

Lecture Notes in Artificial Intelligence 5244
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Ralph Bergmann Gabriela Lindemann
Stefan Kirn Michal Pěchouček (Eds.)

Multiagent
System Technologies

6th German Conference, MATES 2008
Kaiserslautern, Germany, September 23-26, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Ralph Bergmann
University of Trier
Department of Business Information Systems II
Trier, Germany
E-mail: bergmann@uni-trier.de

Gabriela Lindemann
Humboldt-University Berlin, Institute for Computer Science
Berlin, Germany
E-mail: lindeman@informatik.hu-berlin.de

Stefan Kirn
University of Hohenheim, Stuttgart, Germany
E-mail: wi2office@uni-hohenheim.de

Michal Pěchouček
Czech Technical University, Department of Cybernetics
Prague, Czech Republic
E-mail: pechouc@labe.felk.cvut.cz

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.11, I.2, C.2.4, D.2.12, D.1.3, J.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-87804-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87804-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12530519 06/3180 5 4 3 2 1 0

Preface

For the sixth time, the German special interest group on Distributed Artificial
Intelligence in cooperation with the Steering Committee of MATES organized
the German Conference on Multiagent System Technologies – MATES 2008.
This conference, which took place during September 23–26, 2008 in Kaiserslaut-
ern, followed a series of successful predecessor conferences in Erfurt (2003, 2004,
and 2006), Koblenz (2005), and Leipzig (2007). MATES 2008 was co-located
with the 31st German Conference on Artificial Intelligence (KI 2008) and was
hosted by the University of Kaiserslautern and the German Research Center for
Artificial Intelligence (DFKI).

As in recent years, MATES 2008 provided a distinguished, lively, and in-
terdisciplinary forum for researchers, users, and developers of agent technology
to present and discuss the latest advances of research and development in the
area of autonomous agents and multiagent systems. Accordingly, the topics of
MATES 2008 covered the whole range: from the theory to applications of agent
and multiagent technology. In all, 35 papers were submitted from authors from
11 countries. The accepted 16 full papers included in this proceedings volume
and presented as talks at the conference were chosen based on a thorough and
highly selective review process. Each paper was reviewed and discussed by at
least three Program Committee members and revised according to their com-
ments. We believe that the papers of this volume are a representative snapshot
of current research and contribute to both theoretical and applied aspects of
autonomous agents and multiagent systems.

The conference program also included two invited talks by Sascha Ossowski
(University Rey Juan Carlos, Madrid, Spain) and Michael Wooldridge (Univer-
sity of Liverpool, UK). In his talk, Sascha Ossowski examined different stances
on coordination and outlined various research issues related to coordination in
multiagent systems. Michael Wooldridge’s talk put a focus on knowledge rep-
resentation and reasoning related to the specification and verification of social
choice mechanisms and coordination mechanisms such as social laws.

Additionally, MATES 2008 also provided a doctoral mentoring program, ded-
icated to PhD students at advanced stages of their research. This program gave
students an opportunity to interact closely with established researchers in their
fields, to receive feedback on their work, and to get advice on managing their
careers.

Particular thanks goes to the Program Committee and additional reviewers
for their efforts and hard work in the reviewing and selection process. We thank
all the authors who submitted papers to the conference, making this program
successful. We express our special thanks to the two invited speakers Sascha
Ossowski and Michael Wooldridge. Finally, we like to thank the organization

VI Preface

team of KI 2008 for providing valuable support and for all the effort involved in
the local organization of MATES.

This volume was produced using the EasyChair system1. We would like to
express our gratitude to its author Andrei Voronkov. Finally, we thank Springer
for their continuing support in publishing this series of conference proceedings.

July 2008 Ralph Bergmann
Gabriela Lindemann

Stefan Kirn
Michal Pěchouček

1 http://www.easychair.org

Organization

General Co-chairs

Stefan Kirn Universität Hohenheim, Germany
Michal Pěchouček Czech Technical University, Czech Republic

Program Co-chairs

Ralph Bergmann Universität Trier, Germany
Gabriela Lindemann Humboldt Universität zu Berlin, Germany

Steering Committee

Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Stefan Kirn Universität Hohenheim, Germany
Matthias Klusch DFKI, Germany
Jörg P. Müller TU Clausthal, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Gerhard Weiss SCCH Hagenberg, Austria

Program Committee

Klaus-Dieter Althoff Universität Hildesheim, Germany
Bernhard Bauer Universität Augsburg, Germany
Federico Bergenti Università degli Studi di Parma, Italy
Michael Berger Siemens AG, Germany
Ralph Bergmann Universität Trier, Germany
Lars Braubach Universität Hamburg , Germany
Gerhard Brewka Universität Leipzig, Germany
Hans-Dieter Burkhard Humboldt-Universität zu Berlin, Germany
Monique Calisti Whitestein Technologies, Switzerland
Mehdi Dastani Universiteit Utrecht, The Netherlands
Jörg Denzinger University of Calgary, Canada
Jürgen Dix Technische Universität Clausthal, Germany
Torsten Eymann Universität Bayreuth, Germany
Jean-Pierre George Université Paul Sabatier, France
Paolo Giorgini Università degli Studi di Trento, Italy
Heikki Helin TeliaSonera, Finland
Stefan Kirn Universität Hohenheim, Germany
Matthias Klusch DFKI, Germany

VIII Organization

Franziska Klügl Universität Würzburg, Germany
Ryszard Kowalczyk Swinburne University of Technology, Australia
Daniel Kudenko University of York, UK
Winfried Lamersdorf Universität Hamburg, Germany
Jürgen Lind iteratec GmbH, Germany
Gabriela Lindemann Humboldt-Universität zu Berlin, Germany
Stefano Lodi Università di Bologna, Italy
Beatriz Lopez Universitat de Girona, Spain
Mirjam Minor Universität Trier, Germany
Heinz-Jürgen Müller Berufsakademie Mannheim , Germany
Jörg P. Müller Technische Universität Clausthal, Germany
Volker Nissen Technische Universität Ilmenau, Germany
Andrea Omicini Università di Bologna, Italy
Michal Pěchouček Czech Technical University, Prague
Wolfgang Renz HAW Hamburg, Germany
Abdel Badeh Salem Ain Shams University, Egypt
Von-Wun Soo National Tsing Hua University, Taiwan
Steffen Staab Universität Koblenz-Landau, Germany
Ingo Timm Universität Frankfurt, Germany
Robert Tolksdorf Freie Universität Berlin, Germany
Adelinde Uhrmacher Universität Rostock, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Wiebe Van der Hoek University of Liverpool, UK
Laszlo Zsolt Varga MTA SZTAKI, Hungary
Danny Weyns Katholieke Universiteit Leuven, The Netherlands
Cees Witteveen TU Delft, The Netherlands
Georg Weichhart Profactor, Austria

Additional Reviewers

Sameh Abdel Naby Dirk Bade Tina Balke
Tristan Behrens Ralf Berger Lars Braubach
Didac Busquets Thomas Hubauer Stefan König
Andreas Lattner Christoph Niemann Peter Novak
Alexander Pokahr Meike Reichle Christoph Ringelstein
Thorsten Schoeler Fernando Silva Parreiras Sergej Sizov
Danny Weyns Sonja Zaplata

Table of Contents

Invited Talks

Logic for Automated Mechanism Design and Analysis 1
Michael Wooldridge

Coordination in Multi-Agent Systems: Towards a Technology of
Agreement . 2

Sascha Ossowski

Research Papers

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent
Systems . 13

Natalia Akchurina

How to Program Organizations and Roles in the JADE Framework 25
Matteo Baldoni, Guido Boella, Valerio Genovese,
Roberto Grenna, and Leendert van der Torre

Agent Models for Concurrent Software Systems . 37
Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt,
Christine Reese, and Matthias Wester-Ebbinghaus

Filtering Algorithm for Agent-Based Incident Communication Support
in Mobile Human Surveillance . 49

Duco N. Ferro and Catholijn M. Jonker

Joint Equilibrium Policy Search for Multi-Agent Scheduling
Problems . 61

Thomas Gabel and Martin Riedmiller

Making Allocations Collectively: Iterative Group Decision Making
under Uncertainty . 73

Christian Guttmann

Compiling GOAL Agent Programs into Jazzyk Behavioural State
Machines . 86

Koen Hindriks and Peter Novák

Knowledge and Strategic Ability for Model Checking: A Refined
Approach . 99

Wojciech Jamroga

Agent Learning Instead of Behavior Implementation for
Simulations – A Case Study Using Classifier Systems 111

Franziska Klügl, Reinhard Hatko, and Martin V. Butz

X Table of Contents

Providing Integrated Development Environments for Multi-Agent
Systems . 123

Simon Lynch and Keerthi Rajendran

Implementing Organisations in JADE . 135
Cristián Madrigal-Mora, Esteban León-Soto, and Klaus Fischer

A Fair Mechanism for Recurrent Multi-unit Auctions 147
Javier Murillo, Vı́ctor Muñoz, Beatriz López, and Dı́dac Busquets

Multi-Agent Reinforcement Learning for Intrusion Detection: A Case
Study and Evaluation . 159

Arturo Servin and Daniel Kudenko

Teaching Distributed Artificial Intelligence with RoboRally 171
Ingo J. Timm, Tjorben Bogon, Andreas D. Lattner, and
René Schumann

Refactoring in Multi Agent System Development . 183
Ali Murat Tiryaki, Erdem Eser Ekinci, and Oguz Dikenelli

Autonomous Scheduling with Unbounded and Bounded Agents 195
Chetan Yadati, Cees Witteveen, Yingqian Zhang,
Mengxiao Wu, and Han la Poutre

Author Index . 207

Logic for Automated Mechanism Design and

Analysis

Michael Wooldridge

University of Liverpool
Department of Computer Science

Liverpool L69 3BX, UK
mjw@liv.ac.uk

Abstract. Recent years have witnessed an explosion of interest in the
issues surrounding the use of social choice mechanisms and economic
resource allocation mechanisms in settings where the participants are
computer programs. Algorithmic mechanism design, and the recent emer-
gence of computational social choice theory are two examples of this
growth of interest. If we take seriously the idea that computational agents
will participate in economically inspired mechanisms, then it is natural
to consider the questions of knowledge representation and reasoning for
them. In this talk, we describe our work in this area, particularly as it
relates to the specification and verification of social choice mechanisms,
and coordination mechanisms such as social laws. We motivate and in-
troduce the main research issues in the area, discussing, for example,
the succinct representation of social choice rules, the complexity of rea-
soning with such representations, and the handling of preferences. We
conclude by showing discussing the relationship of our work to mecha-
nism design as it is understood in economics. The talk will report joint
work with Thomas Agotnes (Bergen), Wiebe van der Hoek (Liverpool),
Marc Pauly (Stanford), and Paul E. Dunne (Liverpool).

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 2–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Coordination in Multi-Agent Systems:
Towards a Technology of Agreement

Sascha Ossowski

Centre for Intelligent Information Technologies (CETINIA),
Universidad Rey Juan Carlos,

Calle Tulipán s/n,
28933 Móstoles (Madrid), Spain
sascha.ossowski@urjc.es

Abstract. It is commonly accepted that coordination is a key characteristic of
multi-agent systems and that, in turn, the capability of coordinating with others
constitutes a centrepiece of agenthood. However, the key elements of coordina-
tion models, mechanisms, and languages for multi-agent systems are still sub-
ject to considerable debate. This paper provides a brief overview of different
approaches to coordination in multi-agent systems. It will then show how these
approaches relate to current efforts working towards a paradigm for smart, next-
generation distributed systems, where coordination is based on the concept of
agreement between computational agents.

1 Introduction

Most current transactions and interactions at business level, but also at leisure level,
are mediated by computers and computer networks. From email, over social net-
works, to virtual worlds, the way people work and enjoy their free time has changed
dramatically in less than a generation time. This change has made that IT research and
development focuses on aspects like new Human-Computer Interfaces or enhanced
routing and network management tools. However, the biggest impact has been on the
way applications are thought and developed. These applications require components
to which more and more complex tasks can be delegated, components that show
higher levels of intelligence, components that are capable of sophisticated ways of
interacting, as they are massively distributed, sometimes embedded in all sort of ap-
pliances and sensors. In order to allow for an efficient design and implementation of
systems of these characteristics, it is necessary to effectively enable, structure, and
regulate their communications in different contexts.

Such an enterprise raises a number of technological challenges. Firstly, the open
distributed nature of such systems adds to the heterogeneity of its components. The
system structure may evolve at runtime, as new nodes may appear or disappear at
will. There is also a need for on-the-fly alignment of certain concepts that interactions
relate to, as the basic ontological conventions in such systems will be very limited.
The dynamicity of the environment calls for a continuous adaptation of the structures
that regulate the components’ interactions, so as to achieve and sustain desired func-
tional properties. But also non-functional issues related to scalability, security, and

 Coordination in Multi-Agent Systems: Towards a Technology of Agreement 3

usability need to be taken into account. When designing mechanisms that address
these challenges, the notion of autonomy becomes central: components may show
complex patterns of activity aligned with the different goals of their designers, while
it is usually impossible to directly influence their behaviour from the outside.

Coordination in multi-agent system (MAS) aims at harmonising the interactions of
multiple autonomous components or agents. Therefore, it appears promising to review
different conceptual frameworks for MAS coordination, and to analyse the potential
and limitations of the work done in that field with regard to some of the aforemen-
tioned challenges.

This paper is organised as follows. Section 2 provides a brief overview of coordi-
nation in MAS. Section 3 proposes the notion of agreement as a centrepiece of an
integrated approach to coordination in open distributed systems, and outlines some
research topics related to the vision of a technology of agreement. Some conclusions
are drawn in Section 4.

2 Coordination in Multi-agent Systems

Maybe the most widely accepted conceptualisation of coordination in the MAS field
originates from Organisational Science. It defines coordination the management of
dependencies between organisational activities [21]. One of the many workflows in an
organisation, for instance, may involve a secretary writing a letter, an official signing it,
and another employee sending it to its final destination. The interrelation among these
activities is modelled as a producer/consumer dependency, which can be managed by
inserting additional notification and transportation actions into the workflow.

It is straightforward to generalise this approach to coordination problems in multi-
agent systems. The subjects whose activities need to be coordinated are the agents,
while the entities between which dependencies arise are usually goals, actions or
plans. Depending on the characteristics of the MAS environment, a taxonomy of
dependencies can be established, and a set of potential coordination actions assigned
to each of them (e.g. [36], [26]). Within this model, the process of coordination is to
accomplish two major tasks: first, a detection of dependencies needs to be performed,
and second, a decision respecting which coordination action to apply must be taken. A
coordination mechanism shapes the way that agents perform these tasks [24].

The result of coordination, and its quality, is conceived differently at different lev-
els of granularity. Understanding coordination as a way of adapting to the environ-
ment [36] is quite well suited to address the issue from a micro-level (agent-centric)
perspective. This is particularly true for multi-agent settings. If new acquaintances
enter an agent’s environment, coordination amounts to re-assessing its former goals,
plans and actions, so as to account for the new (potential) dependencies between itself
and other agents. If a planning agent, for instance, is put into a multi-agent environ-
ment, it will definitely have to accommodate its individual plans to the new depend-
encies between its own prospective actions and potential actions of others, trying to
exploit possible synergies (others may free certain relevant blocks for it), and avoid-
ing harmful dependencies (making sure that others do not unstack intentionally
constructed stacks etc). At this level, the result of coordination, the agent’s adapted
individual plan, is the better the closer it takes the agent to the achievement of its
goals in the multi-agent environment.

4 S. Ossowski

From a macro-level (MAS-centric) perspective, the outcome of coordination can be
conceived a “global” plan (or decision, action etc.). This may be a “joint plan” [29] if
the agents reach an explicit agreement on it during the coordination process, or just
the sum of the agents' individual plans (or decisions, actions etc. − sometimes called
“multi-plan” [27]) as perceived by an external observer. Roughly speaking, the qual-
ity of the outcome of coordination at the macro-level can be evaluated with respect to
the agents’ joint goals or the desired functionality of the MAS as a whole. If no such
notion can be ascribed to the MAS, other, more basic features can be used instead. A
good result of coordination, for instance, often relates to “efficiency”, which fre-
quently comes down to the notion of Pareto-optimality. The amount of resources
necessary for coordination (e.g. the number of messages necessary) is also sometimes
used as a measure of efficiency.

The dependency model of coordination appears to be particularly adequate for rep-
resenting relevant features of coordination problems in MAS. Frameworks based on
this model have been used to capture coordination requirements in a variety of inter-
esting MAS domains (e.g. [11]). It is also useful to rationalise observed coordination
behaviour in line with a knowledge-level perspective [22]. Still, dependency detection
may become a rather knowledge intensive task, which is further complicated by in-
complete and potentially inconsistent local views of the agents. Moreover, making
timely decisions that lead to efficient coordination actions is also everything but triv-
ial. The problem becomes even more difficult when agents pursuing partially con-
flicting goals come into play [26]. In all but the simplest MAS, the instrumentation of
these tasks gives rise to complex patterns of interactions among agents.

From a design perspective, coordination is probably best conceived as the effort of
governing the space of interaction [6] of a MAS, as the basic challenge amounts to
how to make agents converge on interaction patterns that adequately (i.e. instrumen-
tally with respect to desired MAS features) solve the dependency detection and deci-
sion tasks. A variety of approaches that tackle this problem can be found in the
literature, shaping the interaction space either directly, by making assumptions on agent
behaviours and/or knowledge, or indirectly, by modifying the context of the agents in
the MAS environment. The applicability of these mechanisms depends largely on the
number and type of assumptions that one may make regarding the possibility of ma-
nipulating agent programs, agent populations, or the agents’ environment. This, in turn,
is dependent on the characteristics of the coordination problem at hand.

 The RICA-J framework [31], for instance, provides an ontology of interaction
types, together with their associated protocols. Agents can choose to play or abandon
certain roles within an interaction but, when using the framework, an agent program-
mer is limited to using protocol compliant actions.

Governing coordination infrastructures make a clear separation between the ena-
bling services that they provide (e.g. communication channel or blackboard-based
communication primitives) and the governing aspects of interaction, which are usu-
ally described within a declarative language (e.g. programmable tuple spaces) [25].
The access regulations for the elements of the MAS environment (resources, services,
etc) expressed in such a language are often termed environment laws [30].

Electronic Institutions (EI) [23] use organisational abstractions to shape the inter-
actions of the agents participating in them. Agents play different roles in the (sub-)
protocols that, together with additional rules of behaviour, determine the sequences of

 Coordination in Multi-Agent Systems: Towards a Technology of Agreement 5

illocutions that are permitted within a particular instance of a scene. Scenes, in turn,
are interconnected and synchronised by means of transitions within a performative
structure. Norms, as additional institutional abstractions, express further behaviour
restrictions for agents. In the EI framework, agents can only interact with each other
through specific institutional agents, called governors [13], which assure that all be-
haviour complies with the norms and that it obeys the performative structure. So,
different from the aforementioned approaches, the governing or regulating responsi-
bility is transferred from the infrastructure to specialized middle agents.

From the point of view of an individual agent, the problem of coordination boils
down to finding the sequence of actions that, given the regulations within the system
(or, if possible in a certain environment, the expected cost of transgressing them), best
achieves its goals. In practice, this implies a series of non-trivial problems. Models of
coalition formation determine when and with whom to form a team for the achieve-
ment of some common (sub-) goal, and how to distribute the benefits of synergies that
arise from this cooperation [32]. Distributed planning approaches [12] may determine
how to (re-)distribute tasks among team members and how to integrate results. From
an individual agent’s perspective, the level of trustworthiness of others is central to
almost every stage of these processes, so as to determine whether other agents are
likely to honour the commitments that have been generated [33].

An appealing way to tackle both the system-level and the agent-level requirements
is to take an organisation-oriented tack towards the problem of MAS coordination.
Organisational models underlying approaches such as Agent-Group-Role [14],
MOISE [18], EI [23], or RICA [31] provide a rich set of concepts to specify and
structure mechanisms that govern agent interactions through the corresponding infra-
structures or middleware. But they can also facilitate the agents’ local decision-
making tasks. For instance, role and interaction taxonomies can be used to find
suitable interactions partners, by providing additional information regarding the us-
ability of services in a certain interaction context [15]. Structural information about
roles can also be used for the bootstrapping of reputation mechanisms, when only
very limited information about past interactions is available in the system [5]. Role
hierarchies, and other types of structural information, can also be extended on-the-fly
to improve system performance [17]. In general, the fact that organisational structures
may dynamically evolve, shifts the attention from their traditional use as a design-
time coordination mechanism for mainly closed distributed problem-solving systems,
to an adaptive run-time coordination mechanism also applicable to open MAS [24].

3 Towards a Technology of Agreement

The previous section has given a brief overview of work on coordination mechanisms
that has been carried in the MAS field. Even though an attempt has been made to
structure and present it in some coherent manner, the reader will have noticed that
several quite different approaches and mechanisms coexist under the “umbrella” of
the term coordination. Not all of them are relevant to the challenges for the design of
open distributed systems outlined in the introduction. For instance, the whole set
of coupled coordination mechanisms [35] are effectively useless for the purpose of
this paper, as they require having a direct influence on the agent programs. On the

6 S. Ossowski

other hand, the problem of semantic interoperability is usually outside the scope of
MAS coordination models and languages.

The notion of agreement among computational agents appears to be better suited as
the fundamental notion for the proposal outlined in this paper. Until recently, the
concept of agreement was a domain of study mainly for philosophers, sociologists and
was only applicable to human societies. In recent years, the growth of disciplines such
as social psychology, socio-biology, social neuroscience, together with the spectacu-
lar emergence of the information society technologies, have changed this situation.
Presently, agreement and all the processes and mechanisms implicated in reaching
agreements between different kinds of agents are a subject of research and analysis
also from technology-oriented perspectives.

The process of agreement-based coordination can be designed based on two main
elements:

(1) a normative context, that determines the rules of the game, i.e. interaction patterns
and additional restrictions on agent behaviour; and

(2) a call-by-agreement interaction method, where an agreement for action between
the agents that respects the normative context is established first; then the actual
enactment of the action is requested.

The techniques based on organizational structures discussed in the previous section
will be useful to specify and design such systems. In addition, semantic alignment,
norms, argumentation and negotiation, as well as trust and reputation mechanisms
will be in the “agreement technology sandbox”.

Semantics
Semantic technologies constitute a centrepiece of the approach as semantic problems
pervade all the others. Solutions to semantic mismatches and alignment of ontologies
(e.g. [4]) are needed to have a common understanding of norms or of deals, just to
put two examples. In particular, it is interesting to look into how far policies and
measures of trust can be used to decide which alignments and mappings between
heterogeneous formats to apply, assuming that data, alignments, as well as trust-
relevant meta-data is published and reusable by agents on the Web. Such published
alignments shall allow combinations of knowledge bases based on static mapping
rules, dynamic service calls and allow partial revocations of data published by other
agents. Semantic-alignment protocols and algorithms interweaving alignment and
negotiation in cooperation are needed, so as to analyse and design basic resource
management mechanisms for locating adequate services in open, large-scale, decen-
tralized systems. The following challenges around semantic alignment appear particu-
larly relevant:

 Integration of Ontologies and nonmonotonic Rules: Nonmonotonicity seems in-
evitable for ontological agreement between agents in order to deal with consistent,
but closed subsets of ontologies in open environments which would otherwise in-
volve logically inconsistent superfluous ontological information.

 Querying over distributed ontologies involving alignments: Queries for data,
grounded in distributedly published ontologies and mapping/alignment rules, im-
pose new challenges. The right tradeoffs between expressivity and efficiency for
ontology, mapping and query languages are to be found.

 Coordination in Multi-Agent Systems: Towards a Technology of Agreement 7

 Alignment with standards: it must be explored how existing standardization efforts
in the area can be enhanced to cater for agreement relevant information such as
trust, provenance and policies and how these additions can be exploited for open,
distributed access to heterogeneous data and service.

Norms
Normative systems need to be specified so that they may be properly implemented
and one may reason about them for a variety of purposes. Reasoning about the system
is necessary for the designer of the system to assure that the system has adequate
properties. It is also essential for the designer of agents whose interactions will be
regulated to assure that they conform to the rules. Reasoning about the normative
system may also be necessary at run-time because complex multiagent systems usu-
ally need dynamic regulations. The problem is interesting, from an individual agents’
perspective, because norm adoption and compliance involve complex decision-
making, and is also conceptually significant because currently available formalisms
tend to be heavy and consequently there are few practical implementations [16]. Ma-
jor issues to be addressed include:

 Normative reasoning and negotiated flexibility. A serious challenge is the fact that
norms need to be interpreted and instantiated in specific situations; second, that
norms (especially when applied to a specific case) can be in conflict; third, that it
is possible that to work well, to fulfil the assigned mission of the role, and to be
loyal with the organization, agents may need to violate a given rule or procedure.
Any organization has such a problem (and it is one of the internal reasons for its
adaptation and evolution). So agents must not only be norm-sensitive; they also
need to be able to interpret and compare norms, and to negotiate and reach agree-
ments about norm interpretation, application, and violation.

 Usability of norms. The adoption of formal, non-ambiguous, and machine under-
standable norms should not prevent end users from understanding thoroughly the
norms and their effects, therefore suitable interfaces are needed to enhance user
understanding and awareness of the current norms. Also, advanced norm explana-
tion techniques are needed to enhance user awareness of (and control on) the
norms enforced by the systems that the user is interacting with.

Organizations
Techniques of virtual organisations specify how to solve a complex task/problem by
a number of agents in a declarative way. The agents participating in an organisation
can work together and form teams for the solution of a particular task within the scope
of the organisational objectives. The particular organisation of the group of agents
will thus be the answer to the complexity of the problem. For instance, in a hierarchi-
cal organisation when not enough agents are found at a certain level to solve a
problem, a reorganisation of the hierarchy is to be made that flattens the structure.
Methods to support organizational change will play a critical role to this respect. As
systems grow to include hundreds or thousands of agents, it is necessary to move
from an agent-centric view of coordination and control to an organization-centric one
[3]. Social structures can be explicitly expressed and shaped through organisational
concepts, and can be exploited by the agents to cope with the difficulties of solving
complex tasks in a coherent and efficient manner. Challenges include:

8 S. Ossowski

 Organisational Teamwork: The processes of team formation, coordination and
dissolution are all based upon dynamic agreements that are forged and maintained
within the limits imposed by organisational structures. Mechanisms are needed
that create joint plans to carry out a set of tasks by means of a collaborative proc-
ess among agents, deciding which agreement each agent is committed to. In this
type of planning, the “assignments” of tasks or parts of a plan are not fully speci-
fied and need to be further developed by the agent. This creates interesting prob-
lems of trust regarding plan sharing and the assembly sub-plans.

 Organisational change: In open environments, organisational structures must con-
tinuously evolve so as to efficiently promote effective teamwork. Planning, case-
based reasoning and learning models may be used to detect and implement these
changes.

 Design methodologies and tools: To sow the seeds for industrial take-up, effective
guidelines for the design of organisational structures with regard to certain types
of problems need to be investigated. These guidelines need to be supported by
tools that help programmers in the development of agents and organizations.

Argumentation and negotiation
Decision-making processes need to be investigated that are useful to develop a variety
of agreement management methods to try and reach satisfactory agreements, good
enough with respect to the needs and requirements of agents. Classical works in the
field of negotiation methods, based on purely economic/game theoretical grounds,
have proved to be limited in modelling real life exchanges. However, some formal
guarantees are indeed required, especially in the realm of sensitive data, privacy pres-
ervation, and security – which calls for convergence of different approaches currently
pursued in different areas. Frameworks that integrate argumentation in negotiation are
needed, so as to supply the negotiating parties with additional information and help
them convince each other by adequate arguments [2] [7]. Key topics to be addressed
include:

 Argumentation in negotiation: The basic idea behind an argumentation-based
approach is that by exchanging arguments, the mental states of agents may evolve,
and consequently, the status of offers may change. It is worthwhile to explore how
formal properties of argumentation frameworks can be identified, interpreted and
exploited in a negotiation context.

 Strategies for bounded interactions: Negotiation, argumentation and contracting
need practical bounds to fit practical requirements arising, for instance, from com-
putational limitations of pervasive computing scenarios. Proper mechanisms need
to be studied to meet these bounds and simultaneously preserve good properties
(e.g. related to negotiation success, information disclosure minimization and the
like) overcoming horizon effects that are not tackled by the existing approaches.

Trust
Trust is a critical prerequisite of any agreement process, as it helps to reduce the com-
plexity of decisions that have to be taken in the presence of many risks. Trust can be
built based on a range of different kinds of evidence, each having different strength
and reliability [33]. For instance, trust will permit to model social security, e.g., a
probabilistic security model that agents can use for decision making by fixing thresh-
olds of trust for the acceptance of agreements. Norms as a priori restrictions for

 Coordination in Multi-Agent Systems: Towards a Technology of Agreement 9

agreement acceptance should be complemented by trust-based mechanisms that ana-
lyse interactions a posteriori so as to draw conclusions for future behaviour. Particu-
larly relevant challenges to this respect include:

 Scalability: When trust is based on other agents’ opinions its computation does not
scale on large societies. The use of social network analysis techniques would permit
the clustering of agents into organisations and thus allow for scalable solutions.

 Semantics: The quest for a common global ontology seems abandoned as an im-
possible job. Local ontologies are abundant and any trust model will need to take
into account how to deal with erroneous behaviour that may be caused by misun-
derstandings.

 Similarity: The scarcity of exact past experiences for an agreement under discus-
sion requires that agents use ‘similar’ cases from the past in order to assess
whether trust can be put on a new agreement. Case-based reasoning techniques
and similarity functions are central in trust models.

 Balance between norms and trust: Norms and trust can somehow be seen as two
extremes in a continuum. The more norms that can be enforced the less risk in the
opponent’s behaviour and thus the less need to rely on trust measures. However,
norm enforcement has an associated cost that is otherwise negligible when deci-
sions are based on trust. Techniques for finding the right point in the continuum
are needed, that determine how “normative” a interaction among a given set of
agents should be.

One may conceive the aforementioned topics in a “tower structure”, with semantic
technologies at the bottom layer and trust mechanisms at the top, where each level pro-
vides functionality to the levels above [1]. Notice, however, that there is also a certain
feedback from higher to lower layers as, for instance, reputation mechanisms may influ-
ence organisational structures such as role and interaction hierarchies [17]; and this
information can as well be used for semantic alignment [4] and discovery [15].

4 Discussion

This paper has presented an overview of different approaches to coordination in the
MAS field. It has been argued that the notion of agreement is essential to instil coordi-
nation in open distributed systems. Some existing technologies from the field of MAS
coordination can be applied to this respect, but others − and in particular semantic tech-
nologies − need to be added. Several research efforts are currently ongoing that may
contribute to the development of a “technology of agreement” in one or another way.
The attempt to harmonise these efforts, which is currently being carried out at European
level, promotes the emergence of a new paradigm for next generation distributed sys-
tems based on the notion of agreement between computational agents [9].

Acknowledgements

Many ideas reported in this paper draw upon joint work with Carles Sierra, Vicent
Botti, and others, in the framework of a Spanish national project on “Agreement

10 S. Ossowski

Technology”. This term was first mentioned by Mike Wooldridge in internal discus-
sions at the AAMAS conference in 2004. It has also been used as a title for a confer-
ence by Nick Jennings. I am also thankful to Axel Polleres, Cristiano Castelfranchi,
Leila Amgoud, and Piero Bonatti for their comments regarding the different techno-
logical challenges related to a computational notion of agreement, as well as
to Andrea Omicini for our discussions on the different stances on coordination in
multi-agent systems. This work was partially supported by the Spanish Ministry
of Science and Innovation, grants TIN2006-14630-C03-02 and CSD2007-00022
(CONSOLIDER-INGENIO 2010).

References

[1] Agreement Technologies project homepage,
http://www.agreement-technologies.org/

[2] Amgoud, L., Dimopolous, Y., Moraitis, P.: A unified and general framework for argu-
mentation-based negotiation. In: Proc. 6th Int. Joint Conference on Autonomous Agents
and Multi-Agents Systems (AAMAS 2007) IFAAMAS, pp. 963–970 (2007)

[3] Argente, E., Julian, V., Botti, V.: Multi-Agent System Development based on Organiza-
tions. Electronic Notes in Theoretical Computer Science 150(3), 55–71 (2006)

[4] Atienza, M., Schorlemmer, M.: I-SSA - Interaction-situated Semantic Alignment. In:
Proc Int. Conf. on Cooperative Information Systems (CoopIS 2008) (to appear, 2008)

[5] Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based Service Provider Se-
lection in Open Environments. In: Proc. ACM Symposium on Applied Computing (SAC-
2007), pp. 1375–1380. ACM Press, New York (2007)

[6] Busi, N., Ciancarini, P., Gorrieri, R., Zavattaro, G.: Coordination Models - A Guided
Tour. In: Omicini, et al. (eds.) Coordination of Internet Agents: Models, Technologies,
and Applications, pp. 6–24. Springer, Heidelberg (2001)

[7] Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial
Intelligence Journal 171(5-6), 286–310 (2007)

[8] Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative Normative Agents -
Principles and Architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, pp.
364–378. Springer, Heidelberg (2000)

[9] COST Act. IC0801, http://www.cost.esf.org/index.php?id=110&action_
number=IC0801

[10] Debenham, J., Sierra, C.: Merging intelligent agency and the Semantic Web. Knowledge-
Based Systems 21(3), 184–191 (2008)

[11] Decker, K.: TAEMS: A Framework for Environment Centered Analysis and Design of
Coordination Mechanisms. In: O’Hare, Jennings (eds.) Foundations of Distributed Artifi-
cial Intelligence, pp. 119–138. John Wiley and Sons, Chichester (1996)

[12] Durfee, E.: Distributed Problem Solving and Planning. In: Luck, M., Mařík, V., Štěpánk-
ová, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp.
118–149. Springer, Heidelberg (2001)

[13] Esteva, M., Rosell, B., Rodríguez-Aguilar, J.A., Arcos, J.L.: AMELI - An agent-based
middleware for electronic institutions. In: Proc. of the Third Int. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2004), pp. 236–243. ACM Press,
New York (2004)

[14] Ferber, J., Gutknecht, O., Fabien, M.: From Agents to Organizations - An Organizational
View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

 Coordination in Multi-Agent Systems: Towards a Technology of Agreement 11

[15] Fernández, A., Ossowski, S.: Exploiting Organisational Information for Service Coordi-
nation in Multiagent Systems. In: Proc. of the Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS-2008), pp. 257–264. IFAAMAS (2008)

[16] Gaertner, D., García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A., Vasconcelos, W.:
Distributed norm management in regulated multiagent systems. In: Proc. Int. Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2007), pp. 624–631.
IFAAMAS (2007)

[17] Hermoso, R., Centeno, R., Billhardt, H., Ossowski, S.: Extending Virtual Organizations
to improve trust mechanisms (Short Paper). In: Proc. of the Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS-2008), pp. 1489–1492. IFAAMAS (2008)

[18] Hubner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems using the
MOISE+ model: programming issues at the system and agent levels. Int. Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2006)

[19] Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent societies:
a survey. In: En Coordination of Internet Agents: Models, Technologies, and Applica-
tions (Omicini y otros), pp. 197–224. Springer, Heidelberg (2001)

[20] Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: Proceedings of 5th International Conference on Autonomous Agents and
Multi- Agent Systems (AAMAS-2006), pp. 915–922. ACM Press, New York (2006)

[21] Malone, T., Crowston, K.: The Interdisciplinary Study of Co-ordination. Computing Sur-
veys 26(1), 87–119 (1994)

[22] Newell, A.: Reflections on the Knowledge Level. Artificial Intelligence 59, 31–38 (1993)
[23] Noriega, P., Sierra, C.: Electronic Institutions – Future Trends and Challenges. In:

Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp.
14–17. Springer, Heidelberg (2002)

[24] Omicini, A., Ossowski, S.: Objective versus Subjective Coordination in the Engineering
of Agent Systems. In: Klusch, et al. (eds.) Intelligent Information Agents – The European
AgentLink Perspective, pp. 179–202. Springer, Heidelberg (2003)

[25] Omicini, A., Ossowski, S., Ricci, A.: Coordination Infrastructures in the Engineering of
Multiagent Systems. In: Bergenti, Gleizes, Zambonelli (eds.) Methodologies and soft-
ware engineering for agent systems – The Agent-Oriented Software Engineering Hand-
book, pp. 273–296. Kluwer, Dordrecht (2004)

[26] Ossowski, S.: Co-ordination in Artificial Agent Societies. LNCS (LNAI), vol. 1535.
Springer, Heidelberg (1999)

[27] Ossowski, S.: Constraint Based Coordination of Autonomous Agents. Electronic Notes in
Theoretical Computer Science 48, 211–226 (2001)

[28] Ossowski, S., Menezes, R.: On Coordination and its Significance to Distributed and
Multi-Agent Systems. Journal of Concurrency and Computation - Practice and Experi-
ence 18(4), 359–370 (2006)

[29] Rosenschein, J., Zlotkin, G.: Designing Conventions for Automated Negotiation. AI
Magazine 15(3), 29–46 (1995)

[30] Schumacher, M., Ossowski, S.: The governing environment. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 88–104.
Springer, Heidelberg (2006)

[31] Serrano, J.M., Ossowski, S.: On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. In: Klusch,, et al. (eds.) Cooperative Information
Agents VIII. LNCS, vol. 2782, pp. 92–106. Springer, Heidelberg (2004)

12 S. Ossowski

[32] Shehory, O., Sycara, K., Somesh, J.: Multi-agent Coordination through Coalition Forma-
tion. In: Singh,, Rao,, Wooldridge (eds.) Intelligent Agents IV - Agent Theories, Archi-
tectures and Languages. LNCS, vol. 1365, pp. 143–154. Springer, Heidelberg (1998)

[33] Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artificial.
Intelligence Review 24(1), 33–60 (2005)

[34] Sierra, C., Debenham, J.: Information-Based Agency. In: Proc Int. Joint Conference on
AI (IJCAI-2007), pp. 1513–1518. AAAI Press, Menlo Park (2007)

[35] Tolksdorf, R.: Models of Coordination. In: Omicini, Zambonelli, Tolksdorf (eds.) Engi-
neering Societies in an Agent World, pp. 78–92. Springer, Heidelberg (2000)

[36] Von Martial, F.: Co-ordinating Plans of Autonomous Agents. LNCS (LNAI), vol. 610.
Springer, Heidelberg (1992)

Optimistic-Pessimistic Q-Learning Algorithm for

Multi-Agent Systems

Natalia Akchurina

International Graduate School of Dynamic Intelligent Systems,
University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany

anatalia@mail, uni-paderborn.de

Abstract. A reinforcement learning algorithm OP-Q for multi-agent
systems based on Hurwicz’s optimistic-pessimistic criterion which allows
to embed preliminary knowledge on the degree of environment friend-
liness is proposed. The proof of its convergence to stationary policy is
given. Thorough testing of the developed algorithm against well-known
reinforcement learning algorithms has shown that OP-Q can function on
the level of its opponents.

Keywords: Algorithmic game theory, multi-agent reinforcement learn-
ing.

1 Introduction

Reinforcement learning turned out to be a technique that allowed robots to
ride a bicycle, computers to play Backgammon on the level of human world
masters and solve such complicated tasks of high dimensionality as elevator
dispatching. Can it come to rescue in the next generation of challenging problems
like playing football or bidding on virtual markets? Straightforward answer - no.
The convergence of reinforcement learning algorithms is only guaranteed under
the conditions of stationarity of the environment that is violated in multi-agent
systems. Several algorithms [1], [2], [3], [4], [5] were proposed to extend this
approach to multi-agent systems. The convergence was proved either for very
restricted class of environments (strictly competitive or strictly cooperative) [1],
[2], [5] or against very restricted class of opponents [3]. Convergence to Nash
equilibrium was achieved only by Nash-Q [3] in self play for strictly competitive
and strictly cooperative games under additional very restrictive condition that
all equilibria encountered during learning stage are unique [2]. In this paper we
propose an algorithm based on Hurwicz’s optimistic-pessimistic criterion that
will always converge to stationary policies (proved formally) but to best-response
only if we guessed the criterion correctly.

Section 2 is devoted to formal definition of stochastic games — framework
for multi-agent reinforcement learning, and presents the theorems that we will
use while proving the convergence of our method in Sect. 3. Section 4 is devoted
to analysis of the results of thorough testing of our algorithm against other
reinforcement learning algorithms.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 N. Akchurina

2 Preliminary Definitions and Theorems

Definition 1. A 2-player stochastic game Γ is a 6-tuple 〈S, A1, A2, r1, r2, p〉,
where S is the discrete state space (|S| = m), Ak is the discrete action space of
player k for k = 1, 2, rk : S × A1 × A2 → R is the payoff function for player
k, p : S × A1 × A2 → Δ is the transition probability map, where Δ is the set of
probability distributions over state space S.

Every state of a stochastic game can be regarded as a bimatrix game.
It is assumed that for every s, s′ ∈ S and for every action a1 ∈ A1 and

a2 ∈ A2, transition probabilities p(s′|s, a1, a2) are stationary for all t = 0, 1, 2, . . .
and

∑m
s′=1 p(s′|s, a1, a2) = 1.

A policy π = (π0, . . . , πt, . . .) is defined over the whole course of the game.
πt = (πt(s0), . . . , πt(sm)) is called the decision rule at time t, where πt(s) is a
mixed policy in state s. A policy π is called a stationary policy if πt = π for all
t (the decision rule is fixed over time).

Each player k (k = 1, 2) strives to learn policy by immediate rewards so as to
maximize its expected discounted cumulative reward (players do not know state
transition probabilities and payoff functions):

vk(s, π1, π2) =
∞∑

t=0

γtE(rk
t |π1, π2, s0 = s)

where γ ∈ [0, 1) is the discount factor, π1 and π2 are the policies of players 1
and 2 respectively and s is the initial state.

Definition 2. A 2-player stochastic game Γ is called zero-sumwhen r1(s, a1, a2)+
r2(s, a1, a2) = 0 for all s ∈ S, a1 ∈ A1 and a2 ∈ A2.

2.1 Convergence Theorem

Theorem 1. [6] Let X be an arbitrary set and assume that B is the space
of bounded functions over X and T : B(X) → B(X) is an arbitrary map-
ping with fixed point v∗. Let U0 ∈ B(X) be an arbitrarily value function and
T = (T0, T1, . . .) be a sequence of random operators Tt : B(X) × B(X) → B(X)
such that Ut+1 = Tt(Ut, v

∗) converges to Tv∗ uniformly over X . Let V0 be an
arbitrary value function, and define Vt+1 = Tt(Vt, Vt). If there exist random
functions 0 ≤ Ft(x) ≤ 1 and 0 ≤ Gt(x) ≤ 1 satisfying the conditions below with
probability 1, then Vt converges to v∗ with probability 1 uniformly over X :

1. for all U1 and U2 ∈ B(X), and all x ∈ X ,

|Tt(U1, v
∗)(x) − Tt(U2, v

∗)(x)| ≤ Gt(x)|U1(x) − U2(x)|

2. for all U and V ∈ B(X), and all x ∈ X ,

|Tt(U, v∗)(x) − Tt(U, V)(x)| ≤ Ft(x) sup
x′

||v∗(x′) − V (x′)||

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems 15

3.
∑n

t=1(1 − Gt(x)) converges to infinity uniformly in x as n → ∞
4. there exists 0 ≤ γ < 1 such that for all x ∈ X and large enough t

Ft(x) ≤ γ(1 − Gt(x))

2.2 Stochastic Approximation

Let M(x) denote the expected value at level x of the response to a certain
experiment. It is assumed that to each value x corresponds a random variable
Y = Y (x) with distribution function Pr[Y (x) ≤ y] = H(y|x), such that M(x) =∫ ∞
−∞ ydH(y|x) is the expected value of Y for the given x. Neither the exact

nature of H(y|x) nor that of M(x) is known to the experimenter. It is desired
to estimate the solution x = θ of the equation M(x) = α, where α is a given
constant by making successive observations on Y at levels x1, x2, . . .

Let define a (nonstationary) Markov chain {xn} by taking x1 to be an arbi-
trary constant and defining

xn+1 − xn = αn(α − yn)

where yn is a random variable such that

Pr[yn ≤ y|xn] = H(y|xn)

Theorem 2. [7] If {αn} is a fixed sequence of positive constants such that 0 <∑∞
n=1 α2

n = A < ∞ and
∑∞

n=1 αn = ∞, if ∃C > 0 : Pr[|Y (x)| ≤ C] =∫ C

−C dH(y|x) = 1 for all x and M(x) is nondecreasing, M(θ) = α, M ′(θ) > 0
then limn→∞ E(xn − θ)2 = 0.

3 Optimistic-Pessimistic Q-Learning Algorithm

Competitive or cooperative environments are just extreme cases. In most cases
the environment where our agent will function is competitive / cooperative to
some degree. In this section we are proposing a reinforcement learning algorithm
(OP-Q) based on Hurwicz’s optimistic-pessimistic criterion [8] that allows us
to embed preliminary knowledge of how friendly the environment will be. For
example, parameter λ = 0.3 means that we believe that with 30% probability
the circumstances will be favourable and the agents will act so as to maximize
OP-Q’s reward and in 70% will force it to achieve the minimum value. The
algorithm is presented for 2-player stochastic game but without difficulty can be
extended for arbitrary number of players.

Lemma 1. Let Q, Q1, Q2 : S × A1 × A2 → R then for Hurwicz’s criterion:

H(Q(s)) = max
a1

[(1 − λ)min
a2

Q(s, a1, a2) + λmax
a2

Q(s, a1, a2)]

where 0 ≤ λ ≤ 1 the following inequality holds:

|H(Q1(s)) − H(Q2(s))| ≤ max
a1,a2

|Q1(s, a1, a2) − Q2(s, a1, a2)|

16 N. Akchurina

Algorithm 3.1. Optimistic-Pessimistic Q-learning Algorithm (for player 1)
Input: parameters λ, α (see Theorem 3)
for all s ∈ S, a1 ∈ A1, and a2 ∈ A2 do

Q(s, a1, a2)← 0
V (s)← 0
π(s, a1)← 1/|A1|

end for
loop

Choose action a1 from s using policy π(s) (with proper exploration)
Take action a1, observe opponent’s action a2, reward r1 and succeeding state s′

provided by the environment
Q(s, a1, a2)← (1− α)Q(s, a1, a2) + α(r1 + γV (s′))

π(s, a1)←
�

1 a1=arg maxa1′ [(1− λ)mina2′ Q(s, a1′ , a2′)+λmaxa2′ Q(s, a1′ , a2′)]
0 otherwise

V (s)← maxa1′ [(1− λ)mina2′ Q(s, a1′ , a2′) + λ maxa2′ Q(s, a1′ , a2′)]
end loop

Proof.

|H(Q1(s)) − H(Q2(s))| =
= |max

a1
[(1 − λ)min

a2
Q1(s, a1, a2) + λmax

a2
Q1(s, a1, a2)]

− max
a1

[(1 − λ)min
a2

Q2(s, a1, a2) + λmax
a2

Q2(s, a1, a2)]|

≤ max
a1

|(1 − λ)(min
a2

Q1(s, a1, a2) − min
a2

Q2(s, a1, a2))

+ λ(max
a2

Q1(s, a1, a2) − max
a2

Q2(s, a1, a2))|

≤ max
a1

[|(1 − λ)(min
a2

Q1(s, a1, a2) − min
a2

Q2(s, a1, a2))|

+ |λ(max
a2

Q1(s, a1, a2) − max
a2

Q2(s, a1, a2))|]

≤ max
a1

[(1 − λ)max
a2

|Q1(s, a1, a2) − Q2(s, a1, a2)|

+ λmax
a2

|Q1(s, a1, a2) − Q2(s, a1, a2)|]

= max
a1

max
a2

|Q1(s, a1, a2) − Q2(s, a1, a2)|

The above holds due to the triangle and the following inequalities [6]:

|max
ak

Q1(s, a1, a2) − max
ak

Q2(s, a1, a2)| ≤

≤ max
ak

|Q1(s, a1, a2) − Q2(s, a1, a2)|

|min
ak

Q1(s, a1, a2) − min
ak

Q2(s, a1, a2)| ≤

≤ max
ak

|Q1(s, a1, a2) − Q2(s, a1, a2)|

where k = 1, 2 �

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems 17

Now we are ready to prove the convergence of our algorithm in a usual way [6],
[1], [2].

Theorem 3. If {αt} is a sequence, such that: αt > 0,
∑∞

t=1 χ(st = s, a1
t =

a1, a2
t = a2)αt = ∞1 and

∑∞
t=1 χ(st = s, a1

t = a1, a2
t = a2)α2

t < ∞ with probabil-
ity 1 uniformly over S × A1 × A2 then OP-Q algorithm converges to stationary
policy defined by fix point of operator2:

[TQ](s, a1, a2) = r1(s, a1, a2) + γ
∑
s′

p(s′|s, a1, a2)H(Q(s′))

Proof.
Let Q∗ be fixed point of operator T and

M(x) = x − r1(s, a1, a2)

− γ
∑
s′

p(s′|s, a1, a2)H(Q∗(s′)))

It’s evident that conditions of Theorem 2 on M are fulfilled. M(Q∗) = α = 0
The random approximating operator:

Tt(Qt, Q
∗)(s, a1, a2) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − αt)Qt(st, a
1
t , a

2
t) + αt(r1(st, a

1
t , a

2
t) + γH(Q∗(s′t)))

if s = st and a1 = a1
t and a2 = a2

t

Qt(s, a1, a2) otherwise

where yt(s, a1, a2) = Qt(st, a
1
t , a

2
t) − r1(st, a

1
t , a

2
t) − γH(Q∗(s′t)) if s = st and

a1 = a1
t and a2 = a2

t .
It is evident that the other conditions will be satisfied if s′t is randomly selected

according to the probability distribution defined by p(·|st, a
1
t , a

2
t)

Then according to Theorem 2 Tt approximates the solution of the equation
M(x) = 0 uniformly over X = S×A1×A2. In other words, Tt(Qt, Q

∗) converges
to TQ∗ uniformly over X .

Let Gt(s, a1, a2) =
{

1 − αt if s = st and a1 = a1
t and a2 = a2

t

1 otherwise

and Ft(s, a1, a2) =
{

γαt if s = st and a1 = a1
t and a2 = a2

t

0 otherwise

Let’s check up conditions of Theorem 1:

1. when s = st and a1 = a1
t and a2 = a2

t :

|Tt(Q1, Q
∗)(s, a1, a2) − Tt(Q2, Q

∗)(s, a1, a2)| =
= |(1 − αt)Q1(st, a

1
t , a

2
t) +

+ αt(r1(st, a
1
t , a

2
t) + γH(Q∗(s′t)))

1 χ denotes the characteristic function here.
2 We assume here that OP-Q plays for the first agent.

18 N. Akchurina

− (1 − αt)Q2(st, a
1
t , a

2
t) −

− αt(r1(st, a
1
t , a

2
t) + γH(Q∗(s′t)))|

= Gt(s, a1, a2)|Q1(s, a1, a2) − Q2(s, a1, a2)|

when s 	= st or a1 	= a1
t or a2 	= a2

t it is evident that the condition holds.
2. when s = st and a1 = a1

t and a2 = a2
t :

|Tt(Q1, Q
∗)(s, a1, a2) − Tt(Q1, Q2)(s, a1, a2)| =

= |(1 − αt)Q1(st, a
1
t , a

2
t) +

+ αt(r1(st, a
1
t , a

2
t) + γH(Q∗(s′t)))

− (1 − αt)Q1(st, a
1
t , a

2
t) −

− αt(r1(st, a
1
t , a

2
t) + γH(Q2(s′t)))|

= Ft(st, a
1
t , a

2
t)|H(Q∗(s′t)) − H(Q2(s′t))|

≤ Ft(s, a1, a2) max
a1,a2

|Q∗(s′, a1, a2) − Q2(s′, a1, a2)|

The last inequality holds due to lemma 1.
when s 	= st or a1 	= a1

t or a2 	= a2
t it is evident that the condition holds.

3.
∑n

t=1(1 − Gt(x)) converges to infinity uniformly in x as n → ∞ (see the
assumption of the theorem)

4. the fourth condition evidently holds. �

4 Experiments

We tested OP-Q algorithm on 14 classes of 10-state 2 × 2 stochastic games
derived with the use of Gamut [9] and on 1000 random 10-state 6-agent 2-action
stochastic games (with uniformly distributed payoffs). Transition probabilities
were derived from uniform distribution. For the sake of reliability we derived
1000 instances of each game class and made 10000 iterations. The agent plays
as both the row agent and the column agent.

Below in this section we will present the average rewards (including explo-
ration stage) of the developed OP-Q algorithm against the following well-known
algorithms for multi-agent reinforcement learning:

– Q-learning [10] was initially developed for single-agent environments. The al-
gorithm learns by immediate rewards a tabular function Q(s, a) that returns
the largest value for the action a that should be taken in each particular state
s so as to maximize expected discounted cumulative reward. When applied
to multi-agent systems Q learning algorithm ignores totally the presence of
other agents though the later naturally influence its immediate rewards.

– MinimaxQ [1] was developed for strictly competitive games and chooses the
policy that maximizes its notion of the expected discounted cumulative re-
ward believing that the circumstances will be against it.

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems 19

– FriendQ [2] was developed for strictly cooperative games and chooses the
action that will bring the highest possible expected discounted cumulative
reward believing that the circumstances will favor it.

– JAL [4] believes that the average opponent’s strategy very well approximates
the opponent’s policy in the future and takes it into account while choosing
the action that maximizes its expected discounted cumulative reward.

– PHC [5] in contrast to Q learning algorithm changes its policy gradually in
the direction of the highest Q values.

– WoLF [5] differs from PHC only in that it changes its policy faster when
losing and more slowly when winning.

Because of the limitation on space we present the analysis only of the main
game classes that though allows to gain the general notion of interaction between
the developed OP-Q and the above presented multi-agent reinforcement learning
algorithms. The test classes are presented in general form, where A, B, C, D are
uniformly distributed in the interval [−100, 100] payoffs and A > B > C > D.
We will analyze the result as though OP-Q played for the row agent. For all
games we chose neutral parameter λ = 0.5 for OP-Q, except random zero-sum
games, and matching pennies. For these two classes we embedded our preliminary
knowledge and set parameter λ to a more cautious value 0.3.

It should be noted that the results are being analyzed after the exploration
stage that is why the small distinction from the figures can be easily explained
by the fact that the later represent the average rewards including exploration
phase. Q, PHC, WoLF, JAL turned out to have very similar final behaviour.
Small difference in the performance of these algorithms is due to a bit different
manner of tuning the policy and underlying mechanism.

4.1 Battle of the Sexes

After a short exploration phase OP-Q chooses the first strategy. Indeed Hurwicz’s
criterion for the first and the second strategies are:

H1 = 0.5 · (A + V) + 0.5 · (C + V)

H2 = 0.5 · (C + V) + 0.5 · (B + V)

where V is the OP-Q’s notion of the expected discounted cumulative reward
that it will get starting from the next step.

– Q, PHC, WoLF get the impression that in their environment (where OP-Q
agent constantly plays the first strategy) the first strategy is much more
profitable than the second one (B against C, where B > C) and play it. As
a result OP-Q gets A as average reward after exploration stage and Q, PHC,
WoLF only — B.

– MinimaxQ plays mixed policy (π2(a2
1), π2(a2

2)) with greater probability to
play the first action π2(a2

1) > π2(a2
2). And that is why OP-Q gets π2(a2

1)A+
π2(a2

2)C in average (A more often than C) and MinimaxQ gets π2(a2
1)B +

π2(a2
2)C (B more frequently).

20 N. Akchurina

Table 1. Battle of the sexes

A,B C,C

C,C B,A

Fig. 1. Battle of the sexes

– FriendQ developed for cooperative environments believes that when it gets the
best reward so do the other agents in the environment and that is why it is the
most profitable for them to play the other part of the joint action that brings
the largest reward to FriendQ. In battle of the sexes it is constantly playing
the second action. As a result OP-Q and FriendQ both get very low C reward.

– JAL taking into account OP-Q’s stationary (1, 0) policy chooses also the first
more profitable for it action (B > C). They respectively get A and B as average
rewards.

4.2 Coordination Game

Sometimes Hurwicz’s criterion is better for strategy 1 and sometimes for strategy
2. These events occur with equal probabilities for OP-Q agent with parameter
λ = 0.5 and the second strategy is preferable more frequently for OP-Q agent with
parameter λ = 0.3 for it is more sensitive to bad rewards than to good rewards.

– Q, PHC, WoLF also choose after some exploration the first strategy when
OP-Q plays the first strategy. That leads to a very good reward for them
both — A. When λ ·A+(1−λ) ·D < λ ·B +(1−λ) ·C, OP-Q agent chooses
the second strategy and then Q, PHC, WoLF choose also the second action.
Then they get payoffs (B, B) correspondingly.

– MinimaxQ plays some mixed policy. They both get some combination of A
and D rewards when OP-Q regards the first policy as a more profitable or
B and C when the second one is preferable.

Table 2. Coordination game

A,A D,D

C,C B,B

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems 21

Fig. 2. Coordination game

– FriendQ being always sure that circumstances will be favorable plays the
first action from the very beginning. Its assumption is correct when OP-Q
plays the chooses the first action but leads to poor rewards otherwise.

– JAL though based on different mechanism acts in a similar way as Q, PHC,
WoLF.

Because of its fear of low rewards OP-Q with λ = 0.3 plays the second strategy
much more often than OP-Q with λ = 0.5 and that is why gets lower rewards
in general.

4.3 Matching Pennies

OP-Q on the phase of exploration and further phase plays the first and the
second strategies alternately.

– Q, PHC, WoLF on starting to get worse results switch the policy but OP-Q
is more sensitive to bad results. Its higher average profit is explainable by the
speed of its reactions. PHC, WoLF do not switch actions but tune policies
— and their average rewards are higher.

– MinimaxQ plays (0.5, 0, 5). They both get average rewards around zero after
exploration.

– FriendQ plays the first or the second strategy. OP-Q upon exploring that
the action it is playing is no more profitable switches its policy. That’s why
OP-Q gets much higher rewards.

– JAL’ reactions are even slower because it takes into account average policy
and it is difficult to notice a change in the current policy by it and that is
why worse results than PHC, WoLF.

Table 3. Matching pennies

100,-100 -100,100

-100,100 100,-100

22 N. Akchurina

Fig. 3. Matching pennies game

Fig. 4. Random zero game

4.4 Random Zero-Sum Game

– Q, PHC, WoLF. To analyze results we have to consider all the cases (16) of
distribution of sign among payoffs. In 7 cases when OP-Q chooses his strategy
both payoffs independently of the opponent’s choice will be positive. For the
gain for OP-Q is the loss for the opponent, the opponent will try to minimize
the OP-Q reward. As in the majority of cases 9

16 in the worst case OP-Q
gets negative reward so the average is a small negative number.

– MinimaxQ plays mixed policy. Their average rewards are around zero.
– FriendQ loss is equal to OP-Q’s win, FriendQ will choose strategy with the

smallest possible value D. If we just consider 24 cases how the payoffs can be
ordered and what strategy in this case OP-Q will play it is easy to calculate
that the average reward for OP-Q will be positive in 56% cases. That’s why
it is in average for OP-Q positive.

– JAL’s results can be explained in the same way as Q, PHC, WoLF but the
mechanism is different.

4.5 Random Game

In Fig. 5 the average gains in the contest between OP-Q, Q, FriendQ, JAL, PHC
and WoLF are presented. The results are averaged among 1000 games (10000
iterations each).

Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems 23

Fig. 5. Random game

5 Discussion and Conclusion

This paper is devoted to an actual topic of extending reinforcement learning
approach for multi-agent systems. An algorithm based on Hurwicz’s optimistic-
pessimistic criterion is developed. Hurwicz’s criterion allows us to embed initial
knowledge of how friendly the environment in which the agent is supposed to
function will be. A formal proof of the algorithm convergence to stationary policy
is given. Thorough testing of the developed algorithm against Q, PHC, WoLF,
MinimaxQ, FriendQ, JAL showed that OP-Q functions on the level of its non-
convergent opponents in the environments of different level of amicability by
making its opponents follow more profitable for it policy.

References

1. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: ICML, pp. 157–163 (1994)

2. Littman, M.L.: Friend-or-foe q-learning in general-sum games. In: Brodley, C.E.,
Danyluk, A.P. (eds.) ICML, pp. 322–328. Morgan Kaufmann, San Francisco (2001)

3. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: theoretical framework
and an algorithm. In: Proc. 15th International Conf. on Machine Learning, pp.
242–250. Morgan Kaufmann, San Francisco (1998)

4. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: AAAI 1998/IAAI 1998: Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative applications of arti-
ficial intelligence, pp. 746–752. American Association for Artificial Intelligence,
Menlo Park (1998)

5. Bowling, M.H., Veloso, M.M.: Multiagent learning using a variable learning rate.
Artificial Intelligence 136(2), 215–250 (2002)

6. Szepesvári, C., Littman, M.L.: Generalized markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. Technical report, Providence,
RI, USA (1996)

7. Robbins, H., Monro, S.: A stochastic approximation method. Annals of Mathemat-
ical Statistics 22(3), 400–407 (1951)

8. Arrow, K.: Hurwiczs optimality criterion for decision making under ignorance.
Technical Report 6, Stanford University (1953)

24 N. Akchurina

9. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the gamut:
A comprehensive approach to evaluating game-theoretic algorithms. In: AAMAS
2004, pp. 880–887. IEEE Computer Society, Los Alamitos (2004)

10. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, England (1989)

How to Program Organizations and Roles
in the JADE Framework

Matteo Baldoni1, Guido Boella1, Valerio Genovese1, Roberto Grenna1,
and Leendert van der Torre2

1 Dipartimento di Informatica. Università di Torino - IT
{baldoni,guido,grenna}@di.unito.it, valerio.click@gmail.com

2 Computer Science and Communications, University of Luxembourg, Luxembourg
leon.vandertorre@uni.lu

Abstract. The organization metaphor is often used in the design and imple-
mentation of multiagent systems. However, few agent programming languages
provide facilities to define them. Several frameworks are proposed to coordinate
MAS with organizations, but they are not programmable with general purpose
languages. In this paper we extend the JADE framework with primitives to pro-
gram in Java organizations structured in roles, and to enable agents to play roles
in organizations. Roles facilitate the coordination of agents inside an organiza-
tion and offer new abilities (powers) in the context of organizations to the agents
which satisfy the requirements necessary to play the roles. To program organiza-
tions and roles, we provide primitives which enable an agent to enact a new role
in an organization to invoke powers.

1 Introduction

Organizations are the subject of many recent papers in the MAS field, and also among
the topics of workshops like COIN, AOSE, CoOrg and NorMAS. They are used for
coordinating open multiagent systems, providing control of access rights, enabling the
accommodation of heterogeneous agents, and providing suitable abstractions to model
real world institutions [10].

Many models have been proposed [13], applications modeling organizations or insti-
tutions [17], software engineering methods using organizational concepts like roles [21].
However, despite the development of several agent programming languages among
which 3APL [20], few of them have been endowed with primitives for modeling or-
ganizations and roles as first class entities. Exceptions are MetateM [12], J-MOISE+
[15], and the Normative Multi-Agent Programming Language in [19]. MetateM is BDI
oriented and not a general purpose language and is based on the notion of group.
J-MOISE+ is more oriented to programming how agents play roles in organizations,
while [19], besides not being general purpose, is more oriented to model the institu-
tional structure composed by obligations than the organizational structure composed by
roles. On the other hand, frameworks for modelling organizations like SMoise+ [16]
and MadKit [14] offer limited possibilities to program organizations. The heterogene-
ity of solutions shows a lack of a common agreement upon a clear conceptual model of
what an organization is; the ontological status of organizations has been studied only

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 25–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 M. Baldoni et al.

recently and thus it is difficult to translate the organizational model into primitives for
programming languages. Moreover, it is not clear how an agent can interact with an or-
ganization, whether the organization has to be considered like an object, a coordination
artifact, or as an agent [11]. The same holds for the interaction with a role. Thus, in this
paper, we address the following research questions: How to program organizations?
How to introduce roles? How agents interact with organizations by means of the roles
they play? And as subquestions: How to specify the interaction between an agent and
its roles? How to specify the interaction among roles? Moreover, How can an agent
start playing a role? and, finally, What is the behaviour of an agent playing a role?

We start from the ontological model of organizations developed in [6], since it pro-
vides a precise definition of organizations and specifies their properties, beyond the
applicative needs of a specific language or framework, and allows a comparison with
other models. Moreover, this model has been successfully used to give a logical spec-
ification of multiagent systems and to introduce roles in object oriented languages [2].
This approach, due to the agent metaphor, allows to model organizations and roles using
the same primitives to model agents, like in MetateM [11]. Despite the obvious differ-
ences with agents, like the lack of autonomy and of an independent character in case
of roles, the agent metaphor allows to understand the new concepts using an already
known framework. In particular, interaction between agents and organizations and the
roles they play can be based on communication protocols, which is particularly useful
when agents and organizations are placed on different platforms.

For the description of the interaction among players, organizations and roles we
adopt the model of [5]. For what concerns the modeling of how an agent plays a role we
take inspiration from [9]. We implement this conceptual model with JADE (Java Agent
DEvelopment framework) [3], providing a set of classes which extends it and offer
the primitives for constructing organizations when programming multiagent systems.
We extend JADE not only due to its large use, general purpose character and open-
source philosophy, but also because, being developed in Java, it allows to partly adopt
the methodology used to endow Java with roles in the language powerJava [2]. Given
the primitives for modeling agents and their communication abilities, transferring the
model of [6] in JADE is even more straightforward than transferring it in Java. The ex-
tension of JADE consists in a new library of classes and protocols. The classes provide
the primitives used to program organizations, roles and player agents, by extending the
respective class.

The paper is organized as follows. In Section 2, we summarize the model of organi-
zations and roles we take inspiration from. In Section 3, we describe how the model is
realized by extending JADE, and in Section 4 we describe the communication protocols
which allow the interaction of the different entities. In Section 5 we underline related
and future work.

2 A Model for Organizations and Roles

In [6] a definition of the structure of organizations given their ontological status is given,
roles do not exist as independent entities but they are linked to organizations (in other
words, roles are not simple objects). Organizations and roles are not autonomous, but

How to Program Organizations and Roles in the JADE Framework 27

act via role players, although they are description of complex behaviours: in the real
world, organizations are considered legal entities, so they can even act like agents, albeit
via their representative playing roles. So, they share some properties with agents, and,
in some aspects, can be modelled using similar primitives. Thus, in our model roles
are entities, which contain both state and behaviour: we distinguish the role instance
associated with a player and the specification of a role (a role type). As recognized
by [8] this feature is quite different from other approaches which use roles only in the
design phase of the system, as, e.g., in [21].

Goals and beliefs, attributed to a role (as in [9]) describe the behaviour expected from
the player of the role, since an agent pursues his goals based on his beliefs. The player
should be aware of the goals attributed to the roles, since it is expected to follow them
(if they do not conflict with other goals). Most importantly, roles work as “interfaces”
between organizations and agents: they give “powers” to agents, extending the abilities
of agents, allowing them to operate inside the organization and inside the state of other
roles. If on the one hand roles offer powers to agents, they request from agents to satisfy
a set of requirements, abilities that the agents must have [7].

The model presented in [6] focuses on the dynamics of roles in function of the commu-
nication process: role instances evolve according to the speech acts of the interactants.
Where speech acts are powers, that can change not only the state of its role, but also
the state of other roles (see [4]). For example, the commitments made by a speaker of
a promise or by commands made by other agents playing roles which are empowered
to give orders. In this model, sets of beliefs and goals (as [9] does) are attributed to the
roles. They are the description of the expected behaviour of the agent. The powers of
roles specify how the state of the roles changes according to the moves played in the
interactions by the agents enacting other roles.

Roles are a way to structure the organization, to distribute responsibilities and a
coordination means. Roles allow to encapsulate all the interactions between an agent
and an organization and between agents in their roles. The powers added to the players
can be different for each role and thus represent different affordances offered by the
organization to other agents to interact with it [1].

However, this model leaves unspecified how, given a role, its player will behave. In
[9], the problem of formally defining the dynamics of roles is tackled identifying the
actions that can be done in an open system such that agents can enter and leave. In [9]
four operations to deal with role dynamics are defined: enact and deact, which mean
that an agent starts and finishes to occupy (play) a role in a system, and activate and
deactivate, which mean that an agent starts executing actions (operations) belonging
to the role and suspends the execution of the actions. Although is possible to have an
agent with multiple roles enacted simultaneously, only one role can be active at the
same time: when an agent performs a power, it is playing only one role in that moment.

3 Organizations, Roles, and Players in JADE

We introduce organizations and roles as first class entities in JADE, with behaviours, al-
beit not autonomously executed, and communication abilities. Thus, organizations and
roles can be implemented using the same primitives of agents by extending the JADE

28 M. Baldoni et al.

Agent class with the classes Organization and Role. Analogously, to implement
autonomous agents who are able to play roles, the Player class is defined as an ex-
tension of the Agent class. The Role class and its extensions represent the role types.
Their instances represent the role instances associated with an instance of the Agent.1

Organizations and roles, however, differ in two ontological aspects: first roles are as-
sociated to players; second, roles are not independent from the organization offering
them. Thus, the Role class is subject to an invariant, stating that it can be instantiated
only when an instance of the organization offering the role is present. Conversely, when
an organization is destroyed all its roles must be destroyed too.

A further difference of role classes is that to define “powers”, they must access the
state of the organization they belong too. To avoid making the state of the organization
public, the standard solution offered by Java is to use the so-called “inner classes”.
Inner classes are classes defined inside other classes (“outer classes”). An inner class
shares the namespace of the outer class and of the other inner classes, thus being able
to access private variables and methods. The class Role is defined as an inner class
of the Organization class. Class extending the Role class must be inner classes
of the class extending the Organization class. In this way the role can access the
private state of the organization and of the other roles. Since roles are implemented as
inner classes, a role instance must be on the same platform as the organization instance
it belongs to. Moreover, the role agent can be seen as an object from the point of view of
the organization and of the other roles which can have a reference to it, besides sending
messages to it. In contrast, outside an organization the role agent is accessed by its
player (which can be on a different platform) only as an agent via messages, and no
reference to it is possible. So not even its public methods can be invoked.

The inner class solution for roles is inspired to the use of inner classes to model
roles in object oriented programming languages like in powerJava [2]. The use of inner
classes is coherent with the organization of JADE, where behaviours are often defined
as inner classes with the aim to better integrate them with the agent containing them.

3.1 Organizations

To implement an organization it’s necessary to extend Organization, subclass of
Agent, which offers protocols necessary to communicate with agents who want to
play a role, and the behaviours to manage the information about roles and their players.
Moreover, the Organization class includes the definition of the Role inner class
that can be extended to implement new role classes in specific organizations. To support
the creation and management of roles the Organization class is endowed with the
(private) data structures and (private) methods to create new role instances and to keep
the list of the AIDs (Agent IDs) of role instances which have been created, associated
with the AIDs of their players. Since roles are Java inner classes of an organization,
the organization code can be written in Java mostly disregarding what is a JADE appli-
cation. Moreover, the inner class mechanism allows the programmer to access the role
state and viceversa, while maintaining the modularity character of classes.

1 Nothing prevents to have organizations which play roles in other organizations, like in [8], for
this, and other combinations, it is possible to predefine classes and extend them.

How to Program Organizations and Roles in the JADE Framework 29

The Enact protocol allows starting the interaction between player and organization.
A player sends a message to an organization requesting to play a role of a certain type;
if the organization considers the agent authorized to play that role type, it sends to the
caller a list of powers (what the role can do) and requirements (what the role can ask to
player what to do). At this point, the player can compare his requirements list with the
one sent from the organization and communicate back if he can play the role or if he
can’t. The operation of leaving a role, Deact, is asked by the player to the role itself, so
the class organization does not offer any methods or protocols for that.

For helping players to find quickly one or more organizations offering a specific role,
Yellow Pages are used. They allow to register a pair (Organization, RoleType) for each
role in each organization; the interested player will only have to query the Yellow Pages
to obtain a list of these couples and choose the best for itself.

3.2 Roles

A role is implemented by extending the Role class which offers the protocols to com-
municate with the player agent. Notice that, since the Role class is an inner class of
the Organization class, this class should be an inner class of the class that extends
Organization as well. The protocols to communicate with the player agent allows:
(i) To receive the request of invoking powers; (ii) To receive the request to deact the
role; (iii) To send to the player the request to execute a requirement; (iv) To receive from
the player the result of the execution of a requirement; (v) To notify the player about
the failure of executing the invoked power or the failure to receive all the results of the
requested requirements. The role programmer, thus, has to define the powers which can
be invoked by the player, and to specify them in a suitable data structure used by the
Role class to select the requests of powers which can be executed.

Allowing a player to invoke a power, which results in the execution of a method by
the role, could seem a violation of the principle of autonomy of agents. However, the
powers are the only way the players have to act on an organization and, the execution
of an invoked power may request, in turn, the execution by the player of requirements
needed to carry on the power.

Moreover, since the player may refuse to execute a requested requirement (see Sec-
tion 3.3), and the requirements determine the outcome of the power, this outcome, thus,
varies from request to request, and from player to player. Since role instances are not
autonomous, the invocation of a power is not subordinated to the decision of the role to
perform it or not. In contrast with powers, a requirement cannot be invoked. Rather it is
requested by the role, and the player autonomously decides to execute it or not. In the
latter case the player is not complying anymore with its role and it is deacted. To remark
this difference we will use the term invoking a power versus requesting a requirement.

Requests for the execution of requirements are not necessarily associated with the
execution of a power. They can be requested to represent the fact that a new goal has
been added to the role. For example, this can be the result of a task assignment when
the overall organization is following a plan articulated in subtasks to be distributed
among the players at the right moments [16]. In case the new goal is a requirement of
the player the method requestRequirement is executed, otherwise, if it is a power of
the role, a requestResponsibility is executed. The method requestResponsibility asks to

30 M. Baldoni et al.

the player to invoke a power of the role, while the method requestRequirement invokes
a requirement of the player. It returns the result sent by the player if he complies with
the requirement. The failure of executing of a requirement results in the deactment
of the role. Analogously to requirements when the role notifies its player about the
responsibility, it cannot be taken for granted that it will invoke the execution of the
power. Note that both methods can be invoked also by other roles or by the organization
itself, due to the role’s limited autonomy.

Other methods are available only when agents are endowed with beliefs, which could
be represented, for instance, in Jess. The method sendInform is used to inform the player
that the beliefs of the roles are changed. This does not imply that the player adopts the
conveyed beliefs as well. Methods addBelief and addGoal are invoked by the role’s
behaviours or by other roles’ to update the state of the role.

Besides the connection with its player, the role is an agent like any other, and it can
be endowed with further behaviours and further protocols to communicate with other
roles of the organization or even with other agents. At the same time it is a Java object
as any other and can be programmed, accessing both other roles and the organization
internal state to have a better coordination.

3.3 Players

Players of roles in organizations are JADE agents, which can reside on different plat-
forms with respect to the organization. To play a role, a special behaviour is needed; for
this reason the Player class is offered. An agent which can become a player of roles
extends the Player class, which, in turn, extends the Agent class. This class defines the
states of the role playing (enact, active, deactivated, deacted), the transitions from one
state to the others, and offers the protocols for communicating with the organization
and with the role. A player agent can play more than one role. The list of roles played
by the agent, and the state of each role, is kept in an hashtable.

The enactment procedure takes the AID of an organization and of a role type and,
if successful, it returns the AID of the role instance associated to this player in the
organization. From that moment the agent can activate the role and play it. The activate
state allows the player to receive from the role requests of requirement execution and
responsibilities (power invocation). Analogously, the Player class allows an agent to
deact and deactivate a role.

The behaviour of playing a role is modelled in the player agent class by means of a
finite state machine (FSM) behaviour. The behaviour is instantiated for each instance
of the role the agent wants to play, by invoking the method enact and specifying the
organization AID and the role type. The states are inspired to the model of [9].

Enact: The communication protocol (which contains another FSM itself) for enacting
roles is entered. If it ends successfully with the reception of the new role instance AID
the deactivated state is entered. The hashtable containing the list of played roles is
updated. Otherwise, the deacted state is reached.

Activate: This state is modelled as a FSM behaviour which listens for events coming
from outside or inside the agent. If another behaviour of the agent decides to invoke
a power of the role by means of the invokePower method (see below), the behaviour

How to Program Organizations and Roles in the JADE Framework 31

Exec requirement
(player’s internal method)

ENACT

Player Agent

Institution

DEACTIVATE

ACTIVATE

Role

DEACT
E

A

D

C

E G

F

Request(requirement)

Inform(0|1)

Request(power)

Inform(result)

Inform(reqFail)

Inform(powFail)

Power

Role

Institution

(a) (b)

Fig. 1. (a) The states of role playing. - (b) The behaviour of roles - A: ManagePwRequest (man-
ages the request from player); B: ManageReqRequest (if a requirement is needed); C: Execute
(executes the called power); D: MatchReq (checks if all requirements are ok); E: InformResult
(sends results to player); F: InformFail (sends fail caused by requirement missing); G: Inform-
PowerFail (sends fail caused by power failure).

of the activated state checks if the power exists in the role specification and sends an
appropriate message to the role agent. Otherwise an exception is raised. If another be-
haviour of the agent decides to deactivate the role the deactivated state is entered. If a
message requesting requirements or invoke powers arrives from the role agent it plays,
the agent will decide whether or not to comply with the new request sent by the role.
First of all it checks that the required behaviour exists or there has been a mismatch at
the moment of enacting a role. If the role communicates to its player that the execution
of a power is concluded and sends the result of the power, this information is stored
waiting to be passed back to the behaviour which invoked the power upon its request
(see receivePowerResult). The cyclic behaviour associated with this state blocks itself
if no event is present and waits for an event.

Deactivated: The behaviour stops checking for the invocation of requirements or pow-
ers from respectively the role and the player itself, and blocks until another behaviour
activates the role again. The messages from the role and the power invocations from
other behaviours pile up in the queue waiting to be complied with, until an activation
method is called and the active state is entered.

Deact: The associated behaviour informs the role that the agent is leaving the role and
cleans up all the data concerning the played role in the agent.

One instance of this FSM, that can be seen in Figure 1, is created for each role played
by the agent. This means that for a role only one power at time is processed, while the
others wait in the message queue. Note that the information whether a role is activated
or not is local to the player: from the role’s point of view there is no difference. How-
ever, the player processes the communication of the role only as long as it is activated,

32 M. Baldoni et al.

otherwise the messages remains in the buffer. More sophisticated solutions can be im-
plemented as needed, but they must be aware of the synchronization problems.

The methods in the Player can be used to program the behaviours of an agent
when it is necessary to change the state of role playing or to invoke powers. We assume
that invocations of powers to be asynchronous. The call returns a call id which is used
to receive the correct return value in the same behaviour. It is left to the programmer to
stop of a behaviour till an answer is returned by JADE primitive block. This solution is
coherent with the standard message exchange of JADE and allows to avoid using more
sophisticated behaviours based on threads.

– enact(organizationAID, roleClassName): to request to enact a role an agent has to
specify the AID of the organization and the name of the class of the role. It returns
the AID of the role instance or an exception is raised.

– receivePowerResult(int): to receive the result of the invocation of a power.
– deact(roleAID), activate(roleAID), deactivate(roleAID) respectively deacts the role,

activates a role agent that is in the deactivate state, and temporarily deactivates the
role agent.

– invokePower(roleAID, power): to invoke a power it is sufficient to specify the role
AID and the name of the behaviour of the role which must be executed. It returns
an integer which represent the id of the invocation.

– addRequirement(String): when extending the Player class it is necessary to specify
which of the behaviours defined in it are requirements. This information is used
in the canPlay private method which is invoked by the enact method to check if
the agent can play a role. This list may contain non truthful information, but the
failure to comply with the request of a commitment may result in the deactment to
the role as soon as the agent is not able to satisfy the request to execute a certain
requirement.

Moreover, an agent, in order to be a player, has to implement an abstract method to
decide whether to execute the requirements upon request from the roles. The method
adoptGoal is used to preserve the player autonomy with reference to requirement re-
quests from the role he’s playing. The result is true if the player decides to execute the
requirement.

4 Interaction

In this section we describe the different protocols used in the interaction between agents
who want to play roles and organizations, and between players and their roles. All
protocols use standard FIPA messages, to enable also non JADE agents to interact with
organizations without further changes. Figure 2 describes the sequence diagram of the
interaction.

4.1 Agents and the Organization

Behind the enacting state of the player described in the previous section, there is an enact-
ment protocol inherited, respectively, as concern the initiator and the receiver, from the
classes Player and Organization. It forwards from the player to the organization

How to Program Organizations and Roles in the JADE Framework 33

:RoleA

: Player

request(roleA)

[check_req() false]

[RoleA instantiable]
inform(true, reqlist[], powlist[])

inform(failure)
[RoleA non−instantiable]

: Organization

check_request()

agree(roleA)

failure(debug_info)

<<create>>

[agreed RoleA]

[ID RoleA]

[if any req]
request(requirements)

exec requirements()

inform(results)
exec_pow1()

[check_req() true]

inform(pow1_results)
[if pow1 executed]

request(pow1)

inform(roleAID)

Fig. 2. The interaction protocol

the request of enacting a specified role, and manages the exchange of information: send-
ing the specification of requirements and powers of the roles and checking whether the
player complies with the requirements.

The organization listens from messages from any agent (even if some restrictions can
be posed at the moment of accepting to create the role), while the subsequent commu-
nication between player and role is private. After a request from an agent the behaviour
representing the protocol forks creating another instance of itself to be ready to receive
requests of other agents in parallel.

The first message is sent by the player as initiator and is a request to enact a
role. The organization, if it considers the agent authorized to play the role, returns to
the candidate player a list of specifications about the powers and requirements of the
requested role which are contained in its knowledge base, sending an informmessage
containing the list; otherwise, it denies to the player to play the role, answering with an
inform message, indicating the failure of the procedure. In case of positive answer,
the player, invoking the method canPlay using the information contained in the player
about the requirements, decides whether to respond to the organization that it can play
the role (agree) or not (failure).

The first answer results in the creation of a new role instance of the requested type
and in the update of the knowledge base of the organization with the information that
the player is playing the role. To the role instance the organization passes the AID
of the role player, i.e., the initiator of the enactment, so that it can eventually filter
out the messages not coming from its player. An inform is sent back to the player
agent, telling him the played role instance’s AID, The player, in this way, can address
messages to the role and it can identify the messages it receives from the role it plays.
Then the agent updates its knowledge base with this information, labeling the role as
still deactivated. The protocol terminates in both the player and the organization. This
completes the interaction with the organization: the rest of the interaction, including
deacting the role, passes through the role instance only.

34 M. Baldoni et al.

4.2 Players and Their Roles

The interaction between a player and its role is regulated by three protocols: the request
by the role of executing a requirement, the invocation of a power by the player, and the
request of the role to invoke a power. In all cases, the interaction protocol works only
between a player and the role instances it plays. Messages following the protocol but
which do not respect this constraint are discharged on both sides.

We start from the first case since it is used also in the second protocol during the
execution of a power. According to Dastani et al. [9] if a role is activated, the player
should (consider whether to) adopt its goals and beliefs. Since our model is distributed,
the role is separated from its player: the goals (i.e., the requirements) and beliefs of
the role have to be communicated from the role to its player by means of a suitable
communication protocol. Each time the state of the role changes, since some new goal
is added to it, the agent is informed by the role about it: either a requirement must be
executed or a power must be invoked. In this protocol, the initiator is the role, which
starts the behaviour when its method requestRequirement is invoked.

First of all, the agent checks if the requested requirement is in the list of the player’s
requirements, but this does not mean that it will be executed. Since the player agent
is autonomous, before executing the requirement, it takes a decision by invoking the
method adoptGoal which is implemented by the programmer of the player. The protocol
ends by informing the role about the outcome of the execution of the requirement or the
refusal of executing it, using an “inform” (see bottom of Figure 1 b).

This protocol is used inside the protocol initiated by the player for invoking a power
of the role. After a request from the player, the role can reply with the request of ex-
ecuting some requirements which are necessary for the performance of the power. In
fact, in the behaviour corresponding to the power, some invocation of the method re-
questRequirement can be present. The protocol ends with the role informing the agent
about the outcome of the execution of the power.

A third protocol is used by the role to remind the agent about its responsibilities, i.e.,
the role asks its player to invoke a power executing the method requestResponsibility.
In this case the object of the request is not a requirement executable by the player, but
a power, i.e., a behaviour of the role. So the player has to decide whether and when to
invoke the power.

In principle, the programmer could have invoked a power directly from the role, in-
stead of requesting it by means of requestResponsibility. However, with this mechanism
we want to model the case where the player is obliged to invoke the power but the de-
cision of invoking the power is left to the player agent who can have more information
about when and how invoke the power. It is left to the programmer of the organization
to handle the violation of such obligations.

The final kind of interaction between a player and its role is the request of a player
to deact the role. While deactivation is an internal state of the player, which is not
necessarily communicated to the role, deacting requires that the role agent is destroyed
and that the organization clears up the information concerning the role and its player.

How to Program Organizations and Roles in the JADE Framework 35

5 Conclusions

In this paper we use the ontological model of organizations proposed in [6] to program
organizations. We use as agent framework JADE since it provides the primitives to pro-
gram MAS in Java. We define a set of Java classes which extends the agent classes of
the JADE to have further primitives for building organizations structured into roles. To
define the organizational primitives JADE offered advantages but also posed some dif-
ficulties. First of all, being based on Java, it allowed to reapply the methodology used
to implement roles in powerJava [2] to implement roles as inner classes. Moreover,
it provides a general purpose language to create new organizations and roles. Finally,
being based on FIPA speech acts, it allows agents programmed in other languages to
play roles in organizations, and viceversa, JADE agents to play roles in organizations
not implemented in JADE. However, the decision of using JADE has some drawbacks.
For example, the messages used in the newly defined protocols can be intercepted by
other behaviours of the agents. This shows that a more careful implementation should
use a more complex communication infrastructure to avoid this problem. Moreover,
since JADE behaviours differently from methods do not have a proper return value,
they make it difficult to define requirements and powers. Finally, due to the possi-
ble parallelism of behaviours inside an agent, possible synchronization problems can
occur.

Few agent languages are endowed with primitives for modeling organization.
MetateM [11] is one of these, and introduces the notion of group by enlarging the no-
tion of agent with a context and a content. The context is composed by the agents (also
groups are considered as agents like in our model organizations are agents) which the
agent is part of, and the content is a set of agents which are included. The authors pro-
pose to use these primitives to model organizations, defining roles as agents included
in other agents and players as agents included in roles. This view risks to leave apart
the difference between the play relation and the role-of relation which have different
properties (see, e.g., [18]). Moreover it does not distinguish between powers. Finally
MetateM is a language for modeling BDI agents, while JADE has a wider applicability
and is built upon on the Java general purpose language.

About S-Moise+ features [16], we will improve our system with agent sets and sub-
set as particular inner classes in the Organization class. Very interesting is the matter
of cardinality, constraint that we will implement considering both minimum than max-
imum cardinality allowed for each group.

The principles of permission will be implemented through a specific new protocol,
called Permissions, which will allow to a role a call to another role’s power, if
and only if the first role’s player can show (at the time of execution) his credentials
(additional requirements); if no additional requirement is given, the other role’s power
invocation cannot be done.

Another future work is related to Obligations [16]; we are going to implement them
by particular requirements that have to produce some result in a fixed time. If no result
is produced, then a violation occours and this behaviour is sanctioned in some way.
Planning goals too will be realized by requirements, that can be tested one after another
to play single missions.

36 M. Baldoni et al.

References

1. Baldoni, M., Boella, G., van der Torre, L.: Modelling the interaction between objects: Roles
as affordances. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092,
pp. 42–54. Springer, Heidelberg (2006)

2. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava. Journal
of Object Technology 6(2), 7–12 (2007)

3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley, Chichester (2007)

4. Boella, G., Damiano, R., Hulstijn, J., van der Torre, L.: ACL semantics between social com-
mitments and mental attitudes. In: Proc. of AC 2005 and AC 2006. LNCS (LNAI), vol. 3859,
pp. 30–44. Springer, Heidelberg (2006)

5. Boella, G., Genovese, V., Grenna, R., der Torre, L.: Roles in coordination and in agent delib-
eration: A merger of concepts. In: Proc. of Multi-Agent Logics, PRIMA 2007 (2007)

6. Boella, G., van der Torre, L.: Organizations as socially constructed agents in the agent ori-
ented paradigm. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS
(LNAI), vol. 3451, pp. 1–13. Springer, Heidelberg (2005)

7. Cabri, G., Ferrari, L., Leonardi, L.: Agent roles in the brain framework: Rethinking agent
roles. In: The 2004 IEEE Systems, Man and Cybernetics Conference, session on Role-based
Collaboration (2004)

8. Colman, A., Han, J.: Roles, players and adaptable organizations. Applied Ontology (2007)
9. Dastani, M., van Riemsdijk, B., Hulstijn, J., Dignum, F., Meyer, J.-J.: Enacting and deact-

ing roles in agent programming. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004.
LNCS, vol. 3382, pp. 189–204. Springer, Heidelberg (2005)

10. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organizational view
of multiagent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003. LNCS,
vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

11. Fisher, M.: A survey of concurrent metatem - the language and its applications. In: ICTL, pp.
480–505 (1994)

12. Fisher, M., Ghidini, C., Hirsch, B.: Organising computation through dynamic grouping. In:
Objects, Agents, and Features, pp. 117–136 (2003)

13. Grossi, D., Dignum, F., Dastani, M., Royakkers, L.: Foundations of organizational structures
in multiagent systems. In: Procs. of AAMAS 2005, pp. 690–697 (2005)

14. Gutknecht, O., Ferber, J.: The madkit agent platform architecture. In: Agents Workshop on
Infrastructure for Multi-Agent Systems, pp. 48–55 (2000)

15. Huebner, J.F.: J-Moise+ programming organizational agents with Moise+ and Jason (2007),
http://moise.sourceforge.net/doc/tfg-eumas07-slides.pdf

16. Huebner, J.F., Sichman, J.S., Boissier, O.: S-moise+: A middleware for developing organ-
ised multi-agent systems. In: Proc. of AAMAS Workshops. LNCS, vol. 3913, pp. 64–78.
Springer, Heidelberg (2005)

17. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation, roles
and contexts in MAS. Applicable Algebra in Engineering, Communication and Comput-
ing 16(2-3), 151–178 (2005)

18. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data and Knowledge Engineering 35, 83–848 (2000)

19. Tinnemeier, N., Dastani, M., Meyer, J.-J.C.: Orwell’s nightmare for agents? programming
multi-agent organisations. In: Proc. of PROMAS 2008 (2008)

20. van der Hoek, W., Hindriks, K., de Boer, F., Meyer, J.-J.C.: Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

21. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. IEEE Transactions of Software Engineering and Methodology 12(3), 317–370
(2003)

http://moise.sourceforge.net/doc/tfg-eumas07-slides.pdf

Agent Models for Concurrent Software Systems

Lawrence Cabac, Till Dörges, Michael Duvigneau, Daniel Moldt,
Christine Reese, and Matthias Wester-Ebbinghaus

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI

Abstract. In this work we present modeling techniques for the devel-
opment of multi-agent applications within the reference architecture for
multi-agent system Mulan. Our approach can be characterized as model
driven development by using models in all stages and levels of abstrac-
tion regarding design, implementation and documentation. Both, stan-
dard techniques from software development as well as customized ones
are used to satisfy the needs of multi-agent system development. To il-
lustrate the techniques and models within this paper we use diagrams
created during the development of an agent-based distributed Workflow
Management System (WFMS).

Keywords: High-level Petri nets, nets-within-nets, reference nets, net
components, Renew, modeling, agents, multi-agent systems, Paose.

1 Introduction

The agent metaphor is highly abstract and it is necessary to develop software en-
gineering techniques and methodologies that particularly fit the agent-oriented
paradigm. They must capture the flexibility and autonomy of an agent’s problem-
solving capabilities, the richness of agent interactions and the (social) organiza-
tional structure of a multi-agent system as a whole.

Many agent-oriented software development methodologies have been brought
forward over the past decade, many of them already in a mature state. Here, we
present our contribution to this rapidly evolving field of research by describing
agent models and their usage during the development of multi-agent systems with
Mulan (Multi-Agent Nets [7]). As a matter of course there existmany analogies to
related agent-oriented development techniques and methodologies like Gaia [15],
MaSE [4] or Prometheus [11]. This concerns development methods and abstrac-
tions like use cases, system structure (organization) diagrams, role models, inter-
action diagrams and interaction protocols as well as more fine-grained models of
agents’ internal events, data structures and decision making capabilities.

Our approach Paose (Petri net-based AOSE) facilitates the metaphor of
multi-agent systems in a formally precise and coherent way throughout all as-
pects of software development as well as a concurrency-aware (Petri net-based)
modeling and programming language. The metaphor of multi-agent systems is

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 37–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.informatik.uni-hamburg.de/TGI

38 L. Cabac et al.

formalized by the Mulan reference architecture, which is modeled using refer-
ence nets. We integrate several ideas from the methodologies mentioned above
as well as concepts from conventional modeling techniques (UML). The result of
those efforts is a development methodology that continuously integrates our phi-
losophy of Petri net-based and model-driven software engineering in the context
of multi-agent systems.

This paper focuses on the set of modeling techniques used within the Paose ap-
proach. Other aspects have already been presented, for example the multi-agent
system as a guiding metaphor for development processes in [1]. In Section 2 we in-
troduce the basic conceptual features of multi-agent application development with
Mulan. The particular techniques, models and tools are presented in Section 3.

2 Concepts of Application Development with Mulan

Reference nets1 and thus also Mulan run in the virtual machine provided by
Renew [9], which also includes an editor and runtime support for several kinds
of Petri nets. Since reference nets may carry complex Java-instructions as in-
scriptions and thereby offer the possibility of Petri net-based programming, the
Mulan models have been extended to a fully elaborated and running software
architecture, the FIPA2-compliant re-implementation Capa [5].

Reference nets can be regarded as a concurrency extension to Java, which
allows for easy implementation of concurrent systems in regard to modeling
(implementation) and synchronization aspects. Those – often tedious – aspects
of implementation regarding concurrency are handled by the formalism as well
as by the underlying virtual machine. In this aspect lies the advantage of our
approach. We rely on a formal background, which is at the same time tightly
coupled with the programming environment Java. Mulan can be regarded as
a reference architecture for concurrent systems providing a highly structured
approach using the multi-agent system metaphor.

We describe the internal components of the Mulan agent followed by an
investigation of the interrelations between them, which results in the organiza-
tional structure of the system. For the details of further aspects of the Mulan
architecture we refer to Rölke et al. [7].

2.1 The Mulan Agent

The reference net-based multi-agent system architecture Mulan (Multi Agent
Nets) structures a multi-agent system in four layers, namely infrastructure, plat-
form, agent and protocol [7,12]. Figure 1 shows a schematic net model of a Mulan
agent. Several parts of the operational model, such as inscriptions, synchronous

1 Reference nets [8] are high-level Petri nets comparable to colored Petri nets. In addi-
tion they implement the nets-within-nets paradigm where tokens are active elements
(token refinement). Reference semantics is applied, so tokens are references to net
instances. Synchronous channels allow for communication between net instances.

2 Foundation for Intelligent Physical Agents http://www.fipa.org

http://www.fipa.org

Agent Models for Concurrent Software Systems 39

Fig. 1. Agent net

channels and initialization, are omitted for clearness. Instead, descriptive names
have been given to the net elements representing synchronous channels or place
contents. The model stresses that the agent is a communicating agent being able
to receive and send messages. The labeled places store references to net instances
that provide or refine the main functionality of the agent. These are the Factory,
the Knowledge base, the Decision components, and the Protocols. Protocol and de-
cision component nets comprise parts of the domain-specific agent behavior, the
two corresponding places in the agent net may contain numerous net instances
(compare nets-within-nets [14]).

The factory produces net instances from net patterns of protocols and decision
components. It realizes reactive and proactive behavior by examining incoming
messages and the agent’s knowledge.

The knowledge base offers database functionality including atomic query, cre-
ate, remove and modify operations to other subnets of the agent. It is used to
store persistent information to be shared by protocol nets and decision compo-
nents, for example the agent’s representation of the environment. The knowledge
base also stores the agent’s configuration. It holds information about provided
and required services, and a mapping of incoming messages to protocol nets.

Protocol nets implement domain-specific agent behavior. Each protocol net
template models the participation of an agent role in a multi-agent interaction
protocol. Instantiated protocol nets reside on the place Protocols of the agent,
handle the processing of received messages and may generate outgoing messages.
Protocol net instances are the manifestations of the agent’s involvement in an in-
teraction with one or more other agents. They can access the knowledge base and
exchange information with decision components through the exchange channel.

40 L. Cabac et al.

Decision components implement, like protocol nets, domain-specific agent be-
havior. A decision component net instance can be queried by protocol net in-
stances to add flexibility to the static, workflow-like character of protocol nets.
Decision components can also initiate proactive agent behavior by requesting
the factory to instantiate protocol nets. Thus an AI-like planning component
can be attached to an agent as a decision component or the functionality can be
implemented directly as reference nets. Decision components may also encapsu-
late external tools or legacy code as well as a graphical user interface whereby
the external feedback is transformed into proactive agent behavior.

2.2 Organizational Structure

In a multi-agent application the organizational structure has to be defined, such
that responsibilities for all aspects of the system are specified. The general per-
spectives in the area of a multi-agent systems are the structure, the interactions,
and the terminology. These perspectives are orthogonal with connecting points
at some intersections (compare Figure 2).

The structure of a multi-agent system is given by the agents, their roles,
knowledge bases and decision components. The behavior of a multi-agent system
is given by the interactions of the agents, their communicative acts and the
internal actions related to the interactions. The terminology of a multi-agent
system is given as a domain-specific ontology definition that enables agents and
interactions to refer to the same objects, actions and facts. Without a common
ontology successful interactions are impossible.

Fig. 2. Two dimensional matrix showing perspectives (behavior, structure)

A schematic two dimensional matrix is depicted in Figure 2 showing the in-
dependence and interconnection of agents and interactions. Neither is there any
direct relationship between any pair of agents, nor between any pair of interac-
tions. Thus these architectural elements are independent and depicted in parallel
to each other. Agents and interactions are shown as orthogonal because each
agent is involved in some interactions. The general case for any two structural
and/or behavioral elements is independence, but interconnections exist. Coupled
agents and interactions are marked by circles in the figure.

The terminology defined as ontology is the third dimension of perspectives
(omitted in the diagram). It is orthogonal to the other two, but it tends to have

Agent Models for Concurrent Software Systems 41

many interconnecting points because each interaction and each agent uses parts
of the ontology definition to fulfill its purpose.

Since the three perspectives are orthogonal to each other and independent
within the perspective, it is easily possible to divide the tasks of design and
implementation into independent parts. This means that different interactions
can be developed by independent sub-teams and different agents can be designed
by other independent sub-teams. Between agent teams and interaction teams,
coordination is needed for the crucial parts only (circles in the diagram).

These three perspectives enable us to develop the parts of the system inde-
pendently and concurrently – thus also distributedly – as long as there is enough
coordination / synchronization between intersecting groups.

3 Techniques, Models and Development Tools

In this section we describe the techniques applied during the various stages
of multi-agent application development with Mulan. An agent-based Work-
flow Management System serves as an example application to provide real-world
models. However, since the WFMS is not the objective here, we will not go into
detail of its design.

We present the applied techniques and resulting models starting with the
coarse design giving an overview over the system, continuing with the definition
of the structure of the multi-agent application, the ontology and the behavior of
the agents.

3.1 Coarse Design

The requirements analysis is done mainly in open discussions. The results are
captured in simple lists of system components and agent interactions. This cul-
minates in a use case diagram as shown in Figure 3. Of course other methods to
derive use cases can also be applied.

A use case diagram is especially useful to derive the multi-agent application
matrix because we depict agent roles in the system as actors in the diagram. In
contrast, usually in use case models the actors represent real world users.

Figure 3 shows the Account Manager (AM) role, the Workflow Data Base
(WFDB) role, the Workflow Management System (WFMS) role and the User
role together with several interactions. Already the use case diagram reveals the
matrix structure in two dimensions. Agent roles form the multi-agent applica-
tion structure while interactions form the behavior of the system. Arcs in the
diagram correspond to the matrix interconnection points from Section 2.2. Use
case diagrams are drawn directly in Renew. The use case plugin provides the
functionality by adding a palette of drawing tools to the editor.

The use case plugin (UC-Plugin) integrates a generator feature, which gen-
erates the complete folder structure of the application necessary for the imple-
mentation of a multi-agent application. This includes a standard source package
folder structure, skeletons for all agent interactions, role diagram and ontology

42 L. Cabac et al.

User

WFMS

AM

login/logout

init Workflow

offer Workitem List

request Workitem

cancel/confirm Activity

edit Workflow

WFDB

show State

authenticate

Use Cases in WFMS

@authors group discussion
 participants
@date Nov 17, 2006

"/" in use cases
and actor names
refer to multiple
use cases, actors
resp.

Almost all interactions that
handle workitems have to pass
authenticaten.
For diagram conciseness these
dependencies have been omitted.

Fig. 3. Fragment of a use case diagram showing the system’s coarse design

files as well as configuration files and build / start skripts. The generator utilizes
the Velocity3 template engine.

3.2 Multi-agent Application Structure

The structure of the multi-agent application is refined using a R/D diagram
(role/dependency diagram). This kind of diagram uses features from class di-
agrams and component diagrams. Class diagrams provide inheritance arcs to
denote role hierarchies. Component diagrams provide explicit nodes for services
as well as arcs with uses and offers semantics to denote dependencies between
roles. Initial values for role-specific knowledge bases are included through refine-
ment of nodes.

Fig. 4. Fragment of a R/D diagram (agents, roles, services)

3 The Apache Velocity Project http://velocity.apache.org/

http://velocity.apache.org/

Agent Models for Concurrent Software Systems 43

Figure 4 shows a fragment of the WFMS R/D diagram. The fragment depicts
several roles marked «AgentRole»: CapaAgent, AuthenticationNeeder, Account-
Manager and WFEngine. Also some services marked «Interface» are depicted:
SessionManagement, Authentication etc. As an example, the service Authenti-
cation is offered by the AccountManager and used by each agent that holds the
role AuthenticationNeeder.

The agent role descriptions are automatically generated from the R/D dia-
gram. Role descriptions are combined to form agent descriptions (initial knowl-
edge bases). Roles can easily be assembled to form the multi-agent application
using the graphical user interface. The multi-agent application is started either
from within the tool, by a startup script or by a Petri net.

3.3 Terminology

The terminology of a multi-agent system is used in a twofold way. First, it is
used in form of an ontology definition by the agents to communicate with each
other and for their internal representation of the environment. Second, it is used
among the developers to communicate about the system and its design.

Fig. 5. Fragment of the WFMS ontology

To define the ontology of our multi-agent applications we have been using
Protégé4 for over two years now. Ontologies are defined in Protégé and then
translated by a generator into Java classes. Protégé is a very powerful tool, but
it features a completely different user interface design than Renew.

The Renew feature structure plugin allows to explicitly model the ontology
as a concept diagram as shown in Figure 5. These are class diagrams restricted
to inheritance and association. The concept diagrams can easily be understood
by all sub-teams to capture the context of the concepts in use.

Up to now, the translation of models from the feature structure concepts to
Protégé ontologies is a manual task. The Protégé model can then be used to
generate the Java ontology classes. However, we have also developed a proto-
typical implementation of an ontology classes generator (directly) from concept
diagrams. We are also working on transformations from and to Protégé models.
4 Protégé http://protege.stanford.edu/

http://protege.stanford.edu/

44 L. Cabac et al.

3.4 Knowledge and Decisions

While the agent’s interactive behavior is defined in the interaction protocols (see
next section), the facts about its environment are located in the agent’s knowl-
edge base. The initial knowledge of the agent is defined in its initial knowledge
base file, constructed by joining information from the role definitions, which
have been defined in the R/D diagram (introduced in Section 3.2). This XML
document that can also be customized apart from the R/D diagram is parsed to
build the initial knowledge of the agent during its initialization. Alternatively, a
text file in the style of properties files suffices for the same purpose.

START

channel
name

s

rkitem, id);

[id,workitem]

>> id

[id,success]

proxy [request workitem
from proxy]

id id

requested
workitem

proxy:request
(workitem,success)

requested
workitems

[id,workitem]

>

>

>

id

id

id

id

id

id

success
information

refuse

accept

[id,success]

[id,success]
success

information

guard (success==true)

action sucs=new Success()

channel
name

s

s

:exchange(s,sucs,id)

guard (success==false)
action fail=new Failure("not")

:exchange(s,fail,id)

[report whether
successful

or not]

W kit

proxy

Fig. 6. Fragment of a decision component net: RequestWorkitemHandling

Decision components (DC) are constructed as reference nets. There exists a
generalized form of a DC providing GUI interface connection. Also net compo-
nents [2] for the development of DCs are provided.

Figure 6 shows a fragment of the DC net handling the request of a user for a
workitem in the workitem dispatcher agent. The net holds the proxy net which
implements the interface to the workflow engine. A request starts at the left of
the image and is handed over to the proxy, which holds a list of available work
items for the given user. The result of the request is handed back to the DC net
and passed (via the exchange channel) on to the requester, a protocol net, which
in turn sends an appropriate message to the requesting agent.

3.5 Behavior

The interactive behavior of the system components is specified using agent inter-
action protocol diagrams (AIP, introduced in [10], integrated in Paose in [3]).

Figure 7 depicts a fragment of an AIP involving the two roles AccountMan-
ager and WorkitemDispatcher in the authenticate interaction. Agent interaction
protocol diagrams are integrated in our tool set through the Renew Diagram
plugin which is also capable of generating functional skeletons for protocol nets.
As described in Section 2, protocol nets are reference nets that directly define
the behavior of a Mulan agent.

Protocol nets are composed of net components [2]. Net components are also
used for automatic generation of protocol net skeletons from agent interaction

Agent Models for Concurrent Software Systems 45

refuse

failure

3.

checkCredentials

request: HasRequiredUserRole

confirm / disconfirm

Accountmanager_authenticateWorkitemDispatcher_requestWorkitem

gnWorkitem

Fig. 7. Fragment of an agent interaction protocol diagram

>

:start()

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.renew.agent.wfms.ontology.*;
import de.renew.agent.repr.management.ontologiy.*;
import de.renew.agent.repr.common.*;
import de.renew.agent.repr.sl.*;
import de.renew.net.NetInstance;
import de.renew.net.Net;
import de.renew.agent.wfms.roles.wfdefdb.WFDDBHelper;

P2
p

>

:in(p)

p

>

p

IN

p pP2

p2

p2

>

OUT

:out(p2)

>

p

p2

>

OUT

>

:stop()

STOP

>

InitialMessage

p

p

InitialMessage

action error = new ErrorInformation();
action error.setReason("Workflownet not found");

action p2 = Sl0Creator.createActionFailureMessage(p, error)

initial request for a WFD

send an inform-result(WFD) to WFES

send a failure to WFES

WFD WFD

wfDefwfDef

WFD

wfDef

action p2 = Sl0Creator.createReplyResultInform(p, wfDef);

o

action o = WFDDBHelper.retrieveWFD(
GetWorkflowDefinition.fromAclMessage(p).getWfDescription().getName())

WFDDBHelperReturnValue

o

WFD found

>

Error occured

>

IF

false

true

>

cond

>

>

>

>

MAJOIN

cond = o instanceof WorkflowDefinition

ErrorInformation
retrieved

>

no ErrorInformation >

IF

false

true

>

cond

>>

extract
ErrorInformation

>>

>

>

AJOIN

>

>

:out(p2)

action p2 = Sl0Creator.createActionFailureMessage(p, error)

send Failure to WFES

OUT

p2

p2

>

>>

action wfDef = (WorkflowDefinition)o;

getWFD

o

WFDDBHelperReturnValue

WFDDBHelperReturnValue o

WFDDBHelperReturnValue

o

error

error

error

action error = (ErrorInformation)o
p

ErrorInformation

InitialMessage

cond = o instanceof ErrorInformation

WFDDBHelperReturnValue

InitialMessage

>

>

cond = (wfDef!=null)
false

trueIF

>

WFD known

WFD unknown

cond

Fig. 8. A protocol net constructed with net components

protocol diagrams. The protocol nets are then refined during the implementation
phase by adding inscriptions to the nets. Figure 8 shows an example protocol
net.5 Several decisions are made after receiving a request message. Finally, the
appropriate answer is sent back.

With the implementation of interactions as protocol nets, the internal processes
as decision components and the knowledge bases through the description of the
role diagram, the whole multi-agent application is defined.

Additionally, all diagrams presented here serve as documentation elements
and are included in the API-documentation of the system (MulanDoc Plugin).

3.6 Summary

In the context of Mulan and Paose we can identify three basic dimensions
in which the perspectives on the system can be categorized. Structure relates
5 The net components are recognizable and show the structure of the protocol net.

46 L. Cabac et al.

to roles and knowledge, which is functionally decomposed. Behavior relates to
interactions and internal processes, which reflects the natural view via Petri nets
onto systems with respect to behavior. Terminology is covered by ontologies and
provides the glue between the different perspectives. Organizational embedding
is covered by the matrix-like treatment, which provides the relationships between
entities in the organizational context including the involved people. In addition,
Table 1 shows a table of relations between task types, modeling techniques, ap-
plied tools and resulting artifact.

Table 1. Overview over the contiguous techniques

Task Model Tool Result
Coarse Design Use Case Diagram UC Plugin Plugin Structure
Ontology Design Concept Diagram FS-Nets/Protégé Generated Classes
Role Design R/D Diagram KBE Plugin Knowledge Bases
Internal Processes Petri Net Diagram6 Renew6 Decision Components
Interaction Design AIP Diagram Diagram Plugin Protocol Nets

3.7 Experiences

The presented approach has been applied to several teaching projects consisting
of twenty to forty students, tutors and lecturers. The approach has been fur-
ther developed over the years, which resulted in better tool support and further
elaboration of methods and techniques (many of which were presented earlier).
After a phase of learning the concepts, methods and techniques, the students
were able to design and construct rather complex concurrent and distributed
software systems. For example, an agent-based workflow management system
(compare with the diagrams of this paper) was developed using this approach.

The results of 5 weeks of teaching and 9 weeks of implementation include
about 10 agent roles, more than 20 interactions and almost 70 concepts in the
ontology. The outcome is a running prototype of an distributed agent based
workflow management system, where a user is represented by an agent and
the basic features are provided through a user GUI: Authentication, workflow
instantiation, offering of available tasks according to application roles and task
rules, accepting, cancellation and conclusion of tasks during the progress of a
workflow. Workflows themselves are specified with Petri nets using a special task
transition which provides cancellation (compare [6]). Thus synchronization and
conflict solving are provided by the inherent features of the Renew simulation
engine. This example and our other previous projects show that Paose together
with the guiding metaphor of a multi-agent system of developers [1] enable us to
develop multi-agent applications with Mulan. The developed methods and the
tool support have proven to be effective in supporting the development process.

6 For the internal processes no abstract modeling technique has been presented. Several
proposals exist, but have not resulted in tool support, yet. However, those processes
can be modeled directly as reference nets in Renew or can be externalized.

Agent Models for Concurrent Software Systems 47

4 Conclusion

In this paper we present the modeling techniques used within the Paose ap-
proach to build agent models. The tools that are used during the development
process support all tasks of development with modeling power, code genera-
tion and deployment facilities. Still some of the tools have prototypical char-
acter. Specifically, we have presented techniques to model structure, behavior
and terminology of concurrent software systems in a coherent way following the
multi-agent paradigm. All techniques and tools own semantics built upon the
unique, concurrency-oriented modeling and programming language of reference
nets, either directly or by referring to the Mulan reference architecture.

The concurrency-awareness in development process and modeling techniques
distinguishes our approach from most of the methodologies mentioned in the
introduction since they usually do not address true concurrency explicitly (com-
pare [13]). The advantage of tight integration of abstract modeling techniques
with the conceptual framework given through the formal model of Mulan is
responsible for the clearness and the effectivity of our approach.

For the future, we follow several directions to refine the approach. On the
practical side, we look into further developments, improvements and integration
of tools and techniques. On the conceptual side, we work on expanding the multi-
agent-oriented approach to other aspects of the development process like project
organization and agent-oriented tool support. Following these directions, we want
to achieve symmetrical structures in all three aspects of software development:
the system, the development process and the project organization (compare [1]).

References

1. Cabac, L.: Multi-agent system: A guiding metaphor for the organization of software
development projects. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.)
MATES 2007. LNCS (LNAI), vol. 4687, pp. 1–12. Springer, Heidelberg (2007)

2. Cabac, L., Duvigneau, M., Rölke, H.: Net components revisited. In: Moldt, D. (ed.)
Fourth International Workshop on Modelling of Objects, Components, and Agents.
MOCA 2006, pp. 87–102 (2006)

3. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring Petri net-based agent
interaction protocols. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 102–120. Springer, Heidelberg (2003)

4. DeLoach, S.: Engineering organization-based multiagent systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS
2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

5. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In: Giunchiglia, F., Odell, J.J., Weiss, G., Gerhard, W. (eds.) AOSE
2002. LNCS, vol. 2585. Springer, Heidelberg (2003)

6. Jacob, T., Kummer, O., Moldt, D., Ultes-Nitsche, U.: Implementation of workflow
systems using reference nets – security and operability aspects. In: Jensen, K. (ed.)
Fourth Workshop on Practical Use of Coloured Petri Nets. University of Aarhus,
Department of Computer Science (August 2002)

48 L. Cabac et al.

7. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of Petri
net agents. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075,
pp. 224–241. Springer, Heidelberg (2001)

8. Kummer, O.: Introduction to Petri nets and reference nets. Sozionik Aktuell 1, 1–9
(2001)

9. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – The Reference Net Workshop.
Release 2.1 (March 2007), http://www.renew.de

10. Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UML for agents. In: Wagner,
G., Lesperance, Y., Yu, E. (eds.) Proc. of the Agent-Oriented Information Systems
Workshop at the 17th National conference on Artificial Intelligence, pp. 3–17 (2000)

11. Padgham, L., Winikoff, M.: Prometheus: A pragmatic methodology for engineer-
ing intelligent agents. In: Proceedings of the OOPSLA 2002 Workshop on Agent–
Oriented Methodologies, pp. 97–108 (2002)

12. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Agent Technology – Theory and Applications, vol. 2. Logos
Verlag, Berlin (2004)

13. Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems.
In: Agents, pp. 624–631 (2001)

14. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–25. Springer,
Heidelberg (1998)

15. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software Engineering and Methodol-
ogy 12(3), 317–370 (2003)

http://www.renew.de

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 49–60, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Filtering Algorithm for Agent-Based Incident
Communication Support in Mobile Human Surveillance

Duco N. Ferro1 and Catholijn M. Jonker2

1 Almende B.V., Westerstraat 50,
3016 DJ Rotterdam, The Netherlands

duco@almende.org
2 Man-Machine Interaction group, Delft University of Technology,

Mekelweg 4, 2628 CD Delft, The Netherlands
C.M.Jonker@tudelft.nl

Abstract. This paper presents an ontology and a filtering algorithm used in an
agent-based system to support communication in case of incidents in the mobile
human surveillance domain. In that domain reaching the right people as soon as
possible is of the essence when incidents occur. The main goal of our efforts is
to significantly reduce the response time in case of incidents by proposing and
setting up the communication to the right people. Experimental results show
that this can reduce the response time by more than 50%, e.g., from 40 to 20
minutes. To continuously improve the accuracy of the proposed communica-
tions, the agent-based system uses feedback mechanisms. An implementation of
this system, ASK-ASSIST, has been deployed at a mobile human surveillance
company.

Keywords: Mobile human surveillance, incident management, communication
support, collaborative filtering, agent-based decision support.

1 Introduction

Efficient and effective communication is critical to timely align human and other
resources capable of handling incidents. In domains such as security, crisis manage-
ment, medical care, the military and traffic incident management, hundreds of indi-
viduals distributed over various groups and organizations perform several tasks at
different places and move from one location to another over time. Such tasks are by
nature urgent, localized and incident prone. As performing these tasks effectively
typically depends on the activities and goals of other people, the activities and com-
munication sessions need to be coordinated. Individuals that are not co-located need
information and communication technology to coordinate their actions.

The leading case study of this paper is incident management during patrols in the
domain of mobile human surveillance (MHS). In those domains patrols are planned in
advance but may be disrupted by unforeseen events requiring immediate attention
(e.g., in [9]). Managing incidents is complicated by a number of factors. The knowl-
edge, information or support required for dealing with incidents is distributed across

50 D.N. Ferro and C.M. Jonker

the organizations involved. The availability of resources changes over time, and so
does the context. In addition, due to organizational and legal requirements, incidents
need to be resolved within a certain time limit. Due to these problems, individuals
need to initiate and, possibly, anticipate the needed communication on the basis of
incomplete and uncertain information.

Currently, central communication points (e.g., dispatch centers) are used to deal
with these problems. Human operators at the central communication point respond to
requests for support from the field. They propagate such requests across the network
to find proper assistance. While this approach is effective, it is not efficient. Due to
communication bottlenecks the response time to incidents can be too high [1].

To improve the efficiency of information provision in mobile human surveillance
networks, we present an agent-based communication management architecture that is
sustained by real-time self-organization. Analogous to recommendation system tech-
niques, which are usually applied to recommend, for instance, books, movies or music
to users, we propose an approach that ranks and recommends particular communica-
tion pairs/groups to actors that need assistance. For this we use information filters that
exploit similarities between actors reporting incidents with those that handled inci-
dents in the past and similarities between the incidents themselves and the contexts in
which they occurred.

In this approach all entities in the application domain are associated to their own
personal software agent. The idea is that each agent is capable of exploring potential
links with other agents in a peer-to-peer manner that exceeds the network of the rep-
resented entity itself. Using these links the system can induce, rank and recommend
communication groups according to the probability that these groups are capable of
handling the incident at hand. Once a recommendation is made to the requesting ac-
tor, the result is evaluated using implicit and explicit feedback mechanisms. Implicit
feedback is obtained by evaluating the time to solve the incident. Explicit feedback
consists of feedback grades provided by the security actors themselves, after the inci-
dent is handled. Depending on these evaluations, the strength of the links among the
agents is adjusted or new links are created to further improve the support the system
offers.

The filtering algorithms and the multi-agent architecture have been implemented in
the ASK-ASSIST system to set up context- and incident-sensitive phone and/or con-
ference calls amongst the personnel in our case study domain. Experiments on the
data of Trigion, a mobile security company, show that our approach produces predic-
tion schemes that effectively and timely set up the communication network taking
into account the context of the individuals and other aspects of the security network
(e.g., feedback). The implemented system is currently in use by Trigion.

The remainder of this paper is organized as follows. In Section 2, we discuss re-
lated work and its potential in leveraging the communication bottleneck in incident
management. Section 3 introduces and formalizes the mobile surveillance domain.
The ASK-ASSIST system implementing the filtering algorithms and hosting the
agents is described in Section 4. The filtering techniques essential for recommending
the right communication are presented in Section 5. We discuss our work and lay out
our plans for future work in Section 6.

 Filtering Algorithm for Agent-Based Incident Communication Support in MHS 51

2 Related Work

The potential of decision support systems (DSS) for incident management is shown in
e.g., [11]. Although the literature describes ample work on decision support systems
for incident management, research on decisions support systems is in the early stages.
To facilitate the decision making process, the use of intelligent software agents, as an
intermediate layer, is proposed in [8] and [2]. Hybrid human-agent systems enable
such support, for instance, in health care [5].

The communication bottleneck is related to the problem of finding the right coali-
tion of people. Robust matchmaking or coalition formation appears to occur at critical
agent network scales. For example, in pair partnership matching an agent is satisfied
with a coalition of itself and only one other agent as soon as a specific threshold of a
value function is met or passed at a critical scale [7]. The effectiveness and efficiency
of such groupings and, in particular, the value functions have to be accounted for and
empirically tested.

In this paper we propose to use filtering techniques to find the most promising coa-
lition to meet the requirements of the incident and the agent reporting the incident. In
literature, different types of filtering techniques can be found:

• Content-based filtering [6] ,which allows the matching of an agent to an
agent coalition. A corresponding task can be allocated to alleviate an incident on the
basis of the similarity between an agent coalition given an incident and those of inter-
est to one agent given the specific incident.

• Collaborative filtering, either memory-based [4] or model-based [10], which
allows matching of an agent onto an agent coalition. A corresponding task can be
allocated to alleviate an incident on the basis of the similarity between the coalition
formation profile of an agent and those of other agents.

• Collaborative content-based filtering [3], which combines the above.
Although these techniques already allow filtering incident management data, to the

best knowledge of the authors, no literature on collaborative content-based filtering
techniques for this domain can be found. To solve the communication bottleneck we
propose to use collaborative content-based filtering.

3 Mobile Human Surveillance and Its Formalization

In this section, we present a real world case study of the mobile human surveillance
domain. First we illustrate our case study by showing some examples of the activities
in the case domain. Then, we present a formalization of this domain, which will be
used in the following section to describe the filtering algorithms. The main categories
in the formalization refer to actors, shifts, communication, and incidents.

3.1 Introducing MHS Security

In the case of mobile surveillance, the security company plans frequent visits (i.e., the
number and the nature of the visits are specified in the contract that was agreed on) by
security guards to their client premises to deter and, possibly, observe inappropriate
actions. While on patrol a security guard has to move by car from one location to

52 D.N. Ferro and C.M. Jonker

another. Once the guard arrives at a location, there may be one or more tasks to per-
form (possibly in a specific order). A typical course of events during a work shift of a
security guard does not only include the acts of transportation and performing location
specific tasks, but also frequent contacts over the phone with, for example, an operator
of the dispatch center or with a team leader. This communication need is particularly
important if an incident such as a fire alarm occurs.

Now, assume that a member of the dispatch centre confronted with an alarm occur-
ring at object 643221, situated at route 240, initially tries to assign that alarm to route
240. Suppose that after 5 minutes route 240 still does not respond (or actually refuses
to perform the alarm check). The assignment task is then delegated to a team leader.
The team-leader calls the guard at route 245. That is the route closest to the alarm. The
guard at this route does not respond. After 15 minutes, route 275 is requested and re-
sponds positively. The guard at route 275 goes to the object and arrives 20 minutes
later. So after 40 minutes there is a guard present at the object. In simulated experi-
ments, we show that the arrival time can be strongly reduced.

Having illustrated surveillance security, we formalize the entities, logistic network,
communication network and incidents for the mobile human surveillance security case.

3.2 Formalization of MHS Security

While modeling the entities in the domain of mobile human surveillance security, we
make a distinction between two types of entities. The first type of entities we call
actors (e.g., guards). Actors are ascribed individual preferences and are capable of
exerting these preferences to when and which groups are formed.

Definition 3.1 (MHS Security Actors). The set of actors A is the union of mobile
surveillance security guards G , team-leaders TL and dispatch centre operators D.

The second type concerns passive entities (e.g. tasks). Typically, passive elements
represent contextual information such as a location where an actor is at or a task that
the actor is performing. We define the passive entities as follows:

Definition 3.2 (MHS Security Passive Entities). The set of passive entities P is the
union of:

1) T ,the set of tasks: {opening_round, closing_round, regular_surveillance}
2) R, the set of route identifiers such that R ⊂ Í,
3) O, the set of identifiers for a security object (e.g., for a bank or a supermarket),
4) DEVICE, the set of communication device identifiers (e.g., for a PDA device),
5) INCIDENT_TYPE:={burglary_alarm, fire_alarm, assault, medical_alarm},
6) S, the set of work shifts identifiers, where s ∈ S is a tuple <r,tstart,tend>. such

that r ∈ R, identifying the route number of the shift, and tstar t ∈ Ñ, denoting the

start the time window of the shift, and tend ∈ Ñ, denoting the end of the time
window of a shift,

7) I, the set of incident identifiers such that i ∈ I is a tuple <incident_type, o, t>,
such that incident_type ∈ INCIDENT_TYPE, identifying the type of incident,
and o ∈ O, identifying the object related to the incident, and t ∈ Ñ, denoting
the start of the incident,

 Filtering Algorithm for Agent-Based Incident Communication Support in MHS 53

8) C, the set of communication meetings(i.e. calls and conference calls), where c
∈ C is a tuple <n, tstart,tend, REASON>, such that n ∈ Í, a set of unique

identifier for each call, tstart ∈ Ñ, denoting the start the time window of the call,

and tend ∈ Ñ, denoting the end of the time window of the call, and REASON ∈ I
∪ {regular}, denoting whether the call is considered regular communication or
related to incident I,

9) GRADE := {1,..,9}, the set of feedback grades on incident support provided.

Among the different elements, either active or passive, different relations exist. In
section 3.1, we have illustrated the MHS security domain. Essential to mobile
surveillance are the security patrols on each work shift. A work shift is a sequence of
visits preceded by a login and followed by a logout. Formally we define a work shift
as follows:

Definition 3.3 (MHS Security Work Shifts). A mobile human surveillance security
work shift w is described by a member of the union set W containing planned shifts,
active shifts and finished shifts, such that:

1) planned_shift ⊆ S × login × (planned_visit)* × logout,
2) finished_shift ⊆ login × (finished_visit)* × logout
3) active_shift ⊆ login × (finished_visit)* × [active_visit] × (planned_visit)*× logout

Generally, we will be interested in the state of the work shifts at some time point. We
define a function state: S ×Ñ W, which allows us to retrieve the current state of a
work shift. The mean travel time between two objects is defined in Definition 3.4:

Definition 3.4 (MHS Security Travel Time). The mean travel time travelδ from one
object o1 to another o2 is defined by the following function:

()
|_|

, 21 visitfinished

tt

oo finishedVv
gotoarrival

travel

∑
∈

−
=δ (1)

In the next section, we show what specific problem we provide a solution for in this
paper.

3.3 Communication Support for Alarm Handling

An important problem in mobile surveillance is the assignment of route to alarms (see
previous section). This process can be very time consuming. The average of the
amount of time it takes for a team-leader to assign an alarm can be estimated using
log data. We determined the alarm assignment delays using the log data from 9
months. On a total of 12694 alarm assignments in that period, the average assignment
time is about 19 minutes. The amount of alarms that is assigned after 10 minutes is
75.6%. About 12.7 % of the alarms are assigned after one hour.

To speed up this process, we developed a dynamic conference call that allows the
personnel to setup a multi-party phone call. Given a request for support re-
quest_support(aincident,<incident_type,oincident,tincident>,t0), the problem is how to setup a call

54 D.N. Ferro and C.M. Jonker

setup_incident_call(aincident, <incident_type,oincident,tincident>,{a1,…,an}, tsetup) most suitable for
handling an incident of type incident_type at object oincident for this specific actor aincident.

Having defined and exemplified different element of the mobile human surveil-
lance security environment and the problem focus, in the next section we discuss the
MHS incident communication support problem in more detail and show how multi-
agent support can improve the performance in this environment.

4 The Ask-Assist System

To increase the speed of handling an incident, we propose an agent-based incident
communication support system: Ask-Assist. The system consists of multiple agents.
Each agent is mapped to either an actor or passive entities as defined in the previous
section, see figure 1.

Fig. 1. A schematic overview of the mobile security environment and its mapping to the agent
layer

Definition 4.1 (MHS Security Agents). Let A be the set of agents and represent:

A (A ∪ P) a function that maps each agent α ∈ A to an entity in the environment.
For example, we can each of the following type of entities to a corresponding agent:

• Operations log database agent αlog, where represent(αlog) = opera-
tions_log_system, and

• Guard agents αg , where represent (αg) = g | g ∈ G

These agents represent the entities enabling the system as a whole to explore and
extend potential communication connections in the real world. Agents recommend

 Filtering Algorithm for Agent-Based Incident Communication Support in MHS 55

connections that may not exist in the network on the basis of their analyses of the data
available on real world phenomena.

Each agent has different capabilities with respect to processing data that is re-
trieved on real world processes. In the next section, we will discuss the functionality
of setting up a multi-party phone call for incident (i.e., alarms) handling by match-
making based on logged data.

5 Algorithm for Self-organizing Incident Communication Support

We propose a collaborative content-based filtering approach to recommend commu-
nication when mobile human surveillance personnel are confronted with incidents.
More specifically, we focus on the handling of alarms as described in section 3.3.

Both collaborative and content-based filtering are typically used in e-commerce
recommendation systems to elicit user preferences on things like books, movies or
music. But also in research there has been a growing interest in filtering techniques as
an intelligent mechanism to deal with large amounts of data.

The idea is that in order to predict the preferences (e.g., by user ratings) of a set of
users U over a set of items I, the filtering mechanism exploits either similarities be-
tween the preference schemes of users over items or the similarities between the
items. If we define a utility function v measuring the value of an item i to a user u,
i.e., v: U × I Ñ, then to each user u ∈ U, we would like to recommend item i ∈ I
that maximizes the user’s utility:

Ii
iuviUu

∈
=∈∀),(maxarg, (2)

Similarly, we define the problem of finding the right person(s) a ∈ 2A to contact in
case an alarm incident, <alarm_typeincident,oincident,tincident> ∈ INCIDENT is notified by
a dispatch operator d ∈ D and requests support, as follows:

Aa

aincidentvINCIDENTincident
2

),(maxarg
∈

=∈∀ (3)

where v is utility function, INCIDENT × 2A Ñ that measure the utility of setting
up communication with one or more persons a for an incident. While commonly most
filtering algorithms are based on ratings provided by the users, we identify some addi-
tional factors that determine the utility of the support that is recommended.

5.1 Factors for Predicting the Success of Alarm Handling

We define a number of factors that are used to determine the expected success of
communication aimed at handling alarms in mobile human surveillance:

• Incident similarity

The similarity between two incidents i1 and i2 is dependent on the nature of incident.
This can be considered as a simple content-based similarity measure. We provide a
function δi: INCIDENT × INCIDENT [0,1] that allows us to propagate the utilities

56 D.N. Ferro and C.M. Jonker

of handling different incident types. The function δi
 is described by the following

table based on an expert opinion:

Table 1. Similarity table of the different incident types in mobile human surveillance

incident_types burglary_alarm fire_alarm assault medical_alarm
burglary_alarm 1.0 0.5 0.8 0.2
fire_alarm 0.5 1.0 0.6 0.3
assault 0.8 0.6 1.0 0.7
medical_alarm 0.2 0.3 0.7 1.0

• Explicit feedback

Each individual that has acted on a particular recommendation is contacted at a later
time point to provide feedback on the systems recommendation, i.e., a number in the
range of 1 to 9. This is a rating that measures whether the right people where sug-
gested for handling the incident at hand., i.e., r:D × INCIDENT × A GRADE,
where a dispatch operator d ∈ D evaluates the utility of actor a ∈ A in handling an
incident ∈ INCIDENT. To enrich the utility space of the feedback provided, we define
a normalized feedback function ϕ: D× INCIDENT × A × 2D [0,1] taking into ac-
count the ratings of a set of dispatch operators(i.e., the neighborhood), as follows:

∑
∑

>∈<

>∈<

×

××><
∈∀

=><

INCIDENTtoq

ia

ia

INCIDENTtoq

qqdd

qqddatoqdr

Dd

Datoqd

',','

',','

|)',()',(|

)',()',(),',',','(

'

)',,,,,(

δδ

δδ
ϕ

 (4)

where δa: D × D [0,1] is a similarity function between two guards and q ∈ INCI-
DENT_TYPE the type of the incident. We implemented δa by the standard Pearson
correlation ρ [4]. The ratings of all guards in the guard agents neighborhood D’ are
weighted according to δa and δi.

• Experience

Some security objects are visited by particular guards more than other guards. We
argue that these guards are therefore more experienced with these objects. We define
the experience of an actor a ∈ A in dealing with a particular type of incidents q ∈
INCIDENT_TYPE with respect to a particular security object o ∈ O and a decay ∈ Ñ

as weight for the recentness of the alarm handling as a function ε:A × INCI-
DENT_TYPE × O × Ñ × 2O [0,1], taking into account the experience of a at simi-
lar object in the set 2O, described by the following algorithm:

Algorithm 1: ε (a,q,o,decay,O’) [0,1]
1: t0 = currentTime()
2: total = 0
3: result = 0
4: for ∀o’ ∈ O’ do

 Filtering Algorithm for Agent-Based Incident Communication Support in MHS 57

5: for ∀incident ∈ INCIDENT do
6: if leave(a,<r’,tstart,tend>,<q’,o’,ti>,tj) ∈ incident
 then

7: result += (2-(tj-t0)/decay) × δε(o,o’) × δi(q,q’)
8: endif
9: total+=1
10: endfor
11: endfor
12: return result/total

where δε: O × O [0,1] is similarity function between two objects in terms of the
guards by which they are visited. We implemented this by a kendall correlation τ on
by ordering the guards by visiting frequencies to a particular location weighted by the
recentness of the visit.

• Local rerouting costs

The rerouting of a actor a ∈ A to an incident location oincident ∈ O is determined lo-
cally by a function γ A × O [0,1]:

Algorithm 2 : γ(a,o) [0,1]
1: t0 = currentTime()
2: r onRoute(a)
3: active_shiftr state(<r,tbegin,tend>,t0) | tbegin < t0 < tend
4: ofrom current_position(active_shiftr)

5: return 1/δtravel(ofrom,oincident)

5.2 Recommendation and Adaptation Cycle

Setting up communication support involves a number of steps. First, the system needs
to be initialized in to order directly provide the support in the field. This is realized by
bootstrapping some part of the already available past data and initializing the
neighborhood D’ of each dispatch operator agent and the neighborhood O’ of each
object agent.

After having bootstrapped the agents, the following algorithm is used to produce a
recommendation. This happens when the system receives a request for support (re-
quest_support).

Algorithm 3: SUPPORTALARMINCIDENT(request_support) setup_incident_call
description: this algorithm determines what call should be setup up, when an request

for support for handling an alarm incident comes in.
 input: request_support(aincident,<qincident,oincident,tincident>,t0):
output: setup_incident_call(aincident, <qincident,oincident,tincident> ,{a1,…,an}, tsetup)

1: candidate[] <- ∅

2: for ∀a’∈ A | a’ ≠ aincident

3: candidate[a’] = ϕ(aincident , <qincident,oincident,tincident>,a’,D’)
4: candidate[a’] *= ε (a’, qincident,oincident, decay, O’)
5: candidate[a’] *= γ(a’, oincident)

58 D.N. Ferro and C.M. Jonker

6: end for
7: candidatesorted sort(candidate) by value

8: group_to_call ∅
9: for j = 0; j < n-best; j++ do
10: group_to_call group_to_call ∪ candidate[j]
11: end for
12: return <aincident,<qincident,oincident,tincident>,group_to_call,tnow>

where for a particular incident the utility for each possible actor is determined and the
n-best are picked for a conference meeting.

5.2 Learning by Iteration

Recommendations will result in particular behavior. First, implicitly, the new log
events will show whether the recommendation was justified or not. Those new log
events are processed and then utilized for future recommendation. In addition, explicit
feedback may be received. These are processed as well, such that the agent links can
be updated by replacing peers with low correlation or adding new peers that have a
higher correlation. By allowing constant adaptation and a growth of incident related
data, sparse events will be better handled as the amount of support request grows.

5.3 Experimental Results

We evaluated the potential of our filtering approach, which gave us some promising
preliminary results. In the setting without any support, 62.45% of the alarm incidents
is handled within the time limit of 30 minutes. By simulating the security domain
based on a part of the logged data (n-best=3, decay=90 days), we found that for a
bootstrapping period of 6 months, 72.2% could arrive within 30 minutes. Training the
system on 9 months of log data gives a simulated result of 78.78%(see figure 2)

Real distributions of alarm handling times

Simulated result when using Ask-Assist

Fig. 2. Distributions of the times to alarm handling

 Filtering Algorithm for Agent-Based Incident Communication Support in MHS 59

6 Discussion

In this paper we present a filtering approach for handling incidents in mobile human
surveillance. Ask-Assist, the system that implements these algorithms, offers support
to personnel of the Trigion security company. For this paper we concentrate on alarm
incidents. Information on other incidents can be obtained from the authors. In simu-
lated experiments on logged data made available to us by Trigion, we find that we can
increase the amount of incidents that is handled in time (30 minutes) from 62.45% to
72.2% with an acceptable amount of training data. This means that roughly an extra
10% of the incidents, currently heavily delayed can be handled within 30 minutes.
The results will be analyzed more thoroughly in future work, especially the depend-
ency on different values for parameters such as n-best, decay.

Currently, a prototype of the system is being used by a security company in the
Netherlands. The amount of human actors involved is around 60 guards and 5 team-
leaders concerning 1318 sites. Ask-Assist has been developed by Almende B.V on a
specific branch of its Common Hybrid Agent Platform(CHAP).1

In the future, we intend to evaluate the field study that is currently ongoing. In ad-
dition, we have an interest for the evolution of communication among the personnel
and, specifically, for informal communication networks and their influence on per-
formance. When confronted with incidents people tend to rely on their social network.
Supporting this could be an interesting way to enhance incident management.

Acknowledgment

The authors would like to thank Trigion, especially, Ron Knaap, Rick Fenne, Harry
Visser, the team-leaders of the region of Amsterdam, the guards in the region of Am-
sterdam and the alarm service centre. Great appreciation also goes out to Alfons Salden
and Marian Verhaegh. Furthermore, the authors would like to thank ICIS and the Min-
istry of Economic Affairs in The Netherlands for funding this research.

References

1. Boy, G.A.: Cognitive function analysis for human-centered automation of safety-critical
systems. In: Proceedings of the SIGCHI conference on Human factors in computing sys-
tems (CHI 1998), pp. 265–272. ACM Press/Addison-Wesley Publishing Co., New York
(1998)

2. Boy, G.A.: Theories of Human Cognition: To Better Understand the Co-Adaptation of
People and Technology, in Knowledge Management, Organizational Intelligence and
Learning, and Complexity. In: Kiel, L.D. (ed.) Encyclopedia of Life Support Systems
(EOLSS), Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford
(2002)

3. Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In: Proceed-
ings Twenty-first International Conference on Machine Learning (ICML 2004) (2004)

1 See http://sourceforge.chap.net and http://www.groovyactors.com

60 D.N. Ferro and C.M. Jonker

4. Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for col-
laborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial In-
telligence, pp. 43–52 (1998)

5. Niemann, C., Eymann, T.: Beyond Automation: Hybrid Human-Computer Decision Sup-
port Systems in Hospitals. In: Fifth IEEE Workshop on Engineering of Autonomic and
Autonomous Systems (Ease 2008), pp. 46–53 (2008)

6. Rocchio, J.: Relevance feedback in information retrieval. In: The SMART Retrieval Sys-
tem: Experiments in Automatic document processing, pp. 313–323. Prentice-Hall, Engle-
wood Cliffs (1971)

7. Sarne, D., Kraus, S.: Time-Variant Distributed Agent Matching Applications. In: AAMAS
2004, pp. 168–175. IEEE Computer Society, Washington (2004)

8. Storms, P.: System of Systems Architecture. In: Proceedings of the First International Con-
ference on Information Systems for Crisis Response and Management (ISCRAM 2004),
Brussels, Belgium (May 2004)

9. Streefkerk, J.W., van Esch-Bussemakers, M.P., Neerincx, M.A.: Context-aware notifica-
tion for mobile police officers. In: Harris, D. (ed.) HCII 2007 and EPCE 2007. LNCS
(LNAI), vol. 4562, pp. 436–445. Springer, Heidelberg (2007)

10. Wettig, H., Lahtinen, J., Lepola, T., Myllyämki, P., Tirri, H.: Bayesian Analysis of Online
Newspaper Log Data. In: Proceedings of the 2003 Symposium on Applications and the
Internet Workshops (SAINT-W 2003), p. 282. IEEE Computer Society, Washington
(2003)

11. Zografos, K.G., Androutsopoulos, K.N., Vasilakis, G.M.: A real-time decision support sys-
tem for roadway network incident response logistics. Transportation Research Part C 10,
1–18 (2002)

Joint Equilibrium Policy Search

for Multi-Agent Scheduling Problems

Thomas Gabel and Martin Riedmiller

Neuroinformatics Group
Department of Mathematics and Computer Science

Institute of Cognitive Science
University of Osnabrück, 49069 Osnabrück, Germany

{thomas.gabel,martin.riedmiller}@uni-osnabrueck.de

Abstract. We propose joint equilibrium policy search as a multi-agent
learning algorithm for decentralized Markov decision processes with
changing action sets. In its basic form, it relies on stochastic agent-
specific policies parameterized by probability distributions defined for
every state as well as on a heuristic that tells whether a joint equi-
librium could be obtained. We also suggest an extended version where
each agent employs a global policy parameterization which renders the
approach applicable to larger-scale problems. Joint-equilibrium policy
search is well suited for production planning, traffic control, and other
application problems. In support of this, we apply our algorithms to
a number of challenging scheduling benchmark problems, finding that
solutions of very high quality can be obtained.

1 Introduction

Establishing inter-agent coordination in multi-agent systems depicts a challeng-
ing task. Agents that are disallowed to exchange coordinative messages must
both determine where equilibria are located in the joint state-action space and
also find out which equilibria are strived for by other agents. In this paper, we
consider teams of cooperative agents that all seek to optimize a global reward.
We assume that there exists at least one sequence of joint actions that leads the
collective to a joint equilibrium, i.e. to a final state reaching which means to
collect maximal summed rewards for all agents. Our goal is to enable the agents
to learn to reach a joint equilibrium with increasing frequency by allowing them
to adjust their probabilities of executing actions appropriately.

On the one hand, we build upon the framework of decentralized Markov deci-
sion processes with changing action sets that we recently [7] proposed as a mean
to model a subclass of general multi-agent problems that features provably lower
complexity than solving general DEC-MDPs does. A key property of this class is
that each action can be executed only once by each agent. On the other hand, we
borrow from an equilibrium selection algorithm for single-stage games by Fulda
[5] and extend it (a) towards scenarios with multiple states at which actions can
be executed and (b) towards a compact and efficient representation of the agents’

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 61–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 T. Gabel and M. Riedmiller

policies. In so doing, we obtain substantial savings in terms of computation time
and memory requirements.

Although our learning approach is applicable to various practical problems,
such as network routing or railway traffic control, the paper at hand specifi-
cally targets an application from the realm of production planning: We focus
on job-shop scheduling problems (JSSP) that can easily be posed as multi-agent
problems and represent and interesting testbed for distributed learning algo-
rithms. Problems of this type are well-known for their intricacy (NP-hardness)
and, what makes them appealing for use as a testbed, there exist various estab-
lished benchmark problem suites using which we can compare our algorithms to
other approaches.

The remainder of this paper is structured as follows. In the next section, we
describe the general problem setting, clarify necessary notation, and introduce
joint equilibrium policy search as a distributed learning algorithm for indepen-
dent agents with common interests. In Section 3 we propose and theoretically
investigate a substantial extension of that algorithm towards the use of a global,
instead of local (state-specific) policy parameterization which renders the ap-
proach better scalable to larger problems. Section 4 presents the application
domain of job-shop scheduling, explains how scheduling problems can be cast
as multi-agent learning problems, and evaluates empirically the usability of the
algorithms proposed in this paper for several benchmark problems.

2 Joint Equilibrium Policy Search

Joint equilibrium policy search (JEPS) is a distributed purely policy-based al-
gorithm. Before presenting its details, we start off by providing some necessary
notation.

2.1 Basics

We embed the problem settings of our interest into the framework of decentral-
ized Markov decision processes (DEC-MDP) [2].

Definition 1 (Factored m-Agent DEC-MDP). A factored m-agent DEC-
MDP M is defined by a tuple

〈Ag, S, A, P, R, Ω, O〉
where Ag = {1, . . . , m} is a set of agents, S is the set of world states that can
be factored into m components S = S1 × · · · × Sm (Si belong to one of the
agents each, all local states are fully observable), A = A1 × ... × Am is the set
of joint actions to be performed by the agents (a = (a1, . . . , am) ∈ A denotes a
joint action that is made up of elementary actions ai taken by agent i), P is
the transition function with P (s′|s, a) denoting the probability that the system
arrives at state s′ upon executing a in s, R is a reward function with R(s, a, s′)
denoting the reward for executing a in s and transitioning to s′. Moreover, M
is jointly fully observable, i.e. the current state is entirely determined by the
amalgamation of all agents’ state observations.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 63

We refer to the agent-specific components si ∈ Si and ai ∈ Ai as the local state
and action of agent i. Each agent has only its local view, i.e. gets no information
about other agents’ local states and actions. We assume that there are some
regularities that determine the way local actions exert influence on other agents’
states. First, we assume that the sets of local actions Ai change over time.

Definition 2 (DEC-MDP with Changing Action Sets). A factored m-
agent DEC-MDP is said to feature changing action sets if the local state of
agent i is fully described by the set of actions currently selectable by i (si = Ai)
and Ai is a subset of the set of all available local actions Ai = {αi1 . . . αik}, thus
Si = P(Ai).

Concerning state transition dependencies, one can distinguish between depen-
dent and independent local actions. While the former influence an agent’s local
state only, the latter may additionally influence the state transitions of other
agents. Our interest is in non-transition independent scenarios. In particular, we
assume that an agent’s local state can be affected by an arbitrary number of
other agents, but that an agent’s local action affects the local state of maximally
one other agent (see [7] for a formalization). Also, there are no circular state
transition influences which implies that each agent can execute each of its local
actions only once.

The influence exerted on another agent always yields an extension of that
agent’s action set: If the execution of local action α by agent i influences the
local state of agent j, and i takes local action α, and the execution of α has
been finished, then α is added to Aj(sj), while it is removed from Ai(si). Thus,
the multi-agent system is guaranteed to reach a final state sf ∈ S at which all
actions have been processed and it holds sf

i = ∅ for all i.

2.2 Learning Joint Policies

JEPS is a purely policy-search based algorithm (i.e. no value functions are em-
ployed), where all agents’ policies are stochastic and are dependent on state-
specific probability vectors denoting the probabilities with which each action is
executed.

Definition 3 (JEPS Policy with Local Parameterization). Let si ∈ P(Ai)
be the current state of agent i, where si = Ai(si) = {α1, . . . , α|si|} corresponds to
the set of actions agent i can currently execute. Let PL(si) = {p(α1|si), . . . , p(α|si||
si)} be a probability distribution over all actions from si, thus 0 ≤ p(αj |si) ≤ 1
and

∑
j p(αj |si) = 1. Then, for agent i’s policy of action πi : Si → Ai it holds

si �→ α where α is selected from si with probability p(α|si). Accordingly, the joint
policy is defined as π = 〈π1, . . . , πm〉.

We assume that all action probability vectors are randomly initialized and that
the set of agents repeatedly interacts with the DEC-MDP until the final state
sf has been reached (also called the processing of a single episode). Then, the
global reward r is distributed to all agents and the system is reset to a starting

64 T. Gabel and M. Riedmiller

state. JEPS borrows from [5] in that it employs a binary heuristic H(r) that is
capable of telling whether a joint equilibrium has been attained. If so, it returns
true, otherwise false. In the remainder of this paper, we utilize a rather simplistic
implementation of H that returns true only if the current global reward equals
or exceeds the maximal reward rmax obtained so far, i.e. H(r) = 1 ⇔ r ≥
rmax. This idea has been exploited in a different context already by the Rmax
algorithm [3] and by optimistic assumption Q learning [8].

After having finished a single episode and only if having found that H(r) = 1,
each agent starts updating its action probabilities for all states it has encountered
during that episode. Here, the probabilities of all actions that were executed (and
thus contributed to reaching the joint equilibrium) are increased, while the prob-
abilities for executing any of the actions despised is decreased (see Algorithm 1).
Note, that this update scheme preserves that

∑
j p(αj |si) = 1 for all si. While

the updates JEPS does to the action probabilities are calculated in a similar
manner as in [5], the crucial difference is that JEPS is capable of distinguishing
between multiple states si, and can thus handle more than single-stage games
as it stores a single action probability vector for each local state.

Algorithm 1. JEPS Policy Updates by Agent i Using Local Action Parameters

Input: learning rate γ ∈ (0, 1], state-action history of current episode
h = [si(0), ai(0), si(1), . . . , si(T − 1), ai(T − 1), sf]

where T = |Ai| denotes the episode’s length, global reward r ∈ R

1: if H(r) = 1 then
2: for t = 0 to t < T do
3: for all α ∈ si(t) do
4: if α = ai(t) then p(α|si(t))← p(α|si(t)) + γ(1− p(α|si(t)))
5: else p(α|si(t))← (1− γ)p(α|si(t))

2.3 Discussion

JEPS extends the mentioned learning approach for single-stage games in a pur-
posive manner to problems with multiple states. Consequently, the policy up-
date mechanism is guaranteed to converge1 to a joint equilibrium as long as the
heuristic H is correct in the sense that it tells a true joint equilibrium. This
follows immediately from the convergence proof for single-stage games, since
each of JEPS’ states together with its belonging action probability vector can
be regarded as an individual single-stage game considered by Fulda [5].

When intending to apply the version of JEPS presented to practical problems,
two considerable problems arise. First, with a growing number of actions |Ai|
available to the agents, the size of the state space grows exponentially, since
states correspond to sets of available actions and, hence, in the worst case it
holds |Si| = |P(Ai)| = 2|Ai|. Accordingly, storing action probability vectors
1 Here, convergence means that for all states si there is an α ∈ si such that p(α|si)→ 1

in the course of learning.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 65

for all states (separately for each of the agents) quickly becomes intractable as
the problem size grows. Additionally, the large number of action probability
vectors also increases the learning time needed until convergence to a nearly
deterministic policy is achieved.

To tackle these problems, in the next section, we suggest a compact policy
representation in combination with an alternative policy update mechanism that
clearly reduces the computational complexity and memory requirements while
still allowing for convergence to a joint equilibrium.

3 JEPS with Global Action Parameterization

Knowing the properties of DEC-MDPs with changing action sets (Definition 2)
and given the problems mentioned in Section 2.3, a crucial observation is that
each agent actually just has to be capable of learning a total order in which it
executes all actions from Ai.

3.1 Learning Total Orders of Action Execution

The basic idea for a version of JEPS that employs global action parameters
(JEPSG) is that, for each of the agents, we attach a single, or global, parameter
to each action in Ai from which then its probability of execution is induced.

Definition 4 (JEPS with Global Action Parameterization). Let PG =
{pG(αk)|αk ∈ Ai} be a probability distribution over the set Ai of local actions
agent i can execute, and let si = Ai(si) = {α1, . . . , α|si|} ∈ P(Ai) be its current
state. Then, for agent i’s policy of action πi : Si → Ai it holds si �→ α where α
is selected with probability

p(α|si) =

{
pG(α)�

αk∈si
pG(αk) if α ∈ si

0 else
, (1)

and the joint policy π is the concatenation of local policies 〈π1, . . . , πm〉.

Using this kind of policy representation each agent must store only |Ai| para-
meters which represents an enormous saving in terms of memory requirements
compared to the JEPS version with local action probabilities.

Based on the policy representation with global parameters according to De-
finition 4, we suggest a learning algorithm that, for each agent, performs the
parameter updates directly on the global parameter vector PG. The distinguish-
ing property of Algorithm 2 is that all positive updates, i.e. updates for actions
taken when having reached a joint equilibrium (line 4), are performed relative
to a state-specific baseline κsi(t) that is defined as

κsi(t) :=
∑

αk∈si(t)

pG(αk). (2)

66 T. Gabel and M. Riedmiller

Algorithm 2. Policy Updates by JEPS Agent i Using Global Action Parameters

Input: learning rate γ ∈ (0, 1], state-action history of current episode
h = [si(0), ai(0), si(1), . . . , si(T − 1), ai(T − 1), sf]

where T = |Ai| denotes the episode’s horizon, global reward r ∈ R

1: if H(r) = 1 then
2: for t = 0 to t < T do
3: forall α ∈ si(t) do
4: if α = ai(t) then pG(α)← pG(α) + γ(

�
αk∈si(t)

pG(αk)− pG(α))

5: else pG(α)← (1− γ)pG(α)

By this, it is possible to relate the local situation of agent i, i.e. its current local
state, to the set of global action parameters, and it also ensured that PG stays
a proper probability distribution with

∑
αk∈si(t)

pG(αk) = 1.
For this algorithm, we can show that for every agent and each local state si

the probability of executing an action α ∈ si that does not support yielding a
joint equilibrium is declining if it exceeds some threshold.

Lemma 1. Let α ∈ si and pG(α) >
κsi

2 . If the execution of α in state si does not
yield a joint equilibrium, then ΔpG(α) < 0, where ΔpG represents the difference
of pG(α) after and prior to the call to Algorithm 2.

Proof. If the current episode did not reach an equilibrium, no updates are per-
formed. Consider the case when an equilibrium has been reached and focus on
the smallest value of t for which it holds α ∈ si(t) for an arbitrary α ∈ Ai. Let
t + v (v ≥ 1) be the stage at which α has finally been selected for execution.
Then, the value of pG(α) will have been decremented v times according to line 5
(denote the result of this calculation as p−G(α)) and been increased a single time
at si(t + v). Thus,

p′G(α) := pG(α) + ΔpG(α) = p−G(α) + γ(κsi(t+v) − p−G(α))

= (1 − γ)v+1pG(α) + γ
∑

αk∈si(t+v)

p−G(αk).

For the sum on the right-hand side there exist values vk ≥ 0 for all αk ∈ si(t+v)
such that p−G(αk) = (1− γ)vkpG(αk). Since we are looking for the circumstances
under which p′G(α) < pG(α), i.e. ΔpG(α) < 0, we finally arrive at

ΔpG(α) < 0 ⇔ pG(α) >
γ

∑
αk∈si(t+v)(1 − γ)vkpG(αk)

1 − (1 − γ)v+1
=: δ(γ).

The term δ(γ) attains its maximal value for v = 1 and vk = 0∀k. Then,
δ(γ) = 1−γ

2−γ

∑
αk∈si(t+v) pG(αk). Maximizing subject to γ (γ → 0), we obtain

δ = κsi(t+v)

2 . And because by definition κsi(t) > κsi(t+v) for all v ≥ 1, we finally
see that for pG(α) >

κsi(t)

2 it holds ΔpG(α) < 0. ��

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 67

Lemma 1 shows that probability updates cannot enforce convergence to sub-
optimal action choices. Unfortunately, still there may be the case of two joint
equilibria with identical global reward between which the agent may oscillate.
However, we can show that for any state si there is a critical action probability
value such that upon exceeding that value one joint equilibrium starts dominat-
ing another one.

Lemma 2. If α ∈ si(t) is an action within a joint equilibrium episode, then
there exists a value p� such that, if pG(α) > p�, then pG(α) is more likely to
increase over time than to decrease.

Proof. The critical case of pG(α) decreasing can occur, if there is a β ∈ si(t)
such that still a joint equilibrium can be obtained when β is executed in si. If α
is executed, then pG(α) is increased (line 4), whereas pG(β) is decreased (line 5)
at least one time and later increased at a t + v > t when β is finally executed. If
β is selected in si, the situation is the other way round (pG(α) decreased v times
according to line 5, if it is selected v decision time points later). Consequently,
with a probability of pG(α)

κsi(t)
it holds

pα
G(α) := pG(α) + ΔpG(α) = pG(α) + γ(κsi(t) − pG(α))

and with a probability of pG(β)
κs(t)

it holds

pβ
G(α) := p−G(α) + γ(κsi(t+v) − p−G(α))

= (1 − γ)vpG(α) + γ(κsi(t+v) − (1 − γ)vpG(α)).
Since we look for the conditions under which ΔpG(α) = p′G(α) − pG(α) > 0, we
can express this inequation using a weighted average as

pG(α)pα
G(α)+pG(β)pβ

G(α)

κsi(t)(pG(α)+pG(α)) − pG(α) > 0.

After a number of algebraic reformulations, this simplifies to
κsi(t)

pG(β) + κsi(t+v)

pG(α) > 1+γ−(1−γv+1)
γ .

The right-hand side of this inequation attains its maximum for v → ∞ which be-
comes 1 + 1

γ . For the left-hand side, we know that κsi(t) ≥ pG(α) + pG(β) and
κsi(t+v) ≥ pG(α). Assuming the worst case (both equalities) here, too, we arrive at

pG(α)+pGβ
pG(β) + pG(α)

pG(α) > 1 + 1
γ and thus pG(α)

pG(β) > 1−γ
γ .

Consequently, if for a state si one joint equilibrium action α ∈ si dominates
all other actions by a share of at least p� := 1−γ

γ , then ΔpG(α) tends to be
positive. ��

3.2 Discussion

If for some action α within an equilibrium episode the probability of execution
exceeds some critical value, then pG(α) tends to be increasing continually. Since
updates are not just made for single actions, but for all actions taken during an
equilibrial episode, this argument transfers to the remaining actions from Ai as
well. With continued positive updates all pG(αk) converge such that for each si

there is a α�
si

with
pG(α�

si
)

κsi
→ 1, which means that the policy the agent pursues

approaches a deterministic one.

68 T. Gabel and M. Riedmiller

Of course, the time required for convergence to occur may be high. Setting the
learning rate γ to a higher value, learning can be speeded up. However, this comes
at the cost of an increased probability, that learning converges prematurely to
a non-equilibrium, because the heuristic H we use is imperfect with respect to
the true joint equilibrium of the system. Insofar, adjusting γ represents a mean
to trade off learning speed and the goal of obtaining a joint policy very close to
a joint equilibrium.

Returning to the point of view of a total order of action execution that is rep-
resented by the vector of global action parameters PG, we observe that JEPSG

may drive the parameters pG(α) and pG(β) for some actions α and β (in particu-
lar for actions whose execution is repeatedly postponed) to very small numerical
values – while at the same time it may be required that the share of pG(α) and
pG(β) must be either very large or small. As a consequence, a limiting factor
when implementing and using Algorithm 2 is given by the smallest real-valued
number that can be represented on the respective hardware2. Accordingly, the
convergence behavior of a practical implementation of JEPSG will be as follows:

a) Convergence to a joint equilibrium policy, as indicated by heuristic H in
conjunction with rmax, occurring with a probability of nearly one may occur.
This means, after λ learning episodes it holds for all agents i, for all states
si, and for all α ∈ si that pG(α)

κsi
> 1 − ε for some small ε > 0.

b) Numerical underflow problems arise3, i.e. that there is an agent i and a state
si where for a α ∈ si it holds pG(α) < εmin, where εmin ∈ R+ is the smallest
floating number representable on the respective hardware platform.

c) The learning time allotted to the algorithm is exceeded, i.e. λmax learning
episodes have been processed without situation a) and b) having occurred.

Note that, although no convergence is achieved in cases b) and c), the algorithm
does not diverge – in fact, it rather stops its learning process too early. At least,
in these cases we can use the value of the presumed joint equilibrium found so
far (rmax) as an indicator of the true equilibrium that eventually would have
been discovered if λmax was larger or εmin smaller.

4 Empirical Evaluation

In this section, we use the class of DEC-MDPs with changing action sets to model
job-shop scheduling problems (JSSP), and we evaluate the performance of JEPS
and JEPSG in this context using various established scheduling benchmarks.

4.1 Application Domain: Job-Shop Scheduling

The goal of scheduling is to allocate a specified number of jobs to a limited num-
ber of resources (also called machines) such that some objective is optimized. In
2 According to the IEEE standard for binary floating-point arithmetic (IEEE 754),

when using 64 bit, the smallest number is approximately 2.2 · 10−308 (double type).
3 This case is more likely to occur, the larger |PG| is.

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 69

job-shop scheduling n jobs must be processed on m machines in a given order.
Each job j consists of νj operations oj,1 . . . oj,νj that have to be handled on a cer-
tain resource for a specific duration. A job is finished after its last operation has
been entirely processed (completion time fj). In general, scheduling objectives
to be optimized all relate to the completion time of the jobs. In this paper, we
concentrate on the goal of minimizing maximum makespan (Cmax = maxj{fj}),
which corresponds to finishing processing (and hence reaching the final state sf)
as quickly as possible, since most publications on results for job-shop scheduling
benchmarks focus on that objective, too.

r1 r2 r3 r4 r5 r6Resources:

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

3 1 2 4 6 5

2 3 5 6 1 4

3 4 6 1 2 5

2 1 3 4 5 6

3 2 5 6 1 4

2 4 6 1 5 3

d=9

d=4

execution on r4

execution on r6

Time 0 10 20 30 40 50
makespan Cmax=55

r1

r2

r3

r4

r5

r6

Path of
Job 2

Fig. 1. Example Job-Shop Scheduling Problem FT6 (left) and Optimal Solution (right)

Solving JSSPs is well-known to be NP-hard. Over the years, numerous bench-
mark problem instances of varying sizes have been proposed and have been fre-
quently used to compare different solution approaches. We revert to a collection
of sample problems that is provided by the OR Library [1]. A common charac-
teristic of those scheduling benchmarks is that usually no recirculation of jobs
is allowed, i.e. that each job must be processed exactly once on each resource
(νj = m). Figure 1 shows an example of a small job-shop scheduling problem
with six resource and six jobs consisting of six jobs each; also an optimal solution
of that problem with respect to minimal makespan is illustrated using a Gantt
chart. For more details on scheduling, the reader is referred to [10,4].

We model JSSPs as factored m-agent DEC-MDPs with changing action sets
as follows. We attach to each of the resources one agent i whose local action is
to decide which waiting job to process next. Agent i’s local state of i can be
fully described by the changing set of jobs currently waiting for further process-
ing. Choosing and executing a job represents a local action (Ai is the set of
jobs that must be processed on resource i), which is why it holds Si = P(Ai).
After finishing the processing of a job’s operation, this job is transferred to an-
other resource, where the order of resources on which a job’s operations must
be processed is given a priori. In conjunction with the no recirculation property
mentioned above, in fact, each job (one of its operations, respectively) has to
be executed on each resource exactly once. As a consequence, for JEPSG is will
be sufficient that each agent stores one action probability parameter for each
job.

70 T. Gabel and M. Riedmiller

4.2 Benchmark Results

Given an instance of a JSSP, all agents process waiting jobs in a reactive manner,
i.e. they select jobs with respect to the probability determined by their current
policy parameters, and never remain idle, if there is at least one job waiting.
When all jobs are finished and, hence, sf has been reached, the global reward
r = −Cmax is conveyed to the agents, the policy update algorithm (Algorithm
1/2) is called, and finally the system is reinitialized to the starting state where
no jobs have been processed. We allow the agents to maximally process λmax =
250k episodes, however, in most cases convergence is achieved much faster. For
consistency, during all experiments we set γ = 0.1, a value that ad hoc brought
about good results and whose optimization should be subject to further studies.

850

900

950

1000

1050

1100

1150

10 100 1000 10000 100000
Training Episodes

A
ve

ra
g

e
M

ak
es

p
an

 C
m

ax
 (

10
x1

0
p

ro
b

le
m

s)

JEPS: -r_max

JEPS: E(-r)

JEPSg: -r_max

JEPSg: E(-r)

Theoretical Optimum

Fig. 2. Learning Progress for JEPS and JEPSG

Figure 2 illustrates the learning progress averaged over 15 JSSP problems
involving 10 jobs and 10 machines using JEPS as well as JEPSG. The solid
curves show the average expected performance (in terms of makespan Cmax,
i.e. negative reward) of the stochastic joint policies subject to the number of
training episodes. Dashed curves indicate the development of the value of the
supposed joint equilibrium −rmax, as utilized by the heuristic H .

Apparently the −rmax and E[−r] curves approach each other much faster for
the JEPSG variant of the algorithm than for JEPS with local policy parame-
terization. For the 15 scenarios considered, JEPSG converges at the latest after
about 11k episodes (note the log scale x-axis). By contrast, JEPS needs much
longer to yield convergence, but achieves finding slightly superior values of rmax,
i.e. on average the learnt joint policy comes closer to the true joint equilibrium
(indicated by the average theoretical optimum for the scenarios considered).

The limitation of the basic form of JEPS becomes obvious when having a look
at the sizes of the policies that must be kept in memory by the agents (see the
rightmost columns in the of the JEPS and JEPSG part in Table 1, measured
in bytes per policy). Since the number of policy parameters grows exponentially

Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems 71

Table 1. Learning results for scheduling benchmarks of varying size, opposed for JEPS
and JEPSg . All entries are averaged over #Prbl. #a, #b, and #c correspond to the
convergence possibilities listed in Section 3.2. The last column in each part shows the
average size of a policy measured in bytes. Err. columns denote the relative remaining
error (%) of the makespan (−rmax) achieved by the joint policy compared to the theo-
retical optimum and, thus, indicate to what extent reaching the true joint equilibrium
was missed. Indices a, b, c stand for problem sets provided by different authors.

Size Theor. JEPS Pol. JEPSG Pol.
m × n #Prbl Optim. #a −rmax E[−r] Err. Size #a #b #c −rmax E[−r] Err. Size
5 × 10 5 620.2 5 631.8 631.8 1.9% 1029k 4 0 1 635.4 644.2 2.5% 0.6k
5 × 15 5 917.6 5 917.6 917.6 0.0% 18M 5 0 0 917.6 917.6 0.0% 1.1k
5 × 20 6 1179.2 0 - - - ∞ 5 1 0 1188.3 1196.5 0.8% 1.5k

10 × 10a 3 1035.7 3 1071.0 1071.0 3.4% 3.5M 3 1 0 1076.7 1076.7 3.9% 1.2k
10 × 10b 5 864.2 5 902.4 902.4 4.4% 973k 5 1 0 894.2 894.2 3.5% 1.1k
10 × 10c 9 898.2 8 935.3 937.9 4.1% 6.4M 8 1 0 952.4 953.6 6.0% 1.2k
10 × 15 5 983.4 0 - - - ∞ 2 1 2 1032.4 1142.4 5.0% 2.1k
15 × 15 5 1263.2 0 - - - ∞ 3 1 1 1341.2 1375.8 6.1% 3.0k
15 × 20 3 676.0 0 - - - ∞ 0 0 3 732.0 819.7 8.3% 4.1k

with n, the application of JEPS for m × n problems with larger values of n is
infeasible due to excessive memory requirements. On the contrary, the average
policy sizes of JEPSG agents are negligible. Here, instead the underflow problem
(cf. Section 3.2) may occur for larger values of n. However, using JEPSG, policies
of high quality can be learnt even for larger-sized problem instances.

The remaining error values achieved can well compete with alternative ap-
proaches that tackle the scheduling problem from a decentralized perspective
(centralized algorithms mostly find the optimum). For example, dispatching pri-
ority rules are clearly outperformed (best rules are SPT, which chooses oper-
ations with shortest processing time, and AMCC [9], which is a heuristic to
avoid the maximum current Cmax, with an average error of 20.6% and 7.8%
for the 46 problems mentioned in Table 1). OA-NFQ [6], a value-function based
reinforcement learning approach to these problems, reaches an error of 4.2%.

We expect that, in future work, we will be able to further boost the per-
formance of JEPS. In the version presented the reactive functioning of JEPS
can generate schedules of the class Sn of non-delay schedules exclusively: If a re-
source has finished processing one operation and has at least one job waiting, the
respective agent immediately continues processing by picking one of the waiting
jobs. JEPS does not allow a resource to remain idle, if there is more work to be
done. From scheduling theory, however, it is known that for certain scheduling
problem instances the optimal schedule may be a delay schedule from the set of
active schedules Sa � Sn, i.e. a schedule where some resource has to remain idle
for some time units in order to achieve minimal makespan. As a consequence,
JEPS is currently able to produce near-optimal schedules from Sn and may miss
the best schedule possible, though in several cases the true joint equilibrium is
indeed found. Yet, an extension of JEPS towards behaving not purely reactively
depicts an important and promising issue for future work.

72 T. Gabel and M. Riedmiller

5 Conclusion

We have presented a multi-agent policy search method, JEPS, that is effective in
learning joint equilibria, or near-optimal approximations thereof, for decentral-
ized Markov decision processes with changing action sets. Using a variant of the
algorithm that employs a highly compacted policy representation, it is possible
to apply JEPS to even larger problem instances without impairing performance.

A limiting factor of the approach is the necessity for a heuristic that indicates
whether a joint equilibrium has been reached by the ensemble of agents. In
future work, we will investigate more sophisticated versions of this heuristic
and, moreover, we will explore state of the art mechanisms, such as policy-
gradient descent methods, for updating the policy parameters, which we expect
to significantly speed up the learning process.

Acknowledgements. This research has been supported by the German Re-
search Foundation (DFG) under grant number Ri 923/2-3.

References

1. Beasley, J.: Or-library (2005),
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

2. Bernstein, D., Givan, D., Immerman, N., Zilberstein, S.: The Complexity of De-
centralized Control of Markov Decision Processes. Mathematics of Operations Re-
search 27(4), 819–840 (2002)

3. Brafman, R., Tennenholtz, M.: Learning to Cooperate Efficiently: A Model-Based
Approach. Journal of Artificial Intelligence Research 19, 11–23 (2003)

4. Brucker, P., Knust, S.: Complex Scheduling. Springer, Berlin (2006)
5. Fulda, N., Ventura, D.: Incremental Policy Learning: An Equilibrium Selection

Algorithm for Reinforcement Learning Agents with Common Interests. In: Pro-
ceedings of the 2004 IEEE International Joint Conference on Neural Networks
(IJCNN), Budapest, Hungary, pp. 1121–1125. IEEE Computer Society Press, Los
Alamitos (2004)

6. Gabel, T., Riedmiller, M.: Adaptive Reactive Job-Shop Scheduling with Learning
Agents. International Journal of Information Technology and Intelligent Comput-
ing 2(4) (2008)

7. Gabel, T., Riedmiller, M.: Reinforcement Learning for DEC-MDPs with Changing
Action Sets and Partially Ordered Dependencies. In: Proceedings of the 7th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2008), Estoril, Portugal (to appear, 2008)

8. Lauer, M., Riedmiller, M.: An Algorithm for Distributed Reinforcement Learning in
Cooperative Multi-Agent Systems. In: Proceedings of the International Conference
on Machine Learning (ICML 2000), Stanford, USA, pp. 535–542. AAAI Press,
Menlo Park (2000)

9. Mascis, A., Pacciarelli, D.: Job-Shop Scheduling with Blocking and No-Wait Con-
straints. European Journal of Operational Research 143, 498–517 (2002)

10. Pinedo, M.: Scheduling. Theory, Algorithms, and Systems. Prentice Hall, USA
(2002)

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Making Allocations Collectively: Iterative Group

Decision Making under Uncertainty

Christian Guttmann�

Department of General Practice
Faculty of Medicine, Nursing and Health Sciences

Monash University, Melbourne, Australia
christian.guttmann@gmail.com

Abstract. A major challenge in the field of Multi-Agent Systems (MAS)
is to enable autonomous agents to allocate tasks and resources efficiently.
This paper studies an extended approach to a problem we refer to as the
Collective Iterative Allocation (CIA) problem. This problem involves a
group of agents that progressively refine allocations of teams to tasks.
This paper considers the case where the performance of a team is variable
and non-deterministic. This requires that each agent is able to maintain
and update its probabilistic models using observations of each team’s
performance. A key result is that each agent needs the capacity to store
only two or three observations of a team’s performance to find near
optimal allocations, and a further increase of this capacity will reduce
the number of reallocations significantly.

1 Introduction

Efficient approaches to distributed allocation problems are required in a wide
range of applications, such as network routing, crisis management, logistics,
computational grids, and collaborative student support environments [1]. We
consider a problem we refer to as the Collective Iterative Allocation (CIA) prob-
lem [2,3,4]. This problem involves a group of agents that endeavours to find
an optimal allocation of a team to a task, and subsequent allocations are then
refined as the true performance of a team becomes known.1 Note that this pa-
per describes allocations using the terms tasks and teams, but this terminology

� The author would like to thank Michael Georgeff, Iyad Rahwan and Ingrid Zuk-
erman for their assistance related to this research. The author is also grateful for
the insightful comments of the reviewers. Part of this work was done at the School
of Computer Science and Software Engineering at the Faculty of Information Tech-
nology and at the Monash Institute of Health Services Research at the Faculty of
Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.

1 In this paper, we assume that agents are collaborative and task-rational. That is,
each agent proposes a team with the highest performance according to the agent’s
models. In [3], we investigated issues related to competitive agents that follow a
strategy when making group decisions.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 73–85, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 C. Guttmann

is specific to the domain of application. The Multi-Agent System (MAS) para-
digm is useful to study the efficiency of algorithms to distributed coordination
problems [5], and particularly to the CIA problem [2,3,4].

Many research frameworks on allocation problems make a simplistic assump-
tion: the performance of a team is deterministic and invariant [1]. This paper
extends our previous framework [3] that copes with agents that exhibit variable
and non-deterministic performance in the CIA problem. In particular, in [3],
we consider how each agent maintains a probabilistic model which represents
a team’s performance by a mean (average performance of team) and standard
deviation (stability of performance). Each agent updates its model when new
information of a team is available. The focus of this paper is on (a) identifying
conditions that influence finding near-optimal solutions and the time it takes
to find such solutions, and (b) developing methods that refine the process of
selection under conditions of uncertainty. This paper extends our work in [2,3,4]
as follows.

– Framework Extensions: We offer extensions of the modelling and reasoning
abilities of agents. For example, each agent uses a shared observation memory
that determines how many observations of all teams can be remembered by
an agent for the refinement of models (in previous research [3], each agent
stores an observation of each agent in a separate memory).

– Empirical Study: We offer a deeper empirical understanding of the efficiency
of our algorithm, as we explore parameters additional to those used in [3].
For example, we vary the termination criteria (which indicates the stability
of converging to a solution), and also the level of ignorance that each agent
exhibits prior to running the algorithm.

– Evaluation: We analyse the efficiency of the algorithm using measures of so-
lution quality (average task performance of a team) and in addition to previ-
ous research [3], we also evaluate the algorithm’s computational requirement
(the average number of iterations before a solution is found).

Section 2 offers a formal representation of our extended approach. Section 3
investigates the efficiency of this algorithm under the condition that the perfor-
mance of teams is variable. Related research is discussed in Section 4. Section 5
summarises the insights and contributions offered by this research.

2 Framework Coping with Uncertainty

Section 2.1 defines the main components of the CIA problem and Section 2.2
defines and illustrates our algorithm.

2.1 Defining the Main Components

The CIA problem is represented by the following tuple.

CIA =< T, AT, A = {a1(Ma1 , RPa1), . . . , aq(Maq , RPaq)}, P >

Making Allocations Collectively 75

obs1(at2) obs2(at1) obsm(at4)V̂(at2)

V̂(at1)

V̂(atn)

Agent ai's
Models

Agent ai's
Observation Memory

(a) Shared

obs1(at1) obs2(at1) obsm(at1)

obs1(at2) obsm(at2) obsm(at2)

obs1(atn) obs2(atn) obsm(atn)

Agent ai's
Models

Agent ai's
Observation Memory

V̂(at2)

V̂(at1)

V̂(atn)

(b) Separate

Fig. 1. Observation Memory

T is a set of Tasks, each can be assigned to an Agent Team (∈ AT). Each agent ai

in A maintains Models M and uses Reasoning Processes RP to make assignments
collectively using a group decision Policy P. These elements are defined in the
following paragraphs. Note that the models Mai and reasoning processes RPai

maintained by each agent ai are substantially refined and extended compared to
those offered in [3].

Definition 1. T = {t1, . . . , ts} is a set of Tasks with s = |T |.

Definition 2. AT = {at1, . . . , atp} is a set of Agent Teams with p = |AT |.
This paper assumes that a team’s performance varies each time it performs a
task. In particular, we assume that this varying performance is based on a normal
distribution Natj ,tk

with a mean μatj ,tk
(representing the average performance

of a team), and a standard deviation σatj ,tk
(representing the stability of the

performance), so that Natj ,tk
(μatj ,tk

, σatj ,tk
) for a given team atj and task tk.

To be consistent with the notation used in previous research, we also refer to
this distribution as V (atj , tk) [4]. A set of distributions (that describe the true
performance for several tasks) is called the capabilityof a team: C(ati).

We now define a group of agents that actively participates in assigning a team
ati to a task tk.

Definition 3. A = {a1, . . . , aq} is a set of Agents with q = |A|.

The capability of a team C(ati) is not directly observable (as is the case for a
team’s deterministic performance [4]). Hence, each agent has a model consisting
of a set of estimated distribution parameters (Definition 4). Each agent also
executes reasoning processes that use these models (Definition 5).

Definition 4. Mai are the Models maintained by agent ai: Mai = {Mai(at1),
. . . , Mai(atp)} with p = |AT |. A specific model of a team atj is defined by a
set of estimations: Mai(atj) = {V̂ai(atj , t1), . . . , V̂ai(atj , ts)}, where V̂ai(atj) =
N̂ai,atj ,tk

(μ̂atj ,tk
, σ̂atj ,tk

) for j = 1, . . . , n.

For example, for a given task, assume that lifesaver at2’s performance is rep-
resented by a normal distribution Nat2 with a mean μat2 = 0.4 (representing

76 C. Guttmann

the average rescue performance of at2), and a standard deviation σat2 = 0.1
(representing its stability), such that Nat2(μat2 = 0.4, σat2 = 0.1). Also, as-
sume that a1’s model estimates the mean and stability of at2’s performance:
N̂a1,at2(μ̂at2 = 0.5, σ̂at2 = 0.2). In this example, a1 overestimates the mean of
at2’s true performance as well as its variability when it performs the task.

Each agent in A executes reasoning processes that use the information stored
in its models.

Definition 5. RPai denote agent ai’s Reasoning Processes.

– For agent ai, INITIALISEai(Mai , tk) returns a set of initial models.
– For agent ai, PROPOSEai(Mai , tk) returns a proposal specifying ai’s prefer-

ence of a team that should perform a task: proposalai
= 〈atj , μ̂atj 〉. An agent

is assumed to be task-rational and therefore proposes a team with the highest
estimated value in its models (related studies investigate agents that make
strategic proposals, e.g., [3]).

– For agent ai, UPDATEai(Mai , observation(atj)) returns a set of updated
models based on information of team atj’s performance. Let observation(atj)
be a function that returns a measure of the performance of the team atj
for a given task. This value is drawn from a team’s capability distribution
(observation(atj) ∼ V (atj)).

The update process requires a memory to store these observations. We refer to
this as shared observation memory (Figure 1(a)) and it works as follows. Each
agent retains a window of the last k observations of the performance of all teams
(each observation is tagged with the team that performed the task). The update
process recalculates the estimated mean and standard deviation of the estimated
distribution of a team each time an observation is made. When an agent updates
its models of a team, the observations of this team are extracted from the shared
observation memory using the corresponding tags. The results obtained by this
process are moderated by the number of observations stored by each agent.
That is, if an agent ai has stored k observations of team atk’s performance, then
the mean and standard deviation are calculated from k observations, such that
N̂ai,atj (μ̂atj ,k, σ̂atj ,k) for j = 1, . . . , n.2

Definition 6. A group decision Policy P is a function that selects a team based
on the proposals submitted by agents A, such that

atselected := P (PROPOSALSA), where

– agent atselected is one of the teams proposed by agents A, and
– PROPOSALSA is a set of proposals submitted by these agents.

2 Note that sharing memory to store observations (as opposed to separately storing
the observations of each team as done in [3] and explained in Figure 1(b)) can sig-
nificantly reduce the number of unused storage entries. As such, shared observation
memory will be particularly efficient if we have a large number of teams and only
few of them will perform a task.

Making Allocations Collectively 77

TAP ASSIGNMENT ALGORITHM.
INPUT : Task tk ∈ T , Agent Teams AT , Agents A, Policy P
OUTPUT : Assignment of atj ∈ AT to tk ∈ T

1. ANNOUNCE task tk ∈ T
2. INITIALISEai(Mai , tk) (∀ai ∈ A)
3. Repeat

(a) PROPOSALSA =
S

ai∈A PROPOSEai(Mai , tk)
(b) atselected := P (PROPOSALSA)
(c) UPDATEai(Mai , V (atselected, tk)) (∀ai ∈ A)

4. Until a termination criterion is satisfied

Fig. 2. A task is repeatedly assigned to different teams until a criterion is satisfied
(e.g., a team is believed to perform the task best)

2.2 Algorithm and Example

All agents in A follow the algorithm shown in Figure 2. This section illustrates
how this algorithm interacts with the variable performance of lifesavers (this
example is based on [2,3]). This example is illustrated using a surf rescue domain
which consists of a group of lifesavers AT = A = {a1, a2, a3} which assign the
task of rescuing a distressed person to each other. The values describing the
capability distribution C of a1, a2 and a3 of this task are
· C(a1) = {V (a1, rescue) = Na1(μa1,rescue = 0.5, σa1,rescue = 0.4)}.
· C(a2) = {V (a2, rescue) = Na2(μa2,rescue = 0.8, σa2,rescue = 0.3)}.
· C(a3) = {V (a3, rescue) = Na3(μa3,rescue = 0.3, σa3,rescue = 0.2)}.
That is, lifesaver a1 has a medium performance and is unstable, lifesaver a2 has
a high performance and is more stable, and lifesaver a3 has a low performance
and is the most stable. These distributions are learnt by the agents to find an
optimal lifesaver.

For clarity of exposition, we assume the following settings in this example.

– Only agents a1 and a2 can propose lifesavers for a rescue and each agent
learns from their performance. These two agents (which are both observers
and lifesavers) maintain models of lifesavers a1, a2 and a3 (Ma1(a1), Ma1(a2)
and Ma1(a3), and Ma2(a1), Ma2(a2) and Ma2(a3)), and generate proposals
involving these lifesavers.

– In this example, a1 stores up to eight observations of the performance of the
lifesavers in its shared observation memory, as does a2.

– The majority policy is applied for selecting a lifesaver for a rescue. This
policy selects the lifesaver backed by most agents (in the event of a tie, the
top agent in an ordered list of lifesavers is selected – the order is based on
the index of the lifesaver).

Table 1 illustrates the assignment of lifesavers to rescues under the majority
policy (values obtained after each rescue are boldfaced).

78 C. Guttmann

Table 1. Sample run of the assignment algorithm (explained in Section 2.2)

COLUMNS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Observer Proposed Selected Shared Observation Capacity Models
agent lifesaver lifesaver of Performance a1, a2, a3 M(a1)M(a2)M(a3)

1 2 3 4 5 6 7 8
a1 0.3 0.4 0.5
a2 0.6 0.5 0.7

r1
a1 a3 Pmaj = a3

0.5a30.4a3 0.3 0.4 0.45
a2 a3 0.7a30.4a3 0.6 0.5 0.55

r2
a1 a3 Pmaj = a1

0.5 0.4 0.3a10.3a1 0.3 0.4 0.45
a2 a1 0.7 0.4 0.6a10.3a1 0.45 0.5 0.55

r3
a1 a3 Pmaj = a3

0.5a30.4a3 0.3 0.3 0.2a3 0.3 0.4 0.37
a2 a3 0.7a30.4a3 0.6 0.3 0.2a3 0.45 0.5 0.43

r4
a1 a2 Pmaj = a2

0.5 0.4 0.3 0.3 0.2 0.4a20.8a2 0.3 0.6 0.37
a2 a2 0.7 0.4 0.6 0.3 0.2 0.5a20.8a2 0.45 0.65 0.43

r5
a1 a2 Pmaj = a2

0.5 0.4 0.3 0.3 0.2 0.4a20.8a20.7a2 0.3 0.63 0.37
a2 a2 0.7 0.4 0.6 0.3 0.2 0.5a20.8a20.7a2 0.45 0.67 0.43

r6
a1 a2 Pmaj = a2

0.9a2 0.4 0.3 0.3 0.2 0.4a20.8a20.7a2 0.3 0.7 0.37
a2 a2 0.9a2 0.4 0.6 0.3 0.2 0.5a20.8a20.7a2 0.45 0.68 0.43

– Column 1 indicates the allocation round.
– Column 2 shows the observer agents.
– Column 3 shows the lifesaver proposed by each observer agent.
– Column 4 shows the lifesaver selected by the majority selection policy.
– Columns 5–12 contain values of the observed performance of the lifesavers.
– Columns 13–15 show the mean of the updated models.

The first two rows in Table 1 (before the first round r1) contain values represent-
ing initial conditions: columns 5-12 show that no observations have been stored
yet, and columns 13-15 contain the initial values of the models maintained by a1

and a2 for the rescue performance of a1, a2 and a3. These initial values, which
are not consistent with the true performance of the agents in question, are also
recorded as the first “observed” performance of a1, a2 and a3. This is to model a
behaviour whereby an agent’s initial “opinion” of lifesavers can be influenced, but
not immediately replaced, by observations of the lifesavers’ performance.

According to the models maintained by a1 and a2, the lifesaver a3 has the
best rescue performance. Hence, a3 is selected by both a1 and a2 when a rescue
is announced in round r1. However, the true performance of a3 (0.4 at round r1,
column 6) is lower than that anticipated by the observer agents. Both agents
observe this performance, and update their models accordingly (column 15).

Now, when a new rescue must be performed (in round r2), agent a1 proposes
a3, as a3 is still the best according to its models, but agent a2 proposes a1.
As indicated above, according to our tie-breaking rule, the first agent in the
ordered list of agents is selected. This is a1, as it appears in the list before a3.
However, a1 does not perform well in the rescue (0.3 in round r2, column 5),
which significantly lowers Ma2(a1) to 0.45 (column 8). As a result, lifesaver a3 is
once more the top choice of both observer agents for the next rescue (in rescue
r3). But a3 performs quite low (0.2 at round r3, column 7), thereby further
lowering its expected performance according to the models maintained by the
observers (column 10).

Making Allocations Collectively 79

At this stage, the low performance of both a1 and a3 yields models with low
mean values for these lifesavers. Hence, for the next rescue (in round r4), a2

is proposed by both observer agents. This is a high-performing lifesaver that
has initially been underestimated by both observers. As it performs the rescue
well (0.8 in round r4, column 6), it raises the estimated value in the models
maintained by both observers (column 9). Agent a2 is now clearly preferred by
both observers and selected for the rescue in round r5. Again, lifesaver a2 offers
a good performance (0.7 in round r5, column 6).

At this point, the models maintained by the observer agents are closer to the
capabilities of the lifesavers than the initial models. Since both observer agents
have a shared observation memory of eight observations, the next time a rescue
is performed, the initial value representing the performance of lifesaver a3 will be
dropped, which will further increase the accuracy of the models. In round r6, a2

is selected again and performs the rescue with 0.9. Both agents use this value to
replace the initial observation of a3 (0.5 and 0.7, respectively). The algorithm is
terminated if we have an indication that one lifesaver is repeatedly selected over
other lifesavers. In this example, the algorithm provides as solution a2, because
it has been selected three times in this run (more often than other lifesavers,
which is an indication of a lifesaver’s selection being reliable).

3 Experiment: Impact of Variable Performance

This experiment evaluates the framework extensions under the condition that
the performance of lifesavers is variable and non-deterministic. Our simulation
is illustrated by the Surf Rescue (SR) domain introduced in Section 2.2.

3.1 Experimental Parameters

We evaluated five experimental parameters which are varied as follows.

– Capability Deviation (CD) – We define lifesaver groups with different
degrees of stability: Invariant, Stable, Medium, Unstable and Mixed. That
is, the deviation σ of each lifesaver’s performance distribution is drawn from
one of the following distributions.
• Invariant lifesavers exhibit the same performance in all rescues.
• Stable lifesavers: low performance variability, N(μ = 0.25, σ = 0.1).
• Medium lifesavers: medium performance variability, N(μ = 0.5, σ = 0.1).
• Unstable lifesavers: highly unstable performance, N(μ = 0.75, σ = 0.1).
• Mixed lifesavers represent a mixture of stable, medium and unstable

agents, N(μ = 0.5, σ = 0.25).
– Observation Capacity (OC) – The OC of each agent is varied between 1

and 30 concurrently.3 When OC=i, each agent retains the last i observations
3 The results did not change significantly when agents had a capacity of storing more

than 30 observations. Hence, values greater than 30 are not assigned to the OC
parameter. Note also, that another way of setting the value for observation capacity
for each agent is to draw this value from a normal distribution to simulate a more
heterogonous distribution of observation capacity.

80 C. Guttmann

made, and when OC=1, their observation capacity is as for previous studies
that assume deterministic performance [3,4]. This parameter specifies how
many observations of the performance of lifesavers can be stored by an agent
in its memory. When this limit is exceeded, the observer agent retains a
window of the last k observations (“forgetting” the initial ones).

– Stability Indicator (SI) – The algorithm is terminated after a lifesaver
is selected SI=25, 50, 75 and 100 for a rescue. A greater SI value indicates
that the solution is more reliable, because one lifesaver is selected more often
than others. Note that the algorithm terminates if a lifesaver is selected SI
times for a rescue during the entire simulation run (but not necessarily in SI
consecutive rounds).

– Policy (P) defines two types of group decision policies: maximum and ma-
jority. We have chosen these two group decision policies for the experimental
studies because under given theoretical conditions, they are guaranteed to
find optimal solutions [4].
• The maximum policy Pmax selects a lifesaver with the highest proposed

performance of all lifesavers proposed.
• The majority policy Pmaj selects a lifesaver proposed by a majority of

agents.
– Group Size (GS) defines the number of agents (lifesavers) in a surf rescue

domain: 5, 10, 20, 40 and 50. These values are expected to show a represen-
tative trend of our results for a range of populations of agents.

We run one simulation for each combination of the experimental parameters (CD
×OC× SI×GS×P = 5×30×4×5×2=6000), plus one simulation for each of
two benchmark settings, Exhaustive and Random. In short, both benchmark
settings do not execute the TAP algorithm. Instead, an exhaustive setting assigns
an optimal lifesaver, but requires that each lifesaver is assigned several times to
better know the performance of each lifesaver (in this experiment, we assign
each lifesaver GS multiplied by SI, as this assigns an optimal lifesaver with high
certainty). A random setting assigns a random lifesaver and does not require any
testing or remembering of the performance of lifesavers.

3.2 Efficiency Metrics

Solution Quality (SQ). The measure of SQ for a run is the mean of the capa-
bility distribution for the lifesaver on which the algorithm eventually converges.
For instance, in the example in Table 1, the solution consists of lifesaver a2,
whose C(a2) = {V (a2, rescue)} has a mean of μ̂jk = 0.8 (in this example, SI=3,
which means that lifesaver a2 has been selected in three rounds). This measure
reflects the final outcome of the combination of the parameters of the simulation
run in question.4

4 Another way to measure solution quality is to average the performance of a lifesaver
that has been selected (one or more times) during a simulation run. However, this
does not enable us to compare the results of the true capabilities of teams.

Making Allocations Collectively 81

Computational Requirement (CR). The measure of the CR of the Ex-
haustive setting is GS multiplied by SI (as this enables us to assign an optimal
lifesaver with high certainty). For example, if we have a group of GS=10 life-
savers and a stability indicator SI=50, then the CR is 500 assignment rounds
(each lifesaver is assigned 50 times to a rescue). The CR of the procedure in the
Random setting is 0.

Averaging and Normalising SQ and CR. Results for each setting are aver-
aged over 10000 trials (we selected this number of runs because it yields statis-
tically significant results according to a 95% confidence interval). We normalise
the SQ and CR of these 10000 trials as this enables a better comparison with
the optimal and worst results of a particular setting. SQ and CR (which have
been averaged over 10000 runs) is transformed into a range of 0 and 1. In par-
ticular, 0 represents the average mean performance of the worst lifesavers SQmin

and 1 represents the average performance of an optimal lifesaver SQmax. These
value assignments are reversed for CR (0 is optimal and 1 is as poor as for the
Exhaustive setting).

3.3 Initialising a Simulation Run of a Setting

At the beginning of each run, each lifesaver’s capability mean μatj is initialised
using a truncated normal distribution with a mean of μall = 0.5 and standard
deviation of σall = 0.25 (truncation is required to keep performance values
within a 0 to 1 interval).

Agents are “partially knowledgeable” of the true performance of each life-
saver’s performance. We have chosen the following method to initialise the esti-
mated mean of each agent’s model. For a given lifesaver atj , the estimated mean
is drawn from a normal distribution with a mean μ̂atj . The value μ̂atj is an
average of the mean μatj (i.e., the mean of the distribution of a specific team’s
capability) and the mean of the distribution that initialises the mean of all team
estimates (i.e., 0.5).

The parameter Capability Deviations CD initialises the performance stability
of each lifesaver (e.g., Stable or Unstable, Section 3.1). As defined by the pa-
rameter Observation Capacity (OC), each agent is endowed with the capacity
to store 1 to 30 observations. For instance, if OC=8, then each agent is able to
store 8 observations of the performance of different lifesavers (Section 2.2). The
values for the capability distribution of each lifesaver remain constant through-
out a run, while the mean of each agent’s models is updated after a rescue has
been performed (Section 2.2). Each run consists of the assignment of a rescue
task that is repeated until a lifesaver has been selected SI times.

3.4 Results and Analysis

The results of our experiment are shown in Figure 3, which depicts (averaged
and normalised) SQ and CR as a function of OC for our five types of lifesaver’s
capability deviations – Invariant, Stable, Medium, Unstable and Mixed, plus the
two benchmark settings Random and Exhaustive.

82 C. Guttmann

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

S
o
l
u
t
i
o
n

Q
u
a
l
i
t
y

(
n
o
r
m
a
l
i
s
e
d
)

Number of Observations

Invariant
Stable
Medium

Unstable
Mixed

(a) Solution Quality, SI=25

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

S
o
l
u
t
i
o
n

Q
u
a
l
i
t
y

(
n
o
r
m
a
l
i
s
e
d
)

Number of Observations

Invariant
Stable
Medium

Unstable
Mixed

(b) Solution Quality, SI=100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
o
m
p
u
t
a
t
i
o
n
a
l

R
e
q
u
i
r
e
m
e
n
t

(
n
o
r
m
a
l
i
s
e
d
)

Number of Observations

Invariant
Stable
Medium

Unstable
Mixed

(c) Computational Requirement, SI=25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

C
o
m
p
u
t
a
t
i
o
n
a
l

R
e
q
u
i
r
e
m
e
n
t

(
n
o
r
m
a
l
i
s
e
d
)

Number of Observations

Invariant
Stable
Medium

Unstable
Mixed

(d) Computational Requirement, SI=100

Fig. 3. Policy = Pmax, Group Size=50

Results of Benchmark Settings are as expected. The results for the Ran-
dom and Exhaustive settings correspond to the worst and best performance
respectively, and are used as a benchmark for comparison with the other set-
tings. The solution quality for the Invariant setting is slightly lower than that
for the Exhaustive setting. These results are consistent with the results ob-
tained for the Random, Exhaustive and Invariant settings in previous exper-
iments [3,4]. This is due to the fact that the algorithm with Invariant lifesavers
sometimes converge to a suboptimal solution. For example, this result is reached
when each agent underestimates the performance of optimal lifesavers [4].

The higher CD the worse SQ. As seen in Figures 3(a) and 3(b), the average
performance obtained for the Stable, Medium, Unstable and Mixed settings is
on average worse than that obtained for the Invariant setting. This is due to the
higher variability in rescue performance. The more unstable the performance of
lifesavers is (i.e., the higher the CD), the worse the solution quality becomes.

Making Allocations Collectively 83

We posit that the main reason for this outcome is that the observer agents are
unable to build reliable models when lifesavers exhibit unstable performance.

As SI increases, SQ increases (for Unstable lifesavers). Figures 3(a) and
3(b) also show how solution quality increases for unstable lifesavers as the SI
increases. This benefit comes with a significantly higher computational require-
ment (as seen in Figures 3(c) and 3(d)). The reason is that agents have the
opportunity to assess more observations and are able to build more accurate
models.

SQ improves dramatically with increasing OC across all GS, CD and
P. Average solution quality improves for all settings of CD, population sizes
GS and policies P when agents are able to store more than one observation of
the performance of lifesavers. The greatest improvement of solution quality is
achieved when each agent stores 1-3 observations (when OC>3, solution quality
still improves, but at a lesser rate). The reason for this dramatic improvement of
solution quality is that the models updated by each agent capture much of the
previous performance of the lifesaver, despite keeping only a small window of 1-3
observations. It is unnecessary to store a large number of observations to build
accurate models. The main difference of the two policies is that the maximum
policy offers better results on average than the majority policy (this has been
explored in [4]).

CR becomes worse up to OC=2 and then gradually improves. Fig-
ures 3(c) and 3(d) show that the computational requirement is worst when
OC=2. However, CR improves significantly when more than 2 observations are
stored – the largest improvement is observed for OC = 2, . . . , 15. This is due to
the additional storage of observations that compensates for testing lifesavers in
additional rounds required to build accurate models.

4 Related Research

Previous theoretical and empirical studies assume that the performance of a team
is deterministic and invariant [4,1]. If the performance of a team is invariant, it
can be adequately represented by one value. However, as a domain becomes
more complex, predicting the performance of a team becomes more difficult due
to the influence of factors that are not known. Such factors cannot be mod-
elled explicitly and an accurate prediction of a team’s future performance is not
possible using a deterministic ”one-value” representation. For example, human
performance varies from task to task due to the complex nature of human be-
haviour. Hence, a prediction of human performance will not be accurate using a
deterministic representation of human behaviour [6,7]. To deal with uncertainty,
many research projects have successfully applied the theory of probability [8].
For example, an agent interacts more efficiently with human users if it predicts
their behaviour using a probabilistic model [6,7]. Following this research, our
extended framework enables agents to maintain probabilistic models to predict
variable and non-deterministic performance of teams in the CIA problem.

84 C. Guttmann

Our work differs from existing research on Multi-Agent Reinforcement Learn-
ing (MARL) [9] and agent modelling [10]. Most work on MARL focuses on
multiple agents that execute tasks individually and use Reinforcement Learning
(RL) to coordinate their actions, taking into account various configurations (e.g.,
if agents can observe each others’ actions). Perhaps the best-known agent mod-
elling technique to coordinate agents uses a decision-theoretic approach whereby
each agent makes decisions to maximise its own payoff by recursively estimating
the payoff of collaborators [10]. A key difference is that agents described in [10]
and [9] is that our agents make group decisions which that guide how the entire
multi-agent system learns.

5 Conclusion

This paper offers extensions to our approach to the Collective Iterative Alloca-
tion (CIA) problem and evaluates an algorithm that is designed to cope with
uncertain conditions regarding the performance of teams (i.e., the performance
of a team varies each time it performs a task). In particular, agents are endowed
with the ability to model the performance of a team by its average performance
and its stability. Given different levels of stability (invariant, stable, medium,
unstable and mixed), our experiment evaluated an algorithm by varying each
agent’s capacity to store observations (which are required for the refinement of
its models). This paper offers the following insights.

1. Our results show that variable performance has a large impact on the effi-
ciency of the algorithm. As the performance variability of teams increases,
agents find it difficult to build accurate models of teams, which in turn results
in lower solution quality and higher computational requirements.

2. The solution quality of the algorithm will improve dramatically if at least
two or three past observations of a team’s performance are used by each
agent to refine its models (for any type of performance variability, group size
and policy). The use of probabilistic models is particularly effective when the
performance of lifesaver is highly variable. However, the benefit on solution
quality by using more than two or three observations is small.

3. This initial improvement of solution quality extends to the computational
requirement of the algorithm if more than two observations are made. That
is, the computational requirement of the algorithm is greatest when agents
store only two observations, but it decreases steadily as agents store more
than 2 observations.

We now have a starting point to address many future challenges based on the
uncertain nature of allocation domains. For example, the results stated in 2. and
3. are obtained with a self-contained group of agents (i.e., as many agents as we
have teams, A = AT). We plan to analyse how many observations are required
when the number of agents is different to the number of teams. Further, we plan
to extend this framework such that each agent will also submit its confidence
value of a lifesaver’s performance (based on the estimated standard deviation).

Making Allocations Collectively 85

These confidence values can be used to make risk-averse group decisions where
greater weight is assigned to a proposal of an agent that is confident about a
medium performing lifesaver (and vice versa for risk-tolerant policy). Further
extensions are required to deal with uncertainties present in communication
and observation, such as information specified in a proposal may change due to
interference introduced during a transmission.

References

1. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N.,
Padget, J., Phelps, S., Rodŕıguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30, 3–31 (2006)

2. Guttmann, C., Zukerman, I.: Towards models of incomplete and uncertain knowl-
edge of collaborators’ internal resources. In: Denzinger, J., Lindemann, G., Timm,
I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 58–72. Springer,
Heidelberg (2004)

3. Guttmann, C., Zukerman, I.: Agents with limited modeling abilities: Implications
on collaborative problem solving. Journal of Computer Science and Software En-
gineering (CSSE) 21(3), 183–196 (2006)

4. Guttmann, C., Rahwan, I., Georgeff, M.: An approach to the collective iterative
task allocation problem. In: Proc. of the International Conference of Intelligent
Agent Technology (IAT), USA, pp. 363–369. IEEE Press, Los Alamitos (2007)

5. Bond, A.H., Gasser, L.: An analysis of problems and research in DAI. In: Bond,
A.H., Gasser, L. (eds.) Readings in Distributed Artificial Intelligence (1988)

6. Billsus, D., Pazzani, M.: Learning probabilistic user models. In: Proc. of the Work-
shop on Machine Learning for User Modeling, Chia Laguna, Italy (1997)

7. Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The lumiere
project: Bayesian user modeling for inferring the goals and needs of software users.
In: Proc. of the fourteenth Conference on Uncertainty in Artificial Intelligence,
Madison, Wisconsin, United Stated of America USA, pp. 256–265 (July 1998)

8. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible in-
ference. Morgan Kaufmann publishers Inc., San Francisco (1988)

9. Sandholm, T.: Perspectives on Multiagent Learning. Artificial Intelligence (Special
Issue on Multiagent Learning) 171, 382–391 (2007)

10. Gmytrasiewicz, P.J., Durfee, E.H.: Rational communication in multi-agent envi-
ronments. Autonomous Agents and Multi-Agent Systems 4(3), 233–272 (2001)

Compiling GOAL Agent Programs into
Jazzyk Behavioural State Machines

Koen Hindriks1 and Peter Novák2

1 EEMCS, Delft University of Technology, The Netherlands
k.v.hindriks@tudelft.nl

2 Department of Informatics, Clausthal University of Technology, Germany
peter.novak@tu-clausthal.de

Abstract. A variety of agent-oriented programming languages based on con-
cepts such as beliefs and goals has been proposed in the literature. Even though
most of these languages now come with interpreters implemented in e.g. Java and
can be used to write software agents, there is little work reporting how to imple-
ment such languages or to identify a core instruction set that would facilitate such
implementation. In this paper we introduce a compiler for the language GOAL
into the framework of Jazzyk Behavioural State Machines. The result is a transla-
tion of key agent concepts such as beliefs and goals into Jazzyk which lacks these
notions, thus providing some evidence that it may provide a sufficient instruction
set for implementing agent programs. Moreover, arguably, the implementation
strategy used can be applied also to other agent programming languages.

1 Introduction

Relatively little has been reported in the literature on implementing high-level agent
programming languages [1]. An exception is the work of Dennis et al. [6], which aims
at providing a common basis for a variety of such languages. As of yet, however, there
is no equivalent of the Warren Abstract Machine [13] available - which provides such
a basis for Prolog - that would facilitate implementation of these agent languages. In
part this is due to the diversity of the proposed languages, ranging from extensions of
Java with high-level agent concepts to completely new proposals for high-level agent-
oriented programming languages. The effort needed, however, to implement the latter
class of agent languages from scratch, in for example Java, is large, non-trivial and
error-prone. Moreover a disadvantage of such an effort is that it is difficult to ascertain
that such an implementation is a faithful implementation of the semantics. It therefore
would be useful to have an intermediate language that provides a core instruction set
of more high-level programming constructs than e.g. Java provides, and that could be
used to compile agent programs into. As we will show, it turns out that the Jazzyk agent
programming framework [8,9] provides an interesting option for compiling agent pro-
grams. Jazzyk agents are Behavioural State Machines (Jazzyk BSM) that exactly provide
the behavioural layer on top of a knowledge representational layer that is needed to im-
plement agent languages. The main contribution of the paper is a formal proof that
shows it is relatively easy to compile GOAL agents [5,7] into Jazzyk BSM, demonstrat-
ing the usefulness of Jazzyk as a target language of an agent program compiler.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 86–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

k.v.hindriks@tudelft.nl
peter.novak@tu-clausthal.de

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 87

Besides showing that Jazzyk can be used as a target language of a compiler for such
agents, our result provides some additional insights. One of the more important corol-
laries of the proof given is that it shows that the GOAL agent language is not committed
to any particular knowledge representation (KR) technology. GOAL agents may use
Prolog [12], but there is nothing specific about GOAL enforcing such a choice. One of
the motivations behind the Jazzyk language has been to allow the use and combination
of heterogeneous KR technologies in a single agent. A consequence of our result is that
the choice of the KR technology used by GOAL agents can be seen as a parameter to
be instantiated when these agents are written. In fact, our result shows in a formally
precise sense that an agent language such as GOAL can be viewed as an action selection
mechanism put on top of an arbitrary knowledge representation technology. Finally,
by showing that GOAL agents can be compiled into Jazzyk, some evidence is provided
that Jazzyk supports the core functionality needed for implementing agent-oriented pro-
gramming.

Since a key ingredient of agent languages are the KR technology(ies) used, for our
purpose, we need to clarify in detail what we mean by a KR technology.

Definition 1 (KR Technology). A KR technology is a triple 〈L,Q,U〉, where:
– L is some logical language, with a typical element φ ∈ L,
– Q is a set of query operators |=∈ Q such that |=⊆ 2L × L,
– U is a set of update operators � ∈ U of type : 2L × L → 2L.

Our definition of a KR technology is quite abstract and only specifies the types of oper-
ators which are associated with a knowledge representation language. This makes our
result general, since it allows for a wide range of KR technologies that fit the KR schema
introduced, such as Prolog, Answer Set Programming, SQL, etc. The only assumption
made is that a special symbol ⊥ is part of the KR language L, which is intuitively in-
terpreted as falsum; when ⊥ can be derived from a set of sentences this set is said to be
inconsistent. Our definition is inspired by [4] and explained in more detail in [3]. Apart
from minor differences, it corresponds to the notion of a KR module in [8].

2 GOAL

The agent programming language GOAL, for Goal-Oriented Agent Language, is a lan-
guage that incorporates declarative notions of beliefs and goals, and a mechanism for
action selection based on these notions. That is, GOAL agents derive their choice of ac-
tion from their beliefs and goals. A GOAL agent consists of four sections: (1) a set of be-
liefs, collectively called the belief base, typically denoted by Σ, (2) a set of goals, called
the goal base, typically denoted by Γ , (3) a program section which consists of a set of
action rules, typically denoted by Π , and (4) an action specification section that con-
sists of a specification of the pre- and postconditions of actions of the agent, typically
denoted by A. A GOAL agent A thus can be represented as a tuple A = 〈Σ, Γ, Π, A〉.
See Figure 1 below for a simplified GOAL agent that manipulates blocks on a table; for
other examples and a more extensive discussion of GOAL we refer the reader to [5,7].

88 K. Hindriks and P. Novák

Beliefs and Goals. The beliefs and goals of a GOAL agent are drawn from a KR lan-
guage such as Prolog [12]. As mentioned, one of the contributions will be to show that
GOAL agents are not married to Prolog. To this end, we abstract here from particulars
of a specific KR language (similar to the abstraction presented in e.g. [5]). Instead, we
use the abstract definition of a KR technology provided in Definition 1. For the purpose
of introducing GOAL agents below and to simplify the technical presentation, without
loss of generality, we introduce a slightly more specific instance of a KR Technology
K0 = 〈L, {|=}, {⊕,
}〉 where |= is an entailment relation on L, ⊕ is a revision op-
erator and
 is a contraction operator. In the remainder of this paper we will use the
label K0 to refer to arbitrary KR technologies of this form used by GOAL agents. The
notation used for the operators has been chosen to suggest the usual meaning associated
with these symbols: |= is used to verify that a sentence follows from a particular set of
sentences; ⊕ is used to (consistently) add to a given set of sentences a new sentence;
and
 is used to remove (contracts) a sentence from a given set of sentences. Both ⊕
and
 are assumed to yield consistent sets of sentences, i.e. T ⊕φ �|= ⊥ and T
φ �|= ⊥.

The belief base Σ and the goal base Γ of a GOAL agent are defined as subsets of
sentences from the KR language L. Together the belief and the goal base make up a
mental state m of a GOAL agent, i.e. m = 〈Σ, Γ 〉. Belief bases Σ and individual goals
γ ∈ Γ are required to be consistent, i.e. Σ �|= ⊥ and {γ} �|= ⊥. Additionally, an agent
does not believe it achieved its goals, i.e. for all γ ∈ Γ we have Σ �|= γ.

Action Selection and Specification. A GOAL agent chooses an action by means of a
rule-based action selection mechanism. A program section in a GOAL agent consists
of action rules of the form if ψ then a. These action rules define a mapping from
states to actions, together specifying a non-deterministic policy or course of action. The
condition of an action rule, typically denoted by ψ, is called a mental state condition. It
determines the states in which the action a may be executed. Mental state conditions are
Boolean combinations of basic formulae bel(φ) or goal(φ) with φ ∈ L. For example,
¬bel(φ0) ∧ goal(φ0 ∧ φ1) is a mental state condition.

Definition 2 (Mental State Condition Semantics). The semantics of a mental state
condition, given a mental state m = 〈Σ, Γ 〉, is defined by the following four clauses:

m |=g bel(φ) iff Σ |= φ,
m |=g goal(φ) iff there is a γ ∈ Γ s.t. {γ} |= φ,
m |=g ¬ψ iff m �|=g ψ,
m |=g ψ1 ∧ ψ2 iff m |=g ψ1 and m |=g ψ2.

Actions are specified in GOAL using a STRIPS-like specification. The action specifica-
tion section in a GOAL agent consists of specifications of the form:

action { :pre{φ} :post{φ′} }

Such a specification of action action consists of a precondition φ and a postcondi-
tion φ′. An action is enabled whenever the agent believes the precondition to be true.
Upon its execution the agent updates its beliefs (and, indirectly, possibly also its goals)
with the postcondition φ′. In line with STRIPS-style action specifications we assume
that the postcondition φ′ of an action consists of two parts φ′ = φd ∧ φa with φd a

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 89

list of negative literals (negated facts) also called the delete list and φa a conjunction
of positive literals (facts) also called the add list.1 It is assumed here that each action
matches with exactly one corresponding action specification.

Semantics of a GOAL Agent. To specify what it means to execute a GOAL agent
we use a transition style semantics [11]. For our purposes, it is sufficient to present the
semantics for executing a single action by a GOAL agent. In Section 4 we show how
this semantics can be implemented by means of a Jazzyk BSM.

Definition 3 (Action Semantics). Let m = 〈Σ, Γ 〉 be a mental state, if ψ then a be
an action rule, and a {:pre{φ} :post{φa ∧ φd} } be a corresponding action specifica-
tion of a GOAL agent. The following semantic rule can be used to derive that action a
can be executed:

m |= ψ, Σ |= φ

m
a−→ m′

where Σ′ = (Σ
 φd) ⊕ φa and m′ = 〈Σ′, Γ \ {γ ∈ Γ |Σ′ |= γ}〉.

Besides user specified actions, GOAL has two built-in actions adopt and drop to mod-
ify an agent’s goal base. The following axioms define the semantics of these actions:

〈Σ, Γ 〉 adopt(φ)−−−−−−→ 〈Σ, Γ ∪ {φ}〉

〈Σ, Γ 〉 drop(φ)−−−−−→ 〈Σ, Γ \ {γ ∈ Γ | {γ} |= φ}〉.

3 Jazzyk Behavioural State Machines

The programming language Jazzyk introduced in [8,9] elegantly combines concepts
for programming agent behaviour with concepts for knowledge representation. Jazzyk
agents can be seen as concrete instantiations of Gurevich’s Abstract State Machines
(ASM) [2] , named Jazzyk Behavioural State Machines, or alternatively Jazzyk agents.
Jazzyk defines a new and unique agent-oriented programming language due to the
clear distinction it makes between the knowledge representation and behavioural layers
within an agent. It thus provides a programming framework that clearly separates the
programming concerns of how to represent an agent’s knowledge about, for example,
its environment and how to encode its behaviours.

Mental states of Jazzyk BSM agents, different from those in GOAL, are collections
of one or more so-called knowledge representation modules, typically denoted by M,
each of which represents part of the agent’s knowledge base. Transitions between such
states result from applying so-called mental state transformers (mst), typically denoted
by τ . The various types of mst determine the behaviour that an agent can generate. A
Jazzyk BSM agent B consists of a set of KR modules M1, . . . ,Mn and a mental state
transformer τ , i.e. B = (M1, . . . , Mn, τ); the mst τ is also called an agent program.

1 We could also have used e.g. ADL specifications [10], but for reasons of simplicity we use a
STRIPS-like specification, which also nicely matches the KR technology K0 with two update
operators: the operator ⊕ to add facts, and the operator � to delete facts.

90 K. Hindriks and P. Novák

A KR module of a Jazzyk BSM can be seen as a database of statements drawn from
a specific KR language. KR modules may be used to represent and maintain various
attitudes of an agent such as its knowledge about its environment, or its goals, inten-
tions, obligations, etc. Jazzyk allows agents to have any number of such KR modules
and does not enforce any particular view on these modules. Unlike GOAL, Jazzyk ab-
stracts from a particular purpose a KR module can be made to serve. Formally, a KR
module 〈D,L,Q,U〉 is a KR technology 〈L,Q,U〉 (cf. Definition 1) extended with a
state (knowledge base) D ⊆ L. A KR module is a self-encapsulated computational en-
tity providing two sets of interfaces: query operators for querying the knowledge base
and update operators to modify it. In a Jazzyk BSM (M1, . . . , Mn, τ) we additionally
require that the set of query and update operators of any two modules are disjoint, i.e.
Qi ∩ Qj = ∅ and Ui ∩ Uj = ∅.

Syntax of Queries and Mental State Transformers. Queries, typically denoted by ϕ,
are operators constructed from the set of available query operators Q that are available
in a KR technology. A primitive query ϕ = (|= φ) consists of a query operator |=∈ Q
and a formula φ ∈ L of the same KR technology. Arbitrary queries can be composed
again by means of conjunction∧, disjunction∨ and negation¬. Mental state transform-
ers enable transitions from one state to another. A primitive mst �φ, typically denoted
by ρ and constructed from an update operator � ∈ U and a formula φ ∈ L, is an update
on the state of the corresponding KR module of a mental state. Conditional mst are of
the form ϕ −→ τ , where ϕ is a query and τ is a mst. Such a conditional mst allows
to make the application of mst τ conditional on the evaluation of query ϕ. Msts can be
combined by means of the choice | and the sequence ◦ syntactic constructs.

Definition 4 (Jazzyk Mental State Transformer). Let M1, . . . ,Mn be KR modules
of the form 〈Di,Li,Qi,Ui〉. The set of mental state transformers is defined as:

1. skip is a primitive mst,
2. if � ∈ Ui and φ ∈ Li, then �φ is a primitive mst,
3. if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
4. if τ and τ ′ are mst’s, then τ |τ ′ is an mst (choice) and τ ◦ τ ′ is an mst (sequence).

Figure 1 provides an example of a Jazzyk BSM agent. To improve readability, we use
a mix of concrete Jazzyk syntax and the formal syntax introduced above. For a more
extensive example of a Jazzyk BSM program see [9].

Jazzyk BSM Semantics. The semantics of Jazzyk BSM is defined using a semantic
calculus similar to that used for ASM [2]. This formalism provides a functional rather
than an operational view on Jazzyk mental state transformers. The yields calculus, intro-
duced below, specifies an update associated with executing an mst. It formally defines
the meaning of the state transformation induced by executing an mst in a state.

Formally, a mental state s of a Jazzyk BSM (M1, . . . , Mn, τ) consists of the corre-
sponding states 〈D1, . . . , Dn〉 of its KR modules. To specify the semantics of a Jazzyk
BSM, first we need to define how queries are evaluated and how a state is modified by
applying updates to it. A primitive query |= φ in a Jazzyk BSM state s = 〈D1, . . . , Dn〉
evaluates the formula φ ∈ Li using the query operator |=∈ Qi in the current state

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 91

Di ⊆ Li of the corresponding KR module 〈Di,Li,Qi,Ui〉. That is, s |=j (|= φ) holds
in a mental state s iff Di |= φ, otherwise we have s �|=j (|= φ). Given the usual
meaning of Boolean operators, it is straightforward to extend the query evaluation to
compound query formulae. Note that a query |= φ does not change the mental state s.

The semantics of a mental state transformer is a set of (possibly sequences of) up-
dates (update set). The same notation �φ is used to denote a simple update as well as
the corresponding primitive mst. It should be clear from the context which of the two
is intended. Sequential application of updates is denoted by •, i.e. ρ1 • ρ2 is an update
resulting from applying ρ1 first and then applying ρ2.

Definition 5 (Applying an Update). The result of applying an update ρ = �φ to a
state s = 〈D1, . . . , Dn〉 of a BSM B = (M1, . . . ,Mn, τ), denoted by s

⊕
ρ, is a

new state s′ = 〈D1, . . . , D
′
i, . . . , Dn〉 where D′

i = Diρ = Di � φ and Di, �, and φ
correspond to one and the same Mi of B. Applying the special update Ø to a state s
results in the same mental state s = s

⊕
Ø.

We write Di

⊕
(ρ1 • . . .•ρk) for (...(Di

⊕
ρ1)

⊕
...

⊕
ρk) where all ρi correspond

to Di. The result of applying an update of the form ρ1 •ρ2 to a state s, i.e. s
⊕

(ρ1 •ρ2),
is the new state (s

⊕
ρ1)

⊕
ρ2.

The meaning of a mental state transformer in state s, formally defined by the yields
predicate below, is the update it yields in that state. We introduce a version of the
yields calculus adapted from [9].

Definition 6 (Yields Calculus). A mental state transformer τ yields an update ρ in a
state s, iff yields(τ, s, ρ) is derivable in the following calculus:

�
yields(skip,s,Ø)

�
yields(�φ,s,�φ) (yields of a primitive mst)

yields(τ,s,ρ), s|=jφ
yields(φ−→τ,s,ρ)

yields(τ,s,ρ), s�|=jφ
yields(φ−→τ,s,Ø) (yields of a conditional mst)

yields(τ1,s,ρ1), yields(τ2,s,ρ2)
yields(τ1|τ2,s,ρ1)

yields(τ1,s,ρ1), yields(τ2,s,ρ2)
yields(τ1|τ2,s,ρ2) (yields of a choice mst)

yields(τ1,s,ρ1), yields(τ2,s
�

ρ1,ρ2)
yields(τ1◦τ2,s,ρ1•ρ2) (yields of a sequential mst)

The mst skip yields the update Ø. Similarly, a primitive update mst yields the cor-
responding update. In case the condition of a conditional mst ϕ −→ τ is satisfied in
the current mental state, the calculus yields one of the updates corresponding to the
right hand side mst τ , otherwise the Ø update is yielded. A non-deterministic choice
mst yields an update corresponding to either of its members and finally a sequential mst
yields a sequence of updates corresponding to the first mst of the sequence and an up-
date yielded by the second member of the sequence in a state resulting from application
of the first update to the current mental state.

4 Compiling a GOAL Agent into a Jazzyk BSM

In this Section we show that GOAL agents can be implemented as, or compiled into,
Jazzyk BSM. The compiler is abstractly represented here by a function C that

92 K. Hindriks and P. Novák

translates (compiles) GOAL agents into Jazzyk Behavioural State Machines. The main
result is a proof that for every GOAL agent A = 〈Σ, Γ, Π,A〉 there is a Jazzyk BSM
C(A) = (M1, . . . ,Mn, τ) that implements that GOAL agent. In fact, we will show
that a Jazzyk BSM C(A) = (MΣ ,MΓ , τ) with precisely two KR modules is sufficient,
where module MΣ corresponds to the belief base Σ and module MΓ corresponds to
the goal base Γ . We proceed as follows. First, we define the KR modules MΣ and MΓ

of the Jazzyk BSM, using the KR technology employed by GOAL agents as a starting
point. Second, we show how to obtain a Jazzyk BSM agent program τ that implements
the action rules in the program section Π and action specifications A of the GOAL
agent. Finally, the equivalence of the GOAL agent with its Jazzyk BSM counterpart
C(A) is proven by showing that both are able to generate the same mental states.

Translation. It is important to repeat that throughout this paper we have assumed that
a GOAL agent uses a KR technology of the form K0 = 〈L, {|=}, {⊕,
}〉 (see Section
2). Given this, it is straightforward to map a GOAL belief base onto a Jazzyk BSM KR
module that is able to implement (i) the evaluation of a mental state condition bel(φ)
on a belief base as well as (ii) the execution of updates associated with performing an
action. We simply map the GOAL belief base Σ onto the Jazzyk BSM module

MΣ = Cbb(Σ) = 〈Σ,L, {|=}, {⊕,
}〉 (1)

Whereas the underlying KR technology is implicitly assumed in a GOAL agent, this
assumption is made explicit in the corresponding Jazzyk BSM KR module.

The translation of the goal base of a GOAL agent into a Jazzyk BSM module is less
straightforward. A Jazzyk BSM module that implements the goal base needs to be able
to implement (i) the evaluation of a mental state condition goal(φ) on a goal base as
well as (ii) the execution of updates on a goal base as a result of performing adopt
or drop actions and the removal of goals that have been achieved. Because the goal
operator has a somewhat non-standard semantics (see Definition 2), we need to define
a non-standard KR technology associated with the Jazzyk BSM module implementing
the goal base. Mapping a goal base Γ onto the module MΓ provides what we need:

MΓ = Cgb(Γ) = 〈Γ,L, {|=goal}, {⊕adopt,
drop,
achieved}〉 (2)

where:

– Γ |=goal φ iff there is a γ ∈ Γ such that {γ} |= φ.
– Γ ⊕adopt φ = Γ ∪ {φ}.
– Γ
drop φ = Γ \ {γ ∈ Γ | {γ} |= φ}.
– Γ
achieved φ = Γ \ {φ}.

|=goal is used to implement goal(φ), ⊕adopt implements adopt,
drop is used to
implement drop, and finally
achieved implements the goal update mechanism to re-
move achieved goals. Note that the goal update mechanism of GOAL (cf. Definition 2)
requires a simple set operator to remove a formula from the goal base such as
achieved

and we cannot use
drop for this purpose.
Using the translations defined above it is now possible to translate mental state

conditions ψ used in GOAL action rules of the form if ψ then a. As noted above,

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 93

C(bel(φ)) can be mapped onto the Jazzyk BSM query |= φ; similarly, we can define
C(goal(φ)) = (|=goal φ). Boolean combinations of mental state conditions are trans-
lated into Boolean combinations of Jazzyk BSM queries.

The translation of an action a, the second part of an action rule of a GOAL agent,
into Jazzyk BSM msts is straightforward when a is either adopt or drop action. Since
both adopt(φ) and drop(φ) are always enabled, we can map these actions simply
onto their corresponding primitive update operators:

C(adopt(φ)) = ⊕adoptφ (3)

C(drop(φ)) =
dropφ (4)

The compilation of user defined actions, i.e. actions specified in the action specifica-
tion section A, into Jazzyk BSM depends on the action specification A of the compiled
GOAL agent. Such actions are mapped onto conditional msts of the form ϕ −→ τ .
The preconditions of an action are mapped onto the query part ϕ of the mst; the effects
of that action, expressed by a postcondition in GOAL, are translated into a sequential
mst τ . Assuming that a is a GOAL action with the corresponding action specification
a {:pre{φ} :post{φd ∧ φa}, we define:

C(a) = (|= φ −→
φd ◦ ⊕φa) (5)

Note that the Jazzyk BSM operators |=, ⊕, and
 are associated with the KR module
MΣ that implements the belief base of the GOAL agent, which ensures that the precon-
dition φ is evaluated on the belief base of the agent and in line with Definition 3, the
postcondition φd ∧ φa is used to update that belief base.

Combining the translations of mental state conditions and actions yields a translation
of action rules in the program section of a GOAL agent. It is also convenient to introduce
a translation of a complete program section, i.e. a set Π of such rules. Note that the order
of translation is unimportant.

C(if ψ then a) = C(ψ) −→ C(a) (6)

C(∅) = skip (7)

C(Π) = C(r) |C(Π \ {r}) , if r ∈ Π (8)

The definitions above already allow us to define a compilation of a GOAL agent into
a Jazzyk BSM, but it is convenient to first introduce the notion of a possibly adopted
goal. A goal φ is said to be a possibly adopted goal whenever it is possible that the
agent may come to adopt φ as a goal, i.e. whenever it is already present in the goal
base or there is an action rule of the form if ψ then adopt(φ) in Π . The set of
possibly adopted goals PA of a GOAL agent A = 〈Σ, Γ, Π, A〉 thus can be defined by
PA = Γ ∪ {φ | if ψ then adopt(φ) ∈ Π}. The notion introduced is useful since in
the Jazzyk BSM translation we need to also implement the blind commitment strategy
of GOAL, i.e. the removal of goals whenever these are completely achieved. A Jazzyk
BSM mst that consists of a sequence of conditional msts is introduced to implement
the goal update mechanism of GOAL. Each of these corresponds to a single possibly
adopted goal. The corresponding query evaluates whether φ ∈ PA is (believed to be)
achieved, whereupon φ is removed from the goal base:

94 K. Hindriks and P. Novák

:main: blocksWorld
{

//∗∗∗ Initializations omitted ∗∗∗/
:beliefs{. . .}
:goals{. . .}

:program{
if bel(on_table([B|S]), clear(B),

block(C), clear(C)) ,
goal(on_table([C,B|S]))

then move(C,B).
if goal(on(B,A)),

bel(on_table([C|S]),
clear(C), member(B,S))

then move(C,table).
}

:actionspec{
move(X,Y) {

:pre{ clear(X), clear(Y), on(X,Z), not(on(X,Y)) }
:post{ not(on(X,Z)), on(X,Y) }

}
}

}

/∗∗∗ Modules initialization omitted ∗∗∗/
{ // ∗∗∗∗∗∗∗∗ C(Π) ∗∗∗∗∗∗∗∗

when |= [{on_table([B|S]), clear(B), block(C), clear(C)}]
and |=goal [{on_table([C,B|S])}]

then {
when |= [{clear(C), clear(B), on(C,Z), not(on(C,B))}]
then ⊕ [{not(on(C,Z)), on(C,B)}]

} ;
when |=goal [{on(B,A)}] and

|= [{on_table([C|S]), clear(C), member(B,S)}]
then {
when |= [{clear(C), clear(table),

on(C,Z), not(on(C,table))}]
then ⊕ [{not(on(C,Z)), on(C,table)}]
}

} ,
{ // ∗∗∗∗∗∗∗∗ Cdrop(Gl(A)) ∗∗∗∗∗∗∗∗

when |= [{on(b,a), on(a,table)}]
then
goal [{on(b,a), on(a, table)}] ,

when |= [{on_table([a,b])}]
then
goal [{on_table([a,b])}] ,

when |= [{on_table([b])}]
then
goal [{on_table([b])}]

}

Fig. 1. Example of a translation of a simple GOAL agent moving blocks on a table into Jazzyk
BSM pseudocode. when ... then ... encodes a conditional mst, ; and , stand for | and ◦ respectively.

Cbcs(∅) = skip (9)

Cbcs(PA) = (|= φ −→
achievedφ) ◦ Cbcs(PA \ {φ}) , if φ ∈ PA (10)

The compilation of a GOAL agent 〈Σ, Γ, Π, A〉 into a Jazzyk BSM is defined as:

C(〈Σ, Γ, Π, A〉) = (MΣ ,MΓ , C(Π) ◦ Cbcs(PA)) (11)

Correctness of the Translation Function C. The main effort in proving that the com-
pilation of a GOAL agent A = 〈Σ, Γ, Π, A〉 into a Jazzyk BSM C(A) = (MΣ ,MΓ ,
C(Π) ◦ Cbcs(PA)) is correct consists of showing that the action rules Π of the GOAL
agent generate the same mental states as the mental state transformer C(Π)◦Cbcs(PA).
In order to prove this we first prove some useful properties of Cbcs(PA) that imple-
ments the goal update mechanism of GOAL (Lemma 1), the relation of GOAL mental
states resulting from action execution to the application of updates to Jazzyk BSM men-
tal states (Lemma 2), and the evaluation of mental state conditions in GOAL to the
evaluation of their translations in Jazzyk (Lemma 3). Due to space limitations we omit
the detailed proofs for these lemmas.

Lemma 1 shows that a Jazzyk BSM state, which does not need to be a GOAL state,
nevertheless is a GOAL mental state after removing goals that are believed to be
achieved, and that the mst Cbcs(PA) implements this goal update mechanism.

Lemma 1. Let m = 〈Σ, Γ 〉 be a Jazzyk BSM state such that Σ �|= ⊥ and Γ ⊆ PA,
and ρ be an update
achievedγ1 • . . . •
achievedγn. Then yields(Cbcs(PA), m, ρ) iff

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 95

(i) 〈Σ, Γ
⊕

ρ〉 is a GOAL mental state, and
(ii) there is no Γ ′: Γ

⊕
ρ ⊂ Γ ′ ⊆ Γ such that 〈Σ, Γ ′〉 is a GOAL mental state.

Lemma 2 proves that the GOAL states resulting from executing an action can also be
obtained by applying updates of a particular structure, which is useful to relate GOAL
actions to Jazzyk BSM updates. The fact that the Jazzyk BSM mst τ that is the Jazzyk
BSM translation of a GOAL agent also yields updates with the same structure is useful
to relate Jazzyk BSM updates to GOAL actions again.

Lemma 2. Let A = 〈Σ, Γ, Π, A〉 be a GOAL agent and C(A) = (MΣ ,MΓ , τ) its
Jazzyk BSM compilation. Also let a be a user defined action of GOAL agent A, with
action specification a {:pre{φ} :post{φa ∧ φd}}. Then

(i) m
a−→ m′ iff ∃n ≥ 0 : m′ = m

⊕
(
φd•⊕φa•
achievedγ1•. . .•
achievedγn).

(ii) m
drop(φ)−−−−−→ m′ iff m′ = m

⊕
(
dropφ).

(iii) m
adopt(φ)−−−−−−→ m′ iff m′ = m

⊕
(⊕adoptφ).

(iv) If yields(τ, m, ρ), then ρ is of the form
φd•⊕φa•
achievedγ1•. . .•
achievedγn

for some n ≥ 0, or of the form
dropφ or
adoptφ.

Lemma 3 relates the evaluation of GOAL mental state conditions to the evaluation of
their Jazzyk BSM translation in the same state.

Lemma 3. Let ψ be a mental state condition. It holds that

m |=g ψ iff m |=j C(ψ)

Finally, Theorem 1 shows that the updates generated by the Jazzyk translation of a
GOAL agent produce the same mental states as the execution of actions by that GOAL
agent, which shows that the Jazzyk BSM implements the GOAL agent.

Theorem 1 (Correctness of GOAL-2-BSM Compilation). Let A = 〈Σ, Γ, Π, A〉 be
a GOAL agent with mental state m = 〈Σ, Γ 〉 and C(A) = (MΣ ,MΓ , τ) its corre-
sponding Jazzyk BSM translation. Then for all ρ:

∃a : m
a−→ m

⊕
ρ iff yields(τ, m, ρ).

Proof. Informally, to show the left to right direction (=⇒), we have to show that if a
GOAL action a is enabled in a mental state m, there exists an update ρ such that (a)
the state resulting from performing a is m

⊕
ρ and (b) ρ is yielded by τ in this state.

Note that even though an update operator ρ occurs on the left hand side the expression
on the left hand side denotes a GOAL transition. From Lemma 2 we know that such a
ρ exists and is of the form (i) ρ =
φd • ⊕φa •
achievedγ1 • . . . •
achievedγn for
user specified actions a, (ii) ρ =
dropφ if a = drop(φ) and (iii) ρ = ⊕adoptφ if
a = adopt(φ).

So suppose that m
a−→ m

⊕
ρ and a is a user defined action (the other cases dealing

with a = drop(φ) and a = adopt(φ) are similar). This means there is an action rule
if ψ then a, and precondition φ and postcondition φd ∧ φa associated with action a

96 K. Hindriks and P. Novák

such that m |=g ψ and Σ |= φ. It remains to show that update ρ is also yielded by τ .
By construction, we must have that

τ = (...|(C(ψ) −→ (|= φ −→
φd ◦ ⊕φa))|...) ◦ Cbcs(PA)

Since we have m |=g ψ and Σ |= φ, using Lemma 3 it is immediate that we have
yields(C(ψ) −→ (|= φ −→
φd ◦ ⊕φa), m,
φd • ⊕φa). Finally, from Lemma 1, we
have that yields(Cbcs(PA), m

⊕
(
φd •⊕φa), {
achievedγ1 • . . .•
achievedγn) and

by applying sequential composition on the resulting updates we are done.
(⇐=) In the other direction, we have to prove that the updates performed by C(A)

correspond to enabled actions of the GOAL agent A. So suppose that yields(τ, m, ρ),
and ρ is of the form
φd • ⊕φa •
achievedγ1 • . . . •
achievedγn (using Lemma
2(iv); the other cases with ρ =
dropφ and ρ = ⊕adoptφ are again similar). From
the construction of C it follows that we must have yields(C(ψ) −→ (|= φ −→

φd ◦ ⊕φa) ◦ Cbcs(PA), m, ρ). From the rule for conditional mst in the yields cal-
culus (Definition 6) follows that m |=j C(ψ) and m |=j (|= φ). By Lemma 3 we
then have m |=g ψ and Σ |= φ. We must also have an action rule if ψ then a

with action specification a {:pre{φ} :post{φa ∧ φd} such that m
a−→ m

⊕
(
φd •

⊕φa •
achievedγ′
1 • . . . •
achievedγ′

m) (cf. Lemma 2(i)). It remains to be shown that

achievedγ1 • . . . •
achievedγn is equal to
achievedγ′

1 • . . . •
achievedγ′
m; this

follows immediately from Lemma 1.

5 Discussion and Conclusion

We showed that any GOAL agent can be compiled into a Jazzyk Behavioural State
Machine. More precisely, it was shown that every possible computation step of a GOAL
agent can be emulated by the Jazzyk BSM that is the result of compiling the GOAL
agent into Jazzyk BSM. The compilation procedure is compositional in the sense that
any modifications or extensions of the belief base, goal base or program and action
specification sections of the GOAL agent only locally affect, respectively, the compiled
belief base module, the compiled goal base module, or the mental state transformer that
is the result of compiling the program and action specification sections.

The compilation function introduced provides a means to translate GOAL agents
into Jazzyk BSM, but not vice versa. Abstracting from a number of details a Jazzyk BSM
could be viewed as a GOAL agent that does not use its goal base and associated goal
update mechanism. As mentioned above, Jazzyk does not commit to any particular view
on the KR modules of a Jazzyk BSM. This flexibility allowed us to implement the goal
base of a GOAL agent by means of explicit emulation of the goal update mechanism.

As already noted in the introduction, there is not much related work aimed at pro-
viding an effective strategy or tools for implementing a variety of rule-based agent
programming languages such as those described in [1]. To the best of our knowledge,
only [6] has presented a framework to this end. The resulting framework, however, is
based on the idea to incorporate each and every semantic feature of a variety of avail-
able high-level agent languages in order to be able to cover every type of agent. It thus
does not provide an implementation strategy as the one promoted and illustrated in this
paper, which is based on the idea to provide a concise set of simple high-level concepts

Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines 97

(a common core) facilitating compilation of a variety of agent programs into this core
instruction set. This strategy is explicitly aimed at reducing a set of high-level agent
programming concepts to a simpler, more basic set of concepts.

The implementation strategy used to identify specific semantic features of the GOAL
language and to emulate these explicitly in Jazzyk also raises the question whether fea-
tures of other agent programming languages can be compiled in a similar way. Although
we do not have room to extensively argue for this, we believe that a similar approach
can also be applied to other rule-based agent programming languages. In particular,
the following implementation strategy could be applied to compile agent programs into
Jazzyk BSM: (i) compile the underlying knowledge base(s) into equivalent Jazzyk BSM
KR module(s), (ii) compile the (action, planning, ...) rules of the agent program into
Jazzyk BSM mental state transformers using the operators of the KR module(s), and
finally (iii) implement any specific semantic features of the language by a Jazzyk BSM
mst and “append” it to the one constructed in the previous step. Moreover, since Jazzyk
BSM also features a much simpler conceptual scheme than higher level agent languages,
we believe that it provides a promising basis for an intermediate language into which
agent programs can be compiled and interpreted.

Our result shows that GOAL does not commit to any particular KR technology such
as Prolog. Another issue that remains is whether it would be possible to allow GOAL
agents to use multiple KR technologies. The compilation into Jazzyk BSM provides
some evidence that this is possible since Jazzyk BSM enables the use of many different
KR technologies. However, the use of multiple KR technologies within a single agent
will add expressive power only when certain key issues related to the “interoperability”
of different KRs have been solved (for a discussion see also [3]).

References

1. Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.: Multi-Agent Programming
Languages, Platforms and Applications. Kluwer Academic Publishers, Dordrecht (2005)

2. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003)

3. Dastani, M., Hindriks, K.V., Novák, P., Tinnemeier, N.A.M.: Combining multiple knowl-
edge representation technologies into agent programming languages. In: Proc. of the Intl.
Workshop on Declarative Agent Languages and Technologies (DALT 2008) (2008)

4. Davis, R., Shrobe, H.E., Szolovits, P.: What Is a Knowledge Representation? AI 14(1), 17–33
(1993)

5. de Boer, F., Hindriks, K., van der Hoek, W., Meyer, J.-J.C.: A Verification Framework for
Agent Programming with Declarative Goals. Journal of Applied Logic 5(2), 277–302 (2007)

6. Dennis, L.A., Bordini, R.H., Farwer, B., Fisher, M., Wooldridge, M.: A common semantic
basis for BDI languages. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A., Winikoff, M.
(eds.) ProMAS 2007. LNCS (LNAI), vol. 4908. Springer, Heidelberg (2008)

7. Hindriks, K.: Modules as Policy-Based Intentions. In: Dastani, M., El Fallah Seghrouchni,
A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908. Springer, Hei-
delberg (2008)

8. Novák, P.: Behavioural State Machines: programming modular agents. In: AAAI 2008
Spring Symposium: Architectures for Intelligent Theory-Based Agents (AITA 2008) (2008)

98 K. Hindriks and P. Novák

9. Novák, P.: Jazzyk: A programming language for hybrid agents with heterogeneous knowl-
edge representations. In: Proc. of the 6th Intl. Workshop on Programming Multi-Agent Sys-
tems (ProMAS 2008) (2008)

10. Pednault, E.: ADL: exploring the middle ground between STRIPS and the situation calculus.
In: Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning (1989)

11. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus (1981)

12. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge (1986)
13. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Report 309, AI Center, SRI

International, 333 Ravenswood Ave., Menlo Park, CA 94025 (1983)

Knowledge and Strategic Ability for Model

Checking: A Refined Approach

Wojciech Jamroga

Department of Informatics, Clausthal University of Technology, Germany
wjamroga@in.tu-clausthal.de

Abstract. We present a translation that reduces epistemic operators to
strategic operators in the context of model checking. The translation is a
refinement of the one from [4], and it improves on the previous scheme in
two ways. First, it does not suffer any blowup in the length of formulae
(the one from [4] did). Second, the new translation is defined in a more
general setting: additional constraints can be imposed on strategy profiles
that agents can execute. We show the applicability of such a general
translation on the case of strategic abilities under imperfect information.

1 Introduction

Modal logics of multi-agent systems usually combine several dimensions. Knowl-
edge, time, actions, strategic abilities, norms/obligations, intentions, desires etc.
can all be involved in a description of an agent system. This way, modal logic
can support sufficiently realistic descriptions of agents. But there is a price to
pay: such multi-modal logics are usually harder to handle semantically as well as
algorithmically. Thus, a designer is usually faced with the task of finding a good
tradeoff between a “clean” logic with few modalities (and clear overall semantics)
and a “realistic” language with many modalities (where it is not immediately
visible how parts of the semantics interfere). A reduction method that allows
to express one modality with the others offers two kinds of advantage. In terms
of theory, it allows to make the logic “cleaner”, and study its theoretical prop-
erties (semantics, computational complexity) in a simpler environment. On the
practical side, we can reuse the advances in, say, model checking of one sort of
modality to improve the techniques used for dealing with the other dimensions.

In [4], we proposed how epistemic modalities can be equivalently expressed
by strategic operators of alternating-time temporal logic atl [1] in the context
of model checking. The reduction was polynomial in almost every respect. Un-
fortunately, the length of formulae could suffer exponential blowup (although
the number of different subformulae in the formula increased only linearly). We
argued that, for most model checking algorithms, it would not increase the ver-
ification time. Still, it was a flaw that made using the reduction awkward, at
least for theoretical purposes. The aim of this paper is to propose a refinement
of the reduction that does not suffer from the blowup any more. Moreover, we
point out that the reduction can be used even if we impose some “behavioral

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 99–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 W. Jamroga

constraints” on the strategies that can be played by agents. Thus, the method
can be used also for variants of atl where one assumes that the agents can only
play in a uniform [7], socially acceptable [11], or rational way [6].

Our presentation here is based on some material from [4]. It should be also
mentioned that the original reduction was inspired by [9], and shared some sim-
ilarities with [13] (although the reduction proposed in the latter paper had a
more limited scope). Similar translations of modal logics include [8,3]. Our pre-
sentation of strategic constraints is based on the approach of [6].

2 Preliminaries

2.1 ATL: Abilities in Perfect Information Games

Atl [1] generalizes the branching time logic ctl [2] by replacing path quantifiers
with so called cooperation modalities. The formula 〈〈A〉〉ϕ expresses that group of
agents A have a collective strategy to enforce ϕ. Atl formulae include temporal
operators: “ �” (“in the next state”), � (“always from now on”) and U (“until”).
Operator � (“now or sometime in the future”) can be defined as �ϕ ≡ TU ϕ.
Formally, the recursive definition of atl formulae is:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 �ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕU ϕ.

A concurrent game structure (cgs) is a tuple M = 〈Agt, St, Π, π, Act, d, o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . , k}, a nonempty set of
states St, a set of atomic propositions Π , a valuation of propositions π : St → 2Π ,
and a set of (atomic) actions Act. Function d : Agt × St → (2Act \ ∅) defines
nonempty sets of actions available to agents at each state, and o is a transition
function that assigns the outcome state q′ = o(q, α1, . . . , αk) to state q and a
tuple of actions 〈α1, . . . , αk〉, αi ∈ d(i, q), that can be executed by Agt in q.

A (memoryless) strategy sa of agent a is a conditional plan that specifies
what a is going to do for every possible situation: sa : St → Act such that
sa(q) ∈ d(a, q). We denote the set of such functions by Σa. A collective strategy
sA for a group of agents A is a tuple of strategies, one per agent from A; the
set of A’s collective strategies is given by ΣA =

∏
a∈A Σa. The set of all strategy

profiles is given by Σ = ΣAgt.
A path λ in model M is an infinite sequence of states that can be effected by

subsequent transitions, and refers to a possible course of action (or a possible
computation) that may occur in the system; by λ[i], we denote the ith position
on path λ. The set of all paths starting from state q is given by Λ(q). Function
out(q, sA) returns the set of all paths that may result from agents A executing
strategy sA from state q onward.

Formally, the semantics of cooperation modalities can be given via the follow-
ing clauses:

M, q |= 〈〈A〉〉 �ϕ iff there is a collective strategy sA such that, for every
λ ∈ out(q, sA), we have M, λ[1] |= ϕ;

Knowledge and Strategic Ability for Model Checking 101

q
0

q
2

q
1

p
0

p
1

��

p
2

�

�

�

Fig. 1. Simple concurrent epistemic game structure M1. Nodes represent states of the
system, solid arrows depict transitions (labeled by the agent’s actions), and dotted
arrows show indistinguishability of states.

M, q |= 〈〈A〉〉�ϕ iff there exists sA such that, for every λ ∈ out(q, sA), we have
M, λ[i] |= ϕ for every i ≥ 0;

M, q |= 〈〈A〉〉ϕU ψ iff there exists sA such that for every λ ∈ out(q, sA) there
is an i ≥ 0, for which M, λ[i] |= ψ, and M, λ[j] |= ϕ for every 0 ≤ j < i.

2.2 Epistemic Logic: Knowledge and Imperfect Information

Epistemic logic uses operators Kaϕ (“agent a knows that ϕ”). Additional opera-
tors EAϕ, CAϕ, and DAϕ, where A is a set of agents, refer to mutual knowledge
(“everybody knows”), common knowledge, and distributed knowledge among the
agents from A. On the semantic side, uncertainty of agents is modeled by indis-
tinguishability relations ∼1, . . . ,∼k⊆ St× St (one per agent). The semantics of
Ka is defined as: M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.

Relations ∼E
A, ∼C

A and ∼D
A , used to model group epistemics, are derived from

the individual relations of agents from A. First, ∼E
A is the union of relations

∼a, a ∈ A. Next, ∼C
A is defined as the transitive closure of ∼E

A. Finally, ∼D
A

is the intersection of all the ∼a, a ∈ A. Then, for K = C, E, D, we define:
M, q |= KAϕ iff M, q′ |= ϕ for every q′ such that q ∼K

A q′.
A straightforward combination of atl and epistemic logic, called atel was in-

troduced in [12]. The language of atel allows to express knowledge about agents’
(perfect information) abilities. Models of atel are called concurrent epistemic
game structures (cegs). A simple cegs (with only one agent a) is depicted in
Figure 1. For that model, we have for instance that M1, q1 |= Ka〈〈a〉〉�p0.

3 Restricting Strategies of Agents

In many cases, it seems appropriate to put some constraints on the “good”
(allowed, legal etc.) behaviors. We define a class of such strategic constraints in
this section. Our constraints are based on the idea of plausibility sets [6], and
generalize the behavioral constraints from the framework of social laws [11].

102 W. Jamroga

3.1 Strategic Constraints

A behavioral constraint in [11] is a function β : Agt × St → 2Act that specifies
which actions can be “legally” played by agents. More specifically, β(a, q) is the
set of actions that a is allowed to play at state q. Naturally, β(a, q) ⊆ d(a, q), and
the inclusion can be strict. β(a, q) is assumed to implement a social norm: agent
a (when in state q) may be forbidden to play some actions in his repertoire; if
he decides to play them, he will violate the norm.

Note that using constraints of this type implies that norms only apply to
actions of individual agents (independently). It is therefore not possible to specify
e.g. that one is allowed to shoot in self-defense, i.e., right at the moment when
another person is trying to harm him. Likewise, norms of that type specify
legal actions independently for each state. Thus, if we do not accept lying, then
making a false statement will be always forbidden, even if it is just a joke, and
the speaker is going to disclose the truth in the very next moment.

Here, we are looking for a model that enables to cope with such interrela-
tionships between the allowed actions of different agents at different states, too.
Another rationale for this comes from game theory. Unlike in normative sys-
tems, we are interested in “rational” rather than “moral” behavior there, but
the general pattern is the same. That is, some strategy profiles of agents (e.g.,
those in Nash equilibrium) are deemed “rational”, while the others are rejected
as “irrational”. Note that, especially for Nash equilibrium, the rationality of an
action does depend on what the agent is going to do at other states; moreover,
it depends on what the other agents are going to do at this and other states.
Thus, our requirements with respect to agents’ behavior will be modeled as sets
of strategy profiles.

When defining agents’ behavior via strategy sets, one assumes implicitly that
agents actually play strategies. In our case, it would for instance imply that each
agent does the same action every time the system comes back again to one of
the previous states (as memoryless strategies are used in our semantics of atl).
This is a very strong assumption, and we do not always want to make it with
respect to all agents. Thus, our strategic constraints will also include the set of
agents to whom the constraint should apply.

Definition 1. A strategic constraint is a pair η = 〈Υ, A〉, where Υ ⊆ Σ is a
non-empty set of strategy profiles and A ⊆ Agt is a set of agents.

Definition 2 (Substrategy). Let A, B ⊆ Agt, and let sA be a collective strat-
egy for A. We use sA[B] to denote the substrategy of sA for agents from B
only, i.e., strategy tA∩B such that taA∩B = sa

A for every a ∈ A ∩ B. We extend
the notation to sets in a natural way: for a set of collective strategies ΥA ⊆ ΣA,
we define ΥA[B] = {t ∈ ΣA∩B | ∃sA ∈ ΥA.t = sA[B]}.

Definition 3 (Consistency with a constraint). Let sA be a collective strat-
egy of A ⊆ Agt, and η = 〈Υ, B〉 be a strategic constraint. Strategy sA is consistent
with constraint η iff the part of sA to which the constraint should apply occurs
in Υ , i.e., sA[B] ∈ Υ [A ∩ B].

Knowledge and Strategic Ability for Model Checking 103

Definition 4 (Outcome under constraint). Let M be a cgs, and q a state
in M . Furthermore, let sA be a collective strategy, and η = 〈Υ, B〉 be a strategic
constraint. The outcome of sA from q under constraint η contains all paths which
may result from agents A executing sA from q on, when the opponents are only
allowed to play strategies which complement sA in a way that complies with η.
Formally, the set is defined as:

out(q, sA, η) = {λ ∈ Λ(q) | there is t ∈ ΣA∪B, consistent with η, such that
t[A] = sA and for every i = 1, 2, . . . there exists a tuple of agents’ decisions
〈α1, . . . , αk〉 for which: αa = ta(λ[i − 1]) for a ∈ A ∪ B, αa ∈ d(a, λ[i − 1])
for a /∈ A ∪ B, and o(λ[i − 1], α1, . . . , αk) = λ[i]}.

3.2 Abilities Under Strategic Constraints: Semantics

The intuition behind strategic constraints is rather simple: for a constraint η =
〈Υ, B〉 we assume that the actual collective strategy of agents B must occur
somewhere in Υ . Note that the agents from B do not have to be all in the
same coalition – B can collect both “proponents” and “opponents”. The formal
semantics of atl formulae in the presence of strategic constraints is given by the
clauses below.

M, q, η |= p iff p ∈ π(q) (for p ∈ Π);
M, q, η |= ¬ϕ iff M, q, η 	|= ϕ;
M, q, η |= ϕ ∧ ψ iff M, q, η |= ϕ and M, q, η |= ψ;
M, q, η |= 〈〈A〉〉 �ϕ iff there is a collective strategy sA, consistent with η, such

that for every λ ∈ out(q, sA, η) we have M, λ[1], η |= ϕ;
M, q, η |= 〈〈A〉〉�ϕ iff there exists sA consistent with η, such that for every

λ ∈ out(q, sA, η) we have M, λ[i], η |= ϕ for every i ≥ 0;
M, q, η |= 〈〈A〉〉ϕU ψ iff there exists sA consistent with η, such that for every

λ ∈ out(q, sA, η) there is an i ≥ 0, for which M, λ[i], η |= ψ, and M, λ[j], η |=
ϕ for every 0 ≤ j < i.

The semantics of knowledge under strategic constraints is defined in a straight-
forward way: agents know that ϕ under η iff ϕ holds under η in every indistin-
guishable state.

M, q, η |= Kaϕ iff M, q′, η |= ϕ for every q′ such that q ∼a q′.
M, q, η |= KAϕ iff M, q′, η |= ϕ for every q′ such that q ∼K

A q′ (where K =
C, E, D).

A useful example of strategic constraints are so called uniform strategies, i.e.,
strategies that can be feasibly executed by an agent under imperfect information.
We say that sa is uniform iff, for every q, q′, q ∼a q′ implies that sa(q) = sa(q′);
that is, agent a must specify same choices in states that look the same to him.
A collective strategy sA is uniform iff it consists only of uniform individual
strategies. Let Σu

a denote the set of uniform strategies of agent a. Then Σu
A =∏

a∈A Σu
a is the set of collective uniform strategies of A, and Σu = Σu

Agt is

104 W. Jamroga

the set of uniform strategy profiles. Now, the requirement that agents from A
should only use uniform strategies can be captured by the strategic constraint
η = 〈Σu, A〉.

Consider cegs M1 from Figure 1. For that model, the requirement that the
only agent sticks to executable (i.e., uniform) strategies can be captured by
the constraint η = 〈{[q0 �→ α, q1 �→ α, q2 �→ α], [q0 �→ α, q1 �→ β, q2 �→ β]}, {a}〉.
Then, we have for instance that M1, q1, η |= Ka¬〈〈a〉〉�p0: no uniform strategy
can guarantee that a gets from q1 to q0, and the agent knows about it.

4 Translating Knowledge to Strategic Ability

In this section, we show a satisfaction-preserving interpretation of atel formulae
and models into atl. The interpretation is an update of that proposed in [4].
Two things are changed. First, we slightly change the transformation of models so
that, after visiting an “epistemic” state, the system always returns immediately
to its corresponding “action” state. In consequence, it is possible to define the
translation of formulae without exponential blowup in their length. Second, we
show that the translation is also correct when we add constraints on the behavior
of agents.

4.1 Idea of the Translation

atel consists of two orthogonal layers. The first one, inherited from atl, refers
to what agents can achieve in temporal perspective, and is underpinned by the
structure defined via transition function o. The other layer is the epistemic com-
ponent, reflected by epistemic indistinguishability relations. Our idea of the
translation is to leave the original temporal structure intact, while extending
it with additional transitions to “simulate” epistemic links. The simulation is
achieved through adding new “epistemic” agents who can enforce transitions to
special “epistemic” copies of “action” states (i.e., the states inherited from the
original model). The “action” and “epistemic” states form separate strata in
the resulting model, and are labeled accordingly to distinguish transitions that
implement different modalities.

The interpretation consists of two independent parts: a transformation of
models and a translation of formulae. First, we propose a construction that
transforms every concurrent epistemic game structure M for a set of agents
{1, ..., k}, into a (pure) concurrent game structure M ′ over a set of agents
{1, ..., k, e1, ..., ek}. Agents 1, ..., k are the original agents from M (we will call
them “real agents”). Agents e1, ..., ek are “epistemic doubles” of the real agents:
the role of ei is to “point out” the states that were epistemically indistinguish-
able from the current state for agent i in M . In order to distinguish transitions
referring to different modalities, we introduce additional states in model M ′.
States qei

1 , ..., qei
n satisfy new proposition ei added to enable identifying moves

of epistemic agent ei. Moreover, epistemic state qei has the same “epistemic”
transitions as q (leading to epistemic copies of states indistinguishable from q),

Knowledge and Strategic Ability for Model Checking 105

plus one outgoing transition leading to the corresponding action state q. The
original states q1, ..., qn are still in M ′ to represent targets of “action” moves of
the real agents 1, ..., k. We will use a new proposition act to label these states.
Now, the type of a transition can be recognized by the label of its target state.
The structure of the transformation can be seen in Figure 2.

Defining the transition function o so that both epistemic and “action” transi-
tions can occur is the trickiest part of the construction. We achieve this by giving
priority to the epistemic agents’ decisions. Every epistemic agent can choose to
be “passive” and let the others decide upon the next move, or may try to effect
an epistemic move. The resulting transition leads to the state selected by the
first non-passive epistemic agent. If all the epistemic agents have decided to be
passive, the action transition chosen by the real agents follows. Epistemic states
are given special treatment, as we assume that the real agents are always passive
there. Thus, if all the epistemic agents decide to be passive at an epistemic state,
the system proceeds to the corresponding action state.

With the above construction in mind, atel formulae can be translated to atl
according to the following scheme:

– Kiϕ can be rephrased as ¬〈〈e1, ..., ei〉〉 �(ei ∧ 〈〈e1, ..., ek〉〉 �(act ∧ ¬ϕ)): the
epistemic moves to agent ei’s epistemic states do not lead to a state where
ϕ fails (more precisely: where ϕ fails in the corresponding “action” state).
Note that player ei can select a state of his if, and only if, players e1, ..., ei−1

are passive (hence their presence in the cooperation modality).
– 〈〈A〉〉 �ϕ becomes 〈〈A ∪ {e1, ..., ek}〉〉 �(act ∧ ϕ) in a similar way.
– Translation of the other temporal operators is now more straightforward

than in [4]: 〈〈A〉〉�ϕ can be rephrased as 〈〈A ∪ {e1, ..., ek}〉〉�(act ∧ ϕ), and
〈〈A〉〉ϕU ψ becomes 〈〈A ∪ {e1, ..., ek}〉〉(act ∧ ϕ)U (act ∧ ψ). This is possible
because the construction of epistemic states (and the translation of Ka)
ensures that strategic (sub)formulae will be always evaluated in “action”
states. We observe that the new translation of � and U does not involve
exponential increase in the length of formulae (contrary to the construction
from [4]).

– Translation of mutual knowledge (EA) is analogous to the individual knowl-
edge case. Translation of common knowledge refers to the definition of rela-
tion ∼C

A as the transitive closure of relations ∼i for i ∈ A: CAϕ means that
all the (finite) sequences of appropriate epistemic transitions must end up
in a state where ϕ is true.

The only operator that does not seem to lend itself to a translation according to
the above scheme is the distributed knowledge operator DA, for which we seem
to need more “auxiliary” agents. Thus, we will begin with presenting details
of our interpretation for ATELCE – a reduced version of atel that includes
only common knowledge and “everybody knows” operators for group epistemics.
Section 4.3 shows how to modify the translation to include distributed knowledge
as well.

106 W. Jamroga

4.2 Interpreting Models and Formulae of ATELCE into atl

Transforming Models. Given a concurrent epistemic game structure M =
〈Agt, St, Π, π, Act, d, o,∼1, ...,∼k〉, we construct a new concurrent game struc-
ture M ′ = 〈Agt′, St′, Π ′, π′, Act′, d′, o′〉 as follows:

– Agt′ = Agt ∪ Agte, where Agte = {e1, ..., ek} is the set of epistemic agents;
– St′ = St ∪ Ste1 ∪ ... ∪ Stek , where Stei = {qei | q ∈ St}.
– Π ′ = Π ∪ {act, e1, ..., ek};
– π′(p) = π(p) for every proposition p ∈ Π . Moreover, π′(act) = St and

π′(ei) = Stei ;
– Act′ = Act ∪ St ∪ {pass}: the new model M ′ contains the original actions

from M , plus epistemic actions (pointing indistinguishable states), and the
“do nothing” action pass;

– d′a(q) = da(q) for a ∈ Agt, q ∈ St; d′a(q) = {pass} for a ∈ Agt, q ∈ St′ \ St;
d′ei

(q) = img(q,∼i) ∪ {pass} for q ∈ St′;
– the new transition function is defined as follows:

o′(q, α1, ..., αk, αe1 , ..., αek
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(q, α1, ..., αk) if q ∈ St and
αe1 = ... = αek

= pass

q0 if q = qei
0 ∈ Steiand

αe1 = ... = αek
= pass

(αei)ei if ei is the first active
epistemic agent.

We assume that all the epistemic agents from Agte, states from Ste1 ∪ ... ∪ Stek ,
and propositions from {act, e1, ..., ek}, are new and were absent in the original
model M .

The transformation of the simple cegs from Figure 1 is shown in Figure 2.

Translation of Formulae. Now, we define a translation of formulae from
ATELCE to atl corresponding to the above transformation of models:

tr(p) = p, for p ∈ Π

tr(¬ϕ) = ¬tr(ϕ)
tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)

tr(〈〈A〉〉 �ϕ) = 〈〈A ∪ Agte〉〉 �(act ∧ tr(ϕ))
tr(〈〈A〉〉�ϕ) = 〈〈A ∪ Agte〉〉�(act ∧ tr(ϕ))

tr(〈〈A〉〉ϕU ψ) = 〈〈A ∪ Agte〉〉(act ∧ tr(ϕ))U (act ∧ tr(ψ))
tr(Kiϕ) = ¬〈〈e1, ..., ei〉〉 �

(
ei ∧ 〈〈Agte〉〉 �(act ∧ ¬tr(ϕ))

)
tr(EAϕ) = ¬〈〈Agte〉〉 �

(
(

∨
ai∈A

ei) ∧ 〈〈Agte〉〉 �(act ∧ ¬tr(ϕ))
)

tr(CAϕ) = ¬〈〈Agte〉〉 �〈〈Agte〉〉(∨
ai∈A

ei

)
U

(
(

∨
ai∈A

ei) ∧ 〈〈Agte〉〉 �(act ∧ ¬tr(ϕ))
)
.

Knowledge and Strategic Ability for Model Checking 107

e

act
q

0

q
1q

2

eq
2 q

1

e

q
0

e

p1

p2

p0

�,pass

pass,pass

pass,q
1

pass,q
0

pass,pass

pass,pass

�,pass

�,pass

�,pass

�,q
0

�,q
1

�,q
2

�,q
2

�,q
1

�,q
2

�,q
�

pass,q
2

�,pass

�,q
2

�,q
1

Fig. 2. Reconstruction for the concurrent epistemic game structure from Figure 1

Extending Strategic Constraints. Given a strategic constraint η = 〈Υ, B〉
in M , we must extend it to match the type of constraints in M ′ (because M ′

includes more agents than M , and in consequence the elements of Υ , which are
full strategy profiles in M , are only partial profiles in M ′).1 This can be done in
many ways; here, we explicitly assume that the additional (epistemic) agents can
use any strategies they like. The new constraint must apply to the agents from
B, plus (possibly) to some of the new agents from Agte. That is, agents from B
are constrained in the same way as before, agents from Agt\B are unconstrained
in the same way as before, and the new agents can be put under constraints or
not – but even if they are, they can play any available strategy.2

Definition 5. Let η = 〈Υ, B〉 be a strategic constraint in concurrent epistemic
game structure M , and let M ′ be the concurrent game structure obtained from M
by the construction presented in Section 4.2. We say that constraint η′ = 〈Υ ′, B′〉
extends η in M ′ iff: (1) Υ ′ = Υ × ΣAgte , and (2) B ⊆ B′ ⊆ B ∪ Agte.

Soundness and Complexity of the Translation

Theorem 1. Let ϕ be a formula of ATELCE, M be a cegs, q ∈ St a state in
M , and M ′ the cgs resulting from the transformation. Furthermore, let η be a
behavioral constraint in M , and let η′ extend η in M ′.
Then, M, q, η |= ϕ iff M ′, q, η′ |= tr(ϕ).
1 Note that the old agents from Agt have no real choice in the new states (St′ \ St),

so extending the set of states is not a problem (for every sa : St → Act there is a
unique s′a : St′ → Act that extends sa).

2 We recall that the assumption that a player plays a memoryless strategy is itself a
restriction on the agent’s behavior.

108 W. Jamroga

A proof of the theorem can be found in the technical report [5].
Note that the construction used above has several nice complexity properties.

In the following list, k denotes the number of agents, p the number of proposi-
tions, n the number of states, m the number of transitions, and m the number of
epistemic links in the original cegs M . Likewise, k′, p′, n′, m′ denote the number
of agents, propositions, states and transitions in the resulting cgs M ′.

– The vocabulary (set of propositions Π) and the set of agents only increase
linearly: p′ = p + k + 1 = O(p + k) and k′ = 2k = O(k).

– The set of states in an atel-model grows linearly, too: n′ = (k+1)n = O(kn).
– We have m′ = m + k(m + 1) = O(m + km) transitions in M ′ (m “action”

transitions and m epistemic transitions from “action” states, plus m + 1
transitions from each “epistemic” state).

– The length of formulae also increases linearly: l ≤ l′ ≤ l(8 + 5k) = O(kl).

The transformation of models and formulae is straightforward, and in conse-
quence its complexity is no worse than the complexity of the resulting structures.

4.3 Handling Distributed Knowledge

In order to interpret the full atel we modify the construction from Section 4.2
by introducing additional epistemic agents (and states) indexed with coalitions
which occur with a distributed knowledge operator:

– Agte = {ei | i ∈ Agt} ∪ {eA | DA ∈ ϕ};
– St′ = St ∪

⋃
i∈Agt Stei ∪

⋃
DA∈ϕ SteA .

Accordingly, we extend the language with new propositions {ei | i ∈ Agt} and
{eA | DA ∈ ϕ}. The choices of collective epistemic agents eA refer to the (epis-
temic copies of) states accessible via distributed knowledge relations:

– d′eA
(q) = {pass} ∪ img(q,∼D

A)eA .

The new transition function extends the one from Section 4.2 with choices of
agents eA (putting them in any predefined order, e.g. alphabetical order):

o′(q, α1, ..., αk, αe1 , ..., αek
,

..., αeA , ...) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o(q, α1, ..., αk) if q ∈ St and
αa = pass for all a ∈ Agte

q0 if q = qei
0 ∈ Steiand

αa = pass for all a ∈ Agte

(αea)ea if ea is the first active
epistemic agent.

The translation of formulae for all operators of ATELCE remains the same
as well, and the translation of DA is:

tr(DAϕ) = ¬〈〈Agte〉〉 �
(
eA ∧ 〈〈Agte〉〉 �(act ∧ ¬tr(ϕ))

)
.

Knowledge and Strategic Ability for Model Checking 109

Theorem 2. Let ϕ be a formula of atel, M be a cegs, and q ∈ St an “action”
state in M . Furthermore, let η be a behavioral constraint in M , and let η′ extend
η in M ′. Then, M, q, η |= ϕ iff M ′, q, η′ |= tr(ϕ).

This construction, too, does not involve any substantial increase of complex-
ity. Still, it has one disadvantage when compared to the construction from Sec-
tion 4.2: there, models and formulae could be translated independently; here, the
transformation of a model depends on the formula which will be model-checked.
Thus, it is not possible any more to “pre-compile” a given cegs in advance, and
then model-check on the fly any formulae that will become relevant.

4.4 Reducing Knowledge to Strategic Ability: Example

Since the transformation of models and formulae involves only linear increase
of their size, it can be used for an efficient reduction of model checking when
we want to get rid of epistemic operators from formulae. Strategic constraints,
on the other hand, enable realistic approach to the semantics of abilities. The
idea behind indistinguishability relations is that they capture agents’ uncertainty
about the current state of the game, so our analysis of abilities should be in most
cases restricted to uniform strategies.

Let 〈〈A〉〉u be a “uniform” version of cooperation modality, similar to the op-
erator 〈〈A〉〉

ir
from [10]. The semantics of 〈〈A〉〉

u
γ is the same as for 〈〈A〉〉γ except

that only uniform strategies can be used by A. It is easy to see that 〈〈A〉〉
u

can be
rephrased as an ordinary cooperation modality with the strategic constraint that
requires A’s choices to be uniform: M, q |= 〈〈A〉〉

u
γ iff M, q, 〈Σu, A〉 |= 〈〈A〉〉γ.

For example, we have that M1, q1 |= Ka¬〈〈a〉〉u�p0 for the cegs from Figure 1.
This can be rephrased as M1, q1, 〈Σu, {a}〉 |= Ka¬〈〈a〉〉�p0, which is by Theo-
rem 1 equivalent to M ′

1, q1, 〈Σu, {a}〉 |= ¬〈〈ea〉〉 �
(
ea ∧ 〈〈ea〉〉 �(act∧ 〈〈a〉〉�p0)

)
,

where M ′
1 is the concurrent game structure from Figure 2. Thus, we have reduced

the original property (and model) to ones that include no epistemic dimension.
Note that we can incorporate the uniformity constraints back into the coop-

eration modalities if we keep epistemic links in the reconstructed model. Let
M ′′

1 be M ′
1 with epistemic links retained from the original model M1 (plus re-

flective epistemic links added for the epistemic agent ea to indicate that ea has
perfect information in every state). Then, M1, q1 |= Ka¬〈〈a〉〉u

�p0 iff M ′′
1 , q1 |=

¬〈〈ea〉〉u
�
(
ea ∧ 〈〈ea〉〉u

�(act ∧ 〈〈a〉〉
u
�p0)

)
. On a more general level, Theorem 1

implies that adding explicit operators Ka for describing agents’ knowledge does
not increase the complexity of model checking agents’ abilities also in the case
of imperfect information strategies.

5 Conclusions

In this paper, we propose an update of the reduction scheme that was pre-
sented in [4]. The original reduction allowed to get rid of epistemic operators by
translating them to cooperation modalities of atl which made use of additional

110 W. Jamroga

“epistemic” agents. The new version has two new features. First, we avoid the
exponential blowup of formulae, which was to some extent present in the orig-
inal reduction. Second, we show that the reduction is valid also if we specify
strategic constraints which restrict collective strategies that some (or all) agents
are allowed to use. Thus, the applicability of the new reduction scheme goes
well beyond atel (i.e., perfect information atl + knowledge operators). We
can use the scheme to translate knowledge to strategic ability for agents playing
under imperfect information (like in atlir from [10]), acting in the presence of
social norms [11], or choosing only rational play [6]. It seems that many other
extensions of alternating-time logic should submit to the reduction, too.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time Temporal Logic. Jour-
nal of the ACM 49, 672–713 (2002)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

3. Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis, University of Amster-
dam (1999)

4. Goranko, V., Jamroga, W.: Comparing semantics of logics for multi-agent systems.
Synthese 139(2), 241–280 (2004)

5. Jamroga, W.: Reducing knowledge operators in the context of model checking.
Technical Report IfI-07-09, Clausthal University of Technology (2007)

6. Jamroga, W., Bulling, N.: A framework for reasoning about rational agents. In:
Proceedings of AAMAS 2007, pp. 592–594 (2007)

7. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2–3), 185–219 (2004)

8. Meyer, J.-J.C.: A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136
(1988)

9. Schild, K.: On the relationship between BDI logics and standard logics of concur-
rency. Autonomous Agents and Multi Agent Systems, 259–283 (2000)

10. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science 85(2) (2004)

11. van der Hoek, W., Roberts, M., Wooldridge, M.: Social laws in alternating time:
Effectiveness, feasibility and synthesis. Synthese (2005)

12. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge and time: Alternating-
time Temporal Epistemic Logic and its applications. Studia Logica 75(1), 125–157
(2003)

13. van Otterloo, S., van der Hoek, W., Wooldridge, M.: Knowledge as strategic ability.
Electronic Lecture Notes in Theoretical Computer Science 85(2) (2003)

Agent Learning Instead of Behavior

Implementation for Simulations – A Case Study
Using Classifier Systems

Franziska Klügl1, Reinhard Hatko1, and Martin V. Butz2

1 Dep. of Artificial Intelligence and Applied Computer Science
University of Würzburg

Würzburg, Germany
{hatko,kluegl}@informatik.uni-wuerzburg.de
2 Dep. of Psychology, Cognitive Psychology III

University of Würzburg
Würzburg, Germany

butz@psychologie.uni-wuerzburg.de

Abstract. Although multi-agent simulations are an intuitive way of
conceptualizing systems that consist of autonomous actors, a major prob-
lem is the actual design of the agent behavior. In this contribution, we
examine the potential of using agent-based learning for implementing
the agent behavior. We enhanced SeSAm, a platform for agent-based
simulation, by replacing the usual rule-based agent architecture by XCS,
a well-known learning classifier system (LCS). The resulting model is
tested using a simple evacuation scenario. The results show that on the
one hand side plausible agent behavior could be learned. On the other
hand side, though, the results are quite brittle concerning the frame of
environmental feedback, perception and action modeling.

1 Introduction

Agent-based simulations pose very few restrictions on the model designer. Het-
erogeneous structures and behavior, adaptivity, multi-level relations, or complex
local decision making are only a few features that give high potential to the agent-
based simulation paradigm. However, a high degree of freedom in design means
low guidance along the constraints that restrict what can be formalized. Since
many details can be manipulated, it is hard to determine which functionalities
should be added to a particular model. Which level of detail is necessary? How
should all the parameters be handled? The general challenge is how to exactly for-
mulate the agent behavior so that the correct overall high-level behavior emerges.

Answers to these questions vary for particular simulation studies and must
be based on experience with modeling and simulation. Due to the missing link
between local agent-behavior and overall aggregate measurements on the system
level, systematic model design is hard and is destined to undergo many loops of
trial and error. Thus, there is a current lack of rigorous modeling and automation
principles in agent-based modeling—a general blue-print of building plausible,
well-designed models is missing.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 111–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 F. Klügl, R. Hatko, and M.V. Butz

To reach a higher level of model design automation, one option is to give the
agents increased learning and adaptation capabilities. The intention is to de-
sign agent environments in which the agents develop their own behavior. In this
case, the modeler has “only” to specify the general agent capabilities concerning
perception, action, feedback, and the environmental model. The expected ad-
vantage of such an approach is that setting the frame for agent behavior in form
of agent-environment interfaces and environmental model should be easier than
to generate complete agent behaviors.

A learning mechanism as a tool for agent design must fulfill some requirements
for being a useful model design tool:

– Applicability: The learning mechanism should be able to cope with complex
environmental models. Thus, it should usually not be necessary to simplify
or even to completely reformulate the problem just for being able to apply
the learning mechanism.

– Interpretability: The mechanism should produce behavior models that can
be understood and interpreted by the human modeler—thus serving as a
source of inspiration for the modeler as well as a source of explanation of the
processes involved in the overall agent system.

– Plausibility: The mechanisms in the learning tool should be well-established
and well-understood because it should be possible to plausibly explain the
emergence of the overall individual and system behavior.

We identified Learning Classifier Systems (LCSs) [1,2] as a representative para-
digm that may fulfill these requirements.

Using the LCS paradigm as our learning tool, we conducted experiments in
a typical agent-based simulation scenario, namely crowd simulation. Elsewhere
[3], we presented a real world application of a pedestrian simulation of a rail-
way station. This project had shown to us that it can be very complicated to
specify collision-free movements with individual destinations, speeds, perception
radius, etc. using a rule-based approach. Therefore, we selected a reduced sce-
nario, namely an evacuation scenario, as a testbed for the learning approach.
The results show that while also learning agent modeling has its challenges, the
potential for generating novel but plausible agent strategies are high.

In the next section, a short survey about agent learning paradigms that have
been used in the context of simulation modeling is given. The survey is followed
by a short introduction to XCS [4], which is the particular LCS we used for
our experiments. Section 4 introduces SeSAmXCS, followed by the particular
scenario modeling for our example in Section 5. In Section 6 first results are
given and discussed. The paper ends with a discussion and conclusions.

2 Learning Agents for Behavior Implementation in
Simulation Contexts

Research on agent and multi-agent learning has been one of the major focuses
within distributed artificial intelligence since its very beginning [5], continuing

Agent Learning Instead of Behavior Implementation for Simulations 113

up to now [6]. Many different forms of learning have shown to be successful in
the context of agent systems: Especially different forms of reinforcement learning
[7], learning automata [8], but also evolutionary and neural forms of learning can
be found.

In the context of simulation, one may find all of them either as an optimization
technique for parameter calibration [9] or as a means of simply programming
agents in kid-level applications [10] and successors in the area of learning by
demonstration and visual programming. Techniques inspired by biological evo-
lution have been applied in the area of Artificial Life [11,12], where evolutionary
elements can be found throughout the agent simulation approach. In this way,
the evolutionary potential of an agent scenario can be tested. One of the earli-
est examples of a simulation of a concrete scenario is [13], in which simulated
ant agents were controlled by a neural network that was actually designed by a
genetic algorithm. An experiment that is similar to a general LCS approach can
be found in [14] using a rule set modified by a genetic algorithm. The interesting
point is that rule conditions are based on situation descriptions. Rules are than
selected by a nearest-neighbour heuristic.

Learning Classifier Systems (LCSs) are also a well-known adaptive agent ar-
chitecture that has been successfully applied in agent-based simulation contexts
for many years, including application in minority game analysis, economic simu-
lations [15], biological research, and others. In most cases, though, only resulting
architectures and simulations were described, while hardly any modeling issues
were discussed. We chose LCSs for supporting model design because it generally
satisfies our three proposed learning system requirements: (1) LCSs are a general
learning framework that have been shown to be applicable to a wide range of
problems including classification, function approximation, and online generaliz-
ing reinforcement learning problems. (2) The knowledge in LCS is defined by
a set of rules, which is generally easily interpretable. (3) The learning path to
a final solution can be reconstructed. Thus, further support and information is
available for and how the developed solution was constructed.

3 XCS

The accuracy-based learning classifier system XCS is an iterative online learning
system [4]. As in most LCSs, knowledge in XCS is represented by a fixed-size
population of condition-action-prediction classifiers. Each classifier predicts the
consequences of executing the specified action given that the conditions are sat-
isfied. In most cases, consequences are experienced reward values. In this paper,
we focus on solving Markov decision processes in an MAS environment, for which
XCS is designed to approximate the underlying Q-value function with a gener-
alized representation.

XCS evolves rule condition structures by means of a genetic algorithm and it ap-
proximates prediction values by means of credit assignmentmechanisms [1]. Credit
assignment is strongly correlated with Q-learning principles [4,16]. Rule genera-
tion and evolution is done via a steady-state, niched genetic algorithm [17,18]. Rule

114 F. Klügl, R. Hatko, and M.V. Butz

fitness in XCS is defined by the relative estimated accuracy of a classifier predic-
tion. Due to this accuracy-based fitness approach, XCS learns not only the rules
(or classifiers) that denote the best classification possible, but rather a complete
situation-action-reward mapping. Learning in XCS is an iterative process, that is,
the system iteratively interacts with the problem at handand evaluates and evolves
relevant classifiers on the fly. Thus, XCS is an online learning approach that strives
to learn a complete and maximally accurate model of the underlying Q-value func-
tion, where the model is represented by a set of maximally general rules.

To ensure successful learning with XCS, several conditions have to be satis-
fied. First, the underlying problem has to be approximately Markov, that is, the
current observations need to be sufficient to allow accurate reward predictions.
Second, the problem space has to be explored somewhat uniformly, although re-
cent studies show that XCS can learn also rather robust in non-uniform datasets
[19]. For behavior learning problems, such as the MAS scenario investigated in
this paper, usually random exploration during learning suffices to ensure com-
plete problem coverage. Third, the formation of long reward chains (more than
ten steps) should be avoided, since the online generalizing mechanism tends to
disrupt long chains [20].

These design principles are taken into account for the application example
given below. Before continuing with the example, we first describe how XCS
has been integrated into SeSAm (Shell for Simulated Multi-Agent Systems,
www.simsesam.de), a modeling and simulation environment for agent-based sim-
ulation models.

4 SeSAmXCS

In order to integrate new elements into the multiagent platform SeSAm, two
aspects have to be tackled: the model representation language and the visual pro-
gramming and experimentation environment. SeSAm basically provides struc-
tures such as entity classes, which define agents and resources, and an explicit
world class as the active container for the environment. All classes consist of the
description of the state variables and parameters (“body”) and—in the case of
the agents and the world—of an activity- and rule-based behavior description.
Instance descriptions form the configuration of start situations.

In SeSAmXCS, an additional agent class was implemented that consists of
the standard body description, which consists of a set of state variables and
individual parameters, and XCS, which replaces the behavior description. The
implementation of XCS used for this purpose is described elsewhere [21]. The
configuration of the XCS Agent is described on the class level. In a simulation
run, every instance of an agent possesses its own classifier system with individual
classifiers and adaptation processes.

The most interesting aspect of the XCS integration are the interfaces between
environment and agent that are very different from the previous agent architec-
ture. Whereas in the usual agent behavior description activities explicitly trigger
access to the environment, the classifier system needs a perceptual input that

Agent Learning Instead of Behavior Implementation for Simulations 115

can be matched against the classifiers precondition string. The actually realized
interface consists of two phases: In a first step, a particular perception category
is defined, which is given a number of bits for specifying its basic range. A second
step transfers the particular perception category to one particular bit code. An
example for a perception category would be the perceivable distance to the exit,
which could, for example, be coded by two bits where no exit perceivable → 00,
exit perceivable between 50 and 100m → 11, between 10 and 50m → 10 and less
than 10m → 01. Action codes are similarly modified. Whereas in the standard
architecture, agent actions are primitive calls in activity scripts, for integrating
the classifier architecture a finite action set has to be defined based on particular
primitive calls. Figure 1 shows the integration into SeSAm’s visual programming
environment for simulated agents.

Fig. 1. Modeling environment for XCS agents in SeSAm

5 Learning to Find the Exit: Evacuation Scenario

We used a pedestrian simulation as a first testbed to demonstrate the basic
SeSAmXCS capabilities. We chose this application for two reasons:

(1) Crowd simulation is a quite typical application domain for agent-based
simulation. Albeit the employed scenario may by oversimplified, we expected that
the relative simplicity of the scenario will enable us to evaluate the potentials
of a successful XCS integration and meanwhile to easily deduce the involved
challenges.

(2) The design of a proper rule base for crowd simulation scenarios is by no
means a trivial task, as we had to realize ourselves in a previous rule-based
approach in a more complex pedestrian simulation scenario [3].

116 F. Klügl, R. Hatko, and M.V. Butz

Our pedestrian simulation testbed was an evacuation simulation where agents
had to leave a room with six column-type obstacles (with a diameter of 1.75m)
as fast as possible without hurting themselves during collisions. The room cor-
responded to a hall of 30× 20m. We assumed that each pedestrian agent covers
50 × 50cm and moves with a speed of 1.5m/sec. One time-step in the discrete
simulation corresponded to 0.5 sec. Space was continuous. At the beginning of
a test-run, all agents were randomly positioned (avoiding any collision) in the
upper half of the hall between the columns.

All experiments alternated between explore and exploit trials. During the
explore trials, the agents evolved their rule sets by means of XCS, randomly
executing an action and consequently evaluating and evolving the rule set given
the experienced effects. In exploitation trials, the best action with the best pre-
dicted feedback was selected in each iteration. Every trial lasted 250 iterations.
Every experiment lasted 150 000 iterations, that is, 300 explore-exploit cycles.
The parameter of the XCS system are set to standard values as given in [21].

6 Experiments

In this rather simple scenario we made several experiments to test the per-
formance of the agents in terms of their ability to learn effective evacuation
behaviors. That is, we tested how fast the agents were able to head towards the
exit while avoiding collisions with walls and other pedestrians.

6.1 Pedestrians with Orientation

The first configurations with successful agent and feedback definitions were the
following:

The perception of the agents is based on their basic orientation. We identified
5 sectors in relation to the agents movement direction and divided the sectors
into two areas with respect to the range. Figure 2 shows the different areas.
For every area two binary perception categories were used. The first bit encoded
whether the exit was perceivable in this area and the second bit encoded whether

Fig. 2. Definition of perception areas of the classifier agents

Agent Learning Instead of Behavior Implementation for Simulations 117

an obstacle was present—where an obstacle includes everything with which a
collision should be avoided: walls, columns and other pedestrians.

As in the perception definition, we assumed that the agents always know
the direction towards the exit and integrated this knowledge into the different
possible movements. The action set consisted of A = {moveleft, moveslightlyLeft,
movestraight, moveslightlyRight , moveright, noop, stepback}. After the execution
of one of these actions, the agent re-orients itself towards the exit.

The purpose of this initial simulation was to generate a single step problem, in
which action feedback is immediately available. Thus, the reward the agent a re-
ceived after executing an action at time-step t was computed in the following way:

reward(a, t) = rewardexit(a, t) + rewarddist(a, t) + feedbackcollision(a, t), (1)

where rewardexit(a, t) = 200, if agent a has reached the exit in time t and 0
otherwise; rewarddist(a, t) = τ ∗ (dt(exit, a) − dt−1(exit, a)) with τ set to 5;
feedbackcollision(a, t) was set to 100 if a collision free actual movement had
been made, to 0 if no movement happened, and to −500 if a collision occurred.
Together, the different components of the feedback function stress goal-directed
collision-free movements.

6.2 Experiments with Different Numbers of Agents

Figure 3 shows a sequence of trajectories for an exemplary learning experiment
with 40 pedestrians. One can notice an improvement in how clearly the move-
ment is directed towards the exit and also that a decreasing number of collisions

(a) Exploit Round 10 (b) Exploit Round 100

(c) Exploit Round 200 (d) Exploit Round 300

Fig. 3. Sample trajectories improve with increasing learning iterations

118 F. Klügl, R. Hatko, and M.V. Butz

Fig. 4. Development of the number of collisions during an exemplary run with fourty
agents

occur, which is particularly noticeable at the columns. The trajectories are less
straight when the density increases near the exit, because more and more devi-
ation actions have to be selected in this area.

These coarse observations are confirmed when looking at the development of
the numbers of collisions and the duration until the last agent has left the hall. In
Figure 4, the development of numbers of collisions during a learning experiment
with 40 agents is shown. As the genetic algorithm is still active, the set of rules
is not stable. Suboptimal rules may be inserted to the set, occasionally resulting
in suboptimal behavior, that is, a temporarily increased number of collisions.
Although we did not make sufficient runs for any statistical analysis, we noticed
that there are only little variations in the overall outcome of the model.

We also tested to what extent performance depends on the number of agents.
The following table reports the mean number of collisions during the last 500
exploit iterations are given.

Agent Numbers 10 20 30 40 50 70 100
Mean Number of Collisions 2.5 13.3 30.2 62.0 105.2 258.8 687.8

Clearly, more agents cause a larger number of collisions. The observed non-
linear relationship is not surprising because agents cannot only bump into columns
but also into all other agents—especially when the crowd becomes really dense
near the exit. A similar relationship can be noticed when depicting the time needed
to fully evacuate the hall. Thus, behavior learning generally works well for all
tested agent numbers and thus for all initial agent densities.

6.3 Alternative Settings

Instead of adapting the reward function—with obvious effects on the learning
performance—we want to illustrate that coming to the given results is by no
means trivial. In fact, the result is rather strongly dependent on the particular
agent architecture configuration used.

To illustrate the brittleness of the modeling process, we present a “failure”
configuration of agent architecture and involved feedback. Instead of the built-
in orientation of movement towards the exit, we used 5 turn actions, one into

Agent Learning Instead of Behavior Implementation for Simulations 119

each sector, one move straight ahead action in addition to the noop and the
stepback action. Such an action set does not make sense without an enhanced
range of perceptions because situations that require different actions must be
distinguishable. Therefore, we added long-distance perceptions to the perception
categories so that perception almost covers the complete hall. In addition to that,
we added a perception category that tells the agent in which sector the exit is
located. Figure 5 shows two snapshots from an example run for agents with the
adapted action set and enhanced perception.

(a) Exploit Round 10 (b) Exploit Round 300

Fig. 5. Effect of alternative, less “guiding” action set and enhanced perception. Reward
biases reaching the exit, less preventing collisions.

It is interesting to see that the movements are quite straight. This is basically
an effect of the collision-free-movement reward: an agent that moves without a
collision receives a positive reward, whereas staying at the same position results
in zero reward. Experiments with even higher punishments resulted in similar
outcomes.

One may also observe a slight increase in the tendency to move towards the
exit. However, less than 18 agents managed to leave the hall after 300 trials
on average. This is far less than the performance of the initially described set.
Increasing the reward for going towards the exit hinders efficient learning of
collision avoidance, but did not have the intended effect of driving the agents
towards the exit. This is simply due to the fact that during exploration of the
rule set, reaching the exit is highly improbable causing the overall problem to
be a hard multi-step problem: Since the large payoff when receiving the exit is
so delayed in time, distant places hardly ever experience the correlation that
turning and moving towards the exit eventually leads to high reward.

The agents have the information where the exit is located and they learn that
moving towards the exit will give positive reward, but coming near the exit in
the exploit phase does not help as they did not learn how to react properly to
the exit. On the other hand, occasional movements through the exit or even just
coming near the exit door is more frequent in the oriented action set than in the
other one where contiguous turn- and move actions are necessary to solve the
individual evacuation task.

120 F. Klügl, R. Hatko, and M.V. Butz

7 Discussion

When starting our investigations into automatic agent behavior programming
using learning techniques, we expected that the feedback function is essential, but
that the design of the agent perception and action set would be basically given
by the environmental model. However, for a successful learning agent design,
also the degrees of freedom in the agent perception/action design can have a
large performance effect. Also, the parameters of the learner are not necessarily
trivial to specify, although in our case standard settings did the trick.

Despite these challenges, we were able to present a solution that consisted of a
particular set of perceptions and actions that produced the intended exit-oriented
behavior. Due to the action orientedness towards the exit, the behavior repertoire
got much more focused while still allowing avoidance behaviors. Other configu-
rations with more turn and move actions, increased perceptions, and variations
in the feedback function yielded results somewhat similar to the ones achieved
in the presented alternative settings. Thus, sufficient prior knowledge had to be
provided to enable successful learning.

This lesson is actually rather well-known in the machine learning community.
Learning biases are not only inherent in learning system themselves but are
also induced by the used representations. In the case of an evacuation scenario,
the learner needs to have sufficient information to be able to deduce the task.
Thus, feedback had to be sufficiently immediate and movement encodings had to
be oriented towards the exit. As stated above, though, the general assumption
that pedestrians know the exit location and furthermore know that movements
towards the exit are usually efficient is plausible. Thus, it can also not really be
expected that the employed learning mechanism learns about such facts from
scratch when the learning purpose is to evolve particular exit strategies.

The aim of the model combination was to facilitate agent modeling. Using an
LCS somewhat transferred the basic problem from direct behavior modeling to
the challenge of designing the agent interface and the environment’s reward com-
putation. To do so successfully, a general understanding of problem difficulty and
machine learning techniques is necessary. We framed the learning problem as a
reinforcement learning (RL) problem, in which only reward-based feedback is pro-
vided. In such problem domains, two problem aspects are known to be particu-
larly challenging: (1) Delayed reward enforces the formation of long reward chains,
which strongly decreases learning speed and, furthermore, poses a strong learning
challenge for online generalizing RL systems, such as LCSs [20]. (2) A fundamen-
tal problem difficulty in the RL domain is the Markov property [7]. Simply put,
provided perceptions need to contain sufficient information to be able to learn the
expectation of immediate and future possible reward accurately. For example, if
the agent does not know its distance to the goal, it cannot know when it will reach
it and consequently cannot know how far in the future the reaching-the-exit re-
ward lies. Thus, the agent cannot know if it is currently useful to head towards
the exit at all or rather to avoid collisions or look for an alternative route.

While our success in the first scenario is encouraging, there are admittedly
many more challenging application scenarios than an evacuation scenario where

Agent Learning Instead of Behavior Implementation for Simulations 121

all agents have the same goal, the behavior repertoire is quite restricted, and
there is no direct communication between agents. In such advanced environ-
ments, the classifier and environment design will certainly pose additional
challenges.

8 Conclusion and Future Work

In this paper we described the integration of an LCS architecture into a multi-
agent simulation platform. In a small evacuation scenario, we showed that the
employed system XCS can produce plausible behavior in an agent-based simula-
tion. However, the coupling of XCS with the agent environment is by no means
trivial. The environmental model, feedback function, perception, and action sets
had to be defined appropriately. We also showed the effects of some unsuitable
settings pointing-out that focused learning can be biased by proper representa-
tions and immediate feedback functions. Despite this initial encouraging results,
we must admit that additional experiences have to be made until we can apply
LCS-based approaches in a rigorous way.

Based on the full integration of the XCS architecture into SeSAm, we will
pursue further self-modeling agent experiments, examining the classifier system-
based approach more thoroughly and testing it in a middle-size real world sce-
nario, such as an evacuation of a train with about 500 agents, complex geometry
with exit signs and time pressure. This scenario is currently developed in a ”tra-
ditional” way. After that, other scenarios in different domains will be tested to
examine the successful integration of LCSs into agent-based simulation appli-
cations more systematically. Additionally, we intend to test alternative learning
paradigms, such as pure evolutionary behavior programming or non-generalizing
reinforcement learning, deducing the feasibility and challenges of an application
to crowd simulations.

References

1. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In:
Waterman, D.A., Hayes-Roth, F. (eds.) Pattern directed inference systems, pp.
313–329. Academic Press, New York (1978)

2. Butz, M.V.: Combining gradient-basedwith evolutionary online learning: An intro-
duction to learning classifier systems. In: 7th International Conference on Hybrid
Intelligent Systems HIS 2007, pp. 12–17 (2007)

3. Klügl, F., Rindsfüser, G.: Large-scale agent-based pedestrian simulation. In: Petta,
P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI),
vol. 4687, pp. 145–156. Springer, Heidelberg (2007)

4. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

5. Weiss, G.: Adaptation and learning in multiagent systems: Some remarks and a
bibliography. In: Weiss, G., Sen, S. (eds.) Adaption and learning in multi-agent
systems. Springer, Heidelberg (1996)

122 F. Klügl, R. Hatko, and M.V. Butz

6. Klügl, F., Tuys, K., Sen, S. (eds.): ALAMAS&ALAg - Adaptive and Learning
Agents and Multiagent Systems (workshop at AAMAS 2008) (2008)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)
8. Nowe, A., Verbeeck, K., Peeters, M.: Learning automata as a basis for multi agent

reinforcement learning. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.)
LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 71–85. Springer, Heidelberg (2006)

9. Oechslein, C., Hörnlein, A., Klügl, F.: Evolutionary optimization of societies in
simulated multi-agent systems. In: Jonker, C., Letia, A., Lindemann, G., Uthmann,
T. (eds.) MASHO Workshop at ECAI 2000, Humboldt-Universität, Berlin, vol. 149
(2000)

10. Smith, D.C., Cypher, A., Spohrer, J.: Kidsim: Programming agents without a
programming language. Communications of the ACM 37(7), 54–67 (1994)

11. Adami, C.: Introduction to Artificial Life. Springer, Heidelberg (1998)
12. Grefenstette, J.J.: The Evolution of Strategies for Multi-agent Environments.

Adaptive Behavior 1, 65–89 (1992)
13. Collins, R.J., Jefferson, D.R.: Antfarm: Towards simulated evolution. In: Langton,

C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 579–601.
Addison-Wesley, Redwood City (1992)

14. Denzinger, J., Fuchs, M.: Experiments in learning prototypical situations for vari-
ants of the pursuit game. In: Proc. of Int. Conf. on Multi-Agent Systems, 1996,
Kyoto 1996, pp. 48–55 (1996)

15. Guessoum, Z., Rejeb, L., Durand, R.: Using adaptive multi-agent systems to sim-
ulate economic models. In: AAMAS 2004, pp. 68–75. IEEE Computer Society, Los
Alamitos (2004)

16. Lanzi, P.L.: Learning classifier systems from a reinforcement learning perspective.
Soft Computing: A Fusion of Foundations, Methodologies and Applications 6, 162–
170 (2002)

17. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. (1992).
University of Michigan Press (1975)

18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

19. Orriols-Puig, A., Bernadó-Mansilla, E.: Bounding XCS’s parameters for unbal-
anced datasets. In: GECCO 2006: Genetic and Evolutionary Computation Confer-
ence, pp. 1561–1568 (2006)

20. Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: A Principled Ap-
proach to LCS Analysis and Design. Springer, Berlin (2006)

21. Butz, M.V.: XCSJava 1.0: An implementation of the XCS classifier system in Java.
IlliGAL report 2000027, Illinois Genetic Algorithms Laboratory, University of Illi-
nois at Urbana-Champaign (2000)

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 123–134, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Providing Integrated Development Environments
for Multi-Agent Systems

Simon Lynch and Keerthi Rajendran

University of Teesside, Middlesbrough, United Kingdom
{s.c.lynch,k.rajendran}@tees.ac.uk

Abstract. The computing industry has yet to take up agent technology as a new
approach to software development. While other paradigms are supported by
various tools, including generic IDEs, these are not well developed for agent-
ware. Many agent platforms provide some form of IDE but these are platform-
specific and are typically so tightly coupled to their agent platforms that they
offer little re-use. There has been too little discussion about which tools an IDE
should contain and few attempts to produce a generic IDE. In this paper, we
identify two levels of abstraction requiring IDE tool support and draw on cur-
rent research to categorise a set of generic tools for each level. We describe the
reasons why existing MAS IDEs are coupled to their platforms and present an
extendible software architecture which avoids this coupling. We build an IDE
using this architecture and demonstrate its decoupling and extensibility by ex-
perimentation.

Keywords: MAS, IDE, debugging, deployment, software architectures.

1 Introduction

Writing agent-based software requires a varied set of skills and imposes a level of
complexity beyond that experienced with other approaches to software construction
[5, 6, 12]. One reason for this is that agent-based code is reactive - agents respond to
messages and changes in their environment. This can make debugging agents more
complex than debugging traditional systems. Other problems are introduced by the
distribution and concurrency which is present in systems containing multiple agents
[12] where processing is spread across agents and performance is as much a result of
agent-agent interaction as it is a result of the data manipulations from individual
blocks of program code.

Research into Multiagent Systems (MAS) has produced a choice of methodologies,
design tools and platforms for deploying agents, yet the development of MAS in
industry is still limited to a few research-supported implementations like those con-
ducted by Agentis Software [2]. While these industrial implementations have demon-
strated some benefits in using agents they have also highlighted a need for appropriate
programmer support. Currently, tool support for general MAS technology is not suffi-
cient for widespread adoption [3, 5] and practitioners suggest that the consolidation of
a suitable set of tools and technologies for Agent Oriented Software Engineering

124 S. Lynch and K. Rajendran

(AOSE) is one of the most important challenges for transferring the results of agent-
based research into industry [3, 5, 13]. A complete set of AOSE tools would include
those used for deployment and monitoring as well as those used early in the design
phases of agent-based solutions.

As with other paradigms (like object-orientation) an IDE for MAS development is
an important tool [2] but, while there has been some publication of ideas [6, 10, 11]
and different MAS platforms provide varying levels of support [9, 12, 15, 16], there
has not been enough discussion within the research community about the features a
MAS IDE should contain and IDEs have, to date, only been developed as adjuncts to
existing MAS languages and platforms. This is understandable: the first priority for
researchers is to build the run-time platform itself since there is little point in having
an IDE without a platform. IDE development becomes important only after the plat-
form is operational and often only once a user group becomes established. The result
of this trend is that existing IDEs are so tightly coupled to their target agent-languages
and/or agent-platforms that they offer little opportunity for re-use.

Our initial work in IDE construction followed this approach. Furthermore, many of
the tools in our original IDE were aimed at programming and debugging individual
agents rather than higher level tasks like system-wide debugging and deployment.
Providing tools for individual agents is less demanding because these tools can often
use technologies borrowed from other paradigms (like objects). We were not alone in
this, the lack of tool support at the MAS system level, mainly for post-implementation
activities, has been recognised [12, 5, 6] and we have more recently focused on this.
We have also acknowledged the need, discussed by Bordini et al. [5], to decouple
agent tools from any specific agent framework and language. For example, the JACK
Development Environment (JDE) is used with the JACK agent platform (www.agent-
software.com) while the JADE toolset is used with the JADE framework [1] and these
cannot be interchanged. We have taken a different approach to IDE development and
believe we have achieved cross-platform reuse by constructing our IDE as a MAS in
its own right. In this paper we describe our approach by considering two questions
that underpin this work:

(i) are there common tools, across MAS platforms which can be included in a ge-
neric IDE and is it possible to classify these in any way?

(ii) how is it possible to build a generic IDE for cross-platform use so it may be
modified/extended to take account of other platform-specific features?

2 Classification of Tools

This section considers a means of classifying tools for MAS development and identi-
fies tools/features important for inclusion in a MAS IDE. Some of these are generic
across applications while others are agent paradigm specific.

There are a wide range of agent types and associated concepts of agency: some re-
search communities are mostly concerned with web-based software components with
communication ability, other communities concentrate on platforms like Jade [1] and
Midas [8] which implement agents but have an open view of the nature of these
agents, others focus on specific types of agents using languages/platforms like 3APL
[7] and Jason [4] which support BDI agents. Typically, specialised agents are built on

 Providing Integrated Development Environments for Multi-Agent Systems 125

and supported by a more general agent-layer which provides facilities for message
transmission, etc. (3APL and Jason are supported by Jade for example). The IDE
presented in this paper integrates with platforms operating at the level of Jade but in
doing so supports any languages/platforms deployed on top of them. As discussed in
later sections, the IDE is itself developed as a MAS and the agents making up this
MAS are also mid-level agents.

With respect to the reference model proposed by Modi et al. [17], the IDE will
typically receive information from the framework layer but this information will de-
scribe activity within the agent layer. While we recognise the importance of the Ref-
erence Model, we are concerned with the tasks performed by agent developers rather
than levels of agent implementation. This leads us to sub-divide activity in the Refer-
ence Model's agent layer since it involves both individual agents as well as interacting
MAS. In this paper we consider a classification of tools from two different levels of
abstraction: the system-level and the agent-level. Tools in each of these levels can be
further classified into build-time or run-time tools according to their use,

(i) the system-level considers the semantic content of agent-agent messages but
represents the agents themselves as black box entities. It is concerned with build-
ing MAS as opposed to building individual agents. System level tasks are similar
to the high level tasks in more traditional paradigms (system wide testing, inter-
operability, deployment, etc). This level also captures additional MAS concepts
like emergent behaviour, groups and teamwork. At run time, during monitoring
and debugging phases, activities at this level are concerned with the emergent
properties of a MAS which include the nature of agent-agent interactions and
messaging, the system's architecture, etc.;

(ii) the agent-level, in contrast is concerned primarily with the functionality of indi-
vidual agents and considers, for example, how they react to given messages. In-
ternal workings of agents have focus and activities are those associated with
building single agents. Agent-level tasks map on to the programming tasks per-
formed in other paradigms (editing source files, testing individual classes, etc).

Our analysis reveals that system level tools are often generic while agent-level
tools tend to match the agent language used and the type of agency involved. Catego-
rising tools into these levels has allowed us to determine which tools can be provided
by plugging in existing (programming language based) development and debugging
environments (which operate at the agent-level) and which are the direct responsibil-
ity of a system-level IDE.

Previous research acknowledges that debugging agents is difficult and has recog-
nised the need for tools like the Tracing method [12] but still debugging, especially at
the system-level, has not received sufficient attention [9, 19] and needs further inves-
tigation. System-level debugging where individual agents are black boxes, involves
activities like analysing scenarios of activity involving groups of agents and solving
errors in the functioning of the system as a whole. Tools are also needed for system-
level phases of deployment and post-implementation monitoring but many of these
tasks are inadequately supported [3, 6].

Since system-level tools are often neglected, the term "MAS IDE" can be mislead-
ing with most current MAS IDEs only providing the kind of tools associated with
object-oriented IDEs, i.e.: focusing on programming issues and serving primarily to

126 S. Lynch and K. Rajendran

“automate tedious coding tasks” [5]. In this paper we use the term MAS IDE to refer
to a toolkit with provision for both the agent-level and the system-level.

2.1 Generic Systems Support

This section discusses generic tool requirements at the system level. They have been
derived from MAS literature and through our experience with MAS development.

2.1.1 Representing MAS Structure
A simple MAS may be composed of a homogeneous collection of interacting agents
in which all elements of the system can be presented as black box components with a
messaging interface. With larger scale systems there may be benefits in viewing a
MAS as a hierarchical organisation where collections of agents are grouped into
higher level forms which can be viewed as single-entity black-boxes. Agents can be
sensibly grouped for various reasons: because the agents they contain represent a
single holon, because they are deployed on a single physical network, because they
form well established societies or because the model of agency considers group rela-
tionships of some kind (the Aalaadin AGR model for example). Allowing users to
expand and collapse agent collections into single entities allows them to view a MAS
at different levels of abstraction. This aids system comprehension as well as tasks like
debugging.

2.1.2 Messaging
MAS are conceptualised and designed as interacting entities; these interactions are a
key aspect of the MAS workings. Developers of message oriented systems have tradi-
tionally used tools that aggregate all message transmissions for later examination. A
survey of MAS IDEs shows that many do little more than this. Some of the more
developed IDEs also provide useful functions like conversation tracking [10], verifi-
cation of scenarios by matching messages against design [19] and the ability to re-
strict logs to messages relating to particular agents [1]. Some simply produce text
files of data while others provide a more readable display.

Since analysing messages is so fundamental to MAS debugging, a general purpose
MAS IDE should provide extensive and specialised support for viewing messages.
We suggest the following as a minimal set of facilities:

• separation of agent messages from system messages (e.g.: error messages);
• collation of messages under different search criteria like the identities of send-

ing/receiving agents, conversation id, time frames, physical distribution, etc;
• offline storage of all messages with flexible filtering mechanisms so that the user

may inspect different subsets of messages by applying different filtering criteria;
• synchronisation with other functions like logging and playback (described next).

2.1.3 Logging and Playback
For analysis and debugging it is difficult to observe any system, including MAS, in
real-time because system activity occurs too fast for human comprehension. Some
traditional programming tools use features like breakpoints to pause execution so that
current system states can be inspected. These facilities are important for troubleshoot-
ing but are impossible to use with distributed, concurrent systems. One solution is to

 Providing Integrated Development Environments for Multi-Agent Systems 127

capture MAS activity (e.g.: agents joining the MAS, messages and errors) and allow
users to replay it at slower speeds and apply breakpoints on the replay mechanism.
This can be supported by filtering mechanisms that allow the user to focus on particu-
lar agents, agent groups, parts of the agent network and interaction scenarios. These
kinds of activity are currently not well supported although their importance has been
highlighted for some time, for example Ndumu et al. [18] explain the importance of
offline replay of MAS activity from different perspectives. In addition, offline playback
allows developers some opportunity to visualise the emergent properties of a system as
they occur since an IDE can show the changing system architecture, message transmis-
sions, system errors, etc. slowing down and pausing the replay as necessary.

2.1.4 Testing
It is necessary to test either single agents or sets of agents without the presence of
other agents that send or receive messages from them. This may be because related
agents have not yet been developed or because the agent(s) are being developed as
plug and play agents. An IDE that allows agent interactions to be driven manually (or
through scripts) therefore offers some advantages. Some systems provide messaging
agents for this (e.g.: JADE's "Dummy Agent", Mock Agents in Agile PASSI). These
are useful for testing agents’ internal response to messages, the interactions between
agents and to identify emergent behaviour in an agent sub-group.

2.1.5 Deployment
MAS consist of independently executing entities and do not have a single starting
point like other types of applications so launching them is more complex but this is
only addressed by few platforms [6]. Toolkits that allow MAS launching information
to be specified and also automate the launching process reduce the likelihood of errors
and aid system reconfiguration. Information to support launching may include details
such as agent instances (type and number of agents), locations of agent executable
files, their dependencies (constraints on the order in which they are started up) and
structure (hierarchical groupings).

There is also a need to remove agents or add new agents to a running MAS. Ad-
ministrators may be required to monitor running MAS for conditions that need correc-
tion [6], this is more important for dynamic MAS whose composition and structure
change frequently at runtime. Platforms produce messages indicating error and ab-
normal conditions. Some messages indicate failures that require agent repair or re-
dundancy; others may indicate system-level conditions like high message traffic
which may need correction by reconfiguring MAS structure. Administrators require
facilities to change MAS structure at run-time by adding/removing agents or relocat-
ing agents to other parts of the MAS network. Support for these tasks is also required
during the testing and debugging of MAS.

3 Decoupling and Reuse

Choosing to use MAS as a paradigm for development and selecting a platform comes
with the constraints of the agent language, philosophy and toolset associated with the
platform. Such a "platform package" will tend to have leanings towards certain types

128 S. Lynch and K. Rajendran

of applications and types of agency rather than be generic/tailorable. If a developer
selects 3APL they commit to using BDI agents and the 3APL IDE/toolkit. If they
need to build mobile agents on portable devices for some other work they will change
agent languages but in doing so they will be forced to discard all those tools they used
with 3APL including the IDE. IDEs used in object oriented development are no
longer like this, they can be readily reconfigured for different languages and linked to
specific tools for those languages. This is not only true for well featured packages like
Eclipse but is also the case with tools that are little more than editors. WinEdit for
example (www.winedit.com) can be configured to color program code according to
simple syntax rules and link to specific compilers. This kind of cross-platform reuse is
not offered by IDEs for MAS.

Bordini et al. [5] identify a number of priorities to enable wider development of
agent based software. In relation to practical MAS construction they highlight the
need to integrate MAS development environments with existing object oriented IDEs
and imply that a key challenge is also to develop a MAS IDE that can integrate across
different MAS platforms but acknowledge that this is difficult currently since there is
"unavoidabl[ly] tight coupling of agent IDEs and agent platforms" [ibid. p.40].

3.1 The Causes of Coupling

There are various factors which tend to increase the levels of coupling between com-
ponents in software systems. These affect agent based software in similar ways to
other types of software. In considering those coupling dependencies which occur
between an agent platform and an IDE we identify three issues. The first relates to the
nature of communication and information exchange between agent platform and IDE.
If they use some unique mechanism for interaction or pass data which is structured in
complex ways then their relationship will exhibit close coupling. In the worse case, if
they communicate through a series of method calls and share internal data structures,
they will effectively be using some common API and it will only be possible to reuse
the IDE (or replace it) with other software built on the same API.

A second factor is the extent to which the IDE provides specific support for fea-
tures unique to the platform (or perhaps handled in a unique way by the platform).
This can be overcome by restricting the IDE so that it only supports those generic
features which form part of all agent platforms but this would be a poor solution since
the IDE would then implement only the small subset of features and fail to provide
many of the tools that developers need. When working with mobile agents, for exam-
ple, it is highly desirable for an IDE to manage aspects of mobility yet mobility tools
would probably not be included in a generic set of features. This apparently presents a
conflict of interests since an IDE can only implement generic features if it is to offer
cross-platform reuse and yet, if it is going to offer a comprehensive set of tools for
developers, it must also provide platform specific tools.

Finally, a third factor which increases coupling dependency is the extent to which
the design of the IDE is influenced by the design (or agent-paradigm) of any plat-
form/agent language. This relates in part to the previous two factors (if the IDE shares
an API with the platform or is influenced by platform specific features then coupling
will be increased) but it may also be caused by less explicit dependencies. If, for ex-
ample, it is assumed that agents are BDI and the IDE is built around this premise then

 Providing Integrated Development Environments for Multi-Agent Systems 129

the reporting of agent behavior may be in terms of "plans". This approach would limit
reuse since the IDE would be less suitable for non-BDI agents.

3.2 Achieving Decoupling

The first requirement to limit coupling is that the IDE and the platform avoid commu-
nicating by uniquely defined method calls and avoid passing complex data structures
which may not be appropriate for other platforms. It would be possible to achieve this
with existing OO techniques (such as using a command pattern) but we also want an
IDE which can be modified at run-time without a need for recompilation or rebuild
(to provide enhanced reporting of agent mobility for example) and can be used, simul-
taneously, with multiple frameworks which may each provide different information
(structure and content) to the IDE. After results of initial experimentation, in prefer-
ence to using an OO approach, we have constructed the IDE in the form of its own,
independent MAS. Communication to and from this IDE-MAS is sent textually in the
form of inter-agent messages by following an agreed protocol for message structur-
ing. In keeping with the principle that agents written in different languages, using
different paradigms are able to communicate as long as they do so using some agreed
protocol, an IDE deployed in the form of a MAS is less tightly coupled than one rely-
ing on some other means of communication. In this case the coupling is defined only
in terms of the message protocol required by the IDE. Any platform wishing to use
the IDE need only send the IDE messages about the platform's events (agents joining /
leaving the system, agent-agent message passing, errors, etc).

This approach overcomes the first point discussed in the section above but does not
address the paradox of how an IDE can provide platform-specific features and still be
suitable for cross-platform reuse. We have addressed this by following the model used
with object oriented IDEs which provide a generic set of OO tools but then allow
specific language tools (compilers, etc) to be plugged in to them. In our case, since
the MAS IDE is now in the form of its own MAS, these tools are plugged in by add-
ing new agents to the IDE-MAS.

Initially then, the IDE provides only a generic set of tools independent of any agent
and not specific to any particular notion of agency. Further tools are then freely added
in the form of additional agents which are incorporated into the IDE. This approach is
made possible by tightly encapsulating the IDE so that its internal architecture and
agent composition is not visible externally and by using a flexible protocol for mes-
saging between its agents.

3.3 Architecture and Message Protocol

The IDE is arranged as an organisation of agents who's internal structure is invisible to
external systems and who's agents present a shared interface. In addition the internal
agents are arranged so that all messages received from external systems are received by a
single internal message-dispatch agent. In practice these externally generated messages
are sent by some external MAS (or, more likely its supporting MAS platform) to report
on events occurring in the external system. It is by virtue of these messages that the IDE
is able to monitor the structures and behaviours occurring in the external system.

The IDE-internal message-dispatch agent forwards messages to other agents within
the IDE according to the message type which is a facet of the IDE message protocol.

130 S. Lynch and K. Rajendran

All agents inside the IDE register their interests with the message-dispatcher by tell-
ing it which types of message they wish to receive. For example: the internal agent
which dynamically shows the architecture of an external system will register an inter-
est in messages containing information about agents joining and leaving the external
system. There are a number of advantages to using a dispatch agent:

(i) it hides the internal agents to such an extent that, even though the composition of
agents in the IDE may change, external agents remain unaffected by any
changes. External agents are unaffected by changes even if the structure of the
IDE changes at run-time, this allows IDE users to switch on/off agents while
monitoring a live system;

(ii) new agents can be added to the IDE simply by registering them with the dis-
patcher and noting what types of messages they wish to be copied into. There is
no requirement for further configuration;

(iii) it is possible to dispatch the same message to multiple intra-IDE agents.

The flexibility of the IDE is further improved by using an extendible message pro-
tocol which is only weakly specified. Developers will typically incorporate additional
agents in the IDE to monitor or manipulate some specific feature of the external agent
platform they are using. These additional IDE agents will often need different types of
information from that required by those standardised, generic tools provided by the
IDE by default. By implication they will need this additional information transmitted
to them within the IDE messages.

The IDE message protocol is based on a simple slot-filler notation but allows extra
information to be included in additional slots. The IDE recognises specific types of
MAS event (agents joining/leaving the systems, messages sent between agents, etc)
indicated by the use of tags in the message protocol. For example, a message indicat-
ing that an agent named "Sue" has joined the system will use a register-agent tag and
appear something like...

((from external-sender)
 (to IDE-dispatch)
 (type register-agent)
 (body (name Sue))

The tags from, to and type identify the agents involved in the information transfer
and the type of information sent. The body tag contains information specific to the
message type. As outlined above IDE dispatcher routes this message to its internal
registry agent on the basis of the message type.

The protocol allows extra slots to be included in any message. For example, one
platform tested in this study allows agents to have a scope indicating their visibility.
"Global" agents are visible across an entire MAS, "local" and "internal" agents have
restricted visibility. Messages indicating agents have joined the system have an extra
slot when used with this platform, e.g.:

((from external-sender)
 (to IDE-dispatch)
 (type register-agent)
 (body (name Sue)
 (scope global))

 Providing Integrated Development Environments for Multi-Agent Systems 131

The IDE provides generic tools to monitor the architecture of an external MAS, its
messages and report on any errors. The generic tool to monitor agent messaging is
agnostic about the ACL used by the external system, it simply displays the content of
external messages in a textual form. Alternative IDE agents, oriented to specific
ACLs can be substituted, these will provide better information by making more effec-
tive use of the data contained in the body of IDE messages.

As well as introducing new tags to pre-existing message types, The IDE message
protocol can be extended by introducing new message types. If the IDE is being used
with a platform which supports mobility for example, the protocol could be extended
to allow the following format of message which states that the agent mobile3 has
moved from node7 to node11.

((from external-sender)
 (to IDE-dispatch)
 (type mobile-relocate)
 (body (name mobile3)
 (source node7)
 (dest node11))

No changes to the IDE or its existing agents are needed in order to accommodate
this new message type. All that is required is that the external system generates a
message of type mobile-relocate when appropriate and sends them to IDE-dispatch.

So far our discussions have focused on system level tools, these are provided by
including generic tools in the IDE which can be added to and replaced by more spe-
cific tools as required. It is also necessary to supply agent level tools. However, the
nature of tools at the agent level is different to those at the system level and the ways
that they can be provided by the IDE are also different. There are a range of ap-
proaches to agent implementation provided by various platforms. Broadly we con-
sider two different categories:

(i) platforms where agents are based on extensions of existing languages (Java for
example) and,

(ii) those based on specialised agent definition languages.

In the first case neither system-level concepts nor many aspects of agency are ex-
plicitly visible in the program code. Agent-level activities like debugging and editing
the code that defines an agent are similar to those carried out with code not involving
agents and existing IDEs, editors, etc. provided for the base language are suitable. In
the second case, where agents are defined in a specialised language, the lan-
guage/framework has an obligation to its developer community to provide appropriate
agent-level tools if it intends widespread use. Currently the tendency is either to plug-
in to an existing IDE e.g.: The Living Systems Developer which uses Eclipse
(www.eclipse.org) or to provide a specialised IDE (these typically follow the model
set out by the object-oriented IDEs [5]).

Consequently, whether platform specific or not, agent-level tools can be provided
in the form of a conventional IDE. The requirement for a platform-independent MAS-
toolkit to provide agent-level tools is then only that it must allow a range of IDEs to

132 S. Lynch and K. Rajendran

be registered so agents of different types can be inspected, traced and edited using
appropriate tools.

Building the IDE as a MAS makes it possible to link agent-level tools (editors, ob-
ject-IDEs, etc) by simply adding an agent to the IDE-MAS which calls up the tool.
Alteration to the internal structure of the IDE is invisible to any other sub-systems so
does not require them to be modified.

4 Evaluation

Our primary interest is the extent to which the design approach of the IDE allows it to
be decoupled from any particular agent platform thereby allowing it to be reused. To
evaluate the design we have constructed an IDE based on the principles described
above. We have examined two aspects in judging the level of decoupling achieved:

(i) the decoupling of the IDE from any specific agent platform;
(ii) the decoupling from other components.

The first allows the IDE to be used with different platforms, the second allows fur-
ther tools to be integrated with the IDE. The IDE is implemented as a MAS which
defines a text-based message protocol and can link to any other software capable of
socket-based communication. The IDE itself is not dependent on any platform for
gathering system information. This suggests that the level of coupling is low but we
have also demonstrated this experimentally in the following ways:

(i) the IDE has been used successfully with a MAS platform supporting agents
written in Java and in Lisp [14];

(ii) while Galaxy Communicator (http://communicator.sourceforge.net/) should
perhaps not be considered a true MAS, the IDE has been successfully used with
Galaxy;

(iii) the IDE has been successfully used as a link between a MAS framework and
Galaxy (readily achieved since the IDE can communicate with both systems);

(iv) the IDE has been used with a virtual MAS – a shell masquerading as a running
MAS which, through the use of scripts, generates agent architectures and mes-
sages which are passed to non-virtual agents.

Since the IDE is deployed in the form of a MAS, providing new MAS-level tools is
readily achieved by adding new agents to the IDE. This has been verified experimen-
tally. Similarly, we have demonstrated by experimentation that the IDE can integrate
with agent-level tools. In practice this is achieved by allowing agents to be inspected
by different object-IDEs, according to their type. This capability is provided in the
same way that a general purpose editor can call up appropriate compilers for the pro-
grams it is editing.

The IDE has also been tested for usability by following small user-groups of stu-
dents involved in MAS development. Observations confirmed the importance of MAS
tools in general (also noted by other authors [11, 12, 16]) and supported our proposi-
tion that the two levels of development and debugging for MAS, the agent-level and
the system-level, involve different types of activity, the first where the focus of atten-
tion relates more to issues concerning program code, the second where the focus is

 Providing Integrated Development Environments for Multi-Agent Systems 133

systems architecture and messaging. Users reported a perceived reduction in the
learning curve associated with moving to a new MAS platform while retaining the
same IDE and highlighted the benefit of adopting their own personal preference of
agent-level tools (eg: Eclipse).

5 Conclusion

This paper acknowledges that the lack of a complete set of engineering tools is a con-
tributing factor to the slow uptake of agent-based software development in industry.
In particular we have focused on the provision of IDEs.

We have categorised suitable tools for MAS IDEs into two levels of abstraction the
agent-level and the system-level. We suggest that tools for use at the agent-level are
generally available but there is a greater problem in providing tools at the system-
level. Furthermore, we note that for tools to be of general use they must be decoupled
from any particular agent platform.

We have presented a generalised set of requirements for system wide tools irre-
spective of the agent platform used. This minimal set of tools comprises facilities to
inspect, monitor and debug a running MAS, it is intentionally neutral on framework
specific aspects like types of agency, the structure of messages, mobility, etc.

We have tested an approach to IDE construction in which the IDE is built in the
form of its own MAS. This approach decouples the IDE from any particular agent
platform i.e.: the agents it monitors can be built on different agent platforms. We have
evaluated this resulting IDE by experimentation and found that it can be extended by
adding new agents to provide additional system-level tools and easily linked to exist-
ing agent-level tools like editors and inspectors. In addition we have succeeded in
using the IDE as a bridge between two, otherwise incompatible, agent frameworks.

While more discussion is needed within the research community to determine
which system-level tools are most appropriate and how they should be presented, we
believe that it is possible to deploy these as an extendible, generic and platform-
independent IDE.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley, Chichester (2007)

2. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a Strong Business Case for Multiagent
Technology. In: AAMAS, Hakodate, Japan. ACM Press, New York (2006)

3. Bernon, C., Cossentino, M., Pavon, J.: An Overview of Current Trends in European AOSE
Research. Informatica 29, 379–390 (2005)

4. Bordini, R., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-oriented pro-
gramming. In: Multi-Agent Programming: Languages, Platforms and Applications. Klu-
wer, Dordrecht (2005)

5. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J., Leite, J.,
O’Hare, G., Pokahr, A., Ricci, A.: A Survey of Programming Languages and Platforms for
Multi-Agent Systems. Informatica 30(1), 33–44 (2006)

134 S. Lynch and K. Rajendran

6. Braubach, L., Pokahr, A., Bade, D., Krempels, K., Lamersdorf, W.: Deployment of Dis-
tributed Multi-Agent Systems. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.)
ESAW 2004. LNCS (LNAI), vol. 3451, pp. 261–276. Springer, Heidelberg (2005)

7. Dastani, M., Meyer, J.C.: A Practical Agent Programming Language. In: Dastani, M., El
Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI),
vol. 4908. Springer, Heidelberg (2008)

8. Filho, A., Antonio do Prado, H., Pereira de Lucena, H., Pereira de Lucena, C.J.: A WSA-
Based Architecture for Building Multi-Agent Systems. In: AAMAS, Hawaii (2007)

9. Flater, D.: Debugging agent interactions: a case study. In: ACM Symposium on Applied
Computing, Las Vegas, Nevada, United States. ACM Press, New York (2001)

10. Fonseca, S.P., Griss, M.L., Letsinger, R.: Agent Behavior Architectures: A MAS Frame-
work Comparison. In: AAMAS, Bologna, Italy. ACM Press, New York (2002)

11. Gutknecht, O., Ferber, J., Michel, F.: Integrating Tools and Infrastructures for Generic
Multi-Agent Systems. In: Fifth International Joint Conference on Autonomous Agents,
Montreal, Canada. ACM Press, New York (2001)

12. Lam, D.N., Barber, K.S.: Verifying and Explaining Agent Behaviour in an Implemented
Agent System. In: AAMAS. ACM Press, New York (2004)

13. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as In-
teraction (A Roadmap for Agent Based Computing), AgentLink (2005) ISBN 0854328459

14. Lynch, S.C., Rajendran, K.: Boris-A Framework for Developing Multi-Agent Systems in
Lisp and Java. In: International Lisp User Group Meeting, New York, USA (2003)

15. Lynch, S.C., Rajendran, K.: Breaking Into Industry: Tool Support for Multiagent Systems.
In: AAMAS, Hawaii (2007)

16. Massonet, P., Deville, Y., Neve, C.: From AOSE Methodology to Agent Implementation.
In: AAMAS, Bologna, Italy. ACM Press, New York (2002)

17. Modi, P.J., Mancoridis, S., Mongan, W.M., Regli, W., Mayk, I.: Towards a reference
model for agent-based systems. In: AAMAS, Japan. ACM Press, New York (2006)

18. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging distributed
multi-agent systems. In: Conference on Autonomous Agents, Seattle, USA. ACM Press,
New York (1999)

19. Poutakidis, D., Padgham, L., Winikoff, M.: Debugging Multi-Agent Systems Using De-
sign Artifacts: The Case of Interaction Protocols. In: AAMAS, Bologna, Italy. ACM Press,
New York (2002)

Implementing Organisations in JADE

Cristián Madrigal-Mora, Esteban León-Soto, and Klaus Fischer

DFKI GmbH
Stuhlsatzenhausweg 3 (Building D 3-2),

D-66123 Saarbrücken, Germany
{Cristian.Madrigal,Esteban.Leon,Klaus.Fischer}@dfki.de

Abstract. The representation of an agent organisation using a concrete
computational entity is a frequently missing feature in platforms for mul-
tiagent systems, and it is normally left as a result of the emergent be-
haviour of interacting agents. This is also the case for JADE, one of the
most used multiagent system platforms. This paper proposes an exten-
sion to JADE that addresses this missing concept, without disrupting
the compatibility with previously developed systems nor the availability
of JADE’s platform services.

1 Introduction

The application of Multiagent Systems (MAS) in varied industrial and business
environments has been increasing in recent times. It can be argued that this
is the case, because autonomous agents enable the development of robust and
scalable software systems, since they can complete their objectives while situ-
ated in a dynamic and uncertain environment, engage in rich, high-level social
interactions, and operate within flexible organisational structures [1].

When a system has a large amount of jobs to be performed several times in
coordination with several providers, it is inefficient to distribute the tasks among
all the parties involved every single time. In this case, it makes better sense to
establish this repeated coordination structure based on the previous successes.
This provider grouping can be formalized by the concept of Organisation. Or-
ganisations are social structures that provide processes for conflict resolution,
as a result from previously resolved problems or conflicts [2]. They institution-
alise anticipated coordination, which is especially useful for medium and large-
scale applications that require the delimitation of the agents communication
behaviour.

Since the overall computation in MAS is obtained by the combination of the
autonomous computation of every agent in the system and the communication
among them [3], the coordination and communication between the agents is
essential. Agents acting in an organisational structure can provide additional
encapsulation, simplifying representation and design, and modularization, en-
abling code reuse and incremental deployment. Nevertheless, these coordination
or organizational structures are not always explicitly supported by agent plat-
forms, even when some agent metamodels and methodologies do present them.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 135–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 C. Madrigal-Mora, E. León-Soto, and K. Fischer

This paper proposes the implementation of an organisation-oriented extension
for the JADE agent platform [4,5]. JADE is a FIPA [6] compliant multiagent
system middleware which also serves as agent platform and provides basic ser-
vices like directories and messaging. Its framework supports the implementation
of ontologies for the contents of messages and knowledge of agents. JADE is
also one of the preferred platforms to implement conversation protocols between
autonomous agents, because it provides a library of behaviours for performing
FIPA interaction protocols. New conversation protocols and their corresponding
behaviours can be produced from scratch or by combining protocols. In spite
of addressing the problem of composition of agent groups, it does not provide
explicit features for groups apart of the emergent behaviour obtained by mani-
festing the behaviours of each agent.

The article is structured as follows: Section 2 presents related works; Section 3
addresses the extension to JADE and its implementation; Section 4 discusses the
benefits of our approach; the open issues are addressed in Section 5 and Section 6
presents our finals remarks and conclusion.

2 Related Work

This section presents a short overview of some related work in agent platforms,
metamodels and methodologies with regard to agent organisations.

Regarding the analysis of organisations, the approach the we present on this
paper falls under what [7] calls the perspective of computational organisation
theory and artificial intelligence, in which the organisations are basically de-
scribed at the role and group—composed of roles—levels. Under this perspec-
tive, we can also find works such as GAIA [8,9] and MOISE [10]. While other
models, such as ISLANDER [11], define organisations as electronic institutions,
in terms of norms and rules.

With respect to organisational structures, Holonic MAS [12] present particular
pyramidal organisations where agents of a layer (having the same coordinator)
are able to communicate and to negotiate directly between them [13]. This co-
ordinator is also known as the holon’s head. Any holon that is part of a whole is
thought to contribute to achieving the goals of this superior whole. Apart from
the head, each holon consist of a (possibly empty) set of other agents, called
body agents. Holonic structures can be expressed quite naturally in terms of
roles and groups, under the perspective described previously.

Besides our chosen agent platform, JADE, there are two other platforms that
we consider relevant in this context. First, JACK Intelligent Agents [14] sup-
ports organisational structures through its Team Mode. In this mode, goals
can be delegated to team member in order to achieve the team goals. JADEX
[15,16] presents another interesting platform for the implementation of organ-
isations. While JADEX doesn’t currently have organisational structures, the
approach presented here could be easily adapted to it, while gaining its BDI rea-
soning and the ability to do metareasoning on the organisation structures and
behaviours.

Implementing Organisations in JADE 137

Additionally, there has been previous work regarding organisations through
agent middlewares, such as AMELI [17] and S-MOISE+ [18], while the support of
these in the more broadly used agent platforms, like JADE, has been dependent
on the way the platform deals with behaviour execution and message passing
without enforcing policies and restrictions at the organisation level through run
time computational entities.

3 Organisations and Roles

The definition of Organisation1 that we propose to use in JADE is the Agentified
Group in [19]: a set of agents that possesses all the features that any agent might
possess. For example, just as an agent, it can send and receive messages directly
and take on roles. For this purpose, the Organisation is a specialization of Agent.

An Organisation or a group in general is formed to attain new processes and
results that were not available by individual members, therefore taking advantage
of the synergies among them. Organisations may be defined statically—at design
time by the system designer—or dynamically—at runtime—as a collective task
or goal arises.

Also, since an Organisation basically consists of interrelated Roles, it is defined
according to these roles within it. Correspondingly, the roles have a meaning only
within the Organisation’s context. Therefore, the Role’s meaning is determined
by and dependent of the Organisation to which it belongs. This is the biggest
difference between role and a capability: capabilities represent a set of features
an agent can have independently of its current scope, such as a set of behaviours.
Agent capabilities can match one to one to a role, can exceed the requirements
demanded by a role or need to be aggregated to match these requirements.

Concrete organisational entities enable the design of the interactions in a
clear fashion, whether they take place between different organisations or between
individual agents and organisations, instead of leaving the collectiveness implied
through the emergent behaviour that results from their capabilities.

3.1 Requirements

The extension was designed to provide a Platform Specific Model (PSM) for
JADE for the transformation of our Platform Independent Model for Agents:
PIM4Agents. In this context, the JADE metamodel needed to be defined in
the Eclipse Modeling Framework (EMF) [20] in order to take advantage of the
transformation tools available for Eclipse and to fit the model driven approach
we have presented in [21].

The metamodel started as an extraction of the JADE class model from JADE’s
source code and documentation. However, when coming to the definition of the
transformations from PIM4Agents to the JADE PSM, we noticed that additional
flexibility and adaptability could be provided to JADE if we represented Organisa-
tions and Roles from the PIM4Agents as computational entities in JADE instead
of just mapping them directly in agents.
1 Capitalized terms refer to classes or relevant concepts.

138 C. Madrigal-Mora, E. León-Soto, and K. Fischer

Therefore, we concentrate on the Organisation as a computational entity for
execution purposes. Although we use the analogy of social organisation, given
the parallelisms that exist with regard to the distribution of tasks and team-
work, our Organisation concept is not intended to address directly the issues
of implementing institutions, alliances or coalitions, although this work could
potentially be used as a base to implementing them in JADE.

3.2 Implementation

The extension of JADE is centered around two concepts/classes: Organisation
and Role (Figure 1). It is important to mention that the Behaviour class depicted
only represents the base node of JADE’s Behaviour hierarchy, not any particular
Behaviour type.

Fig. 1. Partial view of the core of the JADE metamodel

The Organisation contains references to all its members, as well as the Roles
under which the membership relation is stated. The Organisation class extends
the Agent class, given that we want it to be able to perform tasks and commu-
nicate with its members and other agents. As such, the Organisation is itself an
Agent and possesses its own set of behaviours. Additionally, Organisation also
provides the functionality of registration and deregistration of members as the
Organisation changes over time. These tasks are performed using communication
protocols that serve this purpose,and that will be described in detail further on.

The Role class is implemented as an Ontology Concept. It is part of the
OrganizationOntology and groups the set of Behaviours that are allocated to
it. Behaviours are, in principle, the basic mechanisms that manifest when their
corresponding triggering event happens, usually an incoming message of a certain
kind or with a certain content. The list of Behaviours can potentially be used
(i) to verify that the agent is actually capable of fulfilling the Role or (ii) to
allow the Agent to “learn” the Behaviours/Capabilities required to fulfill the
role by adding them to its own, depending on the value of the Role’s properties.

Implementing Organisations in JADE 139

Additionally if an Agent is provided with new Behaviours/Capabilities when
taking a Role, these can not be removed if the Agent leaves the Organisation
since the Agent’s autonomy has to be respected.

Behaviours inside a role can be abstract in the sense that they specify the
normative requirements to fulfill the role, leaving unspecified how specific parts
are to be resolved. This is particularly useful to delegate to the agents the con-
crete implementation of those parts of a protocol, where a decision of an agent is
involved or where an agent has to provide a solution, in other words, where the
agent contribution is expected. In the case that abstract behaviours in a Role
are present, agents are expected to provide concrete matching behaviours.

Publishing to the Directory Facilitator. The Organisation structure can
be determined at design time or at run time. For the ones setup in design time,
the organisation establishment—initialization of the organisation structure—is
already set; however, for those that are determined until run time, a selection
of role fillers needs to take place. JADE already provides a directory service
called the Directory Facilitator (DF). Through the DF, an agent/organisation
can search for other agents/organisations that possess a given set of features,
such as the protocols supported or the ontologies it can access.

In order to take advantage of the DF Service, we extend the class used to
describe agents, namely DFAgentDescription, which is part of JADE’s FIPAA-
gentManagementOntology. As depicted in Figure 2, we first extend DFAgent-
Description by adding a list of of performed roles, creating the descriptor for
Organisation members, DFOrganisationMemberDescription.

Since the Organisation requires and, as the agent that it is, performs roles,
we create the Organisation descriptor, DFOrganisationDescription, by extending
DFOrganisationMemberDescription with a list of required roles.

Organisation Establishment. Once the descriptions for Organisations and
members are published to the DF, the organisation establishment can take place
on the run time case. As a first step, a search for suitable agents/organisations is
performed by quering the DF Service. For technical details on querying the DF

Fig. 2. Directory description class hierarchy of OrganizationOntology

140 C. Madrigal-Mora, E. León-Soto, and K. Fischer

Fig. 3. RoleFillerRequest protocol

Service, please see [22]. When the list of prospective DFOrganisationMemberDe-
scriptions or DFOrganisationDescriptions is retrieved, the agent/organisation
initiates the RoleFillerRequest protocol (see Figure 3). The same protocol is
applied for the agent that wants to join an organisation or for the organisation
that wants to recruit a new member. In the first case, the organisation takes the
Responder role and a RoleRequest object is sent as content of the ACL request;
and in the second case, the candidate agent is the Responder and a Member-
Request object is sent as content of the request. Once this request is received
by the Responder, an ACL refuse message is produced if the request is denied,
or an ACL inform message is produced if the request has been accepted. As it
can be expected, the decision process for accepting/denying these requests is left
to other internal behaviours of the agent/organisation. Depending on the design
policies, the decision process may include, for example, a verification that the re-
questing agent possesses all the behaviours necessary to fulfill the requested role.

Task Distribution. In order to allow the organization members to manage
their own work load, the distribution of tasks is performed through the simple
protocol presented in Figure 4. This protocol is basically a simplified version of
the FIPA Request Protocol [23] which provides the RequestResponder with the
option of refusing in case it is already busy.

3.3 Example: Product Sale with Personal Loan

As a concrete example on how Organizations that are created at runtime can
work, we present a Product Sale scenario. The basic interaction in this scenario
takes place between a Buyer and a Seller and it is depicted in Figure 5. The
interaction is initiated by the Buyer making a query about a certain product.
If the product is not in stock, the Seller sends an OutOfStock message and

Implementing Organisations in JADE 141

Fig. 4. TaskRequest protocol

the interaction terminates. If the product is in stock, the Seller replies with the
product price. The Buyer receives the price and considers if it has enough money
to pay for it. If it doesn’t, the Buyer cancels the transaction. If it does have the
money, it sends the payment to the Seller and, correspondingly, the Seller ships
the product.

Under this scenario, if the Buyer doesn’t have enough money, it has to find
the means to get the necessary money. One solution would be to get a personal
loan from a Bank. The Personal Loan is a collaboration or agreement between
the Bank and the Customer, so that the Customer can obtain the product de-
sired. The Personal Loan can be represented by an Organisation (see Figure 6).
In order to instantiate this organization, the Buyer takes on the Customer role
on the PersonalLoan Organisation, while the Bank takes the Loaner role. The
organisation can be established following the previously presented RoleFillerRe-
quest protocol, for example. Once the Organisation is established, PersonalLoan
can take on the original Buyer role from the Product Sale protocol through the
execution of the Financed Sale protocol, shown in Figure 7. PersonalLoan will
persist as an organisation as long as the loan is valid.

The Financed Sale protocol, shows the best case scenario—no alternative
paths—of the interaction between the PersonalLoan Organisation and the Cus-
tomer and Loaner roles, in the case that the customer doesn’t have enough money

142 C. Madrigal-Mora, E. León-Soto, and K. Fischer

Fig. 5. View of the Product Sale Interaction Protocol

Fig. 6. View of the Personal Loan Organisation

to pay for the product. The interaction initiates with the Customer sending the
product query to the PersonalLoan Organisation, who forwards it to the Seller,
following the Product Sale protocol. When the reply with the product price is
received from the seller, PersonalLoan forwards it to the Customer. Since the
Customer doesn’t have enough money to pay for the product, it requests a Loan
from the Loaner providing the product information and price through the re-
questFinancing message. When the financing is approved by the Loaner, it sends
a financingApproved message to the Customer and asks PersonalLoan to forward
the payment to the Seller.

This simple example shows that established protocols, such as Product Sale,
do not need to be modified to allow additional interactions to be performed as
part of the process. As a counter argument, it could be said that since JADE
doesn’t use the protocols per se, but projections of them, specified in Behav-
iours, the Organisation wouldn’t be necessary. However, this argument is clearly

Implementing Organisations in JADE 143

Fig. 7. Simplified View of the Financed Sale Interaction Protocol (best case scenario)

dependent on the protocol policies; for example, a Product Sale protocol could
be very strict and require that the Agent that initiates the interaction has to
provide the payment, while a Financed Sale protocol could require that the
Loaner doesn’t provide the money directly to the Customer, but directly pays
for the product or service to the provider. In this scenario, the Organisation as
an Agent would be required to intervene as a proxy to the transaction to allow
reuse of the original Product Sale protocol by performing the Buyer role outside
the Organisation and to be a proxy w.r.t. payment for the Seller. Of course, as
the policies vary, the Organization’s structure and its level of interference will
vary accordingly, while still providing some additional flexibility in some cases.

4 Further Remarks on Organisations

In this Section, we present a discussion on the possible pros and cons of applying
organisational structures like the ones proposed in this work to JADE and MAS,
in general.

Organisations can be used easily to delegate tasks and simplify the modelling
of interactions. For instance, in order to make interaction protocols more stable,
some include interactions for validating features of their participants and control
aspects. Through the use of clearly identified and properly managed organiza-
tions that take over these certification/authentication aspects, these tasks can be
delegated. This way, agents do not have to start normal interactions by passing
this evaluation/validation processes, instead they identify themselves as member
of a “trusted certifying organization” proving that they fulfill the requirements.

Additionally, the predictability, reliability, and stability of MAS can be im-
proved through the use of agent groupings [19], such as Organisations. The use
of these groupings of agents allows the scoping of interactions, tasks and infor-
mation accesses, therefore making each sub-organisation a specialist for a given
scope and allowing the design, implementation, and testing of each scope in an
incremental way, starting from the agents and their tasks/behaviours, up to the
Organisation’s behaviours and interactions.

144 C. Madrigal-Mora, E. León-Soto, and K. Fischer

In some cases, the gain of structure, provided by Organisations, can potentially
come with a loss of autonomy to the individual agents. In one extreme case, the
Organisation performs all the interaction with external parties, analogous to the
the head of a holon, and the agent members lose part of their autonomy because
of the restrictions and tasks that are imposed by the Organisation. In the other
extreme case, an Organisation merely groups agents and provides the means to
interact with them as one entity, so that any messages that the Organisation
receives are merely forwarded to all members or to the designated handler of the
given message, but the agents are not restricted from interacting directly with
other parties. Our approach is generic enough to allow both extremes and cases
in between of course. It is only necessary to provide the adequate behaviours
to the Organisation, so that it can enforce/perform the policies and interaction
patters desired.

5 Future Work

The concept of Organisation is currently being applied in the design of the
prototypes for a supply chain management system for the steel industry, which
are an extension to the work presented in [24]. In this context, there are several
aggregates/devices in different factory locations that form a group to produce
a specific customer order. Using the concepts provided in the present work, a
customer order can be represented as an Organization of aggregates required
for its production. This order-agents actively keep track of their progress by
interacting with their member aggregate-agents, which at the same time go in
and out of groups to represent the frequent changes in the production of an
order.

Organizations, as described in this paper, serve also as behaviour containers
for the behaviours required for each role. Agents entering an organization can
fetch the set of behaviours that define their role. It is of crucial importance
to study and compare how behaviours can be defined, how detailed they are
required to be, which aspects are they expected to cover, how dependent they
are of the definition mechanisms of each possible participating agent, and where
is the most suitable place for the interface between the behaviour and the agents
proper implementation.

In the case that the agents cannot fetch the set of behaviours for a given role,
but are required to already possess behaviors that match the role’s required
behaviours, the appropriate matching mechanism has to be determined. At the
moment, the extension of abstract behaviours has been used for simplicity, but
other type of analysis, such as black-box need to be considered.

In order to support better design and easier management of organizations,
the relationship between a conversation protocol and its corresponding role-
behaviours has to be improved. This improvement could also impact the overall
results significantly if the conversion could be automatized or the relation made
at least more straightforward. Better proposals of definition that encompass both
behaviours and global views of cooperations would serve this purpose better.

Implementing Organisations in JADE 145

6 Conclusion

The representation of an Organisation using a concrete computational entity is
a feature missing frequently in multiagent system platforms, as it is normally
left as a result of the emergent behaviour of interacting agents. This is also the
case for JADE, one of the most used multiagent system platform. The concept
of an organization is proposed for this platform as a specific kind of agent. The
fact that it is represented by an agent and not left as a virtual manifestation
result of individual behaviours opens new options for collaborations modelling.
Interaction protocols can be more easily modularized and, by scoping the aspects
in complex interactions, the predictability, reliability, and scalability of such
distributed systems are increased.

We have also discussed how there can be different types of organisations with
respect to how much the group representation can intervene and how strict the
protocols that rule the group are. Having a concrete representation entity for
an organization also facilitates the definition of the policies, by making them
explicit instead of implicit. Organisations provide not only advantage for design
time, but also for enabling dynamic creation of organizations at run time.

References

1. Jennings, N.R.: Agent-based computing: Promise and perils. In: IJCAI, pp. 1429–
1436 (1999)

2. Gasser, L.: Social conceptions of knowledge and action: Dai foundations and open
systems semantics. Artificial Intelligence 47(1-3), 107–138 (1991)

3. Schillo, M., Fischer, K.: Holonic multiagent systems. KI 17(4), 54–55 (2003)
4. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent frame-

work. In: Proceedings of the Practical Applications of Intelligent Agents (1999)
5. JADE: Java Agent Development Framework (2001), http://jade.tilab.com
6. Foundation for Intelligent Physical Agents: FIPA Abstract Architecture Specifica-

tion. Document number SC00001L (2002),
http://www.fipa.org/specs/fipa00001/SC00001L.html

7. van den Broek, E.L., Jonker, C.M., Sharpanskykh, A., Treur, J., Yolum, P.: Formal
modeling and analysis of organizations. In: AAMAS Workshops, pp. 18–34 (2005)

8. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12(3), 317–370 (2003)

9. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. JAAMAS 3(3), 285–312 (2000)

10. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: Moise: An organizational
model for multi-agent systems. In: IBERAMIA-SBIA, pp. 156–165 (2000)

11. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor.
In: AAMAS, pp. 1045–1052. ACM Press, New York (2002)

12. Schillo, M., Fischer, K.: A taxonomy of autonomy in multiagent organisation. In:
Agents and Computational Autonomy, pp. 68–82 (2003)

13. Adam, E., Mandiau, R.: Roles and hierarchy in multi-agent organizations. In:
CEEMAS, pp. 539–542 (2005)

http://jade.tilab.com
http://www.fipa.org/specs/fipa00001/SC00001L.html

146 C. Madrigal-Mora, E. León-Soto, and K. Fischer

14. AOS: JACK Intelligent Agents, The Agent Oriented Software Group (AOS)(2006),
http://www.agent-software.com/shared/home/

15. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi-
infrastructure for jade agents. EXP 3(3), 76–85 (2003)

16. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Main
Conference Net.ObjectDays, pp. 195–207 (September 2004)

17. Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.: AMELI: An Agent-
Based Middleware for Electronic Institutions. In: AAMAS, vol. 1, pp. 236–243
(2004)

18. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A Middleware for Develop-
ing Organised Multi-agent Systems. In: Boissier, O., Padget, J., Dignum, V., Lin-
demann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 64–78. Springer,
Heidelberg (2005)

19. Odell, J., Nodine, M.H., Levy, R.: A metamodel for agents, roles, and groups.
In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp.
78–92. Springer, Heidelberg (2005)

20. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison-Wesley, Reading (2003)

21. Hahn, C., Madrigal-Mora, C., Fischer, K.: Interoperability through a platform-
independent model for agents. In: I-ESA (2007)

22. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade programmers guide,
http://jade.tilab.com/doc/programmersguide.pdf

23. Foundation for Intelligent Physical Agents: FIPA Request Interaction Protocol
Specification. Document number SC00026H (2002),
http://www.fipa.org/specs/fipa00026/SC00026H.html

24. Jacobi, S., León-Soto, E., Madrigal-Mora, C., Fischer, K.: Masdispo: A multiagent
decision support system for steel production and control. In: AAAI, pp. 1707–1714
(2007)

http://www.agent-software.com/shared/home/
http://jade.tilab.com/doc/programmersguide.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.html

A Fair Mechanism for Recurrent Multi-unit

Auctions

Javier Murillo, Vı́ctor Muñoz, Beatriz López, and Dı́dac Busquets

Institut d’Informàtica i Aplicacions
Campus Montilivi, edifice P4, 17071 Girona

{jmurillo,vmunozs,blopez,busquets}@eia.udg.edu
http://iiia.udg.edu/

Abstract. Auctions are a good tool for dealing with resource allocation
in multi-agent environments. When the resources are either renewable or
perishable, a repeated auction mechanism is needed, in what is known
as recurrent auctions. However, several problems arise with this kind
of auction, namely, the resource waste problem, the bidder drop prob-
lem, and the asymmetric balance of negotiation power. In this paper we
present different mechanisms to deal with these issues. We have evalu-
ated the mechanisms in a network bandwidth allocation scenario, and
the results show that the proposed mechanisms achieve higher benefits
for the auctioneer, while also providing a fairer behavior.

1 Introduction

Auctions are becoming popular within the field of Artificial Intelligence due to
its usefulness for resource allocation on competitive multi-agent systems [3], and
its multiple types suitable for a wide range of situations.

However, auction mechanisms may have problems in some domains when re-
newable and perishable or consumable resources are being auctioned as pointed
out by [8]. On one hand, having renewable resources means that the auctioneer
offers the resources every time they become free (when the time of the contract
expires). Then the auctioneer needs to allocate the resources to bidders again.
On the other hand, perishable resources cannot be stored or left unused. That is,
often, there is a free disposal condition in which the auctioneer can leave same
resources unassigned if the benefit is maximized. Then, in a next auction, the
auctioneer could re-sell the remaining resources. However, when the resources
are perishable, these cannot be kept for a future auction. Related to these issues
is the allocation of resources to bidders for specific time only [7]. In this domain,
short-term contract is often used in those markets.

In these cases in which renewable and perishable resources are managed, the
auction is repeated several times, in what has been called recurrent auction. A
recurrent auction is an auction where the bidders are continuously competing
for the resources. These kind of auctions have received little attention [6,12,7],
but they are gaining importance, since there are many applications where this
recurrence takes place, such as e-service oriented marketplaces.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 147–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://iiia.udg.edu/

148 J. Murillo et al.

Our research concerns these kind of auctions. Particularly, we are interested in
recurrent multi-unit single-item auctions. On one hand, in single-item auctions
an item is auctioned at a time (conversely to combinatorial auctions in which
several items can be auctioned together). On the other hand, multi-unit auctions
means that there is more than one unit of each item being auctioned. A typical
example of the applicability of this kind of auctions in the e-service domain is the
provision of network bandwidth. There is a single item to be sold: the network
capacity, and there are several units of the item (depending on the capacity of
the connection). Another example, regarding natural resource allocation, is the
CO2 emissions. In this scenario, there is a single item, the CO2 capacity, that is
divided into identical units called CO2 credits [2].

In this paper we present various recurrent multi-unit single-item auction mech-
anisms to improve the final outcome of the auctioneer by getting fair or egalitar-
ian solutions. The first mechanism is based on assigning priorities to the bidders;
the second mechanism on defining variable reservation prices to pay for the use
of the resource, and the third mechanism is a combination of the two previous
ones. We experimentally show how the latter mechanism outperforms the former
and the previous approaches found in the literature.

The paper is organized as follows first, we provide some basis on recurrent
multi-unit single-item auctions (or recurrent multi-unit auctions for short) in
Section 2. Next, in Section 3, we describe the new auction mechanism we propose.
Then, we continue by describing our experimental scenario in Section 4 and
explaining the results obtained in Section 5. Finally, we end with some related
work and conclusions.

2 Issues in Recurrent Multi-unit Auctions

In a recurrent multi-unit auction, the auctioneer has some goods to be sold
periodically. Then, auctions are repeated with the same bidders through time.
In each auction, the auctioneer agent sends a message to all the bidder agents,
offering the different units of the item to be sold. Then, the bidders send back to
the auctioneer their bids, containing the price they would pay for a single unit
of the item, sending as many bids as units required. Next, the auctioneer decides
to which agents it will sell the available units of the item. In this process, three
main components are distinguished:

– Bidding policies: how each agent decides the price it is willing to pay for the
resources

– Market clearing or winning determination algorithm: how the auctioneer
selects the agents that win the units of the item (or selects the winning
bids).

– Pricing mechanism: how the auctioneer decides the price to be paid for the
winners

Our research is concerned with the second one. The market clearing or winning
determination algorithm poses an optimization problem to the auctioneer, which
tries to maximize its benefits [4].

A Fair Mechanism for Recurrent Multi-unit Auctions 149

If there is the free disposal condition, then the auctioneer can keep some of
the units if the benefit is higher. However, this free disposal condition has to
be minimized when dealing with perishable resources, as it can produce what
is known as the resource waste problem. Other problems related to recurrent
auctions that should be tackled in the market clearing mechanism are the bidder
drop problem and the asymmetric balance of negotiating power. We next describe
in detail these problems.

2.1 Resources Waste Problem

Resources can be either static or time-sensitive. Static resources do not change
their properties during a negotiation process [3]. On the other hand, a time-
sensitive resource [7] is consumable or perishable. A resource is consumable if it
gets worn out by constantly using it. For example, fuel is a consumable resource.
A resource is perishable, if it vanishes or loses its value when held over an ex-
tended period of time. For example, network bandwidth is a perishable resource
since the bandwidth not used is not accumulable for the future.

Perishable resources, present in many real-world scenarios, cannot be stored in
warehouses for future sales; if the resources are not allocated, they lose their value
or vanish completely. This is known as the resource waste problem in recurrent
auctions, since if the auctioneer does not sell the resource in a round, it cannot
sell it in the next round. On the other hand, it cannot give the resource for
free. So a trade-off between the resource usage and the benefit of the auctioneer
should be appropriately handled.

2.2 Bidder Drop Problem

This problem occurs when bidders participating in many auctions are always
losing. They could decide to leave the market, since they are not getting any
profit. This has bad consequences for the auctioneer: the reduction on the number
of bidders gradually decreases the price competition, because the probability of
winning increases for the remaining bidders. Hence, their attempts to decrease
bid prices without losing the winning position will be successful, causing the
overall drop of bid prices.

In order to avoid, or somehow decrease, the bidder drop problem, the recurrent
auction process should have some degree of fairness.

2.3 Asymmetric Balance of Negotiating Power

In most of the traditional auction mechanism, the bid prices in an auction are
dependent only on the customer’s willingness to pay for the traded goods. This
means that only the intentions of customers, but not of the auctioneer, are
reflected in the auction winning prices [6]. At long run, the effect of this problem
causes the collapse of the auction. For example, let us suppose that initially
there are N bidders. A third of them, are poor and bid 1e; while the other two
thirds are richer and pay some amount over 5e. After several rounds, the richer

150 J. Murillo et al.

agents start lowering the price up to 3e, while the poor agents rise their bids
up to 2e. At the end, the richer agents are the winners with a price close to
the poor agents. In this case, the richer bidders have the power of fixing the
price, not the auctioneer. In a recurrent auction, these prices can even go under
the poor prices, if the poor agents have dropped out of the market. Note that
this problem is different that the bidder collusion [13] although the effects are
the same. In bidder collusion the bidders forms coalitions to force this situation,
while the asymmetric problem is caused by the uneven wealth of the agents.

3 Mechanisms for Fair Auction Clearing

In the recurrent auction mechanism a fair solution means that at long term,
all of the participants accomplish their goals in the same degree, independently
of their wealth. The inclusion of this fairness can be somewhat acting against
short-term optimality, since the result of an auction may differ from the optimal
solution if a suboptimal solution is fairer. However, its mid or long-term effect
produces an increase of auctioneer benefits, since it maintains the interest of
bidders in continuing in the auction process [6].

We propose three different mechanisms based on the use of priorities and
variable reservation prices for reaching fair solutions and solve the problems of
recurrent auctions. The first mechanism is the priority auction that solves the
resource waste and the bidder drop problem; the second one is the customiz-
able reservation price auction that solves the asymmetric balance of negotiation
power and the bidder drop problem; and finally, the last one is the customiz-
able reservation price auction with priorities that achieves to solve the three
problems.

3.1 Priority Auction (PA)

This mechanism takes into account the history of each agent in previous auctions.
Each agent is assigned a priority value depending on the number of won and lost
auctions. Thus, priority is defined in [0,1]. The more number of lost auctions, the
higher the priority. The priority values are updated after each auction is finished,
and they are used for clearing the next auction. The clearing algorithm could
use them in very different ways: they could be transformed into new constraints
to be satisfied by the solution, or directly designate the set of winning agents,
among others.

Since the history of the agents in a recurrent auction scenario is long, a time
window could be used to calculate the priorities instead. If the time window is
very long, then the performance of PA is like the traditional auction (TA) (i.e. the
typical auction where winners are the bidders with the highest bid) since the effect
of the result of an auction is insignificant when the number of auction is high.

Thus, we propose to use this priority to modify the value of the bids and
selects as winners the highest modified bids. More precisely, given a bid value vi

of an agent with priority wi, a new bid valuation is computed as:

v′i = f(vi, wi) (1)

A Fair Mechanism for Recurrent Multi-unit Auctions 151

The priority is handled by the auctioneer, and this new value v′i is the one
used by the clearing algorithm to find an optimal solution. Note however, that
the winner bidders will pay the original vi price.

The function f can be designed in many ways, and it allows introducing dif-
ferent fairness facets in the auction solution. Thus, the function should increase
the chances of winning of a high priority agent, while it should decrease the
chances of a low priority one. For example, we are currently using the function:
v′i = f(vi, wi) = vi ∗ wi.

Note that this mechanism does not produce any resource waste as it always
sells all the available units and reduces the effect of bidder drop problem.

3.2 Customizable Reservation Price Auction (CRPA)

In this mechanism the idea is to have a reservation price for each bidder. We
define the reservation price as the minimum price at which the auctioneer is
willing to sell a good or service. That means that the auctioneer does not accept
any bid of an agent under its reservation price. The reservation price is initially
the same for all the bidders, but it gradually varies as the auctions succeed in
the following way. For each agent, if a bid price is higher than the reservation
price, then the reservation price for that agent is incremented. Otherwise, if
the reservation price is higher than the bid’s price, then the reservation price is
decremented.

A parameter γ is defined indicating the minimum increment and decrement
percentage of the reservation price. When a bidder bids with a value higher
than its reservation price, then its reservation price is incremented by the half
of the difference between the reservation price and the bid’s value, except if the
difference is lower than γ. In this case, the reservation price is incremented by
γ. The algorithm of this procedure is shown in Figure 1.

minimum = reservationPricei ∗ γ
difference = abs(bidi − reservationPricei)
if bidi ≥ reservationPricei then

reservationPricei = reservationPricei + max(diff erence,minimum)
else

reservationPricei = reservationPricei −max(diff erence,minimum)
end if

Fig. 1. Pseudo-code of CRPA reservation price’s update

This mechanism is egalitarian since everybody can lose indistinctively of his
wealth. In addition, it avoids that bidders with high wealth reduce their price to
the minimum possible to win, and it obliges them to increase it to a minimum

152 J. Murillo et al.

reservation price. Thus, this mechanism solves the problem of the asymmetric
balance of negotiation. However, the use of reservation prices produces resource
waste as it does not always allocate all the available resources.

3.3 Customizable Reservation Price Auction with Priorities
(CRPA+P)

An idea to avoid the resource waste of the previous mechanism is to distribute
the remaining resources among the non-winning bidders. Hence what we do is to
give the surplus resources to the bidders with higher priority without considering
its bid. This fact eliminates the resource waste problem and improves the level
of fairness of the solutions.

Therefore, this method is a combination of the CRPA and the PA mecha-
nism, since it is using the individual variable reservation price and the priority
mechanism explained above.

4 Experimental Setup

In order to test the proposed mechanisms, we have used the experimentation
scenario provided in [7] in which recurrent auctions are used to deal with the
e-service networking markets. Thus, we use a previously used and tested scenario
that corresponds exactly to the multi-unit single-item recurrent auctions.

4.1 Experimentation Scenario

The recurrent auction is formed by 2000 multi-unit auctions. There are 50 units
of resources (i.e. time-sensitive e-service units) available for allocation in each
auction round. There are 100 customers (bidders). The initial bidding price is
randomly selected from the range [ti/2, ti], where ti represents the upper bound
on customer i willingness to pay. There are three types of the standard distrib-
utions of the upper bound on willingness to pay among the customers, all with
a mean of 5: (1) the exponential distribution, (2) the uniform distribution over
the range [0, 10], and (3) the gaussian distribution.

Based on the assumption that each bidder will maximize its expected profit,
the following bidding behavior have been considered. If a bidder lost in the last
auction round, it increases its bidding price by a factor of α > 1 to improve
its winning probability in the current round. The increase of bidding price is
limited by the upper bound on bidder’s willingness to pay. If a bidder won in
the last auction round, then with equal probability of 0.5, it either decreases the
bidding price by a factor β or maintains it unchanged. The decrease attempts
to maximize the expected profit. α and β are set in the experiments to 1.2 and
0.8, respectively. The minimum bidding price of a bidder is 0.1.

In order to model the bidder drop problem a Tolerance of Consecutive Losses
(TCL) have been defined. The TCL denotes the maximum number of consecutive
losses that a customer can tolerate before dropping out of an auction. The TCL
value of each customer is uniformly distributed over the range [2, 10].

A Fair Mechanism for Recurrent Multi-unit Auctions 153

4.2 Other Auction Mechanisms

We have compared our mechanism with other previous ones: the traditional auc-
tion, the cancelable price auction, the reservation price auction, and the optimal
recurrent auction. For such purpose, we have re-implemented them following the
information given by the authors on the corresponding papers.

Traditional Auction (TA). In this mechanism the winners are the bidders
with the highest bids.

Cancelable Auction (CA). In this type of auction, if the resulting revenue
of an auction does not meet the minimum requirements of the auctioneer, the
entire auction is canceled. Thus, the cancelation of an auction wastes the entire
stock of resources [7].

Reservation Price Auction (RPA). In this mechanism the auctioneer defines
a reservation price (the same for all bidders) that indicates the minimum price
that the bidders should pay. Only bids higher than the auctioneer’s reservation
price are considered during the winner selection. In RPA, the reservation price
restricts the number of winners and can produce waste of part of the resources.

Optimal Recurring Auction (ORA). Proposed by [7], it is a mechanism
based on the demand-supply principle of micro-economics. The mechanism fixes
a reservation price b0 in each auction. This value is the maximum between the
(2R/3)th higher bid value in the current auction and the auctioneer’s minimum
desired benefit of the sold resource. R is the number of resources. Then, all
bidders with a bid greater than b0 become winners. The remaining resources are
shared between the loser agents following the VLLF-BDC (Valuable Last Lost
first Bidder Drop Control) algorithm [7].

4.3 Parameters

There are several parameters to take into account in the different methods im-
plemented:

– CA. In the experiments the minimum requirements of the auctioneer is set
to 250e.

– RPA. The value of reservation price is set to 5e.
– ORA. The auctioneer’s minimum desired benefit is set to 5e.
– PA and CRPA+P. We have selected a time window of 10 auction rounds.
– CRPA and CRPA+P:

• The initial reservation price is set to 5e.
• The γ factor is set to 0.1.

5 Results

With the aim of measuring the fairness of the system we have used the following
two measures:

154 J. Murillo et al.

– Minimum Won Auctions (MWA): It represents the utility of the worst
bidder [3]. It is computed as the minimum percentage of won auctions of all
of the agents that stay in all of the auctions. A high value of MWA indicates
that the mechanism is fair, since the worst bidder is doing quite well.

– Standard Deviation Won Auctions (DWA): the standard deviation of
the percentage of won auctions of all of agents. A low DWA indicates that the
difference among the agents is low, therefore the fairness of the mechanism
is higher.

Figures 2, 3 and 4 show the results obtained. On the right, there is a plot of
the average bidding price of winners in each auction mechanism for the wealth
distribution. On the right, a table provides some details of the results. The MWA
and DWA columns show the values of the fairness metrics. The AWA column
shows the Average Won Auctions, the BEN column indicates the total benefit
obtained by the auctioneer along the 2000 auction rounds. The NB column shows
the number of agents that stay in the auction at the end. Finally, RW shows the
number of resources wasted during the recurrent auction.

The results of the plots and tables show that TA is affected in all distri-
butions by the bidder drop problem, causing the decrease of the auctioneer’s
revenue down to very low values. RPA and CA maintain the auctioneer’s rev-
enue at higher values than TA because the balance of the negotiation power is
maintained. However they are affected by the resource waste problem (especially
RPA), and they are also affected by the bidder drop problem. The number of
bidders at the end of the recurrent auction is lower than the bidders in TA.

ORA reaches better results than TA, RPA and CA because it is less affected by
the bidder drop problem, the resource waste problem and maintains the balance
of negotiation power.

The results of PA in uniform wealth distribution are better than RPA but
worse than ORA. In the gaussian wealth distribution the results of PA are very
similar to ORA and better than RPA, but in the exponential wealth distribution
the results obtained show that the auctioneer’s revenue falls to very low values
because of the balance of negotiation power.

Fig. 2. Results for the uniform wealth distribution. Left : Average bidding price of
winners. Right : performance measures.

A Fair Mechanism for Recurrent Multi-unit Auctions 155

Fig. 3. Results for the exponential wealth distribution. Left : Average bidding price of
winners. Right : performance measures.

Fig. 4. Results for the exponential wealth distribution. Left : Average bidding price of
winners. Right : performance measures.

CRPA and CRPA+P show the better results in all the distributions. These
mechanisms merge fairness with a strategy to maintain the higher prices that
each bidder can pay and consequently obtains very good revenues. The benefits
reached by these methods are very similar but CRPA+P maintains a higher
number of bidders and does not produce resource waste. Note that CRPA pro-
duces resource waste although it is less than CA and RPA. The improved version
of CRPA, CRPA+P does not produce any resource waste.

Regarding the fairness measures, the best MWA values are for the CRPA
method, followed by the CRPA+P, even thought they are quite close. That means
that the variable reserved price helps in guaranteeing the amount of times that an
agent wins an auction. On the other hand, the values of DWA are similar for the
ORA,PAandCRPAand they are fairer thanCA,RPAandTA.The fairestmethod
is CRPA+P. That is, using our CRPA+P mechanism all the agents are winning in
a more egalitarian way, while maintaining the benefits of the auctioneer.

Finally, the highest AWA value obtained is when using our CRPA+P method.
Since the DWA is also the lowest, we are increasing the number of times any
agent wins an auction.

156 J. Murillo et al.

6 Related Work

Regarding auctions, it is important to distinguish between recurring, continuous
and iterative auctions. Recurring auctions, as the one described in this paper,
are related to auctions that are repeated over time, getting a solution in each
execution. Continuous auctions [5] are auctions that accept bids anytime, and
clear the market as soon as offers arrive. Finally, iterative auctions are the ones
that are repeated, but in each round, the solution is considered an approximation.
The auction ends whenever the agents repeat the bids or each agent wins some
bid [11].

There are few previous works related to egalitarian behavior in auctions, since
most researchers have been focussed on an utilitarian point of view. More re-
cently, due to the problems caused by recurrent auctions, this social welfare
criteria has started to be a matter of study. For example, in [7] a mechanism
based on reservation prices is proposed. In fact, our variable reservation price
mechanism is based on it. Another interesting work is [1], where the authors
propose the use of leximin preorder in order to establish a trade-off between
utility and egalitarian approaches. In this case, however, the scenario considered
is a combinatorial auction instead of a recurrent one.

Finally, regarding our priority mechanism, it has been tested in a wastewater
treatment plant domain in [10,9].

7 Conclusions and Future Work

Auctions are becoming a popular method for dealing with resource allocation in
multi-agent systems. When resources are either renewable or perishable, recur-
rent auctions are required. These auctions are known to have several problems:
the resource waste problem, the bidder drop problem and the asymmetric bal-
ance of negotiating power. All these problems have been discussed in this paper,
and three new recurrent auction mechanisms have been proposed to cope with
them: the use of priorities (priority auction), the use of a variable reservation
prices (customizable reservation price auction), and a combination of both (cus-
tomizable reservation price auction with priorities). We have compared the new
mechanisms with well-known auction mechanisms and the results show that our
customizable reservation price auction with priorities mechanism achieves the
highest benefits. This is due to the fact that the mechanism avoids the resource
waste problem, maintains the balance of negotiation power and minimizes the
effects of bidder drop problem thanks to the fair solutions. The fairness of the
mechanism incentivizes the participation of bidders and consequently improves
the auctioneer benefits.

Our future work includes two main directions, one related to the experimen-
tation scenario, and the second one to the auction mechanism. Regarding the
experimentation scenario, we are first planning to allow bidders to have a variable
demand. In this sense they could bid for different amount of resources (currently
only one unit is allowed) or in some auction rounds they could not bid for any

A Fair Mechanism for Recurrent Multi-unit Auctions 157

resource. Secondly, we want to consider the resource provider (auctioneer) to
not have always the same amount of resources, consequently the experimenta-
tion scenario could be extended to allow a variable resource supply. This fact can
affect the auction mechanism in time of resource scarcity. Regarding the auction
mechanism, we are considering to extend it in order to be combinatorial. That
means that several items can be considered in a single auction.

Acknowledgments. This research project has been done with the support of
the Commissioner for Universities and Research of the Department of Innovation,
Universities and Enterprises of Generalitat of Catalonia and of the European
Social Funds and DURSI AGAUR SGR 00296 (AEDS).

References

1. Bouveret, S., Lemaitre, M.: Finding leximin-optimal solutions using constraint pro-
gramming: new algorithms and their application to combinatorial auctions. In:
Proc. COMSOC (2006)

2. Burtraw, D., Palmer, K., Bharvirkar, R., Paul, A.: The effect on asset values of
the allocation of carbon dioxide emission allowances. The Electricity Journal 15(5),
51–62 (2002)

3. Chevaleyre, P.E., Dunne, U.Y., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N.,
Padget, J., Phelps, S., Rodŕıguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30(1), 3–31 (2006)

4. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT Press,
Cambridge (2006)

5. Kalagnanam, J., Parkes, D.C.: Auctions, bidding and exchange design. In: Simchi-
Levi, D., Wu, S.D., Shen, Z.M. (eds.) Handbook of Quantitative Supply Chain
Analysis: Modeling in the E-Business Era, pp. 143–212. Springer, Heidelberg (2004)

6. Lee, J.-S., Szymanki, B.K.: A novel auction mechanism for selling time-sensitive e-
services. In: Proc. 7th International IEEE Conference on E-Commerce Technology
(CEC 2005), Munich, Germany, pp. 75–82 (July 2005)

7. Lee, J.-S., Szymanki, B.K.: Stabilizing markets via a novel auction based pricing
mechanism for short-term contracts for network services. In: Proc. 9th IFIP/IEEE
International Symposium on Integrated Network Management, Nice, France, pp.
367–380 (May 2005)

8. Lee, J.-S., Szymanki, B.K.: Auctions as a dynamic pricing mechanism for e-services.
In: Hsu, C. (ed.) Service Enterprise Integration, pp. 131–156. Kluwer Academic
Publishers, New York (2006)

9. Muñoz, V., Murillo, J., Busquets, D., López, B.: Improving water quality by co-
ordinating industries schedules and treatment plants. In: AAMAS workshop on
Coordinating Agents Plans ans Schedules (CAPS), pp. 1–8 (2007)

10. Murillo, J., Muñoz, V., López, B., Busquets, D.: Dynamic configurable auctions
for coordinating industrial waste discharges. In: Petta, P., Müller, J.P., Klusch, M.,
Georgeff, M. (eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 109–120. Springer,
Heidelberg (2007)

11. Parkes, D.C.: Iterative Combinatorial Auctions: Achieving Economic and Compu-
tational Efficiency. Dissertation proposal, University of Pennsylvania (2000)

158 J. Murillo et al.

12. Payne, T.R., David, E., Jennings, N.R., Sharifi, M.: Auction mechanisms for effi-
cient advertisement selection on public displays. In: ECAI, pp. 285–289 (2006)

13. Sandholm, T.W.: Distributed rational decision making. In: Weiss, G. (ed.) Mul-
tiagent Systems: A Modern Approach to Distributed Artificial Intelligence, pp.
201–258. The MIT Press, Cambridge (1999)

Multi-Agent Reinforcement Learning for

Intrusion Detection: A Case Study and
Evaluation

Arturo Servin and Daniel Kudenko

Department of Computer Science, University of York
Heslington, York. YO10 5DD, United Kingdom

{aservin,kudenko}@cs.york.ac.uk

Abstract. In this paper we propose a novel approach to train Multi-
Agent Reinforcement Learning (MARL) agents to cooperate to detect
intrusions in the form of normal and abnormal states in the network. We
present an architecture of distributed sensor and decision agents that
learn how to identify normal and abnormal states of the network using
Reinforcement Learning (RL). Sensor agents extract network-state in-
formation using tile-coding as a function approximation technique and
send communication signals in the form of actions to decision agents. By
means of an on line process, sensor and decision agents learn the seman-
tics of the communication actions. In this paper we detail the learning
process and the operation of the agent architecture. We also present tests
and results of our research work in an intrusion detection case study, us-
ing a realistic network simulation where sensor and decision agents learn
to identify normal and abnormal states of the network.

1 Introduction

Intrusion Detection Systems (IDS) play an important role in the protection of
computer networks and information systems from intruders and attacks. Despite
previous research efforts there are still areas where IDS have not satisfied all re-
quirements of modern computer systems. Specifically, Denial of Service (DoS)
and Distributed Denial of Service (DDoS) attacks have received significant at-
tention due to the increased security vulnerabilities in end-user software and
bot-nets [12]. A special case of DoS are the Flooding-Base DoS and Flooding-
Base DDoS attacks. These are generally based on a flood of packets with the
intention of overfilling the network resources of the victim. It is especially diffi-
cult to create a flexible hand-coded IDS for such attacks, and machine learning
is a promising avenue to tackle the problem. Due to the distributed nature of
this type of attacks and the complexities that involve its detection, we propose
a distributed reinforcement learning (RL) approach.

In order to evaluate our technique we explore its use in Distributed Intrusion
Detection Systems (DIDS). Distributed Intrusion Detection Systems (DIDS) is
a group of IDS or sensors coordinated to detect anomalies or intrusions. The
system can be homogeneous with every sensor of the same kind and type or

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

160 A. Servin and D. Kudenko

heterogeneous with a mixture of types. We build our DIDS approach by training
a group of heterogeneous sensor agents that must identify normal and abnormal
states of the network resulting from Flood-Base DoS and DDoS. We have used
the detection of these attacks to test our learning approach for the following
reasons:
– Some researchers [2,19] note that a variety of sensor information is required

to detect attacks with high levels of confidence.
– The type of attacks disrupt the operation of the network by modifying state

information. Spotting these abnormal states can lead to the detection of a
flooding attack.

– The abnormal states are characterised by several factors that are normally
present in different part of the network and they are only visible to specific
networks devices. To identify these events, it is not possible to use a single
device or entity.

– To identify events around the network that are visible to only some type of
agents it is necessary to use distributed specialised agents. These agents only
have partial observability of the whole environment (network).

In addition to proposing a distributed RL approach for intrusion detection,
we adapt and evaluate it in a realisic network simulation using the ns-2 [20]
simulator. In this way, we are able to demonstrate the practical applicability of
our approach.

2 Technology Overview

Flood-Base DoS and DDoS attacks change the normal behaviour of the network
in different ways and spotting these differences could help us to detect the pres-
ence of attacks [14]. The distributed operation of these attacks brings on the
opportunity to use a distributed and adaptable platform to detect them. We
propose to use an architecture based on MARL agents.

IDS are commonly divided in two functional categories; Anomaly Intrusion
Detection and Misuse/Signature Intrusion Detection. Anomaly IDS states that
intrusions are deviations of normal traffic. These systems create profiles of differ-
ent variables over time to get a usage pattern. The difference between the pattern
and the current activity triggers an alarm. The advantage of these systems is that
they are capable of detecting unknown attacks, however non-malicious activity
that does not match normal behaviour can also trigger the intrusion mechanism.
This results in a high rate of false alarms. On the other hand misuse or signa-
ture intrusion detection systems use rule matching to detect intrusions. These
systems compare system activity with specific intrusion rules that are generally
hard coded. When the observed activity matches the intrusion pattern an in-
trusion is detected and an action is executed. The flaw of these systems is that
regardless of their accuracy and reliability they lack the ability to detect new
types of attacks.

Anomaly Intrusion Detection Systems use a variety of schemes to detect nor-
mal user patterns from simple statistical to complex machine learning methods.

MARL for Intrusion Detection: A Case Study and Evaluation 161

Although most of the research on IDS using machine learning has been done un-
der an Anomaly Intrusion Detection approach, recent research work incorporates
Machine Learning to automatic rule generation on misuse/signature intrusion
detection. IDS using machine learning try to learn a function that maps input
information into different categories. The learning process can be supervised,
unsupervised or reinforced.

In Reinforcement Learning an agent learns to act optimally via observations
and feedback from the environment in the form of positive or negative rewards
[23]. A widely used RL technique is Q-learning [24]. In Q-learning the agent
iteratively tries to estimate a Q value function that tells the agent how good it
is to perform a specific action in a given state. In Q-learning the agent chooses
an action a in any given state s, observes the reward r and the next state s′.
Then it updates the estimated Q value denoted by Q̂ in Eq. 1.

Q̂(s, a) ← (1 − α)Q̂(s, a) + α(r + γ maxa Q̂(s′, a′)) (1)

In order to discover which actions lead to the best rewards over time, the agent
needs to explore and to exploit actions. In our experiments we have used Boltz-
mann or softmax action selection rules as the exploration/exploitation strategy.
When RL is used in real world applications, it is not feasible to store values for
all states individually. To tackle this problem we use Tile Coding, a function
approximation technique.

MARL has shown promise in solving distributed problems, but there are many
challenges to overcome when applying it in a realistic network domain, e.g., fea-
ture selection, communication, and synchronisation. In a DIDS architecture we
require a large number of distributed agents collecting complex network infor-
mation and coordinating their action under restricted communication.

3 Agent Architecture

In previous research [17], we used a highly abstract IDS scenario to test how a
group of agents learn to interpret and coordinate their action signals to detect
normal and abnormal activity. We proposed a hierarchical architecture of agents
composed by groups of agents or cells. These cells were composed by sensor
agents (SA) and decision agents (DA). SA collect and analyse state information
about the environment. Each SA receives only partial information about the
global state of the environment and they map this local state to communications
action-signals. These signals are received by the DA and without any previous
knowledge it learns their semantics and how to interpret their meaning. In this
way, the DA tries to model the local state of cell environment. Then it decides
which signal-action to execute to a higher level agent outside the cell or in
single cell environments the final action to trigger (in our case study it triggers
an alarm to the network operator). To expand the number of agents we used
hierarchical multi-cell architectures composed of cells of DAs. In these multi-
cell environments each DA inside the cells sends an action-signal to a central
DA, which in turn sends an action-signal to a higher level DA. When the top

162 A. Servin and D. Kudenko

agent in the hierarchy triggers the appropriate action, all the agents in the cell
receive a positive reward. If the action is not correct, all the agents receive a
negative reward. The goal is to coordinate the signals sent by the SA to the DA
in order to represent the global state of the environment. After a certain number
of iterations every agent must know the action that they need to execute in a
specific state to obtain positive rewards.

This agent architecture may be used in a diverse set of environments to solve
different kind of problems. In our past research work we designed a highly ab-
stract simulation of a distributed sensor network. This environment gave us the
opportunity to test the basic feasibility of the agent learning architecture us-
ing an abstract environment containing simple network agents. However, the
question remained open how the approach would work with more complex and
realistic network topologies, traffic patterns and connections. In order to evalu-
ate our learning architecture of agents and to add elements and the complexity
of real applications, in this paper we used the network simulator ns-2 [20], a
specifically designed library for ns-2 and the Tile Coding Software [22].

To detect the abnormal states that DoS and DDoS generate in a computer
network we have slightly modified the original agent architecture as shown in
Fig. 1. This architecture is composed by single cell with a Congestion Sensor
Agent (CSA), a Delay Sensor Agent (DSA), a Flow Sensor Agent (FSA) and the
Decision Agent (DA). We need this diversity of sensor information to develop
more reliable IDS. The idea is that each sensor agent perceives different infor-
mation depending on their capabilities, their operative task and where they are
deployed in the network. Furthermore not all the features are available in a sin-
gle point in the network. Flow and congestion information may be measured in
a border router between the Internet and the Intranet whilst delay information
may be only available from an internal router. What is more, Flood-Based DDoS
attacks are launched from several remote controlled sources trying to exhaust a
target’s key resource. A stand-alone IDS does not have all the information to
accurately identify sources and destinations of DDoS attacks.

In our test domain, the CSA analyses link information on a particular node
in the network. It is advisable to use a representative node inside the network
topology such as a backbone router or a border router in front of the node or
service to protect from intrusions. Specifically this agent samples link utilisation
in bytes per second, the size of the queue in packets and the number of packets
drop by the queue. These three metrics (link utilisation, queue size and packets
drop) are what we call our feature domain. To obtain a state representation of the
network according with these features we use tile coding. The DSA monitors TCP
connections between nodes. As previously stated DoS and DDoS attacks modify
the normal behaviour of the network in many ways. Some of these changes can be
spotted analysing TCP information from connections in the path of the attack.
This agent has the same internal structure than the CSA but its feature domain is
different. The features analysed for the TCP connections are the average number
of ACK packets received, the average window size and the average Round Trip
Time (RTT).

MARL for Intrusion Detection: A Case Study and Evaluation 163

Fig. 1. Agent Architecture

The FSA has a different internal structure than the other sensor agents as
can be seen in Fig. 1. This agent is composed by two logical sub-agents, the
Flow Monitor (FM) and the Flow Aggregator (FA). The FM analyses the traffic
flows that pass through the FSA and its feature domain is composed by protocol
number, port number and the average packet size of the flow. Using this infor-
mation the FM learns which flows are normal traffic and which ones may lead
to an attack. The FA aggregates flow information by keeping a flow table with
the signals reported by the FM. The feature domain of the FA is very simple. It
is the number of attack flows reported by the FM. Finally the original DA de-
scribed previously does not suffer any modification in its structure, functionality
or operation.

4 Tests

To find out whether the agent architecture along with the proposed learning
process were capable of detecting abnormal states of the network we performed
a series of tests. To add some realistic elements and the complexity of real ap-
plications, in this paper we used the network simulator ns-2 [20]. We generated
the network topology of Fig. 2 composed by 7 agents or nodes. Node 0 generates
normal FTP-like traffic while node 1 produces normal UDP traffic. Node 4 is
an attacker producing a flood of UDP traffic. Node 5 is logically divided in two
RL sensor agents, one CSA and one FSA. Their tasks are to forward traffic and
collect data about the network. Node 6 is the DA and it solely works as a RL
agent. Finally Node 3 is the DSA. It receives valid data from nodes 0 and 1 and
it is the node under attack as well.

To measure the success of the performed tests we used a variety of metrics (See
Table 1). The most common metrics used to measure the detection performance

164 A. Servin and D. Kudenko

Fig. 2. Tested Network

of IDS are the false alarm rate and the attack detection rate. The false alarm rate
is the fraction of the total alarms that do not represent an intrusion. We will refer
to them as False Positives (FP) as well. False Negatives is the fraction of the
total number of intrusions that were not categorized as intrusion. The intrusion
detection rate or precision is the fraction of the total number of alarms that were
identified as intrusions. To assist us in the design and evaluation of our results we
also introduced other prediction metrics commonly used in bioinformatics and
machine learning. Recall is introduced to show the number of malicious events
that the IDS fail to categorise as negative instances. To verify that the IDS is
learning how to detect attacks this measure is important to observe. In a similar
fashion, accuracy relates all the variables together to an intuitive idea of the
performance of the IDS system in relation with the number of correct events
categorised. It is important to mention that all the described measures will not
properly reflect performance well where the probability of intrusion is very low.

We set up several tests to verify the learning capabilities of the agents as shown
in Table 2. We used a control test (Baseline) to train the agents to categorise

Table 1. Performance Metrics 1

Measure Formula Meaning

False Posi-
tive Rate

FP / (TP + FP) The fraction of non negative instances
that was redicted as negative

Intrusion De-
tection Rate

TP / (TP + FP) The percentage of negative labeled instances
that was predicted as negative

Events TP + TN + FP FN The total number of events

Accuracy (TP + TN) / (TP +
TN + FP + FN)

The percentage of positive pre-
dictions that is correct

Recall TP / (TP + FN) The percentage of negative labeled instances
that was predicted as negative

Specificity TN / (TN + FP) The percentage of predictions that is correct

MARL for Intrusion Detection: A Case Study and Evaluation 165

basic normal and abnormal activity in the network. To simulate the normal
traffic we randomly started and stopped connections from node 0 (TCP/FTP)
and node 1 (UDP stream). Using another random pattern of connections we used
node 4 to simulate the attacks to the network characterised by a flood of UDP
traffic. At time t = 0 each one of the agents started gathering information from
the network and learning as previously explained. At time tfinal we stopped the
learning process and we stored the values of the weight array w in order to use
them in each one of the tests of Table 2.

To evaluate the adaptability of the agents we ran test 2 to 8. During these
tests the agents are not learning anymore and they are exploiting the knowledge
acquired during the training with the baseline test (test 1). Test 2 considers an
identical network topology as in test 1 but with different traffic patterns. In this
test we modify the start-stop times of the data traffic from the no-attack and
attack nodes. Tests 3 to 5 were designed to create a more complex scenario where
the attacker changes its attack to mimic authorised or normal traffic. Test 3
simulates when the attacker changes the attack port to any other given port while
in test 4 we change the attack port to be the same as the authorised application.
In test 5 we simulated when the attacker goes further and changes the attack
port and the packet size to mimic the no-attack application. Tests 6 to 8 modify
the network topology adding more sources of traffic. These test are important
because they modify some of the features that the learning process uses to detect
intrusions such as link information, number of flows, packets transmitted per flow
type, etc. Specifically in test 6 we added multiple UDP sources and in test 7 we
added multiple FTP sources, both of them are valid applications. Finally in test
8 we added multiple attackers as UDP sources to simulate a DDoS attack.

Table 2. Tests

Test Description

1 Baseline test
2 Traffic pattern change
3 Attack port change
4 Attack port same as no attack application
5 Attack port and packet size same as no attack application
6 Multiple valid UDP sources
7 Multiple valid FTP sources
8 Multiple attack sources

5 Results

Unless stated otherwise, we have performed our entire set of tests using the feature
domains for sensor and decision agents described in section 2. In Fig. 3 we show
the performed tests (1 to 8) evaluated using false positive rate, recall and accuracy.
A low false positive rate indicates that our agents will not overwhelm the network
operator. A high recall indicates that the agents are able to identify attacks while

166 A. Servin and D. Kudenko

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9
Test Number

False Pos. Rate

♦
♦

♦
♦ ♦

♦ ♦
♦

♦
Accuracy

+
+

+
+

+

+ +
+

+
Recall

� � �

�

�

� � �

�

Fig. 3. Test 1-8 and Flow Feature Domain 1

they maintain a low number of false negatives (unidentified attacks). Finally a
high level of accuracy indicates that the system is capable of identifying attacks
while generating few false positives. The intrusion detection rate (IDR) is another
important metric but it can be misleading given a certain type of traffic (e.g. the
IDR can be high when the system recognises few attacks but the number of FP
is low). Excluding test 5, the remaining tests show acceptable levels of all the in-
trusion detection metrics including accuracy and recall. Test 2 shows remarkably
good levels of accuracy and recall as result of the modified traffic pattern with
longer and fewer no-attack/attack cycles. A smaller number of no-attack/attack
cycles means a small number of FN and FP due to the synchronisation issue be-
tween the DA and the collected network information. Contrary to test 2, tests 5
shows a low level of accuracy and recall. Remember that test 5 simulates when
the attacker changes the information of the IP packet (protocol, port and packet
size) of its attack to mimic a valid connection. In this case when there is an attack
the FA interprets the flow information as a no-attack. However the CSA and DSA
interpret the network information correctly. When the action signals are trans-
mitted to the DA any of these scenarios may happen:

1. Even though the FA is reporting a no-attack, the signals for the CSA and
DSA activate the DA weights that trigger an alarm-action.

2. The signals for the CSA and DSA are not strong enough to activate the
alarm-action and the DA triggers a no-alarm-action.

3. The signals from the sensor agents activate weights with similar values for
both actions and the DA trigger a do-not-know action. In other words, a
do-not-know action denotes that the DA does not have enough evidence to
trigger a committed action such as an alarm or no-alarm.

In test 5 when the attacks start the congestion and delay value measured by
sensor agents are similar to the no-attack states causing the DA to trigger an

MARL for Intrusion Detection: A Case Study and Evaluation 167

incorrect action generating a FN. As the attack progresses the congestion and
delay information make the current state appear to the DA as a no-attack but
not strong enough to trigger a no-alarm action. Instead, the DA triggers the
do-not-know action. Finally when the attack is at its peak, the signals from the
DSA and CSA make the value of the alarm action better than the no-alarm and
the DA triggers the alarm. A similar behaviour takes places when the attacker
slows down its attack.

Trying to improve the intrusion detection metrics we ran more tests chang-
ing the feature domain of the sensor agents. This task showed the difficulty of
choosing an optimal set of features, as in many applications of machine learning.
While some sets improved the metric for some tests, they also showed worse
results for other tests. The set of features presented in the past section yielded
the best results overall.

In order to compare our learning IDS to alternative approaches, we imple-
mented two common hand-coded (i.e., non-adaptive) IDS techniques. The first
hand-coded approach (Hand-Coded 1) emulated a misuse IDS. In this case the
IDS is looking for the patterns that match an attack in the same way that some
commercial misuse IDS do in real world networks, e.g. Snort [21] and Checkpoint
[6]. To evaluate a more complex IDS implementation the Hand-Coded 2 approach
integrates the same variety of input information as our learning algorithm. This
approach is similar to the one employed in some commercial Intrusion Protection
System (IPS) such as the Cisco Intrusion Prevenstion System Sensor [7]. These
type of devices search for intrusions through signature and anomaly detection
methods. We evaluated the learning and hard-coded approaches using test 2 and
test 5. We used test 2 because it only changes the traffic pattern of the attack
and it must be very simple to detect. Attacks in test 5 are the hardest to de-
tect because they emulate some of the signatures of normal traffic. The learning
curves of the test are shown in Fig.4.

-10

-5

0

5

10

0 50 100 150 200 250
Iteration

Test 2, Learning

�

�

�

�

� � � �

� �
� � �

�
Test 5, Learning

�

�

�

� �
� � �

� �
�
�

�

�
Test 2, Hand Coded-1

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
Test 5, Hand Coded-1

+ + + + + + + + + + + + +

+
Test 2, Hand Coded-2

× × × × × × × × × × × × ×

×
Test 5, Hand Coded-2

� � � � � � � � � � � � �

�

Fig. 4. Learning Curves

168 A. Servin and D. Kudenko

The Hand-Coded 1 approach had no problem to identify attacks and had low
false negatives for test 2 but it completely failed to detect attacks in test 5.
This is the same problem that misuse IDS have when the signature of the attack
changes or when they face unknown attacks. The results for Hand-Coded 2 and
our learning approach confirm our argument that for more reliable intrusion
detection we need a variety of information sources. On test 5 the learning and
the Hand Coded 2 approaches were capable of detecting the attacks even though
one of the sensors was reporting incorrect information. This scenario also could
be seen as the emulation of a broken or comprimesed sensor forced to send
misleading signals.

Both the Hand-coded 2 and learning approaches present very good results re-
garding the identification of normal and abnormal states in the network. Hand-
coded 2 reaches maximum performance from the beginning of the simulation.
Nevertheless it has a major drawback, it requires in-depth knowledge from the
policy programmer about the the network traffic and patterns in order to detect
intrusions. While the learning algorithm requires some time to learn to recog-
nise normal and abnormal activity, it does not require any previous knowledge
about the behaviour of the network or exactly which features to observe. Al-
though different sets of features show different results, the learning approach’s
flexibility allows the use of any (large enough) set of features to achieve some
reasonable level of detection. The learning approach automatically will use the
interesting features to detect attacks and it will ignore the ones that do not
represent different states.

6 Related Work

Problems such as the curse of dimensionality; partial observability and scala-
bility in MARL have been analysed using a variety of methods and techniques
[15,18] and they represent the foundation of our research. More recent work re-
lated with our research include the use of Hierarchical Reinforcement Learning
[10], learning automata [13] and game theory [16]. An application of MARL to
networking environments is presented in [3] where cooperative agents learn how
to route packets using optimal paths. Using the same approach of flow control
and feedback from the environment, other researchers have expanded the use of
RL to explore its use to control congestion in networks [8,11], routing using QoS
[9] and more recently to control DDoS attacks [25].

The use of RL in the intrusion detection field has not been widely studied
and even less in distributed intrusion detection. On IDS with RL research we
found [4,5] where the authors trained a neural network using RL and aplied
CMAC as the function approximation technique and [1] where game theory is
used to train agents to recognise DoS attacks against routing infrastructure.
Other recent research work include the use of RL to detect host intrusion using
sequence system calls [26] and the previously mentioned [25].

MARL for Intrusion Detection: A Case Study and Evaluation 169

7 Conclusion and Future Work

In this paper we have shown how a group of agents can coordinate their actions
to reach the common goal of network intrusion detection. During this process
decision agents learn how to interpret the action-signals sent by sensor agents
without any previously assigned semantics. These action-signals aggregate the
partial information received by sensor agents and they are used by the decision
agents to reconstruct the global state of the environment. In our case study,
we evaluate our learning approach by identifying normal and abnormal states
of a realistic network subjected to various DoS attacks. Overall the following
conclusions can be drawn:
– We have successfully applied RL in a group of network agents under condi-

tions of partial observability, restricted communication and global rewards
in a realistic network simulation.

– The use of a variety of network data has generated good results to identify
the state of the network. The system presents high reliability even in cases
when some sensor information is missing or compromised.

– The learning approach yields better results than the simple hand coded
alternative. It also yields similar results to a more complex hand coded al-
ternative using a variety of sensor information. The main advantage of the
learning approach is that it does not need a trainer with prior knowledge of
the network environment.

Future work includes evaluating on-line learning (i.e. during deployment of the
IDS) and scaling up our learning approach to a large number of agents using the
hierarchical approach from our previous work on abstract networks. This will
allow us to create more complex network topologies emulating geographical cells
of agents, security domains composed by cells or groups of cells, complex DDoS
attacks and eventually the emulation of real packet streams inside the network
environment.

References

1. Awerbuch, B., Holmer, D., Rubens, H.: Provably Secure Competitive Routing
against Proactive Byzantine Adversaries via Reinforcement Learning. John Hop-
kins University, Tech. Rep. (May 2003)

2. Barford, P., Jha, S., Yegneswaran, V.: Fusion and filtering in distributed intrusion
detection systems. In: Proceedings of the 42nd Annual Allerton Conference on
Communication, Control and Computing (September 2004)

3. Boyan, J., Littman, M.: Packet routing in dynamically changing networks: A re-
inforcement learning approach. Advances in Neural Information Processing Sys-
tems 6, 671–678 (1994)

4. Cannady, J.: Applying CMAC-based on-line learning to intrusion detection. In:
Proceedings of the International Joint Conference on Neural Networks, vol. 5, pp.
405–410 (2000)

5. Cannady, J.: Next Generation Intrusion Detection: Autonomous Reinforcement
Learning of Network Attacks. In: Proc. 23rd National Information Systems Security
Conference (2000)

170 A. Servin and D. Kudenko

6. CheckPoint. CheckPoint, N.G.X.: Firewall SmartDefense (June 2008),
http://www.checkpoint.com/products/ips-1/index.html

7. Cisco. Configuring Anomaly Detections (June 2008),
http://www.cisco.com/en/US/docs/security/ips/6.1/configuration/guide/

cli/cli anomaly detection.html
8. Dowling, J., Curran, E., Cunningham, R., Cahill, V.: Using feedback in collabora-

tive reinforcement learning to adaptively optimize MANET routing. Systems, Man
and Cybernetics, Part A, IEEE Transactions on 35(3), 360–372 (2005)

9. Gelenbe, E., Lent, M., Su, R.: Autonomous smart routing for network QoS. In:
Proceedings of International Conference on Autonomic Computing 2004, pp. 232–
239 (2004)

10. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforce-
ment learning. Autonomous Agents and Multi-Agent Systems 13(2), 197–229
(2006)

11. Hwang, K., Tan, S., Hsiao, M., Wu, C.: Cooperative Multiagent Congestion Control
for High-Speed Networks. Systems, Man and Cybernetics, Part B, IEEE Transac-
tions on 35(2), 255–268 (2005)

12. Institute, S.: Sans top-20 2007 security risks, 2007 annual update (2008)
13. Katja Verbeeck1, P.V., Nowe, A.: Networks of learning automata and limiting

games. In: Adaptive Learning Agents and Multi Agent Systems 2007, pp. 171–182
(2007)

14. Mirkovic, J., Reiher, P.: D WARD, A Source-End Defense against Flooding Denial
of Service Attacks. Dependable and Secure Computing, IEEE Transactions on 2(3),
216–232 (2005)

15. Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)

16. Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-
agent systems. Advances in Neural Information Processing Systems 17, 1089–1096
(2005)

17. Servin, A.L., Kudenko, D.: Multi-agent Reinforcement Learning for Intrusion De-
tection. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D. (eds.) ALAMAS
2005, ALAMAS 2006, and ALAMAS 2007. LNCS (LNAI), vol. 4865, pp. 211–223.
Springer, Heidelberg (2008)

18. Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what
is the question? Artificial Intelligence 171(7), 365–377 (2007)

19. Siaterlis, C., Maglaris, B.: Towards multisensor data fusion for dos detection. In:
Proc. of the 19th ACM Symposium on Applied Computing, Nicosia, Cyprus, pp.
439–446 (2004)

20. N. Simulator. 2 (NS2) (January 2008), http://www.isi.edu/nsnam/
21. I. SourceFire. Snort (June 2008), http://www.snort.org/
22. Sutton, R.: Tile Coding Software, Version 2.0 (2007)
23. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-

bridge (1998)
24. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
25. Xu, X., Sun, Y., Huang, Z.: Defending DDoS Attacks Using Hidden Markov Models

and Cooperative Reinforcement Learning. In: Yang, C.C., Zeng, D., Chau, M.,
Chang, K., Yang, Q., Cheng, X., Wang, J., Wang, F.-Y., Chen, H. (eds.) PAISI
2007. LNCS, vol. 4430, p. 196. Springer, Heidelberg (2007)

26. Xu, X., Xie, T.: A Reinforcement Learning Approach for Host-Based Intrusion
Detection Using Sequences of System Calls. In: Proceedings of the International
Conference on Intelligent Computing (2005)

http://www.checkpoint.com/products/ips-1/index.html
http://www.cisco.com/en/US/docs/security/ips/6.1/configuration/guide/cli/cli_anomaly_detection.html
http://www.cisco.com/en/US/docs/security/ips/6.1/configuration/guide/cli/cli_anomaly_detection.html
http://www.isi.edu/nsnam/
http://www.snort.org/

Teaching Distributed Artificial Intelligence

with RoboRally

Ingo J. Timm, Tjorben Bogon, Andreas D. Lattner, and René Schumann

Information Systems and Simulation
Goethe University Frankfurt am Main

Robert-Mayer-Str. 10, 60325 Frankfurt, Germany
{timm,tbogon,lattner,reschu}@cs.uni-frankfurt.de

Abstract. Teaching Artificial Intelligence (AI) or multi-agent systems is
a challenging task as algorithms are in question which are advantageous
in highly complex and dynamic environments. Explaining multi-agent
systems (MAS) in lectures requires interactive approaches accompanied
by exercises. The key challenge in using practical exercises within lectures
on MAS is to establish an environment for testing which is extremely
time consuming. It is not reasonable that students do this work as they
do have not enough time focussing on the important aspects. In this
paper, we introduce a system which supports experimenting with AI and
Distributed Artificial Intelligence (DAI) algorithms concurrently to the
lecture. Our system is based on a board game called RoboRally. Different
issues from the field of AI and DAI can be implemented and tested in a
kind of challenge.

1 Introduction

Teaching students is an essential part in academic work. Teaching artificial intel-
ligence (AI) or multi-agent systems (MAS) is a challenging task, as algorithms
are in question which are advantageous in highly complex and dynamic envi-
ronments. In order to ensure successful learning, it is useful that students can
practise different aspects of the lecture. Explaining MAS in lectures requires
interactive approaches accompanied by exercises. With exercises students can
explore multiple approaches and configurations of AI algorithms, for instance.
The challenge here is the design of exercises which address the core of the topic.
Most topics rely on an environment or existing infrastructure, for example an
exercise addressing coordination requires a communication infrastructure. There-
fore, a specific framework is used in the course, often. Programming and testing
within such an environment can be extremely time consuming. Therefore a key
challenge in using practical exercises within lectures on MAS is to establish such
an environment.

If it is desired to use such a learning environment, it has to be either imple-
mented by the students themselves or it has to be provided by the lecturer. It is
not reasonable that the students do this work as they have to do redundant work
and do have not enough time focussing on the important aspects of the lecture.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 171–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 I.J. Timm et al.

The main idea of this paper originates from the Artificial Intelligence group at
the University of Bremen in 2004 in order to motivate students attending to AI
and DAI courses. To do so two effects are addressed: Using a framework that
supports the lectures and lets the students implement some tasks to get a more
practical access to the content and additionally to motivate students with a game
and some competition while evaluating different strategies of AI systems.

During our evaluation of different kinds of board games (Junta, Risk, Cluedo
etc.) we found one game that fulfilled our requirements. The board game Rob-
oRally1 offers both aspects. In this board game, robots are “programmed” by
players who select actions from a given set of options. We present the game in
section 4 in detail. The task of the player, selecting and sequencing actions from
a given set, allows a simple interface students have to implement. While the
complexity how to implement the interface can be varied by the specified task
and environment the robot is acting in.

The first experience teaching Artificial Intelligence with RoboRally was gained
duringwinter term in 2004/05.Recently, the entire environmenthas been reworked
and is used in current lectures. The application of RoboRally within the exercises
enabled tasks which are focussed on the key subjects of the lectures only.

The rest of this paper is organized as follows. We address our vision of using a
system in teaching in section 2. In section 3 we discuss previous work of teaching
systems. We present the current state and first experiences in sections 4 and 5
before the paper ends with a conclusion and ideas for future work.

2 Vision of a Board Game for Lectures

As already mentioned our vision using a board game supporting lectures is to
improve the efficiency of learning and teaching as well as to increase the moti-
vation of the students. An experimental approach to the subject taught should
enhance comprehensibility and enable learning effects for the long-term memory.
Students should be motivated to invest their time, their attention, and their skills
in the intense learning of the subject matter of the lecture. The learning effect
will therefore be much higher than simply memorizing the contents of slides or
scripts [1].

The learning environment should provide an interface which is open for ex-
ploring big variety of different MAS and AI techniques. It should be possible to
implement every assigned task within an agent. The agent structure can provide
a communication interface, a BDI structure [2] and if needed complete or par-
tial world knowledge. Attributes of the game should be changeable to allow for
adapting to different exercises.

Search strategies, for instance, are subject of one of the first lectures in AI.
There exist different search strategies, each of them with advantages and disad-
vantages. The lecturer can point out the characteristics to his students but it
is hard to understand why some strategies solve some kinds of problems better
1 The board game RoboRally is currently published by Avalon-Hill, see http://www.

wizards.com/avalonhill

http://www.
wizards.com/avalonhill

Teaching Distributed Artificial Intelligence with RoboRally 173

than others. Using a learning and experimental environment, like the RoboRally
framework presented here, students can implement different search strategies
easily. The environment should offer access to all needed information. Students
have only to implement a pathfinding algorithm and should see, presented at a
graphical user interface, the consequences of their implemented decision taking,
here search strategy. It has to be emphasized that the graphical representation
of the programmed behavior is an important factor for the learning effect of
the students. Additionally, students can understand the different search strate-
gies better and especially the different characteristics on the basis of their own
implementations.

As the subjects have a wide range in the lecture of MAS, it is important that
the learning environment is flexible and customizable to support the lecturer
during the entire course. At least it should be possible to configure the envi-
ronment in a way that most problems of the fundamental AI2 and MAS can be
covered by the environment.

Cooperation, for instance, is an important issue in the field of DAI. The fun-
damentals of cooperations are communications, of course. If students want their
programs to cooperate they need a communication infrastructure. Communica-
tion should be realizable in form of a centralized blackboard architecture or using
message passing concepts, allowing directed communication among the players.
The students can either implement these basics on their own or the learning
environment provides possibilities therefore.

In this context, one could argue that one could use already existing agent
frameworks, like JADE [4], for instance. These frameworks offer already a basic
infrastructure but are not designed for teaching in the first place. In consequence,
they do not offer the controlled, sandbox like, experimental settings as it is
possible in a specific learning environment. An environment focussed on teaching
AI therefore has to provide the infrastructure for communication as well.

An aspect that is not that obvious, but as well important is that exercises
have to be evaluated and corrected. For the learning success it is important
that students get a quick feedback to their solution ideas. Ideally, the students
should receive the feedback online without a delay. Unfortunately, during the
work students have no chance to evaluate their solutions and estimate if they
are on the right track. It would be desirable to have an online system that
makes it possible for students to upload their interim solution and to get an
immediate report on the solution’s degree of task satisfaction, like finding a
specified place in our search example. This is helpful because they can see if there
are aspects missing in their solution. Additionally, correcting exercises becomes
much easier for the lecturer. If all programs are automatically pre-controlled by
a program, the testing phase will be less time consuming, if necessary at all.
If the evaluation of the exercises is done automatically, it will be possible to
hold complete lecture online. For instance, the lectures could be broadcasted by

2 Of course, aspects like natural language processing and computer vision are not
covered by our approach. We assume that these subjects are not in the standard
curriculum of an introducing AI course (cf. [3]).

174 I.J. Timm et al.

video streams and the exercises could be sent by e-mail or published in a web
based learning management systems like Blackboard3, StudIP4 or Ilias5. The
exercise solutions can be uploaded by the students and the online evaluation
tool revises the solutions. Using these techniques a complete online course can
be offered that allows students to learn asynchronously from official lecture hours
and independently of their current location.

3 Related Work

In Artificial Intelligence, there is a strong history in playing games. In the begin-
ning of AI, chess was used for many approaches to test and evaluate algorithms.
The area of knowledge acquisition and representation initiated different scenarios
for benchmarking of approaches (Sisyphus, [5]). Here, there was a task provided
which should be solved by the different approaches. Within the priority research
program on intelligent agents in business applications funded by the DFG (SPP
1083), there has been a benchmarking of modeling techniques for multi-agent
systems in a health-care scenario [6]. In the Artificial Intelligence Group at Uni-
versity of Bremen RoboCup [7] scenarios were used to motivate students. In
Summer of 1999, there has been a first course on RoboCup as application area
for teaching AI in Bremen.

Surely, RoboCup is one of the most famous teaching platforms for Artificial
Intelligence today, as more than hundred teams from elementary schools up to
groups of students from universities all over the world are involved in program-
ming soccer teams trying to win the world championship [8]. But actually there
is one problem with the RoboCup as a learning environment. Due to the ac-
tual progresses the technical level is comparable high and thus there exist high
barriers to enter for new teams. A new team has to write many lines of code
to achieve the premises of a special league. One single lecture is too short to
develop a robot where we can test different AI tasks.

There are many other tools where a game is used for teaching. ROBO-CODE
allocates an environment in Java where students can develop robots for a bet-
ter understanding of Java techniques [9]. The program teaches the students in
the fields of event-driven programming, object-oriented programming, and the
usefulness of inheritance. Furthermore, they can learn something about learning
and some higher level AI techniques. The students see their robots on a Graph-
ical User Interface (GUI) where the robots fight against each other. But the
environment is too simple to test high level AI tasks like learning systems and
the focus is set to learn programming.

Teaching simple agent systems for undergraduate students is the appreciation
of FLEEBLE. In this system, simple agents can communicate and demonstrate
how a MAS works. It is easier to understand how a MAS works if all attributes
and procedures of an agent are visualized by a program [10]. The communication,
3 http://www.blackboard.com/us/index.bbb
4 http://www.campussource.de/software/studip/
5 http://www.ilias.de/

http://www.blackboard.com/us/index.bbb
http://www.campussource.de/software/studip/
http://www.ilias.de/

Teaching Distributed Artificial Intelligence with RoboRally 175

beliefs and states of the agents are presented in FLEEBLE as a scene. But this
system is designed to demonstrate multi-agent systems and does not allow to
integrate AI. The aim is to show how agents work together.

Another part of teaching is the area of e-learning. An example for an intense
way of e-learning is the Virtual Atlantis University6. This university provides
courses all over the internet. People can study from home and do their exercises
online. The lectures are also available online. A lot of partners provide project-
based offers and support this university. Our system is the next step for online
lectures and could be integrated in this virtual university easily. In combina-
tion with a virtual lecture on video a complete class could learn AI techniques
theoretically and practically.

The last project we want to present is Sisyphus. Sisyphus provides a uniform
modeling environment which allows different software engineering projects to
collaborate together building one model [5]. The underlying idea is to establish a
benchmarking environment to various knowledge acquisition and representation
techniques. For the use in teaching AI especially supporting exercises Sisyphus
is not covering a sufficient range of AI or DAI.

The approaches we introduced above deal with specific tasks in supporting
courses or benchmarking research. However, the complexity or initial barrier
to take part is not adequate with respect to our course design. Thus, we aim
at combining the advantages of the approaches and realize our vision of an
innovative learning environment supporting nowadays AI and DAI lectures.

4 Current State of the RoboRally Framework

4.1 RoboRally – The Board Game

RoboRally is a racing game where different robots located in one plant try, apart
from survival, to pass a number of checkpoints. The plant is represented by a
map and is the environment the robots act in. The map seems like a simple grid
but many tiles on the map have an effect. If there is no wall between two tiles,
a robot can make a step. An example of such a map is shown in figure 1. In this
environment obstacles, like walls, and traps, like laser beams or bottomless pits
exist. Robots have a health state and a limited numbers of lives. Initially, the
health state has a value of nine. If its health state drops to zero, the agent will
lose a life, and will start again from the tile it started the game with full health
state. If all lives are lost, the robot is taken out of the game.

The agents can move with predefined actions represented by program cards. A
card defines a movement behavior, like drive ahead, drive reverse, turn left, turn
right or U-turn. Each program card has a unique priority value. Some examples
are shown in figure 2. The game is split into two phases:

Phase 1: According to the current health state, each player gets a set of ran-
domly chosen program cards (nine cards at highest health; for each missing

6 http://www.aida.h-da.de/projects/atlantis university.html

http://www.aida.h-da.de/projects/atlantis_university.html

176 I.J. Timm et al.

Fig. 1. An exemplified RoboRally map

Fig. 2. A set of program cards

health point one card less). Each player programs its robot by selecting and
sequencing a subset of five program cards out of the card set he received. If
he gets less than five cards, the last movements of the previous movement
phase are frozen and cannot be replaced.

Phase 2: In this phase, the program of each robot is executed. This phase is
divided into five turns. In each turn one program card is executed for each
robot. So all first cards of the robots have to be executed in the primary
turn, then all second and so on. Within one turn the sequence of execution
is defined by the priority of the cards. A card with higher priority is executed
first. If all robots have executed a movement, the robots fire their own laser
in their direction. If a laser hits a robot, the health decreases by one. After
this step, the map tile effects are executed (conveyors, lasers, bumpers etc.).

So even if it seems a trivial task to pass all checkpoints, the complexity in
the game is still quite high. The different kinds of map tiles have effects on the
robots. These effects can be predicted by the player but if more than one robot
plays in the same game, the behavior of this robot is not predictable. The reason
is that if a robot makes his move and goes to a map tile where another robots

Teaching Distributed Artificial Intelligence with RoboRally 177

stands, he pushes this robot one tile (or more tiles) away into his move direction.
The problem is that no replanning is possible in the next turn. The (expected)
perfect order of the movement cards is not perfect anymore if the robot is not at
the predicted position. This case could only be prevented if the agent considered
possible moves of the other agents.

4.2 RoboRally – The Learning Environment

In RoboRally the challenge aspect is supported inherently. If each agent is pro-
grammed by a group of students, they can compete against each other within
one race. Furthermore in RoboRally every aspect of the game itself (setup, rules,
rounds) can be implemented without programming the intelligence, namely the
behavior control of the robots. In the board game, the player is setting the cards
in each round. This allows to design a framework with a simple interface which
can be used by the students. Moreover, the environment of RoboRally is deter-
mined and all states are well known except the next moves of the other robots.
Another point why RoboRally is adequate for teaching is that the complexity
of the tasks is highly configurable by small changes of the environment and the
task to achive. It is possible to define tasks that have a lower complexity than
playing the entire game, search for a checkpoint for example. If the robot has
a full spectrum of movements or only a few different moves, the complexity of
building the best path to the goal changes immediately.

We have developed the RoboRally system in Java from scratch and have built
an eclipse plug-in. This plug-in allows an easy integration in a state-of-the-art
IDE7, offers the students the option to focus on the core of the exercise (see
figure 3).Most of the framework is hidden from the student by design. Only the
API of some public classes and the agent class, presented in more detail below
and in code-listing 1.1, is available for the students.

public class agent implements AITask {
public St r ing getName(){

// TODO: add your group name here
return ”your group name here ” ;

}
public Card [] generateTurn (Card [] useableCards){

// TODO: add your code here
return useableCards ;

}
}

Listing 1.1. Simple student interface to build their agents

To configure the environment, a typically eclipse run dialog is preferred to
specialize some tasks for some cases or to run a normal game. Different kinds
of maps can be loaded and can be built with the map editor. In the map editor

7 http://www.eclipse.org

http://www.eclipse.org

178 I.J. Timm et al.

Fig. 3. Workflow of the RoboRally system

the map size and all tiles of the map can be defined by a simple “point and
click” mechanism (see figure 4). Thereby new challenges or exercises are simply
designed by editing a new map. Within the run-dialog other options, like activat-
ing the laser beams or the available program card set for each round is defined.
This eases the task of specifying the problem instances needed to present specific
exercises for different problems in AI. In order to develop an agent, students only
have to implement the agent interface (figure 1.1). All decisions for the behavior
can be made in the procedure generateTurn. The robot gets program cards from
the game instance and has to observe the actual game state to find a solution for
selecting and sequencing the program cards. In the current version, all map tiles
are known and the robot has a complete world model without noisy perception.

After the agent has been implemented by the students our system offers dif-
ferent options how to proceed next. From the user’s perspective our system is
split into three parts:

Compute a game: The student can run a game with different settings and
maps. The game takes the implemented agents and computes their steps.
All actions are recorded and stored in a log file in an XML format.

Play a log file: A stored game can be loaded from a log file. The RoboRally
environment contains a log file player. With this player it is possible to
visualize all the movements of the agents and their interference.

Build a map: To create an environment for robots, either for creating a new
exercise or for testing a solution strategy in different environments, a map
builder can be used.

The integration of the different agents is very simple. The agent’s source
must be built as a jar file. The program scans a specific folder on the system
and searches for new jar files. If there are some files, the files are loaded to build
a new agent in RoboRally. The students have to copy their jar file into the right
folder manually for testing. Our system allows to declare the position of the file
and integrate it automatically.

Teaching Distributed Artificial Intelligence with RoboRally 179

Fig. 4. The RoboRally map editor

5 First Experiences

Our first tests using RoboRally in a lecture started in the winter term 2004/05.
In this test phase a very early version of RoboRally was used which contained no
GUI and only one agent could exist on the map at the same time. Of course, this
limited the range of exercises the framework could be used for. The API was in a
beta-stage as well. In the course evaluation (see figure 5), the students evaluated
the usage of RoboRally as good (with a score of 2.4 in average by 33 persons;
good = 1 and bad = 4). Thereby, they criticized the missing GUI and the lack
of documentation. From personal comments of the students we could see that
the idea of using such a platform like RoboRally is helpful and motivating.

The current version of the RoboRally framework is used in a course called
“Simulation of autonomous systems”in summer term 2008. The GUI has been
reworked entirely. A lot of updates enhance the game. Up to ten different robots
programmed by students can play against or with each other at the same time.
Different exercises can be chosen by the run dialog of our plug-in. This enhances
the possibility of creating specified exercises. At the moment five different tasks
can be chosen.

1. Regular game: This is the standard game. The robots have to chose the
right cards and drive through all check points. Another variation of this
game type is to find the shortest way to one check point.

2. Last man standing : In this game mode, the agents have to challenge against
each other. The goal is to be the last robot alive. All robots can fire once every
move.

3. Capture the flag : This is a variation of the shortest way version from the
regular game. The game finishes after all robots have arrived at the goal flag.
In this mode, it is possible to see the ranking of all robots.

180 I.J. Timm et al.

Fig. 5. Evaluation by the students (Question: How is your experience using RoboRally
in the course?)

4. Build a chain: At the moment the sole cooperative mode. All robots build
up one team and have to create a chain from the start point to the goal point
with there body. If they got one chain continually without a leak the game
will finish.

5. Sokuban : The goal of the Sokuban mode is to push a dummy robot (who
does not move) from his position to the goal position.

Another way to specialize the exercises is to change the world environment. Every
game can be played with laser or without shooting. The lives of the robots and
different kind of cardsets8 can be chosen. Combined with different maps there are
a lot of possibilities to create motivating challenges. The students of the course
had a lot of fun and learned how to build agents with AI or how to cooperate
with other agents. The reply of the students was great. The students have tested
many algorithms to find the best strategy for their agents. One special positive
effect is that copying of solutions seems to be quite low. Every student keeps his
strategy secret and does not share it because he wants to win the challenge.

As the framework is still under development the documentation is still subject
of changes.

6 Conclusion and Future Work

Learning environments, like the RoboRally framework presented here, can sup-
port both, students and lecturers.

In our vision we point out that learning environments for exercises are needed
to support successful learning. As we did not find an existing environment that
can support exercises in an appropriate way, we searched for a motivating board
game that can be easily implemented and explained to students. RoboRally meets
all our requirements. So we are developing the RoboRally learning environment
which we presented here.
8 There is the normal RoboRally card set and a normalized card set providing all

possible cards.

Teaching Distributed Artificial Intelligence with RoboRally 181

In the current version different game types could be realized, like pathfinding,
survival of the fittest, align the robots in a chain of heterogenous programmed
robots without direct communication and of course, play the game according to
the official rules. As our preliminary evaluation indicates the motivation of the
students is higher and they understand complex problems easier. Another aspect
is that the evaluation of solutions to exercises can be done more rapidly.

RoboRally is currently used in our lectures and evolves very quickly. In the
next steps the communication interface will be integrated in the framework to
allow different robots to communicate with each other. This implies that the
different robots compute their plans and actions in parallel to ensure an ade-
quate communication behavior of the robots. In such a scenario one could think
of implementing a marketplace or negotiation on program cards. Thereby one
could demonstrate different properties of auction protocols here. The aspect of
automated exercise correction will also be addressed in upcoming extensions of
the framework which will allow faster feedback for students. One could think
of a pre-controlling before the submission of a solution, and easier work for the
lecturer who can spend more time to evaluate the relevant parts of the solutions
and give more sophisticated feedback to the students.

Acknowledgment

The first version of RoboRally has been developed in the AI research group
(Prof. Dr. Otthein Herzog) at the University of Bremen by Arne Hormann under
supervision of Thorsten Scholz and Ingo J. Timm. The e-learning fund of the
Goethe-University of Frankfurt is supporting the current developments of the
RoboRally project. We would like to thank our student research assistants Tim
Föller, Moritz Jäger, Erik Rohnfeld, and Markus Schmid for their great work on
RoboRally.

References

1. McConnell, J.J.: Active learning and its use in computer science. In: ITiCSE 1996:
Proceedings of the 1st conference on Integrating technology into computer science
education, pp. 52–54. ACM, New York (1996)

2. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. Technical
Node 56, Australian Artificial Intelligence Institute (April 1995)

3. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, Pearson Education, Inc., Upper Saddle River (2003)

4. JADE: Jade - java agent development framework (accessed on April 23, 2008)
(2008), http://jade.tilab.com/

5. Dutoit, A.H., Wolf, T., Paech, B., Borner, L., Ruckert, J.: Using rationale for
software engineering education. In: CSEET 2005: Proceedings of the 18th Confer-
ence on Software Engineering Education & Training, Washington, DC, USA, pp.
129–136. IEEE Computer Society, Los Alamitos (2005)

6. Kirn, S. (ed.): 2. Kolloquium zum DFG-Schwerpunktprogramm Intelligente Soft-
wareagenten und betriebswirtschaftliche Anwendungen, TU-Ilmenau (2000)

http://jade.tilab.com/

182 I.J. Timm et al.

7. Kitano, H., Asada, M., Noda, I., Matsubara, H.: RoboCup: Robot world cup. Ro-
botics & Automation Magazine, IEEE 5(3), 30–36 (1998)

8. Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.): RoboCup 2006:
Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (2007)

9. Hartness, K.: Robocode: using games to teach artificial intelligence. J. Comput.
Small Coll. 19(4), 287–291 (2004)

10. Pantic, M., Grootjans, R.J., Zwisterloot, R.: Fleeble Agent Framework for Teaching
an Introductory Course in AI. In: CELDA, pp. 525–532 (2004)

Refactoring in Multi Agent System Development

Ali Murat Tiryaki, Erdem Eser Ekinci, and Oguz Dikenelli

Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

ali.murat.tiryaki@ege.edu.tr, erdemeserekinci@gmail.com,

oguz.dikenelli@ege.edu.tr

Abstract. The need for XP-like agile approaches that provide evolution-
ary development in a flexible way has been widely acknowledged in the
AOSE area. Such approaches improve acceptability of agent-technology
by industry. Evolutionary development of multi agent systems-MASs can
only be applied successfully, if designs of the MASs being developed are
improved throughout the development process. In this paper, we intro-
duce a refactoring approach that can be used during evolutionary MAS
development. The proposed refactoring approach makes it possible to de-
velop MASs in an evolutionary way by managing the changes between the
iterations of the evolutionary development process. Also, a case study that
shows application of a refactoring technique during the evolutionary MAS
development is introduced in the fifth section.

1 Introduction

Based on the experiences on agent-based system development, AOSE research
community has realized that it is almost impossible to develop a complex system
such as multi agent system - MAS in a sequential manner [15,4]. The solution
is the iterative approach which has been accepted as one of the best practices
by software development community and integrated to all recent software devel-
opment methodologies such as rational unified process - RUP [11] and extreme
programming - XP [1].

Managing the continuous evolution of the software architecture and related
design is one of the key issues in iterative development. XP introduces two critical
practices to manage the evolution of the architecture: test driven development
[9] and refactoring [7]. Test driven development produces test code for each class
developed during iteration and provides a protection shield against the breaks
that can occur as a result of changes made on the working code by guaranteeing
the functional accuracy of this code via the tests. On the other hand, refactoring
defines a process for improving the structure of the software system without
altering the external behavior.

An iterative and incremental development life-cycle approach is quite appro-
priate for developing dynamic systems such as MASs. For agent-based develop-
ment, XP-like agile processes, that introduce light-weight practices for iterative
and incremental development in a controllable way, are needed to improve ac-
ceptability of the agent-technology by the industry [4,15]. However, traditional

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 183–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

testing and refactoring approaches and their supporting tools cannot be re-used
directly in MAS development, since MASs are built using different abstractions
and techniques. So we need to re-define these practices for MAS development.

In this paper, we propose a refactoring approach that makes evolutionary MAS
development possible. This refactoring approach follows the route of traditional
refactoring and provides some new refactoring patterns for MAS development.
To transfer refactoring practice to AOSE, the proposed approach introduces
three refactoring levels on the refactorable entities encountered during MAS de-
velopment, some common problems called “bad smells” experienced during the
development of such systems (such as role overloading and too big agent behav-
iors) and the maintenance strategies called “refactoring patterns” to overcome
these bad smells. Each of the refactoring patterns defined in the proposed ap-
proach focuses on overcoming one or more than one bad smell(s) encountered
during MAS development.

2 Related Works

In the literature, there are some pioneering works which try to apply agile prac-
tices to MAS development.

Knublauch [8] used practices of extreme programming (XP) [1], which is the
one of the most known agile development processes used for MAS development.
Although, this work proves the effectiveness of XP practices in terms of MAS
development, refactoring is not explained in detail. Since the agent development
framework and process meta-model, which are used during development, are
very simple, refactoring operations on agents seem as very simple processes and
refactoring practice is applied on agents. However, an agent that is developed
by using a realistic development framework can play many roles in MAS and
those roles have many goals, responsibilities and abilities. So, we believe that
agents are not small; on the contrary they are too big entities for testing and
refactoring.

In another important work has been introduced by Chella et. al. [5], well
known Passi methodology is transformed to Agile Passi. The testing frame-
work developed by the Agile Passi research team provides an automated testing
approach for testing multi-agent systems [3,6]. Agile Passi approach does not
introduce an iterative or evolutionary style for MAS development. Therefore, a
refactoring approach that makes agile MAS development possible is not intro-
duced in this work.

In [12], an iterative and incremental development approach called agent ori-
ented test driven development - AOTDD is proposed to handle the complexity
and continuously changing nature of the requirements in MAS development. In
AOTDD, developers follow the development cycle with adding the new function-
alities to the system between iterations, just like all other agile & iterative de-
velopment approaches. Also, the life cycle of proposed test driven approach and
a testing tool that supports the proposed test driven approach are introduced

Refactoring in Multi Agent System Development 185

in this work. Since this work is focused on the testing part of test driven develop-
ment, the refactoring step that is very critical for iterative and incremental devel-
opment is not discussed in detail.

3 Refactoring in Evolutionary MAS Development Process

We introduce an agile development approach called agent oriented test driven de-
velopment - AOTDD that supports evolutionary MAS development in [12].
AOTDD is based on the test driven development and refactoring practices of ex-
treme programming [1]. The iterative and evolutionary development cycle of
AOTDD is shown in figure 1. This section only focuses on the “improve the de-
sign by applying refactoring” step of this cycle and aims to explain the place and
importance of refactoring in evolutionary MAS development.

Fig. 1. Agile MAS development cycle

Until the refactoring step, tests that verify the selected goal are written in the
third step and the plan that passes the defined tests and achieves the goal at hand
is implemented in the fourth step. However, design of the system being developed
may be deteriorated during plan implementation, since developers only concen-
trate on the functionality of the plan at hand. If the refactoring step is skipped,
this deterioration prevents MAS design from meeting new requirements after a
few cycles.

Developers have to protect the design from getting worse by evaluating the pos-
sibility of good design opportunities such as reusable plan fragments and flexible
design on the developed artifacts. This process called refactoring is handled in the
fifth step of the AOTDD cycle.

In the refactoring step, developers may improve the initial design decisions by
using the pre-defined refactoring patterns. For example, a previous plan structure
can be transferred to a better structure by identifying reusable task(s) within the
plan and/or new roles or interactions between roles can be identified to improve
modularity or robustness of the system.

186 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

Some refactoring operations may cause the refactoring of some pre-defined tests
that have writen dependently to the internal structure. In such a condition, de-
velopers have to start a new cycle for the same goal of the same role or another
goal of another role that has been affected by the refactoring operation and re-
organize these test cases in the third step. If the plan code that has been written
in previous cycles does not pass these reorganized tests, developers also have to
implement code that passes the tests in the fourth step. Also, the design of the sys-
tem may need to be refactored again since these changes can deteriorate system
design. Therefore, a refactoring operation can initiate many development cycles.

4 Refactoring in MAS

There are three basic questions that should be answered in order to transfer refac-
toring practice into AOSE. These questions are:

– Which development artifacts in MAS development are refactorable?
– When and how do we decide to refactor during MAS development?
– What are the refactoring patterns that can be applied in MAS development?

In the following sub-sections, answers to these questions are discussed in detail.

4.1 Refactoring Levels in MAS Development

To identify refactorable development artifacts in goal oriented MAS development,
we have to define a generic meta-model (called as metaphor in XP) that includes
the common abstractions for all of the proposed goal oriented MAS development
methodologies. So, we defined a basic meta-model for the target MAS model in or-
der to apply the evolutionary MAS development process. Our meta-model which
is shown in figure 2 is the synthesis of the meta-models of some of the well known
goal oriented methodologies such as Gaia [14], Tropos [2] and Passi [5] and in-
cludes only common abstractions (they can be mentioned by different names in
different methodologies) in these methodologies. For each MAS development sce-
nario, an instance of the proposed meta-model is created and the steps of our agile
development cycle is applied on this meta-model instance.

We separated the concepts in our meta-model into three vertical layers to spec-
ify the refactorable ones. These layers are goals, run-time artifacts and run-time
supports. System goal and agent goal concepts are situated in the goal layer. The
entities in the run-time artifacts layer are developed to achieve system and agent
goals. The entities situated in run-time supports layer help the execution of the
run-time artifacts defined.

Goal oriented development methodologies are based on identifying the goals
that come from user requirements, decomposing high level goals to smaller goals
during analysis and identifying run-time artifacts such as plan and role that achieve
identified goals collaboratively during the design phase. Run-time artifacts that
are defined to achieve goals are implemented using the run-time support entities.

Refactoring in Multi Agent System Development 187

Fig. 2. MAS meta-model

From the testing perspective, developers have to test run-time artifacts in order
to verify the correctness of goals that are achieved by these artifacts. For exam-
ple, one or more than one plan(s) is/are implemented to achieve each agent goal.
So, one has to test the execution of the plan(s) in order to understand whether
related agent goal is achieved or not. Therefore, we need a testing infrastructure
to write tests that verify to achievement of goals by releated run-time artifacts.
We developed such a testing infrastructure [12] to write automated tests for run-
time artifacts of our MAS meta-model. This testing infrastructure also provides
a foundation for our refactoring approach.

Although refactoring is not change the external functionality of refactored com-
ponent, other design components depend on the internal structure of this refac-
tored component may be affected from the refactoring operation. So, refactoring
may affect the faultlessly running code and breaks the system. To apply refactor-
ing practice, system reliability has to be guaranteed with the pre-defined auto-
mated tests. Therefore, refactoring can be applied on the concrete and testable
artifacts in the run-time artifacts layer of our MAS meta-model. Refactoring op-
erations on run-time artifacts should not affect the achievement of goals achieved
by these artifacts.

Based on the meta-model shown in figure 2, we defined three refactoring levels
that focus on testable run-time artifacts for MAS development. In the following,
these refactoring levels are explained in detail.

Role level: Roles are architectural elements which satisfy system goals collabo-
ratively. Each role has some responsibilities (agent goals), abilities (plans), autho-
rizations and rules all of which are based on system goals. During the
deployment phase, each role is assigned to agent(s) on the verge of their execu-
tion. Therefore, all features of an agent come from the roles that are assigned to
it. Agent is only container used to execute developed roles like object in traditional
object oriented development - OOD.

188 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

Responsibilities and abilities of roles may change in dynamic and open MASs
frequently. Hence, role is one of the most critical elements for refactoring in such
systems. At this level, refactoring techniques such as moving responsibilities which
are related with the role are needed to improve the role structure of MAS at hand.
Several roles cooperate to achieve a common system goal of the system being de-
veloped. Since refactoring techniques applied on the roles do not change external
behavior of the roles, achievement of system goals is not affected from the refac-
toring operations.

Plan (task) level: Agents achieve their own goals through the plan execution.
Plans are the smallest testing and refactoring units like classes in traditional OOD.
Plan testing verifies the valid execution of a goal in a single agent context. An agent
context may include an agent knowledge base and the external environment that
agent directly interacts. Hence, refactoring on agent plans may affect the agent
knowledge base and/or external environment that is related with the refactored
plan(s).

Agent plans are developed using a planning paradigm such as HTN [13]. Refac-
toring techniques at this level are dependent on the planning paradigm used. How-
ever, most of the refactoring techniques in this level can be generalized to other
similar planning paradigms.

A sub-part of a plan can be used within another plan to satisfy a different goal.
So, plans should be structured in a reusable way to reduce duplication of same task
fragment in different plan structures. Refactoring techniques at this level aim to
improve internal structure of plans. Since external behaviors of the plans do not
change, tests that are written for an agent goal are still applicable to verify the
correctness of the new structure after the refactoring operation.

Action level: Plans are composed of sequences of executable tasks called actions
using a planning paradigm. We can consider actions as methods of classes in OOA.

Although plans are the smallest testable units in MAS development, sometimes
actions can be considered as testable units like methods in OOD. An action can
be used in different plan structures and there can be many actions that have sim-
ilar executable code and/or structure like the actions “register a bookstore agent
to DF”, “register a user agent to DF”, and “register a negotiator agent to DF”.
So, developers have to write reusable actions to avoid duplicated action code and
structure. For this purpose, they can apply action level refactoring techniques
to avoid duplicate action code. For example, the duplicated code and structure
problem in the mentioned case can be overcame by moving the common code and
structure of the actions to an abstract action called “register an agent to DF” and
extending this abstract action from the others.

4.2 Bad Smells in MAS’s

Some common design problems are encountered by developers during system de-
velopment process frequently. Fowler named these common problems as bed smells
in [7] and introduced refactoring techniques to overcome these bad smells in soft-
ware design. Each of the defined refactoring patterns is introduced to overcome

Refactoring in Multi Agent System Development 189

one or many bad smell(s). Similarly, we have to define bad smells for MAS de-
velopment to decide when the refactoring process is started and then define their
related refactoring patterns that overcome these bad smells.

Based on our experiences in MAS development gained during the development
of Seagent platform by our research group, we have identified the bad smells shown
below for each refactoring level in MAS development mentioned in the previous
sub-section.

Action level bad smells: Duplicated action code, duplicated action parameters,
big action, flow decision in action, long output list, long input list, unnecessary
action group,

Plan level bad smells:Duplicated plan structure, big plan, execution decision in
a plan, multiple intervention, long output list, long input list, continuous changing
plan structure, speculative abstraction, plans in a plan, incoherent plans.

Role level bad smells: Overloaded role, wrong responsibility, unnecessary role.
In an evolutionary development process such as test driven development, devel-

opers only focus on writing the code that passes pre-defined tests during the imple-
mentation of each development iteration. Hence, it is unavoidable that some bad
smells can occur in system design during the implementation. These bad smells
can be captured at the end of the iteration. In our AOTTD process, bad smells are
captured by the developers at the final step (“improve design by applying refac-
toring”) of the development cycle.

4.3 Refactoring Patterns for MAS Development

Now, we can define refactoring patterns that can be used, while the run-time ar-
tifacts in the refactoring levels are refactored, in order to overcome the bad smells
defined in the previous sub-section. Refactoring patterns were defined by using
the Fowler’s definition standard [7] that includes five parts: name, abstract, moti-
vation, mechanics and sample. Some refactoring patterns that were defined based
on our experiences with its initiator bad smell(s) are shown in figure 3.

We can not give detailed definitions for all refactoring patterns defined here be-
cause of the page limitation. Detailed definitions of all refactoring patterns defined
are accessible on the following internet address:

http://etmen.ege.edu.tr/wiki/index.php/refactoring agent systems
However, to give an inside about our refactoring patterns, brief definitions that

include the name and abstract for some refactoring patterns are listed below.

Move responsibility (role level): You have a plan that should be executed by
another role. Move the plans to target role with the knowledge used by the plan
and reorganize original plan(s) of the source role to interact the moved plan.

Merge plans (plan level): You have some incoherent plans that should be exe-
cuted for a common objective. Create a new plan named by considering the com-
mon objective and move the tasks in original plans into the new plan.

190 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

Fig. 3. Some of the refactorings for MAS development

Extract superaction (action level): You have some actions that have the same
executable code and/or parameters. Create an abstract action that holds dupli-
cated code and/or parameters and extend this abstract action from the original
action.

Some high level refactoring patterns can include some of the other refactoring
patterns that are situated at lower or same refactoring level(s) in their mechanics.
For example, mechanics of the “split role” refactoring pattern at the role level
includes another refactoring called “move responsibility” at the role level.

5 Case Study

This section introduces an example that shows application of one of the most
common refactoring techniques called “extract plan” on an actual plan structure
during the evalutionary MAS development. This plan structure is in a conference
management system that has been developed by Seagent group and achieves the
“sending call for paper” goal of the “organization” role in this system. The initial
HTN structure of this plan that was obtained at the end of the fourth step of the
AOTDD cycle for “sending call for paper” goal is shown in figure 4

In HTN formalism, there are two kinds of task; complex task (we call plan) and
primitive task (we call action). Complex tasks hold the structure of its sub-tasks.
Primitive tasks have directly executable code. Information requirements of tasks
are illustrated as provisions. Outcomes are result states of tasks. Data is trans-
ferred to other tasks through inheritance, disinheritance and provision-outcome
links. An inheritance link is used to transfer a provision of a parent complex task to
a sub task. Disinheritance links are used to transfer outcomes of sub tasks to par-
ent complex task. And finally, the information flow between outcomes and provi-
sions of the tasks in the same level is provided by provision-outcome links. Details
of HTN formalism can be found in [13,10].

The simple plan in the figure 4 takes the conference topic as a provision. This
provision is passed to the “create suitable researcher profile” action through an

Refactoring in Multi Agent System Development 191

Fig. 4. The initial plan structure

inheritance link. In this action, a researcher profile object is created, the inter-
ested topic field of this profile is set with the topic that is received as a provi-
sion and this researcher profile is returned through the “OK” outcome. The other
action called ”prepare and send query message to DF” takes the researcher pro-
file, creates a query message by using this profile and sends this message to direc-
tory facilitator - DF. The “evaluate incoming researchers” action has an external
provision called researcherList. This provision includes agent descriptions of the
researcher agents that are sent by the DF. In this action, the description of the
researcher agents are filtered according to the preferences and suitable researchers
are selected. The final action called “send CFP to selected researchers” has the re-
sponsibility of sending call for paper of the conference to selected researchers using
the agent descriptions that are received as a provision.

In the testing step of AOTDD cycle, we wrote the tests that check functionality
of the whole plan and each of the executable actions that are situated in the lower
level of this plan structure.

During the refactoring step of the AOTDD cycle, we realized that some tasks in
the plan structure have a common objective called “finding the suitable researcher
agents”. This objective could also be part of the other plan structures such as
“create program committee” in the system. This was a bad smell called “plans
in plan”. So, we decided to collect “create suitable researcher profile”, “”prepare
and send query message to DF” and “evaluate incoming researchers” actions into
a new plan that achieves the common objective by applying “extract plan” refac-
toring technique on these actions.

In the following, the definition of the “extract plan” refactoring pattern is given.
This definition includes all parts of the Fowler’s refactoring pattern definition stan-
dard. The sample part of the definition is the case mentioned above.

Name: Extract Plan

Abstract: You have a task fragment that can be grouped together. Turn the task
fragment into a plan whose name explains the purpose of the plan.

Motivation: Extract plan is one of the most common refactoring types used in
agent systems development. This refactoring should be applied, when a plan

192 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

includes reusable sub-plan structure. In such a condition, a group of these tasks
is collected in a new plan to create a reusable plan structure.

Small plans introduce several advantages in the development of multi agent sys-
tem scenarios.Firstly, they increase the re-usability of the tasks in other plan struc-
tures. Secondly, changing and maintenance of plans become easier with reusable
plan structures. Another advantage is that plans composed using reusable plan
structures are more understandable and more manageable.

Mechanics:

1. Create a new plan and name it depending on the intention of the task.
2. Scan the tasks to be extracted for references to other tasks that are defined

in the main task structure as senders for the provision definitions. If there are
such provision definitions, add each of these provisions to new task.

3. Scan the tasks to be extracted for the outcomes that are not linked to any
tasks that are to be extracted. If there are such outcome definitions, add each
of these outcomes to the new task.

4. Copy the tasks to be extracted to the new plan.
5. Add an inheritance link for each of the provision that are expected from other

tasks in the main plan to new task structure.
6. Add a disinheritance link for each outcome that isn’t linked to any tasks in

the new plan structure.
7. Compile and test the new plan.
8. Replace the task group to be extracted to to the newly created plan and reor-

ganize provision-outcome links in the main plan structure.
(a) Scan the new plan’s provisions. If there is any provision whose sender is

one of the other tasks in the main plan structure, add a provision-outcome
link between the new plan’s provision and the other task’s related out-
come.

(b) Scan the provisions of the tasks in the main plan structure, if there is any
provision whose sender is the one of the extracted tasks, add provision-
outcome link between new plan’s related outcome and this provision.

(c) Modify the each inheritance and disinheritance link between the main plan
and an extracted task in the main plan structure as between main plan and
new plan.

9. Compile and test main plan.

At the end of the “extract plan” refactoring, we obtained a new plan called “find
researcher agent” that can be re-used in the other plan structures. This plan has
the responsibility of finding agent descriptions of the researchers that work on the
conference topic according to the topic provision. The “find researcher agent” plan
was simply used in some other plans in conference management system. The plan
structure of our “send CFP” plan after the “extract plans” refactoring is shown
in figure 5.

After this refactoring operation, all tests that had been written to verify func-
tionality of the whole “send CFP” plan passed without any change, since refac-
toring did not affect external behavior of the plan.

Refactoring in Multi Agent System Development 193

Fig. 5. The final plan structure after the “extract plan” refactoring is applied

6 Conclusion and Future Works

In this paper, a refactoring approach that makes evolutionary MAS development
possible has been proposed. This approach introduces some refactoring patterns
that overcome some common problems (called as bad smells in this paper) that
are encountered during the MAS development. During the development activi-
ties of our research group, we observed that refactoring patterns become neces-
sary frequently in evolutionary MAS development. Moreover,we also realized that
applying refactoring practice creates more reusable and easily manageable plan
structures.

Currently, we have been developing a refactoring tool that supports the pro-
posed refactoring approach at all of the proposed refactoring levels and simplifies
the refactoring process in evolutionary MAS development.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley, Reading (2004)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

3. Caire, G., Cossentino, M., Negri, A., Poggi, A., Turci, P.: Multi-agent systems im-
plementation and testing. In: From Agent Theory to Agent Implementation, Fourth
International Symposium (AT2AI-4) (2004)

4. Cernuzzi, L., Cossentino, M., Zambonell, F.: Process models for agent-based devel-
opment. Journal of Engineering Applications of Artificial Intelligence 18 (2) (2005)

5. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: From passi to agile passi: Tai-
loring a design process to meet new needs. In: IEEE/WIC/ACM International Joint
Conference on Intelligent Agent Technology (IAT-2004) (2004)

194 A.M. Tiryaki, E.E. Ekinci, and O. Dikenelli

6. Cossentino, M., Seidita, V.: Composition of a new process to meet agile needs using
method engineering. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.)
SELMAS 2004. LNCS, vol. 3390, pp. 36–51. Springer, Heidelberg (2005)

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

8. Knublauch, H.: Extreme programming of multi-agent systems. In: AAMAS 2000,
pp. 704–711. ACM Press, New York (2002)

9. Link, J., Frolich, P.: Unit Testing in Java: How Tests Drive the Code. Morgan Kauf-
mann Publishers Inc., San Francisco (2003)

10. Paolucci, M., Kalp, D., Pannu, A.S., Shehory, O., Sycara, K.: A planning component
for retsina agents. In: Lecture Notes in Artificial Intelligence, Intelligent Agents VI
(1999)

11. Rational Software. The rational unified process (1998)
12. Tiryaki, A.M., Öztuna, S., Dikenelli, O., Erdur, R.C.: Sunit: A unit testing frame-

work for test driven development of multi-agent systems. In: Padgham, L., Zam-
bonelli, F. (eds.) AOSE VII / AOSE 2006. LNCS, vol. 4405, pp. 156–173. Springer,
Heidelberg (2007)

13. Williamson, M., Decker, K., Sycara, K.: Unified information and control flow in hier-
archical task networks. In: Theories of Action, Planning, and Robot Control: Bridg-
ing the Gap: Proceedings of the 1996 AAAI Workshop, pp. 142–150. AAAI Press,
Menlo Park (1996)

14. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

15. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems 9(3), 253–283
(2004)

Autonomous Scheduling with Unbounded and

Bounded Agents

Chetan Yadati1, Cees Witteveen1, Yingqian Zhang1,
Mengxiao Wu2, and Han la Poutre2

1 Delft University of Technology, Delft
2 Centrum voor Wiskunde en Informatica, Amsterdam

Abstract. Autonomous scheduling deals with the problem - how to en-
able agents to schedule a set of interdependent tasks in such a way that
whatever schedule they choose for their tasks, the individual schedules
always can be merged into a global feasible schedule? Unlike the tra-
ditional approaches to distributed scheduling we do not enforce a fixed
schedule to every participating agent. Instead we guarantee flexibility by
offering a set of schedules to choose from in such a way that every agent
can choose its own schedule independently from the others. We show that
in case of agents with unbounded concurrency, optimal make-span can be
guaranteed. Whenever the agents have bounded concurrency optimality
cannot be guaranteed, but we present an approximation algorithm that
ensures a constant make-span ratio.

Keywords: Scheduling, autonomous agents, flexible scheduling, algo-
rithm, make-span optimality.

1 Introduction

Autonomous scheduling aims to provide autonomous agents with a set of minimal
constraints on tasks such that each agent is able to make a schedule for its tasks
independently from the others. This independent scheduling capability should
hold even if the tasks of an agent are dependent upon the completion of tasks
given to other agents. The construction of such constraints can be viewed as the
result of a coordination mechanism that ensures the existence of a joint feasible
schedule whenever each of the individual agent’s schedules meets its constraints.
In particular, such coordination mechanisms are useful whenever a set of tasks
has to be completed by a number of autonomous agents who are not willing, or
not able, to communicate and negotiate about the schedules for the tasks they
have to process.

Autonomous scheduling problems differ from classical (distributed) scheduling
problems in the sense that besides efficiency criteria like minimal makespan,
also flexibility criteria that aim to maximize the freedom of scheduling choice
(autonomy) of the participating agents play a role: Instead of forcing each agent
to comply to a given schedule, autonomous scheduling offers them a choice from
a set of schedules for the tasks proposed.

R. Bergmann et al. (Eds.): MATES 2008, LNAI 5244, pp. 195–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 C. Yadati et al.

To represent such a set of possible schedules, in autonomous scheduling a set
of (time) constraints for each of the tasks is constructed in such a way that
each agent can choose a schedule itself, provided that it satisfies all the task
constraints. Of course, such a set of constraints should be such that (i) whatever
schedule is chosen by an agent, it never interferes with the choice made by other
agents and (ii) the set of constraints should be maximally flexible, that is, it
should not be possible to find a weakening of the original constraints that also
satisfies the first condition. If a set C of constraints satisfies both conditions we
say that it meets the criterion of maximal flexibility. Besides flexibility to meet
the needs of autonomous agents, we are also interested in efficiency as a system
value: In order to get the total set of tasks done by the agents, we would like to
minimize the total makespan. One of the questions then to be answered is: Can
we design a flexible makespan efficient autonomous scheduling method?

In this paper, we show that there exists a surprisingly simple makespan ef-
ficient autonomous scheduling algorithm, provided that the agents are capable
to process as much tasks concurrently as possible, i.e., they have unbounded
concurrent capacity. Often, however, this might seem quite unrealistic. Hence,
we adapt the method to accommodate for such bounded concurrency require-
ments of agents. In particular, we consider the case where agents are strictly
sequential. We then prove that in this latter case designing a makespan-efficient
autonomous scheduling method is NP-hard. The good news, however, is that
there exist good approximation algorithms for makespan efficient autonomous
sequential scheduling, if we allow the tasks to be processed in a preemptive way.

The structure of this paper is as follows: In the next section, we first provide
some background on distributed and autonomous scheduling. Then, the basic
framework which we use to describe problem instances is presented. In Section
4, we develop an algorithm called the ISA for distributed scheduling for tasks
with homogeneous durations and unbounded capacity. In Section 5, we deal
with sequential agents. We summarize our findings, conclude and point to future
directions for research in Section 6.

2 Background and Related Work

Distributed scheduling has been an active area for research in the past decade.
Roughly speaking, one can distinguish between approaches that assume that
the participating systems, or agents controlling these systems, are cooperative
and approaches that assume that the participating agents/systems are non-
cooperative. Examples of the former (classical) approaches are DLS [1], HEFT [2],
CPOP [2], ILHA [3] and PCT [4]. All these approaches mainly focus on optimiz-
ing some performance criteria such as makespan and required communication
between processors. Typically, these approaches assume that the participating
systems are (i) fully cooperative in (ii) establishing a single globally feasible
schedule for the complete set of tasks.

In quite a lot of applications, however, we simply cannot assume that the par-
ticipating systems are fully cooperative. For example, in grid applications, jobs

Autonomous Scheduling with Unbounded and Bounded Agents 197

often have to compete for CPU and network resources, and each agent is mainly
interested in maximizing its own throughput instead of maximizing the global
throughput. Thus, several researchers have adopted a game-theoretic approach
for solving scheduling problems with non-cooperative agents. For example, Walsh
et al. [5] use auction mechanisms to arbitrate resource conflicts for scheduling
network access to programs for various users on the internet. Another approach
to non-cooperative scheduling is based on negotiation. Recently, Li in his PhD
thesis developed both static and learning based dynamic negotiation models for
grid scheduling [6].

In both approaches to non-cooperative scheduling, however, the effort is di-
rected at developing a single global centrally computed schedule that meets some
criterion. In situations where agents are exploring unknown or hostile territory,
it might be very restrictive or even impossible to enforce rigid schedules on the
agents. In other situations where agents participate in more than one such sys-
tem, they would require a minimum set of constraints on their schedules rather
than a single rigid schedule. Recently, Hunsberger [7] has developed a tempo-
ral decoupling method for Simple Temporal Networks (STNs) to decompose an
STN into a number of independent sub-STNs, each of which can be scheduled
independently from the others. Although the autonomous scheduling method
we will apply is related to his decoupling method, we want to design such inde-
pendent subnetworks directly from a given set of simple constraints. Moreover,
even if such a common temporal network would exist, unlike in the temporal
decoupling method, we would allow to modify one or more of its constraints in
the decomposition process as, e.g., we will do in the sequential scheduling case.
Finally, the principal aim of our method is to provide a decomposition method
where flexibility as well as efficiency criteria play an important role.

3 Preliminaries and Framework

We assume a finite set of tasks/operations T = {t1, . . . , tm}, each of which takes
finite time d(ti) ∈ Z+ for processing. Furthermore, these tasks are interrelated
by a partially ordered precedence relation ≺, where ti ≺ tj indicates that ti
must be completed before tj can start. We use the transitive reduction # of ≺
to indicate the immediate precedence relation between tasks, i.e., t # t′ iff t ≺ t′

and there exists no t′′ such that t ≺ t′′ and t′′ ≺ t′. We use a directed acyclic
graph (DAG) G = (T,#) to represent the task structure of T .

We assume that T has been assigned to a set of autonomous agents A =
{A1, . . . , An} according to a pre-defined task allocation φ : T → A. We denote
the set of tasks allocated to agent Ai by Ti = φ−1(Ai) Note that {Ti}n

i=1 is a
partitioning of T . Likewise, the precedence relation ≺i is the precedence relation
≺ induced by Ti and di() is the duration function restricted to Ti. We also assume
that there is a function c : {1, 2, . . . n} → Z+ ∪ {∞} assigning to each agent Ai

its concurrency bound c(i). This concurrency bound is the upper bound on the
number of tasks agent Ai is capable of performing simultaneously. We say that
〈{Ti}n

i=1,≺, c(), d()〉 is a scheduling instance.

198 C. Yadati et al.

Given such a scheduling instance 〈{Ti}n
i=1,≺, c(), d()〉, a global schedule for it

is a function σ : T → Z+ determining the starting time σ(t) for each task t ∈ T .
Obviously, to be a feasible solution, σ should satisfy the following constraints:

1. for every pair t, t′ ∈ T , if t ≺ t′, then σ(t) + d(t) ≤ σ(t′);
2. for every i = 1, . . . , n and for every τ ∈ Z+, |{t ∈ Ti | τ ∈ [σ(t), σ(t) +

d(t)]}| ≤ c(i), that is the concurrency bounds for every agent Ai should be
respected.

Of course, we prefer a schedule σ which minimizes makespan, i.e., among all
feasible schedules σ′, we prefer a schedule σ such that maxt∈T {σ(t) + d(t)} ≤
maxt∈T {σ′(t) + d(t)}. Since we are dealing with autonomous agents, we would
like to offer them the possibility to choose a most adequate schedule from a set
of feasible schedules in such a way that their individual choices do not interfere.
More in particular, we want to guarantee that a feasible global schedule σ can be
obtained by imposing upon each agent a (minimal) set of additional constraints
Ci, such that if Ci is specified for the scheduling instance 〈Ti,≺i, di(), c(i)〉 of
agent Ai, then all locally feasible schedules σi satisfying their local constraints Ci

can be merged into a globally feasible schedule σ for the original total scheduling
instance. More precisely, for each i = 1, 2, . . . , n, let Σi be the set of all locally
feasible schedules σi that satisfy Ci. Given any locally feasible schedule σi ∈ Σi

of any agent Ai ∈ A, we require the merging σ =
⋃n

i=1 σi to be a globally feasible
schedule for 〈{Ti}n

i=1,≺, c(), d()〉.
In this paper, the set of constraints Ci that we will add to each local scheduling

instance for each agent Ai, is a set of time intervals [lb(t), ub(t)] for the tasks
in Ti, where each interval [lb(t), ub(t)] ∈ Ci with lb(t), ub(t) ∈ Z+ specifies that
any individual schedule σi agent Ai might choose has to satisfy the constraint
lb(t) ≤ σi(t) ≤ ub(t).

Example 1. Consider a simple example shown in Figure 1, where there are three
agents and 7 tasks with precedence constraints. Here, a direct precedence con-
straint t # t′ is represented as an arrow from t pointing to t′. The task durations
d(t) are indicated below the circles representing the tasks t. Suppose that each
agent can perform two tasks simultaneously, that is c(1) = c(2) = c(3) = 2.
Clearly, the minimal makespan of processing these tasks is 11. To achieve this
minimal makespan, the following schedules for the agents are possible: σ1(t1) =
σ1(t2) = 0; σ2(t3) = 2; σ2(t4) = 3 and σ3(t5) = 3; σ3(t6) = 7; σ3(t7) = 9. How-
ever, prescribing these schedules is unnecessarily restrictive to the agents. In fact,
several other schedules also result in the same global makespan. For example ,A1

could start task t1 in the interval [0,2] while starting task t2 starting in the in-
terval [0, 0]. Agent A2 can process tasks t3 in the interval [4, 7] while starting t3
in [2, 2]. Similarly, agent A3 can process task t5 in the interval [8,10] with task t6
starting in the interval [7, 7] and task t7 in [9, 9]. Notice here that any schedule
produced by the agents such that these intervals are honoured will always lead
to a global makespan of 11. Thus, by introducing the additional constraints in
the form of these intervals, agents have some amount of flexibility on deciding
their local schedule without affecting the minimal makespan. �

Autonomous Scheduling with Unbounded and Bounded Agents 199

t1 t3 t5

t6
t2 t4

A1 A2

2

43

1 1

2

A3

t7

2

Fig. 1. A set of tasks ti with their durations d(ti) to demonstrate the possibility of de-
veloping several makespan optimal schedules. Task durations are indicated as numbers
within the circles representing the tasks.

Our goal is to design a minimal set of constraints Ci for each agent Ai, such
that the merging of individual schedules σi that satisfy Ci always is a globally
feasible schedule. Moreover, we would like the merging to be also makespan
efficient. In the next sections, we consider two scenarios: the first, where agents
can perform an unlimited number of tasks simultaneously and the second where
they can perform only a single task at any given point in time.

4 Autonomous Scheduling for Agents with Unbounded
Concurrency

In this section, we discuss a simple method to specify additional constraints
for each agent in order to guarantee that individual schedules σi meeting these
constraints can always be merged into a global makespan efficient schedule. The
central idea is to specify as the constraint for a task t an interval consisting of
its earliest possible starting time and its latest possible starting time, taking
into account the precedence constraints between the tasks and their duration.
Once these intervals are computed, the agents can autonomously create any
local schedule provided that it satisfies these intervals. Thus, they are offered
the flexibility of creating more than one schedule but still be assured that the
global makespan is optimal.

The idea of using these intervals is related to the way in which the CPOP [2]
algorithm by Topcuouglu et al. computes the priority of a task for scheduling on a
machine. In CPOP, a combined value of the depth and the height of a task is used
to compute the priority. We build upon this idea and compute intervals instead of
priorities, within which each agent/machine is free to schedule its tasks.

To define the interval [lb(t), ub(t)] for the starting time of a task t in the given
partial order 〈T,≺, d()〉, we first compute, for each task t ∈ T its depth(t) and its
height(t). We will need both measures to determine the earliest and the latest
possible time at which a task can be started. To aid in our computation of the
depth and height of a task t, we further define two sets: pred(t) = {t′| t′ # t}
and succ(t) = {t′| t # t′}.

The depth of a task t is defined as follows: depth(t) = 0 if pred(t) = ∅ and
depth(t) = maxt′∈pred(t){depth(t′) + d(t′)}, otherwise. Note that the depth of a
task t is the maximum duration of any chain of tasks preceding it, hence it directly
determines the earliest time task t might start. The depth depth(T) of the set of

200 C. Yadati et al.

tasks T is defined as the maximum duration required to complete all tasks taking
into account the precedence relation ≺: depth(T) = maxt∈T {depth(t) + d(t)}. So
depth(T) defines the minimal makespan of T .

The height height(t) of a task t in a partial order 〈T,≺, d()〉 defines the time that
has to pass before all tasks occurring after t and including t have been completed:
So height(t) = d(t), if succ(t) = ∅ and height(t) = maxt′∈succ(t){height(t′) +
d(t)}, otherwise. From the specifications of depth(t), height(t) and depth(T) the
earliest (lb(t)) and latest (ub(t)) possible starting times for a task t can be derived
as follows: lb(t) = depth(t) and ub(t) = depth(T)− height(t).

These intervals [lb(t), ub(t)], however, are still not directly usable for au-
tonomous scheduling. Since the length of task chains might differ, it can easily
happen that the intervals of some precedence constrained tasks t ≺ t′ might
overlap, that is lb(t′) < ub(t) + d(t), while t ≺ t′. Such an overlap might cause a
violation of the first constraint on the joint schedule, namely that t ≺ t′ should
imply σ(t) + d(t) < σ(t′).

Example 2. Consider the set of tasks given in Figure 1. The depth of T is
depth(T) = 11. Computing the depths and the heights of the tasks t1 and t3,
we derive the constraints C(t1) = [0, 7] and C(t3) = [2, 9]. Now, agent A1 could
decide to start t1 at time σ1(t1) = 5, while A2 could choose σ2(t3) = 6. However,
if these schedules are merged, we violate the precedence constraint between t1
and t3 since then σ(t3) < σ(t1) + 2. �
This implies that, in case of overlap, the agents are not free to choose any point
in the interval [lb(t), ub(t)] as the starting point σ(t) for t. Therefore, we have to
remove such overlap as depicted in Figure 2: In order to satisfy the scheduling
constraint we should ensure that whenever t ≺ t′, the difference between lb(t′)
and ub(t) should be at least d(t). Note that, in case of an overlap between two
tasks t ≺ t′, it is always possible to remove the overlap without creating empty
intervals: If t ≺ t′, we have lb(t) + d(t) ≤ lb(t′) and ub(t) + d(t) ≤ ub(t′).
The existence of an overlap implies that lb(t) < lb(t′) < ub(t) + d(t). Hence,
ub(t′) − lb(t) ≥ ub(t) + d(t) − (lb(t′) − d(t)) > −d(t) + 2d(t) = d(t).

Since we require lb(t′) − ub(t) ≥ d(t), we set ub(t) = lb(t) + $ub(t′)−lb(t)−d(t)
2 %

and thereafter lb(t′) = lb(t) + $ub(t′)−lb(t)−d(t)
2 % + d(t). In both cases, since

ub(t′) − lb(t) > d(t), the new constraint intervals are non-empty. The complete
description of the algorithm is given in the ISA 1 Algorithm (see Algorithm 1).

Example 3. Consider again the set of tasks given in Figure 1. The ”raw” con-
straints on the tasks are computed as C(t1) = [0, 7], C(t3) = [2, 9], C(t5) = [4, 10]
while C(t2) = [0, 0], C(t4) = [3, 3], C(t6) = [7, 7] and C(t7) = [9, 9]. Since there is
overlap between the constraints of task t1 and t3 and t3 and t5, these constraints
have to be adapted. The result is the following set of constraints: C(t1) = [0, 3],
C(t3) = [5, 7] and C(t5) = [8, 10]. It is easily verifiable that all local sched-
ules that adhere to their constraints are feasible and also that all such local
schedules can be combined to obtain a global schedule that is correct and has a
makespan of 11. �
1 Interval-based Scheduling Algorithm.

Autonomous Scheduling with Unbounded and Bounded Agents 201

lb(t) ub(t)

ub(t’)lb(t’)
Initial overlapping intervals

Final non−overlapping interval

lb(t)

ub(t)= {ub(t’)+lb(t)−d(t)}/2

ub(t’)

lb(t’)

d(t)

Fig. 2. Overlapping interval splitting procedure in ISA

Algorithm 1. Generalised Interval based Scheduling (ISA)
Require: Partially ordered set of tasks (T,≺), for every task t ∈ T its depth depth(t)

and its height height(t);
Ensure: For every t ∈ T its scheduling interval C(t) = [lb(t), ub(t)];
1: depth(T) := maxt∈T{depth(t) + d(t)}
2: for all t ∈ T do
3: lb(t) := depth(t) and ub(t) := depth(T)− height(t)
4: end for
5: for all t, t′ ∈ T such that t ≺ t′ and lb(t′)− ub(t) < d(t) do

6: ub(t) = lb(t) + ub(t′)−lb(t)−d(t)
2

�
7: lb(t′) = ub(t) + d(t)
8: end for
9: return C(t) = [lb(t), ub(t)] for all t ∈ T

Obviously, this algorithm runs in polynomial time. Note that each interval
[lb(t), ub(t)] computed by ISA is always non-empty and for every t ∈ T , ub(t) ≤
depth(T)−d(t). Moreover, for every pair t, t′ of tasks, t ≺ t′ implies ub(t)+d(t) <
lb(t′). Hence, it is not difficult to see that (i) every local schedule σi satisfying
the local constraints Ci will be a feasible schedule for the set of tasks Ti and (ii)
the merge of every set {σi}n

i=1 of local schedules is a feasible global schedule,
thus ensuring the correctness and make-span optimality of the algorithm:

Proposition 1. The interval-based scheduling algorithm (ISA) ensures a correct
global schedule and it is efficient in terms of makespan.

With respect to flexibility of this autonomous scheduling method, it is not difficult
to see that it satisfies maximal flexibility. Here, we call a set C = {C(t) | t ∈ T }
of interval constraints for a a scheduling instance 〈{Ti}n

i=1,≺, c(), d()〉 maximally
flexible, if there does not exist any strict weakening2 C′ of C such that C′ also al-
lows for autonomous scheduling of 〈{Ti}n

i=1,≺, c(), d()〉 and is makespan efficient.
This property can easily be proven by noticing that the ISA algorithm generates
2 A set C′ is a strict weakening of C if every schedule σ satisfying C also satisfies C′

but not vice versa.

202 C. Yadati et al.

a set of constraints C = {C(t) | t ∈ T } such that (i) for every task t such that
succ(t) = ∅ we have ub(t) = depth(T)−d(t); (ii) for every t such that pred(t) = ∅
it holds that lb(t) = 0; (iii) for every pair of tasks t, t′ such that t ≺ t′ it holds
that lb(t′) = ub(t) + d(t).

This implies that any strict weakening C′ of C would contain a constraint
C(t) = [lb(t), ub(t)] such that either (a) lb(t) < 0 or (b) ub(t) > depth(T)− d(t)
or (c) there exists some t′ such that t ≺ t′ and ub(t) + d(t) > lb(t′) or (d) there
exists some t′ such that t′ ≺ t and ub(t′) + d(t) > lb(t). Clearly, case (a) and (b)
would imply that some C′-satisfying schedules are not make span efficient and if
case c or d holds, some C′-satisfying schedules violate a precedence constraint.
Hence, such a weakening cannot exist and we have the following proposition:

Proposition 2. Any strict weakening the set C of constraints imposed by ISA
either leads to a infeasible schedule or leads to a non optimal makespan.

Summarizing, we have the following property:

Theorem 1. ISA ensures a maximally flexible set of constraints and a makespan
efficient global schedule.

Note, however, that the minimal global makespan is ensured by the proposed
algorithm ISA only under the assumption that the participant agents have ca-
pabilities to perform a potentially unbounded number of tasks at the same time.
Often, this assumption is not realistic as agents may only have limited resources
at their disposal. Therefore, in the next section, we study the case when every
agent is capable of performing only a single task at any point in time (sequential
agents).

5 Scheduling Sequential Agents

A scheduling instance 〈{Ti}n
i=1,≺, c(), d()〉 where c(i) = 1 for every Ai is called

a sequential scheduling instance, abbreviated as 〈{Ti}n
i=1,≺, 1, d()〉. Like in the

unbounded case, we would like to come up with a set C of constraints C(t) =
[lb(t), ub(t)] for each task t ∈ T such that the agents are able to construct their
sequential schedule independently from the others. Any individual schedule σi

for a sequential agent Ai with the set of tasks Ti assigned to it, has to satisfy
the following conditions:

– lb(t) ≤ σi(t) ≤ ub(t) for every t ∈ Ti where C(t) = [lb(t), ub(t)];
– for every t, t′ ∈ Ti, t 	= t′ implies σi(t)−σi(t′) ≥ d(t) or σi(t′)−σi(t) ≥ d(t′).

While designing such constraints for autonomous scheduling if the agents are un-
bounded turns out to be a feasible problem, the equivalent problem for sequential
agents turns out to be infeasible, mainly because we cannot ensure that, based
on a given set of constraints delivered to the individual agents, they are able to
find a sequential schedule satisfying all the constraints. More precisely, while in
the unbounded case we were able to find a minimum makespan M for the total
set of tasks and could guarantee that given a set C of additional task constraints

Autonomous Scheduling with Unbounded and Bounded Agents 203

any set {σi}n
i=1 of locally feasible schedules would result in a makespan M comply-

ing global schedule, finding such a makespan complying schedule in the sequential
case is an intractable problem:

Proposition 3. Given a sequential scheduling instance 〈{Ti}n
i=1,≺, 1, d()〉 and

a positive integer M , the problem to decide whether there exists a set of con-
straints C such that the scheduling instance allows for a solution with makespan
M by autonomous scheduling is NP-hard.

Proof. We reduce the PARTITIONING problem [8] (Given a set S of integers,
is there a subset S′ of S such that

∑
s∈S′ s =

∑
s∈S̄ s, where S̄ = S − S′?) to

the autonomous scheduling for sequential agents problem.
Take an instance S of PARTITIONING and let dS =

∑
s∈S s. Without loss

of generality, we can assume dS to be even. Consider the following set of tasks
T = {ts|s ∈ S} ∪ {ta, tb, tc}. For every task ts ∈ T , let d(ts) = s, let d(ta) = dS

2 ,
let d(tb) = 1, d(tc) = dS

2 + 1} and let ≺ = {(ta ≺ tb), (tb ≺ tc)}. Furthermore,
there are two agents A1 and A2, where A1 has to perform the tasks ta and tb
and agent A2 has to perform all the remaining tasks (T − {ta, tb}). Finally, let
M = dS + 1.

If the agents are sequential, there exists a set of constraints C allowing for
a makespan (M) efficient autonomous scheduling solution iff the PARTITION
instance S has a solution: exactly in that case, agent A2 is able to process
one subset of its set of tasks in the interval [0, d(ta)], starts tb in the interval
[d(ta), d(ta)] and completes the remaining subset of tasks in the interval [d(ta)+
1, dS + 1]. �

Note that the complexity is not dependent upon the number of agents: Already
two agents suffice to render the problem hard and, in particular, the problem
derives its hardness from the difficulty to determine for a single agent the set of
constraints that would allow it to determine its own schedule without violating
the global makespan.

Therefore, we have to rely on approximation algorithms for autonomous
scheduling in the sequential agent case. As we have shown in some recent work [9],
there exists a polynomial 2-approximation algorithm for constructing a set of
constraints in the sequential agent scheduling case if all the tasks t ∈ T have
unit durations d(t) = 1. This algorithm constructs a maximally flexible set of
constraints guaranteeing that the resulting global makespan is never more than
twice the optimal makespan that can be realized by sequential scheduling agents.
We will briefly discuss the outlines of this algorithm and reuse it (after some
adaptations) to the general sequential agent scheduling case.

The basic idea in this algorithm is to first use the ISA algorithm to determine
the set of constraints C for the unit duration tasks. As we have shown above, if
the agents would be able to handle tasks concurrently, an agent would be able to
find a schedule satisfying all the constraints. In the sequential agent scheduling
case, this might not be possible. For example, if there are three unrelated tasks t1,
t2 and t3 of unit duration, where the first two are given to agent A1 and the third
to agent A2, agent A1 is not able to schedule both tasks given the constraints

204 C. Yadati et al.

C(t1) = C(t2) = [0, 0]. There is, however, a simple way to tell whether a given
agent is able to find a sequential schedule for all tasks t ∈ Ti with the constraints
C(t) given to it: Consider the bipartite graph Gi = (Ti ∪ Ni, Ei) where Ni is
the set of all time points occurring in the intervals C(t) = [lb(t), ub(t)] of tasks
t ∈ Ti and (t, n) ∈ Ei iff n ∈ C(t).3 It is not difficult to see that there exists a
sequential schedule for agent Ai iff the graph Gi has a maximum matching [10]
that includes every task t ∈ Ti.

If the (polynomial) maximum matching algorithm is not able to find a com-
plete matching for Ti, i.e., some of the tasks could not be scheduled, there must
be a scheduling conflict between a task t in the matching and a task t′ not in
the matching. Such a conflict can be resolved by adding a precedence constraint
t ≺ t′ between t and t′ and calling the ISA algorithm again on the extended
scheduling instance. Note that the result of such extensions of the precedence
relation is twofold (i) the conflict between t and t′ is removed and (ii) the global
makespan d(T) might be increased.

Continuing our last example mentioned above: consider the two tasks t1 and
t2 agent A1 was not able to handle. A maximum matching for G1 contains either
t1 or t2. If we add a precedence constraint t1 ≺ t2 to the set of tasks, agent A1

will receive the constraints C(t1) = [0, 0] and C(t2) = [1, 1] is able to find a
suitable sequential schedule for its set of tasks.

This matching, extending the precedence relation, and calling the ISA algo-
rithm is repeated until we are guaranteed that for each agent there exists at
least one sequential schedule.4 The result is a set of constraints C guarantee-
ing that any schedule resulting from independently chosen schedules realizes a
makespan that is at most twice as long as the optimal makespan. One of the
attractive features of the unit-duration sequential scheduling case is the exis-
tence of a polynomial decision procedure (the maximum matching algorithm)
for deciding whether there exists a sequential schedule satisfying the constraints
Ci(t) for an agent Ai. The reduction from PARTITION given above shows that,
unless P=NP, we cannot hope to find a solution for the same problem in the
general sequential scheduling case.

There is, however, a possibility to reuse the approximation algorithm sketched
above if we assume that, although the agents are strictly sequential, the tasks can
be accomplished using preemption. This enables an agent to complete a part of
task t, then to start some other tasks, process a next part of t and so on. If this is
allowed, we can easily reduce a sequential scheduling instance 〈{Ti}n

i=1,≺, 1, d()〉
to a sequential scheduling instance with unit durations as follows:

Each task t ∈ T is split in unit parts t1, . . . , td(t), we add the constraints
tj ≺ tj+1 for j = 1, . . . , d(t)− 1. Finally, every precedence constraint t ≺ t′ is re-
placed by the constraint td(t) ≺ t′1. See Figure 3 for an illustration. Note that this
assumption implies that the sequential scheduling case with arbitrary task du-
rations can be reduced to the unit duration sequential case. Hence, we can reuse
the approximation algorithm for this case, too, obtaining a 2-approximation al-

3 Note that we assume integer values for schedules σ(t).
4 This procedure must halt because conflicts can never reoccur.

Autonomous Scheduling with Unbounded and Bounded Agents 205

t1 t3 t5

t6
t2 t4

A1 A2

1

12

2 2

2

A3

t1

t4

A1 A2 A3

t12

t13

t23

t15

t25

t16

t26

(a) (b)

t22

Fig. 3. A sequential scheduling instance (a) and its reduction to the equivalent unit-
duration case (b) if preemption is allowed

gorithm for autonomous scheduling of tasks with arbitrary durations. There is
of course a catch: The approximation algorithm is only polynomial for those
instances where the durations d(t) are not super-polynomial in the number of
tasks |T |. Otherwise, the splitting of tasks in unit duration tasks would result in
a super polynomial number of unit-duration tasks.

Example 4. Consider the problem instance in Figure 3. Here, the tasks are as-
signed to 3 agents T1 = {t1, t2}, T2 = {t3, t4} and T3 = {t5, t6} with task
durations d(t1) = d(t4) = 1 and d(t2) = d(t3) = d(t5) = d(t6) = 2. The prece-
dence constraints are t1 ≺ t3 ≺ t5 and t2 ≺ t4 ≺ t6. The minimal makespan for
the unbounded case is d(T) = 5. This implies that after task splitting of task t2,
agent A1 will receive the constraints C(t1) = C(t2a) = [0, 0] and C(t2b) = [1, 1].
If t1 is included in the maximum matching (and t2a is not), an additional con-
straint t1 ≺ t2a is added to the set of tasks. As a result, the depth depth(T) = 6
and the new constraints are C(t1) = [0, 0], C(t12) = [1, 1] and C(t22) = [2, 2]. Con-
tinuing the procedure with agent A2 and agent A3 in the same way will result
in a joint schedule with makespan 7, while the optimal makespan for sequential
scheduling agents is 6. �

6 Conclusions and Future Work

In this paper, we studied the distributed scheduling problem in the context of
non-cooperative agents. Unlike traditional scheduling algorithms, which generate
a single rigid schedules for the agents, our algorithms introduce constraints on
the starting time of each task. In this way, we allow flexibility for each agent to
choose among a set of allowable ones, while ensuring that the combined global
schedule is feasible. We believe that for many real-world applications, specially
those with uncertainty, such flexible scheduling for individual agents is highly
desirable.

We have developed a polynomial time algorithm - ISA that generates a set of
constraints on the possible schedules the agents can develop so that, any sched-
ule that abides by these additional constraints is always feasible. The schedules
generated by ISA also were proved to have maximal flexible and makespan effi-
cient. We have also shown that in the the sequential case, it is NP-hard to find

206 C. Yadati et al.

a makespan optimal schedule. We then showed that preemptive task process-
ing allowed us to reuse an approximation algorithm developed for sequential
scheduling of unit duration tasks. The makespan of the schedules resulting out
of using this approximation algorithm are at most twice that of the optimal.

As a follow-up of this paper first of all, we would like to use approximation
algorithms for the general bounded agent case without relying on the preemp-
tive task processing assumption and without restricting attention to the strictly
sequential case. Next, we plan to formally analyze the minimal degree of flex-
ibility that the proposed algorithms can ensure given different task structures.
Furthermore, we would also like to investigate the trade-off between the degree
of flexibility and the loss of the makespan efficiency. Such a study would enable
us to design algorithms that are better customized to specific applications.

References

1. Sih, G.C., Lee, E.A.: Scheduling to account for interprocessor communication
within interconnection-constrained processor networks. In: ICPP (1), pp. 9–16
(1990)

2. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib.
Syst. 13(3), 260–274 (2002)

3. Beaumont, O., Boudet, V., Robert, Y.: The iso-level scheduling heuristic for het-
erogeneous processors. In: Proc. 10th Euromicro Workshop on Parallel, Distributed
and Network-based Processing 2002, 9-11 Jan. 2002, pp. 335–350 (2002)

4. Maheswaran, M., Siegel, H.J.: A dynamic matching and scheduling algorithm for
heterogeneous computing systems. In: HCW 1998: Proc. of the Seventh HCW, p.
57 (1998)

5. Walsh, W., Wellman, M., Wurman, P., MacKie-Mason, J.: Some economics of
market-based distributed scheduling. In: Proceedings of 18th International Con-
ference on Distributed Computing Systems 1998, 26-29 May 1998, pp. 612–621
(1998)

6. Li, J.: Strategic Negotiation Models for Grid Scheduling. PhD thesis, TU Dortmund
(2007)

7. Hunsberger, L.: Algorithms for a temporal decoupling problem in multi-agent plan-
ning. In: Proc. of AAMAS-2003 (2002)

8. Garey, M., Johnson, D.: Computers and Intractability - a guide to the theory of
NP-completeness. W.H. Freeman and Company, New York (1979)

9. Yadati, C., Witteveen, C., Zhang, Y., Wu, M., Putre, H.L.: Autonomous schedul-
ing. In: Proc. of the FCS 2008 (2008)

10. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT
Press, Cambridge (1990)

Author Index

Akchurina, Natalia 13

Baldoni, Matteo 25
Boella, Guido 25
Bogon, Tjorben 171
Busquets, Dı́dac 147
Butz, Martin V. 111

Cabac, Lawrence 37

Dikenelli, Oguz 183
Dörges, Till 37
Duvigneau, Michael 37

Ekinci, Erdem Eser 183

Ferro, Duco N. 49
Fischer, Klaus 135

Gabel, Thomas 61
Genovese, Valerio 25
Grenna, Roberto 25
Guttmann, Christian 73

Hatko, Reinhard 111
Hindriks, Koen 86

Jamroga, Wojciech 99
Jonker, Catholijn M. 49

Klügl, Franziska 111
Kudenko, Daniel 159

la Poutre, Han 195
Lattner, Andreas D. 171
León-Soto, Esteban 135
López, Beatriz 147
Lynch, Simon 123

Madrigal-Mora, Cristián 135
Moldt, Daniel 37
Muñoz, Vı́ctor 147
Murillo, Javier 147

Novák, Peter 86

Ossowski, Sascha 2

Rajendran, Keerthi 123
Reese, Christine 37
Riedmiller, Martin 61

Schumann, René 171
Servin, Arturo 159

Timm, Ingo J. 171
Tiryaki, Ali Murat 183

van der Torre, Leendert 25

Wester-Ebbinghaus, Matthias 37
Witteveen, Cees 195
Wooldridge, Michael 1
Wu, Mengxiao 195

Yadati, Chetan 195

Zhang, Yingqian 195

	Title Page
	Preface
	Organization
	Table of Contents
	Logic for Automated Mechanism Design and Analysis
	Coordination in Multi-Agent Systems: Towards a Technology of Agreement
	Introduction
	Coordination in Multi-agent Systems
	Towards a Technology of Agreement
	Discussion
	References

	Optimistic-Pessimistic \Q-Learning Algorithm forMulti-Agent Systems
	Introduction
	Preliminary Definitions and Theorems
	Convergence Theorem
	Stochastic Approximation

	Optimistic-Pessimistic Q-Learning Algorithm
	Experiments
	Battle of the Sexes
	Coordination Game
	Matching Pennies
	Random Zero-Sum Game
	Random Game

	Discussion and Conclusion
	References

	How to Program Organizations and Roles in the JADE Framework
	Introduction
	A Model for Organizations and Roles
	Organizations, Roles, and Players in JADE
	Organizations
	Roles
	Players

	Interaction
	Agents and the Organization
	Players and Their Roles

	Conclusions
	References

	Agent Models for Concurrent Software Systems
	Introduction
	Concepts of Application Development with Mulan
	The Mulan Agent
	Organizational Structure

	Techniques, Models and Development Tools
	Coarse Design
	Multi-agent Application Structure
	Terminology
	Knowledge and Decisions
	Behavior
	Summary
	Experiences

	Conclusion
	References

	Filtering Algorithm for Agent-Based Incident Communication Support in Mobile Human Surveillance
	Introduction
	Related Work
	Mobile Human Surveillance and Its Formalization
	Introducing MHS Security
	Formalization of MHS Security
	Communication Support for Alarm Handling

	The Ask-Assist System
	Algorithm for Self-organizing Incident Communication Support
	Factors for Predicting the Success of Alarm Handling
	Recommendation and Adaptation Cycle
	Learning by Iteration
	Experimental Results

	Discussion
	References

	Joint Equilibrium Policy Search for Multi-Agent Scheduling Problems
	Introduction
	Joint Equilibrium Policy Search
	Basics
	Learning Joint Policies
	Discussion

	JEPS with Global Action Parameterization
	Learning Total Orders of Action Execution
	Discussion

	Empirical Evaluation
	Application Domain: Job-Shop Scheduling
	Benchmark Results

	Conclusion
	References

	Making Allocations Collectively: Iterative Group Decision Making under Uncertainty
	Introduction
	Framework Coping with Uncertainty
	Defining the Main Components
	Algorithm and Example

	Experiment: Impact of Variable Performance
	Experimental Parameters
	Efficiency Metrics
	Initialising a Simulation Run of a Setting
	Results and Analysis

	Related Research
	Conclusion
	References

	Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines
	Introduction
	GOAL
	Jazzyk Behavioural State Machines
	Compiling a GOAL Agent into a Jazzyk BSM
	Discussion and Conclusion
	References

	Knowledge and Strategic Ability for Model Checking: A Refined Approach
	Introduction
	Preliminaries
	ATL: Abilities in Perfect Information Games
	Epistemic Logic: Knowledge and Imperfect Information

	Restricting Strategies of Agents
	Strategic Constraints
	Abilities Under Strategic Constraints: Semantics

	Translating Knowledge to Strategic Ability
	Idea of the Translation
	Interpreting Models and Formulae of \ATEL_CE into \atl
	Handling Distributed Knowledge
	Reducing Knowledge to Strategic Ability: Example

	Conclusions
	References

	Agent Learning Instead of Behavior Implementation for Simulations – A Case Study Using Classifier Systems
	Introduction
	Learning Agents for Behavior Implementation in Simulation Contexts
	\XCS
	SeSAmXCS
	Learning to Find the Exit: Evacuation Scenario
	Experiments
	Pedestrians with Orientation
	Experiments with Different Numbers of Agents
	Alternative Settings

	Discussion
	Conclusion and Future Work
	References

	Providing Integrated Development Environments for Multi-Agent Systems
	Introduction
	Classification of Tools
	Generic Systems Support

	Decoupling and Reuse
	The Causes of Coupling
	Achieving Decoupling
	Architecture and Message Protocol

	Evaluation
	Conclusion
	References

	Implementing Organisations in JADE
	Introduction
	Related Work
	Organisations and Roles
	Requirements
	Implementation
	Example: Product Sale with Personal Loan

	Further Remarks on Organisations
	Future Work
	Conclusion
	References

	A Fair Mechanism for Recurrent Multi-unit Auctions
	Introduction
	Issues in Recurrent Multi-unit Auctions
	Resources Waste Problem
	Bidder Drop Problem
	Asymmetric Balance of Negotiating Power

	Mechanisms for Fair Auction Clearing
	Priority Auction (PA)
	Customizable Reservation Price Auction (CRPA)
	Customizable Reservation Price Auction with Priorities (CRPA+P)

	Experimental Setup
	Experimentation Scenario
	Other Auction Mechanisms
	Parameters

	Results
	Related Work
	Conclusions and Future Work
	References

	Multi-Agent Reinforcement Learning for Intrusion Detection: A Case Study and Evaluation
	Introduction
	Technology Overview
	AgentArchitecture
	Tests
	Results
	Related Work
	Conclusion and Future Work
	References

	Teaching Distributed Artificial Intelligence with RoboRally
	Introduction
	Vision of a Board Game for Lectures
	Related Work
	Current State of the RoboRally Framework
	RoboRally – The Board Game
	RoboRally – The Learning Environment

	FirstExperiences
	Conclusion and Future Work
	References

	Refactoring in Multi Agent System Development
	Introduction
	Related Works
	Refactoring in Evolutionary MAS Development Process
	RefactoringinMAS
	Refactoring Levels in MAS Development
	Bad Smells in MAS’s
	Refactoring Patterns for MAS Development

	Case Study
	Conclusion and FutureWorks
	References

	Autonomous Scheduling with Unbounded and Bounded Agents
	Introduction
	Background and Related Work
	Preliminaries and Framework
	Autonomous Scheduling for Agents with Unbounded Concurrency
	Scheduling Sequential Agents
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

