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Abstract. Hybrid EL-TBoxes combine general concept inclusions
(GCIs), which are interpreted with descriptive semantics, with cyclic
concept definitions, which are interpreted with greatest fixpoint (gfp)
semantics. We introduce a proof-theoretic approach that yields a
polynomial-time decision procedure for subsumption, and present a
proof-theoretic computation of least common subsumers in EL w.r.t.
hybrid TBoxes.

1 Introduction

The EL-family of description logics (DLs) is a family of inexpressive DLs whose
main distinguishing feature is that they provide their users with existential re-
strictions rather than value restrictions as the main concept constructor involving
roles. The core language of this family is EL, which has the top concept (�),
conjunction (�), and existential restrictions (∃r.C) as concept constructors. This
family has recently drawn considerable attention since, on the one hand, the
subsumption problem stays tractable (i.e., decidable in polynomial time) in sit-
uations where the corresponding DL with value restrictions becomes intractable.
In particular, subsumption in EL is tractable both w.r.t. cyclic TBoxes inter-
preted with gfp or descriptive semantics [3] and w.r.t. general TBoxes (i.e., finite
sets of GCIs) interpreted with descriptive semantics [6,4]. On the other hand,
although of limited expressive power, EL is nevertheless used in applications,
e.g., to define biomedical ontologies. For example, both the large medical ontol-
ogy Snomed ct [14] and the Gene Ontology [1] can be expressed in EL, and
the same is true for large parts of the medical ontology Galen [12].

In some cases, it would be advantageous to have both GCIs interpreted
with descriptive semantics and cyclic concept definitions interpreted with gfp-
semantics available in one TBox. One motivation for such hybrid TBoxes comes
from the area of non-standard inferences in DLs. For example, if one wants to
support the so-called bottom-up construction of DL knowledge bases, then one
needs to compute least common subsumers (lcs) and most specific concepts (msc)
[5]. In [2], it was shown that the lcs and the msc in EL always exist and can be
computed in polynomial time if cyclic definitions that are interpreted with gfp-
semantics are available. In contrast, if cyclic definitions or GCIs are interpreted
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with descriptive semantics, neither the lcs nor the msc need to exist. Hybrid EL-
TBoxes have first been introduced in [8]. Basically, such a TBox consists of two
parts T and F , where T is a cyclic TBox whose primitive concepts occur in the
GCIs of the general TBox F . However, defined concepts of T must not occur in
F . It was shown in [8] that subsumption w.r.t. such hybrid TBoxes can still be de-
cided in polynomial time. The algorithm uses reasoning w.r.t. the general TBox
F to extend the cyclic TBox T to a cyclic TBox ̂T such that subsumption can
then be decided considering only ̂T . In [7] it was shown that, w.r.t. hybrid EL-
TBoxes, the lcs and msc always exists and can be computed in polynomial time.

Both, the existing algorithm for deciding subsumption ([8]), and the algo-
rithms for computing lcs and mcs ([7]) in EL w.r.t. hybrid TBoxes include a
pre-processing step of normalization of the terminologies. Normalization is, con-
sequently, also required for the algorithms for deciding subsumption, and the
algorithms for computing lcs and mcs in EL w.r.t. descriptive and greatest fix-
point semantics from [13]. This pre-processing step has two undesirable features.
From the complexity point of view, it causes quadratic blow-up of the terminolo-
gies, and thus, a quadratic blowup in the size of the input to the algorithms.
Even more important, especially in the cases of lcs and mcs, normalization re-
places the original concept definitions from the terminologies by new ones, by
introducing new concept names that occur in those modified definitions. For in-
stance, assume one wants to extend an existing large life-science ontology (and
those are usually not normalized) by adding just a single lcs of some two defined
concepts. The existing procedure results in quadratic blow-up of the entire on-
tology, its modification for all users of the ontology, and introduction of some
new (generic and unintuitive) concept names.

An approach for deciding subsumption in EL that significantly differs from
the ones described in [3,6,4] was introduced in [9]. It is based on sound and com-
plete Gentzen-style proof calculi for subsumption w.r.t. cyclic TBoxes interpreted
with gfp semantics and for subsumption w.r.t. general TBoxes interpreted with
descriptive semantics. These calculi yield polynomial-time decision procedures
since they satisfy an appropriate sub-description property.

This paper shows that a polynomial-time decision procedure can be obtained
for deciding subsumption w.r.t. hybrid EL-TBoxes by combining the two calculi
introduced in [9]. Another contribution of this paper is a proof-theoretic com-
putation of lcs in EL w.r.t. hybrid TBoxes. In both cases, the normalization of
the ontologies is avoided, together with the undesirable features that come along
with it.

2 Hybrid EL-TBoxes

Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept descriptions are built using the concept constructors top concept (�),
conjunction (�), and existential restrictions (∃r.C). The semantics of EL is de-
fined in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns
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Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept � �I = DI

conjunction C � D (C � D)I = CI ∩ DI

exist. restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

subsumption C 
 D CI ⊆ DI

binary relations on DI to role names and subsets of DI to concept descriptions,
as shown in the semantics column of Table 1. A concept definition is an ex-
pression of the form A ≡ C, where A is a concept name and C is a concept
description, and a general concept inclusion (GCI) is an expression of the form
C � D, where C, D are concept descriptions. An interpretation I is a model of
a concept definition or GCI if it satisfies the respective condition given in the
semantics column of Table 1. This semantics for GCIs and concept definitions
is usually called descriptive semantics. A TBox is a finite set T of concept def-
initions that does not contain multiple definitions, i.e., {A ≡ C, A ≡ D} ⊆ T
implies C = D. Note that TBoxes are not required to be acyclic, i.e., there
may be cyclic dependencies among the concept definitions. A general TBox is a
finite set of GCIs. The interpretation I is a model of the TBox T (the general
TBox F) iff it is a model of all concept definitions (GCIs) in T (in F). The
name general TBox is justified by the fact that concept definitions A ≡ C can
of course be expressed by GCIs A � C, C � A. However, in hybrid TBoxes to be
considered, concept definitions will be interpreted by greatest fixpoint semantics
rather than by descriptive semantics. We assume in the following that the set of
concept names Ncon is partitioned into the set of primitive concept names Nprim

and the set of defined concept names Ndef . In a hybrid TBox, concept names
occurring on the left-hand side of a concept definition are required to come from
the set Ndef , whereas GCIs may not contain concept names from Ndef .

Definition 1 (Hybrid EL-TBoxes). A hybrid EL-TBox is a pair (F , T ),
where F is a general EL-TBox containing only concept names from Nprim , and
T is an EL-TBox such that A ≡ C ∈ T implies A ∈ Ndef .

An example of a hybrid EL-Tbox, taken from [8], is given in Fig. 1. It defines the
concepts ‘disease of the connective tissue,’ ‘bacterial infection,’ and ‘bacterial peri-
carditis’ using the cyclic definitions in T . The general TBoxF states some proper-
ties that the primitive concepts and roles occurring in T must satisfy, such as the
fact that a disease located on connective tissue also acts on the connective tissue.
In general, the idea underlying the definition of hybrid TBoxes is the following:
F can be used to constrain the interpretation of the primitive concepts and roles,
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T : ConnTissDisease ≡ Disease � ∃acts on.ConnTissue
BactInfection ≡ Infection � ∃causes.BactPericarditis

BactPericarditis ≡ Inflammation � ∃has loc.Pericardium
� ∃caused by.BactInfection

F : Disease � ∃has loc.ConnTissue 
 ∃acts on.ConnTissue
Inflammation 
 Disease
Pericardium 
 ConnTissue

Fig. 1. A small hybrid EL-TBox

whereas T tells us how to interpret the defined concepts occurring in it, once the
interpretation of the primitive concepts and roles is fixed.

A primitive interpretation J is defined like an interpretation, with the only
difference that it does not provide an interpretation for defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and Nrole , but it cannot interpret concept descriptions containing elements of
Ndef . Given a primitive interpretation J , we say that the (full) interpretation
I is based on J if it has the same domain as J and its interpretation function
coincides with J on Nprim and Nrole .

Given two interpretations I1 and I2 based on the same primitive interpreta-
tion J , we define

I1 	J I2 , iff AI1 ⊆ AI2 for all A ∈ Ndef .

It is easy to see that the relation 	J is a partial order on the set of interpretations
based on J . In [3] the following was shown: given an EL-TBox T and a primitive
interpretation J , there exists a unique model I of T such that

– I is based on J ;
– I ′ 	J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-TBoxes). An interpretation I is a
hybrid model of the hybrid EL-TBox (F , T ), iff I is a gfp-model of T and the
primitive interpretation J it is based on is a model of F .

It is well-known that gfp-semantics coincides with descriptive semantics for
acyclic TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (F , T )
according to the semantics introduced in Definition 2, iff it is a model of T ∪ F
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in F and of every
concept definition in T .
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3 Subsumption w.r.t. Hybrid EL-TBoxes

Based on the semantics for hybrid TBoxes introduced above, we can now define
the main inference problem that we want to solve in this paper.

Definition 3 (Subsumption w.r.t. hybrid EL-TBoxes). Let (F , T ) be a
hybrid EL-TBox, and A, B defined concepts occurring on the left-hand side of a
definition in T . Then A is subsumed by B w.r.t. (F , T ) (written A �gfp,F ,T B),
iff AI ⊆ BI holds for all hybrid models I of (F , T ).

Defining (and computing) subsumption only for concept names A, B defined in
T rather than for arbitrary concept descriptions C, D is not a real restriction
since one can always add definitions with the right-hand sides C, D to T .

Assume that the hybrid EL-TBox (F , T ) is given, and that we want to de-
cide whether, for given defined concepts A, B, the subsumption relationship
A �gfp,F ,T B holds or not. Following the ideas in [9], we introduce a sound and
complete Gentzen-style calculus for subsumption. The reason why this calculus
yields a decision procedure is basically that it has the sub-description property,
i.e., application of rules can be restricted to sub-descriptions of concept descrip-
tions occurring in F or T .

A sequent for (F , T ) is of the form C �n D, where C, D are sub-descriptions
of concept descriptions occurring in F or T , and n ≥ 0. The rules of the Hybrid
EL-TBox Calculus HC depicted in Fig. 2 can be used to derive new sequents from
sequents that have already been derived. For example, the sequents in the first row
of the figure can always be derived without any prerequisites, using the rules Refl,
Top, and Start, respectively. Using the rule AndR, the sequent C �n D � E can
be derived in case both C �n D and C �n E have already been derived. Note
that the rule Start applies only for n = 0. Also note that, in the rule DefR, the
index is incremented when going from the prerequisite to the consequent.

C 
n C (Refl) C 
n � (Top) C 
0 D (Start)

C 
n E

C � D 
n E (AndL1)

D 
n E

C � D 
n E (AndL2)

C 
n D C 
n E

C 
n D � E (AndR)

C 
n D

∃r.C 
n ∃r.D (Ex)

C 
n D

A 
n D (DefL)

D 
n C

D 
n+1 A (DefR)

C 
n E F 
n D

C 
n D (GCI)

for A ≡ C ∈ T for A ≡ C ∈ T for E 
 F ∈ F

Fig. 2. The rule system HC
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Infl �n Infl D �n D

Infl �n D

Infl � ∃hl.P �n D

Infl �n Infl D �n D

Infl �n D

Infl � ∃hl.P �n D

P �n P CT �n CT

P �n CT

∃hl.P �n ∃hl.CT

Infl � ∃hl.P �n ∃hl.CT

Infl � ∃hl.P �n D � ∃hl.CT ∃ao.CT �n ∃ao.CT

Infl � ∃hl.P �n ∃ao.CT

Infl � ∃hl.P �n D � ∃ao.CT

Infl � ∃hl.P � ∃cb.BI �n D � ∃ao.CT

BP �n D � ∃ao.CT

BP �n+1 CTD

Fig. 3. An example of a derivation in HC

Fig. 3 shows a derivation in HC w.r.t. the hybrid EL-TBox from Fig. 1, where
obvious abbreviations of concept and role names have been made. This derivation
tree demonstrates that the sequent BactPericarditis �n+1 ConnTissDisease can
be derived for every n ≥ 0. Note that we can also derive BactPericarditis �0

ConnTissDisease using the rule Start.
The calculus HC defines binary relations �n for n ∈ {0, 1, . . .} ∪ {∞} on the

set of sub-descriptions of concept descriptions occurring in F or T :

Definition 4. Let C, D be sub-descriptions of the concept descriptions occurring
in F or T . Then C �n D holds, iff the sequent C �n D can be derived using
the rules of HC. In addition, C �∞ D holds, iff C �n D holds for all n ≥ 0.

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-TBoxes
in the following sense.

Theorem 1 (Soundness and Completeness of HC). Let (F , T ) be a hy-
brid EL-TBox, and A, B defined concepts occurring on the left-hand side of a
definition in T . Then A �gfp,F ,T B, iff A �∞ B holds.

A detailed proof of this theorem is given in [11]. Though the rules of HC are
taken from the sound and complete subsumption calculi introduced in [9] for
subsumption w.r.t. cyclic EL-TBoxes interpreted with gfp-semantics and for
subsumption w.r.t. general EL-TBoxes interpreted with descriptive semantics,
respectively, the proof that their combination is sound and complete for the case
of hybrid EL-TBoxes requires non-trivial modifications of the proofs given in [9].
Nevertheless, these proofs appear to be simpler and easier to comprehend than
the ones given in [8,10] for the correctness of the reduction-based subsumption
algorithm for hybrid EL-TBoxes introduced there.

In our example, we have BactPericarditis �∞ ConnTissDisease, and thus sound-
ness of HC implies that the subsumption relationship BactPericarditis �gfp,F ,T
ConnTissDisease holds.

It is not hard to show that �0 is the universal relation on sub-descriptions
of the concept descriptions occurring in F or T , and that �n+1 ⊆ �n holds
for all n ≥ 0 (see [11] for a proof). Thus, to compute �∞ we can start with
the universal relation �0, and then compute �1,�2, . . ., until for some m we
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have �m = �m+1, and thus �m = �∞. Since the set of sub-descriptions is
finite, the computation of each relation �n can be done in finite time, and we
can be sure that there always exists an m such that �m = �m+1. This shows
that the calculus HC indeed yields a subsumption algorithm. Even more so, the
decision procedure will terminate in polynomial time. This can easily be seen
by noticing that we can compute each of the relations �m in polynomial time
by performing the proof search for each pair of subconcepts of the TBox with
caching the intermediate derived subsumption pairs. Notice that the number of
subconcepts of the TBox is linear in the size of the TBox. Also, the maximal
number m0 of different �m relations corresponds to the case where �i and �i+1

differ in a single subsumption pair, for all i ≤ m0. Thus, the total number of
different �m relations is bounded by the number of subsumption pairs +1, i.e.
bounded by a quadratic function in the size of the TBox.

A detailed description of the implementation of this decision procedure can
be found in [15].

4 Computing Least Common Subsumer in EL w.r.t.
Hybrid TBoxes

This section is dedicated to employing the developed proof-theoretic techniques
in calculating and showing the correctness of the computation of the least-
common subsumer of two defined concepts with respect to hybrid TBoxes. We
start by introducing the notion of a conservative extension of a hybrid EL-TBox.

Definition 5. Given a hybrid EL-TBox (F , T ′) we say that the hybrid TBox
(F , T ′′) is a conservative extension of (F , T ′), iff T ′ ⊆ T ′′, and T ′ and T ′′ have
the same primitive concepts and roles.

It is well known that the conservative extensions do not change the set of sub-
sumption pairs (see [2]), i.e. (F , T ) |= C � D, iff (F , T ′) |= C � D, for all sub-
concepts C, D occurring in (F , T ). This can also be shown in a proof-theoretic
way by noticing that C �∞ D can be derived in the HC calculus for (F , T ), iff
it can be derived in HC for (F , T ′).

Notice that, for instance, �n, �∞ and Ndef are defined w.r.t. a concrete TBox.
That is why, in the cases where multiple TBoxes are concerned, superscripts are
used to specify the appropriate TBoxes. The following definition introduces the
notion of least-common subsumer in the hybrid setting.

Definition 6. (Hybrid lcs) Let (F , T1) be a hybrid EL-TBox and A, B ∈ NT1
def .

Let (F , T2) be a conservative extension of (F , T1) with Z ∈ NT2
def . Then Z in

(F , T2) is a hybrid least-common subsumer (lcs) of A, B in (F , T1), iff the fol-
lowing conditions hold:

1. A �gfp,F ,T2 Z and B �gfp,F ,T2 Z; and
2. if (F , T3) is a conservative extension of (F , T2) and D ∈ NT3

def such that
A �gfp,F ,T3 D and B �gfp,F ,T3 D then Z �gfp,F ,T3 D.
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Concept D from the previous definition is an arbitrary concept defined in some
conservative extension (F , T3). It would suffice, though, to restrict D to be arbi-
trary concept defined in T3 \T1, i.e. it is sufficient to consider only newly defined
concepts for testing the condition 2 of the definition above. Indeed, if we want
to test whether Z �gfp,F ,T3 D for D ∈ NT1

def , we can equivalently check whether
Z �gfp,F ,T4 AD, where T4 consists of T2 with a definition D ≡ AD for a new
concept AD.

One can observe that, as mentioned in the introduction, the existing algorithm
for computing lcs for EL w.r.t. TBoxes interpreted by greatest fixpoint semantics
from [13], and the algorithm for computing lcs for EL w.r.t. hybrid TBoxes from
[7], strictly speaking, do not result in a conservative extension of the original
TBox due to the normalization step.

Assume now that, given a hybrid TBox (F , T ), one wants to know the least
common subsumer of two defined concepts A and B occurring in a hybrid TBox.
We give a definition of an extension of the hybrid TBox which contains definitions
of lcs of defined concepts occurring in the original TBox.

Before doing so, consider the set subcon of all subconcepts of concept descrip-
tions occurring in the TBox (F , T ) and consider the sets

ExRest = {C | C ∈ subcon and there is an r ∈ Nrole such that ∃r.C ∈ subcon},
Npair = {(C, D) | C, D ∈ (NT

def ∪ ExRest)}, and
Prims = {C | C ∈ subcon and C does not have elments of Ndef as subconcepts}.

Notice that elements of Prims are concept descriptions built using only primitive
concept names and role names. Now we define the conservative extension of the
TBox as follows.

Definition 7. Let (F , T ) be a hybrid EL-TBox. A conservative extension
(F , Tlcs) of (F , T ) is obtained by adding to the (F , T ) definitions

(C, D) ≡ θ1 � ... � θk � X1 � ... � Xl � ∃r1.(C1, D1) � ... � ∃rm.(Cm, Dm)

for each (C, D) ∈ Npair, where:

1. θ ∈ {θ1, ..., θk}, iff C �(F ,T )
∞ θ, D �(F ,T )

∞ θ, and θ ∈ Prims

2. X ∈ {X1, ..., Xl}, iff C �(F ,T )
∞ X, D �(F ,T )

∞ X, and X ∈ NT
def ;

3. ∃r.(τ, σ) ∈ {∃r1.(C1, D1), ...,∃rm.(Cm, Dm)}, iff C �(F ,T )
∞ ∃r.τ , D �(F ,T )

∞
∃r.σ and (τ, σ) ∈ Npair.

Least common subsumer of two defined concepts A and B occurring in the TBox
will be newly defined concept (A, B). Once the �(F ,T )

∞ relation is computed,
computation of the extension (F , Tlcs) can be done by a simple computation in
polynomial time, and the resulting TBox is indeed a conservative extension of
the original one.

In what follows we show that the definition above provides computation of
lcs of two given concepts, i.e. that the least common subsumer of two defined
concepts A and B occurring in the TBox is the newly defined concept (A, B).
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What needs to be shown is that conditions 1 and 2 from Definition 6 hold for
all (A, B). In order to do so, we will simplify the discussion by restricting our
attention to those conservative extensions from condition 2 for which newly
added definitions are of a certain regular structure. Such an assumption, of
course, is done without loss of generality.

Definition 8. We say that a conservative extension (F , T ′) of the hybrid EL-
TBox (F , T ) is obtained by adding normalized definitions modulo (F , T ) if every
definition in T ′ \ T is of the form:

Z ≡ P1 � ... � Pm � A1 � ... � Ak � ∃r1.B1 � ... � ∃rn.Bn

where Pi is a primitive concept for every i = 1, ..., m, Ai is a concept defined
in T , for every i = 1, ..., k, and Bj is a concept defined in T ′ \ T , for every
j = 1, ..., n.

The proof of the following proposition can be found in [11].

Proposition 1. Let (F , T ) be a hybrid EL-TBox, and (F , T ∪A1) some conser-
vative extension of (F , T ). Then, there is a conservative extension (F , T ∪ A2)
of (F , T ) obtained by adding normalized definitions modulo (F , T ) to it, such
that the set of defined concepts in (F , T ∪ A1) is a subset of the set of defined
concepts in (F , T ∪ A2), and (F , T ∪ A1) |= C � D, iff (F , T ∪ A2) |= C � D
for every two concepts C and D defined in (F , T ∪ A1).

This proposition shows that one can restrict the attention to the conservative
extensions obtained by adding the normalized definitions modulo a TBox when
checking for property 2 from the definition of lcs. Indeed, let Φ be a concept
defined in a conservative extension (F , T ∪A1) of hybrid TBox (F , T ), such that
Φ subsumes both A and B. By the previous proposition, there is a conservative
extension (F , T ∪ A2) of the TBox (F , T ) by normalized definitions modulo
(F , T ), such that (A, B) will be subsumed by Φ w.r.t. (F , T ∪ A1), iff (A, B)
is subsumed by Φ w.r.t. (F , T ∪ A2). In particular, (A, B) will be subsumed by
every concept Φ that subsumes both A and B w.r.t. an arbitrary conservative
extension of the TBox, iff it is subsumed by every concept Φ that subsume both A
and B w.r.t. conservative extensions of the TBox obtained by adding normalized
definitions modulo (F , T ).

We continue by introducing a relation �. We say that C � D, iff C �n D can
be derived for some n using only the rules that consider the left-hand side of a
sequent, i.e. (Ref), (AndL1), (AndL2), (DefL) and (GCI). Notice that if C �n D
can be derived using only those rules for some n, then it can be derived for any
n. The following, rather technical lemmas are given here without proofs, which
can be found in [11].

Lemma 1. Suppose that n > 0.

– F �n+1 A, iff F �n CA, where A ≡ CA is an axiom of the TBox.
– F �n ∃r.D, iff there exist α, β, ρ such that F �n α, β � ∃r.ρ and ρ �n D

for some subconcept ρ of the TBox, and α and β being such that either
α = β = F or α � β being a GCI from F .
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Lemma 2. Let D, C and F be arbitrary subconcepts occurring in a TBox
(F , T ). If D �∞ F and F �n C, then D �n C.

We are equipped now to show that our newly defined concepts are indeed the
subsumers.

Lemma 3. Let D and C be arbitrary concepts from NT
def ∪ ExRest. Then,

D �(F ,Tlcs)
n (D, C) and C �(F ,Tlcs)

n (D, C) for every n.

Proof. We give a proof of D �(F ,Tlcs)
n (D, C), proof of C �n (D, C) is analogous.

Proof is carried out by induction on n. For n = 0, D �(F ,Tlcs)
0 (D, C) follows

from the rule (Start). Assume now that D �(F ,Tlcs)
l (D, C) holds for all l ≤ n.

We prove that D �(F ,Tlcs)
n+1 (D, C). Let

(D, C) ≡ θ1 � ... � θk � X1 � ... � Xu � ∃s1.(Dl1 , Cm1) � ... � ∃st.(Dlt , Cmt)

be the definition of (D, C) in the extended hybrid TBox (F , Tlcs). Lemma 1
applied to this definition yields D �(F ,Tlcs)

n+1 (D, C), iff D �(F ,Tlcs)
n θ1 � ... � θk �

X1 � ... �Xu � ∃s1.(Dl1 , Cm1) � ... � ∃st.(Dlt , Cmt). Therefore, it is sufficient to
show D �(F ,Tlcs)

n θ1� ...�θk �X1� ...�Xu �∃s1.(Dl1 , Cm1)� ...�∃st.(Dlt , Cmt).
Due to (AndR), one way to show this is to give a proof of D �(F ,Tlcs)

n θi for
i = 1, ..., k, D �(F ,Tlcs)

n Xi for i = 1, ..., u, and D �(F ,Tlcs)
n ∃sj .(Dlj , Cmj ) for

j = 1, ..., t.

– D �(F ,Tlcs)
n θi: by Definition 7, D �(F ,Tlcs)

∞ θi. Therefore, by definition of
�(F ,Tlcs)

∞ , D �(F ,Tlcs)
n θi, for i = 1, ..., k. Similarly, D �(F ,Tlcs)

n Xi.
– D �(F ,Tlcs)

n ∃sj .(Dlj , Cmj ): by Definition 7, D �(F ,Tlcs)
∞ ∃sj .Dlj , therefore

D �(F ,Tlcs)
n ∃sj .Dlj . Since both Dlj and Cmj belong to the Ndef ∪ ExRest,

induction hypothesis can be applied and it yields Dlj �(F ,Tlcs)
n (Dlj , Cmj ).

Then, ∃sj .Dlj �(F ,Tlcs)
n ∃sj .(Dlj , Cmj ) follows by applying the rule (Ex).

Since D �(F ,Tlcs)
∞ ∃sj .Dlj , Lemma 2 yields D �(F ,Tlcs)

n ∃sj .(Dlj , Cmj ).

By definition of �(F ,Tlcs)
∞ , and due to the soundness of HC, both A and B are

subsumed by (A, B), for all defined concepts A and B in (F , T ).
We give here another technical property of conservative extensions and �(F ,T )

relation.

Lemma 4. Let (F , T2) be an arbitrary conservative extension of (F , T ). If σ is
a subconcept occurring in (F , T ) and σ �(F ,T2) ∃r.τ , then ∃r.τ is a subconcept
occurring in (F , T ).

Finally, we show the minimality condition.

Lemma 5. Let (F , T2) be a conservative extension of (F , Tlcs) by normalized
definitions modulo (F , Tlcs). Let D and C be two concepts from NT

def ∪ExRest,

and let Φ be a concept defined in T2 \ T . If D �(F ,T2)
∞ Φ and C �(F ,T2)

∞ Φ, then
(D, C) �(F ,T2)

n Φ, for every n.
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Proof. Assume

Φ ≡ θ1 � ... � θk � X1 � ... � Xu � ∃r1.Φ1 � ... � ∃rl.Φl

is a definition in T2\T . Here, θi, for i = 1, .., k, is an element of Prims ( from the
definition of (F , Tlcs)), (and in the case Φ is defined in T2 \ Tlcs, it is a primitive
concept). Xi, for i = 1, .., u, is a concept defined in (F , Tlcs) (in T in the case
Φ is defined in Tlcs), while Φi, for i = 1, ..., l is a concept defined in T2 \ T (in
Tlcs \ T in the case Φ is defined in Tlcs). Again, proof is carried out by induction
on n. For n = 0, (D, C) �(F ,T2)

0 Φ follows from the rule (Start).
Assume now that (D, C) �(F ,T2)

k Φ for all k ≤ n. We prove that (D, C) �(F ,T2)
n+1

Φ. One of the properties of the �(F ,Tlcs)
n relation, shown in Lemma 1 in our case

yields (D, C) �(F ,T2)
n+1 Φ iff (D, C) �(F ,T2)

n θ1 � ... � θk � X1 � ... � Xu � ∃r1.Φ1 �
... � ∃rl.Φl. Therefore, it suffices to prove (D, C) �(F ,T2)

n θ1 � ... � θk �X1 � ...�
Xu � ∃r1.Φ1 � ...� ∃rl.Φl. Again due to (AndR), one way to show this is to give
a proof of (D, C) �(F ,T2)

n θi for i = 1, ..., k, (D, C) �(F ,T2)
n Xi for i = 1, ..., u,

and (D, C) �(F ,T2)
n ∃rj .Φj for j = 1, ..., l.

– (D, C) �n θi: by soundness and completeness of HC, D �(F ,T2)
∞ Φ implies

D �(F ,T2)
∞ θi, similarly, C �(F ,T2)

∞ θi, and therefore θi occurs on the right-
hand side of the definition of (D, C) by Definition 7, since θi belongs to
Prims. Therefore, (D, C) �(F ,T2)

n θi follows from completeness of the HC
calculus and the fact that (D, C) � θi holds in all models of (F , T ).

– (D, C) �n Xi: we distinguish two cases

1. Xi is defined in T : by soundness and completeness of HC, D �(F ,T2)
∞ Φ

implies D �(F ,T2)
∞ Xi, similarly, C �(F ,T2)

∞ Xi, and therefore Xi occurs
on the right-hand side of the definition of (D, C) by Definition 7. Thus,
(D, C) �(F ,T2)

n Xi follows from completeness of the HC calculus and the
fact that (D, C) � Xi holds in all models of (F , T ).

2. Xi is defined in Tlcs \ T : then, Xi is of the form (γ, δ). By soundness
and completeness of HC, D �(F ,T2)

∞ Φ implies D �(F ,T2)
∞ (γ, δ), similarly,

C �(F ,T2)
∞ (γ, δ). Now, the induction hypothesis can be applied, since

(γ, δ) is defined in Tlcs \ T ⊆ T2 \ T , and it yields (D, C) �n (γ, δ).

– (D, C) �(F ,T2)
n ∃rj .Φj : again, by soundness and completeness of HC,

D �(F ,T2)
∞ Φ implies D �(F ,T2)

∞ ∃rj .Φj and C �(F ,T2)
∞ Φ implies C �(F ,T2)

∞
∃rj .Φj . By Lemma 1, this means that there exist concepts α, β and ρ and
such that

D �(F ,T2)
∞ α, β �(F ,T2) ∃rj .ρ, ρ �(F ,T2)

∞ Φj

C �(F ,T2)
∞ α1, β1 �(F ,T2) ∃rj .ρ1, ρ1 �(F ,T2)

∞ Φj

where α � β ∈ F or D = α = β; α1 � β1 ∈ F or C = α1 = β1; and ρ and
ρ1 are some concepts occurring in (F , T2).
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This further implies D �(F ,T2)
∞ ∃rj .ρ by applying rule (Concept) to

D �(F ,T2)
n α and β �(F ,T2)

n ∃rj .ρ for every n. Analogously, C �(F ,T2)
∞ ∃rj .ρ1.

Lemma 4 applied to β �(F ,T2) ∃rj .ρ and β1 �(F ,T2) ∃rj .ρ1 yields the fact
that ∃rj .ρ and ∃rj .ρ1 are concepts from (F , T ). Even more, they are from
ExRest.

Now, the induction hypothesis can be applied to ρ �(F ,T2)
∞ Φj and

ρ1 �(F ,T2)
∞ Φj to obtain (ρ, ρ1) �(F ,T2)

n Φj . On the other hand, by Defini-
tion 7, ∃rj .(ρ, ρ1) is one of the conjuncts in the definition of (D, C). Now,
(D, C) �(F ,T2)

n ∃rj .Φj can be derived from (ρ, ρ1) �(F ,T2)
n Φj , by applying

(Ex) rule, (AndL1) or (AndL2) rules several times and (DefL) in the end.

Again, due to the soundness of derivations in HC, considering defined concepts
A, B and the corresponding (A, B), we have that (A, B) is subsumed by every
concept defined in T2\T that subsumes both A and B. (We use notation from the
previous lemma.) By the comment after Definition 6, this conclusion is sufficient
to show property 2 from the definition of hybrid lcs.

Notice also, that, as shown before, the assumption made on the added defini-
tions within the conservative extensions, namely the assumption of them being
normalized modulo the TBox, does not cause loss of generality.

Combined with the previously shown property 1 from the definition of hybrid
lcs, this proves the following theorem.

Theorem 2. The concept description (A, B) from the extended hybrid TBox
(F , Tlcs) is a least common subsumer of A and B w.r.t. the hybrid TBox (F , T ).

5 Conclusion

In this paper, we have described a Gentzen-style calculus for subsumption
w.r.t. hybrid EL-TBoxes, which is an extension to the case of hybrid TBoxes
of the calculi for general TBoxes and for cyclic TBoxes with gfp-semantics
that have been introduced in [9]. Based on this calculus, we have developed a
polynomial-time decision procedure for subsumption w.r.t. hybrid EL-TBoxes.
The second result described in this paper was the proof-theoretic computation of
least common subsumers w.r.t. hybrid EL-TBoxes. We provide a technique that
avoids the undesirable features of normalization. Since the main motivation for
considering hybrid TBoxes was that, w.r.t. them, the lcs and msc always exist,
the natural next step is to develop a proof-theoretic approach to computing the
msc, and we currently investigate that possibility. Other future work in this
direction is to try to extend the described techniques to more expressive DLs
from the EL family.
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