
Floating-Point Gröbner Basis Computation

with Ill-conditionedness Estimation�

Tateaki Sasaki1 and Fujio Kako2

1 Institute of Mathematics, University of Tsukuba
Tsukuba-shi, Ibaraki 305-8571, Japan

sasaki@math.tsukuba.ac.jp
2 Department of Comp. Sci., Nara Women’s University

Nara-shi, Nara 630-8506, Japan
kako@ics.nara-wu.ac.jp

Abstract. Computation of Gröbner bases of polynomial systems with co-
efficients of floating-point numbers has been a serious problem in computer
algebra for many years; the computation often becomes very unstable and
people did not know how to remove the instability. Recently, the present
authors clarified the origin of instability and presented a method to re-
move the instability. Unfortunately, the method is very time-consuming
and not practical. In this paper, we first investigate the instability much
more deeply than in the previous paper, then we give a theoretical analy-
sis of the term cancellation which causes loss of accuracy in various cases.
On the basis of this analysis, we propose a practical method for computing
Gröbner bases with coefficients of floating-point numbers. The method uti-
lizes multiple precision floating-point numbers, and it removes the draw-
backs of the previous method almost completely. Furthermore, we present
a practical method of estimating the ill-conditionedness of the input
system.

1 Introduction

Algebraic computation of polynomials with floating-point numbers is a recent hot
theme in computer algebra, and many works have been done on the approximate
GCD (greatest common divisor), on the approximate polynomial factorization,
and so on [15]. However, computation of Gröbner bases with floating-point num-
bers (floating-point Gröbner bases, in short) is just at the beginning of research,
although it is a very important theme in approximate algebraic computation (ap-
proximate algebra). There are two kinds of floating-point Gröbner bases: the first
kind is where the coefficients of input polynomials are exact (algebraic numbers
or real/complex numbers) but we approximate them by floating-point numbers
for some reasons, and the second kind is where the coefficients are inexact hence
we express them by floating-point numbers. This paper deals with the second
kind.
� Work supported in part by Japan Society for the Promotion of Science under Grants

19300001.

D. Kapur (Ed.): ASCM 2007, LNAI 5081, pp. 278–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Floating-Point Gröbner Basis Computation 279

The first kind of floating-point Gröbner bases were studied by Shirayanagi and
Sweedler [11], [12], [13]. The second kind of floating-point Gröbner bases were
studied by Stetter [14], Fortuna, Gianni and Trager [5], Traverso and Zanoni
[18], [17], Weispfenning [19], Kondratyev, Stetter and Winkler [8], Gonzalez-
Vega, Traverso and Zanoni [6], Stetter [16], Bodrato and Zanoni [2], Mourrain
and his coworkers [9], and so on. How to compute floating-point Gröbner bases
stably was, however, an open problem for many years. A breakthrough was
attained recently by [10], in which the authors clarified the origin of instability
of computation and proposed a stable method.

According to [10], there are two origins of instability: one is main-term can-
cellation (for main terms, see the beginning of Subsect. 2.1), and the other is the
appearance of fully erroneous terms (the leading digit is an error). In the com-
putation of Gröbner bases, the main terms of two polynomials sometimes cancel
one another in the subtraction, causing large numerical errors. The main-term
cancellation is often exact, and exact cancellation with floating-point numbers
usually yields a fully erroneous term. If a fully erroneous term appears as a
leading term, subsequent computation will be fully wrong.

In [10], the authors classified the main-term cancellation into two types, can-
cellation due to self-reduction and intrinsic cancellation. Self-reduction is caused
by a polynomial with small or large leading term, just as the elimination by a
small pivot row causes large cancellations in Gaussian elimination. The numerical
errors due to self-reduction are avoidable, as we will explain later. The intrinsic
cancellation is similar to cancellation which occurs in ill-conditioned numerical
matrix; see Example 1 in Sect. 2. We want to know the amounts of intrinsic
cancellations. One reason is that the accuracy of floating-point Gröbner basis is
reduced by the amounts. Another reason is that knowing the amounts seems to
be crucial for computing approximate Gröbner bases; see [10].

In [10], in order to remove the instability of computation due to self-reduction,
the authors proposed to replace each small leading coefficient by an independent
symbol and, in the case of large leading term, multiply a symbol to the terms
other than the leading term. We call this method symbolic coefficient method.
They remove fully erroneous terms by representing numeric coefficients by “ef-
fective floating-point numbers (efloats)”; we explain the efloat in Subsect. 4.2.
The efloats work quite well. However, the symbolic coefficient method has two
serious drawbacks: 1) it is very time-consuming because we must handle polyno-
mials with symbolic coefficients, and 2) it cannot completely remove the errors
due to self-reduction, because even a leading term of relative magnitude 0.3, say,
may cause considerable errors.

In this paper, we propose a new method for avoiding the errors due to self-
reduction. The new method does not introduce any symbol but it employs mul-
tiple precision effective floating-point numbers (big-efloats), hence the method is
much more efficient than the symbolic coefficient method. In the new method,
self-reduction is not avoided but we will show that it does not reduce the ac-
curacy of the Gröbner basis computed. Furthermore, we propose a method to
estimate the amount of intrinsic cancellation.

280 T. Sasaki and F. Kako

2 Instability Due to Self-reduction

First of all, we emphasize that we compute Gröbner bases by successive
eliminations of leading terms. This is crucial in the following arguments.

By F, G, etc., we denote multivariate polynomials with coefficients of floating-
point numbers. The norm of polynomial F is denoted by ‖F‖; we employ the
infinity norm, i.e., the maximum of the absolute values of numerical coefficients
of F . For notions on Gröbner bases, we follow [4]. A power product is a term
with no coefficient. By lt(F), lc(F) and rt(F) we denote the leading term, the
leading coefficient and the reductum, respectively, of F , w.r.t. a term order �:
F = lt(F) + rt(F) with lt(F) � rt(F). By Spol(F, G) and Lred(F, G) we denote
the S-polynomial of F and G and the reduction of leading term of F by G,
respectively. By reduction of F by G, we mean Lred(F, G). Lred(F, G) is often
expressed as F

G−→ F̃ . By F
G−→→ F̃ we denote successive reductions of F by G

so that lt(F̃) is no more reducible by G.
We explain intrinsic cancellation by an example. In order to ease the reader

to check our computation of examples, we construct examples by converting
rational number coefficients into double precision floating-point numbers.

Example 1. Simple example which exhibits intrinsic cancellation.
⎧
⎨

⎩

P1 = 57/56 x2y + 68/67 xz2 − 79/78 xy + 89/88 x
P2 = xyz3 − xy2z + xyz
P3 = 56/57 xy2 − 67/68 yz2 + 78/79 y2 − 88/89 y

⎫
⎬

⎭
(2.1)

We convert P1, P2, P3 into erroneous polynomials by converting their coefficients
into double precision floating-point numbers. Then, we compute a Gröbner ba-
sis w.r.t. the total-degree order with x � y � z, using 30-digit floating-point
numbers. We obtain the following unreduced Gröbner basis (correct figures are
underlined).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1, P2, P3 are unchanged,

P6 = y2z2 − 2.995436947732552644538319700370xy2

− 1.0020782165123748257674951096740 y3

+ 1.9983254691737245140192885621560xy + · · · ,

P7 = xz2 − 1.764316342370426661429391997320e−3yz2

− 9.947232450186805419457332443380e−1xy
+ 1.7679829737261936385647927531480e−3y2 + · · · .

We see that some relative errors have been increased by about 104. ��

2.1 Clones and Self-reduction Caused by Small Leading Terms

We use notation F ≈ G if ‖F−G‖ � ‖G‖ and ‖F‖ = O(‖G‖) if η < ‖F‖/‖G‖ <
1/η, where η is a positive number less than 1 but not much less than 1. (In our
computer program, we set η = 0.2 and specify ‖G‖ � ‖F‖ to be ‖G‖ < 0.2 ‖F‖.)
We call a polynomial F normal if |lc(F)| = O(‖rt(F)‖). We call a term T of F
a main term if ‖T ‖ = O(‖F‖).

Floating-Point Gröbner Basis Computation 281

Definition 1 (clone). Let R be either Spol(F, G), Lred(F, G) or F
G−→→ R. If

R ≈ M rt(G), with M a monomial, then R is called a clone of G and denoted
by clone(G). Let ‖F‖ = ‖G‖ = 1. We call ‖R‖/‖rt(G)‖ likeness of the clone.

Let F1 and F2 be normal polynomials and G be a polynomial with small leading
term, |lc(G)| � ‖G‖. Suppose that F1 and F2 are reduced by G as

F1
G−→→ F̃1, F2

G−→→ F̃2 (F1 	= F̃1, F2 	= F̃2) . (2.2)

Then, so long as |lc(Fi)|/‖Fi‖
 |lc(G)|/‖G‖ (i=1, 2), we usually have

F̃1 ≈M1 rt(G) and F̃2 ≈M2 rt(G) , (2.3)

where M1 and M2 are the monomial multipliers in the last reductions, hence F̃1

and F̃2 are clones of G. We consider Spol(F̃1, F̃2); we do not consider Lred(F̃1, F̃2)
or Lred(F̃2, F̃1), because Spol(F̃1, F̃2) = Lred(F̃1, F̃2) if lt(F̃2) | lt(F̃1) and
Spol(F̃1, F̃2) = −Lred(F̃2, F̃1) if lt(F̃1) | lt(F̃2) . Let Spol(F̃1, F̃2) = M̃1F̃1 −
M̃2F̃2, where M̃1 and M̃2 are monomials. Note that we may have lt(F̃i) �
Mi rt(G) (i ∈ {1, 2}). In order to avoid this case, we assume that

lt(F̃1) ≈ lt(M1 rt(G)) and lt(F̃2) ≈ lt(M2 rt(G)) . (2.4)

Under condition (2.4), we have Spol(F̃1, F̃2) ≈ M̃1M1 rt(G)−M̃2M2 rt(G), hence
we have ‖Spol(F̃1, F̃2)‖ ≈ ‖M̃1M1 rt(G)− M̃2M2 rt(G)‖ � ‖M̃1M1 rt(G)‖. This
means that all the main terms of M̃1M1 rt(G) and M̃2M2 rt(G) nearly cancel
each other; the cancellation is exact if

lt(F̃1) = lt(M1 rt(G)) and lt(F̃2) = lt(M2 rt(G)) . (2.5)

Obviously, the above argument is valid for the case of F̃1 = Spol(F1, G) and/or
F̃2 = Spol(F2, G). The above near cancellation of all the main terms in clones
was called “self-reduction” in [10].

We must be careful in treating binomials with small leading terms. Let F1 and
F2 be normal polynomials as given above, and let the reducer G be a binomial
with small leading term: G = g1T1 + g2T2 with |g1| � |g2|, where T1 and T2

are power products. Then, Lred(F1, G) becomes a polynomial with one large
term, and so is Lred(F2, G). Let F̃i = Lred(Fi, G) ≈ MiT2 (i = 1, 2), where Mi

is a monomial. If lt(F̃i) ≈ MiT2 (i=1, 2) then Spol(F̃1, F̃2) does not cause self-
reduction. Self-reduction occurs only when lt(F̃i) � MiT2 (i=1, 2), lt(F̃1)M2 ≈
lt(F̃2)M1 and |lc(F̃1)|/‖F̃1‖ ≈ |lc(F̃2)|/‖F̃2‖, which is unlikely to occur. We
must notice, however, that G generates a polynomial with one large term. If
the large term is the leading term then self-reduction may occur later, as we
will explain below. Even if the large term is not the leading term, subsequent
reductions may generate a polynomial with large leading term.

2.2 Self-reduction in Three Other Cases

Particularly large leading terms can also cause self-reductions, but the situation
is pretty different. Let F1 and F2 be polynomials with large leading terms, and
G be a normal polynomial:

282 T. Sasaki and F. Kako

|lc(Fi)| � ‖rt(Fi)‖ (i = 1, 2) , |lc(G)| = O(‖rt(G)‖) . (2.6)

Then, we can express Lred(Fi, G) (i=1, 2) as follows:

Lred(Fi, G) = Fi − lc(Fi)/lc(G) · TiG ≈ −lc(Fi)/lc(G) · Ti rt(G) , (2.7)

where T1 and T2 are power products. Therefore, Lred(Fi, G) is a clone of G,
and self-reduction may occur in Spol(Lred(F1, G), Lred(F2, G)). Note that self-
reduction requires two polynomials with large leading terms. Therefore, self-
reduction by polynomials with large leading terms is not frequent. Note further
that the reduction of a polynomial F with a large leading term by a polynomial
G with a small leading term generates a clone of very large likeness: the likeness
is (|lc(F)|/‖rt(F)‖) · (‖G‖/|lc(G)|).

Polynomial F may be reduced by G1, . . . , Gm successively: F
G1−→→ · · · Gm−→→ F̃ .

Here, G1, . . . , Gm are polynomials with small leading terms and the reduction
by each Gj (1 ≤ j ≤ m) generates a clone(Gj). In this case, we call F̃ an m
multiple clone, and represent it as clone(G1, . . . , Gm).

We have a more complicated self-reduction which we call paired self-reduction.
Let normal polynomials F1 and F2 be reduced, respectively, by G1 and G2 which
are polynomials with small leading terms: Fi

Gi−→ F̃i (i=1, 2). There may occur
self-reduction in Spol(F̃1, F̃2), if F1, F2, G1 and G2 satisfy several conditions
which are seldom satisfied. Because of the page limit, we omit the explanation
of paired self-reduction.

Example 2. Simple system causing large errors (an example given in [10]).
⎧
⎨

⎩

P1 = x3/10.0 + 3.0x2y + 1.0y2

P2 = 1.0x2y2 − 3.0xy2 − 1.0xy
P3 = y3/10.0 + 2.0x2

⎫
⎬

⎭

We compute a Gröbner basis w.r.t. the total-degree order with x � y � z, using
double precision floating-point numbers, just as we compute a Gröbner basis
over Q. We show about two-thirds of the steps.

1 : Spol(P3, P2)
P1−→ P1−→ P2−→ P3−→

P1−→ P4 /∗ P4 = clone(P1)
2 : P4 = x2y + 29.8 · · ·xy2 + 3.33 · · ·y3 + 10.0xy + 0.333 · · ·y2

3 : P2
P4−→ P3−→

P1−→
P4−→ P ′

2 /∗ P ′
2 = clone(P1, P4)

4 : P ′
2 = xy2 + 0.111 · · ·y3 + 0.334 · · ·xy − 0.000041 · · ·y2

5 : Spol(P3, P
′
2)

P3−→
P1−→

P4−→
P ′

2−→ P3−→ P5 /∗ self-reduction
6 : P5 = x2 + 7.14 · · ·xy + 0.573 · · ·y2

7 : P4
P5−→ P ′

2−→ P3−→
P5−→ P ′

4 /∗ P ′
4 = clone(P5)

8 : P ′
4 = xy + 0.0844 · · ·y2

9 : P ′
2

P ′
4−→ P3−→

P5−→
P ′

4−→ P ′′
2 /∗ self-reduction

Floating-Point Gröbner Basis Computation 283

Here, the polynomials boxed show clones and reducers which generate clones; the
clones and self-reductions are commented in the right column. The above com-
putation causes a very large cancellation: self-reductions in Steps 5 and 9 cause
cancellations of O(108) and O(102), respectively. Other steps of computation
cause almost no cancellation.

In Step 1, Spol(P3, P2) is a polynomial with large leading term and two reduc-
tions by P1 give a clone of very large likeness, but it is erased by the subsequent
reduction by P2; P3 is a binomial but the reduction by P3 does not generate a
polynomial with a large term, so we do not mind the reduction; the final reduc-
tion by P1 gives a clone, i.e., P4 = clone(P1). In Step 3, the first reduction by
P4 gives a clone but the clone is erased by the subsequent reduction by P3; the
reduction by P1 gives a clone, and the clone is reduced by P4 having a small
leading term, hence P ′

2 is a double clone. In Step 5, reductions by P1 and P4

give a double clone, and the double clone is reduced by another double clone P ′
2,

hence there occurs self-reduction between double clones. ��
We explain why such large cancellations occur in Example 2. P ′

2 in Step 3 is
a double clone generated by successive reductions by P1 and P4, and so is
the clone(P1, P4) obtained in Step 5. Following Theorem 1 in the next sec-
tion, one may think that the amount of cancellation caused by self-reduction
is O((‖P1‖/|lc(P1)|)(‖P4‖/|lc(P4)|)). Actually, we encounter a much larger can-
cellation. The reason for this superficial discrepancy is that, before the re-
duction by P1, the polynomial concerned has been reduced by a binomial P3

with a small leading term. Hence, Lred(Lred(Lred(�, P3), P1), P4) becomes
a polynomial of very large likeness. The analysis in the next section shows
that the actual amount of cancellations occurred is O((‖P1‖/|lc(P1)|)2
(‖P3‖/|lc(P3)|)2). In fact, the symbolic coefficient computation in [10] shows this
symbolically.

3 Analysis of Self-reductions Given in Sect. 2

In [10], we analyzed only the typical self-reduction by single clones. In this sec-
tion, we analyze the self-reductions given in Sect. 2, in particular, self-reduction
by multiple clones.

Following Collins [3], we introduce the concept of associated polynomial. Let
polynomials Pi (i = 1, . . . , n) be expressed as Pi = ci1T1 + · · · + cimTm, where
T1, . . . , Tm are power products, and let M = (cij) be an n ×m matrix, where
n ≤ m. The polynomial associated with M , which we denote by assP(M), is
defined as follows.

assP

⎛

⎜
⎝

c11 · · · c1n · · · c1m

...
. . .

...
. . .

...
cn1 · · · cnn · · · cnm

⎞

⎟
⎠

def=
m−n∑

i=0

∣
∣
∣
∣
∣
∣
∣

c11 · · · c1,n−1 c1,n+i

...
. . .

...
...

cn1 · · · cn,n−1 cn,n+i

∣
∣
∣
∣
∣
∣
∣

Tn+i . (3.1)

284 T. Sasaki and F. Kako

3.1 Analysis of Self-reduction by Double Clones

Let polynomials F and F ′ be expressed as F = f1S1 + f2S2 + · · ·+ fmSm and
F ′ = f ′

1S
′
1 + f ′

2S
′
2 + · · · + f ′

mS′
m, where Si and S′

i (i ≥ 1) are power products
satisfying Si � Si+1, Si = SS′

i for some power product S, and f1f
′
1 	= 0 (some

of fj or f ′
j (j > 1) may be 0). Let polynomials G and G′ be G = g1T1 + g2T2 +

· · · + gnTn and G′ = g′1T
′
1 + g′2T

′
2 + · · · + g′nT ′

n, where Ti and T ′
i (i ≥ 1) are

power products satisfying Si = TTi and S′
i = T ′T ′

i for some power products T
and T ′, and g1g

′
1 	= 0 (some of gj or g′j (j > 1) may be 0). We consider the case

that both F and F ′ are reduced k times by G and then reduced k′ times by G′:

F
G−→ · · · G−→ G′−→ · · · G′−→ F̃ and F ′ G−→ · · · G−→ G′−→ · · · G′−→ F̃ ′, hence F̃ and

F̃ ′ are double clones of G and G′. The next lemma is well known; we can easily
prove it by mathematical inductions on k and k′ (cf. [3]).

Lemma 1 (well known). Let F , G and G′ be defined as above. Suppose F
is reduced k times by G then reduced k′ times by G′ (only the leading terms
are reduced), then the resulting polynomial F̃ can be expressed as (we discard a
numerical multiplier)

F̃ = assP

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 f2 · · · fn fn+1 · · · · · ·
g1 g2 · · · gn

. · · · . . .
g′1 g′2 · · · g′n

. · · · . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.2)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′1 · · · g′n · · ·)-rows are k and
k′, respectively. Here, polynomials F , G and G′ are padded suitably by zero-
coefficient terms so that the elements in each column of the matrix (3.2) corre-
spond to the same term, as in (3.1).

Theorem 1. Let F , F ′, F̃ and F̃ ′ be as above, and assume that lt(F̃)/lc(F̃) =
S lt(F̃ ′)/lc(F̃ ′), with S a power product. Let F̃ and F̃ ′ be expressed as in (3.2) (for
F̃ ′, we must replace the top row by (f ′

1 f ′
2 · · · f ′

n · · ·)). Then, lc(F̃ ′)F̃ − lc(F̃)SF̃ ′

can be factored as

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1 · · · gk · · · gk+k′

. · · · ...
g′1 · · · g′k′

. . .
...
g′1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

× assP

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 f2 · · · fn fn+1 · · · · · ·
f ′
1 f ′

2 · · · f ′
n f ′

n+1 · · · · · ·
g1 g2 · · · gn

. · · · . . .
g′1 g′2 · · · g′n

. · · · . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.3)

where the numbers of (· · · g1 · · · gn · · ·)-rows and (· · · g′1 · · · g′n · · ·)-rows in
the above matrix are k and k′, respectively.

Floating-Point Gröbner Basis Computation 285

Proof . The coefficient of Sk+k′+i term (i ≥ 2) in lc(F̃ ′)F̃ − lc(F̃)SF̃ ′ is
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · ·
...

g′1 · · · g′k′ g′k′+1

. . .
...

...
g′1 g′1+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1 · · · fk · · · fk+k′ fk+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · ·
...

g′1 · · · g′k′ g′k′+i

. . .
...

...
g′1 g′1+i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.4)

−

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1 · · · fk · · · fk+k′ fk+k′+1

g1 · · · gk · · · gk+k′ gk+k′+1

. . . · · ·
...

g′1 · · · g′k′ g′k′+1

. . .
...

...
g′1 g′1+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+i

. . . · · ·
...

g′1 · · · g′k′ g′k′+i

. . .
...

...
g′1 g′1+i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The Sylvester identity allows us to factor the above expression as

⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

g1 · · · gk · · · gk+k′

. . . · · ·
g′1 · · · g′k′

. . .
...

g′1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f1 · · · fk · · · fk+k′ fk+k′+1 fk+k′+i

f ′
1 · · · f ′

k · · · f ′
k+k′ f ′

k+k′+1 f ′
k+k′+i

g1 · · · gk · · · gk+k′ gk+k′+1 gk+k′+i

. . . · · ·
...

...
g′1 · · · g′k′ g′k′+1 g′k′+i

. . .
...

...
...

g′1 g′1+1 g′1+i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.5)

This proves the theorem. ��

Remark 1. Consider the case that F is reduced k1 times by G then reduced
k′
1 times by G′ and F ′ is reduced k2 times by G then reduced k′

2 times by G′.
If k1 > k2, for example, then we put k = k2 and treat the result of k1−k2

reductions of F as a new F . If k′
1 	= k′

2 then F̃ and F̃ ′ are not double clones but
we must treat them as single clones of G′. ��

Remark 2 . Theorem 1 can be generalized easily to the case of multiple clones:

F
G1−→ · · · G1−→ · · · Gj−→ · · · Gj−→ F̃ and F ′ G1−→ · · · G1−→ · · · Gj−→ · · · Gj−→ F̃ ′, where

F̃ = clone(G1, . . . , Gj) and F̃ ′ = clone(G1, . . . , Gj). ��
The above theorem is valid for any G and G′, regardless of the magnitudes of
leading terms of G and G′. The theorem tells us that term cancellations occur
frequently: all the terms that are not proportional to gk

1g′1
k′

cancel one another.
This cancellation does not cause large errors usually. If |lc(G)| � ‖G‖ and/or
|lc(G′)| � ‖G′‖, however, the term cancellation is the main-term cancellation
and it causes large errors. Below, we order-estimate the amount of term cancel-
lation occurring in lc(F̃ ′)F̃ − lc(F̃)SF̃ ′ in a simple case.

286 T. Sasaki and F. Kako

3.2 Estimation of Amount of Main-Term Cancellation

By D̃1, D̃
′
1, D̃i and D̃′

i, we denote the determinants representing lc(F̃), lc(F̃ ′),
the coefficient of Sk+k′+i term of F̃ , and the coefficient of Sk+k′+i term of SF̃ ′,
respectively, hence the first expression in the proof of Theorem 1 is D̃′

1D̃i−D̃1D̃
′
i.

Furthermore, by D̃1i, we denote the determinant of order k+k′+2 in the r.h.s. of
(3.5). The magnitudes of D̃1 etc. change complicatedly as the situation changes,
so we assume that the coefficients of F and F ′ are as follows.

f1 = f ′
1 = 1, fi = 0 or O(1), f ′

i = 0 or O(1) (i ≥ 2). (3.6)

Corollary 1. Let the coefficients of F and F ′ be as in (3.6). Let reducers G and
G′ be polynomials with coefficients such that

|g1| � 1, g2 = · · · = gl−1 = 0, |gl | = O(1), |gl+i | = O(1) or 0,

|g′1| � 1, g′2 = · · · = g′l′−1 = 0, |g′l′ | = O(1), |g′l′+i| = O(1) or 0.
(3.7)

Claim 1: when l = l′ = 2 (hence g2 = O(1) and g′2 = O(1)), there occurs cancel-
lation of amount O((1/g1)k(1/g′1)

k′
) in the computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

Claim 2: when l ≥ 3 and/or l′ ≥ 3 (hence g2 = 0 and/or g′2 = 0), let |D̃1| =
O((g1)κ1(g′1)

κ′
1), |D̃i| = O((g1)κi(g′1)

κ′
i) and |D̃1i| = O((g1)κ̃ (g′1)

κ̃′
), then there

occurs cancellation of amount O((1/g1)k−κ1−κi+κ̃(1/g′1)
k′−κ′

1−κ′
i+κ̃′

) in the
computation of lc(F̃ ′)F̃ − lc(F̃)SF̃ ′.

Proof. When l = l′ = 2, consider D̃1 for example, which is the determinant
constructed from the leftmost k+k′+1 columns of matrix in (3.2). The product
of diagonal elements gives the main term of D̃1, because other terms contain
at least one g1 or g′1. Similarly, if we consider those D̃1i for which f ′

k+k′+i 	= 0,
we see that D̃1i = O(1). Then, determinants in (3.5) lead us to Claim 1. The
determinants also lead us to Claim 2, because the main terms of D̃′

1D̃ and D̃1D̃
′
i

must be of the same order. ��
Determination of κ̃1, κ̃

′
1, κ̃i, κ̃

′
i, κ̃ and κ̃′ in the general case of l ≥ 3 and/or l′ ≥ 3

is messy. Because of the page limit, we omit the determination.
Theorem 1 allows us to analyze self-reduction caused by polynomials with

large leading terms and paired self-reduction, too. For the case of large leading
terms, we put F1 = F , F2 = F ′ and G′ = G, and assume that the leading terms
of F and F ′ are large. Then, estimating the magnitudes of determinants in (3.5),
we obtain the following corollary which can be easily generalized to the case that
F1 and/or F2 contain several large terms at their heads.

Corollary 2. Let F and F ′ be polynomials with large leading terms and G be
a normal polynomial. Put F̃ = Lred(F, G) and F̃ ′ = Lred(F ′, G). Then, in the
computation of Spol(F̃1, F̃2), there occurs main-term cancellation of magnitude
min(|lc(F)|/‖rt(F)‖, |lc(F ′)|/‖rt(F ′)‖).

Floating-Point Gröbner Basis Computation 287

4 New Method of Stabilization

We consider that the coefficients of input system of polynomials are inexact.
If the largest relative error in the coefficients is ε then we say the accuracy of
the system is ε. Below, by εm we denote the machine epsilon (= the difference
between 1 and the smallest representable number greater than 1) of double pre-
cision floating-point numbers (double-floats). If the coefficients of input system
are given by double-floats, we have ε ≥ εm.

4.1 Supporting Theorem

We will compute the Gröbner basis by converting each input coefficient into a
multiple precision floating-point number (big-float). We assume that each big-
float is a p-digit decimal number satisfying 10−p � ε, and put εM = 10−p.

Theorem 2. As far as self-reductions treated in Sect. 3 are concerned, the main-
term cancellation due to self-reduction ruins only tail figures of the coefficients
concerned.

Proof. We note that, although the big-floats in our case contain relative er-
rors which are much larger than εM, the errors are introduced initially and the
coefficients are treated as definite numbers of the full precision throughout the
computation. On the other hand, Theorem 1 implies that, in the self-reductions
considered, the coefficients of main terms cancel exactly within the precision.
Hence the self-reductions ruin only tail figures of the coefficients. ��

Remark 3. One may think that all the cancellation errors can be avoided if
we increase the precision. This is, however, wrong as Example 1 shows. In the
self-reductions we have considered, the main terms cancel exactly, which is the
key of Theorem 2. ��

4.2 Effective Floating-Point Numbers

In actual computation, we must remove the fully erroneous terms and estimate
the amount of accuracy loss. Thus, we utilize multiple precision effective floating-
point numbers (big-efloats), instead of big-floats.

We explain the efloats briefly. The efloat was proposed by the present authors
in 1997 [7] so as to detect the cancellation errors automatically. The efloat is a
pair of two floating-point numbers and expressed as #E[f, e]; we call f and e
value-part and error-part, respectively. The arithmetic of efloats is as follows.

#E[fa, ea] + #E[fb, eb] =⇒ #E[fa + fb, max{ea, eb}],
#E[fa, ea]−#E[fb, eb] =⇒ #E[fa − fb, max{ea, eb}],
#E[fa, ea]×#E[fb, eb] =⇒ #E[fa × fb, max{|fbea|, |faeb|}],
#E[fa, ea]÷#E[fb, eb] =⇒ #E[fa ÷ fb, max{|ea/fb|, |faeb/f2

b |}].
(4.1)

288 T. Sasaki and F. Kako

Thus, the value-part of efloat is nothing but the conventional floating-point value.
On the other hand, the error-part of efloat represents the cancellation error
approximately; the rounding errors are neglected in determining the error-part.
Similarly, we neglect the rounding errors throughout the following arguments.

The big-efloat is expressed as #BE[f, e], where f is a big-float, and it is
processed by the same arithmetic as efloat. We set the error-part e to 10−p+2 |f |.

We explain how the fully erroneous terms are removed (we explain only for
the case of efloats). We set the error-part of each efloat coefficient to 5ε|f | (in
the examples, we set to about 5εm|f |). In our algebra system named GAL, the
efloat #E[f, e] with |f | < e is automatically set to 0 (not #E[0, 0]). Therefore,
GAL removes fully erroneous terms unless the rounding errors accumulate to
5εm or more, which is extremely rare in practice.

Example 3. Check Theorem 2 by the system in Example 2.

We convert the coefficients into double-floats, and compute a Gröbner basis with
big-efloats of 30 decimal precision. For reference, we show the initial polynomials;
if all the figures from 17th to the last decimal places are 0, our system outputs
only one 0. Note that the rounding errors appear at the 17th decimal places.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P1 =+ #BE[3.33333333333333310e−2, 2.0e−28] x3 + x2y
+ #BE[3.33333333333333310e−1, 3.2e−27] y2,

P2 =+ #BE[3.33333333333333310e−1, 3.2e−27] x2y2 − xy2,
− #BE[3.33333333333333310e−1, 3.2e−27] xy

P3 =+ #BE[5.0000000000000000e−2, 3.9e−28] y3 + x2.

The Spol(P3, P1), for example, is reduced and normalized as follows; we see that
17th to 30th figures of xy3 term are contaminated by rounding errors.

x4 + #BE[1.5000000000000001665334536937720e−1, 3.9e−28] xy3

+ #BE[5.0000000000000000e−2, 2.0e−28] xy2.

We obtain the following unreduced Gröbner base.
⎧
⎪⎪⎨

⎪⎪⎩

P ′′
2 =y2,

P ′
4 =xy + #BE[8.440225504521958676289311654600e−2, 3.3e−21] y2,

P5 =x2 + #BE[7.148496897462707006365493318940, 4.2e−19] xy
+ #BE[5.737161395246457225742044589410e−1, 2.6e−20] y2.

Here, underlines show correct figures. We see that, although large cancellations
have occurred, the accuracy loss in the Gröbner basis is only slight. ��

4.3 Description of New Method

Now, we describe our new method which is based on Theorem 2 crucially. The
method is composed of the following three devices.

Device 1: Convert the numeric coefficients of input polynomials into big-
efloats of a suitably determined initial precision, say p = 30, and compute the
Gröbner basis by using only the leading-term reduction and the S-polynomial
construction.

Floating-Point Gröbner Basis Computation 289

Device 2: Monitor the error-parts of big-efloat coefficients during the compu-
tation, and if the amount of the largest cancellation accumulated, let it be
C, becomes large satisfying εMC > 10−5ε, say, then increase the precision
of big-efloats and retry the computation.

Device 3: Monitor the clone generation of likeness greater than 5, say, and
self-reduction by such clones. We explain the device for single reduction; for
multiple reductions, see Sect. 5. Suppose that self-reduction occurs in the
subtraction F̃1−F̃2 in computing Spol(Lred(F1, G), Lred(F2, G)) etc. Here,
F̃1 = clone(G) and F̃2 = clone(G), hence F̃i = −ciT rt(G) + (small-terms)
(i = 1, 2), where c1 and c2 are numbers such that c1 ≈ c2 and T is a
power product. Then, we “subtract” −rt(G) from both F̃1 and F̃2 as F̃ ′

1 :=
F̃1+c T rt(G) and F̃ ′

2 := F̃2+c T rt(G), where c will be determined in Subsect.
5.2 (c ≈ c1 ≈ c2). We call this operation reducer subtraction. Regard the
possible cancellation occurring in F̃ ′

1 − F̃ ′
2 as the intrinsic cancellation.

The number 5 in Device 3 is determined from the following reason: Example
2 shows that we must monitor clones of likeness 10 or more, and it is impractical
to monitor clones of likeness 2 or less. With Devices 1 and 2, we can protect
the accuracy of the system from self-reduction completely; the number 5 for
specifying the clone in Device 3 is irrelevant to this protection. Device 3 is for
estimating the intrinsic cancellation; we explain the details in Sect. 5.

As for the intrinsic cancellation, authors of [2] and [10] defined the cancellation
in terms of syzygies. The computation of syzygies is quite costly in practice. On
the other hand, the reducer subtraction is not a costly operation (see Sect. 5 for
implementation), hence our method is practical.

5 Implementation Details

Although our ideas given above are simple, actual implementation of the Device
3 requires various detailed considerations.

5.1 Representation of Clones

In our current program, each input polynomial or S-polynomial generated is
numbered uniquely, say Fi (i ∈ IN), and the numbering is not changed if the
polynomial is reduced; if Fi is reduced to 0 then Fi is removed from the memory.
Suppose a polynomial Fi is reduced by Gj to become a clone of Gj . It is not
enough to save the index j to specify the clone; we must save the current Gj

because Gj itself might change later during the computation. Let the reduction
be F̃i := Fi − cjTjGj , where cj ∈ C and Tj is a power product. The multiplier
cj changes from the reduction to reduction, hence we must save the multipliers,
too. Therefore, we represent clones generated from Gj as follows.

1. Normalize Gj so that its leading coefficient is 1.
2. Represent each clone by a triplet 〈j, cj, TjGj〉 which we call clone-triplet.

Construct a clone-triplet each time Fi is reduced.

290 T. Sasaki and F. Kako

3. Save the clone-triplets for Fi into a list and attach the list to Fi. For example,

if Fi
Gj−→Gj′−→ · · ·, then the list is (· · · 〈j′, c′j′ , T ′

j′Gj′〉 〈j, cj , TjGj〉).
We normalize not only clones but also each polynomial appearing in the

computation so that its leading coefficient is 1, which makes the program-
ming easy. The normalization is made after each reduction (and S-polynomial
generation): F̃i := Fi − cjTjGj −→ F̃i := F̃i/lc(F̃i). Just after this normal-
ization, all the multipliers in the clone-triplet list for Fi must be changed as
〈j, cj , TjGj〉 → 〈j, cj/lc(F̃i), TjGj〉 (j=1, 2, . . .).

5.2 Reducer Subtraction

The reducer subtraction is performed as follows. Let F̃i = Fi − ciTG (i = 1, 2),
and suppose that self-reduction occurs in F̃1− F̃2, as in Device 3 (self-reduction
occurs actually in Spol(F̃1, F̃2) or Lred(F̃1, F̃2), but we simplified the situation
by multiplying suitable power products to F̃1 and F̃2). By computing c as

c =
{

c1 if |c1| ≤ |c2|,
c2 if |c1| > |c2|, (5.1)

we subtract −rt(G) from F̃i (i = 1, 2) as F̃i := F̃i + cT rt(G).
The above subtraction is for the reducer used at the last reduction (the left-

most reducer in the clone-triplet list of Fi). For other reducers, the subtraction
is made as follows; we explain only for the case that equalities in (2.5) hold.

Suppose F1 is reduced by G1, . . . , Gj as F1
G1−→ · · · Gj−→ F̃1 and we have

F̃1 := (· · · (F1 − c11T1G1) · · ·)− c1jTjGj .

In this case, the leading terms of rt(G1) may be eliminated and F̃1 may contain
only rt(· · · rt(G1) · · ·). Therefore, we scan terms of F̃1 and rt(G1) from highest
to lowest order, and determine which rt(· · · rt(G1) · · ·) is contained in F̃1. Then,
we subtract a suitable multiple of that rt(· · · rt(G1) · · ·) from F̃1 (and F̃2).

5.3 Estimating the Amount of Intrinsic Cancellation

The actual term cancellation is the sum of the intrinsic cancellations and can-
cellations due to self-reductions. Therefore, if we remove all the cancellations
due to self-reductions, then the rest must be the sum of intrinsic cancellations.
It should be mentioned that Device 3 will fail to remove small amounts of can-
cellations due to small self-reductions, because we neglect the clones of likeness
< 5. Therefore, the method explained in Device 3 will over-estimate the amount
of intrinsic cancellation.

To illustrate our technique we show the estimation of the intrinsic cancellation
in Example 2, in particular at the reduction step Spol(P3, P

′
2)

P3−→ P1−→ P4−→ · · ·,
where self-reduction by double clones occurs and we encounter main-term can-
cellation of O(1010).

Floating-Point Gröbner Basis Computation 291

Example 4. Intrinsic cancellation in Step 5 of Example 2.

Put Q1 = Lred(Lred(Lred(Spol(P3, P
′
2), P3), P1), P4) and let Lred(Q1, P

′
2) =

Q1 − Q2, where P ′
2 = clone(P1, P4). Below, underlines show figures which are

same in both Q1 and Q2 (or Q′
1 and Q′

2, or Q′′
1 and Q′′

2).

Q1 =+ #BE[1.1152418136789309558453405171e−1, 8.6e−28] y3

+ #BE[3.3457253711642806415804801040e−1, 3.7e−27] xy
− #BE[4.1613506289664168782840449950e−5, 1.1e−28] y2,

Q2 =+ #BE[1.1152418132002535431698179200e−1, 8.6e−28] y3

+ #BE[3.3457254396007606295094537600e−1, 3.7e−27] xy
− #BE[4.1612957039749613089747630908e−5, 1.1e−28] y2.

A multiple of −rt(P4) is subtracted from Q1 and Q2; Q′
1 ← Q1 and Q′

2 ← Q2:

Q′
1 =+ #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3

− #BE[1.1194031410170599640717774130e−2, 1.1e−28] y2,

Q′
2 =+ #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

+ #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy
+ #BE[1.1194030860920685085024681310e−2,− 1.1e−28] y2.

A multiple of −rt(P1) is subtracted from Q′
1 and Q′

2; Q′′
1 ← Q′

1 and Q′′
2 ← Q′

2:

Q′′
1 =+ #BE[2.3290837408651847149108379154e−9, 8.6e−28] y3,

Q′′
2 =+ #BE[2.2812159995976324552013022754e−9, 8.6e−28] y3

+ #BE[6.8436479987928973656039068264e−9, 3.7e−27] xy
+ #BE[5.4924991455569309281904242148e−10, 1.1e−28] y2.

We see O(102) cancellation occurs in Q′′
1−Q′′

2 which we regard as the intrinsic
cancellation. ��

6 Concluding Remarks

For the page limit of LNCS, several parts were omitted in this paper. See [1] for
the omitted parts.

We showed that, restricting the reductions to leading-term reductions, we are
able to describe local steps of Gröbner basis computation by matrices and ana-
lyze self-reduction and intrinsic cancellation in terms of determinants (Theorem
1). Furthermore, we showed that the main-term cancellation due to self-reduction
causes no problem if we utilize big-efloats, as far as the self-reductions investi-
gated in Sect. 2 are concerned (Theorem 2). We are now trying to prove that
any self-reduction causes no problem.

Our analysis suggests us that the cancellation errors will be decreased largely
if self-reduction is avoided as far as possible. We are now developing a program
package based on this suggestion.

Finally, the authors acknowledge anonymous referees for valuable comments.

292 T. Sasaki and F. Kako

References

1. Sasaki, T., Kako, F.: Floating-point Gröber Basis Computation with Ill-
conditionedness Estimation. Technical Report of Univ. of Tsukuba, in (December
2007), http://www.math.tsukuba.ac.jp/∼sasaki/papers/ASCM2007

2. Bodrato, M., Zanoni, A.: Intervals, syzygies, numerical Gröbner bases: a mixed
study. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS,
vol. 4194, pp. 64–76. Springer, Heidelberg (2006)

3. Collins, J.E.: Subresultant and reduced polynomial remainder sequence. J.
ACM 14, 128–142 (1967)

4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, New
York (1997)

5. Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. J. Pure
Appl. Algebra 164, 153–164 (2001)

6. Gonzalez-Vega, L., Traverso, C., Zanoni, A.: Hilbert stratification and parametric
Gröber bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005.
LNCS, vol. 3718, pp. 220–235. Springer, Heidelberg (2005)

7. Kako, F., Sasaki, T.: Proposal of “effective” floating-point number. Preprint of
Univ. Tsukuba (May 1997) (unpublished)

8. Kondratyev, A., Stetter, H.J., Winkler, S.: Numerical computation of Gröbner
bases. In: Proceedings of CASC 2004 (Computer Algebra in Scientific Computing),
St. Petersburg, Russia, pp. 295–306 (2004)

9. Mourrain, B.: Pythagore’s dilemma, symbolic-numeric computation, and the bor-
der basis method. In: Symbolic-Numeric Computations (Trends in Mathematics),
pp. 223–243. Birkhäuser Verlag, Basel (2007)

10. Sasaki, T., Kako, F.: Computing floating-point Gröbner base stably. In: Proceed-
ings of SNC 2007 (Symbolic Numeric Computation), London, Canada, pp. 180–189
(2007)

11. Shirayanagi, K.: An algorithm to compute floating-point Gröbner bases. In:
Mathematical Computation with Maple V. Ideas and Applications, pp. 95–106.
Birkhäuser, Basel (1993)

12. Shirayanagi, K.: Floating point Gröbner bases. Mathematics and Computers in
Simulation 42, 509–528 (1996)

13. Shirayanagi, K., Sweedler, M.: Remarks on automatic algorithm stabilization. J.
Symb. Comput. 26, 761–765 (1998)

14. Stetter, H.J.: Stabilization of polynomial systems solving with Gröbner bases. In:
Proceedings of ISSAC 1997 (Intern’l Symposium on Symbolic and Algebraic Com-
putation), pp. 117–124. ACM Press, New York (1997)

15. Stetter, H.J.: Numerical Polynomial Algebra. SIAM Publ., Philadelphia (2004)
16. Stetter, H.J.: Approximate Gröbner bases – an impossible concept? In: Proceedings

of SNC 2005 (Symbolic-Numeric Computation), Xi’an, China, pp. 235–236 (2005)
17. Traverso, C.: Syzygies, and the stabilization of numerical Buchberger algorithm.

In: Proceedings of LMCS 2002 (Logic, Mathematics and Computer Science), RISC-
Linz, Austria, pp. 244–255 (2002)

18. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Gröbner basis
computation. In: Proceedings of ISSAC 2002 (Intern’l Symposium on Symbolic
and Algebraic Computation), pp. 262–269. ACM Press, New York (2002)

19. Weispfenning, V.: Gröbner bases for inexact input data. In: Proceedings of CASC
2003 (Computer Algebra in Scientific Computing), Passau, Germany, pp. 403–411
(2003)

http://www.math.tsukuba.ac.jp/~sasaki/papers/ASCM2007

	Floating-Point Gr¨obner Basis Computation with Ill-conditionedness Estimation
	Introduction
	Instability Due to Self-reduction
	Clones and Self-reduction Caused by Small Leading Terms
	Self-reduction in Three Other Cases

	Analysis of Self-reductions Given in Sect. 2
	Analysis of Self-reduction by Double Clones
	Estimation of Amount of Main-Term Cancellation

	New Method of Stabilization
	Supporting Theorem
	Effective Floating-Point Numbers
	Description of New Method

	Implementation Details
	Representation of Clones
	Reducer Subtraction
	Estimating the Amount of Intrinsic Cancellation

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

