + θ2) + 1

4
h(χ2 + θ2)2 . (4.23)

Owing to (4.16), the second term of the sum vanishes. The first term equals − μ4

4h ; it is
a constant. Therefore, omitting the constant, the Lagrangian density can be written in
terms of χ and θ in the form

Lφ = 1

2
χ̇2 − 1

2
|∇χ |2 − 1

2

(√
2hλ
)2
χ2 + 1

2
θ̇2 − 1

2
|∇θ |2

− hλχ(χ2 + θ2) − h

4
(χ2 + θ2)2 . (4.24)

From (4.23), for χ = 0 and θ = 0 we get

∂2U

∂χ2
= 2hλ2 ,

∂2U

∂χ∂θ
= 0 ,

∂2U

∂θ2
= 0 . (4.25)

By setting

χ = φ1 , θ = φ2 , (4.26)

we recognize the matrix

∂2U

∂φi∂φk
(4.27)

to be already diagonal, because of the second condition (4.25). Thus the fields χ and
θ describe the physical particles whose masses are given by

m2
χ = 2hλ2 , m2

θ = 0 (4.28)

according to Example 4.2.
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The intuitive meaning is that for φ = λ/
√

2 a change of the real part of φ effects

Fig. 4.3. Behavior of the
function U(|φ|2) (4.23) in the
complex φ plane

a change of the field χ according to (4.20), describing an outward motion in Fig. 4.3.
However, in this direction the potential changes, with U(|φ|) being approximately
parabolic in the vicinity of the minimum. Thus a field excitation of this kind costs po-
tential energy. However, moving perpendicularly to the radial direction by changing
the field θ in (4.20), the system stays in the ‘bottom of the potential valley’. Conse-
quently U(φ) does not change, resulting in the second equation of (4.28). This behav-
ior is related to the fact that the Lagrangian density, and therefore also the potential
U(φ), is invariant under phase transformations, which correspond to rotations around
the point φ = 0 in Fig. 4.3. Although we chose a special phase as characterizing the
ground state of the field φ, all other phases yield equivalent vacuum states, which are
therefore not connected with a change of potential energy. So we recognize how mass-
less particles are automatically produced by spontaneous symmetry breaking, as can
be seen in (4.28). This kind of particle is called a Goldstone boson. As we will see in
the following there are no Goldstone bosons in the complete theory (4.13).

Indeed, the Lagrangian density (4.13) is invariant with respect to gauge transfor-
mations given by

Aμ(x) → A′
μ(x) = Aμ(x) + ∂μΛ(x) ,

(4.29)
φ(x) → φ′(x) = φ(x) exp(igΛ(x)) .

We again replace the complex field φ(x) by two real fields χ(x) and θ(x),

φ(x) = 1√
2

(
λ + χ(x)

)
exp

(
i
θ(x)

λ

)

≈ λ√
2

+ 1√
2

(
χ(x) + iθ(x)

)
for χ, θ � λ , (4.30)

similar to (4.19), where λ is defined in (4.16). Inserting this expression into the La-
grangian density (4.13) and taking all derivatives, we obtain

L = − 1

4
FμνF

μν + 1

2
(∂μχ)

2 + 1

2

(
1 + χ

λ

)2

(∂μθ)
2 − λ

(
1 + χ

λ

)2

gAμ(∂μθ)

+ 1

2
λ2
(

1 + χ

λ

)2

g2AμA
μ + 1

2
μ2λ2

(
1 + χ

λ

)2

− h

4
λ4
(

1 + χ

λ

)4

. (4.31)

Let us just, as an example, confirm the second and third terms of this expression by
calculating

|∂μφ|2 = (∂μφ
∗)(∂μφ)

= 1√
2

(
∂μχ − i(λ + χ)

∂μθ

λ

)
· 1√

2

(
∂μχ + i(λ + χ)

∂μθ

λ

)

= 1

2
(∂μχ)

2 + 1

2

(λ + χ)2

λ2
(∂μθ)

2

= 1

2
(∂μχ)

2 + 1

2

(
1 + χ

λ

)2

(∂μθ)
2 .
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However, the field θ(x) which appears in L is spurious, that is to say, if we perform a
gauge transformation with Λ(x) = −θ(x)/gλ before inserting (4.30), we get

φ = 1√
2
(λ + χ)eiθ/λ → φeigΛ = φe−iθ/λ = 1√

2
(λ + χ) , (4.32)

totally eliminating θ . Hence the field θ only contains gauge degrees of freedom and
therefore does not enter into the physics. The special gauge (4.32) is called the U
gauge (unitary gauge). The corresponding Lagrangian is given by

L = − 1

4
FμνF

μν + 1

2
(∂μχ)

2 + 1

2
λ2
(

1 + χ

λ

)2

(μ2 + g2AμA
μ)

− hλ4

4

(
1 + χ

λ

)4

, (4.33)

or, ordered with respect to powers of the fields,

L =
(
λ2μ2

2
− hλ4

4

)
+ (λμ2χ − hλ3χ)

+
(

1

2
(∂μχ)

2 + μ2χ2

2
− 3

2
hλ2χ2 − 1

4
FμνF

μν + 1

2
g2λ2AμA

μ

)

+
(
g2λχAμA

μ − hλχ3 + 1

2
g2χ2AμA

μ − h

4
χ4
)

. (4.34)

The term linear in χ vanishes, owing to the relation hλ2 = μ2 (the system is in the
minimum of the potential U ). The constant term 1

2λ
2μ2 − 1

4hλ
4 = 1

4hλ
4 is of no

importance and can therefore be neglected. The term in front of χ2 reads μ2

2 − 3
2hλ

2 =
hλ2

2 − 3
2hλ

2 = −hλ2. Thus we get6

L′ = − 1

4
FμνF

μν + 1

2
g2λ2AμA

μ + 1

2
(∂μχ)

2 − hλ2χ2

+
[(
λχ + 1

2
χ2
)
g2AμA

μ − hχ2
(
λχ + 1

4
χ2
)]

. (4.35)

Referring to the mass terms of the various fields, that is, terms quadratic in the fields
not containing derivatives, which occur in the above Lagrangian, we can state that

(a) the vector field has the mass (gλ),
(b) the scalar field χ has the mass term 1

2mχχ
2 and therefore the mass λ

√
2h,

(c) the auxiliary field θ without a mass term in (4.31) is completely eliminated.

This is the desired result, especially point (a). Point (c) is also important. If we started
with a non-gauge-invariant theory, there would have been no possibility of eliminating
the massless field θ . This would have been a severe shortcoming of our model, since

6 We emphasize the sign of the vector field. The quantized part (the physical spin-1 particles) of
Aμ = (A0,A) is given by the transverse 3-vector AT. By splitting up Aμ into A0,AL and AT

the contribution of AT has the opposite sign, resulting from the Minkowskian metric, − 1
4 FμνF

μν

+ 1
2 g

2λ2Aμ
1
2A

μ = Ȧ2 − 1
2 (∇ × A)2 − 1

2 g
2λ2A2 + (terms containing A0).
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all presumably massless fields occurring in nature have a spin different from zero
(neutrinos: spin 1

2 ; photons: spin 1; gravitons: spin 2)! A massless scalar field has not
yet been observed, suggesting no field of that kind exists.

It is important to reflect on the creation of the mass terms again. We have started
with a theory describing massless vector particles (4.13) and extended the theory by
introducing a background field (Higgs field) φ. This Higgs field tends to a minimum
value φ0 owing to self-interaction given by |φ|4 terms in the ‘potential’ U(|φ|). There-
fore everywhere φ should be near to the value φ = φ0 =√μ2/2h. The interaction of
the vector field Aμ with φ0 staying in its ground state induces the vector particles to
act as if they had mass. Of course, this description is only valid if the energy of the sys-
tem (momentum transfer) is small and the φ field does not deviate too much from its
minimum value. At high energy the φ field need no longer attain its minimum value.
Then the φ fields vary above the minimum of U(|φ|2) in Fig. 4.1 with a large ampli-
tude, again yielding massless vector particles. This behavior is just what we expected
of the behavior of the vector particles as a function of momentum transfer q2 (com-
pare the discussion related to (4.6) and (4.11)). The mass-producing mechanism by
spontaneous symmetry breaking is very similar to the case discussed in Exercise 4.1,
where we saw that in an electrolyte photons obtain an effective mass owing to the
influence of the Debye cloud.

EXERCISE

4.3 Gauge Invariance of the Lagrangian Corresponding to the Kinetic Energy
of the Meson Fields

Problem. Show that the Lagrangian (4.13) is invariant with respect to gauge trans-
formations (4.29).

Solution. We prove this by explicit calculation of each term in (4.13).
(a)

∂μ(Aν + ∂νΛ) − ∂ν(Aμ + ∂μΛ)

= ∂μAν − ∂νAμ + ∂μ∂νΛ − ∂ν∂μΛ

= ∂μAν − ∂νAμ = Fμν , (1)

because the second derivatives of continuously differentiable fields can be commuted.
(b)
[
∂μ − ig(Aμ + ∂μΛ)

]
φeigΛ

= (∂μφ)e
igΛ + ig(∂μΛ)φeigΛ − igAμφeigΛ − ig(∂μΛ)φeigΛ

= eigΛ(∂μ − igAμ)φ . (2)

Analogously,
(c)
[
∂μ + ig(Aμ + ∂μΛ)

]
φ∗e−igΛ = e−igΛ(∂μ + igAμ)φ

∗ . (3)

That is, |φ|2 and |(∂μ − igAμ)φ|2 remain unchanged.
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4.2 The Yang–Mills Field

The vector fieldAμ considered up to now does not describe the field of an intermediate
boson W+ or W−, since Aμ is not charged. If the vector field itself is charged (even in
the sense of the “charged” weak interaction) it should also couple to itself, that is, the
Lagrangian has to contain at least a third-order term of the field. How do we construct
a theory of that kind?

We can start by considering the analogous problem of the triplet of pions π−, π0,
π+ which can be regarded as the three substates of an isospin-1 multiplet. It was
introduced in this spirit by Yukawa in order to describe the strong interaction within
the nucleon isospin doublet (p, n).

The analogy to the diagrams of the weak interaction is obvious.

In Yukawa theory the nucleon field is given by an isospinor Ψ , while the pion field
is described in terms of an isovector Φ:

Ψ =
(
ψp

ψn

)
, Φ =

⎛

⎝
φπ+
φπ0

φπ−

⎞

⎠ . (4.36a)

Here ψp, ψn are four-spinors and the components φπ± , φπ0 are pseudoscalar func-
tions. They are the components of the isovector in spherical representation, that is,

φπ+ = φ(−) = 1√
2
(φx − iφy) ,

φπ0 = φ0 = φz , (4.36b)

φπ− = φ(+) = 1√
2
(φx + iφy) .

The coupling between nucleons and pions is given by the interaction

Lint = gπNΨ̄ γ5(τ · φ)Ψ = gπNΨ̄ γ5(τ+φ(−) + τ−φ(+) + τ0φπ0)Ψ

= gπNΨ̄ γ5(τ+φπ+ + τ−φπ− + τ0φπ0)Ψ

= gπN(ψ̄p, ψ̄n)γ5

(
φπ0

√
2φπ+√

2φπ− −φπ0

)(
ψp

ψn

)

= gπN
[
φπ0ψ̄pγ5ψp + √

2φπ+ψ̄pγ5ψn

+ √
2φπ−ψ̄nγ5ψp − φπ0ψ̄nγ5ψn

]
. (4.37)
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In spherical representation the Pauli vector τ is given by

τ+ =
(

0
√

2
0 0

)
, τ− =

(
0 0√
2 0

)
, τ0 =

(
1 0
0 −1

)
. (4.38)

These are connected to the Cartesian components through the well-known relation

τ± = 1√
2
(τx ± iτy) .

The interaction (4.37) is invariant with respect to a rotation in isospin space, generating
a transformation of the nucleonic isospinor and of τ · φ by the matrix

Û = exp

(
i

2
a · τ

)
= exp(ia · T̂ ) (4.39)

according to

Ψ → Ψ ′ = ÛΨ , τ · φ → Û (τ · φ)Û−1 . (4.40)

This is immediately obvious. Let’s now turn to weak interactions. The same procedure,
as outlined above for Yukawa theory can be applied to the W bosons and fermion
doublets

(
ψνe

ψe−

)
,

(
ψνμ
ψμ−

)
, . . . .

To this end we consider a triplet of vector mesons, whose fields we denote by
Aiμ (i = 1,2,3). The superscript i labels the field, that is the three isospin compo-
nents, analogously to φi in (4.36). The index μ expresses the fact that every isospin
component itself is a space-time four-vector (μ = 0,1,2,3).

We denote the isospherical combinations (A1
μ ± iA2

μ)/
√

2 by A±
μ, and A3

μ by A0
μ.

Furthermore we consider a fermion doublet Ψ = (ψ1
ψ2

)
, where both components are

Dirac spinors. By close analogy with Yukawa theory, we formulate the interaction

Lint = g

3∑

i=1

Ψ̄ γ μ
τ i

2
AiμΨ ≡ gΨ̄ γ μAμ · τ

2
Ψ . (4.41)

The term τ · A denotes a scalar product in isospace, whereas γ μAμ is a scalar product
of four-vectors in space-time. Often we write T̂ i instead of τ i/2, the T̂ i (and of course
also the τ̂ i ) are the generators of the isospin group SU(2). They obey the relation

3∑

i=1

(T̂ i)2 = 3

4
1 = 1

2

(
1

2
+ 1

)
1 , (4.42)



4.2 The Yang–Mills Field 121

where 1 denotes the unit matrix. Furthermore the T̂ i obey the commutation relations
of the SU(2) Lie algebra7

[T̂ i , T̂ j ] = i
3∑

i=1

εijkT̂
k ≡ iεijkT̂

k . (4.43)

The spherical components of T̂ are

T̂+ = T̂1 + iT̂2 = 1

2
(τ1 + iτ2) = 1√

2
τ+ =

(
0 1
0 0

)
,

T̂0 = T̂z = 1

2

(
1 0
0 −1

)
,

T̂− = T̂1 − iT̂2 =
(

0 0
1 0

)
.

It would be convenient to denote the free Lagrangian of the vector fields Aiμ by

Lfree = − 1

4
F i
μνF

μν
i , (4.44a)

with

F i
μν = ∂μA

i
ν − ∂νA

i
μ , (4.44b)

but this expression violates (local) gauge invariance. In order to see this, we must first
derive the properties of the vector potentials Aiμ under a local gauge transformation
(4.39), that is, with a(x) being a function of space and time. In other words, if we again
transform Ψ → Ψ ′ = ÛΨ with Û = exp(ia · T ), the derivatives of the fermionic fields
are

∂μΨ → Û∂μΨ = Û∂μ(Û
−1ÛΨ ) = ∂μ(ÛΨ ) + Û (∂μÛ

−1)ÛΨ

= ∂μΨ ′ + Û (∂μÛ
−1)Ψ ′ = [∂μ + Û (∂μÛ

−1)
]
Ψ ′ . (4.45)

As we shall see soon, the additional term Û (∂μÛ
−1), occurring for ∂μa(x) �= 0, can

be absorbed by gauging the fields Aiμ simultaneously. By adding the coupling (4.41)
to the free Dirac Lagrange function LF the expression to be cast into gauge-invariant
form reads

L = LF + Lint = iΨ̄ γ μ∂μΨ + gΨ̄ γ μAμ · T̂Ψ . (4.46)

Here we intentionally avoided introducing an explicit electron mass term. The gauge
symmetry implies that, ab initio, the upper and lower components of the leptonic dou-
blet, that is, neutrino and electron, are indistinguishable. This property of the theory
would be destroyed by attaching different masses to the electron and neutrino. As
can be seen later the physical difference between the electron and neutrino regarding
different charges and masses can be related to the spontaneous symmetry breaking
through the Higgs field.

7 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).
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We again stress the following point: it is demanded as a principle that we construct
the Lagrangian (4.46) in a gauge-invariant way with respect to local (a = a(x)) gauge
transformations (4.40). Now (4.46) does not incorporate the full Lagrangian density of
the fields involved. The kinetic-energy term of the Aμ fields is missing, for example,
of the form (4.44a). As can be guessed by analogy with electrodynamics this term can
be separately constructed without difficulty. In electrodynamics Fμν itself is gauge-
invariant.

Let us begin with the Lagrangian (4.46). We know that the Ψ fields can be trans-
formed by (cf. (4.40))

Ψ → Ψ ′ = ÛΨ (x) = exp(ia(x) · T̂ )Ψ (x) . (4.47)

However, at the moment we do not know how to transform the Aμ fields simultane-
ously. As we shall show in the following, this can be derived by demanding L to be
gauge invariant. This implies that the original Lagrangian density

L = iΨ̄ γ μ∂μΨ + gΨ̄ γ μAμ · T̂Ψ (4.48a)

and the gauged Lagrangian density

L′ = iΨ̄ ′γ μ∂μΨ ′ + gΨ̄ ′γ μA′
μ · T̂Ψ ′ (4.48b)

should be identical in form and value.
In (4.48b) we know the field Ψ ′ (from (4.40)), but the dependence of A′

μ on Aμ
and on the gauge operator Û remains unknown. However, the gauge dependence of Ψ
can be exploited by writing

L = iΨ̄ γ μ∂μΨ + gΨ̄ γ μAμ · T̂Ψ

= iΨ̄ Û−1Ûγ μ∂μÛ
−1ÛΨ + gΨ̄ Û−1Ûγ μAμ · T̂ Û−1ÛΨ

= iΨ̄ ′Ûγ μ∂μÛ−1Ψ ′ + gΨ̄ ′Ûγ μAμ · T̂ Û−1Ψ ′

= iΨ̄ ′γ μÛ∂μÛ−1Ψ ′ + gΨ̄ ′γ μÛAμ · T̂ Û−1Ψ ′

= iΨ̄ ′γ μ∂μΨ ′ + iΨ̄ ′γ μ
[
Û (∂μÛ

−1)
]
Ψ ′ + gΨ̄ ′γ μÛAμ · T̂ Û−1Ψ ′

= iΨ̄ ′γ μ∂μΨ ′ + gΨ̄ ′γ μ
[
ÛAμ · T̂ Û−1 + i

g
Û(∂μÛ

−1)

]
Ψ ′ . (4.48c)

Here we made use of the unitarity of Û , i.e. Û+ = Û−1, and the fact that Û commutes
with γ μ, of course. This expression (4.48c) should be identical to L′ in (4.48b). Thus
it follows that

A′
μ · T̂ = ÛAμ · T̂ Û−1 + i

g
Û(∂μÛ

−1) . (4.49)

Consequently we are forced to incorporate the term Û (∂μÛ
−1), which is generated

by gauging the kinetic energy of the Ψ field into the gauge transformation of the Aμ

fields. It is useful to discuss the significance of this term in electrodynamics. In that
case Û is just Û = exp{ia(x)} with the single function a(x). Thus (4.49) reads

A′
μ(x) = Aμ(x) + 1

g
∂μa(x) .
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Obviously the prescription (4.49) is reduced to the well-known gauge transformation
of electromagnetic fields. In non-Abelian gauge theories the more complicated trans-
formation (4.49) describes the gauge properties of the fields involved. By referring to
(4.48) we can write L concisely in the form

L = iΨ̄ γ μ(∂μ − igAμ · T̂ )Ψ

≡ iΨ̄ γ μD̂μΨ . (4.50a)

Here we have introduced the gauge-covariant derivative

D̂μ = ∂μ − igAμ · T̂ . (4.50b)

With its help the gauge-transformation properties of the Aμ fields (4.49) can be sum-
marized as

D̂μ → D̂′
μ = ÛD̂μÛ

−1 . (4.50c)

Indeed,

ÛD̂μÛ
−1 = Û (∂μ − igAμ · T̂ )Û−1

= ∂μ + Û (∂μÛ
−1) − igÛAμ · T̂ Û−1

= ∂μ − ig

(
ÛAμ · T̂ Û−1 + i

g
Û(∂μÛ

−1)

)

= ∂μ − igA′
μT̂

= D̂′
μ . (4.50d)

Now we are ready to turn to the gauge-invariant construction of the kinetic energy of
the Aμ fields. By analogy with electrodynamics, we expect a term similar to (4.44a).
We will see that this is indeed the case. First we define the gauge-invariant field-
strength tensor matrix F̂μν = Fμν · T̂ . We call F̂μν the operator field strength, in
contrast to F i

μν , which is just the usual isovector of field strengths. Note the operator

symbol “ ˆ ” on top of F̂μν on the left-hand but not on the right-hand side. We have

F̂μν = Fμν · T̂ =
3∑

i=1

F i
μνT̂

i = D̂μ(Aν · T̂ ) − D̂ν(Aμ · T̂ )

= ∂μ(Aν · T̂ ) − ∂ν(Aμ · T̂ ) − ig[Aμ · T̂ ,Aν · T̂ ]
= (∂μAν) · T̂ − (∂νAμ) · T̂ + g

∑

ijk

AiμA
j
νεijkT̂

k

= (∂μAν − ∂νAμ + gAμ × Aν) · T̂ . (4.51a)

Be reminded again that the (bold) vector notation refers to the isospin degrees of
freedom. The isovector of field strengths is thus

Fμν = ∂μAν − ∂νAμ + gAμ × Aν . (4.51b)
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We obtain a gauge-invariant Lagrangian by performing the trace over the isospin in-
dices:

LA = − 1

2
Tr{F̂μνF̂ μν}

= − 1

2
Tr{(Fμν · T̂ )(Fμν · T̂ )}

= − 1

2
F i
μνF

μν jTr{T̂i T̂j }

= − 1

4
F i
μνF

μν j δij = − 1

4
Fμν · Fμν , (4.52)

which makes use of the relation Tr{T̂ i T̂ k} = 1
2δik . It is gauge invariant since here we

make use of the commutation of matrices under the trace, Tr{AB} = Tr{BA}:

L′
A = − 1

2
Tr{(F ′

μν · T̂ )(F ′μν · T̂ )}

= − 1

2
Tr{Û(Fμν · T̂ )Û−1Û (Fμν · T̂ )Û−1 }

= − 1

2
Tr{Û−1Û(Fμν · T̂ )(Fμν · T̂ )} = LA . (4.53)

A more detailed analysis of this procedure, especially of the property

F̂ ′
μν = F ′

μν · T̂ = ÛFμν · T̂ Û−1 = Û F̂μνÛ
−1 ,

can be found in Exercise 4.5. The complete Lagrangian reads

L = LF + Lint + LA

= Ψ̄ γ μ(i∂μ + gAμ · T̂ )Ψ − Ψ̄ M̂Ψ − 1

4
Fμν · Fμν . (4.54)

Here we have introduced an additional constant-mass matrix M̂ , which can be gen-
erated by a coupling to Higgs fields according to Example 4.2. In Sect. 4.5 we
shall discuss in more detail gauge-invariant mass generation in the frame of the
Higgs mechanism. By using the expressions for Fμν from (4.51a) we have explic-
itly

Fμν · Fμν = (∂μAν − ∂νAμ) · (∂μAν − ∂νAμ)

+ 2g(∂μAν − ∂νAμ) · (Aμ × Aν)

+ g2(Aμ × Aν) · (Aμ × Aν) . (4.55)

The last term can also be written in the form

g2(Aμ · Aμ)2 − g2(Aμ · Aν)(Aμ · Aν) . (4.56)
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EXERCISE

4.4 Isospin Rotations

Problem. Show that the transformation (4.40)

τ · φ → τ · φ′ = exp

(
i

2
a · τ

)
(τ · φ) exp

(
− i

2
a · τ

)

effects a rotation of the φ field in isospin space around the axis n = a/|a| by an
angle |a|.
Solution. First we calculate

(a · τ )2 =
3∑

i,k=1

aiakτiτk

= 1

2

3∑

i,k=1

aiak(τiτk + τkτi)

=
3∑

i,k=1

aiakδik = |a|2 , (1)

since the Pauli matrices obey the relation

τiτk + τkτi = 2δik .

Therefore a Taylor series expansion of the exponential yields

exp

(
± i

2
a · τ

)
=

∞∑

n=0

1

n!
(

± i

2
a · τ

)n

=
∞∑

n=0

(−1)n

(2n)!22n
(a · τ )2n ± i

∞∑

n=0

(−1)n

(2n + 1)!22n+1
(a · τ )2n+1

=
∞∑

n=0

(−1)n

(2n)!22n
|a|2n ± i

(
a · τ

|a|
) ∞∑

n=0

(−1)n

(2n + 1)!22n+1
(a · τ )2n+1

= cos
|a|
2

± i
(a · τ )

|a| sin
|a|
2

= cos
|a|
2

± i(n · τ ) sin
|a|
2

. (2)

By use of the relation

(a · τ )(b · τ ) = a · b + iτ · (a × b) , (3)

which is easily proved from the commutation relation (4.43)

τiτk − τkτi = 2i
3∑

l=1

εiklτl , (4)
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we derive (θ ≡ |a|/2)

[
cos θ + i(n · τ ) sin θ

]
(τ · φ)

[
cos θ − i(n · τ ) sin θ

]

= (τ · φ) cos2 θ + i sin θ cos θ
[
(n · τ )(τ · φ) − (τ · φ)(n · τ )

]

+ sin2 θ(n · τ )(τ · φ)(n · τ )

= (τ · φ) cos2 θ − 2 sin θ cos θτ · (n × φ)

+ sin2 θ
[
n · φ + iτ · (n × φ)

]
(n · τ )

= (τ · φ) cos2 θ − sin 2θ
[
τ · (n × φ)

]

+ sin2 θ
{
(n · φ)(n · τ ) − τ · [(n × φ) × n

]}

= τ · [φ cos2 θ − (n × φ) sin 2θ + n(n · φ) sin2 θ − (n × φ) × n sin2 θ
]

= τ · [n(n · φ) − (n × φ) sin 2θ + (n × φ) × n cos 2θ
]≡ τ · φ′ . (5)

Here we have applied the relation

n × (n × φ) = n(n · φ) − φ . (6)

In the last line of (5) the expression φ′ in brackets is just the vector φ rotated by an
angle |a| = 2θ around the n axis. For instance for n = ez we get

φ′
x = φx cos 2θ + φy sin 2θ ,

φ′
y = −φx sin 2θ + φy cos 2θ , (7)

φ′
z = φz .

EXERCISE

4.5 Gauge Covariance of Minimal Coupling and of the Field-Strength Tensor

Problem. (a) Show that the expression

Ψ̄ γ μ(i∂μ + gAμ · T̂ )Ψ

is gauge invariant.
(b) Prove the gauge covariance of the field-strength tensor Fμν , that is, show that

T̂ · F ′
μν = ÛFμν · T̂ Û−1 .

Solution. We abbreviate

γ μ∂μ ≡ ∂̂ , γ μAμ · T̂ ≡ Â . (1)

∂̂ and Â are matrices in the space of Dirac spinors and of isospinors. More accurately,
∂̂ should be denoted ∂̂1, where 1 is the 2 × 2 unit matrix in isospace, but here we
adopt the short-hand notation. Then we get the identity

Ψ̄ (i∂̂ + gÂ)Ψ = Ψ̄ Û−1Û(i∂̂ + gÂ)Û−1ÛΨ

= Ψ̄ ′Û (i∂̂ + gÂ)Û−1Ψ ′
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= Ψ̄ ′[i∂̂ + iÛ (̂∂Û−1) + gÛÂÛ−1]Ψ ′

= Ψ̄ ′[i∂̂ + gÛÂÛ−1 + iÛ (∂̂Û−1)
]
Ψ ′

= Ψ̄ ′(i∂̂ + gÂ′)Ψ ′ , (2)

with

Â′ = Û ÂÛ−1 + i

g
Û(∂̂Û−1) . (3)

The prescription (3) concerning the gauged field Â′ also expresses the rule for gauge
transforming the A field.

Since the γ matrices are linearly independent and Û does not act in spinor space,
because of (1) this result (3) corresponds to

A′
μ · T̂ = Û (Aμ · T̂ )Û−1 + i

g
Û(∂μÛ

−1) , (4)

yielding the gauge transformation (4.49) of the potential field. Thus (2) demonstrates
the gauge invariance of the kinetic part of the Lagrangian.

(b) In Exercise 4.4 we showed that the isovector F ′
μν , defined by

T̂ · F ′
μν = Û (T̂ · Fμν)Û

−1 , (5)

results from a rotation of Fμν in isospace. Therefore, if we can prove (5) we will
have shown that in fact Fμν acts like a vector in isospace. This is just the meaning of
“covariance” of a gauge transformation (rotation in isospin space). Thus covariance
means form invariance (in our case with respect to gauge transformations).

Furthermore we mention that in contrast to electrodynamics, where Fμν = F ′
μν ,

here we have Fμν �= F ′
μν ; nevertheless the kinetic energy L′

A = LA (see (4.53)) is

invariant with respect to the gauge transformation Û owing to the trace operation.
For the calculation we need a relation between (∂μÛ) and (∂μÛ−1). This can be

derived by differentiating the relation Û Û−1 = 1:

0 = ∂μ(ÛÛ
−1) = (∂μÛ)Û

−1 + Û (∂μÛ
−1) , (6)

and therefore

∂μÛ = −Û(∂μÛ
−1)Û , (7a)

∂μÛ
−1 = −Û−1(∂μÛ)Û

−1 . (7b)

The relation between A′
μ and Aμ in (4) can then be written in the form

A′
μ · T̂ = Û (Aμ · T̂ )Û−1 − i

g
(∂μÛ)Û

−1 . (4′)

We can simplify the explicit calculation if we write the expression (Aμ · T̂ ) in the
short-hand form
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Âμ = Aμ · T̂ = 1√
2

(
A(+)
μ T̂− + A(−)

μ T̂+
)+ A(0)μ T̂0

= 1

2

⎛

⎜⎜⎜⎝

A3
μ

A1
μ − iA2

μ√
2

A1
μ + iA2

μ√
2

−A3
μ

⎞

⎟⎟⎟⎠ , (8a)

and analogously

F̂μν = Fμν · T̂ = 1

2

⎛

⎜⎜⎜⎝

F 3
μν

F 1
μν − iF 2

μν√
2

F 1
μν + iF 2

μν√
2

−F 3
μν

⎞

⎟⎟⎟⎠ , (8b)

that is, we represent the isovector fields Aμ, Fμν by 2 × 2 matrix fields Âμ, F̂μν in
isospace. This implies solely a convenient abbreviation. Following (4.51a) and adopt-
ing this notation, we get

F̂μν = ∂μÂν − ∂νÂμ − ig[Âμ, Âν]− . (9)

Now we check the validity of (5):

F̂ ′
μν = ∂μÂ

′
ν − ∂νÂ

′
μ − ig[Â′

μ, Â
′
ν]−

= ∂μ

(
Û ÂνÛ

−1 − i

g
(∂νÛ)Û

−1
)

− ∂ν

(
Û ÂμÛ

−1 − i

g
(∂μÛ)Û

−1
)

− ig

[
Û ÂμÛ

−1 − i

g
(∂μÛ)Û

−1, Û ÂνÛ
−1 − i

g
(∂νÛ)Û

−1
]

−
. (10)

Using (7b) several times, we find that these three terms yield

∂μ

(
Û ÂνÛ

−1 − i

g
(∂νÛ)Û

−1
)

= Û (∂μÂν)Û
−1 + (∂μÛ)ÂνÛ

−1 − Û ÂνÛ
−1(∂μÛ)Û

−1

− i

g
(∂μ∂νÛ)Û

−1 + i

g
(∂νÛ)Û

−1(∂μÛ)Û
−1 , (11a)

∂ν

(
Û ÂμÛ

−1 − i

g
(∂μÛ)Û

−1
)

= Û (∂νÂμ)Û
−1 + (∂νÛ)ÂμÛ

−1 − Û ÂμÛ
−1(∂νÛ)Û

−1

− i

g
(∂ν∂μÛ)Û

−1 + i

g
(∂μÛ)Û

−1(∂νÛ)Û
−1 , (11b)

ig

[
Û ÂμÛ

−1 − i

g
(∂μÛ)Û

−1, Û ÂνÛ
−1 − i

g
(∂νÛ)Û

−1
]

−
= igÛÂμÂνÛ

−1 + (∂μÛ)ÂνÛ
−1 + Û ÂμÛ

−1(∂νÛ)Û
−1

− i

g
(∂μÛ)Û

−1(∂νÛ)Û
−1 − igÛÂνÂμÛ

−1 − (∂νÛ)ÂμÛ
−1

− Û ÂνÛ
−1(∂μÛ)Û

−1 + i

g
(∂νÛ)Û

−1(∂μÛ)Û
−1 . (11c)
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On inserting (11a)–(11c) into (10), we cancel most of the terms. If we also use the fact
that partial derivatives commute, all that remains is

F̂ ′
μν = Û (∂μÂν)Û

−1 − Û (∂νÂμ)Û
−1

− igÛÂμÂνÛ
−1 + igÛÂνÂμÛ

−1

= Û F̂μνÛ
−1 , (12)

as was to be shown. According to Exercise 4.4, (5), this means that Û = exp(ia · T̂ )

generates a rotation of the isovector components of Fμν in isospace:

F ′
μν = a

|a|
(

a

|a| · Fμν

)
−
(

a

|a| × Fμν

)
sin |a|

+
(

a

|a| × Fμν

)
× a

|a| · cos |a| . (13)

Since the isovector Fμν is rotated in isospace by a gauge transformation, we again
recognize in a most simple way that the kinetic energy of the Aμ fields, that is,
− 1

4Fμν · Fμν as a scalar product in isospin space, is invariant with respect to gauge
transformations.

There also exists a more elegant method to prove relation (5). According to (4.50c)
the operator of the covariant derivative transforms like

D̂μ → D̂′
μ = ÛD̂μÛ

−1 . (14)

With this we also have

[D̂′
μ, D̂

′
ν]− = Û [D̂μ, D̂ν]−Û−1 . (15)

An explicit calculation of the commutator yields

[D̂μ, D̂ν]− = [∂μ − igAμ · T̂ , ∂ν − igAν · T̂ ]−

= [∂μ, ∂ν]− + ∂μ(−igAν · T̂ ) − (−igAν · T̂ )∂μ
+ (−igAμ · T̂ )∂ν − ∂ν(−igAμ · T̂ ) + (−ig)2 [Aμ · T̂ ,Aν · T̂ ]−

= −ig
{
((∂μAν) · T̂ ) − ((∂νAμ) · T̂ ) − ig[Aμ · T̂ ,Aν · T̂ ]−

}
. (16)

Notice that in the last expression the derivatives act only on the gauge fields. The term
in the curly brackets is just F̂μν according to (4.51a), and therefore (15) expresses the
same as (5) or (12). In other words, the relation

F̂μν = i

g
[D̂μ, D̂ν]− (17)

holds and (15) then reads

F̂ ′
μν = Û F̂μνÛ

−1 , (18)

which is just the same as (12) or (5).
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4.3 The Feynman Rules for Yang–Mills Theory

The Lagrangian (4.54) of the coupled Dirac and Yang–Mills fields Ψ and Aμ contains,
apart from the second-order contributions, terms of third and higher order in the fields.
They arise from the field energy Fμν · Fμν , as is obvious from (4.55). On a closer look
we see that all terms of higher than second order contain the coupling constant g (see
(4.55)). Since we want to construct a theory describing the ‘weak’ interaction, we
can assume g to be small. Therefore it is convenient to split the full Lagrangian for
electrons, neutrinos, and the gauge field into a part L0 containing the bilinear terms
(with no g occurring) and a part LI containing the remainder, which is proportional
to g:

L0 = iΨ̄ γ μ∂μΨ − 1

4
(∂μAν − ∂νAμ) · (∂μAν − ∂νAμ) − Ψ̄ M̂Ψ , (4.57)

LI = gΨ̄ γ μAμ · T̂Ψ − g

2
(∂μAν − ∂νAμ) · (Aμ × Aν)

− g2

4
(Aμ × Aν) · (Aμ × Aν) , (4.58)

with the mass matrix

M̂ =
(

0 0
0 me

)
= 1

2
(1 − τ3)me

giving a mass to the electron. Although the mass matrix violates gauge invariance, we
anticipate the results of Sect. 4.5, where we shall show how to attribute a mass to the
electron via the Higgs mechanism without destroying gauge symmetry. Let us assume
for the moment that the result of this procedure can be effectively described in terms
of the matrix M̂ . (For other fermions participating in the weak interaction, such as
heavier leptons and quarks, the mass term has to be correspondingly modified and this
will be discussed later.)
L0 is called the Lagrangian of the “free fields”. In a strict sense this nomenclature

is physically incorrect, because L0 itself is not gauge invariant and therefore defines
no physically meaningful theory. The terms of L0 which violate gauge invariance
are just compensated by corresponding terms of LI. The coupling constant g may
be arbitrarily small but it must not be zero, since then gauge invariance is lost. This
can also be clearly seen by considering the transformation law of the Aμ field (4.49),
which contains a factor 1/g. From Hamilton’s principle,

δ

∫
d4xL0(Ψ̄ ,Ψ,Aμ) = 0 , (4.59)

the linear field equations can be derived:

iγ μ∂μΨ (x) − M̂Ψ (x) = 0 , (4.60)

∂ν(∂
μAν(x) − ∂νAμ(x)) = 0 . (4.61)

Formally these are equivalent to the free-field equations of quantum electrodynam-
ics (QED), with the difference that the Dirac field has two and the vector field three
isospin indices and M̂ is a 2 × 2 mass matrix. We assume M̂ to be diagonal, that is, the
two isospin components to be eigenstates of M̂ . Otherwise we could diagonalize M̂
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by a constant unitary transformation Ψ → V̂ Ψ . This can be done because, despite the
mass term L0 is gauge invariant with respect to spatially constant isospin rotations V̂ .

By analogy with QED, the propagation of perturbations of the free fields gener-
ated by LI are described by Feynman propagators which are defined for a point-like
perturbation:

(iγ μ∂μ − M̂)SF(x − x′) = δ4(x − x′) , (4.62)

∂α∂μ
↔
DFαν(x − x′) − ∂α∂

α
↔
DFμν = −gμν1 δ

4(x − x′) . (4.63)

In contrast to QED, here SF is a 2 × 2 matrix in isospin space as well as a 4 × 4 Dirac

matrix. Furthermore,
↔
DFμν is not just a second-rank tensor in space-time with indices

μ,ν, but also a 3 × 3 matrix in isospin space, which is denoted by the double arrow
(↔). However, the operators which act on SF and Dμν are diagonal in isospin coordi-
nates (which we explicitly demanded for M̂). Therefore SF and Dμν are represented
by unit matrices in isospin space. Exploiting translational invariance, we go over to
momentum space by Fourier transformation, obtaining the equations

(γ μpμ − M̂)SF(p) = 1 , (4.62′)

(p2gαμ − pαpμ)
↔
Dαν(p) = − ↔

1gμν . (4.63′)

The first of the two equations can be solved by (see Example 4.6 for a detailed discus-
sion of propagators):

SF(p) = (γ μpμ − M̂ + iε)
−1 = γ μpμ + M̂

p2 − M̂2 + iε
. (4.64)

As usual, the iε in the denominator determines the Feynman propagator, propagating
particles forward in time and antiparticles backward in time.8 Equation (4.63′) cannot
be solved for Dμν without further discussion, because the matrix

p2gαμ − pαpμ = p2Pα
μ (p) , (4.65)

like the projection operator (4.3), has eigenvalue zero (because Pμνqν = 0) and there-
fore cannot be inverted. This means that we must not assume a perturbation with
tensorial structure of gμν on the right-hand side, but only one which has the same
properties as Pμν(p), expressed in (4.4). Since Pμν(p) projects onto transverse vector
mesons (see (4.4)), the source of the vector boson propagator must also be transverse.
This can be most simply achieved by taking the perturbation itself to be proportional
to Pμν(p). Then (4.63′) takes the form

(p2gαμ − pαpμ)
↔
Dαν = − ↔

1 Pμν(p) , (4.63′ ′)

or

p2Pα
μ (p)

↔
Dαν = − ↔

1 Pμν(p) .

8 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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Since Dμν should be proportional to Pμν , (4.1) is one solution of the equation for the
propagator:

↔
DFμν = − ↔

1
Pμν(p)

p2 + iε
. (4.66)

Alternative solutions are discussed in Example 4.6. The special choice (4.66) is called
the Landau gauge.

In the propagator language, the interaction between free particles is described by
so-called vertex functions. For instance, in QED the interaction term of the Lagrangian
is given by

LEM
int = −eΨ̄ γ μΨAμ . (4.67)

It contains field variables which are either described by the wave functions of incom-
ing and outgoing particles or by the corresponding propagators in the case of virtual
particles. The positive elementary charge is denoted by e. Thus, the vertex function is
just

Γ
μ

EM(Ψ,A) = −eγ μ . (4.68)

In the same manner we can read off from the interaction Lagrange density LI (4.58),
that the vertex function of the coupling between fermions and the Yang–Mills field
takes the form

Γ
μ
i (Ψ,A) = gγ μT̂i , (4.69)

the index i denoting the isospin component.
In order to obtain the vertex functions related to the self-couplings of the Yang–

Mills field, we have to transform the corresponding interaction terms into momentum
space. The third-order term in Aμ (see (4.58)) is given by

Fig. 4.4. The triple vertex in
Yang–Mills theory, with our
notation of four-momenta and
indices of vector and isospin.
The first index (m,n, or l)
denotes isospin. The second
(μ,ν, or σ ) characterizes the
space-time component of the
corresponding vector meson

−g

2
εlmn
[−ipμgνσA

σ
l (p) + ipνgμσA

σ
l (p)
]
Aμm(q)A

ν
n(k)

= − ig

2
εlmn[pνgμσ − pμgνσ ]Aσl (p)Aμm(q)Aνn(k) , (4.70)

because we have to introduce distinct momenta for every field. Here we have explicitly
written the vector product in isospin space with the summation indices l,m,n. From
(4.70) we read off the form of the triple boson vertex (Fig. 4.4),

Γ̄
σμν
lmn (A

3) = − ig

2
εlmn(pνgμσ − pμgνσ ) . (4.71)

This is not yet the final result because the three Yang–Mills fields occurring in (4.70)
have the same rank. In total there are six possible ways of distributing them to the three
‘legs’ of the vertex. By adding to (4.71) all possible expressions derived by exchanging
the indices and momenta, we see that every term occurs twice. Then the final result is
(see Exercise 4.7)

Γ
σμν
lmn (A

3) = −igεlmn
[
(pν − qν)gμσ + (kμ − pμ)gνσ + (qσ − kσ )gμν

]
. (4.72)
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Fig. 4.5. The quartic vertex in
Yang–Mills theory. The first
index at each leg (i, j, k, l) de-
notes the isospin of the vec-
tor boson concerned; the sec-
ond index (μ,ν,σ, τ ) charac-
terizes the space-time compo-
nents

The quartic vertex (Fig. 4.5) can be determined in the same procedure by transforming
the last term of LI (4.58) into momentum spaces. Explicit notation of the isospin
indices yields

− 1

4
g2εijmεklmgμσ gντA

σ
k (q)A

τ
l (r)A

μ
i (k)A

ν
j (p) . (4.73)

We easily read off that

Γ̃
μνστ
ijkl (A4) = −g2

4
εijmεklmgμσ gντ . (4.74)

However, now there are 24 combinations of the four Yang–Mills fields, and every
different term occurs four times, i.e the vector meson characterized by (iμ) can carry
the momenta k,p, q or r (4 possibilities), for the vector meson (jν) there are then
only 3 possibilities left, etc. The final result is

Γ
μνστ
ijkl (A4) = −g2 [εijmεklm(gμσ gντ − gμτgνσ )

+ εikmεjlm(gμνgστ − gμτgνσ )

+ εilmεjkm(gμσ gντ − gμνgτσ )] . (4.75)

We would now have a complete list of the Feynman rules if we could neglect the
technical problems of Yang–Mills theory connected with gauge invariance. Owing o
the singularity of the wave operator (�gμν −∂μ∂ν), we have to choose a special gauge
in order to derive a unique expression for the propagator Dμν of the Yang–Mills field,
as is done in (4.66) (for a detailed discussion see Example 4.6). In order to derive
manifestly covariant Feynman rules, it is convenient to choose the Lorentz gauge,

∂μAμ = 0 . (4.76)

This gauge yields the propagator (4.66). More generally we could choose the gauge
condition

L̂μAμ = 0 , (4.77)

with an arbitrary linear operator L̂μ. The Lorentz gauge corresponds to the choice

L̂μ = ∂μ . (4.78)

To obtain the Coulomb gauge, that is,

∇ · Ai = 0 (4.79)

(here the vector notation in A refers to the space components, whereas i denotes the
components in isospin space!), we would choose

Fig. 4.6. Loop diagram of the
vector field

Lμ = (0,∇) . (4.80)

However, a rigorous analysis (which we will not discuss here) shows that Feynman
graphs including at least one loop diagram of the vector field (like the example in
Fig. 4.6) are no longer gauge invariant. Different values are obtained even for matrix
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elements related to physical processes, depending on the choice of L̂μ. This is, of
course, not acceptable. As shown by Fadeev and Popov,9 the basic reason for this
failure is the fact that the Feynman rules describing Yang–Mills theory as obtained so
far are incomplete. We must take into account the additional contributions of so-called
ghost fields. These fields are described by the additional Lagrangian

Lghost = −χ̄i L̂μ(∂
μδij + gεijkA

μ
k )χj , (4.81)

the ghost fields are denoted by χi , where i is an isospin (vector) index. The corre-
sponding anti-ghost fields are denoted by χ̄i . Taking the Lorentz gauge (4.78) we get

Lghost = −χ̄i∂μ(∂
μδij + gεijkA

μ
k )χj

= −χ̄i�χi − gεijkA
μ
k χ̄i∂μχj , (4.82)

where we have exploited the fact that the four-divergence of Aμ vanishes owing
to (4.76). Despite the ghost fields carrying only an isospin index, and being there-
fore spin-zero fields, they must be attributed Fermi–Dirac statistics in contrast to the
usual spin-statistic theorem, so that every ghost loop in a Feynman diagram carries an
additional factor −1. Moreover, ghost propagators may not occur as external lines of a
Feynman diagram, since they correspond to unphysical modes; therefore only closed
ghost loops contribute.

We can split the Lagrangian (4.82) into a free part and one containing the interac-
tion between ghosts and vector bosons. The latter is given by

LFP,A = −gεijkχ̄i∂μχjA
μ
k , (4.83)

where the index “FP” reminds us of Fadeev and Popov, who derived the extension

Fig. 4.7. (a) The Yang–Mills
ghost vertex. The propagators
of the ghosts are denoted by
dashed lines. Feynman dia-
grams containing a ghost loop
(b) and a Yang–Mills parti-
cle loop (c), whose unphysi-
cal contributions cancel each
other

of the Feynman rules in order to cancel unphysical contributions. In the same way as
above, we derive the vertex function by writing LFP,A in momentum space

+igεikj qμχ̄i(q)χj (p)A
μ
k (k) , (4.84)

yielding the vertex

Γ ijk
μ (FP,A) = −igεijkqμ , (4.85)

shown in Fig. 4.7a. The vertex shows that ghosts can only be created and annihilated
in pairs. Without detailed discussion, we mention that the unphysical contributions
of the graph in Fig. 4.7c is compensated by the graph in Fig. 4.7b, if the ghost loop
contains a factor −1. If we take into account both Feynman diagrams the total result
is gauge invariant.

Finally, the “free” ghost propagator is given by

LFP = −χ̄i�χi , (4.86)

according to (4.82). Apart from a pure divergence, it can also be written in the form

LFP = (∂μχ̄i)(∂
μχi) . (4.87)

9 L.D. Fadeev, V.N. Popov: Phys. Lett. 25B, 29 (1967). The procedure is discussed extensively in
W. Greiner, S. Schramm, and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer, Berlin, Heidel-
berg, 2007).
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Thus the ghost field propagates like a massless spin-zero field; its propagator is given
by

�(p) = 1

p2 + iε
. (4.88)

This completes our set of rules. Including ghost fields, the full Lagrange function reads

L = LF + Lint + LA + LFP + LFP,A

= Ψ̄ γ μ(i∂μ + gAμ · T̂ )Ψ − Ψ̄ M̂Ψ − 1

4
Fμν · Fμν

+ ∂μχ̄i∂
μχi − gεikj χ̄i∂μχjA

μ
k , (4.89)

the part LA is written out explicitly in (4.55). The Feynman rules are listed in Ta-
ble 4.1. There the propagators and vertices are multiplied by the imaginary unit i, as
required by the Feynman rules.

EXAMPLE

4.6 Propagators and Gauge Invariance

Non-relativistic Perturbation Theory. Let us assume that the solutions φn of the free
stationary Schrödinger equation

Ĥ0φn = Enφn ,

with
∫

L3

φ∗
mφnd

3x = δmn , (1)

are known. The Hamiltonian H0 should be time independent, and the φn are normal-
ized in a box with volume L3. We look for solutions of the Schrödinger equation

i∂ψ(x, t)

∂t
= (Ĥ0 + V (x, t))ψ(x, t) (2)

for a particle in a time-dependent potential V (x, t). Every solution of (2) can be ex-
panded in terms of the stationary states (1):

ψ(x, t) =
∑

n

an(t)φn(x) exp(−iEnt) . (3)

Inserting (3) into (2) yields

i
∑

n

dan(t)

dt
φn(x) exp(−iEnt) =

∑

n

V (x, t)an(t)φn(x) exp(−iEnt) . (4)

After multiplying by φ∗
f (x, t) from the left and subsequently integrating, we get

daf
dt

= −i
∑

n

an(t)

∫
φ∗
f V φnd3x exp

(
i(Ef − En)t

)
. (5)
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Table 4.1. Feynman rules of Yang–Mills theory in the covariant Landau gauge. Every closed
ghost loop gets an additional factor (−1). The indices i, j, k, l denote isospin space, and the
indices μ,ν,σ, τ, denote space-time

iSF(p) = i

γ μpμ − M + iε

= i
γ μpμ + M

p2 − M2 + iε

i(DFμν (p))ik = −iPμν(p)δik
p2 + iε

(Γ μ)i = igγμT i

(Γ μνσ )ijk = igεijk[gμν(k − p)σ
+ gνσ (p − q)μ + gσμ(q − k)ν ]

(Γ μσντ )ijkl = −ig2 [εijmεklm(gμσ gντ − gμτ gνσ )

+ εikmεjlm(gμνgστ − gμτ gνσ )

+ εilmεjkm(gμσ gντ − gμνgστ )]

i(�(p))ik = −iδik
p2 +iε

(Γ μ(q))ijk = gεijkqμ

This system of coupled equations is now solved with the following initial conditions:
the particle should be in the eigenstate φi before the time t = −T/2; the potential
V (x, t) should act only after t = −T/2. Mathematically this implies that at time
t = −T/2

an

(
− 1

2
T

)
= δni . (6)

For weak potentials we have approximately (first-order successive approximation) that

daf
dt

= −i
∫

d3xφ∗
f V (x, t)φi exp

(
i(Ef − Ei)t

)
. (7)
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Equation (7) is the result of first-order perturbation theory for weak, transient poten-
tials. It can be integrated yielding

af (t) = −i

t∫

−T/2

dt ′
∫

L3

d3xφ∗
f (x)V (x, t

′)φi(x) exp
(
i(Ef − Ei)t

′) . (8)

In particular, at time t = T/2, when the interaction vanishes again, we have

Sf i ≡ af

(
1

2
T

)

= −i

1
2T∫

− 1
2T

dt
∫

L3

d3x
[
φf (x) exp(−iEf t)

]∗
V (x, t)

[
φi(x) exp(−iEit)

]
. (9)

Clearly, the transition amplitude Tf i can be written in covariant form:

Sf i = −i
∫

d4xφ∗
f (x)V (x)φi(x) . (10)

First-order perturbation theory only makes sense when |af (t)| � 1, which we as-
sumed in (5)–(7). It is tempting to interpret |Sf i |2 as the probability for a particle in
state φi to be scattered into state φf . This is true but also implies that the states φi
and φf are separated by an infinite time interval. We can understand this remark by
supposing the potential to be merely space dependent, that is, V = V (x). Then (10)
reads

Sf i = −iVf i

∞∫

−∞
dt exp(i(Ef − Ei)t)

= −2π iVf iδ(Ef − Ei) , (11)

with

Vf i =
∫

L3

d3xφ∗
f (x)V (x)φi(x) .

In (11), the resulting δ function expresses energy conservation for the transition
i → f . The uncertainty relation requires an infinite time interval between φi and φf .
For stationary potentials it is therefore more convenient to consider the transition prob-
ability per unit time,

W = lim
T →∞

(
1

T
|Sf i |2

)
. (12)

With (11) we get

W = lim
T →∞

2π

T
|Vf i |2δ(Ef − Ei)

T/2∫

−T/2

dt exp(i(Ef − Ei)t)

= lim
T →∞

2π

T
|Vf i |2δ(Ef − Ei)

T/2∫

−T/2

dt

= 2π |Vf i |2δ(Ef − Ei) . (13)
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Here, the now well-known trick for the square of the delta function has been used, i.e.

(2πδ(Ef − Ei))
2 = 2πδ(Ef − Ei) lim

T →∞

T/2∫

−T/2

exp(i(Ef − Ei)t)dt .

Equation (13) is only physically applicable if we sum (or integrate) over a number of
final states. In fact, often in physics, especially in particle physics, the system starts
in a discrete state but is then scattered into a whole continuum of final states. With
�(Ef )dEf denoting the density of final states, the transition probability per unit time
into these states is given by

W = 2π
∫

dEf �(Ef )|Vf i |2δ(Ef − Ei) = 2π |Vf i |2�(Ei) . (14)

This relation is well known as Fermi’s golden rule.
In second order we can improve our calculation by inserting an(t), as given by (8)

and (6), into (5). Indeed, after the first step of successive approximation a(1)n (t) reads

a(1)n (t) = δni − i

t∫

−T/2

dt ′Vni exp(i(En − Ei)t
′) .

Here Vni , as denoted at −T/2 above, is taken to be time independent. This yields
daf
dt

= −i
∫

d3xφ∗
f V φi exp(i(Ef − Ei)t)

+ (−i)2
∑

n�=i

[
Vni

t∫

−T/2

dt ′ exp(i(En − Ei)t
′)
]

× Vfn exp(i(Ef − En)t) , (15)

where we have added the first- and second-order amplitudes in the usual manner of
perturbation expansion. Now, according to (9) the transition amplitudes Sf i are given
by

Sf i = lim
T →∞

[
−i

T/2∫

−T/2

dt exp(i(Ef − Ei)t)Vf i

+ (−i)2
∑

n�=i

Vf nVni

T /2∫

−T/2

dt exp(i(Ef − En)t)

t∫

−T/2

dt ′ exp(i(En − Ei)t
′)
]

= −i

[
Vf i

∞∫

−∞
exp(i(Ef − Ei)t)dt

− i
∑

n�=i

Vf nVni

∞∫

−∞
dt exp(i(Ef − En)t)

×
t∫

−∞
exp
(
i(En − Ei − iε)t ′)dt ′

]
. (16)

In the last integral we have inserted a convergence factor

exp(εt) = exp
(
i(−iε)t

)
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in order to “switch on the integrand adiabatically” in the limit t → − ∞. Later we let ε
tend to zero. This is another way of saying that the propagation of the states involved
is directed into the future.10 We get

t∫

−∞
dt ′ exp(i(En − Ei − iε)t ′) = i

exp(i(En − Ei − iε)t)

Ei − En + iε
. (17)

Hence (17) results in the form

Sf i = −i

[
Vf i +

∑

n�=i

Vf nVni

Ei − En + iε

]
2πδ(Ef − Ei) . (18)

This equation has the same structure as (11), and we can now guess at the rule for de-
termining higher-order transition amplitudes in the perturbation series. The transition
amplitude always has the structure

Sf i = −i[Ṽf i]2πδ(Ef − Ei) (19)

with

Ṽf i = Vf i +
∑

n�=i

Vf nVni

Ei − En + iε
+ · · · . (20)

The form of Fermi’s golden rule remains unchanged, only Vf i is replaced by Ṽf i .

The Electron Propagator. The transition amplitude (18) can also be written in the
form

Sf i = 2πδ(Ef − Ei)〈f |(−iV ) + (−iV )
i

Ei − Ĥ0 + iε
(−iV ) + · · · |i〉 . (21)

Here we have used the completeness relation

∑

n

|n〉〈n| = 1 (22)

of the eigenstates of Ĥ0. The prescription of adding a “+iε” term is extensively dis-
cussed elsewhere.11 Obviously it is convenient to take −iV as the scattering potential
(perturbational parameter) instead of V . The factor −i stems from the Schrödinger
equation

i∂ψ/∂t = (Ĥ0 + V )ψ

being written in the form

∂ψ/∂t = (−iĤ0 − iV )ψ . (23)

10 W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
11 W. Greiner and J. Reinhardt: Quantu Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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In the interaction representation

ψ ′(x, t) = e+iĤ0tψ(x, t)

this is especially apparent. There the Schrödinger equation (23) reads

∂ψ ′/∂t = (−iV )ψ ′ , (24)

yielding the time dependence

ψ ′ ∝ exp(−iV t) . (25)

The operator

i

Ei − Ĥ0 + iε
(26)

in (21) is the non-relativistic electron propagator with the vertex function (−iV ). In
fact, from the Schrödinger equation (2),

Eiψ = (Ĥ0 + V )ψ ,

we get

−i(Ei − Ĥ0)ψ = (−iV )ψ (27)

and therefore by computing the inverse operator,

ψ = [−i(Ei − Ĥ0)]−1(−iV )ψ

= i[Ei − Ĥ0 ]−1(−iV )ψ , (28)

formally confirming our interpretation. For real values of E the inverse operator
(E − Ĥ0)

−1 is mathematically not well defined, because the Hermitian operator Ĥ0

has real eigenvalues. Adding an infinitesimal imaginary part iε cures this problem.
From a mathematical point of view there are many alternative ways of defining this
operator uniquely. Thus physical reasons (adiabatically switching on the potential) are
required for us to be able to decide here.

The Relativistic Propagator of a Spin-0 Particle. A spinless massive particle obeys
the Klein–Gordon equation

(� + m2)φ = −V φ , (29)

which, by analogy with (27), can be written as

i(� + m2)φ = (−iV )φ . (30)

The propagator is the inverse of the differential operator on the left-hand side of the
equation,

[
i(� + m2)

]−1
, (31)
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which in momentum space, that is, taking a basis of plane waves φ = N exp(ipx), is
given by

[
i(−p2 + m2 − iε)

]−1 = i

p2 − m2 + iε
. (32)

The Relativistic Electron Propagator. The electron in an electromagnetic field Aμ
satisfies the Dirac equation,

(p/ − m)ψ = +eγ μAμψ . (33)

Again we multiply by +i and get

+i(p/ − m)ψ = ieγ μAμψ , (34)

yielding the propagator

1

[+i(p/ − m)] = −i

(p/ − m)
= −i(p/ + m)

(p2 − m2)

= −i(
∑

s us ūs)

(p2 − m2)
(35)

and the related vertex function

ieγ μ . (36)

Note that we have defined e as the positive elementary charge, that is, the charge of
the electron is given by

−e . (37)

The Photon Propagator. The wave equation of the photon is the Maxwell equation,

(gλν� − ∂ν∂λ)Aλ = jν . (38)

The operator on the left-hand side has no inverse, even if we apply the iε prescription.
This becomes clear in momentum space, where the left-hand side of (38) reads

−gνλq2 + qνqλ = −q2
(
gνλ − qνqλ

q2

)
≡ −q2P̂ νλ . (39)

Let us assume that an inverse operator exists. It should have the structure

A(q2)gλμ + B(q2)qλqμ , (40)

because there are only two second-rank tensors that can be formed: namely the met-
ric tensor gλμ and the direct product qλqμ. The functions A(q2) and B(q2) can be
determined from the relation

(−gνλq2 + qνqλ)
(
A(q2)gλμ + B(q2)qλqμ

)= δνμ . (41)

Expanding the equations yields

−A(q2)q2δνμ + A(q2)qνqμ − B(q2)q2qνqμ + B(q2)q2qνqμ = δνμ . (42)
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The terms proportional to B(q2) cancel, and the remaining equation for A(q2) is

A(q2)
[
qνqμ − q2δνμ

]= −δνμ . (43)

This has no solution, while B(q2) is completely undetermined. The basic reason for
this is that the operator P̂ νλ in (39),

P̂ νλ = gνλ − qνqλ/q2 , (44)

is a projection operator (P̂ ν
λ P̂

λ
μ = P̂ ν

μ ; see (4.8)) with eigenvalue zero and therefore

cannot be inverted (compare the discussion of (4.3), (4.4)). That an eigenvalue of P̂ νμ

is zero follows from Pμνqν = 0.
How then can a photon propagator be found which provides an effective inversion

of (38)? We can solve this problem rigorously by coupling the massless vector field
Aν to a so-called Higgs field, a complex scalar field with a real-valued constant part,

φ = 1√
2

(
f + χ1(x) + iχ2(x)

)
. (45)

The coupling is performed through the gauge-invariant Klein–Gordon current12

�Aν − ∂ν(∂μA
μ) = ie(φ∗∂νφ − (∂νφ∗)φ) − 2e2Aν |φ|2 (46)

yielding

(� + M2)Aν − ∂ν(∂μA
μ)

= −M∂νχ2 + e(χ2∂
νχ1 − χ1∂

νχ2) − e2Aν(χ2
1 + 2fχ1 + χ2

2 ) , (47)

with M = ef . Here e is the charge of the φ field. Now the photon has acquired a
mass M . Thus the gauge invariance of the theory seems to be broken, but actually it
is just hidden, as we shall see.

The problem related to the photon propagator can now be solved by taking a special
(but quite general) choice of gauge, that is,

∂μA
μ = Mζχ2 . (48)

Here ζ is an arbitrary parameter. The gauge (48), which was first proposed by
’t Hooft13 in 1971 is manifestly covariant, because M , ζ and χ2 are scalars, as is
∂μA

μ. Through the gauge the number of degrees of freedom of the Aμ field is re-
duced by one. Using this gauge in (47), we can express the term linear in χ2 by

χ2 = 1

Mζ
∂μA

μ ,

(49)
−M∂νχ2 = − 1

ζ
∂ν∂μA

μ .

12 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009), equation (8.11).
13 G. ’t Hooft: Nucl. Phys. B35, 167 (1971).
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Therefore (47) results in the form

(� + M2)Aν − ∂ν(∂μA
μ)

(
1 − 1

ζ

)

= e(χ2∂
νχ1 − χ1∂

νχ2) − e2Aν(χ2
1 + 2f χ1 + χ2

2 ) . (50)

The terms on the right-hand side are interactions between vector and Higgs-field χ1

as well as self-interactions. The operator on the left-hand side of (50) can be easily
inverted with the same technique which we tried to apply to (40) without success. In
momentum space the left-hand side of (50) reads
[
gνλ(−q2 + M2) + qνqλ

(
1 − 1

ζ

)]
Aλ = · · · . (51)

Using the ansatz (40) for the propagator, that is, for the inverse operator of the bracket
on the left-hand side of (51), we find that the equation determining the functionsA(q2)

and B(q2) is given by
[
gνλ(−q2 + M2) + qνqλ

(
1 − 1

ζ

)][
A(q2)gλμ + B(q2)qλqμ

]

= A(q2)

[
(−q2 + M2)δνμ + qνqμ

(
1 − 1

ζ

)]

+ B(q2)

[
qνqμ(−q2 + M2) + q2qνqμ

(
1 − 1

ζ

)]

= δνμ . (52)

Thus we get for the terms proportional to gνμ

A(q2)(−q2 + M2) = 1 ,

and for those proportional to qμqν

A(q2)

[
qνqμ

(
1 − 1

ζ

)]
+ B(q2)

[
qνqμ(−q2 + M2) + q2qνqμ

(
1 − 1

ζ

)]
= 0 .

Hence,

A(q2) = −(q2 − M2)
−1

, (53)

and

B(q2) = (q2 − M2)−1
(

1 − 1

ζ

)[
(−q2 + M2) + q2

(
1 − 1

ζ

)]−1

, (54)

and the propagator results in the form

A(q2)gλμ + B(q2)qλqν

= −gλμ

q2 − M2
− [qλqμ(1 − ζ−1)](q2 − M2)

−1

(q2 − M2) − q2(1 − ζ−1)

= 1

q2 − M2

[
−gλμ + qλqμ(1 − ζ )

q2 − ζM2

]
. (55)
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This propagator has interesting features. In the limit ζ → ∞ it takes the usual form of
the propagator of massive vector bosons, namely

iDμν = i
−gμν + qμqν/M2

q2 − M2
. (56)

As we learned in Sect. 3.6, this propagator produces all the high-energy problems
which complicate the renormalization of the theory. However, even for this gauge a
consistent set of Feynman rules can be formulated, so that all the cancellations of
divergent terms occur which are required for renormalizability. We can understand
this point without extensive calculations in the following manner. For a finite ζ the
’t Hooft propagator (55),

iDμν
T (ζ ) = i

−gμν + qμqν(1 − ζ )(q2 − ζM2)
−1

q2 − M2
, (57)

tends to 1/q2 in the high-energy limit q2 → ∞. Therefore no problems occur, since
then the propagator (57) behaves like the propagator of the renormalizable theory of
QED in the Lorentz gauge. So, if no problems occur for any finite ζ , it seems plausible
that this also holds in the limit ζ → ∞.

We must also discuss the second pole of the propagator (57) at q2 = ζM2. This
pole has to be unphysical because it depends on the arbitrary parameter ζ . In fact, in
his cited publication, ’t Hooft showed that the contributions of this pole are exactly
canceled by the contributions of a similar pole of the propagator of the Higgs field.

In the literature the gauge ζ → ∞ is described as the unitary gauge or U gauge,
because only physical poles occur in this gauge. The propagators (57) given by the
ζ gauge are also called R gauge propagators, since renormalizability can easily be

Fig. 4.8. Loop diagrams

shown in that gauge. As mentioned before, the latter contain unphysical Higgs fields
such as χ2.

In order to calculate Feynman diagrams without closed loops (so-called tree di-
agrams) it is most convenient to use the graphical rules of the U gauge. Technical
problems within this gauge only occur in the calculations of loop diagrams as shown
in Fig. 4.8, which are easier to calculate in the R gauge.

We mention that our general formula (57) for the propagator also contains the prop-
agator of a massless vector boson, that is, a photon, in the limit M → 0 for an arbitrary
gauge:

iDμν(ζ ) = i

q2

[
−gμν + (1 − ζ )

qμqν

q2

]
. (58)

The well-known photon propagator in the Feynman gauge is obtained by choosing
ζ = 1:

iDμν
photon = i

−gμν

q2
. (59)

EXERCISE

4.7 Self-Interaction of Gauge Fields

Problem. Derive the expression for the triple self-interaction vertex of the gauge
field (4.72).
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Solution. In Feynman’s propagator formalism the interaction vertex can be con-
structed by variational derivation of the corresponding term in the action with respect
to the fields, which is performed in momentum space. According to (4.58) the part of
the Lagrangian density containing three gauge fields is given by

L
(3)
int = − 1

2
g(∂αA

a
β − ∂βA

a
α)εabcA

α
bA

β
c

= −gεabc∂αA
a
β(x)A

α
b (x)A

β
c (x) . (1)

Introducing the Fourier representation

Aiμ(x) =
∫

d4p

(2π)4
Aiμ(p)e

−ip·x (2)

and further exploiting the rule that the product of two functions in space corresponds
to a convolution in momentum space we obtain

S
(3)
int =

∫
d4xL

(3)
int (x)

=
∫

d4x
d4pd4kd4q

(2π)12
(−gεabc)(−ipα)A

a
β(p)A

α
b (q)A

β
c (k)e

−i(p+q+k)·x

= igεabc

∫
d4pd4kd4q

(2π)8
pαA

a
β(p)A

α
b (q)A

β
c (k)δ(p + k + q) . (3)

By renaming the three variables of integration p, q , k we can write the integrand in
six different forms. Hence variation with respect to

δAlσ (p) · δAmμ(q) · δAnν(k) (4)

yields altogether six terms. To clarify this point we write the integrand in its six rep-
resentations explicitly (without the momentum-conserving δ function):

pαA
a
β(p)A

α
b (q)A

β
c (k) ,

pαA
a
β(p)A

α
b (k)A

β
c (q) ,

qαA
a
β(q)A

α
b (k)A

β
c (p) ,

(5)
qαA

a
β(q)A

α
b (p)A

β
c (k) ,

kαA
a
β(k)A

α
b (p)A

β
c (q) ,

kαA
a
β(k)A

α
b (q)A

β
c (p) .

Variation yields

δAaβ(p)

δAlσ (p)
= gσβ δal , (6)

and so on. We therefore get the following terms:
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igεabc
[
pαg

σ
β δalg

αμδbmg
βνδcn + pαg

σ
β δalg

βμδcmg
ανδbn

+ qαg
βσ δclg

μ
β δamg

ανδbn + qαg
ασ δblg

μ
β δamg

βνδcn

+ kαg
ασ δblg

βμδcmg
ν
βδan + kαg

βσ δclg
αμδbmg

ν
βδan
]

= ig(εlmnp
μgσν + εlnmp

νgσμ + εmnlq
νgσμ + εmlnq

σ gμν

+ εnlmk
σ gμν + εnmlk

μgσν)

= igεlmn(p
μgσν − pνgσμ + qνgσμ − qσ gμν + kσ gμν − kμgσν) , (7)

where we have exploited the antisymmetry of εlmn in the last step. By collecting terms
with identical indices of the metric tensor, we derive expression (4.2) of the three-
gluon vertex,

−igεlmn
[
(pν − qν)gσμ + (kμ − pμ)gσν + (qσ − kσ )gμν

]
. (8)

4.4 The Glashow–Salam–Weinberg Model of Leptons

We now have sufficient knowledge to formulate the Glashow–Salam–Weinberg theory
of weak and electromagnetic interactions among leptons and to study its properties.
Let us first state the starting point and the aim of our study:

1. There exist charged and neutral weak currents.
2. The charged currents contain only couplings between left-handed leptons.
3. The bosons W+, W−, and Z0 mediating the weak interaction must be very massive.
4. Nevertheless we shall begin with massless bosons which receive masses through

the Higgs mechanism. At that point we want to simultaneously include the photon
field.

In order to fulfill these conditions we introduce two vector fields, one isospin triplet
Aiμ (i = 1,2,3) and one singlet Bμ which should finally result as fields of the
physical particles W+, W−, Z0, and the photon through the symmetry breaking in-
duced by the Higgs mechanism. The leptonic fields have to be distinguished accord-
ing to their helicity. Every fermion generation (e,μ, τ) contains two related left-
handed leptons. These form an “isospin” doublet of left-handed leptons, denoted by
Li (i = e,μ, τ):

Le = 1 − γ5

2

(
ψνe

ψe

)
, Lμ = 1 − γ5

2

(
ψνμ
ψμ

)
, Lτ = 1 − γ5

2

(
ψντ
ψτ

)
. (4.90)

There are also right-handed components of the charged massive leptons. A right-
handed neutrino does not exist (at least in the framework of weak and electromagnetic
interactions), therefore right-handed leptons can be represented by singlets:

Re =
(

1 + γ5

2

)
ψe , Rμ =

(
1 + γ5

2

)
ψμ , Rτ =

(
1 + γ5

2

)
ψτ . (4.91)
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Now we consider the various currents successively (charged, neutral, and electromag-
netic currents) by adopting the new notation. Here we rewrite solely the terms includ-
ing e and νe; the two remaining generations can be treated in the same manner. In our
calculation we have used the property of γ5 anticommuting with every γ α , and we
further utilize the property that (γ5)

2 = 1. This yields, for example,

(1 − γ5)
2 = 2(1 − γ5)

and

γ α(1 − γ5) = 1

2
γ α(1 − γ5)

2 = 1

2
(1 + γ5)γ

α(1 − γ5) = 2
1 + γ5

2
γ α

1 − γ5

2
.

Finally we apply relation (1.24), which implies that

L̄e = (ψ̄νe, ψ̄e)
1 + γ5

2
, (4.92)

and so on. The charged weak currents have the form (see Sect. 2.1)

J
(e)α

− = ψ̄eγ
α(1 − γ5)ψνe = 2ψ̄e

1 + γ5

2
γ α

1 − γ5

2
ψνe

= 2L̄eγ
α

(
0 0
1 0

)
Le = 2L̄eγ

αT̂−Le , (4.93a)

J
(e)α

+ ≡ (J (e)α−
)† = 2L̄eγ

αT̂+Le , (4.93b)

with T̂± = T̂1 ± iT̂2 and (T̂−)+ = T̂+ . The electromagnetic current exists only for the
electron (as well as for the muon and τ lepton) since it is charged. It is given by

J
(e)α
EM = ψ̄eγ

αψe = 1

2
ψ̄eγ

α(1 − γ5)ψe + 1

2
ψ̄eγ

α(1 + γ5)ψe

= ψ̄e
1 + γ5

2
γ α

1 − γ5

2
ψe + ψ̄e

1 − γ5

2
γ α

1 + γ5

2
ψe

= L̄eγ
α

(
0 0
0 1

)
Le + R̄eγ

αRe

= L̄eγ
α

(
1

2
− T̂3

)
Le + R̄eγ

αRe . (4.94)

This electromagnetic current splits up into a part −L̄eγ
μT3Le belonging to an

isotriplet like (4.93a), (4.93b) and a further part 1
2 L̄eγ

αLe + R̄eγ
αRe representing

an isosinglet current. The relative weighting of the left-handed parts of the isosinglet
by a factor 1

2 enters through the electromagnetic current (4.94). We may expect the

neutral weak current J (e)α0 to have a similar form, unknown to us at the moment. We
rearrange the currents into an isotriplet by analogy with the isovector gauge field Aμ,

L̄eγ
αTLe , (4.95a)

and an isosinglet to be associated with the gauge field Bμ,

1

2
L̄eγαLe + R̄eγαRe . (4.95b)
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These currents are minimally coupled to the corresponding gauge fields:

L
(e)
int = g(L̄eγ

αTLe) · Aα − g′
[

1

2
(L̄eγ

αLe) + (R̄eγ
αRe)

]
Bα . (4.96)

This equation characterizes the structure of interaction as demanded by our general
group-theoretical considerations concerning the two gauge fields Aα and Bα . Here we
have introduced two undetermined coupling constants g and g′ whose significance
will become clear in the following (see (4.101)).

The real (physical) photon does not couple to the singlet current (4.95b) but to JαEM,
(4.94). Therefore it has to be represented by a mixture of Bμ and A3

μ fields. We write
the photon field in the following form:

Aμ = cos θBμ + sin θA3
μ . (4.97a)

It is characterized solely by the index μ of a four-vector and can thereby be discerned
from the isovector gauge field Aμ. The combination orthogonal to Aμ,

Zμ = − sin θBμ + cos θA3
μ (4.97b)

must describe the (physical) neutral intermediate boson of weak interactions. The in-
verses of (4.97a), (4.97b) are

Bμ = cos θAμ − sin θZμ , (4.98a)

A3
μ = sin θAμ + cos θZμ . (4.98b)

The mixing angle θ is called the Weinberg angle. Finally we write (pay attention to
the signs!)14

W(±)
μ = 1√

2
(A1

μ ∓ iA2
μ) . (4.99)

The field Wμ describes an incoming negative or an outgoing positive W boson,
W ∗
μ describes an incoming positive or an outgoing negative W boson. Sometimes in

the literature the notation W(+) ≡ W ∗ is also used. We shall also sometimes adopt this
in the following. By inserting (4.98), (4.99) into the Lagrange density L(e)int (4.96) we
obtain

L̄
(e)
int = g√

2
L̄eγ

α(T̂−W(−)
α + T̂+W(+)

α )Le

+
[
g cos θL̄eγ

αT̂3Le + g′ sin θ

(
1

2
L̄eγ

αLe + R̄eγ
αRe

)]
Zα

+
[

−g′ cos θ

(
1

2
L̄eγ

αLe + R̄eγ
αRe

)
+ g sin θL̄eγ

αT̂3Le

]
Aα

≡ g

2
√

2

(
J
(e)α

− W(−)
α + J

(e)α
+ W(+)

α + J
(e)α
0 Zα

)− eJ
(e)α
EM Aα (4.100)

14 This is completely analogous to the definition of charged pions (4.36b).
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with

J
(e)α

− = 2L̄eγ
αT̂−Le , J

(e)α
+ = 2L̄eγ

αT̂+Le ,

J
(e)α
0 = 2

√
2

[
cos θL̄eγ

αT̂3Le + g′

g
sin θ

(
1

2
L̄eγ

αLe + R̄eγ
αRe

)]
,

−e J
(e)α
EM = −e

[
L̄eγ

α

(
1

2
− T̂3

)
Le + R̄eγ

αRe

]

= −
[
L̄eγ

α

(
g′ cos θ

2
− g sin θT̂3

)
Le + g′ cos θR̄eγ

αRe

]
.

Comparing the latter result, which is the correct expression of the electromagnetic
current, we find that (4.94) yields directly the relations

e = g sin θ = g′ cos θ , (4.101)

and

tan θ = sin θ

cos θ
= g′

g
. (4.102)

Separately, the angle θ can be expressed in terms of the original coupling constants
g,g′:

sin θ = g′
√
g2 + g′2 , cos θ = g√

g2 + g′2 . (4.103)

Thus we can connect the elementary electric charge of the electron with the two cou-
pling constants g,g′:

e = gg′
√
g2 + g′2 , (4.104)

or

1

e2
= 1

g2
+ 1

g′ 2
.

Equation (4.100) contains the explicit form of the neutral weak current in the frame-
work of the Glashow–Salam–Weinberg theory. Using (4.101) we can write

J
(e)α
0 = 2

√
2

[
cos θL̄eγ

αT̂3Le + g′

g
sin θ

(
1

2
L̄eγ

αLe + R̄eγ
αRe

)]

= 2
√

2

cos θ

[
L̄eγ

α

(
T̂3 cos2 θ + 1

2
sin2 θ

)
Le + sin2 θR̄eγ

αRe

]

=
√

2

cos θ

[
L̄eγ

α

(
1 0
0 − cos 2θ

)
Le + 2 sin2 θR̄eγ

αRe

]
. (4.105)

Written in terms of neutrino and electron fields separately, the neutral weak current
becomes
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J
(e)α
0 =

√
2

cos θ

[
ψ̄νe

1 + γ5

2
γ α

1 − γ5

2
ψνe − (1 − 2 sin2 θ)ψ̄e

1 + γ5

2
γ α

1 − γ5

2
ψe

+ 2 sin2 θψ̄e
1 − γ5

2
γ α

1 + γ5

2
ψe

]

= (
√

2 cos θ)−1[ψ̄νeγ
α(1 − γ5)ψνe − (1 − 2 sin2 θ)ψ̄eγ

α(1 − γ5)ψe

+ 2 sin2 θψ̄eγ
α(1 + γ5)ψe

]

= (
√

2 cos θ)−1[ψ̄νeγ
α(1 − γ5)ψνe − ψ̄eγ

α(g′
V − g′

Aγ5)ψe
]

, (4.106)

where

g′
A = 1 , g′

V = 1 − 4 sin2 θ . (4.107)

Comparing this result with the former ansatz of the neutral current, which we intro-
duced in order to describe neutrino–electron scattering (3.2), we recognize that the
two agree with each other. In fact, the neutrino part of the neutral current has the
same form as in (3.2a), that is, pure V–A coupling. This is hardly surprising, since
the theory contains only left-handed components of the neutrino field; hence the neu-
trino coupling must have this form. On inspecting the electronic part we see that in
(4.106) the relations (4.107) hold, apart from a normalizing factor fixing the total cou-
pling strength. The investigation of the experimental data in Sects. 3.1, 3.2, and 3.3
showed that either gV or gA must be very small (see (3.30)). Now relation (4.107)
states that the Glashow–Salam–Weinberg theory excludes the possibility of a vanish-
ing gA. Therefore we must have

sin2 θ ≈ 0.25 , (4.108)

yielding a very small vector contribution to the electronic neutral weak current. The
value of the Weinberg angle, given by (4.108), yields cos θ ≈ 1. Therefore, in (4.105)
there is roughly a prefactor 1/

√
2 for the total neutral current compared to the charged

currents. This becomes particularly evident from the explicit form of the various
currents given later explicitly in (4.139).

The effective Hamiltonian for neutrino–electron scattering (3.3) contains the neu-
tral neutrino and the neutral electron current appearing in J (e)0 ; see (4.106) and also
(4.139). The interaction between charged currents contributes with the two vertices

g

2
√

2
· g

2
√

2
= g2

8
,

the interaction between the neutral currents contributes with the two vertices

g

4 cos θ
· g

4 cos θ
≈ g2

16
.

Therefore compared with the interaction strength between the charged currents, the
total coupling strength between neutral currents has to be smaller by a factor ≈
(1/

√
2)2 = 1/2. Thus g′

A = 1 in (4.107) yields the effective value gA ≈ 1/2 for the
Fermi interaction with neutral currents given in (3.3). This is in excellent agreement
with the experimental data; see (3.30a). Thus the Glashow–Salam–Weinberg theory
passes a first important test.
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EXAMPLE

4.8 The Gauge-Covariant Formulation of the GSW Theory: Weak Isospin and
Weak Hypercharge

Let us summarize the main points of our discussion from a slightly different point
of view. In the theory of weak interactions, the leptons are divided into left-handed
isodoublets (T = 1

2 , T3 = ± 1
2 ),

L
 =
(
ψν

ψ


)

L
= 1 − γ5

2

(
ψν

ψ


)
, (1)

and right-handed isosinglets T = 0,

R
 = (ψ
)R = 1 + γ5

2
ψ
 , (2)

where 
 runs over the “generations” e, μ, τ . Starting from (1) and (2) we demand the
invariance of the theory with respect to gauge transformations, that is,

(
ψν

ψ


)

L
→
(
ψν

ψ


)′

L
= exp(ia(x) · T̂ )

(
ψν

ψ


)

L

= exp

(
ia(x) · τ̂

2

)(
ψν

ψ


)

L
≡ Û2L
 (3)

(ψ
)R → (ψ
)
′
R = exp(ia(x)Ŷ )(ψ
)R ≡ Û1R
 .

Here Ŷ = Y is the generator (a constant) of the U(1) group. By making the simple
ansatz

L̄
γ
μi∂μL
 + R̄
γ

μi∂μR
 , (4)

for the kinetic-energy term of the Lagrange density, we find that the latter is only gauge
invariant with respect to (3) if we replace the derivative ∂μ by the covariant derivative

D̂μ = ∂μ − igT̂ · Aμ − i
g′

2
ŶBμ . (5)

T̂ = (T̂1, T̂2, T̂3) are the three generators of the SU(2) group, Ŷ is the generator of the
U(1) group. The former fulfill the commutation relations

[T̂i , T̂j ] = iεijkT̂k , (6)

whereas Ŷ is just a number. Obviously

[T̂i , Ŷ ] = 0 (7)

holds, because the generators belong to different groups.
In the following we shall see that it is convenient to denote the coupling constant

to the Bμ field by 1
2g

′ (instead of g′), because the interaction will then have the form
(4.96). In (5) we were forced to introduce the gauge fields Aμ (isovector, four-vector in
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space-time) and Bμ (isoscalar, four-vector in space-time) with gauge transformations
(see (4.49))

Aμ · T̂ → A′
μ · T̂ = Û2Aμ · T̂ Û−1

2 + i

g
Û2(∂μÛ

−1
2 ) ,

(8)
Bμ → B ′

μ = Bμ + 2i

g′ U1(∂μU
−1
1 ) ,

in order to ensure gauge invariance. Here U1 and Û2 are U(1) and SU(2) transforma-
tions, respectively. The new degrees of freedom connected to the gauge fields Aμ and
Bμ now have to be supplemented by gauge-invariant “kinetic-energy” terms for these
gauge fields in the Lagrange density. This can be done as in electrodynamics by using
field-strength tensors (see (4.51a))

F̂μν ≡ Fμν · T̂ = D̂μ(Aν · T̂ ) − D̂ν(Aμ · T̂ )

= (∂μAν − ∂νAμ + gAμ × Aν) · T̂ , (9)

Fμν = ∂μAν − ∂νAμ + gAμ × Aν

and

Bμν = ∂μBν − ∂νBμ (10)

with gauge-transformation properties (see (18) of Exercise 4.5)

F̂μν → F̂ ′
μν = Û2F̂μνÛ

−1
2 = Û2(Fμν · T̂ )Û−1

2

and

Bμν → B ′
μν = Bμν , (11)

respectively. The gauge-invariant kinetic energies of the gauge fields Aμ and Bμ are
given by

L′
A = − 1

2
Tr
{
F̂μνF̂

μν
}= − 1

2
Tr
{
(Fμν · T̂ )(Fμν · T̂ )

}

= − 1

4
Fμν · Fμν (12)

and

L′
B = − 1

4
BμνB

μν . (13)

Summarizing our result we get

L′
int = L̄
γ

μiD̂μL
 + R̄
γ
μiD̂μR
 − 1

4
Fμν · Fμν − 1

4
BμνB

μν , (14)

or explicitly

L′ = iL̄
γ
μ

[
∂μ − igT̂ · Aμ − i

g′

2
ŶBμ

]
L


+ iR̄
γ
μ

[
∂μ − igT̂ · Aμ − i

g′

2
ŶBμ

]
R
 − 1

4
Fμν · Fμν − 1

4
BμνB

μν. (15)
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With the help of Table 4.2 we can easily verify that, by taking the appropriate quantum
numbers T and Y for Le and Re, respectively, the interaction contained in (15) agrees
with L(e)int (4.96). In particular, T̂ R
 = 0, because R
 is an isosinglet.

Now we also understand the choice taken in (4.96) when we wrote the term pro-
portional to g′ (that is, the interaction with the field Bμ) with a negative sign. In that
way the terms correspond directly to the general scheme (15) using gauge-covariant
derivatives.

At this stage the gauge fields are still massless. However, some of them acquire a
mass, since we know the vector bosons must be massive. We shall achieve this in the
next section by applying the Higgs mechanism. But let us first discuss the physical
meaning of “weak isospin” T̂ and “weak hypercharge” Ŷ . Glashow15 proposed that
the Gell-Mann–Nishijima relation for the electric charge Q should also be valid in the
case of the weak interaction, that is,

eQ = e

(
T3 + 1

2
Y

)
. (16)

Table 4.2. Quantum numbers of weak isospin and hypercharge of leptons and quarks

Fermion T T3 Y Q

νe, νμ, ντ 1/2 1/2 −1 0
eL,μL, τL 1/2 −1/2 −1 −1
eR,μR, τR 0 0 −2 −1

uL, cL 1/2 1/2 1/3 2/3
(dC)L, (sC)L 1/2 −1/2 1/3 −1/3

uR, cR 0 0 4/3 2/3
(dC)R, (sC)R 0 0 −2/3 −1/3

Since T̂3 and Ŷ commute, both can be diagonal simultaneously. Therefore we replace
T̂3 and Ŷ by their eigenvalues in (16). From the known charge of the neutrino (Q = 0)
and leptons (Q = −1) and from their classification with respect to isodoublets and
isosinglets we can directly determine the T3 and Y values of the various particles, as
shown in Table 4.2. In addition to the quantum numbers of the leptons we also include
the quarks, although their “weak properties” will be discussed later in Chap. 6. In
particular some of the quarks carry the index “C” referring to Cabibbo mixing of the
quarks (see Sect. 6.4).

4.5 Spontaneous Symmetry Breaking: The Higgs Sector

So far, the vector bosons W+
μ ,W

−
μ , and Zμ have been treated as if they were massless.

In order to give them mass we apply the Higgs mechanism discussed in Sect. 4.1. As
the left-handed leptons form an isodoublet and the gauge fields Aμ an isovector, we
now need an isodoublet of Higgs fields,

Φ =
(
φ(+)

φ(0)

)
, |Φ|2 = |φ(+)|2 + |φ(0)|2 , (4.109)

15 S.L. Glashow: Nucl. Phys. 22, 579 (1961).
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consisting of a positively charged and a neutral spin-zero particle. With the help of the
weak Gell-Mann–Nishijima relation discussed in Example 4.8, (16), we find that the
isospin T and hypercharge Y of the Higgs field must be given by

T = 1

2
, Y = 1 . (4.110)

In order to obtain a non-vanishing vacuum expectation value of the Higgs field, we
add a potential term with the “wrong” sign of the mass term to the Higgs Lagrangian,

U(Φ) = −μ2 |Φ|2 + h|Φ|4 . (4.111)

In addition there is a gradient term for the kinetic energy of the Higgs field, where it
is minimally coupled to the gauge fields Aμ and Bμ in the same way as the leptonic
doublet:

∣∣∣∣

(
i∂μ + gT̂ · Aμ + g′

2
BμŶ

)
Φ

∣∣∣∣
2

=
∣∣∣∣

(
∂μ − igT̂ · Aμ − i

g′

2
BμŶ

)
Φ

∣∣∣∣
2

(4.112)

(Example 4.8, (5), (15)). We recognize that the relative sign of the coupling to the
electrically neutral fields A3

μ and Bμ differs for the two components of the Higgs field.
Therefore the electromagnetic field Aμ does not couple to the lower component of the
Higgs field, as we shall see in the following. The hypercharge of the Higgs doublet,
fixed by (4.110), is the origin of this change of sign. We can say that the special choice
of the Higgs doublet (4.109), which seems to be unmotivated at first glance, just yields
the effect that the A3

μ − Bμ mixture representing the photon field Aμ does not couple
to the neutral component φ0. This must be so since the photon must remain massless.
With the help of (4.98) we can easily prove that

gT 3A3
μ + g′

2
Bμ = 1

2

(+gA3
μ + g′Bμ 0

0 −gA3
μ + g′Bμ

)

= 1

2

(
Aμ(g sin θ + g′ cos θ) + Zμ(+g cos θ − g′ sin θ) 0
0 Aμ(−g sin θ + g′ cos θ) − Zμ(g cos θ + g′ sin θ)

)

=
⎛

⎝eAμ + g
cos 2θ

2 cos θ
Zμ 0

0 − g

2 cos θ
Zμ

⎞

⎠ . (4.113)

This result shows that the lower component of the Higgs field does not couple to the
photon field, that is, it carries no electric charge. Formally, the upper component has
the opposite charge of the electron so that it is positively charged corresponding to
(4.109). We are always able to set the upper component φ(+) to zero by an appropriate
gauge (rotation in isospin space). Without restricting generality we write

Φ = 1√
2

(
λ + χ(x)

)
exp

(
i

λ
Θ(x) · T

)(
0
1

)
(4.114)

with the isovector Θ = (Θ1,Θ2,Θ3). The four fields Θ(x) and χ(x) are real-valued.
λ =√μ2/h describes the vacuum expectation value of the Higgs field, known from
Sect. 4.1, and χ(x) denotes the local deviation of the Higgs field from that value.
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With regard to SU(2) gauge invariance of the Yang–Mills theory, we are now able
to eliminate the exponential, because Φ can be written in the form

Φ = 1√
2

(
λ + χ(x)

)
Û2

(
0
1

)
= Û2

1√
2

(
λ + χ(x)

)(0
1

)
= Û2Φ0 , (4.115)

Û2 being the SU(2) gauge transformation

Û2 = exp

(
+ i

λ
Θ(x) · T

)
. (4.116)

Now we perform a gauge transformation Φ → Φ ′ = U−1
2 Φ . Of course also the gauge

fields have to be transformed accordingly, Aμ → A′
μ; see (8) in Example 4.8. As a

result the Higgs field we obtain the simple form

Φ ′ = 1√
2

(
λ + χ(x)

)(0
1

)
. (4.117)

In the following, we will adopt this gauge condition and for simplicity drop the primes.
This choice is called the unitary gauge and was introduced earlier in the case of a one-
dimensional Higgs field; see (4.32). Without this choice of gauge, the theory would
be more difficult to interpret. The field Φ then apparently would have more degrees of
freedom which, however, are spurious since they can be removed by a gauge transfor-
mation. Nevertheless, the unitary gauge is not always the most convenient choice and
other conditions can be imposed, e.g. for the purpose of renormalization of the theory.

The vacuum expectation value of the Higgs field is fixed by the condition thatU(Φ)
attains a minimum. To this end we set χ(x) = 0 and, using the gauge (4.117), we get
the vacuum expectation value of the Higgs field operator Φ̂

〈0|Φ̂|0〉 = λ√
2

(
0
1

)
,
∣∣〈0|Φ̂|0〉∣∣2 = λ2

2
. (4.118)

The Higgs potential results in the form

U(〈0|Φ̂|0〉) = −μ2

2
λ2 + h

4
λ4 ≡ V (λ) . (4.119)

Demanding dV/dλ = 0 we get

λ2 = μ2

h
, (4.120)

yielding the vacuum expectation value of the Higgs field

〈0|Φ̂|0〉 = μ√
2h

(
0
1

)
. (4.121)

Again we mention that the lower component of the Higgs field does not couple to
the electromagnetic field according to (4.113). Therefore the non-vanishing vacuum
expectation value does not influence the photon field, in other words, in spite of the
symmetry breaking the photon remains massless.
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Now we collect all parts of the Lagrangian density, that is, the contributions of the
free fields (leptons, Yang–Mills field and neutral vector field Bμ), writing

Bμν = ∂μBν − ∂νBμ , Fμν = ∂μAν − ∂νAμ + gAμ × Aν , (4.122)

and also the interaction terms (4.100) and the contributions of the Higgs field (4.111),
(4.112). Finally we add a term (
 = e,μ, τ)

−√
2f
(R̄
Φ

†L
 + L̄
ΦR
) = −f
(λ + χ)ψ̄
ψ
 (4.123)

for each lepton generation, in order to give the charged leptons the mass m
 = f
λ.
A detailed discussion of these terms can be found in Exercise 4.9. Here Φ† =
(Φ(+)∗

,Φ(0)∗
) denotes the Hermitian conjugate of the isodoublet vector. Obviously

the combinations

Φ†L
 and L̄
Φ (4.124)

are isoscalars and spinors or adjoint spinors, respectively, in space-time and can be
combined with the isoscalar spinors R
 and adjoint isoscalar spinors R̄
, respectively,
forming the invariants

R̄
Φ
†L
 and L̄
ΦR
 , (4.125)

which are related to each other by

(R̄Φ†L)† = (L̄ΦR) . (4.126)

Hence the form of the interaction chosen in (4.123) is Hermitian. Each of the terms
in (4.123) is also invariant with respect to gauge transformations. This can be seen
by using the notation of gauge transformations Û = Û1Û2 = Û2Û1 introduced in Ex-
ample 4.8, (3). Û1 is the U(1) gauge transformation, whereas Û2 denotes the SU(2)
transformation. Obviously both commute. We can then write

R̄
Φ
†L
 = R̄
Û

−1ÛΦ†Û−1ÛL


= R̄
Û
−1
1 Û1Φ

†Û−1
1 Û−1

2 Û1Û2L


= R̄′

Φ

′†L′

 , (4.127)

with

R′

 = Û1R
 , L′


 = Û1Û2L
 , Φ ′ = Û1Û2ΦÛ
−1
1 = Û2Φ . (4.128)

We denote the neutrino components by ψν
 (
 = e,μ, τ) and the massive leptons
by ψ
. Collecting all contributions (see Exercise 4.10), the Lagrangian of the weak
interactions is given by

L = − 1

4
Fμν · Fμν − 1

4
BμνB

μν − e

(∑




ψ̄
γ
μψ


)
Aμ

+
∑




i

(
ψ̄ν
γ

μ 1

2
(1 − γ5)∂μψν
 + iψ̄
γ

μ∂μψ
 − f
ψ̄
ψ
(λ + χ)

)
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+ g

2
√

2

∑




[
ψ̄
γ

μ(1 − γ5)ψν
W
(−)
μ + ψ̄ν
γ

μ(1 − γ5)ψ
W
(+)
μ

]

+ g

4 cos θ

∑




[
ψ̄ν
γ

μ(1 − γ5)ψν
 − ψ̄
γ
μ(g′

V − γ5)ψ

]
Zμ

+ hλ4

4
+ 1

2
(∂μχ)

2 − hλ2χ2 − hχ2
(
λχ + 1

4
χ2
)

+ g2

8

(
2W(+)

μ W(−)μ + ZμZ
μ

cos2 θ

)
(λ + χ)2 . (4.129)

Remember, g′
V = 1 − sin2 θ , see (4.107). Here we have used (4.120) in order to elimi-

nate the term linear in χ. The fourth and fifth terms describe the kinetic energies of the
(left-handed) neutrinos and massive leptons. The last term represents the coupling of
the W and Z bosons to the Higgs fields, which generates the W and Z boson masses.
We evaluate this term in Exercise 4.10, (7)–(9). The constants f
 are given by the
lepton masses m
 = λf
. Furthermore, we see that the masses of the W and Z boson
result in the form

MW = gλ

2
, MZ = MW

cos θ
. (4.130)

Finally, according to our discussion in Sect. 3.6 (see (3.86)) we can identify the Fermi
coupling constant

G√
2

= g2

8M2
W

= e2

8M2
W sin2 θ

≈ e2

2M2
W

. (4.131)

This equation originates from the vertex coupling strength ḡ = g/2
√

2 of the charged
weak current in (4.129), compared to the vertex coupling G/

√
2 in (3.86). Further-

more, we have used the asymptotic (low-energy) behavior for the boson propagator

(−iḡ)2

q2 − M2
W

q→0−→ g2

8M2
W

. (4.132)

This is expressed graphically in Fig. 4.9.

Fig. 4.9. Interaction of weak
currents (a) in the Fermi the-
ory, (b) in the standard model

In (4.131) we have used the experimental value (4.108) of the Weinberg angle. Thus
we obtain the following estimate of the masses the intermediate bosons W and Z:

MW =
(

e2

4
√

2G sin2 θ

)1/2

≈
(

e2

√
2G

)
≈ 75 GeV , (4.133a)

MZ = 86 GeV . (4.133b)

Here we have used the value given by (2.63) for G. (Owing to higher-order radia-
tive corrections the effective value of G is renormalized at high energies. The value
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for G in the 80–90 GeV mass range is somewhat lower than (2.63) and therefore
the precise predictions of the theory for MW and MZ are about 6 percent higher; see
also Exercises 5.2, 5.3.) At the time of invention of the Weinberg–Salam theory the
masses of the intermediate bosons as predicted by the new theory (75 and 86 MeV,
respectively), were very high, making their production difficult.16 For example, the
electron–positron storage ring PETRA at Hamburg had a maximum available energy
of 45 GeV. There the influence of the Z0 boson on the scattering could only be seen

Fig. 4.10. Muon and τ lepton
pair production, with a photon
or the neutral boson Z0 as in-
termediate state

indirectly, since the conversion of an electron–positron pair into a muon pair (or τ
pair) can occur with either a virtual photon or a virtual Z0 boson in the intermedi-
ate state (see Fig. 4.10). Both processes are in principle indistinguishable, since they
yield the same final state, and their amplitudes have to be added coherently. How-
ever, as the neutral weak current of the charged leptons has different parity proper-
ties (nearly pure axial vector current – cf. (4.106), (4.107)) to the electromagnetic
one (pure vector current), the superposition of the two processes yields a character-
istic shape of the angular distributions of the particles produced, which allows for
a crude determination of the mass of the Z boson. (Further details can be found in
Sect. 5.2.) The generation of electron–positron colliders available since the 1990s,
with centre-of-mass energies of around 100 GeV, has allowed for copious production
of Z bosons, making a detailed investigation of their properties possible (see Exam-
ple 5.3).

Finally we have to rewrite the free-field parts Fμν · Fμν and BμνBμν in terms of
the physical fields Aμ,Zμ, and W±

μ . We find that

Fμν · Fμν =
∑

i

(
∂μA

i
μ − ∂νA

i
μ + gεiklA

k
μA

l
ν

)(
∂μAiν − ∂νAiμ + gεiklA

kμAlν
)

= 2
[
∂μW

(−)
ν − ∂νW

(−)
μ − ig(W(−)

μ A3
ν − W(−)

ν A3
μ)
]

× [∂μW(+)ν − ∂νW(+)μ + ig(W(+)μA3ν − W(+)νA3μ)
]

+ [∂μA3
ν − ∂νA

3
μ + ig(W(−)

μ W(+)
ν − W(−)

ν W(+)
μ )
]

× [∂μA3ν − ∂νA3μ + ig(W(−)μW(+)ν − W(−)νW(+)μ)
]

= 2
[
∂μW

(−)
ν − ∂νW

(−)
μ − ig cos θ(W(−)

μ Zν − W(−)
ν Zμ)

− ie(W(−)
μ Aν − W(−)

ν Aμ)
]

× [∂μW(+)ν − ∂νW(+)μ + ig cos θ(W(+)μZν − W(+)νZμ)

+ ie(W(+)μAν − W(+)νAμ)
]

+ [ cos θ(∂μZν − ∂νZμ) + sin θ(∂μAν − ∂νAμ)

+ ig(W(−)
μ W(+)

ν − W(−)
μ W(+)

ν )
]

× [ cos θ(∂μZν − ∂νZμ) + sin θ(∂μAν − ∂νAμ)

+ ig(W(−)μW(+)ν − W(+)μW(−)ν)
]

(4.134)

16 The discovery of the intermediate bosons at the proton–antiproton collider of CERN in Geneva,
with two colliding beams of 270 GeV each, will be discussed in Example 5.2.
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where we have used (4.101), setting

e = g sin θ = g′ cos θ . (4.135)

The free part of the isosinglet field is

BμνB
μν = (∂μBν − ∂νBμ)(∂

μBν − ∂νBμ)

= cos2 θ(∂μAν − ∂νAμ)(∂
μAν − ∂νAμ)

+ sin2 θ(∂μZν − ∂νZμ)(∂
μZν − ∂νZμ)

− 2 sin θ cos θ(∂μAν − ∂νAμ)(∂
μZν − ∂νZμ) . (4.136)

By adding both contributions (4.134), (4.136), we find that those terms which mix the
photon Aμ and the neutral intermediate boson Zμ disappear.

Now we have determined all terms of the Glashow–Salam–Weinberg Lagrangian
describing the electromagnetic and weak (“electroweak”) interaction of the leptons.
We write the total expression in a closed form, omitting the constant term in the Higgs
sector, that is, 1

4hλ
4:

LSW = L
(2)
SW +

∑




L
(3L)
SW,
 + L

(3B)
SW + L

(4B)
SW + L

(H)
SW . (4.137)

Here L(2)SW describes the part of the free boson and lepton fields, L(3L)SW,l represents
the coupling between the leptons of the generation l = (e,μ, τ) and the intermediate
bosons, L(3B)SW and L

(4B)
SW are the third- and fourth-order terms of the bosonic fields

describing their self-coupling, and lastly L
(H)
SW contains all terms of the Higgs field

which are not contained in the mass terms. In detail, the complete Lagrangian consists
of the following parts:

(a) free fields (massive vector bosons, photons, leptons):

L
(2)
SW = − 1

2
(∂μW

(+)
ν − ∂νW

(+)
μ )(∂μW(−)ν − ∂νW(−)μ) + M2

WW
(+)
μ W(−)μ

− 1

4
(∂μZν − ∂νZμ)(∂

μZν − ∂νZμ) + 1

2
M2

ZZμZ
μ

− 1

4
(∂μAν − ∂νAμ)(∂

μAν − ∂νAμ)

+
∑


=e,μ,τ

[
ψ̄ν
 iγ

μ∂μ
1 − γ5

2
ψν
 + ψ̄
(iγ

μ∂μ − m
)ψ


]
, (4.138)

(b) the lepton–boson interaction:

L
(3L)
SW,l = g

2
√

2

[
ψ̄
γ

μ(1 − γ5)ψν
W
(−)
μ + ψ̄ν
γ

μ(1 − γ5)ψ
W
(+)
μ

]

+ g

4 cos θ

[
ψ̄ν
γ

μ(1 − γ5)ψν
 − ψ̄
γ
μ(1 − 4 sin2 θ︸ ︷︷ ︸

=g′
V

−γ5)ψ

]
Zμ

− eψ̄
γ
μψ
Aμ , (4.139)

(c) third-order interactions of vector bosons:
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L
(3B)
SW = ig cos θ

[
(∂μW

(−)
ν − ∂νW

(−)
μ )W(+)μZν − (∂μW

(+)
ν − ∂νW

(+)
μ )W(−)μZν

]

− ie(∂μW
(−)
ν − ∂νW

(−)
μ )W(+)μAν + ie(∂μW

(+)
ν − ∂νW

(+)
μ )W(−)μAν

+ ig cos θ(∂μZν − ∂νZμ)W
(+)μW(−)ν

− ie(∂μAν − ∂νAμ)W
(+)μW(−)ν , (4.140)

(d) fourth-order interactions of vector bosons:

L
(4B)
SW = −g2 cos2 θ(W(+)

μ W(−)μZνZ
ν − W(+)

μ W(−)
ν ZμZν)

− e2(W(+)
μ W(−)μAνA

ν − W(+)
μ W(−)

ν AμAν)

+ eg cos θ(2W(+)
μ W(−)μZνA

ν − W(+)
μ W(−)

ν ZμAν − W(+)
μ W(−)

ν ZνAμ)

+ g2(W(+)
μ W(−)μW(+)

ν W(−)ν − W(−)
μ W(−)μW(+)

ν W(+)ν) , (4.141)

(e) the Higgs sector:

L
(H)
SW = 1

2
(∂μχ)(∂

μχ) − hλ2χ2

+ 1

4
g2[W(+)

μ W(−)μ + (2 cos θ)−1ZμZ
μ
]
(2λχ + χ2) − hχ2

(
λχ + 1

4
χ2
)

−
∑




f
ψ̄
ψ
χ . (4.142)

Remember that sometimes in the literature W ∗ ≡ W(+) and W ≡ W(−), as we have
earlier remarked before (4.100). The following relations are valid for the masses:

MW = gλ

2
= e√

G
√

2 · 2 sin θ
, MZ = MW

cos θ
, m
 = f
λ , (4.143)

and for the coupling constants

e = g sin θ ,
G√

2
= 1

2λ2
= g2

8M2
W

. (4.144)

Thus the Lagrange density contains a fairly large number of terms; its conceptual
simplicity, however, originates from the underlying gauge principle of the SU(2) ×
U(1) group.

EXERCISE

4.9 Lepton Masses

Problem. Evaluate relation (4.123) explicitly.

Solution. Omitting the index 
 in Example 4.8, (1), and with (4.118), we obtain

R̄Φ†L + L̄ΦR = ψ̄R

(
0,

λ√
2

)(
ψν

ψ

)

L
+ (ψ̄ν, ψ̄)L

(
0
λ√
2

)
ψR

= λ√
2
(ψ̄RψL + ψ̄LψR) . (1)
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Since

ψL = 1 − γ5

2
ψ , ψ̄L = ψ̄

1 + γ5

2
, (2)

and also

ψR = 1 + γ5

2
ψ , ψ̄R = ψ̄

1 − γ5

2
,

(3)(
1 − γ5

2

)2

= 1 − γ5

2
,

(
1 + γ5

2

)2

= 1 + γ5

2
,

we find the result

λ√
2

(
ψ̄

1 − γ5

2
ψ + ψ̄

1 + γ5

2
ψ

)
= λ√

2
ψ̄ψ (4)

for each generation, where we have used the identities (3). In the standard model,
one combines the initially independent components ψR and ψL belonging to different
SU(2) multiplets to a single fermion field ψ. Expressing the Lagrangian in terms of
this combined fieldψ , we obtain a mass term forψ. That is, theψL andψR behave like
the left-handed and right-handed components of a massive fermion field owing to their
coupling to the Higgs field. The intermingling of terms belonging to different SU(2)
multiplets (i.e. ψL, ψR where ψL belongs to the isodoublet and ψR is an isosinglet) is
an expression of the spontaneous breaking of SU(2) symmetry by the Higgs field.

EXERCISE

4.10 The Glashow–Salam–Weinberg Lagrangian

Problem. Collect all the terms contributing to the Glashow–Salam–Weinberg La-
grangian.

Solution. The Lagrangian contains free parts describing the leptons (l, νe) =
(e, νe), (μ, νμ), (τ, ντ ), the massive vector gauge bosons (W+,W−,Z0), the photon,
the scalar Higgs boson, and their mutual interaction terms.

(1) The Free bosonic part has the standard form

LBoson
free = − 1

2
(∂μW

(+)
ν − ∂νW

(+)
μ )(∂μW(−)ν − ∂νW(−)μ) + M2

WW
(+)
μ W(−)μ

− 1

4
(∂μZν − ∂νZμ)(∂

μZν − ∂νZμ) + 1

2
M2

ZZμZ
μ

− 1

4
FμνF

μν + 1

2
∂μχ∂

μχ − hλ2χ2 , (1)

with

MW = gλ

2
, MZ = MW

cos θ
, MH = √

2hλ .
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(2) The free Leptonic part was given in (4) of Example 4.8:

LFermion
free =

∑

l

iL̄lγ
μ∂μLl +

∑

l

iR̄lγ
μ∂μRl

=
∑

l

i

[
1 − γ5

2

(
ψνl
ψl

)]+
γ 0γ μ∂μ

1 − γ5

2

(
ψνl
ψl

)

+
∑

l

i

[
1 + γ5

2
ψl

]+
γ 0γ μ∂μ

1 + γ5

2
ψl , (2)

where the left-handed isodoublet and right-handed isosinglet spinors, Ll and Rl , have
been expressed in terms of the lepton and neutrino spinors ψl and ψνl . The summation
runs over the families l = e,μ,ψ . Anticommuting the γ5 matrix, we change (2) into

LFermion
free =

∑

l

i

(
ψνl
ψl

)+
γ 0γ μ

(
1 − γ5

2

)2

∂μ

(
ψνl
ψl

)

+
∑

l

iψ+
l γ

0γ μ
(

1 + γ5

2

)2

∂μψl

=
∑

l

iψ̄νl γ
μ 1 − γ5

2
∂μψνl +

∑

l

iψ̄lγ
μ 1 − γ5

2
∂μψl

+
∑

l

ψ̄lγ
μ 1 + γ5

2
∂μψl

=
∑

l

iψ̄νl γ
μ 1 − γ5

2
∂μψνl +

∑

l

iψ̄lγ
μ∂μψl . (3)

(3) The Lepton–Gauge boson interaction was given in (4.100). By using (4.93),
(4.94), and (4.106) it reads

LLG
int =

∑

l

g

2
√

2
(J

(l)μ
− W(−)

μ + J
(l)μ

+ W(+)
μ + J

(l)μ
0 Zμ) −

∑

l

eJ
(l)μ
Eμ Aμ

=
∑

l

g

2
√

2

(
ψ̄lγ

μ(1 − γ5)ψνlW
(−)
μ + ψ̄νl γ

μ(1 − γ5)ψlW
(+)
μ

)

+
∑

l

g

2
√

2

1√
2 cos θ

(
ψ̄νl γ

μ(1 − γ5)ψνl − ψ̄lγ
μ(g′

V − γ5)ψl
)
Zμ

−
∑

l

eψ̄lγ
μψlAμ . (4)

(4) The Higgs boson self-interaction in the unitary gauge (4.117) reads

LHiggs = −U(Φ) = μ2 |Φ|2 − h|Φ|4 = μ2

2
(λ + χ)2 − h

4
(λ + χ)4

= 1

2
hλ2(λ2 + 2λχ + χ2) − 1

4
h(λ4 + 4λ3χ + 6λ2χ2 + 4λχ3 + χ4)

= 1

2
hλ4 − hλ2χ2 − hλχ3 − 1

4
hχ4 (5)
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where the condition μ2 = hλ2 was used. The term linear in the field χ has dropped
out since χ = 0 corresponds to the minimum of the potential.

(5) The Higgs–Lepton coupling is given in (4.123):

LHL
int = −

∑

l

fl(λ + χ)ψ̄lψl , (6)

where fl is related to the lepton mass by ml = flλ.
(6) The Higgs–Gauge boson interaction results from the minimal-coupling terms

in (4.112):

LHG
int =

∣∣∣∣

(
i∂μ + gT̂ · Aμ + g′

2
BμY

)
Φ

∣∣∣∣
2

− |i∂μΦ|2 . (7)

By using (4.99), (4.113) and T̂± = (T̂1 ± iT̂2) the gauge-field terms can be expressed
as the following isospin matrix

gT̂ · Aμ + g′

2
BμŶ = gT̂ 3A3 + g′

2
BμŶ + g√

2
(T̂+W(+)

μ + T̂−W(−)
μ )

=

⎛

⎜⎜⎝
eAμ + g

cos 2θ

2 cos θ
Zμ

g√
2
W

(+)
μ

g√
2
W

(−)
μ − g

2 cos θ
Zμ

⎞

⎟⎟⎠ . (8)

Writing out the square in (7), we find that the mixed terms involving ∂μΦ cancel each
other because of the factor i. The remaining term is

LHG
int = 1

2
(λ + χ)2

[
(gT̂ · Aμ + g′

2
BμŶ )

(
0
1

)]+[(
gT̂ · Aμ + g′

2
BμŶ

)(
0
1

)]

= 1

2
(λ + χ)2

⎛

⎜⎝

g√
2
W

(+)
μ

− g

2 cos θ
Zμ

⎞

⎟⎠

†⎛

⎜⎝

g√
2
W

(+)
μ

− g

2 cos θ
Zμ

⎞

⎟⎠

= g2

8
(λ + χ)2

(
1

cos2 θ
ZμZ

μ + 2W(+)
μ W(+)μ

)
(9)

where (W(+))† = W(−) was used.

EXERCISE

4.11 Masses of the Vector Bosons

Problem. Determine the eigenvalues of the mass matrix of the vector bosons in the
Salam–Weinberg theory without fixing the vacuum expectation value of the Higgs
field.

Solution. The kinetic energy of the Higgs field, including the minimally coupled
vector fields, is given by (4.112),

∣∣∣∣

(
i∂μ + gT̂ · Aμ + 1

2
g′YBμ

)
Φ

∣∣∣∣
2

, (1)
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with Y = +1 being the weak hypercharge of the Higgs field. Constant Higgs fields
imply that (1) takes the form

Φ†
∣∣∣∣gT̂ · Aμ + 1

2
g′YBμ

∣∣∣∣
2

Φ

= AiμA
μ
k g

2(Φ†T̂i T̂kΦ) + gg′AiμBμY(Φ†T̂iΦ) + 1

4
g′2Y 2BμB

μ|Φ|2 . (2)

The potential term of the Higgs field (4.111)

V (φ) = −μ2 |Φ|2 + h|Φ|4 (3)

is minimized by

∣∣〈0|Φ̂|0〉∣∣2 = 1

2
λ2 , λ2 = μ2

h
. (4)

We now rewrite the first term in (2) with the help of the commutation relations of the
isospin matrices.

T̂i T̂k = 1

4
δik + i

2
εikl T̂l , (5)

obtaining

Φ†T̂i T̂kΦ = 1

4
δik|Φ|2 + i

2
εikl(Φ

†T̂lΦ) . (6)

Since the factor AiμA
μ
k is symmetric with respect to the indices i, k, the second term

in (6) does not contribute to (2), which yields the mass matrix

(
1

4
g2Aμ · Aμ + 1

4
g′2Y 2BμB

μ

)
|Φ|2 + gg′AμB

μY · (Φ†T̂Φ) . (7)

Owing to (4) the vacuum expectation values of the Higgs terms in (7) are given by

∣∣〈0|Φ̂|0〉∣∣2 = 1

2
λ2 , 〈0|Φ̂†T̂ Φ̂|0〉 = 1

2
λ2T vac , (8)

where we have defined an isospin vector of the Higgs vacuum by

T vac = 〈0|Φ̂†T̂ Φ̂|0〉
|〈0|Φ̂|0〉|2

, |T vac |2 = 1

4
. (9)

The norm of T vac will be explicitly calculated in Exercise 4.12.
Now we split up the isovector field Aμ into an isospin component A‖

μ parallel to
T vac and a component A⊥

μ perpendicular to T vac,

Aμ = 2A‖
μT vac + A⊥

μ , (10)

with the relations

A‖
μ = 2Aμ · T vac , A⊥

μ · T vac = 0 . (11)
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Clearly 2T vac is a unit vector in isospin space. This result is already contained in the
second part of (9). Obviously

Aμ · Aμ = A‖
μA

μ
‖ + A⊥

μ · A
μ
⊥ , (12)

is valid. Thus we can separate components with respect to T vac in the mass term (7):

1

8
λ2[g2A⊥

μ · A
μ
⊥ + g2A‖

μA
μ
‖ + 2gg′YA‖

μB
μ + g′2BμBμY 2]

= 1

8
λ2g2
[
A⊥
μ · A

μ
⊥ +
(
A‖
μ + g′

g
YBμ

)2]

= 1

8
(λg)2

[
A⊥
μ · A

μ
⊥ + ZμZ

μ

(
1 + g′2

g2

)]
. (13)

By choosing 2T vac as a unit vector in the 3-direction in isospin space we get

A⊥
μ = {A1

μ,A
2
μ} . (14)

With

W(±)
μ = A1

μ ∓ iA2
μ√

2
(15)

it follows that

A⊥
μ · A⊥μ = A1

μA
1μ + A2

μA
2μ = 2W(+)

μ W(−)μ . (16)

Substituting the last expression in (13) we obtain

1

8
(λg)2

[
2W(+)

μ W(−)μ + ZμZ
μ

(
1 + g′2

g2

)]
, (17)

which corresponds to the last term of (4.129). In (13) we have inserted the linear
combination

Zμ = gA
‖
μ + g′YBμ√
g2 + g′2 , (18)

where the denominator is needed for correct normalization. Again as in (4.101), we
use

e = g sin θ = g′ cos θ , (19)

yielding

1 + g′2

g2
= 1 + tan2 θ = 1

cos2 θ
. (20)

Hence the masses of the Wμ and Zμ fields are

MW = 1

2
λg , MZ = MW

cos θ
, (21)
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whereas the field orthogonal to Zμ,

Aμ = Yg′A‖
μ − gBμ√
g2 + g′2 , (22)

remains massless. Note that we did not fix the direction of the Φ̂ vacuum expectation
value in isospin space. The distinction between the fields Wμ = (W(+)μ,W(−)μ) and
Zμ is fixed relative to the Higgs vacuum by (10) and (11)!

EXERCISE

4.12 The Norm of T vac

Problem. Show that the vector

T vac = (Φ†T̂Φ)(Φ†Φ)−1

has length 1/2.

Solution. By representing Φ in the unitary gauge (4.117) we obviously have

Φ†T̂3Φ = (0, ṽ)

(
1/2 0
0 −1/2

)(
0
ṽ

)
= − 1

2
ṽ2 (1)

with ṽ = 1√
2
(λ + χ) and Φ†T̂1Φ = Φ†T̂2Φ = 0. Furthermore, Φ†Φ = ṽ2, yielding

T vac = − 1

2
e3 ; (2)

e3 being the unit vector in the 3-direction in isospin space. In order to calculate T vac

in the general case we introduce the 2 × 2 matrix ΦΦ† whose isospin indices α and β
are given by

(ΦΦ†)αβ = ΦαΦ
∗
β . (3)

For every matrix F̂ we have

Φ†F̂Φ = Φ∗
αFαβΦβ = FαβΦβΦ

∗
α = Tr{F̂ΦΦ† } . (4)

In particular the special choice of F̂ as the unit matrix yields

|Φ|2 = Φ†Φ = Tr{ΦΦ† } . (5)

Moreover,

(ΦΦ†)2 = ΦΦ†ΦΦ† = Φ(Φ†Φ)Φ† = |Φ|2ΦΦ† . (6)

ΦΦ† is a Hermitian matrix because (ΦΦ†)† = ΦΦ†. Now every Hermitian 2 × 2
matrix can be represented as a linear combination of the unit matrix and the Pauli
matrices, that is, the matrices T̂i ,

ΦΦ† = a + biT̂i (7)
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with a and bi real valued. Since the T̂i are traceless we get

|Φ|2 = Tr{ΦΦ† } = 2a , (8)

because the trace of the 2 × 2 unit matrix is just 2. In addition,

(ΦΦ†)2 = (a + bi T̂i)
2 = a2 + 2abiT̂i + (bi T̂i)

2 . (9)

Using Exercise 4.11 (5), we get

(bi T̂i)
2 = T̂i T̂kbibk =

(
1

4
δik + i

2
εiklTl

)
bibk

= 1

4

∑

i

b2
i , (10)

since bibk is symmetric, and therefore the term proportional to εikl vanishes. Thus it
remains that

(ΦΦ†)2 = a2 + 1

4

∑

i

b2
i + 2abiT̂i = |Φ|2(a + biT̂i) (11)

as a result of (6). On comparing the coefficients we again find that |Φ|2 = 2a in ac-
cordance with (8), and furthermore that

a2 + 1

4

∑

i

b2
i = a|Φ|2 . (12)

Combining (8) and (12) leads to

1

4

∑

i

b2
i = 1

4
|Φ|4 . (13)

By choosing F̂ = T̂i in (4) we obtain

Φ†T̂iΦ = Tr{T̂iΦ†Φ} = Tr{T̂i (a + bj T̂j )}

= bj Tr{T̂i T̂j } = bj
1

2
δij = 1

2
bi , (14)

because Tr{T̂i} = 0 and Tr{T̂i T̂j } = (1/2)δij , according to Exercise 4.11, (5). We can
therefore derive

(Φ†T̂Φ)2 =
∑

i

(Φ†T̂iΦ)
2 = 1

4

∑

i

b2
i = 1

4
|Φ|4 , (15)

yielding

(T vac)
2 =
(
Φ†T̂Φ

Φ†Φ

)2

= 1

4
⇒ |T vac | = 1

2
. (16)

Thus we have proved the norm of T vac to be 1/2, independent of the gauge.
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4.6 Hidden SU(2) × U(1) Gauge Invariance

In this section we shall consider the Brout–Higgs mechanism of symmetry breaking in
the standard model (GSW model) of weak interactions from a different point of view.
In Sect. 4.1 we discussed the basic idea of the Brout–Higgs mechanism for generating
masses in a gauge-invariant way in the context of an Abelian gauge theory. In the
previous section we studied spontaneous symmetry breaking within the GSW model
in some detail.

Let us repeat the main aspects of spontaneous symmetry breaking of a U(1) gauge
theory. We started with a massless vector field Aμ with two degrees of freedom and
then introduced a complex scalar Higgs field φ with two additional degrees of free-
dom. One of the two degrees of freedom of the Higgs field was “eaten” by the massless
Aμ field, in order to transform the latter to a massive field A′

μ. The second component,
χ , remained as a massive scalar field (see (4.35)).

In the case of the standard model we initially have a massless isotriplet gauge field

Aμ = {Aaμ} , (4.145)

coupled to the neutral and charged weak transition currents (see (4.96), or Exam-
ple 4.8, (15)). The gauge field Aμ was derived by demanding gauge invariance with
respect to SU(2) gauge transformations. It must be massive (induced by appropriate
spontaneous symmetry breaking) in order to ensure the short range of weak interac-
tions. In addition, there has to exist a U(1) symmetry and a related vector field Bμ
which stays massless, describing the photon in the framework of a unified theory.

In order to satisfy all these requirements the best approach is to generalize the scalar
Higgs field introduced in Sect. 4.1 to a complex scalar isodoublet field Φ . This was
the idea in the thinking of Weinberg and Salam. We denote the Higgs doublet by

Φ = 1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, T3 = ± 1

2
, T = 1

2
, (4.146)

with the four real functions φ1, . . . , φ4. The weak isospin T is already fixed here, but
the weak hypercharge remains unknown. We shall fix it later.

The mechanism that generates the masses of the three initially massless gauge
bosons through a non-vanishing vacuum expectation value of theΦ field is completely
analogous to the case of U(1) symmetry. One wants to obtain a vacuum-induced cur-
rent 〈jμ〉0 that has a part proportional to Aμ, in order to transform the wave equation
of the massless vector field,

�Aμ − ∂μ∂νA
ν = 〈jμ〉0 , (4.147)

together with the relation

〈jμ〉0 = −M2Aμ , (4.148)

which expresses the vacuum screening, into an equation of a massive vector field,

(� + M2)Aμ − ∂μ∂νA
ν = 0 . (4.149)

The bold notation of Aμ denotes the isovector character of that gauge field. It was the
special choice of phase of the scalar fieldΦ , that is, Φ0 = λ/

√
2 exp(iΘ(x))

(0
1

)
, which
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seemed to violate the gauge symmetry. Actually, the gauge invariance is naturally not
broken, it is just hidden. This can be seen from the fact that the masses of the gauge
fields are directly connected to the equilibrium value (expectation value of the ground
state) of the field Φ . A relation of this kind (for example M2 = g2λ2, g being the
coupling constant) does not otherwise exist!

Without loss of generality we write our actual Higgs field (4.146) in the form

Φ = exp(iα(x) · T̂ )

(
0

H(x)

)
(4.150)

with α(x) = {α1(x),α2(x),α3(x)} being three real phase fields and H(x) an addi-
tional real field. These four fields are equivalent to the fields φ1(x), . . . , φ4(x) in
(4.146). The x dependence of the “angle of rotation” α(x) signifies that there is an
independent rotation along the three isospin directions at each space-time point x.
Demanding invariance of the theory with respect to these transformations establishes
gauge invariance, in our case SU(2) gauge invariance. T̂ = {T̂1, T̂2, T̂3 } are the gener-
ators of this symmetry group.

In order to implement the concept described in (4.147)–(4.149) we need to know
the current jμ(Aν,Φ). It has to be an isovector, and each of three isospin components
must be a four-vector. In the case of a single scalar field φ, jμ(φ) is given by17

jμ = −iq
[
φ∗(∂μφ) − (∂μφ∗)φ

]= q
[
φ∗(−i∂μφ) + (−i∂μφ)∗φ

]
, (4.151)

q denoting the charge of the scalar field. When coupled to the electromagnetic field
Aμ, the current jμ can be defined gauge invariantly by replacing ∂μ with the U(1)-
gauge-invariant derivatives

∂μ → Dμ = ∂μ − iqAμ = i(−i∂μ − qAμ) . (4.152)

Considering the weak isodoublet Φ in (4.146), we see that the current must be an
isovector; which is to say, it must be composed of three currents, one for each isospin
component. It therefore must have the form

jμ = {jaμ} = −ig{Φ†T̂ (∂μΦ) − (∂μΦ†)T̂Φ}
= g{Φ†T̂ (−i∂μΦ) + (−i∂μΦ)†T̂Φ}
= −ig{Φ†T̂ a(∂μΦ) − (∂μΦ)†T̂ aΦ}
= g{Φ†T̂ a(−i∂μΦ) + (−i∂μΦ)†T̂ aΦ}
= {jaμ} , a = 1,2,3 , μ = 0,1,2,3 . (4.153)

In the standard model of weak interactions with an SU(2) × U(1) gauge symme-
try, there have to exist as many as four currents, namely three weak isospin currents
jaμ (a = 1,2,3) and a current of hypercharge jYμ. As stated by Noether’s theorem,
for every group generator of a symmetry group (here T̂1, T̂2, T̂3, Ŷ ) a corresponding

17 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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current exists:

jYμ = −i
g′

2

[
Φ†Ŷ (∂μΦ) − (∂μΦ†)ŶΦ

]

= g′

2

[
Φ†Ŷ (−i∂μΦ) + (−i∂μΦ†)ŶΦ

]

= −i
g′

2
Y
[
Φ†(∂μΦ) − (∂μΦ†)Φ

]
. (4.154)

Again, by analogy with the steps from (4.151) to (4.153), the gauge invariance of the
current with respect to SU(2) × U(1) can be ensured if we replace ∂μ in (4.153) and
(4.154) by the gauge-covariant derivative Dμ,

∂μ → Dμ = ∂μ − igT̂ · Aμ − i
g′

2
ŶBμ

= i

[
−i∂μ − gT̂ · Aμ − g

1

2
ŶBμ

]

= ∂μ − igT̂ b · Abμ − i
g′

2
ŶBμ . (4.155)

Performing the replacement in (4.153) yields

jaμ(Φ,Aμ,Bμ) = g{Φ†T̂ a(−iDμΦ) + (−iDμΦ)†T̂ aΦ}
= −ig{Φ†T̂ a(DμΦ) − (DμΦ)

†T̂ aΦ}

= −ig

{
Φ†T̂ a

(
∂μ − ig

∑

b

T̂ bAμb − i
g′

2
ŶBμ

)
Φ

− Φ†
(←
∂
μ + ig

∑

b

T̂ bAμb + i
g′

2
ŶBμ

)
T̂ aΦ

}

= −ig
[
Φ†T̂ a(∂μΦ) − (∂μΦ)†T̂ aΦ

]

+ i2g2
[
Φ†
∑

b

(T̂ aT̂ b + T̂ bT̂ a)AμbΦ

]
+ i2gg′Φ†T̂ aŶBμΦ

= −ig
[
Φ†T̂ a(∂μΦ) − (∂μΦ)†T̂ aΦ

]

− g2

2
[Φ†ΦAaμ] − gg′YΦ†T̂ aΦBμ (4.156)

where we have applied the well-known relation T̂ aT̂ b + T̂ bT̂ a = 1
2δ

ab and the fact that

T̂ a and Ŷ are hermitian matrices. The operator
←
∂ μ indicates that the differentiation is

on the left-sided quantity, i.e. φ†
←
∂ μ ≡ (∂μφ†).

For the current of the hypercharge we analogously replace the normal derivative by
the gauge covariant one in (4.154) and obtain

jYμ(Φ,Aμ,Bμ) = g′

2

[
Φ†Ŷ (−iDμφ) + (−iDμΦ)†ŶΦ

]

= −i
g′

2
Y

{
Φ†
(
∂μ − ig

∑

a

T̂ aAaμ − i
g′

2
ŶBμ

)
Φ
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− Φ†
(←
∂
μ + ig

∑

a

T̂ aAaμ + i
g′

2
ŶBμ

)
Φ

}

= −i
g′

2
Y
[
Φ†(∂μΦ) − (∂μΦ)†Φ

]

− gg′YΦ†T̂Φ · Aμ − g′ 2

2
Y 2Φ†ΦBμ . (4.157)

Here we have used [Ŷ , T̂ a]− = 0. In order to obtain the screening currents of the
vacuum, we replace Φ by its vacuum expectation value in the usual manner. Without
loss of generality we can choose

Φ0 = 〈Φ̂〉0 =
(

0
λ/

√
2

)
(4.158)

by analogy with (4.150), which was originally proposed by Weinberg. Here we have
removed the phase factor exp(iα(x) · T̂ ) through SU(2) gauging and the phase factor
exp(iŶ α(x)),

(
0

H(x)

)
= exp(iŶ α(x))

(
0

λ/
√

2

)
, (4.159)

through U(1) gauging. On inserting (4.158) into (4.156) and (4.157) we get

= 〈jaμ(Φ,Aμ,Bμ)〉0

= −g2

2

λ2

2
Aaμ + gg′Y λ

2

2

1

2
δa3Bμ (4.160)

and

j
Yμ
0 = 〈jYμ(Φ,Aμ,Bμ)〉0

= gg′Y λ
2

2

1

2
δa3Aaμ − g′ 2

2
Y 2 λ

2

2
Bμ . (4.161)

The terms with δa3 originate from the relation Φ†T aΦ ∼ δa3; for a = 1,2 the expec-
tation value vanishes. Hence we obtain the wave equation (4.147) of the Aaμ fields in
the form

(�Aaμ + M2
AA

aμ) − ∂μ∂νA
aν = 1

4
gg′Yλ2δa3Bμ , (4.162)

where

MA = 1

2
gλ . (4.163)

The field Bμ obeys an equation analogous to (4.147):

(�Bμ + M2
BB

μ) − ∂μ∂νB
ν = 1

4
gg′Yλ2 A3μ , (4.164)

MB = 1

2
g′λY . (4.165)
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Thus the Aaμ and Bμ fields have obtained masses. However, two facts are still unsat-
isfactory. First, we do not know which value we should choose for Y , and second, on
the right-hand side of (4.162) and (4.164) there are inhomogeneities. The latter do not
exist for the fields A1μ and A2μ, but only for A3μ and Bμ. Here the following con-
sideration is helpful. We do not want electromagnetic screening currents to show up
in the vacuum, since the photon should stay massless. On the other hand, a third mas-
sive boson should arise (mainly) from the field A3μ, which mediates the neutral weak
current interaction. We note again the equations of the fields A3μ and Bμ explicitly:

�A3μ − ∂μ∂νA
3ν = −M2

AA
3μ + MAMBB

μ ,
(4.166)

�Bμ − ∂μ∂νB
ν = −M2

BB
μ + MAMBA

3μ .

Obviously, in the vacuum state the fields A3μ and Bμ are coupled for our choice
of Φ0 (4.158), since on the right-hand side of the equation for A3μ there is a term
proportional to Bμ, and vice versa. Usually we would transfer these linear terms to
the left-hand side of the equation and interpret them as mass terms. However, it is just
these mass terms that are coupled! In physical terms, neither the field A3μ nor Bμ has
definite mass. Therefore they cannot be regarded as the proper physical fields.

We first have to diagonalize the mass matrix. From (4.160) and (4.161) we see that

g′j3μ
0 + gj

Yμ
0 = 0 , (4.167)

if we set Y = 1 for the Higgs doublet. Considering the Gell-Mann–Nishijima relation,

Q = T3 + Y

2
, (4.168)

we see that the lower component of Φ must then have electric charge zero. The up-
per component has to be charged positively. Hence the general Higgs field has the
structure

Φ =
(
φ(+)

φ(0)

)
, (4.169)

as we demanded outright in (4.109). Here that structure follows from requiring that
(4.167) be satisfied. Thus the combination

Aμ ∝ g′A3μ + gBμ (4.170)

decouples the field equations (4.166). Moreover, in the general case (Y �= 1) we have
just to multiply the first of the equations by MB and the second by MA. The sum of
both yields

(�δμν − ∂μ∂ν)(MBA
3ν + MAB

ν) = 0 , (4.171)

and we see that this combination of fields stays massless; it can be identified with the
photon field Aμ.

After normalization we write

Aμ = sin θ A3μ + cos θ Bμ (4.172)
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with

tan θ = MB

MA

= g′Y
g

,

sin θ = g′Y√
(g2 + g′2Y 2)

, (4.173)

cos θ = g√
(g2 + g′2Y 2)

.

The field Aμ fulfills the Maxwell equation,

(�δμν − ∂μ∂ν)A
ν = 0 . (4.174)

The corresponding orthogonal combination

Zμ = cos θ A3μ − sin θ Bμ (4.175)

obeys the equation

(�δμν − ∂μ∂ν + M2
Zδ

μ
ν)Z

ν = 0 , (4.176)

with

M2
Z = M2

A + M2
B = 1

4
λ2[(g′Y)2 + g2]

= M2
A

[
1 +
(
MB

MA

)2]
= M2

A

cos2 θ
. (4.177)

Thus the Z boson turns out to be massive. On inverting (4.172) and (4.175) we get

A3μ = sin θAμ + cos θZμ ,
(4.178)

Bμ = cos θAμ − sin θZμ .

Inserting this into (4.155), we find that the SU(2) × U(1) covariant derivative results
in the form

Dμ = ∂μ − ig(T̂ 1A1μ + T̂ 2A2μ) − igT̂ 3A3μ − 1

2
ig′ ŶBμ

= ∂μ − ig(T̂ 1A1μ + T̂ 2A2μ) − igT̂ 3(sin θ Aμ + cos θ Zμ)

− 1

2
ig′Ŷ (cos θ Aμ − sin θ Zμ)

= ∂μ − ig(T̂ 1A1μ + T̂ 2A2μ) − igAμ
(

sin θ T̂ 3 + g′Y
2g

cos θ

)

− igZμ
(

cos θ T̂ 3 − g′Y
2g

sin θ

)

= ∂μ − ig(T̂ 1A1μ + T̂ 2A2μ) − ig sin θ Aμ
(
T̂ 3 + 1

2

)

− ig

cos θ
Zμ
(

cos2 θ T̂ 3 − 1

2
sin2 θ

)
. (4.179)
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The hypercharge is completely eliminated! Nonetheless, the choice Y = 1 for the
Higgs field is essential. Only in the case Y = 1 can the term proportional to Aμ in
(4.179) be written in the form

−ig sin θ

(
T̂ 3 + 1

2
Ŷ

)
Aμ , (Y = 1) . (4.180)

Since Aμ is supposed to describe the photon field and T3 + 1
2Y = Q is the charge in

units of e, we derive the condition

g sin θ = e . (4.181)

From here we are directly led to the relations derived earlier:

MA = MW = 1

2
gλ ,

G√
2

= g2

8MW
2

,

G√
2

= 1

2λ2
with λ = 250 GeV ,

sin2 θ ≈ 0.23 ± 0.001 ,

MW = e

25/4
√
G sin θ

≈ 37.3

sin θ
GeV ≈ 80 GeV ,

MZ = MW

cos θ
= 90 GeV .

Finally, we wish to emphasize three points once more.

1. The Gell-Mann–Nishijima relation (4.168) of weak interactions is an additional
condition which is of great importance for the GSW theory but is not included in
the basic principle of SU(2) × U(1) gauge invariance.

2. At first glance it seems to be curious that we obtain just one massive and one
massless field from the initially massless fields A3μ and Bμ through the Higgs
mechanism. This can be understood by considering the special choice

Φ0 ≡ 〈Φ〉0 =
(

0
λ/

√
2

)
. (4.182)

If we choose the vacuum Higgs field, Φ0, to break the symmetry in some way, we
always get a massive gauge boson. This is just the same as in Sect. 4.1 regarding
U(1) symmetry. However, if the symmetry group is larger than U(1), as in our
case SU(2) × U(1), it may happen that for a special choice of Φ0 a part of the
(total) symmetry group stays unbroken. We may alternatively say that Φ0 can be
invariant with respect to some of the symmetry transformations, that is, generators
or combinations of generators. The corresponding gauge fields (gauge bosons) stay
massless. In our case, because

ŶΦ0 = Φ0 , T̂3Φ0 = − 1

2
Φ0 (4.183)
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we have
(
T̂3 + 1

2
Ŷ

)
Φ0 = 0 , (4.184)

and therefore

Φ0 → Φ ′
0 = exp

[
iα(x)

(
T̂3 + 1

2
Ŷ

)]
Φ0 = Φ0 . (4.185)

This implies that Φ0 is not changed by a transformation belonging to this special
subgroup of gauge transformations. Hence the related gauge field, a linear com-
bination of A3μ (belonging to T̂3) and Bμ (belonging to Ŷ ), acquires no mass.
In (4.184) the generator T̂3 + 1

2 Ŷ = Q̂ is obviously a linear combination of the

SU(2) generator T̂3 and the U(1) generator Ŷ . According to Gell-Mann and Nishi-
jima, Q̂ represents the charge operator. Therefore the transformation (4.185) is just
the U(1) phase invariance of the neutral electromagnetic field. The photon has no
mass!

3. Lastly we mention that our discussion took place in the framework of the unitary
gauge. In a general gauge the propagator of the massive vector boson has the form

−gμν + (1−ζ )kμkν

k2 −ζM2

k2 − M2
. (4.186)

The gauge symmetry, which was initially present, is now hidden. It is implied by
the fact that M = 1

2gλ is connected with the vacuum expectation value of Φ and
is therefore changed if we regauge the field Φ . The propagator (4.186) has a pole
at k2 = M2 and a second pole at k2 = ζ 2M2. The former is physical, the latter is
not. The second pole corresponds to an unphysical Higgs particle. Therefore we
have to take care to suppress these gauge-dependent, unphysical contributions. In
our discussions applying the unitary gauge (ζ → ∞), this problem does not arise.
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(New York), received his Ph.D. in physics at the University of Munich under Sommerfeld in
1908. In 1911 Debye was successor of Einstein as professor in Zürich, later became director
of the Kaiser Wilhelm Institute for Physics in Berlin. In 1939 he refused to become a German
citizen and returned first to the Netherlands, then emigrated to the United States. Since 1940
professor of chemistry at Cornell University in Ithaca. Debye developed the theory of dipolar
materials and of electric screening in strong electrolytes. He also discovered X-ray diffraction
from powdered substances, and pioneered the study of polymers. He was awarded the Nobel
Prize for chemistry in 1936.

FADDEEV, Ludvig Dmitrievich, ∗ 23.3.1934 in Leningrad (USSR), Russian mathematician
and theoretical physicist. His main contributions are on the quantum mechanical three-body
problem (Faddeev equations), quantization of Yang–Mills equations (Faddeev–Popov method),
the inverse problem in scattering theory, the theory of solitons and quantum groups. Director
of the St. Petersburg branch of the Steklov Mathematical Institute of the Russian Academy of
Sciences. He founded the International Institute of Theoretical Physics near St. Petersburg.



176 4 The Salam–Weinberg Theory

GOLDSTONE, Jeffrey, theoretical physicist, ∗ 3.9.1933 in Manchester, studied at Cambridge,
since 1977 professor at the Massachusetts Institute of Technology, did fundamental work in
particle physics and quantum field theory.

MILLS, Robert Laurence, theoretical physicist, ∗ 15.4.1927 in Englewood (New Jersey),
†27.10.1997 in East Charleston (Vermont, USA), received Ph.D. at Columbia University in
1955. Since 1956 professor at Ohio State University, his work is in quantum field theory, many-
body physics and the theory of alloys.

YUKAWA, Hideki, theoretical physicist, ∗ 23.1.1907, †8.9.1981 in Kyoto (Japan). He earned
his Ph.D. at Osaka University in 1938; since 1939 he was professor and later director of the Re-
search Institute for Fundamental Physics at the University of Kyoto. In 1935 Yukawa developed
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Some Properties of the Salam–Weinberg
Theory of Leptons 5

One major success of the standard model is the accurate prediction of the masses

Fig. 5.1. Creation processes of
intermediate bosons by electron–
positron scattering. (a) Z0 can
be produced by pair annihila-
tion, (b) charged intermediate
bosons are produced in e+e−
scattering

of the intermediate bosons, starting from the operator structure of the neutral current.
This made a specific experimental search for these particles possible, to which end it is
important to know the possible creation and decay mechanisms. We see immediately
that in an electron–positron storage ring it is considerably easier to produce the neutral
Z0 bosons than the charged W± bosons. In the case of Z0, simple pair annihilation
suffices (Fig. 5.1a), whereas charged bosons can only be produced in higher-order
processes (for example, Figs. 5.1b and 5.2). In particular, decays involving a neutrino
are experimentally characteristic, because a large fraction of the energy present in the
scattering is transferred to the neutrino and is therefore not seen in the detectors.

5.1 Decay of the Charged Boson W−

In the following we first discuss the decay of the negatively charged boson W−, in-
duced by the first term in L(3L)SW , (4.139). The lowest-order scattering matrix element
is:

S(W− → 
ν̄
) = −i
∫

d4x
(−g)

2
√

2
ψ̄
(x)γ

μ(1 − γ5)ψν
(x)W
(−)
μ (x) . (5.1)

Fig. 5.2. Leptonic decay mech-
anisms of intermediate bosons

With the notation of Fig. 5.2c the wave functions of the incoming and outgoing parti-
cles are

W(−)
μ (x) = (2V k0)

−1/2εμ(k,λ)e
−ik·x ,

ψ
(x) = (2V q0)
−1/2u
(q, s)e

−iq·x , (5.2)

ψν
(x) = (2V q ′
0)

−1/2vν(q
′, s′)e+iq ′ ·x .

εμ(k,λ) is the polarization vector of the W− boson. All we need to know about εμ is
that summation over all three directions of polarization λ yields (see Appendix A.3)

3∑

λ=1

εμ(k,λ)εν(k, λ) = −gμν + kμkν

MW
2

. (5.3)

Now we follow the scheme developed in the treatment of muon decay, Sect. 2.2, and
perform the space-time integration
∫

d4x exp(iq · x + iq ′ · x − ik · x) = (2π)4δ4(q + q ′ − k) . (5.4)
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Squaring the S matrix element by using (2.16), summing or integrating over final
states, averaging over the polarization of the incoming boson, and finally dividing by
the time T yields the decay rate

W = 1

T
V

∫
d3q

(2π)3
V

∫
d3q ′

(2π)3
1

3

∑

λ

∑

s,s′
|S(W− → 
ν̄
)|2

= g2

8

1

(2π)2

∫
d3q

2q0

∫
d3q ′

2q ′
0

1

2k0

1

3

∑

λ,s,s′
|Mλss′ |2δ4(q + q ′ − k) , (5.5)

with

Mλss′ = εμ(k,λ)ū
(q, s)γ
μ(1 − γ5)vν(q

′, s′) . (5.6)

Using the rules for calculating traces of Dirac spinors and γ matrices (see Appen-
dix A.1) we get the following result:

∑

λ,s,s′
|Mλss′ |2 =

∑

λ

εμ(k,λ)εν(k, λ)

{∑

s,s′
ū
(q, s)γ

μ(1 − γ5)

× vν(q
′, s′)v̄ν(q ′, s′)γ ν(1 − γ5)u
(q, s)

}

=
(

−gμν + kμkν

MW
2

)
Tr
{
(/q + m
)γ

μ(1 − γ5)/q
′γ ν(1 − γ5)

}
. (5.7)

The Dirac trace becomes

Tr
{
(/q + m
)γ

μ(1 − γ5)/q
′γ ν(1 − γ5)

}

= 2 Tr
{
(/q + m
)γ

μ/q ′γ ν(1 − γ5)
}

= 2qαq
′
β Tr
{
γ αγ μγ βγ ν(1 − γ5)

}

= 8qαq
′
β(g

αμgβν + gανgβμ − gαβgμν + iεαμβν)

= 8
[
qμq ′ν + qνq ′μ − (q · q ′)gμν + iεαμβνqαq

′
β

]
. (5.8)

Here we have used (5.3) and (2.29). One may wonder why we are allowed to sum
over the neutrino spin s′ in (5.7), although we learned that only left-handed neutrinos
exist. The reason is simply that the V–A coupling γ μ(1 − γ5) vanishes when applied
to right-handed neutrinos:

(1 − γ5)(1 + γ5)vν = 0 . (5.9)

Inserting the result of the Dirac trace into (5.7) we see that the last term does not
contribute, because (5.3) is symmetric with respect to the indices μ and ν, whereas
εαμβν is totally antisymmetric. From the energy–momentum relation k2 = M2

W we
find that

∑

λss′
|Mλss′ |2 = 8

M2
W

[
2(q · k)(q ′ · k) + MW

2(q · q ′)
]

. (5.10)
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Because of the delta function in (5.5) the second term can be expressed in terms of the
rest masses:

M2
W = k2 = (q + q ′)2 = q2 + q ′2 + 2(q · q ′) = m2


 + 2(q · q ′) . (5.11)

If we now insert all terms into (5.5) we obtain the decay rate

W = g2

48π2

1

k0M
2
W

∫
d3q

q0

∫
d3q ′

q ′
0
δ4(q + q ′ − k)

×
[
(q · k)(q ′ · k) + 1

4
M2

W(M
2
W − m2


)

]
. (5.12)

For the calculation of the momentum-space integral we refer to results obtained earlier.
Equation (17) in Exercise 2.6 states that

kαkβ
∫

d3q

q0

∫
d3q ′

q ′
0
qαq

′
βδ

4(q + q ′ − k)

= π

6

(
1 − m2




k2

)2[
k4
(

1 − m2



k2

)
+ 2

(
1 + 2

m2



k2

)
k4
]
Θ(k2 − m2


)

= π

2
M4

W

(
1 − m2




M2
W

)2(
1 + m2




M2
W

)
Θ(MW − m
) . (5.13)

The second part can be done in the following way. We integrate in the rest frame of
the W− boson, where kα = (MW,O), yielding

∫
d3q

q0

∫
d3q ′

q ′
0
δ(q + q ′)δ(q0 + q ′

0 − MW)

=
∫

d3q

q0 |q|δ(q0 + |q| − MW)

= 4π

∞∫

0

|q| d|q|√
q2 + m2




δ
(√

q2 + m2

 + |q| − MW

)

= 4π

∞∫

m


dx

2x2
(x2 − m2


)δ(x − MW)

= 2π

(
1 − m2

l

M2
W

)
Θ(MW − m
) , (5.14)

where we have substituted x = |q| +
√

q2 + m2
l (see Exercise 2.6).

By inserting (5.13), (5.14) into (5.12) we obtain the final result of the decay rate of
the W− in its rest frame:

W = 1

48π
g2MW

(
1 − m2




M2
W

)2(
1 + m2




2M2
W

)
Θ(MW − m
) . (5.15)

If we use the connection between g and the Fermi coupling constant G (4.131) and
further exploit the fact that all known leptons are much lighter than the intermediate
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boson, the result is

W(W− → 
 ν̄
) ≈ G

6π
√

2
M3

W ≈ 225 MeV ≈ 3.5 × 1023 s−1 , (5.16)

where we have taken the value of G as that given in (2.63). Taking into account the
three leptonic decay channels (
 = e,μ, τ) we can estimate the lifetime of the charged
intermediate bosons:

τW ≤ 1

3W
≈ 2π

√
2

GM3
W

≈ 10−24 s . (5.17)

This is a remarkably long time for an elementary particle with a mass of more than
80 GeV, but it is far too short to be measured directly. A direct observation of W
bosons, for example, as a track in a bubble chamber, seems to be impossible.

However, the decay of W bosons can be easily detected experimentally since the
charged lepton and the neutrino are emitted in opposite directions, with momenta of
the order of 40 GeV/c. The neutrino escapes all detectors, so that a highly energetic
lepton should be observed whose corresponding recoil momentum is missing. When
the W boson has been created through some mechanism, it yields a clear experimental
sign of its decay. However, we shall see later in Chap. 6 that the W boson also couples
to quarks. It can therefore also decay into hadrons, which make up about two thirds
of all final states. The probability for the decay into any one of the leptonic decay
channels amounts to only about 10 percent.

EXERCISE

5.1 Decay of the Z0 Boson

Problem. Calculate the decay processes Z0 → 
+
− and Z0 → νν̄.

Solution. (a) First we consider the decay of the Z0 boson into charged leptons 
+
−.
Their rest mass can be neglected, since it is much smaller than the mass of the Z0.
According to (4.139) the scattering matrix element is given by

S(Z0 → 
+
−) = i
∫

d4x
(−g)

4 cos θ
ψ̄
(x)γ

μ(g′
V − γ5)ψ
(x)Zμ(x) (1)

with

g′
V = 1 − 4 sin2 θ � 1 . (2)

If we adopt the same notation for momenta and spins as in Fig. 5.1 and (5.2), the decay
rate is again given by the result of (5.5), (5.6):

W = g2

16 cos2 θ

1

(2π)2

∫
d3q

2q0

∫
d3q ′

2q ′
0

1

6k0

∑

λss′
|Mλss′ |2δ4(q + q ′ − k) (3)

with

Mλss′ = εμ(k,λ)ū(q, s)γ
μ(g′

V − γ5)v(q
′, s′) . (4)
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If we neglect the lepton mass, the averaged matrix element yields the Dirac trace
(cf. (5.7)):

Tr
{
/qγ μ(g′

V − γ5)/qγ
ν(g′

V − γ5)
}

= Tr
{
/qγ μ/q ′γ ν(g′2

V + 1 − 2g′
Vγ5)
}

= 4(g′2
V + 1)

[
qμq ′ν + qνq ′μ − (q · q ′)gμν

]+ i8g′
Vε

αμβνqαq ′β . (5)

The last term again does not contribute, owing to antisymmetry, yielding
∑

λss′
|Mλss′ |2 = (−gμν + kμkν/M

2
Z)Tr
{
/qγ μ(g′

V − γ5)/q
′γ ν(g′

V − γ5)
}

= 4

M2
Z

(g′
V + 1)

[
2(q · k)(q ′ · k) + M2

Z(q · q ′)
]

� 8

M2
Z

(g′2
V + 1)

[
(q · k)(q ′ · k) + 1

4
M4

Z

]
, (6)

where we have used the analogue of (5.11),

M2
Z = 2m2


 + 2(q · q ′) ≈ 2(q · q ′) . (7)

If we substitute the result (6) into (3) and perform the integrals in momentum space,
as in (5.13), (5.14), we obtain the decay rate

W(Z0 → 
+
−) ≈ g2(g′2
V + 1)

192π cos2 θ
MZ

= G(g′2
V + 1)√

2 · 24π cos3 θ
M3

W ≈ 83 MeV . (8)

(b) According to (4.139) the decay process Z0 → νν̄ can be described by (1) with
g′

V = 1. Therefore we can copy the resulting decay rate from (8):

W(Z0 → νν̄) ≈ g2(1 + 1)

192π cos2 θ
MZ

= G√
2 12π cos3 θ

M3
W = 167 MeV . (9)

Like (8) this result can also be written in the form

g2(g′ 2
V + 1)

192π cos2 θ
MZ ,

because according to V–A coupling one has g′
V = 1. For the three leptonic generations

e, μ,τ together we get

W(Z0 → leptons) = 751.5 MeV . (10)

In particular, every massless neutrino species contributes about 100 MeV to the de-
cay rate of the Z0 boson. Hence an experimental determination of its width allows
for a determination of the number of neutrinos in a model-independent way! (Recent
experimental progress is discussed in Example 5.3.)
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5.2 The Process e+e− → Z0 → μ+μ−

Fig. 5.3. The three processes
contributing to the scattering
e+e− → μ+μ− . The inter-
mediate particle can be rep-
resented by the vector boson
Z0, the photon γ (Aμ), and
the Higgs particle H0

Since the short lifetime of the intermediate bosons prohibits their direct observa-
tion, it is convenient to consider the creation and decay process of the Z0 boson as
a single process (see Figs. 5.1 and 5.2). Here we shall consider the special process
e+e− → Z0 → μ+μ−. If we study the Salam–Weinberg Lagrangian (4.138)–(4.142)
carefully, we recognize that there are two other processes that yield the same final state
μ+μ−. They are, first, pair annihilation into a virtual photon (e+e− → γ → μ+μ−)
and, second, formation of an intermediate Higgs particle (e+e− → H0 → μ+μ−).
According to the Feynman rules for vector bosons, derived in Sect. 4.3, the total scat-
tering amplitude consists of three parts, which we write directly in momentum space:

S(e+e− → μ+μ−) = (2π)4δ4(p′ + k′ − p − k)

4V 2(p0k0k
′
0p

′
0)

1/2
(Aγ + AZ + AH) . (5.18)

The three amplitudes are

Aγ = −iūμ(p
′, s′)i(−e)γ αvμ(k

′, t ′)
gαβ − ((k + p)α(k + p)β/(k + p)2)

(k + p)2

× v̄e(k, t)i(−e)γ βue(p, s) , (5.19a)

AZ = −iūμ(p
′, s′) i(−)gγ α

4 cos θ
(g′

V − γ5)vμ(k
′, t ′)

gαβ − ((k + p)α(k + p)β/M
2
Z)

(k + p)2 − M2
Z

× v̄e(k, t)
i(−)gγ β

4 cos θ
(g′

V − γ5)ue(p, s) , (5.19b)

Fig. 5.4. Notation of mo-
menta in the process e+e−
→ μ+μ−

AH = −iūμ(p
′, s′)i(−fμ)vμ(k

′, t ′) 1

(k + p)2 − (2hλ2)

× v̄e(k, t)i(−fe)ue(p, s) . (5.20)

Here we have used the notation g′
V = 1 − 4 sin2 θ and the couplings from (4.139) and

(4.142).
We first compare the relative magnitudes of the coupling constants in the three

matrix elements:

Aγ ∼ e2 ∼ g2 sin2 θ , (5.21a)

AZ ∼ g2

cos2 θ
, (5.21b)

AH ∼ fμfe = mμme

λ2
= g2mμme

4M2
W

≈ 10−8g2 , (5.21c)

where we have made use of (4.143), (4.144). Obviously the contribution from the
Higgs particle is totally negligible, whereas the matrix elements Aγ and AZ are of the
same order of magnitude – at least at scattering energies in the range of the mass of
the intermediate boson. The reason for this is simple: we have used the Higgs field to
generate masses of the intermediate bosons as well as of the leptons. Since the strength
of the coupling between the Higgs particle and intermediate bosons is given by g (see
(4.112)), the interaction between leptons and the Higgs field should be gmi/MW.1

1 Owing to the large mass difference between leptons and intermediate bosons, the whole procedure
seems to be very artificial. It is therefore appropriate to view the Higgs mechanism as a theoretical
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Let us return to the evaluation of the scattering amplitude (5.18), where we can
restrict ourselves to the contributions of the photon and Z0 boson as discussed above.
The electron–positron scattering experiments are usually performed with colliding
beams, which implies that the laboratory frame is simultaneously the centre-of-mass
frame of the e+e− pair. Hence our calculation can be most conveniently performed
in the centre-of-mass frame. There we have k0 = p0, k = −p, and also k′

0 = p′
0,

k′ = −p′. The square of the centre-of-mass energy is denoted by the variable

s = (k + p)2 = 4p2
0 = 4k2

0 . (5.22)

According to the formula stated in Appendix A.3, the particle current in the centre-of-
mass frame is given by

J =
√
(k · p)2 − m2

e m
2
e

k0p0V
=
√
(p2

0 + |p|2)2 − m4
e

p2
0V

. (5.23)

From the relation

(p2
0 + |p|2)2 − m4

e = (2|p|2 + m2
e)

2 − m4
e

= 4|p|2(|p|2 + m2
e) = 4|p|2p2

0 , (5.24)

J can be reduced to

J = 2|p|
p0V

. (5.25)

JV is just the relative velocity of the colliding particles. The differential cross section
in the centre-of-mass frame can be obtained by squaring the scattering matrix element
(5.18) and dividing the result by V T to obtain the transition probability per volume,
by J , and by the particle density ρ = V −1. Finally we have to integrate over the final
states for a fixed emission angle dΩ . Let us denote this symbolically by

dσ ∼ |Sf i |2

V T

1

J

1

ρ
V

∫
d3p′

(2π)3
V

∫
d3k′

(2π)3
∼ 1

V 4

1

V T

1

1/V

1

1/V
(2π)4δ4(0)V · V

As should happen, all V and T factors drop out. Averaging over the polarizations of
the incoming particles, we get

dσ

dΩ
(e+e− → μ+μ−) = (2π)4

32k0 |p|
1

4

∑

s,s′,t,t ′

∞∫

0

|p′|2d|p′|
(2π)3p′

0

×
∫

d3k′

(2π)3k′
0
δ4(p′ + k′ − p − k)|Aγ + AZ |2 . (5.26)

The spin-averaged square of the matrix elements Aγ and AZ can be rewritten as traces
of Dirac matrices in the usual manner. Using the formulas of Appendix A.2 we find

tool, which must eventually be replaced by a more fundamental theory for the generation of rest
masses. Such an underlying theory may well yield an explanation for the large mass ratios. The
development of a theory of this kind is one of the important tasks of particle physics.
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that

∑

s,s′,t,t ′
|Aγ + AZ |2

= e4

s2

[
gαβ − (k + p)α(k + p)β

s

][
gᾱβ̄ − (k + p)ᾱ(k + p)β̄

s

]

× Tr
{
(/p′ + mμ)γ

α(/k′ − mμ)γ
ᾱ
}

Tr
{
(/k − me)γ

β(/p + me)γ
β̄
}

+ e2g2

16 cos2 θ × s(s − M2
Z)

[
gαβ − (k + p)α(k + p)β

s

]

×
[
gᾱβ̄ − (k + p)ᾱ(k + p)β̄

M2
Z

]

× Tr
{
(/p′ + mμ)γ

α(/k′ − mμ)γ
ᾱ(g′

V − γ5)
}

× Tr
{
(/k − me)γ

β(/p + me)γ
β̄(g′

V − γ5)
}

+ e2g2

16 cos2 θ × s(s − M2
Z)

[
gαβ − (k + p)α(k + p)β

M2
Z

]

×
[
gᾱβ̄ − (k + p)ᾱ(k + p)β̄

s

]

× Tr
{
(/p′ + mμ)γ

α(g′
V − γ5)(/k

′ − mμ)γ
ᾱ
}

× Tr
{
(/k − me)γ

β(g′
V − γ5)(/p + me)γ

β̄
}

+ g4

256 cos4 θ × (s − M2
Z)

2

[
gαβ − (k + p)α(k + p)β

M2
Z

]

×
[
gᾱβ̄ − (k + p)ᾱ(k + p)β̄

M2
Z

]

× Tr
{
(/p′ + mμ)γ

α(g′
V − γ5)(/k

′ − mμ)γ
ᾱ(g′

V − γ5)
}

× Tr
{
(/k + me)γ

β(g′
V − γ5)(/p + me)γ

β̄(g′
V − γ5)

}
. (5.27)

In order to simplify our calculation we take into account that the most interesting
scattering energies are far above 10 GeV. Therefore we can safely neglect all terms
including lepton masses. Consequently all terms in the Dirac traces proportional to me

ormμ are omitted. The simplification goes even further: we may omit all contributions
in the numerators of the boson propagators containing the four-vector (k + p). To wit,
since k2 = p2 = m2

e , we get, for instance,

(k + p)β Tr
{
(/k − me)γ

β(/p + me)γ
β̄
} ≈ Tr

{
/k(/k + /p)/pγ β̄

}

= Tr
{
k2/pγ β̄

}+ Tr
{
/kp2γ β̄

}

= m2
e Tr
{
/pγ β̄
}+ m2

e Tr
{
/kγ β̄
}

≈ 0 , (5.28)
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because /k2 = k2 = m2
e , /p2 = p2 = m2

e , and so on (see Appendix A.2). Since the δ
function ensuring energy and momentum conservation in (5.26) implies that (p+k) =
(p′ + k′), the latter result is also valid for traces containing the four-momenta of the
muons in the final state (p′, k′).

In the limit of high scattering energies, that is for s 
 m2
e , m2

μ, only the contribu-
tions of the form gαβgᾱβ̄ remain, yielding a considerably simplified form of (5.27),

∑

s,s′,t,t ′
|Aγ + AZ |2 ≈ e4

s2
Tr{/p′γ α/k′γ β} Tr{/kγα/pγβ}

+ e2g2

2 cos2 θ × s × (s − M2
Z)

Tr
{
/p′γ α/k′γ β(g′

V − γ5)
}

× Tr{/kγα/pγβ(g′
V − γ5)}

+ g4

256 cos4 θ × (s − M2
Z)

2
Tr
{
/p′γ α(g′

V − γ5)/k
′γ β(g′

V − γ5)
}

× Tr
{
/kγα(g

′
V − γ5)/pγβ(g

′
V − γ5)

}
. (5.29)

Here we have used the identity of both interference terms (in the limit me,mμ = 0!)
resulting from the anticommutativity of γ5 and γμ. The calculation of the remaining
Dirac traces can be performed by complete analogy with the case of muon decay,
discussed at length in Sect. 2.2. Here we perform the calculation of the interference
term (the term proportional to e2g2) in detail; the evaluation of the other two terms is
left to the reader as an exercise.

With the help of (2.29) we get (see also Appendix A.2)

Tr
{
/p′γ α/k′γ β(g′

V − γ5)
}

= p′
μk

′
ν Tr
{
γ μγ αγ νγ β(g′

V − γ5)
}

= 4p′
μk

′
ν(g

μαgνβ + gμβgνα − gμνgαβ)g′
V + 4iεμανβp′

μk
′
ν

= 4g′
V

[
p′αk′β + p′βk′α − (p′ · k′)gαβ

]+ 4iεμανβp′
μk

′
ν (5.30)

and analogously

Tr{/kγα/pγβ(g′
V − γ5)} = 4g′

V

[
kαpβ + kβpα − (p · k)gαβ

]

+ 4iεμ̄αν̄βk
μ̄pν̄ . (5.31)

Since εμανβ is totally antisymmetric, the terms combined with expressions symmetric
in α, β vanish. With the help of the relation (see Exercises 2.3 and 2.4)

εμανβεμ̄αν̄β = 2(gμν̄ g
ν
μ̄ − g

μ
μ̄g

ν
ν̄ ) , (5.32)

the product of the two Dirac spinors yields

32g′ 2
V

[
(p′ · p)(k′ · k) + (p′ · k)(k′ · p)]+ 32

[
(p′ · k)(k′ · p) − (p′ · p)(k′ · k)]

= 32(g′ 2
V − 1)(p′ · p)(k′ · k) + 32(g′ 2

V + 1)(p′ · k)(k′ · p) . (5.33)
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The main details of the calculation can be found in the solution of Exercise 2.3. To-
gether with the two other contributions we get

∑

s,s′,t,t ′
|Aγ + AZ |2 =

[
32
e4

s2
+ 4

e2g2(g′ 2
V + 1)

s(s − M2
Z) cos2 θ

+ g4(g′ 4
V + 6g′ 2

V + 1)

8(s − M2
Z)

2 cos4 θ

]

× (p′ · k)(k′ · p)

+
[

32
e4

s2
+ 4

e2g2(g′ 2
V − 1)

s(s − M2
Z) cos2 θ

+ g4(g′ 2
V − 1)

8(s − M2
Z)

2 cos4 θ

]

× (p′ · p)(k′ · k). (5.34)

Here, all terms of the order m2
e/s, m

2
μ/s have been neglected. With the help of the

relations e = g sin θ and sin 2θ = 2 sin θ cos θ we can simplify the expression

∑

s,s′,t,t ′
|Aγ + AZ |2 ≈ 32

e4

s2

[
1 + 1

2
(g′ 2

V + 1)R(s) + 1

16
(g′ 4

V + 6g′ 2
V + 1)R(s)2

]

× (p′ · k)(k′ · p)

+ 32
e4

s2

[
1 + 1

2
(g′ 2

V − 1)R(s) + 1

16
(g′ 4

V − 1)R(s)2
]

× (p′ · p)(k′ · k) (5.35)

with the resonance factor

R(s) = s

(s − M2
Z) sin2 2θ

. (5.36)

Lastly, we must integrate over the final states in momentum space. By neglecting the
particle rest masses compared to the centre-of-mass energy

√
s, that is by approximat-

ing

k2 = p2 = m2
e ≈ 0 , k′ 2 = p′ 2 = m2

μ ≈ 0 , (5.37)

we have

p0 ≈ |p| , k0 ≈ |k| , p′
0 ≈ |p′| , k′

0 ≈ |k′| . (5.38)

Furthermore, in the centre-of-mass frame

p = −k , p′ = −k′ (5.39)

yields p0 ≈ k0, p′
0 ≈ k′

0. Hence energy conservation implies (see (5.22)):

p0 ≈ k0 ≈ p′
0 ≈ k′

0 ≈ 1

2

√
s (5.40)

and

p′ · p ≈ s

4
cosϑ , k′ · k ≈ s

4
cosϑ ,

(5.41)
p′ · k ≈ − s

4
cosϑ , k′ · p ≈ − s

4
cosϑ ,
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Fig. 5.5. Schematic illustration
of scattering in the center-of-
mass frame, which here coin-
cides with the laboratory frame

where ϑ denotes the scattering angle in the centre-of-mass frame (Fig. 5.5). Thus we
get

(p′ · p) = p′
0 · p0 − p′ · p ≈ s

4
(1 − cosϑ) ,

(k′ · k) = k′
0 · k0 − k′ · k ≈ s

4
(1 − cosϑ) ,

(5.42)
(p′ · k) = p′

0 · k0 − p′ · k ≈ s

4
(1 + cosϑ) ,

(k′ · p) = k′
0 · p0 − k′ · p ≈ s

4
(1 + cosϑ) .

Applying these approximations in (5.26) and setting p + k = 0 we find that the re-
maining integral yields

∫ ∞

0

|p′ |2d|p′ |
(2π)3p′

0

∫
d3k′

(2π)3k′
0
δ3(p′ + k′)δ(p′

0 + k′
0 − √

s)

≈
∞∫

0

p′
0dp′

0

(2π)6p′
0
δ(2p′

0 − √
s) = 1

2(2π)6
. (5.43)

Altogether the differential cross section reads (α = e2/4π)

dσ̄

dΩ
(e+e− → μ+μ−) ≈ α2

4s

{
(1+cos2 ϑ)

[
1 + 1

2
g′ 2

V R(s) + 1

16
(g′ 2

V + 1)2R(s)2
]

+ cosϑ

[
R(s) + 1

2
g′ 2

V R(s)
2
]}

(5.44)

with R(s) given by (5.36). The total cross section is

σ̄ (e+e− → μ+μ−) = 2π
∫ +1

−1
d(cosϑ)

dσ̄

dΩ

≈ 4πα2

3s

[
1 + 1

2
g′ 2

V R(s) + 1

16
(g′ 2

V + 1)2R(s)2
]

. (5.45)

Before 1989 the maximum available energy was considerably less than s � MZ. So
long as this is true, it is a good approximation to set

R(s) ≈ − s

M2
Z sin2 2θ

, R(s)2 ≈ 0 . (5.46)

The differential cross section (5.44) then takes the approximate form

dσ̄

dΩ
≈ α2

4s

[
(1 + cos2 ϑ)

(
1 − g′ 2

V s

2M2
Z sin2 2θ

)
− s

M2
Z sin2 2θ

cosϑ

]
, (5.47)

with

g′
V = 1 − 4 sin2 θ � 1 (5.48)
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for the experimentally derived value of the Weinberg angle (4.108). In (5.47) both
terms containing a factor 1/M2

Z originate from weak currents, the main correction
to the electromagnetic scattering cross section being a term proportional to cosϑ . In
the range of forward scattering, that is, for 0 < ϑ < π/2, the scattering cross section
is suppressed, whereas in the case of backward scattering, for π/2 < ϑ < π , it is
enhanced. Obviously, the neutral weak current causes an asymmetry of the angular
distribution around ϑ = 90◦.

This asymmetry was first clearly observed in experiments at the accelerator PETRA
at the DESY laboratory in Hamburg, Germany (Fig. 5.6). The full line represents
the prediction of Glashow–Salam–Weinberg theory, whereas the dashed line shows
the prediction of pure quantum electrodynamics, the so-called Bhabha scattering.2

Although there are also small asymmetric contributions in the framework of quantum
electrodynamics when higher-order Feynman graphs are considered, these effects are
of the order of 1% and therefore much smaller than the effect of the neutral weak
current (at

√
s = 34 GeV). On the other hand, experimental values of the vector and

Fig. 5.6. Angular distribution
of e+e− → μ+μ− scattering
for a centre-of-mass energy√
s = 34 GeV. The asymme-

try corresponds to a Weinberg
angle sin2 θ ≈ 0.25 (solid
line)

Fig. 5.7. Experimental values
of vector and axial-vector
coupling constants3

2 A good survey of Bhabha scattering can be found in A. Scherdin, J. Reinhardt, W. Greiner, and
B. Müller: Rep. Prog. Phys. 54, 1 (1991) and in G. Salvini and A. Silverman: Phys. Rep. 171, 231
(1988).
3 M. Althoff et al. (TASSO collaboration), Z. Phys. C22, 13 (1984).
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axial-vector coupling constants of the neutral weak current can be extracted from the
measured angular asymmetry. As seen in Fig. 5.7, the measured values are in good
agreement with the predictions of the Glashow–Salam–Weinberg theory

g′
V = 1 − 4 sin2 θ , g′

A = 1

for sin2 θ ≈ 0.25. The best value of the Weinberg angle determined in this way,

sin2 θ = 0.25 ± 0.07 , (5.49)

is in good agreement with the value obtained from other experiments. Since for this
value of θ we have g′

V ≈ 0, the formula for the total cross section of muon pair pro-
duction (5.45) attains the simple form

σ̄ (e+e− → μ+μ−) ≈ 4πα2

3s

[
1 + 1

16 sin4 2θ

s2

(s − M2
Z)

2

]
. (5.50)

In the vicinity of s = M2
Z we expect a strong increase in the cross section. This is the

typical sign of a resonance; in other words, in the process e+e− → Z0 → μ+μ− the
intermediate Z boson acts like a resonance. In reality, the scattering cross section of
course does not diverge at s = M2

Z, because the Z boson itself decays and therefore
has an intrinsic decay width ΓZ. The correct expression of R(s), replacing (5.36), is

R(s) = s

sin2 2θ [s − |MZ − i
2ΓZ |2 ] . (5.51)

In the scattering cross section a factor |R(s)|2 occurs. After some calculation we ob-
tain

σ̄ ≈ 4πα2

3s

[
1 + 1

16 sin4 2θ

s2

(
s − M2

Z + Γ 2
Z
4

)2 + M2
ZΓ

2
Z

]
. (5.52)

At the point of resonance, s = M2
Z − Γ 2

Z
4 , we have the cross section

σ̄max ≈ 4πα2

3Γ 2
Z

, (5.53)

which depends on the decay width of the Z boson. This is illustrated in Fig. 5.8, where
the ratioR between σ̄ from (5.52) and the pure QED result σ̄QED = 4πα2/3s is shown.
R peaks at the value

Fig. 5.8. Theoretical reso-
nance curve of the Z boson in
the case of electron–positron
scattering
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σ̄max

σQED
≈ M2

Z

Γ 2
Z


 1 . (5.54)

From a precise measurement of the resonance curve the mass and the width of the
neutral boson can be determined with great accuracy. The experiments performed in
1989/90 at the CERN Large Electron–Positron Collider (LEP) and the Stanford Linear
Collider (SLC) have confirmed the predictions of the GSW theory with unprecedented
precision and constitute a new triumph of the “standard model” (see Example 5.3).

EXAMPLE

5.2 The Discovery of the Intermediate Vector Bosons

In 1977 Carlo Rubbia proposed converting the super proton synchrotron (SPS) at
the European Centre for Nuclear Research (CERN), near Geneva, into a proton–
antiproton storage ring. The basic principles of this type of storage ring have already
been discussed in connection with the discovery of the τ lepton (Example 2.13).
At CERN the total energy of the colliding particles was 540 GeV. As was known
from other experiments,4 half of the momentum of the protons is carried by its
neutral constituents (gluons), the remaining half being distributed to the three con-
stituent quarks (uud). Effectively, one would assume a total energy of the order of
1
6 × 540 GeV = 90 GeV per quark–antiquark collision. Therefore it should be possible
to create a Z boson in a quark–antiquark collision, since the W or Z mass is predicted
to be around 80–90 GeV by the Glashow–Salam–Weinberg theory, as we discussed
before. The creation of a W boson should show up by its characteristic decay into a
high-energy electron and neutrino, as shown in Fig. 5.9.

Fig. 5.9. Creation and decay
of a W boson in a quark–anti-
quark collision

The realization of the proton–antiproton storage ring became possible thanks to a
new technique developed by S. van der Meer, which is known as stochastic cooling. Its
main idea makes use of the fact that the antiprotons produced in a target are collected
in an accumulator ring. There, at one point (point “A” in Fig. 5.10) of the ring, the
average deviation of the antiprotons from the desired trajectory is measured. Then a
corrective electronic signal is sent to the other side of the ring where the beam can be
corrected by appropriate changes of the field (position “B”).

4 See W. Greiner, S. Schramm, and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer, Berlin,
Heidelberg, 2007); F.E. Close: An Introduction to Quarks and Partons (Academic Press, New York,
1979), Chap. 11.
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Fig. 5.10. Schematic sketch
of the experimental setup pro-
ducing, collecting, and accel-
erating antiprotons and pro-
tons at the SPS collider of
CERN

Fig. 5.11. The detector UA1
used for the search for the W
and Z bosons

When the antiproton beam has a sufficient density, it is injected into the storage
ring. The particle beams cross at two points of the storage ring; around these points two
detectors are installed. The setup of the larger one, UA1, with dimensions 5 m × 5 m ×
10 m (see Fig. 5.11), will be discussed in the following. Immediately surrounding the
collision point is a central detector, consisting of a system of drift chambers. Around
this detector, which produces a high-resolution image of all the tracks of charged
particles, a strong magnetic field points in the direction of the particle beams. The
momenta of the particles emerging from the reaction can now be determined from
the curvature of their tracks, as observed in the central detector. The central detector
is surrounded by an electromagnetic calorimeter, alternate layers of heavy material,
where the particles lose energy, and layers of scintillator, which measure the energy
loss. The electromagnetic calorimeter, in turn, is surrounded by a hadronic calorimeter.
The outer part consists of a system of drift chambers detecting muons.

It is important that the calorimeter covers nearly the full (4π) solid angle, to allow
detection of all produced electrons and hadrons and accurate determination of their
energy. This is essential, because the neutrino created in the decay of the W boson
cannot be detected but only determined indirectly by measuring a missing part in the
balance of momenta of all other particles. In the search for the missing momenta, only
the momentum components orthogonal to the beam direction were considered. Since
no calorimeters could be installed within an angular range of 0.2◦ around the beam
axis, particles which escape into that direction would distort the balance of momen-
tum in the beam direction. Since the only events of interest were those where electrons
with high transverse momentum pT (that is, perpendicular to the beam direction) were
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emitted, the detection was restricted to events where two adjacent cells of the electro-
magnetic calorimeter detected a particle at an angle larger than 5◦ with respect to the
beam axis and a transverse momentum larger than 10 GeV.

During three weeks of beam time 140 000 events of this kind were registered. They
were selected by introducing further criteria. It was demanded that a particle with
pT > 15 GeV was detected in two adjacent cells of the electromagnetic calorimeter
with an angle to the beam axis >25◦. Moreover, the central detector should show a
track with pT > 7 GeV pointing toward that part of the calorimeter where the parti-
cle with pT > 15 GeV was found. When these constraints were applied, 1106 events
remained. The transverse momentum of all other tracks pointing to the same cells of
the calorimeter should not exceed 2 GeV in total (this left 276 events). The direction
of the transverse momentum registered in the calorimeter should coincide with the
direction of the corresponding track in the central detector (167 events were left). In
order to exclude a hadron as the source of the track, the maximum allowed value of en-
ergy measured in the hadronic calorimeter was fixed at 600 MeV (leaving 72 events).
Finally, the energy measured in the calorimeter should agree with the momentum ex-
tracted from the track in the central detector, leaving 39 events. The remaining events
were classified in three groups. For 11 of these a jet of hadrons within a small angular
range occurred which was opposite to the presumed electron track. Here it is probable
that in reality there are two opposite jets, one of which resembles an electron track.
The second group contained 23 events, consisting of two jets where the measured
electron was part of one jet or events where the electron clearly originates from the
Dalitz decay π0 → γ + e+e−. It is important to note that for all 34 events of these two
groups the balance of momenta was fulfilled within experimental accuracy, that is, the
sum of the momenta of all measured particles was zero, as expected from momentum
conservation.

The five remaining events exhibited no hadronic jets, and their balance of momen-
tum was not reconciled. The missing momentum not registered by the detector (de-
noted as missing energy because the calorimeter measures the energy of the particles)
was found to be opposite in direction to the electron track with great accuracy. The
sole known explanation for such events is that the missing energy was carried away by
one or more neutrinos that remain undetected, as it would be in the decay W→ eν. By
fitting the angle and energy of the electron and the transverse energy of the neutrino it
was possible to obtain a value for the mass of the W boson.

MW = 81 ± 5 GeV , (1)

which is in good agreement with the prediction of the GSW theory. Extensive mea-
surements at CERN, as well as at the Tevatron collider at the Fermi National Ac-
celerator Laboratory (FNAL) near Chicago, have improved the accuracy of the mass
determination considerably. A recent spectrum of the transverse component of the
energy emitted in W decays is shown in the following figure. The high-energy peak
corresponds to W bosons emitted perpendicular to the beam; its location determines
MW. At present (1993) the best value is:

MW = 80.10 ± 0.42 GeV . (2)
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Fig. 5.12. Mass spectrum
for the W particle, from
the UA2 experiment at
CERN’s proton–antiproton
collider. The solid line rep-
resents a fit to the data with
MW = 80.49 GeV

The Z boson was discovered with the same experimental technique, but now searching
for events with two highly energetic electrons (e+e−) being emitted with opposite
momenta. Although these events are much rarer in proton–antiproton collisions, a
clear Z0 signal was detected, yielding the mass

MZ = 91.16 GeV . (3)

The new precision measurements of the properties of the Z0 boson are discussed in
Example 5.3.

EXAMPLE

5.3 Precision Measurement of the Z0 Boson

In the summer of 1989 two new electron–positron colliders started operation: the Stan-
ford Linear Collider (SLC) and the Large Electron–Positron Collider (LEP) at CERN.
Available beam energies of up to about 50 GeV allowed for detailed experimental in-
vestigation of the Z0 resonance region in electron–positron scattering. Here we shall
not discuss the technical details of the large detector systems employed in these stud-
ies, because they are based on similar principles as those used in the original discovery
of the intermediate bosons at CERN (see Example 5.2). In total there are four detec-
tor collaborations at LEP (ALEPH, DELPHI, L3, and OPAL) and two at SLC. These
groups have studied various aspects of the Z0 resonance in the centre-of-mass energy
region around

√
s ≈ 91 GeV, in particular, the decays Z0 → μ+μ−, e+e− and Z0 →

hadrons (see Figs. 5.13, 5.14). The most significant early result was a precise determi-
nation of the mass and the total width of the Z boson:5

MZ = 91.16 ± 0.03 GeV ,
(1)

ΓZ = 2.492 ± 0.025 GeV .

5 L3 collaboration, B. Adera et al.: Phys. Lett. B231, 509 (1989); ALEPH collaboration, D. Decamp
et al.: Phys. Lett. B231, 519 (1989); OPAL collaboration, M.Z. Akrawy et al.: Phys. Lett. B231, 530
(1989); DELPHI collaboration, P. Aarino et al.: Phys. Lett. B231, 539 (1989).
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Fig. 5.13. The measured cross
sections for e+e− → hadrons
as a function of centre-of-
mass energy

√
s. The solid

line is a fit to a formula analo-
gous to (5.52)

Fig. 5.14. Z0 resonance in the
reaction e+e− → μ+μ−

The measured shape of the Z0 resonance in the reaction e+e− → μ+μ− is shown in
Fig. 5.14. MZ and ΓZ can be obtained from fits to the shape of the measured energy
distribution in these reactions. The absolute yield in the various decay channels of the
Z0 boson also allows for a separate determination of the partial decay widths:6

hadronic decays: Γ had
Z = 1748 ± 35 MeV , (2)

charged lepton decays: Γ 


Z = 83 ± 2 MeV . (3)

The difference between the total width and the combined measured widths must then
be attributed to decays of the Z0 into neutrinos, Z0 → νν̄:

Γ
(ν)

Z = ΓZ − Γ had
Z − 3Γ 



Z = 494 ± 32 MeV . (4)

In Exercise 5.1, (a), we derived the decay width for the decay Z0 → νν̄:

Γ νν̄
Z = 166 MeV . (5)

6 B. Adeva et al. [L3 Collaboration]: Phys. Lett. B249 (1990) 341–352. A more recent determination
of the Z0 boson resonance parameters is given by The ALEPH Collaboration et al.: Phys. Rept. 427
(2006) 257; e-Print: hep-ex/0509008.
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Comparison with (4) leads to a measurement of the number of neutrinos:

Nν = Γ
(ν)

Z /Γ νν
Z = 2.96 ± 0.11 .

This is a very important result, because it states that there are at most three species
of low-mass neutrinos in nature (νe, νμ, ντ ). This result is in full agreement with sim-
ulations of the evolution of the early universe, which yield the limit Nν ≤ 4. It is
assumed that the still unknown neutrinos have masses smaller than half the mass of
the Z0. Neutrinos with larger masses have no effect on ΓZ because the energy of the
νν̄ pair into which the Z0 might decay has to be smaller than MZ. A complete table of
experimental results from LEP for the Z0 parameters is shown below.

Table 5.1. Comparison of the experimental results (L3 detector) with standard model predic-
tions

Experiment Prediction

MZ (GeV) 91.161 ± 0.13 ± 0.3 –
ΓZ (GeV) 2.492 ± 0.025 2.492
Γ

 (GeV) 0.0832 ± 0.0015 0.0838
Γhad (GeV) 1.748 ± 0.035 1.740
Γνν̄ (GeV) 0.494 ± 0.032 0.501
Γhad/Γ

 21.02 ± 0.62 20.77

The agreement between the data and the predictions of the GSW theory (standard
model) was so good that it became possible to set limits on the masses of the then two
still undetected particles, the top quark (mt) and the Higgs boson (MH). Experimental
limits for the masses of these two particles, from direct searches at CERN and FNAL,
are

mt ≥ 89 GeV , (6a)

MH ≥ 41.6 GeV . (6b)

The reason the data are sensitive to the masses of these particles is that they contribute
to the predicted mass values of the W and Z bosons through vacuum polarization
effects, such as are indicated by the following Feynman diagrams:

The magnitude of the contributions from these diagrams depends on the masses
of the virtual particles in the loops. Because mt enters in a different way into the W
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loop (once) and the Z loop (twice), the value of MW/MZ is especially sensitive to it.
A detailed analysis7 showed that the experimental value

MW/MZ = 0.8801 ± 0.0037 (7)

leads to an upper bound

mt ≤ 200 GeV (8)

with 95% confidence. The most likely value is around mt ≈ 150 GeV. Remarkably,
an estimate of mt can also be obtained8 from the precise measurement of the muon
lifetime τμ (2.61). The theoretical prediction for τμ is again sensitive to mt through
radiative corrections, giving a value mt = 189 ± 47 GeV, Meanwhile, in 1995 the top
quark was unambiguously identified experimentally by two collaborations at the Teva-
tron (Fermi Laboratory near Chicago) and the following masses mt were reported:9

mt = 176.0 ± 6.5 GeV (CDF) ,
(9)

mt = 172.1 ± 7.1 GeV (D0)

For the Higgs boson the data pose less severe restrictions, because its coupling to
the W and Z bosons is universal. Nonetheless, fits to the data with different values
of MH point towards a Higgs mass below about 350 GeV. The predicted large mass
of the top quark gives rise to the fascinating speculation10 that the Higgs field may
actually be an effective description of a top-quark condensate, in much the same way
as the London wavefunction of a superconductor effectively describes the distribution
of Cooper pairs. The speculation is based on the observation that the coupling between
the top quark and the Higgs field is predicted to be (see (4.143))

ft = mt

λ
≈ 189 GeV

246 GeV
= 0.77 ,

that is, the coupling strength is of the order of 1. For such couplings a top-quark–
antiquark state would be supercritically bound,11 and the top-quark vacuum would
contain an infinite number of such (tt̄) bound states. This “condensate” of (tt̄) pairs
acts very much like a Higgs field, giving mass to the W and Z bosons.12

7 V. Barger, J.L. Hewett, T.G. Rizzo: Phys. Rev. Lett. 65, 1313 (1990).
8 F. Halzen and D.A. Morris: preprint MAD/PH/569, Madison, WI (1990).
9 CDF Collaboration (F. Abe et al. – 397 authors), Phys. Rev. Lett. 74, 2626 (1995); D0 Collaboration
(S. Abachi et al.) Phys. Rev. Lett. 74, 2632 (1995).
10 Y. Nambu: E. Fermi Institute preprint 89-08, Chicago (1989).
11 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009), Chap. 7, for a discussion of supercritical binding.
12 W.A. Bardeen, C.T. Hill, M. Lindner: Phys. Rev. D41, 1647 (1990); X.Y. Pham: Phys. Lett. B241,
111 (1990).
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5.3 High-Energy Behavior of the GSW Theory

Apart from the experimentally proven existence of neutral weak currents the high-
energy behavior gave a reason to reject the V–A Fermi interaction as the fundamental
theory of weak interactions. In the previous section we studied some effects of the
intermediate neutral boson in electron–positron annihilation. Now we discuss the be-
havior of the Glashow–Salam–Weinberg theory at very high energies. In particular we
shall investigate whether the quadratic increase of the scattering cross section with
respect to the centre-of-mass energy E = √

s is really damped as we had hoped. Fur-
thermore, we have to discuss whether divergences occurring in calculations of higher-
order processes are softened in a way that they can be compensated by renormalization
of masses and coupling constants. We start with the high-energy behavior. Here ‘high
energy’ implies that the scattering energy in the centre-of-mass frame

√
s is consider-

ably larger than the masses of the intermediate bosons, that is

√
s 
 100 GeV .

Fig. 5.15. Muon–neutrino
electron scattering through ex-
change of the intermediate bo-
son W−

A first hint at the behavior of scattering cross sections at these energies is given by
(5.45), which describes the process e+e− → μ+μ−. According to (5.36), in the high-
energy limit we have

lim
s→∞R(s) = 1

sin2 2θ
, (5.55)

and therefore

σ̄ (e+e− → μ+μ−) −→
s→∞

4πα2

3s

(
1 + g′ 2

V

2 sin2 2θ
+ (g′ 2

V + 1)2

16 sin4 2θ

)
. (5.56)

Thus we see that the cross section decreases asymptotically like 1/s. The obvious
explanation is given by the asymptotic behavior of R(s), which approaches a constant
instead of increasing linearly with s, as is the case for s � M2

Z (cf. (5.36)).

Fig. 5.16. Two diagrams de-
scribing lowest-order νee−
scattering

In Sect. 3.4 we based our argumentation mainly on electron–neutrino scattering
mediated by charged currents. Now we study the same process once more in the
framework of gauge theory, especially considering the behavior with respect to s. We
concentrate our discussion on the process νμe− → μ−νe, because in a purely electro-
magnetic process the neutral current also contributes (cf. the remark at the end of Ex-
ercise 3.3). The corresponding Feynman diagram is shown in Fig. 5.15, whereas two
diagrams are possible in the process νee− → e−νe (Fig. 5.16), whose contributions
must be added coherently. The scattering νμ → μ−νe through W-boson exchange is
described by the first two terms of the Lagrangian (4.139). The term

− g

2
√

2
ψ̄μ(x)γ

α
μ (1 − γ5)ψνμ(x)W

(−)
α (x) (5.57)

describes the conversion of a muon neutrino into a negative muon absorbing a W−
boson, whereas

−g

2
√

2
ψ̄νe(x)γ

α(1 − γ5)ψe(x)W
(+)
α (x) (5.58)
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implies the transition of an electron into an electron neutrino, emitting a W− boson.
Applying the usual Feynman rules we find that the scattering matrix element corre-
sponding to the diagram in Fig. 5.16 reads

S(νμe− → μ−νe) = (2π)4δ4(p′ + k′ − p − k)

4V 2(p0k0p
′
0k

′
0)

1/2
A (5.59)

with the invariant amplitude

A = −i
g2

8
ūμ(p

′, s′)iγ α(1 − γ5)uνμ(k, t)

(
gαβ − (p′ − k)α(p

′ − k)β/M
2
W

(p′ − k)2 − M2
W

)

× ūν(k
′, t ′)iγ β(1 − γ5)ue(p, s) . (5.60)

For low energies the propagator of the W boson can be approximated by −gαβ/M
2
W,

and the matrix element reduces to that in Exercise 3.3, (3), (4), since, owing to (4.144),
we have

g2

8M2
W

= G√
2

.

However, here we are interested in the high-energy behavior. We therefore simplify
the calculation by neglecting all terms which include powers of the leptonic masses
me and mμ. The squared matrix element (5.60) is averaged over the initial spins (note
that the neutrino has only a single spin direction!) and summed over the final spins,
yielding

1

2

∑

s,s′,t,t ′
|A|2 = g4

128

(
gαβ − (p′ − k)α(p

′ − k)β

M2
W

)(
gᾱβ̄ − (p′ − k)ᾱ(p

′ − k)β̄

M2
W

)

× 1

[(p′ − k)2 − M2
W ]2

Tr
{
(/p′ + mμ)γ

α(1 − γ5)/kγ
ᾱ(1 − γ5)

}

× Tr
{
/k′γ β(1 − γ5)(/p + me)γ

β̄(1 − γ5)
}

. (5.61)

According to what we said above we neglect the mass terms in the Dirac traces.
Within this approximation the contribution proportional to (p′ − k) in the numera-
tors of the boson propagators also vanishes. This is analogous to our consideration in
(5.28) (/p′ 2 = p′ 2 = m2

μ ≈ 0, k2 = k′ 2 = 0) and one obtains

(p′ − k)α Tr
{
(/p′γ α(1 − γ5)/kγ

ᾱ(1 − γ5)
}

= Tr
{
p′2(1 − γ5)/kγ

α(1 − γ5) − /p′(1 − γ5)k
2γ ᾱ(1 − γ5)

}

= m2
μ Tr
{
(1 − γ5)/kγ

ᾱ(1 − γ5)
}≈ 0 , (5.62)

and so on. Thereby (5.61) is simplified considerably to

1

2

∑

s,s′,t,t ′
|A|2 ≈ g4

128[(p′ − k)2 − M2
W ]2

Tr
{
/p′γ α(1 − γ5)/kγ

β(1 − γ5)
}

× Tr
{
/k′γα(1 − γ5)/pγβ(1 − γ5)

}

= 2g4 (k · p)(p′ · k′)
[(p′ − k)2 − M2

W ]2
, (5.63)
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where we have adopted the result of the trace calculations from Exercise 3.3, (8).
Furthermore, the high-energy limit implies that

s = (k + p)2 = k2 + p2 + 2(k · p) ≈ 2(k · p) ,
(5.64)

s′ = (k′ + p′)2 = m2
μ + 2(k′ · p′) ≈ 2(k′ · p′) ,

and

(p′ − k)2 = m2
μ − 2(p′ · k) ≈ −2(p′ · k) . (5.65)

As in Exercise 3.2, making use of four-momentum conservation, we get

(p′ · k) = (p + k − k′) · k = (p · k) − (k′ · k)
≈ s

2
− k0k

′
0(1 − cosϑ) , (5.66)

where ϑ is the scattering angle of the neutrino. Neglecting rest masses in the centre-of-
mass frame, each particle energy being k0 ≈ p0 ≈ k′

0 ≈ p′
0 ≈ 1

2

√
s, and furthermore

with

(p′ · k) ≈ 1

4
s(1 + cosϑ) , (5.67)

we obtain as the result

1

2

∑

s,s′,t,t ′
|A|2 ≈ 2g4s2

[s(1 + cosϑ) + 2M2
W ]2

. (5.68)

Finally we integrate over the phase space of the outgoing particles. The considerations
leading to the averaged differential cross section are analogous to our previous discus-
sion. In the centre-of-mass frame (p + k = 0,p0 + k0 = √

s), using Exercises 3.2, (5)
and 3.1, (3)–(5), as well as [(2π)4δ4(p′ +k′ −p−k)]2 = V T (2π)4δ4(p′ +k′ −p−k),
we get

dσ̄

dΩ
(νμe− → μ−νe) = V 2

(2π)6

∫
d3p′

∞∫

0

|k′ |2d|k′ | k0p0V

(k · p)T
1

2

∑

s,s′,t,t ′
|S|2

= 1

64π2

∫
d3p′

p′
0

∞∫

0

|k′ |2d|k′ |
k′

0(k · p) δ
4(p′ + k′ − p − k)

1

2

∑

s,s′,t,t ′
|A|2

= g4

16π2

s

[s(1 + cosϑ) + 2M2
W ]2

∫
d3p′

p′
0

∞∫

0

k′
0dk′

0δ
3(p′ + k′)

× δ(p′
0 + k′

0 − √
s) , (5.69)

where we have used (5.59), (5.64), (5.68) and the relation V T = (2π)4δ4(0). Re-
member also that

∫
d3k′/(2π)3 = ∫ |k′ |2d|k′ |dΩ/(2π)3. Furthermore we have taken

k′
0 = |k′| owing to the vanishing mass of the neutrino. The integration over p′ is re-
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moved by the spatial δ3 function. What we are left with is

∫ ∞

0

k′
0dk′

0√
k′2

0 + m2
μ

δ
(√

k′2
0 + m2

μ + k′
0 − √

s
)

= s − m2
μ

2s
≈ 1

2
, (5.70)

by analogy with Exercise 3.3, (10) and by using

∫
A(x)δ(f (x))dx = A(x0)

df
dx

∣∣
x=x0

,

x0 being the argument for which f (x0) = 0.
For scattering energies well above the muon mass we thus have

dσ̄

dΩ
(νμe− → μ−νe) ≈ g4

32π2
s
[
s(1 + cosϑ) + 2M2

W

]−2
. (5.71)

We have to compare this result with that of Fermi theory, Exercise 3.3, (11),

dσ̄

dΩ
(νμe− → μ−νe) ≈ G2

4π2
s . (5.72)

At energies where we can neglect s compared to M2
W, (5.71) together with relation

G/
√

2 = g2/8M2
W, (4.144), can be reduced to the following:

dσ̄

dΩ
→ g4

128π2M4
W

s = G2

4π2
s (s � M2

W) .

In the case of asymptotically high energies, however, the additional s dependence
results in a considerably smaller increase in the scattering cross section. This can be
seen most clearly by considering the total cross section,

σ̄ = 2π
∫ +1

−1
d(cosϑ)

dσ̄

dΩ
≈ g4

16π

∫ s

−s

dx[x + s + 2M2
W ]−2

= g4

16π

[ −1

x + s + 2M2
W

]x=s

x=−s

= g4s

(32πM2
W)(s + M2

W)
= G2sM2

W

π(s + M2
W)

. (5.73)

For s � M2
W this accords with (3.33), the result of Fermi theory; at energies where

s 
 M2
W the cross section approaches a constant value,

1

π
(GMW)

2 ≈ 3 × 10−35 cm2 = 30 pb .

That is, even at extremely high energies the cross section remains relatively small
compared to the total cross section of proton–antiproton scattering of around 60 mb
at

√
s = 540 GeV. Thus we conclude that the weak interaction described by the

Glashow–Salam–Weinberg theory, remains ‘weak’ even at asymptotically high en-
ergies!

As we know from Sect. 3.4 the comparison of total cross sections is not the decisive
criterion, because, apart from the interaction strength, its range also enters. The cross
section of proton–antiproton scattering is larger than that of neutrino scattering, partly



5.3 High-Energy Behavior of the GSW Theory 201

because the range of strong interactions is of the order of 1 fm, whereas in the Salam–
Weinberg theory the range of the weak interaction is given by the Compton wavelength
of the intermediate bosons,

M−1
Z ,M−1

W ≈ 0.0025 fm . (5.74)

The real criterion for whether the theory is consistent or not requires us to check
whether a partial wave exceeds the unitarity limit, as discussed in Sect. 3.4. The cal-
culation performed in Exercise 5.4 yields the partial cross section of an s wave,

σ0 = G2M4
W

πs

[
ln

(
1 + s

M2
W

)]2

, (5.75)

whereas according to (3.38) the unitarity limit yields the value

σ lim
0 = 4π

s
. (5.76)

Obviously, even in the framework of the Salam–Weinberg theory, this limit may be
exceeded (within the Born approximation), but only at ultra-high energies,

√
s ≈ MW exp

(
π

GM2
W

)
≈ MW exp

(√
2 sin2 θ

α

)
≈ 7 × 108 GeV . (5.77)

Here the relations (4.181) were utilized, i.e. g sin θ = e, MW = 1
2gλ, G/

√
2 =

g2/8M2
W = 1/2λ2. This corresponds to a laboratory energy of the incoming neutrino

of

Elab
ν = s

2me
= 5 × 1020 GeV . (5.78)

This relation follows from (k + p)2 ≡ s = k2 + p2 + 2k · p = p2 + 2k · p ≈ 2k · p =
2(k0p0 − k · p). In the laboratory the electron is at rest (p = 0) and therefore p0 = me.
The energy (5.78) is far above energies attainable in the near future. However, in
principle, centre-of-mass energies of the order of 109 GeV may become accessible
one day. They certainly occurred in collisions of elementary particles in the plasma
shortly after the big bang of the universe. In this regime the violation of the unitary
limit within the Born approximation requires further study of scattering processes, as
discussed in Sect. 3.4. The Feynman graphs of some of the involved processes are
shown in Fig. 5.17. If one applies the theory of renormalization (see Chap. 9), it can
be shown that the main effect of the higher-order Feynman graphs can be described
by replacing the coupling constant g2 by an effective ‘running’ coupling constant

g2
eff(s) ≈ g2

C ln(s/M2
W)

(s → ∞) , (5.79)

where C is a numerical constant depending on the number of fundamental particles
which interact weakly (leptons, quarks, and so on). From (5.75), expressing the Fermi
coupling constant G by the gauge coupling g, we get

σ0 ≈ g4
eff

32πs

(
ln

s

M2
W

)2

≈ g4

32πc2s
= πα2

2 sin4 θc2s
� 4π

s
(5.80)
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Fig. 5.17. Typical higher-or-
der processes of νμe− →
μ−νe scattering

at very high energies. Thus the incorporation of higher-order processes removes the
difficulties of the Salam–Weinberg theory concerning the unitarity limit.

EXERCISE

5.4 The s-Wave Contribution to Lepton–Neutrino Scattering

Problem. Show that (5.75) describes the s-wave (l = 0) contribution to the total
scattering cross section of the process νμe− → μ−νe.

Solution. For scattering without spin flip (the neutrino is always left-handed!) the
differential cross section can be written in the form

dσ

dΩ
= 1

s

∣∣∣∣∣

∞∑

l=0

(
4π

2l + 1

)1/2

TlYl0(ϑ)

∣∣∣∣∣

2

, (1)

according to (3.34), (3.37). Comparing (1) with the averaged cross section (5.71)
yields

g2seiδ

4
√

2π[s(1 + cosϑ) + 2M2
W ] =

∞∑

l=0

(
4π

2l + 1

)1/2

TlYl0 ; (2)

eiδ being an unknown phase factor. We obtain the s-wave part (l = 0) by multiplying
both sides with Y00 = 1/

√
4π and integrating over the full solid angle, exploiting the

orthogonality of the spherical harmonics:

√
4πT0 =

∫
dΩY00

∞∑

l=0

(
4π

2l + 1

)1/2

TlYl0(ϑ)

= g2s eiδ

4
√

2π
2π

+1∫

−1

1√
4π

d(cosϑ)

s(1 + cosϑ) + 2M2
W

= g2

4
√

2π
eiδ

s∫

−s

dx

x + s + 2M2
W

= g2

4
√

2π
eiδ ln

s + M2
W

M2
W

. (3)
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It follows that

|T0 |2 = g4

128π2

[
ln

(
1 + s

M2
W

)]2

= G2M4
W

4π2

[
ln

(
1 + s

M2
W

)]2

, (4)

and this together with relation (3.38) provides the desired result.

σ0 = 4π

s
|T0 |2 . (5)

5.4 Biographical Notes

BHABHA, Homi Jehangir, physicist, ∗ 30.10.1909 in Bombay (India), †24.1.1966. He received
his Ph.D. in Cambridge in 1932, then became professor in Bangalore and, since 1945, director
of the Tata Institute in Bombay. Bhabha made many contributions to the physics of cosmic rays,
where he together with Heitler developed the theory of particle cascades.

GLASHOW, Sheldon, theoretical physicist, ∗ 5.12.1932 in New York. He received the Ph.D. at
Harvard University in 1958, where he is also professor since 1966. Glashow shared in the 1979
Nobel Prize in physics with Salam and Weinberg for his prediction of weak neutral currents and
his contribution to the development of a unified theory of weak and electromagnetic interactions.
He also predicted, with Iliopoulos and Maiani, the existence of the charmed quark.
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6.1 The World of Hadrons

All strongly interacting particles are called hadrons. One distinguishes baryons
(baryon number B = ±1), which are fermions and carry spin 1

2 ,
3
2 , . . . , and mesons

(baryon number B = 0), which always have integer spin. The lightest hadrons, with
equal spin (and equal parity), can be arranged in simple multiplets, where two further
quantum numbers serve as order criteria: the isospin T , and its third component T3,
and the strangeness S, or alternatively the so-called strong hypercharge Y = B + S.
These quantum numbers are characterized by the fact that they are exactly conserved
under strong interactions. Conservation of strangeness is broken by weak interactions,
which leads to decays of, for example, the Λ particle. The most important multiplets1

are depicted in Figs. 6.1–6.4.

Fig. 6.1. Octet of spin- 1
2

baryons. All particles carry
baryon number B = 1

Fig. 6.2. Decuplet of spin- 3
2

baryons. All particles carry
baryon number B = 1

1 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8_6, © Springer-Verlag Berlin Heidelberg 2009
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http://dx.doi.org/10.1007/978-3-540-87843-8_6


206 6 Semi-Leptonic Interactions of Hadrons

Fig. 6.3. Nonet of spin-0
mesons (pseudoscalar me-
sons). All mesons carry
baryon number B = 0

Fig. 6.4. Nonet of spin-1
mesons (vector mesons)

Fig. 6.5. The fundamental
representations of SU(3)

For each baryonic multiplet there exists a corresponding multiplet of antiparticles,
which is obtained from the former by reflection at the origin. These multiplets are
just the eigenvalues belonging to the simple representations of the group SU(3). Gell-
Mann and Zweig therefore postulated2 that the particles belonging to the two funda-
mental representations (triplet, antitriplet) should also exist; these were called quarks.
Their charges are qu = 2

3e, qd = qs = − 1
3e (Fig. 6.5). The u, d, and s quarks have

baryon number B = 1
3 , and the corresponding antiquarks have B = − 1

3 . By using
Y = B + S, one readily verifies that the u, d, ū, and d̄ quarks carry zero strangeness,
the s quark has S = −1, and s̄ has S = +1.

One readily observes that all hadrons can be made up of either three quarks
(baryons) or a quark–antiquark pair (mesons). Some examples are:

p = (uud) , n = (udd) ,

Λ = (uds) , Ξ− = (dss) , Ξ0 = (uss) ,

Σ+ = (uus) , Σ− = (dds) , Σ0 = (uds) ,

Δ++ = (uuu) , Ω− = (sss) ,

π+ = (ud̄) , K+ = (us̄) ,

K0 = (ds̄) , K̄0 = (sd̄) ,

ρ0,ω = (uū), (dd̄) , φ = (ss̄) .

Hence hadrons are made of quarks just as an atomic nucleus is made of protons and
neutrons. The strangeness of a hadron is simply given by the number of s̄ quarks minus
the number of s quarks within the hadron. Although quarks have never been observed

2 M. Gell-Mann: Phys. Lett. 8, 214 (1964); G. Zweig: CERN Report No. 8182/TH 401. (This latter
work could not be published in a scientific journal, which shows that sometimes strong resistance has
to be overcome before a new idea gains common acceptance.)
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as free particles, their existence inside hadrons must be considered firmly established.
We list a few arguments.3

Fig. 6.6. The bag model of had-
ron structure

(1) The hadronic mass spectrum can be explained with the help of just a few parame-
ters, if one regards quarks as (nearly) freely moving particles which are enclosed
in a small space volume of about 1 fm radius (“the bag model”, see Fig. 6.6).

(2) High-energy deep-inelastic electron–nucleon scattering can only be interpreted
by assuming that the electrons scatter off point-like constituents, the so-called
partons, inside the hadrons (Fig. 6.7).

The radius of these partons must be smaller than 10−16 cm. Their charges can
be determined from the measured cross sections and are in good agreement with
the quark model. For the proton we have, for example,

Fig. 6.7. Deep-inelastic elec-
tron–nucleon scattering

∑

p

q2
i = e2(2q2

u + q2
d

)= e2
(

2 × 4

9
+ 1

9

)
= e2 ,

and for the neutron

∑

n

q2
i = e2(q2

u + 2q2
d

)= e2
(

4

9
+ 2 × 1

9

)
= 2

3
e2 .

(3) The quark model received special support from the discovery of relatively long-
lived, very heavy mesons in electron–positron scattering. The excitation spec-
trum of these mesons and their lifetime can be explained if one regards them as
hydrogen-like or positronium-like states of quark–antiquark pairs of new quark
species (“flavors”). These mesons are the charmonium, made of quarks with
“charm” (c) and the upsilon particles (Υ,Υ ′,Υ ′ ′, . . .), which are made of “bot-
tom” quarks (b) (Fig. 6.8).

Fig. 6.8. The mass spectrum
of Ψ (charmonium) and Υ

(bottomonium) mesons

Besides the charmonium, which has total charm zero, particles with “open”
charm have also been discovered, namely the mesons D0 (1864.7 MeV), D+
(1869.4 MeV), D∗0 (2007 MeV), D+

s (2021 MeV) and D∗+
s (2140 MeV), as well

3 See W. Greiner, S. Schramm and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer, Berlin,
Heidelberg, 2007).
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Fig. 6.9. Mesons with open
charm

as their antiparticles D−, D̄0, D∗−, D−
s and D∗−

s , so that the charm hypothesis is
very well confirmed today (Fig. 6.9).

From the cross sections, which are proportional to q2
i , we deduce that qc =

(2/3)e and qb = −(1/3)e. A table of quarks and their properties according to
our present knowledge is given in Table 6.1. Up to masses of about 40 000 MeV
no additional quark flavors have been discovered, but the existence of at least
one more heavy quark (“top” or “truth”, symbolized by “t”) has been postulated,
with electric charge qt = (2/3)e. For the top quark one expects the following
properties:4 T3 = S = C = B = 0, electric charge qt = +(2/3)e, mass mt � 135–
150 GeV. Meanwhile the first experimental evidence for the top quark has been
reported.5

Table 6.1. Properties of experimentally observed quarks (1995). Note that T3 and Y refer to the
strong isospin and hypercharge

Quark flavor u d s c b t

Isospin T3 1/2 −1/2 0 0 0 0
Strangeness S 0 0 −1 0 0 0
Hypercharge Y 1/3 1/3 −2/3 1/3 1/3 1/3
Charm C 0 0 0 1 0 0
Baryon number B 1/3 1/3 1/3 1/3 1/3 1/3
Beauty b 0 0 0 0 1 0
Charge (e) +2/3 −1/3 −1/3 +2/3 −1/3 +2/3
Mass (MeV) 4 7.5 150 1200 4700 174000

6.2 Phenomenology of Decays of Hadrons

The most precisely examined hadronic weak decay is the nuclear β decay. It is very
well described by a four-fermion point interaction, such as we have already applied to
the μ and τ decays,

Hint = G√
2

∫
d3x
(
J (L)

†

μ (x)J
μ

(N)(x) + h.c.
)

, (6.1)

where Jμ(N) denotes the nuclear and J (L)μ the leptonic transition current. The nuclear
current has the more general form

J
μ

(N)(x) = ψp(x)γ
μ(CV + CAγ5)ψn(x) , (6.2)

where the constants CV and CA have to be determined experimentally. The vector part
couples with strength

Gβ ≡ CVG = (1.1492 ± 0.0003) × 10−5 GeV−2 , (6.3)

4 V. Barger, J.L. Hewett, and T.G. Rizzo: Phys. Rev. Lett. 65, 1313 (1990); L.A. Vasilevskaya, A.A.
Gvozdov, and N.N. Mikheev: JETP Lett. 51, 501 (1990).
5 CDF Collaboration (F. Abe et al. – 397 authors): Phys. Rev. Lett. 73, 225 (1994), Phys. Rev. D50,
2966 (1994), Phys. Rev. Lett. 74, 2626 (1995). D0 Collaboration (S. Abachi et al.): Phys. Rev. Lett.
74, 2632 (1995). See Example 5.3, (9)!
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compared to

G = (1.16632 ± 0.00002) × 10−5 GeV−2 . (6.4)

It therefore holds that

CV = Gβ

G
= 0.9858 ± 0.0011 , (6.5)

which is clearly distinct from 1, considering the size of the error. The axial-vector
strength is determined by the experimental value

CA

CV
= −1.255 ± 0.006 . (6.6)

It is not really surprising that we have no exact V–A coupling for nucleons. Owing to
strong interactions between nucleons, there exist corrections to the p–n–W± coupling,
induced by simultaneous pion exchange. A few of these processes are depicted in the
following Feynman diagrams (see Fig. 6.10).

Fig. 6.10. Corrections to the
p–n–W coupling

Similar corrections exist for the leptonic weak interactions in form of radiation
effects, such as

Fig. 6.11. Corrections to the
e–ν–W coupling

However, as discussed in the context of muon decay, these are of the order
α � 10−2. In contrast to this, the pion–nucleon coupling constant is g2

πN/4π � 14.
The axial-vector constant is therefore considerably modified. On the other hand, the
coupling constant of the vector part obeys special selection principles, since the weak
vector current has the same form as the electromagnetic current. Therefore, because of
the strict validity of the charge conservation law there should appear no renormaliza-
tion of the coupling constant due to strong interactions (the hypothesis of conserved
vector current, “CVC”). This contradicts the very small, but not insignificant, de-
viation from the value CV = 1. How can this be understood? To this end we first
have to consider the phenomenology of weak hadronic decays, where we distinguish
strangeness-conserving (�S = 0) and strangeness-violating (�S �= 0) decays.

Strangeness-Conserving Decays (�S = 0). In these cases the baryonic isospin T3

always changes by one unit: |�T3 | = 1. Examples are

n → pe−ν̄e , Σ+ → Λe+νe , π+ → μ+νμ, e+νe .
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The total isospin T3 = T
(B)
3 + T

(L)
3 for these decays, that is, the sum of the baryonic

isospin T (B)3 and weak isospin T (L)3 of the leptons, is conserved. All these decays are
proportional to the same coupling constant, Gβ , as the nuclear β decay. The vector
character of weak interactions is readily checked by investigating the pion decay into
two leptons. The leptonic current

J (i)μ (x) = ūi (x)γμ(1 − γ5)uνi (x) (i = e,μ) (6.7)

must interact with the pionic current. Since the pion carries no spin there exists only a
single way of constructing a 4-vector current for the decay π− → e−ν̄e or μ−νμ,

J (π)μ (x) = i
√

2fπqμ(2q0V )
− 1

2 eiqμxμ . (6.8)

Here qμ is the 4-momentum of the pion. The sign of the argument of the exponen-
tial function is chosen in such a way that the product of all plane waves in the tran-
sition matrix element yields the conservation of 4-momentum. This corresponds to
assigning the character of an antiparticle to the negative pion, while the positive pion
has the character of a particle. A better argument can be given at a later stage, when we
become acquainted with the weak transition current of quarks. fπ is called the axial
coupling constant of the pion and has to be determined experimentally. Since the pion
carries negative inner parity, J (π)μ is a pure axial vector. We now calculate the decay
rate of the pion. With the wave functions (Fig. 6.12)

Fig. 6.12. Momentum notation
in pion decay

ui(x) = (2p0V )
− 1

2 ui(p, s)e
−ipμxμ , (6.9a)

uνi (x) = (2k0V )
− 1

2 vνi (k, t)e
+ikμxμ , (6.9b)

we obtain (i = e,μ):

Sf i(π
− → l−

i ν̄i ) = −i
G√

2

∫
d4xJ (π)α (x)†Jα(i)(x)

= −G

2
√

2

(2π)4δ4(p + k − q)

(p0k0q0V 3)
1
2

fπqαūi(p, s)γ
α(1 − γ5)vνi (k, t) . (6.10)

Squaring, as in the calculation of the muon decay, summing over spins of leptons and
antineutrinos, and finally dividing by the time T , we obtain for the decay rate of the
pion

W(π− → l−
i ν̄i )

= G2(2π)4f 2
π

∫
d3p

(2π)3p0

∫
d3k

(2π)3k0

m2
i

q0
δ4(p + k − q)(p · k) . (6.11)

Intermediate steps are performed in Exercise 6.1. Because of the four-dimensional δ
function it holds that

m2
π = q2 = (p + k)2 = m2

i + 2(p · k) . (6.12)

In the pion rest frame we furthermore have q0 = mπ and q = 0. Hence we obtain
because |p| = |k| = k0,

W = G2

8π2
f 2
π

m2
i

mπ

(
m2
π − m2

i

)∫ d3p

p0

∫
d3k

k0
δ3(p + k)δ(p0 + k0 − mπ)

= G2

8π2
f 2
π

m2
i

mπ

(
m2
π − m2

i

)
4π

∞∫

0

k0dk0√
k2

0 + m2
i

δ
(
k0 +
√
k2

0 + m2
i − mπ

)
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= G2

2π
f 2
π

m2
i

mπ

(
m2
π − m2

i

)m2
π − m2

i

2m2
π

= G2

4π
f 2
πmπm

2
i

(
1 − m2

i

m2
π

)2

. (6.13)

Here we have made use of (5.70) in the penultimate step. We observe that the decay
probability depends crucially on the massmi of the charged lepton. Owing to the value
of the charged pion mass (139.57 MeV), decay into an electron or muon can occur.
The ratio between the two decay channels is

Re/μ = W(π− → e−ν̄e)

W(π− → μ−ν̄μ)
= m2

e

m2
μ

(m2
π − m2

e)
2

(m2
π − m2

μ)
2

= 1.232 × 10−4 . (6.14)

Taking radiative corrections into account, one obtains6 the slightly modified valueR =
1.284 × 10−4. R is called the branching ratio for the decay modes. The experimental
value is

Rexp = (1.218 ± 0.014) × 10−4 , (6.15)

in excellent agreement with the theoretical prediction. From the measured lifetime of
the pion,

τπ± = (2.6030 ± 0.0023) × 10−8 s , (6.16)

one obtains the value of the pion decay constant,

fπ = (0.6504 ± 0.0002)mπ = 90.8 MeV . (6.17)

The very small value of the branching ratio R is a consequence of the vector charac-
ter, or axial-vector character, of weak interactions. Normally one would expect that
the decay into the electronic leptons is slightly favored, since more kinetic energy is
released in this case, and therefore the allowed phase-space volume is larger for the
particles in the final state. For a scalar or pseudoscalar interaction one indeed finds a
branching ratio of the order of 1. Hence the pion decay into two leptons is the best
experimental evidence for the vector or axial-vector character of weak interactions.
The argument is presented in more detail in Exercise 6.2.

EXERCISE

6.1 The π± Decay Rate

Problem. Derive (6.11) for the decay rate of the pion.

Solution. Substituting (2π)4δ4(0) = V T and starting from the scattering matrix ele-
ments (6.10), one obtains for the transition probability per unit time

6 S.M. Berman: Phys. Rev. Lett. 1, 468 (1958); T. Kinoshita: Phys. Rev. Lett. 2, 477 (1959).
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6 Semi-Leptonic Interactions of Hadrons

W = V

T

∫
d3k

(2π)3
V

∫
d3p

(2π)3
∑

s,t

|S|2

= G2

8
V 3
∫

d3p

(2π)3

∫
d3k

(2π)3
(2π)4δ4(p + k − q)

p0k0q0V 3
f 2
π

∑

s,t

|Mst |2 (1)

with the matrix element

Mst = qαūi(p, s)γ
α(1 − γ5)vν(k, t) . (2)

Applying the Dirac trace rules of Appendix A.2 we obtain in established manner, using
(1 − γ5)

2 = 2(1 − γ5)

∑

s,t

|Mst |2 =
∑

s,t

qαv̄ν(k, t)γ
α(1 − γ5)ui(p, s)qβūi(p, s)γ

β(1 − γ5)vν(k, t)

= Tr{qαγ α(1 − γ5)(/p + mi)qβγ
β(1 − γ5)/k}

= Tr{/q(1 − γ5)(/p + mi)/q(1 − γ5)/k}
= 2 Tr{/q(/p + mi)/q(1 − γ5)/k}
= 2 Tr{/q/p/q/k(1 + γ5)} . (3)

This we could evaluate directly, as we have done for μ decay. In this case, however,
there exists a more elegant way. Exploiting the momentum conservation guaranteed
by the delta function, we can replace q by (p + k). Using the relations

/p2 = p2 = m2
i , /k2 = k2 = 0 , (4)

we immediately obtain

/q/p/q/k = (/p + /k)/p(/p + /k)/k

= (/p2 + /k/p)(/p/k + /k2)

= (m2
i + /k/p)/p/k = m2

i /p/k . (5)

Thus, the Dirac trace can be obtained,
∑

s,t

|Mst |2 = 2m2
i Tr{/p/k(1 + γ5)}

= 8m2
i (p · k) , (6)

because of (A.22), (A.25). Insertion of this result into (1) yields (6.11) directly.

EXERCISE

6.2 Concerning V–A Coupling in Pion Decay

Problem. (a) One often quotes the strong suppression of the decay π− → e−ν̄e com-
pared to π− → μ−ν̄μ as proof of V–A coupling (see Exercise 6.3). Show that the
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suppression appears proportional to (me/mμ)
2 for every mixing of vector and axial-

vector couplings.
(b) Show that the electronic decay channel would not be suppressed for scalar cou-

pling.

Solution. (a) For arbitrary mixing of the coupling types V and A the pionic currents
(6.8) would remain unchanged, while the leptonic currents assume the general form

J (i)μ (x) = ūi (x)γμ(CV + CAγ5)uνi (x) . (1)

The calculation of the transition matrix element in Exercise 6.1 would be modified in
such a way that the leptonic matrix element now reads

Mst = qαūi(p, s)γ
α(CV + CAγ5)vνi (k, t) . (2)

Summing over final-state spins and using

(CV + CAγ5)
2 = C2

V + C2
A + 2CVCAγ5 (3)

we would obtain the following result:
∑

s,t

|Mst |2 = Tr
{
/q(CV + CAγ5)(/p + mi)/q(CV + CAγ5)/k

}

= Tr
{
/q/p/q/k(C2

V + C2
A − 2CVCAγ5)

}
. (4)

Equation (5) of Exercise 6.1 still holds:

/q/p/q/k = m2
i /p/k , (5)

hence it results that
∑

s,t

|Mst |2 = 4(C2
V + C2

A)m
2
i (p · k) , (6)

that is, the matrix element would in any case be proportional to the lepton mass
squared. Therefore we would immediately obtain

R = m2
e

m2
μ

(m2
π − m2

e)
2

(m2
π − m2

μ)
2

, (7)

which is identical to (6.14), the result of the V–A theory. With the relation

qα = pα + kα (8)

one can also see this directly by investigating the matrix element (2). In other words,
the leptonic spinors are solutions of the free Dirac equation (A.19):

ūi (p, s)(/p + mi) = 0 , (9a)

/kvνi (k, t) = 0 . (9b)

Hence because of (8) it holds that

Mst = ūi (p, s)(/p + /k)(CV + CAγ5)vνi (k, t)

= −miūi(p, s)(CV + CAγ5)vνi (k, t) (10)

and thus necessarily |Mst |2 ∼ m2
i .
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(b) For scalar coupling (S or P) one would make the ansatz

J (π)(x) = f ′
π(q0V )

−1/2eiqμxμ (11)

for the pionic current, while the leptonic current takes the form

J (i)(x) = ūi (x)(CS + CP γ5)uνi (x) . (12)

Then the reduced matrix element reads

Mst = ūi (p, s)(CS + CP γ5)uνi (x) . (13)

Summation over the spins would yield
∑

s,t

|Mst |2 = Tr
{
(/p + mi)(CS + CP γ5)/k(CS + CP γ5)

}

= Tr
[
/p/k(C2

S − C2
P )
]

= 4(C2
S − C2

P )(p · k) . (14)

Obviously, the factor m2
i , which appears for the vectorial couplings in (6), is missing.

Equation (14) differs from the result of the V–A theory (Exercise 6.1, (6)) by a factor

1

2m2
i

(C2
S − C2

P ) ,

hence the branching ratio would be given by

R = m2
π − m2

e

m2
π − m2

μ

� 5.5 . (15)

Since the experimental value (6.15) agrees well with the result (7) of the vector cou-
pling theory, we can conclude that any contribution from a coupling of scalar type
(S or P) must be weaker by a factor of at least 10−6!

EXERCISE

6.3 Suppression of the Electronic Decay Channel in Pion Decay

Problem. Discuss the balance of angular momentum for pion decay and show, by
considering the helicities of the participating particles, that the electronic decay chan-
nel must be strongly suppressed.

Fig. 6.13. Momenta and he-
licities for pion decay

Solution. The very small value of the branching ratio R (6.14) can be readily un-
derstood by way of the following considerations. The pion has zero spin; therefore
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the two leptons, which are emitted in opposite directions, must have the same helic-
ity in the rest frame of the pion, so that their spins add to zero. Since the massless
antineutrino can only have positive helicity, the electron must be emitted with posi-
tive helicity, as well. Weak interactions, however, couple only to the left-handed chiral
component (1 − γ5)ue, so that this decay of the pion would be completely forbidden
in the limit me = 0. Since me �= 0, (1 − γ5)ue contains a small part of positive helicity
(see (1.21)), but the decay process is suppressed by a factor (me/mπ)

2. For muonic
decay the same argument holds, but here the corresponding factor (mμ/mπ)

2 is much
larger.

Remark. This argument provides no special support for the V–A theory, because the
factor (me/mμ)

2 appears for any vectorial coupling, as was shown in Exercise 6.2!

Strangeness-Violating Decays (�S = ±1). For weak decays, which change
strangeness, one always observes a simultaneous change of the hadronic charge,

�S = �Q . (6.18)

Hence the Σ− particle can, for example, decay into a neutron, since it carries strange-
ness (−1) and therefore �S = �Q = −1. On the other hand the Σ+, which also has
strangeness (−1), cannot decay into a neutron, since this decay would have �S = −1,
but �Q = +1. Experimentally one finds that

W(Σ+ → ne+νe)

W(Σ− → ne−ν̄e)
< 0.005 . (6.19)

The space-time structure of strangeness-changing weak interactions is readily studied
by means of the decay of the charged kaons. By analogy with pion decay we select
the two modes

K− → e−ν̄e , K− → μ−ν̄μ .

Note that for these decays a hadron (in this case a meson) disappears completely,
while this is not so for the Σ decay cited above, where a hadron in the initial state is
converted into another hadron (in this case a neutron) in the final state. For all these
decays, however, the baryon number B is conserved. Since the kaon has zero spin, its
transition current is given, assuming vector coupling, by

J (K)μ (x) = i
√

2fKqμ(2q0V )
−1/2eiqλxλ , (6.20)

by analogy with (6.8). The calculation of the scattering matrix element (i = e,μ)

S(K− → e−
i ν̄i ) = −i

G√
2

∫
d4xJ (K)†μ (x)J

μ

(i)(x) (6.21)

proceeds exactly as for pion decay; one only has to replace mπ , fπ by mK, fK. The
result is therefore

W(K− → e−
i ν̄i ) = G2

4π
f 2

KmKm
2
i

(
1 − m2

i

m2
K

)2

, (6.22)



216 6 Semi-Leptonic Interactions of Hadrons

and the branching ratio is (with mK = 493.67 MeV)

Re/μ = W(K− → e−ν̄e)

W(K− → μ−ν̄μ)
= m2

e

m2
μ

(m2
K − m2

e)
2

(m2
K − m2

μ)
2

= 2.58 × 10−5 , (6.23)

up to small radiative corrections. The experimental value

Rexp = (2.425 ± 0.012) × 10−5 (6.24)

confirms the vector coupling in an impressive way.
Finally we can determine the kaon decay constant from the measured lifetime,

τK± = (1.237 ± 0.003) × 10−8 s . (6.25)

In contrast to the charged pion, the kaon has competing hadronic decay modes (mainly
K± → π± + π0). To account for this the experimental lifetime has to be divided by
the relative decay probability (branching ratio) into the muon channel

BK→μ = W(K− → μ−ν̄μ)
W(K− → anything)

= 0.6350 ± 0.0016 . (6.26)

This leads to

fK = m2
K

mμ(m
2
K − m2

μ)G

√
4πBK→μ

mKτK

= (0.0505 ± 0.0002) mK = 24.9 MeV . (6.27)

Let us summarize the essential steps:

τ = 1

W
= 1

G2

4π f
2
KmKm

2
i

(
1 − m2

i

m2
K

)2 + · · ·
= 1

WK→anything
,

BK→μ = WK→μ

WK→anything
,

BK→μ

τ
= WK→μ

WK→anything
· WK→anything = G2

4π
f 2

KmKm
2
μ

(
1 − m2

μ

m2
K

)2

,

f 2
K = 4πBK→μ

τ

1

mKm2
μ

(
1 − m2

μ

m2
K

)2
1

G2
,

fK =
√

4πBK→μ

τ

1

G

√√√√ m4
K

mKm2
μ

1

(m2
K − m2

μ)
2

=
√

4πBK→μ

Kτ

1

G

m2
K

m2
μ(m

2
K − m2

μ)
.

The relation to the pion decay constant (6.17) is

fK

fπ
= 0.275 . (6.28)
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Obviously the decay constant for strangeness-changing weak decays (�S = ±1) is
smaller by a factor of about 4 than that for decays with �S = 0. The comparison with
many other experimental data confirms this observation. An explanation is given by
Cabibbo’s theory, with which we will become acquainted in the next sections of this
chapter.

6.3 Weak Interactions of Quarks

We have cast the interactions of leptons into a general scheme in the section concern-
ing the GSW model in Chap. 4, which classified left-handed leptons (chirality −1)
into three generations of weak isospin doublets, and right-handed leptons (chirality
+1) into three generations of singlets:
(
νe

e−
L

)
,

(
νμ
μ−

L

)
,

(
ντ
τ−

L

)
, e−

R , μ−
R , τ−

R .

If we want to place quarks into a similar scheme, it is convenient also to arrange them
in left-handed doublets and right-handed singlets. Here we must, however, note that
there exists a small difference compared to the leptons: all quarks have non-vanishing
rest mass. Consequently there are no quarks that have only left-handed components
like neutrinos. If there were no right-handed component in a certain reference frame,
this would be immediately different in another reference frame, because the helicity
operator Λ = J · p/|p| does not commute with the generators of Lorentz transfor-
mations. This can be readily understood: if, for example, the particle moves in the
observer’s rest frame with |v| < c in the direction of its spin, one only needs to con-
sider a system that moves with velocity vL = αv, α > 1, with respect to the observer’s
rest frame. In this frame the particle has the apparent velocity

v′ = − (α − 1)v

1 − αv2
≡ −α′v ,

that is, it moves opposite to the direction of its spin. Therefore the helicity changes
its sign (see Fig. 6.14). Since we also want to describe electromagnetic interactions
in the context of the Glashow–Salam–Weinberg theory extended to describe quarks, it
is important to have the same charge structure in the quark doublets as in the lepton
doublets. The charge of the lower components (for example, e−

L ) must be one unit
(e) smaller than that of the upper component (for example, νe). Therefore quarks
with charge −(1/3)e should appear only in the lower components, those with charge
+(2/3)e only in the upper components.

Fig. 6.14. Change of sign of
the helicity for a Lorentzian
transformation

One can see from Table 6.1 that the third quark with charge −(1/3)e, the b quark,
still lacks a partner. The existence of a sixth quark was consequently postulated, the t
quark (t = “top” or “truth”), with a massmt � 135–150 GeV.7 The charge of this quark

7 CDF Collaboration (F. Abe et al. – 397 authors) Phys. Rev. Lett. 73, 225 (1994), Phys. Rev. D50,
2966 (1994), Phys. Rev. Lett. 74, 2626 (1995). D0 Collaboration (S. Abachi et al.) Phys. Rev. Lett.
74, 2632 (1995). See Example 5.3, (9)!
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must be +(2/3)e. Therefore we have to deal with three doublets and six singlets:

(
uL

dL

) (
cL

sL

) (
tL
bL

)
, uR dR cR sR tR bR . (6.29)

If we abbreviate doublets with Li (i = u, c, t), there are, according to the scheme
known from the leptons (see (4.96)), the following couplings between particles be-
longing to the same doublet:

L
(i)
int = g L̄iγ

μT̂Li · Aμ + g′

2

(
L̄iγ

μŶL
i Li + R̄iγ

μŶR
i Ri
)
Bμ

= gL̄iγ
μT̂Li · Aμ + g′

2

(
YL
i L̄iγ

μLi + YR
i R̄iγ

μRi
)
Bμ , (6.30)

where YR, YL are the weak hypercharges of left-handed and right-handed quarks,
respectively. Here the hypercharge is again calculated according to the Gell-Mann–
Nishijima relation

Y = 2(Q − T3) , (6.31)

by which we obtain the following values. For the left-handed doublets:

YL = 2

(
+ 2

3
− 1

2

)
= 2

(
− 1

3
+ 1

2

)
= 1

3
, (6.32a)

and for the right-handed singlets

YR
u,c,t = +2

2

3
= + 4

3
, YR

d,s,b = 2

(
− 1

3

)
= − 2

3
. (6.32b)

Table 6.2 contains the weak isospin T3 and the weak hypercharge Y of the particles
in (6.29). We emphasize here weak isospin and weak hypercharge and distinguish
it clearly from the flavor isospin and flavor hypercharge depicted in Figs. 6.1–6.5
and in Table 6.1. The form of (6.30) reduces for the leptons to that of (4.96) if the
corresponding weak hypercharge for the lepton doublets are inserted.

Table 6.2. Values for the weak isospin and the weak hypercharge of the SU(2)L × U(1)Y the-
ory. According to the Gell-Mann–Nishijima formula Q = T3 + 1

2Y the physical charges of the
particles can be calculated. Usually left- and right-handed particles (e.g. eL and eR or uL and
uR . . .) differ in their T3 and Y quantum numbers.

Quarks

doublets:
(u
d
)
L

(c
s
)
L

( t
b
)
L

(
1
2

− 1
2

)
1
3

singlets: uR cR tR 0 4
3

d ′
R s′

R b′
R 0 − 2

3

Leptons T3 Y

doublets:
(νe

e
)
L

(νμ
μ

)
L

(ντ
τ

)
L

(
1
2

− 1
2

)
−1

singlets: eR μR τR 0 −2
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According to the couplings in (6.30) a d quark could only become a u quark, an s
quark only a c quark, and so on. For leptons, the analogous selection rules described
the conservation of electron, muon, and tau number separately. For quarks, however,
this contradicts the observation in the decay of the negative Σ particle,

Σ− → ne−ν̄e ,

Fig. 6.15. Quark diagram of
the decay Σ− → ne−ν̄e

which at the quark level looks like

(sdd) → (udd) + e− + ν̄e . (6.33a)

If one considers the quark content, an s quark obviously decays into a u quark. We
found that strangeness-changing decay amplitudes are weaker by a factor of 4 or 5
than strangeness-conserving decays, for example of the proton into the neutron (cf.
(6.28)). The same is true for the decay

K− → μ− + ν̄μ ,

or according to the quark content

(sū) → μ− + ν̄μ . (6.33b)

Fig. 6.16. Quark diagram of
the decay K− → μ−ν̄μ

Here an s quark decays into an u quark too, which then annihilates with the ū anti-
quark, so that no quarks at all appear in the outgoing channel of this reaction.

Let us summarize. The experiment shows that not only the d quark but also the s
quark couples to the u quark via weak interactions; the s quark, however, couples 4–5
times more weakly. Hence we must either abandon the scheme originating from the
leptons, that the coupling occurs only within the particular left-handed doublets, or we
allow the left-handed u quark to couple to a mixture of left-handed d and s quarks. To
obtain a uniform theory of weak interactions we reject the first possibility and make
use of the second. At first sight this idea, to construct a doublet of the form

(
uL

α dL + βsL

)
,

appears to be somewhat far fetched. After some reflection, however, we see that this is
not the case. It is by no means clear why weak interactions should distinguish particles
by their masses, which also play no role for strong interactions. Since weak interac-
tions cause the decay of d and s quarks, these cannot be eigenstates of the Hamiltonian
of the weak interaction. In fact, the ansatz (6.29) shows that d and s quarks have the
same quantum numbers Q, T3, and Y . Therefore there is no deeper reason weak in-
teractions should not affect a mixing of the states of d and s quarks. Of course, the
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question arises why the upper components of the doublets do not mix as well. This
would have the same effect with respect to the decays discussed in (6.33) and could
also explain the experimental observations.

In Exercise 6.4 we will convince ourselves that we have the freedom to commit
ourselves to a mixing of either upper or lower components. We hence continue to
denote doublets by their upper component, u, c, t, but the lower components we now
denote by d′, s′, b′:

Lu = 1 − γ5

2

(
u
d′
)

, Lc = 1 − γ5

2

(
c
s′
)

, Lt = 1 − γ5

2

(
t
b′
)

. (6.34)

Here the lower components can be arbitrary mixings of the mass eigenstates d, s, b
known from the physics of strong interactions. Under the constraint of conservation
of total probability, the connection between d′, s′, b′ and d, s, b must be given by a
unitary 3×3 matrix Û ,
⎛

⎝
d′
s′
b′

⎞

⎠= Û

⎛

⎝
d
s
b

⎞

⎠ , Û†Û = 1 . (6.35)

One also speaks of the constraint of universality of weak interactions, since it ensures
that the total strength of all charged hadronic currents remains unchanged.

A unitary 3×3 matrix has nine free real parameters; this number is reduced by five
if one considers that the phase of each of the six quark wave functions can be chosen at
will, but that the choice of the total phase has no effect on Û . According to Kobayashi
and Maskawa8 one uses as parameters the three Euler angles9 θ1, θ2, θ3 for a (real)
three-dimensional rotation and in addition a phase δ for the coupling in the space of
s and b quarks. For the sake of brevity we write si instead of sin θi and ci instead of
cos θi . Then we have

Û =
⎛

⎝
c1 s1c3 s1s3

− s1c2 c1c2c3 + s2s3eiδ c1c2s3 − s2c3eiδ

−s1s2 c1s2c3 − c2s3eiδ c1s2s3 + c2c3eiδ

⎞

⎠

=
⎛

⎝
1 0 0
0 c2 −s2
0 s2 c2

⎞

⎠

⎛

⎝
c1 s1 0

−s1 c1 0
0 0 1

⎞

⎠

×
⎛

⎝
1 0 0
0 1 0
0 0 eiδ

⎞

⎠

⎛

⎝
1 0 0
0 c3 s3
0 −s3 c3

⎞

⎠ . (6.36)

The parameters are chosen in such a way that the choice θ2 = θ3 = δ = 0 corresponds
directly to the reduction to only two doublets (u, d ′) and (c, s′):

Û (θ2 = θ3 = δ = 0) =
⎛

⎝
cos θ1 sin θ1 0

− sin θ1 cos θ1 0
0 0 1

⎞

⎠ (6.37)

8 M. Kobayashi and K. Maskawa: Prog. Theor. Phys. 49, 652 (1973).
9 For the definition of the Euler angles we refer to W. Greiner: Theoretische Physik, Mechanik II, 5th
ed. (Harri Deutsch, Frankfurt, 1989) or H. Goldstein: Classical Mechanics, 2nd ed. (Addison-Wesley,
Reading, MA, 1980).
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Since the existence of the t quark has only recently been experimentally confirmed10

we may limit the theory only to the first two doublets
( u

d′
)

and
( c

s′
)
. The single angle

θ1, which appears in this case, is called the Cabibbo11 angle θC. At first we want
to restrict ourselves to this reduced theory. Historically, Cabibbo was first with the
idea of mixing s and d quarks in weak interactions. Kobayashi and Maskawa simply
generalized this idea about 10 years later.

EXERCISE

6.4 Mixing in Leptonic Families

Problem. Show that the introduction of a mixing matrix Û for leptons does not yield
any observable effects, provided that the neutrinos are massless.

Solution. For simplicity we restrict ourselves to two doublets i = e,μ. Hence we
assume that the doublets involved in weak interactions are

L′
e =
(
νe

e′ −
L

)
, L′

μ =
(
νμ
μ′ −
L

)
(1)

with the mixed lepton states

(
e′
L

μ′
L

)
=
(

cos θ sin θ
− sin θ cos θ

)(
eL
μL

)

= Û

(
eL
μL

)
. (2)

According to (4.96) the contribution of the doublets to the total current is

L̄′
eγ

αTL′
e + L̄′

μγ
αTL′

μ , (3a)

or

L̄′
eγ

αL′
e + L̄′

μγ
αL′

μ . (3b)

In any case, the expression is of the form

L̄′
eÔL

′
e + L̄′

μÔL
′
μ , (4)

where Ô is an operator that acts on spinor and isospin indices.
We now introduce two new doublets,

L′ ′
e = L′

e cos θ − L′
μ sin θ ,

(5)
L′ ′
μ = L′

e sin θ + L′
μ cos θ .

10 Evidence for the top quark production in p̄p collisions at
√
s = 1.8 TeV has recently been re-

ported: CDF collaboration (F. Abe et al. – 397 authors): Phys. Rev. Lett. 73, 225 (1994), Phys. Rev.
D50, 2966 (1994).
11 N. Cabibbo: Phys. Rev. Lett. 10, 531 (1963).
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Note that here the doubletsL′
e, L′

μ, mixed in the lower components, become altogether
mixed. New doublets L′ ′

e , L
′ ′
μ are combined from the doublets L′

e, L′
μ. For these the

relation

L̄′ ′
e ÔL

′ ′
e + L̄′ ′

μÔL
′ ′
μ = L̄′

eÔL
′
e + L̄′

μÔL
′
μ , (6)

now holds, since the mixed terms proportional to sin θ cos θ just cancel each other for
the orthogonal transformation (5). Hence it does not matter whether we arrange the
left-handed particles in the doublets L′

i (1) or in the doublets L′ ′
i (5)! With relation (2)

the doublets L′ ′
i have the following form:

L′ ′
e =
(
νe cos θ − νμ sin θ
e′
L cos θ − μ′

L sin θ

)

=
(
νe cos θ − νμ sin θ

eL (cos2 θ + sin2 θ)

)
=
(
ν′

e
eL

)
, (7)

L′ ′
μ =
(
νe sin θ + νμ cos θ
e′
L sin θ + μ′

L sin θ

)
=
(
ν′
μ

μL

)

with the mixed neutrino states
(
ν′

e
ν′
μ

)
=
(

cos θ − sin θ
sin θ cos θ

)(
νe

νμ

)

= Û†
(
νe

νμ

)
. (8)

Hence we recognize that a mixing of the neutrinos with the matrix Û† has exactly
the same effect as a mixing of the charged leptonic states with the matrix Û . The ad-
vantage of the new doublets L′ ′

i is that states of charged leptons with different masses
appear unmixed. This is of some importance if we consider an “electron” with mo-
mentum p. If we have mixing,

ψ
(p)

e′ (x) = ψ
(p)
e (x) cos θ + ψ(p)

μ (x) sin θ

= [(2p0V )
−1/2ue(p, s) cos θe−ip0t

+ (2p′
0V )

−1/2uμ(p, s) sin θe−ip′
0t
]
eip·x (9)

with

p0 = (p2 + m2
e)

1/2 ,
(10)

p′
0 = (p2 + m2

μ)
1/2 .

Owing to the difference between the two masses each contribution has a different time
dependence, that is, the momentum eigenstate cannot be an eigenstate of the Hamil-
tonian! On the other hand, an energy eigenstate would not have a defined momentum.
If the neutrinos are massless, then this is different for a mixing of the neutrino states:

ψ
(p)
ν′

e
(x) = ψ (p)

νe
(x) cos θ + ψ (p)

νμ
(x) sin θ

= [uνe(p, s) cos θ + uνμ(p, s) sin θ
]
(2|p|V )−1/2e−i|p|t+ip·x . (11)
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Both parts have the same time dependence; the state is stationary. Since the neutrinos
participate only in weak interactions, there is no possibility of distinguishing experi-
mentally between the doublets

Le =
(
νe

eL

)
, L′ ′

e =
(
ν′

e

eL

)
. (12)

The electron neutrino is simply, by definition, the neutrino state involved in the inter-
action with the left-handed electron. Similar arguments hold for the muon neutrino.
Theories that are based upon the two choices Li or L′ ′

i are completely equivalent and
experimentally indistinguishable if the rest masses of the neutrinos vanish exactly.
(If the neutrinos carry mass, so-called “neutrino oscillations” arise; these will be dis-
cussed in Example 6.5.)

EXAMPLE

6.5 Neutrino Oscillations

In the preceding sections we began with the assumption of exactly conserved elec-
tron, muon, and tau quantum numbers. For example, because of the conservation of
the muon quantum number, a muon neutrino must be created in muon decay, as well as
an electron antineutrino, to conserve the electron quantum number. The separate con-
servation of the different lepton quantum numbers alone forbids the otherwise possible
decay

μ± → e± + γ ,

for there is no other quantum number by which the particles νe, νμ differ. Experimen-
tally it is found that

W(μ− → e−γ )
W(μ− → e−ν̄eνμ)

< 10−10 .

If, however, one assumes that the leptonic quantum numbers are only approximately
conserved, there exists the fascinating possibility of neutrino oscillations, that is, that
different kinds of neutrino can transform into each other, like the conversion of the
strange meson K0 into its antiparticle K̄0, which we shall discuss in Chap. 8.

Expressed somewhat differently, this possibility implies that the electron neutrino,
which originates from nuclear electron capture,

e− + p → n + νe ,

does not represent an eigenstate of the full Hamiltonian. Neutrino oscillations would
also present a possible explanation for the fact that only about a third of the electron
neutrinos, which are expected to come from the sun according to common solar mod-
els, are actually observed (the solar neutrino problem). According to the hypothesis
of neutrino oscillations these could on the way to the earth convert into muon or τ
neutrinos, so that after the long travel time only about a third of the neutrinos would
be present as electron neutrinos at the earth. This would nicely explain the observed
suppression factor of 3 (see also Chap. 7, Example 7.10 for details of the solar neutrino
problem).
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For convenience we leave the τ neutrino out of the following and assume that only
the electron and muon neutrino mix with each other. We denote the wave function of
the neutrinos simply by νe and νμ, respectively. One can construct eigenstates of the
Hamiltonian by convenient linear combinations of νe and νμ, which we shall denote
by ν1 and ν2, and for which we make the ansatz

(
ν1

ν2

)
=
(

cos θ − sin θ
sin θ cos θ

)(
νe

νμ

)
. (1)

The orthogonality of the mixing matrix guarantees that the normalization of the final
state is conserved:
∫

d3r{|νe(r)|2 + |νμ(r)|2 } = 1

⇒
∫

d3r{|ν1(r)|2 + |ν2(r)|2 } = 1 . (2)

The inversion of (1) is obviously

(
νe

νμ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
. (3)

First we assume that an electron neutrino is created with definite momentum p at point
x at time t = 0. In the energy representation it holds that, for the time evolution of the
state,

(
ν1(x, t)

ν2(x, t)

)
=
(
ν1(0)e−iE1t

ν2(0) e−iE2t

)
eip·x

=
(

e−iE1t 0
0 e−iE2t

)(
ν1(0)
ν2(0)

)
eip·x , (4)

where

E1 =
√
p2 + m2

1 , E2 =
√
p2 + m2

2 (5)

are the energies and m1 and m2 are respectively the masses of the eigenstates ν1

and ν2. With the help of (1) and (3) we obtain from (4)

(
νe(x, t)

νμ(x, t)

)

=
(

cos θ sin θ
− sin θ cos θ

)(
e−iE1t 0

0 e−iE2t

)(
cos θ − sin θ
sin θ cos θ

)(
νe(0)
νμ(0)

)
eip·x

= eip·x
(

cos θ sin θ
− sin θ cos θ

)(
cos θe−iE1t − sin θe−iE1t

sin θe−iE2t cos θe−iE2t

)(
νe(0)
νμ(0)

)

=
(

cos2 θe−iE1t + sin2 θe−iE2t sin θ cos θ(e−iE2t − e−iE1t )

sin θ cos θ(e−iE2t − e−iE1t ) cos2 θe−iE2t + sin2 θe−iE1t

)

× eip·x
(
νe(0)
νμ(0)

)
. (6)
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According to the assumption that purely neutrinos of the electronic type are emitted at
the source, νe(0) = 1 and νμ(0) = 0. Hence the probability of finding a muon neutrino
at time t is

|νμ(x, t)|2 = ∣∣sin θ cos θ(e−iE2t − e−iE1t )
∣∣2

= 1

4
sin2(2θ)|ei(E2 −E1)t − 1|2

= 1

2
sin2(2θ)

[
1 − cos((E2 − E1)t)

]

= sin2(2θ) sin2 (E2 − E1)t

2
. (7)

Under the assumption that the masses m1 and m2 are very small compared to p we
find that

E2 − E1 =
√
m2

2 + p2 −
√
m2

1 + p2

� m2
2 − m2

1

2p
. (8)

Furthermore, we can assume that the electron neutrino moves practically at the speed
of light, and we therefore put x = t , where x is the distance of the neutrino source
from the location where the neutrino is detected. Then we obtain

|νμ(x, t = x)|2 � sin2(2θ) sin2 Δm
2x

4p

= sin2(2θ) sin2 πx

l
, (9)

with

Δm2 = m2
2 − m2

1 , l = 4πp

Δm2
.

The quantity l is called the oscillation length. The same result is obtained if we start
from a state of definite energy E and make the ansatz

(
ν1(x)

ν2(x)

)
=
(

eip1xν1(0)
eip2xν2(0)

)
(10)

for the spatial wave functions, with

p1 =
√
E2 − m2

1 , p2 =
√
E2 − m2

2 , (11)

and again set νe = 1 and νμ = 0 for x = 0. It results that

|νμ(x)|2 = sin2(2θ) sin2 (p2 − p1)x

2
. (12)

As long as the energy is large compared to the neutrino masses, one obtains

p2 − p1 =
√
E2 − m2

2 −
√
E2 − m2

1 � m2
2 − m2

1

2E
. (13)
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Since E = p for massless neutrinos, this expression is identical to (8), and we con-
clude that the result is independent of the assumptions concerning the preparation of
the quantum mechanical state.

In the past few years, several experiments have been searching for neutrino os-
cillations. One type of experiments was based on the fact that electron antineutrinos
with energy of about 4 MeV are produced in nuclear reactors. For �m2 � 1 (eV)2,
(9) yields an oscillation length of about 10 m; one should then observe a decrease
in the amount of electron antineutrinos a few meters from the reactor core. They are
detected either through the inverse β-decay reaction

ν̄e + p → n + e+ ,

where the neutrons are measured, or, for example, through the branching ratio

↗ n + n + e+ (charged)
ν̄e + d

↘ n + p + ν̄e (neutral)
,

since the cross section for neutral currents in practice does not depend on the kind
of neutrino. No conclusive evidence for neutrino oscillations was found in reactor
experiments.

Another possibility in looking for neutrino oscillations is the fact that muon neu-
trinos are generated in accelerators; for example, in the decay of K or π mesons. This
method has some advantages compared to reactor experiments. One can more accu-
rately determine the number of muon neutrinos created and, since the neutrinos have
higher energy, they are more easily detected. A further advantage is the fact that the
energy of the particle beam in the accelerator can be varied. For this kind of experi-
ment the neutrino energy is of the order of a few GeV. For a beam energy of 2.5 GeV
a mass splitting of Δm2 = 1 (eV)2 corresponds to an oscillation length of about 1 km.
The first such measurements have been reported12 from the Liquid Scintillator Neu-
trino Detector (LSND) at the Los Alamos Meson Physics Facility (LAMPF). Muon
neutrinos were generated in the decay of pions (π+ → μ+ + νμ), which are produced
by stopping an intense 800-MeV proton beam in matter. A large tank filled with 167
tons of scintillation fluid 30 meters behind the neutrino source was used to search
for the emergence of electron neutrinos from the oscillation νμ ↔ νe. In a second
experiment the pions were stopped and a beam of muon antineutrinos was prepared,
originating from the decay μ+ → e+ + νe + ν̄μ. The detector was set to search for
electron antineutrinos from ν̄μ ↔ ν̄e. Positive evidence for oscillations was found in
both cases, with an oscillation probability Pνμ→νe = (3.1 ± 1.5) × 10−3. Figure 6.17a
shows the range of sin2 2θ and �m2 values compatible with this result.

Even more compelling evidence for neutrino oscillations, and thus for finite neu-
trino masses, comes from an experiment detecting atmospheric neutrinos. High-
energy cosmic rays (mostly protons) are stopped in the upper atmosphere and gen-
erate hadronic showers. The decay of pions (π+ → μ+ + νμ → e+ + ν̄μ + νe + νμ
and similarly for π−) leads to a mixture of neutrinos with electronic and muonic fla-
vors bombarding the Earth from all directions. If oscillations occur, the composition
of this mixture will change as a function of traveling distance according to (9).

12 C. Athanassopoulos et al.: Phys. Rev. Lett. 77, 3082 (1996) and Phys. Rev. Lett. 81, 1774 (1998).
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Fig. 6.17. (a) Allowed values for the mass splitting and the mixing angle for νμ ↔ νe neutrino
oscillations according to the LSND experiment. The light and dark shadings correspond to
99% and 90% confidence levels, respectively. Values to the right of the dashed–dotted line are
excluded from a reactor experiment. (b) Results from the Super-Kamiokande experiment for
the ratio of measured to expected neutrino events as a function of the parameter x/Eν . Full
circles: νe and ν̄e. Open circles: νμ and ν̄μ

The Super-Kamiokande13 experiment in Japan detects the neutrinos in a huge de-
tector filled with 50 000 tons of purified water, situated deep under ground in a mine.
An array of ca 12 000 photomultiplier tubes detecting Cherenkov radiation provides
information on the type and direction of neutrinos absorbed in the detector. Depend-
ing on the angle of incidence, this allows a large range of traveling distances between
x = 15 km (atmospheric height) and x = 13 000 km (Earth’s diameter) to be probed.

The Super-Kamiokande group found that the ratio of muon–neutrino to electron–
neutrino was lower than the expected value. As a function of the variable x/Eν the
number of muon neutrinos was found to drop by a factor of two while the number
of electron neutrinos stayed constant; see Fig. 6.17b. This can be explained if flavor
oscillations of the kind νμ ↔ ντ occur. (Since tauonic processes are not detected in
the experiment, ντ could also stand for some other type at neutrinolike particle.)

A detailed analysis of the experimental data indicates nearly complete mixing,
sin2 2θμτ � 1, and a small mass difference in the range 5 × 10−4 eV2 < �m2

μτ <

6 × 10−3 eV2 (90% confidence limit).
The present status of neutrino-oscillation results is rather complex, pointing to the

coexistence of different flavor mixings. Further experiments are under way to clarify
this situation.

6.4 Cabibbo’s Theory of Flavor Mixing

Cabibbo recognized that the most apparent irregularities of the hadronic weak interac-
tions could be explained by introducing the mixing angle θ1 = θC between the d and
the s quark. We now want to examine Cabibbo’s considerations.

13 Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).
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We add the interaction term for the two hadronic doublets (u, d′), (c, s′) to the
Lagrangian of Salam and Weinberg’s theory for leptons. Here we have to pay attention
to the fact that the electric charges for the quarks differ from those of the leptons. For
convenience we introduce the notations

R(+)
u = Ru , R(−)

u = Rd′ , R(+)
c = Rc , R(−)

c = Rs′ , (6.38)

that is,
(
R
(+)
u

R
(−)
u

)
=
(
Ru

Rd′

)
= 1 + γ5

2

(
u

d′

)
,

(
R
(+)
c

R
(−)
c

)
=
(
Rc

Rs′

)
= 1 + γ5

2

(
c

s′

)
.

This allows us to perform the summation over i for the right-handed contributions
(singlets) only over i = u, c. The left-handed doublets Li were denoted in (6.34).
Then the interaction part of the quarks reads, by exact analogy with the ansatz (4.96)
or (15) of Example 4.8 for the leptons,

L
quark
int =

∑

i=u,c

{
gL̄iγ

μTLi · Aμ

+ 1

2
g′
(

1

3
L̄iγ

μLi + 4

3
R̄
(+)
i γ μR

(+)
i − 2

3
R̄
(−)
i γ μR

(−)
i

)
Bμ

}
. (6.39)

The factors ( 1
3 ,

4
3 ,− 2

3 ) in front of the couplings to the isosinglet field Bμ are the weak
hypercharges – see Table 6.2 and also (15) of Example 4.8. They are determined by
the electric charges of the quarks, which are multiples of 1

3 ; see (6.31), (6.32).
Note here that the interaction for leptons denoted in (4.96) can also be written in

the form

L
(
)
int = g(L̄
γ

αTL
)Aα + 1

2
g′[YD(L̄
γ

μL
) + Y S(R̄
γ
μR
)
]

, (6.39a)

where YD = −1, Y S = −2 are the hypercharges for the leptonic doublet and singlet
respectively. This is the some form as used in (6.39)!

If we replace the fields A3
μ and Bμ by Zμ and Aμ, according to (4.98), introduce

T̂± = T̂1 ± iT̂2 and W(±)
μ = 1√

2
(A1

μ ∓ iA2
μ) (see (4.99)), then

Lint = L
(
)
int +

∑

i=u,c

{
g√
2
L̄iγ

μ
(
T̂−W(−)

μ + T̂+W(+)
μ

)
Li

+
[
g cos θL̄iγ

μT̂3Li − 1

3
g′ sin θ

(
1

2
L̄iγ

μLi + 2R̄(+)
i γ μR

(+)
i

− R̄
(−)
i γ μR

(−)
i

)]
Zμ

+
[

1

3
g′ cos θ

(
1

2
L̄iγ

μ Li + 2R̄(+)
i γ μR

(+)
i − R̄

(−)
i γ μR

(−)
i

)

+ g sin θL̄iγ
μT̂3Li

]
Aμ

}
(6.40)

with the Weinberg angle θ , by analogy to (4.100).

Charged Currents. From the interaction Hamiltonian one can immediately read off
the weak currents of quarks as factors to the physical bosons W±, Zμ, Aμ. We rewrite
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these currents directly by means of the relations

d ′ = cos θCd + sin θCs ,
(6.41)

s′ = − sin θCd + cos θCs ,

which result from the reduced mixing matrix (6.37), in a form involving the “true” d
and s quarks in the sense of mass eigenstates. We start with the charged weak currents,
the coefficients of the field Wμ(−) and Wμ(+) respectively:

J−
μ = 2

∑

i=u,c

L̄iγμT̂−Li = ψ̄d′γμ(1 − γ5)ψu + ψ̄s′γμ(1 − γ5)ψc

= cos θCψ̄dγμ(1 − γ5)ψu + sin θCψ̄sγμ(1 − γ5)ψu

− sin θCψ̄dγμ(1 − γ5)ψc + cos θCψ̄sγμ(1 − γ5)ψc , (6.42a)

J+
μ = (J−

μ )
† . (6.42b)

The part responsible for the decay of the neutron is the term cos θC [ψ̄dγμ(1 −γ5)ψu ]†,
since here one of the d quarks in the neutron (udd) decays into a u quark to form
a proton (uud). This term appears in the current J+

μ = 2
∑

u,c L̄iγμT̂+Li and is,

according to (6.40), coupled with the (incoming) W(+) boson. In fact, the field
W

(+)
μ = 1√

2
(A1

μ − iA2
μ) corresponds either to an incoming W(+) boson or to an out-

going W(−) boson. In the four-fermion coupling approximation (owing to the low
transition energy of 1.9 MeV, this approximation is excellent) the effective interaction
for the β decay of the d quark is

Hint = G√
2

∫
d3xJ (u,d)μ

†(x)J
μ

(e)(x)

= G√
2

cos θC

∫
d3x
[
ψ̄u(x)γμ(1 − γ5)ψd(x)

]†

× [ψ̄e(x)γ
μ(1 − γ5)ψνe(x)

]
. (6.43)

A comparison with (6.1), (6.2) shows immediately the relationship

CV = cos θC(1 + εrad) , (6.44)

where εrad � 0.012 denotes the electromagnetic radiative corrections. Hence the
Cabibbo angle θC, which has the experimental value

cos θC = 0.9751 ± 0.0003 ,

sin θC = 0.222 ± 0.001 , (6.45)

θC = 12.8◦ ± 0.1◦ ,

describes the small decrease of the weak interaction constant in nuclear β decay.
The coupling strength for the decay s → u is proportional to sin θC, which “ex-

plains” (or “parametrizes”, as we should say), owing to the relative smallness of the
angle θC, the weakness of the strangeness-violating decays found in the section on the
phenomenology of weak hadronic decays. The ratio between the coupling constants
fK of the K decay and fπ of the π decay is immediately given by (s–u transition to
d–u transition)

fK

fπ
= tan θC(1 + ε′

rad) (6.46)
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with small radiative corrections. A detailed analysis gives sin θC = 0.2655 ± 0.0006,
while one finds from the decay of the strange baryons Λ, Σ , and so on the value
sin θC = 0.230 ± 0.003. When judging these numbers one has to take into considera-
tion that they are not directly derived from decays of the quarks, but from decays of
more complex particles. Therefore they only reflect the decay properties of quarks to
such a degree that the particles consist simply of a quark–antiquark pair (mesons) or
of three quarks (baryons), the so-called valence quarks. In reality the circumstances
are more complex, since the quark vacuum is strongly polarized inside the particles,
owing to the interaction between quarks. With a certain probability one therefore finds
additional quark–antiquark pairs besides the valence quarks; one also speaks of the sea
of virtual quark–antiquark pairs. For a proton, which has a valence-quark structure of
(uud), the probability of finding it in each of the configurations

uudūu , uudd̄d , uuds̄s

is approximately 5%. To this extent the simple picture of the proton consisting of
three quarks is not satisfied. The fact that this violation is relatively small explains the
success of the quark model and of SU(3) symmetry when interpreting the low-energy
properties of baryons, for example the mass formulas.

For mesons SU(3) symmetry is not nearly as successful. This concerns especially
the pion, which fits only poorly into the mass formulas for mesons. One can under-
stand this since, for mesons, which consist of a valence quark–antiquark pair, the
admixture of virtual quark–antiquark pairs is essentially stronger. It is likely that con-
figurations of the kind14

ud̄uū , ud̄dd̄ , ud̄uūdd̄

make up a considerable fraction of the pion wave function (here for the π+) and thus
are jointly responsible for the lower mass of the pion. It is therefore not very sur-
prising that by comparing the decay of the pion and the kaon one deduces a value
of the Cabibbo angle experimentally that is 15% larger. Most probably this does not
mean that Cabibbo theory provides a poor description of the weak interactions among
quarks, but only that the quark structure of the pion is considerably more complex
than that of other hadrons. This presumption is supported by the good agreement be-
tween the values for the Cabibbo angle obtained from the decay of the neutron and
the strange baryons. Hence we assume in the following that the value (6.45) obtained
from nuclear β decay represents the mixing angle between d and s quarks.

Neutral Weak Currents. Next we consider the coefficient of the field Zμ, that is the
neutral weak current of the quarks (see e.g. second line of (6.40)),

J (0)μ =
∑

i=u,c

[
g cos θL̄iγμT̂3Li

− 1

3
g′ sin θ

(
1

2
L̄iγμLi + 2R̄(+)

i γμR
(+)
i − R̄

(−)
i γμR

(−)
i

)]

= g

4 cos θ

[
−ψ̄d′γμ

(
1 − 4

3
sin2 θ − γ5

)
ψd′ − ψ̄s′γμ

(
1 − 4

3
sin2 θ − γ5

)
ψs′

14 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin,
Heidelberg, 1994).
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+ ψ̄uγμ

(
1 − 8

3
sin2 θ − γ5

)
ψu + ψ̄cγμ

(
1 − 8

3
sin2 θ − γ5

)
ψc

]

= g

4 cos θ

[
−ψ̄dγμ

(
1 − 4

3
sin2 θ − γ5

)
ψd − ψ̄sγμ

(
1 − 4

3
sin2 θ − γ5

)
ψs

+ ψ̄uγμ

(
1 − 8

3
sin2 θ − γ5

)
ψu + ψ̄cγμ

(
1 − 8

3
sin2 θ − γ5

)
ψc

]
, (6.47)

applying (4.101), i.e. e = g sin θ = g′ cos θ . The details of the calculation are the sub-
ject of Exercise 6.8. The angle θ which appears here is the Weinberg angle already
known to us. In addition there appear d′ and s′ quarks, which are Cabibbo-mixed (see
(6.41)). The transformation to the d and s quarks appearing in strong interactions is
readily performed using (6.41) and leads, as the last step shows, to formally identical
expressions. All mixed terms of the form sin θC cos θCψ̄dγμψs, and so on cancel, as is
shown in Exercise 6.8. It is worth emphasizing that undesirable terms in the neutral
current of the doublet Lu cancel such terms in the current of the doublet Lc. Thus
the neutral current contains only couplings which are diagonal in the quark flavors.
In particular, there is no part of the neutral current which changes strangeness. This
selection rule, �S = �Q = 0, was one of the important experimental demands on the
theory (see Sect. 6.2 on the phenomenology of weak hadronic decays). Indeed, the
requirement of vanishing strangeness-changing neutral current was the motivation for
the (purely theoretical) introduction of the fourth quark c by Glashow, Iliopoulos, and
Maiani.15 Therefore one also speaks of the GIM mechanism.

This consideration can be easily extended to the two additional quarks t and b. For
this we need only consider the quarks with charge Q = −(1/3), which are mixed by
the unitary matrix Û (6.35). Their contribution to the neutral current is, in a general-
ization of (6.47),

J (0)μ (d′, s′,b′) = −
∑

i=d′,s′,b′

[
1

4
g cos θψ̄iγμ(1 − γ5)ψi

]

+
[

1

6
g′ sin θ

(
1

2
ψ̄iγμ(1 − γ5)ψi − ψ̄iγμ(1 + γ5)ψi

)]

= − g

4 cos θ

∑

i′ =d′,s′,b′
ψ̄i′γμ

(
1 − 4

3
sin2 θ − γ5

)
ψi′ , (6.48)

where we have used relation (4.101), g sin θ = g′ cos θ for the coupling constants g
and g′. Owing to the unitarity of Û it holds for every operator Ô that

∑

i′ =d′,s′,b′
ψ̄i′Ôψi′ =

∑

i′ =d′,s′,b′

( ∑

k=d,s,b

ψ̄kU
∗
i′k

)
Ô

( ∑

l=d,s,b

Ui′lψl

)

=
∑

k=d,s,b

ψ̄kÔψk , (6.49)

15 S.L. Glashow, J.C. Iliopoulos, and L. Maiani: Phys. Rev. D2, 1285 (1970). The name “charm” is
to be understood as “magic”, since the charmed quark eliminates the undesirable terms.
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since
∑

i′
U∗
i′kUi′l =

∑

i′
U

†
ki′Ui′l = (Û†Û )kl = δkl . (6.50)

Hence we have shown in general that no mixed-flavor terms appear in the neutral
current:

J (0)μ (d′, s′,b′) = − g

4 cos θ

∑

k=d,s,b

ψ̄kγμ

(
1 − 4

3
sin2 θ − γ5

)
ψk

= J (0)μ (d, s,b) . (6.51)

Weak interactions do not lead to transitions of d, s, or b quarks among each other.
The same holds also for the three quarks with charge Q = +(2/3), that is, the quarks
u, c, and t. Thus we can assert, as a general demand of the Salam–Weinberg theory
extended to quarks that changes of flavor quantum numbers always involve change
of charge. This is a generalization of the rule �S = �Q = 0 for neutral currents to
�S = �Q for all currents appearing in the theory of electroweak interactions.

The factors

−
(

1 − 4

3
sin2 θ − γ5

)
,

(
1 − 8

3
sin2 θ − γ5

)
, (6.52)

which appear in the neutral current, can be understood as follows: the sign is deter-
mined by the sign of the (weak) isospin T3, that is, (+) for the upper quarks u, c, t
and (−) for the lower components d, s, b. Formally we can therefore write the factors
(6.52) in the form

2(T3 − 2Q sin2 θ − T3γ5) = 2T3(1 − γ5) − 4Q sin2 θ . (6.53)

This expression also correctly describes the corresponding factors in the neutral cur-
rent of the leptons (4.106):

2(T3 − 2Q sin2 θ − T3γ5)ν = (1 − γ5) ,
(6.54)

2(T3 − 2Q sin2 θ − T3γ5)e = −(1 − 4 sin2 θ − γ5) .

Hence the contribution of the neutral weak current to the Lagrangian has the general
form

g

2 cos θ

[∑

k

ψ̄kγ
μ(T3 − 2Q sin2 θ − T3γ5)kψk

]
Zμ , (6.55)

where the sum runs over all leptons and quarks.

EXERCISE

6.6 Proof of (6.55)

Problem. Starting with (6.30) and (6.31), show the general validity of (6.55).
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Solution. The fermion coupling to the fields A3
μ and Bμ is, according to (6.30),

1

2
gψ̄γ μ(1 − γ5)T3ψA

μ
3 + 1

4
g′[YLψ̄γ μ(1 − γ5)ψ + YRψ̄γ μ(1 + γ5)ψ

]
Bμ . (1)

We obtain the current which couples to the neutral intermediate bosonZμ using (4.98):

Bμ = Aμ cos θ − Zμ sin θ , (2)

A3
μ = Zμ cos θ + Aμ sin θ . (3)

Collecting all terms and putting g′ = g tan θ , we get

1

2
gψ̄γ μ

{
(1 − γ5)T3 cos θ

− 1

2
tan θ
[
YL(1 − γ5) + YR(1 + γ5)

]
sin θ

}
ψZμ , (4)

YL = 2(Q − T3) , YR = +2Q , (5)

and obtain the following for the factor in square brackets:

(1 − γ5)T3 cos θ + (1 − γ5)T3 tan θ sin θ − 2Q tan θ sin θ

= 1

cos θ

[
(1 − γ5)T3 − 2Q sin2 θ

]
. (6)

Inserting this into (4), we obtain the desired result

g

2 cos θ
ψ̄γ μ
[
(1 − γ5)T3 − 2Q sin2 θ

]
ψZμ . (7)

EXAMPLE

6.7 Absence of Flavor-Changing Neutral Currents

If there were a contribution to the neutral current (6.47), which couples d and s quarks,
that is,

J (0)
fc

μ = g

4 cos θ

[
ψ̄dγμ

(
Cfc
V + Cfc

Aγ5
)
ψs + h.c.

]
, (1)

the neutral K mesons could easily decay into a muon pair. This is illustrated in the
following diagram:

Fig. 6.18. Possible decay
scheme of the neutral K
mesons if a flavor-changing
neutral current exists
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Experimentally, this decay is conveniently studied by investigating the long-lived
K0
L state (see Chap. 7), for which a branching ratio

Γ (K0
L  → μ+μ−)
Γ (K0

L)
= 9 × 10−9 (2)

was measured. From this we obtain a bound of
∣∣Cfc

V

∣∣2 + ∣∣Cfc
A

∣∣2 < 10−8 . (3)

This limit is still further reduced by taking account of the fact that the experimentally
measured value is well described by radiative corrections to processes which result
from second-order effects of the charged weak current, for example,

The value (2) is therefore a strong indication for the complete absence of fundamental
flavor-changing weak currents.

EXERCISE

6.8 Vanishing of Mixed Currents Between d and s Quarks

Problem. Check the result (6.47) for the neutral currents and show that no mixed
terms coupling s and d quarks arise through Cabibbo mixing.

Solution. With (4.101) we have

g′ sin θ = g sin2 θ

cos θ
, (1)

and hence, from (6.47),

J (0)μ = g

cos θ

{
cos2 θ

[
1

4
ψ̄uγμ(1 − γ5)ψu − 1

4
ψ̄d′γμ(1 − γ5)ψd′

+ 1

4
ψ̄cγμ(1 − γ5)ψc − 1

4
ψ̄s′γμ(1 − γ5)ψs′

]

− 1

3
sin2 θ

[
1

4
ψ̄uγμ(1 − γ5)ψu + 1

4
ψ̄d′γμ(1 − γ5)ψd′

+ 1

4
ψ̄cγμ(1 − γ5)ψc + 1

4
ψ̄s′γμ(1 − γ5)ψs′

+ ψ̄uγμ(1 + γ5)ψu + ψ̄cγμ(1 + γ5)ψu
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− 1

2
ψ̄d′γμ(1 + γ5)ψd′ − 1

2
ψ̄s′γμ(1 + γ5)ψs′

]}

= g

4 cos θ

[
ψ̄uγμ

(
1 − 3

8
sin2 θ − γ5

)
ψu + ψ̄cγμ

(
1 − 3

8
sin2 θ − γ5

)
ψc

− ψ̄d′γμ

(
1 − 4

3
sin2 θ − γ5

)
ψd′ − ψ̄s′γμ

(
1 − 4

3
sin2 θ − γ5

)
ψs′
]

. (2)

Here we have made use of the intermediate steps

cos2 θ(1 − γ5) − 1

3
sin2 θ

[
(1 − γ5) + 4(1 + γ5)

]

= cos2 θ − 5

3
sin2 θ − γ5(cos2 θ + sin2 θ)

= 1 − 8

3
sin2 θ − γ5 , (3a)

− cos2 θ(1 − γ5) − 1

3
sin2 θ

[
(1 − γ5) − 2(1 + γ5)

]

= − cos2 θ + 1

3
sin2 θ + γ5(cos2 θ + sin2 θ)

= −1 + 4

3
sin2 θ + γ5 . (3b)

The last two terms in (2) we rewrite in terms of the quark flavors d, s, that is, the mass
eigenstates, with the help of (6.41). For an arbitrary operator Â it holds that

ψ̄d′Âψd′ + ψ̄s′Âψs′

= (cos θCψ̄d + sin θCψ̄s)Â(cos θCψd + sin θCψs)

+ (cos θCψ̄s − sin θCψ̄d)Â(cos θCψ̄s − sin θCψd)

= (cos2 θC + sin2 θC)ψ̄dÂψd + (cos θC sin θC − sin θC cos θC)ψ̄dÂψs

+ (sin θC cos θC − cos θC sin θC)ψ̄sÂψd + (sin2 θC + cos2 θC)ψ̄sÂψs

= ψ̄dÂψd + ψ̄sÂψs . (4)

This is simply a consequence of the orthogonality of the Cabibbo transformation.
Altogether we have

J (0)μ = g

4 cos θ

∑

i=u,d,s,c

εiψ̄iγμ(Ci − γ5)ψi (5)

with

εu = εc = 1 , εd = εs = −1 , (6a)

Cu = Cd = 1 − 8

3
sin2 θ ,

(6b)
Cd = Cs = 1 − 4

3
sin2 θ

which agrees exactly with (6.47).
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Electromagnetic Current. Finally we consider the electromagnetic current, which is
given by (see (6.40))

J (em)
μ =

∑

i=u,c

[
g sin θL̄iγμT3Li + 1

3
g′ cos θ

×
(

1

2
L̄iγμLi + 2R̄(+)

i γμR
(+)
i − R̄

(−)
i γμR

(−)
i

)]

= 2

3
e(ψ̄uγμψu + ψ̄cγμψc) − 1

3
e(ψ̄d′γμψd′ + ψ̄s′γμψs′)

= 2

3
e(ψ̄uγμψu + ψ̄cγμψc) − 1

3
e(ψ̄dγμψd + ψ̄sγμψs) . (6.56)

As can be seen, it again contains no mixed terms in d and s quarks. Regarding the
sign one should note that e = − |e| is the charge of the electron. Of course, the factors
coupling to the isospin-singlet field Bμ were chosen in such a way that the electro-
magnetic current comes out correctly. Since the coupling to the isotriplet field Aμ and
the singlet field Bμ can be chosen completely independently, this expresses no deeper
physical understanding. After fixing the coupling of the charged weak currents (6.42)
and the electromagnetic current (6.56), however, one has no options left for the neutral
weak current J (0)μ . The exact form (6.47) of J (0)μ must thus be regarded as a definite
prediction of the extended Glashow–Salam–Weinberg theory.

Therefore we consider the neutral currents of u and d quarks in more detail. When
splitting them into left-handed and right-handed parts one obtains for the u quarks

1

g
cos θJ (0)μ (u) = ψ̄uγμ

(
1

4
− 2

3
sin2 θ − 1

4
γ5

)
ψu

=
(

1

2
− 2

3
sin2 θ

)
ūLγμuL − 2

3
sin2 θ ūRγμuR , (6.57)

and for the d quarks

1

g
cos θJ (0)μ (d) = −ψ̄dγμ

(
1

4
− 1

3
sin2 θ − 1

4
γ5

)
ψd

=
(

− 1

2
+ 1

3
sin2 θ

)
d̄LγμdL + 1

3
sin2 θ d̄RγμdR . (6.58)

With the value sin2 θ ≈ 0.25 from (4.108) we obtain Table 6.3 for the coupling con-
stants of the weak neutral current for u and d quarks. For comparison, values extracted
from an analysis of neutrino–quark scattering are also given in Table 6.3 (see Ex-
ample 6.9). We can assert good agreement in the range of experimental errors, espe-
cially regarding the isospin dependence. A precise check of the structure of the neutral

Table 6.3. The weak neutral-current couplings of the up and down quark

Coupling constant Theory Experiment

uL 1/2 − 2/3 sin2 θ 0.33 0.35 ± 0.07
uR −2/3 sin2 θ −0.17 −0.19 ± 0.06
dL −1/2 + 1/3 sin2 θ −0.42 −0.40 ± 0.07
dR 1/3 sin2 θ 0.08 0.00 ± 0.11
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Fig. 6.19. Matrix element of
electron–quark scattering

quark current was performed at the linear electron accelerator in Stanford, California
(SLAC). In this experiment the degree of parity violation in the scattering of polarized
electrons at deuterons was investigated. Here the most important contribution stems
from the interference term between the neutral weak current and the electromagnetic
current (Fig. 6.19), as in the case of the angular asymmetry in muon pair creation (see
Sect. 5.2). The experiment is discussed in detail in Example 6.9. From a compari-
son with the theoretically predicted degree of parity violation, there results a rather
accurate value for the Weinberg angle,16

sin2 θ = 0.230 ± 0.005 , (6.59)

which is in good agreement with the result obtained from purely leptonic scattering
experiments. In conclusion, we remark that the isospin structure of the neutral cur-
rent in the Glashow–Salam–Weinberg theory can be regarded as experimentally well
confirmed.

EXAMPLE

6.9 Parity Violation in Inelastic Lepton–Nucleon Scattering

The substructure of the nucleon is investigated in deep inelastic lepton–nucleon scat-
tering experiments. Hereby the energy–momentum transfer is large enough to break
up the nucleon and the scattering can be described as elementary quark–nucleon scat-
tering.

In order to investigate the degree of parity violation in this process, polarized

Fig. 6.20a. Deep inelastic
electron–nucleon scattering

electrons (muons) are scattered at unpolarized nuclear targets. In the experiment one
measures the following asymmetry

Δ = dσR − dσL

dσR + dσL
, (1)

with σR/L being the scattering cross section between a right/left-handed lepton and
the target eR/L + N → eR/L + X. The X are the fragments of the target which are not
observed in the experiment and over which a sum has to be performed (see Fig. 6.20a).

A non-vanishing asymmetry can be interpreted as proof for a parity-violating
process. In order to predict the asymmetry in the framework of the GSW model, we
use the parton model of the nucleon. In this model the nucleon is composed of free
non-interacting partons (quarks). Each lepton–nucleon scattering process can then be

16 P. Langacker and A.K. Mann: Physics Today, 42, 22 (1989).
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Fig. 6.20b. Elementary Feyn-
man graphs of electron–quark
scattering

described as incoherent sum of elementary lepton–quark scattering processes. The re-
spective Feynman diagrams can be seen in Fig. 6.20b. Parity violation results from
the coherent sum of photon and Z0 exchange. According to the Feynman rules (see
Sect. 4.3) we can directly write down the matrix elements. However, it is useful to
work with lepton and parton states of well-defined helicity. We obtain for the ampli-
tude of the photon exchange process (see Fig. 6.20b).

AhHγ = −iQeQqe
2ūhe (k

′)γαuhe (k)
1

q2
ūHq (p

′)γ αuHq (p) , (2)

where Qq is the electric charge numbers of the parton, Qe that of the electron.
h,H are the helicities of the electron and parton, respectively, which in the high-
energy limit can be replaced by chiralities. For instance the spinor of a right-handed
electron is then given by (see Sect. 1.2)

uR
e (k) = P̂ ′ue(k) = 1 + γ5

2
ue(k) . (3)

Note that any vector interaction preserves chirality, so that the initial and final values
of h and H , respectively, are the same. In order to obtain the amplitude of the Z0

exchange, we use the neutral weak current of (6.55):

g

2 cos θ

[
ψ̄γμ(T3 − 2Q sin2 θ︸ ︷︷ ︸

cV

− T3︸︷︷︸
cA

γ5)ψ
]

(4)

and rewrite the following term

cV − cAγ5 = (cV − cA)︸ ︷︷ ︸
cR

1

2
(1 + γ5) + (cV + cA)︸ ︷︷ ︸

cL

1

2
(1 − γ5) . (5)

Here we have introduced charges for the right- and left-handed leptons and partons:

cR = −2Q sin2 θ , (6)

cL = 2T3 − 2Q sin2 θ . (7)

In analogy to (2) we obtain for the amplitude of the Z0 exchange

AhHZ = −i
g2

4 cos2 θ
c

q
Hc

e
hū

h
e (k

′)γ αuhe (k)
gαβ − qαqβ/M

2
Z

q2 − M2
Z

ūHq (p
′)γ βuHq (p) . (8)

For energies which are small compared to the mass of the Z0, we can approximate the
equation by

AhHZ = +i
g2

4 cos2 θM2
Z

c
q
H c

e
hū

h
e (k

′)γ αuhe (k)ūHq (p′)γαuHq (p)

= i
√

2GcqHc
e
hū

h
e (k

′)γ αuhe (k)ūHq (p′)γαuHq (p) . (9)

In order to obtain the cross section, both amplitudes have to be added coherently.
Due to the choice of working with spinors of well-defined helicity, the interference
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term depends only on the strength of the vertices and the different propagators. The
resulting cross section is

dσHh ∼
∣∣∣∣
QeQqe

2

q2
− √

2GcqHc
e
h

∣∣∣∣
2 ∫ d3p′

(2π)3
d3k′

(2π)3
(2π)4δ4(p + k − p′ − k′)

× ∣∣ūhe (k′)γ αuhe (k)ūHq (p′)γαuHq (p)
∣∣2 . (10)

The contraction of the currents and the solution of the integrals are performed in the
same fashion as in Sect. 5.2. All fermions are considered to be massless. To evaluate
the squared matrix element in (10) we sum over all spin combinations, picking out the
correct helicities with the help of chiral projection operators. This leads to

MHh = |ūh(k′)γ αuh(k)ūH (p′)γαuH (p)|2

=
∑

s,s′,S,S′
|ū(k′s′)γ αP ′

hu(k, s)ū(p
′S′)γαP ′

Hu(p,S)|2

= 1

2me2mq

Tr(/k′γ αP ′
h/kγ

β)Tr(/p′γαP ′
H/pγβ) . (11)

Evaluation of the traces (compare (5.30)–(5.32)) leads to the result (we drop constant
factors)

MHh ∼ k · pk′ · p′(1 + hH) + k · p′k′ · p(1 − hH) . (12)

Different results are obtained for the case of equal (h = H = ±1) or opposite (h =
−H = ±1) helicities. In the center of momentum (c.m.) frame we have k · p = k′ ·
p′ = 2E2 and k · p′ = k′ · p = E2(1 + cosϑ), where ϑ is the scattering angle. Thus
we obtain the following qualitative behavior for the cross sections of the different
processes:

dσRR

d cosϑ
∼
∣∣∣∣
QeQqe

2

q2
− √

2GcqRc
e
R

∣∣∣∣
2

, (13)

dσLL

d cosϑ
∼
∣∣∣∣
QeQqe

2

q2
− √

2GcqLc
e
L

∣∣∣∣
2

, (14)

dσRL

d cosϑ
∼
∣∣∣∣
QeQqe

2

q2
− √

2GcqRc
e
L

∣∣∣∣
2 1

4
(1 + cosϑ)2 , (15)

dσLR

d cosϑ
∼
∣∣∣∣
QeQqe

2

q2
− √

2GcqLc
e
R

∣∣∣∣
2 1

4
(1 + cosϑ)2 . (16)

Usually the cross section is not given differentially towards the non-covariant vari-
able ϑ . Instead, the covariant variable y = (pN · q)/(pN · k) is introduced. pN is the
four-momentum of the nucleon. In the parton model it depends in a trivial fashion on
the four-momentum p of the parton: p = xpN . The x is the Bjorken x, which denotes
the fraction of the total momentum carried by the scattered parton. Both, x and y can
only have values between 0 and 1. In the rest frame of the target we have

y = pN · q
pN · k = pN · (k − k′)

pN · k = E − E′

E
. (17)
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In the c.m. system the scattering angle ϑ can be expressed via y:

1 − y = pN · k′

pN · k = p · k′

p · k = p2
0 + k · k′

p2
0 + p2

= 1

2
(1 + cosϑ) . (18)

Here we have used in the c.m. system of massless particles p = (p0,p), k = (k0,k) =
(p0,−p) and k′ = (k0,k′).

Now we want to transfer the results of the lepton–parton scattering to lepton–
nucleon scattering. We can directly use the previous results if we are aware of the
following simplifications: by neglecting the sea-quarks we do not take any scattering
between leptons and anti-quarks into account.

To simplify matters the target is regarded as an isoscalar and therefore is sup-
posed to contain the same number of up and down quarks. This is, e.g., the case
for the deuteron. To evaluate the asymmetry Δ the cross sections (13)–(16) have to
be summed over the hadron helicities H and the quark flavors q = u,d . The latter
summation leads to, e.g.,

∂σRR =
∣∣∣∣
QeQue

2

q2
− √

2GcuRc
e
R

∣∣∣∣
2∣∣∣∣
QeQde

2

q2
− √

2GcdRc
e
R

∣∣∣∣
2

� Q2
ee

4

q4
(q2
u + Q2

d) − 2

√
2Ge2

q2
Qec

e
R(Quc

u
R + Qdc

d
R) . (19)

The squared Z0 exchange term has been dropped since it is very small. The numerator
in (1) results from the γ − Z0 interference term, while the denominator is dominated
by the electromagnetic cross section.

Insertion of (13) and the corresponding expressions for the other helicity combina-
tions leads to the following asymmetry

Δ = −q2

√
2G

e2

6

5

(
c1 + c2

1 − (1 − y)2

1 + (1 − y)2

)
, (20)

where the charge numbers Qu = 2/3, Qd = −1/3, Qe = −1 have been inserted. The
coefficients read

c1 = ce
A(2c

u
V − cdV ) ,

(21)
c2 = ce

V (2c
u
A − cdA) .

According to the definition in (4)

ce
V = − 1

2
+ 2 sin2 θ ,

(22)
ce
A = − 1

2
,

cuV = + 1

2
− 4

3
sin2 θ ,

(23)
cuA = + 1

2
,

cdV = − 1

2
+ 2

3
sin2 θ ,

(24)
cdA = − 1

2
.
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Using
√

2G = e2/(4μ2
z sin2 θ cos2 θ), (14) can also be written as

Δ =
(

1

2 sin θ cos θ

)2
q2

μ2
z

9

10

[(
1 − 20

9
sin2 θ

)
+ (1 − 4 sin2 θ)

1 − (1 − y)2

1 + (1 − y)2

]

The first experiment looking for such asymmetry was run at the Stanford Linear Ac-
celerator (SLAC) in 1979, where a polarized electron beam was available with an
energy of 19.4 GeV. The scattered electrons were measured in the energy range 10.2–
16.3 GeV. Since the asymmetry Δ is of the order of 10−4, the experiment set high
demands on the accuracy, especially regarding the correction of systematic errors.17

The result, Δ(y), is shown in Fig. 6.21. The experiments clearly prove the presence of
a parity-violating effect in electron–nuclear scattering. Its sign and magnitude agree
well with the prediction of the standard model using the Weinberg angle

sin2 θ = 0.2259 ± 0.0046 ,

which coincides with results from other experiments. By additional measurement of
the asymmetry in the scattering on protons, the weak coupling constants of u and d
quarks can be determined separately. They are given in Table 6.3.

Fig. 6.21. Measured asym-
metry in the scattering
of polarized electrons at
deuterons

EXAMPLE

6.10 Parity Violation in Atoms

Quantum electrodynamics, that is, the theory of electromagnetic interactions, is surely
the most accurately checked theory in physics. The highest accuracy is reached in
atomic-physics experiments. For example, one can think of the measurement of the
Lamb shift in hydrogen atoms.18 The Glashow–Salam–Weinberg theory predicts that
the Z boson couples to the same particles as the photon. Besides virtual photons, vir-
tual Z bosons are also exchanged between the atomic nucleus and the bound electrons.

17 E.D. Commins and P.H. Bucksbaum: Ann. Rev. Nucl. Part. Sci. 30, 1 (1980).
18 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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This additional interaction leads to a modification of the wave function of bound elec-
trons.

Although these effects are very small, it has been possible to detect them19 be-
cause the interaction through neutral currents violates parity. The exchange of virtual
Z0 bosons modifies the Coulomb potential. The parity violation connected with this
exchange causes the atomic levels to acquire a small admixture of the “wrong” parity
(see Fig. 6.22).

Fig. 6.22. Electron–nucleus
interaction by means of a
photon and Z0

Our first task is to calculate the modified potential. To do so we start with the
interaction term (see (6.55))

Hint = −g

2 cos θ

(
j e
μ(x) + ju

μ(x) + jd
μ(x)
)
Zμ , (1)

where the weak neutral currents are:

j e
μ(x) = −ψ̄e(x)γμ(C

e
V − γ5)ψe , (2a)

ju
μ(x) = −ψ̄u(x)γμ(C

u
V − γ5)ψu(x) , (2b)

jd
μ(x) = −ψ̄d(x)γμ(C

d
V − γ5)ψd(x) , (2c)

with

Ce
V = 1 − 4 sin2 θ , (3a)

Cu
V = 1 − 8

3
sin2 θ , (3b)

Cd
V = 1 − 4

3
sin2 θ . (3c)

For simplicity, we consider only the valence quarks of the atomic nuclei. For virtual
Z bosons in the low-energy limit (that is, k2 � M2

Z) this interaction is, according to
(4.131) and (4.132), equivalent to the following Fermi-type current–current interac-
tion:

H eff
qe = G

2
√

2
j e
μ(x)
(
juμ(x) + jdμ(x)

)
, (4)

19 M.A. Bouchiat, J. Guena, L. Hember, L. Pottier: Phys. Lett. B117, 358 (1982); P. Bucksbaum, E.
Commins, L. Hember: Phys. Rev. Lett. 46, 640 (1981); J.H. Mollister, G.R. Apperson, L.L. Lewis,
T.P. Emmons, T.G. Vold, E.N. Fortson: Phys. Rev. Lett. 46, 643 (1981).
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where G = 1.166 × 10−5 GeV−2 is the Fermi coupling constant. In principle (4) has
to be evaluated by using the wave functions for the quarks inside a nucleon, which can
only be done in an approximate and model-dependent way.20 As a simple prescription,
which turns out to be sufficient for the present purpose, one replaces the quark by the
nucleon currents, weighted by the number of valence quarks present and remembering
that the u and d quarks have opposite electrical charge. Then the weak neutral currents
of the proton and neutron are given, respectively, by

j
p
μ(x) � 2ju

μ(x) + jd
μ(x)

= ψ̄p(x)γμ(2C
u
V − Cd

V − 2γ5 + γ5)ψp(x)

= ψ̄p(x)γμ(C
p
V − γ5)ψp(x) ,

(5)
jn
μ(x) � ju

μ(x) + 2jd
μ(x)

= ψ̄n(x)γμ(C
u
V − 2Cd

V − γ5 + 2γ5)ψn(x)

= −ψ̄n(x)γμ(1 − γ5)ψn(x) .

The effective interaction between electron and nucleus is now given by

H eff
Ne = G

2
√

2
j e
μ(x)

(
Z∑

i=1

j
pμ
i (x) +

N∑

i=1

j
nμ
i (x)

)
, (6)

where Z and N are, respectively, the number of protons and neutrons contained in the
nucleus. For the nuclear wave functions we can restrict ourselves to a non-relativistic
approximation. Then we have (see Chap. 1, (1.3)–(1.5), and Exercise 1.3)

ψ̄pγ γ5ψp  → '†
pσ'p ,

ψ̄pγ
0γ5ψp  → 0 ,

(7)
ψ̄pγψp  → 0 ,

ψ̄pγ
0ψp  → '†

p'p = ρp(x) ,

where ρp is the proton density. Analogous relations hold for the neutrons. As long
as the spins of protons and neutrons are not aligned in the nucleus, the first spin-
dependent term yields a much smaller contribution than the last term when we sum
over all protons and neutrons. Thus we can write approximately

G

2
√

2

(
N∑

i=1

jn
μ(x) +

Z∑

i=1

j
p
μ(x)

)
� δμ0

(
C

p
V Zρp(x) − Nρn(x)

) G

2
√

2

=: δμ0ρ(x) , (8)

where ρ(x) is proportional (but not identical!) to the mass-density distribution in the
nucleus because both ρp(x) and ρn(x) are approximately proportional to the mass-
density. Then (6) reads

H eff
Ne = [Ce

V ψ
†
e (x)ψe(x)ρ(x) − ψ†

e (x)γ5ψe(x)ρ(x)
]

. (9)

20 For a general discussion see, e.g., J.F. Donoghue, E. Golowich, B.R. Holstein: Dynamics of the
Standard Model (Cambridge Univ. Press, Cambridge, 1997), Chap. 12.



244

Example 6.10

6 Semi-Leptonic Interactions of Hadrons

The Coulomb potential VC is therefore modified as follows (note that ρ(x) contains
the Fermi constant!):

VC  → VC + Ce
V ρ(x) − γ5ρ(x) . (10)

The term C
p
V ρ(x) does not violate parity and hence is practically unobservable owing

to its smallness. The term γ5ρ(x), however, violates parity symmetry (ψ
†
e γ5ψe  →

−ψ
†
e γ5ψe under a space reflection) and thus leads to observable effects. Moreover, one

can assume that the nucleon density is radially symmetric, that is, ρ(x) can be replaced
by ρ(r). Thus the effect of weak interactions in atomic physics can be effectively
described by replacing the neutral Coulomb potential by

VC(r) → VC(r) − γ5ρ(r) . (11)

The bound electrons are described by the Dirac equation, which with the potential (11)
is

Eψ = Hψ(r,Ω)

= (α · p + βm + VC(r) − ρ(r)γ5
)
ψ(r,Ω) , (12)

where Ω represents the angular coordinates. The total angular momentum

J = r × p + 1

2
Σ (13)

commutes with this Hamiltonian:

[J ,H ]− = [J , ρ(r)γ5 ]
= −iγ5r ×

(
r

r

∂

∂r
ρ(r)

)
+ 1

2
[Σ,γ5 ]ρ(r)

= 0 . (14)

Together with J 2, κ2 = (J + 1/2)2 is also a good quantum number. Hence one can
make the following general ansatz for the solution of (12):

Ψ (r,Ω) = 1

r

(
igκ(r)χ

μ
κ (Ω) − g−κ(r)χ

μ
−κ (Ω)

f−κ(r)χ
μ

−κ (Ω) − ifκ(r)χ
μ
κ (Ω)

)
, (15)

where χμκ (Ω) are the spinor spherical harmonics.21 Then the radial functions are so-
lutions of the following coupled equations:

∂

∂r
gκ = −κ

r
gκ − (E − VC(r) + m)fκ − ρ(r)g−κ ,

(16)
∂

∂r
fκ = κ

r
fκ + (E − VC(r) − m)gκ + ρ(r)f−κ ,

∂

∂r
g−κ = κ

r
g−κ + (E − VC(r) + m)f−κ + ρ(r)gκ ,

(17)
∂

∂r
f−κ = −κ

r
f−κ − (E − VC(r) − m)g−κ − ρ(r)fκ .

21 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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One observes that for ρ(r) = 0 both pairs of equations (16) and (17) decouple. Then
one obtains eigenfunctions not only for the quantum number κ2 but also for κ . These
have fixed parity P = (−1)κsgn(κ). If ρ(r) �= 0, this is no longer true, that is, one
no longer has eigenfunctions with defined parity. Therefore the parity selection rules,
such as those for multipole radiation, are no longer exactly valid (since ρ(r) is very
small, they are of course still valid to a good approximation). Let us, for example, con-
sider the transition 7p1/2 → 6p1/2 in the element Tl (thallium). We choose this atom,
because here the 6p1/2 and the 6s1/2 are nearly degenerate, so that one gets an appre-
ciable P = +1 admixture to the 6p1/2 P = −1 state. Instead of a pure M1 transition
one now has a mixture of M1 and E1 matrix elements. This coherent superposition
leads, for example, to a circular polarization of emitted photons.

Let us denote by p± the probability of emission of a left or right circular polarized
photon, and the reduced transition matrix elements for electric and magnetic dipole
radiation by M(E1,μ) and M(M1,μ), respectively, where μ = μi − μf = ±1 is
the photon helicity. Because of their different parity properties these matrix elements
behave differently when the signs of the magnetic quantum numbers are inverted. One
finds

M(E1,μ) = +M(E1,−μ) ,

M(M1,μ) = −M(M1,−μ) .

By defining M(E1) = M(E1, |μ|) the circular degree of polarization can be written
as22

pc = p+ − p−
p+ + p−

= |M(E1) + iM(M1)|2 − |M(E1) − iM(M1)|2

|M(E1) + iM(M1)|2 + |M(E1) − iM(M1)|2

= i
M(E1)∗ M(M1) − M(E1)M(M1)∗

|M(E1)|2 + |M(M1)|2

= Im
M(E1)∗ M(M1)

|M(E1)|2 + |M(M1)|2
.

Obviously, pc �= 0 is possible only if the same transition can occur by means of both
M(E1) and M(M1) radiation. Normally this is forbidden by parity selection rules,
but it becomes possible owing to the action of neutral weak currents, as we have seen.

The photon emission of individual atoms is too weak to be investigated directly, but
one can measure the collective effect of many atoms. One sends, for example, linearly
polarized light of a frequency corresponding to the 7p1/2–6p1/2 transition through a
test-tube filled with Tl vapor. Linearly polarized light can be decomposed into equally
large parts of right and left circularly polarized light. Owing to the different refractive
indices of the vapor, they are shifted with respect to each other in phase and ampli-
tude such that the outgoing light is elliptically polarized and the polarization plane is
rotated. This rotation of the polarization plane is measured. A schematic picture of the
experimental set-up is shown in Fig. 6.23.

22 M.A. Bouchiat and C. Bouchiat: Journal de Physique 35, 899 (1974).
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Fig. 6.23. Experimental set-
up for measuring the rotation
of the polarization plane

To conclude this chapter, we wish to state two points of view which show the
special importance of these atomic-physics experiments:

1. Unlike in all other experiments, one probes here the low-energy behavior of the
contribution of the neutral weak current. Hence one can check the energy depen-
dence of the effective coupling constant of weak interactions, which is – through
higher-order Feynman diagrams – determined by the interaction of intermediate
vector bosons among each other (see also Sect. 6.2). These couplings are deter-
mined by the gauge invariance of the theory but are still not experimentally con-
firmed.

2. These experiments test the quark substructure of nuclei. This idea was developed as
a result of deep-inelastic scattering experiments for large energies and is based on
the assumption of nearly independent quarks. If quark–quark correlations became
important in the low-energy experiments considered here, this might lead to a dis-
crepancy between theory and experiment, from which one could draw conclusions
concerning these correlations. Therefore experiments dealing with parity violation
in atoms also probe the substructure of atomic nuclei.

6.5 Biographical Notes

GELL-MANN, Murray, physicist, ∗ 15.9.1929 in New York, professor at the California Insti-
tute of Technology in Pasadena. He worked on the theory of elementary particles, especially on
form factors, symmetry groups and Regge poles. At the same time as Y. Ne’eman, G.-M. de-
veloped the eight-fold way model of baryons and mesons. For this work he received the Nobel
Prize in 1969.

CABIBBO, Nicola, theoretical physicist, ∗ 30.4.1935 in Rome, since 1965 professor of The-
oretical Physics at the University of Rome in Italy, president of the Institutio Nazionale di
Fisica Nucleare. He mainly worked in theoretical elementary particle physics. In 1963 he was
the first to formulate the universality of the weak interaction in terms of the mixing between
strangeness-changing and strangeness-preserving processes (the Cabibbo mixing-angle).



Nuclear Beta Decay 7

7.1 The MIT Bag Model

Up to now we have developed the theory of the weak nuclear interaction at the level
of the quarks, that is to say, of the constituents of the hadrons. In order to describe
the weak interactions of the hadrons themselves we must in addition know how the
hadrons are made up of quarks, that is, we must know the wave functions of the quarks
within the hadrons. This problem has not yet been completely solved, but there are a
number of models which reflect some properties of the hadrons quite well.1 One of the
best known of these models is the so-called MIT bag model,2 which we shall now use
to calculate the ratio gA/gV for the nucleon. In the case of the MIT bag model, one
assumes that the quarks can move freely within a sphere of radius R (Fig. 7.1), subject
to some boundary conditions at the surface of the bag. Since the nucleons represent
the lowest baryon states, the quarks should have wave functions without angular or
radial nodes. The most general solution of the Dirac equation,

Fig. 7.1. Schematic view of
the neutron in the MIT bag
model

Φ = N

⎛

⎝
Φ ′

σ · p̂
E + m

Φ ′

⎞

⎠ with Φ ′ =
(
Φ1

Φ2

)
, (7.1)

is given in this case by

Φ±(r) = N

⎛

⎝
j0(kr)χ±

ik

(E + m)
j1(kr)σrχ±

⎞

⎠ , (7.2)

where σr = σ · r/r , σ 2
r = 1, E2 = k2 +m2 and χ± are the unit two-component spinors

(see Exercise 7.1). The spherical Bessel functions are explicitly

j0(x) = sinx

x
, j1(x) = sinx

x2
− cosx

x
. (7.3)

To restrict the wave functions to the volume of the sphere (quark confinement), we
need a suitable boundary condition. The latter should imply that the current of the

1 R.F. Alvarez-Estrada, F. Fernandez, J.L. Sanchez-Gomez, V. Vento: Models of Hadron Structure
Based on Quantum Chromodynamics, Lect. Notes Phys., Vol. 259 (Springer, Berlin, Heidelberg, New
York, 1986).
2 A. Chodos, R.C. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf: Phys. Rev. D9, 3471 (1974);
A. Chodos, C.B. Thorne, V.F. Weisskopf: Phys. Rev. D12, 2733 (1975).

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8_7, © Springer-Verlag Berlin Heidelberg 2009
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particles perpendicular to the surface vanishes, that is, that the quarks cannot leave the
hadronic volume:

n · Φ̄γΦ|s = 0 , n = r/r . (7.4)

This is ensured by the linear condition, the so-called bag-equation

n · γΦ|s = iΦ|s , (7.5)

since together with the adjoint equation

Φ̄n · γ |s = −iΦ̄|s , (7.6)

multiplication by Φ̄ and Φ yields

+iΦ̄Φ|s = Φ̄γ · nΦ|s = −iΦ̄Φ|s . (7.7)

The expression must hence vanish identically:

Φ̄Φ|s = n · Φ̄γΦ|s = 0 . (7.8)

In the standard representation of the γ matrices (see Appendix A.2) the boundary
condition (7.4) for the solutions of the Dirac equation in a spherical volume of radius
R given in (7.2) is:

N

(
0 σr

−σr 0

)⎛

⎝
j0(kR)χ±

i k

(E + m)
j1(kR)σrχ±

⎞

⎠= iN

⎛

⎝
j0(kR)χ±

ik

(E + m)
j1(kR)σrχ±

⎞

⎠ . (7.9)

Independent of the spin direction this implies the condition

j0(kR) = k

(E + m)
j1(kR) . (7.10)

In the bag model of the hadronic particles one assumes that u and d quarks have only
a very small rest mass but a large kinetic energy owing to their confinement within a
small volume. In fact the mass of a hadron is mainly due to the zero-point motion of
the quarks. In the limit m � 1/R condition (7.10) assumes the form

j0(kR) = j1(kR) . (7.11)

Insertion of the analytic expressions (7.3) for the Bessel functions yields

tan(kR) = kR

1 − kR
. (7.12)

The lowest solution of this equation is

k = x0/R , x0 ≈ 2.04 . (7.13)

The size of the hadronic volume is fixed by the requirement that the kinetic pressure of
the confined quarks equals the volume pressure exerted from the exterior onto the sur-
face. One assumes that the “true” vacuum (of quantum chromodynamics) is some kind
of medium which refuses the penetration of quarks carrying color. Within the hadronic
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volume the quarks must expel the true vacuum, which requires energy. Because of the
thermodynamic relation

Evac = −PvacV , (7.14)

where Evac is the energy and V the volume, a pressure Pvac can be attributed to the
vacuum. From the view of the hadron this pressure is negative, because if there were
no quarks, the volume would shrink to zero. We set

Pvac = −B , i.e. Evac = BV , (7.15)

B is called the bag constant. The value of B is the actual parameter of the MIT bag
model and must be fixed by comparison with the hadronic mass spectrum. The re-
quirement that at the surface of the hadron there is a balance between internal quark
pressure and external vacuum pressure is equivalent to the fact that an infinitesimal
displacement of the surface requires no energy. If we restrict ourselves to spherical
forms, this means that the equilibrium radius R must fulfill the condition

d

dr
Etot(r) = d

dr

(
Evac +

∑

i

E(Qi)

)∣∣∣∣
r=R

= 0 . (7.16)

Here E(Qi) denotes the energy eigenvalue of the quark number i. According to (7.13)
it holds that

E(Qi) =
√
k2 + m2

i ≈ k = x0

r
(7.17)

for the u and d quarks in the ground state, so that, also using (7.14), (7.15), the condi-
tion

d

dr

(
4π

3
Br3 + NQ

x0

r

)∣∣∣∣
r=R

= 0 (7.18)

results, where NQ is the number of quarks or antiquarks in the hadron. For baryons
NQ = 3 and for mesons NQ = 2.

So far we have considered no interaction at all except that of the quark confine-
ment. Comparison with the mass spectra of baryons and mesons reveals that one must
introduce an additional contribution of the form

Eint = −z0

r
(7.19)

in the energy balance. The numerical constant z0 has a value of about 1.5–2. The
corrected equation (7.18) then yields an equilibrium radius R of the hadron of

R =
(
x0NQ − z0

4πB

)1/4

. (7.20)

For the nucleon, that is, NQ = 3, one obtains, together with the standard value of the
bag constant

B1/4 = 145 MeV = (1.36 fm)−1 , (7.21)

the nucleon radius

RN ≈ 0.78B−1/4 = 1.05 fm . (7.22)
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Using this for the mean square radius, one thus obtains the value (see Exercise 7.2)

〈r2 〉1/2 ≈ 0.73RN ≈ 0.75 fm , (7.23)

which is in good agreement with the value obtained by electron scattering at the pro-
ton.

EXERCISE

7.1 The Ground State in the MIT Bag

Problem. Show that (7.2) is a solution of the Dirac equation (7.1).

Solution. We set

Φ ′(x) = Φ ′(r) = j0(kr)χ± . (1)

Then we get for the lower part of the four-spinor

(σ · p̂)Φ ′(r) = −iσ · r

r

d

dr
j0(kr)χ±

= −iσrkj
′
0(kr)χ± = iσrkj1(kr)χ± , (2)

where we have set σr = σ · r/r . Furthermore, we have used the coordinate represen-
tation of the momentum operator, p̂ = −i∇ . After division by (E + m) this yields the
spinor of (7.2).

EXERCISE

7.2 The Mean Square Radius of a Nucleon

Problem. Calculate the mean square radius of a nucleon.

Solution. First we must calculate the normalization constant N in the wave func-
tion (7.2):

1 =
∫

d3xΦ†(x)Φ(x)

= 4πN2

R∫

0

r2dr
(
j0(kr)

2 + j1(kr)
2) , (1)

where we have set m = 0 and performed the integration over the solid angle. In addi-
tion we have used

χ
†

±χ± = χ
†

±σ 2
r χ± = 1 , (2)
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because

σ 2
r = 1 . (3)

If we insert the explicit expressions for the Bessel functions (7.3), then (1) together
with x0 = kR yields

1 = 4π(N/k)2
R∫

0

dr

(
1 + sin2 kr

(kr)2
− 2

sin kr

kr
coskr

)

= 4πN2

k3

kR∫

0

dx

[
1 − d

dx

(
sin2 x

x

)]

= 4πN2

k3

(
kR − sin2 kR

kR

)

= 4πN2

k3

(
x0 − sin2 x0

x0

)
, (4)

which determines N . The expectation value of r2 is then

〈r2 〉 =
∫

d3xxr2Φ†(x)Φ(x)

= 4π

(
N

k

)2 R∫

0

r2dr

[
1 − d

d(kr)

(
sin2 kr

kr

)]

= 4πN2

k5

kR∫

0

x2dx

[
1 − d

dx

(
sin2 x

x

)]

= 4πN2

k5

[(
x3

3
− x sin2 x

)∣∣∣∣
kR

0
+ 2

kR∫

0

dx sin2 x

]

= 4πN2

k5

[
1

3
(kR)3 − kR sin2 kR + kR − sin kR coskR

]

= 4πN2

k5

[
1

3
x3

0 + x0 cos2 x0 − sinx0 cosx0

]
, (5)

where we have performed a partial integration. Using condition (7.11) this can be
recast in the form

〈r2 〉 = 4πN2

k5

(
1

3
x3

0 − x0 cosx0 sinx0

)
. (6)

If we divide by (4), the normalization constant drops out:

〈r2 〉 = R2
1
3x

2
0 − sinx0 cosx0

x2
0 − sin2 x0

. (7)
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If we insert x0 ≈ 2.04 and take the square root, we obtain

〈r2 〉1/2 ≈ 0.73R . (8)

This proves (7.23).

EXERCISE

7.3 Parameter Fit to the Hadronic Mass Spectrum

Problem. Determine the constants B and z0 of the MIT bag model by trying to
explain the masses of the non-strange baryons. Base this “fit” on the masses of the
nucleon (MN = 939 MeV), Δ particle (MΔ = 1232 MeV), η meson (Mη = 549 MeV)
and ω meson (Mω = 783 MeV).

Fig. 7.2. Spin configuration
of N, Δ, η and ω

Solution. Because of (7.18), (7.19) the mass of a hadronic particle, to lowest order,
has the value

M = Evac + EQ + Eint = 4π

3
BR3 + x0NQ − z0

R
. (1)

Insertion of the equilibrium radius (7.20) leads to the formula

M = 4

3
(x0NQ − z0)

3/4(4πB)1/4 . (2)

Now the example of the nucleon and delta reveals that the mass obviously also depends
on the orientation of the quark spins: antiparallel spins lead to a lower mass, while
parallel spins lead to a higher mass (one calls this the “chromomagnetic” interaction
of the quark spins). The mass difference between the η and ω mesons confirms this
principle.

The degenerate states we obtained in our simple version of the MIT bag model are
thus split by a spin–spin interaction. The same is true for the degenerate states of the
meson. The mean baryon mass is thus

MB = 1

2
(MN + MΔ) = 1085.5 MeV , (3)
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likewise we obtain for the meson mass

MM = 1

2
(Mη + Mω) = 666 MeV . (4)

The mass formula (2) therefore yields

MM

MB
=
(

2x0 − z0

3x0 − z0

)3/4

= 0.614 . (5)

If we insert x0 ≈ 2.04 and solve for z0, we get the value

z0 ≈ 1.86 . (6)

Insertion of this constant into the mass formula (2) yields for the bag constant

B1/4 = [4π(3x0 − z0)
−3/4]3

4
MB ≈ 145 MeV . (7)

7.2 Beta Decay of the Neutron

Now we want to study the decay of the neutron into a proton at the level of quarks.
Our most important aim will be to find an explanation for the ratio between the axial
vector and vector coupling strength, CA/CV (6.6). Microscopically, in the decay of
the neutron, one of the d quarks becomes a u quark under emission of an electron and
an antineutrino:

Fig. 7.3. Beta decay of the
neutron

That part of the charged quark current (6.42), which transforms a d quark into a
u quark is responsible for the decay

J (+)
μ (d → u) = cos θC

[
ūγμ(1 − γ5)d

]
. (7.24)

We must now consider the transition between two three-particle wave functions, which
are constructed in the right way to describe particles of spin 1/2 and isospin 1/2. Spin
and isospin are both described by the group SU(2); one can combine them in the group
SU(4).3 The complete spin–isospin wave function of a neutron with spin up is3,4

|n ↑〉 = −1/(6
√

2)
[|u(1)d(2)d(3)〉 + |d(1)u(2)d(3)〉 − 2|d(1)d(2)u(3)〉]

× [| ↑ (1) ↓ (2) ↑ (3)〉 + | ↓ (1) ↑ (2) ↑ (3)〉 − 2| ↑ (1) ↑ (2) ↓ (3)〉]

3 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 2001), Exercise 62.1.
4 See also F.E. Close: Introduction to Quarks and Partons (Academic Press, London, 1979).
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+ 1

2
√

2

[|u(1)d(2)d(3)〉 − |d(1)u(2)d(3)〉]

× [| ↑ (1) ↓ (2) ↑ (3)〉 − | ↓ (1) ↑ (2) ↑ (3)〉] . (7.25)

Here the numbers 1, 2 and 3 in parenthesis denote the three quarks. Since the numbers
of the respective quarks can also be recognized by their order, we also write (7.25) in
short as

|n ↑〉 = − 1

6
√

2
|udd + dud − 2ddu〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+ 1

2
√

2
|udd − dud〉| ↑↓↑ − ↓↑↑〉 . (7.26)

The spin part of the wave function of a proton with spin up is the same as this; in the
isospin part one of the d quarks is replaced by a u quark. The wave function in the
short form is

|p↑〉 = 1

6
√

2
|udu + duu − 2uud〉| ↑↓↑ + ↓↑↑ −2 ↑↑↓〉

+ 1

2
√

2
|udu − duu〉| ↑↓↑ − ↓↑↑〉 . (7.27)

The arrows in the spinor part of the wave function stand for the Pauli spinors contained
in the Dirac spinors (7.2)

| ↑〉 = χ+(r) , | ↓〉 = χ−(r) . (7.28)

If we omit the factor cos θC, according to (7.24) the transition operator for a single
d quark is given by

γ μ(1 − γ5)T̂+ , (7.29)

where the isospin-raising operator T̂+ transforms the d quark into a u quark. Since the
nucleon contains three quarks, the whole transition operator reads

3∑

i=1

γ
μ

(i)
(1 − γ

(i)
5 )T̂

(i)
+ . (7.30)

First we want to check which four-vector components we have to calculate. The index
“+” or “−” of the spinor (7.2) is denoted as ε = ±1. For the sake of generality we
first write the spinor with undetermined radial functions f (r) and g(r):

Φε =
(
f (r)χε

ig(r)σrχε

)
(7.31)

For the quarks in the MIT bag there are in particular, according to (7.2), the functions

f (r) = Nj0(kr) , g(r) = Nk

(E + m)
j1(kr) . (7.32)

Now we consider the components of the transition operator (7.29):
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(i) Φ̄εγ
0Φε = Φ†

εΦε = f (r)2 + g(r)2 .

(7.33)
(ii) Φ̄εγΦε = Φ̄εγ0γΦε = Φ†

εαΦε = Φ†
ε

(
0 σ

σ 0

)
Φε .

If we do not consider spin-flip processes, that is, if the quark in the initial state has the
same spin as in the final state, only the component σ3 contributes. For this component
we find, with σ3χε = εχε , that

Φ†
ε

(
0 σ3

σ3 0

)
Φε = −if (r)g(r)χ†

ε σ3σrχε

− if (r)g(r)χ†
ε σrσ3χε

= −if (r)g(r)ε[χ†
ε σrχε − χ†

ε σrχε] = 0 . (7.34)

The spatial part of the vector coupling thus does not contribute.

(iii) Φ̄εγ
0γ 5Φε = Φ†

ε γ5Φε = Φ†
ε

(
0 I

I 0

)
Φε

= if (r)g(r)χ†
ε σrχε + (−i)f (r)g(r)χ†

ε σrχε

= 0 . (7.35)

The zero component of the axial vector thus does not contribute either.

(iv) Φ̄εγ γ5Φε = Φ†
εαγ5Φε = Φ†

ε

(
σ 0
0 σ

)
Φε . (7.36)

Again only σ3 contributes:

Φ†
ε

(
σ3 0
0 σ3

)
Φε = f (r)2χ†

ε σ3χε + g(r)2χ†
ε σrσ3σrχε . (7.37)

Using the Pauli algebra one finds

σrσ3σr = 1/r2(σ · r)σ3(σ · r) = 1/r2(σ · r)(σ3z − σ1x − σ2y)σ3

= 1/r2[z2 − x2 − y2 + (σ1σ3 − σ3σ1)xz + (σ2σ3 − σ3σ2)yz
]
σ3

= 1/r2(z2 − x2 − y2)σ3 + 2z/r2(xσ1 + yσ2) (7.38)

because of the anti-commuting of the Pauli matrices,

(σ1σ3 − σ3σ1)σ3 = σ1σ
2
3 + σ 2

3 σ1 = 2σ1 , etc. (7.39)

Integration over the angles yields

∫
dΩ(σrσ3σr) =

2π∫

0

dϕ

+1∫

−1

d(cos θ)
[
σ3(cos2 θ − sin2 θ)

+ 2 cos θ sin θ(cosϕσ1 + sinϕσ2)
]

= 2πσ3

+1∫

−1

d(cos θ)(2 cos2 θ − 1) = −2π · 2

3
σ3 . (7.40)
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On the other hand,
∫

dΩσ3 = 4πσ3, and we thus obtain for the angle-integrated matrix

element

∫
dΩΦ†

ε

(
σ3 0
0 σ3

)
Φε = 4π

(
f (r)2 − 1

3
g(r)2

)
χ†
ε σ3χε

= 4πε

(
f 2 − 1

3
g2
)

. (7.41)

For the spinors of the quarks confined to the nucleon, therefore, only the zero compo-

nents of the vector part and the spatial (three-) component of the axial-vector part

contribute to the transition. This is exactly the same structure as obtained in the

non-relativistic limit (see (1.3) and Exercise 1.3). In the case of highly relativistic

quarks, on the other hand, the two lower components of the four-spinor also give an

essential contribution. Returning to the starting point of our consideration, we cal-

culate the ratio of the transition amplitudes of the axial vector current for a single

quark:

δ =
∫

d3xψ̄εγ
3γ5ψε∫

d3xψ̄εγ 0ψε
= 4πε

∫ R
0 r2dr(f 2 − 1

3g
2)

4π
∫ R

0 r2dr(f 2 + g2)

= ε

[
1 − 4

3

∫ R
0 r2drg2

∫ R
0 r2dr(f 2 + g2)

]
. (7.42)

For non-relativistic quarks we would have δ = ±1, but for the relativistic quarks of the

MIT bag model we obtain a correction, which we now calculate. To this end we insert

the expressions (7.32) for f (r) and g(r), setting kr = x. We then need the following

elementary integrals:

I0 =
R∫

0

r2drj0(kr)
2 = k−3

kR∫

0

dx sin2 x = 1

2k3
(kR − sin kR coskR) , (7.43)

I1 =
R∫

0

r2drj1(kr)
2 = k−3

kR∫

0

dx

(
sinx

x
− cosx

)2

= k−3

kR∫

0

dx

[
cos2 x − d

dx

(
sin2 x

x

)]

= 1

2k3

(
kR + sinkR coskR − 2

sin2 kR

kR

)
. (7.44)

Neglecting the rest mass, k/(E + m) = 1, and we obtain for the ratio (7.42)
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|δ| = 1 − 4

3

I1

I0 + I1
= 1 − 4

3

kR + sinkR coskR − 2 sin2 kR/kR

2kR − 2 sin2 kR/kR

= 1

3
− 2

3

sin kR coskR − sin2 kR/kR

kR − sin2 kR/kR

= 1

3
− 2

3

tankR − tan2 kR/kR

kR(1 + tan2 kR) − tan2 kR/kR
. (7.45)

Here we have used the relation (cos2 kR)−1 = 1 + tan2 kR. The boundary condition
(7.12) of the bag wave function is tan(kR) = kR/(1 − kR). We can use this to elimi-
nate tan(kR), yielding

|δ| = 1

3
− 2

3

kR(1 − kR) − kR

kR(1 − kR)2 + (kR)3 − kR
= kR

3(kR − 1)
= x0

3(x0 − 1)
. (7.46)

For the value from (7.13), x0 = kR ≈ 2.04, we obtain

|δ| ≈ 0.655 , (7.47)

that is, for a single quark the strength of the axial-vector coupling is lowered by
about 1

3 .
The strength of the vector coupling is, according to (7.33), given by

〈
p↑
∣∣∣∣∣

3∑

i=1

T̂
(i)

+

∣∣∣∣∣n↑
〉

, (7.48)

while the strength of axial-vector coupling according to (7.41), (7.47) is given by the
matrix element

−δ

〈
p↑
∣∣∣∣∣

3∑

i=1

σ
(i)
3 T̂

(i)
+

∣∣∣∣∣n↑
〉

. (7.49)

Here the bra vector simply denotes the adjoint wavefunction,

〈p↑| = |p↑〉† (note |p↑〉 ≡ |p↑〉†γ 0) .

We first consider (7.48). The isospin-raising operator T̂ (i)+ first acts only on the ith
quark. It transforms a d quark into a u quark and eliminates all parts of the wave
function where the ith quark is already a u quark:

T̂+(i)|d(i)〉 = |u(i)〉 , T̂+(i)|u(i)〉 = 0 . (7.50)

For the particular parts of the wave function (7.26) we thus have

T̂+(1)|u(1)d(2)d(3) + d(1)u(2)d(3) − 2d(1)d(2)u(3)〉
= |0 + u(1)u(2)d(3) − 2u(1)d(2)u(3)〉
= |uud − 2udu〉 , (7.51a)

and further, in abbreviated notation,
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T̂+(2)|udd + dud − 2ddu〉 = |uud − 2duu〉 , (7.51b)

T̂+(3)|udd + dud − 2ddu〉 = |udu + duu〉 , (7.51c)

T̂+(1)|udd − dud〉 = − |uud〉 , (7.52a)

T̂+(2)|udd − dud〉 = |uud〉 , (7.52b)

T̂+(3)|udd − dud〉 = |udu − duu〉 . (7.52c)

Combining all these contributions, we end up with the following result:

3∑

i=1

T̂+(i)|n↑ 〉 = − 1

6
√

2
|2uud − udu − duu〉|↑↓↑ + ↓↑↑ + 2↑↑↓〉

+ 1

2
√

2
|udu − duu〉|↑↓↑ − ↓↑↑〉 = |p↑〉 , (7.53)

as a comparison with the wave function (7.27) of the proton shows.
The matrix element (7.48) therefore has the value

〈
p↑
∣∣∣∣∣

3∑

i=1

T̂+(i)
∣∣∣∣∣n↑
〉

= 1 . (7.54)

In the case of the axial-vector matrix element we additionally need to determine the
action of the Pauli matrices σ3(i) on the spin part of the wave function. The elementary
formula for this reads

σ3(i)|↑(i)〉 = |↑(i)〉 , σ3(i)|↓(i)〉 = − |↓(i)〉 . (7.55)

Using this relation we obtain

σ3(1)|↑↓↑ + ↓↑↑ − 2↑↑↓〉 = |↑↓↑ − ↓↑↑ − 2↑↑↓〉 , (7.56)

and so on. Combining this with (7.51), (7.52), we obtain

3∑

i=1

σ
(i)
3 T̂

(i)
+ |n↑〉 = − 1

6
√

2

(|uud − 2udu〉|↑↓↑ − ↓↑↑ − 2↑↑↓〉

+ |uud − 2duu〉|−↑↓↑ + ↓↑↑ − 2↑↑↓〉
+ |udu + duu〉|↑↓↑ + ↓↑↑ + 2↑↑↓〉)

+ 1

2
√

2

(− |uud〉|↑↓↑ + ↓↑↑〉 + |uud〉| − ↑↓↑ − ↓↑↑〉

+ |udu − duu〉|↑↓↑ − ↓↑↑〉)

= − 1

6
√

2

(−4|uud〉|↑↑↓〉 + |udu〉| − ↑↓↑ + 3↓↑↑ + 6↑↑↓〉

− |duu〉|3↑↓↑ − ↓↑↑ + 6↑↑↓〉)

− 1

2
√

2

(
2|uud〉|↑↓↑ + ↓↑↑〉 − |udu − duu〉|↑↓↑ − ↓↑↑〉)
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= − 1

6
√

2

(
2|uud〉|3↑↓↑ + 3↓↑↑ − 2↑↑↓〉

+ |udu〉|−↑↓↑ + 3↓↑↑ + 6↑↑↓〉
+ |duu〉|3↑↓↑ − ↓↑↑ + 6↑↑↓〉)

+ 1

2
√

2
|udu − duu〉|↑↓↑ − ↓↑↑〉 . (7.57)

Finally we must form the matrix element with 〈p↑|. In doing this we must take care of
the fact that every part in which a quark has a different spin or isospin on the left-hand
and right-hand sides equals zero. As an example, we study the first term of (7.57).
Here only that part of the wave function (7.27) which contains the three quarks in the
isospin combination uud〉 contributes because

〈uud|uud〉 ≡ 〈u(1)u(2)d(3)|u(1)u(2)d(3)〉 = 1 ,
(7.58)

〈udu|uud〉 = 〈duu|uud〉 = 0 .

Thus we find that

〈p↑||uud〉|3↑↓↑ + 3↓↑↑ − 2↑↑↓〉
= 1

6
√

2
(−2)
〈↑↓↑ + ↓↑↓ − 2↑↑↓∣∣3↑↓↑ + 3↓↑↑ − 2↑↑↓〉

= − 1

3
√

2
(3 + 3 + 4) = − 10

3
√

2
. (7.59)

The evaluation of the other terms is done in the same way. Finally we obtain

〈
n↑
∣∣∣∣∣

3∑

i=1

σ3(i)T̂+(i)
∣∣∣∣∣n↑
〉

= − 1

72

[−4〈uud|uud〉10

+ 〈udu|udu〉(−10) + 〈duu|duu〉(−10)
]

− 1

24

[〈udu|udu〉(−4) − 〈duu|duu〉4
]

+ 1

24

[〈udu|udu〉0 − 〈duu|duu〉0
]

+ 1

8

[〈udu|udu〉2 + 〈duu|duu〉2
]

= 60

72
+ 8

24
+ 4

8
= 5

3
. (7.60)

The ratio of axial-vector and vector coupling strengths is thus, according to (7.42),

CA

CV
= −δ

〈p↑|∑i σ3(i)T̂+(i)|n↑ 〉
〈p↑|∑i T̂+(i)|n↑ 〉 = − 5

3

(
1 − 4

3

∫ R
0 r2drg2

∫ R
0 r2dr(f 2 + g2)

)
. (7.61)
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For the relativistic quarks of the MIT bag model this yields (in the limit m � R−1)
with (7.47) the numerical value

CA

CV
= − 5

3
× 0.655 = −1.09 , (7.62)

compared with the experimental value (6.6)
(
CA

CV

)

exp
= −1.255 ± 0.006 .

The correspondence is thus much better than it would have been for non-relativistic
quarks. In other words, in the limit m 
 E the lower component of the Dirac spinor
is very small (g(r) � f (r)) and consequently we would have δ ≈ 1, or (CA/CV)nr =
− 5

3 = −1.67.
It thus becomes apparent that the experimental value of the ratio CA/CV can be

understood only in a relativistic quark model. The fact that the value (7.64) of the
MIT bag model is about 15% too small indicates that in reality the motion of quarks

Fig. 7.4. Bag potential with soft
boundary

in the nucleon is not as highly relativistic as is assumed in the MIT bag model. An
improved model could be one where the boundary region is not sharp, as in the MIT
bag model, but has a certain thickness, in which the quarks are slowed down and then
reflected to the interior of the hadron. In the boundary region the motion of the quark
would not be highly relativistic, so that the lower component g(r) of the wave function
would become smaller and the quantity δ correspondingly larger. Such models can be
constructed by including the quarks in a deep potential pocket with a soft boundary5

(see Fig. 7.4).

7.3 Nuclear Beta Decay

In the last section we looked at how to describe the decay of a proton into a neutron at
the level of the elementary constituents of these particles, that is, at the level of quarks.
The effective hadronic transition current for the decay of the neutron, according to
these discussions (see also (6.2)), is given by

J
μ

(N)(x) = ψ̄p(x)(γ
μ − C′

Aγ
μγ5)ψn(x) , (7.63)

where

C′
A = −CA/CV = +1.255 . (7.64)

Together with the current–current Hamiltonian (6.1), one obtains the following ex-
pression for the S-matrix element in nuclear beta decay:

Sf i(n → pe−ν̄) = −i
∫

dtHint

= −i
G√

2
cos θC

∫
d4x(J

μ

(N)(x)J
(L)
μ (x)† + h.c.)

5 L. Wilets: Nontopological Solitons (World Scientific, Singapore, 1989).
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= −i
G√

2
cos θC

∫
d4x
[
ψ̄p(x)γ

μ(1 − C′
Aγ5)ψn(x)

]

× [ψ̄eγμ(1 − γ5)ψν(x)
]+ h.c. . (7.65)

The Hermitian-conjugate expression describes the processes p → ne+ν and pe− →
nν, which are called inverse beta decays. In (7.65) the wave functions ψp,ψn,ψe are,
most generally, not the wave functions of free particles. Rather, the proton and neutron
are in most cases bound in a nucleus, while the electron feels the charge of the atomic
nucleus.

ψp(x) = ψp(x) exp(−iEpt) (7.66a)

ψn(x) = ψn(x) exp(−iEnt) (7.66b)

are thus localized wave functions in the atomic nucleus, to which no definite momen-
tum can be attached. In the case of the electronic wave function

ψe(x) = ψe(x) exp(−iEet) , (7.67)

the Coulomb distortion must be taken into account. As we already mentioned in
Sect. 1.1, the nuclear transition energies

�Ef i = En − Ep − Ee − Eν (7.68)

are usually of the order of several MeV, that is, larger than the electron mass. Both
leptons therefore usually move relativistically, and their momenta are of the order of
magnitude pe,pν ≈ 1 MeV/c. We can conclude from this that the recoil of the atomic
nucleus can be neglected, because the transferred energy

Erecoil ≈ p2
e

2MNA
≈ (2000A)−1 MeV (7.69)

is small compared to the transition energy. Here MN is the nucleon mass and A the
number of nucleons in the nucleus. Furthermore, the wave functions ψe(x),ψν̄ are
practically constant over the nuclear volume, since Rpe and Rpν̄ � 1, R being the
nuclear radius.

Fig. 7.5. Density distribution
of the electron near the nu-
cleus

Finally, the motion of the nucleons in the nucleus is to a good approximation non-
relativistic, that is, Ep ≈ En ≈ MN. If we split the wave function of the nucleon into a
large upper and a small lower component,

ψ(x) =
⎛

⎝
χ(x)

− iσ ∇χ(x)
(2MN)

⎞

⎠≈
(
χ(x)

0

)
, (7.70)

according to our considerations in Exercise 1.3, we can express those components
of the nuclear transition term that survive in the non-relativistic limit by the upper
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component χ(x) alone:

ψ̄p(x)γ
0ψn(x) ≈ χ†

p (x)χn(x) , (7.71)

ψ̄p(x)γ γ5ψn(x) ≈ χ†
p (x)σχn(x) . (7.72)

This corresponds exactly to (1.4), (1.5), where we had already introduced the names
Fermi transitions for decays due to the transition current (7.71), and Gamow–Teller
transitions for decays according to (7.72).

In the case of the beta decay of a nucleus any neutron can transform into a pro-
ton. To take this into account, we write the total wave function of the nucleus as an
antisymmetric product of the individual nucleon wave functions (Slater determinant):

χ(xk) ≡ A[χp1(x1) · · ·χpz(xZ)χn1(xz+1) · · ·χnA−Z
(xA)] , (7.73)

where A denotes the antisymmetrization operator. Let χi(x1, . . . ,xA) be the wave
function of the atomic nucleus in the initial state and χf (x1, . . . ,xA) that of the nu-
cleus in the final state. Then the matrix elements of the many-body states correspond-
ing to (7.71), (7.72) are

〈f |T̂+ |i〉 =
A∑

k=1

∫
d3x1 · · ·d3xAχ

†
f (x1 · · · xA)T̂ (k)+ χi(x1 · · · xA) , (7.74)

〈f |σ T̂+ |i〉 =
A∑

k=1

∫
d3x1 · · ·d3xAχ

†
f (x1 · · · xA)σ(k)T̂

(k)
+ χi(x1 · · · xA) . (7.75)

Here T̂ (k)+ is the isospin-raising operator for the kth nucleon. If the latter is (initially)

a neutron, T̂ (k)+ converts it into a proton; if it is already a proton, then T̂ (k)+ annihilates
the whole wave function.

The time integral over the stationary wave functions in (7.65) yields
∫

dt exp
[
i(Ept − Eet + Ent + Eνt)

]= 2πδ(Ee + Eν + Ep − En) . (7.76)

If we denote the leptonic transition current by j (eν)μ (x),

j (eν)μ (x) = ψ̄e(x)γ
ν(1 − γ5)ψν(x) , (7.77)

the transition matrix element in lowest approximation takes the form

Sf i = G√
2

cos θC2πδ(Ee + Eν − ΔEf i)

× [〈f |T+ |i〉j0
(eν)(0) + C′

A 〈f |σT+ |i〉 · j (eν)(0)
]

. (7.78)

Since the leptonic current, as mentioned above, varies only slightly in the region of
the nucleus, we have replaced j (eν)μ (x) in the spatial integral by j (eν)μ (0) and put the
constant value in front of the integral.

The transitions that can be described under the approximations discussed, are called
allowed transitions. For practical purposes they constitute the most important class of
beta decays. Disallowed or forbidden transitions are present if the leptons are emitted
with higher angular momentum, such that j (eν)μ (0) = 0. In these cases the full spatial
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and momentum dependence of the transition operator must be taken into account. In
such cases the decay probability per unit time is many orders of magnitude smaller
than in the case of allowed decays.

As already mentioned, transitions due to the matrix element 〈f |T̂+ |i〉 are called
Fermi transitions. In their case the spins of the electron and neutrino are paired to the
total spin S = 0 (that is, the leptons are emitted in the singlet state 1S0). Transitions
due to the matrix element 〈f |σ T̂+ |i〉 are called Gamow–Teller transitions; in their
case the spins of the leptons are coupled to a total spin S = 1 (triplet state 3S1). For
the nuclear decay, therefore, the following angular-momentum selection rules hold:

Fermi transition: Jf = Ji , (7.79)

Gamow–Teller transition:

{
Jf = Ji (except when Ji = Jf = 0)

Jf = (Ji ± 1)
. (7.80)

Since the lepton pair has no orbital angular momentum, the parity of the nucleus re-
mains unchanged in any case.

According to (7.80), transitions between two nuclear 0+ levels such as

14O(O+) → 14∗N(O+) ,

are pure Fermi transitions. Transitions with |Ji − Jf | = 1 are always pure Gamow–
Teller transitions, such as

6He(O+) → 6Li(1+) ,

or the decay of the nucleus 60Co, which has been discussed extensively in Sect. 1.2.
Transitions with Ji = Jf �= 0 are, however, mostly mixed, among them also the fun-
damental decay process of the free neutron, n → p.

7.4 Properties of Allowed Beta Decays

In the calculation of the leptonic transition current j (eν)μ (0) (7.77) it is important to
take into account the “distortion” of the electron wave function due to the Coulomb
field in the vicinity of the nucleus. The wave function of the antineutrino, on the other
hand, can be considered a free wave, since the neutrino carries no charge. In order to
determine the influence of the Coulomb potential on the electron wave, one solves the
Dirac equation for continuum states in the potential of a point nucleus of charge Ze.
The result is that the probability density near the nucleus is increased, namely by the
factor6

|ψe,Z(r)|2

|ψe,Z=0(r)|2
= 2(1 + γ )(2pr)−2(1−γ )

× exp(πZαE/p)
|Γ (γ − iZαE/p) |2

Γ (2γ + 1)2
. (7.81)

6 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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Here r denotes the distance from the centre of the atomic nucleus, and

p = (E2 − m2
e)

1/2 , (7.82a)

γ = (1 − Z2α2)1/2 . (7.82b)

Since γ < 1, the expression diverges in the limit r → 0, which can be traced back
to the fact that the Coulomb potential of a point-like charge distribution is singular.
Considering the size of the nucleus, one finds that the electron density in practice
stops increasing in the interior of the nucleus, so that the correct factor of increment is
obtained by insertion of the nuclear radius R for r in (7.81), to a good approximation.
As is common, we denote this factor by F(E,Z):

F(E,Z) = |Ψe,Z(R)|2

|Ψe,Z=0(R)|2
. (7.83)

The factor (2pR)−2(1−γ ) is of importance only for heavy nuclei; in the case of
light nuclei it can in practice be neglected. For instance, for 16O, that is, Z = 8,
E = 1.1 MeV, it has the value 1.012.

With the Coulomb correction factor, we obtain, starting with (7.78), the following
expression for the nuclear decay probability per unit time:

dW = 1

T
|Sf i |2 d3p

(2π)3
d3k

(2π)3

= δ(Ee + Eν − �Ef i)

(2π)52Ee2Eν
F(Ee,Z) |A0

f i | 2d3pd3k , (7.84)

with the matrix element

A0
f i = G√

2
cos θC

[〈f |1|i〉ūe(p, s)γ
0(1 − γ5)vν(k, t)

+ C′
A 〈f |σ |i〉 · ūe(p, s)γ (1 − γ5)vν(k, t)

]
. (7.85)

Here p and s are the momentum and spin of the electron, k and t are the momentum
and spin of the antineutrino, and ue(p, s) and vν(k, t) are the free spinors, respec-
tively,

ue(p, s) =
⎛

⎝
χs

σ · p

Ee + me
χs

⎞

⎠ , (7.86a)

vν(k, t) =
⎛

⎝
σ · k

Eν
χt

χt

⎞

⎠ . (7.86b)

It is useful to distinguish between two classes of experiments. On the one hand, those
which measure the polarization of the electrons in a probe of unpolarized atomic nu-
clei and, on the other, those in which the initial nuclei may be polarized but where
the spins of the particles in the final state are not observed. The degree of longitudi-
nal polarization of the electrons is independent of the structure of the nuclear tran-
sition; it is simply a result of the structure of the leptonic matrix element. Choosing
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as a basis the eigenstates of the helicity operator Λ = σ · p/p, with p = |p|, we ob-
tain

P± = u†
e(λ = ±1)

1

2
(1 − γ5)ue(λ = ±1)

= 1

2

(
χ†,± p

E + m
χ†
)(

1 −1
−1 1

)⎛

⎝
χ

± p

E + m
χ

⎞

⎠

= 1

2

(
1 ∓ 2p

E + m
+ p2

(E + m)2

)
χ†χ

= 1

2

(
1 ± p

E + m

)2

= E ∓ p

E + m
, (7.87)

where we have made use of the relativistic energy–momentum relation and of the
normalization χ†χ = 1. The polarization is thus simply

P = P+ − P−
P+ + P−

= − p

E
= −v

c
, (7.88)

independent of whether we deal with a Fermi transition, a Gamow–Teller transition,
or a mixed transition. For β decays with positron emission, which are due to the ele-
mentary process p → ne+νe, we have, correspondingly, P = +v/c, since the positron
is emitted with right-handed chirality. (One simply replaces the projection operator
in (7.87) by (1 + γ5)/2). As discussed in Sect. 1.1, the prediction (7.88) is confirmed
by experimental data.7

In the second class of experiments we can average over the lepton spins, causing a
reduction of the leptonic matrix elements to Dirac traces:

|A0
f i |2(G cos θC)

−2 = |〈1〉|2Tr
{
(/p + me)γ

0(1 − γ5)/kγ
0}

+
∑

i,j

|C′
A |2 〈σi〉∗ 〈σj 〉Tr

{
(/p + me)γ

i(1 − γ5)/kγ
j
}

+
∑

i,j

C′
A 〈1〉∗ 〈σi〉Tr

{
(/p + me)γ

i(1 − γ5)/kγ
0}

+
∑

i,j

C′
A

∗ 〈1〉〈σi〉∗Tr
{
(/p + me)γ

0(1 − γ5)/kγ
i
}

. (7.89)

Here we have made use of the relation (1 − γ5)
2 = 2(1 − γ5) and we have also abbre-

viated the transition matrix elements 〈f |Ô|i〉 of the nucleus by 〈Ô〉. If, as is usual,
the polarization of the nucleus after the decay is not measured, the nuclear matrix ele-
ments must be summed over the final-state nuclear spins. The simplest case is that of
a 0+ → 0+ transition, for which the Gamow–Teller matrix elements 〈σi〉 vanish. The
Dirac trace of the first term reads

Tr
{
(/p + me)γ

0(1 − γ5)/kγ
0} = Tr

{
/pγ 0/kγ 0}= 4pμkν(2g

μ0gν0 − gμνg00)

= 8p0k0 − 4(p, k) = 4(p0k0 + p · k) , (7.90)

7 D.M. Lazarus, J.S. Greenberg: Phys. Rev. D2, 45 (1970).
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so that we obtain the result

dW(0+ → 0+) = (2π)−5(G cos θC)
2δ(Ee + Eν − �Ef i)F (Z,Ee)

× |〈f |1|i〉|2
(

1 + p · k

EeEν

)
d3p d3k , (7.91)

where p0 = Ee, k0 = Eν , and the nuclear-spin summation is omitted. The direction-
dependent factor can also be written in the form (1 + βe · nν), where

βe = p/Ee (7.92)

is the velocity of the electron and

nν = k/Eν = k/|k| (7.93)

is the unit vector in the direction of emission of the neutrino. If the nuclear spin of the
final state is different from that of the initial state, we deal with a pure Gamow–Teller
transition, and the Fermi matrix element 〈f |1|i〉 vanishes. Then only the second term
in (7.85) contributes, the Dirac trace of which is, according to the standard rules (see
Appendix A.2)

Tr
{
(/p + me)γ

i(1 − γ5)/kγ
j
}

= Tr
{
/pγ i(1 − γ5)/kγ

j
}

= 4pμkν(g
μigνj − gμνgij + gμjgνi − iεμiνj ) . (7.94)

Because of the symmetry in the indices i and j the last term in (7.94) does not con-
tribute, and after the summation over the nuclear spins in the final state one obtains

dW(Jf = Ji ± 1, Jf = Ji)

= (2π)−5(G cos θC)
2δ(Ee + Eν − �Ef i)F (Z,Ee)|C′

A |2

× |〈f ||σ ||i〉|2
{

1 − 1

3
βe · nν + 2

3
κi Ĵ · (nν − βe)

+ Λf i

[
1

3
βe · nν − (Ĵ · βe)(Ĵ · nν)

]}
d3p d3k . (7.95)

Here Ĵ is the unit vector in the direction of the polarization of the atomic nuclei before
the decay, and 〈f ||σ ||i〉 is the so-called reduced nuclear matrix element, the value of
which no longer depends on the spin projection. Here we have used the Wigner–Eckart
theorem8

〈JfMf |σ [1]
μ |JiMi〉 = (Ji1Jf |MiμMf )〈Jf ||σ [1]

μ ||Ji〉 .

The matrix element of the spin-one operator σ [1]
μ , given in spherical coordinates, can

be expressed through a Clebsch–Gordan coefficient and a matrix element which is

8 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).
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independent of the spin projection μ. Λf i has a value dependent on the initial and
final spin,

Λf i = 3〈Mi〉2 − Ji(Ji + 1)

Nf i

, (7.96a)

with

Nf i =

⎧
⎪⎨

⎪⎩

Ji(2Ji − 1) (Jf = Ji − 1)

−Ji(Ji + 1) (Jf = Ji)

(Ji + 1)(2Ji + 3) (Jf = Ji + 1)

. (7.96b)

Finally

κi =

⎧
⎪⎨

⎪⎩

1 (Jf = Ji − 1)

1/(Ji + 1) (Jf = Ji)

−Ji/(Ji + 1) (Jf = Ji + 1)

. (7.96c)

The general case of a mixture of Fermi and Gamow–Teller transitions is quite com-
plicated.9 In the special case Ji = Jf = 1/2, which is important for the elementary
process n → pe−ν̄e and for the decay of the tritium nucleus, 3H → 3He + e− + ν̄e,
one obtains

dW

(
1

2
→ 1

2

)
= (2π)−5(G cos θC)

2δ(Ee + Eν − ΔEf i)F (Z,Ee)d
3p d3k

× {a + bβe · nν + AĴ · nν + BĴ · βe } (7.97)

with the coefficients

a = |〈f |1|i〉|2 + C′ 2
A |〈f ||σ ||i〉|2 , (7.98a)

b = |〈f |1|i〉|2 + 1

3
C′ 2

A |〈f ||σ ||i〉|2 , (7.98b)

A = − 2

3
C′ 2

A |〈f ||σ ||i〉|2 + 2√
3
C′ 2

A 〈f |1|i〉〈f ||σ ||i〉 , (7.98c)

B = 2

3
C′ 2

A |〈f ||σ ||i〉|2 + 2√
3
C′ 2

A 〈f |1|i〉〈f ||σ ||i〉 . (7.98d)

Here account has already been taken of the fact that C′
A is real; otherwise an additional

term of the form

−2/
√

3Im(C
′
A)〈1〉〈σ 〉Ĵ · (βe × nν) (7.99)

would occur in the brackets of (7.97), which violates time-reversal invariance.
If we integrate over the emission directions of the leptons, the angular-dependent

terms in (7.91), (7.95), (7.97) drop out and only the total strength factor (7.98a) re-
mains:

a = |〈f |1|i〉|2 + C′ 2
A |〈f ||σ ||i〉|2 . (7.100)

9 J.D. Jackson, S.B. Treiman, H.W. Wyld, Jr.: Nucl. Phys. 4, 206 (1957).
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If we further integrate over the unobserved energy of the neutrino, we obtain the ex-
pression for the energy spectrum of the electrons in the allowed β decay:

dW

dE
= (4π)2

(2π)5
(G cos θC)

2aF(Z,E)p2 dp

dE

∞∫

0

E2
νdEνδ(E + Eν − �Ef i)

= (G cos θC)
2

2π3
aF(Z,E)E(E2 − m2

e)
1/2(�Ef i − E)2θ(�Ef i − E) .

(7.101)

Here we have used the fact that the neutrino is massless, hence |k| = Eν , and we
have dropped the index “e” for the electron energy. Usually the electron spectrum is
represented in a Kurie plot, by division with the phase-space factor pE and taking the
square root:

K(E) =
(

dW/dE

F(Z,E)pE

)1/2

=
(

a

2π3

)1/2

G cos θC(�Ef i − E)θ(�Ef i − E) . (7.102)

If one plots the experimental values for dW/dE in this manner, one expects a falling
straight line, which ends exactly at the point corresponding to the total available energy
(the energy E of the electron includes its rest mass!). However, this end point is only
identical to the transition energy if the rest mass of the (anti)neutrino is zero.

Careful measurements of the electron spectrum in tritium decay,10

3H → 3He + e− + ν̄e ,

led to the upper limit of the neutrino rest mass

mν̄e < 20 eV .

For a more detailed account of these experiments see Example 7.4.

Fig. 7.6. Kurie plot of the
electron spectrum of tritium
β decay (H. Kawakami et al.:
1985 INS Symposium, Uni-
versity of Tokyo, p. 115)

10 W. Kündig et al.: Nucl. Phys. A478, 425c (1988).
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The total decay rate of the atomic nucleus is obtained if we integrate (7.101) over
the energy of the electron. In this context there occurs the so-called Fermi integral

f0(Z,�Ef i) =
�Ef i∫

me

dEF(Z,E)pE(�Ef i − E)2 , (7.103)

which cannot be expressed analytically in the case of Z �= 0. For Z = 0 one obtains

f0(0,Δ) = 1

30
d3(Δ2 + 4m2

e) − 1

4
dΔ2m2

e + 1

4
m4

eΔ ln

(
Δ + d

me

)
, (7.104)

where we have used the abbreviation Δ = �Ef i and d = (Δ2 − m2
e)

1/2. The Fermi
integral f0(Z,�Ef i) is tabulated over a wide range of Z and �Ef i .11 With its aid
we obtain for the decay rate

1

τ
= W =

∫
dE

dW

dE
= a

2π3
(G cos θC)

2f0(Z,�Ef i) . (7.105)

In real life the value of the Fermi integral must still be corrected by a few percent, in
order to take into account effects such as finite nuclear size, electron screening, radi-
ation corrections and contributions of “forbidden” transitions. Then an experimental
value for G cos θC can be deduced from the lifetime τ of the atomic nucleus, if one
knows the transition strength a:

G cos θC =
(

2π3

aτf0

)1/2

. (7.106)

While in general the nuclear matrix elements 〈f |1|i〉 and 〈f |σ |i〉 cannot be calculated
precisely, some 0+ → 0+ decays represent an exception, for example,

10C → 10B , 14O → 14N , 34Cl → 34S ,

42Sc → 42Ca , 46V → 46Ti , 54Co → 54Fe .

In these cases one deals with pure Fermi transitions between two atomic nuclei which
belong to an isospin triplet of nuclei with identical internal structure (for example,
10Be − 10B − 10C in the first transition above). The matrix element 〈f |1|i〉 then re-
duces to the isospin matrix element

〈T = 1, T3 = 0|T̂− |T = 1, T3 = +1〉 = √
2 , (7.107)

up to electromagnetic corrections to nuclear structure of less than one percent. Hence,
in these cases a = 2 and G cos θC can be precisely determined from the nuclear life-
time. Such measurements lead to the value (6.3)

G cos θC = Gβ = (1.1492 ± 0.0003) × 10−5 GeV−2 . (7.108)

11 See, for example, National Bureau of Standards Applied Mathematic Series B, “Tables for Analy-
sis of Beta Spectra”, Chap. 2, 1952.
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It is customary to give time the so-called ft value instead of the mean lifetime. By this
one means the product of the Fermi integral and half-life period:

“ft” = f0t 1
2

= f0τ ln2 = 2π3ln2

(G cos θC)2a
. (7.109)

EXAMPLE

7.4 Determination of the Antineutrino Mass in Tritium Decay

If we do not set the mass mν of the antineutrino ν̄e equal to zero, the integral over the
phase space of the neutrino in (7.101) is modified as follows:

∞∫

0

E2
νdEνδ(E + Eν − �Ef i) →

∞∫

0

k2dkδ(E + Eν(k) − �Ef i)

=
∞∫

mν

(E2
ν − m2

ν)
1/2EνdEνδ(E + Eν − �Ef i)

2

= (�Ef i − E)
[
(�Ef i − E)2 − m2

ν

]1/2
Θ(�Ef i − E − mν) . (1)

The end point of the electron spectrum is thus shifted by the rest mass of the neutrino,

E <�Ef i − mν , (2)

and at the same time the form of the spectrum near the end point is modified:

K(E) =
(

a

2π3

)1/2

G cos θC(�Ef i − E)

[
1 − m2

ν

(�Ef i − E)2

]1/4

. (3)

The total transition energy available in tritium decay,

3H → 3He + e− + ν̄e ,

is

�Ef i − me = 18.60 keV , (4)

and a determination of the end point of the beta spectrum with an accuracy of 10−4

seems quite possible. This should enable the neutrino mass to be determined to within
a few electron volts.

The problem in the experiment is essentially that the emitted electrons can lose
some of their energy on their way from the nucleus to the detector by atomic and
chemical effects. The electron which is emitted with high energy can ionize the atomic
electron of the tritium and thus lose about 15–20 eV, or excite electrons of other atoms
if the tritium is built into a chemical compound. (This is usually the case in many ex-
periments, because in this way one can build compact solid targets, while free tritium
is gaseous.) For some years a research group in Moscow (Russia) has been reporting
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Fig. 7.7. A non-vanishing rest
mass of the electron neutrino
would modify the beta spec-
trum in the vicinity of the up-
per end point

values of the neutrino mass12 in the range 20 eV < mν < 46 eV, but the validity
of this result was doubted by many experts. Experiments at the Institute for Nuclear
Studies in Tokyo,13 Los Alamos National Laboratory,14 and at the ETH in Zürich15

have indicated that mν < 46 eV. More recent results of tritium beta-decay experiments
of Mainz and Troitsk16 have further reduced the upper limit for the mass of the electron
neutrino to

mνe < 2.2 eV . (5)

The KATRIN experiment, being built at the Forschungszentrum Karlsruhe in Ger-
many, is designed to measure the mass of the electron neutrino directly with a sensi-
tivity of down to 0.2 eV.17

Information about neutrino masses can also be extracted from completely new
sources. On 24 February 1987 a supernova of a star of mass M ≈ 20M$ in the Large
Magellanic Cloud (this is a small satellite galaxy of our Milky Way, about 160 000
light years away) was observed. Not only was an immense increase of luminosity
observed (∼ 106L$), but also several neutrino events were registered in Kamioka
(Japan) and in Ohio (Irvine–Michigan–Brookhaven detector). From the fact that the
neutrinos were observed at all, and from an analysis of the different neutrino pulses
(their time dispersion during the time of flight of 160 000 years) a value for the mass
of the electron neutrino of mν ≤ 10 eV and a lifetime τν ≥ 5 × 1012(mν/Eν) s could
be deduced.18

12 V.A. Lubimov, E.G. Novikov, V.Z. Nozik, E.F. Tretyakov, V.S. Kosik: Phys. Lett. 94B, 266 (1980).
13 S. Kato et al.: Nucl. Phys. A478, 433c (1988).
14 R.G.H. Robertson, D.A. Knapp: Ann. Rev. Nucl. Part. Science 38, 185 (1988).
15 W. Kündig et al.: Nucl. Phys. A478, 425c (1988).
16 Ch. Kraus et al. [Mainz Collaboration]: Eur. Phys. J. C40, 447 (2005); V.M. Lobashev et al.
[Troitsk Collaboration]: Nucl. Phys. Proc. Suppl. 91, 280 (2001).
17 KATRIN Collaboration, http://www-ik.fzk.de/tritium/index.html.
18 K. Sato and H. Suzuki: Phys. Rev. Lett. 58, 2722–2725 (1987); K. Hirata et al.: Phys. Rev. Lett.
58, 1490–1493 (1987).

http://www-ik.fzk.de/tritium/index.html
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EXERCISE

7.5 Excitation of the Atomic Electron in the β Decay of Tritium

Problem. Calculate the probability for the atomic electron of a tritium atom to remain
in the ground state of helium after the decay. Use the so-called sudden approximation,
in which it is assumed that the wave function of the atomic electron cannot change
during the fast decay process.

Solution. The 1 s wave function of a one-electron atom with nuclear charge Z is

ψZ(r) = NZ exp(−Zr/a0) . (1)

Here r is the distance from the nucleus and a0 = 0.529 Å is the Bohr radius of the
hydrogen atom. The normalization factor NZ is determined by the requirement

1 =
∫

d3r|ψZ(r)|2 = 4πN2
Z

∞∫

0

r2dr exp(−2Zr/a0)

= 4πN2
Z2

(
a0

2Z

)3

= πN2
Za

3
0/Z

3 . (2)

If the wave function of the atomic electron after the beta decay is still given by ψ1(r),
then the probability of finding it in the ground state ψ2(r) of the helium atom is given
by

P =
∣∣∣∣
∫

d3rψ∗
2 (r)ψ1(r)

∣∣∣∣
2

=
∣∣∣∣∣4πN2N1

∞∫

0

r2dr exp(−2r/a0) exp(−r/a0)

∣∣∣∣∣

2

= [4πN2N12(a0/3)3
]2 = (8/9)3 ≈ 0.702 . (3)

In other words, we find the atomic electron in an excited state of helium or even
ionized with a probability of 30%.

EXERCISE

7.6 Determination of CA/CV from the Lifetime of a Neutron

Problem. Determine the value of C′
A from the measured lifetime of the neutron

τn = (898 ± 16) s .

Solution. In the decay n → pe−ν̄e the “nucleus” in the initial and final state has spin
1/2 and isospin 1/2. The Fermi matrix element is thus

〈f |1|i〉 =
〈
T = 1

2
, T3 = 1

2

∣∣∣∣T̂+
∣∣∣∣T = 1

2
, T3 = − 1

2

〉

= 1 . (1)
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The same is true for the isospin part of the Gamow–Teller matrix element. The spin
part of the latter, on the other hand, is given by

|〈f |σ |i〉|2 =
∑

Mf

∣∣∣∣

〈
J = 1

2
,Mf

∣∣∣∣σ̂
∣∣∣∣J = 1

2
,Mi

〉∣∣∣∣
2

= 4

〈
J = 1

2
,Mi

∣∣∣∣

(
1

2
σ̂

)2∣∣∣∣J = 1

2
,Mi

〉

= 4 × 1

2

(
1

2
+ 1

)
= 3 . (2)

Together with (7.98a) we therefore have

a = |〈f |1|i〉|2 + C′ 2
A |〈f |σ |i〉|2 = 1 + 3C′ 2

A . (3)

Starting with (7.105) for the decay rate we obtain the relation

1 + 3C′ 2
A = 2π3

τG2
βf0

, (4)

where Gβ is given by (7.108). Since the neutron carries no charge, we can use the
result (7.104) for the Fermi integral, where we insert the following energy difference
between the proton and neutron:

�Ef i = mn − mp = 1.293 MeV . (5)

This yields

f0 ≈ 0.057 MeV5 . (6)

We convert the units by insertion of � = 6.582 × 10−22 MeV s and obtain

1 + 3C′ 2
A = 2π3 × 6.582 × 10−22 MeV s

898 s × 1.152 × 10−22 MeV−4 × 0.057 MeV5
= 6.03 . (7)

This yields

|C′
A | ≈ 1.29 , (8)

which, with radiative corrections, and so on, is still slightly modified to the presently
accepted value19

|C′
A | = 1.25 . (9)

EXERCISE

7.7 An Astrophysical Limit to the Neutrino Mass

Problem. Use the fact that all neutrinos of the supernova 1987a appeared on earth
with energies between 7.5 and 35 MeV in a time interval of 12.4 s, and the known

19 A. Kropf, H. Paul: Z. Physik 267, 129 (1974).
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distance of 50 kpc (1 pc = 3.26 light years = 3.08 × 1013 km), to deduce an upper
limit for the mass of the electron neutrino.

Solution. The time of flight T needed to cover the distance L is

T (v) = L/v , (1)

where v is the velocity of the particle. Relativistically the latter is given by the ratio of
momentum p and energy E:

v = pc2

E
=
√
E2 − m2c4 c

E
= c

√

1 − m2c4

E2
, (2)

where m is the rest mass of the particle. In the case E 
 mc2, which is surely true
here, we have

v ≈ c

(
1 − m2c4

2E2

)
, (3)

or

T (v) ≈ L

c

(
1 + m2c4

2E2

)
. (4)

If two particles that have been simultaneously emitted and have energies E1 and E2,
respectively, appear during a time interval �T , it holds that

c�T ≥ 1

2
Lm2c4

∣∣∣∣
1

E1
− 1

E2

∣∣∣∣ (5)

and

mc2 <

(
2c�T

L

E2
1E

2
2

|E2
1 − E2

2 |
)1/2

. (6)

Insertion of the values given above yields a neutrino mass of

mνc
2 < 17 eV . (7)

The same method is, by the way, also applicable to deducing a limit for the mass
of the photon.20 In this case one uses, for example, the experimentally verified fact
that visible light (E1 ∼ 1 eV) and radio radiation (ν2 ∼ 100 MHz) from the Crab
pulsar, which has a period of 33 ms and a distance from the earth of 2 kpc, pulse
synchronously. With E2 = hν2 = 4 × 10−7 eV � E1 = 1 eV this yields

mγ c
2 <

(
2c�T

L

)1/2

E2

≈ 0.5 × 10−6 × 4 × 10−7 eV = 2 × 10−13 eV . (8)

This implies a range of the Coulomb force of at least

�/mγ c > 1000 km . (9)

20 G. Feinberg: Science 166, 879 (1969).
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Experiments in the laboratory21 yield a range of at least

�/mγ c > 3 × 104 km . (10)

EXAMPLE

7.8 Double β Decay20

So far, our theoretical treatment of the weak interaction has been based entirely on
first-order perturbation theory to the Fermi constantG, see (2.8). In fact, until recently,
second-order effects in G were only observed in the neutral kaon system, which will
be discussed in Chap. 8. In this system, perturbation theory is not applicable, owing
to the exact degeneracy of the states |K0 〉 and |K̄0 〉.

Any second-order effects in G are normally not observable in nuclear beta decay,
because they are exceedingly small. There is, however, one exception to this rule,
namely when the normal first-order beta decay is energetically forbidden, but a double
beta decay is energetically allowed. This is illustrated in Fig. 7.8, where the lowest
energy states of a neighboring triplet of isobaric nuclei are shown schematically. If
the proton and neutron number, Z and N , of the parent nucleus are both even, the
daughter nucleus in normal beta decay would be a double-odd nucleus. Such nuclei
usually are not strongly bound and are highly unstable. The “granddaughter” nucleus
(Z + 2,N − 2) is again an even–even nucleus and therefore strongly bound. In many
cases it is more strongly bound than the parent nucleus, for example, in 82Se, 76Ge,
100Mo, 136Xe, and 150Nd.

Fig. 7.8. Double beta decay
with intermediate virtual
states

Double beta decay can be understood as a normal effect of second-order perturba-
tion theory, where the accessible 1+ states of the daughter nucleus serve as intermedi-
ate states:

(Z,N)0+ −→ (Z+1,N−1)1+
︸ ︷︷ ︸

↓
+ e− + ν̄e

(Z+2,N−2)0+ + e− + ν̄e .

21 E.R. Williams, J.E. Faller, H.A. Hill: Phys. Rev. Lett. 26, 721 (1971).
20 A comprehensive discussion of this subject is provided by F. Boehm, P. Vogel: Physics of Massive
Neutrinos (Cambridge University Press, Cambridge, 1987).
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Since each step corresponds to an allowed Gamow–Teller transition, the theory devel-
oped in Sects. 7.3, 7.4 applies. The calculation is only complicated by the necessity
of summing over all 1+ states of the daughter nucleus, most of which are not known
experimentally. However, today quite accurate calculations are possible.21

Reflecting the smallness of G, the predicted half-lives for double beta decay are
extremely long, for example,

τ(82Se → 82Kr) = (1.1 ± 0.1) × 1020 years .

Until recently, indirect evidence for the existence of double beta decay came only from
geochemical analysis of isotopic element abundances, which showed an enhancement
of the decay products. In 1987 the first precise observation of double beta decay was
made in the laboratory for the decay 62Se → 82Kr, and a half-life of (1.1+0.8

−0.3)×1020

years was measured,22 in excellent agreement with theory.
The exceedingly tiny decay rate is mostly due to the small value of G, but to some

extent it is caused by the fact that the small energy release must be shared by four
leptons (2e−,2ν̄e). This leads to a large suppression of the phase-space factor describ-
ing the number of available final states. One may ask whether the transition could not
occur without emission of neutrinos. This process, which has not yet been observed,
is called neutrinoless double beta decay. Its existence would imply that νe and ν̄e are
not distinct particles, and that the lepton number is not exactly conserved.

The difference between the neutrino νe and antineutrino ν̄e was first demonstrated
in neutrino scattering experiments: νe and ν̄e trigger different reactions,

ν̄e + p −→ e+ + n , νe + n −→ e− + p ,

but an antineutrino does not react with a neutron. This was initially taken as proof
that νe and ν̄e are distinguished by a new quantum number (lepton number), but it can
also be understood simply in terms of helicity conservation if the weak interaction is
exactly of V–A type and the neutrino is massless. Then any antineutrino produced by
a weak decay is right handed, and it cannot initiate the same reaction as a left-handed
neutrino. In fact, it is entirely possible that νe and ν̄e are one and the same particle, in
the sense that a right-handed ν̄e is the same as a right-handed νe and a left-handed νe is
the same as a left-handed ν̄e. νe and ν̄e would then be only fancy notations for the two
helicity states of the neutrino. The possible identification of particle and antiparticle
states for neutral spin- 1

2 particles was originally pointed out by Majorana. The fermion
field is simply defined as

ψM = 1√
2
(ψ + ψc) , (1)

where ψc = iγ2ψ
∗ is the charge conjugated field. For massless neutrinos there is no

distinction between the “normal” Dirac neutrino and a Majorana neutrino, because
of exact helicity conservation. This would be different if the neutrinos had a small
mass, because the chirality and helicity differ from each other by an amount of order
(mν/Eν)

2, as discussed in (1.19)–(1.22) and in a different context in Exercise 6.3. In

21 P. Vogel, M.R. Zirnbauer: Phys. Rev. Lett. 57, 3148 (1986); O. Civitarese, A. Faessler, T. Tomoda:
Phys. Lett. B194, 11 (1987).
22 S.R. Elliot, A.A. Hahn, M.K. Moe: Phys. Rev. C36, 2129 (1987).
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this case a right-handed Majorana (anti)neutrino can behave like a left-handed Majo-
rana neutrino with a small probability, and neutrinoless double beta decay becomes
possible. Because phase space is only shared by two leptons in the reaction

(Z,N) −→ (Z + 2,N − 2) + 2e− , (2)

the decay rate is much less suppressed. On the other hand, the helicity mixing factor
(mν/E)

2 reduces the expected rate for this decay mode drastically. The two effects
balance each other for a Majorana neutrino mass of a few electron volts.

It is therefore possible to search for a small neutrino mass in double beta decay if
the neutrino is a Majorana particle. The experimental signal would be rather striking:
because there are no particles that escape undetected from reaction (2), the sum of
the electron energies adds up to the full nuclear transition energy �E, whereas the
sum energy spectrum yields a broad distribution peaking at 1/3�E (see Fig. 7.9).
Several experiments searching for neutrinoless double beta decay have been per-
formed,23 but the results have not been conclusive so far – see also the following
Example 7.9. From the data an upper limit on the mass of a Majorana neutrino can be
deduced:24

mνe ≤ 0.35 eV . (3)

Fig. 7.9. Schematic sum energy spectrum of the two electrons emitted in double beta decay.
The sum E12

e of the electron energies is plotted in units of the nuclear transition energy �E.
A broad spectrum is found for normal double beta decay (2e2ν̄); a narrow peak is predicted for
the neutrinoless double beta decay (2e0ν̄)

This result is relevant in the context of the proposed unified gauge theories of strong
and electroweak interactions (see Chap. 9), since many of these theories predict that
the known neutrinos νe, νμ, ντ are in fact Majorana particles.25 It is quite remarkable
that low-energy nuclear physics provides one of the best tests for theories of this type,
which are mostly concerned with the properties of elementary particles at energies of
the order of 1014 GeV.

23 See, for example, the reviews by F.T. Avignone, R.L. Brodzinski: Prog. Part. Nucl. Phys. 21, 99
(1988); and A. Faessler: Prog. Part. Nucl. Phys. 21, 183 (1988), and E. Fiorini: Double beta decay:
Experiments, J. Phys. Conf. Ser. 39, 243 (2006).
24 H.V. Klapdor-Kleingrothaus et al. [Heidelberg–Moscow Collaboration]: Eur. Phys. J. A12, 147
(2001).
25 J.W.F. Valle: Prog. Part. Nucl. Phys. 26, 91 (1991).
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7.9 The Majorana Neutrino

In the previous example we have learned that the neutrinoless double β decay is al-
lowed only if helicity is non-conserved. This means that to allow this decay mode the
neutrino has a non-vanishing mass and cannot be distinguished from an antineutrino,
i.e. it has to be identical with its antiparticle. A Majorana neutrino has these proper-
ties. In this example we want to construct a mass term which allows the neutrinoless
double β decay.

Fig. 7.10. Neutrinoless dou-
ble β decay. The symbol ⊗
denotes a mass insertion of the
Majorana type

In order to allow the process depicted in Fig. 7.10 the mass term must couple left-
handed neutrinos to right-handed anti-neutrinos. If we consider a mass term of the
Dirac type

LD = mD(ψ̄ψ) = md(ψ̄LψR + ψ̄RψL) (1)

we realize that this term couples left- and right-handed components of the same field.
The eigenstate of the mass is

ψ = ψL + ψR . (2)

However, we are interested in a mass term which couples the right-handed component
of a field to the left-handed one of its charge-conjugated counterpart and vice versa.
In this context we recall the conventions of the charge conjugation transformation.

ψc = Cγ 0ψ∗ = iγ 2ψ∗ ; ψ̄c = ψT C (3)

and we use the following abbreviation

ψc
L := (ψL)

c = 1

2
(1 + γ5)ψ

c = (ψc)R . (4)

A mass term of the Majorana type couples the right- with the left-handed components
of charge-conjugated fields

LMA = mA(χ̄χ) = ma(ψ̄
c
LψL + ψ̄c

LψL) ,
(5)

LMB = mB(ω̄ω) = mb(ψ̄
c
RψR + ψ̄c

RψR) .

The eigenstate of the mass is

χ = ψL + ψc
L ,

(6)
ω = ψR + ψc

R .

Obviously the fields are self-conjugated under charge conjugation:

χ = χc ; ω = ωc . (7)

This means that a particle and its antiparticle are identical. If we consider a mass term
which contains both Dirac and Majorana particles, we obtain a Lagrangian density
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LCM = mDψ̄LψR + mAψ̄
c
LψL + mBψ̄

c
RψR + h.c.

= 1

2
D(χ̄ω + ω̄χ) + Aχ̄χ + Bω̄ω

= (χ̄ , ω̄)

(
A 1

2D
1
2D B

)(
χ

ω

)
. (8)

The matrix can be diagonalized and we obtain the eigenvalues for the mass

M1,1 = 1

2

{
(A + B) ±

√
(A − B)2 + D2

}
, (9)

which belongs to the Majorana eigenstates

η1 = cos θχ − sin θω ,
(10)

η2 = sin θχ + cos θω ,

with

tan(2θ) = D

A − B
. (11)

The inversion of (9) leads to

D = (M1 − M2) sin(2θ) ,

A = M1 cos2 θ + M2 sin2 θ , (12)

B = M1 sin2 θ + M2 cos2 θ .

The most general mass term (8) of a Dirac spinor therefore consists of two Majorana
particles of different masses M1 and M2. The commonly known formalism for Dirac
fields can be reconstructed for A = B = 0 and θ = π/4.

Due to the coupling of different fields, the mass terms (5) violate the conservation
of any additive number the field ψ carries, e.g. the electric charge. Therefore no el-
ementary fermions, except the neutrinos, can have Majorana masses A = B = 0. In
the case of the neutrino, the mass term (5) violates conservation of the lepton number
(�L = 2). If Majorana neutrinos exist, then the neutrinoless β decay and Kaon decays
of the form K− → π+e+e− should be experimentally accessible.

There are speculations that the lepton number might not be conserved and that
the corresponding symmetry is spontaneously broken. The breaking of the symmetry
is treated in an analogous fashion to the Higgs mechanism. The spontaneous sym-
metry breaking leads to a massless Goldstone boson, which is called the majoron.
Experiments searching for this majoron in the neutrinoless double β decay so far re-
main inconclusive.26 The Heidelberg–Moscow experiment27 established a limit for
the neutrino–majoron coupling of gνχ < 8.1 × 10−5. The same collaboration gives
a mass limit of the neutrino of mνe < 0.35 eV. Their claim to have observed actual
neutrinoless double β decay events remains controversial.

26 An overview of recent experiments can be found in E. Fiorini: J. Phys. Conf. Ser. 39, 243 (2006).
27 H.V. Klapdor-Kleingrothaus et al. [Heidelberg–Moscow Collaboration]: Eur. Phys. J. A12, 147
(2001).
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7.10 The Solar Neutrino Problem

The energy radiated from the sun’s surface is produced in the interior of the sun by a
fusion of light nuclei to heavier, more strongly bound nuclei. The starting point of a
whole chain of fusion processes are light hydrogen nuclei (protons), which in several
steps, through deuterium nuclei, 2H, fuse into helium 4He. The complete chain is
represented in Fig. 7.11, where the branching ratios, as calculated in the standard
model of the structure of the sun, are also given.

Fig. 7.11. Nuclear fusion
chain in the sun

Since the cross sections for the single reactions strongly depend on energy, these
ratios are very sensitive to the temperature in the interior of the sun. If one succeeded in
measuring the relative frequency of the single reactions, then the astrophysicists would
have a sensitive thermometer for the interior of a star. Unfortunately, the shell of the
sun is so dense that all electrons and photons that are set free, and that could easily
be measured, are absorbed. (This fact is, of course, very fortunate, since otherwise
the earth would be bombarded by hard gamma radiation!) The only reaction products
which reach the Earth’s surface are the neutrinos produced in the nuclear reactions.
Unfortunately, those of the most important reactions (p + p → 2H + e+ + νe, 7Be +
e− →7 Li + νe) have energies of less than 1 MeV. Even the neutrinos emitted in the
reaction p + p + e− → 2H + νe have a maximum energy of 1.44 MeV. The problem is
simply that the reaction

37Cl + νe → 37Ar + e− , (1)

which is used for the detection of the neutrinos, has an effective threshold of 5.8 MeV
and has a nearly vanishing response to all neutrinos of lower energy (below 0.814 MeV



Example 7.10

7.4 Properties of Allowed Beta Decays 281

the reaction is completely forbidden). With this method one can detect only the neutri-
nos from the reaction (7Be + p → 8B + γ , 8B + γ → 8Be∗ + e+ + νe), the maximum
energy of which is 14 MeV.

Since this reaction type only occurs with a frequency of 0.015%, the expected
counting rate on earth is relatively low. According to the standard solar model,28 a rate
of

(5.8 ± 0.7) SNU (2)

is expected, where the abbreviation SNU stands for solar neutrino unit:

1 SNU = 10−36 reactions/(37Cl atom · s) . (3)

The first experimental search for solar neutrinos has been carried out since 1965 by
R. Davies and collaborators in the Homestake goldmine in South Dakota.29 The total
detector material of 615 tons of perchlorethylene (C2Cl4) is deep below the earth’s
surface, largely screened from cosmic radiation. On average, 0.47 ± 0.04 events per
day are observed and 0.08 ± 0.03 events must be traced back to cosmic radiation.
After subtracting this background, a reaction rate of

(2.0 ± 0.3) SNU (4)

resulted, only about one third of the expected value!
This surprising result has for many years worried astrophysicists and nuclear and

elementary-particle physicists alike, but a plausible explanation has been advanced by
two Russian physicists, Mikheev and Smirnov.30 At first it was thought that there was
an error in the standard model of the structure of the sun, which yielded the predicted
value (2). Steady improvements, however, have always confirmed the original value.
On the nuclear-physics side, it was believed for a long time that the energy dependence
of the reactions contributing to the fusion chain was not sufficiently well known. How-
ever, in this domain also the old data were confirmed by better experiments.

Finally, particle physicists were thought to have found a reasonable explanation
for the phenomenon of neutrino oscillations (see Example 6.5). If one assumes that on
their long journey from the sun to the earth, electron, muon, and tau neutrinos are com-
pletely mixed, then only one third of the originally emitted electron neutrinos should
arrive as such on earth. One third of each would have been converted to muon and
tau neutrinos, to which the detection reaction (1) does not respond. A mass difference√
(�m2) ≈ 10−6 eV would already be enough for a sufficient mixture along the way.

This is below the detection limit in laboratory experiments (10−1 eV). However, the
angles of mixture between the different neutrino-mass eigenstates would have to be
equal in magnitude (about 30◦).31

28 J.N. Bahcall, W.F. Huebner, S.H. Lubow, P.D. Parker, R.G. Ulrich: Rev. Mod. Phys. 54, 767
(1982).
29 R. Davies, Jr., D.S. Harmer, K.C. Hoffmann: Phys. Rev. Lett. 20, 1205 (1968).
30 S.P. Mikheev, A.Yu. Smirnov: Sov. J. Nucl. Phys. 42, 913 (1985).
31 An extended discussion of the attempts to explain this problem can be found in the article “The
Solar Neutrino Puzzle” by W.C. Haxton: Comm. Nucl. Phys., as well as in H.V. Klapdor, B. Povh
(eds.): Neutrino Physics (Springer, Berlin, Heidelberg, 1988).
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In order to find a solution of the problem, several experiments (SAGE, GALLEX,
and GNO) have been prepared where 71Ga instead of 37Cl serves as a detector for the
neutrinos. The advantage is that the reaction

71Ga + νe → 71Ge + e− (5)

has a threshold far below 1 MeV and thus is also sensitive to the neutrinos of the
reaction p + p → 2H + e+ + νe,p + p + e− → 2H + νe. The frequency with which
these reactions occur, on the other hand, is nearly beyond any doubt, because they
determine the energy balance of the sun. The observed deviation of the predicted event
rate of 122 SNU has unambiguously proven that the original neutrinos had been lost
on their way to earth.

As already mentioned, a plausible explanation for the experimental suppression
factor has been given by S.P. Mikheev and A.Yu. Smirnov, which we will discuss
shortly. In doing this we follow largely the presentation of Hans A. Bethe.32 In this
explanation one starts with the assumption that neutrinos are not massless and that the
mass matrix is not diagonal with respect to electron and muon neutrino, but diagonal
with respect to the linear combination ν1 and ν2, where the corresponding neutrino
wave functions are connected as follows (see Example 6.5, (3)):
(
ψνe

ψνμ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
ψν1

ψν2

)
≡ Û

(
ψν1

ψν2

)
(6a)

and

(ψ†
νe
,ψ†

νμ
) = (ψ†

ν1
,ψ†

ν2
)Û† . (6b)

If the mass matrix has eigenvalue m1 for ν1 and m2 for ν2, then one finds for the
matrix of the squared masses in the representation of electron and muon neutrino that

(ψ†
ν1
,ψ†

ν2
)

(
m2

1 0
0 m2

2

)(
ψν1

ψν2

)

= (ψ†
νe
,ψ†

νμ
)Û

(
m2

1 0
0 m2

2

)
Û†
(
ψνe

ψνμ

)
, (7)

and furthermore that

1

2
(m2

1 + m2
2)Û

(
1 0
0 1

)
Û† + 1

2
(m2

1 − m2
2)Û

(
1 0
0 −1

)
Û†

= 1

2
(m2

1 + m2
2)

(
1 0
0 1

)
+ 1

2
(m2

1 − m2
2)

×
(

cos θ sin θ
− sin θ cos θ

)(
1 0
0 −1

)(
cos θ − sin θ
sin θ cos θ

)

= 1

2
(m2

1 + m2
2)

(
1 0
0 1

)
+ 1

2
(m2

1 − m2
2)

×
(

cos2 θ − sin2 θ −2 sin θ cos θ
−2 sin θ cos θ − cos2 θ + sin2 θ

)

= 1

2
(m2

1 + m2
2)

(
1 0
0 1

)
+ 1

2
(m2

2 − m2
1)

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)
≡ M̂2 . (8)

32 H.A. Bethe: Phys. Rev. Lett. 56, 1305 (1986).
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Essential for the explanation of the small number of measured electron neutrinos pre-
sented here is the interaction between neutrinos and electrons of the solar matter. This
is represented by the graph

and described by the Hamiltonian density – see Exercise 4.10, (4) –

Hint =
(−ig

2
√

2

)2( 1√
2 cos θW

)2 1

q2 − M2
Z

×2
(
ψ̄νeγ

μ(1 − γ5)ψνe

) · (−1) · (ψ̄eγμ(g
′
V − γ5)ψe

)
. (9)

The factor 2 stems from the fact that equation (4) of Exercise 4.10 yields twice
the contribution represented by the above graph. Here, g′

V = 1 − 4 sin2 θW ≈ 0, and
1/(q2 − M2

Z) is the propagator of the Z0, which in the low-energy limit approaches

1

q2 − M2
Z

q→0→ 1

−M2
Z

= − cos2 θW

M2
W

.

Hence, (9) becomes in the low-energy limit

Hint = g2

8M2
W

(
ψ̄νeγ

μ(1 − γ5)ψνe

)
(ψ̄eγμγ5ψe)

≈ G√
2

(
ψ̄νeγ

μ(1 − γ5)ψνe

)
(ψ̄eγμγ5ψe) , (10)

where we utilized (4.144). The interaction via the neutral current of (4.100),

Hneutral current ∼ g

2
√

2
J
(e)α
0 Zα

leads, by Z0 exchange, to the current–current interaction

Hcurrent-current ∼
(

g

2
√

2

)2

J
(e)α
0 J

(e)
0 α

which contains the contribution (9) of the interaction between electrons and electron
neutrinos.

In the rest frame of the sun, the mean current of the electrons equals zero, that is,

〈ψ̄eγ (1 − γ5)ψe 〉 = 0. (11)

Therefore, in (9) only the term with μ = 0 contributes. Now, in (11) we insert

ψe =
(
φe

χe

)
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and replace

ψ̄eγ
0(1 − γ5)ψe = (φ∗

e , χ
∗
e )

(
1 −1

−1 1

)(
φe

χe

)
≈ φ∗

eφe = ρe (12)

where ρe is the mean number of electrons per init volume. The before-last step is
allowed because of the electrons (φe) low energy, and therefore, the contribution of
the antiparticles (the positrons, χe) can be neglected.

For left-handed neutrinos we can further replace (1 − γ5) by 2 and thus obtain
finally

Hint = V ψ̄νeγ0ψνe , (13)

where

V = √
2Gρe . (14)

The electrons present therefore act on the neutrinos like the time-like component of a
four-potential. Hence we get the relation

k2 + m2 = (E − V )2 ≈ E2 − 2EV ≡ E2 − A , (15)

where we assume V to be very small, and where we can therefore neglect V 2. The
electrons, for a neutrino νe of energy E, thus have the same effect as replacing m2 by
m2 + A. We therefore write the matrix of the squared masses of νe and νμ as

M̂2 → M̂2 +
(
A 0
0 0

)

= 1

2
(m2

1 + m2
2 + A) + 1

2

(
A − Δ cos 2θ Δ sin 2θ
Δ sin 2θ −A + Δ cos 2θ

)
, (16)

where Δ = m2
2 − m2

1. The eigenvalues of this matrix are given by

m2
ν = 1

2
(m2

1 + m2
2 + A) ± 1

2

[
(Δ cos 2θ − A)2 + Δ2 sin2 2θ

]1/2
. (17)

The dependence of these eigenvalues on A is represented in the figure below. For
θ = 0, that is, if νe and νμ do not mix, these lie on the dashed lines, and at A = Δ

there is a level crossing. This is different if there is an interaction between νe and νμ,
that is, if θ �= 0. As one can see, in this latter case there is no level crossing; the levels,
so to speak, repel each other. For

A0 = 2
√

2GρeE0 = Δ cos 2θ (18)

the distance between the levels is a minimum. The idea now is the following. If in the
interior of the sun a neutrino of energy E > E0 is created, then in the figure below
this lies on the upper curve, near the place marked by a cross. If this neutrino passes
through the sun towards the sun’s surface, the electron density, and thus the magnitude
of A decreases. If this decrease occurs adiabatically, that is to say, if the electron den-
sity changes only slowly, the neutrino passes along the solid line, or, in other words,
the wave function of the neutrino is always given by the linear combination that cor-
responds to the higher-energy eigenvalue. This has the following consequence.
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An electron neutrino of sufficiently high energy that is created in the interior of
the sun appears at the surface as a neutrino eigenstate with the larger mass, m2. If the
mixing angle is small and, as expected, muon neutrinos have the larger mass, then the
neutrino at the solar surface will essentially appear as a muon neutrino. Only those
neutrinos which are created with E < E0 can, with large probability, be detected as
electron neutrinos on earth.

If this is the explanation for the missing solar neutrinos, one can set boundaries
on the region in which E0 can lie. E0 cannot be much smaller than the threshold of
the detector, because otherwise all observable neutrinos would be converted to muon
neutrinos and one would not see any electron neutrinos at all. In fact one observes
one third of the expected neutrinos, so that surely E0 � 1 MeV. On the other hand,
the high-energy neutrinos resulting from the reaction 8B → 8Be + e+ + νe will be
converted into muon neutrinos. This is only possible if E0 is significantly lower than
the maximum energy of 14 MeV, which is the maximum a neutrino of this reaction
can have; thus E0 � 10 MeV.

According to (18), one would have an explanation for the missing solar neutrinos
if

E0 = (m2
2 − m2

1)

2
√

2GFρe
(19)

(for small θ we set cos 2θ ≈ 1) were just of the described order of magnitude, which
would of course be a special coincidence. If one estimates the electron density ρe in
the interior of the sun in the region where the reaction with 8B takes place according
to the standard solar model to be about 4 × 1025/cm3 (see the quoted references of
Bahcall and Bethe), and if one assumes for E0 a value of 6 MeV, one finds for the
difference of the squared masses

m2
2 − m2

1 ≈ 6 × 10−5 eV2 , (20)

that is, for m1 � m2 we have

m2 ≈ 0.008 eV . (21)

Fig. 7.12. Dependence of the
masses of νe and νμ on the
density of the surrounding
matter

The proof of such a small mass difference in a laboratory experiment is extremely dif-
ficult. It would therefore be remarkable if one can determine the order of magnitude
of the mass difference of the neutrinos by the missing solar neutrinos. An essential
prediction of the presented model is that electron neutrinos of low energy are not
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converted into muon neutrinos and should therefore be observable on earth. If in the
experiment with the gallium detector one observed an event rate of around the pre-
dicted 122 SNU, this would hint at the correctness of the model discussed above. If
the event rate were significantly lower, one would have to find another explanation for
the missing solar neutrinos.

The first results of the GALLEX experiment were published33 in the summer of
1992. Averaged over an observation period of nearly one year, the experiment de-
tected a neutrino flux of 83 ± (statistical errors) ± (systematic errors). This result,
while marginally consistent with the presence of the full neutrino flux as predicted by
the standard solar model, confirms the reduced fluxes of high-energy solar neutrinos
observed in the previous experiments. The corresponding neutrino mass differences
and mixing angles are restricted to a very narrow range:

(a) sin2 2θ = 7 × 10−3 , �m2 ∼ 6 × 10−6 eV2 ,

or

(a) sin2 2θ = 0.6 , �m2 ∼ 8 × 10−6 eV2 .

The initial 1992 GALLEX results have essentially been confirmed by subsequent data:
The SAGE experiment, using 50 tons of gallium in metallic form, yielded a neu-
trino flux of34 66.9 ± 3.9(stat.) ± 3.6(sys.) SNU, and the final, combined result of
the GALLEX and GNO experiments give flux of35

φνe(GALLEX/GNO) = 69.3 ± 5.5(incl. sys.) SNU. (22)

Calculations36 and experimental data obtained by the Super-Kamiokande detector37

confirm that the total flux of 8B solar electron neutrinos amounts to only 36% of the
flux predicted by standard theoretical solar models.

Convincing experimental proof that the reduced flux of solar electron neutrinos is
caused by neutrino oscillations has been provided by the Sudbury Neutrino Obser-
vatory (SNO).38 The SNO detector, a 1000 ton heavy water Cherenkov detector, is
sensitive to both the 8B electron neutrino flux and the total neutrino flux, averaged
over all flavors. Data show that the electron neutrino component of the solar flux is
1.76 ± 0.05(stat.)± 0.09(syst.)× 106 (cm2 s)−1, while the non-electron neutrino com-
ponent is 3.41 ± 0.45(stat.) ± 0.48(syst.) × 106 (cm2 s)−1, providing strong evidence
for solar electron neutrino flavor transformation. The total flux measured is consistent
with solar models.

33 P. Anselmann et al. (GALLEX Collaboration), Phys. Lett. B285, 376 and 390 (1992); Phys. Lett
B357, 237 (1995), Erratum ibid. B361, 235 (1996).
34 V.N. Gavrin [SAGE Collaboration]: Nucl. Phys. Proc. Suppl. 91, 36 (2001).
35 M. Altmann et al. [GNO Collaboration]: Phys. Lett. B616, 174 (2005).
36 J.N. Bahcall, M.H. Pinsonneault: Rev. Mod. Phys. 67, 781 (1995).
37 J. Hosaka et al. [Super-Kamiokande Collaboration]: Phys. Rev. D 73, 112001 (2006).
38 Q.R. Ahmad et al. [SNO Collaboration]: Phys. Rev. Lett. 89, 011301 (2002).



7.5 Biographical Notes 287

7.5 Biographical Notes

BETHE, Hans Albrecht, physicist, ∗ 2.7.1906 in Strasbourg, †6.3.2005 in Ithaca (New York,
USA), professor at Cornell University in Ithaca. He was educated at the universities of Frankfurt
and Munich, obtaining his Ph.D. in 1928 under Sommerfeld. He worked under Rutherford in
Cambridge and Fermi at Rome, then taught physics at Munich and Tübingen until 1933, when
he emigrated to England and later to the United States. Bethe’s main contribution to science was
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DAVIS, Raymond, Jr, ∗ 14.10.1914 in Washington, D.C. (USA), †31.5.2006 in Blue Point (New
York, USA), was an American chemist and physicist. He graduated in chemistry from the Uni-
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in 1942. Upon his discharge from the army in 1946, Davis went to work at Monsanto Chemi-
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Energy Commission. In 1948, he joined Brookhaven National Laboratory, where he remained
until 1984. At Brookhaven, Davis developed a new form of neutrino detector, using a tank filled
with fluid tetrachloroethylene. He correctly reasoned that neutrinos from the sun would react
with the chlorine in the fluid to produce argon atoms. Running over more than 20 years, the
detector successfully captured neutrinos and proved that fusion was the source of energy from
the sun, but also evidenced the “solar neutrino puzzle.” Davies was awarded the 2002 Nobel
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detection of neutrinos.

MAJORANA, Ettore, ∗ 5.8.1906 in Catania (Italy), dropped out of sight in 1938, went to the
classical secondary school of Catania until the final examination in 1923. Afterwards he studied
engineering sciences in Rome until the last year of studies. 1928 transfer to the physics fac-
ulty and 1929 Ph.D. in theoretical physics under Fermi. Title of the thesis: “Quantum Theory
of Radioactive Atomic Nuclei”. In the subsequent years freelance collaborator at the Institute
of Physics in Rome. In 1933 he went to Germany (Leipzig) for some years and worked with
Heisenberg. This resulted in a publication on nuclear theory (Z. Phys. 82, 137 (1933)). In 1937
he published “The Symmetric Theory of Electron and Positron” and four years after his disap-
pearance the “Significance of Statistical Laws for Physics and Social Sciences” was published.



The Neutral Kaon System 8

8.1 The Particles KS and KL

There are four strange pseudoscalar mesons K+,K−,K0 and K̄0, which are all eigen-
states of the Hamiltonian of the strong interaction. Their quark content,1

K+ = (s̄u) , K0 = (s̄d) ,
(8.1)

K− = (ūs) , K̄0 = (sd̄) ,

shows that K+ and K− form a conjugate particle–antiparticle pair, as does the pair
K0 and K̄0. We are used to thinking that the charge of an antiparticle is opposite
to that of a particle, as is the case for the pair K+,K−. The pair K0, K̄0, however,
is neutral. Nevertheless, the K0 differs from the K̄0 in the signs of other quantum
numbers, namely isospin and strangeness:

K0 : T = 1

2
, T3 = − 1

2
, S = +1 ,

(8.2)
K̄0 : T = 1

2
, T3 = + 1

2
, S = −1 .

Fig. 8.1. The nonet of the
spin-0 mesons

Hence K0 and K̄0 are unambiguously different states. The situation is similar with the
neutron n and its antiparticle n̄. They differ in isospin and baryon number:

n(ddu) : T = 1

2
, T3 = − 1

2
, B = +1 ,

(8.3)
n̄(d̄d̄ū) : T = 1

2
, T3 = + 1

2
, B = −1 .

1 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8_8, © Springer-Verlag Berlin Heidelberg 2009
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There is a subtle distinction between these two cases: according to the present state
of experimental physics the baryon number is an absolutely conserved quantity of
nature;2 therefore a neutron can never transform into an antineutron. On the other
hand, we know that isospin and strangeness conservation are violated by the weak
interaction. Thus, despite the fact that K0 and K̄0 are different particles at the level
of the strong interaction, there is no reason why they should not be able to transform
into each other under the influence of the weak interaction. We see that this is in
fact possible, because K0 as well as K̄0 may decay weakly into the two-pion state
(π+π−). Therefore it must be possible for the K0 to transform into its antiparticle
via the intermediate system π+π− (see Fig. 8.2). It is easy to decompose the process
K0 ↔ K̄0 into reactions of the constituent quarks of the particles and to describe it in
the framework of the Salam–Weinberg theory (Fig. 8.3), or more schematically by the
graph shown in Fig. 8.4.

Fig. 8.2. The transformation
of a K0 into a K̄0 via an in-
termediate π†π− pair

Fig. 8.3. The transformation
in microscopic view. The
quark content of the meson is
shown

Fig. 8.4. Schematic represen-
tation of the K0–K̄0 trans-
formation in the microscopic
quark picture

In the Feynman–Stückelberg interpretation an antiparticle is simply a particle
moving backwards in time. On the other hand, the CPT theorem3 states that every
quantum-mechanical state is transformed into itself under the combined action of the
operations of charge conjugation and inversion of space and time. Hence the trans-
formation ĈP̂ , that is charge conjugation and simultaneous space inversion, may be
considered instead of time reversal. The transition amplitude 〈π+π− |S|K0 〉 becomes
the amplitude

−〈π+π− |ĈP̂ Ŝ (ĈP̂ )−1 |K̄0 〉
under the operation ĈP̂ , because only π+ and π− exchange their roles on the left–
hand side (the minus sign is connected with the internal parity (−) of the kaon (see
Exercise 8.1)).

2 For some time it has been considered theoretically that baryon-number conservation may be vio-
lated in some processes at a very low level. We shall discuss this in Chap. 9. Because of the known
lower limit of the lifetime of the proton, τp > 1039 s, the effective coupling constant for such processes
must be at least 24 orders of magnitude smaller than the Fermi constant of the weak interaction.
3 G. Lüders: Danske Vid. Selskab Mat. Fys. Medd. 28, 5 (1954); see also W. Greiner and J. Rein-
hardt: Quantum Electrodynamics, 2nd ed. (Springer, Berlin, Heidelberg, 1994).
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If the physics of the kaon system is time-reversal invariant – we want to make this
assumption here for the moment – then ĈP̂ Ŝ(ĈP̂ )−1 = Ŝ and

〈π+π− |Ŝ|K0 〉 = − 〈π+π− |Ŝ|K̄0 〉 (8.4)

holds. To study this in greater detail we begin with

ĈP̂ |K0 〉 = −Ĉ|K0 〉 = − |K̄0 〉 ,

because the inner parity of the K0 is negative and Ĉ transforms a K0 into a K̄0. Anal-
ogously it follows that

ĈP̂ |π+π− 〉 = Ĉ(−)2 |π−π+ 〉 = +|π+π− 〉 .

Therefore if follows that

〈π+π− |Ŝ|K0 〉 = −〈π+π− |ĈP̂ Ŝ(ĈP̂ )−1 |K̄0 〉 .

If we take T̂ invariance into account,

ĈP̂ Ŝ(ĈP̂ )−1 = Ŝ ,

it follows that

〈π+π− |Ŝ|K0 〉 = −〈π+π− |Ŝ|K̄0 〉 .

Hence it also holds that

〈K0 |Ŝ|K̄0 〉 ≈
∑

|π+π− 〉
〈K0 |Ŝ|π+π− 〉〈π+π− |Ŝ|K̄0 〉

= −
∑

|π+π− 〉
|〈π+π− |Ŝ|K0 〉|2

=
∑

|π+π− 〉
〈K̄0 |Ŝ|π+π− 〉〈π+π− |Ŝ|K0 〉

≈ 〈K̄0 |Ŝ|K0 〉 , (8.5)

where the sum includes all momenta of both pions in the intermediate state. Of course,
other intermediate states add minor contributions, but this does not affect the general
argument, which is originally due to Gell-Mann and Pais.4

EXERCISE

8.1 CP Parity in Kaon Decay

Problem. Show that the two-pion system evolving from the kaon decay has positive
CP parity and that

〈π+π− |Ŝ|K0 〉 = −〈π+π− |ĈP̂ Ŝ(ĈP̂ )−1 |K̄0 〉 . (1)

4 M. Gell-Mann, A. Pais: Phys. Rev. 97, 1387 (1955).
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Solution. The two pions have opposite angular momenta in the centre-of-mass sys-
tem of the kaon. Therefore the effect of the ĈP̂ operation can be derived particularly
easily here. The most general ansatz for the two-pion system is

|π+π− 〉 = sinα|π+(E,p) π−(E,−p)〉 + cosα|π−(E,−p)π+(E,p)〉 (2)

with an arbitrary mixing angle α. From (2) it follows that

P̂ |π+π− 〉 = P 2
π (sinα|π+(E,−p)π−(E,p)〉

+ cosα|π−(E,p)π+(E,−p)〉) , (3)

where Pπ = −1 is the internal parity of the pions. We see that in general the two-pion
system need not have good parity (this is only the case for α = π/4 or −π/4). It is the
weak interaction that violates parity. For CP parity

ĈP̂ |π+π− 〉 = (sinα |π−(E,−p) π+(E,p)〉 + cosα |π+(E,p) π−(E,−p)〉)
= +|π+π− 〉 (4)

holds, that is the CP parity of the two-pion state is always positive. On the other hand,
we have

ĈP̂ |K0 〉 = −Ĉ|K0 〉 = − |K̄0 〉 , (5)

because of the negative internal parity of the kaons. Relation (1) follows directly
from (4) and (5).

We want to describe the time evolution of, for example, a K0 meson. If |ψ(0)〉 is the
initial state, then after a time t

|ψ(t)〉 = Û (t,0)|ψ(0)〉 (8.6)

holds, with

Û (t,0) = exp(−iĤ t) ,

where Ĥ is the full Hamiltonian. We split Ĥ into a part Ĥ0 which contains the strong
and electromagnetic interaction and has |K0 〉 and |K̄0 〉 as eigenstates and a part ĤW

(in the sense of the Fermi point interaction) which is responsible for the decay of these
states and their transformation among each other:

Ĥ = Ĥ0 + ĤW . (8.7)

In the interaction picture

ĤW(t) = exp(−iĤ0t)ĤW exp(iĤ0t) , (8.8)

and

Û (t,0) = 1 − i

t∫

0

ĤW(t
′)dt ′ −

t∫

0

dt ′ ĤW(t
′)

t ′∫

0

dt ′ ′ ĤW(t
′ ′) . . . (8.9)
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holds. The evolution of |ψ(t)〉 is described, inside the Hilbert space spanned by |K0 〉
and |K̄0 〉, by an effective Hamiltonian which is a 2 × 2 matrix. The effective Hamil-
tonian in this subspace is determined by the virtual transitions to intermediate states
|n〉 outside this subspace. It reads

Ĥ eff
W = ĤW +

∑

n

ĤW |n〉〈n|ĤW

mK − En + iε
+ · · ·

= ĤW +
∑

n

ĤW |n〉〈n|ĤW

(
P

1

mK − En + iε
− iπδ(mK − En)

)
+ · · ·

(8.10)

The resulting matrix in the K0–K̄0 space is

(
〈K0 |Ĥ eff

W |K0 〉 〈K0 |Ĥ eff
W |K̄0 〉

〈K̄0 |Ĥ eff
W |K0 〉 〈K̄0 |Ĥ eff

W |K̄0 〉

)
≡ M̂ − i

2
Γ̂ (8.11)

with (mK = mK̄)

Ĥ0 |K0 〉 = mK |K0 〉 , Ĥ0 |K̄0 〉 = mK |K̄0 〉 , M = M† , Γ = Γ † . (8.12)

M̂ and Γ̂ in (8.11) are both 2 × 2 matrices. The sum in (8.10) runs over all intermediate
states |n〉 states, with energies En distinct from |K0 〉 and |K̄0 〉; the imaginary part is
present because the kaons decay.

Let us repeat the basic idea of the calculation. We confine ourselves to two inter-
acting states (particles) and take into account their interaction, which in second-order
perturbation theory is given by the sum over excited intermediate states. The 2 × 2
matrix (8.11) is the effective Hamiltonian in this two-state (two-particle) subspace.

Symbolically, we represent the state |K0 〉 by the unit vector
( 1

0

)
and the state |K̄0 〉 by

the other unit vector
( 0

1

)
. The most general state in our restricted Hilbert space is then

|ψ〉 = c|K0 〉 + c̄|K̄0 〉 =
(
c

c̄

)
(8.13)

with independent coefficients c and c̄; it evolves according to the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = Ĥ eff

W |ψ(t)〉 ≡
(
M̂ − i

2
Γ̂

)
|ψ(t)〉 . (8.14)

Since particles and antiparticles behave in the same way (CPT invariance)

M11 = M22 ≡ M0 , Γ11 = Γ22 ≡ Γ0 (8.15)

holds. If we assume time reversal invariance, then by consideration of (8.4), (8.5) the
additional relations

M12 = M21 ≡ M̃ , Γ12 = Γ21 ≡ Γ̃ (8.16)

hold, and because Γ12,M12 are by definition real, so are M̃ and Γ̃ . The same holds for
M0,Γ0. The real diagonal part M0 can be absorbed into the mass mK; the imaginary
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part Γ0 describes the decay of the kaons. The Schrödinger equation for the amplitudes
is then

i
d

dt

(
c

c̄

)
=
(
M0 − i

2Γ0 M̃ − i
2 Γ̃

M̃ − i
2 Γ̃ M0 − i

2Γ0

)(
c

c̄

)
. (8.17)

It is useful to introduce the linear combinations

cL = 1√
2
(c + c̄) , cS = 1√

2
(c − c̄) (8.18)

corresponding to the representation

|ψ〉 = cL|K0
L〉 + cS |K0

S〉 (8.19)

with

|K0
L〉 = 1√

2
(|K0 〉 + |K̄0 〉) ,

(8.20)
|K0

S〉 = 1√
2
(|K0 〉 − |K̄0 〉) .

Then

i
d

dt

(
cL
cS

)
=
(
(M0 + M̃) − i

2 (Γ0 + Γ̃ ) 0
0 (M0 − M̃) − i

2 (Γ0 − Γ̃ )

)(
cL
cS

)
.

(8.21)

From general considerations we can conclude that Γ0 > |Γ̃ |, hence both states decay.
However, the state |K0

L〉 decays with the function |cL(t)|2 = exp(−(Γ0 + Γ̃ )t); the
state |K0

S〉 decays with |cS(t)|2 = exp(−(Γ0 − Γ̃ )t).
In order to determine which of the states decays faster and which decays slower we

have to consider the sign of Γ̃ . According to the definition (8.11) and because of the
sign in (8.4) we have

Γ̃ = Γ12 = −2Im 〈K0 |Ĥ eff
W |K̄0 〉

≈ 2π
∑

n

δ(mK − En)〈K0 |ĤW |n〉〈n|ĤW |K̄0 〉

≈ −2π
∑

n

δ(mK − En)〈K0 |ĤW |n〉〈n|ĤW |K0 〉

≈ −2π
∑

n

δ(mK − En)|〈n|ĤW |K0 〉|2 < 0 , (8.22)

where we have inserted Ĥ eff
W from (8.10). Therefore Γ0 − Γ̃ ≡ ΓS has the larger width

and Γ0 + Γ̃ ≡ ΓL the narrower one, that is the state |K0
S〉 has a shorter life than the

state |K0
L〉. On the other hand, we see directly from (8.10) that

Γ0 = Γ11 = −2Im 〈K0 |Ĥ eff
W |K0 〉

≈ 2π
∑

n

δ(mK − En)〈K0 |ĤW |n〉〈n|ĤW |K0 〉

≈ 2π
∑

n

δ(mK − En)|〈n|ĤW |K0 〉|2 ≈ −Γ̃ > 0 . (8.23)
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This relation holds exactly only in second-order perturbation theory, that is when
higher terms (Ĥ 3

W etc.) are neglected in (8.10). Hence we note that ΓS is substantially
larger than ΓL:

ΓS = Γ0 − Γ̃ ≈ 2Γ0 
 Γ0 + Γ̃ = ΓL . (8.24)

Thus we have shown that in reality (with the assumption of time-reversal invariance)
not the states |K0 〉 and |K̄0 〉 but the state vectors

|K0
L〉 = 1√

2

(|K0 〉 + |K̄0 〉) , |K0
S〉 = 1√

2

(|K0 〉 − |K̄0 〉) (8.25)

are eigenstates of the Hamiltonian. One of the states, |K0
S〉, has a short lifetime,

τK0
S

= (Γ0 − Γ̃ )−1 , (8.26)

whereas the other state lives much longer,

τK0
L

= (Γ0 + Γ̃ )−1 ≈ (2Γ0)
−1 
 τK0

S
. (8.27)

However, in a reaction of elementary particles the eigenstates of the strong interaction
are always created experimentally, for example

π− + p → K0 + Λ . (8.28)

Then the initially formed state is

|Ψ (0)〉 = |K0 〉 = 1√
2

(|K0
L〉 + |K0

S〉) , (8.29)

that is the expansion coefficients are

cS(0) = cL(0) = 1√
2

. (8.30)

Hence, according to (8.21), the resulting time evolution is

|ψ(t)〉 = 1√
2

e−iM0t
[
eiM̃t− 1

2ΓSt |K0
S〉 + e−iM̃t− 1

2ΓLt |K0
L〉] , (8.31)

Fig. 8.5. Decay of an initially
created K0 as function of
time. It seems to have two life-
times

which means that the short-lived component decays first, and a slowly decaying com-
ponent |K0

L〉 remains for a longer period of time (Fig. 8.5). Experimentally one finds
that

τK0
S

= 8.92 × 10−11 s , τK0
L

= 5.81 × 10−8 s . (8.32)

The large difference in the lifetimes, τ(K0
S)/τ(K

0
L) ≈ 1.5 × 10−3, is not surprising; we

had already expected it owing to (8.24). Equation (8.23) in fact means that the decay
width of the K0

L vanishes exactly in the framework of second-order perturbation the-
ory. Therefore processes of higher order, such as final states with three pions, have to
be responsible for the experimentally observed decay of the K0

L. We shall discuss this
in detail in the next section. Another important process is the so-called regeneration.
If a beam of |K0

L〉 particles passes through matter, the kaons can scatter off the atomic
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nuclei. But the two components K0 and K̄0 have entirely different properties, because
the scattering is essentially effected by the strong interaction. Since there is no baryon
with positive strangeness, the K0 (S = +1) can scatter only elastically at low energies
because of the conservation of strangeness, or it can transform into a K+,

K0 +
(

n
p

)
→ K0 +

(
n
p

)
, K0 + p → K+ + n (8.33)

according to quark flow diagrams shown in Fig. 8.6.

Fig. 8.6. Quark flow diagrams
for the two-kaon reactions

K0 + ( n
p

) → K0 + ( n
p

)
and

K0 + p → K+ + n

In contrast, the K̄0 meson (S = −1) can additionally scatter inelastically into a Λ
particle (Fig. 8.7),

K̄0 +
(

n
p

)
→ K̄0 +

(
n
p

)
, K̄0 + n → K− + p , (8.34)

K̄0 +
(

n
p

)
→ Λ +

(
π0

π+
)

. (8.35)

Fig. 8.7. Quark flow diagrams
for different reactions of the
K̄0 with nucleons

As a result, the forward scattering amplitude, which is related to the total scattering
cross section by the optical theorem, is different for K0 and K̄0 in nuclear matter:

fK0(0) �= fK̄0(0) , Im fK0(0) < Im fK̄0(0) . (8.36)
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Therefore, the two components propagate differently through matter, and after the
passage the K0

L shows up as

|ψ〉 = 1

2

(
a|K0 〉 + b|K̄0 〉)= 1

2

a − b√
2

|K0
S〉 + 1

2

a + b√
2

|K0
L〉 (8.37)

with |a| > |b|. This effect has to be carefully excluded if one wants to do experiments
with a pure |K0

L〉 beam.
The different behavior of K0 and K̄0 in the scattering off matter can be used to

measure the real part M̃ of the off-diagonal Hamiltonian matrix element, (8.16). The
time evolution of a K0 produced at t = 0 is given by |ψ(t)〉 in (8.31). Since only the
K̄0 component can produce a Λ particle one measures in this way (see (8.31))

c̄(t) = 〈K̄0 |ψ(t)〉 = 1√
2

〈K0
S |ψ(t)〉 − 1√

2
〈K0

L|ψ(t)〉

= 1

2
e−iM0t

(
eiM̃t− 1

2ΓSt − e−iM̃t− 1
2ΓLt
)

, (8.38)

and hence, because of ΓS 
 ΓL,

Fig. 8.8. Oscillations in Λ

particle production owing to
oscillations between K0

S
and

K0
L

|c̄|2 = |〈K̄0 |ψ(t)〉|2 = 1

4

∣∣eiM̃t− 1
2ΓSt − e−iM̃t

∣∣2

= 1

4

(
1 + e−ΓSt − 2e− 1

2ΓSt cos 2M̃t
)

. (8.39)

Experimentally one finds that

�m = mK0
L

− mK0
S

= −2M̃ = 0.535 × 10−10 s−1 = 3.5 × 10−6 eV . (8.40)

The probability |c̄|2 of finding a K̄0 in a K0 beam oscillates (see Fig. 8.8) – a periodic
shift from K0 to K̄0 and vice versa occurs. This effect is called “regeneration”.

8.2 CP Violation

During the general consideration which showed that the two states K0
L and K0

S have
different lifetimes, we noticed the large difference between their lifetimes

τK0
S
/τK0

L
= 1.530 × 10−3 . (8.41)

As we already discussed briefly in (8.31), there is a simple explanation for this: while
the state |K0

S〉 decays in two pions (π+π−,π0π0), the state |K0
L〉 has to decay into at

least three particles; the most important channels are

π0π0π0 (21%) , π+π−π0 (12%) ,
(8.42)

π±μ∓νμ (27%) , π±e∓νe (39%) .

The reason is once again a symmetry: the kaons belong to the pseudoscalar mesons,
that is

P̂ |K0 〉 = −|K0 〉 , P̂ |K̄0 〉 = − |K̄0 〉 (8.43)
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holds under a space inversion. The operation of charge conjugation transforms each
of the particles into its antiparticle:

Ĉ|K0 〉 = |K̄0 〉 , Ĉ|K̄0 〉 = |K0 〉 . (8.44)

Thus

ĈP̂ |K0 〉 = −|K̄0 〉 , ĈP̂ |K̄0 〉 = − |K0 〉 (8.45)

holds. If the states |K0
S〉, |K0

L〉 are, respectively, the symmetric and antisymmetric su-
perpositions of the initial particles, as discussed above, then

ĈP̂ |K0
S〉 = 1√

2

(
ĈP̂ |K0 〉 − ĈP̂ |K̄0 〉)= 1√

2

(− |K̄0 〉 + |K0 〉)= |K0
S〉 ,

(8.46)
ĈP̂ |K0

L〉 = 1√
2

(
ĈP̂ |K0 〉 + ĈP̂ |K̄0 〉)= 1√

2

(− |K̄0 〉 − |K0 〉)= − |K0
L〉 .

On the other hand, the two pion states |π+π− 〉 and |π0π0 〉 are left unchanged by the
parity transformation as well as by charge conjugation, because Ĉ|π̂± 〉 = |π∓ 〉 and
P̂ |π〉 = −|π〉:

ĈP̂ |π+π− 〉 = |π+π− 〉 , ĈP̂ |π0π0 〉 = |π0π0 〉 . (8.47)

Therefore, only the state |K0
S〉 can decay into two pions with the assumption of CP

invariance. Because of the negative parity of the pions it holds that

ĈP̂ |π0π0π0 〉 = −|π0π0π0 〉 , etc. (8.48)

and hence the state |K0
L〉 can decay into three pions but the |K0

S〉 cannot. Of course,
the two-pion decay is much faster, since one particle less has to be created and more
energy is liberated.

EXERCISE

8.2 Transformation of Kaons Under Space Inversion and Charge Conjugation

Problem. Derive relations (8.43), (8.44) starting from the wave function of a quark–
antiquark pair in a relative s state and with opposite spin (ψ is a 4 × 4 matrix!),

ψ(r1, r2) =
⎛

⎜⎝
χ1

−iσ 2 · ∇2

E2 + m2
χ2

−iσ 1 · ∇1

E1 + m1
χ1 χ2

⎞

⎟⎠f (|r1 − r2 |) . (1)

The indices 1 and 2, respectively, denote the coordinates of the quark and antiquark.
The two-spinors are

χ1 =
(

1
0

)
, χ2 =

(
0
1

)
,

since quark and antiquark have opposite spin in the kaon.
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Solution. (a) The operator of space inversion is

ψ(r1, r2) → P̂ψ(r1, r2) = β1β2ψ(−r1,−r2) , (2)

where the Dirac matrices β1, β2 each act only on the corresponding Dirac spinors
in (1). Hence we find for the various parts

f (|r1 − r2 |) → f (|r1 − r2 |) ,
⎛

⎝
χ1

−iσ · ∇
E + m

χ1

⎞

⎠→
(

1 0
0 −1

)⎛

⎝
χ1

+iσ · ∇
E + m

χ1

⎞

⎠=
⎛

⎝
χ1

−iσ · ∇
E + m

χ1

⎞

⎠ ,

(3)

⎛

⎝
−iσ · ∇
E + m

χ2

χ2

⎞

⎠→
(

1 0
0 −1

)⎛

⎝
+iσ · ∇
E + m

χ2

χ2

⎞

⎠=
⎛

⎝
−iσ · ∇
E + m

χ2

χ2

⎞

⎠ ,

so that in total

P̂ ψ(r1, r2) = −ψ(r1, r2) (4)

results.
(b) The charge conjugation operator is

ψ(r1, r2) → Ĉψ(r1, r2) = iγ (1)2 iγ (2)2 ψ∗(r1, r2) . (5)

Its action on the spinors is, using the relation σ2σ
∗ = −σσ2,

⎛

⎝
χ1

−iσ · ∇1

E + m
χ1

⎞

⎠→
(

0 iσ2

−iσ2 0

)⎛

⎝
χ1

iσ ∗ · ∇1

E + m
χ1

⎞

⎠

= i

⎛

⎝
−iσ · ∇1

E + m
σ2χ1

−σ2χ1

⎞

⎠

=
(+iσ · ∇1

E + m
χ2

χ2

)
, (6a)

since σ2χ1 = iχ2 , and similarly
⎛

⎝
−iσ · ∇2

E + m
χ2

χ2

⎞

⎠→
(

0 iσ2

−iσ2 0

)⎛

⎝
iσ ∗ · ∇2

E + m
χ2

χ2

⎞

⎠

= i

⎛

⎝
σ2χ2

iσ · ∇2

E + m
σ2χ2

⎞

⎠

=
⎛

⎝
χ1

iσ · ∇2

E + m
χ1

⎞

⎠ , (6b)

with σ2χ2 = −iχ1. Eventually we have to consider that

∇1f (|r1 − r2 |) = −∇2f (|r1 − r2 |) , (7)
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that is we can substitute ∇1 by −∇2 in (6a) and ∇2 by ∇1 in (6b). Hence (8.44) is
proved, that is,

Ĉ ψ(r1, r2) = ψ̄(r1, r2) , (8)

where ψ̄ denotes the wave function of the antimeson (the quark and antiquark are
interchanged).

However, it has been found experimentally5 that the |K0
L〉 can, in fact, decay into two

pions, albeit with very small probability:

B(K0
L → π+π−) = (0.203 ± 0.005)% ,

(8.49)
B(K0

L → π0π0) = (0.094 ± 0.018)% .

The partial widths have the following ratios compared to those of the state |K0
S〉:

Γ (K0
L → π+π−)

Γ (K0
S → π+π−)

= 5.1 × 10−6 ,
Γ (K0

L → π0π0)

Γ (K0
S → π0π0)

= 5.2 × 10−6 . (8.50)

Hence, the two pion decay of the |K0
L〉 is very strongly suppressed, but it does exist.

Since the spin of the kaons is zero, the two pions can be emitted only in an s state
(l = 0). Thus the parity of the states |π+π− 〉, |π0π0 〉 is definitely positive. The only
possible conclusion is that the CP invariance (and thus, owing to CPT invariance,
also the invariance under time reversal) is violated in the decay |K0 〉 → |ππ〉. The
violation has to be very weak, however, of relative magnitude 5 × 10−6. Thus the
statement of (8.5),

〈K0 |Ŝ|K̄0 〉 = 〈K̄0 |Ŝ|K0 〉 , (8.51)

no longer holds exactly. In the same way it follows that Γ12,Γ21 and M12,M21 are
distinct. M12,M

∗
21 and Γ12 = Γ ∗

21 still hold, however, owing to the Hermiticity of
the matrices M and Γ . The two states |K0

S〉, |K0
L〉 result as eigenstates of the matrix

(M − iΓ/2),
(
M0 − i

2Γ0 M12 − i
2Γ12

M∗
12 − i

2Γ
∗

12 M0 − i
2Γ0

)(
c

c̄

)
= λ

(
c

c̄

)
. (8.52)

From the secular determinant it follows that
(
M0 − i

2
Γ0 − λ

)2

=
(
M12 − i

2
Γ12

)(
M∗

12 − i

2
Γ ∗

12

)
,

(8.53)

M0 − i

2
Γ0 − λ = ±

√(
M12 − i

2
Γ12

)(
M∗

12 − i

2
Γ ∗

12

)
.

Furthermore,
(
M0 − i

2
Γ0

)
c +
(
M12 − i

2
Γ12

)
c̄ = λc (8.54)

5 J.H. Christensen, J.W. Cronin, V.L. Fitch, R. Turlay: Phys. Rev. Lett. 13, 138 (1964).
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holds, and thus, because of (8.53), we find that

c̄

c
= λ − M0 + i

2Γ0

M12 − i
2Γ12

= ∓
√√√√M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

, (8.55)

with the normalization condition |c|2 + |c̄|2 = 1. Hence the physical states are

|K0
S〉 = N

⎛

⎝|K0 〉 −
√√√√M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

|K̄0 〉
⎞

⎠≡ N
(|K0 〉 − q|K̄0 〉) ,

(8.56)

|K0
L〉 = N

⎛

⎝|K0 〉 +
√√√√M∗

12 − i
2Γ

∗
12

M12 − i
2Γ12

|K̄0 〉
⎞

⎠≡ N
(|K0 〉 + q|K̄0 〉) ,

with

N−2 = 1 +
√√√√ (M∗

12 − i
2Γ

∗
12)(M12 + i

2Γ12)

(M12 − i
2Γ12)(M

∗
12 + i

2Γ
∗

12)

= 1 +
√

|M12 |2 + 1/4|Γ12 |2 + Im(Γ ∗
12M12)

|M12 |2 + 1/4|Γ12 |2 − Im(Γ ∗
12M12)

≈ 2 + Im(M12Γ
∗

12)

|M12 |2 + 1
4 |Γ12 |2

. (8.57)

In the case of CP invariance, we recover |K0
S/L〉 = 1/

√
2(|K0 〉 ∓ |K̄0 〉). But if CP

invariance is violated, M12 and Γ12 are complex, and thus

q �= 1 . (8.58)

We now consider the components of |K0
S/L〉 that may contribute to the two-pion decay.

They are those components which do not change their sign under the transformation
ĈP̂ . To do this we apply the projection operator (1/2)(ĈP̂ + 1) and obtain using
(8.45)

1

2
(1 + ĈP̂ )|K0

S〉 = N

2
(1 + ĈP̂ )

(|K0 〉 − q|K̄0 〉)

= N

2

(|K0 〉 − |K̄0 〉 − q|K̄0 〉 + q|K0 〉)

= N

2
(1 + q)

(|K0 〉 − |K̄0 〉) , (8.59)

1

2
(1 + ĈP̂ )|K0

L〉 = N

2
(1 + ĈP̂ )

(|K0 〉 + q|K̄0 〉)

= N

2

(|K0 〉 − |K̄0 〉 + q|K̄0 〉 − q|K0 〉)

= N
1 − q

2

(|K0 〉 − |K̄0 〉) . (8.60)
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The ratio of the transition amplitudes of the processes |K0
S〉 → |ππ〉 and |K0

L〉 → |ππ〉
is therefore

η ≡ A(K0
L → ππ)

A(K0
S → ππ)

= 1 − q

1 + q
≈ 1 − q

2
. (8.61)

Experimentally the ratios of the amplitudes for K0
L/S → π+π− and π0π0, that is,

η+− and η00, are measured independently. Since the kaons have isospin 1/2 and
only isospin 0 or 2 can contribute from the two-pion system, η+− = η00 should hold
in the absence of �I = 3/2 transitions. We write η+− = |η+− | exp(iφ+−), η00 =
|η00 | exp(iφ00). The phase can be determined from the interference of the decay
processes as in (8.31). The experimental values are (see (8.49))

|η+− | = (2.274 ± 0.022) × 10−3 , '+− = (44.6 ± 1.2)◦ ,
(8.62)

|η00 | = (2.33 ± 0.08) × 10−3 , '00 = (54 ± 5)◦ .

In the range of measurement accuracy and for the case η+− = η00, a �I = 3/2 com-
ponent that may be present is small.

The question of the origin of CP violation remains. From the previous consider-
ations this question means that we have to show why the matrix elements M12 and
Γ12 are not real. We have already explained in Sect. 8.1 why the matrix elements for
the transitions between |K0 〉 and |K̄0 〉 do not vanish. However, there we used only the
most simple quark diagram. In reality the physical d and s quarks are admixed to all
three states d′, s′,b′ of the extended Salam–Weinberg theory via the mixing matrix Û
of (6.38). Thus instead of an intermediary u (or ū) quark, a c or t quark (or c̄, t̄) may
equally well occur in the intermediate state (Fig. 8.9).

Fig. 8.9. Possible intermedi-
ary quarks in the intermediate
state

The admixture of the quarks is given by

⎛

⎝
d

s

b

⎞

⎠= Û†

⎛

⎝
d ′
s′
b′

⎞

⎠ (8.63)

and that of the antiquarks by

⎛

⎝
d̄

s̄

b̄

⎞

⎠= Û

⎛

⎝
d̄ ′
s̄′
b̄′

⎞

⎠ . (8.64)

In the calculation we find that the three different quarks (u, c, t) in the intermediate
state contribute to the matrix element M12 in the following way:

M12 = C(U
†
sd′Ud′ dmu + U

†
ss′ Us′ dmc + U

†
sb′Ub′ dmt)

2 , (8.65)
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where C contains the coupling constants and propagators of the W bosons and mu,
mc, and mt are the masses of the u, c, t quarks. We know that mu ≈ 5 MeV, mc ≈
1500 MeV, and mt > 89000 MeV, that is,

mu � mc,mt (8.66)

holds. Therefore we can neglect the first term between the parentheses. Further we
consider that

U
†
sd′Ud′ d + U

†
ss′Us′ d + U

†
sb′Ub′ d = 0 (8.67)

holds, because of the unitarity of U . Thus it follows that

M12 = C
[
U

†
sd′Ud′ d(mu − mc) + U

†
sb′Ub′ d(mt − mc)

]2
. (8.68)

Explicit insertion of the elements of the mixing matrix of (6.36) yields (U†
sd′ = U∗

d′ s,
etc.)

M12 = C
[
s1c3c1 (mu − mc) + (c1s2c3 − c2s3e

−iδ)(−s1s2)(mt − mc)
]2

= C
[
s1c1c3(mc − mu) + (s1c1s2s2c3 − s1s2c2s3e

−iδ)(mt − mc)
]2

. (8.69)

Provided that the imaginary part is small, we can write

Im{M12 } ≈ −2
s1s2c2s3 sin δ(mt − mc) M12

s1c1c3(mc − mu) + (s1c1s2c2c3 − s1s2c2s3 cos δ)(mt − mc)
.

(8.70)

We see that the appearance of the complex phase factor exp(iδ) makes an imaginary
part of the matrix elements possible. This factor, on the other hand, occurs only if there
are at least three quark doublets, as first noticed by Kobayashi and Maskawa.6 We want
to estimate the order of magnitude of the CP violation. If we neglect the contribution
of the width Γ12 (which may perhaps yield a factor of two), then according to (8.58),
(8.61)

η = 1

2
(1 − q) = 1

2

(
1 −
√
M∗

12

M12

)
= 1

2

(
1 −
√
M12 − 2iImM12

M12

)

≈ 1

2

[
1 −
(

1 − i
ImM12

M12

)]
≈ i

2

ImM12

M12

≈ − s1s2c2s3 sin δ(mt − mc)

s1c1c3(mc − mu) + s1s2(c1s2c3 − c2s3 cos δ)(mt − mc)

≈ − s2s3 sin δ(mt/mc − 1)

c1c3/c2 + s2(−c1s2/c2c3 + s3 cos δ)(mt/mc − 1)
, (8.71)

where we have set mμ = 0 in the last step. All angles θ1, θ2, θ3, δ are small (θ1 = θC =
13◦); therefore for the estimate we can set c1 = c2 = c3 = cos δ = 1. Furthermore,
mt/mc 
 1 and thus

η ≈ sin θ2 sin θ3 sin δmt

mc + mt sin θ2
. (8.72)

6 M. Kobayashi, K. Maskawa: Prog. Theor. Phys. 49, 656 (1973).
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The experimental value η ≈ 2 × 10−3 can be explained in this way without difficulty.
Unfortunately, the angles θ3, δ are not yet known well experimentally. The bounds for
the mixing angles between the quark flavours are7

sin θ1 = 0.227 ± 0.011 ,

sin θ2 = 0.07 ± 0.04 ,
(8.73)

sin θ3 ≤ 0.06 ,

90◦ ≤ δ ≤ 180◦ .

If mc � sin θ2mt, then

η � sin θ3 sin δ � 2 × 10−3 (8.74)

should hold. This is compatible with the values of θ3 and δ, but it does not yet repre-
sent a good test of the Kobayashi–Maskawa theory, owing to the large experimental
uncertainty.

7 A. Soni: Phys. Rev. Lett. 53, 1407 (1984).
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9.1 Introduction: The Symmetry Group SU(5)

The Glashow–Salam–Weinberg theory combines the electromagnetic and weak inter-
actions within the framework of the gauge group SU(2)L × SU(1). This theory treats
leptons and quarks on the same footing. However, the fact that leptons carry integer
charge while the charge of quarks is 1/3 is needed as a basic input. On the other
hand, there are indications that this fact is due to some superior principle, that is a
larger symmetry. For example, for leptons as well as for quarks, the sum of charge and
baryon number, Q + B , is an integer:

e : Q = −1 , B = 0 → Q + B = − 1 ,

ν : Q = 0 , B = 0 → Q + B = 0 ,

u : Q = + 2
3 , B = 1

3 → Q + B = 1 ,

d : Q = − 1
3 , B = 1

3 → Q + B = 0 .

The property that B and Q are multiples of 1/3 for quarks is connected to the princi-
ple that baryons consist of three quarks and have integer values of Q and B . Within
the framework of quantum chromodynamics (QCD) this is understood in terms of
the gauge group SU(3) of additional internal degrees of freedom for the quarks: the
color. For example, in order to explain the -− baryon it requires the assumption of
three strange quarks all in the same 1s state. This is inconsistent with the Pauli prin-
ciple, which is assumed as a fundamental property, unless the three s quarks differ
in an additional quantum number. These quantum states are labeled by color and are
distinguished as, for example red r, green g and blue b.

Similar relations to those above can also be stated in terms of the weak hypercharge.
The respective quantum numbers are given in Table 6.2. The lepton doublets have
Y
(
)
L = −1, while for quarks Y (q)L = + 1

3 . Owing to the color multiplicity the latter
needs to be counted three times, leading to

Y
(
)
L + 3Y (q)L = 0 .

Similar relations can be inferred for the right-handed singlets.
These properties lead to the hypothesis that the gauge group of the Glashow–

Salam–Weinberg theory, SU(2) × U(1), and the SU(3) group of the strong interac-
tion form part of a larger symmetry. The simplest group that incorporates the product
SU(3) × SU(2)×U(1) as a subgroup is SU(5). As will be shown below, this group has
irreducible representations of dimensions

5 , 10 , 15 , 24 , 35 , 40 , . . . .

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
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Before discussing the details of this model of unification of the three interactions,
which was proposed by Georgi and Glashow1 in 1974, it is expedient to establish
some basic mathematical properties of the group SU(5).2

SU(5) is a special case of the general groups SU(n) that are formed from unitary n×
n matrices with determinant (+1). The corresponding groups without the constraint
for the determinant are called U(n). An arbitrary unitary matrix can be represented in
terms of an exponential of a Hermitian matrix Ĥ :

Û = exp(iĤ ) , Ĥ † = Ĥ . (9.1)

Ĥ is called the generating matrix for Û . In case that the matrix Û is not too different
from the unit matrix 1, it holds

Û = exp(iδĤ ) ≈ 1 + iδĤ . (9.2)

The multiplication of two matrices U1, U2 corresponds to the sum of the infinitesimal
Hermitian matrices,

Û2Û1 = eiδĤ2eiδĤ1 ≈ (1 + iδĤ2)(1 + iδĤ1)

≈ 1 + i
(
δĤ2 + δĤ1

)
, (9.3)

where quadratic terms have been neglected. A complete set of linearly independent,
Hermitian matrices is termed a set of generators for the unitary matrices. Owing to the
constraint hik = h∗

ki for the elements of a Hermitian matrix Ĥ , the group of the unitary
n × n matrices contains n2 generators. (Note that a general complex n × n matrix has
2n2 degrees of freedom.) The restriction det(Û) = 1 that leads from the group U(n)
to the group SU(n) results in traceless generating matrices Ĥ . Since the diagonal
elements of Hermitian matrices are real, hkk = h∗

kk , only one degree of freedom is
omitted. That is, the group SU(n) has n2 − 1 generators.

The simplest representation of the generating matrices for the U(n) is formed by
certain n × n matrices that contain a single nonvanishing matrix element with value 1,
all other elements being zero. Such a matrix, where the matrix element with value 1 is
given by the intersection of row α and column β as Ĉαβ , is written

Ĉαβ =

⎛

⎜⎜⎜⎜⎝

β

|
α −− 1 − − − −

|
|

⎞

⎟⎟⎟⎟⎠
, (Cαβ)ik = δαiδβk , (9.4)

where the matrices

Ĉαβ + Ĉβα ,
1

i
(Ĉαβ − Ĉβα) (9.5)

are Hermitian, since Ĉ†
αβ = Ĉβα .

1 H. Georgi, S.L. Glashow: Phys. Rev. Lett. 32, 438 (1974).
2 For an extended presentation of properties of unitary groups see W. Greiner and B. Müller: Quan-
tum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Heidelberg, 1994).
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Using the linear combinations of (9.5), we can alternatively employ the Ĉαβ ,
α,β = 1,2, . . . , n as generators of the U(n). In order to infer the corresponding gen-
erators of the SU(n), we require the matrix Ĉαα to be traceless. This can be achieved
by subtracting a multiple of the unit matrix:

Ĉ′
αα = Ĉαα − 1

n
1 = Ĉαα − 1

n

n∑

α=1

Ĉαα ,

(9.6)
Ĉ′
αβ = Ĉαβ (α �= β) .

The n matrices Ĉ′
αα are linearly dependent, since

n∑

α=1

Ĉ′
αα =

n∑

α=1

Ĉαα − 1

n

n∑

α=1

1 = 0 . (9.7)

To construct n− 1 linearly independent, diagonal matrices, it is common to form n− 1
linear combinations of the Ĉ′

αα as follows:

Ĉ′
11 − Ĉ′

22 , Ĉ′
11 + Ĉ′

22 , Ĉ′
33 − Ĉ′

44 , Ĉ′
33 + Ĉ′

44 , etc. (9.8)

The commutation relations of the matrices Ĉαβ are

(ĈαβĈγ δ − Ĉγ δĈαβ)ik =
∑

l

(Ĉαβ)il(Ĉγ δ)lk −
∑

l

(Ĉγ δ)il(Ĉαβ)lk

=
∑

l

δαiδβlδγ lδδk −
∑

l

δγ iδδlδαlδβk

= δαiδβγ δδk − δγ iδδαδβk

= δβγ (Ĉαδ)ik − δδα(Ĉγβ)ik , (9.9)

or, in matrix notation,

[Ĉαβ, Ĉγ δ] = δβγ Ĉαδ − δαδĈγβ . (9.10)

Since the unit matrix commutes with any matrix, the commutation relations are the
same for the matrices of the SU(n):

[Ĉ′
αβ, Ĉ

′
γ δ] = δβγ Ĉ

′
αδ − δαδĈ

′
γβ . (9.11)

In the case of the group U(5) the generators are of the form

Ĉ24 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, etc. (9.12)
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From these we construct Hermitian matrices according to the prescription (9.5):

Ĉ24 + Ĉ42 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
,

(9.13)

1

i
(Ĉ24 − Ĉ42) =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, etc.

The diagonal matrices have the following form:

Ĉ11 =

⎛

⎜⎜⎜⎜⎝

1
0

0
0

0

⎞

⎟⎟⎟⎟⎠
, . . . , Ĉ55 =

⎛

⎜⎜⎜⎜⎝

0
0

0
0

1

⎞

⎟⎟⎟⎟⎠
. (9.14)

They are already Hermitian. Altogether there are 52 = 25 generators.
In order to construct the generators of the group SU(5) we form new diagonal

matrices that have zero trace as required:

Ĉ′
11 = Ĉ11 − 1

5
1 =

⎛

⎜⎜⎜⎜⎝

1
0

0
0

0

⎞

⎟⎟⎟⎟⎠
− 1

5

⎛

⎜⎜⎜⎜⎝

1
1

1
1

1

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

4/5
−1/5

−1/5
−1/5

−1/5

⎞

⎟⎟⎟⎟⎠
, (9.15)

and so on. Choosing linear combinations as indicated in (9.8) we obtain four linearly
independent matrices (which are normalized such that the traces of the squared matri-
ces are equal to 2):

Ĉ′
11 − Ĉ′

22 = 1

5

⎛

⎜⎜⎜⎜⎝

4
−1

−1
−1

−1

⎞

⎟⎟⎟⎟⎠
− 1

5

⎛

⎜⎜⎜⎜⎝

−1
4

−1
−1

−1

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1
−1

0
0

0

⎞

⎟⎟⎟⎟⎠
,
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√
5

3
(Ĉ′

11 + Ĉ′
22) = 1√

15

⎛

⎜⎜⎜⎜⎝

3
3

−2
−2

−2

⎞

⎟⎟⎟⎟⎠
, (9.16)

Ĉ′
33 − Ĉ′

44 =

⎛

⎜⎜⎜⎜⎝

0
0

1
−1

0

⎞

⎟⎟⎟⎟⎠
,

√
5

3
(Ĉ′

33 + Ĉ′
44) = 1√

15

⎛

⎜⎜⎜⎜⎝

−2
−2

3
3

−2

⎞

⎟⎟⎟⎟⎠
.

In addition there are 4 × 5 = 20 non-diagonal generators, so that altogether we have
24 generators for the group SU(5).

The number of diagonal generators, that is, the number of mutually commuting
generators, is called the rank of a group. Thus U(5) has rank 5, whereas SU(5) has
only rank 4. The rank of a Lie group is equal to the number of its independent Casimir
operators, that is the operators that commute with all generators of the group. The
simplest and most important Casimir operator is a quadratic form of the Ĉαβ , namely

Ĉ2 =
∑

α,β

Ĉ′
αβĈ

′
βα . (9.17)

That it is indeed a Casimir invariant is easily proved by using (9.11):

[Ĉ2, Ĉ
′
γ δ] =

∑

α,β

[Ĉ′
αβĈ

′
βα, Ĉ

′
γ δ] =

∑

α,β

Ĉ′
αβ [Ĉ′

βα, Ĉ
′
γ δ] +

∑

α,β

[Ĉ′
αβ, Ĉ

′
γ δ]Ĉ′

βα

=
∑

α,β

{Ĉ′
αβ(δαγ Ĉ

′
βδ − δβδĈ

′
γα) + (δβγ Ĉ

′
αδ − δαδĈ

′
γβ)Ĉ

′
βα}

=
∑

β

Ĉ′
γβĈ

′
βδ −
∑

α

Ĉ′
αδĈ

′
γα +

∑

α

Ĉ′
αδĈ

′
γα −

∑

β

Ĉ′
γβĈ

′
βδ = 0 .

To determine the irreducible representations of SU(5) it is convenient to use Young
diagrams.3 In terms of Young diagrams an irreducible representation of SU(5) is de-
scribed by at most four rows of boxes, one upon the other, where the length of a row is
required to be no greater than the length of the preceding row. With this convention the
fundamental representation corresponds to a single box. An irreducible representation
of SU(5) is labeled by four numbers, h1, . . . , h4, that specify the number of boxes in
the four rows of a Young diagram. Most commonly the combination

(h1 − h2 , h2 − h3 , h3 − h4 , h4)

is employed.

3 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).
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Some important representations are:

(1,0,0,0), (0,1,0,0), (2,0,0,0), (0,0,0,1), (1,0,0,1), (2,0,1,1).

The dimension of an irreducible representation of SU(5) is evaluated as follows: First
draw the corresponding Young diagram twice, one above the other. Then fill the first
row of the upper diagram with the numbers 5,6,7, . . . from left to right; in the second
row of the diagram start on the left-hand side with 4,5, . . . , in the third row with 3,
and in the last one with 2. Next write in each box of the lower Young diagram the
integer that results from summing the number of boxes further to the right and below
plus 1. Finally multiply all numbers of the upper diagram and divide by the product of
all numbers of the lower diagram.

Example: Evaluate the dimension of the irreducible representation of the SU(5)
group, given by the following Young diagram:

Dimension =

5
4
3
2

6
5
4

7 8

7
4
3
1

5
2
1

2 1

= 5 × 6 × 7 × 8 × 4 × 5 × 3 × 4 × 2

7 × 5 × 2 × 1 × 4 × 2 × 3 × 1 × 1

= 8 × 6 × 5 × 4

2
= 480 .

Other examples are

5

1
= 5 ,

5 6

2 1
= 5 × 6

2 × 1
= 15 ,

5
4
2
1

= 5 × 4

2 × 1
= 10 ,

5
4
3
2
4
3
2
1

= 5 × 4 × 3 × 2

4 × 3 × 2 × 1
= 5 ,

5
4
3
2

6

5
3
2
1

1
= 5 × 6 × 4 × 3 × 2

5 × 1 × 3 × 2 × 1
= 24 .

The representations and both have dimension 5. They are called fundamental rep-

resentations. The dimension of the representation corresponds to the number of

generators of the SU(5) group, that is 24; it is called the regular or adjoint represen-
tation.

Representations of higher dimension are constructed by forming products with the
fundamental representation . It is understood that two boxes in one row denote the
representation which is symmetric with respect to the corresponding factors; if the
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boxes belong to different rows the factors are antisymmetric. For example, the rep-
resentation . stands for the symmetric product of two representations, while
denotes the antisymmetric product.

Any product of two representations, on the other hand, may be decomposed into
irreducible representations by forming all possible combinations of the boxes of the
two Young diagrams; all columns that contain five boxes or more are simply ignored.

× = +

( × ) × = ( × ) +
(

×
)

=
(

+
)

+
(

+
)

× = 1 +

These reductions are often expressed in terms of the dimension of the representations,

[5] × [5] = [15] + [10] ,

[5] × [5] × [5] = [35] + [40] + [40] + [10] , (9.18)

[5] × [5] = [1] + [24] ,

In the following we will suppress the [ ]-brackets as long as no confusion arises. Only
in special cases where the brackets are necessary for unambiguous notation will they
be reintroduced.

9.2 Embedding SU(3)C × SU(2)L × U(1) into SU(5)

In order to realize that SU(5) is the smallest (semi-simple) unitary group incorporat-
ing all gauge groups of interactions, that is the color group SU(3)C, the group of weak
isospin of left-handed particles SU(2)L, and the gauge group U(1) of the weak hy-
percharge, we simply need to enumerate the Casimir operators. U(1) and SU(2) have
rank 1, and SU(3) has rank 2, so the unified gauge group at least must have rank 4.
Indeed, SU(5) has rank 4 as discussed in the previous section.

To determine the explicit structure of SU(5) as the unified gauge group incorporat-
ing the above three groups of interactions, we consider some experimental facts. One
is that the color group SU(3) is completely “blind” with respect to the weak interaction
described by the Glashow–Salam–Weinberg group SU(2)L ×U(1): “red”, “blue” and
“green” quarks of the same flavor carry the same electric and weak charge. That im-
plies that the groups SU(3) and SU(2)L ×U(1) need to commute with each other when
unified within SU(5). This is only possible if the generators of the group SU(2)×U(1)
behave as unit matrices or zero matrices with respect to the SU(3) generators, that is
in the three-dimensional subspace of SU(3). On the other hand, the leptons are color
singlets, that is to say, the generators of the SU(3) must have zero eigenvalues for these
components.
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The consequence of these considerations are built into the theory by reserving the
first three rows and columns of the five-dimensional representation of the SU(5) gen-
erators for the color group SU(3), while the last two rows and columns are assigned to
the weak group SU(2)L. This arrangement completely specifies the structure of SU(5)
and determines in which way U(1) is incorporated into SU(5). As we shall see, this
enables us to calculate the Weinberg angle from SU(5) and exhibits that the postulate
of a unified gauge group SU(5) is more than just a mathematical rearrangement: it
contains physical predictions that can be tested in experiments.

The diagonal generators of the group SU(3) ⊂ SU(5) are constructed from the di-
agonal matrices Ĉ11, Ĉ22 and Ĉ33, which have zeros in the fourth and fifth columns of
the diagonal axis. Since the generators of SU(3) are required to be traceless, we form
the following combinations:

Ĉ′ ′
11 = Ĉ11 − 1

3
(Ĉ11 + Ĉ22 + Ĉ33) = 1

3

⎛

⎜⎜⎜⎜⎝

2
−1

−1
0

0

⎞

⎟⎟⎟⎟⎠
,

(9.19)

Ĉ′ ′
22 = Ĉ22 − 1

3
(Ĉ11 + Ĉ22 + Ĉ33) = 1

3

⎛

⎜⎜⎜⎜⎝

−1
2

−1
0

0

⎞

⎟⎟⎟⎟⎠
.

The combinations

λ̃3 ≡ Ĉ′ ′
11 − Ĉ′ ′

22 =

⎛

⎜⎜⎜⎜⎝

1
−1

0
0

0

⎞

⎟⎟⎟⎟⎠
,

(9.20)

λ̃8 ≡ √
3(Ĉ′ ′

11 + Ĉ′ ′
22) = 1√

3

⎛

⎜⎜⎜⎜⎝

1
1

−2
0

0

⎞

⎟⎟⎟⎟⎠

then take the usual form of the SU(3) generators.4 Similarly the diagonal generator of
the isospin group SU(2) is constructed from the diagonal generators Ĉ44 and Ĉ55:

λ̃23 ≡ τ̃3 = Ĉ′ ′
44 − Ĉ′ ′

55 =

⎛

⎜⎜⎜⎜⎝

0
0

0
1

−1

⎞

⎟⎟⎟⎟⎠
. (9.21)

4 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, New York, 1994).
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Finally the generator that corresponds to U(1) must be diagonal and of the form of a
unit matrix with respect to SU(3) as well as SU(2); furthermore, it is required to be
traceless. The only way to achieve this is the following combination (up to a factor):

Ỹ ≡
√

5

3
(Ĉ′

44 + Ĉ′
55) = 1√

15

⎛

⎜⎜⎜⎜⎝

−2
−2

−2
3

3

⎞

⎟⎟⎟⎟⎠
, (9.22)

where we have employed the matrices defined by (9.6). The complete set of SU(5)
generators λ̃i , i = 1,2, . . . ,24, will be determined in Exercise 9.1.

EXERCISE

9.1 The Generators of SU(3) × SU(2) × U(1)

Problem. Work out the explicit form for the SU(5) generators that determine the
composition SU(5) ⊇ SU(3) × SU(2) × U(1).

Solution. With respect to our convention established in Sect. 9.2 we have assigned
the first three rows and columns of the SU(5) generators to the subgroup SU(3) and
the last two rows and columns to the subgroup SU(2). The subgroup U(1) has only
one generator, namely Ỹ of (9.22). The diagonal operators of SU(3) and SU(2), that
is λ̃3, λ̃8 and τ̃3, respectively, are given by (9.20), (9.21). The non-diagonal operators
are constructed as prescribed in Sect. 9.1, (9.13).

We suppress rows and columns of zeros:

λ̃1 = Ĉ12 + Ĉ21 =

⎛

⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃2 = 1

i
(Ĉ12 − Ĉ21) =

⎛

⎜⎜⎜⎜⎝

0 −i 0
i 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃3 = Ĉ′ ′
11 − Ĉ′ ′

22 =

⎛

⎜⎜⎜⎜⎝

1
−1

0
0

0

⎞

⎟⎟⎟⎟⎠
,

λ̃4 = Ĉ13 + Ĉ31 =

⎛

⎜⎜⎜⎜⎝

0 0 1
0 0 0
1 0 0

⎞

⎟⎟⎟⎟⎠
,
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λ̃5 = 1

i
(Ĉ13 − Ĉ31) =

⎛

⎜⎜⎜⎜⎝

0 0 −i
0 0 0
i 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃6 = Ĉ23 + Ĉ32 =

⎛

⎜⎜⎜⎜⎝

0 0 0
0 0 1
0 1 0

⎞

⎟⎟⎟⎟⎠
,

λ̃7 = 1

i
(Ĉ23 − Ĉ32) =

⎛

⎜⎜⎜⎜⎝

0 0 0
0 0 −i
0 i 0

⎞

⎟⎟⎟⎟⎠
,

λ̃8 = √
3(Ĉ′ ′

11 + Ĉ′ ′
22) = 1√

3

⎛

⎜⎜⎜⎜⎝

1
1

−2
0

0

⎞

⎟⎟⎟⎟⎠
.

The other generators of SU(5) are

λ̃9 = Ĉ14 + Ĉ41 =

⎛

⎜⎜⎜⎜⎝

1 0
0 0
0 0

1 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃10 = 1

i
(Ĉ14 − Ĉ41) =

⎛

⎜⎜⎜⎜⎝

−i 0
0 0
0 0

i 0 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃11 = Ĉ24 + Ĉ42 =

⎛

⎜⎜⎜⎜⎝

0 0
1 0
0 0

0 1 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃12 = 1

i
(Ĉ24 − Ĉ42) =

⎛

⎜⎜⎜⎜⎝

0 0
−i 0
0 0

0 i 0
0 0 0

⎞

⎟⎟⎟⎟⎠
,
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λ̃13 = Ĉ34 + Ĉ43 =

⎛

⎜⎜⎜⎜⎝

0 0
0 0
1 0

0 0 1
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃14 = 1

i
(Ĉ34 − Ĉ43) =

⎛

⎜⎜⎜⎜⎝

0 0
0 0

−i 0
0 0 i
0 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃15 = Ĉ15 + Ĉ51 =

⎛

⎜⎜⎜⎜⎝

0 1
0 0
0 0

0 0 0
1 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃16 = 1

i
(Ĉ15 − Ĉ51) =

⎛

⎜⎜⎜⎜⎝

0 −i
0 0
0 0

0 0 0
i 0 0

⎞

⎟⎟⎟⎟⎠
,

λ̃17 = Ĉ25 + Ĉ52 =

⎛

⎜⎜⎜⎜⎝

0 0
0 1
0 0

0 0 0
0 1 0

⎞

⎟⎟⎟⎟⎠
,

λ̃18 = 1

i
(Ĉ25 − Ĉ52) =

⎛

⎜⎜⎜⎜⎝

0 0
0 −i
0 0

0 0 0
0 i 0

⎞

⎟⎟⎟⎟⎠
,

λ̃19 = Ĉ35 + Ĉ53 =

⎛

⎜⎜⎜⎜⎝

0 0
0 0
0 1

0 0 0
0 0 1

⎞

⎟⎟⎟⎟⎠
,

λ̃20 = 1

i
(Ĉ35 − Ĉ53) =

⎛

⎜⎜⎜⎜⎝

0 0
0 0
0 −i

0 0 0
0 0 i

⎞

⎟⎟⎟⎟⎠
.

These generators describe transitions between multiplets that belong to different sub-

groups, that is between the subgroups SU(3) and SU(2) × U(1). Such transitions are

mediated by the gauge bosons X and Y (see Sect. 9.3). The remaining SU(5) genera-
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tors are

λ̃21 ≡ τ̃1 = Ĉ45 + Ĉ54 =

⎛

⎜⎜⎜⎜⎝ 0 1
1 0

⎞

⎟⎟⎟⎟⎠
,

λ̃22 ≡ τ̃2 = 1

i
(Ĉ45 − Ĉ54) =

⎛

⎜⎜⎜⎜⎝ 0 −i
i 0

⎞

⎟⎟⎟⎟⎠
,

λ̃23 ≡ τ̃3 = Ĉ′ ′
44 − Ĉ′ ′

55 =

⎛

⎜⎜⎜⎜⎝

0
0

0
1

−1

⎞

⎟⎟⎟⎟⎠

and finally

λ̃24 ≡ Ỹ =
√

5

3
(Ĉ′

44 + Ĉ′
55) = 1√

15

⎛

⎜⎜⎜⎜⎝

−2
−2

−2
3

3

⎞

⎟⎟⎟⎟⎠

=
√

3

5

⎛

⎜⎜⎜⎜⎝

− 2
3

− 2
3

− 2
3

1
1

⎞

⎟⎟⎟⎟⎠
.

Altogether the generators λ̃1, . . . , λ̃8 form an SU(3) Lie algebra, while the generators
τ̃1, τ̃2, τ̃3 determine a SU(2) algebra. The operators λ̃i , i = 1–21, commute with all
three operators τ̃i , implying that the subgroups SU(3) and SU(2) commute with each
other. Of course, this is also true for the subgroup U(1) generated by Ỹ , since Ỹ is di-
agonal with respect to the subgroups SU(3) and SU(2). The λ̃1, . . . , λ̃8 describe SU(3),
λ̃21, λ̃22, λ̃23 SU(2), and λ̃24 U(1). Altogether these 12 generators represent the new
group SU(3) × SU(2) × U(1). This group is a subgroup of the complete SU(5), which
is formed by all 24 generators λ̃i . The subgroup character of the SU(3) × SU(2) × U(1)
is expressed by writing

SU(5) ⊇ SU(3) × SU(2) × U(1)

which means that the direct product group SU(3)×SU(2)×U(1) is embedded into
SU(5). Formally speaking, the imbedding of a group A into a group B implies that
the Lie algebra of the generators of A is a sub-algebra of the generators of B.
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From the discussion of the Glashow–Salam–Weinberg model we recall that the hy-

percharge of the lepton doublet
( νe

e−
)

is −1; thus it is convenient to normalize the

corresponding operator of the hypercharge Ỹ = λ̃24 appropriately:

Ŷ =
√

5

3
Ỹ =

⎛

⎜⎜⎜⎜⎝

− 2
3

− 2
3

− 2
3

1
1

⎞

⎟⎟⎟⎟⎠
. (9.23)

It is important to note that the left-handed lepton doublet (νe, e−)L belongs to the com-
plex conjugate representation 5, in terms of which the operator for the hypercharge is
given by −Ỹ . In order to see this, we consider the group operators rather than the
generators:

[
exp(iαŶ )

]∗ = exp(−iαŶ ) = exp[iα(−Ŷ )] . (9.24)

Only in this way, that is with respect to the 5 representation, is the hypercharge of the
form
⎛

⎜⎜⎜⎜⎝

2
3

2
3

2
3 −1

−1

⎞

⎟⎟⎟⎟⎠

with the appropriate values (−1) for the (νe, e−)L doublet. Taking into account the
isospin operator (9.21), we find for the operator of the electric charge, in terms of the
fundamental representation 5,

Q̂ = T̂3 + 1

2
Ŷ ≡ 1

2
τ̃3 +
√

5

12
Ỹ =

⎛

⎜⎜⎜⎜⎝

− 1
3

− 1
3

− 1
3

1
0

⎞

⎟⎟⎟⎟⎠
. (9.25)

According to (9.24) the charge operator for the representation 5 is given by (−Q̂). The
form of (9.25) exhibits the consistent unification of the elementary fermions within the
quintuplet of SU(5). As will be shown in Example 9.2, we must assign the last two
components to the lepton “antidoublet” (eC,−νCe )R , whereas the first three compo-
nents, representing the color gauge group SU(3), correspond to particles of charge
−1/3.

The latter can only be the color triplet (and isospin singlet) of the right-handed
d quarks (see e.g. Table 6.2). Thus the five-dimensional representation is given by

[5] = (ψp)R =

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νCe

⎞

⎟⎟⎟⎟⎠

R

, p = 1, . . . ,5 . (9.26)
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The index p = 1,2, . . . ,5 characterizes the individual components of the SU(5) spinor

⎛

⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞

⎟⎟⎟⎟⎠
.

Note that the antiparticles corresponding to the SU(2) doublet
( νe

e−
)
L

are represented

by the doublet (e+,−ν̄e)R . The sign of the helicity is reversed for the antiparticles.
This is essentially the result of Example 9.2, which is, except for the minus sign in the
case of the anti neutrino, quite plausible.

EXAMPLE

9.2 Charge Conjugation

The fields of antiparticles with spin 1
2 are obtained by charge conjugation

ψC = Ĉψ̄T = Ĉγ 0ψ∗ , ψ̄C = ψC , (1)

where the operator of charge conjugation Ĉ is required to fulfill

Ĉγ μĈ−1 = −γ μ
T

. (2a)

This constraint is satisfied by choosing5 for example,

Ĉ = iγ 2γ 0 . (2b)

In order to find the behavior of chirality eigenstates under charge conjugation, we
consider

(ψL)
C = Ĉγ 0(ψL)

∗ = iγ 2 1

2
(1 − γ5)ψ

∗

= 1

2
(1 + γ5)iγ

2ψ∗ = 1

2
(1 + γ5)Ĉγ

0ψ∗

= 1

2
(1 + γ5)ψ

C = (ψC)R (3a)

and similarly

(ψR)
C = (ψC)L . (3b)

Thus the charge-conjugated state of a right-handed electron is a left-handed positron,
and so on.

Applying the operator of charge conjugation to isospin doublets, the situation
becomes more complex. As we have already learned from the example of hyper-

5 See Chap. 12 – W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer,
Berlin, Heidelberg, 2000).
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charge (9.24), charge conjugation reverses the sign of the eigenvalues of all gener-
ators that generate symmetry transformations. This is due to the operation of complex
conjugation which is part of charge conjugation. Hence, by naively applying charge
conjugation to the particular components of a lepton doublet

L =
(
νe

e−
)

L

, (4a)

the resulting doublet

L′ =
(
νCe
e+
)

R

(4b)

would have isospin T3 = − 1
2 and T3 = + 1

2 for the upper and lower components, re-
spectively. Of course this cannot be right; however, the following simple prescription
will yield the correct result. We only need to rotate L′ around the 1 axis or 2 axis of
the isospin space by 180◦. It is common to choose the 2 axis to perform the rotation:

eiπT̂2 T̂3e−iπT̂2 = ei π2 τ2

(
1

2
τ3

)
e−i π2 τ2

= iτ2

(
1

2
τ3

)
(−iτ2)

= 1

2
τ2τ3τ2 = − 1

2
τ3 = −T̂3 , (5)

where we have used the relation

ei π2 τ2 = cos
π

2
+ iτ2 sin

π

2
= iτ2 =

(
0 +1

−1 0

)
. (6)

Thus, the correct charge-conjugated isospin doublet is given by the additional rotation
(6) in isospin spaces, that is by

Le = iτ2

(
νCe
e+
)

R

=
(

e+
−νCe

)

R

. (7)

From our previous considerations, we might be tempted to combining the left-
handed, charge-conjugated particles (dr ,db,dg)L, e+

L within a quintuplet. However,
this is not possible, since the left-handed d quarks belong to an isospin doublet (see
(6.29)),

(
ur ub ug
dr db dg

)

L

(9.27a)

whereas e+
L , as the conjugated particle to e−

R , is represented by an isospin singlet.
The best we can do is to form a SU(5) antiquintuplet that contains the conjugated
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left-handed particles corresponding to (9.26),

[5̄] = (ψC
p )L =

⎛

⎜⎜⎜⎜⎜⎝

dCr
dCb
dCg
e−

−νe

⎞

⎟⎟⎟⎟⎟⎠

L

, p = 1, . . . ,5 . (9.28)

Note, however, that this is not an independent assignment. The superscript “C ” de-
notes the antiparticles that correspond to the letters without a bar (for example, dC in-
dicates the d antiquark). The antiparticles of the dR quarks are the left-handed dCL ;
both are SU(2) singlets. Frequently antiparticles are denoted by a bar over the letter,
for example the dL antiquark reads d̄L. This notation, however, may lead to misun-
derstanding with the adjoint spinor d̄ = d†γ 0. In order to prevent this we prefer to
characterize the antiparticles by the superscript “C” and use the bar notation only
where misunderstanding is remote.

We have up to now given SU(5) assignments to the right-handed d quarks,
(dr )R, (db)R, (dg)R , and to the right-handed positron (e+)R and electron antineutrino
(νCe )R – see (9.26) –, as well as to the left-handed d antiquarks, (dCr )L, (d

C
b )L, (d

C
g )L,

to the left-handed electron (e−)L and the electron neutrino (νe)L – see (9.28). The
question remains open which SU(5) assignment has to be given to the left-handed

fermions
(ur ub ug
dr db dg

)
L

– see (9.27a) – and to the singlets e+
L and (uCr , u

C
b ,u

C
g )L. To

achieve this, i.e. to determine the classification of the elementary left-handed fermi-
ons, that is (9.27a), as well as the singlets

e+
L, (uCr ,uCb ,uCg )L , (9.27b)

into further SU(5) multiplets, we need some additional tools from group theory. The
problem is, how do we decompose the irreducible representations of SU(5) in terms
of tensor products of representations of the groups SU(3) and SU(2)? We start from
the trivial decomposition of the fundamental representation of SU(5),

5 ≡ 5 = ( 3,12) + (13, 2) ≡ (3,1) + (1,2) , (9.29)

where we have alternatively employed the notation of Young diagrams and the nota-
tion in terms of the dimensions of the representations. The indices “3” and “2” indicate
whether the representation belongs to the SU(3) or SU(2), respectively. Using the dis-
tributive property, we obtain for the direct product of two fundamental representations

5 × 5 = [( 3,12) + (13, 2)] × [( 3,12) + (13, 2)]
= ( 3 × 3,12) + ( 3, 2) + ( 3, 2)

+ (13, 2 × 2)

= ( 3,12) +
(

3,12

)
+ 2( 3, 2)

+ (13, 2) +
(

13, 2

)

≡ (6,1) + (3̄,1) + 2(3,2) + (1,3) + (1,1) . (9.30)
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On the other hand (9.18) states that

5 × 5 ≡ 5 × 5 = 5 + 5 = 15 + 10 .

Owing to the symmetry or antisymmetry, of the representations (boxes above one an-
other correspond to antisymmetry, boxes next to one another to symmetry) we may im-
mediately assign the product representations (6,1), (1,3) to the 15-dimensional rep-
resentation and, similarly, (3̄,1), (1,1) to the 10-dimensional representation of SU(5).
From the two representations (3,2), we can form symmetric and antisymmetric com-
binations. We therefore obtain for the SU(3)×SU(2) decompositions

10 = (3̄,1) + (3,2)anti + (1,1) , (9.31a)

15 = (6,1) + (3,2)sym + (1,3) . (9.31b)

EXERCISE

9.3 The Quintuplet of SU(5)

Problem. Consider the five basis states of the quintuplet of SU(5),

ψ1 ≡ q1 =

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠
, ψ2 ≡ q2 =

⎛

⎜⎜⎜⎜⎝

0
1
0
0
0

⎞

⎟⎟⎟⎟⎠
,

ψ3 ≡ q3 =

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
, ψ4 ≡ 
1 =

⎛

⎜⎜⎜⎜⎝

0
0
0
1
0

⎞

⎟⎟⎟⎟⎠
,

ψ5 ≡ 
2 =

⎛

⎜⎜⎜⎜⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟⎠
,

(q = quark, 
 = lepton), and work out the antisymmetric basis vectors of the 10-
dimensional representation. Write down these basis vectors explicitly as 5×5 matri-
ces.

Solution. The result of the general decomposition of the direct product [5] × [5],
(9.30), shows that the 10-dimensional representation contains three basic components:
a color antitriplet/isospin singlet, an antisymmetric color triplet/isospin doublet, and
a complete singlet (see (9.31a)). The first and last can be expressed in terms of an
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antisymmetric tensor product of quark and lepton basis vectors, respectively:

ψ12 = 1√
2
(q1q2 − q2q1)

ψ23 = 1√
2
(q2q3 − q3q2)

ψ31 = 1√
2
(q3q1 − q1q3)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

SU(3) antitriplet

SU(2) singlet
.

This corresponds to the (3̄,1) on the right-hand side of (9.31a). Furthermore,

ψ45 = 1√
2
(
1
2 − 
2
1)

SU(3) singlet

SU(2) singlet

is the singlet (1,1) on the right-hand side of (9.31a). Similarly, the color triplet/isospin
doublet can be described by a product of a quark and a lepton vector. There are exactly
six possible ways to form such antisymmetric product states:

ψ14 = 1√
2
(q1
1 − 
1q1)

ψ24 = 1√
2
(q2
1 − 
1q2)

ψ34 = 1√
2
(q3
1 − 
1q3)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

SU(3)

triplet

ψ15 = 1√
2
(q1
2 − 
2q1)

ψ25 = 1√
2
(q2
2 − 
2q2)

ψ35 = 1√
2
(q3
2 − 
2q3)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

SU(3)

triplet

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

SU(2) doublet .

These are exactly the states of the (3,2) antisubmultiplet of the decomposition (9.31a).
Altogether this makes a total of 10 basis vectors for the 10-dimensional representation.
The tensor product of any two five-component vectors yields a 5 × 5 matrix. For
example,

ψ12 = ψ1ψ2 − ψ2ψ1√
2

= 1√
2

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
,

...

ψ35 = ψ3ψ5 − ψ5ψ3√
2

= 1√
2

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 −1 0 0

⎞

⎟⎟⎟⎟⎠
.
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From the considerations of Exercise 9.3 and (9.31a) it is now clear that the repre-
sentation [10] contains one color triplet/isospin doublet, one colour antitriplet/isospin
singlet, and finally a complete singlet. On the other hand, the decomposition of the
adjoint fundamental representation,

[5̄] = (3̄,1) + (1, 2̄) , (9.32)

represents the group-theoretical justification for the choice of the assignment (9.28),
since the left-handed d antiquarks form an isospin singlet, whereas the color singlet
particles (e−, νe)L belong to an isospin doublet. It is denoted in (9.32) as (1, 2̄), which
is identical with (1,2) because for SU(2) the elementary doublet is identical with the
elementary antidoublet. The particular components of the representation [10] (9.31a)

then corresponds to the particles (ucr ,ucb,ucg)L for the (3̄,1),
( ur ub ug

dr db dg

)
L

for the (3,2),

and to the singlet e+
L for the (1,1).

The antisymmetric SU(5) representation [10] is conveniently expressed in terms of
a 5 × 5 matrix that contains exactly 10 independent components (see Exercise 9.3). We
shall denote these matrices by ψij , i, j = 1, . . . ,5 (ψij = −ψji). The group operators
of this representation are then simply expressed as tensor products of operators of the
fundamental representation:

ψkl = qkql − qlqk ,
(9.33)

ψ ′
kl =
∑

i,j

U
[10]
kl,ijψij =

∑

i,j

(
U

[5]
ki U

[5]
lj

)
ψij .

Indeed, from q ′
k =∑i U

[5]
ki qi it immediately follows that

ψ ′
kl = q ′

kq
′
l − q ′

l q
′
k =
∑

i,j

(
U

[5]
ki U

[5]
lj − U

[5]
li U

[5]
kj

)
qiqj

=
∑

i,j

U
[5]
ki U

[5]
lj (qiqj − qjqi) =

∑

i,j

U
[5]
ki U

[5]
lj ψij .

Now the multiplication of group operators corresponds to the addition of the gen-
erators. For a diagonal operator, such as the charge matrix Q

[5]
ki = Q

[5]
i δik, where

the group rotation in the five-dimensional representation is U [5]
kl = exp(iQ[5]

k )δkl , we

therefore have in the 10-dimensional representation for the group operators U [10]
kl,ij =

U
[5]
ki U

[5]
lj = eiQ[5]

k δkieiQ[5]
l δlj = eiQ[10]

δkiδlj , and therefore the corresponding charge
operator is obtained by addition:

Q̂[10] = Q
[10]
kl,ij = Q

[5]
k δkiδlj + Q

[5]
l δlj δki = (Q

[5]
k + Q

[5]
l )δkiδlj .

Consequently,

Q̂[10]ψkl =
∑

i,j

Q
[10]
kl,ijψij =

∑

i,j

(
Q

[5]
i + Q

[5]
j

)
δkiδljψij

= (Q[5]
k + Q

[5]
l

)
ψkl ≡ Qklψkl . (9.34)
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With the eigenvalues of the charge matrix (9.25) we obtain for the 5 × 5 matrix
(Qk + Ql)

Qkl = (Qk + Ql) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∗ − 2
3 − 2

3
2
3 − 1

3

− 2
3 ∗ − 2

3
2
3 − 1

3

− 2
3 − 2

3 ∗ 2
3 − 1

3
2
3

2
3

2
3 ∗ 1

− 1
3 − 1

3 − 1
3 1 ∗

⎞

⎟⎟⎟⎟⎟⎟⎠
. (9.35)

The fact that the charges Qkl of the antisymmetric states ψkl = qkql − qlqk of (9.33)
are given by the sum of the charges of the elementary quintuplet is physically highly
plausible: the charge of a product of two states equals the sum of the charges of the
individual states involved. Equation (9.33) states that the diagonal elements do not
contribute since, owing to the antisymmetric character of the 10-dimensional repre-
sentation, it holds that ψii = −ψii = 0. For this reason we have labeled them with
a “∗” in (9.35). The decomposition of the 10-dimensional representation in terms of
its SU(2) and SU(3) content (9.31a) consequently leads to the arrangement of the re-
maining left-handed particles (9.27a), (9.27b) within the antisymmetric matrix ψij , as
follows (see Example 9.3):

10 =
⎛

⎝
(3̄,1) | (3,2)

− − − + − − −
(3,2) | (1,1)

⎞

⎠ . (9.36)

From the color vector (uCr ,uCb ,uCg )L we form an antisymmetric 3 × 3 matrix by means

of
∑

k εijk(u
C
k )L and, similarly, from the singlet e+

L we construct an antisymmetric
2 × 2 matrix by εije+

L . Hence, the matrix ψij is of the following form:

ψ
[10]
ij = 1√

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 uCg −uCb | −ur −dr

−uCg 0 uCr | −ub −db

uCb −uCr 0 | −ug −dg
− − − − − − − − − + − − − − − −
ur ub ug | 0 +e+
dr db dg | −e+ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

L

= 1√
2

⎛

⎜⎜⎜⎜⎜⎝

0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 −eC

d1 d2 d3 eC 0

⎞

⎟⎟⎟⎟⎟⎠

L

(9.37)

where a normalization factor 1/
√

2 is introduced to take into account that every par-
ticle appears twice within the matrix ψij . In the second version of ψij in (9.37) we
have relabeled the color indices r, b, g by 1,2,3 which is more convenient for practi-
cal calculations.

In order to check the consistency of the above arrangement we apply the charge
operator (9.35) onto the multiplet (9.37). Obviously this leads to Q(u) = −Q(uC) =
+2/3, Q(d) = −1/3, and Q(e+) = +1. This is a remarkable result. By fixing a par-
ticular charge, for example the electron charge, within the gauge group, all other par-
ticle charges are completely determined, that is the charges of νe,u and d quarks, if
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we only arrange these particles within the multiplets 5 and 10 in correspondence with
their color and isospin quantum numbers. In other words, the quantization of charge
is a direct consequence of the group SU(5).6

In particular, the property of vanishing trace of the charge operator (9.25) (as
a linear combination of the traceless generators) implies that the sum of charges
of the elementary left-handed fermions within a particular multiplet is always
zero:

[5]: 3Q(d) + Q(e+) + Q(ν̄e) = 0 , (9.38a)

[10]:
∑

k,l

Qkl =
∑

k,l

(Qk + Ql) = 5
∑

k

Qk + 5
∑

l

Ql = 0 ,

∑

k,l

Qkl =
∑

k

Qkk +
∑

k �=l

Qkl = 0 +
∑

k �=l

Qkl ,

∑

k �=l

Qkl =
∑

k �=l

(Qk + Ql) = 3Q(uC) + 3Q(u) + 3Q(d) + Q(e+)

= 3Q(d) + Q(e+) = 0 , (9.38b)

since Q(uC) = −Q(u). In the second line above we used
∑

k

Qkk =
∑

k

(Qk + Qk) = 2
∑

k

Qk = 0.

Because of (9.38a) and (9.38b) we obtain

Q(ν̄e) = 0 , Q(d) = − 1

3
Q(e+) = 1

3
Q(e−) . (9.39)

Furthermore, from the doublet character of the electroweak theory, it follows that the
charge difference of the upper and lower components of the electroweak 2-spinor is
�Q = q0(Y/2 + T3 = +1/2) − q0(Y/2 + T3 = −1/2) = q0, in other words it is equal
for all 2-spinors, that is 1q0. Here q0 denotes the reference charge which determines

the scale of the charge. In particular, for the electroweak
( u

d

)
spinor and

( νe
e−
)

spinor

one therefore finds Q(u) − Q(d) = Q(νe) − Q(e−), or with (9.39)

Q(u) = Q(d) + [Q(νe) − Q(e−)] = − 2

3
Q(e−) , (9.40)

which means that the charges of all particles can be expressed in terms of the elec-
tron charge. Another successful feature of SU(5) is that for every lepton doublet there
exists exactly one quark doublet with three color states. Only for such a particular
combination can the renormalization of the standard model be ensured. This state-
ment is discussed in more detail in the field-theoretical digression (Supplement 9.11:
Anomaly Freedom).

6 The quantization of the electric charge can also be obtained from other semi-simple Lie groups
that, instead of SU(5), could be chosen as the gauge groups of the unified interactions, for example
SO(10), E6, etc., cf. H. Saller: Vereinheitlichte Feldtheorien der Elementarteilchen (Springer, Berlin,
Heidelberg, 1985).
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EXAMPLE

9.4 SU(5) Classification of the Remaining Lepton and Quark Generations
(Families)

In an analogous fashion to νe, e, u, d , also νμ,μ, c, s and ντ , τ, t, b have to be clas-
sified in the framework of SU(5). Embedding the first lepton and quark generation has
already been thoroughly discussed. In this procedure we constructed the following
multiplets consisting of 30 fermions, including the antiparticles. We identified those
particles known as the left-handed SU(2) doublets and singlets,
(
νe

e−
)

L

,

(
u

d

)

c,L

, e+
L , uCc̄,L , dCc̄,L ,

and right-handed SU(2) doublets and singlets,
(
e+

−νCe

)

R

,

(
dC

−uC

)

c̄,R

, e−
R , uc,R , dc,R ,

with four SU(5) multiplets. The subscripts c and c̄, denote the color degree of freedom
of the quarks. We also proposed the following classification SU(5) quintuplet:

5 = (d1 d2 d3 e+ −νCe
)
R

,

SU(5) antiquintuplet:

5 = (dC1 dC2 dC3 e− −νe
)
L

,

SU(5) decuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎝

0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 +e+
d1 d2 d3 −e+ 0

⎞

⎟⎟⎟⎟⎟⎠

L

,

SU(5) antidecuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎝

0 u3 −u2 −uC1 −dC1

−u3 0 u1 −uC2 −dC2

u2 −u1 0 −uC3 −dC3

uC1 uC2 uC3 0 +e−

dC1 dC2 dC3 −e− 0

⎞

⎟⎟⎟⎟⎟⎟⎠

R

.

One can see immediately that all the particles and antiparticles of the first fermion
generation are involved.

Similarly, we can put the remaining two lepton and quark families into SU(5)
schemes. The latter occurs in the following isospin doublets and singlets left-handed:
(
νμ
μ−
)
rL ,

(
c

s

)

c,L

, μ+
L , cCc̄,L , sCc̄,L ;
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right-handed:

(
μ+

−νCμ

)

R

,

(
sC

−cC

)

c̄,R

, μ−
R , cc,R , sc,R .

This yields the following SU(5) multiplets SU(5) quintuplet:

5 = (s1 s2 s3 μ+ −νCμ
)
R

,

SU(5) antiquintuplet:

5 = (sc1 sc2 sc3 μ− νμ
)
L

,

SU(5) decuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎝

0 cC3 −cC2 −c1 −s1

−cC3 0 cC1 −c2 −s2

cC2 −cC1 0 −c3 −s3
c1 c2 c3 0 +μ+
s1 s2 s3 −μ+ 0

⎞

⎟⎟⎟⎟⎟⎠

L

,

SU(5) antidecuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎝

0 c3 −c2 −cC1 −sC1

−c3 0 c1 −cC2 −sC2

c2 −c1 0 −cC3 −sC3

cC1 cC2 cC3 0 +μ−

sC1 sC2 sC3 −μ− 0

⎞

⎟⎟⎟⎟⎟⎟⎠

R

.

The third generation of leptons and quarks, which are represented by the isospin dou-
blets and singlets, are

• left-handed:
(
ντ
τ−
)

L

,

(
t

b

)

c,L

, τ+
L , tCc̄,L , bCc̄,L ;

• right-handed:

(
τ+

−νCτ

)

R

,

(
bC

−tC

)

c̄,R

, τ−
R ; tc,R , bc,R .

They are now located within the SU(5) multiplets, namely the
• SU(5) quintuplet:

5 = (b1 b2 b3 τ+ −νCτ
)
R

,

• SU(5) antiquintuplet:

5 = (bC1 bC2 bC3 τ− ντ
)
L

,
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• SU(5) decuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎝

0 tC3 −tC2 −t1 −b1

−tC3 0 tC1 −t2 −b2

tC2 −tC1 0 −t3 −b3

t1 t2 t3 0 +τ+
b1 b2 b3 −τ+ 0

⎞

⎟⎟⎟⎟⎟⎠

L

,

• SU(5) antidecuplet (antisymmetric representation):

10 = 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎝

0 t3 −t2 −tC1 −bC1

−t3 0 t1 −tC2 −bC2

t2 −t1 0 −tC3 −bC3

tC1 tC2 tC3 0 +τ−

bC1 bC2 bC3 −τ− 0

⎞

⎟⎟⎟⎟⎟⎟⎠

R

.

This completes the classification of all known elementary fermions. There are no posi-
tions left in the four SU(5) multiplets of each generation. Furthermore, particles which
belong to different fermion families do not appear within the same SU(5) multiplet.
This classification implies that the numbers of leptons and quarks of each fermion gen-
eration are in proper agreement. Thus we expect that for each flavor of leptons there
is exactly one flavor of quarks (with their color multiplicity). Above all, for the third
generation this implies the existence of the t quark! It was experimentally discovered
in 1995; see Sect. 6.1!

9.3 The SU(5) Gauge Theory

The gauge bosons belong to the adjoint (regular) representation of SU(5) with dimen-
sion 52 − 1 = 24. According to (9.18) the adjoint representation is generated by the
product [5] × [5̄] = [24] + [1]. Indeed we know from quantum mechanics7 that mesons
belong to the 3 × 3̄ representation in the case of SU(3) and to the 4 × 4̄ representa-
tion in the case of SU(4) flavor symmetry. The physical significance of this is that
mesons are fermion–antifermion states, for example quark–antiquark states. Similarly
the SU(5) gauge bosons can be considered equivalent to states of fermion–antifermion
pairs, each belonging to the fundamental representation of SU(5). Hence it is logical
to consider now the 5 × 5̄ representation for the gauge bosons. With the knowledge of
the SU(3) × SU(2) content of the fundamental representations that we have gained in
the previous section (see (9.29)), it is now straightforward to decompose the adjoint
representation in terms of the SU(3) × SU(2) portion:

5̄ × 5 = [ (3̄,1) + (1,2) ] × [ (3,1) + (1,2) ]
=
[[(

3,12

)
+ (13, 2)

]
× [ ( 3,12) + (13, 2) ]

]

=
(

3 × 3,12

)
+
(

3, 2

)
+ ( 3, 2) + (13, 2 × 2)

7 See W. Greiner and B. Müller: Quantum Mechanics – Symmetries, 2nd ed. (Springer, Berlin, Hei-
delberg, 1994).
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=
(

3
,12

)
+ (13,12) +

(
3, 2

)
+ ( 3, 2)

+ (13, 2) + (13,12)

= (8,1) + (3̄,2) + (3,2) + (1,3) + 2(1,1) . (9.41)

Therefore the decomposition of the adjoint representation is

[24]5 = (8,1) + (3̄,2) + (3,2) + (1,3) + (1,1) . (9.41a)

Since the gauge bosons of the color SU(3) group, the gluons, as well as the interme-
diate bosons and photons of SU(2) × U(1), are contained in (9.41) we can make the
following assignments:

• There is a SU(3) octet of gluons Ga
μ (a = 1, . . . ,8) → (8,1).

• There is an isovector of intermediate bosons Wi
μ (i = 1,2,3) → (1,3).

• There is an isoscalar field: the hypercharged boson Bμ → (1,1).
• In addition, there are twelve more gauge bosons, belonging to the representations
(3,2) and (3̄,2). These form an isospin doublet of bosons and their antiparticles,
which are colored. It is common to use the following notation:

(3,2) =
(
Xr Xg Xb

Yr Yg Yb

)
≡
(
X1 X2 X3

Y1 Y2 Y3

)
. (9.42)

As we will prove in Exercise 9.5, the corresponding charges are Q(X) = +4/3 and
Q(Y) = +1/3.

EXERCISE

9.5 The SU(5) Gauge Bosons

Problem. Evaluate the electric charges of the SU(5) gauge bosons.

Solution. The gauge bosons of the SU(5) belong to the 24-plet contained in the
[5̄] × [5] representation. Therefore the eigenvalues of the charge operator can be ex-
pressed as a sum of eigenvalues of the representations [5̄] and [5], in the same way as
for the 10-dimensional representation in (9.34):

Q
[24]
kl = Q

[5]
k + Q

[5̄]
l = +Q

[5]
k − Q

[5]
l . (1)

According to (9.25), the explicit form of the charge matrix is

Q
[24]
kl =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 4
3 − 1

3

0 0 0 − 4
3 − 1

3

0 0 0 − 4
3 − 1

3

+ 4
3 + 4

3 + 4
3 0 +1

+ 1
3 + 1

3 + 1
3 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (2)

In comparison with (9.44) it becomes obvious that the gluons as well as the bosons
W3 and B (respectively, Z and the photon) are electrically neutral particles, whereas
the X and Y bosons carry charges + 4

3 and + 1
3 , respectively.
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Note that the “wave functions” of the [5] × [5̄] representation are constructed as a
direct product out of the wave functions of the [5] representation, that is

⎛

⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞

⎟⎟⎟⎟⎠
,

and of the [5̄] representation, that is (φ̄1, φ̄2, φ̄3, φ̄4, φ̄5). The order in which the prod-
uct is taken is essential. The product of the wave functions of the [5̄] with those of the
[5] yields a scalar state

[5̄] × [5] = (φ̄1, φ̄2, φ̄3, φ̄4, φ̄5)

⎛

⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞

⎟⎟⎟⎟⎠
=
∑

i

φ̄iψi ,

while

[5] × [5̄] =

⎛

⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

ψ5

⎞

⎟⎟⎟⎟⎠
× (φ̄1, φ̄2, φ̄3, φ̄4, φ̄5)

=

⎛

⎜⎜⎜⎜⎝

ψ1φ̄1 ψ1φ̄2 ψ1φ̄3 ψ1φ̄4 ψ1φ̄5

ψ2φ̄1 ψ2φ̄2 ψ2φ̄3 ψ2φ̄4 ψ2φ̄5

ψ3φ̄1 ψ3φ̄2 ψ3φ̄3 ψ3φ̄4 ψ3φ̄5

ψ4φ̄1 ψ4φ̄2 ψ4φ̄3 ψ4φ̄4 ψ4φ̄5

ψ5φ̄1 ψ5φ̄2 ψ5φ̄3 ψ5φ̄4 ψ5φ̄5

⎞

⎟⎟⎟⎟⎠

is obviously a tensor.
The charge operator for the [5] × [5̄] states (pay attention to the operator sign ˆ on

the Q and to its absence!) is

Q̂ψiφ̄k = (Q̂[5]ψi)φ̄k + ψi(φ̄kQ̂
[5̄]) = Q

[5]
i ψiφ̄k + ψiφ̄kQ

[5̄]
k

= (Q
[5]
i + Q

[5̄]
k )ψiφ̄k = Qikψiφ̄k .

For the [5̄] × [5] scalar, it follows similarly that

Q̂
∑

i

φ̄iψi =
∑

i

(φ̄iQ̂
[5̄]ψi + φ̄iQ̂

[5]ψi)

=
∑

i

(Q
[5̄]
i + Q

[5]
i )φ̄iψi = 0 ,

because the charges Q[5̄]
i = −Q

[5]
i . The scalar state carries no charge.
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Now we proceed in full analogy to the gauge invariant formulation of SU(2)L × U(1)
of Example 4.8, but here for the case of SU(5). There the covariant derivative was

D̂μ = ∂μ − igAiμT̂
i − i

g′

2
BμŶ

= ∂μ − i
g

2
Aiμτ̂

i − i
g′

2
BμŶ . (9.43)

The 24 gauge bosons Aiμ (i = 1, . . . ,24) are conveniently represented by a 5 × 5

matrix. Employing the 24 generators λ̃i of SU(5), we can write for the gauge-boson
operator

Âμ = 1

2

24∑

a=1

Aaμλ̃a = 1

2

[
8∑

a=1

Ga
μλ̃a +

20∑

a=9

Aaμλ̃a +
23∑

a=21

Aaμλ̃a + Bμλ̃24

]

= 1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

| XC
1μ YC1μ

1√
2

∑

a

Ga
μλa | XC

2μ YC2μ

| XC
3μ YC3μ

− − − − − − − − − + − − − − − −
X1μ X2μ X3μ | W 3

μ√
2

W+
μ

Y1μ Y2μ Y3μ | W−
μ − W 3

μ√
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ Bμ

2
√

15

⎛

⎜⎜⎜⎜⎝

−2
−2

−2
3

3

⎞

⎟⎟⎟⎟⎠
, (9.44)

where the λa are the familiar Gell-Mann matrices. Note that the singlet field Bμ is
required to couple with the operator Ỹ (see (9.22)). The Ga

μ (a = 1, . . . ,8) denote
the 8 gluon fields of SU(3), and W+

μ ,W
−
μ ,W

3
μ,Bμ are the W and B bosons of the

SU(2)×U(1) standard model (see Chap. 4):

W±
μ = 1√

2
(A21

μ ∓ iA22
μ ) .

Note that in Chap. 4 the isovector fields were denoted as A21
μ = A1

μ, A22
μ = A2

μ, and
A23
μ = A3

μ. They should not be confused with the first three fields Aaμ (a = 1,2,3),
which are part of the gluon fields (see (9.44)). We shall therefore denote them here as

A21
μ ≡ W 1

μ , A22
μ ≡ W 2

μ , A23
μ ≡ W 3

μ

or in the corresponding spherical representation W+
μ ,W

−
μ and W 3

μ = A23
μ . Particular

linear combinations of W 3
μ and Bμ (see (4.97)) describe the Z boson and the photon.

These are

Aμ = cos θWBμ + sin θWA
3
μ ,

Zμ = − sin θWBμ + cos θWA
3
μ
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where θW is the Wainberg angle. The Xi
μ and Y iμ as well as their charge-conjugated

fields are new gauge bosons that occur in SU(5) and are not contained in the standard

model.

Relation (9.44) reads in detail:

Âμ = 1√
2

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A3
μ√
2

+ A8
μ√
6

− 2Bμ√
30

1√
2
(A1

μ − iA2
μ)

1√
2
(A4

μ − iA5
μ) | XC1μ YC1μ

1√
2
(A1

μ + iA2
μ) − A3

μ√
2

+ A8
μ√
6

− 2Bμ√
30

1√
2
(A6

μ − iA7
μ) | XC2μ YC2μ

1√
2
(A4

μ + iA5
μ)

1√
2
(A6

μ + iA7
μ) −

√
2
3A

8
μ− 2Bμ√

30
| XC3μ YC3μ

− − − − − − − − − + − − − − − −
X1μ X2μ X3μ | W 3

μ√
2

+ 3Bμ√
30

W+
μ

Y1μ Y2μ Y3μ | W−
μ − W 3

μ√
2

+ 3Bμ√
30

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.44a)

where

W 3
μ = A23

μ ,

W±
μ = 1√

2
(A21

μ ∓ iA22
μ ) ,

X1μ = 1√
2
(A9

μ + iA10
μ ) , XC

1μ = 1√
2
(A9

μ − iA10
μ ) ,

X2μ = 1√
2
(A11

μ + iA12
μ ) , XC

2μ = 1√
2
(A11

μ − iA12
μ ) ,

X3μ = 1√
2
(A13

μ + iA14
μ ) , XC

3μ = 1√
2
(A13

μ − iA14
μ ) ,

(9.44b)
Y1μ = 1√

2
(A15

μ + iA16
μ ) , YC1μ = 1√

2
(A15

μ − iA16
μ ) ,

Y2μ = 1√
2
(A17

μ + iA18
μ ) , YC2μ = 1√

2
(A17

μ − iA18
μ ) ,

Y3μ = 1√
2
(A19

μ + iA20
μ ) , YC3μ = 1√

2
(A19

μ − iA20
μ ) .

With these ingredients we are now in a position to make a prediction for the Weinberg

angle, within the framework of the unbroken SU(5). The essential point is that the

gauge-covariant derivative of the SU(5),

iD̂μ = i∂μ + g5

2

∑

i

Aiμλ̃i = i∂μ + g5Âμ , (9.45)
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contains only a single coupling constant g5. This is easily understood by analogy with
Example 4.8, (5).8 From (9.44) we find that the coupling of the W bosons is given by

+g5

2

⎛

⎜⎜⎜⎜⎜⎜⎝

0 | 0
0 | 0

0 | 0
−− −− −− + − − −

0 0 0 |
∑

i

W i
μτi

⎞

⎟⎟⎟⎟⎟⎟⎠
, (9.46)

whereas the B boson couples to the hypercharge Ŷ (9.23) according to

+g5

2

√
3

5
BμŶ . (9.47)

To understand this relation let us consider

∑

i

W i
μτi = W 1

μτ1 + W 2
μτ2 + W 3

μτ3

= W 1
μ

(
0 1
1 0

)
+ W 2

μ

(
0 −i
i 0

)
+ W 3

μ

(
1 0
0 −1

)

=
(

W 3
μ W 1

μ − iW 2
μ

W 1
μ + iW 2

μ −W 3
μ

)

=
(

W 3
μ

√
2W+

μ√
2W−

μ −W 3
μ

)

= √
2

⎛

⎜⎜⎜⎝

W 3
μ√
2

W+
μ

W−
μ −W 3

μ√
2

⎞

⎟⎟⎟⎠ .

By means of (9.45) and (9.44a) it therefore follows that, for the SU(2) submatrix,

(+g5Âμ) = +g5

2

⎛

⎜⎜⎝

|
− + − − −

|
∑

i

W i
μτi

⎞

⎟⎟⎠ (9.46a)

= +g5
1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

|
− + − − − − − −

| W 3
μ√
2

W+
μ

| W−
μ −W 3

μ√
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (9.46b)

8 See also W. Greiner, S. Schramm and E. Stein: Quantum Chromodynamics, 2nd ed. (Springer,
Berlin, Heidelberg, New York, 2000).
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which is the result stated in (9.44). Similarly the coupling of the Bμ field is obtained
from (9.44a) and (9.45) – see also the last equation of Exercise 9.1 –

(+g5Âμ)Bμ-coupling = g5

2
Bμ

ˆ̃
Y = +g5

Bμ

2
√

15

⎛

⎜⎜⎜⎜⎝

−2
−2

−2
3

3

⎞

⎟⎟⎟⎟⎠

= +g5
Bμ

2

√
3

5

⎛

⎜⎜⎜⎜⎝

− 2
3

− 2
3

− 2
3

1
1

⎞

⎟⎟⎟⎟⎠

= +g5

2

√
3

5
BμŶ = g5

2
BμỸ , (9.47a)

where we have used (9.23).
The coupling of the fermion fields ψ is determined according to (9.45) via minimal

coupling; namely

ψ̄γ μiDμψ = ψ̄γ μ(i∂μ + g5Âμ)ψ = ψ̄γ μ(i∂μ)ψ + g5ψ̄γ
μÂμψ .

The last term represents the interaction. In correspondence with (9.46) and (9.47a) it
contains the coupling to the Wμ and Bμ bosons, namely

Lint = +g5ψ̄γ
μÂμψ →

(
ψ̄γ μ

[
g5

2

∑

i

W i
μτ̂i

︸ ︷︷ ︸
W sector

+ g5

2

√
3

5
BμŶ

︸ ︷︷ ︸
B sector

]
ψ

)

=
(
ψ̄γ μ

[
g5

∑

i

W i
μT̂i + g5

2

√
3

5
BμŶ

]
ψ

)
.

From a comparison with (4.96), (4.113), or Example 4.8, (15) (note that in Chap. 4
the Wi

μ field is denoted by Aiμ), the coupling constants are obtained. Those equations
were obtained for the SU(2)×U(1) theory, with the corresponding gauge-covariant
derivative D̂μ = i∂μ + gT̂ · Aμ + g′

2 YBμ (see (4.112)).
Thus, we identify the coupling constant g and g′ of the Glashow–Salam–Weinberg

theory as

g = g5 , g′ =
√

3

5
g5 . (9.48)

Consequently the prediction of the Weinberg angle (4.103) within the SU(5) symmet-
ric gauge theory is

sin2 θW = g′2

g2 + g′2 = 3

8
= 0.375 . (9.49)

Obviously this value deviates from the experimental result sin2 θ
exp
W ≈ 0.23. In order

to understand the considerable disagreement, note that we have obtained the Weinberg
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angle on the assumption of an unbroken SU(5) gauge theory. In reality this cannot be
the case, since we already know that the SU(2)×U(1) symmetry of the GSW theory is
spontaneously broken by the Higgs field.

To date, moreover, there are no experimental indications of the influence of the
additional gauge fields X and Y. This fact leads to the hypothesis that these fields must
have significantly larger masses than the bosons W± and Z0, that is to say, the SU(5)
symmetry is assumed to be realized only at very high energies. (As we shall see in the
following sections, the corresponding breaking of the symmetry must happen at about
1015 GeV, in order not to conflict with the well-known life time of the proton.9 In other
words, below the energy threshold of about 1015 GeV SU(5) is a broken symmetry.
Only for larger energies it is exact. However, in quantum field theory the coupling
constant g depends on the considered energy (or more specifically on the momentum
transfer), as we shall discuss below in Sect. 9.5. For energies lower then the mass of the
X and Y bosons the energy dependence of the coupling is different for the particular
subgroups SU(3), SU(2), and U(1), which consequently yields an energy-dependent
Weinberg angle. Therefore it is quite possible, and indeed we shall confirm this in
Sect. 9.5 – see (9.103) and Fig. 9.4 – that sin2 θW ≈ 0.23 for the lower-energy region
experimentally accessible to date, whereas for very large energies sin2 θW can reach a
value of 3

8 , since the symmetry breaking can then be neglected. From this requirement
a prediction for the mass of the bosons X and Y can be obtained that must be compared
with the bound from proton lifetime measurements.

In order to understand why the X and Y boson in principle can lead to the decay
of the proton, let us consider, for example, the gauge field Xr (= X1). According to
(9.44) it couples to the 5 × 5 matrix

M̂(Xrμ) =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
Xrμ . (9.50)

Applying this matrix to the elementary quintuplet of SU(5) – see (9.26), we obtain

g5

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠
γ μÂμ

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠

R

γ μM̂(Xrμ)

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠

R

=

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠

†

R

γ0γ
μM̂(Xrμ)

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠

R

9 Recently obtained experimental data require an even higher limit, so that the SU(5) theory in its
simple form described above is, in fact, ruled out. Nevertheless it is extremely interesting to see by
the example of SU(5) how the idea of grand unification works.
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= (d̄r , d̄b, d̄g, ē
+,−ν̄ce )Rγ

μM̂(Xrμ)

⎛

⎜⎜⎜⎜⎝

dr
db
dg
e+

−νce

⎞

⎟⎟⎟⎟⎠

R

= ē+
Rγ

μ(Xrμ)R(dr)R . (9.50a)

The dr quark couples now directly to the positron, that is the dr quark is transformed
into a positron. To understand that theXr field can transform a dr quark into a positron,
in diagrammatic representation, consider the reaction

(9.50b)

The charges of the particles are indicated. They are conserved at the vertex. Many
other similar processes are possible. Indeed, if we apply the M̂(Xr) matrix to the
decuplet ψ [10]

ij of (9.37), we have (for convenience we drop here the space-time index

μ at Xrμ and γ μ from the coupling g5γ
μÂμ and insert them later again)

M̂(Xr)

⎛

⎜⎜⎜⎜⎜⎝

0 uCg −uCb −ur −dr

−uCg 0 uCr −ub −db

uCb −uCr 0 −ug −dg
ur ub ug 0 −e+
dr db dg e+ 0

⎞

⎟⎟⎟⎟⎟⎠

L

= Xr

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 uCg −uCb −ur −dr

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

L

. (9.51)

Next we evaluate the interaction as follows:

Tr
{
ψ̄

[10]
L Mψ

[10]
L

}

= Tr

⎛

⎜⎜⎜⎜⎝

0 −ūCg ūCb ūr d̄r

ūCg 0 −ūCr ūb d̄b

−ūCb ūCr 0 ūg d̄g
−ūr −ūb −ūg 0 ē+

−d̄r −d̄b −d̄g −ē+ 0

⎞

⎟⎟⎟⎟⎠

L

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 uCg −uCb −ur −dr

0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

L

Xr

= [0 + (ūb)L(u
C
g )L − (ūg)L(u

C
b )L + (ē+)L(dr )L

]
Xr . (9.52)

We shall justify this form of interaction in Example 9.6. Remember that we dropped
the space-time index μ and the γ μ. If we insert them, (9.52) becomes

[
(ūb)Lγ

μ(uCg )L − (ūg)Lγ
μ(uCb )L + (e+)γ μ(dr)L

]
Xrμ (9.52a)
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The terms (9.52) correspond to the following diagrams:

(9.51a)

The first diagram, corresponding to the last term of (9.52), is identical to the process
of (9.50b). As we shall see in Exercise 9.7, the Xiμ and Yiμ bosons carry anticolor
whereas the Xc

iμ and Yc
iμ bosons carry color. With that in mind one easily verifies

that at each vertex both the electric charges and the color charges are conserved. The
fundamental reason why the X boson can transform a u quark into a u antiquark is
that it couples to the SU(5) fermion decuplet, which contains quark fields as well as
their charge-conjugate fields. These differ in their sign of the baryon number (+1/3
and −1/3, respectively), and therefore the decuplet representation is not an eigenstate
of the baryon number operator. For the Y field we find by similar considerations the
processes

(9.53)

Since the X and Y bosons can transform quarks into leptons, they are sometimes also

Fig. 9.1. Feynman diagrams de-
scribing proton decay

referred to as leptoquarks. By combining the particular interactions between quarks,
leptons, and X and Y bosons (leptoquarks), it is straightforward to write down several
processes that describe the decay of the proton (see Fig. 9.1). Let us consider the first
graph of Fig. 9.1 more closely. The annihilation of two u quarks to form an X boson
(charge +4/3) is contained in the first term of the interaction (9.52). One should notice
here that the uC field, a fermion field, annihilates u antiquarks and creates u quarks.
The annihilation of the X leptoquark (charge +4/3) is similarly contained in the last
term of (9.52). Note that fermion fields contain both particles and antiparticles. This
will be explicitly described in Sect. 9.6 when we deal with proton decay. It is, in fact
similar to the case of QED, where the interaction (ψ̄γ μψ)Aμ, ψ being the electron–
positron field, contains all the following processes
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All these processes have in common that the baryon and lepton numbers of the initial
and final states differ by the same amount: �B = �L = −1 (the lepton number of
the particles e+ and ν̄e is −1 by convention!). The SU(5) theory thus conserves the
difference B −L, or in other words, (B −L) represents a conserved quantum number.
The X and Y baryons carry the quantum number (B − L) = 2

3 .
Processes such as the transformation of a neutron into an antineutron, so-called

N–N̄ oscillations (by analogy with the oscillations between the states K0 and K̄0 due
to the weak interaction), cannot therefore be described within the framework of the
SU(5) theory. If the existence of such transitions was experimentally observed, the
SU(5) theory must be rejected in principle.

EXAMPLE

9.6 Construction of the Lagrangian

We now have the ingredients necessary to formulate the Lagrangian of SU(5) gauge
field theory. First, we consider transforming the [10] representation under a unitary
transformation

Û = e+ig5θa(x)λ̃
a/2 . (1)

Here the gauge field obeys the transformation rule (see (4.49))

A′μa λ̃a
2

= Û (x)

[
Aμb

λ̃b

2
+ i

g5
∂μ
]
Û−1(x)

= Û (x)

[
Aμb

λ̃b

2
+ ∂μθb

λ̃b

2

]
Û−1(x)

= Û (x)

[
(Aμb + ∂μθb)

λ̃b

2

]
Û−1(x) , (2)

which can also be written as

Âμ′ = Û ÂμÛ−1 + i

g5
Û∂μÛ−1(x) .

Here Âμ = Aμa λ̂a2 is the vector field operator. The transformation of the wave func-
tion in the [10] representation is determined by remembering that the [10] representa-
tion is based on the [5] representation,

0[10] = (0[5] ⊗ 0[5])anti . (3)

The wave function in [5] representation transforms according to

0[5] ′ = Û (x)0[5] , (4)

or, in components,

0[5] ′
i = U(x)ij0

[5]
j . (5)
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Thus we get

0[10] ′
ik = (0[5] ′

i ⊗ 0[5] ′
k)anti

= (0[5] ′
i0

[5] ′
k − 0[5] ′

k0
[5] ′
i )

= (U(x)ij0[5]
j U(x)kl0

[5]
l − U(x)kl0

[5]
l U(x)ij0

[5]
j

)

= U(x)ij
(
0

[5]
j ⊗ 0

[5]
l

)
antiU(x)kl

= U(x)ij0
[10]
j l U t

lk(x) (6)

for the wave function in [10] representation. This can be written more concisely as

0[10] ′ = Û (x)0[10]Û t(x) , (7)

where the superscript “t” denotes matrix transposition. The covariant derivative is de-
termined such that additional terms, because of the transformation of the gauge field
(2), just cancel those terms that arise from application of the ordinary four-gradient to
the primed wave function (7). To see this, we consider

∂μ0
[10] ′(x) = ∂μ(Û(x)0

[10](x)Û t(x))

= (∂μÛ(x))0
[10](x)Û t(x) + Û (x)(∂μ0

[10])Û t(x)

+ Û (x)0[10](x)
(
∂μÛ

t(x)
)

= Û (x)
(
∂μ0

[10](x)
)
Û t(x)

+ Û (x)

{
ig5∂μθa

λ̃a

2
0[10] + 0[10]ig5∂μθa

λ̃a t

2

}
Û t(x) . (8)

The expression in braces is compensated for by formulating the covariant derivative
of the wave function in [10] representation as follows:

Dμ0
[10] = ∂μ0

[10] − ig5

{
Aaμ

λ̃a

2
0[10] + 0[10]Aaμ

λ̃t
a

2

}
. (9)

The transformation properties of this covariant derivative under gauge transforma-
tion (1, 2) can easily be derived:

D′
μ0

[10] ′ = ∂μ0
[10] ′ − ig5

{
A′a
μ

λ̃a

2
0[10] ′ + 0[10] ′A′a

μ

λ̃t
a

2

}

= Û (x)
(
∂μ0

[10](x)
)
Û (x)t

+ Û (x)

{
ig5∂μθa

λ̃a

2
0[10] + 0[10]ig5∂μθa

λ̃a t

2

}

– – – – – – – . . . . . . . . . . . . . . . .
Û t(x)

− ig5

{
Û (x)

[
Aμb

λ̃b

2
+
(
∂μθb

λ̃b

2

)

– – – –

]
Û−1(x)Û(x)0[10]Û(x)t

+ Û (x)0[10]Û t(x)Û−1t(x)

[
Aμb

λ̃tb

2
+
(
∂μθb

λ̃t
b

2

)

. . . . . . . . . .

]
Û t(x)

}
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= Û (x)

(
∂μ0

[10] − ig5

{
Aaμ

λ̃a

2
0[10] + 0[10]Aaμ

λ̃t
a

2

})
Û t(x)

= Û (x)Dμ0
[10]Û t(x) . (10)

The _ _ _ and . . . terms cancel. Thus, under gauge transformations, the covariant
derivative Dμ0

[10] transforms in the same way as 0[10] – compare (7) and (10). If the
Lagrange function is defined as

L [10]
kin = Tr{0̄[10]γ μDμ0

[10] } , (11)

and (10) is used, we get

L [10]
kin

′ = Tr{0̄[10] ′ �D′0[10] ′ }
= Tr
{(
Û(x)0[10]Û t (x)

)†
γ0Û (x) �D0[10]Û (x)t

}

= Tr
{
Û−1t (x)0[10]†γ0Û

−1(x)Û(x) �D0[10]Û (x)t
}

= Tr{0̄[10] �D0[10] } = L [10]
kin . (12)

Thus, the kinetic part of the SU(5) Lagrange function for coupling gauge fields to
fermion wave functions in [10] representation is invariant under gauge transformation
(1,2). In our notation the Lagrange function for coupling the SU(5) quintuplet wave
function to the gauge fields reads

L [5]
kin = 0̄[5] �D0[5] , (13)

and one easily checks its invariance under the gauge transformations (4) and (2). In-
deed we know from (4) that

0[5]′ = Û0[5]

and from (9.45)

D̂μ = ∂μ − ig5Âμ . (14)

For the covariant derivation D̂μ0
[5] it is requested that

(D̂μ0
[5])′ = Û (D̂μ0

[5]) , (15)

where the prime indicates the gauge transformed quantity. This yields

D̂′0[5]′ = (∂μ − ig5Â
′
μ)Û0

[5]

= Û (∂μ + Û−1∂μÛ − ig5Û
−1Â′

μÛ)0
[5] . (16)

Comparing this with (15) and (14) allows us to rewrite (16) in the form

D′
μ0

[5]′ = Û (Dμ0
[5])

= Û
(
(∂μ − ig5Âμ)0

[5]) , (16a)
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and we conclude

Â′
μ = Û ÂμÛ

−1 + i

g5
Û∂μÛ

−1 , (17)

which is identical with (2), as it should be. Perhaps it is useful to follow the derivation
of (17) in detail: Comparing (16) and (16a) yields

Û−1∂μÛ − ig5Û
−1Â′

μÛ = −ig5Âμ ,

and from that follows

−ig5Û
−1Â′

μÛ = −ig5Âμ − Û−1∂μÛ ,

Û−1Â′
μÛ = Âμ − i

g5
Û−1∂μÛ ,

Â′
μÛ = Û Âμ − i

g5
∂μÛ ,

Â′
μ = Û ÂμÛ

−1 − i

g5
(∂μÛ)Û

−1 .

Now, Û Û−1 = 1, and hence

(∂μÛ)Û
−1 + Û (∂μÛ

−1) = 0

or

(∂μÛ)Û
−1 = −Û(∂μÛ

−1) ,

and thus,

Â′
μ = Û ÂμÛ

−1 + i

g5
Û (∂μÛ

−1) .

For the Lagrangian density L [5]′
int – see (13) – we now have

L [5]′
int = 0[5]′

(D̂ψ [5])′

= Û0[5]Û �D̂0[5]

= 0̄[5] �D̂0[5] , (18)

where Û+ = Û−1 has been utilized. In total we then get

Lkin = Tr{0̄[10] �D0[10] } + 0̄[5] �D0[5] . (19)

Note that �D has a different form when it acts on 0[10] (see (9)) and on 0[5] (see
(9.45)). In the following we will need the coupling terms of the interaction Lagrangian

Lint = −ig5Tr

[
0̄[10] �Aa λ̃

a

2
0[10] + 0̄[10]γμ0[10]

(
λ̃a

2

)t

Aμa
]

− ig50̄
[5] �Aa λ̃a

2
0[5] . (20)
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Substituting the full expressions for the wave functions (see (9.28), (9.37), (9.44))
into L, we get (only the part connected to the X and Y bosons is of interest here)

Lint = − ig5√
8

Tr

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 −eC

d1 d2 d3 eC 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

T

L

×

⎡

⎢⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 /XC
1 /YC1

0 0 0 /XC
2 /YC2

0 0 0 /XC
3 /YC3

/X1 /X2 /X3 0 0
/Y 1 /Y 2 /Y 3 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 −eC

d1 d2 d3 eC 0

⎞

⎟⎟⎟⎟⎟⎠

L

+

⎛

⎜⎜⎜⎜⎜⎝

0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 −eC

d1 d2 d3 eC 0

⎞

⎟⎟⎟⎟⎟⎠

L

×

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 /X1 /Y 1

0 0 0 /X2 /Y 2

0 0 0 /X3 /Y 3

/XC
1 /XC

2 /XC
3 0 0

/YC1 /YC2 /YC3 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

− ig5√
2

(
d1 d2 d3 eC −νCe

)

R

×

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 /XC
1 /YC1

0 0 0 /XC
2 /YC2

0 0 0 /XC
3 /YC3

/X1 /X2 /X3 0 0
/Y 1 /Y 2 /Y 3 0 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

d1

d2

d3

eC

−νCe

⎞

⎟⎟⎟⎟⎠

R

. (21)

Carrying out matrix multiplications gives

Lint = − ig5√
8

· 2 ·
[
uC3 /X

C
2 u1 − uC2 /X

C
3 u1 − uC3 /X

C
1 u2

+ uC1 /X
C
3 u2 + uC2 /X

C
1 u3 − uC1 /X

C
2 u3

− u3/X2u
C
1 + u2/X3u

C
1 + u3/X1u

C
2

− u1/X3u
C
2 − u2/X1u

C
3 + u1/X2u

C
3

+ uC3 /Y
C
2 d1 − uC2 /Y

C
3 d1 − uC3 /Y

C
1 d2
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+ uC1 /Y
C
3 d2 + uC2 /Y

C
1 d3 − uC1 /Y

C
2 d3

+ d1/Y 2u
C
3 − d1/Y 3u

C
2 − d2/Y 1u

C
3

+ d2/Y 3u
C
1 + d3/Y 1u

C
2 − d3/Y 2u

C
1

+
∑

j

(
uj/Y

C
j e

C + eC/Y juj
)

−
∑

j

(
dj/X

C
j e

C + eC/Xjdj
)]

L

− ig5√
2

∑

j

[ēC/Xidi − ν̄Ce /Y idi + d̄i/X
C
i e

C − d̄i/Y
C
i ν

C
e ]R . (22)

To make this expression more readable, we have used the Feynman “daggers” in /X =
γμX

μ and /Y = γμY
μ.

Using the relation (ūCi /X
C
k uj )

∗ = ūj /Xku
C
i , which we verify (explicitly taking the γ

matrices into account) through

(ūCi /X
C
k uj )

∗ = (u
C†
i γ0γμuj )

†X
Cμ∗
k

= (ūj γ0γ
†
μγ0u

C
i )X

μ
k

= (ūj γμu
C
i )X

μ
k

= (ūj /Xku
C
i ) ,

utilizing γ0γ
†
μγ0 = γμ, (uC†

i )† = uCi , and the antisymmetric tensor in three dimen-
sions, εijk , we get

Lint = − ig5√
2

[
−εijk

(
ūi/Xku

C
j

)∗ − εijk
(
ūi/Xku

C
j

)

+ εijk
(
d̄i/Y ku

C
j

)∗ + εijk
(
d̄i/Y ku

C
j

)

− (ēC/Xjdj
)∗ − (ēC/Xjdj

)+ (ēC/Y juj
)∗ + (ēC/Y juj

)]

L

− ig5√
2

[(
ēC/Xjdj

)∗ + (ēC/Xjdj
)− (ν̄Ce /Y jdj

)∗ − (ν̄Ce /Y jdj
)]

R
. (23)

To be very explicit, we note that the first two rows of (22) can be summarized as
−εijk(ūi/Xku

C
j )

∗; similarly, the third and fourth rows of (22) give −εijk(ūi/Xkuj ),

the fifth and sixth rows give +εijk(d̄i/Xkd
C
j )

∗, and the seventh and eighth rows

+εijk(d̄i/Xkd
C
j ). If we stress the point that fermion wave functions originate from left-

handed or right-handed multiplets by adding an index L or R, respectively, expression
(23) then reads

Lint = ig5√
2

{
+εijk

(
uiL/Xku

C
jL

)+ (eCL/XjdjL
)− (eCR/XjdjR

)+ εijk
(
diL/Y ku

C
jL

)

− (eCL/Y jujL
)+ (νCeR/Y jdjR

)+ h.c.
}

; (24)

here h.c. signifies the Hermitian conjugate of the preceding expression.
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PROBLEM

9.7 Color of the SU(5) Gauge Bosons

Determine the color of the X and Y bosons.

Solution. The 24 gauge bosons of the SU(5) group result from the direct product of
the fundamental SU(5) quintuplet with the fundamental SU(5) antiquintuplet:

5 = (d1, d2, d3, e
+,−νCe ) ,

(1)
5̄ = (dC1 , d

C
2 , d

C
3 , e

−,−νe) .

The fundamental quintuplet contains quarks that carry color whereas the anti-
quintuplet contains the respective antiquarks carrying anticolor. If we perform the
direct product

[5] × [5̄] =

⎛

⎜⎜⎜⎜⎝

d1

d2

d3

e+
−νCe

⎞

⎟⎟⎟⎟⎠
× (dC1 , dC2 , dC3 , e−,−νe

)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

d1d
C
1 d1d

C
2 d1d

C
3 d1e

− −d1νe

d2d
C
1 d2d

C
2 d2d

C
3 d2e

− −d2νe

d3d
C
1 d3d

C
2 d3d

C
3 d3e

− −d3νe

e+dC1 e+dC2 e+dC3 e+e− −e+νe

−νCe d
C
1 −νCe d

C
2 −νCe d

C
3 −νCe e

− −νCe νe

⎞

⎟⎟⎟⎟⎟⎟⎠
, (2)

we formally obtain the matrix of the gauge bosons, which we have already seen in
(9.44). Now we can directly extract the quantum numbers of the bosons from this
representation. We see that, e.g., the upper 3 × 3 matrix must contain the QCD gauge
bosons whereas the lower 2 × 2 matrix contains the gauge bosons of the SU(2). The
remaining two 2 × 3 and 3 × 2 matrices contain the new X and Y bosons. Comparing
this matrix with the defining matrix in (9.44) we find that the Xiμ and Yiμ carry
anticolor, and the charge-conjugated XC

iμ and YC
iμ carry color.

Also the X and Y bosons carry baryon numberB = − 1
3 and lepton numberL = −1,

thus B − L = + 2
3 . From the group-theoretical point of view this becomes apparent

when reducing the product [5] × [5̄] into its SU(3) × SU(2) subgroups.

[24]5 = (8,1) + (3̄,2) + (3, 2̄) + (1,3) + (1,1)

The multiplet (3̄,2) contains the X, Y-bosons carrying anticolor, and the multiplet
(3, 2̄) its antiparticles, which carry color.

9.4 Spontaneous Breaking of the SU(5) Symmetry

We have already mentioned that SU(5) symmetry, if it exists at all, must be broken
strongly, since quarks and leptons are entirely different particles under normal con-
ditions and cannot be transformed among each other. The leptoquarks X and Y must
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have huge masses, which have to be much larger than the masses of the weak gauge
bosons W+,W−, and Z0, since the transformations of the neutrino and charged lep-
tons or of quarks of different flavors mediated by those particles are easily detectable.

Symmetry breaking of the SU(5) gauge group must be done in two steps: first from
the combined group SU(5) to the product group SU(3)C × SU(2)L × U(1)Y , “C”
denoting color, “L” denoting the weak isospin of the left-handed particles, and “Y ”
denoting (weak) hypercharge; and secondly the symmetry breaking of the Glashow–
Salam–Weinberg theory must lead from the group SU(2)L × U(1)Y to the electromag-
netic gauge group U(1)EM. Altogether the scheme of symmetry breaking is

SU(5)
GUT−→ SU(3)C × SU(2)L × U(1)Y︸ ︷︷ ︸

GSW U(1)EM

. (9.54)

Only the gauge group of color SU(3)C and U(1)EM remain unbroken, since the glu-
ons10 and photons are massless. We will describe symmetry breaking as usual by
scalar Higgs fields with a non-zero vacuum expectation value. The first symmetry
breaking, denoted in (9.54) by “GUT” (grand unified theory) can be accomplished by a
Higgs-field multiplet transforming under the 24-dimensional adjoint representation of
SU(5). In the second, denoted by “SW”, we shall use a Higgs multiplet Ĥ of the funda-
mental representation of SU(5). We start with the 24-fold Higgs field φ̂ =∑24

i=1 φiλ̃i .
More precisely φ̂ is the Higgs-field operator. However, the short name Higgs field is
commonly used. In order not to break the SU(5) gauge invariance of the Lagrangian
explicitly but only “spontaneously” (by fixing a certain vacuum expectation value of
the Higgs field), the Higgs potential can only be built from SU(5)-invariant functions
that can be formed from powers of the Higgs field. All of these invariants can be
written as Tr{φ̂n}, since the trace of a unitary matrix does not change under a unitary
transformation. Since Tr{ÂB̂} = Tr{B̂Â}

Tr{φ̂′n} = Tr{(Û φ̂Û†)n} = Tr{Û φ̂Û†Û φ̂Û† · · · Û φ̂Û† }
= Tr{Û φ̂nÛ† } = Tr{Û†Û φ̂n} = Tr{φ̂n} (9.55)

holds for every unitary transformation Û . Under the assumption that V (φ̂) does not
depend on the sign of φ̂ and is built only from powers up to order four (like the Higgs
potential in the GSW theory), the most general form of the Higgs potential is

V (φ̂) = − 1

2
μ2Tr{φ̂2 } + a

4
(Tr{φ̂2 })2 + b

2
Tr{φ̂4 } . (9.56)

Again we have chosen the coefficient of the quadratic term to be negative, so that
the minimum is not at φ̂ = 0 but the symmetry is spontaneously broken. Under the as-
sumption that a > −(7/15)b, b > 0 we shall show in Exercise 9.811 that the minimum

10 As no free gluons are detectable, this hypothesis is hard to prove experimentally. It is certain that
the rest mass of the gluons is considerably smaller than 100 MeV. A mass much less than 10 MeV
would probably not be detectable at present.
11 A detailed discussion of possible symmetry breakings of SU(5) theory is given by M. Magg,
Q. Shafi: Z. Phys. C 4, 63 (1980).
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of the potential V (φ̂) lies at the field configuration

φ̂0 = 3

2
vŶ =

⎛

⎜⎜⎜⎜⎝

−v

−v

−v
3
2v

3
2v

⎞

⎟⎟⎟⎟⎠
, (9.57)

where Ŷ is known from (9.23) and

v =
(

2μ2

15a + 7b

)1/2

. (9.58)

Certainly any other gauge-equivalent field φ̂ = Ûφ0Û
−1 leads to the same value of

the potential. We have chosen the diagonal representation for convenience. The value
of the potential at the minimum is

V (φ̂0) = − 15

8
μ2v2 < 0 . (9.59)

Relations (9.57)–(9.59) will be calculated in Exercise 9.8.

EXERCISE

9.8 Minimum of the Higgs Potential

Problem. Show that

φ̂0 = 3

2
Ŷ

(
2μ2

15a + 7b

)1/2

is a minimum (up to a gauge transformation) of the Higgs potential

V (φ̂) = − 1

2
μ2Tr{φ̂2 } + a

4

(
Tr{φ̂2 })2 + b

2
Tr{φ̂4 } (1)

if b > −(15a/7), and show that V (φ0) < 0 holds.

Solution. As V (φ̂) is gauge invariant, we can choose a certain gauge for the Higgs
field. We can use a diagonal 5 × 5 matrix for φ̂ because every unitary 5 × 5 matrix
can be diagonalized by a unitary transformation. Formulated in group theoretical lan-
guage, every element of the SU(5) Lie algebra can be rotated into the Cartan subalge-
bra of diagonal generators by an appropriate SU(5) rotation. The Cartan subalgebra of
SU(5) is spanned by the operators λ̃3, λ̃8, λ̃23 = τ̃3 and λ̃24 = Ỹ , which are explicitly
denoted in Exercise 9.1. A general ansatz for φ̂0 is
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φ̂ = αλ̃3 + β
√

3λ̂8 + γ λ̃23 +
√

15

2
δλ̃24

=

⎛

⎜⎜⎜⎜⎝

α + β − δ

−α + β − δ

−2β − δ

γ + 3
2δ

−γ + 3
2δ

⎞

⎟⎟⎟⎟⎠
. (2)

By explicit evaluation we obtain

Tr{φ̂2 } = (α + β − δ)2 + (−α + β − δ)2 + (2β + δ)2

+
(
γ + 3

2
δ

)2

+
(
γ − 3

2
δ

)2

= 2α2 + 6β2 + 2γ 2 + 15

2
δ2 (3)

and

Tr{φ̂4 } = (α + β − δ)4 + (−α + β − δ)4 + (2β + δ)4

+
(
γ + 3

2
δ

)4

+
(
γ − 3

2
δ

)4

= 2α4 + 18β4 + 2γ 4 + 105

8
δ4 + 12α2(β − δ)2

+ 27γ 2δ2 + 24β3δ + 36β2δ2 . (4)

The extrema of the potential V (φ̂) are fixed by the condition

∂V

∂α
= ∂V

∂β
= ∂V

∂γ
= ∂V

∂δ
= 0 . (5)

Successively we get

0 = ∂V

∂α
= α
[−2μ2 + 2aTr{φ̂2 } + 4b(α2 + 3(β − δ)2)

]
(6)

and hence

α0 = 0 , (7)

and then

∂V

∂β

∣∣∣∣
α=0

= β
[−6μ2 + 6aTr{φ2 } + 36b(β2 + βδ + δ2)

]
(8)

with the solution

β0 = 0 , (9)

and

∂V

∂γ

∣∣∣∣
α=β=0

= γ
[−2μ2 + 2aTr{φ̂2 } + b(4γ 2 + 27δ2)

]
(10)
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with the solution

γ0 = 0 . (11)

Finally we obtain the condition

∂V

∂δ

∣∣∣∣
α=β=γ =0

= 15

4
δ(−2μ2 + 15aδ2 + 7bδ2) . (12)

A choice of δ = 0 would lead to the trivial solution φ̂0 = 0, so that we choose the
second possibility,

δ2
0 = 2μ2

15a + 7b
. (13)

For

a > − 7

15
b (14)

this is a solution of (5). With Ŷ =
√

5
3 Ỹ (see (9.23)) we obtain under condition (14)

the vacuum expectation value – see (9.58)

φ0 = δ

√
15

2
Ỹ =
(

2μ2

15a + 7b

)1/2 3

2
Ŷ ≡ v

3

2
Ŷ . (15)

We calculate the second derivative in order to show that we have obtained a minimum
of the Higgs potential:

∂2V

∂δ2

∣∣∣∣
α=β=γ =0,δ=δ0

= 15

4
(−2μ2 + 3(15a + 7b)δ2

0)

= 15

4
(−2μ2 + 6μ2)

= 15μ2 > 0 . (16)

So, assuming that (14) holds, we have obtained a minimum. If we insert (13) into the
potential, we get

V (φ̂0) = − 1

2
μ2 15

2
δ2

0 + a

4

(
15

2
δ2

0

)2

+ b

2

105

8
δ4

0

= − 15

4
μ2δ2

0 + 15

16
(15a + 7b)δ4

0

=
(

− 15

4
μ2 + 15

16
2μ2
)
δ2

0

= − 15μ4

4(15a + 7b)
< 0 , (17)

hence the minimum is smaller than V (0) = 0 if condition (14) is fulfilled.
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The type of symmetry breaking by the Higgs field φ̂0 is given by (9.57) directly. Since
φ̂0 is a unit matrix with respect to the first three rows and columns and last two rows
and columns, all SU(5) generators λ̃1, . . . , λ̃8 of the gluon fields, the generators of
isospin λ̃21 = τ̃1, λ̃22 = τ̃2, λ̃23 = τ̃3, and of course the generator of hypercharge λ̃24 =
Ỹ commute with φ̂0. On the other hand, the generators of the leptoquark fields Xi and
Yi incorporate elements mixing the color and isospin degrees of freedom and hence
do not commute with φ̂0. Thus the gauge fields Xi and Yi obtain a non-vanishing
mass and the SU(5) symmetry is broken spontaneously to SU(3) × SU(2) × U(1)
with massless gluons and W and B bosons.

EXERCISE

9.9 Kinetic Energy of the Higgs Field

Problem. Show that (9.60) is equivalent to the representation of the kinetic part of
the Lagrange function

L
(kin)
φ = (D̂μφi)

†(D̂μφi) , (1)

where D̂μ = ∂μ − ig5Âμ denotes the well-known covariant derivative. You may use
the regular representation of the SU(5) λ̃ matrices.

Solution. The regular representation of the λ̃ matrices is defined by

λ̃iφj = Cijkφk , (2)

where the coefficients Cijk are the structure constants of the SU(5) algebra,

[λ̃i , λ̃j ] = Cijkλ̃k . (3)

We use the Einstein summation convention. Furthermore, we have

Âμ = 1

2
Aμaλ̃a , φ̂ = φaλ̃a . (4)

Applying this to the Lagrange function (9.60) gives

L
(kin)
φ = 1

2
Tr
{
(∂μφ̂ + ig5 [Âμ, φ̂])†(∂μφ̂ + ig5 [Âμ, φ̂])}

= 1

2
Tr

{(
∂μλ̃cφc + 1

2
ig5Aμaφb[λ̃a, λ̃b]

)†

×
(
∂μλ̃iφi + 1

2
ig5A

μ
j φk[λ̃j , λ̃k]

)}

= 1

2
Tr

{(
∂μλ̃cφc + 1

2
ig5AμaφbCabcλ̃c

)†

×
(
∂μλ̃kφk + 1

2
ig5A

μ
i φjCijkλ̃k

)}
. (5)
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We evaluate the trace by remembering that the λ̃ matrices are Hermitian

Tr{λ̃†
c λ̃k} = Tr{λ̃cλ̃k} = 2δck . (6)

The factor 1
2 cancels, and we are left with

L
(kin)
φ =

(
∂μφc + 1

2
ig5AμaφbCabc

)†(
∂μφc + 1

2
ig5A

μ
i φjCijc

)
. (7)

This expression can be rewritten using the definition of the regular representation.
Taking into account the antisymmetry of the structure constants under exchange of
two indices, we get

φbCabc = φb(−Cacb) = −λ̃aφc . (8)

This yields

L
(kin)
φ =

(
∂μφc − 1

2
ig5Aμaλ̃aφc

)†(
∂μφc − 1

2
ig5A

μ
i λ̃iφc

)

= [(∂μ − ig5Âμ)φc
]†[
(∂μ − ig5Â

μ)φc
]

. (9)

This last equation displays the relation already known to us.

Now we shall examine the mass terms of the leptoquarks in detail. Their origin is, as
usual, the gauge-covariant derivation in the kinetic energy of the Higgs field,

L
(kin)
φ = 1

2
Tr
{(
∂μφ̂ + ig5 [Âμ, φ̂])†(∂μφ̂ + ig5 [Âμ, φ̂])} . (9.60)

As the Higgs field φ̂ and the gauge boson fields Âμare part of the same representation
of SU(5), the matrix notation in (9.60) is natural. Thus the mass term of the gauge
fields is

L
(φ)
M = 1

2
g2

5Tr
{[Âμ, φ̂0 ]† [Âμ, φ̂0 ]}

= 9

8
g2

5v
2Tr
{[Âμ, Ŷ ]† [Âμ, Ŷ ]} , (9.61)

where we have inserted (9.57). Denoting the eigenvalues of the matrix Ŷ by yi (yik =
yiδik, y1 = y2 = y3 = −2/3, y4 = y5 = 1), the matrix element is

[Âμ, Ŷ ]ik = A
μ
ikyk − yiA

μ
ik = (yk − yi)A

μ
ik ,

(9.62)
[Aμ, Ŷ ]†

ik = [Âμ, Ŷ ]∗
ki = A

μ∗
ki yi − ykA

μ∗
ki = −(yk − yi)A

μ∗
ki = −(yk − yi)A

μ
ik

because Aμ∗
ki = A

μ
ik (hermiticity!) and thus

Tr
{[Âμ, Ŷ ]† [Âμ, Ŷ ]}=

∑

i,k

[Âμ, Ŷ ]∗
ik[Âμ, Ŷ ]ik =

∑

i,k

|Aμik|2(yk − yi)
2 . (9.63)
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Only the pairs (i, k) where yi and yk are different contribute to the sum. These are
i = 1,2,3 and k = 4,5, and their permutations. |yk − yi | = 5/3 holds in each case.
Thus, we obtain the following mass term

L
(φ)
M = 25

4
g2

5v
2(|Aμ14 |2 + |Aμ24 |2 + |Aμ34 |2 + |Aμ15 |2 + |Aμ25 |2 + |Aμ35 |2) . (9.64)

Comparing this with the matrix of the gauge bosons (Âμ)ik (9.44) shows that LM
contains the leptoquark fields, so that the mass term has the form

L
(φ)
M = M2

X

∑

i=r,g,b

|XM
i |2 + M2

Y

∑

i=r,g,b

|YMi |2 (9.65)

with

MX = MY = 5

2
√

2
g5v . (9.66)

It is important that Aμ14 = 1√
2
Xμ (see (9.44)) and that there is no factor 1

2 in (9.65),

since Xμ and Y
μ
i are complex fields. Indeed, we recall that for complex fields the

mass term in the Lagrange density is simply M2φ∗φ, because the variation after φ or
φ∗ is performed independently, so that the wave equations finally contain the terms
M2φ (in the wave equation for φ) or M2φ∗ (in the wave equation for φ∗).

Now we shall examine the second part of the symmetry breaking and trans-
fer the Higgs mechanism of the GSW theory to the SU(5) theory. We choose a
Higgs field H , transforming under the fundamental 5-dimensional representation:
H = (h1, h2, h3, h4, h5). If we simply choose a Higgs potential

V (H) = − 1

2
ν2(H †H) + λ

4
(H †H)2 , (9.67)

as in the SU(2)× U(1) theory, the vacuum expectation value H0 would have the value

h0
0 =
√
(H

†
0H0) = ν√

λ
(9.68)

in an arbitrary direction. All choices

H
(1)
0 = h0

0

⎛

⎜⎜⎜⎜⎝

1
0
0
0
0

⎞

⎟⎟⎟⎟⎠
, . . . , H

(5)
0 = h0

0

⎛

⎜⎜⎜⎜⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟⎠
(9.69)

would be equivalent. But as SU(5) symmetry is already broken to SU(3) × SU(2) ×
U(1), the different possibilities would lead to entirely different physical consequences.
While H(4)

0 or H(5)
0 would lead to the desired breaking of SU(2) symmetry (last two

components), H(1)
0 , . . . ,H

(3)
0 would break the SU(3) symmetry in the first three com-

ponents, which is undesirable, since the gauge group SU(3) of the strong interaction
appears unbroken.

The solution consists in incorporating into the Higgs field H the fact that the Higgs
field φ̂ has already broken SU(5) symmetry, and thus the color and isospin degrees
of freedom already have different meanings. We can achieve this by adding a term to
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the potential (9.67) coupling both Higgs fields φ̂ and Ĥ in such a way that the matrix
structure of the vacuum expectation value φ̂0 is taken into account. Under the usual
conditions (the interaction must be at most quartic in the fields, invariant under change
of sign and SU(5) invariant) only

VφH = βH †φ̂2H (9.70)

is reasonable. The other possibility,

V ′
φH = α(H †H)Tr{φ̂2 } , (9.71)

does not allow a coupling of the direction of the H field to the matrix structure of φ̂
and hence will not be considered further. As the difference of the scales of symmetry
breaking of the fields φ̂ and H is expected to be large, we simply insert the vacuum
expectation value φ̂0 of (9.57) into (9.70) and neglect any effect of H on φ̂0.

The total potential of the field H we want to minimize is

Veff(H) = V (H) + VφH (H, φ̂0)

= H †
(

−ν2

2
+ 9

4
βv2Ŷ 2

)
H + λ

4
(H †H)2 . (9.72)

The matrix in the square term is given by

−ν2

2
+ 9

4
βv2Ŷ 2

= 1

2

⎛

⎜⎜⎜⎜⎝

−ν2 + 2βv2

−ν2 + 2βv2

−ν2 + 2βv2

−ν2 + 9
2βv

2

−ν2 + 9
2βv

2

⎞

⎟⎟⎟⎟⎠
,

(9.73)

so that for β < 0 the last two components shift H away from H = 0 most strongly.
This means that the additional potential VφH gives for every direction of H another
effective value for the parameter ν in (9.68), which takes into account the coupling to
the φ field. Comparing with (9.68), we can see immediately that the absolute value of
the vacuum expectation value H(i)

0 takes the values

h
(i)
0 =

√
(ν2 − 2βv2)/λ for i = 1,2,3 , (9.74a)

h
(i)
0 =

√
(ν2 − 9

2
βv2)/λ for i = 4,5 . (9.74b)

The corresponding values of the potential are

Veff(H
(i)
0 ) =

{−(ν2 − 2βv2)2/4λ , i = 1,2,3

−(ν2 − 9
2βv

2)2/4λ , i = 4,5
.

Obviously for β < 0 the directions i = 4,5 are preferred. Hence we choose β < 0 and
use in the following

h0 =
√(

ν2 − 9

2
βv2

)/
λ . (9.76)
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A choice of direction among the last two components has no physical importance; we
set, following a general convention,

H0 = H(5) = h0

⎛

⎜⎜⎜⎜⎝

0
0
0
0
1

⎞

⎟⎟⎟⎟⎠
. (9.77)

The Higgs field H creates the mass terms of the bosons W+, W−, and Z0 by coupling
to the gauge fields in

L
(kin)
H = 1

2
(∂μH − ig5ÂμH)

†(∂μH − ig5Â
μH) . (9.78)

Using (9.44a) we obtain

LH(H) = 1

2
g2

5(H
†
0 Â

†
μÂ

μH0)

= 1

4
g2

5h
2
0

{
YC∗

1μ ,Y
C∗
2μ ,Y

C∗
3μ ,W

+∗
μ ,− 1√

2

(
W 3
μ − 3√

15
Bμ

)∗}

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y
Cμ
1

Y
Cμ
2

Y
Cμ
3

W+μ

− 1√
2

(
W 3μ − 3√

15
Bμ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

4
g2

5h
2
0

{
∑

i

YiμY
∗μ
i + W+

μ W
μ− + 1

2

(
W

μ
3 −
√

3

5
Bμ

)2}
(9.79)

where we have used Y
μC
1 = Y

μ∗
1 . As v 
 h0 the contribution to the masses of the

Y bosons can be neglected, compared with the term in (9.65) (but breaking the degen-
eracy of MX and MY!) and the only interesting term surviving is

L′
M
(H) = 1

4
g2

5h
2
0W

+μW−
μ + 1

5
g2

5h
2
0

(√
5

8
W

μ
3 −
√

3

8
Bμ

)2

≡ M2
WW

+μW−
μ + 1

2
M2

ZZ
μZμ . (9.80)

The factors
√

5
8 = cos θW and

√
3
8 = sin θW in the second term are, according to (9.48),

just the proper mixing coefficients of the W
μ
3 and Bμ fields (see also (4.97) and

(4.98)!). Hence mixing of the two neutral boson fields Wμ
3 and Bμ occurs as desired,

and the ratio of the masses of the neutral bosons is

M2
W

M2
Z

= 5

8
= 1 − sin2 θW = cos2 θW , (9.81)
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if we take (9.49) for the Weinberg angle into account. We conclude that the Higgs
mechanism allows a breaking of SU(5) symmetry, reproducing the phenomenology of
the SU(2) × U(1) gauge theory of electroweak interaction.

Finally we want to point to a conceptual difficulty. Since V (φ0) is large (about 1015

GeV, as we shall see in Sect. 9.5), the parameter β in (9.76) has to be chosen very
small, in order that h0 has the value required by GSW theory (about 250 GeV). This
“fine-tuning” of the Higgs-potential parameters is not appealing and leads to problems
in quantum field theory, where the parameters of potentials have to be renormalized.
This problem is related to the large difference between the scales of symmetry break-
ing. Several solutions have been suggested, but a conclusive answer to this problem,
which is often called the hierarchy problem, is not yet known.

9.5 Determination of the Scale of SU(5) Symmetry Breaking

In Sect. 9.3 we saw that the coupling constants of gC, gL, g′ of the SU(3)C × SU(2)L ×
U(1)Y gauge theory are determined by the coupling constant g5 of the unified SU(5)
gauge theory (see (9.48)):

gC = gL = g5 , g′ =
√

3

5
g5 . (9.82)

We describe the coupling to the gluons (that is, to the color fields) by the coupling
constant gC (the index C denotes color). The ratio g′/gL determines the Weinberg
angle (9.49).12 But there is a problem, because the experimentally determined values

gC ∼ 1.5 ,

gL = e/ sin θW ∼ 0.65 , (9.83)

g′ = e/ cos θW ∼ 0.34 ,

do not coincide at all with the (9.82). However, as we shall soon see, this ‘problem’
turns out to be a means for the determination of the energy scale of SU(5) symmetry
breaking. To understand this remark, we need to refer to a result of the quantum theory
of gauge fields. In this theory13 it can be shown that the value of the experimentally
determined coupling constant depends on the energy – more precisely, on the square
of the four-momentum transfer – at which the process is measured. In the framework
of quantum field theory one has to take into account the effect of vacuum polarization
during the exchange, in addition to the direct exchange of a gauge boson between two
fermions. The vacuum polarization is described as the virtual creation of a particle–
antiparticle pair, either of gauge bosons, or of fermions (quarks or leptons).

Since the probability for the creation of such a virtual pair depends on the trans-
ferred four-momentum q2, the experimentally measured effective coupling constant
is q2 dependent too. Furthermore the computation of the “running coupling con-
stant” leads to infinitely large terms. The cure of this behavior is commonly called

12 Here we write for the sake of clarity gL instead of g for the coupling constant of the isospin gauge
group SU(2)L.
13 See W. Greiner, S. Schramm, and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer, Berlin,
Heidelberg, 2007).
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Fig. 9.2. Diagrams for direct exchange and vacuum polarization. (a) describes the direct ex-
change of a gauge boson, (b) contains an additional polarization ring due to the interaction of
the gauge bosons among themselves and (c) contains an additional polarization ring due to the
interaction between the gauge bosons and the fermions

the renormalization of the coupling constant. For energies above the threshold for the
symmetry breaking, the SU(5) gauge theory guarantees that the coupling strengths
of the SU(5) gauge fields change with q2 in exactly the same manner for all fields.
On the other hand, in the event that the energies are lower than the breaking scale,
X and Y bosons can no longer be easily created as virtual quanta, since they have non-
vanishing masses. Consequently the coupling constant of the still massless gluons and
the coupling constant of the W and B bosons have a different q2 dependence.

In general the functional dependence of the coupling constants is logarithmic in q2

(as we shall see in Example 9.10):

1

αi(q2)
= 1

αi(M2)
+ bi ln

q2

M2
, (9.84)

where M is an arbitrary point of reference on the energy scale. Furthermore,

αi = g2
i

4π
, (9.85)

is a kind of fine-structure constant in analogy to e2

4π in QED and the bi are numerical
constants which specifically depend on the gauge group considered and on the number
of coupled fermions. For example, if we assume ng generations of lepton and quark
doublets (where most likely ng = 3, since this is the number of neutrino flavors con-
tributing to the to Z0 decay, see Example 5.3), we obtain for the non-abelian gauge
group SU(n) a general expression for the constant bi

bi = 11n − 4ng
12π

, n ≥ 2

and therefore for the color gauge group SU(3)

bC = 33 − 4ng
12π

(9.86a)

and for the isospin gauge group SU(2)

bL = 11 − 2ng
6π

. (9.86b)

In the case of the abelian gauge group U(1) the term proportional to n, which describes
the self-interaction of the gluons, does not contribute and the coefficient of a U(1)
group is generally

b̄ = − 1

3π
ng . (9.86c)



356 9 Unified Gauge Theories

Note that the running coupling constant here shows a different asymptotic behavior
than for the SU(3) with ng < 33/4. For the gauge group of the hypercharge, we relate
all coefficients to g5 according to (9.32), which means

α′ ≡ αg′ = g′2

4π
= 3

5

g2
5

4π
,

and therefore

1

αg′(q2)
= 1

αg′(M2)
+ b′ ln

(
q2

M2

)

or

1
g′2
4π (q

2)
= 1

g′2
4π (M

2)
+ b′ ln

(
q2

M2

)
,

or, with (9.82),

1

3
5
g2

5
4π (q

2)

= 1

3
5
g2

5
4π (M

2)

+ b′ ln

(
q2

M2

)
,

or

1
g2

5
4π (q

2)

= 1
g2

5
4π (M

2)

+ 3

5
b′ ln

(
q2

M2

)
.

This is valid only for q2 � M2
W, when the SU(2)×U(1) symmetry is valid. Now we

have to keep attention: The coefficient (3/5)b′ should – for the U(1) group – be iden-
tical with b̄ = −ng/(3π) according to (9.86c). Hence, we get

3

5
b′ = b̄ or b′ = 5

3
b̄ = 5

3

(
− 1

3π
ng

)
= − 5

9π
ng .

With α′ ≡ αg′ , (9.86c) can be written as

1

α′(q2)
= 1

α′(M2)
+ 5

3

(
− 1

3π
ng

)
ln

(
q2

M2

)

= 1

α′(M2)
− 5

9π
ng ln

(
q2

M2

)
.

These running coupling constants are derived from quantum field theory.14

For the following considerations we shall choose the point of reference on the en-
ergy scale such that it determines the energy at which the SU(5) symmetry is spon-
taneously broken, that is, the mass of the X and Y bosons is M ≈ MX ≈ MY. With
this choice, at q2 = M2 the coupling constants gC, gL, g′ satisfy the relations valid for
unbroken SU(5), namely

g2
C

4π
(M2) = g2

L

4π
(M2) = g2

5

4π
(M2) or

14 See e.g. W. Greiner, S. Schramm and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer,
Berlin, Heidelberg, 2007).
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αC(M
2) = αL(M

2) = 5

3
α′(M2) where (9.87)

α′ ≡ αg′ = g′2

4π
= 3

5

g2
5

4π
.

If the quantities αC, αL, and α′ are known at a particular value of q2 (for example, q2 =
M2

W ≈ (100 GeV)2), it is always possible to choose the energy scale M2 of symmetry
breaking such that one of the relations (9.87) is satisfied. The question whether the
other relation is fulfilled simultaneously or not, therefore, is an important test for the
concept of the unified gauge theory of all interactions.

In order to check the validity of (9.87), we proceed in two steps: first we deter-
mine M by calculating the coupling constant of the electromagnetic interaction, as is
composed of αL and α′ (see (9.83)); and, second, we compare that with the known
expression of the running coupling constant in QED. We have

sin2 θW + cos2 θW = e2

g2
L

+ e2

g′2 = 1 ,

and therefore

1

α
= 4π

e2
= 4π

(
1

g2
L

+ 1

g′2

)
= 1

αL
+ 1

α′ . (9.88)

By means of (9.84) and (9.86b) we can infer the q2 dependence of α:

1

α(q2)
= 1

αL(q2)
+ 1

α′(q2)

= 1

αL(M2)
+ 1

α′(M2)
+ (bL + b′) ln

(
q2

M2

)

≡ 1

α(M2)
+ b ln

q2

M2
, (9.89)

where

b = bL + b′ = 33 − 16ng
18π

,

and

1

α(M2)
= 1

αL(M2)
+ 1

α′(M2)
. (9.90)

On the other hand, (9.87) requires that

1

α(M2)
= 1

αL(M2)
+ 1

α′(M2)
= 8

3

1

αC(M2)
. (9.91)

Hence, the values of the constants α and αC at any other value of q2 are determined
by the relation:

1

α(q2)
− 8

3

1

αC(q2)
=
(
b − 8

3
bC

)
ln

q2

M2

= − 11

2π
ln

q2

M2
. (9.92)



358 9 Unified Gauge Theories

Note that the right-hand side of (9.92) is independent of the number of fermion gen-
erations ng . This property is quite useful since we do not know for sure how many
generations exist within the gap between presently accessible accelerator energies and
the energy scale of the unified theory. We shall now use (9.92) for the determination
of the point of reference on the energy scale. The value of αC for q2 ≈ (5 GeV)2 is
well known, namely

αC((5 GeV)2) ≈ 0.175 ± 0.01 . (9.93)

Using (9.84), we may extrapolate up to the energy scale of the electroweak theory,
q2 ≈ (100 GeV)2 ≈ MW

2, and obtain, with ng = 3,

1

αC((5 GeV)2)
= 1

αC(M2)
+ bC ln

(5 GeV)2

M2

1

αC(M
2
W)

= 1

αC(M2)
+ bC ln

M2
W

M2

=
(

1

αC((5 GeV)2)
− bC ln

(5 GeV)2

M2

)
+ bC ln

M2
W

M2

= 1

0.175
+ bC ln

(
M2

W

(5 GeV)2

)

and with ng = 3:

αC(M
2
W) = αC((100 GeV)2) ≈ 0.11 . (9.94)

For the electromagnetic coupling constant we find in QED:15

1

α(q2)
= 1

α(m0)
− 1

3π

∑

k

e2
k ln

q2

m2
0

,

and therefore, for q2 = M2
W ≈ (100 GeV)2,

1

α(M2
W)

= 1

α(0)
− 1

3π

(∑

k

e2
k ln

M2
W

m2
0

)
, (9.95)

where ek denote the charges in units of the electron charge andm0 is the mass of a light
fermion fixing the renormalization point. Furthermore 1/α(m0) ≈ 1/α(0) = 137.036
is the Sommerfeld constant. Taking into account the color degree of freedom for the
quarks, which gives a factor of 3, we find that

1

α(M2
W)

≈ 128 . (9.96)

The mass scale M is evaluated using (9.92):

M = MW exp

[
π

11

(
1

α(M2
W)

− 8/3

αC(M
2
W)

)]

≈ 7.4 × 1014 GeV . (9.97)

15 W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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Obviously the reason for this rather large value is the slow, logarithmic dependence of
the coupling strengths on the momentum transfer q , which is itself connected to the
renormalization procedure of the gauge theory. Therefore this exorbitant value of M is
not a specific feature of the SU(5) model but is to be expected within the framework of
any gauge theory of unified interaction. Having determined M we are now in position
to check whether the relation between αL and α′ (9.87) is fulfilled at q2 = M2

W and
how well it agrees with experimental data.

Let us also investigate the Weinberg angle θW in dependence of q2, i.e. θW(q
2).

We are especially interested in the Weinberg angle at the mass of the W–Z bosons
θW(M

2
W).

In terms of (9.83) the ratio of g′ and gL can be expressed as the tangent of the
Weinberg angle θW. Supposing that the relation (9.82) also holds for the energy values
of the unified scale M , we can therefore test whether the experimental value of the
Weinberg angle at q2 ≈ M2

W is predicted correctly by the SU(5) theory. According to
the second equation of (9.83) we have

sin2θW(q
2) = e2(q2)

g2
L(q

2)
= α(q2)

αL(q2)
. (9.98)

Using (9.88), the denominator can be expressed as

1

αL(q2)
= 1

α(q2)
− 1

α′(q2)
,

and therefore

1

αL(q2)
= 5

8

1

αL(q2)
+ 3

8

1

αL(q2)
= 5

8αL(q2)
+ 3

8

(
1

α(q2)
− 1

α′(q2)

)
(9.99)

Hence we obtain

sin2θW(q
2) = 3

8
+ α(q2)

8

(
5

αL(q2)
− 3

α′(q2)

)
. (9.100)

Because of the relation (9.87), the expression in parentheses vanishes for q2 = M2.
To exhibit the explicit q2 dependence we use (9.84), which yields

sin2θW(q
2) = 3

8
+ α(q2)

8

[(
5

αL(M2)
− 3

α′(M2)

)
+ (5bL − 3b′) ln

q2

M2

]

= 3

8
+ α(q2)

8
(5bL − 3b′) ln

q2

M2

= 3

8
+ 55

48π
α(q2) ln

q2

M2
. (9.101)

Here we have used (9.87), verifying that

5bL − 3b′ = 5(11 − 2ng)

6π
+ 3 × 5ng

9π
= 55

6π
.

For q2 = M2 we recover the former relation (9.49), valid for the unbroken SU(5).
However, with respect to the energy scale of the electroweak interaction, q2 ≈ M2

W,
we obtain with (9.96):

sin2θW(M
2
W) ≈ 0.206 . (9.102)
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This does not quite agree with the experimental value

sin2θ
exp
W = 0.2325 ± 0.0008 , (9.103)

but is sufficiently close to represent a remarkable quantitative success of the SU(5)
model of unified interactions.

Let us now consider the connection between the coupling constants from a different
point of view, by extrapolating from presently known values (at q2 ≈ (100 GeV)2)
up to larger energies, via (9.84). As illustrated in Fig. 9.3, the three lines 5

3α
′(q2),

αL(q
2), and αC(q

2) meet at a single point, q2 ≈ (1015 GeV)2. Indeed, this result is an
important condition, allowing us to describe all three interactions by a single, unified
gauge group. For q2 > (1015 GeV)2 the SU(5) symmetry is effectively unbroken, since
the X and Y boson loops also give sizable contributions to the vacuum polarization,
which causes the q2 dependence of the effective coupling constants. Because of the
underlying SU(5) symmetry, all coupling constants “run” in the same way when q2 

M2

X,M
2
Y; that is to say for q2 
 M2

X,M
2
Y, there is, in effect, only a single running

coupling constant α5(q
2). Because of the large number of “additional” gauge bosons

(X and Y), the q2 dependence becomes much stronger:

1

α5(q2)
= 1

α5(M2)
+ b5 ln

q2

M2

(
q2 
 M2

X,M
2
Y

)
,

with – see (9.86) –

b5 = 55 − 4ng
12π

.

Around q2 ≈ M2
X,M

2
Y there is a transition region, where the three different cou-

pling constants α′, αL and αC merge into a single one, α5, as shown in Fig. 9.3.
Figure 9.4 exhibits the dependence of the effective mixing angle θW of the GSW
theory SU(2)×U(1) with respect to the energy, starting from the measured value
sin2θW = 0.22. Obviously the curve almost coincides with the predicted value 3

8 at
1015 GeV. This agreement between SU(5) model predictions and experimental data
is remarkable. Although the agreement is not precise, it is hard to imagine that these
results are completely coincidental.

Fig. 9.3. Behavior of the
coupling constants α′ , αL,
and αC as functions of the
energy. The three lines coin-
cide at q2 ≈ (1015 GeV)2.
The electromagnetic running
coupling 1/α(q2) – see (9.92)
– is shown as a dashed line
( - - - )
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Fig. 9.4. Behavior of the mix-
ing angle between the photon
and Z0 boson (Weinberg an-
gle) as a function of the en-
ergy

EXAMPLE

9.10 The Running Coupling Constant in Quantum Field Theory

When performing the transition from a free quantum field theory to a quantum field
theory containing interaction we find that divergences appear in higher-order pertur-
bation theory. These divergences are isolated in the framework of the renormalization
programme and are subtracted from the physical parameters of the theory in such a
way that these parameters retain a finite value. The divergences are regarded as self-
energy and self-charge of the quanta due to their interaction with their own field of
radiation. We have to keep in mind that self-energies and renormizable divergences
also appear in classical electrodynamics. The process of renormalization in quantum
field theory is unequivocal apart from finite renormalizations. For example, when per-
forming a mass-renormalization we find that the quantity δm is unequivocally defined
through a certain covariant, but diverging integral; however, any given finite values can
be added to or subtracted from this integral. The physical mass is obtained from the
bare (unrenormalized) mass and the renormalization contribution mphys = mb + δm.
The same holds for the renormalized charge g: gphys = gb + δg. Apart from the mass
and charge of the considered particle also its wave-function has to be renormalized.
The renormalization is unequivocal if certain normalization constraints are imposed
on the renormalized quantities. One demands that the renormalized physical quanti-
ties for a certain value of the external momenta, e.g. p2 = μ2, take on a specific value.
Ideally this value is known through an experiment. In QED, for example, the cou-
pling constant at medium momentum transfers is normalized to the measured value of
α(QED) = 1/137. One might think that this method causes all renormalized quanti-
ties, supposedly even the physical observables, to be dependent on the renormaliza-
tion point μ2. This is not really the case, however. In reality the renormalizations of
the charge, mass and wavefunction must balance in a way that physical observables,
such as a cross section, no longer depend on the chosen point of renormalization. If
G(p2, g,m,μ2) is a Green’s function belonging to the theory, then its independence
is described by the renormalization-group equation:

(
μ
∂

∂μ
+ β

∂

∂g
+ η

∂

∂m
− γF

)
G(p2, g,m,μ2) = 0 . (1)
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Here the β function

β(g) = μ
∂g

∂μ
(2)

determines the change of the renormalized coupling constant under variation of the
point of renormalization g = g(μ). In a similar way η(g) = μ∂m

∂μ
determines the

change of the renormalized mass and γ the change of the particle’s wave function
under variation of the renormalization scale. Now the meaning of (1) is clear. Each
change in the point of renormalization μ is compensated for by a change in the renor-
malized coupling constant, a change in the renormalized mass and a change in the
renormalized wave function. Therefore the cross section, which is the physical ob-
servable actually being measured, is independent of μ2. It follows from (1) that the
coupling constant g fulfills a differential equation which, following (2) and using
α = g2/4π , can be written as

μ2 dα(μ2)

dμ2
= β(α) = −b0α

2 − b1α
3 + · · · . (3)

Here we have expanded the β function in terms of the coupling constant. b0 is the

Fig. 9.5. Renormalization of
the coupling constant gn →
g(μ). The points symbolize
the inclusion of radiative cor-
rections in the propagators and
the vertex

coefficient of the β function in the one-loop approximation. We hereby determine the
dependence of the coupling constant on the renormalization parameter by using per-
turbation theory. One obtains the coefficients bi by calculating the graph (of Fig. 9.5).
The radiative corrections are calculated in the one-loop approximation to generate β0.

In the case of non-abelian SU(n) gauge theories one finds in this approximation

b0 = 11n − 4nf
12π

, n ≥ 2 , (4)

and in the case of the abelian U(1) theory

b0 = −nf

3π
. (5)

Here nf is the number of active fermions.16 The differential equation used to define
the β function can be solved and we obtain for the running coupling constant

α(Q2) = α(μ2)

1 + α(μ2)b0 ln(Q2/μ2)
. (6)

This is exactly (9.84):

1

αi(Q2)
= 1

αi(μ2)
+ b0 ln

Q2

μ2
. (7)

The sign of b0 obviously determines the asymptotic behavior of the coupling constant.
For b0 < 0 the coupling constant increases with increasing momentum transfer Q2,
whereas for b0 > 0 it vanishes for Q2 → ∞. This behavior is known in QCD as
asymptotic freedom and is a fundamental property of non-abelian gauge theories. The

16 For the explicit calculation of these coefficients we refer to W. Greiner, S. Schramm, and E. Stein:
Quantum Chromodynamics, 3rd ed. (Springer, Berlin, Heidelberg, 2007); W. Greiner and J. Rein-
hardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg, 2009).
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positive sign may occur if 11n > 4nf in (4). The positive contribution proportional

Fig. 9.6. Schematic Q depen-
dence of the renormalized cou-
pling constants of QED and
QCD

to n is caused by the self-coupling of the gauge bosons, which is only possible in
non-abelian gauge theories. The different asymptotic behavior of the SU(3) and U(1)
coupling constants is a necessary condition in order to unify them in a higher gauge
group SU(5) in which the coupling constants should meet at the unification point at a
higher Q2 scale.

MATHEMATICAL SUPPLEMENT

9.11 Anomaly Freedom

Since about 1970 considerable interest in gauge theories has emerged, mainly because
of the success of proving the renormalizability of such theories. However, in order
to complete the proof of renormalizability an additional condition is required which
cannot be fulfilled for arbitrary choices of particle multiplets. This fact leads to an
important constraint for the standard model of the electroweak interaction.

The proof of renormalizability of the Glashow–Salam–Weinberg model only holds
under the condition that the sum of the weak hypercharges of all left-handed fermions
is zero, that is,

∑

left-handed
quarks and leptons

Yi = 0 . (1)

Have a look at Table 6.2! Since every lepton multiplet contributes a value of Y = −2
(there are two left-handed leptons, each of which carries Y = −1) and every quark
multiplet a value of +2/3 (there are two left-handed quarks, each of which carries
Y = 1/3), the sum only vanishes if
1. there are three colors, that is, every quark exists in three color versions, and
2. the number of quark flavors equals the number of lepton species.

Both conditions are an immediate consequence of the Georgi–Glashow model of
the SU(5) gauge theory of unified interactions. Indeed, (1) is essential for the unifi-
cation of the electroweak and color interactions, since only if there exists a principle
of order exceeding the SU(3)×SU(2)×U(1) symmetry and relating color charges and
weak charges can (1) be fulfilled. In the following we will briefly describe how the
requirement for the validity of (1) emerges.17 The technique for renormalizing gauge
theories is the so-called dimensional regularization. This method makes extensive use
of the rich possibilities of the theory of analytic functions to isolate the divergences
that occur. The procedure is the following. First all relevant Feynman diagrams are
evaluated for a general integer space-time dimension D. The expressions obtained,
being functions of D, are then analytically continued to arbitrary, even complex val-
ues of D. For D = 4 these expressions diverge, and the residue for D = 4 is identi-
fied with the divergent contribution to be renormalized. The renormalizability of all
n-point functions occurring is then iteratively proved by means of complete induction.

17 W. Greiner, S. Schramm, and E. Stein: Quantum Chromodynamics, 3rd ed. (Springer, Berlin,
Heidelberg, 2007); C. Itzykson, J.-B. Zuber: Quantum Field Theory (McGraw-Hill, New York, 1980).
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An essential ingredient of the proof is the knowledge of certain relations between
different n-point functions. These relations, the so-called Slavnov–Taylor identities
(the generalizations of the Ward identities of quantum electrodynamics), follow from
the gauge invariance of the theory. Since the proof for renormalizability is based on the
validity of these relations, it is very important that the employed regularization scheme
does not break the gauge invariance. The method of dimensional regularization satis-
fies this requirement. It has, however, the disadvantage that it is not applicable for
certain Feynman diagrams. For example, the diagram in Fig. 9.7 in four dimensions is
proportional to the anti-symmetric tensor εμνλα . Since this tensor carries exactly four
indices, it cannot be continued to general dimensions.

Fig. 9.7. For this diagram the
dimensional regularization
cannot be applied

This diagram is therefore excluded from the general proof and must be treated sep-
arately by means of a different regularization scheme, for example, the Pauli–Villars
method. It has to be proved that this diagram and also all diagrams of higher order
containing the ε tensor can be renormalized without destroying gauge invariance. If
the scheme were not gauge invariant, the Slavnov–Taylor identities could not be estab-
lished, and consequently there would be no basis for the proof for renormalizability in
general. As it turns out, the gauge invariance is conserved only if

dabc =
∑

fermions

Tr{λ̂a{λ̂b, λ̂c}+ } = 0 . (2)

This non-trivial additional constraint for the gauge group and the chosen representa-
tions is called anomaly freedom. We emphasize that gauge theories that do not satisfy
the condition (2) could nevertheless be renormalizable. The statement is solely that by
means of the known methods nothing can be said about the renormalizability, whereas
for theories fulfilling (2) the renormalizability can be proved explicitly.

Let us now consider these statements and calculate the anomaly freedom. The great
success of gauge theories in the past twenty years has been driven mainly by the
discovery of a general proof that gauge theories can be renormalized. However there
is an additional constraint that has to be fulfilled in order to apply this proof: the
particular gauge theory must be anomaly free.

Fig. 9.8. The two diagrams
that are important for the
anomaly. The left one differs
from the right one by the ex-
change of the two photons

The anomaly of gauge theories is a modification of the ordinary Ward identities
and arises in the calculation of the triangle diagrams in Fig. 9.8. The major aspect
is an odd number of axial-vector couplings where only the case of one γ5 coupling
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has to be considered since the diagram with three axial-vector couplings leads back to
one γ5 case by applying the commutation relations for γ5. Triangle diagrams with an
even number of axial-vector couplings imply an odd number of vector couplings and
therefore vanish due to Furry’s theorem. The λ̂i are the generators of the gauge group
under consideration.

The amplitude of the triangle diagram and of the respective exchange diagram may
be denoted by following the Feynman rules:

T abcμνλ = −i
∫

d4p

(2π)4

{
Tr

[
i

�p− �k2 − m

λ̂c

2
γλ

i

�p − m

λ̂b

2
γν

i

�p+ �k1 − m

λ̂a

2
γμγ5

]

+
⎛

⎝
k1 ↔ k2

ν ↔ λ

b ↔ c

⎞

⎠

⎫
⎬

⎭ . (3)

The generators λ̂i and the γ matrices act in different spaces and therefore the trace
can be decomposed in the product of the trace over the λ̂ and the trace over the γ :

T abcμνλ = 1

8
Tr(λ̂aλ̂cλ̂b)

(
−i
∫

d4p

(2π)4
Tr

[
i

�p− �k2 − m
γλ

i

�p − m
γν

i

�p+ �k1 − m
γμγ5

])

+ 1

8
Tr(λ̂aλ̂bλ̂c)

(
k1 ↔ k2

ν ↔ λ

)
. (4)

A simple calculation shows that the trace over the γ is (in the limit m → 0) symmetric
under the exchange (ν ↔ λ, k1 ↔ k2):

Tr[γαγλγβγνγγ γμγ5 ](p − k2)
αpβ(p + k1)

γ

p→−p−→ −Tr[γαγλγβγνγγ γμγ5 ](p + k2)
αpβ(p − k1)

γ

= −Tr[γ t5γ tμγ tγ γ tν γ tβγ tλγ tα](p + k2)
αpβ(p − k1)

γ .

We have used Tr(M) = Tr(Mt). Note that the replacement p → −p is valid due to the
integration over the total space. Inserting the unity operator 1 = Ĉ−1Ĉ, with Ĉ being
the charge-conjugation operator, and using ĈγμĈ−1 = −γ tμ and Ĉγ5Ĉ

−1 = +γ t5 one
obtains

−Tr[γ5γμγγ γνγβγλγα](p + k2)
αpβ(p − k1)

γ , (5)

which yields, after the renaming of the indices α ↔ γ and commutation of γ5 with γμ
– note that γ5γ

μ = −γ μγ5 (see (A.15′)) –

Tr[γαγνγβγλγγ γμγ5 ](p − k1)
αpβ(p + k2)

γ . (6)

After the exchange (ν ↔ λ, k1 ↔ k2) this simply reproduces our initial expression.
Hence due to the symmetry we denote

T abcμνλ = 1

8
Dabc

(
−i
∫

d4p

(2π)4
Tr

[
i

�p− �k2
γλ

i

�pγν
i

�p− �k1
γμγ5

])
(7)

with

Dabc =
∑

f

{
Tr[λ̂aλ̂bλ̂c] + Tr[λ̂aλ̂cλ̂b]}=

∑

f

Tr
[
λ̂a{λ̂b, λ̂c}+

]
, (8)
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where the sums run over all fermions that contribute to the anomaly exactly in the
same way.

The numerator of the integral expression is of order p4 while the denominator
is only of the order p3. This leads to an linearly divergent integral expression that
cannot be renormalized. Thus we cannot apply the proof of renormalizability to the
gauge theory unless the contribution of the anomaly vanishes. Obviously this can be
guaranteed only if the gauge group fulfills the requirement for anomaly freedom:

Dabc =
∑

f

Tr
[
λ̂a{λ̂b, λ̂c}+

]= 0 . (9)

In this context we will stress once more that a gauge theory might be renormalizable,
whether or not it is anomaly free. The general proof of renormalizability cannot be
applied on its own.

EXERCISE

9.12 Is the Glashow–Salam–Weinberg Theory Anomaly Free?

Show that the Glashow–Salam–Weinberg model of electroweak interaction is anomaly
free if there are three colors and the number of lepton families equals the number of
quark families. Note that left-handed (lh) and right-handed (rh) fermions couple to the
anomaly with opposite sign:

J iμ(L) ∼ ψ̄Lλ̂
iγμ(1 − γ5)ψL , (1)

J iμ(R) ∼ ψ̄Rλ̂
iγμ(1 + γ5)ψR . (2)

Solution. The GSW theory is based on the gauge group SU(2) × U(1) that is gener-
ated by the three Pauli matrices σi and the hypercharge Y :

λ̂i = σi , for i = 1,2,3 , (3)

λ̂4 = Ŷ = 2(Q̂ − T̂3) , (4)

obeying the commutation relations

{σi, σj }+ = 2δij . (5)

Equation (9) of Mathematical Supplement 9.11 (i, j, k = 1,2,3) reads

Dijk =
∑

f

Tr[σi{σj , σk}+ ] = 2δjk Trσi︸︷︷︸
=0

= 0 . (6)

In the case when two of the λ̂i are the hypercharge Ŷ we find that expression (8) in
Mathematical Supplement 9.11 also vanishes due to [Ŷ , σi] = 0 and because hyper-
charge and Pauli matrices act in separate spaces:

Di44 = D4i4 = D44i =
∑

f

Tr [σi2Ŷ 2 ] ∼ Trσi = 0 . (7)
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For one λ̂ being replaced by Ŷ we get

D4jk = Dj4k = Djk4 =
∑

f

Tr(Ŷ {σj , σk}+) = 2δjk
∑

f

TrŶ = 2δjk
∑

f

Y (8)

where we used [σi, Ŷ ] = 0 and cyclic permutation under the trace. The sum can be
decomposed onto the sum over leptons and quarks where the left-handed and right-
handed contributions enter with opposite signs due to (1) and (2)

∑

f

Y =
∑

lh leptons

Y +
∑

lh quarks

Y −
( ∑

rh leptons

+Y
∑

rh quarks

Y

)
. (9)

For the left-handed lepton and quark states in one family18 (ν, eL and uL,dL, respec-
tively) one obtains, using Table 9.1,

∑

lh leptons

Y = −1 + (−1) = −2 , (10)

∑

lh quarks

Y = 1/3 + 1/3 = 2/3 , (11)

while the right-handed contributions (eR , and uR,dR) give

∑

rh leptons

Y = −2 , (12)

∑

rh quarks

Y = 4/3 + (−2/3) = 2/3 . (13)

Table 9.1. The quantum numbers of the first fermion family of the standard model

T T3 Ŷ Q

νe + 1
2 + 1

2 −1 +0

eL + 1
2 − 1

2 −1 −1

eR +0 +0 −2 −1

uL + 1
2 + 1

2 + 1
3 + 2

3

(dC)L + 1
2 − 1

2 + 1
3 − 1

3

uR +0 +0 + 4
3 + 2

3

(dC)R +0 +0 − 2
3 − 1

3

Thus the contributions of leptons and quarks cancel if

• all quarks have three representations, i.e. there are three colors.
• the number of lepton families equals the number of quarks families.

18 The extension to more than one family is trivial due to identical quantum numbers of the respective
leptons and quarks in the families.
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Finally we have to examine the case that all three λ̂ are the hypercharge. Since this
represents a singlet state the hypercharge operator simply reduces to a c number and
we get

Tr(Ŷ Ŷ Ŷ ) ∼ Y 3 . (14)

Due to left-handed and right-handed fermions having opposite sign we obtain

∑

lh leptons

Y 3 −
∑

rh leptons

Y 3 = (−1)3 + (−1)3 − (−2)3 = +6 , (15)

∑

lh quarks

Y 3 −
∑

rh quarks

Y 3 = 3
(
(1/3)3 + (1/3)3 − (4/3)3 − (−2/3)3

)= −6 , (16)

where the factor of 3 is introduced to account for the three colors. We observe that the
singlet contribution vanishes as well. Thus the standard model of electroweak interac-
tion is anomaly free and therefore renormalizable.

9.6 Proton Decay

As discussed at the end of Sect. 9.3, the exchange of leptoquarks X or Y violates the
conservation of the baryon number and therefore allows the proton to decay into a
meson and a lepton. Figure 9.1 shows some of the decay channels

p →
{

dd̄e+
uūe+

}
→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π0e+

ρ0e+
ωe+

ηe+

, (9.104a)

p → ud̄ν̄e →
{
π+ν̄e

ρ+ν̄e
. (9.104b)

Note that we use for the antiparticles two notations, e.g. d̄ ≡ dC, ū = uC, ν̄e = νC
e etc.,

just as it seems convenient. The ρ and the π mesons have the same quark structure, as
do the ω and the η mesons. Only their angular-momentum coupling differs, namely a
total angular momentum of 1 for the ρ and the ω and 0 for the π and the η. See also
Figs. 6.3 and 6.4. On the other hand, the fact that the elementary processes

(9.105)

include the production of a “Cabibbo” d antiquark,

dC
c = dC cos θc + sC sin θc , (9.106)



9.6 Proton Decay 369

implies that decays into a lepton and K meson are also possible (for the quark content
see the table opposite to Fig. 6.5):

p → dsCe+ → K0e+ , (9.107a)

p → usCνC
e → K+νC

e . (9.107b)

Note that the superscript C indicates the antiparticle (charge conjugation) while the
subscript C stands for “Cabibbo”. Another possibility is the decay of the intermediate
X̄ and Ȳ bosons into quarks and leptons of the second generation:

(9.108)

The decay channels (9.104), (9.107) therefore need to be supplemented by the follow-
ing channels:

p → ddCμ+ → π0μ+

p → udCν̄μ → π+νC
μ

p → dsCμ+ → K0μ+

p → usCνC
μ → K+νC

μ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (9.109)

where the last two decay processes are again “Cabibbo suppressed”.
The calculation of the proton lifetime, as predicted by the SU(5) theory, is com-

plicated by the fact that the quarks in the initial and final states are bound within the
proton or a meson, respectively. Since the explicit form of the wave functions corre-
sponding to these bound states is unknown, one has to rely on certain models. One
possibility is to employ the MIT bag model (see Sect. 6.1).

In the following we shall instead sketch how to evaluate the decay of the proton
within the non-relativistic quark model.19 In this model the quarks are bound by an
external potential. This picture is justified insofar as it allows us to describe weak
decay processes quite well, for example,

Λ → p + π− ,

which involve the same difficulties as proton decay.20 As an example we calculate the
matrix element that corresponds to the annihilation of a left-handed positron and a
left-handed d antiquark, that is,

(9.110)

We shall now further investigate this diagram and its origin. First we consider the
interaction term of the Lagrange density in (8) of Example 9.13 (left couples to right!):

(ēC)Lγ
μ(d)LXμ − (ūC)Lγ

μ(u)LX
∗
μ = ēCγ μ

(1 − γ5)

2
dXμ − ūCγ μ

(1 − γ5)

2
uX∗

μ .

19 M.B. Gavela, A. Le Yauonc, L. Oliver, O. Pène, J.C. Raynal: Phys. Rev. D23, 1580 (1981).
20 A. Le Yauonc, L. Oliver, O. Pène, J.C. Raynal: Phys. Lett. B72, 53 (1977).
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Graphically we can describe this interaction as

Helicity and charge are conserved at each vertex, due to

+ 2

3
= 4

3
− 2

3
,

1 = − 1

3
+ 4

3
.

Now we consider the annihilation process

Again charge and helicity are conserved. Note that an outgoing left-handed antiparticle
is equivalent to an incoming right-handed particle. Like the gluons, the W± and the
Z0 bosons are vector bosons. The same is true for the X and Y bosons: they are also
vector bosons.

Recalling that the mass of the X bosons exceeds the W and Z boson masses by
several orders of magnitude, one can describe the exchange of the X boson by an
effective point-like interaction, analogous to the Fermi theory, by approximating the
X-boson propagator as

gμν − kμkν/M
2
X

k2 − M2
X

−→ −gμν

M2
X

. (9.111)

Hence, the effective Hamiltonian that describes the considered process is given by (see
Exercise 9.13)

ĤI = g2
5

M2
X

εαβγ ˆ̄ucγ γμ
1 − γ5

2
ûβ ˆ̄ecLγ μ

1 − γ5

2
d̂α , (9.112)

where we have omitted the factor cos θC for simplicity (cos θC ≈ 1), but introduced
the left-handedness of the interaction. û and d̂ denote the field operators ψ̂ for
u and d quark, respectively, and êcL is the field operator for a left-handed positron.
The indices α, β , γ label the color of the quarks, which are coupled by the εαβγ ten-
sor to color zero. ψ̂c is the charge conjugate of the field operator ψ̂ . The field operators
are explicitly given by

ψ̂ = ub̂q + vd̂q̄
† , ˆ̄ψ = ūb̂†

q + v̄d̂q̄ ,
(9.113)
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ψ̂c = ucd̂q̄ + vcb̂q
† , ˆ̄ψc = ūcd̂q̄

† + v̄cb̂q ,

where b̂q and d̂q̄ are the annihilation operators for quarks and b̂q
† and d̂q̄

† are the
corresponding creation operators. Finally u and v denote the wave functions for the
particle and antiparticle, while uc and vc are spinors for the antiparticle and particle,
respectively. Between uc and v, as well as between vc and u, holds the well-known
connection via charge conjugation, which will be written down explicitly in (9.117).

The matrix element corresponding to the process (9.110) then takes the following
form (see Exercise 9.13):

g5
2

M2
X

εαβγ

[
v̄ūγ γμ

(
1 − γ5

2

)
uuβ

][
ūēγ

μ

(
1 − γ5

2

)
vdα

]
. (9.114a)

The spinor v̄ūγ physically describes an incoming u antiquark. The antiquark of a left-
handed u quark is right-handed, that is, a right-handed u antiquark. We now perform
a Fierz transformation, similar to that in Mathematical Supplement 2.12 and obtain

g2
5

M2
X

εαβγ

[
ūēγμ

(
1 − γ5

2

)
uuβ

]
·
[
v̄ūγ γ

μ

(
1 − γ5

2

)
vdα

]
. (9.114b)

In the following we will label transposed spinors and matrices with a tilde ( ˜ ). Using
this notation we have

v̄ūγ γ
μ

(
1 − γ5

2

)
vdα = ṽdα

(
1 − γ5

2

)
γ̃ μ ˜̄vūγ = ṽdαγ̃

μ

(
1 + γ5

2

)
˜̄vūγ . (9.115)

With respect to the standard representation of the γ matrices we have

γ̃ μ =
{+γ μ for μ = 0,2

−γ μ for μ = 1,3

}
= iγ 2γ 0γ μiγ 2γ 0 . (9.116)

Furthermore, we can express the spinor uq̄(p, s) for an antiquark by the charge-
conjugated spinor of a quark, because

ψc = Ĉψ̄T = iγ 2γ 0γ 0T(ψ†)T

= iγ 2(ψ̃∗)∼ = iγ 2ψ∗ , (9.117)

uq̄(p, s) = iγ 2v∗
q(p, s) = iγ 2ṽ†

q(p, s) .

Since the negative energy spinor vq corresponds to the antiparticle, we find, with
γ 2† = −γ 2, that

ṽdαγ̃
μ

(
1 + γ5

2

)
˜̄vūγ = ṽdαiγ 2γ 0γ μiγ 2γ 0

(
1 + γ5

2

)
γ 0ṽ

†
ūγ

= ṽdα(iγ
2)†γ 0γ μiγ 2γ 0

(
1 + γ5

2

)
γ 0ṽ

†
ūγ

= ū
†
d̄α
γ 0γ μ

(
1 + γ5

2

)
iγ 2γ 0γ 0ṽ

†
ūγ = ūd̄αγ

μ

(
1 + γ5

2

)
uuγ , (9.118)

so that the matrix element (9.114) can be written as

g2
5

M2
X

εαβγ

[
ūd̄αγ

μ

(
1 + γ5

2

)
uuγ

][
ūēγμ

(
1 − γ5

2

)
uuβ

]
. (9.114c)
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In the non-relativistic approximation the four-component spinors of the quarks reduce
to

uq =
(
χq

0

)
, (9.119)

where χq is a two-component Pauli spinor. The left-handed positron, on the other
hand, can be approximated by its ultra-relativistic limit, that is, by neglecting its mass.
Therefore we make the following ansatz for the positron wave function:

(uē)L = (1 − γ5)

2

⎛

⎝
χē

σ · p

p
χē

⎞

⎠= 1

2

[(
1 0
0 1

)
−
(

0 1
1 0

)]⎛

⎝
χē

σ · p

p
χē

⎞

⎠

= 1

2

⎛

⎜⎜⎝

(
1 − σ · p

p

)
χē

−
(

1 − σ · p

p

)
χē

⎞

⎟⎟⎠

or

(uē)L = 1√
2

(
χē,L

−χē,L

)
, χē,L =

(
1 − σ · p

p

)
χē . (9.120)

In the last step we normalized the spinor uē to 1, assuming that the Pauli spinor χēL is
also normalized to 1.

EXERCISE

9.13 The Interaction Hamiltonian for Proton Decay

Problem. Motivate the structure of the interaction Hamilton operator (9.112) and its
special form (9.114a) by considering (9.52).

Solution. From (9.52) we know the form from the interaction with one Xr lepto-
quark. It is written

L ′
int = [0 + (ub)L(u

C
g )L − (ug)L(u

C
b )L + (e+)L(dr)L

]
Xr . (1)

We add to it the Hermitian-conjugated expression in order to get the complete inter-
action Hermitian as well. Considering that (uuC)† = uC†γ 0†(u†)† = uC†γ 0†u = uCu,

we obtain

Lint = [+(ub)L(u
C
g )L − (ug)L(u

C
b )L + (e+)L(dr)L

]
Xr

+ [+(uC
g )L(ub)L − (uC

b )L(ug)L + (d r)L(e
+)L
]
X∗

r . (2)

One can also get the second (Hermitian-conjugated to the first) component in (2) by
calculating the contribution from one XC

r leptoquark to the Lagrange density accord-



Exercise 9.13

9.6 Proton Decay 373

ing to (9.50) and (9.51). Then one gets with (see (9.44)!)

M(XC
r ) = XC

r

⎛

⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, (3)

as in (9.51),

M(XC
r )ψ

[10] = M(XC
r )

⎛

⎜⎜⎜⎜⎜⎝

0 uC
g −uC

b −ur −dr

−uC
g 0 uC

r −ub −db

uC
b −uC

r 0 −ug dg

ur ub ug 0 −e+
dr db dg e+ 0

⎞

⎟⎟⎟⎟⎟⎠

L

= XC
r

⎛

⎜⎜⎜⎜⎝

ur ub ug 0 −e+
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, (4)

and therefore, according to (9.52),

Tr
{
ψ

[10]
M(XC

r )ψ
[10]}

= XC
r Tr

⎛

⎜⎜⎜⎜⎝

0 −uC
g uC

b ur dr

uC
g 0 −uC

r ub db

−uC
b uC

r 0 ug dg

−ur −ub −ug 0 e+
−dr −db −dg −e+ 0

⎞

⎟⎟⎟⎟⎠

L

⎛

⎜⎜⎜⎜⎝

ur ub ug 0 −e+
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠

L

= XC
r

[
(uC

g )L(ub)L − (uC
b )L(ug)L + (d r)L(e

+)L
]

. (5)

The XC
r is given as a bosonic field from

XC
r = X∗

r . (6)

In the Lagrange density Lint from (2), which is completed as above, the terms

(e+)L(dr)LXr − (uC
b )L(ug)LX

∗
r (7)

also appear. The second term, −(uC
b )L(ug)LX

∗
r , describes, for instance, the annihila-

tion of two u quarks and the production of one X boson. The first term, (e+)L(d+
r )LXr,

describes, for instance, the annihilation of the Xr boson and the production from one
e+ and one d quark.

It is important that the Xr boson has the same color as the dr quark, as follows when
the Xr radiates into (e+)L(d+

r )L. The Xr boson is a vector boson, and it is described
by the four-vector Xrμ (μ = 0,1,2,3). Thus the coupling in (7) had to be of vector
type, and (7) is written in full as

(eC)Lγ
μ(dr)LXrμ − (uC

b )Lγ
μ(ug)LX

∗
rμ . (8)
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Because, for example,

(dr)L = (1 − γ5)

2
dr

and

(eC)L =
[
(1 − γ5)

2
eC
]†

γ 0 = eC† (1 − γ5)
†

2
γ0

= eC†γ0
(1 + γ5)

2
= eC (1 + γ5)

2
, (9)

one can rewrite (8) in the following form:

[
eC (1 + γ5)

2
γ μ

(1 − γ5)

2
dr

]
Xrμ −

[
uC

b
(1 + γ5)

2
γ μ

(1 − γ5)

2
ug

]
X∗

rμ

=
[
eCγ μ

(1 − γ5)

2
dr

]
Xrμ −

[
uC

b γ
μ (1 − γ5)

2
ug

]
X∗

rμ . (10)

For this derivation the well-known relation

(1 + γ5)

2
γ μ

(1 − γ5)

2
= γ μ

(1 − γ5)

2

was used.
For the reaction uu → X → e+d, which is graphically represented as

we get in lowest order the following Hamilton operator:

Ĥint = −g2
5

[
uC
b γ

μ (1 − γ5)

2
ug

][gμν − kμkν

M2
X

k2 − M2
X

][
eCγ ν

(1 − γ5)

2
dr

]

⇒ −g2
5

[
uC
b γ

μ (1 − γ5)

2
ug

][
−gμν

M2
X

][
eCγ ν

(1 − γ5)

2
dr

]

= g2
5

M2
X

[
uC
b γ

μ (1 − γ5)

2
ug

]
[gμν]

[
eCγ ν

(1 − γ5)

2
dr

]
. (11)

Please note that the colors present are all combinations of the three-product bgr ≡
white. Summation over all color permutations finally yields

Ĥint = g2
5

M2
X

εαβγ

[
û

C
γ γμ

(1 − γ5)

2
ûβ

][
ê

C
γ μ

(1 − γ5)

2
d̂α

]
. (12)

This is exactly (9.112). The operator sign above the spinors was introduced here to
remind us that the spinors are field operators.

We want to understand now the form of (9.114a). The spinor fields u, d , e are
second quantized according to (9.113) and comprise, in the usual way, particles and
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antiparticles. We can therefore write the field combinations which were introduced in
(12) in the following form:

û
C
γ · · · ûβ = (uūγ d̂

†
ūγ + vuγ b̂uγ

) · · · (uuβ b̂uβ + vuβ d̂
†
ūβ

)

= uūγ · · ·uuβ d̂
†
ūγ b̂uβ + uūγ · · ·vqβ d̂†

ūγ d̂
†
ūβ

+ vuγ · · ·uuβ b̂uγ b̂uβ
���������������

+ vūγ · · ·vuβ b̂uγ d̂
†
ūβ (13a)

and

ˆ̄eC · · · d̂α = [uēd̂
†
ē + vēb̂ē

] · · · [udαb̂dα + vdαd̂
†
dα

]

= uē · · ·udαd̂
†
ē b̂dα + uē · · ·vdαd̂

†
ē d̂

†
dα

�������������

+ vē · · ·udαb̂ēb̂dα + vē · · ·vdαb̂ēd̂
†
dα . (13b)

Here uqβ describes an u spinor for an q quark of the color β , vqβ a v spinor for an q
quark of the color β , and ūq̄γ an adjoint u spinor for an q antiquark of the color γ .
The points · · · represent the vertex function γμ (1 − γ5) /2. If one is interested in the
annihilation process of two u quarks,

b̂†
uγ b̂

†
uβ |0〉 , (14a)

and the production process of one e+ and one d antiquark,

〈0|d̂ēd̂dα , (14b)

the process has the amplitude

〈0|d̂ēd̂dαH̄intb̂
†
uγ b̂

†
uβ |0〉 . (15)

If one employs the interaction Hamilton operator Ĥint (12) and the field operators
(13a), (13b), one obtains immediately that only the marked terms ( ����� ) of (13)
contribute, with the result

〈0|d̂ēd̂dαH̄intb̂
†
uγ b̂

†
uβ |0〉

= g2
5

M2
X

εαβγ

[
vūγ γμ

(1 − γ5)

2
uuβ

][
uēγ

μ (1 − γ5)

2
vdα

]
. (16)

This is exactly (9.114a). It can also be seen as the translation of diagram (9.110) into
formal language. One only has to keep in mind that an incoming u quark in the left
vertex is equivalent to an outgoing anti-uC quark and therefore a v spinor appears.

According to the standard representation we have

γ 0 =
(

1 0
0 −1

)
, γ 5 =

(
0 1
1 0

)
, γ 0γ 5 =

(
0 1

−1 0

)
,

(9.121)

γ i =
(

0 σ i

−σ i 0

)
, γ iγ 5 =

(
σ i 0
0 −σ i

)
,
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so that with (9.119)

ūd̄αγ
0
(

1 + γ5

2

)
uuγ = u

†
d̄α

(
1 + γ 5

2

)
uuγ = 1

2
(χ

†
d̄α
,0)

(
1 1
1 1

)(
χuγ

0

)

= 1

2
χ

†
d̄α
χuγ ,

(9.122)

ūd̄αγ
i

(
1 + γ5

2

)
uuγ = u

†
d̄α
γ 0γ i
(

1 + γ 5

2

)
uuγ = 1

2
u

†
d̄α
(γ 0γ i + γ 0γ iγ 5)uuγ

= 1

2
(χ

†
d̄α
,0)

(
σi σi
σi σi

)(
χuμ

0

)
= 1

2
χ

†
d̄α
σ iχuγ .

Furthermore, since the spinor uē is purely left handed, it holds that

ūēγμ
1 − γ5

2
uuβ = (ūē)Lγμ

(
1 − γ5

2

)
uuβ = (ūē)L

(
1 + γ5

2

)
γμuuβ

= (u
†
ē)Lγ0

(
1 + γ5

2

)
γμuuβ = u

†
ē

(
1 − γ5

2

)
γ0

(
1 + γ5

2

)
γμuuβ

= u
†
ē

(
1 − γ5

2

)2

γ0γμuuβ = u
†
ē

(
1 − γ5

2

)
γ0γμuuβ

= ūēγμuuβ . (9.123)

Hence we obtain with (9.119) and (9.120)

ūēγ0

(
1 − γ5

2

)
uuβ = 1

2

1√
2
(χ

†
ē,L,−χ

†
ē,L)

(
1 −1

−1 1

)(
χuβ

0

)

= 1√
2
χ

†
ē,Lχuβ ,

ūēγi

(
1 − γ5

2

)
uuβ = −ūēγ

i

(
1 − γ5

2

)
uuβ (9.124)

= 1

2

1√
2
(χ

†
ē,L,−χ

†
ē,L)

(
0 σi
σi 0

)(
χuβ

0

)

= 1√
2
χ

†
ē,Lσ

iχuβ .

Altogether the matrix element (9.114) takes the form

g2
5

2
√

2M2
X

εαβγ
{(
χ

†
d̄α
χuγ
)(
χ

†
ē,Lχuβ

)+ (χ†
d̄α

σχuγ
)(
χ

†
ē,Lσχuβ

)}
. (9.114d)

We proceed by evaluating the color dependence of the matrix element (9.114d). The
proton wave function consists of three quark wave functions coupled to a color singlet
(see diagram of proton decay), that is the wave function has the form

1√
6
εαβγ χu1αχu2βχdγ . (9.125)

The normalization factor 1/
√

6 originates from the fact that there are six different
contributions to the wave function, depending on the distribution of the three colors for
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the quarks. The wave function of the meson (see diagram of proton decay) produced
is also a color singlet and has the form

1√
3
δαρχd̄,αχu,ρ = 1√

3
χd̄αχuα . (9.126)

With this expression we can calculate the color factor of the proton-decay matrix ele-
ment:

1√
6
εβγρ

1√
3
δαρεαβγ = 1√

6

1√
3
εαβγ εαβγ = 1√

18
6 = √

2 . (9.127)

The first factor reflects the color coupling in the wave function of the proton (see
figure), the second one reflects that in the meson wave function, the third reflects that
of the interaction (9.114d). This interaction states that the colors β and γ of the two
u quarks must couple to the color α of the created dC quark. From now on we refrain
from writing the color indices and multiply the matrix element with

√
2 instead.

The diagram for the proton decay now follows. The indices characterize the color.

Instead of (9.114d), therefore, we obtain

g2
5

2M2
X

{(
χ

†
d̄
χu
)(
χ

†
ē,Lχu

)+ (χ†
d̄
σχu
)(
χ

†
ē,Lσχu

)}
, (9.128)

where the particular spinors are normalized to 1.
A completely analogous consideration can be carried through for the diagram

(9.129)

which yields, assuming MX = MY,

− g2
5

2M2
X

{(
χ

†
ūχd
)(
χ

†
ē Lχu
)+ (χ†

ū σχd
)(
χ

†
ē Lσχu

)}
. (9.130)

The relative minus sign of (9.130) as compared with (9.128) stems from the different
signs of the coupling terms to X and Y bosons; see Example 9.6, (23). In order to eval-
uate the matrix elements (9.128) and (9.130) we need to specify the wave function of
the proton. We shall assume all three quarks to be in the same s state, so that the spatial
part of the wave function is separable. The fermion character of the quarks requires
that the complete wave function is antisymmetric. Since we have already formed an-
tisymmetric combinations with respect to the color indices, the spin and isospin con-
tributions must together be symmetric. In order to construct the proton wave function,
first imagine that the quarks would be three different, distinguishable particles, their
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states being characterized by spin and isospin quantum numbers. A physical state |Z〉
of the three quarks is given by

|Z〉 = cijk|i, j, k〉 = cijkâ
†
(1)i â

†
(2)j â

†
(3)k|0〉 (9.131)

(where a sum over i, j , k is understood). The indices i, j , k represent the spin and
isospin quantum numbers of the three quarks, â†

(1)i is the creation operator for the first
quark being in the state i, j , k, . . . , and |0〉 denotes the vacuum state, which is defined
through

â(1)i |0〉 = â(2)i |0〉 = â(3)i |0〉 = 0 . (9.132)

cijk is the spin and isospin part of the wave function. As mentioned before, we assume
that the coefficients cijk are symmetric with respect to the permutation of any two
indices,

cijk = cjik = cikj = · · · . (9.133)

We require the state vector (9.131) to be normalized to 1. Then, as an immediate
consequence, for three distinguishable particles we have the condition

c∗
ijkcijk = 1 . (9.134)

However, for n distinguishable particles we also need to introduce a factor 1/
√
n!.

Let us illustrate the origin of this additional normalization factor for the case of two
particles. As before we assume the coefficients cij to be symmetric with respect to a
permutation of the indices i, j . By means of the relation

[âi , â†
j ]=δij (9.135)

we find that

〈Z|Z〉 = c∗
klcij 〈k, l|i, j 〉 = c∗

klcij 〈0|âkâl â†
j â

†
i |0〉

= c∗
klcij 〈0|âkâ†

j âl â
†
i + âkâ

†
i δlj |0〉

= c∗
klcij 〈0|â†

j âkâl â
†
i + δkj âl â

†
i + â

†
i âkδlj + δikδlj |0〉

= c∗
klcij 〈0|δkj δli + δikδlj |0〉

= c∗
jicij + c∗

ij cij = 2 · c∗
ij cij . (9.136)

Similarly, in the case of n particles there are n! contributions where the indices of the
coefficients c∗ are particular permutations of the indices of c. This must be compen-
sated for by an additional normalization factor 1/

√
n!.

However, this is not the whole story, since there are six different processes that may
lead to the decay of the proton via (9.110), depending on which of the three quarks
is the incoming left-handed u quark and which is the “spectator” d quark. Of course,
in reality these processes are indistinguishable: the transition amplitude is the same
for all six possibilities. We are therefore justified in considering only one of these
processes and multiplying our result by a factor of 6.
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Together with the normalization factor, which accounts for the fact that the quarks
are indistinguishable particles, we therefore obtain an additional factor

1√
6

× 6 = √
6 . (9.137)

An analogous consideration can be carried through for (9.129). Finally we take into
account the factor

√
2 from (9.127), which originates from the quark colors, so that

the effective transition operator for the processes (9.110) and (9.129) is given by

√
6
(1 + σ̂ 1 · σ̂ 2)

2

g2
5

M2
X

× [V̂1(u → ēL)V̂2(u → d̄) + V̂1(u → ēL)V̂2(d → −ū)] , (9.138)

where we have used (9.128) and (9.130). σ1 and σ2 are the spin matrices for particle 1
and particle 2, respectively. The operator V̂1(u → ēL) does not contribute if particle 1
is not a u quark, otherwise particle 1 is transformed into a left-handed positron.

In order to evaluate the matrix element of the operator (9.138) it is convenient to
write the spin–isospin part of the proton wave function as

1√
2
(χ ′φ′ + χ ′ ′φ′ ′) , (9.139)

where φ′ and φ′ ′ denote the isospin wave functions corresponding to a total isospin
1
2 ; specifically in φ′ the two particles are coupled to isospin 0, whereas in φ′ ′ they are
coupled to isospin 1. The explicit forms of these wave functions are

φ′ = 1√
2
(|udu〉 − |duu〉) ,

(9.140)
φ′ ′ = 1√

6
(2|uud〉 − |udu〉 − |duu〉) .

The spin wave functions χ ′ and χ ′ ′ are defined correspondingly, by simply replacing
in (9.140) u by spin ↑ and d by spin ↓. Since the outgoing left-handed positron is in
an eigenstate of helicity, that is, of the spin along the direction of the positron momen-
tum, it is convenient to quantize the proton spin along this direction too. Thereby it
is understood that a spin projection of +1/2 corresponds to a spin oriented opposite
to the emission of the positron, that is, a left-handed positron then carries spin +1/2.
That (9.139) is indeed the spin and isospin wave function of a proton is easily seen:
the wave function corresponds to total spin 1/2 and total isospin 1/2 and furthermore
is symmetric overall with respect to the three quarks. The latter property follows from

1√
2
(χ ′φ′ + χ ′ ′φ′ ′)

= 1

2
√

2
(|u↑d↓u↑〉 − |u↓d↑u↑〉 − |d↑u↓u↑〉 + |d↓u↑u↑〉)

+ 1

6
√

2
(4|u↑u↑d↓〉 − 2|u↑u↓d↑〉 − 2|u↓u↑d↑〉

− 2|u↑d↑u↓〉 + |u↑d↓u↑〉 + |u↓d↑u↑〉
− 2|d↓u↑u↑〉 + |d↑u↓u↑〉 + |d↓u↑u↑〉)
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= 1√
2

(
2

3
|u↑u↑d↓〉 − 1

3
|u↑u↓d↑〉 − 1

3
|u↓u↑d↑〉

+ 2

3
|u↑d↓u↑〉 − 1

3
|u↓d↑u↑〉 − 1

3
|u↑d↑u↓〉

+ 2

3
|d↓u↑u↑〉 − 1

3
|d↑u↓u↑〉 − 1

3
|d↑u↑u↓〉

)
. (9.141)

This result is identical to the wave function that we obtained in (7.27) when we dis-
cussed the beta decay of the neutron. The advantage of the particular representation of
the proton wave function (9.139) is the property that χ ′ and χ ′ ′ are eigenfunctions of
the operator σ 1 · σ 2 that occurs in (9.138): if we couple two particles with spin 1

2 to
an angular momentum j we have

j (j + 1) =
(

σ 1

2
+ σ 2

2

)2

= σ 2
1

4
+ σ 2

2

4
+ 1

2
σ 1 · σ 2 = 3

2
+ 1

2
σ 1 · σ 2 ,

(9.142)
σ 1 · σ 2 = 2j (j + 1) − 3 .

Now, in χ ′ the first two quarks are coupled to j = 0, whereas in χ ′ ′ they are coupled
to j = 1. Therefore

σ 1 · σ 2χ
′ = −3χ ′ , σ 1 · σ 2χ

′ ′ = χ ′ ′ . (9.143)

If the final state contains a π0, the remaining spectator quark and the produced anti-
quark, that is, particle 2 and particle 3 in (9.138), must be coupled to spin 0, while the
positron carries the spin 1

2 of the decaying proton. Thus, the spin part of the final-state
wave function is

χf = 1√
2
(|↑↑↓〉 − |↑↓↑〉) . (9.144)

To proceed with the evaluation of the transition amplitude we need to consider

χf
†χ ′ = 1√

2
(〈↑↑↓| − 〈↑↓↑|) 1√

2
(|↑↓↑〉 − |↓↑↑〉) = − 1

2
,

χf
†χ ′ ′ = 1√

2
(〈↑↑↓| − 〈↑↓↑|) 1√

6
(2|↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉) (9.145)

= +
√

3

2
.

The flavor contribution of the π0 wave function is (ūu − d̄d)/
√

2, that is, altogether
we have

φf = 1√
2

{|ē ūu〉 − |ē d̄d〉} . (9.146)

With these ingredients we obtain

φf
†V̂1(u → ē)

[
V̂2(u → d̄) + V̂2(d → −ū)

]
φ′

= φf
†V̂1(u → ē)[V̂2(u → d̄) + V̂2(d → −ū)] 1√

2
(|udu〉 − |duu〉)

= 1√
2
(〈ē ūu| − 〈ē d̄d|)(− 1√

2
|ē ūu〉) = − 1

2
(9.147)
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and

φf
†V̂1(u → ē)

[
V̂2(u → d̄) + V̂2(d → −ū)

]
φ′ ′

= φf
†V̂1(u → ē)

[
V̂2(u → d̄) + V̂2(d → −ū)

] 1√
6
(2|uud〉 − |udu〉 − |duu〉)

= 1√
2
(〈ē ūu| − 〈ē d̄d|) 1√

6
(2|ē d̄d〉 + |ē ūu〉)

= − 1

2
√

3
. (9.148)

Finally the contributions of spin and isospin to the transition matrix element are ob-
tained by using (9.138), (9.139), (9.143), (9.145), (9.147):

√
6
g5

2

M2
X

1√
2

[
1 − 3

2

(
− 1

2

)(
− 1

2

)
+ 1 + 1

2

√
3

2

(
− 1

2
√

3

)]

= −
√

3

2

g5
2

M2
X

. (9.149)

The transition probability is proportional to the square of (9.149). We then have to
average over the initial spin of the proton. Equation (9.148) has been derived for the
particular case in which the proton spin is pointing in a direction opposite to that
of the emission of the positron, so that the produced positron is left handed. This is
impossible if the proton spin is parallel to the direction of emission of the positron.
Therefore, averaging over the initial spin directions yields a factor of 1

2 .
In order to get the total probability for the decay of the proton into a π0 and a

positron we also need to account for the process which involves the production of
a right-handed positron. As it turns out, the corresponding amplitude is just half the
amplitude for the production of a left-handed positron. This can be seen as follows:
the latter process involves contributions of both diagrams (9.110) and (9.129), since
ēL, dL, and uL are all in the same SU(5) multiplet. As is obvious from the two terms
in the brackets of (9.149), the corresponding two amplitudes are equal for these two
processes. On the other hand, ēR and dR are in the same multiplet, but not ēR and uR
(see for example Exercise 9.4 or Example 9.6). Therefore only the process

(9.150)

contributes to the production of a right-handed positron. Again, the corresponding
amplitude equals the amplitudes for (9.110) and (9.149), that is, it is just half the
value of the amplitude for the production of a left-handed positron. Consequently, the
probability is 1/4 times the probability for the production of a left-handed positron.
Hence, the total probability for the production of a positron is proportional to

1

2

(
1 + 1

4

)
3

4

g5
4

M4
X

= 15

32

g5
4

M4
X

, (9.151)
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where the factor 1
2 originates from averaging over the initial spins.

To find the transition probability, we furthermore need to take into account the
spatial part of the proton wave function. Since we assume a point-like interaction, the
transition rate is proportional to the probability that both quarks are located at the same
spatial point. Under this assumption the spatial part of the transition matrix elements
is given by
∫

d3r1d3r2ψ
∗(r1)ψ

∗(r2)δ
3(r1 − r2)ψ(r1)ψ(r2) , (9.152)

where ψ(r) denotes the spatial wave function which, in accordance with our assump-
tion, is the same for all three quarks; r1 and r2 are the coordinates of particles 1 and 2,
respectively.

In the following we shall neglect the dependence of the matrix element on the wave
function of the outgoing particles. This can be justified by the weak decay of the Λ
particle, where the same approximation yields quite accurate results. However, we will
not evaluate the integral (9.152) explicitly but rather assume a value of 2 × 10−3 GeV3,
corresponding to 0.25 fm−3. This is reasonable insofar as, first, the calculation of the
decay rate for the Λ and - particles within a similar model yields this value and, sec-
ond, this particular value agrees quite well with results from bag-model calculations.

In order to obtain the final expression for the transition rate, the matrix element has
to be multiplied by the δ function, which ensures energy and momentum conservation.
Then we have to sum over the final states. These two steps lead to a factor

∫
d3ke

(2π)3
d3kπ

(2π)3
(2π)4δ4(P − ke − kπ ) . (9.153)

In its own rest frame the proton four–momentum is given by (Mp,0,0,0), and we
obtain for (9.153)

1

(2π)2

∫
d3ke d3kπ δ(Mp − Ee − Eπ)δ

3(ke + kπ )

= 4π

(2π)2

∫
kπ

2dkπδ
(
Mp −

√
me

2 + kπ
2 −
√
mπ

2 + kπ
2
)

. (9.154)

By means of the identity
∫

dxδ(f (x)) =
∑

i

∫
dx

1

|f ′(xi)| δ(x − xi) , (9.155)

with xi being the zeros of f (x), we find for (9.154)

k2

π

1

k/Ee + k/Eπ
= 1

π

kEeEπ

Ee + Eπ
= 1

π

kEeEπ

Mp
, (9.156)

where k is determined by

(m2
e + k2)1/2 + (m2

π + k2)1/2 = Mp . (9.157)

Neglecting the electron mass me, we have

k = (M2
p − m2

π )/2Mp , (9.158)
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which, substituted into (9.156), yields

kEeEπ

πMp
= 0.122

M2
p

π
. (9.159)

This completes the calculation for proton decay.

Fig. 9.9. Radiative correc-
tions to the proton decay from
gluonic interactions

However, an accurate treatment of proton decay requires the calculation of radiative
corrections from gluonic interactions, as illustrated in Fig. 9.9. These diagrams lead
to a renormalization of the coupling constant, increasing the decay rate by a factor of

12.5 for p → π0 + ēL ,

11 for p → π0 + ēR .
(9.160)

As discussed before, the first process contributes four times more then the second, and
the radiative corrections of Fig. 9.9 result in an overall factor of

1

5
(4 × 12.5 + 11) = 12.2 . (9.161)

The result for the decay rate is then 1.3 × 10−4 M4
X/GeV5 for the decay of a proton

into a neutral pion and a positron. However, this particular process contributes only
37% of the total decay rate. The branching ratios for the other possible decay channels
are listed in Table 9.2. Of course, these values are model dependent, but they deviate
only a few percent from MIT-bag-model predictions.

Table 9.2. Calculated branching ratios for the decay

Process Branching ratio

p → e+π0 37%
p → e+η 7%
p → e+ρ0 2%
p → e+ω 18%
p → ν̄eπ

+ 15%
p → ν̄eρ

+ 1%
p → μ+K0 19%

Altogether these different decay processes lead to a prediction for the lifetime of
the proton of

τp ∼ 6 × 1027
(

MX

(1014 GeV)

)4

years . (9.162)

Since the value for MX as calculated within the two-loop approximation is (6 ± 3) ×
1014 GeV, the proton lifetime should be shorter than 4 × 1031 years.21 In recent exper-
iments22 3300 tons of water, or 2.2 × 1032 free protons, not counting those bound in
oxygen nuclei, were observed for 417 days. In total 401 events were counted, of which

21 J. Ellis, M. Gaillard, D. V. Nanopoulos, S. Rudaz: Nucl. Phys. B176, 61 (1980).
22 G. Blewett et al.: Phys. Rev. Lett. 55, 2114 (1985); W. Gajewski et al.: Phys. Rev. D42, 2974
(1990).
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the largest part, if not all, originated from neutrinos of cosmic radiation. In order to
reduce this large background contribution, only events with balanced momentum were
taken into account, since proton decay occurs at rest. Furthermore, only those events
have been considered which corresponded to a restricted region of total energy of the
reaction products. For example, the process p → e+π0 should occur at an energy of
940 MeV. Therefore the range of acceptance was restricted to 736–1100 MeV.

By this selective treatment of the observed events the number of relevant events was
reduced to 11. These processes are consistent with the decay channels e+ or μ+ + K0,
η0, ρ0 or ω0, as well as ν + K+, ρ+, or K∗+, and also μ+μ+μ−. However, these
events might also have been produced by neutrinos. No event for the particular decay
of the proton into e+π0 was observed. Assuming a lifetime of 4 × 1031 years for
the proton and a branching ratio of 37% for the decay channel e+π0, and under the
assumption that only the decay of free protons is observed, that is, that protons bound
in oxygen nuclei do not decay at all, or at least that the products of such reactions
are absorbed, then the probability for the decay of a proton within 417 days is about
90%. Together with the probability for the detection of the decay products of 80%, this
implies a probability of 70% for the observation of a decay event p → e+π0. However,
this value is increased if a smaller value for MX is assumed and the decay of protons
bound in oxygen nuclei is taken into consideration. On the other hand, bag-model
calculations predict a longer lifetime for the proton.

A detailed discussion of the uncertainties of lifetime calculations for the protons
has been given by Ellis and co-workers. Improved experiments looking for the decay
p → e+ + π0 over a period of several years have yielded the much more stringent
lower limit23

τp ≥ 6 × 1032 years × B(p → e+π0) (9.163)

for the proton lifetime. For the branching ratio given in Table 9.2 it is clear that the
experimental limit is higher than the SU(5) prediction by more than a factor of 5.
We can therefore say that the simplest version of a grand unified gauge theory, the
SU(5) model of Georgi and Glashow, has been ruled out by experiment. Nonetheless,
the ideas discussed at the beginning of this chapter appear quite compelling, and it
may well be that a somewhat more sophisticated version of a unified gauge theory is
realized in nature.24

9.7 Outlook: Extensions of the Standard Model

As we saw in the last section, the SU(5) model of “grand” unification of all gauge
groups predicts a proton decay rate that seems incompatible with experimental limits.

23 W. Gajewski, in Last Workshop on Grand Unification, ed. by P. Frampton (World Scientific, Sin-
gapore, 1989), p. 18.
24 One compelling argument for a unified gauge theory, namely that it allows for proton decay, which
is necessary to explain the matter–antimatter asymmetry in the universe, has become less compelling,
since it was understood that there exists a complicated mechanism for the violation of baryon number
conservation in the electroweak gauge theory (see, for example, P. Arnold, L. McLerran: Phys. Rev.
D36, 581 (1987), D37, 1020 (1988); V. Kuzmin, V. Rubakov, M. Shaposhnikov: Phys. Lett. 155B, 36
(1985)).
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Since the predicted proton lifetime (9.162) depends on the fourth power of the X-
boson mass, this can be understood as an indication that the SU(5) model predicts too
small a value for the unification scale MGUT, and hence for MX. Moreover, the new
high-precision data on the parameters of the electroweak gauge theory and quantum
chromodynamics obtained in the experiments at LEP25 (see Chap. 5) have revealed
that the three coupling constants

α1(q
2) = 5

3
α′(q2) ,

α2(q
2) = αL(q

2) , (9.164)

α3(q
2) = αC(q

2) ,

do not quite meet at a single point (see Fig. 9.10). Inspecting Fig. 9.10 one may spec-
ulate that α2 and α3 fall too rapidly with q2, or that α1 increases too rapidly, or both.
This finding points in the same direction as the conclusion drawn from the absence
of observed proton decay, because a softer q2 dependence of the coupling constants
implies a higher symmetry-breaking scale MGUT.

Fig. 9.10. The running cou-
pling constants αi fail to meet
in a single point when they
are extrapolated to high ener-
gies by computations incorpo-
rating the particle content of
the minimal SU(5) model

Is this a fundamental flaw of the SU(5) model? Maybe not, because it can be reme-
died in a very elegant, yet simple, manner. The basic idea is that the contributions
of fermions and spin-zero bosons to the coefficients bi describing the strength of the
q2 dependence in (9.84) are negative and hence soften the “running” of the inverse
coupling constants. Thus the discrepancy may be cured if one can find a method to
include more fermions and scalar bosons into the SU(5) model in a natural way.26 The
simplest method would be to postulate the existence of more than ng = 3 generations,
but this possibly is excluded by the LEP data, which show that there are only three
neutrino flavors (see Example 5.3).

Another, perhaps even more elegant, way is provided by the concept of supersym-
metry, where one postulates that each species of fundamental particle is supplemented
by a yet unknown species obeying the opposite particle statistics. In other words, for
every boson species of the standard model (gauge and Higgs bosons), there should
exist a corresponding species of fermion, and all fundamental fermions (quarks and

25 DELPI collab. P. Abren et al.: Phys. Lett. B247, 167 (1990), Phys. Lett. B252, 149 (1990).
26 There exist of course a wide variety of GUT theories, based on similar concepts as the SU(5)
model; see e.g. R. Slansky: Group Theory for Unified Model Building, Phys. Rep. 79, 1 (1981).
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leptons) should have bosonic partners. A complete table of the components of the
minimal supersymmetric extension of the standard model of electroweak and strong
interactions is given below, see Table 9.3. Except for their spin, all supersymmetric
partners carry the same quantum numbers as their related particles from the standard
model. Although we consider here the supersymmetric version of the SU(5) gauge
theory primarily because it contains the desired additional spin- 1

2 and spin-0 particles,
we mention that the supersymmetric gauge theory has several virtues in its own right.

1. The divergences of loop diagrams are generally less severe in the supersymmet-
ric version of the theory, owing to cancellations between contributions from virtual
bosons and fermions. This leads, among other things, to possible solutions of the hi-
erarchy and fine-tuning problems associated with the different symmetry-breaking
scales.

2. Supersymmetry gives rise to an elegant mathematical formalism, which allows one
to include quantized gravity in a straightforward manner. Supersymmetric unified
gauge theories arise naturally as a “low-energy” limit of theories of quantum grav-
ity, such as supersymmetric string theories.27 The analysis of the q2 dependence
of the coupling constants α1, α2, α3 in the supersymmetric version of the standard
model runs completely parallel to that performed in Sect. 9.5. There we found the
coefficients bi ,

U(1): 12πb1 = −4ng − 3

10
nH ,

SU(2): 12πb2 = 22 − 4ng − 1

2
nH , (9.165)

SU(3): 12πb3 = 33 − 4ng ,

for the loop corrections to the gauge boson propagators, where we now have ex-
plicitly denoted the contribution from virtual Higgs bosons. Here ng again signifies
the number of generations and nH now stands for the number of Higgs doublets. In
the supersymmetric version of the standard model, these are replaced by28

12πb1 = −6ng − 9

10
nH ,

12πb2 = 18 − 6ng − 3

2
nH , (9.166)

12πb3 = 27 − 6ng .

In the standard model, ng = 3 and nH = 1; the latter is replaced by nH = 2 in the
supersymmetric version. Let us compare the two sets of coefficients:

12πb1 = −12.3 , 12πb1 = −19.8 ,

12πb2 = +9.5 , 12πb2 = −3 , (9.167)

12πb3 = +21 , 12πb3 = +9 .

27 See, for example, M. B. Green, A. S. Schwartz, E. Witten: Superstring Theory (Cambridge Uni-
versity Press, Cambridge, 1987).
28 M.B. Einhorn, D.R.T. Jones: Nucl. Phys. B196, 475 (1982).
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Fig. 9.11. The minimal su-
persymmetric SU(5) model
causes the couplings αi to
meet in a single point

As we see, the coefficients bi of the supersymmetric extension of the standard
model are smaller than those of the standard model itself, and hence the cou-
pling constants αi(q2) run more slowly, as desired. The surprising effect of these
changes is that all three functions αi(q2) now really meet at a single point, as
shown in Fig. 9.11, when the supersymmetric partners of the known particles are
assigned masses of the order of 1 TeV (1000 GeV). The consequence is that the
transition from the parameters (9.165) to the parameters (9.166) is being fitted at
M ∼ 1000 GeV. This transition causes the bending of the inverse coupling strength
visible in Fig. 9.11. This result29 is based on a precise analysis of the coupling
constants αi of the standard model at the mass scale of the Z boson:

α1(MZ) = 0.016887 ± 0.000040 ,

α2(MZ) = 0.03322 ± 0.00025 , (9.168)

α3(MZ) = 0.108 ± 0.005 .

The lines intersect almost exactly at q2 = (1016 GeV)2, that is, slightly more than
an order of magnitude later than in the case of the standard model.

Table 9.3. Particle content of the minimal supersymmetric extension of the standard model

Particle (spin) Supersym. partner (spin)

photon (1) photino ( 1
2 )

W, Z (1) W-ino, Z-ino ( 1
2 )

gluon (1) gluino ( 1
2 )

lepton ( 1
2 ) slepton (0)

quark ( 1
2 ) squark (0)

Higgs (0) Higgsino ( 1
2 )

This suggests the construction of a unified supersymmetric SU(5) gauge theory
which contains, in addition to the particles listed in Table 9.3, very massive X
and Y gauge bosons and their supersymmetric, fermionic partners, the X-ino and

29 U. Amaldi, W. de Boer, H. Fürstenau: Phys. Lett. 260B, 447 (1991); P. Longacker, U. Luo, Phys.
Rev. D44, 817 (1991).
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Y-ino. A detailed analysis shows, then, that the X boson should have a mass of
about MX ≈ 3 × 1015 GeV, leading to the prediction of a proton lifetime of

τp ≈ 1033.2±1.2 years (9.169)

in the supersymmetric version of the SU(5) gauge theory. This is well beyond the
experimental limit (9.163). We conclude that, despite the failure of the simplest
version of a unified gauge theory (“minimal” SU(5)), the idea that all electroweak
and strong interactions can be derived from a unified gauge theory remains a very
promising concept. As we have discussed, there are indications that there may ex-
ist new particles, the supersymmetric partners of the known fermions and bosons,
in the mass region around 1 TeV. There is also evidence from precision data that
the Higgs boson, if it exists, must have a mass well below 1 TeV. It is therefore
very likely that experiments at the next generation of particle accelerators (the
CERN Large Hadron Collider and the U.S. Superconducting Super-Collider, usu-
ally known as LHC and SSC) will shed light on the prospects of unifying all forces
of nature, except gravity, into a single gauge group. The search for the Higgs parti-
cle is in this context the most important task for the near future.30,31
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GEORGI, Howard, theoretical physicist, ∗ 6.1.1947 in San Bernardino (California), received
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30 G.G. Ross: Grand Unified Theories, Frontiers in Physics (The Benjamin/Cummings Publ. Corp.,
1984).
31 H.J.W. Müller-Kirsten, A. Wiedemann: Supersymmetry (World Scientific, Singapore, 1987).



Appendix

A.1 Conventions and “Natural” Units

The theory of weak interactions deals with the phenomena of conversion of one type
of elementary particle into another. Such processes are naturally quantum jumps, i.e.
the theory of weak interaction makes sense only as a quantum theory. In addition
the theory must necessarily be formulated in a relativistically invariant way, because
electrons with high energy and, above all, massless neutrinos, which move with the
speed of light, participate in most processes. Hence powers of Planck’s constant �

and of the speed of light c are ubiquitous, rendering the equations considerably more
complicated than they really are. This can be avoided if one uses the so-called natural
units:

� = c = 1 . (A.1)

This means that length and time are measured in the same units (such as Fermi =
fm), as are mass, energy, frequency, etc. At any time one can go over to the standard
(atomic) units by introducing factors of

c = 3 × 1023 fm/s
(A.2)

�c = 197.32 MeV × fm

in the equations.

Example. The Compton wavelength �/mc of the electron in natural units simply reads
1/m. The transformation goes like this:

m−1 → �c(mc2)−1 = 197 MeV × fm (0.511 MeV)−1 = 386 fm , (A.3)

where we have inserted the mass of the electron. Length and reciprocal mass thus
have the same units in the measuring system � = c = 1; 1 fm corresponds to
(197 MeV)−1 ≈ 5 GeV−1, and 1 s corresponds to 3 × 1023 fm or 1.52 × 1021 MeV−1.

Example. The lifetime of a muon is calculated to be

τμ = 192π3 (G2 m5
μ)

−1 (A.4)

with Fermi’s constant G = 1.166 × 10−11 MeV−2. With mμ = 105.66 MeV, τμ be-
comes

τμ = 192π3 (1.166 × 10−11)−2 × (105.66)−5 MeV−1

(A.5)
= 3.3 × 1015 MeV−1 = 2.2 × 10−6 s .

W. Greiner, B. Müller, Gauge Theory of Weak Interactions,
DOI 10.1007/978-3-540-87843-8, © Springer-Verlag Berlin Heidelberg 2009
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The invariant infinitesimal distance of two events in Minkowski space is

ds2 = dt2 − dx2 − dy2 − dz2

= (dx0)2 −
3∑

i=1

(dxi)2 , (A.6)

(where we have put c = 1 !). Besides the contravariant position vector xμ =
(t, x, y, z), the upper index of which runs from 0 to 3, we introduce the covariant
position vector xμ = (t,−x,−y,−z) with a lower index. Both forms are connected
by the metric tensor of Minkowski space,

gμν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ ,

(A.7)

xμ =
3∑

ν=0

gμνx
ν ≡ gμνx

ν . (A.8)

If the last expression above the summation over the index ν, which occurs twice, is
implicitly assumed (Einstein’s summation convention), we can write

ds2 = gμν dxμdxν = dxμdxμ . (A.9)

This abbreviated style, which formally exhibits invariance under Lorentz transforma-
tions (the sum is over all four indices, one pair covariant and the second contravariant)
will be often used.

A.2 The Dirac Equation

The Dirac equation for a free particle with rest mass m and spin 1
2 is

(
iγ μ

∂

∂xμ
− m

)
ψ(x) = 0 , (A.10)

with the Dirac matrices obeying the commutation relations

γ μγ ν + γ νγ μ = 2gμν . (A.11)

The three space-like Dirac matrices are also written in the form

γ i = γ 0αi (or γ = γ 0α) . (A.12)

As a standard representation of the Dirac matrices we use the 4 × 4 matrices

γ 0 =
(

1 0
0 −1

)
, γ i =

(
0 σi

−σi 0

)
, αi =

(
0 σi
σi 0

)
, (A.13)
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where each element is a 2 × 2 matrix. The Pauli matrices σi are represented in the
form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.14)

In addition, the following combinations occur frequently:

γ5 = iγ 0γ 1γ 2γ 3 =
(

0 1
1 0

)
, (A.15)

σμν = i

2
[γ μ, γ ν] , (A.16)

with

σ ij = Σk =
(
σk 0
0 σk

)
, (ijk) = (123) ,

σ 0k = iαk .

One verifies easily

γ μγ5 = −γ5γ
μ . (A.15′)

We denote scalar products of four-vectors with γ matrices by a slash, for example,

γ μpμ = γ 0p0 − γ · p = /p , etc. (A.17)

If we separate a plane-wave factor for particles

ψ(+)
p,s (x) = (2p0V )−1/2u(p, s) exp(−ipμx

μ) (A.18a)

and antiparticles

ψ(−)
p,s (x) = (2p0V )−1/2v(p, s) exp(ipμx

μ) , (A.18b)

the Dirac equation (A.10) yields a matrix equation for the space-independent spinors:

(/p − m)u(p, s) = 0 , (A.19a)

(/p + m)v(p, s) = 0 . (A.19b)

Here s denotes the spin polarizations of the Dirac particle, which can assume the
values ±1/2. Explicitly we have

u(p, s) =
√
p0 + m

⎛

⎝
χs

σ · p

p0 + m
χs

⎞

⎠ , (A.20a)

v(p, s) =
√
p0 + m

( σ · p

p0 + m
χs

χs

)
, (A.20b)

with the two-spinors

χ+1/2 =
(

1
0

)
, χ−1/2 =

(
0
1

)
. (A.21)
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The normalization of the wave functions (A.18) is chosen so that the volume V con-
tains just one particle:

∫

V

d3x ψ
(ε′)†
p′,s′ (x)ψ(ε)

p,s(x) =
{

1 for p′ = p, s′ = s, ε′ = ε

0 otherwise
, (A.22a)

u†(p, s)u(p, s) = v†(p, s)v(p, s) = 2p0 . (A.22b)

The adjoint spinor is defined as

ψ̄(x) = ψ†(x)γ 0 . (A.23)

For the products of two Dirac spinors one has the following useful formulas, where
for clarity we write down the spinor indices explicitly:

uα(p, s)ūβ(p, s) = 1

2
[(/p + m)(1 + γ5/s)]αβ , (A.24a)

vα(p, s)v̄β(p, s) = 1

2
[(/p − m)(1 + γ5/s)]αβ . (A.24b)

Here the four-vector sμ is obtained from the rest frame spin ŝ by a Lorentz transfor-
mation

sμ =
(

p · ŝ

m
, ŝ + p(p · ŝ)

m(p0 + m)

)
, (A.25)

where the spin vector ŝ is given by

ŝ = ±ez for s = ±1 . (A.26)

Summing over the spin directions (A.24) yields
∑

s

uα(p, s)ūβ(p, s) = (/p + m)αβ , (A.27a)

∑

s

vα(p, s)v̄β(p, s) = (/p − m)αβ . (A.27b)

Computations with the Dirac matrices are simplified by a number of rules and identi-
ties concerning certain traces. One useful identity is

/a/b = (a · b) − iσμνaμbν , with (a · b) = aμb
μ . (A.28)

This is the four-dimensional generalization of the relation

(σ · a)(σ · b) = a · b + iσ · (a × b) . (A.29)

The trace of a product of an odd number of Dirac matrices vanishes; in particular,

Tr{γ μ} = 0 . (A.30)

Furthermore, one has the relations

Tr(γ αγ β) = 4gαβ , (A.31)

Tr(γ αγ βγ μγ ν) = 4(gαβgμν − gαμgβν + gανgβμ) . (A.32)



A.3 Feynman Rules 393

For traces containing the matrix γ5, one obtains the following rules:

Tr(γ5) = 0 , (A.33)

Tr(γ5γ
αγ β) = 0 , (A.34)

Tr(γ5γ
αγ βγ μγ ν) = −4iεαβμν , with (A.35)

ε0123 = 1 . (A.36)

A.3 Feynman Rules

The following rules are valid for reactions with two particles in the initial state and

Fig. A.1. Reactions with two
particles in the initial state and
n particles in the final state

n particles in the final state (Fig. A.1). The cross section per unit of the phase-space
volume of the particles in the final state is given by

dσ = (J12ρ2V T )
−1 |Sf i |2 V

d3p′
1

(2π)3
· · ·V d3p′

n

(2π)3
, (A.37)

where for our normalization of the wave functions the incoming current corresponding
to particle 1 takes the form

J12 =
√
(p1 · p2)2 − m2

1m
2
2

p0
1p

0
2V

, (A.38)

while the density of particle 2 is given by

ρ2 = 1/V . (A.39)

In reference frames where the momenta of the incoming particles are parallel (for
example, in the centre-of-mass frame), the current J12 can be expressed in terms of
the velocities of the particles 1 and 2:

J12 = |v1 − v2 |
V

. (A.40)

The matrix element Sf i of the scattering operator in general includes a factor

F1 = (2π)4δ4(p′
1 + · · · + p′

n − p1 − p2) , (A.41)

which results from the space-time integration over the plane waves, and, furthermore,
a factor

F2 = (2p0
1V × 2p0

2V × 2p′0
1 V × · · · × 2p′0

n V )
−1/2 (A.42)

from the normalizations of the wave functions. Separating these factors, we can intro-
duce a reduced matrix element Mf i by defining

Sf i = F1F2 Mf i . (A.43)



394 Appendix

Substituting (2π)4δ4(0) for V T , we then have for the scattering cross section

dσ = |Mf i |2(2π)4δ4(p′
1 + · · · + p′

n − p1 − p2)

4[(p1 · p2)2 − m2
1m

2
2 ]1/2

d3p′
1

(2π)32p′0
1

· · · d3p′
n

(2π)32p′0
n

.

(A.44)

The cross section is invariant under Lorentz transformations.
The Feynman rules concern the calculation of the reduced scattering matrix ele-

ment Mf i . In detail, they depend on the properties of the particles involved, especially
on their masses and spins. A Feynman graph describing a scattering process consists
of three parts: (1) the external lines representing the wave functions of the incoming
and outgoing particles, (2) the internal lines described by the propagators, and (3) the
vertices representing the interactions between the particles.

In the following we quote some important cases of these rules:

(1) External Lines:

spin 0: 1.

spin 1/2: u(p, s) or v(p, s).

spin 1: εμ(p,λ) with ε2 = −1; for m = 0 one further has (ε · p) = 0.

(2) Internal Lines:

spin 0: i�(p) = i(p2 − m2 + iε)−1.

spin 1/2: iS(p) = i(/p − m + iε)−1 = i(/p + m)�(p).

spin 1:

iDμν(p) =
{−i(gμν − pμpν

m2 ) (p2 + iε)−1 for m = 0

−i(gμν − pμpν

p2 )�(p) for m �= 0
.

Fig. A.2.

(3) Vertices:
There are many different kinds of vertex. We give only a few examples, namely
those between a Dirac particle and bosons with spins 0 or 1, where g denotes the
corresponding coupling constant.

spin 0:

{
−ig for scalar bosons

gγ5 for scalar bosons
.

spin 1:

{−igγ μ for vector bosons
−igγ μγ5 for axial vector bosons

.

The rules for the Yang–Mills theory are discussed in Sect. 4.3.

At each vertex the sum of all four-momenta is conserved. One integrates
over the four-momenta of the internal lines that are not determined by these con-
servation laws:

∫
d4p/(2π)4. For each closed fermion ring one obtains an additional

factor −1.
For the external lines one often sums over the possible polarizations. For spin-

1/2 particles one uses formula (A.27), while for particles with spin 1 the following
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relations hold:

m = 0:
∑

λ=±1

εμ(p,λ)εν(p,λ) = −gμν + pμpν

p2
, (A.45a)

m �= 0:
∑

λ=0,±1

εμ(p,λ)εν(p,λ) = −gμν + pμpν

m2
. (A.45b)

If there are several particles of the same kind in the final state, one has to take into
account the proper symmetrization or antisymmetrization of the wave function. With ν
identical particles in the final state one has to divide the cross section by the statistical
factor (ν!).

More details concerning the derivation of these rules and the problems connected
with the renormalization of divergent graphs can be found in the literature.1

A.4 Symmetry Transformations

One classifies the elementary particles according to their quantum numbers, which
are often related to certain symmetry principles. In addition to the quantum numbers
arising from internal symmetries such as isospin, strangeness, lepton number, and so
on, the quantum numbers associated with the symmetries related to space-time play
an important role, in particular, rest mass, spin, and parity.

All transformations of the space-time four-vector

xμ −→ x′μ = aμνx
ν + bμ (A.46)

that leave the Minkowskian line element

ds2 = (dx0)2 − dx2 (A.47)

invariant are called inhomogeneous Lorentz transformations or Poincaré transforma-
tions.2 With each real transformation one associates a 4 × 4 matrix A and a four-
vector b. The invariance of ds2 is guaranteed if

det(A) = ±1 . (A.48)

The Poincaré transformations can be divided into four disconnected classes which are
characterized by the sign of det(A) and of the element a0

0:

Component P
↑

+ P
↑

− P
↓

− P
↓

+
det(A) +1 −1 −1 +1
a0

0 ≥ +1 ≥ +1 ≤ −1 ≤ −1

1 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 2nd ed. (Springer, Berlin, Heidelberg,
1994); J.D. Bjorken, S.D. Drell: Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
2 W. Greiner, J. Rafelski: Theoretische Physik 3A, Spezielle Relativitätstheorie (Harri Deutsch, Thun,
Frankfurt am Main, 1989).
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The transformations with det(A) = +1 are called proper Lorentz transformations,
whereas transformations with a0

0 ≥ 0 are called orthochronous. The particular com-
ponents of the Poincaré group can be obtained from P

↑
+ by discrete symmetry opera-

tions:

P
↑

− by space reflection: x → −x,

P
↓

− by time reflection: x0 → −x0,

P
↓

+ by space-time reflection: (x, x0) → (−x,−x0).

The component P ↑
+ is a group by itself, that is, the product of two elements from P

↑
+

is again an element of P ↑
+ . P ↑

+ is called the restricted Poincaré group.
Within the Poincaré group the transformations with b = 0 form a subgroup, the

(homogeneous) Lorentz group L. Like the Poincaré group it can be divided into the
four components L↑

+, L↑
−, L↓

+, and L↓
−, which are defined in the same way as above.

The transformations with A = 1 also form a subgroup, which is called the group of
translations T . Thus the Poincaré group is the direct product of L and T : P = L × T .

As far as we know today, all laws of physics are covariant under the transformations
of the restricted Poincaré group P ↑

+ . To each such transformation characterized by A
and b there must exist a unitary transformation Û(b,A) which describes the change of
the physical quantum state under the action of a Poincaré transformation. This unitary
transformation can be written as

Û (b,A) = Û (b,1) Û (0,A) ≡ Û (b) Û(A) . (A.49)

Using the ten Hermitian operators P̂μ, M̂μν , we can write the transformations Û (b)
and Û (A) in the form3

Û(b) = exp(ibμP̂μ) , (A.50)

Û (A) = exp

(
i

2
αμνM̂μν

)
, (A.51)

where

αμν = [ln(A)]μν = −αμν , (A.52)

M̂μν = −M̂μν . (A.53)

From the group properties of the inhomogeneous Lorentz transformations the follow-
ing commutation relations for the generators P̂μ and M̂μν result:

[P̂μ, P̂ν] = 0 , (A.54a)

[M̂μν, P̂α] = i(gναP̂μ − gμαP̂ν) , (A.54b)

[M̂μν, M̂αβ ] = i(gμβM̂να + gναM̂μβ − gνβM̂μα − gμαM̂νβ) . (A.54c)

3 Here we consider active transformations, where the bodies are rotated but not the axes of the coor-
dinate systems. Otherwise we would get an additional minus sign in (A.50), (A.51).
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The operator P̂μP̂ μ = P̂ 2 commutes with all generators; thus it is a Casimir operator
of the Poincaré group. Each irreducible representation of the Poincaré group is there-
fore characterized by a fixed eigenvalue m2 of the operator P̂ 2. Since the operators P̂μ
are identified as the operators of the four-momentum, m is the rest mass of the state.
The spin of a state is characterized by the Pauli–Lubanski operator

Ŵα = 1

2
εμναβM̂μνP̂β . (A.55)

The operator ŴαŴα = Ŵ 2 also commutes with all P̂μ and M̂μν , so that it is a second
Casimir operator. Its eigenstates for massive particles have the form m2s(s + 1), with
s = 0, 1

2 ,1, 3
2 , . . . , where s describes the spin of the state. Thus each massive quantum-

mechanical state (m �= 0) is described by the quantum numbers [m,s].
Instead of the operators M̂μν one often uses

Ĵi = 1

2
εiklM̂kl , (A.56)

with (i, k, l) = (1,2,3) and

K̂i = M̂i0 . (A.57)

Ĵi are the angular-momentum operators, whereas the operators K̂i transform to uni-
formly moving frames (“boosts”). The new operators satisfy the following commuta-
tion relations, which can be derived from (A.54):

[Ĵi , P̂k] = iεiklP̂l , [Ĵi , P̂0 ] = 0 , (A.58a)

[K̂i, P̂k] = igikP̂0 , [K̂i , P̂0 ] = −iP̂i , (A.58b)

[Ĵi , K̂k] = iεiklK̂l , [K̂i, K̂k] = −iεikl Ĵl , [Ĵi , Ĵk] = iεikl Ĵl . (A.58c)

Expressed in terms of Ĵi and K̂i , the spin operator (A.55) takes the form

Ŵα = (Ĵ · P̂ , Ĵ P̂ 0 + K̂ × P̂ ) . (A.59)

The operator

Λ̂ = Ŵ 0/|P̂ | = Ĵ · P̂ /|P̂ | (A.60)

is the helicity operator. For particles with P̂ 2 = m2 = 0, Λ commutes with all genera-
tors of the inhomogeneous Lorentz group. In this case the only possible eigenstates of
Λ̂ are λ = ±s, so that the irreducible representations in the case m = 0 are character-
ized by this quantum number.

The operator for a rotation about an angle θ around the axis given by the unit vector
n is given by

Û (θ,n) = exp(−iθn · Ĵ ) . (A.61)

If the rotation is expressed in terms of the three Euler angles θ1, θ2, and θ3, then the
rotation operator reads

Û (θ1, θ2, θ3) = exp(−iθ1Ĵz) exp(−iθ2Ĵy) exp(−iθ3Ĵz) . (A.62)
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A Lorentz transformation which boosts a system from rest to a velocity v is described
by the operator

Û (ξ,n) = exp(iξn · K̂) , (A.63)

where

n = v

|v| , ξ = arctanh |v| . (A.64)

The variable ξ is called the rapidity; in contrast to the velocity it is additive.
The simplest irreducible representations of the Poincaré group belong to spins

s = 0 and s = 1/2. The generators for the transformations of the wave functions in
this case are

s = 0: P̂μ = i∂μ ,

M̂μν = i(xμ∂ν − xν∂μ) ,

Ĵ = −ix × ∇ ,

K̂ = −i

(
x
∂

∂t
+ t∇

)
(A.65)

s = 1/2: P̂μ = i∂μ ,

M̂μν = i(xμ∂ν − xν∂μ) + 1

2
σμν ,

Ĵ = −ix × ∇ + 1

2
σ ,

K̂ = −i

(
x
∂

∂t
+ t∇

)
+ i

2
α . (A.66)
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S coupling, 10
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Scattering
– antineutrino–electron, 85
– electron–nucleon, 207, 237
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– formalism, 97
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Self-coupling, 159
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Singularity, 133
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Slavnov–Taylor identity, 364
Solar model, 280ff
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Sommerfeld constant, 358
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– states, 87
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– vector, 97
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Spinor space, 126

Spontaneous symmetry breaking, 114ff, 121,
153ff
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Standard model, 168ff, 325, 363
– extensions, 384ff
Standard solar model, 280ff
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Storage ring, 158, 177
Strangeness, 208, 209, 215, 231f, 289
– conserving decays, 219
– violating decays, 215
Strong interaction, 2, 205
SU(2) group, 120, 151, 311
SU(3) symmetry, 230
SU(3)×SU(2)×U(1), 311
SU(5) group, 305ff
Subgroup, 313
Summation convention, 390
Supersymmetric gauge theory, 386ff
Symmetry breaking, 335, 344ff, 357

T coupling, 10
T matrix, 102
τ

– decay, 208
– lepton, 19, 74ff, 146, 158
– neutrino, 74
– number, 219
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Temperature, 110
Tensor, 5ff
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’t Hooft propagator, 144
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Time
– dilatation, 38
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– reversal invariance, 267
Top quark, 208, 217
Transition
– amplitude, 100
– current, 26, 82
– operators, 8
– probability, 85, 138
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Translational invariance, 131
Transverse
– momentum, 191
– states, 107
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Tree diagram, 144
Triple
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– gluon vertex, 146
– self-interaction vertex, 144
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– of quarks, 206
Tritium decay, 270
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Truth quark, 208, 217
Two-particle
– decay, 3, 19
– states, 99
two-spinor, 21

U gauge, 144
U(1) group, 151
U(5) group, 307
UA1 detector, 191
Uncertainty relation, 42, 137
Unification scale, 385
Unified gauge theories, 106, 305ff
Unitarity, 103, 231
– bound, 90
– limit, 201
Unitary
– gauge, 117, 175
– group, 306, 311
– natural, 389
– transformation, 98
Universal Fermi interaction, 3, 10
Universality
– e–μ–τ , 75
– of weak interactions, 220
Upsilon particle, 207
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V coupling, 10, 86
V–A coupling, 18, 75, 81, 150, 197, 209
V–A theory, 56ff, 215
Vacuum, 114, 155, 168, 171
– expectation value, 114, 163
– polarization, 104, 108ff, 354
– QCD, 248

– state, 114, 172
Valence quarks, 230
Vector, 5ff
– character, 105
– coupling, 17, 212, 255
– current, 158, 209
Vertex function, 132, 140ff
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– creation mechanisms, 177
– decay, 177ff
– discovery, 190ff
Ward identity, 364
Weak
– hypercharge, 151, 169, 305, 311, 363
– interaction, 1, 217
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– leptonic current, 26
Weinberg angle, 148ff, 157, 188f, 228, 231
Weyl equation, 21
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– Feynman rules, 130, 136
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