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Abstract. This paper analyses the idea of strong equivalence for tran-
sition systems represented as logic programs under the Answer Set Pro-
gramming (ASP) paradigm. To check strong equivalence, we use a linear
temporal extension of Equilibrium Logic (a logical characterisation of
ASP) and its monotonic basis, the intermediate logic of Here-and-There
(HT). Trivially, equivalence in this temporal extension of HT provides
a sufficient condition for temporal strong equivalence and, as we show
in the paper, it can be transformed into a provability test into the stan-
dard Linear Temporal Logic (LTL), something that can be automatically
checked using any of the LTL available provers. The paper shows an ex-
ample of the potential utility of this method by detecting some redundant
rules in a simple actions reasoning scenario.

1 Introduction

The paradigm of Answer set programming (ASP) [1,2] (based on the stable mod-
els semantics [3]) constitutes one of the most successful examples of logical non-
monotonic formalisms applied to Knowledge Representation [4,5] in Artificial
Intelligence. Probably, the reasons for this success are both related to its pow-
erful representational features and, at the same time, to the availability of an
increasing number of efficient ASP solvers (see [6]) that allow its application to
many real scenarios. Concerning the formalism properties, ASP is characterised
by providing nonmonotonic reasoning with a rich and flexible syntax, initially
born from logic programming, but continuously extended thereafter along the
research history in the area, without overlooking its original semantic simplicity.
An important breakthrough in this sense has been the logical characterisation of
ASP in terms of Equilibrium Logic [7] that has opened, for instance, the study of
strong equivalence [8] (the main topic of this paper) and has recently allowed the
extension of the stable models semantics for arbitrary first order theories [9,10].

As for the practical applications of ASP, perhaps one of the most outstand-
ing and frequent uses has been the representation and automated reasoning for
action domains, solving typical problems like prediction, explanation, planning
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or diagnostics. Default negation plays here a crucial role, as it allows represent-
ing the rule of inertia (that can be stated as “a fluent remains unchanged by
default”) and avoid in this way the frame problem [11]. ASP can also be natu-
rally used for solving other typical representational problems in Reasoning about
Actions and Change, and is in fact the basis for a family1 of high level action
languages [14]. The use of ASP solvers for action domains, however, has some
limitations, as partly explained by the complexity class that these solvers allow
to capture (ΣP

2 in the most general case). In practice, this means for instance
that, when solving a planning problem (which lies in PSPACE-completeness)
we must fix an a priori plan length so that a ground logic program can be
eventually generated. The search for a minimal plan consists then in gradu-
ally incrementing this plan length until a stable model is found. A first obvious
drawback of this approach is that it is not possible to establish when a given
planning problem has no solution of any length at all. A second and more elab-
orated problem is that it is impossible to establish when two descriptions of the
same transition system are strongly equivalent, i.e., when they will behave in the
same way regardless any additional rules we include and any path length we
consider.

At a first sight, it could be thought that this problem for checking strong
equivalence of temporal scenarios is only due to the restriction to ground pro-
grams. For instance, there already exists a tool (SE-TEST [15]) that allows check-
ing strong equivalence of logic programs with variables, without requiring their
previous grounding. However, temporal domains require something else than
variables: in order to represent transition rules, we must (at least) be able to re-
fer to a situation index variable I and its successor situation I+1. This forces us
either to deal with integer numbers, or at least, with a Peano like representation
of the form s(I) with a function symbol s to represent the successor. Unfortu-
nately, SE-TEST is exclusively thought for Datalog programs, i.e. functions or
unbounded integers are not allowed.

As we mentioned above, the idea of strong equivalence was introduced in [8],
where the following question was considered: when can we safely replace a piece of
knowledge representation by an “equivalent” one independently of the context?
Formally, we say that two logic programs Π1 and Π2 are strongly equivalent
when, for any arbitrary logic program Π , both Π1 ∪ Π and Π2 ∪ Π have the
same stable models. Note that, for a monotonic logic, this property trivially
collapses to regular equivalence (i.e., coincidende of sets of models) of Π1 and
Π2. However, when a nonmonotonic entailment is involved, the addition of a
set of rules Π may have different effects on the sets of stable models of Π1

and Π2, so that strong equivalence is indeed a stronger property than regular
equivalence. In [8] it was shown that two logic programs are strongly equivalent
(under the stable models semantics) if and only if they are equivalent under the
intermediate logic of Here-and-There [18], the monotonic basis of Equilibrium
Logic.

1 To be precise, part of this family relies on the formalism of Causal Theories [12] but,
as shown in [13], this formalism can be reduced to ASP as well.
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In this paper we consider the study of strong equivalence for logic programs
that represent transition systems. To this aim, we revisit a temporal extension of
Equilibrium Logic proposed in [19] which consists in the inclusion of modal oper-
ators as those handled in Linear Temporal Logic (LTL) [20,21]. This extension,
called Temporal Equilibrium Logic, immediately provides us with a sufficient con-
dition for strong equivalence of temporal logic programs: we can simply check
regular equivalence in its monotonic basis, a logic we called Temporal Here-and-
There (THT) [19]. The main contribution of the paper is the automation of this
test for strong equivalence so that, using a similar translation to those presented
in [22,23,10], we transform a THT formula into LTL and use an LTL prover af-
terwards – in particular, we ran our experiments on the Logics Workbench [24].

The paper is organised as follows. In the next section, we introduce a simple
motivating example, extracted from the Reasoning about Actions literature, to
show the kind of problems we are interested in, proposing a pair of strong equiv-
alence tests in this domain. In Section 3 we revisit the syntax and semantics of
Temporal Here-and-There (THT) and we propose a models selection criterion to
define the nonmonotonic Temporal Equilibrium Logic (TEL). Section 4 presents
the translation from THT into LTL, whereas Section 5 applies this translation
to answer the questions proposed in Section 3. Finally, Section 6 contains the
conclusions and future work.

2 A Simple Motivating Example

Consider the following simple and well-known scenario [25] from Reasoning about
Actions literature.

Example 1. An electric circuit consists of a battery, two switches and a light
bulb. The switches are serially connected, as shown in Figure 2. The system
state is expressed in terms of three propositional fluents sw1, sw2 and light,
whose negations are represented with a bar on top of each fluent symbol. The
state of each switch swi can be alternated by performing a corresponding action
togglei. ��
For simplicity, we assume that we do not handle concurrent actions. A possible
representation of this scenario as an ASP logic program, Π1, is shown below:

light

sw1 sw2

Fig. 1. A simple electric circuit
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swj(I + 1)← togglej(I), swj(I) (1)
swj(I + 1)← togglej(I), swj(I) (2)
light(I + 1)← togglej(I), swj(I) (3)
light(I + 1)← toggle1(I), sw1(I), sw2(I) (4)
light(I + 1)← toggle2(I), sw2(I), sw1(I) (5)

⊥ ← toggle1(I), toggle2(I) (6)
f(I + 1)← f(I),not f(I + 1) (7)
f(I + 1)← f(I),not f(I + 1) (8)

⊥ ← f(I), f(I) (9)

where j ∈ {1, 2} and f ∈ {sw1, sw2, light}, and we assume that each symbol
like f is actually treated as a new predicate. Variable I = 0 . . . n− 1 represents
an integer index for each situation in the temporal narrative. Rules (1)-(5) are
the effect axioms, capturing all the direct effects of actions. Rule (6) just avoids
performing concurrent actions. Rules (7) and (8) represent the inertia default for
each fluent f . Finally, (9) expresses that each fluent f and its explicit negation
f cannot be simultaneously true2.

As explained in the introduction, a planning problem would include additional
facts (representing the initial state) and rules for generating actions and express-
ing a plan goal. But the most important additional step is deciding a finite limit
n for variable I, so that the above program can be grounded.

Assume now that we want to modify Π1 after noticing that the truth value of
light is actually determined by the value of the two switches, becoming in this way
an indirect effect or ramification3. In otherwords,we consider the addition of rules:

light(I)← sw1(I), sw2(I) (10)
light(I)← sw1(I) (11)
light(I)← sw2(I) (12)

If we call Π2 = Π1 ∪ {(10) − (12)}, we may reasonably propose the following
questions:

(Q1) Can we safely remove now from Π2 the effect axioms for fluent light (3)-
(5)?

(Q2) Assume we removed (3)-(5). Since light is “defined” now in terms of sw1

and sw2, can we safely remove from Π2 the inertia rules for light?

In order to answer these questions, the current tools for testing strong equivalence
for ground programs [26,27] cannot provide successful answers in an automated
way, as they need a numeric value for the path length n to be previously fixed.
2 Although perhaps not needed in this particular case, this axiom must be part of

any general translation of an action theory. It is not difficult to see how the above
scenario can be easily modified to introduce new contradictory effects that would
not be detected in absence of (9).

3 In fact, this example were used in [25] to illustrate possible representational problems
for a suitable treatment of action ramifications.



12 F. Aguado et al.

3 Linear Temporal Here-and-There (THT)

We proceed now to recall the main definitions of the temporal extension of Equi-
librium Logic, beginning with its monotonic basis. The logic of Linear Temporal
Here-and-There (THT) was defined as follows. We start from a finite set of
atoms Σ called the propositional signature. A (temporal) formula is defined as
any combination of the atoms in Σ with the classical connectives ∧,∨,→,⊥,
the (unary) temporal operators � (to be read as “always” or “from now on”), ♦
(“eventually”) ,© (“next”) and the (binary) temporal operators U (“until”),W
(“weak until”) and B (“before”). Negation is defined as ¬ϕ def

= ϕ→ ⊥ whereas

� def
= ¬⊥. As usual, ϕ ↔ ψ stands for (ϕ → ψ) ∧ (ψ → ϕ). We also allow the

abbreviation ©iϕ
def
= ©(©i−1ϕ) for i > 0 and ©0ϕ

def
= ϕ.

A (temporal) interpretation M is an infinite sequence of pairs 〈Hi, Ti〉 with
i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of atoms. From an ASP point of view
and informally speaking, atoms in Ti would play the role of an interpretation
(that depends on a time parameter i) we would use for building a program
reduct, whereas atoms in Hi will be minimised and later required to coincide
with Ti. For simplicity, given a temporal interpretation, we write H (resp. T )
to denote the sequence of pair components H0, H1, . . . (resp. T0, T1, . . . ). Using
this notation, we will sometimes abbreviate the interpretation as M = 〈H,T 〉.
An interpretation M = 〈H,T 〉 is said to be total when H = T . We say that
an interpretation M = 〈H,T 〉 satisfies a formula ϕ at some sequence index i,
written M, i |= ϕ, when any of the following hold:

1. M, i |= p if p ∈ Hi, for any atom p.
2. M, i |= ϕ ∧ ψ if M, i |= ϕ and M, i |= ψ.
3. M, i |= ϕ ∨ ψ if M, i |= ϕ or M, i |= ψ.
4. 〈H,T 〉, i |= ϕ→ ψ if both:

(a) 〈H,T 〉, i �|= ϕ or 〈H,T 〉 |= ψ;
(b) 〈T , T 〉, i �|= ϕ or 〈T , T 〉 |= ψ.

5. M, i |=©ϕ if M, i+1 |= ϕ.
6. M, i |= �ϕ if for all j ≥ i, M, j |= ϕ.
7. M, i |= ♦ϕ if there exists some j ≥ i, M, j |= ϕ.
8. M, i |= ϕ U ψ if there exists j ≥ i, M, j |= ψ and M,k |= ϕ for all k such

that i ≤ k < j.
9. M, i |= ϕ W ψ if either M, i |= ϕ U ψ or, for all j ≥ i, M, j |= ϕ.

10. M, i |= ϕ B ψ if for all j ≥ i, either M, j |= ψ or there exists some k,
i ≤ k < j such that M,k |= ϕ.

We assume that a finite sequence 〈H0, T0〉 . . . 〈Hn, Tn〉 with n ≥ 0 is an abbre-
viation of the infinite sequence 〈H ′

, T
′〉 with H ′

i = Hi, T ′
i = Ti for i = 0, . . . , n

and H ′
i = Hn, T ′

i = Tn for i > n.
The logic of THT is an orthogonal combination of the logic of HT and the

(standard) linear temporal logic (LTL) [21]. When we restrict temporal interpre-
tations to finite sequences of length 1, that is 〈H0, T0〉 and disregard temporal
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operators, we obtain the logic of HT. On the other hand, if we restrict the seman-
tics to total interpretations, 〈T , T 〉, i |= ϕ corresponds to satisfaction of formulas
T , i |= ϕ in LTL.

A theory is any set of formulas. An interpretation M is a model of a theory
Γ , written M |= Γ , if M, 0 |= α, for each formula α ∈ Γ . A formula ϕ is valid
if M, 0 |= ϕ for any M . The following are valid formulas in THT (and in LTL
too):

♦ϕ↔ � U ϕ (13)
�ϕ↔ ⊥ B ϕ (14)

ϕ W ψ ↔ ϕ U ψ ∨�ϕ (15)
ϕ U ψ ↔ ϕ W ψ ∧ ♦ψ (16)

¬(ϕ U ψ)↔ ¬ϕ B ¬ψ (17)
¬(ϕ B ψ)↔ ¬ϕ U ¬ψ (18)

¬�ϕ↔ ♦¬ϕ (19)
¬♦ϕ↔ �¬ϕ (20)
©¬ϕ↔ ¬© ϕ (21)

©(ϕ ∧ ψ)↔©ϕ ∧©ψ (22)
©(ϕ ∨ ψ)↔©ϕ ∨©ψ (23)
©(ϕ→ ψ)↔ (©ϕ→©ψ) (24)

ϕ U ψ ↔ ψ ∨ (ϕ ∧©(ϕ U ψ)) (25)
ϕ B ψ ↔ ψ ∧ (ϕ ∨©(ϕ B ψ)) (26)

Theorems (13)-(15) allow defining �,♦ andW in terms of U and B. The formulas
(17) and (18) correspond to the De Morgan axioms between operators U and
B. It is easy to see that, together with (13) and (14) they directly imply the
corresponding De Morgan axioms (19) and (20) for � and ♦. An important
difference with respect to LTL is that, when using these De Morgan axioms,
some care must be taken if double negation is involved. For instance, by (19),
the formula ¬♦¬ϕ is equivalent to ¬¬�ϕ, but this is not in general equivalent to
�ϕ. A simple counterexample is the interpretation 〈H,T 〉 with all Ti = {p} but
some Hj = ∅, as it satisfies ¬¬�p but not �p. As a result, we cannot further
define B (resp. �) in terms of U (resp. ♦) or vice versa, as happens in LTL.
We have included other LTL standard properties like (21)-(24) to show that the
“shifting” behaviour of © with respect to classical connectives is the same as
in LTL, or (25) and (26) that represent the inductive propagation of U and B
respectively.

The (Linear) Temporal Equilibrium Logic (TEL) is a nonmonotonic version of
THT where we establish a models selection criterion. Given two interpretations
M = 〈H,T 〉 and M ′ = 〈H ′

, T
′〉 we say that M is lower than M ′, written

M ≤ M ′, when T = T
′
and for all i ≥ 0, Hi ⊆ H ′

i. As usual, M < M ′ stands
for M ≤M ′ but M �= M ′.
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Definition 1 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other model M ′ < M of Γ . �

Note that any temporal equilibrium model is total, that is, it has the form 〈T , T 〉
and so can be actually seen as an interpretation T in the standard LTL.

The idea behind temporal equilibrium models is that they capture the answer
sets of programs that depend on a fixed temporal index. This is expressed by
the following proposition extracted from [19].

Proposition 1. Let Γ be a combination of non-modal connectives ∧,∨,¬,→,⊥
with expressions like ©ip, being p an atom, and let n be the maximum value for
i in all ©ip occurring in Γ . Then 〈T , T 〉 is a temporal equilibrium model of Γ
iff (1) Ti = ∅ for all i > n ; and (2) 〈X,X〉 with X =

⋃n
i=0{©ip | p ∈ Ti} is an

equilibrium model of Γ , reading each ‘©ip’ as a new atom in the signature. ��
That is, once �,♦,U and W are removed, we can reduce temporal equilibrium
models to (non-temporal) equilibrium models (that is, answer sets) for an ex-
tended signature with atoms like©ip. To illustrate the effect of this definition, let
us consider a pair of examples from [19]. Take, for instance, the theory {♦p}. This
would correspond to an infinite disjunction of the form p∨©p∨©© p∨ . . . or,
when making time explicit, to an ASP disjunctive rule like p(0)∨p(1)∨p(2)∨ . . .
This generates temporal equilibrium models where p is false in every situation
excepting for exactly one index i where p is made true. In other words, the tem-
poral equilibrium models of theory {♦p} are captured by the LTL models of the
formula ¬p U (p ∧©�¬p).

As a second example, take the theory Γ just consisting of the formula �(¬p→
©p). This would informally correspond to an infinite program with the rules
p(1) ← ¬p(0); p(2) ← ¬p(1); p(3) ← ¬p(2); etc. It is not difficult to see that
the temporal equilibrium models of Γ are captured by the LTL models of ¬p ∧
�(¬p↔©p).

In [19] it was shown as an example how TEL can be used to encode the action
language B [14] in a straightforward way.

The definition of strong equivalence for TEL theories is extended from the
non-temporal case in an obvious way. An important observation is that proving
the equivalence of two temporal theories in THT is a trivial sufficient condition
for their strong equivalence under TEL – if they have the same THT models,
they will always lead to the same set of temporal equilibrium models, regardless
the context. The next section shows how this THT equivalence test can be
transformed into provability in standard LTL.

4 Translating THT into LTL

Given a propositional signature Σ, let us denote Σ∗ = Σ ∪{p′ | p ∈ Σ} which is
going to be the new propositional signature in LTL. For any temporal formula
ϕ we define its translation ϕ∗ as follows:
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1. ⊥∗ def
= ⊥

2. p∗
def
= p′ for any p ∈ Σ

3. (�ϕ)∗
def
= �ϕ∗, if � ∈ {�,♦,©}

4. (ϕ� ψ)∗
def
= ϕ∗ � ψ∗, when � ∈ {∧,∨,U ,W ,B}

5. (ϕ→ ψ)∗
def
= (ϕ→ ψ) ∧ (ϕ∗ → ψ∗)

From the last point and the fact that ¬ϕ = ϕ → ⊥, it follows that (¬ϕ)∗ =
(ϕ→ ⊥) ∧ (ϕ∗ → ⊥) = ¬ϕ ∧ ¬ϕ∗. Similarly, (ϕ↔ ψ)∗ = (ϕ↔ ψ) ∧ (ϕ∗ ↔ ψ∗).

We associate to any THT interpretation M = 〈H,T 〉 the LTL interpretation
M t = I in LTL defined as the sequence of sets of atoms Ii = {p′ | p ∈ Hi} ∪ Ti,
for any i ≥ 0. Informally speaking, M t considers a new primed atom p′ per each
p ∈ Σ in the original signature. In the LTL interpretation, the primed atom p′

represents the fact that p occurs at some point in the H component, whereas the
original symbol p is used to represent an atom in T . As a THT interpretation
must satisfy Hi ⊆ Ti by construction, we may have LTL interpretations that do
not correspond to any THT one. In particular, for an arbitrary I, we will only
be able to form some M such that M t = I when the set of primed atoms at each
Ii is a subset of the non-primed ones. In other words, only LTL interpretations
I satisfying the axiom:

�(p′ → p) (27)

will have a corresponding THT interpretation M such that I = M t.

Example 2. M = ((∅, {p, q}), ({p}, {p, q}), ({q}, {q})) is a model of the theory
{�(¬p → q) ∧ ♦q}. In the same way, the corresponding interpretation M t =
({p, q}, {p′, p, q}, {q′, q}) is a model of

(�(¬p→ q) ∧ ♦q)∗ ↔ �(¬p→ q)∗ ∧ (♦q)∗ ↔
�((¬p→ q) ∧ ((¬p)∗ → q′)) ∧ ♦q′ ↔ �((¬p→ q) ∧ (¬p→ q′)) ∧ ♦q′.

In general:

Theorem 1. Let M = 〈H,T 〉 be any THT interpretation and ϕ any formula.
For any i ≥ 0, it holds that

(a) 〈H,T 〉, i |= ϕ if and only if M t, i |= ϕ∗ in LTL; and
(b) 〈T , T 〉, i |= ϕ if and only if M t, i |= ϕ in LTL.

Proof. We proceed by induction. For the base case, it trivially holds for ⊥
whereas for an atom p, we have these equivalence chains

(a) (〈H,T 〉, i |= p) ⇔ (p ∈ Hi) ⇔ (p′ ∈ Ii) ⇔ (M t, i |= p′).
(b) (〈T , T 〉, i |= p) ⇔ (p ∈ Ti) ⇔ (p ∈ Ii) ⇔ (M t, i |= p)

For the inductive step, we detail the proof for the classical connective →, the
(unary) temporal operator © and the (binary) temporal operator U . For the
classical connectives ∧ and ∨ the proof is straightforward; for connective B , it
is completely analogous to that for U ; and finally, the rest of connectives can be
defined in terms of the previous ones.
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1. To prove (a) for the implication we have the chain of equivalent conditions:

〈H,T 〉, i |= ϕ→ ψ
def⇐⇒

⎧
⎨

⎩

〈H,T 〉, i �|= ϕ or 〈H,T 〉, i |= ψ
and
〈T , T 〉, i �|= ϕ or 〈T , T 〉, i |= ψ

⎫
⎬

⎭
ind⇐⇒

⎧
⎨

⎩

M t, i �|= ϕ∗ or M t, i |= ψ∗

and
M t, i �|= ϕ or M t, i |= ψ

⎫
⎬

⎭
⇐⇒

⎧
⎨

⎩

M t, i |= (ϕ∗ → ψ∗)
and
M t, i |= (ϕ→ ψ)

⎫
⎬

⎭

def⇐⇒

M t, i |= (ϕ→ ψ)∗

For proving (b) it suffices with considering, in each of the three pairs of
conjunctive conditions above, only the second conjunct.

2. For operator ©, note that

(a) 〈H,T 〉, i |=©ϕ def⇐⇒ 〈H,T 〉, i+ 1 |= ϕ
ind⇐⇒M t, i+ 1 |= ϕ∗ def⇐⇒

M t, i |=©ϕ∗

(b) 〈T , T 〉, i |=©ϕ def⇐⇒ 〈T , T 〉, i+ 1 |= ϕ
ind⇐⇒M t, i+ 1 |= ϕ

def⇐⇒
M t, i |=©ϕ

3. Finally, for U it follows that:

(a) 〈H,T 〉, i |= ϕ U ψ def⇐⇒
∃j ≥ i, (M, j |= ψ) and ∀k s.t. i ≤ k < j, (M,k |= ϕ) ind⇐⇒
∃j ≥ i, (M t, j |= ψ∗) and ∀k s.t. i ≤ k < j, (M,k |= ϕ∗)

def⇐⇒
M t, i |= ϕ∗ U ψ∗ def⇐⇒M t, i |= (ϕ U ψ)∗

(b) 〈T , T 〉, i |= ϕ U ψ def⇐⇒
∃j ≥ i, (M, j |= ψ) and ∀k s.t. i ≤ k < j, (M,k |= ϕ) ind⇐⇒
∃j ≥ i, (M t, j |= ψ) and ∀k s.t. i ≤ k < j (M,k |= ϕ)

def⇐⇒
M t, i |= ϕ U ψ ��

Theorem 2 (Main theorem). Let Γ1 and Γ2 be a pair of temporal theories,
and

∧
Γ1 and

∧
Γ2 the conjunctions of their respective sets of formulas. Then

Γ1 and Γ2 are strongly equivalent with respect to temporal equilibrium models if
the formula (27)→ (

∧
Γ1 ↔

∧
Γ2)∗ is valid in LTL.

Proof. Once the axiom schemata (27) are fixed as hypotheses, Theorem 1 allows
us to establish a one to one correspondence between models of

∧
Γ1 ↔

∧
Γ2 in

THT and models of (
∧
Γ1 ↔

∧
Γ2)∗ in LTL. Thus, if (

∧
Γ1 ↔

∧
Γ2)∗ is LTL

valid, this means that
∧
Γ1 and

∧
Γ2 are THT-equivalent, which is a sufficient

condition for strong equivalence in TEL. ��
As we will show in the next section, we may also use this result to detect a
redundant formula ϕ in some theory Γ . To this aim, we would have to show that
Γ and Γ ′ = Γ \ {ϕ} are strongly equivalent. From the theorem above, it follows
that:

Corollary 1. Let Γ be a temporal theory,
∧
Γ the conjunction of its formulas

and ϕ some arbitrary temporal formula. Then Γ and Γ ∪{ϕ} are strongly equiv-
alent if the formula (27)→ (

∧
Γ → ϕ)∗ is valid in LTL. ��
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5 Back to the Example

When representing Example 1 in TEL, the encoding is quite obvious. As happens
in Equilibrium Logic, the logic programming notation is directly replaced by a
logical syntax, so that the rule arrow ‘←’, the comma ‘,’ and the default negation
‘not ’ respectively represent standard implication, conjunction and negation. On
the other hand, in order to capture the transition rules of program Π1, only
a small subset of the linear temporal syntax is actually required. All the rules
depending on the temporal (universally quantified) variable I will be scoped
now by a � operator, whereas the atoms with argument I + 1 will be further
preceeded by a © connective. As a result, we obtain the theory Γ1 consisting of
the formulas:

�(togglej ∧ swj →©swj) (28)
�(togglej ∧ swj →©swj) (29)
�(togglej ∧ swj →©light) (30)

�(toggle1 ∧ sw1 ∧ sw2 →©light) (31)
�(toggle2 ∧ sw2 ∧ sw1 →©light) (32)

�(toggle1 ∧ toggle2 → ⊥) (33)
�(f ∧ ¬© f →©f) (34)
�(f ∧ ¬© f →©f) (35)

�(f ∧ f → ⊥) (36)

that respectively correspond to the rules (1)-(9).
In order to answer questions Q1 and Q2 proposed in Section 2, we have

implemented the ϕ∗ translation4 and fed the LWB linear temporal logic module
with the resulting formulas extracted from Corollary 1 to detect redundant rules.
In particular, regarding question Q1, we have been able to prove that, given the
theory Γ2 consisting of Γ1 plus:

�(sw1 ∧ sw2 → light) (37)
�(sw1 → light) (38)
�(sw2 → light) (39)

(that captures light as an indirect effect) then rule (30), that specified when
light became off depending on each togglej, becomes redundant and can be
safely removed from Γ2. In fact, we could just prove that (30) followed from the
formulas (29), (38) and (39).

However, when we consider the effect axioms (31),(32) we used to specify
when the light becomes on, our checker just provides a negative answer. Since
we are just dealing with a sufficient condition for strong equivalence, this does
not provide any concluding information about Q1 for these rules. Fortunately,
in this case it is not difficult to see that, in fact, these rules cannot be removed
4 Available at http://www.dc.fi.udc.es/∼cabalar/eqwb.html
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in any context without changing the general behaviour of the program. To see
why, just think about adding, as a new effect of toggle1, that switch sw2 is
disconnected:

�(toggle1 ∧ sw2 → sw2)

The addition of this new rule would clearly make a different effect depending on
(31) is present in the theory or not. In particular, when we perform toggle1 in
a situation in which sw1 ∧ sw2, if we do not have (31) the light will just remain
off, whereas if this formula is included, we will get no equilibrium model.

In order to answer question Q2, we considered theory Γ3 = Γ2\{(3)−(5)} and
tried to see whether (34),(35) were redundant, for the case f = light. Although
it could seem that light value is “defined” in terms of sw1 and sw2 by rules (37)-
(39), we actually obtained a negative answer, so no conclusion is obtained. It is
easy to see that, in this case, we can find situations in which removing inertia
may cause different effects depending on the context. For instance, if we had
light and do not provide information for sw1 and sw2 or their explicit negations
in a given state, the inertia would maintain light in the next situation (toggling
yields no effect). If we remove inertia, however, neither light nor light would
hold in the next state.

If we look for a stronger relation between light and sw1, sw2 we can move to
consider Γ3, consisting of Γ2 and the rules:

�(light→ sw1) �(light→ sw2) �(¬light→ light)

we finally obtain that inertia (34),(35) for f = light is redundant. The explana-
tion for this is simple – note that these rules, together with (37) allow concluding
(among other things) that �(light↔ sw1 ∧ sw2) which is a double implication,
actually defining light as the conjunction of sw1 and sw2 in any situation.

6 Conclusions

In this paper we have studied the problem of strong equivalence of logic pro-
grams that represent transition systems. To this aim, we have incorporated the
set of modal operators typically used in Linear Temporal Logic (LTL) into logic
programs, and applied a previously introduced [19] general semantics for any
arbitrary (propositional) temporal theory. This semantics is a temporal exten-
sion of Equilibrium Logic [7] (a logical characterisation of stable models) and its
monotonic basis, the logic of Here-and-There (HT). As a result, we obtained a
sufficient condition for checking strong equivalence of temporal logic programs
and we implemented a method for reducing this condition to provability in stan-
dard LTL. The advantage of this process is that, to the best of our knowledge,
it constitutes the first automated tool for guaranteeing strong equivalence of
logic programs representing transition systems, as the previous existing checkers
either require fixing a numerical path length to obtain a ground program, or in
the case of programs with variables [15], cannot properly deal with transition
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systems. There exists, however, a very recent prover (QHT [16]) for strong equiv-
alence of programs with variables, which relies on a method proposed in [17] for
reducing Quantified Here and There to first order classical logic, allowing in this
way, the use of a classical theorem prover as a backend. Unlike [15], QHT allows
dealing with functions and so, could potentially handle situation indices with a
Peano-like successor function. We leave for future work checking this alterna-
tive, although in a general case, the currently presented reduction to LTL has
the obvious advantage of handling a decidable inference method.

Of course, the main current drawback of our strong equivalence test is that,
when it provides a negative answer, no conclusion can be drawn, since we have
not proved yet whether it also constitutes a necessary condition for strong
equivalence, something that was obtained [8] for the non-modal case with HT-
equivalence. The desirable situation would be, instead, that a negative answer
came with a counterexample, that is, a piece of (temporal) program that added
to the original ones to be tested yields different effects in each case. This point
is left for the immediate future work.
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