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Preface

This volume contains the papers selected for presentation at the 11th European
Conference on Logics in Artificial Intelligence (or Journées Européennes sur la
Logique en Intelligence Artificielle, JELIA), which was held from September 28
to October 1, 2008, at the Technische Universität Dresden, Germany.

In total, 98 research papers were submitted by researchers from 24 countries.
Each submission was reviewed by at least three expert reviewers. The final deci-
sions on the papers were taken during an electronic Program Committee meeting
held on the Internet. The Program Committee accepted 32 research papers for
presentation at the conference. This includes two summaries of master theses
that won the best thesis award of the European Master’s Programme in Compu-
tational Logic (EMCL) in 2006 and 2007, respectively: the paper by Magdalena
Ortiz on “Extending CARIN to the Description Logics of the SH Family” and the
one by Novak Novakovic on “Proof-Theoretic Approach to Deciding Subsump-
tion and Computing Least Common Subsumer in EL w.r.t. Hybrid TBoxes.”

The program also included three invited lectures by Sergei Artemov, Ruth
Byrne, and Jérôme Lang. The lecture by Ruth Byrne was given jointly to JELIA
2008 and to the 9. Fachtagung der Gesellschaft für Kognitionswissenschaft (9th
Symposium of the German Cognitive Science Society), which was held in paral-
lel at the Technische Universität Dresden. Also colocated with JELIA 2008 were
the 9th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-IX) and the 22nd Workshop on (Constraint) Logic Programming
(WLP 2008).

Many people contributed to making JELIA 2008 a success. We thank the
authors of the submitted papers, which were of very high quality and covered a
broad range of topics including belief revision, description logics, non-monotonic
reasoning, multi-agent systems, probabilistic logic, and temporal logic. We are
grateful to the Program Committee and the referees for the considerable efforts
that they invested in reviewing and selecting the papers. Andrei Voronkov’s
EasyChair conference software was of tremendous help during all phases of
preparation of the conference and proceedings. We thank Bertram Fronhöfer,
Axel Großmann, and Julia Koppenhagen for their continuous support and help
with the local organization. A final thank you goes to Moritz Weeger for creat-
ing and maintaining the JELIA 2008 webpages as well as to Julia Schwung and
Philipp Böhnke for designing the JELIA 2008 poster.

July 2008 Steffen Hölldobler
Carsten Lutz

Heinrich Wansing
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A Game-Theoretic Measure of Argument Strength for Abstract
Argumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Paul-Amaury Matt and Francesca Toni

A Tableau for RoBCTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
John C. McCabe-Dansted

A Proof-Theoretic Approach to Deciding Subsumption and Computing
Least Common Subsumer in EL w.r.t. Hybrid TBoxes . . . . . . . . . . . . . . . . 311

Novak Novaković
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Justification Logic

Sergei Artemov

CUNY Graduate Center,
365 Fifth Ave., New York City, NY 10016, USA

SArtemov@gc.cuny.edu

Justification Logic offers a new approach to a theory of knowledge, belief,
and evidence, which possesses the potential to have significant impact on ap-
plications. The celebrated account of knowledge as justified true belief,
which is attributed to Plato, has long been a focus of epistemic studies (cf.
[10,15,18,26,30,32] and many others).

About a half-century ago, the notions of knowledge and belief acquired for-
malization by means of modal logic ([22,34]). Within this approach, the following
analysis is adopted:

F is known

is interpreted as
F holds in all possible situations.

The resulting epistemic logic has been remarkably successful in terms of develop-
ing a rich mathematical theory and applications (cf. [13,28], and other sources).
However, it misses the mark in some situations:

What if F holds at all possible worlds, e.g., a mathematical truth, say
P �= NP , but the agent is simply not aware of the fact due to lack of
evidence, proof, justification, etc.?

The notion of justification, an essential element of epistemic studies, was conspic-
uously absent in epistemic logic, which led to well-known deficiencies inherent
in modal logics of knowledge. This is displayed most prominently in the Log-
ical Omniscience defect of the modal logic of knowledge (cf. [11,12,23,29,31]).
According to a basic principle of epistemic modal logic,

�(F →G)→(�F →�G),

the agent is supposed to “know” all logical consequences of his/her assumptions.
In particular, each agent who knows the rules of Chess should know whether there
is a winning strategy for White. Furthermore, if an agent knows a product of two
(very large) primes, then the agent should know each of the primes, etc.

Within the provability domain, the absence of an adequate description of
the logic of justifications (here mathematical proofs) remained an impediment
to both the formalizing of Brouwer-Heyting-Kolmorogorov semantics for intu-
itionistic logic ([16,17,21,24]) and providing an intended semantics for Gödel’s
provability logic S4 ([2,3,6,16,17,33]). This lack of a justification component has,
perhaps, contributed to a certain gap between epistemic logic and mainstream
epistemology ([19,20]).

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 1–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S. Artemov

We describe a general logical framework, Justification Logic, for reasoning
about epistemic justification ([1,3,4,5,7,8,9,14,25] and others). Justification Logic
is based on classical propositional logic augmented by justification assertions t:F
that read

t is a justification for F.

Justification Logic absorbs basic principles originating from both mainstream
epistemology and the mathematical theory of proofs.

As a case study, we formalize Gettier examples ([15]) in Justification Logic and
reveal hidden assumptions and redundancies in Gettier reasoning. Furthermore,
we formalize Kripke’s well-known ‘red barn example’ [27] and offer a resolution
of the corresponding paradox. The latter provides a clear example of a problem
which lies outside the scope of the traditional epistemic modal logic but can be
handled naturally in Justification Logic.

We state a general Correspondence Theorem showing that behind each epis-
temic modal logic, there is a robust system of justifications.

Justification Logic extends the logic of knowledge in three major ways.
First, it adds a long-anticipated mathematical notion of justification, making

the logic more expressive. We now have the capacity to reason about justi-
fications, simple and compound. We can compare different pieces of evidence
pertaining to the same fact. We can measure the complexity of justifications,
thus connecting the logic of knowledge to a rich complexity theory, etc.

Second, justification logic furnishes a new, evidence-based foundation for the
logic of knowledge, according to which

F is known

is interpreted as
F has an adequate justification.

Third, justification logic provides a novel, evidence-based mechanism of truth
tracking which can be a valuable tool for extracting robust justifications from a
larger body of justifications which are not necessarily reliable.

Knowledge, belief, and evidence are fundamental concepts whose significance
spans many areas of human activity: artificial intelligence and computer science,
mathematics, economics and game theory, cryptography, philosophy, and other
disciplines. Justification Logic promises significant impact on the aforementioned
areas. The capacity to keep track of pieces of evidence, compare them, and select
those that are appropriate is a valuable new tool.
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Voting in Combinatorial Domains:
What Logic and AI Have to Say

(Extended Abstract)

Jérôme Lang

IRIT - Université Paul Sabatier and CNRS
31062 Toulouse Cedex, France

lang@irit.fr

This talk is half-way between a survey and a report on ongoing research, most of
which is joint work with Vincent Conitzer and Lirong Xia. The first part of the talk owes
a lot to two survey papers co-authored with Yann Chevaleyre, Ulle Endriss and Nicolas
Maudet [5,6].

Social Choice Theory is the subfield of economics that aims at designing and evaluating
methods for collective decision making [1]. Most works in the field focus on normative
questions: the problem is generally considered to be solved when the existence (or the
non-existence) of a procedure meeting some requirements has been shown; how hard it
is to compute this procedure, and how it should be computed, have deserved much less
attention in the Social Choice community. This is where Computer Science, and more
specifically Artificial Intelligence, come into play, giving birth to a new interdisciplinary
research field called Computational Social Choice (see [5] for an introduction to the
field). The first part of the talk will consist of a brief introduction to computational
social choice.

One of the hot topics in computational social choice is voting on a set of alternatives
that has a combinatorial structure: in other words, the voters have to make a common
decision on several possibly related issues. For instance, the inhabitants of some local
community may have to make a joint decision over several related issues of local inter-
est, such as deciding whether some new public facility such as a swimming pool or a
tennis court should be built. Such elections are called multiple referenda [4]. Some of
the voters may have preferential dependencies, for instance, they may prefer the ten-
nis court to be built only if the swimming pool is not. Another example is when the
members of an association have to elect a steering committee, composed of a presi-
dent, a vice-president and a treasurer (see for instance [2]). Again, voters typically have
preferential dependencies.

As soon as voters have preferential dependencies between issues, it is generally a bad
idea to decompose the problem into a set of p smaller problems, each one bearing on a
single issue. Doing so typically lead to “multiple election paradoxes”. Such paradoxes
have been studied by a number of authors [4,2,8]. Consider the following example. A
joint decision has to be made about whether or not to build a new swimming pool (S
or S̄) and a new tennis court (T or T̄ ). Assume that the preferences of voters 1 and 2
are ST̄ � S̄T � S̄T̄ � ST , those of voters 3 and 4 are S̄T � ST̄ � S̄T̄ � ST ,
and those of voter 5 are ST � ST̄ � S̄T � S̄T̄ . The first problem is that voters 1

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 5–7, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



6 J. Lang

to 4 will feel ill at ease when asked to report their projected preference on {S, S̄} and
{T, T̄}. Only voter 5 knows that whatever the other voters’ preferences about {S, S̄}
(resp. {T, T̄}), she can vote for T (resp. S) without any risk of experiencing regret.
Experimental studies suggest that most voters tend to report their preferences optimisti-
cally in such situations; for instance, voters 1–2 would likely report a preference for S
over S̄. The second problem (the paradox itself) is that under this assumption that voters
report optimistic preferences, the outcome will be ST , which is the worst outcome for
all but one voter. A difficult question is how to design a method for voting on related
issues that avoids such paradoxes.

We can list five ways of proceeding, each of which has its own pitfalls: (1) ask voters
to report their entire preference relation explicitly on the set of alternatives, and then
apply a fixed voting rule; (2) ask voters to report only a small part of their preference
relation (for instance, their k preferred outcomes, where k is a small number) and apply
a voting rule that needs this information only; (3) limit the number of possible combi-
nations that voters may vote for, as advocated in [4]; (4) ask each voter to express her
preferences as an input in some fixed compact representation language, and then apply
a fixed voting rule to the profile consisting of the preference relations induced by the
voters’ inputs (see [9]); and finally, (5) impose a domain restriction allowing the voters
to vote separately on each issue, either simultaneously or sequentially. Especially, if
the voters’ preferences are separable (which means that each voter’s preference on the
values of an issue is independent from the outcome on other issues), then this approach
is reasonably safe, as shown in [8].

The second part of the talk will present the general problem of voting on combina-
torial domains, as well as its paradoxes, and will briefly discuss the pros and cons of
these five possible classes of solutions.

Then we focus on the last class of solutions, which seems to be the most promising.
Its main drawback is that separability is a very demanding assumption, and is unlikely to
be met in practice. Several recent papers [10,13,14,12] impose a much weaker domain
restriction under which sequential voting can be applied “safely”: each time a voter is
asked to report her preferences on an issue, these preferences do not depend on the
values of the issues that have not been decided yet. Formally, this can be expressed
as the following condition: there is a linear order O = X1 > . . . > Xp on the set of
issues such that the preferences of each voter on Xj are preferentially independent from
Xj+1, . . . ,Xp given X1, . . . ,Xj−1. If this property is satisfied, then sequential voting
rules can be defined in the following way. Let r1, . . . , rp be voting rules on the domains
of X1, . . . ,Xp respectively. The sequential composition of r1, . . . , rp is defined by
applying the following protocol repeatedly for i = 1, . . . , n: elicit voters’ preferences
on the domain of Xi; apply ri to these local preferences; broadcast the outcome to the
voters. Clearly, in order to compute the outcome of these sequential voting rules we
do not need to know the voters’ full preference relations: it suffices for each voter to
express a CP-net [3], with the condition that the dependency graph of the CP-nets is
acyclic and common to all voters.

Even if the domain restriction imposed by sequential voting it is much weaker than
separability, it still eliminates most of the profiles. This restriction is weakened in
[14]: profiles must only be compatible with some common order, not specified in the
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definition of the sequential voting rule. [12] goes much further and give a generalization
sequential voting rules that does not require any domain restriction. However, the gain
in generality comes with a complexity gap.

The third part of the talk will present sequential voting rules and these latter two
generalizations.

Coming back to the problem that voters encounter when asked to report their pro-
jected preferences on single issues (in the example above, between {S, S̄} and {T, T̄}):
when expressing such preferences, voters have to lift their preferences from the level
of alternatives to the level of sets of alternatives, or equivalently, to the level of propo-
sitional formulas (with issues as propositional variables). This suggests the existence
of a strong connection between voting on combinatorial domains and preference logics
[11,7]. This will be the topic of the last part of the talk.
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Abstract. This paper analyses the idea of strong equivalence for tran-
sition systems represented as logic programs under the Answer Set Pro-
gramming (ASP) paradigm. To check strong equivalence, we use a linear
temporal extension of Equilibrium Logic (a logical characterisation of
ASP) and its monotonic basis, the intermediate logic of Here-and-There
(HT). Trivially, equivalence in this temporal extension of HT provides
a sufficient condition for temporal strong equivalence and, as we show
in the paper, it can be transformed into a provability test into the stan-
dard Linear Temporal Logic (LTL), something that can be automatically
checked using any of the LTL available provers. The paper shows an ex-
ample of the potential utility of this method by detecting some redundant
rules in a simple actions reasoning scenario.

1 Introduction

The paradigm of Answer set programming (ASP) [1,2] (based on the stable mod-
els semantics [3]) constitutes one of the most successful examples of logical non-
monotonic formalisms applied to Knowledge Representation [4,5] in Artificial
Intelligence. Probably, the reasons for this success are both related to its pow-
erful representational features and, at the same time, to the availability of an
increasing number of efficient ASP solvers (see [6]) that allow its application to
many real scenarios. Concerning the formalism properties, ASP is characterised
by providing nonmonotonic reasoning with a rich and flexible syntax, initially
born from logic programming, but continuously extended thereafter along the
research history in the area, without overlooking its original semantic simplicity.
An important breakthrough in this sense has been the logical characterisation of
ASP in terms of Equilibrium Logic [7] that has opened, for instance, the study of
strong equivalence [8] (the main topic of this paper) and has recently allowed the
extension of the stable models semantics for arbitrary first order theories [9,10].

As for the practical applications of ASP, perhaps one of the most outstand-
ing and frequent uses has been the representation and automated reasoning for
action domains, solving typical problems like prediction, explanation, planning
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or diagnostics. Default negation plays here a crucial role, as it allows represent-
ing the rule of inertia (that can be stated as “a fluent remains unchanged by
default”) and avoid in this way the frame problem [11]. ASP can also be natu-
rally used for solving other typical representational problems in Reasoning about
Actions and Change, and is in fact the basis for a family1 of high level action
languages [14]. The use of ASP solvers for action domains, however, has some
limitations, as partly explained by the complexity class that these solvers allow
to capture (ΣP

2 in the most general case). In practice, this means for instance
that, when solving a planning problem (which lies in PSPACE-completeness)
we must fix an a priori plan length so that a ground logic program can be
eventually generated. The search for a minimal plan consists then in gradu-
ally incrementing this plan length until a stable model is found. A first obvious
drawback of this approach is that it is not possible to establish when a given
planning problem has no solution of any length at all. A second and more elab-
orated problem is that it is impossible to establish when two descriptions of the
same transition system are strongly equivalent, i.e., when they will behave in the
same way regardless any additional rules we include and any path length we
consider.

At a first sight, it could be thought that this problem for checking strong
equivalence of temporal scenarios is only due to the restriction to ground pro-
grams. For instance, there already exists a tool (SE-TEST [15]) that allows check-
ing strong equivalence of logic programs with variables, without requiring their
previous grounding. However, temporal domains require something else than
variables: in order to represent transition rules, we must (at least) be able to re-
fer to a situation index variable I and its successor situation I +1. This forces us
either to deal with integer numbers, or at least, with a Peano like representation
of the form s(I) with a function symbol s to represent the successor. Unfortu-
nately, SE-TEST is exclusively thought for Datalog programs, i.e. functions or
unbounded integers are not allowed.

As we mentioned above, the idea of strong equivalence was introduced in [8],
where the following question was considered: when can we safely replace a piece of
knowledge representation by an “equivalent” one independently of the context?
Formally, we say that two logic programs Π1 and Π2 are strongly equivalent
when, for any arbitrary logic program Π , both Π1 ∪ Π and Π2 ∪ Π have the
same stable models. Note that, for a monotonic logic, this property trivially
collapses to regular equivalence (i.e., coincidende of sets of models) of Π1 and
Π2. However, when a nonmonotonic entailment is involved, the addition of a
set of rules Π may have different effects on the sets of stable models of Π1

and Π2, so that strong equivalence is indeed a stronger property than regular
equivalence. In [8] it was shown that two logic programs are strongly equivalent
(under the stable models semantics) if and only if they are equivalent under the
intermediate logic of Here-and-There [18], the monotonic basis of Equilibrium
Logic.

1 To be precise, part of this family relies on the formalism of Causal Theories [12] but,
as shown in [13], this formalism can be reduced to ASP as well.
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In this paper we consider the study of strong equivalence for logic programs
that represent transition systems. To this aim, we revisit a temporal extension of
Equilibrium Logic proposed in [19] which consists in the inclusion of modal oper-
ators as those handled in Linear Temporal Logic (LTL) [20,21]. This extension,
called Temporal Equilibrium Logic, immediately provides us with a sufficient con-
dition for strong equivalence of temporal logic programs: we can simply check
regular equivalence in its monotonic basis, a logic we called Temporal Here-and-
There (THT) [19]. The main contribution of the paper is the automation of this
test for strong equivalence so that, using a similar translation to those presented
in [22,23,10], we transform a THT formula into LTL and use an LTL prover af-
terwards – in particular, we ran our experiments on the Logics Workbench [24].

The paper is organised as follows. In the next section, we introduce a simple
motivating example, extracted from the Reasoning about Actions literature, to
show the kind of problems we are interested in, proposing a pair of strong equiv-
alence tests in this domain. In Section 3 we revisit the syntax and semantics of
Temporal Here-and-There (THT) and we propose a models selection criterion to
define the nonmonotonic Temporal Equilibrium Logic (TEL). Section 4 presents
the translation from THT into LTL, whereas Section 5 applies this translation
to answer the questions proposed in Section 3. Finally, Section 6 contains the
conclusions and future work.

2 A Simple Motivating Example

Consider the following simple and well-known scenario [25] from Reasoning about
Actions literature.

Example 1. An electric circuit consists of a battery, two switches and a light
bulb. The switches are serially connected, as shown in Figure 2. The system
state is expressed in terms of three propositional fluents sw1, sw2 and light,
whose negations are represented with a bar on top of each fluent symbol. The
state of each switch swi can be alternated by performing a corresponding action
togglei. ��

For simplicity, we assume that we do not handle concurrent actions. A possible
representation of this scenario as an ASP logic program, Π1, is shown below:

light

sw1 sw2

Fig. 1. A simple electric circuit
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swj(I + 1) ← togglej(I), swj(I) (1)
swj(I + 1) ← togglej(I), swj(I) (2)

light(I + 1) ← togglej(I), swj(I) (3)
light(I + 1) ← toggle1(I), sw1(I), sw2(I) (4)
light(I + 1) ← toggle2(I), sw2(I), sw1(I) (5)

⊥ ← toggle1(I), toggle2(I) (6)
f(I + 1) ← f(I), not f(I + 1) (7)
f(I + 1) ← f(I), not f(I + 1) (8)

⊥ ← f(I), f(I) (9)

where j ∈ {1, 2} and f ∈ {sw1, sw2, light}, and we assume that each symbol
like f is actually treated as a new predicate. Variable I = 0 . . . n − 1 represents
an integer index for each situation in the temporal narrative. Rules (1)-(5) are
the effect axioms, capturing all the direct effects of actions. Rule (6) just avoids
performing concurrent actions. Rules (7) and (8) represent the inertia default for
each fluent f . Finally, (9) expresses that each fluent f and its explicit negation
f cannot be simultaneously true2.

As explained in the introduction, a planning problem would include additional
facts (representing the initial state) and rules for generating actions and express-
ing a plan goal. But the most important additional step is deciding a finite limit
n for variable I, so that the above program can be grounded.

Assume now that we want to modify Π1 after noticing that the truth value of
light is actually determined by the value of the two switches, becoming in this way
an indirect effect or ramification3. In other words, we consider the addition of rules:

light(I) ← sw1(I), sw2(I) (10)
light(I) ← sw1(I) (11)
light(I) ← sw2(I) (12)

If we call Π2 = Π1 ∪ {(10) − (12)}, we may reasonably propose the following
questions:

(Q1) Can we safely remove now from Π2 the effect axioms for fluent light (3)-
(5)?

(Q2) Assume we removed (3)-(5). Since light is “defined” now in terms of sw1

and sw2, can we safely remove from Π2 the inertia rules for light?

In order to answer these questions, the current tools for testing strong equivalence
for ground programs [26,27] cannot provide successful answers in an automated
way, as they need a numeric value for the path length n to be previously fixed.
2 Although perhaps not needed in this particular case, this axiom must be part of

any general translation of an action theory. It is not difficult to see how the above
scenario can be easily modified to introduce new contradictory effects that would
not be detected in absence of (9).

3 In fact, this example were used in [25] to illustrate possible representational problems
for a suitable treatment of action ramifications.
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3 Linear Temporal Here-and-There (THT)

We proceed now to recall the main definitions of the temporal extension of Equi-
librium Logic, beginning with its monotonic basis. The logic of Linear Temporal
Here-and-There (THT) was defined as follows. We start from a finite set of
atoms Σ called the propositional signature. A (temporal) formula is defined as
any combination of the atoms in Σ with the classical connectives ∧,∨,→,⊥,
the (unary) temporal operators � (to be read as “always” or “from now on”), ♦
(“eventually”) , © (“next”) and the (binary) temporal operators U (“until”), W
(“weak until”) and B (“before”). Negation is defined as ¬ϕ

def
= ϕ → ⊥ whereas

� def
= ¬⊥. As usual, ϕ ↔ ψ stands for (ϕ → ψ) ∧ (ψ → ϕ). We also allow the

abbreviation ©iϕ
def
= ©(©i−1ϕ) for i > 0 and ©0ϕ

def
= ϕ.

A (temporal) interpretation M is an infinite sequence of pairs 〈Hi, Ti〉 with
i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of atoms. From an ASP point of view
and informally speaking, atoms in Ti would play the role of an interpretation
(that depends on a time parameter i) we would use for building a program
reduct, whereas atoms in Hi will be minimised and later required to coincide
with Ti. For simplicity, given a temporal interpretation, we write H (resp. T )
to denote the sequence of pair components H0, H1, . . . (resp. T0, T1, . . . ). Using
this notation, we will sometimes abbreviate the interpretation as M = 〈H,T 〉.
An interpretation M = 〈H,T 〉 is said to be total when H = T . We say that
an interpretation M = 〈H,T 〉 satisfies a formula ϕ at some sequence index i,
written M, i |= ϕ, when any of the following hold:

1. M, i |= p if p ∈ Hi, for any atom p.
2. M, i |= ϕ ∧ ψ if M, i |= ϕ and M, i |= ψ.
3. M, i |= ϕ ∨ ψ if M, i |= ϕ or M, i |= ψ.
4. 〈H,T 〉, i |= ϕ → ψ if both:

(a) 〈H,T 〉, i �|= ϕ or 〈H,T 〉 |= ψ;
(b) 〈T , T 〉, i �|= ϕ or 〈T , T 〉 |= ψ.

5. M, i |= ©ϕ if M, i+1 |= ϕ.
6. M, i |= �ϕ if for all j ≥ i, M, j |= ϕ.
7. M, i |= ♦ϕ if there exists some j ≥ i, M, j |= ϕ.
8. M, i |= ϕ U ψ if there exists j ≥ i, M, j |= ψ and M,k |= ϕ for all k such

that i ≤ k < j.
9. M, i |= ϕ W ψ if either M, i |= ϕ U ψ or, for all j ≥ i, M, j |= ϕ.

10. M, i |= ϕ B ψ if for all j ≥ i, either M, j |= ψ or there exists some k,
i ≤ k < j such that M,k |= ϕ.

We assume that a finite sequence 〈H0, T0〉 . . . 〈Hn, Tn〉 with n ≥ 0 is an abbre-
viation of the infinite sequence 〈H ′

, T
′〉 with H ′

i = Hi, T ′i = Ti for i = 0, . . . , n
and H ′

i = Hn, T ′i = Tn for i > n.
The logic of THT is an orthogonal combination of the logic of HT and the

(standard) linear temporal logic (LTL) [21]. When we restrict temporal interpre-
tations to finite sequences of length 1, that is 〈H0, T0〉 and disregard temporal
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operators, we obtain the logic of HT. On the other hand, if we restrict the seman-
tics to total interpretations, 〈T , T 〉, i |= ϕ corresponds to satisfaction of formulas
T , i |= ϕ in LTL.

A theory is any set of formulas. An interpretation M is a model of a theory
Γ , written M |= Γ , if M, 0 |= α, for each formula α ∈ Γ . A formula ϕ is valid
if M, 0 |= ϕ for any M . The following are valid formulas in THT (and in LTL
too):

♦ϕ ↔ � U ϕ (13)
�ϕ ↔ ⊥ B ϕ (14)

ϕ W ψ ↔ ϕ U ψ ∨ �ϕ (15)
ϕ U ψ ↔ ϕ W ψ ∧ ♦ψ (16)

¬(ϕ U ψ) ↔ ¬ϕ B ¬ψ (17)
¬(ϕ B ψ) ↔ ¬ϕ U ¬ψ (18)

¬�ϕ ↔ ♦¬ϕ (19)
¬♦ϕ ↔ �¬ϕ (20)
©¬ϕ ↔ ¬© ϕ (21)

©(ϕ ∧ ψ) ↔ ©ϕ ∧©ψ (22)
©(ϕ ∨ ψ) ↔ ©ϕ ∨©ψ (23)
©(ϕ → ψ) ↔ (©ϕ → ©ψ) (24)

ϕ U ψ ↔ ψ ∨ (ϕ ∧©(ϕ U ψ)) (25)
ϕ B ψ ↔ ψ ∧ (ϕ ∨©(ϕ B ψ)) (26)

Theorems (13)-(15) allow defining �,♦ and W in terms of U and B. The formulas
(17) and (18) correspond to the De Morgan axioms between operators U and
B. It is easy to see that, together with (13) and (14) they directly imply the
corresponding De Morgan axioms (19) and (20) for � and ♦. An important
difference with respect to LTL is that, when using these De Morgan axioms,
some care must be taken if double negation is involved. For instance, by (19),
the formula ¬♦¬ϕ is equivalent to ¬¬�ϕ, but this is not in general equivalent to
�ϕ. A simple counterexample is the interpretation 〈H,T 〉 with all Ti = {p} but
some Hj = ∅, as it satisfies ¬¬�p but not �p. As a result, we cannot further
define B (resp. �) in terms of U (resp. ♦) or vice versa, as happens in LTL.
We have included other LTL standard properties like (21)-(24) to show that the
“shifting” behaviour of © with respect to classical connectives is the same as
in LTL, or (25) and (26) that represent the inductive propagation of U and B
respectively.

The (Linear) Temporal Equilibrium Logic (TEL) is a nonmonotonic version of
THT where we establish a models selection criterion. Given two interpretations
M = 〈H,T 〉 and M ′ = 〈H ′

, T
′〉 we say that M is lower than M ′, written

M ≤ M ′, when T = T
′

and for all i ≥ 0, Hi ⊆ H ′
i. As usual, M < M ′ stands

for M ≤ M ′ but M �= M ′.
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Definition 1 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other model M ′ < M of Γ . �

Note that any temporal equilibrium model is total, that is, it has the form 〈T , T 〉
and so can be actually seen as an interpretation T in the standard LTL.

The idea behind temporal equilibrium models is that they capture the answer
sets of programs that depend on a fixed temporal index. This is expressed by
the following proposition extracted from [19].

Proposition 1. Let Γ be a combination of non-modal connectives ∧,∨,¬,→,⊥
with expressions like ©ip, being p an atom, and let n be the maximum value for
i in all ©ip occurring in Γ . Then 〈T , T 〉 is a temporal equilibrium model of Γ
iff (1) Ti = ∅ for all i > n ; and (2) 〈X,X〉 with X =

⋃n
i=0{©ip | p ∈ Ti} is an

equilibrium model of Γ , reading each ‘©ip’ as a new atom in the signature. ��

That is, once �,♦,U and W are removed, we can reduce temporal equilibrium
models to (non-temporal) equilibrium models (that is, answer sets) for an ex-
tended signature with atoms like ©ip. To illustrate the effect of this definition, let
us consider a pair of examples from [19]. Take, for instance, the theory {♦p}. This
would correspond to an infinite disjunction of the form p∨©p∨©© p∨ . . . or,
when making time explicit, to an ASP disjunctive rule like p(0)∨p(1)∨p(2)∨ . . .
This generates temporal equilibrium models where p is false in every situation
excepting for exactly one index i where p is made true. In other words, the tem-
poral equilibrium models of theory {♦p} are captured by the LTL models of the
formula ¬p U (p ∧©�¬p).

As a second example, take the theory Γ just consisting of the formula �(¬p →
©p). This would informally correspond to an infinite program with the rules
p(1) ← ¬p(0); p(2) ← ¬p(1); p(3) ← ¬p(2); etc. It is not difficult to see that
the temporal equilibrium models of Γ are captured by the LTL models of ¬p ∧
�(¬p ↔ ©p).

In [19] it was shown as an example how TEL can be used to encode the action
language B [14] in a straightforward way.

The definition of strong equivalence for TEL theories is extended from the
non-temporal case in an obvious way. An important observation is that proving
the equivalence of two temporal theories in THT is a trivial sufficient condition
for their strong equivalence under TEL – if they have the same THT models,
they will always lead to the same set of temporal equilibrium models, regardless
the context. The next section shows how this THT equivalence test can be
transformed into provability in standard LTL.

4 Translating THT into LTL

Given a propositional signature Σ, let us denote Σ∗ = Σ ∪{p′ | p ∈ Σ} which is
going to be the new propositional signature in LTL. For any temporal formula
ϕ we define its translation ϕ∗ as follows:
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1. ⊥∗ def
= ⊥

2. p∗
def
= p′ for any p ∈ Σ

3. (�ϕ)∗
def
= �ϕ∗, if � ∈ {�,♦,©}

4. (ϕ � ψ)∗
def
= ϕ∗ � ψ∗, when � ∈ {∧,∨,U ,W ,B}

5. (ϕ → ψ)∗
def
= (ϕ → ψ) ∧ (ϕ∗ → ψ∗)

From the last point and the fact that ¬ϕ = ϕ → ⊥, it follows that (¬ϕ)∗ =
(ϕ → ⊥) ∧ (ϕ∗ → ⊥) = ¬ϕ ∧ ¬ϕ∗. Similarly, (ϕ ↔ ψ)∗ = (ϕ ↔ ψ) ∧ (ϕ∗ ↔ ψ∗).

We associate to any THT interpretation M = 〈H,T 〉 the LTL interpretation
M t = I in LTL defined as the sequence of sets of atoms Ii = {p′ | p ∈ Hi} ∪ Ti,
for any i ≥ 0. Informally speaking, M t considers a new primed atom p′ per each
p ∈ Σ in the original signature. In the LTL interpretation, the primed atom p′

represents the fact that p occurs at some point in the H component, whereas the
original symbol p is used to represent an atom in T . As a THT interpretation
must satisfy Hi ⊆ Ti by construction, we may have LTL interpretations that do
not correspond to any THT one. In particular, for an arbitrary I, we will only
be able to form some M such that M t = I when the set of primed atoms at each
Ii is a subset of the non-primed ones. In other words, only LTL interpretations
I satisfying the axiom:

�(p′ → p) (27)

will have a corresponding THT interpretation M such that I = M t.

Example 2. M = ((∅, {p, q}), ({p}, {p, q}), ({q}, {q})) is a model of the theory
{�(¬p → q) ∧ ♦q}. In the same way, the corresponding interpretation M t =
({p, q}, {p′, p, q}, {q′, q}) is a model of

(�(¬p → q) ∧ ♦q)∗ ↔ �(¬p → q)∗ ∧ (♦q)∗ ↔
�((¬p → q) ∧ ((¬p)∗ → q′)) ∧ ♦q′ ↔ �((¬p → q) ∧ (¬p → q′)) ∧ ♦q′.

In general:

Theorem 1. Let M = 〈H,T 〉 be any THT interpretation and ϕ any formula.
For any i ≥ 0, it holds that

(a) 〈H,T 〉, i |= ϕ if and only if M t, i |= ϕ∗ in LTL; and
(b) 〈T , T 〉, i |= ϕ if and only if M t, i |= ϕ in LTL.

Proof. We proceed by induction. For the base case, it trivially holds for ⊥
whereas for an atom p, we have these equivalence chains

(a) (〈H,T 〉, i |= p) ⇔ (p ∈ Hi) ⇔ (p′ ∈ Ii) ⇔ (M t, i |= p′).
(b) (〈T , T 〉, i |= p) ⇔ (p ∈ Ti) ⇔ (p ∈ Ii) ⇔ (M t, i |= p)

For the inductive step, we detail the proof for the classical connective →, the
(unary) temporal operator © and the (binary) temporal operator U . For the
classical connectives ∧ and ∨ the proof is straightforward; for connective B , it
is completely analogous to that for U ; and finally, the rest of connectives can be
defined in terms of the previous ones.
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1. To prove (a) for the implication we have the chain of equivalent conditions:

〈H,T 〉, i |= ϕ → ψ
def⇐⇒

⎧⎨⎩
〈H,T 〉, i �|= ϕ or 〈H,T 〉, i |= ψ
and
〈T , T 〉, i �|= ϕ or 〈T , T 〉, i |= ψ

⎫⎬⎭ ind⇐⇒⎧⎨⎩M t, i �|= ϕ∗ or M t, i |= ψ∗

and
M t, i �|= ϕ or M t, i |= ψ

⎫⎬⎭ ⇐⇒

⎧⎨⎩M t, i |= (ϕ∗ → ψ∗)
and
M t, i |= (ϕ → ψ)

⎫⎬⎭ def⇐⇒

M t, i |= (ϕ → ψ)∗

For proving (b) it suffices with considering, in each of the three pairs of
conjunctive conditions above, only the second conjunct.

2. For operator ©, note that

(a) 〈H,T 〉, i |= ©ϕ
def⇐⇒ 〈H,T 〉, i + 1 |= ϕ

ind⇐⇒ M t, i + 1 |= ϕ∗
def⇐⇒

M t, i |= ©ϕ∗

(b) 〈T , T 〉, i |= ©ϕ
def⇐⇒ 〈T , T 〉, i + 1 |= ϕ

ind⇐⇒ M t, i + 1 |= ϕ
def⇐⇒

M t, i |= ©ϕ

3. Finally, for U it follows that:

(a) 〈H,T 〉, i |= ϕ U ψ
def⇐⇒

∃j ≥ i, (M, j |= ψ) and ∀k s.t. i ≤ k < j, (M,k |= ϕ) ind⇐⇒
∃j ≥ i, (M t, j |= ψ∗) and ∀k s.t. i ≤ k < j, (M,k |= ϕ∗)

def⇐⇒
M t, i |= ϕ∗ U ψ∗

def⇐⇒ M t, i |= (ϕ U ψ)∗

(b) 〈T , T 〉, i |= ϕ U ψ
def⇐⇒

∃j ≥ i, (M, j |= ψ) and ∀k s.t. i ≤ k < j, (M,k |= ϕ) ind⇐⇒
∃j ≥ i, (M t, j |= ψ) and ∀k s.t. i ≤ k < j (M,k |= ϕ)

def⇐⇒
M t, i |= ϕ U ψ ��

Theorem 2 (Main theorem). Let Γ1 and Γ2 be a pair of temporal theories,
and

∧
Γ1 and

∧
Γ2 the conjunctions of their respective sets of formulas. Then

Γ1 and Γ2 are strongly equivalent with respect to temporal equilibrium models if
the formula (27) → (

∧
Γ1 ↔

∧
Γ2)∗ is valid in LTL.

Proof. Once the axiom schemata (27) are fixed as hypotheses, Theorem 1 allows
us to establish a one to one correspondence between models of

∧
Γ1 ↔

∧
Γ2 in

THT and models of (
∧

Γ1 ↔
∧

Γ2)∗ in LTL. Thus, if (
∧

Γ1 ↔
∧

Γ2)∗ is LTL
valid, this means that

∧
Γ1 and

∧
Γ2 are THT-equivalent, which is a sufficient

condition for strong equivalence in TEL. ��
As we will show in the next section, we may also use this result to detect a
redundant formula ϕ in some theory Γ . To this aim, we would have to show that
Γ and Γ ′ = Γ \ {ϕ} are strongly equivalent. From the theorem above, it follows
that:

Corollary 1. Let Γ be a temporal theory,
∧

Γ the conjunction of its formulas
and ϕ some arbitrary temporal formula. Then Γ and Γ ∪{ϕ} are strongly equiv-
alent if the formula (27) → (

∧
Γ → ϕ)∗ is valid in LTL. ��



Strongly Equivalent Temporal Logic Programs 17

5 Back to the Example

When representing Example 1 in TEL, the encoding is quite obvious. As happens
in Equilibrium Logic, the logic programming notation is directly replaced by a
logical syntax, so that the rule arrow ‘←’, the comma ‘,’ and the default negation
‘not ’ respectively represent standard implication, conjunction and negation. On
the other hand, in order to capture the transition rules of program Π1, only
a small subset of the linear temporal syntax is actually required. All the rules
depending on the temporal (universally quantified) variable I will be scoped
now by a � operator, whereas the atoms with argument I + 1 will be further
preceeded by a © connective. As a result, we obtain the theory Γ1 consisting of
the formulas:

�(togglej ∧ swj → ©swj) (28)
�(togglej ∧ swj → ©swj) (29)
�(togglej ∧ swj → ©light) (30)

�(toggle1 ∧ sw1 ∧ sw2 → ©light) (31)
�(toggle2 ∧ sw2 ∧ sw1 → ©light) (32)

�(toggle1 ∧ toggle2 → ⊥) (33)
�(f ∧ ¬© f → ©f) (34)
�(f ∧ ¬© f → ©f) (35)

�(f ∧ f → ⊥) (36)

that respectively correspond to the rules (1)-(9).
In order to answer questions Q1 and Q2 proposed in Section 2, we have

implemented the ϕ∗ translation4 and fed the LWB linear temporal logic module
with the resulting formulas extracted from Corollary 1 to detect redundant rules.
In particular, regarding question Q1, we have been able to prove that, given the
theory Γ2 consisting of Γ1 plus:

�(sw1 ∧ sw2 → light) (37)
�(sw1 → light) (38)
�(sw2 → light) (39)

(that captures light as an indirect effect) then rule (30), that specified when
light became off depending on each togglej, becomes redundant and can be
safely removed from Γ2. In fact, we could just prove that (30) followed from the
formulas (29), (38) and (39).

However, when we consider the effect axioms (31),(32) we used to specify
when the light becomes on, our checker just provides a negative answer. Since
we are just dealing with a sufficient condition for strong equivalence, this does
not provide any concluding information about Q1 for these rules. Fortunately,
in this case it is not difficult to see that, in fact, these rules cannot be removed
4 Available at http://www.dc.fi.udc.es/∼cabalar/eqwb.html

http://www.dc.fi.udc.es/~cabalar/eqwb.html
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in any context without changing the general behaviour of the program. To see
why, just think about adding, as a new effect of toggle1, that switch sw2 is
disconnected:

�(toggle1 ∧ sw2 → sw2)

The addition of this new rule would clearly make a different effect depending on
(31) is present in the theory or not. In particular, when we perform toggle1 in
a situation in which sw1 ∧ sw2, if we do not have (31) the light will just remain
off, whereas if this formula is included, we will get no equilibrium model.

In order to answer question Q2, we considered theory Γ3 = Γ2\{(3)−(5)} and
tried to see whether (34),(35) were redundant, for the case f = light. Although
it could seem that light value is “defined” in terms of sw1 and sw2 by rules (37)-
(39), we actually obtained a negative answer, so no conclusion is obtained. It is
easy to see that, in this case, we can find situations in which removing inertia
may cause different effects depending on the context. For instance, if we had
light and do not provide information for sw1 and sw2 or their explicit negations
in a given state, the inertia would maintain light in the next situation (toggling
yields no effect). If we remove inertia, however, neither light nor light would
hold in the next state.

If we look for a stronger relation between light and sw1, sw2 we can move to
consider Γ3, consisting of Γ2 and the rules:

�(light → sw1) �(light → sw2) �(¬light → light)

we finally obtain that inertia (34),(35) for f = light is redundant. The explana-
tion for this is simple – note that these rules, together with (37) allow concluding
(among other things) that �(light ↔ sw1 ∧ sw2) which is a double implication,
actually defining light as the conjunction of sw1 and sw2 in any situation.

6 Conclusions

In this paper we have studied the problem of strong equivalence of logic pro-
grams that represent transition systems. To this aim, we have incorporated the
set of modal operators typically used in Linear Temporal Logic (LTL) into logic
programs, and applied a previously introduced [19] general semantics for any
arbitrary (propositional) temporal theory. This semantics is a temporal exten-
sion of Equilibrium Logic [7] (a logical characterisation of stable models) and its
monotonic basis, the logic of Here-and-There (HT). As a result, we obtained a
sufficient condition for checking strong equivalence of temporal logic programs
and we implemented a method for reducing this condition to provability in stan-
dard LTL. The advantage of this process is that, to the best of our knowledge,
it constitutes the first automated tool for guaranteeing strong equivalence of
logic programs representing transition systems, as the previous existing checkers
either require fixing a numerical path length to obtain a ground program, or in
the case of programs with variables [15], cannot properly deal with transition
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systems. There exists, however, a very recent prover (QHT [16]) for strong equiv-
alence of programs with variables, which relies on a method proposed in [17] for
reducing Quantified Here and There to first order classical logic, allowing in this
way, the use of a classical theorem prover as a backend. Unlike [15], QHT allows
dealing with functions and so, could potentially handle situation indices with a
Peano-like successor function. We leave for future work checking this alterna-
tive, although in a general case, the currently presented reduction to LTL has
the obvious advantage of handling a decidable inference method.

Of course, the main current drawback of our strong equivalence test is that,
when it provides a negative answer, no conclusion can be drawn, since we have
not proved yet whether it also constitutes a necessary condition for strong
equivalence, something that was obtained [8] for the non-modal case with HT-
equivalence. The desirable situation would be, instead, that a negative answer
came with a counterexample, that is, a piece of (temporal) program that added
to the original ones to be tested yields different effects in each case. This point
is left for the immediate future work.

Acknowledgements. We wish to thank David Pearce, Agust́ın Valverde, Manuel
Ojeda, Alfredo Burrieza for their helpful discussions about this work. We are also
thankful to the anonymous referees for their comments and observations.
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Abstract. We provide conditions under which seriality is preserved dur-
ing an update in the BMS framework. We consider not only whether the
entire updated model is serial but also whether its generated submod-
els are serial. We also introduce the notion of crazy formulas which are
formulas such that after being publicly announced at least one of the
agents’ beliefs become inconsistent.

1 Introduction

Providing formalisms which allow agents to reason adequately about belief and
belief change is an important goal in artificial intelligence so that artificial agents
can act autonomously and rationally in a given environment. An obvious re-
quirement for these agents should be that their beliefs always remain consistent
whatever happens.

One way to represent formally the agents’ beliefs about a given (static) situ-
ation is by means of an epistemic model. Expressing that the agents’ beliefs are
consistent amounts to assume that the accessibility relations of the epistemic
model are serial.

The next step is to introduce events and to model their effects on the agents’
beliefs. An influential formalism has been proposed in dynamic epistemic logic
by Baltag, Moss and Solecki (to which we will refer by the term BMS [3]) that
deals with this issue. Their idea is to represent how an event occurring in this
situation is perceived by the agents by means of an event model and then to
define a formal update mechanism that specifies how the agents update their
beliefs according to this event model and the original epistemic model. This
yields a new epistemic model corresponding to the resulting situation. However,
as it turns out, it is quite possible formally that this new epistemic model is not
serial, even if the original epistemic model and the event model were serial. For
example, if agent A believes ¬φ then after a public announcement of φ agent
A’s accessibility relation is not serial anymore. Specifying formally under which
conditions this happens in general (and not only for public announcements) has
not been studied so far. In this paper we tackle this issue and also introduce some
� I thank my supervisors Hans van Ditmarsch and Andreas Herzig for useful comments

on this paper.
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formulas, called ‘crazy formulas’, such that some of the agents’ beliefs always
become inconsistent after they are publicly announced: they become ‘crazy’.

The paper is organized as follows. In Section 2, we recall the BMS system
together with the definitions of seriality and generated (sub)model. In Section 3,
we provide conditions under which the entire updated epistemic model is serial
and introduce what we call ‘crazy formulas’. In Section 4, we investigate under
which conditions a generated submodel of the entire updated epistemic model is
serial. Finally, we conclude in Section 5.

2 The BMS System

In this paper, Φ is a set of propositional letters and G is a finite set of agents.

2.1 Epistemic Model and Generated Submodel

Epistemic model. An epistemic model is just a particular kind of Kripke
model [5] where instead of having a single accessibility relation we have a set of
accessibility relations, one for each agent.

Definition 1. An epistemic model M is a triple M = (W,R, V ) such that

– W is a non-empty set of possible worlds;
– R : G → 2W×W assigns an accessibility relation to each agent;
– V : Φ → 2W assigns a set of possible worlds to each propositional letter and

is called a valuation.

If M = (W,R, V ) is an epistemic model, a pair (M,wa) with wa ∈ W is called
a pointed epistemic model. We also write Rj = R(j) and Rj(w) = {w′ ∈ W |
wRjw

′}, and w ∈ M for w ∈ W .

Intuitively, a pointed epistemic model (M,wa) represents from an external point
of view how the actual world wa is perceived by the agents G. The possible
worlds W are the relevant worlds needed to define such a representation and the
valuation V specifies which propositional facts (such as ‘it is raining’) are true
in these worlds. Finally the accessibility relations Rj model the notion of belief.
We set w′ ∈ Rj(w) in case the world w′ is compatible with agent j’s belief in
world w. We can then define the notion of seriality for epistemic models.

Definition 2. Let M = (W,R, V ) be an epistemic model. We say that M is
serial when for all j ∈ G, Rj satisfies the following condition:

Seriality: for all w ∈ W , Rj(w) �= ∅.

Intuitively, an epistemic model which is not serial means that in the correspond-
ing situation there is an agent j whose beliefs are inconsistent. More precisely,
it means that it is not common belief that the agents’ beliefs are consistent.

Now inspiring ourselves from modal logic, we can define a language for epis-
temic models. The modal operator is just replaced by a ‘belief’ operator, one for
each agent.
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Definition 3. The language LU is defined as follows:

LU : φ ::= � | p | ¬φ | φ ∧ φ | Bjφ | Uφ

where p ranges over Φ and j over G. Moreover, φ ∨ φ′ is an abbreviation for
¬(¬φ ∧ ¬φ′); φ → φ′ is an abbreviation for ¬φ ∨ φ′; B̂jφ is an abbreviation for
¬Bj¬φ; Oφ is an abbreviation for ¬U¬φ; and ⊥ is an abbreviation for ¬�.

Finally, by L we denote the language LU without the universal modality U .

Intuitively, Bjφ means that agent j believes that the formula φ is true. U is the
universal modality which is introduced here only for technical reasons in order to
express the seriality preservation conditions. Now we can give a genuine meaning
to the formulas of this language by defining truth conditions for these formulas
on the class of epistemic models.

Definition 4. Let M = (W,R, V ) be an epistemic model and w ∈ W . M,w |= φ
is defined inductively as follows:

M,w |= �
M,w |= p iff w ∈ V (p)
M,w |= ¬φ iff not M,w |= φ
M,w |= φ ∧ φ′ iff M,w |= φ and M,w |= φ′

M,w |= Bjφ iff for all v ∈ Rj(w),M, v |= φ
M,w |= Uφ iff for all v ∈ W,M, v |= φ

We write M |= φ for M,w |= φ for all w ∈ M . If C is a class of epistemic
models, we write |=C φ when for all M ∈ C, M |= φ. Finally, we write |= φ when
for all epistemic model M , M |= φ.

So agent j believes φ in world w (formally M,w |= Bjφ) if φ is true in all the
worlds that agent j considers possible (in world w). M,w |= Uφ expresses that
φ is valid in the model M . The universal modality is thus a stronger notion than
the common belief modality often used in epistemic logic.

Example 1. We take up the coin example of [3]. Assume there are two agents Ann
and Bob who are in a room where there is a coin in a box. The coin is actually
heads up but the box is closed. So both of them do not know whether the coin
is heads or tails up. Now assume that Bob cheats and looks at the coin, Ann
suspecting nothing about it. This resulting situation is modeled in the pointed
epistemic model (M,wa) of Figure 1. The accessibility relations are represented
by arrows indexed by A (standing for Ann) or B (standing for Bob); p stands
for ‘the coin is heads up’ and the boxed world wa stands for the actual world.
Now thanks to the language L we can express what is true in this situation. For
example, Bob correctly believes that the coin is heads up: M,wa |= p ∧ BBp;
while Ann believes that he does not know whether the coin is heads or tails up:
M,wa |= BA(¬BBp ∧ ¬BB¬p).
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Fig. 1. The coin example

Generated submodel. An epistemic model might contain some information
that is not relevant to model a given situation. We now define the notion of
generated submodel that discards this useless information.

Definition 5. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two epistemic
models and wa ∈ W .

– We say that M ′ is a submodel of M if W ′ ⊆ W ; for all j ∈ G, R′
j =

Rj ∩ (W ′ ×W ′) and for all p ∈ Φ, V ′(p) = V (p)∩W ′. We also say that M ′

is the restriction of M to W ′.
– The submodel of M generated by wa is the restriction of M to (

⋃
j∈G

Rj)∗(wa)1.

In case the submodel of M generated by wa is M itself, we say that M is gen-
erated by wa and that wa is the root of M .

Proposition 1. Let M = (W,R, V ) be an epistemic model and M ′ a submodel
of M generated by some wa ∈ W . Then for all w ∈ M ′ and all φ ∈ L, M,w |= φ
iff M ′, w |= φ.

This proposition entails that in a pointed epistemic model (M,wa) where wa

stands for the actual world, the part of the model M that is really relevant for
us to model the corresponding situation is the submodel of M generated by wa.

2.2 Event Model

Epistemic models are used to model how the agents perceive the actual world in
terms of beliefs about the world and about the other agents’ beliefs. The insight
of the BMS approach is that one can describe how an event is perceived by the
agents in a very similar way. Indeed, the agents’ perception of an event can also
be described in terms of beliefs: for example, while Bob looks at the coin and
sees that it is heads up (event aa) Ann believes that nothing happens (event
b). This leads them to define the notion of event model whose definition is very
similar to that of an epistemic model.
1 If R is a relation, R+ is defined by R+(w) = {v| there is w1, . . . , wn = v such that

wiRwi+1}. R∗ is defined by R∗(w) = {w} ∪R+(w). See [5].
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Fig. 2. Public announcement of BBp

Definition 6. An event model A is a triple A = (E,R, Pre) such that

– E is a finite and non-empty set of possible events;
– R : G → 2E×E assigns an accessibility relation to each agent;
– Pre : E → L assigns an epistemic formula to each possible event.

If A = (E,R, Pre) is an event model, a pair (A, aa) where aa ∈ E is called a
pointed event model. We also write Rj = R(j) and Rj(a) = {b ∈ E | aRjb},
and a ∈ A for a ∈ E.

The main difference with the definition of an epistemic model is that we no
longer have a valuation V but instead a function Pre. This function is supposed
to specify under which condition an event can physically take place in a possible
world.

Example 2. Assume that an external agent announces publicly that Bob believes
that the coin is heads up (formally BBp). This event is depicted in Figure 2.
There, aa stands for ‘the external agent truthfully announces that Bob believes
that the coin is heads up’. Because this event is correctly perceived by Ann and
Bob, aa is the only event considered possible by them. Finally, for this truthful
announcement to be made in a possible world, Bob has indeed to believe that
the coin is heads up in this world (BBp).

2.3 Product Update

Now, in reality after (or during) this event e, the agents update their beliefs
by taking into account these two pieces of information: the event e and the
initial situation s. This gives rise to a new situation s × e. This actual update
is rendered formally by the following mathematical update product between a
pointed epistemic model and a pointed event model.

Definition 7. Let M = (W,R, V,wa) be a pointed epistemic model and A =
(E,R, Pre, aa) a pointed event model such that M,wa |= Pre(aa). We de-
fine their update product to be the pointed epistemic model M ⊗ A = (W ⊗
E,R′, V ′, w′a) where

1. W ⊗ E = {(w, a) ∈ W × E | M,w |= Pre(a)};
2. (v, b) ∈ R′

j(w, a) iff v ∈ Rj(w) and b ∈ Rj(a);
3. V ′(p) = {(w, a) ∈ W ⊗ E | w ∈ V (p)};
4. w′a = (wa, aa).
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Fig. 3. Failure of seriality preservation

Example 3. This example shows that seriality might not be preserved during an
update. If we update the epistemic model depicted in Figure 1 by the truthful
public announcement that Bob believes that the coin is heads up (formally BBp)
depicted in Figure 2 then we get the epistemic model depicted on the right of
Figure 3 where Ann’s accessibility relation is not serial.

3 Seriality Preservation for the Entire BMS Product

3.1 Theory

First of all, for a given epistemic model M and a given event model A, we say
that the update product M ⊗ A is defined if there is w ∈ M and a ∈ A such
that M,w |= Pre(a). We introduce this definition because seriality of updated
models makes sense only for defined updated models.

Proposition 2. Let A be a serial event model and let M be an epistemic model.

M ⊗A is defined and serial iff

M |= O

( ∨
a∈A

Pre(a)
)
∧ U

∧
a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
.

Proof. M |= O

( ∨
a∈A

Pre(a)
)

clearly means that the model M ⊗ A is defined.

Now it remains to prove that M ⊗A is serial iff

M |= U
∧

a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
.

– Assume that M |= U
∧

a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
(*). Let (w, a) ∈

M ⊗A and j ∈ G. Then M,w |= Pre(a). So M,w |=
∧

j∈G

B̂j

∨
b∈Rj(a)

Pre(b) by

(*). Then M,w |= B̂j

∨
b∈Rj(a)

Pre(b). So there is v ∈ Rj(w) and b ∈ Rj(a) such

that M, v |= Pre(b). Then there is (v, b) ∈ M ⊗A such that (v, b) ∈ Rj(w, a)
by definition of M ⊗A. So M ⊗A is serial.
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– Assume that M � U
∧

a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
. Then there is

w ∈ M and a ∈ A such that M,w |= Pre(a)∧
( ∨

j∈G

Bj

∧
b∈Rj(a)

¬Pre(b)

)
. Then

there is j ∈ G such that M,w |= Bj

∧
b∈Rj(a)

¬Pre(b) (**). So (w, a) ∈ M ⊗A

but there is no v ∈ Rj(w) and b ∈ Rj(a) such that (v, b) ∈ Rj(w, a). Indeed,
otherwise we would have M,w |= B̂j

∨
b∈Rj(a)

Pre(b), which contradicts (**).

So M ⊗A is not serial.

We write S(A) = O

( ∨
a∈A

Pre(a)
)

∧ U
∧

a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
.

O

( ∨
a∈A

Pre(a)
)

expresses that the updated model M ⊗A is defined.

U
∧

a∈A

(
Pre(a) →

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b)

)
expresses that the updated model M⊗

A is serial. Note that the seriality conditions bear only on M and that M does
not need to be serial for the proposition to hold. But of course if M is serial then
the proposition still holds. However, if the event model is not serial then one
cannot get a serial updated model. From this proposition we can easily prove
the following corollary.

Corollary 1. Let C be a class of epistemic models and A a serial event model.

|=C ¬S(A)
iff there is no epistemic model M ∈ C such that M ⊗A is defined and serial.

In other words this corollary tells us under which condition, for a given event
model A, whatever epistemic model M we chose, M ⊗A will not be defined or
not serial. If this condition is fulfilled that would mean intuitively that in any
epistemic situation, if the event (corresponding to this event model) is performed,
then afterwards in any case (some of) the agents’ beliefs are inconsistent. This is
of course counter intuitive and we should then avoid such kinds of event (models).

3.2 Crazy Formulas

We are going to give an example of a class of epistemic formulas such that after
they are publicly announced some of the agents’ beliefs become inconsistent.

Definition 8. A crazy formula is a satisfiable formula φ ∈ L such that

|= φ →
∨
j∈G

Bj¬φ.

Proposition 3. Let φ be a crazy formula and let A be the event model corre-
sponding to the public announcement of φ. Then there is no epistemic model M
such that M ⊗A is defined and serial.
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Proof. Thanks to Corollary 1 it suffices to prove that |= ¬S(A) i.e. |= Oφ →

O

(
φ ∧

∨
j∈G

Bj¬φ

)
because S(A) = Oφ∧U

(
φ →

∧
j∈G

B̂jφ

)
. Let M be an epis-

temic model such that M |= Oφ. Let w ∈ M such that M,w |= φ. Then by
definition of a crazy formula M,w |= φ ∧

∨
j∈G

Bj¬φ. Then M,w |= φ ∧
∨

j∈G

Bj¬φ

i.e. M |= O

(
φ ∧

∨
j∈G

Bj¬φ

)
.

Proposition 4. φ = ψ ∧Bi¬ψ, where ψ ∈ L is a satisfiable formula, is a crazy
formula.

Proof. One can easily show that |= φ → Bi¬φ.

We can compare this notion of crazy formula with the notion of selfrefuting and
successful formulas studied in [7]. Selfrefuting formulas are formulas that are no
longer true after they are publicly announced. An example of such formulas is
Moore’s sentence p∧¬Bjp: if it is announced then p becomes common belief and
in particular Bjp becomes true. Here our formulas are a bit different: after they
are publicly announced some of the agents’ beliefs become inconsistent. On the
other hand, successful formulas are formulas which are always true after being
publicly announced. One can show that crazy formulas are not successful.

4 Seriality Preservation for Generated Submodels

One should note that it is quite possible that an updated model consists of
several disjoint epistemic models. But in practice, as we said in Section 2.1, the
epistemic model we are really interested in is the submodel of the entire updated
model generated by the actual world (wa, aa) . So, more generally, we would like
to know under which conditions a particular generated submodel of the entire
updated model is serial. That is what we are going to investigate now.

Definition 9. Let A be an event model, a ∈ A and n ∈ N. We define δn(a)
inductively as follows.

– δ0(a) = Pre(a);
– δn+1(a) = δ0(a) ∧

∧
j∈G

B̂j

∨
b∈Rj(a)

δn(b) ∧
∧

j∈G

Bj

∧
b∈Rj(a)

(Pre(b) → δn(b)).

Intuitively, M,w |= δn(a) means that the submodel of M⊗A generated by (w, a)
is defined and serial up to modal depth n. This interpretation is endorsed by the
following two lemmas which will be used to prove the main proposition.

Lemma 1. Let M be an epistemic model and let A be an event model. For all
w ∈ M , a ∈ A, n ∈ N,

M,w |= δn+1(a) iff
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M,w |= δ1(a) and for all v ∈ M such that w = w0Rj1w1Rj2 . . . Rjnwn = v
such that there are a = a0Rj1a1Rj2 . . . Rjnan = b such that for all i ∈ {0, . . . , n},
M,wi |= Pre(ai),

M, v |=
∧
j∈G

B̂j

∨
c∈Rj(b)

Pre(c)

Proof. We prove it by induction on n. The case n = 0 is clear. We prove the
induction step. Assume the property is true for n.

– Assume M,w |= δn+2(a). Then M,w |= δ1(a) because δn+1(b) → Pre(b)
and δ1(a) = Pre(a) ∧

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b). Let v ∈ M such that w =

w0Rj1w1Rj2 . . . Rjn+1 wn+1 = v and such that there are a = a0Rj1a1Rj2 . . .
Rjn+1an+1 = b such that for all i ∈ {0, . . . , n + 1}, M,wi |= Pre(ai).

By assumption, M,w |=
∧

j∈G

Bj

∧
b∈Rj(a)

(Pre(b) → δn+1(b)). So M,w1 |=∧
b∈Rj1 (a)

(Pre(b) → δn+1(b)). Besides a1 ∈ Rj1(a) and M,w1 |= Pre(a1). So

M,w1 |= δn+1(a1).
Then, by induction hypothesis, for allv′ such thatw1 =w′1Rj2 . . . Rjn+1w

′
n+1

= v′ such that there are a1 = a′1Rj2 . . . Rjn+1a
′
n+1 = a′ such that for all i,

M,w′i |= Pre(a′i),

M, v′ |=
∧
j∈G

B̂j

∨
b′∈Rj(a′)

Pre(b′).

So M, v |=
∧

j∈G

B̂j

∨
c∈Rj(b)

Pre(c)

– Assume M,w |= δ1(a) and assume that for all v ∈ M such that w =
w0Rj1 . . . Rjn wn+1 = v such that there are a = a0Rj1 . . . Rjnan+1 = b
such that for all i, M,wi |= Pre(ai),

M, v |=
∧
j∈G

B̂j

∨
c∈Rj(b)

Pre(c).

Now, assumeM,w � δn+2(a). ThenM,w |=¬Pre(a)∨
(∨

j∈G

Bj

∧
b∈Rj(a)

¬δn+1(b)

)

∨
( ∨

j∈G

B̂j

∨
b∈Rj(a)

(Pre(b) ∧ ¬δn+1(b))

)
.

• M,w |= ¬Pre(a) is impossible by assumption.
• Assume M,w |=

∨
j∈G

Bj

∧
b∈Rj(a)

¬δn+1(b). Then for some i ∈ G, M,w |=

Bi

∧
b∈Ri(a)

¬δn+1(b). Then for all v ∈ Ri(w) and all b ∈ Ri(a), M, v |=

¬δn+1(b) (*).
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But by assumption M,w |= δ1(a), i.e. M,w |=
Pre(a) ∧

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b). Then M,w |= B̂i

∨
b∈Ri(a)

Pre(b), i.e. there

is v ∈ Ri(w) and b ∈ Ri(a) such that M, v |= Pre(b) (1).
So M, v |=

∧
j∈G

B̂j

∨
b∈Rj(a)

Pre(b) (2) by assumption (take w1 = . . . =

wn = v and a1 = . . . = an = b).
Then by (1) and (2) we get M, v |= δ1(b).
Besides, by assumption and because wRiv and aRib, for all u such

that v = v0Rj1 . . . Rjnu such that there are b = b0Rj1 . . . Rjnbn = c such
that for all i M, vi |= Pre(bi)

M,u |=
∧
j∈G

B̂j

∨
d∈Rj(c)

Pre(d).

So M, v |= δn+1(b) by induction hypothesis. This is impossible by (*).
• Assume M,w |=

∨
j∈G

B̂j

∨
b∈Rj(a)

(Pre(b) ∧ ¬δn+1(b)).

Then there is i ∈ G, v ∈ Ri(w) and b ∈ Ri(a) such that M, v |= Pre(b)∧
¬δn+1(b).
By the same argument as above we get to a contradiction.

So finally M,w |= δn+2(a).

Lemma 2. Let M be a finite epistemic model and A be a finite serial event
model. Let n = |M | · |A|.2 For all w ∈ M and a ∈ A such that M,w |= Pre(a),

1. Rj(w, a) �= ∅ for all j ∈ G iff M,w |=
∧

j∈G

B̂j

∨
b∈Rj(a)

Pre(b);

2. (v, b) ∈
( ⋃

j∈G

Rj

)+

(w, a) iff there are w = w0Rj1w1Rj2 . . . Rjnwn−1 = v

and
a = a0Rj1a1Rj2 . . . Rjnan−1 = b such that for all i, M,wi |= Pre(ai).

Proof. 1. Assume M,w |=
∧

j∈G

B̂j

∨
b∈Rj(a)

Pre(b). Then for all j ∈ G, there is

v ∈ Rj(w) and b ∈ Rj(a) such that M, v |= Pre(b). Then, by definition of the
product update, for all j, there is (v, b) ∈ M ⊗A such that (v, b) ∈ Rj(w, a).
So for all j ∈ G, Rj(w, a) �= ∅.

Assume M,w �
∧

j∈G

B̂j

∨
b∈Rj(a)

Pre(b). Then there is j ∈ G such that for

all v ∈ Rj(w) and for all b ∈ Rj(a), M, v � Pre(b). Then, by definition of
the product update, there is no (v, b) ∈ M ⊗ A such that (v, b) ∈ Rj(w, a).
So Rj(w, a) = ∅ for some j ∈ G.

2. M⊗A is of cardinality at most n due to our hypothesis that n = |M | · |A|. So

every world (v, b) ∈ M ⊗A such that (v, b) ∈
( ⋃

j∈G

Rj

)+

(w, a) is accessible

from (w, a) in at most n− 1 steps. So,
2 |M | (resp. |A|) is the number of possible worlds (resp. events) of M (resp. A).
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(v, b) ∈
( ⋃

j∈G

Rj

)+

(w, a) iff

there are j1, . . . , jn−1 and (w1, a1), . . . , (wn−1, an−1) ∈ M ⊗A such that
(w, a)Rj1 (w1, a1)Rj2 . . . Rjn−1(wn−1, an−1) = (v, b) iff
there are w = w0Rj1w1Rj2 . . . Rjn−1wn−1 = v and a = a0Rj1a1Rj2 . . . Rjn−1

an−1 = b such that for all i, M,wi |= Pre(ai).

Proposition 5. Let M be a finite epistemic model and let A be a finite serial
event model. Let w ∈ M , a ∈ A and n = |M | · |A|.

The submodel of M ⊗A generated by (w, a) is defined and serial iff
M,w |= δn(a).

Proof. First, note that the submodel of M ⊗ A generated by (w, a) is defined
and serial iff

– (w, a) is defined;
– Rj(w, a) �= ∅ for all j ∈ G;

– Rj(v, b) �= ∅ for all (v, b) ∈
( ⋃

j∈G

Rj

)+

(w, a) and for all j ∈ G.

Then we get easily the expected result by Lemma 2 and Lemma 1. Indeed, (w, a)
is defined and Rj(w, a) �= ∅ for all j ∈ G amounts to say that M,w |= δ1(a). And

Rj(v, b) �= ∅ for all (v, b) ∈
( ⋃

j∈G

Rj

)+

(w, a) and for all j ∈ G amounts to say

that for all v ∈ M such that w = w0Rj1w1Rj2 . . . Rjnwn = v such that there are
a = a0Rj1a1Rj2 . . . Rjnan = b such that for all i ∈ {0, . . . , n}, M,wi |= Pre(ai),
M, v |=

∧
j∈G

B̂j

∨
c∈Rj(b)

Pre(c).

This proposition is coherent with our interpretation of M,w |= δn(a). As we
said, intuitively, M,w |= δn(a) means that the submodel of M ⊗ A generated
by (w, a) is (defined and) serial up to modal depth n. So, if n is larger than
the modal depth of the submodel M ⊗ A generated by (w, a) (which is the
case if n = |M | · |A|) then all the worlds accessible from (w, a) are serial. So
this generated submodel is indeed serial. Accordingly, this also entails that it
should be serial for any given modal depth. That is what the following property
expresses.

Proposition 6. Let M be a finite epistemic model and let A be a finite and
serial event model. Let w ∈ M,a ∈ A and n = |M | · |A|.

If M,w |= δn(a) then for all m ≥ n, M,w |= δm(a).

Proof. The proof follows from Lemma 1 and the fact that for all v ∈ M there are
w1, . . . , wn−1 such that w = w0Rj1w1Rj2 . . . Rjnwn = v iff there are w1, . . . , wm−1

such that w = w0Rj1w1Rj2 . . . Rjmwm = v.
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Similarly, if a submodel of M ⊗ A generated by (w, a) is serial up to a given
modal depths d then it should also be serial up to all modal depth smaller than
d. The following proposition proves that it is indeed the case.

Proposition 7. For all event models A and a ∈ A, if n ≥ n′ then |= δn(a) →
δn′

(a).

Proof. Let A be an event model and a ∈ A. We prove it by induction on n. If
n = 0 or n = 1 then the result trivially holds. Assume it is true for a given n ≥ 1.
Assume |= δn+1(a), i.e. |= δ0(a) ∧

∧
j∈G

B̂j

∨
b∈Rj(a)

δn(b) ∧
∧

j∈G

Bj

∧
b∈Rj(a)

(Pre(b) →

δn(b)).
By induction hypothesis, for all b ∈ A, |= δn(b) → δn−1(b). So

|=

⎛⎝δ0(a) ∧
∧
j∈G

B̂j

∨
b∈Rj(a)

δn(b) ∧
∧
j∈G

Bj

∧
b∈Rj(a)

(Pre(b) → δn(b))

⎞⎠ →

⎛⎝δ0(a) ∧
∧
j∈G

B̂j

∨
b∈Rj(a)

δn−1(b) ∧
∧
j∈G

Bj

∧
b∈Rj(a)

(Pre(b) → δn−1(b))

⎞⎠ .

i.e. |= δn+1(a) → δn(a). So for all n′ ≤ n + 1, |= δn+1(a) → δn′
(a) by induction

hypothesis.

Finally, we can strike some relationship between the seriality conditions for the
entire updated model and for the generated submodels of the entire updated
model. Indeed, if the entire updated model is serial then all its generated sub-
models should be serial up to any modal depth:

Proposition 8. Let M be an epistemic model and A be a serial event model.

if M |= S(A) then for all n ≥ 0 M |=
∧

a∈A

(Pre(a) → δn(a)).

Proof. By induction on n.

Besides, one can notice that the entire updated model is serial if and only if
all its generated submodels are serial. But in fact, because we consider all the
generated submodels, it suffices that these generated submodels be serial only
up to modal depth 1. That is actually the intuition that led to the definition of
S(A).

Proposition 9. Let M be an epistemic model and let A be a serial event model.
Then,

M |= S(A) ↔ O

(∨
a∈A

Pre(a)

)
∧ U

∧
a∈A

(
Pre(a) → δ1(a)

)
.

O

( ∨
a∈A

Pre(a)
)

expresses that the updated model is defined. The rest of the

formula expresses its seriality. Note that δ1(a) = Pre(a) ∧
∧

j∈G

B̂j

∨
b∈Rj(a)

Pre(b),

so we have rediscovered the definition of S(A).
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5 Conclusion

We have given conditions under which an entire updated model and its generated
submodels are serial. We also introduced the notion of crazy formula which are
formulas such that after being publicly announced at least one of the agents’
beliefs become inconsistent. We could wonder whether other properties are also
preserved during an update. It has been shown that most of the relevant ones
like reflexivity, transitivity and euclidicity are preserved [3].

The fact that seriality is not preserved in the BMS system means that it should
be enriched with some sort of revision mechanisms so that seriality is restored.
For example, in Example 3 Ann should revise her beliefs about Bob after the
public announcement. To do this, most of the existing approaches resort to a
richer framework by introducing plausibility [1,6] or probability [2,4] but none of
them tackles the issue directly in its original form by manipulating accessibility
relations. This paper is a preliminary step in that direction.
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Abstract. Defeasible logics are non-monotonic reasoning systems that
have efficient implementations and practical applications. We list several
desirable properties and note that each defeasible logic fails to have some
of these properties. We define and explain a new defeasible logic, called
clausal defeasible logic (CDL), which has all these properties. CDL is easy
to implement, consistent, detects loops, terminates, and has a range of
deduction algorithms to cater for a range of intuitions.

Keywords: Defeasible logic, Non-monotonic reasoning, Knowledge rep-
resentation and reasoning, Artificial intelligence.

1 Introduction

Non-monotonic reasoning systems represent and reason with incomplete infor-
mation where the degree of incompleteness is not quantified. A very simple and
natural way to represent such incomplete information is with a defeasible rule
of the form “antecedent ⇒ consequent”; with the meaning that provided there
is no evidence against the consequent, the antecedent is sufficient evidence for
concluding the consequent. Creating such rules is made easier for the knowl-
edge engineer as each rule need only be considered in isolation. The interaction
between the rules is the concern of the logic designer.

Reiter’s normal defaults [24] have this form, with the meaning that if the an-
tecedent is accepted and the consequent is consistent with our knowledge so far
then accept the consequent. Of course the consequent could be consistent with
current knowledge and yet there be evidence against the consequent. This results
in multiple extensions. However multiple extensions are avoided by interpreting
a defeasible rule as “if the antecedent is accepted and all the evidence against
the consequent has been nullified then accept the consequent”. This interpre-
tation forms the foundation of a family of non-monotonic logics all based on
Nute’s original defeasible logic [22]. (Different formal definitions of “accepted”,
“evidence against”, and “nullified” have been used by different defeasible logics.)

Unlike other non-monotonic reasoning systems, these defeasible logics use
Nute’s very simple and natural “defeasible arrow” to represent incomplete in-
formation. This simplicity and naturalness is important when explaining an im-
plementation to a client. All defeasible logics have a priority relation on rules.
Although preferences between rules can be simulated by more complex rules, this

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 34–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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is not so natural or simple. Defeasible logics use classical negation rather than
negation-as-failure, and have a type of rule which warns that a conclusion, c, is
too risky but does not support the negation of c. Many defeasible logics cater
for different intuitions about what should follow from a reasoning situation.

A key feature of these defeasible logics is that they all have efficient easily
implementable deduction algorithms (see [8,20,23] for details). Indeed defeasible
logics have been used in an expert system, for learning and planning [23], in
a robotic dog which plays soccer [9,10], and to improve the accuracy of radio
frequency identification [11]. Defeasible logics have been advocated for various
applications including modelling regulations and business rules [3], agent nego-
tiations [13], the semantic web [1,4], modelling agents [16], modelling intentions
[15], modelling dynamic resource allocation [17], modelling contracts [12], le-
gal reasoning [18], modelling deadlines [14], and modelling dialogue games [25].
Moreover, defeasible theories, describing policies of business activities, can be
mined efficiently from appropriate datasets [19].

The unique features and diverse range of practical applications show that
defeasible logics are useful and their language is important for knowledge rep-
resentation and reasoning. Using defeasible logic as the inference engine in an
expert system is obvious. But it is less obvious to use defeasible logic to deal
with the error-prone output of sensors (possibly in a robot), because this can be
done using classical logic. The advantages of using defeasible logic are that the
system can be developed incrementally, there are fewer rules, and the rules are
simpler [9,10,11].

In this paper we shall define a new defeasible logic, called clausal defeasible
logic (CDL), explain how it works, and show why it is needed.

The rest of the paper has the following organisation. Section 2 shows why
CDL is needed. Section 3 gives an overview of CDL. The formal definitions of
CDL are in Sections 4 and 5. An explanation of the proof algorithms concludes
Section 5. An example is considered in Section 6. Section 7 contains results that
show CDL is well-behaved. A summary forms Section 8.

2 Why Clausal Defeasible Logic Is Needed

There are three classes of defeasible logic: the twin logics NDL and ADL [21] and
their variants; the logic DL93 [5] and its variants; and plausible logic [8] and its
later developments. Table 1 compares CDL and representatives from the three
classes by noting which properties hold. From the first class we choose NDL and
ADL, from the second class we choose DL93, and from the third class we choose
the latest plausible logic PL05 [7].

There are two well-informed but different intuitions about what follows from
the defeasible theory Ambig = {r1: {} ⇒ b, r2: {} ⇒ a, r3: {} ⇒ ¬a,
r4: {a} ⇒ ¬b}. Rule r1 says there is evidence for b; r2 says there is evidence for
a; r3 says there is evidence for not a; and r4 says that a is evidence for not b. All
rules have the same reliability or strength. Because there is equal evidence for
and against a, we say a is ambiguous. The ambiguity blocking intuition says that
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Table 1. Logics and their Properties

Property \ Logic CDL PL05 NDL ADL DL93

Ambiguity blocking Yes Yes Yes No Yes

Ambiguity propagating Yes Badly No Yes No*

General conflict Yes Yes Yes Yes No

Prove disjunctions Yes Yes No No No

Team defeat Yes Yes No No Yes

Failure-by-looping Yes No Limited Limited No

Linear proof hierarchy Yes No Yes Yes No*

Terminates Yes Yes No No No

Weak decisiveness Yes Yes Yes No Yes

* There is a variant of DL93 [2] that has these properties.

since a is not accepted, r4 cannot be used and so b should be accepted because of
r1. The ambiguity propagating intuition says that although r4 has been weakened
by the ambiguity of a, it has not been weakened enough to ignore r4. So r1 is
evidence for b and r4 is still evidence against b. Thus b should also be ambiguous,
that is the ambiguity of a has been propagated along r4 to b.

Defeasible logics deal with factual, as well as defeasible, information. A de-
feasible logic has the general conflict property iff the logic recognises that two
defeasible rules, r1 and r2, conflict whenever the factual information means that
the consequents of r1 and r2 cannot both hold. For example if c ∨ d is a fact
then only a logic with the general conflict property will recognise that {a} ⇒ ¬c
and {b} ⇒ ¬d conflict.

Only plausible logics can prove disjunctions of literals.
Suppose there is a team of rules supporting a and a team of rules supporting

¬a, and there is a priority between rules. If there is a rule supporting a that is
superior to all the rules supporting ¬a then clearly a should be concluded. This
is what NDL and ADL do. But more intuitive results can be obtained if the
following team defeat property is used. If every rule supporting ¬a is inferior to
some rule supporting a then conclude a.

To illustrate failure-by-looping consider the following example of a positive
loop. {rc: {} ⇒ c, rab: {a} ⇒ b, rba: {b} ⇒ a, rac: {a} ⇒ ¬c}. Rule rc is
evidence for c, and rac is evidence against c. But a cannot be proved because
rab and rba form a positive loop. Hence the evidence against c has been nullified
and so we conclude c. This is what NDL and ADL do.

The following is an example of a negative loop. NegLoop = {ra: {} ⇒ a,
rb: {} ⇒ b, rc: {} ⇒ c, rab: {a} ⇒ ¬b, rba: {b} ⇒ ¬a, rac: {a} ⇒ ¬c}.
Again rc is evidence for c, and rac is evidence against c. But a cannot be proved
because rab and rba form a negative loop. Hence the evidence against c has been
nullified and so we conclude c. No previous defeasible logic does this.

A logic has a linear proof hierarchy iff for any two of its proof algorithms,
whatever can be proved by one can be proved by the other or vice versa. For
NDL and ADL this means that NDL can prove whatever ADL can prove.
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Defeasible logics are designed to be implemented on a computer, and so it
would be tidy if their deduction algorithms always terminated. The algorithms
used in DL93, NDL, and ADL do not terminate when trying to prove c in the
NegLoop example.

To nullify evidence defeasible logics have to be able to disprove formulas. This
means that they can demonstrate in a finite number of steps that there is no
proof of the formula. (It does not mean that the negation of the formula can be
proved.) It would be nice if every formula could be proved or disproved, called
decisiveness in [6]. Unfortunately there are examples that show that decisiveness
leads to undesirable results [6]. Weak decisiveness means that every formula can
be proved, or disproved, or the attempted proof gets into a loop. If such a loop
is detected then the proof can be terminated, otherwise the deduction algorithm
does not terminate.

For each of the first 6 properties in Table 1, a logic which has this property
will give more intuitive results than a logic which does not have the property.

Having a linear proof hierarchy is important because then one does not have
to decide which proof algorithm to use. Always use the strongest (most reli-
able) algorithm. If it succeeds then the weaker algorithms will succeed too. If
it fails then use the next weakest (less reliable) algorithm. So different degrees
of confidence in a proved result can be achieved without using numbers such
as probabilities or certainty factors. Ambiguity propagation gives more reliable
results, but proves less, than ambiguity blocking. Moreover a range of ambiguity
propagating algorithms can be formed giving a range of reliabilities.

Since CDL is based on PL05 we shall consider the flaws of PL05 more closely.
The ambiguity propagating algorithm of PL05 is too strong. Its nullifying sub-
algorithm is too weak, which makes PL05 fail to have a linear proof hierarchy.
We define two totally new ambiguity propagating algorithms based on ideas
exhibited in a variant of DL93 [2].

PL05 detects all loops, but it only uses this information to terminate loops.
NDL and ADL do not really detect loops, they just use some loops in their
failure-by-looping method. If all loops were used in a failure-by-looping method
then the logic would be decisive; which, as noted above, leads to undesirable
results. CDL determines which loops are usable and which are not. Every loop
used by NDL and ADL is regarded as usable by CDL. Moreover CDL gets the
desired answer for the NegLoop example, see Section 6.

3 Overview of Clausal Defeasible Logic (CDL)

CDL reasons with both factual and plausible information, which is represented
by strict rules, defeasible rules, warning rules, and a priority relation, >, on the
rules. All rules have the form “finite-set-of-literals arrow literal”.

Strict rules, for example A → l, represent the aspects of a situation that are
certain. If all the literals in A are proved then l can be deduced, no matter what
the evidence against l is.
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Defeasible rules, for example A ⇒ l, mean that if all the literals in A are
proved and all the evidence against l has been nullified then l can be deduced.

Warning rules, for example A � ¬l, warn against concluding usually l, but do
not support usually ¬l. For example, “Sick birds might not fly.” is represented by
{sick(x), bird(x)} � ¬fly(x). The idea is that a bird being sick is not sufficient
evidence to conclude that it usually does not fly; it is only evidence against the
conclusion that it usually flies.

The priority relation, >, on the set of non-strict rules allows the representation
of preferences among non-strict rules. The priority relation must be acyclic, but
does not have to be transitive. Consider the following two rules.

r1: {bird(x)} ⇒ fly(x) [Birds usually fly.]
r2: {quail(x)} ⇒ ¬fly(x) [Quails usually do not fly.]

Since r2 is more specific than r1 we want r2 > r1, meaning that r2 is preferred
over r1.

CDL has six proof algorithms. The μ algorithm is monotonic and uses only
strict rules. CDL restricted to μ is essentially classical propositional logic. The
ambiguity blocking algorithm is denoted by β. There are two ambiguity propa-
gating algorithms denoted by ρ and π, ρ being more reliable than π. Algorithm
ρ requires the co-algorithm ι, which only considers supporting evidence for a for-
mula and ignores all contrary evidence. Algorithm π requires the co-algorithm
ε, which sees if there is unbeaten evidence for a formula. Let λ be either ρ or π
and λ′ be its required co-algorithm. Then the more λ′ can prove the less λ can
prove. So by changing λ′ we can make λ more reliable and closer to μ, or less
reliable and closer to β.

The task of proving a formula is done by a recursive proof function P . The
input to P is the proof algorithm to be used, the formula to be proved, and the
background. The background is an initially empty storage bin into which is put
all the literals that are currently being proved as P recursively calls itself. The
purpose of this background is to detect loops. The output of P is one of the
following proof-values +1, 0, or −1. The +1 means that the formula is proved
in a finite number of steps, 0 means that the proof got into a loop which was
detected in a finite number of steps, and −1 means that in a finite number of
steps it has been demonstrated that there is no proof of the formula and that
this demonstration does not get into a loop.

Some proofs use the finite failure of other proofs. Proofs with a proof-value of
−1 are always usable. Moreover CDL determines which proofs with a proof-value
of 0 are usable and which are not.

4 The Language of Clausal Defeasible Logic (CDL)

CDL uses a countable propositional language with not (¬), and (
∧

), and or (
∨

).
The set of all clauses that are resolution-derivable from a set C of clauses is
denoted by Res(C). The complement of a formula and the complement of a set
of formulas is now defined.
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Definition 1. (complement, ∼).
C1) If a is an atom then ∼a is ¬a.
C2) If f is a formula then ∼¬f is f .
C3) If F is a set of formulas then ∼F = {∼f : f ∈F}.
C4) If F is a finite set of formulas then ∼∧

F is
∨∼F ; and ∼∨

F is
∧∼F .

Definition 2. (subclause, proper subclause). A clause
∨
L is a subclause of the

clause
∨
M , denoted

∨
L ≤ ∨

M , iff L ⊆ M . A clause
∨
L is a proper subclause of

the clause
∨
M , denoted

∨
L <

∨
M , iff L ⊂ M .

Definition 3. (rule). A rule, r, is a triple (A(r), arrow(r), c(r)), where A(r) is
a finite set of literals called the set of antecedents of r, arrow(r) ∈ {→,⇒,�},
and c(r) is a literal called the consequent of r.

Strict rules use the strict arrow, →, and are written A(r) → c(r).
Defeasible rules use the defeasible arrow, ⇒, and are written A(r) ⇒ c(r).
Warning rules use the warning arrow, �, and are written A(r) � c(r).

Definition 4. (Rs, Rd, Rw, R[l], R[L], Cl(Rs), Ru(C)). Let R be any set of rules,
C be any set of clauses, L be any set of literals, and l be any literal.
Rs = {r∈R : r is strict}. R[l] = {r∈R : l = c(r)}.
Rd = {r∈R : r is defeasible}. R[L] = {r∈R : c(r)∈L}.
Rw = {r∈R : r is a warning rule}. Cl(Rs) = {

∨
[{c(r)} ∪ ∼A(r)] : r∈Rs}.

Ru(C) = {∼(L−{l}) → l : l∈L and
∨
L∈C}.

A strict rule can be converted to a clause, which is what Cl does. Conversely a
clause with n literals can be converted to n strict rules, which is what Ru does.

Definition 5. (cyclic, acyclic). A binary relation, >, on any set R is cyclic iff
there exists a sequence, (r1, r2, . . . , rn) where n ≥ 1, of elements of R such that
r1 > r2 > . . . > rn > r1. A relation is acyclic iff it is not cyclic.

Definition 6. (priority relation, >, R[l; s]). If R is a set of rules then > is a
priority relation on R iff > is an acyclic binary relation on Rd ∪ Rw.
R[l; s] = {t∈R[l] : t > s}.

We read t > s as t has a higher priority than s, or t is superior to s. Notice that
strict rules are never superior to or inferior to any rule; and > does not have to
be transitive.

Let C be a set of clauses. We want to remove from C all the clauses which
are empty, or tautologies, or are proper superclauses of other clauses. The result
is called the reduct of C, Red(C), and is formally defined below.

Definition 7. (Red(C), reduct). Let C be a set of clauses. Red(C) is the reduct
of C iff it satisfies RC1, RC2, and RC3 below.
RC1) Red(C) ⊆ {∨L∈C : L �= {} and

∨
L is not a tautology}.

RC2) If {∨L,
∨
M} ⊆ Red(C) then

∨
L is not a proper subclause of

∨
M .

RC3) If
∨
L ∈ C−Red(C) then either .1)

∨
L is empty or a tautology;

or .2) a proper subclause of
∨
L is in Red(C).
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Given a set R of rules, Pre(R,L), the predecessors of L, is the set of all literals
that could affect any literal in the set L of literals. IPre(R,L) is the set if
immediate predecessors of L.

Definition 8. (Pre(R, .)). Suppose R is a set of rules, L is a finite set of literals,
l is a literal, and i∈N.
IPre(R,L) =

⋃
{A(r) ∪ ∼A(r) : r ∈ R[L ∪∼L]}.

IPre0(R,L) = L ∪ ∼L. IPrei+1(R,L) = IPre(R, IPrei(R,L)).
Pre(R,L) =

⋃
{IPrei(R,L) : i∈N}. Pre(R, l) = Pre(R, {l}).

Definition 9. (clausal defeasible theory, cdt). Let R be a set of rules. The
ordered pair (R,>) is called a clausal defeasible theory (cdt) iff DT1, DT2, and
DT3 all hold.
DT1) Rs = Ru(Red(Res(Cl (Rs)))).
DT2) > is a priority relation on Rd ∪ Rw.
DT3) For all literals, l, Pre(R, l) is finite.

The following notation will be needed later.

Definition 10. (Rs[L, 2], A*(Rs[l])). Let (R,>) be a cdt.
Rs[L, 2] = {r ∈Rs[L] : A(r) ∩ ∼L �= {}}. If {}→ l ∈ Rs or {}→∼l ∈ Rs

then A*(Rs[l]) = {A(r) : r∈Rs[l]}; else A*(Rs[l]) = {A(r) : r∈Rs[l]} ∪ {{l}}.

5 Clausal Defeasible Logic (CDL)

To define the proof algorithms of CDL we defined the proof function P , which
is done by using the following nine auxiliary functions: Plaus (Plausible), For ,
Nulld (Nullified), Discred (Discredited), Dftd (Defeated), Disql (Disqualified),
Evid (Evidence), Imp (Impotent), and Unwin (Unwinnable). All these functions
depend on the cdt Θ = (R,>), and have their output in {+1, 0,−1}.

For non-empty sets max and min have their usual meaning. But we also define
max{} = −1 and min{} = +1.

The proof algorithms are explained after their formal definition. In the follow-
ing C is a finite set of clauses, B and L are finite sets of literals, and l is a literal.
All the proof algorithms are the same for conjunctions of clauses, disjunctions
of literals, and literals in B.

Definition 11. (P for conjunctions, disjunctions, l∈B).
Suppose λ ∈ {μ, ρ, π, β, ε, ι}.
λ
∧

) P (λ,
∧
C,B) = min{P (λ, c, B) : c∈C}.

λ
∨

1) If
∨
L is a tautology then P (λ,

∨
L,B) = +1;

λ
∨

2) else P (λ,
∨
L,B) = max({P (λ, l, B) : l∈L} ∪

{P (λ,
∧

(A(r)−∼L), B) : r∈Rs[L, 2]}).
λ1) If l∈B then P (λ, l, B) = 0.

Definition 12. (μ and ι proof algorithms continued).
μ2) If l /∈B then P (μ, l, B) = max{P (μ,

∧
A(r), {l}∪B) : r∈Rs[l]}.

ι2) If l /∈B then P (ι, l, B) = max{P (ι,
∧
A(r), {l}∪B) : r ∈ Rs[l]∪Rd[l]}.
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Definition 13. (ρ, π, and β proof algorithms continued).
Suppose λ ∈ {ρ, π, β} and define ρ′ = ι, π′ = ε, and β′ = β.
λ2) If l /∈B then P (λ, l, B) = max({P (λ,

∧
A(r), {l}∪B) : r∈Rs[l]} ∪

{Plaus(λ, l, B)}).
λ3) Plaus(λ, l, B) = min({For(λ, l, B)} ∪ {Nulld(λ, l, B, I) : I∈A*(Rs[∼l])}).
λ4) For(λ, l, B) = max{P (λ,

∧
A(r), {l}∪B) : r∈Rd[l]}.

λ5) Nulld(λ, l, B, I) = max{Discred(λ, l, B, q) : q∈I}.
λ6) Discred(λ, l, B, q) = min{Dftd(λ, l, B, s) : s∈R[q]}.
λ7) Dftd(λ, l, B, s) = max({P (λ,

∧
A(t), {l}∪B) : t∈Rd[l; s]}∪{Disql(λ, l, B, s)}).

λ8) If P (λ′,
∧
A(s), {l}∪B) = 0 and l /∈Pre(R,A(s)) then Disql(λ, l, B, s) = +1;

λ9) else Disql(λ, l, B, s) = −P (λ′,
∧
A(s), {l}∪B).

Definition 14. (ε proof algorithm continued).
ε2) If l /∈B then P (ε, l, B) = max({P (ε,

∧
A(r), {l}∪B) : r∈Rs[l]} ∪

{Evid(ε, l, B, r) : r∈Rd[l]}).
ε3) Evid(ε, l, B, r) = min({P (ε,

∧
A(r), {l}∪B)} ∪

{Imp(ε, l, B, r, I) : I∈A*(Rs[∼l])}).
ε4) Imp(ε, l, B, r, I) = max{Unwin(ε, l, B, r, q) : q∈I}.
ε5) Unwin(ε, l, B, r, q) = min{Disql(ε, l, B, s) : s∈R[q; r]}.
ε6) If P (π,

∧
A(s), {l}∪B) = 0 and l /∈Pre(R,A(s)) then Disql(ε, l, B, s) = +1;

ε7) else Disql(ε, l, B, s) = −P (π,
∧
A(s), {l}∪B).

Definition 15. (Θ(λ+), Θ(λ−), Θ(λ0)). Suppose Θ is a cdt, P is the proof
function of Θ, f is a formula, and λ ∈ {μ, ρ, π, β, ε, ι}. We define
Θ(λ+) = {f : P (λ, f, {}) = +1}, Θ(λ0) = {f : P (λ, f, {}) = 0}, and
Θ(λ−) = {f : P (λ, f, {}) = −1}.

We shall now give some insight into the above proof algorithms. Note that min
and max behave like quantifiers. If S is a subset of {+1, 0,−1} then
min(S) = +1 iff ∀i∈S(i = +1); min(S) = −1 iff ∃i∈S(i = −1);
max(S) = +1 iff ∃i∈S(i = +1); and max(S) = −1 iff ∀i∈S(i = −1).
Suppose λ ∈ {μ, ρ, π, β, ε, ι}.

A conjunction of clauses,
∧
C, is proved by proving each clause in C. So for

P (λ,
∧
C,B) to be +1 each P (λ, c, B) must be +1, where c∈C. Hence λ

∧
.

If a disjunction of literals,
∨
L, is a tautology then we declare it proved. Hence

λ
∨

1. If
∨
L is not a tautology then

∨
L is proved by either proving at least one

literal in L, max({P (λ, l, B) : l ∈ L}), or by generalising the following idea.
Suppose L = {a, b, c} and r is the strict rule {∼a, d} → c. Then the clausal form
of r is

∨{∼d, a, c}. So proving d will show
∨{a, c} and hence

∨
L. Putting these

two parts together gives λ
∨

2.
Proving literals is much more involved. If the literal to be proved, l, is in the

background B then we are already in the process of trying to prove l. So we are
now in a loop. Hence P (λ, l, B) = 0 and so λ1. So suppose that the literal to be
proved, l, is not in the background B.

Since μ uses only strict rules, to prove l we must prove the conjunction of the
antecedent of a strict rule whose consequent is l. Hence μ2.
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The ι algorithm only considers evidence that supports l and ignores all evi-
dence against l. So to prove l we must prove the conjunction of the antecedent
of any strict or defeasible rule whose consequent is l, max{P (ι,

∧
A(r), {l}∪B) :

r ∈ Rs[l]∪Rd[l]}. Hence ι2.
Now consider the ρ, π, and β algorithms. Suppose λ ∈ {ρ, π, β} and recall that

ρ′ = ι, π′ = ε, and β′ = β. To prove l we must either prove the conjunction of
the antecedent of a strict rule whose consequent is l, max({P (λ,

∧
A(r), {l}∪B) :

r ∈ Rs[l]}, or do something else, {Plaus(λ, l, B)}). Hence λ2. Note that when
we prove the antecedent,

∧
A(r), l must be added to the background. If we are

not using a strict rule then we need evidence for l, For(λ, l, B), and we need to
nullify all the evidence against l, {Nulld(λ, l, B, I) : I ∈A*(Rs[∼l])}. Hence λ3.
Each I in A*(Rs[∼l]) is a set of literals which are inconsistent with l. This gives
us the general conflict property.

The evidence for l is established by proving the conjunction of the antecedent
of a defeasible rule whose consequent is l. Hence λ4.

The evidence against l is nullified by, for each I in A*(Rs[∼l]), finding a literal,
q, in I such that every rule, s, whose consequent is q is defeated. Hence λ5 and λ6.
A rule, s, is defeated by either disqualifying it, Disql(λ, l, B, s), or by using team
defeat. That is by finding a defeasible rule t whose consequent is l (a member
of the team for l) and which is superior to s, and then proving the conjunction
of the antecedent of t, {P (λ,

∧
A(t), {l}∪B) : t∈Rd[l; s]}. Hence λ7. A rule, s,

is disqualified by either using the λ′ algorithm to disprove its antecedent, λ9; or
by showing that using λ′ to prove its antecedent loops, P (λ′,

∧
A(s), {l}∪B) = 0,

and that the loop does not involve l, l /∈Pre(R,A(s)). Hence λ8.
Finally consider the ε proof algorithm. To prove l we must either prove

the conjunction of the antecedent of a strict rule whose consequent is l,
max({P (ε,

∧
A(r), {l}∪B) : r ∈ Rs[l]}, or find a defeasible rule, r, whose con-

sequent is l, which is sufficient evidence for l, {Evid(ε, l, B, r) : r ∈ Rd[l]}.
Hence ε2. If we are not using a strict rule then we must prove the conjunc-
tion of the antecedent of r and make all the evidence against l impotent,
{Imp(ε, l, B, r, I) : I ∈ A*(Rs[∼l])}. Hence ε3. The evidence against l is made
impotent by, for each I in A*(Rs[∼l]), finding a literal, q, in I such that every
rule, s, whose consequent is q and which is superior to r is disqualified. Hence ε4
and ε5. A rule, s, is disqualified by either using π to disprove its antecedent, ε7;
or by showing that using π to prove its antecedent loops, P (π,

∧
A(s), {l}∪B) = 0,

and that the loop does not involve l, l /∈Pre(R,A(s)). Hence ε6.

6 Example

Consider the following example of a negative loop given in Section 2. R =
{ra: {} ⇒ a, rb: {} ⇒ b, rc: {} ⇒ c, rab: {a} ⇒ ¬b, rba: {b} ⇒ ¬a,
rac: {a} ⇒ ¬c} We show that the ambiguity blocking algorithm β proves c,
P (β, c, {}) = +1; but that the ambiguity propagating algorithm π disproves c,
P (π, c, ) = −1. Define the cdt Θ by Θ = (R,>), where > is empty. For each
literal l, A*(Rs[l]) = {{l}}. Also Pre(R, a) = {a,¬a, b,¬b} = Pre(R, b).
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Calculation C1
1) P (β, c, {}) = Plaus(β, c, {}), by β2
2) = min{For(β, c, {}), Nulld(β, c, {}, {¬c})}, by β3
3) For (β, c, {}) = P (β,

∧{}, {c}), by β4
4) = min{} = +1, by β

∧
.

5) ∴ P (β, c, {}) = Nulld(β, c, {}, {¬c}), by 4, 3, 2, 1.
6) = Discred(β, c, {},¬c), by β5
7) = Dftd(β, c, {}, rac), by β6
8) = Disql(β, c, {}, rac), by β7
9) = +1, by C1.1(9), c /∈Pre(R, a), β8

Calculation C1.1
1) P (β, a, {c}) = Plaus(β, a, {c}), by β2
2) = min{For(β, a, {c}), Nulld(β, a, {c}, {¬a})}, by β3
3) For (β, a, {c}) = P (β,

∧{}, {a, c}), by β4
4) = min{} = +1, by β

∧
.

5) ∴ P (β, a, {c}) = Nulld(β, a, {c}, {¬a}), by 4, 3, 2, 1.
6) = Discred(β, a, {c},¬a), by β5
7) = Dftd(β, a, {c}, rba), by β6
8) = Disql(β, a, {c}, rba), by β7
9) = −0 = 0, by C1.1.1(9), a∈Pre(R, b), β9

Calculation C1.1.1
1) P (β, b, {a, c}) = Plaus(β, b, {a, c}), by β2
2) = min{For(β, b, {a, c}), Nulld(β, b, {a, c}, {¬b})}, by β3
3) For (β, b, {a, c}) = P (β,

∧{}, {b, a, c}), by β4
4) = min{} = +1, by β

∧
.

5) ∴ P (β, b, {a, c}) = Nulld(β, b, {a, c}, {¬b}), by 4, 3, 2, 1.
6) = Discred(β, b, {a, c},¬b), by β5
7) = Dftd(β, b, {a, c}, rab), by β6
8) = Disql(β, b, {a, c}, rab), by β7
9) = −0 = 0, by C1.1.1.1(1), b∈Pre(R, a), β9

Calculation C1.1.1.1

1) P (β, a, {b, a, c}) = 0, by β1.

Calculation C2
1) P (π, c, {}) = Plaus(π, c, {}), by π2
2) = min{For(π, c, {}), Nulld(π, c, {}, {¬c})}, by π3
3) For (π, c, {}) = P (π,

∧{}, {c}), by π4
4) = min{} = +1, by π

∧
.

5) ∴ P (π, c, {}) = Nulld(π, c, {}, {¬c}), by 4, 3, 2, 1.
6) = Discred(π, c, {},¬c), by π5
7) = Dftd(π, c, {}, rac), by π6
8) = Disql(π, c, {}, rac), by π7
9) = − + 1 = −1, by C2.1(6), π9
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Calculation C2.1
1) P (ε, a, {c}) = Evid(ε, a, {c}, ra), by ε2
2) = min{P (ε,

∧{}, {a, c}), Imp(ε, a, {c}, ra, {¬a})}, by ε3
3) P (ε,

∧{}, {a, c}) = min{} = +1, by ε
∧

.
4) ∴ P (ε, a, {c}) = Imp(ε, a, {c}, ra, {¬a}), by 3, 2, 1.
5) = Unwin(ε, a, {c}, ra,¬a), by ε4
6) = min{} = +1, by ε5

This example shows how π and β differ, and also how the failure-by-looping
mechanism works.

7 Results

Our first result shows that the proof function P and its auxiliary functions really
are functions, and that termination and weak decisiveness also hold.

Theorem 1. Let Θ = (R,>) be a cdt. If fn ∈ {P, Plaus , For , Nulld , Discred ,
Dftd , Disql , Evid , Imp, Unwin} then fn is a function with co-domain {+1, 0,−1}.

The proof function P can be defined without using the auxiliary functions. This
re-phrasing of P has a similar structure to the definitions used in DL93, and
enables P to be written as many complicated conventional inference rules.

The importance of having a linear proof hierarchy was explained in Section 2.
The next theorem says that CDL has this property, and also the reverse for
disproof.

Theorem 2. Suppose Θ is a cdt.
(1) P (μ, f,B) ≤ P (ρ, f,B) ≤ P (π, f,B) ≤ P (β, f,B) ≤ P (ε, f, B) ≤ P (ι, f, B).
(2) Θ(μ+) ⊆ Θ(ρ+) ⊆ Θ(π+) ⊆ Θ(β+) ⊆ Θ(ε+) ⊆ Θ(ι+).
(3) Θ(ι−) ⊆ Θ(ε−) ⊆ Θ(β−) ⊆ Θ(π−) ⊆ Θ(ρ−) ⊆ Θ(μ−).

The following theorem shows that if the priority relation is empty then ε = ι
and π = ρ.

Theorem 3. Suppose (R,>) is a cdt where > is empty.
(1) P (ε, f, B) = P (ι, f, B). (2) P (π, f,B) = P (ρ, f,B).

Except for ε, if the antecedent of a strict rule is proved then its consequent can
also be proved; and so modus ponens or detachment holds for strict rules.

Theorem 4. Suppose Θ = (R,>) is a cdt, λ ∈ {μ, ρ, π, β, ι}, and A → l is in
Rs. If

∧
A∈Θ(λ+) then l∈Θ(λ+).

The following example shows that modus ponens need not hold for ε and strict
rules. Define (R,>) as follows. R = {r1, r2, r3, r4, r5, r6, r7} where r1 is {a, b} →
l, r2 is {a,¬l} → ¬b, r3 is {b,¬l} → ¬a, r4 is {} ⇒ b, r5 is {} ⇒ ¬b, r6 is
{} ⇒ a, r7 is {l} ⇒ ¬a; and > is defined by r7 > r6. Then P (ε, a, {}) = +1, and
P (ε, b, {}) = +1, but P (ε, l, {}) = 0. So although the antecedent of r1 is proved
its consequent is not. Hence modus ponens fails for ε and r1.
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Definition 16. (Consistent). A set C of clauses is consistent iff
∨{} /∈Res(C).

C is inconsistent iff C is not consistent. Θ(λ+) is consistent iff the set of clauses
in Θ(λ+) is consistent. Θ(λ+) is inconsistent iff Θ(λ+) is not consistent.

Our next result says that our proof algorithms are at least as powerful as res-
olution; in the sense that if two clauses can be proved then their resolvent can
also be proved.

Theorem 5. Suppose Θ = (R,>) is a cdt, and λ ∈ {μ, ρ, π, β}. If Cl(Rs) is
consistent then Θ(λ+) is closed under resolution.

Our final result shows that the proof algorithms do not create inconsistencies,
and so are trustworthy.

Theorem 6. If Θ = (R,>) is a cdt, and λ ∈ {μ, ρ, π, β} then Θ(λ+) ∪ Cl (Rs)
is consistent iff Cl(Rs) is consistent.

8 Summary

In Section 1 we argued that, among non-monotonic logics, the family of defeasible
logics is important for knowledge representation and reasoning. Defeasible logics
are powerful enough for a diverse range of practical applications, and yet their
language has a unique combination of expressiveness, simplicity, and naturalness.

However all previous defeasible logics have various faults and so give unin-
tuitive answers for some reasoning puzzles. So a defeasible logic that does not
suffer from these faults is needed. Clausal defeasible logic (CDL) is such a logic,
and yet it inherits all the desirable properties of the family of defeasible logics.
This paper defines and explains CDL, gives an example of how to calculate with
both the ambiguity blocking and ambiguity propagating algorithms, and shows
that CDL is well-behaved and that its deduction algorithms are trustworthy.

References

1. Antoniou, G.: Nonmonotonic rule system on top of ontology layer. In: Bergmann,
R. (ed.) Experience Management. LNCS (LNAI), vol. 2432, pp. 394–398. Springer,
Heidelberg (2002)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A Flexible Framework
for Defeasible Logics. In: Proc AAAI 2000, pp. 405–410 (2000)

3. Antoniou, G., Billington, D., Maher, M.J.: On the analysis of regulations using
defeasible rules. In: Proc. 32nd Hawaii Intl. Conf. on Syst. Sci (HICSS). IEEE
Press, Los Alamitos (1999)

4. Bassiliades, N., Antoniou, G., Vlahavas, I.: DR-DEVICE: A defeasible logic system
for the Semantic Web. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS,
vol. 3208, pp. 134–148. Springer, Heidelberg (2004)

5. Billington, D.: Defeasible Logic is Stable. J Logic Computation 3(4), 379–400
(1993)



46 D. Billington

6. Billington, D.: A Plausible Logic which Detects Loops. In: Proc 10th International
Workshop on Nonmonotonic Reasoning, pp. 65–71 (2004) ISBN 92-990021-0-X

7. Billington, D.: The Proof Algorithms of Plausible Logic Form a Hierarchy. In:
Zhang, S., Jarvis, R. (eds.) AI 2005. LNCS (LNAI), vol. 3809, pp. 796–799.
Springer, Heidelberg (2005)

8. Billington, D., Rock, A.: Propositional Plausible Logic: Introduction and Imple-
mentation. Studia Logica 67(2), 243–269 (2001)

9. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic Reasoning
for Localisation in RoboCup. In: Proc. 2005 Australasian Conference on Robotics
and Automation (2005)
http://www.cse.unsw.edu.au/∼acra2005/proceedings/papers/billington.pdf

10. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Using Temporal Consis-
tency to Improve Robot Localisation. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G.,
Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI),
vol. 4434, pp. 232–244. Springer, Heidelberg (2007)

11. Darcy, P., Stantic, B., Derakhshan, R.: Correcting Stored RFID Data with Non-
Monotonic Reasoning. Int. J. of Principles and Apps. of Info. Sci. and Tech
(PAIST) 1(1), 65–77 (2007)

12. Governatori, G.: Representing business contracts in RuleML. International Journal
of Cooperative Information Systems 14(2-3), 181–216 (2005)

13. Governatori, G., Dumas, M., ter Hofstede, A.H., Oaks, P.: A formal approach to
protocols and strategies for (legal) negotiation. In: Proc. 8th International Con-
ference on Artificial Intelligence and Law (ICAIL 2001), pp. 168–177. ACM Press,
New York (2001)

14. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising Deadlines in
Temporal Modal Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

15. Governatori, G., Padmanabhan, V.: A defeasible logic of policy-based intention. In:
Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 414–426.
Springer, Heidelberg (2003)

16. Governatori, G., Rotolo, A.: Defeasible logic: Agency, intention and obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128.
Springer, Heidelberg (2004)

17. Governatori, G., Rotolo, A., Sadiq, S.: A model of dynamic resource allocation
in workflow systems. Research & Practice of IT Database Technology 2004 27,
197–206 (2004)

18. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: 10th Intl. Conf. on AI and Law (ICAIL 2005), pp. 25–34. ACM
Press, New York (2005)

19. Johnston, B., Governatori, G.: An algorithm for the induction of defeasible logic
theories from databases. Research & Practice of IT Database Technology 2003 17,
75–83 (2003)

20. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient Defeasible
Reasoning Systems. Intl. J. of Artificial Intelligence Tools 10(4), 483–501 (2001)

21. Maier, F., Nute, D.: Ambiguity Propagating Defeasible Logic and the Well-Founded
Semantics. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 306–318. Springer, Heidelberg (2006)

22. Nute, D.: Defeasible reasoning. In: 20th Hawaii Intl. Conf. on Syst. Sci., pp. 470–
477 (1987)

http://www.cse.unsw.edu.au/~acra2005/proceedings/papers/billington.pdf


Propositional Clausal Defeasible Logic 47

23. Nute, D.: Defeasible Logic. In: Bartenstein, O., Geske, U., Hannebauer, M., Yoshie,
O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp. 151–169. Springer, Heidelberg
(2003)

24. Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13, 81–132 (1980)
25. Thakur, S., Governatori, G., Padmanabhan, V., Lundstrom, J.E.: Dialogue Games

in Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 497–506. Springer, Heidelberg (2007)



Complexity and Succinctness Issues for Linear-Time
Hybrid Logics

Laura Bozzelli and Ruggero Lanotte
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Abstract. Full linear-time hybrid logic (HL) is a non-elementary and equally
expressive extension of standard LTL + past obtained by adding the well-known
binder operators ↓ and ∃. We investigate complexity and succinctness issues for
HL in terms of the number of variables and nesting depth of binder modalities.
First, we present direct automata-theoretic decision procedures for satisfiability
and model-checking of HL, which require space of exponential height equal to
the nesting depth of binder modalities. The proposed algorithms are proved to be
asymptotically optimal by providing matching lower bounds. Second, we show
that for the one-variable fragment of HL, the considered problems are elementary
and, precisely, EXPSPACE-complete. Finally, we show that for all 0≤ h < k, there
is a succinctness gap between the fragments HLk and HLh with binder nesting
depth at most k and h, respectively, of exponential height equal to k−h.

1 Introduction

Hybrid logics extend modal and temporal logics with features from first-order logic
which provide very natural modeling facilities [BS98]. In particular, they provide a
type of atomic formulas, called nominals, which represent names for states of a model
(hence, nominals correspond to constants in first-order logic). Moreover, they contain
the at operator @n which gives ‘random’ access to the state named by n. They may also
include the downarrow binder operator ↓x, which assigns the variable name x to the
current state, and the existential binder operator ∃x, which binds x to some state in the
model. Applications of hybrid logics range from verification tasks to reasoning about
semistructured data [FR06]. Here, we focus on complexity issues for hybrid logics.

Satisfiability of hybrid logics including the binder operator ↓ or ∃ and interpreted on
general structures is undecidable, also for small fragments [ABM01, CF05]. For the class
of linear structures (based on the frame of the natural numbers with the usual ordering),
the problem is instead decidable [FRS03]. However, satisfiability and model checking
of full linear-time hybrid logic (HL, for short), an equally-expressive extension of stan-
dard LTL + past (PLTL) [Pnu77] with the binders operators ↓ and ∃, are non-elementarily
decidable (recall that for LTL and PLTL, these problems are instead PSPACE-complete
[SC85, Var88]), and this already holds for the fragment HL(↓) of HL obtained by disal-
lowing the ∃-operator. This is a consequence of the fact that standard first-order logic
over words (FO), which is non-elementary [Sto74], can be linearly translated into HL(↓)
[FRS03]. Moreover,by results in [Sto74], there is a non-elementary gap between the suc-
cinctness of HL(↓) and PLTL. Recently, Schwentick et al. [SW07] show that satisfiability

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 48–61, 2008.
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of the one-variable fragment HL1(↓) of HL(↓) is elementary and precisely EXPSPACE-
complete, while the fragment HL2(↓) of HL(↓) using at most two-variables remains non-
elementarily decidable.

Our Contribution. In this paper we further investigate the linear-time hybrid logic HL,
and focus on complexity and succinctness issues in terms of the number of variables
and the nesting depth of binder modalities. Note that as shown in [FRS03], for the
linear-time setting, nominals and the at operator @n can be linearly translated into
PLTL (without using ∃ and ↓). Thus, they are not considered in this paper. For each
h ≥ 1, let HLh and HLh(↓) be the fragments of HL and HL(↓), respectively, consisting of
formulas with nesting depth of the binder operators at most h, and let h-EXPSPACE be
the class of languages which can be decided in space of exponential height h.

First, we present automata-theoretic decision procedures for satisfiability and model
checking of HL based on a translation of HL formulas into a subclass of generalized
Büchi alternating word automata (AWA). The construction is direct and compositional
and is based on a characterization of the satisfaction relation for a given formula ϕ,
in terms of sequences of sets associated with ϕ (which generalize the classical notion
of Hintikka-set of LTL) satisfying determined requirements which can be checked by
AWA. The proposed translation lead to algorithms which run in space of exponential
height equal to the nesting depth of binder modalities. As a consequence for each h ≥ 1,
satisfiability and model checking of HLh and HLh(↓) are in h-EXPSPACE. We show
that the proposed algorithms are asymptotically optimal by providing matching lower
bounds, and in particular, we show that h-EXPSPACE-hardness already holds for the
fragment HLh

2(↓) of HLh(↓) using at most two variables.
Second, we show that the complexity of satisfiability and model checking for the

one-variable fragment HL1 of HL is elementary and, precisely, EXPSPACE-complete.
Note that our result for satisfiability does not follow from EXPSPACE-completeness of
the same problem for the one-variable fragment HL1(↓) of HL(↓) [SW07]. In fact, as
shown in [FRS03], the ∃-operator can be linearly translated into HL(↓), but the resulting
formula contains an additional variable. In particular, HL1 can be linearly translated into
HL2(↓) (using two variables), which is already non-elementary. Thus, actually, we do
not know whether HL1 can be translated into HL1(↓) with an elementary blow-up.

Finally, we show that for all 0 ≤ k < h, there is a succinctness gap between HLh and
HLk of exponential height equal to h− k.

Remark. Recall that the only known automata-theoretic decision procedures for FO,
where the starting point is the work of Büchi [Buc62] on the decidability of MSO over
infinite words (and its first-order fragment FO), are not direct and are based on the clo-
sure of ω-regular languages under projection and boolean operations. However, com-
plementation for Büchi nondeterministic automata (NWA) is not trivial and the known
constructions such as that based on Safra’s determinization result [Saf88] are quite com-
plicated. On the other hand, if we use alternating automata, then complementation (by
dualization) is easy, but projection, which is trivial for Büchi NWA, is hard and ef-
fectively requires translating AWA back to NWA. Thus, the novelty of the proposed
automata-theoretic approach for HL, which can be used also for FO (since FO is linearly
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translatable in HL) is that like the standard automatic-theoretic approach for LTL, it is
based on a direct construction which does not use closure results.

Due to lack of space, many proofs are omitted and can be found in [BL08].

2 Preliminaries

Definition 1. Let N be the set of natural numbers. For all n,h ∈ N, let Tower(n,h) be
defined as: Tower(n,0) = n and Tower(n,h + 1) = 2Tower(n,h). For each h ≥ 0, exp[h]
denotes the class of functions f : N → N such that for some constant c ≥ 1, f (n) =
Tower(nc,h) for each n. We denote by h-EXPSPACE the class of languages decided by
exp[h]-space bounded deterministic Turing machines.

2.1 The Linear-Time Hybrid Logic HL

For a finite alphabet Σ and a finite or infinite word w = σ0σ1 . . . over Σ, |w| denotes
the length of w (we set w = ∞ if w is infinite). For each 0 ≤ i < |w|, w(i) denotes the
ith symbol σi of w, wi denotes the ith suffix of w, i.e. the word wi = σiσi+1 . . ., and for
0 ≤ i ≤ j < |w|, w[i, j] denotes the finite word w[i, j] = σiσi+1 . . .σ j.

Fix a countable set {x1,x2, . . .} of (position) variables. The set of HL formulas over
a finite set AP of atomic propositions is defined by the following syntax:

ϕ := � | p | xh | ¬ϕ | ϕ ∧ ϕ | Xdirϕ | ϕU dirϕ | ∃xh.ϕ
where � denotes true, p ∈ AP, dir ∈ {+,−}, X+ and U+ are the future temporal op-
erators “forward next” and “forward until”, X− (“backward next”) and U− (“backward
until”) are their past counterparts, and ∃ is the existential binder operator. We also use
classical shortcuts: F+ϕ := �U+ϕ (“forward eventually”) and F−ϕ := �U−ϕ (“back-
ward eventually”), and their duals G+ϕ := ¬F+¬ϕ (“forward always”) and G−ϕ :=
¬F−¬ϕ (“backward always”). Moreover, the downarrow binder operator ↓ [Gor96]
can be introduced as an abbreviation as follows: ↓xh.ϕ := ∃xh.(xh ∧ ϕ).

The notion of free variable (w.r.t. the binder modalities) are obvious generalizations
from first-order logic. A formula ϕ is open if there is some variable which occurs free in
ϕ. A non-open formula is called sentence. HL over AP is interpreted on finite or infinite
words w over 2AP. A valuation for w is a mapping g assigning to each variable a position
j < |w| of w. The satisfaction relation (w, i,g) |= ϕ, meaning that ϕ holds at position i
along w w.r.t. the valuation g, is inductively defined as follows (we omit the rules for
propositions in AP, boolean connectives, and the past temporal operators):

(w, i,g) |= xh iff i = g(xh)
(w, i,g) |= X+ϕ iff i + 1 < |w| and (w, i + 1,g) |= ϕ
(w, i,g) |= ϕ1 U+ϕ2 iff there is i ≤ n < |w|.(w,n,g) |= ϕ2 and

for all i ≤ k < n.(w,k,g) |= ϕ1

(w, i,g) |= ∃xh.ϕ iff (w, i,g[xh ← m]) |= ϕ for some m < |w|

where g[xh ← m](xh) = m and g[xh ← m](xi) = g(xi) for i �= h. Thus, the ∃x-operator
binds the variable x to some position in the given word, while the ↓x-operator binds
the variable x to the current position. Note that the satisfaction relation depends only
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on the values assigned to the variables occurring free in the given formula ϕ. We write
(w, i) |= ϕ to mean that (w, i,g0) |= ϕ, where g0 maps each variable to position 0.

In the following, unless stated otherwise, a given HL formula is assumed to be a sen-
tence. The size |ϕ| of a HL formula ϕ is the number of distinct subformulas of ϕ. Note
that the fragment of HL obtained by disallowing variables and the binders operators cor-
responds to standard LTL + past (PLTL) [Pnu77]. We denote by HL(↓), the HL fragment
given by PLTL + variables + ↓-operator. W.l.o.g. we assume that if a formula ϕ uses
at most n-variables, these variables are x1, . . . ,xn, and we write (w, i, j1, . . . , jn) |= ϕ to
mean that (w, i,g) |= ϕ for any valuation for w assigning to variable xh the value jh for
each 1 ≤ h ≤ n. For each k ≥ 0, HLk (resp., HLk(↓)) denotes the fragment of HL (resp.,
HL(↓)) using at most k variables. For a HL (resp., HL(↓)) formula ϕ, d∃(ϕ) (resp., d↓(ϕ))
denotes the nesting depth of modality ∃ (resp., ↓) in ϕ. For all h,k ≥ 0, HLh and HLh

k
denote the fragments of HL and HLk, respectively, where the nesting depth of the ∃-
operator is at most h. The fragments HLh(↓) and HLh

k(↓) can be defined similarly. Note
that since PLTL and HL are equally expressive [FRS03], the mentioned HL fragments,
which extend PLTL, are equally expressive.

Global and Initial Equivalence. Two HL formulas ϕ1 and ϕ2 are said to be (globally)
equivalent if for each word w and i < |w|, (w, i) |= ϕ1 iff (w, i) |= ϕ2. Moreover, ϕ1

and ϕ2 are said to be initially equivalent if for each non-empty word w, (w,0) |= ϕ1 iff
(w,0) |= ϕ2. Note that (global) equivalence implies initial equivalence.

Decision problems. A Kripke structure over AP is a tuple K = 〈S,s0,Δ,L〉, where S is
a finite set of states, s0 ∈ S is an initial state, Δ ⊆ S×S is a transition relation that must
be total, and L : S → 2AP maps each state s to the set of propositions that hold in s. A
path of K is an infinite sequence π = s0s1 . . . such that (si,si+1) ∈ Δ for each i ≥ 0.

We are interested in the following decision problems for a given linear-time hybrid
logic F over AP (such as HL or one of its mentioned fragments), where for a F-formula
ϕ, L(ϕ) denotes the set of infinite words w over 2AP such that (w,0) |= ϕ:

– The satisfiability problem is to decide given a formula ϕ of F, whether L(ϕ) �= /0;
– The (finite-state) model checking problem is to decide given a formula ϕ of F and

a Kripke structure K over AP, whether K satisfies ϕ, i.e., whether for all paths
π = s0s1 . . . of K , condition (L(s0)L(s1) . . . ,0) |= ϕ holds.

Note that the ∃-operator can be expressed in terms of the ↓-operator as: ∃x.ϕ ≡
↓y.E↓x.E(y ∧ ϕ), where Eψ := F−(¬X−� ∧ F+ψ). The use of an additional variable
y seems necessary, and actually, we do not know whether HL1 can be translated into
HL1(↓) with an elementary blow-up.

3 Decision Procedures

In this Section, we describe an automata-theoretic approach to solve satisfiability and
(finite-state) model checking of HL based on a direct translation of HL formulas into a
subclass of generalized Büchi alternating word automata. The proposed translation lead
to algorithms for the considered problems which run in space of exponential height
equal to the nesting depth of the existential binder operator. Moreover, for formulas
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containing at least two variables, we show that these algorithms are asymptotically op-
timal by providing matching lower bounds. Finally, for the fragment HL1 of HL consist-
ing of formulas with only one variable, we show that the complexity of the considered
problems is elementary, and precisely, EXPSPACE-complete. For the upper bound of
this last result, we will use the following proposition essentially establishing that nested
occurrences of the ∃-operator in HL1 formulas can be avoided at no cost.

Proposition 1. Given a HL1 formula ϕ over AP, one can construct a HL1
1 formula ψ

(without nested occurrences of the ∃-operator) over a set of propositions ÂP ⊇ AP
such that |ψ| = O(|ϕ|) and for each infinite word w over 2AP, (w,0) |= ϕ iff there is an

infinite word ŵ over 2ÂP such that (ŵ,0) |= ψ and for each i ≥ 0, ŵ(i)∩AP = w(i).

Proof. By a trivial readaptation of the construction used in [SW07] to show that satis-
fiability of HL1(↓) can be linearly reduced to satisfiability of its fragment HL1

1(↓). ��

3.1 Alternating Automata

In this Subsection, we recall the class of alternating (finite-state) automata on infi-
nite words equipped with a generalized Büchi acceptance condition (generalized Büchi
AWA), and focus on a subclass of such automata, introduced here for the first time.

For a finite set X , Bp(X) denotes the set of positive boolean formulas over X built
from elements in X using ∨ and ∧ (we also allow the formulas true and false). A
subset Y of X satisfies θ∈Bp(X) iff the truth assignment assigning true to the elements
in Y and false to the elements of X \Y satisfies θ. The set Y exactly satisfies θ if Y
satisfies θ and every proper subset of Y does not satisfy θ.

A generalized Büchi AWA is a tuple A = 〈Σ,Q,Q0,δ,F 〉, where Σ is an input alpha-
bet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q×Σ → Bp(Q) is a
transition function, and F = {F1, . . . ,Fk} is a set of sets of accepting states. For a state
q, a q-run of A over an infinite word w ∈ Σω is a Q-labeled tree r such that the root
is labeled by q and for each node u with label q′ (describing a copy of A in state q′

which reads w(|u|), where |u| denotes the distance of node u from the root), there is a
(possibly empty) set H = {q1, . . . ,qn} ⊆ Q exactly satisfying δ(q′,w(|u|)) such that u
has n children u1, . . . ,un, and for each 1 ≤ h ≤ n, uh has label qh. The run r is accepting
if for each infinite path u0u1 . . . in the tree and each accepting component F ∈ F , there
are infinitely many i ≥ 0 such that the label of ui is in F . The ω-language of A , L(A), is
the set of w ∈ Σω such that there is an accepting q0-run r of A over w for some q0 ∈ Q0.

As we will see in order to capture HL formulas, it suffices to consider a subclass of
AWA, we call AWA with a main path (MAWA). Formally, a generalized Büchi MAWA
is a generalized Büchi AWA A = 〈Σ,Q,Q0,δ,F 〉 satisfying the following additional
conditions. The set of states Q is partitioned into a set Qm of main states and in a set
Qs of secondary states. Moreover, Q0 ⊆ Qm, and for all σ ∈ Σ, qs ∈ Qs, and qm ∈ Qm:
(i) δ(qs,σ) does not contain occurrences of main states, and (ii) δ(qm,σ) is in (positive)
disjunctive normal form and there is exactly one main state in each disjunct (hence, a
set Y ⊆ Q exactly satisfies δ(qm,σ) only if Y ∩Qm is a singleton). These requirements
ensure that in every run of A , there is exactly one path π (the main path) which visits
only nodes labeled by main states, and each node that is not visited by π is labeled
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by a secondary state. By a readaptation of the standard construction used to convert a
Büchi AWA into an equivalent standard Büchi nondeterministic word automaton (Büchi
NWA) with a single exponential-time blow-up [MH84], we obtain the following result
(for details, see [BL08]).

Theorem 1. Given a generalized Büchi MAWA A with set of states Q = Qm ∪Qs and
acceptance condition F = {F1, . . . ,Fk}, one can construct a Büchi NWA AN with num-
ber of states O(k · |Qm| ·2O(k|Qs|)) such that L(AN) = L(A).

3.2 Upper Bounds

In this subsection we describe an automata-theoretic algorithm to solve satisfiability
and (finite-state) model-checking of HL. First, we give a non-trivial characterization
of the satisfaction relation (w,0) |= ϕ, for a given formula ϕ, in terms of sequences
of sets associated with ϕ (which generalize the classical notion of Hintikka-set of LTL)
satisfying determined requirements which can be checked by generalized Büchi MAWA.
Then, we describe the translation into MAWA based on this characterization.

Fix n ≥ 1 and an alphabet Σ = 2AP, and let [n] = {1, . . . ,n}. In the following, we
consider (possibly open) formulas ϕ in HLn over AP. A formula ψ is said to be a first-
level subformula of ϕ if there is an occurrence of ψ in ϕ which is not in the scope of
the ∃-operator. The closure cl(ϕ) of ϕ is the smallest set containing �, the proposi-
tions in AP, the variable xh for each h ∈ [n], X−�, all the first-level subformulas of ϕ,
Xdir(ψ1 Udirψ2) for any first-level subformula ψ1 Udirψ2 of ϕ with dir ∈ {+,−}, and
the negations of all these formulas (we identify¬¬ψ with ψ). Note that |cl(ϕ)|= O(|ϕ|).

Now, we define by induction on d∃(ϕ) the set Atoms(ϕ) of atoms of ϕ: A∈Atoms(ϕ)
iff A ⊆ cl(ϕ)∪⋃h∈[n]({xh}×{−,0,+})∪⋃∃xh.ψ∈cl(ϕ)(Atoms(ψ)×{ψ}×{h}), and the
following holds (where dir ∈ {+,−}):

1. � ∈ A;
2. for each ψ ∈ cl(ϕ), ψ ∈ A iff ¬ψ /∈ A;
3. for each ψ1 ∧ψ2 ∈ cl(ϕ), ψ1 ∧ψ2 ∈ A iff ψ1,ψ2 ∈ A;
4. for each ψ1 Udirψ2 ∈ cl(ϕ), ψ1 Udirψ2 ∈A iff or ψ2 ∈A or ψ1,X

dir(ψ1 Udirψ2)∈A;
5. if X−ψ ∈ A, then X−� ∈ A;
6. for each h ∈ [n], xh ∈ A iff (xh,0) ∈ A;
7. for each h ∈ [n], A contains exactly one pair of the form (xh,dir) ∈ A for some

dir ∈ {+,−,0};
8. if X−� /∈ A, then for each h ∈ [n], (xh,−) /∈ A;
9. if (B,ψ,h)∈ A, then B∩AP = A∩AP, (X−�∈ B iff X−�∈ A), and for each k ∈ [n]

with k �= h and dir ∈ {+,−,0}, (xk,dir) ∈ B iff (xk,dir) ∈ A;
10. for each ∃xh.ψ ∈ cl(ϕ), there is (B,ψ,h) ∈ A such that xh ∈ B;
11. for each ∃xh.ψ ∈ cl(ϕ), ∃xh.ψ ∈ A iff there is (B,ψ,h) ∈ A with ψ ∈ B.

Intuitively, an atom of ϕ describes a maximal set of subformulas of ϕ which can
hold at a position i of a word w ∈ (2AP)ω w.r.t. a determined valuation j1, . . . , jn of vari-
ables x1, . . . ,xn. In particular, for each h ∈ [n], the unique pair (xh,dir) ∈ A keeps track
whether the position jh referenced by xh strictly precedes (dir = −), strictly follows
(dir = +), or coincides (dir = 0 and xh ∈ A) with the current position i. Finally, a triple
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(B,ψ,h) ∈ A, where ∃xh.ψ ∈ cl(ϕ), describes the set of subformulas of ψ which hold at
position i w.r.t. a valuation of variables x1, . . . ,xn of the form j1, . . . , jh−1,m, jh+1, . . . , jn
for some m ∈ N. Thus, ∃xh.ψ holds at position i w.r.t. the valuation j1, . . . , jn iff ψ ∈ B
for some (B,ψ,h) ∈ A (Property 11). Note that Property 10 ensures that there is a triple
(B,ψ,h) ∈ A describing the set of subformulas of ψ which hold at position i w.r.t. the
valuation of variables x1, . . . ,xn given by j1, . . . , jh−1, i, jh+1, . . . , jn. The necessity of
Property 10 will be clear in the proof of Theorem 2 below. Assuming w.l.o.g. that each
p ∈ AP occurs in ϕ, and x1, . . . ,xn occur in ϕ, by construction it easily follows that
|Atoms(ϕ)| = Tower(O(|ϕ|),d∃(ϕ) + 1).

Now, we define by induction on d∃(ϕ) the function Succϕ which maps each atom
A ∈ Atoms(ϕ) to a subset of Atoms(ϕ). Intuitively, if A is the atom associated with
the current position i of the given word w, then Succϕ(A) contains the set of atoms
associable to the next position i + 1 (w.r.t. a given valuation of variables x1, . . . ,xn).
Formally, A′ ∈ Succϕ(A) iff the following holds

(a) for each X+ψ ∈ cl(ϕ), X+ψ ∈ A ⇔ ψ ∈ A′;
(b) for each X−ψ ∈ cl(ϕ), X−ψ ∈ A′ ⇔ ψ ∈ A;
(c) for each h ∈ [n], (xh,−) ∈ A′ iff (xh,dir) ∈ A for some dir ∈ {0,−};
(d) for each h ∈ [n], (xh,+) ∈ A iff (xh,dir) ∈ A′ for some dir ∈ {0,+};
(e) for each (B,ψ,h) ∈ A, there is (B′,ψ,h) ∈ A′ such that B′ ∈ Succψ(B);
(f) for each (B′,ψ,h) ∈ A′, there is (B,ψ,h) ∈ A such that B′ ∈ Succψ(B).

For A ∈ Atoms(ϕ), let σ(A) = A∩AP, i.e. the set of propositions in AP occurring in
A. For an infinite word w over Σ = 2AP, i∈N, and ĵ ∈N∪{∞} such that i ≤ ĵ, a (i, ĵ,ϕ)-
path over w is a sequence of atoms of ϕ, π = Ai,Ai+1, . . . of length ĵ− i + 1 satisfying
the following: for each i ≤ l ≤ ĵ, σ(Al) = w(l) and if l < ĵ, then Al+1 ∈ Succϕ(Al).

If i = 0 and ĵ = ∞, then π is simply called ϕ-path over w. A ϕ-path π = A0,A1, . . .
over w ∈ Σω is fair iff the following is inductively satisfied:

1. For each ψ1 U+ψ2 ∈ cl(ϕ), there are infinitely many i ≥ 0 such that either ψ2 ∈ Ai

or ¬(ψ1 U+ψ2) ∈ Ai;
2. There is K ≥ 0 such that for each h ∈ [n], (xh,−) ∈ AK , and for all i ≥ K and

(B,ψ,h) ∈ Ai, there is a fair ψ-path starting from B over the suffix wi of w.

Note that the definition of fair ϕ-path ensures the following important requirement
whose proof is immediate.

Lemma 1. If π = A0,A1, . . . ,Ai is a (0, i,ϕ)-path on w ∈ Σω and π′ = Ai,Ai+1, . . . is a
fair ϕ-path on wi, then π ·π′ = A0, . . . ,Ai,Ai+1, . . . is a fair ϕ-path on w.

Let π = A0,A1, . . . be a ϕ-path over an infinite word w. By Properties 6 and 7 in def. of
atom and Properties (c) and (d) in def. of Succϕ, it holds that for each h ∈ [n], the set
Ph = { j ∈ N | xh ∈ A j} is either empty or a singleton. We say that π is good if for each
h ∈ [n], the set Ph is a singleton. Note that by Property 8 in def. of atom, Property (c) in
def. of Succϕ, and Property 2 in def. of fair ϕ-path, the following holds:

Lemma 2. If π = A0,A1, . . . ,Ai is a fair ϕ-path on w with ¬X−� ∈ A0, then π is good.

Now, we prove the main results of this Subsection. First, we need the following lemma.
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Lemma 3. Let π = A0,A1, . . . be a fair ϕ-path over w ∈ Σω with ¬X−�∈ A0. Then, for
all i ≥ 0, m ≥ i and (B,ψ,h) ∈ Ai, there is a fair ψ-path ν = B0,B1, . . . over w such that
¬X−� ∈ B0, Bi = B, (B j,ψ,h) ∈ A j for all j ≤ m, and for each k ∈ [n]\{h} and l ≥ 0,
xk ∈ Bl iff xk ∈ Al.

Proof. Fix i ≥ 0, m ≥ i, and (B,ψ,h) ∈ Ai. Let K ≥ 0 be the constant (depending on
π) of Property 2 in def. of fair ϕ-path, and let H ≥ max{m,K}. Since (B,ψ,h) ∈ Ai, by
Properties (e) and (f) in def. of Succϕ and Properties 6, 7, and 9 in def. of atom, it follows
that there is a (0,H,ψ)-path ρ = B0,B1, . . . ,BH over w such that Bi = B, ¬X−� ∈ B0,
and for each 0 ≤ j ≤ H, (B j,ψ,h) ∈ A j and (xk ∈ B j iff xk ∈ A j) for all k ∈ [n] \ {h}.
Since (BH ,ψ,h) ∈ AH and H ≥ K, by Property 2 in def. of fair ϕ-path, there is a fair ψ-
path of the form ρ′ = BH ,BH+1, . . . over the suffix wH of w. Moreover, for each k ∈ [n],
(xk,−) ∈ AK . By Property (c) in def. of Succϕ and Properties 6, 7, and 9 in def. of atom,
we obtain that xk /∈ B j and xk /∈ A j for all j ≥ H and k ∈ [n] \ {h}. Thus, by Lemma 1
(which holds for any formula ψ in HLn) it follows that ρ ·ρ′ = B0, . . . ,BH ,BH+1, . . . is a
fair ψ-path over w satisfying the statement of the lemma. ��

Theorem 2 (Correctness). Let π = A0,A1, . . . be a fair ϕ-path on w ∈ Σω such that
¬X−� ∈ A0, and for each h ∈ [n], let jh be the unique index such that xh ∈ A jh . Then,
for each i ≥ 0 and ψ ∈ cl(ϕ), (w, i, j1, . . . , jn) |= ψ ⇔ ψ ∈ Ai.

Proof. By induction on d∃(ϕ). The base step (d∃(ϕ) = 0) and the induction step (d∃(ϕ)
> 0) are similar, and we focus on the induction step. Thus, we can assume that the
theorem holds for each formula θ such that ∃xh.θ ∈ cl(ϕ) for some h ∈ [n] (note that if
d∃(ϕ) = 0, there is no such formula). Fix i ≥ 0 and ψ ∈ cl(ϕ). By a nested induction on
the structure of ψ, we show that (w, i, j1, . . . , jn) |= ψ ⇔ ψ ∈ Ai. The cases where ψ is a
proposition in AP, or ψ has a PLTL operator at its root are managed in a standard way
(for details, see [BL08]). For the remaining cases, we proceed as follows:

Case ψ = xh with h ∈ [n]. (w, i, j1, . . . , jn) |= xh ⇔ i = jh ⇔ (by def. of jh) xh ∈ Ai.

Case ψ = ∃xh.ψ1 with h ∈ [n]. First, we show the direct implication (w, i, j1, . . . , jn) |=
ψ ⇒ ψ ∈ Ai. Let (w, i, j1, . . . , jn) |= ψ. Then, (w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |= ψ1 for
some l ∈ N. By Property 10 in def. of atom there is (B,ψ1,h) ∈ Al such that xh ∈ B. Let
m ≥ {i, l}. Since ¬X−� ∈ A0, by Lemma 3 there is a fair ψ1-path ρ = B0,B1, . . . over w
such that Bl = B (hence, xh ∈ Bl), ¬X−� ∈ B0, (B j,ψ,h) ∈ A j for each j ≤ m (hence,
(Bi,ψ,h) ∈ Ai), and for each k ∈ [n]\{h}, xk ∈ B jk . Since the theorem holds for ψ1 and
(w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |= ψ1, it follows that ψ1 ∈ Bi. Since (Bi,ψ1,h) ∈ Ai, by
Property 11 in def. of atom we obtain that ψ ∈ Ai.

For the converse implication, let ψ ∈ Ai. By Property 11 in def. of atom there is
(B,ψ1,h) ∈ Ai with ψ1 ∈ B. Since ¬X−� ∈ A0, by Lemma 3 there is a fair ψ1-path ρ =
B0,B1, . . . over w such that Bi = B, ¬X−�∈ B0, and for each k ∈ [n]\{h}, xk ∈ B jk . Let
l ∈N be the unique index such that xh ∈ Bl . Since the theorem holds for ψ1 and ψ1 ∈ Bi,
we obtain that (w, i, j1, . . . , jh−1, l, jh+1, . . . , jn) |= ψ1, hence (w, i, j1, . . . , jn) |= ψ. ��

Moreover, we can show the following result (a proof is in [BL08]).

Theorem 3 (Completeness). Let w∈Σω and j1, . . . , jn ∈N. Then, there is a fair ϕ-path
π = A0,A1, . . . over w such that ¬X−� ∈ A0 and for each k ∈ [n], xk ∈ A jk .
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By Theorems 2 and 3 we obtain the following characterization of (w,0) |= ϕ.

Corollary 1. For each word w ∈ Σω, (w,0) |= ϕ iff there is a fair ϕ-path π = A0,A1, . . .
over w such that ϕ,¬X−�,xh ∈ A0 for each h ∈ [n].

Translation into MAWA Now, we illustrate the translation of HL formulas into gener-
alized Büchi MAWA based on the result of Corollary 1.

Theorem 4. For a HL formula ϕ over AP, one can build a generalized Büchi MAWA Aϕ
over 2AP with states Qm ∪Qs and O(|ϕ|) Büchi components such that L(Aϕ) = L(ϕ),
|Qm| = Tower(O(|ϕ|),d∃(ϕ) + 1), and |Qs| = Tower(O(|ϕ|),d∃(ϕ)).

Proof. Let x1, . . . ,xn be the variables occurring in ϕ. We construct a generalized Büchi
MAWA Aϕ of the desired size with set of main states containing Atoms(ϕ) and set of
initial states given by {A ∈ Atoms(ϕ) | ϕ,¬X−�,xh ∈ A for each h ∈ [n]} such that
for each A ∈ Atoms(ϕ) and w ∈ Σω, Aϕ has an accepting A-run over w iff there is
a fair ϕ-path over w starting from A. Hence, the result follows from Corollary 1. The
construction is given by induction on d∃(ϕ). Thus, we can assume that for each ∃xh.ψ∈
cl(ϕ), one can construct the MAWA Aψ associated with ψ. Here, we informally describe
the construction (the formal definition is in [BL08]).

Assume that Aϕ starts the computation over an input w in a main state A∈Atoms(ϕ).
Then, Aϕ guesses a ϕ-path π = A0,A1, . . . over w (with A0 = A) by simulating it along
the main path of the run tree. In order to check that π satisfies Property 2 in def. of fair
ϕ-path, Aϕ guesses a point along the main path (the constant K in Property 2), checks
that (xh,−) is in the current guessed atom for each h∈ [n], and from this instant forward,
for each triple (B,ψ,h) in the current guessed atom, Aϕ starts an additional copy of the
MAWA Aψ in state B (which represents a secondary Aϕ-state). Finally, the acceptance
condition of Aϕ extends the acceptance conditions of the MAWAs Aψ with additional
sets used to check that the infinite sequence of states visited by the main copy of Aϕ
(corresponding to the simulated ϕ-path) satisfies Property 1 in def. of fair ϕ-path. ��

Corollary 2. Given a HL formula ϕ over AP, one can build a Büchi NWA AN,ϕ over
2AP of size Tower(O(|ϕ|),d∃(ϕ) + 1) s.t. L(AN,ϕ) = L(ϕ). Moreover, if ϕ is an HL1

formula, then one can build an equivalent Büchi NWA of size doubly exponential in |ϕ|.

Proof. The first result follows from Theorems 1 and 4. For the second one, note that for

ÂP ⊃ AP and a Büchi NWA AN over 2ÂP, L(AN) can be seen as a language on 2AP ×
2ÂP\AP. Since one can build a Büchi NWA of the same size as AN accepting the projec-
tion of L(AN) on 2AP, the result follows from Proposition 1 and Theorems 1 and 4. ��

By Corollary 2, the model checking problem for an HL formula ϕ is reduced to empti-
ness of the Büchi NWA A¬ϕ,K obtained as the synchronous product of the Büchi NWA
AK (where each state is accepting) corresponding to the given Kripke structure K and
the Büchi NWA AN,¬ϕ associated with the negation of formula ϕ. Since nonemptiness
of Büchi NWA is in NLOGSPACE, by Corollary 2 we obtain the following result.

Theorem 5 (Upper bounds). Satisfiability and model checking of HL1 and HLh (for
any h ≥ 1) are in EXPSPACE and h-EXPSPACE, respectively.
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3.3 Lower Bounds

In this Subsection we show that for each h ≥ 1, satisfiability and model-checking of
HLh

2(↓) are h-EXPSPACE-hard by a reduction from the word problem for exp[h]-space
bounded deterministic Turing Machines. In the following, w.l.o.g. we assume that the
considered HL formulas ϕ over a finite set of propositions AP are interpreted on words
over 2AP where each symbol is a singleton (these words can be seen as words over AP).

Fix n ≥ 1, a finite alphabet Σ∪{0,1}, and a countable set {$1,$2, . . .} of symbols
non in Σ∪{0,1}. First, for each h ≥ 1, we define by induction on h an encoding of the
integers in [0,Tower(n,h)−1] by finite words, called (h,n)-codes, over {$1, . . . ,$h,0,1}
of the form $hw$h, where w does not contain occurrences of $h.

Base Step. h = 1. A (1,n)-block over Σ is a finite word w over {$1,0,1}∪Σ having
the form w = $1σb1 . . .bn$1, where σ ∈ Σ∪{0,1} and b1, . . . ,bn ∈ {0,1}. The block-
content CON(w) of w is σ, and the block-number NUM(w) of w is the natural number
in [0,Tower(n,1)−1] (recall that Tower(n,1) = 2n) whose binary code is b1 . . .bn. An
(1,n)-code is a (1,n)-block w such that CON(w) ∈ {0,1}.

Induction Step. let h≥ 1. A (h+1,n)-block on Σ is a word w on {$1, . . . ,$h+1,0,1}∪Σ
of the form $h+1σ$hw1$hw2$h . . .$hwK$h$h+1, where σ ∈ {0,1}∪Σ, K = Tower(n,h)
and for each 1 ≤ i ≤ K, $hwi$h is a (h,n)-code such that NUM($hwi$h) = i− 1. The
block-content CON(w) of w is the symbol σ, and the block-number NUM(w) of w is the
natural number in [0,Tower(n,h+1)−1] whose binary code is given by CON($hw1$h)
. . .CON($hwK$h). A (h+1,n)-code is a (h+1,n)-block w such that CON(w) ∈ {0,1}.

For each h ≥ 1, a (h,n)-configuration over Σ is a finite word w of the form w =
$h+1$hw1$hw2$h . . .$hwK$h$h+1, where K = Tower(n,h) and for any 1≤ i ≤ K, $hwi$h

is a (h,n)-block such that NUM($hwi$h) = i−1 and CON($hwi$h) ∈ Σ. As we will see,
(h,n)-configurations are used to encode the configurations reachable by exp[h]-space
bounded deterministic Turing machines on inputs of size n.

We will use the following non-trivial technical result, whose proof is in [BL08],
where for each h ≥ 1, Parity(h) := 1 if h is odd, and Parity(h) := 2 otherwise.

Proposition 2. For each h ≥ 1, we can construct two HLh−1
2 (↓) formulas ψcon f

h and ψ=
h

over {$1, . . . ,$h+1,0,1}∪Σ of sizes bounded by O(n3 ·h · |Σ|) such that ψ=
h is open and

for w ∈ Σω and i ≥ 0, we have

– for all j1, j2, (w, i, j1, j2) |= ψcon f
h iff wi has a prefix that is a (h,n)-configuration;

– if there is j > i such that w[i, j] = $hw1$hw′$hw2$h, where $hw1$h and $hw2$h are
(h,n)-blocks over Σ, then for each m ≥ 0,
• Case Parity(h) = 1: (w, i, j,m) |= ψ=

h iff NUM($hw1$h) = NUM($hw2$h);
• Case Parity(h) = 2: (w, j,m, i) |= ψ=

h iff NUM($hw1$h) = NUM($hw2$h).

Theorem 6. For each h ≥ 1, the satisfiability and model checking problems for HLh
2(↓)

are both h-EXPSPACE-hard.

Proof. Fix h ≥ 1. First, we consider the satisfiability problem for HLh
2(↓). Let M =

〈A,Q,q0,δ,F〉 be an exp[h]-space bounded Turing Machine (TM, for short) without
halting configurations, and let c ≥ 1 be a constant such that for each α ∈ A∗, the space
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needed by M on input α is bounded by Tower(|α|c,h). For α ∈ A∗, we construct a
HLh

2(↓) formula ϕM ,α of size polynomial in n = |α|c and in the size of M , such that M
accepts α iff ϕM ,α is satisfiable.

Note that any reachable configuration of M over α can be seen as a word α1 · (q,a) ·
α2 in A∗ · (Q×A) ·A∗ of length Tower(n,h), where α1 ·a ·α2 denotes the tape content, q
the current state, and the reading head is at position |α1|+1. If α = a1 . . .ar (where r =
|α|), then the initial configuration is given by (q0,a1)a2 . . .ar ## . . .#︸ ︷︷ ︸

Tower(n,h)−r

, where # is the

blank symbol. Let C = u1 . . .uTower(n,h) be a TM configuration. For 1 ≤ i ≤ Tower(n,h),
the value u′i of the ith cell of the M -successor of C is completely determined by the
values ui−1, ui and ui+1 (taking ui+1 for i = Tower(n,h) and ui−1 for i = 1 to be some
special symbol). Let nextM (ui−1,ui,ui+1) be our expectation for u′i (this function can
be trivially obtained from the transition function δ of M ).

Let Σ = A∪ (Q×A). The code of a TM configuration C = u1 . . .uTower(n,h) is the
(h,n)-configuration over Σ given by $h+1$hw1$h . . .$hwTower(n,h)$h$h+1, where for each
1 ≤ i ≤ Tower(n,h), CON($hwi$h) = ui. A non-empty finite sequence of TM configu-
rations℘= C0C1 . . .Cm is encoded by the infinite word over Σ∪{0,1,acc,$1, . . .$h+1},
called sequence-code, given by w℘ = $h+1wC0 $h+1 . . .$h+1wCm $h+1(acc)ω, where for
each 0 ≤ i ≤ m, $h+1wCi $h+1 is the code of configuration Ci. The sequence-code w℘ is
good iff C0 is the initial TM configuration over α, Cm is an accepting TM configuration
(i.e., the associated state is in F), and ℘ is faithful to the evolution of M . Thus, M
accepts α iff there is a good sequence-code.

Now, we build a HL2(↓) formula ϕM ,α which is (initially) satisfied by a word w iff
w is a good sequence-code. Hence, M accepts α iff ϕM ,α is satisfiable. Formula ϕM ,α

uses the formulas ψ=
h and ψcon f

h of Proposition 2 (for fixed n and Σ), and is given by

ϕM ,α = ϕSC ∧ ϕ f irst ∧ ϕacc ∧ ϕδ

where: (1) ϕSC uses ψcon f
h and checks that the given word is a sequence-code of some

sequence of TM configurations ℘= C0, . . . ,Cm, (2) ϕ f irst is a PLTL formula checking
that C0 is the initial configuration, (3) ϕacc is a PLTL formula checking that Cm is an
accepting configuration, and (4) ϕδ uses ψ=

h and checks that℘is faithful to the evolution
of M . The construction of ϕ f irst and ϕacc is simple. Thus, we focus on ϕSC and ϕδ.

ϕSC = $h+1 ∧ (X+¬acc) ∧ (($h+1 → ψcon f
h ) U+ ($h+1 ∧ G+X+ acc))

(recall that (w, i, j1, j2) |= ψcon f
h iff wi has a prefix that is a (h,n)-configuration over Σ).

Finally, we define formula ϕδ, which uses ψ=
h . Here, we assume that Parity(h) = 1

(the other case being similar). Recall that if Parity(h) = 1, then for each subword w[i, j]
of the given word w and m ≥ 0 such that w[i, j] = bl ·w′ · bl′, where bl and bl′ are
(h,n)-blocks, then (w, i, j,m) |= ψ=

h iff NUM(bl) = NUM(bl′).
For a sequence-code w, we have to require that for each subword $h+1w1$h+1w2$h+1,

where $h+1w1$h+1 and $h+1w2$h+1 encode two TM configurations C1 and C2, C2 is the
TM successor of C1, i.e., for each (h,n)-block bl′ of $h+1w2$h+1, the block-content u′

of bl′ satisfies u′ = nextM (up,u,us), where u is the block-content of the (h,n)-block bl
of $h+1w1$h+1 having the same block-number as bl′, and up (resp., us) is the block-
content of the (h,n)-block of $h+1w1$h+1 — if any — that precedes (resp., follows)
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bl. We define only the formula which encodes the case in which bl′ is a non-extremal
(h,n)-block. The other cases can be handled similarly. Such a formula is defined as
follows, where for u′ ∈ Σ, H(u′) is the set of triples (up,u,us) ∈ [Σ]3 such that u′ =
nextM (up,u,us):∧

u′∈Σ
G+({u′ ∧ (¬$h U+($h ∧X+¬$h+1)) ∧ (¬X−3$h+1) ∧ F−($h+1 ∧X−�)} −→

{¬$h U+ ($h ∧
∨

(up,u,us)∈H(u′)

↓x1.ψ
up,u,us

δ )}
)

ψup,u,us

δ := F−
(

up ∧ {¬$h U+($h ∧ ψ=
h ∧ X+(u ∧ (¬$h U+ ($h ∧ X+ us))))}∧

{¬$h+1 U+ ($h+1 ∧ X+(¬$h+1 U+x1))}
)

By Proposition 2 it follows that ϕM ,α is a HLh
2(↓) formula of size polynomial in the

size of α and M . Model-checking for HLh
2(↓) is also h-EXPSPACE-hard since (1) non-

satisfiability is linearly reducible to validity (note that HLh
2(↓) is closed under negation),

and (2) validity is linearly reducible to model-checking [DS02]. ��

Since satisfiability and model checking of HL1(↓) are EXPSPACE-hard [SW07], by
Theorems 5 and 6, we obtain the following corollary.

Corollary 3. Satisfiability and model checking of HL1 are EXPSPACE-complete. More-
over, for all h ≥ 1 and k ≥ 2, satisfiability and model checking of HLh

k and HLh
k(↓) are

h-EXPSPACE-complete.

4 Succinctness Issues

In this Section, we show that for all h > k ≥ 0, there is a succinctness gap between HLh

and HLk of exponential height equal to h− k. Actually, we show a stronger result: for
each h ≥ 1, there is an alphabet Σh and a family of HLh

2(↓) formulas (ϕh,n)n≥1 over Σh

such that for each n ≥ 1, ϕh,n has size polynomial in n and each initially equivalent HLk

formula, for k < h, has size at least Tower(Ω(n),h− k).
We use the encoding defined in Subsection 3.3. For all n,h ≥ 1, a finite (h,n)-

good word w is a finite word over the alphabet {0,1,$1, . . . ,$h+1} having the form
w = $h+1w1$h+1 . . .$h+1wm$h+1 such that m > 1, for each 1 ≤ i ≤ m, $h+1wi$h+1 is a
(h + 1,n)-code, and the following holds:

Case Parity(h) = 1. There is 1 < i ≤ m s.t. NUM($h+1w1$h+1) = NUM($h+1wi$h+1);

Case Parity(h) = 2. There is 1 ≤ i < m s.t. NUM($h+1wi$h+1) = NUM($h+1wm$h+1).

An infinite (h,n)-good word w is an infinite word of the form w · {#}ω such that w is a
finite (h,n)-good word. The proofs of the following Lemma 4 (which is based on results
of Proposition 2) and Lemma 5 can be found in [BL08].

Lemma 4. For each h ≥ 1 and n ≥ 1, there is a HLh
2(↓) formula ψGOOD

h,n of size O(n3)
such that L(ψGOOD

h,n ) is the set of infinite (h,n)-good words.



60 L. Bozzelli and R. Lanotte

Lemma 5. For each n ≥ 1 and h ≥ 1, any Büchi NWA accepting the set of infinite
(h,n)-good words needs at least Tower(n,h + 1) states.

For all n,h ≥ 1 and k < h, let ψGOOD
h,n be the HLh

2(↓) formula of Lemma 4, and let ϕ be

an equivalent HLk formula. By Corollary 2, ϕ can be translated into an equivalent Büchi
NWA Aϕ of size Tower(O(|ϕ|),k + 1). By Lemma 5, Aϕ has at least Tower(n,h + 1)
states, hence |ϕ| is at least Tower(Ω(n),h− k). Thus, we obtain the following result.

Theorem 7. For all h > k ≥ 0 and m ≥ 2, there is a succinctness gap between HLh
m(↓)

and HLk of exponential height h− k.

5 Conclusions

There are two interesting questions which have been left open in this paper. In the
HLh

2 formulas used in the proof of h-EXPSPACE-hardness, there is a strict nested al-
ternation between the binder modalities ∃x1 and ∃x2. Since satisfiability of HL1 is
only EXPSPACE-complete, we conjecture that the considered decision problems can
be solved in space of exponential height equal to the depth of nested alternations of
binder modalities associated with distinct variables. Another interesting question is to
investigate the succinctness gap between HLk and HLk(↓) for each k ≥ 1.
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Abstract. The study of interval temporal logics on linear orders is a
meaningful research area in computer science and artificial intelligence.
Unfortunately, even when restricted to propositional languages, most
interval logics turn out to be undecidable. Decidability has been usually
recovered by imposing severe syntactic and/or semantic restrictions. In
the last years, tableau-based decision procedures have been obtained for
logics of the temporal neighborhood and logics of the subinterval relation
over specific classes of temporal structures. In this paper, we develop
an optimal NEXPTIME tableau-based decision procedure for the future
fragment of Propositional Neighborhood Logic over the whole class of
linearly ordered domains.

1 Introduction

Propositional interval temporal logics play a significant role in computer science
and artificial intelligence, as they provide a natural framework for represent-
ing and reasoning about temporal properties. Unfortunately, the computational
complexity of most of them constitutes a barrier to their extensive use in practical
applications (the two prominent interval temporal logics, namely, Halpern and
Shoham’s HS [8] and Venema’s CDT [11], are highly undecidable). Not surpris-
ingly, recent research in the area focused on the development of implementable
deduction systems for them. Early work in this direction includes Bowman and
Thompson’s decision procedure for propositional ITL [9], interpreted over finite
linearly ordered domains [1], and a non-terminating tableau system for CDT,
interpreted over partially ordered domains [7]. In the former case, decidability is
achieved by introducing a simplifying hypothesis, called locality principle, that
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constrains the relation between the truth value of a formula over an interval and
its truth values over initial subintervals of that interval.

Tableau-based decision procedures have been recently obtained for some inter-
val temporal logics over specific classes of temporal structures, without resorting
to any simplifying assumption.

The logic D of the subinterval relation is a fragment of HS which features a
single unary modality corresponding to the strict subinterval relation, where a
subinterval has no endpoints in common with the current one. In [2], Bresolin
et al. devise a sound and complete PSPACE-complete tableau system for D
interpreted in the class of all dense linearly ordered sets. Moreover, they extended
such a result to the logic D�, where a subinterval may have (at most) one
endpoint in common with the current one. The decision problem for D over
other classes of temporal structures, including the whole class of linearly ordered
domains, the class of discrete linearly ordered domains, N, and Z, is still open.

The logic PNL of temporal neighborhood is the propositional fragment of
Neighborhood Logic [6]. It can be viewed as a fragment of HS that features
two modal operators 〈A〉 and 〈A〉, that respectively correspond to the met-by
and the meets relations. The logical properties of PNL have been systemati-
cally investigated in [3]. In particular, NEXPTIME-completeness of PNL when
interpreted over various classes of temporal structures, including all linearly or-
dered domains, all well-ordered domains, all finite linearly ordered domains,
and N [3], has been shown via a reduction to the satisfiability problem for
the two-variable fragment of first-order logic for binary relational structures
over ordered domains [10]. Despite these significant achievements, the prob-
lem of devising decision procedures for PNL of practical interest has been only
partially solved. In [5], a tableau system for its future fragment RPNL, inter-
preted over N, has been developed; such a result has been later extended to full
PNL over Z [4].

In this paper, we focus our attention on RPNL interpreted in the whole class
of linearly ordered domains, and we develop a NEXPTIME tableau system for
it. Since NEXPTIME-completeness holds for PNL and its single-modality frag-
ments [3], the proposed solution turns out to be optimal. From a technical point
of view, the proposed tableau system is quite different from the one for N [5].
While models for RPNL formulas over N can be generated by simply adding
future points (possibly infinitely many) to a given partial model, the construc-
tion of a model for an RPNL formula over an arbitrary linearly ordered domain
may require the addition of points (possibly infinitely many) in between existing
ones. Such a difference is illustrated in Section 2 by a simple example.

The paper is organized as follows. In Section 2, we introduce syntax and
semantics of RPNL and we analyse its expressiveness. In Section 3, we describe
a terminating tableau system for RPNL interpreted in the class of all linearly
ordered domains. An example of the procedure at work concludes the section.
In Section 4, we prove its soundness, completeness, and optimality. Conclusions
provide an assessment of the work and outline future research directions.
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2 RPNL over Linearly Ordered Domains

In this section, we first provide syntax and semantics of Right Propositional
Neighborhood Logic (RPNL, for short); then, we show that RPNL is expressive
enough to distinguish between satisfiability over N and over the class of all
linearly ordered domains. The language of RPNL consists of a set AP of atomic
propositions, the propositional connectives ¬,∨, and the modal operator 〈A〉
(you can read 〈A〉 as adjacent). The other propositional connectives, as well as
the logical constants � (true) and ⊥ (false) and the dual modal operator [A],
are defined as usual. The formulas of RPNL, denoted by ϕ, ψ, . . ., are generated
by the following abstract syntax:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈A〉ϕ.

Given a linearly ordered domain D = 〈D,<〉, an interval over D is an ordered
pair [di, dj ] such that di < dj . An interval structure is a pair 〈D, I(D)〉, where
I(D) is the set of all intervals over D. Logics of temporal neighborhood have
been studied in different flavors, either including or excluding point intervals,
that is, intervals of the form [di, di], and a modal constant to capture them.
In this paper, we assume the so-called strict semantics (point intervals are not
admitted); however, similar results can be obtained for the non-strict case.

The semantics of RPNL is given in terms of interpretations of the form M =
〈〈D, I(D)〉,V〉, where 〈D, I(D)〉 is an interval structure and V : AP → 2I(D) is a
valuation function assigning a set of intervals to every atomic proposition. It is
recursively defined by the satisfiability relation |= as follows:

– for every p ∈ AP, M, [di, dj ] |= p iff [di, dj ] ∈ V(p);
– M, [di, dj ] |= ¬ψ iff M, [di, dj ] �|= ψ;
– M, [di, dj ] |= ψ1 ∨ ψ2 iff M, [di, dj ] |= ψ1 or M, [di, dj ] |= ψ2;
– M, [di, dj ] |= 〈A〉ψ iff ∃[dj , dk] ∈ I(D) such that M, [dj , dk] |= ψ.

We denote by [A]ψ the formula ¬〈A〉¬ψ. Note that [A]ψ means that every ad-
jacent future interval must make p true, while [A][A]ψ means that ψ is true
over every non-adjacent future interval. Given an RPNL-formula ϕ, we denote
by (A)ϕ a formula of the form 〈A〉ϕ or [A]ϕ. We define the closure of ϕ (de-
noted by CL(ϕ)) as the set of all subformulas of ϕ (including ϕ itself) and of
their negations, and the temporal closure of ϕ (denoted by TF(ϕ)) as the set
{(A)ψ | (A)ψ ∈ CL(ϕ)}.

To show that RPNL is expressive enough to distinguish between satisfiability
over N and over the class of all linearly ordered domains, we exhibit a formula
that is unsatisfiable over the former and satisfiable over the latter.

Let [G] be the universally-in-the-future operator defined as follows: [G]ψ =
ψ ∧ [A]ψ ∧ [A][A]ψ and let seqp be a shorthand for p → 〈A〉p. Consider the
formula AccPoints = 〈A〉p ∧ [G]seqp ∧ 〈A〉[G]¬p. We will show that AccPoints
is unsatisfiable over N, while it is satisfiable whenever the temporal structure in
which it is interpreted has at least one accumulation point, that is, a point which
is the right bound of an infinite (ascending) chain of points.
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Proposition 1. The RPNL-formula AccPoints is satisfiable over the class of
all linearly ordered domains, while it is not satisfiable over N.

Proof. We first show that the formula AccPoints is not satisfiable over N. Sup-
pose, by contradiction, that there exists an interpretation M, based on N, such
that M, [d0, d1] |= AccPoints. From M, [d0, d1] |= 〈A〉p∧ [G]seqp, it follows that
there exists a sequence of points d1 < dj1 < dj2 . . . such that M, [d1, dj1 ] |= p
and M, [dji , dji+1 ] |= p, for all i ≥ 1. Moreover, from M, [d0, d1] |= 〈A〉[G]¬p, it
follows that there exists a point di such that M, [d1, di] |= [G]¬p. Two cases may
arise.

Case (1). Suppose di < dj1 . From M, [d1, di] |= [A][A]¬p, it follows that
M, [di, dj1 ] |= [A]¬p and thus M, [dj1 , dj2 ] |= ¬p. This allows us to conclude that
both p and ¬p hold over [dj1 , dj2 ] as shown in Figure 1.

AccPoints

¬p, [A]¬p,

[A][A]¬p

p, 〈A〉p, [A]seqp, [A][A]seqp

¬p,

[A]¬p

p,¬p

d0 d1 di dj1

dj2

Fig. 1. Unsatisfiability of AccPoints over N: case (1)

Case (2). Suppose dj1 < di. From M, [d1, di] |= [A][A]¬p, it follows that, for
any point dk > di, M, [di, dk] |= [A]¬p and, for any point dm > dk, M, [dk, dm] |=
¬p. Since AccPoints is interpreted over N, there exists a point djh

> di such that
p holds over [djh

, djh+1 ]. Hence, both p and ¬p hold over [djh
, djh+1 ] as shown in

Figure 2.

AccPointsd0 d1 di

dj1 dj2 djh−1

djh
djh+1

¬p, [A]¬p,

[A][A]¬p

p, 〈A〉p,

[A]seqp,

[A][A]seqp

p,

〈A〉p
p, 〈A〉p

¬p,

[A]¬p
p,¬p

...

Fig. 2. Unsatisfiability of AccPoints over N: case (2)

Let us consider now the class of all linearly ordered domains. A model satisfying
AccPoints can be built as follows: we take an infinite sequence of points dj1 <
dj2 < dj3 < . . . such that M, [dji , dji+1 ] |= p, for every i ≥ 1, and then we add an
accumulation point dω greater than dji , for every i ≥ 1, such that M, [d1, dω] |=
[G]¬p. The definition of the valuation function can be easily completed without
introducing any contradiction, thus showing that AccPoints is satisfiable (see
Figure 3). ��
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AccPointsd0 d1 dω¬p, [A]¬p, [A][A]¬p

p, 〈A〉p,

[A]seqp,

[A][A]seqp

p,

〈A〉p
p,

〈A〉p

¬p
¬p

¬p...

Fig. 3. A model for AccPoints over the class of linearly ordered domains

As shown by Proposition 1, RPNL interpreted over N differs from RPNL
interpreted in the class of all linearly ordered domains. This prevents us from
exploiting the tableau-based decision procedure for RPNL over N developed in
[5] to check the satisfiability of RPNL formulas over the class of all linearly
ordered domains. If applied to the formula AccPoints, such a procedure would
correctly answer ‘unsatisfiable’, as there are no models satisfying it based on
N. In the next section, we devise an original tableau system with the ability of
dealing with accumulation points.

3 A Tableau for RPNL over Linearly Ordered Domains

In the following, we first define the structure of a tableau for an RPNL-formula
and then we show how to construct it. A tableau for an RPNL formula is
a suitable labeled tree T . Every node n of T is labeled by a tuple ν(n) =
〈[di, dj ], Γn,Dn〉, where Dn is a finite linear order, [di, dj ] ∈ I(Dn), and Γn ⊆
CL(ϕ).

Expansion rule. The expansion rule adds new nodes at the end of the branch
to which it is applied. Given a branch B, B · n1 denotes the result of expanding
B with the node n1, while B ·n1| . . . |nk denotes the result of adding k immediate
successors nodes n1, . . . , nk to B. A node n in a branch B such that the interval
component [di, dj ] of its labeling does not belong to the labeling of any other
node in B is called an active node. In general, the same interval [di, dj ] may
belong to (the labeling of) different nodes in a branch B. In such a case, the
farthest-from-the-root node in B labeled with [di, dj ] is the active one, while the
others are non-active. The expansion rule can be applied to active nodes only.
With a little abuse of notation, given a branch B, we write ([di, dj ], ψ) ∈ B if
there exists a node n in B, labeled with 〈[di, dj ], Γn,Dn〉, such that ψ ∈ Γn.

Definition 1. Let B be a branch, DB be the linearly ordered set belonging to
the label of the leaf of B, and n be an active node in B with label ν(n) =
〈[di, dj ], Γn,Dn〉. The expansion rule for n ∈ B is defined case-by-case as follows:

OR: if ψ1 ∨ ψ2 ∈ Γn, ψ1 �∈ Γn, and ψ2 �∈ Γn, expand B to B · n1|n2, with
ν(n1) = 〈[di, dj ], Γn ∪ {ψ1},DB〉 and ν(n2) = 〈[di, dj ], Γn ∪ {ψ2},DB〉;
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AND: if ¬(ψ1 ∨ψ2) ∈ Γn and ¬ψ1 �∈ Γn or ¬ψ2 �∈ Γn, expand B to B ·n1, with
ν(n1) = 〈[di, dj ], Γn ∪ {¬ψ1,¬ψ2},DB〉;

NOT: if ¬¬ψ ∈ Γn and ψ �∈ Γn, expand B to B · n1, with ν(n1) = 〈[di, dj ],
Γn ∪ {ψ},DB〉;

DIAMOND: if 〈A〉ψ ∈ Γn and there exists no dk ∈ DB such that dk > dj and
([dj , dk], ψ) ∈ B, then proceed as follows. Let dj+1, . . . , dj+k be the points in
DB greater than dj . Expand B to B · n1| . . . |nk|m0| . . . |mk+1, where
1. for every 1 ≤ h ≤ k, if there exists an active node n′ ∈ B labeled

with 〈[dj , dj+h], Γ ′,D′〉, then ν(nh) = 〈[dj , dj+h], Γ ′ ∪ {ψ},DB〉, other-
wise ν(nh) = 〈[dj , dj+h], {ψ},DB〉;

2. for every 0 ≤ h ≤ k, ν(mh) = 〈[dj , d
h], {ψ},Dh

B〉, where Dh
B is obtained

from DB by adding a new point dh strictly in between dj+h and dj+h+1

(if h = k, the second condition is obviously missing);
BOX: if ¬〈A〉ψ ∈ Γn and there exists dk ∈ DB such that dj < dk and ([dj , dk],

¬ψ) �∈ B, expand B to B · n1. If there are no nodes in B labeled with
[dj , dk], then ν(n1) = 〈[dj , dk], {¬ψ},DB〉; otherwise, ν(n1) = 〈[dj , dk], Γn′ ∪
{¬ψ},DB〉, where n′ is the (unique) active node in B labeled with [dj , dk].

Blocking condition. Given a branch B and a point d′ ∈ DB , the set REQ(d′)
of the temporal requests of d′ is defined as follows:

REQ(d′) = {ψ ∈ TF(ϕ) : ∃[d′′, d′], ([d′′, d′], ψ) ∈ B}.
Moreover, we define the set of past temporal requests of d as the following set of
sets:

PAST(d) = {REQ(d′) : d′ < d}.

Definition 2. We say that a point di ∈ DB is blocked if there exists a point
dj ∈ DB, with dj < di, such that (i) REQ(di) = REQ(dj) and (ii) PAST(di) =
PAST(dj).

Notice that for any pair di, dj , PAST(di) = PAST(dj) if and only if for every
d′ < di there exists d′′ < dj such that REQ(d′) = REQ(d′′).

Expansion strategy. We say that a branch B is closed if there exist a formula
ψ and an interval [di, dj ] such that both ([di, dj ], ψ) ∈ B and ([di, dj ],¬ψ) ∈ B,
otherwise we say that B is open. Moreover, we say that an expansion rule is
applicable to a node n if n is active and its application generates at least one
node with a new labeling.

Definition 3. The expansion strategy for a branch B is defined as follows:

i) Apply the expansion rule to B only if B is open;
ii) If B is open, apply the AND, OR, NOT, and BOX rules to the closest-to-

the-root active node to which the expansion rule is applicable;
iii) If B is open, apply the DIAMOND rule to the closest-to-the-root active node

to which the expansion rule is applicable, provided that the right endpoint of
the interval [di, dj ] in its labeling is not blocked.
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Definition 4. A tableau for an RPNL-formula ϕ is any finite labeled tree ob-
tained by expanding the one-node labeled tree 〈[d0, d1], {ϕ}, {d0 < d1}〉 through
successive application of the branch-expansion strategy to existing branches, un-
til it cannot be applied anymore.

Open and closed tableau. Given a formula ϕ and a tableau T for it, we say
that T is closed if all its branches are closed, otherwise it is open.

Example. We illustrate the behaviour of the proposed tableau system by ap-
plying it to the formula ϕ = 〈A〉p ∧ 〈A〉[A]¬p ∧ [A](p → 〈A〉p). A portion of the
resulting tableau is depicted in Figure 4. For the sake of readability, we will de-
scribe sequences of expansion steps that do not split the branch (applications of
the AND, NOT, and BOX rules) as single expansion steps. Moreover, instead of
explicitly representing the linear orders associated with the nodes, we will simply
display the extensions to the linear order when they are introduced. Finally, in
the textual explanation we will identify a branch with its leaf node.

n0 = [d0, d1], 〈A〉p, 〈A〉[A]¬p, [A](p → 〈A〉p), {d0 < d1}

n1 = [d1, d2], p, 〈A〉p, p → 〈A〉p, {d1 < d2}

n2 = [d1, d2], p, 〈A〉p,

p → 〈A〉p, [A]¬p

closed

n3 = [d1, d3], p → 〈A〉p,

[A]¬p, {d1 < d3 < d2}
n4 = [d1, d3],

p → 〈A〉p, [A]¬p,

{d2 < d3}

n5 = [d1, d3],¬p,

p → 〈A〉p, [A]¬p n6 = [d1, d3],

p → 〈A〉p, 〈A〉p, [A]¬p

closedn7 = [d3, d2],¬p

n8 = [d2, d4], p, {d2 < d4}

n9 = [d3, d4],¬p

n10 = [d1, d4], p → 〈A〉p

n11 = [d1, d4],

¬p, p → 〈A〉p
open

n12 = [d1, d4],

p → 〈A〉p, 〈A〉p

n13 = [d4, d5], p, {d4 < d5}

n14 = [d3, d5],¬p

n15 = [d1, d5], p → 〈A〉p

n16 = [d1, d5],¬p

open

n17 = [d1, d5], 〈A〉p,

d5 blocked

. . .

Fig. 4. Part of the tableau for the formula ϕ = 〈A〉p ∧ 〈A〉[A]¬p ∧ [A](p → 〈A〉p)

The root n0 of the tableau contains the 〈A〉-formulas 〈A〉p and 〈A〉[A]¬p.
We first apply the DIAMOND rule to 〈A〉p. Since d1 is the greatest point of
the current linear order, we can only add a point d2 to the right of d1 and
satisfy p over the interval [d1, d2] (node n1). (In fact, node n1 is obtained by an
application of the DIAMOND rule followed by an application of the OR rule and
the removal of the inconsistent node including both p and ¬p.) Next, we apply
the DIAMOND rule to the formula 〈A〉[A]¬p in n0 and generate the nodes n2,
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n3, and n4. The node n2 is closed, because it contains both 〈A〉p and [A]¬p. The
expansion proceeds by the application of the OR rule to n3, that generates the
nodes n5 and n6. The application of the BOX rule to n5 generates the node n7,
which is further expanded by applying the DIAMOND rule to the formula 〈A〉p
in n1. With two applications of the BOX rule (to nodes n5 and n0, respectively),
we generate the node n10. Then, the application of the OR rule to n10 generates
the nodes n11 and n12. The branch ending in n11 can be easily shown to be
open, because all the 〈A〉 formulas in it are fulfilled and no more expansion rules
are applicable to it. Such a condition allows us to conclude that the formula ϕ
is satisfiable. To give an example of the application of the blocking condition,
we expand the tableau a bit more. By applying the DIAMOND rule to n12, we
obtain the node n13. Two applications of the BOX rule to n13 generates the
nodes n14 and n15. The OR rule is then applied to n15. The branch ending in
n16 is open, because all 〈A〉 formulas are fulfilled and no expansion rules can be
applied to it. The branch ending in n17 is not expanded anymore, because point
d5 is blocked (REQ(d5) = REQ(d4) and PAST (d5) = PAST (d4)).

4 Soundness, Completeness, and Complexity

In this section, we show that the proposed tableau method is sound, complete,
and terminating. In addition, we prove that it is complexity optimal. As a pre-
liminary step, we recall some basic notions (details can be found in [5]).

Definition 5. A ϕ-atom is a set A ⊆ CL(ϕ) such that, for every ψ ∈ CL(ϕ),
ψ ∈ A iff ¬ψ �∈ A, and, for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff ψ1 ∈ A or
ψ2 ∈ A.

We denote the set of all ϕ-atoms by Aϕ. Atoms are connected by the following
binary relation.

Definition 6. Let Rϕ be a binary relation over Aϕ such that, for every pair of
atoms A,A′ ∈ Aϕ, A Rϕ A′ if and only if, for every [A]ψ ∈ CL(ϕ), if [A]ψ ∈ A,
then ψ ∈ A′.

We now introduce a suitable labeling of interval structures based on ϕ-atoms.

Definition 7. A ϕ-labeled interval structure ( LIS for short) is a pair L =
〈〈D, I(D)〉,L〉, where 〈D, I(D)〉 is an interval structure and L : I(D) → Aϕ is a
labeling function such that, for every pair of neighboring intervals [di, dj ], [dj , dk],
L([di, dj ]) Rϕ L([dj , dk]).

If we interpret the labeling function as a valuation function, LISs represent
candidate models for ϕ. The truth of formulas devoid of temporal operators
and that of [A]-formulas indeed follow from the definition of ϕ-atom and the
definition of Rϕ, respectively. However, to obtain a model for ϕ we must also
guarantee the truth of 〈A〉-formulas.
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Definition 8. A ϕ-labeled interval structure L = 〈〈D, I(D)〉,L〉 is fulfilling if
and only if, for every temporal formula 〈A〉ψ ∈ TF(ϕ) and every interval [di, dj ]
∈ I(D), if 〈A〉ψ ∈ L([di, dj ]), then there exists dk > dj such that ψ ∈ L([dj , dk]).

Theorem 1 (Fulfilling LISs and satisfiability [5]). A formula ϕ is satis-
fiable if and only if there exists a fulfilling LIS L = 〈〈D, I(D)〉,L〉 with ϕ ∈
L([d0, d1]).

Theorem 2 (Soundness). If ϕ is satisfiable, then the tableau for it is open.

Proof. Let ϕ be a satisfiable formula and let L = 〈〈D, I(D)〉,L〉 be a fulfill-
ing LIS for ϕ. We show how an open tableau T for ϕ can be obtained from
L. Since L is a fulfilling LIS for ϕ, there exists an interval [d0, d1] such that
ϕ ∈ L([d0, d1]). We start the construction of T with the one-node initial tableau
〈[d0, d1], {ϕ}, {d0 < d1}〉 and then we proceed in accordance with the expansion
strategy. We prove by induction on the number of steps of the tableau construc-
tion that the current tableau T includes a branch B which satisfies the following
invariant:

for every n = 〈[di, dj ], Γn,Dn〉 in B and every ψ ∈ Γn, ψ ∈ L([di, dj ]).

By construction, the initial tableau satisfies the invariant. As for the inductive
step, let T be the current tableau and let B be the branch of T that satisfies
the invariant. Moreover, let n = 〈[di, dj ], Γn,Dn〉 be the node in B taken into
consideration by the expansion strategy. The following cases may arise:

– The OR rule is applied to n. We have that ψ1 ∨ ψ2 ∈ Γn, ψ1 �∈ Γn, and
ψ2 �∈ Γn. By the inductive hypothesis, ψ1∨ψ2 ∈ L([di, dj ]). By definition of L,
there exists ψk, with k ∈ {1, 2}, such that ψk ∈ L([di, dj ]). The expansion of
B into B ·nk, with ν(nk) = 〈[di, dj ], Γn ∪ {ψk},DB〉, maintains the invariant
true.

– The AND rule is applied to n. We have that ¬(ψ1∨ψ2) ∈ Γn and ¬ψ1 �∈ Γn or
¬ψ2 �∈ Γn. By the inductive hypothesis, ¬(ψ1∨ψ2) ∈ L([di, dj ]). By definition
of L, both ¬ψ1 ∈ L([di, dj ]) and ¬ψ2 ∈ L([di, dj ]). It immediately follows
that the expanded branch B·n1, with ν(n1)= 〈[di, dj ], Γn ∪ {¬ψ1,¬ψ2},DB〉,
preserves the invariant.

– The NOT rule is applied to n. We have that ¬¬ψ ∈ Γn and ψ �∈ Γn. By
the inductive hypothesis, ¬¬ψ ∈ L([di, dj ]) and thus ψ ∈ L([di, dj ]). The
expanded branch B · n1, with ν(n1) = 〈[di, dj ], Γn ∪ {ψ},DB〉, satisfies the
invariant.

– The DIAMOND rule is applied to n. We have that 〈A〉ψ ∈ Γn and there
exists no dk ∈ DB such that dk > dj and ([dj , dk], ψ) ∈ B. Since 〈A〉ψ ∈
L([di, dj ]), by definition of fulfilling LIS, ψ ∈ L([dj , d

′]) for some d′ > dj in
D. Two cases may arise:
• d′ ∈ DB. If there are no nodes in B labeled with [dj , d

′], we expand B with
a node n, with ν(n) = 〈[dj , d

′], {ψ},DB〉; otherwise, we expand B with
a node n, with ν(n) = 〈[dj , d

′], Γn′ ∪ {ψ},DB〉 where n′ is the (unique)
active node in B labeled with [dj , d

′]. In both cases, the expansion of B
with n preserves the invariant.
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• d′ /∈ DB. Let dj+1, . . . , dj+h, with h ≥ 0, be the points in DB greater
than dj . We have that dj+k < d′ < dj+k+1 for some 0 ≤ k ≤ h. Let
D′ be the linear order obtained from DB by putting the new point d′

in between dj+k and dj+k+1. The expansion of B with a node mk, with
ν(mk) = 〈[dj , d

′], {ψ},D′〉, preserves the property.
– The BOX rule is applied to n. We have that ¬〈A〉ψ ∈ Γn and there exists

dk ∈ DB such that dj < dk, and ([dj , dk],¬ψ) �∈ B. Since ¬〈A〉ψ = [A]¬ψ ∈
L([di, dj ]), ¬ψ ∈ L([dj , dh]) for all dj < dh, and thus ¬ψ ∈ L([dj , dk]). It
can be easily seen that the expansion of B with node n1, whose labeling is
defined according to the BOX rule, preserves the truth of the invariant.

The above argument guarantees that the resulting tableau T features (at least)
one branch B that satisfies the invariant. Suppose now, by contradiction, that B is
closed. This implies that there exist an interval [di, dj ] and a formula ψ ∈ CL(ϕ)
such that both ([di, dj ], ψ) ∈ B and ([di, dj ],¬ψ) ∈ B. Given the truth of the
invariant, it follows that both ψ ∈ L([di, dj ]) and ¬ψ ∈ L([di, dj ]) (contradiction).
Hence, B is open and thus, by definition, the tableau for ϕ is open. ��

Completeness is proved by showing how to construct a fulfilling LIS satisfying
ϕ from a fulfilling branch B in a tableau T for ϕ. From Theorem 1, it follows
immediately that ϕ has a model. We will take advantage of the following lemma.

Lemma 1. Let B be an open branch of a tableau. For every [di, dj ] ∈ I(DB),
the following conditions hold:

– For any ψ ∈ CL(ϕ), it never happens that both (ψ, [di, dj ]) ∈ B and (¬ψ, [di,
dj ]) ∈ B;

– If (ψ1 ∨ ψ2, [di, dj ]) ∈ B, then (ψ1, [di, dj ]) ∈ B or (ψ2, [di, dj ]) ∈ B;
– If (¬(ψ1 ∨ ψ2), [di, dj ]) ∈ B, then (¬ψ1, [di, dj ]) ∈ B and (¬ψ2, [di, dj ]) ∈ B;
– If (¬¬ψ, [di, dj ]) ∈ B, then (ψ, [di, dj ]) ∈ B;
– If (〈A〉ψ, [di, dj ]) ∈ B and dj is not a blocked point, then there exists dk > dj

such that (ψ, [dj , dk]) ∈ B;
– If (¬〈A〉ψ, [di, dj ]) ∈ B, then, for every dk > dj, (¬ψ, [dj , dk]) ∈ B.

Proof. The thesis follows from the tableau rules and the expansion strategy. ��

Theorem 3 (Completeness). If the tableau for ϕ is open, then ϕ is satisfiable.

Proof. Let T be the tableau for ϕ. By definition, if T is open, then there exists
an open branch B in T . We distinguish two cases.

1. There are no blocked points in B. A fulfilling LIS L = 〈〈D, I(D)〉,L〉 can be
obtained as follows. As a first step, we execute the following operations:

– D = DB;
– for every ψ ∈ CL(ϕ) such that ([d0, d1], ψ) ∈ B, we let ψ ∈ L([d0, d1]);
– for every [di, dj ] ∈ I(DB), with di > d0, and every ψ ∈ CL(ϕ) such that

([di, dj ], ψ) ∈ B, we let ψ ∈ L([di, dj ]);
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– for every dj > d1, we let L([d0, dj ]) = L([d1, dj ]) (notice that for every
[d0, dj ] ∈ I(DB), with dj > d1, there are no nodes in B with an interval
[d0, dj ] in their label.

The resulting structure is not necessarily a LIS: it could be the case that,
for some interval [di, dj ] and formula ψ ∈ CL(ϕ), neither ψ ∈ L([di, dj ]) nor
¬ψ ∈ L([di, dj ]). However, it can be extended to a complete LIS as follows
(we proceed by induction on the structure of ψ):
– If ψ = p or ψ = ¬p, we let ¬p ∈ L([di, dj ]);
– If ψ = ψ1 ∨ ψ2, we let ψ ∈ L([di, dj ]) if and only if ψ1 ∈ L([di, dj ]) or

ψ2 ∈ L([di, dj ]);
– If ψ = ¬ψ1, we let ψ ∈ L([di, dj ]) if and only if ψ1 �∈ L([di, dj ]);
– If ψ = 〈A〉ψ1, we let ψ ∈ L([di, dj ]) if and only if there exists dk > dj

such that ψ1 ∈ L([dj , dk]).
Such a completion procedure produces a fulfilling LIS L: by Lemma 1, for
each pair of neighboring intervals [di, dj ], [dj , dk], if [A]ψ ∈ L([di, dj ]), then
ψ ∈ L([dj , dk]). Moreover, since there are no blocked points in B, L is ful-
filling. By Theorem 1, we can conclude that ϕ is satisfiable.

2. There is at least one blocked point in B. We proceed as in the previous
case. The resulting structure is in general not fulfilling. We can turn it
into a fulfilling LIS L as follows. Let (b1, . . . , bk) be the list of all blocked
points in DB, arranged in an arbitrary order. Consider now a specific point
bi ∈ {b1, . . . , bk} and assume that 〈A〉ψ1, . . . , 〈A〉ψn are the 〈A〉-formulas
in REQ(bi) which are not fulfilled by the current structure. Let mi be the
maximal blocking point for bi, that is, the greatest non-blocked point in DB

such that mi < bi, REQ(bi) = REQ(mi), and PAST(bi) = PAST(mi). We
have that, for every 〈A〉ψj ∈ REQ(bi) there exists an interval [mi, dψj ] such
that ψj ∈ L([mi, dψj ]). Two cases may arise:
– dψj > bi. In such a case, we fulfill 〈A〉ψj ∈ REQ(bi) by replacing the

current labeling of [bi, dψj ] with L([bi, dψj ]) = L([mi, dψj ]);
– mi < dψj ≤ bi. In such a case, we add a new point eψj in between bi and

its immediate successor (if any) and we let L([bi, eψj ]) = L([mi, dψj ]).
Such a construction must be repeated for all 〈A〉ψj ∈ {〈A〉ψ1, . . . , 〈A〉ψn}.
At the end, there can be a number of intervals generated by the new points,
with an incomplete labeling. Let eψj be one of the new points. We complete
the labeling of the interval starting/ending at eψj as follows:
– for every interval [eψj , d], we let L([eψj , d]) = L([dψj , d]);
– for every interval [d, eψj ], with d < dψj , we let L([d, eψj ]) = L([d, dψj ]);
– for every interval [d, eψj ], with dψj ≤ d < eψj , let d′ be a point such that

d′ < dψj and REQ(d′) = REQ(d). Since PAST(bi) = PAST(mi), such
point is guaranteed to exists. We let L([d, eψj ]) = L([d′, dψj ]).

At the end of this completion process, we remove bi from the list of blocked
points. For every added point eψj , if there there exists a 〈A〉-formula in
REQ(eψj ) whose request is not fulfilled by the current structure, we insert
eψj at the end of the current list of blocked points.
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By possibly repeating the above expansion step infinitely many times, we
guarantee that every point added to the list of blocked point is eventually
expanded. The resulting (limit) structure is thus a fulfilling labeled structure,
and, by Theorem 1, we can conclude that ϕ is satisfiable. ��

To determine the computational complexity of the proposed method, we take
advantage of the following lemma.

Lemma 2. The length of every branch in a tableau T for ϕ is bounded by |ϕ|3 ·
32|ϕ|.

Proof. Let B be a branch of T and DB = 〈DB, <〉 be the linear order associated
with it. For every [di, dj ] ∈ I(DB), there exists at most one active node in
B labeled with [di, dj ]. Moreover, according to the expansion rule, a node n
becomes inactive when a new active node n′ is added to B, with Γn ⊂ Γn′ .
Hence, for every [di, dj ] ∈ I(DB), there exist at most |ϕ| nodes in B, where |ϕ|
denotes the number of elements (and thus of subformulas) of ϕ.

The only rule that adds new points to DB is the DIAMOND rule, which is
applicable only to nodes labeled with intervals [di, dj ] whose right endpoint is
not blocked (according to Definition 2, a point dj is blocked if there exists a
point di < dj such that REQ(di) = REQ(dj) and PAST(di) = PAST(dj)). For
every formula 〈A〉ψ ∈ TF(ϕ), either 〈A〉ψ ∈ REQ(dj) or [A]¬ψ ∈ REQ(dj) or
neither 〈A〉ψ nor [A]¬ψ belongs to REQ(dj). Hence, the number of different sets
of requests that can be associated with a point is less than or equal to 3

|TF |
2 .

Along the branch B, the PAST sets associated with points are obviously ordered
by inclusion, that is, given d, d′ ∈ DB, with d < d′, PAST(d) ⊆ PAST(d′). This
implies that the number of different PAST sets that may occur in B is bounded
by the number of REQ sets (that is, 3

|TF |
2 ). Hence, the number of non-blocked

points is less than or equal to 3
|TF |

2 · 3
|TF |

2 = 3|TF |.
Now, for every non-blocked point di, the number of 〈A〉-formulas in REQ(di)

is less than or equal to |TF |
2 . Hence, by the application of the DIAMOND rule,

every non-blocked point can introduce at most |TF |
2 new points. In the worst

case, the total number of points in DB is thus |TF |
2 ·3|TF |. This implies that the

number of intervals in I(DB) is bounded by |TF |2
4 · 32|TF |, and that the number

of nodes in B is bounded by |ϕ| · |TF |2
4 · 32|TF | ≤ |ϕ|3 · 32|ϕ|. ��

Lemma 2 allows us to conclude that the satisfiability of an RPNL formula ϕ can
be checked by a non-deterministic procedure that generates an open branch of
the tableau, if any, in non-deterministic exponential time. From the NEXPTIME-
hardness of the satisfiability problem for RPNL [5], the optimality of the pro-
posed tableau method immediately follows.

Theorem 4. The tableau method for RPNL interpreted over all linearly ordered
domains is optimal.
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5 Conclusions

In this paper, we focused our attention on the logic RPNL. Its decidability over
various classes of linear orders immediately follows from results in [3]. A limited
research effort was devoted to the development of decision procedures for RPNL
to be used in practice: an optimal tableau method for RPNL over N is given
in [5] (later extended to full PNL over Z in [4]). In this paper, we devise a
computationally optimal tableau method for RPNL interpreted in the whole
class of linearly ordered domains, which turned out to be substantially different
from that for N. We are currently investigating the possibility of generalizing
the proposed tableau method to cope with full PNL. Besides additional rules
for the past-time modalities 〈A〉 and [A], a revision of the definition of blocked
points is needed, to distinguish between right-blocked (points that do not require
the addition of new points to their future) and left-blocked (points that do not
require the addition of new points to their past) points. These modifications
have a relevant impact on the soundness, completeness, and termination of the
method. In parallel, we are exploring the possibility of adapting the tableau
method to the case of RPNL (and PNL) over dense linearly ordered domains,
whose decision problem is still open.
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Abstract. Disjunctive logic programming under the answer set semantics (DLP ,
ASP ) has been acknowledged as a versatile formalism for knowledge representa-
tion and reasoning during the last decade. Lifschitz, Tang, and Turner have intro-
duced an extended language of DLP , called Nested Logic Programming (NLP ),
in 1999 [1]. It often allows for more concise representations by permitting a richer
syntax in rule heads and bodies. However, that language is propositional and thus
does not allow for variables, one of the strengths of DLP .

In this paper, we introduce a language similar to NLP , called Normal Form
Nested (NFN ) programs, which does allow for variables, and present the syn-
tax and semantics. With the presence of variables, domain independence is no
longer guaranteed. We study this issue in depth and define the class of safe NFN
programs, which are guaranteed to be domain independent. Moreover, we show
that for NFN programs which are also NLP s, our semantics coincides with the
one of [1]; while keeping the standard meaning of answer sets on DLP programs
with variables. Finally, we provide an algorithm which translates NFN programs
into DLP programs, and does so in an efficient way, allowing for the effective
implementation of the NFN language on top of existing DLP systems.

1 Introduction

In disjunctive logic programming (DLP ) the heads (resp. the bodies) of rules are dis-
junctions (resp. conjunctions) of simple constructs, viz. atoms and literals. DLP , under
the answer set semantics [2,3], is widely recognized as an important tool for knowledge
representation and reasoning [4].

Lifschitz, Tang and Turner [1] extended the answer set semantics (in the propositional
or ground case) to a class of logic programs where the heads and the bodies of rules are
nested expressions. Nested expressions are formed from negation-as-failure literals, con-
junction and disjunction, nested arbitrarily. This class of programs, called nested logic
programs, generalizes the class of disjunctive logic programs. Moreover, as shown in
[1,5], nested logic programs can be transformed into disjunctive logic programs. These
results allow for evaluating ground nested logic programs using DLP systems, such as
DLV [6], GnT [7], or Cmodels3 [8]. However, given that these transformation systems
work only for ground nested logic programs, means that variables, one of the strongest
features of logic programming, cannot be used in problem representations. This restric-
tion limits the suitability of nested logic programs in many application domains, espe-
cially when reasoning is to be done on large numbers of input facts.

Unfortunately, a generalization of these techniques to programs with variables is not
straightforward. A major obstacle is the requirement of DLP systems that DLP rules
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must be safe, that is each variable in a rule must occur in a positive body literal. When
one would just add variables to the method of [5], one easily obtains unsafe rules, as
explained in detail in Section 4.

Motivated by these considerations, we extend nonground DLP to a class of pro-
grams, in which rule heads are formulas in disjunctive normal form made of atoms, and
in which the rule bodies are formulas in conjunctive normal form made of literals. These
programs are referred to as Normal Form Nested (NFN ) programs, and are different to
nested logic programs of [1], since they may contain variables. We study semantic and
safety properties of this class of programs, and provide a polynomial translation from
NFN programs to DLP .

The need for extending DLP with conjunction in the heads and disjunction in the
body arises quite often in real world applications. For example, we met the following
example in a real-world data-integration application.

Consider a global relation p(ID, name, surname, age) (for persons) with a key-
constraint on the first attribute ID. To perform consistent query answering [9], when
two tuples share the same key, the relation person is “repaired” by intensionally deleting
one of them. In DLP, this is obtained by the following rules (where p stands for deleted
tuples, and p′ is the resulting consistent relation on which query answers are computed).

p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), N 	= M.
p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), S 	= T.
p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), A 	= B.
p′(I, N, S, A) :- p(I,N, S, A), not p(I,N, S, A).

The first three DLP rules can be equivalently encoded by a single NFN rule, which is
much more succinct and intuitive:

p(I,N, S, A) ∨ p(I,M, T, B) :- p(I,N, S, A), p(I,M, T, B), (N 	= M ∨ S 	= T ∨ A 	= B).

For a more involved example, we consider the problem co-CERT3COL – a general-
ization of graph 3-uncolorability, due to I. Stewart [10]. Without going into details, on
the left we report a DLP encoding as defined in [11], whereas on the right we report an
equivalent NFN encoding. Rules r11 to r13 belong to both encodings.

r1 : v(X) :- p(X, Y, V ). ra : v(X), v(Y ) :- p(X, Y, V ) ∨ n(X, Y, V ).
r2 : v(Y ) :- p(X,Y, V ).
r3 : v(X) :- n(X, Y, V ).
r4 : v(Y ) :- n(X, Y, V ).

r5 : bool(V ) :- p(X, Y, V ). rb : t(V ) ∨ f(V ) :- p(X,Y, V ) ∨ n(X, Y, V ).
r6 : bool(V ) :- n(X, Y, V ).
r7 : t(V ) ∨ f(V ) :- bool(V ).

r8 : c(X, r) :- w, v(X). rc : c(X, r), c(X, g), c(X, b) :- w, v(X).
r9 : c(X, g) :- w, v(X).
r10 : c(X, b) :- w, v(X).

r11 : c(X, r) ∨ c(X, g) ∨ c(X, b) :- v(X).
r12 : w :- p(X, Y, V ), t(V ), c(X, A), c(Y, A).
r13 : w :- n(X, Y, V ), f(V ), c(X, A), c(Y, A).

In the NFN version we save seven rules and the intermediate predicate bool.
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The main contributions of this paper are the following:

� We extend DLP with variables introducing conjunctions in the head of the rules and
disjunctions in the body of the rules, obtaining a new language, NFN Programs.
We formally define the syntax and semantics of this language.

� We study the properties of the NFN programs showing the following results:
• The answer sets for NFN coincide with the answer sets of [1] for Nested Logic

Programs, on the common language fragment.
• The answer sets for NFN coincide with the standard answer sets of [3] on

(possibly non ground) DLP programs.
• We provide a definition of safe NFN programs. We show that every safe pro-

gram is domain independent, that is, it has the same answer sets on each uni-
verse extending the constants of the program.

� We present an algorithm that transforms normal form nested programs to disjunc-
tive logic programs such that there is a one-to-one correspondence between their
answer sets. The translation is efficient and preserves program safety.

2 NFN Language

In this section, we formally define the syntax and semantics of the NFN language.

2.1 Syntax

A variable or a constant is a term. An atom is a(t1, . . . , tn) where a is a predicate of
arity n and t1, . . . , tn are terms. A literal is either a positive literal p or a negative literal
not p, where p is an atom. A basic conjunction is of the form (l1, . . . , ln) where each
l1, . . . , ln is a literal; if each l1, . . . , ln is an atom, the basic conjunction is positive. A
basic disjunction is of the form (k1∨ . . .∨kn) where each k1, . . . , kn is a literal; if each
k1, . . . , kn is an atom, the basic disjunction is positive. The parentheses around basic
conjunctions and disjunctions may be omitted in unambiguous occurrences. A (normal
form nested) rule r is of the following form:

C1 ∨ . . . ∨ Cn :- D1, . . . , Dm. n, m ≥ 0

where C1, . . . , Cn are positive basic conjunctions and D1, . . . , Dm are basic disjunc-
tions. The disjunction C1∨. . .∨Cn is the head of r while the conjunction D1, . . . , Dm is
the body of r. The set of all basic conjunctions appearing in r is denoted by H(r) while
the set of all basic disjunctions is denoted by B(r). Moreover, the set of all positive
basic disjunctions of r is denoted by B+(r) and the set of remaining basic disjunctions
is denoted by B−(r) (i.e. B−(r) = B(r)\B+(r)). A rule is positive if B(r) = B+(r).
If all Ci are atoms and all Dj are literals respectively, the rule is called standard.

Example 1 (Normal Form Nested Rule). The following is a normal form nested rule:
a(X) ∨ (b(X), c(X)) :- d(X), (e(X) ∨ not f(Y )), (d(X) ∨ s(Z) ∨ f(X)).
where d(X) and (d(X)∨ s(Z)∨ f(X)) are positive basic disjunctions, while (e(X)∨
not f(Y )) is not, since it contains the negative literal not f(Y ).
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An NFN program P is a finite set of rules. P is a positive program if all rules of P are
positive. P is a standard program if all its rules are standard. In the following, we use Σ
to denote a general construct (literal, disjunct, conjunct, etc.). We denote by const(Σ)
the set of constants that appear in a construct Σ and by vars(Σ) the set of variables that
appear in Σ. A construct Σ is ground iff vars(Σ) = ∅.

2.2 Semantics

Program Instantiation. Given an NFN program P , let UP be the set of constants
appearing in P and BP be the set of atoms constructible from the predicates of P with
constants in UP . Let U ⊇ UP be a set of constants and r an NFN rule. A substitution
is a total function σ : vars(r) &→ U that maps each variable of r to a constant in U ,
represented also as the set {X/c | σ(X) = c}. Given a substitution σ, a ground instance
of a construct Σ w.r.t. U is Σσ, that is the application of σ on Σ. The instantiation of
r, denoted by Ground(r, U), is the set of all ground instances of r w.r.t. U .

Example 2. Let U = {1, 2} be a set of constants and r the rule
(a(X), b(Y )) ∨ c(X) :- (p(X,Y ) ∨ q(Y )), q(X).

The instantiation Ground(r, U) is the set of the following rules:
(a(1), b(1)) ∨ c(1) :- (p(1, 1) ∨ q(1)), q(1). (a(1), b(2)) ∨ c(1) :- (p(1, 2) ∨ q(2)), q(1).

(a(2), b(2)) ∨ c(2) :- (p(2, 2) ∨ q(2)), q(2). (a(2), b(1)) ∨ c(2) :- (p(2, 1) ∨ q(1)), q(2).

Given a program P , the instantiation of P w.r.t. U , denoted by Ground(P,U) is the
union of all instantiations of rules in P : Ground(P,U) =

⋃
r∈P Ground(r, U). As a

special case, let Ground(P ) = Ground(P,UP ).

Interpretation and Models. An interpretation I , for an NFN program P , is a set
of ground atoms I ⊆ BP . A ground atom a is true (resp. false) w.r.t. I if a ∈ I (resp.
a /∈ I). A ground negative literal not a is true (resp. false) w.r.t. I if a /∈ I (resp. a ∈ I).
A ground basic disjunction L is true w.r.t. I if at least one literal of L is true w.r.t. I;
otherwise L is false w.r.t. I . A ground basic conjunction A is true w.r.t. I if all atoms
of A are true w.r.t. I; otherwise A is false w.r.t. I . Similarly, the head of a ground NFN
rule r is true w.r.t. I if at least one basic conjunction of H(r) is true w.r.t. I , otherwise
it is false w.r.t. I . The body of r is true w.r.t. I if all basic disjunctions of B(r) are true
w.r.t. I , otherwise it is false w.r.t. I .

A ground NFN rule r is satisfied w.r.t. I if the head is true w.r.t. I or the body is
false w.r.t. I . A program P is satisfied w.r.t. I if all rules of Ground(P ) are satisfied.
In the following, we denote truth and falsity of a construct Σ with I |= Σ and I �|=
Σ respectively. Given a rule or a program Δ, we also denote the satisfiability of Δ
w.r.t. I by I |= Δ, and unsatisfiability of Δ w.r.t. I by I �|= Δ. A model for P is an
interpretation M for P such that M |= P . A model M for P is minimal if no model N
for P exists such that N � M .

Answer Sets. Next we define a reduct for ground NFN programs w.r.t. an interpreta-
tion. It can be viewed as a generalization of the reduct defined in [12] and a simplifica-
tion of the one in [1].
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Definition 1 (Reduct). Let P be a ground NFN program and I an interpretation. The
reduct of P w.r.t. I , denoted by P I , is defined as follows: (1) for each r ∈ P all false
literals w.r.t. I are deleted from each basic disjunction of r; (2) all rules s.t. any basic
disjunction becomes empty after the application of item 1, are deleted.

Next we denote by rI the rule of P I obtained from r ∈ P after the deletion described
in item 1 of Definition 1 s.t. no basic disjunction of r becomes empty.

Observation 1. rI exists iff I |= B(r).

Indeed, I �|= B(r) iff a basic disjunction D ∈ B(r) exists s.t. I �|= D. That is, for
each literal l ∈ D, I �|= l. Since all false literals are deleted from B(r), disjunction D
becomes empty. Consequently, rI does not exist.

Example 3. Consider the following NFN program P :

a. b. f ∨ (d, e) :- (a ∨ not c). p :- (not a ∨ not b). g :- (b ∨ not a).

and interpretation I = {a, b, f, g}, then P I is the following program:

a. b. f ∨ (d, e) :- (a ∨ not c). g :- b.

Definition 2 (Answer set for NFN program). Given an NFN program P , an inter-
pretation I is an answer set for P iff I is a minimal model for Ground(P )I .

The set of answer sets for P is denoted by AS(P ).

Example 4. In Example 3, I is an answer set for the program P . Indeed, I is a model
for P I and it is simple to check that no subset J � I there exists s.t. J satisfies all rules
of P I . The only other answer set of P is {a, b, d, e, g}.

Looking at Definition 1, similar to the reduct for DLP programs defined in [12], all
rules with false body are deleted. Furthermore, from rule bodies of the remaining rules
all false body literals are deleted. Without the latter deletion, in some cases it is possible
to obtain unintuitive answer sets as shown in the following example.

Example 5. Let us consider program P = {c :- (c∨not c).} and interpretation I = {c}.
If we just deleted all rules with false body w.r.t. I , the reduct would be again P and
I would be an answer set for P . However, using the reduct of Definition 1, we obtain
{c :- c.}, of which I is not a minimal model as ∅ is also a model. Indeed, I is unintuitive
as c is only justified by its own truth, and it is also not an answer set according to [1]
(cf. Definition 3).

3 Language Properties

In this section we study important properties of NFN programs.

3.1 Equivalence to the Semantics of Lifschitz, Tang, and Turner

In order to differentiate the reducts, in the following we denote the reduct of a construct
Σ according to the definition in [1] by ΣIL .
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Example 6. Consider P and I of Example 3, P IL is the following program:

a. b. f ∨ (d, e) :- (a ∨�). p :- (⊥ ∨⊥). g :- (b ∨ ⊥).

Definition 3 (Answer Set of Lifschitz, Tang, and Turner [1]). A set of atoms I is an
NLP answer set for a ground NFN program P iff it is a minimal model of P IL .

Example 7. In Example 6, I is an NLP answer set of the program P IL .

Lemma 1. Let r be a ground NFN rule and I a set of atoms, then: (1) I �|= B(r) ⇔
I �|= B(rIL ) and (2) if rI exists, ∀J ⊆ I : J |= rI ⇔ J |= rIL .

Proof. (1) I �|= B(r) iff a basic disjunction D ∈ B(r) exists s.t. I �|= D iff for all
l ∈ D, I �|= l. The corresponding basic disjunction DIL ∈ B(rIL ) of D contains the
positive literals of D and, if l = not a, DIL contains ⊥. Then I �|= B(rIL ). Vice versa,
I �|= B(rIL ) iff DIL ∈ B(rIL ) exists s.t. I �|= DIL iff for each l ∈ DIL , I �|= l where
l is an atom or l = ⊥. The corresponding basic disjunction D ∈ B(r) contains the
atoms of DIL and, for each ⊥ ∈ DIL , D contains a negative literal ln, s.t. I �|= ln.
Consequently, I �|= D and, hence, I �|= B(r).

(2) J |= B(rI) iff for each basic disjunction DI ∈ B(rI ) a literal l ∈ DI exists s.t.
J |= l. If l = not a, I |= l follows from Definition 1 and each basic disjunction DIL ∈
B(rIL ) corresponding to DI contains �. Otherwise, if l is a positive literal, the DIL

corresponding to DI also contains l. As a result J |= B(rIL ). Since both reducts do not
modify the head of the rules, if J |= rI and J |= B(rI) then J |= H(rI) = H(rIL ) and
J |= B(rIL ) hence J |= rIL ; if J |= rIL and J |= B(rIL ) then J |= H(rIL ) = H(rI)
and J |= B(rI ), hence J |= rI .

Theorem 1. Given an NFN program P , an interpretation I is an answer set of P
according to Definition 2 iff I is an NLP answer set of P according to Definition 3.

Proof. (⇒) If I is a minimal model for Ground(P )I , for each r ∈ Ground(P ), s.t.
rI exists, from Observation 1 I |= B(r) and from (2) of Lemma 1 (for the special
case I = J), I |= rIL follows. For rules r ∈ Ground(P ), for which no rI but a rIL

exists, I �|= r and from (1) of Lemma 1, I �|= B(rIL ). Consequently I is a model for
Ground(P )IL . Moreover, no J ⊂ I is a model for Ground(P )IL , as it would also be
a model for Ground(P )I because of (2) of Lemma 1.

(⇐) Let I be a minimal model for Ground(P )IL . For each rI ∈ Ground(P )I , since
I |= rIL holds by (2) of Lemma 1, I |= rI holds as well. As a result, I is a model for
Ground(P )I . Furthermore, no J ⊂ I is a model for Ground(P )I because J would
also be a model for Ground(P )IL . In fact, for each rI ∈ Ground(P )I from (2) of
Lemma 1, J |= rIL . For each r ∈ Ground(P ) s.t. no rI exists, from Observation
1 I �|= B(r), therefore a disjunction D ∈ B(r) exists s.t. I �|= D iff I �|= l for all
l ∈ D. The corresponding disjunction DIL ∈ B(rIL ) contains the same atoms of D
and DIL contains ⊥ for each negative literal of D. Consequently J �|= DIL for all
J ⊆ I therefore J �|= B(rIL ) and J |= rIL .

Since the grounding of a standard program defined in this paper is the same as in [3] we
obtain, by virtue of Theorem 1 and results of [1], the following.

Proposition 1. Given a standard DLP program P , the answer sets of P according to
Definition 2 coincide with the answer sets defined by Gelfond and Lifschitz in [3].
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3.2 Domain Independence and Safety

Let us review the definition of domain independence, stating in our case that the seman-
tics should be independent of the universe, as long as it is sufficiently large.

Definition 4. Let P be an NFN program and UP be the set of constants appear-
ing in P . P is domain independent if for each U ⊇ UP , AS(Ground(P,U)) =
AS(Ground(P,UP )) holds.

Let us examine some examples related to domain independence.

Example 8. Consider Pus ={c(1)., d(1)., a(X)∨b(Y ) :- (c(X)∨d(Y )).} where UPus

= {1}. Then Ground(Pus, UPus) = {c(1)., d(1)., a(1) ∨ b(1) :- (c(1) ∨ d(1)).}. The
answer sets are: AS(Ground(Pus, UPus)) = {{a(1), c(1), d(1)}, {b(1), c(1), d(1)}}.
Now we consider U = UPus ∪ {2}. Then Ground(Pus, U) = Ground(Pus, UPus) ∪
{a(1) ∨ b(2) :- (c(1) ∨ d(2))., a(2) ∨ b(1) :- (c(2) ∨ d(1))., a(2) ∨ b(2) :- (c(2) ∨
d(2)).}. In this case we have the following answer sets: AS(Ground(Pus, U)) =
{{a(1), a(2), c(1), d(1)}, {a(1), b(1), c(1), d(1)}, {b(1), b(2), c(1), d(1)}}. So we ob-
tain different answer sets for the program Pus, depending on the considered universe.
The problem is that in the main rule of Pus the body can be satisfied without “binding”
one of the two variables that occur in the head.

Example 9. Consider Pus2 = {c(1)., a :- (b(X) ∨ not c(X)).} where UPus2 = {1}.
Then Ground(Pus2 , UPus2) = {c(1)., a :- (b(1) ∨ not c(1)).}, so the program has the
only one answer set: AS(Ground(Pus2 , UPus2)) = {c(1)}. Now if U2 = UPus2 ∪{2},
Ground(Pus2, U2) = Ground(Pus2, UPus2) ∪ {a :- (b(2) ∨ not c(2)).} So we have
the following answer set: AS(Ground(Pus2, U2) = {a, c(1)}. In this case the variable
in the negative literal is not necessarily “bound” when the body is true.

These examples serves as a proof for the following theorem.

Theorem 2. Given an NFN program P , P is in general not domain independent.

Definition 5 (Safe variable). Let r be an NFN rule. A variable X ∈ vars(r) is safe if
there exists a positive basic disjunction D ∈ B(r), such that ∀a ∈ D, X ∈ vars(a); we
also say that D saves X and X is made safe by D.

Example 10. Consider a :- (b(X) ∨ c(X,Z) ∨ d(X)), e(Y ), (s(Z) ∨ t(X)). The safe
variables of the rule are X and Y . Indeed, the variable X is safe because it appears in
all atoms of the positive basic disjunction D1 = (b(X) ∨ c(X,Z) ∨ d(X)), while the
variable Y occurs in the only atom of the positive basic disjunction e(Y ).

Definition 6 (Safe rules and programs). An NFN rule r is safe if each variable that
appears in the head of r and each variable that appears in negative body literals of r is
safe. An NFN program P is safe if each rule is safe.

Example 11. The NFN rule h :- (a(X)∨ b(X)), not c(X). is safe. In fact, variable X ,
which appears in the negative literal not c(X) is made safe by (a(X) ∨ b(X)). Rule
(h1(X), h2(X)) :- (a(X) ∨ b(Z)), (c(X) ∨ not s(Z)). is not safe, since variable X
occurs in the head of the rule but no positive basic disjunction in the body saves X .
Moreover, variable Z , occurring in negative body literal not s(Z), is also unsafe.
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Lemma 2. Let r be a safe NFN rule, I a set of ground atom, U ⊇ const(I) and
U ′ ⊃ U , then I |= Ground(r, U) ⇒ I |= Ground(r, U ′).

Proof. Assume I �|= Ground(r, U ′) and I |= Ground(r, U). Then, a substitution
σ : vars(r) → U ′ exists s.t. I �|= rσ, so I |= B(rσ) and I �|= H(rσ). Since
I |= B(rσ), then for each positive basic disjunction Dp ∈ B+(r) an atom a ∈ Dp

exists s.t. aσ ∈ I so const(aσ) ⊆ U . Moreover, for each negative basic disjunction
Dn ∈ B−(r) a literal l ∈ Dn exists s.t. I |= lσ. Therefore, if l is positive, lσ ∈ I
and const(lσ) ⊆ U ; if l = not a, aσ /∈ I and since r is safe, for all X ∈ vars(a)
a positive disjunction Ds ∈ B+(r) exists s.t. for all ā ∈ Ds, X ∈ vars(ā) and thus
const(lσ) ⊆ U. Then, choose a substitution σ′ : vars(r) &→ U such that ∀ X/c ∈ σ
s.t. c ∈ (U ′ \ U) ∃s ∈ U s.t. X/s ∈ σ′, and ∀ X/c ∈ σ s.t. c ∈ U , X/c ∈ σ′. Then it
holds that I |= B(rσ′) and I |= H(rσ′) because rσ′ ∈ Ground(P,U). Furthermore,
r is safe so for all X ∈ vars(H(r)) a positive disjunction Dp ∈ B+(r) exists s.t. for all
ā ∈ Dp, X ∈ vars(ā) and thus const(H(rσ)) ⊆ U , hence H(rσ′) = H(rσ), and we
obtain a contradiction.

Lemma 3. Let r be a safe NFN rule, I a set of ground atoms, and U ⊇ const(I), then
Ground(r, U)I = Ground(r, U ′)I for all U ′ ⊃ U .

The proof is straightforward and therefore omitted.

Theorem 3. If P is safe then P is domain independent.

Proof. ∀U ⊇ UP : AS(Ground(P,UP )) ⊆ AS(Ground(P,U)) :
Let P be a safe program and assume that I ∈ AS(Ground(P,UP )) and ∃U ⊃ UP

s.t. I /∈ AS(Ground(P,U)). (i) If I is not a model of Ground(P,U) ⇒ ∃r ∈ P
and a substitution σ : vars(r) &→ U s.t. I �|= rσ. Since I |= Ground(P,UP ) =⋃

r′∈P Ground(r′, UP ), for each r′ ∈ P I |= Ground(r′, UP ) and from
Lemma 2, I |= Ground(r′, U). Then I |= rσ for each rσ ∈ Ground(P,U) and
we obtain a contradiction. (ii) If I is a model for Ground(P,U) but I is not a minimal
model for Ground(P,U)I , then ∃J ⊂ I s.t. J is a model for Ground(P,U)I . Since
Ground(P,UP ) ⊂ Ground(P,U), then (Ground(P,UP )I) ⊆ (Ground(P,U)I )
and J is a model for Ground(P,UP )I contradicting I ∈ AS(Ground(P,UP )).

∀U ⊇ UP : AS(Ground(P,U)) ⊆ AS(Ground(P,UP )) : Let P be a safe program
and assume that I ∈ Ground(P,U) and ∃U ⊃ UP s.t. I /∈ AS(Ground(P,UP )). (i)
Since Ground(P,UP ) ⊂ Ground(P,U) then I is a model for Ground(P,UP ). (ii) If
I is a model for Ground(P,UP ) but I is not a minimal model for Ground(P,UP )I

then there exists J ⊂ I s. t. J ∈ AS(Ground(P,UP )I). By Lemma 3 it holds that
Ground(P,UP )I = Ground(P,U)I , and therefore J |= Ground(P,U)I and this is a
contradiction to I ∈ AS(Ground(P,U)).

4 An Efficient Translation from NFN to DLP

Results in [1] show that ground nested logic programs can be transformed into ground
standard disjunctive logic programs. This allows for evaluating nested logic programs
using a disjunctive logic programming system, such as DLV [6], GnT [7], or Cmodels3
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[8], as a back-end. However, the naı̈ve transformation will in general produce very
large programs, which may be exponentially larger than the input program. Inspired
by structure-preserving normal form translations [13], a much more efficient transfor-
mation has been described in [5], which is guaranteed to run in polynomial time and
will also provide transformed programs of polynomial size with respect to the input
program. The main idea of this transformation is to introduce labels or auxiliary atoms
that represent subformulas. However, also the latter transformation works for ground
programs only. In this section we present an algorithm which efficiently translates nor-
mal form nested programs, which may contain variables, to disjunctive logic programs,
elaborating on some ideas of [5].

Let us first observe that a naı̈ve transformation on NFN programs amounts to trans-
forming CNFs in DNFs and vice versa, so also for NFN programs it may create a
program which is exponentially larger than the original. For example, a rule of the form
h :- (a1 ∨ b1), . . . , (an ∨ bn). would generate 2n transformed rules. So also for NFN
programs, the introduction of auxiliary atoms is necessary to avoid this inefficiency.

In what follows, we will use NFN program P as running example, where P consists
of the following single safe rule:

r : a ∨ (g(X), h(X, Z)) :- (b(X,Z) ∨ c(X, Y )), (not d(X) ∨ f(X, Y )), e(X, Z). (1)

This example shows the problem with a simple-minded lifting of the transformation
described in [5]. If one just introduced a new predicate that replaces basic disjunctions
in rule bodies and adds all variables of the basic disjunction that also occur elsewhere
in the rule, the defining rules for the new predicate would not be safe, but ASP system
require safe input. For instance, if the disjunction (b(X,Z) ∨ c(X,Y )) of the running
example is to be replaced by an auxiliary predicate l, we would need two defining rules
for l, l(X,Y, Z) :- b(X,Z). and l(X,Y, Z) :- c(X,Y ). Both of these rules are unsafe.
However, the unsafe variables Y and Z must in some way be included in the atom for
l, as in the rewritten rule other occurrences of Y and Z would be decoupled from the
occurrences in the rewritten disjunction. Note that the variable Z is safe in rule (1),
while Y is not. These kinds of variable occurrences are the main issues to be solved in
the rewriting, so let us formally define them.

Definition 7 (Shared and Unrestricted Variables). Let D be a basic disjunction of a
safe NFN rule r. A variable X ∈ vars(D) is shared in D and r if X is a safe variable of
r but X is not made safe by D. A variable X ∈ vars(D) is unrestricted in D and r if X
is not a safe variable of r and there exists a disjunction D′ �= D in r s.t. X ∈ vars(D′).

We denote the set of shared variables of a basic disjunction D by SharedD and by
UnresD the set of unrestricted variables of D. Note that the presence of unrestricted
variables does not imply that the rule is unsafe.

Example 12. Consider rule (1) where D1 = (b(X,Z)∨c(X,Y )), and D2 = (not d(X)
∨ f(X,Y )). SharedD1 = {Z}, UnresD1 = {Y }, SharedD2 = {X}, UnresD2 = {Y }.

Let us now review the rewriting Algorithm rewriteNFN, shown in Fig. 1. Its input is a
safe NFN program P and it returns a safe standard DLP program, PDLP . The algo-
rithm transforms one rule at a time, creating one major rule, which directly represents
the original one, and possibly several auxiliary rules. Moreover, all rules built by the
algorithm are safe.
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begin rewriteNFN
Input: NFN program P
var B: conjunction of literals; H : disjunction of atoms; auxhr

C , auxr
D: atoms;

Output: DLP program PDLP .
PDLP := ∅;
for each rule r ∈ P do

H := ε; B := ε; (initialization)
for each basic conjunction C ∈ H(r) do

buildAuxiliaryHeadAtom(C, auxhr
C , PDLP ); (see Section 4.1)

H := H ∨ auxhr
C ;

for each basic disjunction D ∈ B(r) do
buildAuxiliaryBodyAtom(D, auxr

D, PDLP ); (see Section 4.2)
B := B, auxr

D ;
addAtomsForMatching(B, PDLP ); (see Section 4.3)
PDLP := PDLP ∪ {H :- B.};

end for
return PDLP ;

end.

Fig. 1. Algorithm: rewriteNFN

4.1 Head Transformation

The rewriting of the rule head is a fairly direct lifting of the respective transforma-
tion of [5]. Obviously, in our case we have to take care of variables, and as an opti-
mization, we do not introduce auxiliary atoms for conjunctions consisting of a single
atom. Function buildAuxiliaryHeadAtom, given basic conjunction C, returns an auxil-
iary atom with predicate name auxhr

C and all variables in C. The function also adds the
rule auxhr

C :- C. and for each ai ∈ C the rule ai :- auxhr
C . to PDLP .

Example 13. In the rewritten major rule, the basic conjunction (g(X), h(X,Z)) of rule
(1) is replaced by auxhr

1(X,Z), and the following rules are added to PDLP :
auxhr

1(X,Z) :- g(X), h(X,Z). h(X,Z) :- auxhr
1(X,Z). g(X) :- auxhr

1(X,Z).

4.2 Body Transformation

As for the rule body, the basic idea is to transform one basic disjunction at a time, keep-
ing single-literal disjunctions, and introducing an auxiliary atom with predicate auxr

D

for each disjunction D containing more than one literal. The definition of this predicate
will contain a rule for each disjunct of D. However, as motivated earlier, care has to be
taken with variables. In particular, we have to find a solution for dealing with variables
that are not made safe by the disjunction to be rewritten, but still occur somewhere else
in the rule body. There must be an argument for those variables in the auxiliary atom,
but some literals of the disjunction may not contain this variable, leaving the respective
defining rule of auxr

D unsafe.
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Our solution, implemented in function buildAuxiliaryBodyAtom, is to introduce a
new constant #u, which represents the fact that the respective variable is not bound. In
order to work correctly, however, #u must match with all other constants. We achieve
this by defining a predicate matchr

X for a variable X which extends standard matching
by these special matching rules for #u. In order to restrict the value ranges for these
predicates, we also define predicates ur

X , which holds for all constants that X may
possibly become bound to.

For the definition of the match predicates, we differentiate between shared and un-
restricted variables. Shared variables are made safe by some other disjunction in the
body, so these variables are guaranteed to be bound to a constant value. In this case,
it is sufficient to match a value which is possibly unrestricted to a value which is def-
initely bound (originating from a saving disjunction). The match predicate in this case
needs only two arguments. For unrestricted variables, the presence of a bound value is
not guaranteed, and in this case we need a match predicate with three arguments: The
third argument indicates whether the other two arguments are unrestricted, or whether
a bound value has been found; see Example 14 for how this is achieved.

Example 14. For the first basic disjunction of rule (1) the auxiliary atom created by
buildAuxiliaryBodyAtom is auxr

1(X,Y, Z). The rules added to PDLP are
auxr

1(X, #u, Z) :- b(X, Z). auxr
1(X, Y, #u) :- c(X, Y ).

matchr
Y (#u, #u, #u). matchr

Y (Y, Y, Y ) :- ur
Y (Y ).

matchr
Y (Y, #u, Y ) :- ur

Y (Y ). matchr
Y (#u, Y, Y ) :- ur

Y (Y ).
matchr

Z(Z, Z) :- ur
Z(Z). matchr

Z(#u, Z) :- ur
Z(Z).

ur
Y (Y ) :- c(X, Y ).

Note that the definition of ur
Y is not complete yet; when processing the second basic

disjunction, the rule ur
Y (Y ) :- f(X,Y ). will be added. In a similar way, the definition

of ur
Z does not exist yet; since Z is a safe variable in the rule, the universe for Z is

sufficiently defined by one disjunction that saves Z . In our example, eventually rule
ur

Z(Z) :- e(X,Z). will be added.

There is another issue to resolve for negative literals, as also variables occurring in
negative literals will render the respective defining rule for auxr

D unsafe, even if the
technique using #u is used to eliminate the variable from the head. However, since the
original rule is safe, such variables are guaranteed to be bound to a constant value. This
allows us to add a definition for the values that this variable can assume. We use the
predicate savr

X for a variable X to this end, and the defining rules will contain all atoms
that represent the disjunctions of the original rule that save X .

Example 15. For the second basic disjunction of rule (1) the auxiliary atom created
by buildAuxiliaryBodyAtom is auxr

2(Y ). X , a shared variable, is not included in the
arguments just for optimization (if no variable is saved by a disjunction, shared variables
will not be included as arguments). The rules added to PDLP are
auxr

2(#u) :- not d(X), savr
X(X). auxr

2(Y ) :- f(X, Y ), savr
X(X). ur

Y (Y ) :- f(X, Y ).

Here savr
X(X) is added to both rule bodies because of the optimization mentioned

before. The rule defining savr
X is composed of all atoms representing disjunctions that

save X , taking care to match shared variables (and also unrestricted ones, which how-
ever is not applicable in our example).
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4.3 Composing the Major Rule

What remains to be done is to create the major rewritten rule. The rule head and the
main part of the body have already been created. What is still missing is adding atoms
for the extended match, which also takes care of the special constant #u. To this end,
function addAtomsForMatching first renames all shared and unrestricted variable oc-
currences in the atoms of the preliminary major rule body, using new names (denoted
here by adding an index to the original variable). It then adds an atom matchr

X(Xi, X)
to the major rule body for each shared variable occurrence that has been renamed to
Xi. Furthermore, for each unresticted variable X , we work along each renamed oc-
currence from left to right. If the occurrences are X1, X2, . . . , Xn, we add an atom
matchr

X(X1, X2, X≤2), then matchr
X(X≤i, Xi+1, X≤i+1) for each 2 ≤ i < n.

Example 16. For rule (1) the major rule built so far is a∨auxhr
1(X,Z) :- auxr

1(X,Y, Z),
auxr

2(Y ), e(X,Z). which addAtomsForMatching transforms to a ∨ auxhr
1(X,Z) :-

auxr
1(X,Y1, Z1), auxr

2(Y2), e(X,Z), matchr
Y (Y1, Y2, Y≤2), matchr

Z(Z1, Z).

As a final step, we add a defining rule for each savr
X that has been created. The rule

body is composed of all atoms representing saving disjunctions of X (at least one must
exist since X is safe). Then, we apply the same procedure as for the major rule in order
to rename shared and unrestricted variables and add respective match atoms.

Example 17. For rule (1) we add savr
X(X) :-auxr

1(X,Y, Z1), e(X,Z), matchr
Z(Z1, Z).

Summarizing, for the running example, rewriteNFN creates:
a∨auxhr

1(X, Z) :- auxr
1(X, Y1, Z1), auxr

2(Y2), e(X,Z), matchr
Y (Y1, Y2, Y≤2), matchr

Z(Z1, Z).

savr
X(X) :- auxr

1(X, Y, Z1), e(X, Z), matchr
Z(Z1, Z).

auxhr
1(X, Z) :- g(X), h(X, Z). h(X, Z) :- auxhr

1(X, Z). g(X) :- auxhr
1(X, Z).

auxr
1(X, #u, Z) :- b(X, Z). auxr

1(X, Y, #u) :- c(X, Y ).
auxr

2(Y ) :- f(X, Y ), savr
X(X). auxr

2(#u) :- not d(X), savr
X(X).

matchr
Y (Y, #u, Y ) :- ur

Y (Y ). matchr
Y (#u, Y, Y ) :- ur

Y (Y ). matchr
Y (#u, #u, #u).

matchr
Y (Y, Y, Y ) :- ur

Y (Y ). matchr
Z(#u, Z) :- ur

Z(Z). matchr
Z(Z, Z) :- ur

Z(Z).
ur

Y (Y ) :- c(X, Y ). ur
Y (Y ) :- f(X, Y ). ur

Z(Z) :- e(X,Z).

Consider now F = {c(1, 1)., e(1, 1).}, P ′ = P ∪ F , and PDLP
′ = PDLP ∪ F . The

answer sets of P ′ are A1 = {a, c(1, 1), e(1, 1)} and A2 = {g(1), h(1, 1), c(1, 1), e(1, 1)}.
while the answer sets of P ′

DLP are A′
1 = {a, c(1,1), e(1,1), auxr

1(1, 1, #u), auxr
2(#u),

ur
Y (1), ur

Z(1), savr
X(1), matchr

Z(1, 1), matchr
Z(#u, 1), matchr

Y (#u, 1, 1), matchr
Y (1, #u, 1),

matchr
Y (1, 1, 1), matchr

Y (#u, #u, #u)} and A′
2 = {g(1), h(1,1), c(1,1), e(1,1), auxhr

C(1, 1),

auxr
1(1, 1, #u), auxr

2(#u), ur
Y (1), ur

Z(1), savr
X(1), matchr

Z(1, 1), matchr
Z(#u, 1),

matchr
Y (#u, 1, 1), matchr

Y (1, #u, 1), matchr
Y (1, 1, 1), matchr

Y (#u, #u, #u)}
Note that there is a one-to-one correspondence between the answer sets of P ′ and

P ′
DLP . We can prove that such a correspondence holds in any case.

Proposition 2. Let P a safe NFN program, PDLP = rewriteNFN(P ), and AN and
AD be the sets of predicate symbols that appear in P and in PDLP , respectively (AN ⊆
AD). Then, I ∈ AS(P ) iff there exists a unique J ∈ AS(PDLP ) s.t. I = J ∩ AN .

As mentioned previously, all rules generated by rewriteNFN are safe. Moreover, it is
not hard to see that the complexity of the algorithm is lightweight.
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Proposition 3. Let P be a safe NFN program, then rewriteNFN(P ) is a safe DLP
program, its size is polynomial in |P |, and it is computed in polynomial time in |P |.

5 Conclusion

We have introduced NFN programs, an extension of nonground disjunctive logic pro-
grams, where conjunctions of atoms and disjunctions of literals are permitted in the
heads and in the bodies of the rules, respectively. We have defined syntax and semantics
of the new language and, since ground NFN programs are NLP programs, we showed
that the respective notions of answer sets coincide on this fragment. Furthermore, we
have defined the class of safe NFN programs and showed that each program of this class
is domain independent, that is, has the same answer sets for each universe containing
the constants of the program. Finally, we have developed an algorithm that rewrites an
NFN program P into a DLP program PDLP . The size of PDLP is polynomial in |P |, the
algorithm runs in polynomial time and preserves program safety. Ongoing work con-
cerns the implementation of the presented algorithm, allowing for the computation of
answer sets for NFN programs by exploiting disjunctive ASP systems as back-ends.
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A Logic for Closed-World Interaction
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Abstract. The aim of the work is to provide a language to reason about closed-
world interaction, that is all those situations in which the outcomes of an inter-
action can be determined by the agents themselves and in which Nature does
not play an active role. We formalize this intuition by identifying all such inter-
actions and axiomatizing their logic. We apply the formal tools to reason about
games and their regulation.

1 Introduction

Pauly’s Coalition Logic has shown to be a sound formal tool to analyze the properties
of strategic interactions and games. One issue left is to define in that language what
the interesting properties of an interaction are, as possible for instance with regularity
(it is never the case that a group of agents can determine that some variable p is true,
while all the other agents can at the same time determine that p is false) or outcome
monotonicity (if a coalition can force an outcome to lie in a set X , can also force an
outcome to lie in all supersets of X).

An intuitive property is that of coherence, a constrain on the interaction that ensures
players’ abilities non to contradict one other and the empty coalition not to make active
choices. With this property we can model closed-world interaction, such as those of a
Coordination Game or of a Prisoner Dilemma, where all the outcomes are determined
only by the choices of the agents that are present.

1.1 Motivating Example

Suppose we were confronted with a legislator who wants to regulate an interaction,
mandating the optimal outcomes that result from the choices of the coalitions.

Table 1. Clothing Conformity

�������Row
Column

White Dress Black Dress

White Dress (3, 3) (0, 0)

Black Dress (0, 0) (3, 3)

Let us consider for instance conventional norms, by which players should conform to
each other. In this situation (see Table 1), a legislator that wants to achieve the socially
optimal state (players coordinate), should declare that a discordant choice is forbidden,

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 89–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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thereby labeling the combinations of moves (black, white), (white, black) as violations.
Provided the legislator’s aim, we ask ourselves whether it makes sense to construct a
regulation for any type of interaction.

Suppose the environment were active part of the game, and it could decide to trans-
form the game of table 1 in the one of table 2.

Table 2. Clothing Conformity Modified

�������Row
Column

White Dress

White Dress (3, 3)

Black Dress (0, 0)

What should then the legislator do? It is quite clear that imposing the agents to choose
something should depend on the moves that are available to the players. But in a game
in which Nature plays an active role, taking this statement serious would boil down to
mentioning Nature in the deontic language, saying for instance “Nature should allow
Row to play only white” or “Nature should make it convenient for the Grand Coalition
to form”. No legislator though would be in the condition of determining what moves
Nature would play. We take here a view of Nature as an uncontrollable outside, which
it is useful to think of as the initial setting of the Multi-Agent System. Nature, unlike all
the other players, does not have explicit preferences over the outcomes of the interaction
and intuitively it does not follow proper man made norms or orders. In order to have a
regulation of the Multi Agent System, we need a proper agent-oriented deontic language
and we should then avoid deontic statements that concern proper choices to be carried
out by Nature. Or put it differently, we need to identify all those interactions for which
it makes sense to construct a regulation. This translates into ruling out all those in which
Nature plays an active role. In this paper we will pursue this idea formally, identifying
all such interactions and axiomatizing their logic.

The paper is structured as follows: In the first part we introduce the notion of coher-
ence. We prove that this property cannot be defined in Pauly’s Coalition Logic (CL),
due to the presence of the inability of the empty coalition (that ensures Nature not to
condition the choices of the other coalitions, IOEC henceforth). In the second part we
discuss the axiomatization of Coherent Coalition Logic (CCL), an extension of the lan-
guage of CL, giving a characterization of IOEC in terms of a global modality. In the
third part we will discuss some possible applications of the logic to the study and the
regulation of closed-world strategic interaction.

2 Coherent Interactions

We define the strategic abilities of agents and coalitions, introducing the concept of a
dynamic Effectivity Function (EF), adopted from [6].

Definition 1 (Dynamic Effectivity Function)
Given a finite set of agents Agt and a set of states W , a dynamic Effectivity Function
is a function E : W → (2Agt → 22W

).
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Any subset of Agt will henceforth be called a coalition.
For elements of W we use variables u, v, w, . . .; for subsets of W we use variables

X,Y, Z, . . .; and for sets of subsets of W (i.e., elements of 22W

) we use variables
X ,Y,Z, . . .. The elements of W are called ‘states’ or ‘worlds’; the subsets of Agt are
called ‘coalitions’; the sets of states X ∈ E(w)(C) are called the ‘choices’ of coalition
C in state w and this will be abbreviated with wECX when needed. The set E(w)(C)
is called the ‘choice set’ of C in w. The complement of a set X or of a choice set X are
calculated from the obvious domains.

A dynamic Effectivity Function assigns, in each world, to every coalition a set of
sets of states. Intuitively, if X ∈ E(w)(C) the coalition is said to be able to force or
determine the state after w be some member of the set X . If the coalition has this power,
it can thus prevent that any state not in X will be the next state, but it might not be able
to determine which state in X will be the next state. Possibly, some other coalition will
have the power to refine the choice of C.

To study closed-world interaction we isolate a set of minimally required properties,
that constitute the class of coherent Effectivity Functions.

Definition 2 (Coherence)
For any world w, coalitions C,D and choice X , an Effectivity Function is coherent if it
has the following properties:

1. coalition monotonicity: if X ∈ E(w)(C) and C ⊆ D then X ∈ E(w)(D);
2. regularity: if X ∈ E(w)(C) then X �∈ E(w)(C);
3. outcome monotonicity: if X ∈ E(w)(C) and X ⊆ Y then Y ∈ E(w)(C);
4. inability of the empty coalition: E(w)(∅) = {W}.

The first property says that the ability of a coalition is preserved by enlarging the
coalition. In this sense we do not allow new members to interfere with the preexistent
capacities of a group of agents. The second property says that if a coalition is able to
force the outcome of an interaction to lie in a particular set, then no possible combina-
tions of moves by the other agents can prevent this to happen. We think that regularity
is a key property to understand the meaning of ability. If an agent is properly able to do
something this means that others have no means to prevent it. Outcome monotonicity
is a property of all Effectivity Functions in CL, which is therefore a monotonic modal
logic. It says that if a coalition is able to force the outcome of the interaction to lie in a
particular set, then is also able to force the outcome to lie in all his supersets (see [6]).
The last condition is IOEC, that assigns to the empty coalition the coarsest possible
ability. As noticed also in [2] with such a property the empty coalition cannot force
non-trivial outcomes of a game.

One important class of Effectivity Functions are the playable ones, introduced first
in [6], to which we will refer throughout the paper.

Definition 3 (Playability)
For any world w an Effectivity Function is playable if it has the following properties:

1. ∅ /∈ E(w)(C), for any (C);
2. W ∈ E(w)(C) for any C.
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3. E is Agt-maximal, that is for any X ⊆ W , s.t. W \ X �∈ E(w)(∅) implies X ∈
E(w)(Agt) ;

4. E is superadditive, i.e. for C ∩ D = ∅, if X ∈ E(w)(C) and Y ∈ E(w)(D) then
X ∩ Y ∈ E(w)(C ∪ D).

The first condition imposes that interactions are nonempty, the second that coalitions
can always choose the largest possible set, the third that the Grand Coalition of agents
can do whatever not blocked by Nature, the fourth that coalitions can join their forces.
Henceforth we will call Agt-superadditive those Effectivity Functions for which super-
additivity holds for C = ∅, D = Agt, and we will call almost-superadditive those for
which superadditivity holds for all coalitions C,D with C ∪ D �= Agt.

As proved in [6] [Theorem 2.27], nonempty strategic games exactly correspond to
playable Effectivity Functions 1.

Playability and Coherence. What kind of interactions are coherent Effectivity Func-
tions isolating?

In this respect it is interesting to compare playable and coherent Effectivity Function.
For the proof of the propositions see the Appendix.

Proposition 1. Not all playable EF are coherent, and not all coherent EF are playable.

Proposition 2. Coherent Agt-maximal EF are Agt-superadditive.

Proposition 3. Coherent Agt-maximal almost-superadditive EF are playable. Playable
EF with IOEC are coherent.

3 Coherent Coalition Logic and Its Axiomatization

In order to fully understand what sort of interactions we are investigating by using
coherent Effectivity Functions we need to provide an axiomatization of their logic.

We now introduce the language and the models of Coherent Coalition Logic, that
extends Coalition Logic with an auxiliary existential modality.

3.1 Language

Let Agt be a finite set of agents and Prop a countable set of atomic formulas. The
syntax of CCL is defined as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|Eφ

where p ranges over Prop and C ranges over the subsets of Agt. The other boolean
connectives are defined as usual. The informal reading of the modalities is: “Coalition
C can choose φ” and “There is a state that satisfies φ”. We abbreviate ¬E¬φ with Aφ.

1 The proof involves the definition of strategic game as a tuple 〈N, {Σi|i ∈ N}, o, S〉 where
N is a set of players, each i being endowed with a set of strategies σi from Σi, an outcome
function that returns the result of playing individual strategies at each of the states in S; the
definition of α-Effectivity Function for a nonempty strategic game G, Eα

G : ℘(N) → ℘℘(S)
defined as follows: X ∈ Eα

G iff ∃σC∀σCo(σC ; σC) ∈ X. The above mentioned theorem
establishes that Eα

G = E in case E is playable and G is a nonempty strategic game.



A Logic for Closed-World Interaction 93

3.2 Structures

Definition 4 (Models). A model for our logic is a tuple

(W,E,R∃, V )

where:

– W is a nonempty set of states;
– E : W −→ (2Agt −→ 22W

) is a coherent Effectivity Function.
– R∃ = W ×W is a global relation.
– V : W −→ 2Prop is a valuation function.

3.3 Semantics

The satisfaction relation of modal formulas (the rest is standard) with respect to a
pointed model M,w is defined as follows:

M,w |= [C]φ iff wEC [[φ]]M

M,w |= Eφ iff ∃v s.t. wR∃v and M, v |= φ

[[φ]]M =def {w ∈ W |M,w |= φ} is called the truth set or the extension of φ in M .
The modality for coalitional ability is standard from CL [6].

4 On the Axiomatization of CCL

We recall the definition of Coalitional Canonical Model given in [6]. It is a model
M∗ = ((W ∗, E∗), V ∗), where W ∗ is the set of all maximally consistent sets, that are
closed under Modus Ponens and Monotonicity (φ → ψ ⇒ [C]φ → [C]ψ); E∗ is the
canonical relation and V ∗ the canonical valuation function. We denote with φ̂ = {w ∈
W ∗|φ ∈ w} the truth set of φ in the canonical model. The canonical relation (the rest
is standard) is defined as

wE∗
CX iff ∃φ : φ̂ ⊆ X and [C]φ ∈ w

The relation defined by Pauly is easily proved to be monotonic. Moreover the fol-
lowing theorem [[6] 3.10] holds: Every Coalition Logic Λ is sound and complete with
respect to its canonical model M∗.

What we look for now is a set of axioms and rules such that the corresponding max-
imally consistent sets generate a coherent Effectivity Function in the canonical models.

While regularity and coalition monotonicity look quite straightforward to axiom-
atize, it is not so for inability of the empty coalition. It is rather clear that [∅]φ →
[∅](φ∨ ψ) or also [∅]� would not be appropriate axioms for CCL: they would both en-
sure the presence of the unit in the neighbourhood of ∅, but they would not say anything
about the absence of all the other sets.

In fact the IOEC is not definable in CL. To see this it is important to notice that
CL is monotonic multimodal logic, and frame validity of formulas of monotonic modal
logics is closed under taking disjoint unions. This is proved for modal satisfaction in
[4][Definition 4.1, Proposition 4.2]. For a definition see the Appendix (5).



94 J. Broersen et al.

Proposition 4. There is no formula of CL that defines IOEC.

As noticed before, IOEC intuitively describes a global property of the models, by re-
quiring an accessibility relation that covers the whole domain.

We will give to this intuition a formal characterization, stating that in fact the ability
of the empty coalition in CCL is a global modality.

4.1 IOEC Is a Global Relation

We claim that IOEC is definable in CL plus the global modality.

Proposition 5. Aφ ↔ [∅]φ defines the IOEC. That is,
|=C Aφ ↔ [∅]φ ⇔ E(w)(∅) = {W} for every w in the class of coalitional

frames C.

4.2 Axiomatization for the Global Modality Plus a New Inclusion Axiom

The global relation induces an equivalence class in the models, therefore it is axiomati-
zable by an S5 modality interpreted on a global relation. However this does not ensure
that the underlying relation R∃ is globally connected. Global connectedness is not de-
finable in basic modal language [1] 2.

As suggested in [1][p.417-418], given a set of maximally consistent formulae Σ+

we can simply take a generated submodel of the canonical model in such a way that
the truth of formulae in Σ+ is preserved and the relation is (it follows by construction)
a global relation. The definitions (6 for Basic Modal Language and 7 for Monotonic
Modal Language) are reported in the Appendix.

Taken the canonical model M∗ = ((W ∗, E∗, R∗
∃), V ∗), its submodel

M∗′ = ((W ∗′ , E∗′ , R∗′
∃ ), V ∗) generated by Σ+ using the R∗

∃ relation ensures that
R∗′
∃ = W ∗′ ×W ∗′ .
Nevertheless in taking the generated submodel we should also ensure that the coali-

tional relation is not altered. One way to do so is to guarantee that the canonical coali-
tional relation is included in the global relation and that the generated submodel for the
second relation is also a generated submodel for the first.

Modal satisfaction is invariant under taking generated submodels both in the Basic
Modal and in the Monotonic Modal case, that is, for all states of the generated sub-
models, truth of modal formulas is preserved [1] [4]. It has to be noticed though that
the constructions are different, and it is by no means automatic that truth of a formula
preserved in one case transfers to the other.

Therefore, in our case, the question is whether the submodel generated using the
existential modality through a maximally consistent set of formulas Σ+ (making the
canonical model strongly connected with respect to this relation) is also a generated
submodel with respect to the coalitional relation.

2 The reason is also the invariance under taking disjoint unions. This fact sheds light on the
relation between IOEC and Global Relation, in fact now we see clearly that the ability of the
empty coalition in CCL is a global modality.
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The answer is: it depends on the extra axioms. Usually when we have a K modality
and a global modality it is sufficient to include the normal relation corresponding to K
in the global relation corresponding to the global modality. But we cannot simply have:

[C]φ → Eφ

because the canonical relation for the neighbourhood modality may cross S5 equiva-
lence classes. Instead the good candidate for our attempt is just the following:

Aφ ↔ [∅]φ

We claim that taking a generated submodel with respect to the global relation, given
this axiom, ensures the condition of taking also a generated submodel with respect to
the neighbourhood modality.

Proposition 6. The axiom Aφ ↔ [∅]φ guarantees inclusion of the canonical relation
in the global relation.

Now let us take a generated submodel, as described in [1] for basic modal logic, using
the maximally consistent set Σ+ looking only at the global modality.

Proposition 7. The generated canonical submodel under Σ+ preserves both global
modality and monotonic CL formulas satisfaction.

It follows that we have an axiomatization for CCL.

4.3 A Sound and Complete Axiomatization

Take now the maximally consistent sets w ∈ W ∗, closed under the proof system de-
picted in the table.

We take the following conditions to describe coherence of the Effectivity Function
on the canonical relation.

– wE∗
CX iff ∃φ̂ ⊆ X : [C]φ ∈ w and ∀ψ̂ ⊆ (W ∗ \ X) : [C]ψ �∈ w (for C �= ∅)

– E∗
C ⊆ E∗

D (for C ⊆ D)
– wE∗

CX iff X = W ∗ (for C = ∅)
– wR∃v iff w, v ∈ W ∗

Notice that the following proposition follows from what shown before:

Proposition 8. The canonical coherent frame for CL with Aφ ↔ [∅]φ as axiom has the
property that E(w)(∅) = W ∗ for any MCS w and Aφ ↔ [∅]φ is valid in the class of
frames with that property.

We are now ready to prove soundness and completeness.

Proposition 9. The set of axioms and rules in Table 3 are sound and complete with
respect to Coherent Coalition Frames.
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Table 3. Proof System

A1 [C]φ → [D]φ (for C ⊆ D)
A2 [C]φ → ¬[C]¬φ
A3 Aφ ↔ [∅]φ
A4 φ → Eφ
A5 EEφ → Eφ
A6 φ → AEφ
A7 A(φ → ψ)→ (Aφ → Aψ)

R1 φ ∧ (φ → ψ)⇒ ψ
R2 φ → ψ ⇒ [C]φ → [C]ψ
R3 φ ⇒ Aφ

4.4 On Agt-Maximal Coherent EF

If we add Agt-maximality to Coherent EF, the following holds:

M,w |= [Agt]φ ↔ Eφ

This suggest that the augmented version of CCL is powerful enough to reason on
global properties of the models. Moreover a new axiomatization is easy to be obtained.

Proposition 10. Agt-Maximal CCL is sound and complete with respect to the axiom
system of CCL plus [Agt]φ ↔ Eφ and, as for the canonical relation, the condition
wE∗

CX iff ∃φ̂ s.t. φ̂ ⊆ X ⊆ W ∗ and [C]φ ∈ w (for C = Agt) is added.

These results are useful to apply the language to the study of Multi-Agent interactions.
Therefore many examples from Game Theory, such as Coordination Game or Prisoner
Dilemma, are instances of coherent interactions.

5 Discussion

Deontic CCL Once we view a deontic language as regulating a Multi Agent System, we
can say that a set of commands promote a certain interaction (or social state), prohibiting
certain others. Following this line of reasoning it is possible, given a notion of optimality
or efficiency, to construct a deontic language that requires this notion to hold.

Suppose we had a deontic operator O, such that O(C, φ) would hold in a model iff
the formula φ were a choice of coalition C leading to an efficient outcome3.

If we take a model Mc of the game depicted in table 1, we would have that

Mc |= O(∅, φ) ↔ Aφ

while
Mc |= O(Agt, (whiteAgt) ∨ (blackAgt))

3 We take this view in [3]
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where the propositions have the obvious reading. Thus the regulation would impose to
Nature just what is already valid in the model, whereas it would tell the agents how
to behave to reach an efficient state. Extending the example further on, we can think
of a deontic operator F such that F (C, φ) would hold in a model iff all choices of C
necessarily leading to an inefficient outcome were φ choices. Assuming that the System
is indeed drivable to an efficient outcome (there is one) we would have that

Mc |= F (∅,⊥)

while
Mc |= F (Agt, (whiteAgt) ∧ (blackAgt))

In this case and, provided the existence of an efficient outcome, in general, Nature is
never forbidden anything, while prohibitions of Deontic CCL always address nonempty
coalitions of agents.

6 Conclusion and Future Work

In this paper we studied those interactions in which Nature does not play an active
role, and we provided an axiomatization of the resulting logic, discussing the possible
applications in game-theoretical scenarios. The work allows for several developments.

The most straightforward seems the switch from game forms (interactions without
specified preferences for players) to games, by specifying a preference relation. The
interaction between these two relations could shed light on the understanding of the
various shapes of motivational attitudes in interaction (see in this respect [7]). In this
respect, one more issue concerns the relation between coalition logics, interpreted in
neighbourhood models, and normal modalities, used for instance to talk about prefer-
ences or as we did here to talk about global properties of the models. In our paper we
show that the logic of certain effectivity function simulate the universal modality. It
would be interesting to bring this correspondence further, as suggested for instance in
[4]. The study of interactions was shown to have an interesting connection with deontic
logic that, viewed in a Multi-Agent perspective, allows to talk about those desirable
properties that an interaction should have. As system designers, our aim is at last to
construct efficient social procedures that can guarantee a socially desirable property to
be reached. We think that normative system design is at last a proper part of the Social
Software enterprise [5].
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A Appendix I: Definitions

Definition 5 (Disjoint Unions for MML)
Let Mi = (Wi, Ni, Vi), i ∈ I, be a collection of disjoint models. Then we define
their disjoint union as the model ⊕Mi = (W,N, V ) where W =

⋃
i∈I Wi, V (p) =⋃

i∈I Vi(p) and for X ⊆ W,w ∈ Wi,

X ∈ N(w) iff X ∩ Wi ∈ Ni(w)

Definition 6 (Generated Submodels for BML)
Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two models; we say that M ′ is a
submodel of M if W ⊆ W ′, R′ is the restriction of R to W ′, that is R′ = R∩(W ′×W ′)
and V ′ is the restriction of V to M ′. We say that M ′ is a generated submodel of M
(M ′ &→ M ) if M ′ is a submodel of M and for all worlds w, v the following closure
condition holds:

if w is in M ′ and Rwv, then v is in M ′

Definition 7 (Generated Submodels for MML). Given a monotonic model M , M ′ is
a submodel of M if W ′ ⊆ W,V ′(p) = V (p)∩W ′ for p atomic, and N ′ = N ∩ (W ′ ×
2W ′

), that is
∀s ∈ W ′ : N ′(s) = {X ⊆ W ′|X ∈ N(s)}

In neighbourhood semantics given M ′ submodel of M , M ′ is also a generated sub-
model of M if the identity mapping i : W → W ′ is a bounded morphism, that is, for
all w′ ∈ W ′ and all X ⊆ W

i−1[X ] = X ∩ W ′ ∈ N ′(w′) iff X ∈ N(w′)

B Appendix II: Selected Proofs

Proof of Proposition 1. For the first part, take W = {x, y}, Agt = {i, j} and the
Effectivity Function E(k)(∅) = E(k)({i}) = E(k)({j}) = E(k)(Agt) = {W,W \
{x}} for k ∈ W . Now it is just a matter of checking the conditions for playability.

For the second part take W = {x, y}, Agt = {i, j} with E(k)(∅) = E(k)({i}) =
E(k)({j}) = E(k)(Agt) = {W} for k ∈ W .

Proof of Proposition 2. Suppose A ∈ E(w)(∅) and B ∈ E(w)(Agt) for an arbitrary w.
We prove the claim by reductio. So assume A ∩ B /∈ E(w)(Agt). By Agt-maximality
W \ (A ∩ B) = W ′ ∈ E(w)(∅). But by regularity it is not possible that A ∩ B = ∅.
Then W ′ ⊂ W , contradicting inability of the empty coalition.

Proof of Proposition 3. The first part follows from the previous proposition and from the
definition of playability. The second from the definition of coherence and the properties
of playability.
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Proof of Proposition 4. Without loss of generality, we can simply think of the mono-
tonic modal logic with only the box for the empty coalition, and take frames instead of
models.

Consider the following monotonic frames F0 = (W0, N0) and F1 = (W1, N1),
with a domain Wj and a relation Nj ⊆ Wj × 2Wj (j ∈ {0, 1}). Take W0 = {w0},
W1 = {w1}, N0(w0) = {w0} and N1(w1) = {w1}. Now suppose φ is some formula
true at a world w in a model M ′ = (W ′, N ′, V ′) of a monotonic frame F ′ iff [[�]]M is
neighbour of w (if wN ′[[�]]) and nothing else is (wN ′X ⇒ X = [[�]]). We see that
M0, w0 |= φ and M1, w1 |= φ for arbitrary Mi inside Fi (i ∈ {0, 1}). From [4] we
construct the disjoint union ⊕(F0, F1) = (W,N) as defined in the Appendix. We see
clearly that our formula φ is not true in the disjoint union, because the neighbourhoods
of the single models are copied in the disjoint union even if they are smaller than the
unit. We observe moreover that the disjoint union is monotonic. The conclusion is that
the formula expressing inability of the empty coalition is not definable is monotonic
modal language.

Proof of Proposition 5. (⇒) Assume that |=C Aφ ↔ [∅]φ while not E(w)(∅) = {W}
for every w in any frame F in the class of Coalitional Frames C. Then there is an F in
which there is a w such that E(w)(∅) �= {W}. Notice that both W and E(w)(∅) are
nonempty. So there is a W ′ �= W s.t W ′ ∈ E(w)(∅). Take an atom p to be false in all
w′ ∈ W ′ and true in W \ W ′. Now we have model M based on a coalitional frame C
for which M �|= Ap ↔ [∅]p. Contradiction.

(⇐) Assume E(w)(∅) = {W} for a given w in an arbitrary model M of a coalition
frame in C, and that w |= Aφ. Then [[φ]]M = W and w |= [∅]φ follows. Assume
now that w |= [∅]φ. It has to be the case that [[φ]]M = W by assumption. So also that
w |= Aφ, which concludes the proof.

Proof of Proposition 6. Take a maximally consistent set of formulas Σ+ in a canonical
model M∗ = ((W ∗, E∗, R∗

∃), V ∗) that extends a consistent set of formulas Σ accord-
ing to the axioms and the rules that we have defined for the global and the standard
coalitional modality plus Aφ ↔ [∅]φ. Suppose now Aφ is in Σ+ for some φ. This
means that W ∗ = [[φ]]M

∗
. Now take some [C]ψ in the same maximally consistent set

of formulas. This means that [[ψ]]M
∗ ∈ E∗(Σ+)(C). But by definition, [[ψ]]M

∗ ⊆ W ∗

which proves that all coalitional neighbourhoods are covered by the global modality
relation.

Proof of Proposition 7. It is just a matter of verifying that the generated submodel
for the global relation is also a generated submodel for the coalitional relation. We in
fact did not change any neighbourhood relation, that are just copied into the generated
submodel.

Proof of Proposition 9. We need just to check the statement with respect to M∗′ . We
omit the detailed proof.

Proof of Proposition 10. The argument is a straightforward adaptation of the previous
proofs.
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Abstract. We investigate revision programming, a formalism to describe con-
straints on belief sets (databases, knowledge bases), and to specify preferred ways
to enforce them. We propose several semantics for revision programs combining
ideas from logic programming and active integrity constraints, a formalism to
model preferred ways to enforce integrity constraints on databases. We present
results on the complexity of the semantics we introduce. We also show that all
these semantics are invariant under “shifting”. Finally, we prove that from the
perspective of a broad semantic landscape of revision programming, there is a di-
rect correspondence between revision programs and active integrity constraints.

1 Introduction

Revision programming [1,2] was proposed as a formalism to describe revisions of sets
(state descriptions, belief sets, databases, etc). To focus our attention, we will discuss
revision programs here in the context of databases but, as just noted, their applicability
goes beyond that setting.

Revision programs consist of revision rules. They specify conditions a revised data-
base has to satisfy, as well as preferred ways to enforce them. To describe formally
the meaning of normal revision programs, researchers proposed the semantics of justi-
fied and supported revisions [2], motivated by the stable-model semantics [3] and the
supported-model semantics [4] of logic programs, respectively. The semantics of justi-
fied revisions was later generalized to the case of disjunctive revision programs in [5].
In this paper, for consistency with other notation, we refer to it as the semantics of
justified weak revisions.

The definitions of the two semantics of revision programs do not directly take into ac-
count the postulate of the minimality of change, which prefers as the results of revision
those databases that differ minimally from the original ones. Not surprisingly, the pos-
tulate holds neither for justified weak revisions, a shortcoming that has apparently been
overlooked so far, nor for the semantics of supported revisions. Second, while in the re-
stricted case of normal revision programs justified weak revisions are change-minimal,
it is a side-effect of other aspects of the definition rather than a result of an explicit
design decision. Since the minimality of change is among the most basic principles
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of database update, belief revision and nonmonotonic reasoning (cf. for instance, [6,7]),
it is important to study its effect on the semantics of revision programs. This is one of
the objectives of this paper.

The theory of revision programs we develop here follows our recent investigations
of active integrity constraints [8]. An integrity constraint is a condition on a database.
If the database violates an integrity constraint, it needs to be repaired — updated so
that the integrity constraint holds again. Often, there are several ways to do so. An
active integrity constraint encodes explicitly both an integrity constraint and preferred
basic actions to repair it, if it is violated. To specify the meaning of active integrity
constraints, [9] proposed the notion of a founded repair. Founded repairs are change-
minimal and satisfy a certain groundedness condition. In [8], we proposed several ad-
ditional semantics for active integrity constraints. Together with founded repairs, they
cover a spectrum of features one might require of database repairs. The class consists
of the semantics of weak repairs, repairs, founded weak repairs, founded repairs, jus-
tified weak repairs, and justified repairs. The term weak points to the fact that the cor-
responding semantics is not required to have the minimality of change property. The
terms founded and justified refer to different “grounding” principles used in defining the
semantics.

We show1 that this general schema for defining repairs can be lifted to revision pro-
grams, and yields the semantics of weak revisions, revisions, founded weak revisions,
founded revisions, justified weak revisions, and justified revisions. We show that the
semantics of founded weak revisions is an extension of the semantics of supported re-
visions to the case of disjunctive revision programs, and observe that the semantics
presented in [5] appears in the schema under the name of justified weak revisions, as it
does not satisfy the minimality-of-change property.

The relationship to active integrity constraints is not coincidental. Active integrity
constraints, while different in several technical details, share with revision programs
the same basic motivation of guiding the database update process through user-specified
preferences. To make the connection between the two formalisms precise and explicit,
we present a mapping from active integrity constraints to revision programs, under
which the corresponding semantics on each side coincide.

The class of revision programs is in a certain sense broader than the class of active
integrity constraints. There is a precise match between the two, however, if we limit
attention to a subclass of revision programs that we refer to as proper. We prove that
the restriction does not affect the expressive power of revision programming. Thus, our
results show that both formalisms, even though syntactically different and originally
endowed with different semantics, can be regarded as notational variants of each other.

One of the properties we establish for all semantics we discuss here is invariance
under shifting. We use it to relate revision programs and logic programs of Lifschitz
and Woo [10], aligning justified weak repairs with answer sets. We also point out
that all other semantics of revision programs can be adapted for Lifschitz-Woo
programs.

1 We omit proofs due to space restrictions. They can be found at
www.ca.uky.edu/ai/rp-full.pdf.

www.ca.uky.edu/ai/rp-full.pdf
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2 Revision Programming — An Overview

In this section we review the basic terminology of revision programming, and recall
the two semantics introduced in [1,2,5]: the semantics of supported revisions, and the
semantics of justified weak revisions (originally referred to in [5] as justified revisions
and renamed here for consistency with the general naming schema we use).

We consider a finite set At of propositional atoms, representing all ground atoms in a
language of predicate logic with a finite set of constants and with no function symbols.
Databases are subsets of At . A revision literal is an expression in(a) or out(a), where
a ∈ At . Revision literals in(a) and out(a) are duals of each other. If α is a revision
literal, we denote its dual by αD . We extend this notation to sets of revision literals. We
say that a set of revision literals is consistent if it does not contain a pair of dual literals.
Revision literals represent elementary updates one can apply to a database. We define
the result of applying a consistent set U of revision literals to a database I as follows:

I ⊕ U = (I ∪ {a | in(a) ∈ U}) \ {a | out(a) ∈ U}.

A revision rule is an expression of the form

r = α1| . . . |αk ← β1, . . . , βm, (1)

where k,m ≥ 0, k+m ≥ 1, and αi and βj are revision literals. The set {α1, . . . , αk} is
the head of the rule (1); we denote it by head(r). Similarly, the set {β1, . . . , βm} is the
body of the rule (1); we denote it by body(r). A revision rule is normal if |head(r)| ≤ 1.
A revision program is a collection of revision rules. A revision program is normal if all
its rules are normal.

A database D satisfies a revision literal in(a) (out(b), respectively), if a ∈ D (b /∈ D,
respectively). A database D satisfies a revision rule (1) if it satisfies at least one literal
αi, 1 ≤ i ≤ k, whenever it satisfies every literal βj , 1 ≤ j ≤ m. Finally, a database D
satisfies a revision program P , if D satisfies every rule in P . We use the symbol |= to
denote the satisfaction relation.

For revision literals α = in(a) and β = out(b), we set lit(α) = a and lit(β) =
not b. We extend this notation to sets of revision literals. We note that every database
interprets revision literals and the corresponding propositional literals in the same way.
That is, for every database I and for every set of revision literals L, I |= L if and only
if I |= lit(L).

It follows that a revision rule (1) specifies an integrity constraint equivalent to the
propositional formula: lit(β1), . . . , lit(βm) ⊃ lit(α1), . . . , lit(αk). However, a revi-
sion rule is not only an integrity constraint. Through its syntax, it also encodes a prefer-
ence on how to “fix” a database, when it violates the constraint. Not satisfying a revision
rule r means satisfying all revision literals in the body of r and not satisfying any of the
revision literals in the head of r. Thus, enforcing the constraint means constructing a
database that (1) does not satisfy some revision literal in the body of r, or (2) satisfies at
least one revision literal in the head of r. The underlying idea of revision programming
is to prefer those revisions that result in databases with the property (2).

As an example, let us consider the revision rule r = in(a) ← out(b), and the empty
database I. Clearly, I does not satisfy r. Although I can be fixed either by inserting
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a, so that head(r) becomes true, or by inserting b, so that body(r) becomes false, the
syntax of r makes the former preferred.

Normal revision programs were introduced and studied in [1,2] and the semantics
of supported and justified weak revisions for normal revision programs were proposed
there. In [5], the formalism was extended to allow disjunctions of revision literals in
the heads of rules, and the semantics of justified weak revisions was generalized to that
case. We will now recall these definitions.

First, we define the notion of the inertia set. Let I and R be databases. We define
the inertia set wrt I and R, denoted I(I,R), by setting

I(I,R) = {in(a) | a ∈ I ∩ R} ∪ {out(a) | a /∈ I ∪ R}.

In other words, I(I,R) is the set of all no-effect revision literals for I and R, that is,
revision literals that have no effect when revising I into R.

Now, let P be a normal revision program and R be a database. By PR we denote the
program obtained from P by removing each rule r ∈ P such that R �|= body(r).

Definition 1. [SUPPORTED UPDATES AND SUPPORTED REVISIONS]. Let P be a nor-
mal revision program and I a database. A set U of revision literals is a supported update
of I wrt P if U is consistent and U = head(PI⊕U). A set E is a supported revision of
I wrt P if E = U \ I(I, I ⊕ U). �

Intuitively, a consistent set U of revision literals is a supported update if it is precisely
the set of literals “supported” by P and the database resulting from updating I with U .
Eliminating from a supported revision all no-effect literals yields a supported revision.

While not evident explicitly from the definition, supported updates and revisions
guarantee constraint enforcement (cf.[2]).

Proposition 1. Let P be a normal revision program and I a database. If E is a sup-
ported revision of P , then I ⊕ E |= P . �

Supported updates do not take into account the inertia set. Supported revisions do, but
only superficially: simply removing no-effect literals from the corresponding supported
update. Consequently, supported updates and revisions allow for a possibility for circu-
larity of support and non-minimality.

Example 1. Let P be a revision program containing the rules {in(a) ← in(b), in(b) ←
in(a), in(c) ← out(d)}, and let I the empty database. I does not satisfy P as it violates
the rule in(c) ← out(d). One can check that set U = {in(a), in(b), in(c)} modeling
the insertions of a, b and c, is a supported update and a supported revision. However it
is not minimal as its subset {in(c)} is sufficient to guarantee the satisfaction of P . �

The problem in the previous example is the circularity of support between in(a) and
in(b). Each of them supports the other one but the set containing both is superfluous.
To address the problem, [1,2] proposed for normal revision programs the semantics
of justified weak revisions, later extended to the disjunctive case in [5]. The idea was
to “ground” justified weak revisions in the program and the inertia set by means of a
minimal closure.
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A set U of revision literals is closed under a revision program P (not necessarily
normal) if for every rule r ∈ P , whenever body(r) ⊆ U , then head(r) ∩ U �= ∅. If U is
closed under P and for every set U ′ ⊆ U closed under P , we have U ′ = U , then U is a
minimal closed set for P . Clearly, in general a revision program may admit more than
one minimal closed set of revision literals.

Definition 2. [JUSTIFIED UPDATES AND JUSTIFIED WEAK REVISIONS]. Let P be a
revision program and let I be a database. A consistent set U of revision literals is a
P -justified update for I if it is a minimal set closed under P ∪ I(I, I ⊕ U).

If U is a P -justified update for I, then U \ I(I, I ⊕U) is a P -justified weak revision
for I. �

The inertia set plays an essential role in the definition, as it is used directly in the defini-
tion of a P -justified update. Again, it is not self-evident from the definition that justified
updates and justified weak revisions, when applied to an initial database yield a database
satisfying the program. However, the definition does indeed imply so [2,5].

Proposition 2. Let P be a revision program and I a database. If U is a justified update
or justified weak revision of P , then I ⊕ U |= P . �

3 A Family of Declarative Semantics for Revision Programming

The two semantics in the previous section were defined based on how revisions are
“grounded” in a program, an initial database, and the inertia set. Two fundamental pos-
tulates of constraint enforcement and minimality of change played no explicit role in
that research. The first one is no problem as it is a side effect of each of the two types
of groundedness considered (cf. Propositions 1 and 2). The second one simply does
not hold for supported revisions. And while [2] proved that justified weak revisions are
change-minimal in the case of normal revision programs, it is not so in the general case.

Example 2. LetP be a revision program consisting of the rules {in(a)|out(b) ← out(c),
out(a)|in(b) ← out(c)} and the I the empty database. It is easy to verify that set U =
{in(a), in(b)} is a justified weak revision. However it is not minimal as I is already
consistent and no update is needed. �

We will now develop a range of semantics for revision programs by taking the postulates
of constraint enforcement and minimality of change explicitly into consideration.

Definition 3. [WEAK REVISIONS AND REVISIONS]. A set U of revision literals is a
weak revision of I wrt a revision program P if (1) U∩I(I, I⊕U) = ∅ (relevance — all
revision literals in U actually change I or, in other words, none of them is a no-effect
literal wrt I and I ⊕ U); and (2) I ⊕ U |= P (constraint enforcement). Further, U is
a revision of I wrt a revision program P if it is a weak revision and for every U ′ ⊆ U ,
I ⊕ U ′ |= P implies that U ′ = U (minimality of change). �

Example 3. Let P be a revision program consisting of a rule out(b) ← in(a), and let
I = {a, b} be a database. Clearly, I does not satisfy P . The program P has three weak
revisions: U1 = {out(a)}, U2 = {out(b)} and U3 = {out(a), out(b)}, respectively.
The sets U1 and U2 are revisions. The set U3 is not. �
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(Weak) revisions do not reflect the preferences on how to revise a database encoded
in the syntax of revision rules. We will now introduce semantics that aim to capture
that preference. First, we define a new semantics for revision programs by imposing
change-minimality on justified weak revisions.

Definition 4. [JUSTIFIED REVISIONS]. Let P be a revision program and let I be a
database. A P -justified weak revision E for I is a P -justified revision for I if E is a
revision of I wrt P (that is, for every set E ′ ⊆ E such that I ⊕ E ′ |= P , E ′ = E). �

Justified revisions have several useful properties. They are change-minimal and are
grounded in the program and the inertia set. However, as stable models of logic pro-
grams, with which they share several similarities, justified revisions are not designed to
handle reasoning by cases.

Example 4. Let P = {in(b) ← in(a), in(b) ← out(a), in(a) ← in(b)} and let
I = ∅. A possible interpretation of the first two revision rules could be that no matter
what the status of a is, b must be in the database. By the third rule a must belong to the
database, too. Thus, the program justifies the set R = {in(a), in(b)} as a revision of I
(assuming that we allow reasoning by cases). It is easy to verify that R = {in(a), in(b)}
is a revision of I. However, it is not P -justified (weak) revision of I. �

To provide a semantics capturing such justifications, we introduce now the concept of
foundedness and the semantics of founded (weak) revisions,

Definition 5. [FOUNDED (WEAK) REVISIONS]. Let I be a database, P a revision pro-
gram and, and E a consistent set of revision literals.

1. A revision literal α is P -founded wrt I and E if there is r ∈ P such that α ∈
head(r), I ⊕ E |= body(r), and I ⊕ E |= βD , for every β ∈ head(r) \ {α}.

2. The set E is P -founded wrt I if every element of E is P -founded wrt I and E .
3. E is a P -founded (weak) revision for I if E is a (weak) revision of I wrt P and E

is P -founded wrt I. �

One can verity that revision R in Example 4 is founded. We also note that condition
(3) of the definition guarantees that founded (weak) revisions enforce constraints of
the revision program. Next, directly from the definition, it follows that founded weak
revisions are weak revisions. Similarly, founded revisions are revisions and so, they are
change-minimal. Furthermore, founded revisions are founded weak revisions. However,
there are (weak) revisions that are not founded, and founded weak revisions are not
necessarily founded revisions, that is, are not change-minimal. The latter observation
shows that foundedness is too weak a condition to guarantee change-minimality.

Example 5. Let P be the revision program containing the rules {in(b) ← in(a), in(a)
← in(b), in(c) ← out(d)} and I the empty database. The set {in(d)} is a revision of
I wrt P . Therefore it is a weak revision of I wrt P . However, it is not a P -founded
weak revision for I. Therefore, it is not a P -founded revision for I, either. The set
{in(c), in(a), in(b)} is a P -founded weak revision for I but not a P -founded revision
for I. Indeed, {in(c)} is also a revision of I wrt P . �

In the case of normal revision programs, founded weak revisions coincide with sup-
ported revisions.
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Theorem 1. Let P be a normal revision program and I a database. A set E of revision
literals is a P -founded weak revision of I if and only if E is a P -supported revision
of I. �

Foundedness is less restrictive than the condition defining justified updates, which is
behind justified (weak) revisions.

Theorem 2. Let P be a revision program and let I be a database. If a set E of revision
literals is a P -justified (weak) revision of I, then it is a P -founded (weak) revision
of I. �

The converse implications do not hold in general (cf. Example 4).
To summarize our discussion so far, revision programs can be assigned the semantics

of (weak) revisions, justified (weak) revisions and founded (weak) revisions. Let us de-
note the classes of the corresponding types of revisions by Rev(I, P ), WRev(I, P ),
JRev(I, P ), JWRev(I, P ), FRev(I, P ) and FWRev(I, P ). The containment re-
lations are demonstrated in Figure 1. None of the containment relations can be replaced
with the equality.

JRev(I, P ) ⊆ FRev(I, P ) ⊆ Rev(I, P )⊆ ⊆ ⊆

JWRev(I, P ) ⊆ FWRev(I, P ) ⊆ WRev(I, P )

Fig. 1. The containment relations for the semantics for revision programs

4 Properties of the Semantics

In this section, we will present several properties of the semantics we introduced here.
Specifically, we exhibit two cases when justified weak revisions and justified revisions
coincide, we present some complexity results and discuss the shifting property.

Programs whose justified weak revisions are change-minimal. In general, justified
weak revisions are not change-minimal. However, for normal revision programs, justi-
fied weak revisions are change-minimal [2]. The change-minimality holds also in the
following setting.

Theorem 3. Let I be a database and P a revision program such that for each revision
literal α ∈

⋃
r∈P head(r), I |= lit(αD). If E is a P -justified weak revision of I, then

E is a P -justified revision of I. �

Theorem 3 concerns the case when each revision literal in the head of a revision rule, if
applied, would change the status of the underlying atom in the database. For instance, if
the initial database is empty and all revision literals prescribed by revision rules are pos-
itive (i.e. of the form in(a)), then justified weak revisions are guaranteed to be minimal
and so, are justified revisions.

Computation and Complexity Results for Revision Programming. In this section we
present the complexity of the basic reasoning task associated with revision programs:
deciding the existence of a (weak) revision of a particular type.
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Theorem 4. Let I be a database and P a normal revision program. Then checking if
there exists a P -justified revision (P -justified weak revision, respectively) for I is an
NP-complete problem. �

Theorem 5. Let I be a database and P a revision program. Then checking if there
exists a P -justified revision (P -justified weak revision, respectively) for I is a ΣP

2 -
complete problem. �

Theorem 6. Let I be a database and P a revision program. Then checking if there
exists a P -founded revision (P -founded weak revision, respectively) for I is a ΣP

2 -
complete (NP-complete, respectively) problem. �

These results show that the condition defining justified updates already makes the prob-
lem of the existence of a justified weak revision ΣP

2 -complete. Imposing, in addition,
the minimality of change (considering justified revisions) does not increase the com-
plexity. Foundedness is an “easier” condition. Deciding the existence of a founded weak
revision is NP-complete. In this setting, imposing the minimality of change (switching
to founded revisions) makes a difference. The complexity grows to ΣP

2 -complete.

Shifting theorem for revision programs. We will now study invariance under shifting
[2]. Shifting consists of transforming an instance 〈I, P 〉 of the database repair problem
to an isomorphic instance 〈I′, P ′〉 by “shifting” I to I ′ and changing P to P ′ to reflect
the “shift” of the database. A semantics for database revision has the shifting property
if the revisions of the “shifted” instance 〈I′, P ′〉 are precisely the results of modifying
the revisions of the original instance 〈I, P 〉 according to the shift I → I′. The shifting
property is important. If it holds for a semantics, the study of that semantics can be re-
duced to the case when the input database is empty. Often, it allows us to relate revision
programming and logic programming with negation.

Example 6. Let I = {a, b} and let P = {out(a)|out(b) ←}. There are two justified
(and so, also founded) revisions for 〈I, P 〉: E1 = {out(a)} and E2 = {out(b)}. Let
W = {a}. To “shift” the instance 〈I, P 〉 wrt W , we first modify I by changing the sta-
tus in I of elements in W , in our case, of a. Since a ∈ I, we remove it. Thus, I “shifted”
wrt W becomes J = {b}. Next, we modify P correspondingly, replacing revision lit-
erals involving a by their duals. That results in P ′ = {in(a)|out(b) ←}. The resulting
instance 〈J , P ′〉 has two founded/justified revisions: {in(a)} and {out(b)}. They can
be obtained from the founded/justified revisions for 〈I, P 〉 by replacing out(a) with
in(a) and in(a) with out(a) (the latter does not apply in this example). In other words,
the original update problem and its shifted version are isomorphic. �

The situation presented in Example 6 is not coincidental. In this section we present
results showing that the semantics of (weak) revisions, founded (weak) revisions and
justified (weak) revisions satisfy the shifting property. We start by observing that shift-
ing a database I to a database I ′ can be modeled by means of the symmetric difference
operator. Namely, we have I ′ = I ÷W , where W = I ÷ I′. This identity shows that
one can shift any database I into any database I′ by forming a symmetric difference
of I with some set of atoms W (specifically, W = I ÷ I′). We will now extend the
operation of shifting a database wrt W to the case of revision literals and (resp. revision
rules and revision programs). To this end, we introduce a shifting operator TW .
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Definition 6. Let W be a database and � a revision literal. We define

TW(�) =
{

�D if the atom of � is in W
� if the atom of � is not in W

and we extend this definition to sets of revision literals. Furthermore, if op is an op-
erator on sets of revision literals (such as conjunction or disjunction), for every set X
of revision literals we define TW(op(X)) = op(TW(X)). Finally, for a revision rule
r = α1| . . . |αk ← β1, . . . , βm, we set TW(r) = TW(α1| . . . |αk) ← TW(β1, . . . , βm),
and for a revision program P , TW(P ) = {TW(r) | r ∈ P}.2 �

Theorem 7. (SHIFTING THEOREM FOR REVISION PROGRAMS) Let I andW be data-
bases. For every revision program G and every consistent set E of revision literals:

1. E is a (weak) revision for I wrt G if and only if TW(E) is a (weak) revision for I
wrt TW(G)

2. E is a G-justified (weak) revision for I if and only if TW(E) is a TW(G)-justified
(weak) revision for I

3. E is a G-founded (weak) revision for I if and only if TW(E) is a TW(G)-founded
(weak) revision for I

5 Connections between Revision Programs and Active Integrity
Constraints

We will now relate revision programs to active integrity constraints [9], an earlier for-
malism for expressing integrity constraints and preferred ways to enforce them.

Active integrity constraints — an overview. An update action is an expression +a or
−a, where a ∈ At . It states that a is to be inserted or deleted, respectively. A set U of
update actions is consistent if it does not contain update actions +a and −a, for any
a ∈ At . For a database D and a consistent set U of update actions, we define the result
of updating D by means of U as the database

D ◦ U = (D ∪ {a | + a ∈ U}) \ {a | − a ∈ U}.

An integrity constraint is a formula r = L1, . . . , Lm ⊃ ⊥, where Li, 1 ≤ i ≤ m,
are propositional literals (atoms a and their negations not a, for a ∈ At), and ‘,’ stands
for the conjunction. A database D satisfies an integrity constraint r, if D – viewed as
a propositional interpretation – satisfies r. Given a set η of integrity constraints and a
database I, the problem of database repair is to update I with a set of update actions
so that the resulting database satisfies all integrity constraints in η.

Definition 7. [WEAK REPAIRS AND REPAIRS]. Let I be a database and η a set of
integrity constraints. A weak repair for 〈I, η〉 is a consistent set U of update actions
such that ({+a | a ∈ I} ∪ {−a | a ∈ At \ I}) ∩ U = ∅ (“essential” update actions
only), and I ◦ U |= η (constraint enforcement).

A consistent set U of update actions is a repair for 〈I, η〉 if it is a weak repair for
〈I, η〉 and for every U ′ ⊆ U such that I ◦ U ′ |= η, U ′ = U (minimality of change). �

2 We note that we overload the notation TW and interpret it based on the type of the argument.
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Let r = a, b ⊃ ⊥, and let I = {a, b} be a database. Clearly, I �|= r. There are three
possible weak repairs of I wrt r: {−a}, {−b} and {−a,−b}. The first two are minimal
and so, they are repairs. No weak repair and no repair is distinguished as preferred.

To model preferences on (weak) repairs, [9] modified the syntax of integrity con-
straints by allowing the user to list preferred update actions. We will now present that
approach. For a propositional literal L, we write LD for the dual literal to L. Further,
for a literal L = a (L = not a), we define ua(L) = +a (ua(L) = −a). Similarly, for
an update action α = +a (α = −a), we define lit(α) = a (lit(α) = not a). We call +a
and −a the duals of each other, and write αD to denote the dual of an update action α.
We extend the notation introduced here to sets of literals and update actions. We define
an active integrity constraint to be an expression of the form

r = L1, . . . , Lm ⊃ α1| . . . |αk (2)

where m, k ≥ 0, m + k ≥ 1, Li are literals, αj are update actions, and

{lit(α1)D, . . . , lit(αk)D} ⊆ {L1, . . . , Lm} (3)

The set {L1, . . . , Lm} is the body of r; we denote it by body(r). Similarly, the set
{α1, . . . , αk} is the head of r; we denote it by head(r).

An active integrity constraint L1, . . . , Lm ⊃ α1| . . . |αk represents the integrity
constraint L1, . . . , Lm ⊃ ⊥. Thus, we say that a database D satisfies an active integrity
constraint r (D |= r) if D satisfies the corresponding integrity constraint. In this way,
the semantics of weak repairs and repairs lift to active integrity constraints. However, an
active integrity constraint is more than an integrity constraint. It also specifies preferred
update actions to use by listing them in the head.

The condition (3) ensures that an active integrity constraint supports only those
update actions that pertain to its body and can fix it. It can be restated concisely as
[lit(head(r))]D ⊆ body(r). We call literals in [lit(head (r))]D updatable by r, as they
can be affected by an update action in head(r). All other literals in body(r) are non-
updatable by r. We write up(r) and nup(r) for the sets of literals updatable and non-
updatable by r, respectively.

Let r = a, b ⊃ −b (cf. the previous example), and let I = {a, b} be a database. As
before, I �|= r, and there are two repairs of I wrt r: {−a} and {−b}. Now, since r lists
−b as an update action to execute, the latter one is preferred. The semantics of (weak)
repairs are insensitive to such preferences. To reflect them, [9] defined founded repairs.
A related concept of a founded weak repair was introduced in [8].

Definition 8. [FOUNDED (WEAK) REPAIRS]. Let I be a database, η a set of active
integrity constraints, and U a consistent set of update actions.

1. An update action α is founded wrt 〈I, η〉 and U if there is r ∈ η such that α ∈
head(r), I ◦ U |= nup(r), and I ◦ U |= βD , for every β ∈ head(r) \ {α}.

2. The set U is founded wrt 〈I, η〉 if every element of U is founded wrt 〈I, η〉 and U .
3. U is a founded (weak) repair for 〈I, η〉 if U is a (weak) repair for 〈I, η〉 and U is

founded wrt 〈I, η〉. �
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Foundedness captures a certain notion of “groundedness”. Let us assume that r ∈ η and
I �|= r. If α is founded wrt 〈I, η〉 and U by means of r, then all literals in body(r) other
than lit(αD) are satisfied by I ◦ U . Thus, if U is to enforce r, it must contain α.

Founded repairs for 〈I, η〉, despite being change-minimal and founded in 〈I, η〉
(“grounded” in 〈I, η〉) may still be self-justified. To address the problem [8] introduced
justified (weak) repairs. To present the definition we need more terminology.

A set U of update actions is closed under an active integrity constraint r if nup(r) �⊆
lit(U), or head(r) ∩ U �= ∅. A set U of update actions is closed under a set η of active
integrity constraints if it is closed under every r ∈ η. A minimal set closed under η can
be viewed as “forced” by η, as all its elements are necessary (no nonempty subset can
be dropped without violating the closedness condition).

Another concept we need is that of no-effect actions. Let I and R be databases.
An update action +a (respectively, −a) is a no-effect action for (I,R) if a ∈ I ∩ R
(respectively, a /∈ I ∪ R). That is, a no-effect action does not change the status of its
underlying atom. We denote by ne(I,R) the set of all no-effect actions wrt (I,R).

Definition 9. [JUSTIFIED (WEAK) REPAIR]. Let I be a database, η a set of active
integrity constraints, and U a consistent set of update actions.

1. U is a justified action set for 〈I, η〉 if U is a minimal set of update actions containing
ne(I, I ◦ U) and closed under η.

2. If U is a justified action set for 〈I, η〉, then E = U \ne(I, I ◦U) is a justified weak
repair for 〈I, η〉. If in addition, for every E ′ ⊆ E such that I ◦ E ′ |= η, E ′ = E , then
E is a justified repair for 〈I, η〉. �

Clearly, (founded, justified) weak repairs are (founded, justified) repairs. One can also
show that justified (weak) repairs are founded (weak) repairs which, in turn, are (weak)
repairs. There are no other inclusions between the six classes of weak repairs that we
discussed here (cf. [9,8] for details).

Proper revision programs and a connection to active integrity constraints. There
are striking similarities between the formalisms of revision programs and active in-
tegrity constraints. However, to relate the two, we first need to restrict the syntax of
revision programs. We then show that the restriction does not change their expressivity.

A proper revision rule is a revision rule that satisfies the following condition: the
literal in the head of the rule is not the dual of any literal in the body of the rule. A
revision program is proper if all its revision rules are proper.

Theorem 8. Let P be a revision program. There is a proper revision program P ′ such
that for every database I, (weak) revisions of I wrt P (P -founded (weak) revisions,
P -justified (weak) revisions of I, respectively) coincide with (weak) revisions of I wrt
P ′ (P ′-founded (weak) revisions, P ′-justified (weak) revisions of I, respectively).

Given a proper revision rule r of the form

α1| . . . |αk ← β1, . . . βm

we denote by AIC(r) the active integrity constraint

lit(β1), . . . , lit(βm), lit(α1)D
, . . . , lit(αk)D ⊃ ua(α1)| . . . |ua(αk).
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We note that if r is a revision constraint (k = 0), AIC(r) is simply an integrity con-
straint. The operator AIC(·) is extended to proper revision programs in the standard
way. It is easy to show that for each database D, D |= P if and only if D |= AIC(P ).
We now have the following result.

Theorem 9. Let P be a proper revision program. A set E of revision literals is a (weak)
revision (resp. P -justified (weak) revision, P -founded (weak) revision) of I wrt P if and
only if ua(E) is a (weak) repair (resp. justified (weak) repair, founded (weak) repair)
for 〈I, AIC(P )〉.

The mapping AIC(·) is a bijection between proper revision programs and sets of ac-
tive integrity constraints. Thus, it establishes an exact bidirectional match between the
two formalisms (for all semantics considered). We note that the restriction to proper
programs is essential as AIC(·), when used with all revision programs, is no longer
one-to-one and, in some cases, maps semantically different rules onto the same active
integrity constraint. For instance, programs consisting of in(a) ← out(a) and in(a) ← ,
respectively, behave differently wrt I = ∅ (the first program does not define any jus-
tified revisions, the second one does: E = {in(a)}). Yet, both rules are mapped by
AIC(·) onto not a → +a.

6 Discussion and Conclusions

We studied a formalisms of revision programming designed to support modeling of
constraints on databases (belief sets), as well as preferred ways to enforce them if they
are violated. Revision programming was proposed in [1,2] and further developed in [5].
However, the earlier work focused only on one semantics, the semantics of P -justified
weak revisions. It is a limitation of the earlier work as, on the one hand, P -justified
weak revisions do not satisfy the minimality of change property and, on the other, they
may be too restrictive in situations when reasoning by cases may be justified.

Therefore, we proposed here several new declarative semantics for revision pro-
grams, by imposing the minimality of change property on P -justified revisions and/or
by modifying the groundedness condition behind justified weak revisions. We stud-
ied properties of the resulting semantics. In particular, we established the complex-
ity of several decision problems, and identified two classes of revision programs, for
which justified weak revisions are change-minimal. Revision programming shows sev-
eral similarities with the formalism of active integrity constraints [9]. We proposed an
interpretation of revision rules as active integrity constraints and proved that under that
interpretation, revision programming (restricted to proper revision programs) and the
formalism of active integrity constrains are notational variants of each other.

Finally, we also proved that all semantics we studied satisfy the shifting property. We
will now briefly point out that thanks to shifting, one can relate revision programs to
Lifschitz-Woo programs [10], which generalize disjunctive logic programs by allowing
the default negation in the heads of rules. Namely, Lifschitz-Woo programs consist of
rules of the form

a1| . . . |ak|not b1| . . . |not bm ← c1, . . . , cs, not d1, . . . not dn (4)
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where each ai, bi, ci and di is an atom and not is a default negation. Given a revision
rule

in(a1)| . . . |in(ak)|out(b1)| . . . |out(bm) ← in(c1), . . . , in(cs), out(d1), . . . out(dn)
(5)

there is a clear correspondence between the two. Let us denote by LW (·) a mapping
that assigns a Lifschitz-Woo rule (4) to a revision rule (5). The following result was
obtained in [5].

Theorem 10. Let P be a revision program. Then, a set U of revision literals is a P -
justified revision of ∅ if and only if U = {in(a) | a ∈ M}, where M ⊆ At is a stable
model of LW (P ) (according the the definition from [10]).

Thanks to shifting, this result allows us to represent any revision program P and a
database I as a Lifschitz-Woo program so that justified revisions correspond precisely
to stable models, a property also observed in [5]. However, we proved here that shifting
holds for other semantics of revision programs, too. Thus, Theorem 10 also suggests
that all these semantics could be adapted directly to the setting of Lifschitz-Woo pro-
grams and, subsequently, to the formalism of programs with nested expressions [11]
(subsuming Lifschitz-Woo programs). It follows that these generalized variants of logic
programming can be endowed with a richer family of semantics that goes beyond the
basic one given by stable models.
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Abstract. In this paper, we introduce and study a new paraconsistent
inference relation |=c in the setting of 3-valued paraconsistent logics.
Using inconsistency forgetting as a key mechanism for recovering con-
sistency, it guarantees that the deductive closure Cn|=c(Σ) of any belief
base Σ is classically consistent and classically closed. This strong feature,
not shared by previous inference relations in the same setting, allows to
interpret an inconsistent belief base as a set of classical worlds (hence to
reason classically from them).

1 Introduction

Reasoning in a non-trivial way from inconsistent pieces of information (the para-
consistency issue) is a fundamental problem in artificial intelligence. Its impor-
tance is reflected by the number of approaches developed so far to address it:
paraconsistent logics, belief revision, belief merging, reasoning from preferred
consistent subsets, knowledge integration, argumentative logics, purification, etc.
(see [1,2,3] for a survey).

The variety of existing approaches can be explained by the fact that para-
consistency can be achieved in various ways, depending on the exact nature of
the problem at hand (hence, the available information). Each of them has its
own pros and cons, and is more or less suited to different inconsistency handling
scenarios. For instance, when Σ represents the (conflicting) beliefs of several
agents, a merged base giving the beliefs of the group of agents can be designed
by logically weakening some local belief bases (associated to the agents) in order
to restore global consistency [4,5,6,7,8].

Compared with the other approaches listed above, paraconsistent logics (ta-
ken stricto sensu) offer a basic way to address the trivialization issue in presence
of inconsistency. Indeed, belief revision, belief merging, knowledge integration,
reasoning from preferred consistent subsets and purification need some extra-
logical information in order to be well-defined and avoid trivializing. Such extra-
logical information can be rather poor: A splitting between the belief base and
the revision formula in the belief revision setting, a set (or multi-set) organization
of the beliefs in a belief merging scenario. They can also be rather sophisticated:
Preference relations over beliefs, knowledge gathering actions for purification. In
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both cases, they are required. In particular, unlike paraconsistent logics, none
of those approaches can address in a significant way the case when the available
information take the form of a single piece (hence encoded as a unique formula
in a logical language)1.

Several (non mutually exclusive) techniques can be used to define an inference
relation that avoid trivialization from an inconsistent propositional formula (see
[3]). One of them consists in preventing classically inconsistent belief bases from
having no model, through the consideration of more general notions of interpre-
tations. Several multi-valued logics are related to this line of research (among
others, see [10,11,12,13,14,15,16,17,18,19,20,21,22]).

In the following, the focus is laid on three-valued paraconsistent logics. The
additional (epistemic) truth value (called middle element) intuitively means
“proved both true and false” and allows to still reasoning meaningfully with
variables that are not embedded directly in a contradiction. While a number
of paraconsistent inference relations have been defined in this setting, none of
them ensures that deductive closures are always classically consistent and clas-
sically closed. This is a strong drawback of such approaches since it prevents
from interpreting inconsistent belief bases as sets of classical worlds (i.e., 2-
interpretations), and consequently it questions the possibility to exploit further
the information encoded by an inconsistent belief base using standard inference
or decision-making techniques (since such techniques typically require classically
consistent information).

In this paper, we fill the gap by introducing and studying a new paraconsistent
inference relation |=c in the setting of three-valued paraconsistent logics. This
inference relation elaborates on a valuable paraconsistent inference relation |=≤

introduced by Priest [15]. Basically, the preferred 3-models of a belief base Σ
w.r.t. |=c are the 2-interpretations which are as close as possible to the preferred
3-models of a belief base Σ w.r.t. |=≤. Determining the latter models mainly
amounts to forgetting the inconsistent “truth value” in the former interpreta-
tions. Interestingly, |=c guarantees that the deductive closure Cn|=c

(Σ) of any
belief base Σ is classically consistent and classically closed (what we call the
classical closure property).

The rest of this paper is organized as follows. In Section 2, we present some
background on three-valued paraconsistent logics; especially, we define the logical
framework into which our inference relation |=c takes place. In Section 3, we
present the classical closure property and show that three-valued paraconsistent
inference relations from the literature do not satisfy it. On this ground, we
introduce our relation |=c; we show that it satisfies a number of expected logical
properties, including the strong paraconsistency condition (i.e., the deductive
closure of a belief base never trivializes), the preservation property (i.e., the
deductive closure of a belief base coincides with its classical closure when the

1 Note that approaches based on consistent subsets take advantage of a specific
“comma” connective [9] which is not equivalent to conjunction in the general case;
every singleton consisting of an inconsistent formula like {a ∧ (¬a ∨ b) ∧ c ∧ ¬c} has
∅ as its unique consistent subset.
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belief base is classically consistent), as well as all the properties of system P [23]
but reflexivity. We also investigate some computational aspects of |=c, show that
it is not harder than the underlying relation |=≤ from a complexity point of view
and explain how to turn any finite belief base Σ into a consistent propositional
formula cl(Σ) such that Cn|=c

(Σ) is equal to the classical closure of cl(Σ) (thus,
cl(Σ) can be viewed as a compilation of Σ as a propositional formula, classically
interpreted). Finally, Section 4 concludes the paper. For space reasons, some
proofs are omitted. However, they are given in [24], available from the authors.

2 Three-Valued Paraconsistent Logics

When a belief base is classically inconsistent, every formula is a classical conse-
quence of it (“ex falso quodlibet sequitur”). In order to avoid such a trivialization,
one can take advantage of any logic in which an (epistemic) truth value “both”
(�) denotes that a formula can be proved at the same time “true” (1) and “false”
(0). This allows to highlight contradictory pieces of information, but still rea-
soning “reasonably” about the remaining ones. Thus the third truth value has
to be understood as some encoding of the epistemic attitude “proved both true
and false”, and not as a standard truth value.

Now, there are a number of many-valued paraconsistent logics where such
an (epistemic) truth value “both” is considered. In the following, we consider
Kleene’s strong three-valued logic with middle element designated, restricted to
the so-called monotone fragment [18], i.e., the morphology of the language of
the logic is reduced to the connectives ¬, ∨, ∧, only. When restricted to this
fragment, this logic is equivalent to a number of other logics pointed out so far
in the literature, including LP [14], J3 [10], THREE [18] and other logics by
Levesque [13] and Frisch [12].

Definition 1 (language). PROPPS is the propositional language generated
from a finite set PS of propositional symbols, the unary connective ¬ (negation)
and the binary connectives ∨ (disjunction), and ∧ (conjunction).

Clearly, this language coincides with a standard language for classical proposi-
tional logic.

We will write propositional symbols a, b, ... and formulas from PROPPS will be
denoted by lower case Greek letters α, β, ... Belief bases, that will be denoted by
upper case Greek letters Σ,... are (conjunctively-interpreted) sets of formulas. In
order to alleviate notations, we identify every singleton belief base {α} with the
formula α in it. V ar(Σ) denotes the set of propositional symbols occurring in Σ.

A literal is a symbol x ∈ PS or a negated one ¬x. x and ¬x are said to be
complementary literals. A proper subset of PROPPS is composed by the CNF
formulas, i.e., the (finite) conjunctions of clauses, where a clause is a (finite)
disjunction of literals. Another proper subset of PROPPS is composed by the
DNF formulas, i.e., the (finite) disjunctions of terms, where a term is a (finite)
conjunction of literals.

In the following, we consider a number of inference relations ) over PROPPS :
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Definition 2 (inference relation)

– An inference relation ) is a subset of 2PROPPS × PROPPS .
– For every Σ in 2PROPPS , Cn�(Σ) denotes the deductive closure of a set of

formulas Σ w.r.t. the inference relation ), i.e., Cn�(Σ) = {α ∈ PROPPS |
Σ ) α}.

We will also need the following notions of interpretations:

Definition 3 (interpretations)

– A 3-interpretation ω over PROPPS is a total function from PS to {0, 1,�}.
– A 2-interpretation ω over PROPPS is a total function from PS to {0, 1}.

3−Ω (resp. 2−Ω) denotes the set of all 3-interpretations (resp. 2-interpretations).
2-interpretations are the classical worlds. Clearly, they are also 3-interpretations.
However, the converse does not hold (we have 2 −Ω ⊂ 3 −Ω).

In the logic under consideration, all the connectives are truth functional ones
and the semantics ω(α) of a formula α from PROPPS in a 3-interpretation ω is
defined in the obvious compositional way given the following truth tables.

Table 1. Truth tables

α β ¬α α ∧ β α ∨ β

0 0 1 0 0

0 1 1 0 1

0 � 1 0 �
1 0 0 0 1

1 1 0 1 1

1 � 0 � 1

� 0 � 0 �
� 1 � � 1

� � � � �

It is easy to check that restricting the entries of the previous table to 0 and 1,
one recovers the standard semantics for the connectives ¬, ∨, ∧. Accordingly, a
belief base can be considered classically unless it becomes inconsistent (typically
via its expansion by a new, yet conflicting, piece of evidence).

In classical logic, notions of model and consequence are defined as:

Definition 4 (|=2). Let ω be a 2-interpretation over PROPPS . Let α be a for-
mula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 2-model of α iff ω(α) = 1.
– ω is a 2-model of Σ iff ω(α) = 1 for every α ∈ Σ. 2 − mod(Σ) denotes the

set of 2-models of Σ.
– α is a 2-consequence of Σ, noted Σ |=2 α, iff every 2-model of Σ is a 2-model

of α.
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A belief base Σ is classsically consistent iff it has a 2-model iff Cn|=2(Σ) �=
PROPPS . It is well-known that |=2 is not strongly paraconsistent:

Definition 5 (strong paraconsistency). An inference relation ) satisfies the
strong paraconsistency property iff for every Σ in 2PROPPS , Cn�(Σ) �=PROPPS .

When dealing with more than two truth values, one has to make precise the
set of designated values, i.e., the set of values that a formula can take to be
considered as satisfied. Since we want to define a paraconsistent logic, we choose
D = {1,�}: intuitively, a formula is satisfied if it is “at least true” (but it can
also be false!). We are now ready to extend the previous notions of model and
consequence to the three-valued case:

Definition 6 (|=3). Let ω be a 3-interpretation over PROPPS . Let α be a for-
mula from PROPPS , and let Σ be a set of formulas of PROPPS :

– ω is a 3-model of α iff ω(α) ∈ D.
– ω is a 3-model of Σ iff ω(α) ∈ D for every α ∈ Σ. 3 −mod(Σ) denotes the

set of 3-models of Σ.
– α is a 3-consequence of Σ, noted Σ |=3 α, iff every 3-model of Σ is a 3-model

of α.

Two formulas α and β are said to be strongly (3-)equivalent iff for every 3-
interpretation ω, we have ω(α) = ω(β).

Unlike |=2, an interesting feature of the inference relation |=3 is that it is
strongly paraconsistent; indeed, every formula from PROPPS has a 3-model
(the 3-interpretation ω such that ∀x ∈ PS , ω(x) = �). Thus, while we have
a ∧ ¬a |=2 b, we do not have a ∧ ¬a |=3 b.

A problem is that |=3 is a very weak inference relation. Especially, it is well-
known that the disjunctive syllogism is not satisfied by |=3: a ∧ (¬a ∨ b) �|=3 b.
Thus, |=3 does not satisfy the expected preservation property:

Definition 7 (preservation). An inference relation ) satisfies the preserva-
tion property iff for every Σ in 2PROPPS , if Σ is classically consistent, then
Cn�(Σ) = Cn|=2(Σ).

In order to circumvent this difficulty, other three-valued paraconsistent inference
relations have been proposed. Some of them are based on the following principle:
focus on some preferred models of Σ in order to keep as much information as
possible. Thus, in LPm [15], Priest suggests to prefer those 3-models of a belief
base Σ which are “as classical as possible”. Formally, let us consider the partial
preordering ≤ over the set of 3-interpretations defined by ω ≤ ω′ if and only if
{x ∈ PS | ω(x) = �} ⊆ {x ∈ PS | ω′(x) = �}; the “most classical” 3-models of
a belief base are the 3-models that are minimal w.r.t. ≤:

Definition 8 (|=≤). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=≤ α iff ∀ω ∈ min(3 −mod(Σ),≤), ω(α) ∈ D.
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The resulting relation |=≤ is still strongly paraconsistent and it is strictly less
cautious than |=3, i.e., we have the inclusion |=3⊂|=≤. Unlike |=3, it is non-
monotonic; for instance, we have a ∧ (¬a ∨ b) |=≤ b but a ∧ (¬a ∨ b) ∧ ¬a �|=≤

b. Furthermore, |=≤ satisfies the preservation property: the preferred 3-models
w.r.t. |=≤ of any classically consistent belief base Σ are exactly its 2-models.

Other inference relations have been defined so far for refining the inference
relation |=≤ (especially in order to discriminate between the 3-consequences of
a belief base Σ which are subject to a contradiction – like a if Σ = a ∧ ¬a ∧ b –
and those which are contradiction-free – like b if Σ = a ∧ ¬a ∧ b). Here are the
main ones [20]:

Definition 9 (refined inference relations). Let Σ be a set of formulas of
PROPPS . Let α be a formula from PROPPS .

– Σ |=≤
arg α iff Σ |=≤ α and Σ �|=≤ ¬α.

– Σ |=≤
1 α iff ∀ω ∈ min(3 −mod(Σ),≤), ω(α) = 1.

– Σ |=≤
t α iff ∀ω ∈ min(3 − mod(Σ),≤), ω(Σ) ≤t ω(α) where the so-called

“truth ordering” ≤t is such that 0 ≤t � ≤t 1.

Those three relations correspond respectively to three refinement principles:

– Considering only argumentative consequences of the belief base.
– Selecting those consequences of the belief base that are “conflict-free” (i.e.,

true but not false).
– Selecting as consequences of the belief base formulas that are informally

“more true” than the belief base.

All those relations are non-monotonic, strongly paraconsistent and they satisfy
the preservation property. Furthermore they are strictly more cautious than |=≤

(see [20] for more details).

3 Recovering Consistency by Forgetting Inconsistency

3.1 The Inference Relation |=c

Now, a major problem with the inference relations considered in the previous
section (except |=2 which is not paraconsistent) is that they do not satisfy the
classical closure property:

Definition 10 (classical closure). An inference relation ) satisfies the clas-
sical closure property iff for every Σ in 2PROPPS , ) (Σ) is classically consistent
and is closed w.r.t. classical deduction, i.e., Cn|=2(Cn�(Σ)) = Cn�(Σ).

This is obvious for |=3, |=≤, and |=≤
t since those relations are “reflexive” [20],

i.e., for every α in PROPPS , we have α is a consequence of α w.r.t. the relation.
Thus, take Σ = a∧¬a; Σ has to belong to its deductive closure w.r.t. any of those
three relations, hence it cannot be classically consistent. As to |=≤

arg, consider the
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classically inconsistent CNF formula Σ = (a∨b)∧ (¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b).
Each of the four clauses in it is a consequence of Σ w.r.t. |=≤

arg: since their
conjunction Σ is classically inconsistent, it cannot be the case that Cn|=≤

arg
(Σ)

is classically consistent and closed w.r.t. classical deduction. Finally, one can
prove that Cn|=≤

t
(Σ) is always classically consistent but this set is not necessarily

closed w.r.t. classical deduction: take Σ = a ∧ ¬a; we have Σ �|=≤
t a ∨ ¬a. Since

a ∨ ¬a is a classical tautology, the conclusion follows.
Using any of those inference relations thus prevents from interpreting incon-

sistent belief bases as sets of classical worlds (i.e., 2-interpretations), and con-
sequently it questions the possibility to exploit further the information encoded
by an inconsistent belief base using standard inference or decision-making tech-
niques (since such techniques typically require classically consistent information).
This motivates the introduction of our inference relation |=c.

Intuitively, the preferred 3-models of a belief base Σ w.r.t. |=c are the 2-
interpretations which are as close as possible to the preferred 3-models of a belief
base Σ w.r.t. |=≤. Determining the latter models mainly amounts to forgetting
the inconsistent “truth value” in the former interpretations. Formally, for any
belief base Σ, we define IncForg(Σ) as the set of 2-interpretations ω which are as
close as possible to a 3-interpretation ω′ ∈ min(3−mod(Σ),≤), in the sense that
∀x ∈ PS , if ω′(x) �= �, then ω′(x) = ω(x). More formally, IncForg(Σ) = {ω ∈
2 − Ω | ∃ω′ ∈ min(3 − mod(Σ),≤) ∀x ∈ PS , if ω′(x) �= �, then ω′(x) = ω(x)}.
Computing IngForg(Σ) amounts to projecting each preferred 3-models of Σ on
the variables classically interpreted in it (hence, forgetting inconsistency) and
interpreting the resulting partial interpretations in a classical way. We are now
ready to define |=c:

Definition 11 (|=c). Let Σ be a set of formulas of PROPPS . Let α be a formula
from PROPPS . Σ |=c α iff ∀ω ∈ IncForg(Σ), ω(α) = 1.

Example 1. Let Σ = a∧ (¬a∨b)∧c∧¬c. Assuming that PS = {a, b, c}, min(3−
mod(Σ),≤) has only one preferred 3-model ω such that ω(a) = ω(b) = 1 and
ω(c) = �. Accordingly, IncForg(Σ) contains two elements ω′ and ω′′ such that
ω′(a) = ω′(b) = ω′′(a) = ω′′(b) = 1 and ω′(c) = 0 and ω′′(c) = 1. As a
consequence, we have Σ |=c a ∧ b, Σ �|=c c, and Σ �|=c ¬c. This contrasts with
|=≤ which is such that Σ |=≤ c ∧ ¬c.

Clearly enough, |=c is a non-monotonic inference relation. For instance, we have
a |=c a but a ∧ ¬a �|=c a.

3.2 Logical Properties

We now investigate in more depth the logical properties satisfied by |=c. Interest-
ingly, |=c compares favourably with the underlying inference relation |=≤ w.r.t.
logical properties: first of all, like |=≤, |=c also is strongly paraconsistent and
satisfies the preservation property. Furthermore, it satisfies the classical closure
property:
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Proposition 1. |=c is strongly paraconsistent and satisfies the preservation pro-
perty and the classical closure property.

Proof. – Strong paraconsistency: Direct from the fact that min(3−mod(Σ),≤)
is not empty whatever the belief base Σ, since this is the case for 3−mod(Σ)
and ≤ is noetherian since PS is finite.

– Preservation: If Σ is classically consistent, then min(3 −mod(Σ),≤) = 2 −
mod(Σ). Consequently, IncForg(Σ) = 2 −mod(Σ), conclusion follows.

– Classical closure: Since min(3 − mod(Σ),≤) is not empty (see above), this
is also the case of IncForg(Σ). Hence |=c (Σ) is classically consistent. Since
IncForg(Σ) ⊆ 2−Ω, we obviously have that |=c (Σ) is closed w.r.t. classical
deduction: |=2 (|=c (Σ)) =|=c (Σ). ��

Now, compared with |=≤
arg, |=≤

1 and |=≤
t , |=≤ exhibits quite a good logical be-

haviour in the sense that it is a preferential inference relation [20]:

Definition 12 (system P). An inference relation ) is preferential iff it satisfies
the following properties (system P):

(Ref) α ) α Reflexivity
(LLE) If α and β are strongly 3-equivalent

and α ) γ, then β ) γ Left Logical Equivalence
(RW) If α ) β and β |=3 γ, then α ) γ Right Weakening
(Or) If α ) γ and β ) γ, then α ∨ β ) γ Or

(Cut) If α ∧ β ) γ and α ) β, then α ) γ Cut
(CM) If α ) β and α ) γ, then α ∧ β ) γ Cautious Monotony

Following seminal works in non-monotonic logic [25,26,23,27], this set of nor-
mative properties that a non-monotonic inference relation should satisfy has been
given in [23]. These properties have been primarily stated in the framework of clas-
sical logic [23], but they can be extended to multi-valued settings in a straightfor-
ward way as above (such an extension has also been considered in [18]).

Thus, an important question is to determine whether going from |=≤ to |=c

leads to lose such valuable logical properties. Fortunately, most important prop-
erties still hold but reflexivity:

Proposition 2. |=c satisfies all the properties of system P, except reflexivity.

Proof. – Reflexivity: Take α = a ∧ ¬a. We have α �|=c α.
– Left Logical Equivalence: Obvious from the fact that (strongly) equivalent

formulas have the same 3-models.
– Right Weakening: If β |=3 γ, then β |=2 γ due to the inclusion 2−mod(β) ⊆

3−mod(β). The fact that |=c satisfies the classical closure property concludes
the proof.

– Or: We have that 3 −mod(α ∨ β) = 3 − mod(α) ∪ 3 − mod(β). As a conse-
quence, min(3−mod(α∨β),≤) ⊆ min(3−mod(α),≤)∪min(3−mod(β),≤).
Therefore, IncForg(α ∨ β) ⊆ IncForg(α) ∪ IncForg(β). Since every ω ∈
IncForg(α)∪ IncForg(β) is such that ω(γ) = 1 when α ) γ and β ) γ, this
must be the case for every ω ∈ IncForg(α ∨ β).

– Cut: We first prove the following lemma:
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Lemma 1. Let ω and ω′ be two 3-interpretations such that ∀x ∈ PS, if
ω′(x) �= �, then ω′(x) = ω(x). Then for any formula α of PROPPS , we
have that if ω′(α) = 1 (resp. ω′(α) = 0), then ω(α) = 1 (resp. ω(α) = 0).

The proof of this lemma is easy by structural induction on α. Now, by
reductio ad absurdum, assume that there exists ω ∈ IncForg(α) such that
ω(γ) = 0. Then by definition of IncForg(α), there exists ω′ ∈ min(3 −
mod(α),≤) such that ∀x ∈ PS , if ω′(x) �= �, then ω′(x) = ω(x). Since
ω′ ∈ 3 − mod(α), we have that ω′(α) �= 0. Since α |=c β, we have that
ω(β) = 1. As a consequence of the lemma, we get that ω′(β) �= 0. Hence, we
have ω′(α∧β) �= 0: ω′ ∈ 3−mod(α∧β). Since 3−mod(α∧β) ⊆ 3−mod(α)
and ω′ ∈ min(3 − mod(α),≤), we must have ω′ ∈ min(3 − mod(α ∧ β),≤).
Hence ω ∈ IncForg(α ∧ β). Since α ∧ β |=c γ, we must have ω(γ) = 1,
contradiction.

– Cautious Monotony: We first exploit the previous lemma to show that for
any formulas α and β of PROPPS , if α |=c β, then α |=≤ β. By reduction
ad absurdum, assume that there exists ω′ ∈ min(3 − mod(α),≤) such that
ω′(β) = 0. From the lemma, for every 2-interpretation ω that ∀x ∈ PS ,
if ω′(x) �= �, then ω′(x) = ω(x), we must have ω(β) = 0. Since ω′ ∈
min(3 − mod(α),≤), for at least one 2-interpretation ω ∈ IncForg(α), we
must have ω(α) = 0. This contradicts the fact that α |=c β.

Now, in order to prove the Cautious Monotony property, it is enough
to show that whenever α |=c β, we have that min(3 − mod(α ∧ β),≤) =
min(3−mod(α),≤). Let ω ∈ min(3−mod(α),≤). Since α |=c β, we have that
α |=≤ β. Hence, ω is a 3-model of β. Since it is a 3-model of α, it is a 3-model
of α∧β. Since 3−mod(α∧β) ⊆ 3−mod(α), we have that ω ∈ min(3−mod(α∧
β),≤). Hence the inclusion min(3 − mod(α),≤) ⊆ min(3 − mod(α ∧ β),≤)
holds. Conversely, assume that there exists ω′ ∈ min(3 − mod(α ∧ β),≤
) \ min(3 − mod(α),≤). Since 3 − mod(α ∧ β) ⊆ 3 − mod(α), there exists
ω ∈ min(3 − mod(α),≤) such that ω < ω′ (i.e., ω ≤ ω′ and ω′ �≤ ω). From
the previous inclusion, we must have that ω ∈ min(3−mod(α∧ β),≤). The
fact that ω < ω′ contradicts that ω′ ∈ min(3 −mod(α ∧ β),≤). ��

Observe that there would be no way to keep reflexivity while ensuring the clas-
sical closure property. Indeed, we have the following easy proposition:

Proposition 3. No inference relation ) satisfies both reflexivity and the classi-
cal closure property.

Proof. Consider Σ = a ∧ ¬a. If Σ �) Σ then it does not satisfy reflexivity.
Contrastingly, If Σ ) Σ then it does not satisfy the classical closure property
since Σ is classically inconsistent. ��

It is also interesting to note that |=c satisfies other properties which are not shared
by |=≤ [20], especially “transitivity” (this is a direct consequence of the fact that
it satisfies both the classical closure property and the preservation property):

Proposition 4. |=c satisfies transitivity, i.e. for any formulas α, β, γ from
PROPPS , if α |=c β and β |=c γ, then α |=c γ.
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Finally, it is important to determine whether the relaxation of |=≤ we realised
to ensure the classical closure property does not lead to a too weak inference
relation |=c. The following inclusions show that this is not the case:

Proposition 5. |=≤
1 ⊂ |=c ⊂ |=≤.

Thus, all the “conflict-free” consequences α of a belief base Σ w.r.t. |=≤ are
preserved by |=c. Furthermore, |=c does not add consequences that would not
be derivable using |=≤

1 .

3.3 Computational Aspects

In this section, we investigate some computational aspects of |=c. We assume the
reader familiar with some basic notions of complexity, especially the complexity
classes coNP and Πp

2 of the polynomial hierarchy PH (see [28] for a survey).
We first consider the complexity of the inference problem for |=c:

Definition 13 (|=c-inference). |=c-inference is the following decision
problem:

– Input: A finite set Σ of formulas from PROPPS and a formula α in PROPPS .
– Question: Does Σ |=c α hold?

We have obtained the following result:

Proposition 6. |=c-inference is Πp
2 -complete.

Proof. Membership is easy; one considers the complementary problem: in order
to show that Σ |=c α holds, we guess a 2-interpretation ω and a 3-interpretation
ω′ over V ar(Σ)∪V ar(α); then we check that ω′ belongs to min(3−mod(Σ),≤)
(one call to an NP oracle since this problem is in coNP); finally, we check in
polynomial time that for every x ∈ V ar(Σ)∪V ar(α), we have that ω(x) = ω′(x)
whenever ω′(x) �= �, and that ω(α) = 1.

Hardness holds even in the restricted case when Σ is a CNF formula and α
is a propositional symbol; we consider the problem of determining, given a CNF
formula Σ and a symbol a, whether every element ω of min(3 − mod(Σ),≤) is
such that ω(a) �= �. This problem has been shown Πp

2 -hard in [22]. The fact
that every element ω of min(3 − mod(Σ),≤) is such that ω(a) �= � if and only
if Σ ∧ (a ∨ b) ∧ (¬a ∨ b) |=c b where b ∈ PS \ V ar(Σ), completes the proof. ��

This proposition shows that |=c is not harder than the underlying relation |=≤

from a computational complexity point of view; indeed, the inference problem
for |=≤ also is Πp

2 -complete [22].
We now show how to turn any finite belief base Σ (viewed as the conjunction

of its elements) into a “classical” consistent propositional formula cl(Σ) such that
|=c (Σ) is equal to the classical closure of cl(Σ). The basic idea is to turn first
Σ into a DNF formula which is strongly equivalent. As in classical propositional
logic, such a DNF formula can be computed by applying iteratively to Σ the
following equivalences, considered as rewrite rules (left-to-right oriented):
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– ¬(¬α) is strongly 3-equivalent to α.
– ¬(α ∨ β) is strongly 3-equivalent to (¬α) ∧ (¬β).
– ¬(α ∧ β) is strongly 3-equivalent to (¬α) ∨ (¬β).
– α ∧ (β ∨ γ) is strongly 3-equivalent to (α ∧ β) ∨ (α ∧ γ) (and similarly for

(β ∨ γ) ∧ α).

Of course, the obtained DNF formula can be of exponential size in the size
of Σ. It now remains to forget inconsistencies in this DNF formula after isolat-
ing terms representing the preferred models (the minimization step); formally,
for every term α, let inc(α) be the set of “inconsistencies” occurring in α:
inc(α) = {x ∈ PS | x and ¬x occur in α}. cl(Σ) is the DNF formula obtained
by successively:

1. Removing in the current DNF every term α such that inc(α) is not minimal
w.r.t. set-inclusion in the set {inc(α) | α a term in the current DNF}.

2. Removing in every term of the resulting DNF formula every literal l when
the complementary literal also occurs in the term, then removing every empty
term (and finally adding a∨¬a if the resulting DNF formula contains no term).

We have that:

Proposition 7. Cn|=c
(Σ) = Cn|=2(cl(Σ)).

As a matter of illustration, consider again Example 1: let Σ = a∧(¬a∨b)∧c∧¬c
and PS = {a, b, c}. Σ is strongly 3-equivalent to the following DNF formula
(a ∧ ¬a ∧ c ∧ ¬c) ∨ (a ∧ b ∧ c ∧ ¬c). Now, forgetting inconsistency in Σ leads
to the DNF formula cl(Σ) = a ∧ b (the first term (a ∧ ¬a ∧ c ∧ ¬c) of the
previous DNF is removed during the minimization step). We can easily check
that Cn|=c

(Σ) = Cn|=2(cl(Σ)).
Since the computation of cl(Σ) can be achieved in time polynomial in the size

of Σ when Σ is a DNF and since cl(Σ) is a DNF formula, we easily get that:

Proposition 8

– Under the restriction where Σ is a DNF formula, |=c-inference is coNP-
complete.

– Under the restriction where Σ is a DNF formula and α is a CNF formula,
|=c-inference is in P.

Thus the formula cl(Σ) is a classically consistent formula which can be viewed as a
compilation of Σ (in the sense that any finite belief base Σ interpreted w.r.t. |=c is
equivalent to the corresponding formula cl(Σ) classically interpreted and that the
inference problem from cl(Σ) is computationally easier than the inference problem
from Σ, unless the polynomial hierarchy collapses at the first level).

4 Conclusion

In this paper, we have introduced and studied a new paraconsistent inference
relation |=c in the setting of 3-valued paraconsistent logics. Using inconsistency
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forgetting as a key mechanism for recovering consistency, it guarantees that the
deductive closure Cn|=c

(Σ) of any belief base Σ is classically consistent and
classically closed. This strong feature, not shared by previous inference relations
in the same setting, allows to interpret an inconsistent belief base as a set of
classical worlds (hence to reason classically from them).We have investigated
the logical properties and the computational complexity of |=c. Among other
things, we have shown that |=c satisfies many interesting properties which are
shared by the underlying inference relation |=≤, without any complexity shift
compared to it.

We have considered in this paper a basic language for three-valued paracon-
sistent logic (the monotone fragment). A first perspective for further research
is to extend the approach to more complex morphologies. It is also clear that
the inconsistency forgetting mechanism at work here could be applied to other
many-valued paraconsistent logics, especially four-valued ones. This is another
extension of this work that we plan to do.
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Abstract. In this paper we introduce a novel, simpler form of the poly-
tope of inner Bayesian approximations of a belief function, or “consistent
probabilities”. We prove that the set of vertices of this polytope is gen-
erated by all possible permutations of elements of the domain, mirroring
a similar behavior of outer consonant approximations.

1 Introduction

Uncertainty description [1] is a composite field in which different but related
approaches compete to gain a wider audience in engineering [2] and business [3]
applications. Belief [4], probability, and possibility [5] measures can all be used
to represent uncertainty, even though some of them may be more fit to specific
domains of applications. Their relation is then a popular object of study. More
specifically, it is interesting in several situations to pose the problem of trans-
forming one uncertainty measure into a measure of a different class. In the case
of belief functions (b.f.s), this issue goes under the name of “Bayesian” or “con-
sonant” approximation problem, according to whether we seek to approximate
a belief measure with a probability or a possibility.

In particular we may request the approximating probabilities to be more in-
formative of the original belief function b : 2Θ → [0, 1] (where Θ is a finite set,
and b maps subsets A ⊆ Θ of Θ to [0, 1]). The “least commitment principle”
[6] postulates indeed that, given a set of measures compatible with a number of
constraints, the most appropriate one is the “least informative”.

However, there are many ways of measuring the information content of a
belief function [7,8,9]. If we adopt the classical ordering b′ ≥ b ≡ b′(A) ≥ b(A)
∀A ⊆ Θ, we obtain the set of inner Bayesian approximations P [b] of b, i.e. the
probabilities whose values dominates that of b on all events:

P [b] =
{
p ∈ P : b(A) ≤ p(A) ∀A ⊆ Θ

}
(1)

(P denoting the set of all probability measures on Θ).
According to Equation (1) this “credal set” [10] of probability distributions

is in fact the set of probabilities which admit the original b.f. b as a lower
bound. A powerful semantics to belief functions comes from the remark that
such probabilities can be obtained by redistributing the basic belief or “mass”

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 126–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of each event A ⊆ Θ to the elements it contains. Belief functions can indeed
be seen as constraints on the probability simplex, where they define the credal
set (1).

Geometrically, inner Bayesian approximations or consistent probabilities are
known to form a polytope (the convex closure of a finite number of points) in the
space of probability measures, whose center of mass coincides with the pignistic
transformation [11,12]. The credal semantics of belief functions is central in the
“Transferable Belief Model” [13,14,15,16]. There belief is represented at credal
level, while decision are made by recurring to the pignistic transformation. In
robust Bayesian statistics, more in general, a large literature exists on the study
of convex sets of probability distributions [17,18,19,20].

The goal of this paper is to prove a new result on the geometry of consistent
probabilities, which greatly simplifies its classical expression.

We prove that the set of actual vertices of the polytope P [b] is indeed quite
small, and determined by all possible permutations of elements of the domain:

P [b] = Cl(pρ[b] ∀ρ)

where pρ[b] is a probability determined by a permutation ρ = {xρ(1), ..., xρ(n)}
of the singletons of Θ. This generates a beautiful symmetry with the (dual) case
of outer consonant approximations [21,22], i.e. the consonant b.f.s dominated by
b: O[b] =

{
co ∈ CO : co(A) ≤ b(A) ∀A ⊆ Θ

}
(here CO denotes the collection of

all consonant b.f.s, i.e. belief functions whose focal elements are nested [4]).
As for each maximal chain of focal elements a vertex of the polytope of outer

consonant approximations is also determined by a permutation of singletons,
there exists a 1-1 correspondence between actual vertices of P [b] and O[b].

Paper outline. We recall in Section 2 the interpretation of b.f.s as lower bounds
to a convex set or polytope of “consistent” probabilities. In Section 3 we prove
that the actual vertices of this polytope are each associated with a permuta-
tion of the elements of the domain, and discuss their uniqueness. These vertices
are in 1-1 correspondence with the vertices of the region of outer consonant
approximations induced by singleton permutations (Section 4).

2 Probabilities Consistent with a Belief Function

Belief [4], probability, and possibility [5] theory are different but related de-
scriptions of uncertainty, as (at least in the finite setting) both probabilities and
possibilities are special cases of b.f.s. If we suppose that the ideal knowledge state
is represented by a “true”, but unknown probability measure (which we cannot
estimate precisely because of imprecise measurements, missing data, etcetera)
belief measures have in turn a natural interpretation as lower/upper bounds to
this unknown true probability. Each belief function is then naturally associated
with the set of probabilities which actually meet these constraints.

Belief measures. Belief functions are mathematical representations of the bod-
ies of evidence we possess on a given decision or estimation problem Q. We as-
sume that the possible answers to Q form a finite set Θ = {x1, ..., xn} called
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“frame of discernment”. A basic probability assignment (b.p.a.) [4] over Θ is a
function m : 2Θ → [0, 1] on its power set 2Θ = {A ⊆ Θ} such that: 1. m(∅) = 0;
2.
∑

A⊆Θ m(A) = 1; 3. m(A) ≥ 0 ∀A ⊆ Θ. Subsets of Θ associated with non-zero
values of m are called “focal elements” (f.e.s).

The belief function b : 2Θ → [0, 1] associated with a b.p.a. mb on Θ is
defined as

b(A) =
∑
B⊆A

mb(B). (2)

In the following we will denote by bA the “dogmatic” b.f. which assigns unitary
mass to a single event A: mb(A) = 1, mb(B) = 0 ∀B �= A. We can then write
each belief function b with b.p.a. mb(A) as [23]

b =
∑
A⊆Θ

mb(A)bA. (3)

A finite probability is a special b.f. assigning non-zero masses to singletons only
(Bayesian b.f.): mb(A) = 0 |A| > 1. The plausibility function (pl.f.) plb : 2Θ →
[0, 1], plb(A) .= 1 − b(Ac) measures the amount of evidence not against A.

Consistent probabilities. Even though originally defined as set functions of
the form (2) on the power set of a finite universe [4], belief functions have a natu-
ral interpretation as constraints on the “true”, unknown probability distribution
describing a state of belief.

Given a certain amount of evidence we are allowed to describe our belief on
the outcome of Q in several possible ways: the classical option is to assume a
probability distribution on Θ. However, as we may need to incorporate imprecise
measurements and people’s opinions in our knowledge state, or cope with missing
or scarce information, a more sensible approach is to assume that we have no
access to the “correct” probability distribution but that the available evidence
provides us with some sort of constraint on this true distribution. Belief functions
are mathematical descriptions of such a constraint.

According to this interpretation a f.e. A of mass mb(A) can be seen as the in-
dication of the existence of a mass mb(A) “floating” inside A. The mass assigned
to each event A ⊆ Θ can float freely among its elements x ∈ A. A probability
distribution compatible with b emerges by redistributing the mass of each focal
element to its singletons. This set of Bayesian b.f.s is said “consistent” with b.

Example. To illustrate the notion of probability consistent with a belief function
let us consider a little toy example, namely a b.f. b on a frame of cardinality three
Θ = {x, y, z} with focal elements (Figure 1-a)

mb({x, y}) =
2
3
, mb({y, z}) =

1
3
. (4)

We can build a probability consistent with b by, for instance, equally sharing the
mass of {x, y} among its elements x and y, while attributing the entire mass of
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a) b) c)

Fig. 1. a) A simple belief function in the ternary frame. b) and c) two admissible
probabilities consistent with a).

{y, z} to y (Figure 1-b). Or, we can assign all the mass of {x, y} to y, and give
the mass of {y, z} to z only, obtaining the Bayesian belief function of Figure 1-c.

Belief functions as lower bounds. An alternative vision of the set of proba-
bilities consistent with a b.f. b relates to the fact that the set of all and only the
(admissible) probabilities obtained as above by re-assigning the mass of each f.e.
to its elements is (1) P [b] .=

{
p ∈ P : p(A) ≥ b(A) ∀A ⊆ Θ

}
i.e. the distributions

whose values dominate that of b on all events A.
A b.f. can then be interpreted as a “lower bound” to the set of probabilities

it determines. For instance, the distribution of Figure 1-b) meets all the lower
and upper bounds determined by the belief function (4). Indeed: p(x) = 1/3 ≥
b(x) = 0, p({x, y}) = 1/3 + 2/3 = 1 ≥ b({x, y}) = mb({x, y}) = 2/3, etcetera.

Consistent probabilities as inner Bayesian approximations. Finally, con-
sistent probabilities can be seen as the set of all the probabilities more committed
than the original b.f. b.

The “least commitment principle” [6] postulates that, given a set of b.p.a.s
compatible with a number of constraints, the most appropriate mass functions
is the “least informative”. As pointed out by Denoeux [7], in some sense it plays
a role similar to that of maximum entropy in probability theory. There are many
ways of measuring the information content of a belief function. This is done in
practice by defining a partial order in the space of belief functions [8,9,24]. If we
adopt the order relation called weak inclusion

b ≤ b′ ≡ b(A) ≤ b′(A) ∀A ⊆ Θ, (5)

according to which a belief function b′ dominates another b.f. b if the belief
values of b′ are greater than those of b for all events A ⊆ Θ, the consistent prob-
abilities (1) are exactly the group of Bayesian belief functions more committed
than b according to (5). They therefore assume the meaning of inner Bayesian
approximations of the original belief function b.

3 Vertices of Consistent Probabilities and Permutations

The region of all consistent probabilities or inner Bayesian approximations of any
given belief function b is a polytope, i.e. the convex closure of a finite number
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of probabilities in the probability simplex. Given an arbitrary belief function b
with focal elements E1, ..., Em, we can define for each choice of m representatives
{x1, ..., xm}, xi ∈ Ei ∀i, the (extremal) probability measure

bx1...xm

.=
m∑

i=1

mb(Ei)bxi . (6)

i.e. the Bayesian b.f. we obtain by assigning the mass of each focal element Ei to
one of its elements xi ∈ Ei. Recall what was said above about the interpretation
of focal elements as mass “floating” around in a subset of Θ.

For instance, consider again the belief function (4) of Figure 1-a. If we take
as representative x1 of E1 = {x, y} the element y and as representative x2 of
E2 = {y, z} the element z, we obtain the extremal probability

by,z : mby,z (y) = mb({x, y}) = 2/3, mby,z (z) = mb({y, z}) = 1/3

of Figure 1-c. Note that instead the probability of Figure 1-b, even though is
consistent with b, cannot be obtained this way. It is well known that P [b] is indeed
the polytope formed by the convex closure of those extremal probabilities [23]:

P [b] = Cl(bx1...xm , {x1, ..., xm} ∈ E1 × · · · ×Em). (7)

That, though, does not imply that all the points (6) are actual vertices of the
simplex P [b], as several of them may lie on some side of the polytope, i.e., be
expressed as a convex combination of the others. In fact, as we show here, the
actual vertices of P [b] can be found in a much smaller set of probabilities, each
one associated with a different permutation of the elements of Θ.

Theorem 1. The simplex P [b] of the probability measures consistent with a b.f.
b is the polytope P [b] = Cl(pρ[b] ∀ρ), where ρ is any permutation {xρ(1), ..., xρ(n)}
of the singletons of Θ, and the vertex pρ[b] is the Bayesian b.f. such that

pρ[b](xρ(i)) =
∑

A�xρ(i),A ��xρ(j)∀j<i

mb(A). (8)

Each probability function (8) attributes to each singletons x = xρ(i) the mass of
all focal elements of b which contains it, but does not contain the elements which
precede x in the ordered list {xρ(1), ..., xρ(n)} generated by the permutation ρ.

In the binary case Θ = {x, y}, for instance, it is clear that there exist only
two possible permutations of singletons: ρ1 : {x, y}, ρ2 : {y, x}. They correspond
to the following probabilities (Figure 3):

px,y(x)=
∑

A⊇{x}
mb(A)=mb(x) + mb(Θ), px,y(y)=

∑
A⊇{y},A �⊃{x}

mb(A)=mb(y);

py,x(y) =
∑

A⊇{y}
mb(A)=mb(y) + mb(Θ), py,x(x)=

∑
A⊇{x},A �⊃{y}

mb(A)=mb(x).
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Proof. We need to prove that:
1. Each probability p ∈ P s.t. p(A) ≥ b(A) for all A ⊆ Θ can be put as a convex
combination of the points (8): p =

∑
ρ αρp

ρ[b] with
∑

ρ αρ = 1, αρ ≥ 0 ∀ρ;
2. Vice-versa, each conv. comb. of the pρ[b] meets

∑
ρ αρp

ρ[b](A) ≥ b(A) ∀A ⊆ Θ.

Point 2 is easily proven after we notice that each probability (8) associated
with a permutation ρ of elements of Θ is indeed consistent with b, i.e. pρ[b](A) ≥
b(A) ∀A. Whatever ρ the mass of each of the subsets B of A is attributed by (8)
to some element x of A: on the other side the mass of some other events B �⊂ A is
also given to elements of A, so that pρ[b](A) =

∑
x∈A pρ[b](x) ≥

∑
B⊆A mb(A) =

b(A), i.e., pρ[b] is consistent whatever the permutation ρ. Therefore∑
ρ

αρp
ρ[b](A) ≥

∑
ρ

αρb(A) = b(A)
∑

ρ

αρ = b(A).

Concerning point 1, we recalled in Section 2 that b′(A) ≤ b(A) iff mb is the
result of a redistribution of the mass mb′(A) of each f.e. of b′ to its subsets.
In the case of inner Bayesian approximations the mass of each event has to be
redistributed among its elements x ∈ A:

mb(A) &→ αA
x mb(A) ∀x ∈ A,

∑
x∈A

αA
x = 1. (9)

Therefore, for all p such that b(A) ≤ p(A) ∀A the mass p(x) of each x ∈ Θ is

p(x) =
∑

A⊇{x}
mb(A)αA

x . (10)

To prove (1) we then need to write (10) as a convex combination of the pρ[b](x):

p(x) =
∑

ρ

αρp
ρ[b](x) =

∑
ρ

αρ

( ∑
A�x=xρ(i),A ��xρ(j)∀j<i

mb(A)
)
,

where i is the position of the element x according to the permutation ρ.
For all A ⊇ {x} there exists a permutation ρ such that the elements be-

fore x in {xρ(1), ..., xρ(n)} fall outside A. Hence the above quantity reads as∑
A⊇{x}mb(A)(

∑
ρ:xρ(j) �∈A∀j<i αρ), where again x = xρ(i).

In summary we need to show that the system of equations{
αA

x =
∑

ρ:xρ(j) �∈A∀j<i,x=xρ(i)

αρ ∀x ∈ Θ, ∀A ⊇ {x} (11)

has at least one solution {αρ} such that
∑

ρ αρ = 1, αρ ≥ 0 ∀ρ.

Parenthesis: proof in the ternary case. It is useful to first illustrate the
existence of a convex solution to (11) in the simple but interesting case of a
ternary frame Θ = {x, y, z}. The possible permutations of singletons in this case
are six: ρ1 = {x, y, z}, ρ2 = {x, z, y}, ρ3 = {y, x, z}, ρ4 = {y, z, x}, ρ5 = {z, x, y},
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ρ6 = {z, y, x}. As by definition αx
x = 1 all equations associated with a singleton

generate the normalization constraint αρ1 + αρ2 + αρ3 + αρ4 + αρ5 + αρ6 = 1.
Also, many equations in the system of equations (11)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
{x}
x = αρ1 +αρ2 +αρ3 +αρ4 +αρ5 +αρ6 ;

α
{x,y}
x = αρ1 +αρ2 +0 +0 +αρ5 +0;

α
{x,z}
x = αρ1 +αρ2 +αρ3 +0 +0 +0;

αΘ
x = αρ1 +αρ2 +0 +0 +0 +0;

α
{y}
y = αρ1 +αρ2 +αρ3 +αρ4 +αρ5 +αρ6 ;

α
{x,y}
y = 0 +0 +αρ3 +αρ4 +0 +αρ6 ;

α
{y,z}
y = αρ1 +0 +αρ3 +αρ4 +0 +0;

αΘ
y = 0 +0 +αρ3 +αρ4 +0 +0;

α
{z}
z = αρ1 +αρ2 +αρ3 +αρ4 +αρ5 +αρ6 ;

α
{x,z}
z = 0 +0 +0 +αρ4 +αρ5 +αρ6 ;

α
{y,z}
z = 0 +αρ2 +0 +0 +αρ5 +αρ6 ;

αΘ
z = 0 +0 +0 +0 +αρ5 +αρ6 .

are actually linearly dependent, like for example equations 2 and 6 for α
{x,y}
x

and α
{x,y}
y . This because by definition (9):

∑
x∈A αA

x = 1. After eliminating the
dependencies we get a reduced system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αΘ
z = 0 +0 +0 +0 +αρ5 +αρ6 ;

α
{x,y}
x = αρ1 +αρ2 +0 +0 +αρ5 +0;

α
{y,z}
y = αρ1 +0 +αρ3 +αρ4 +0 +0;

α
{x,z}
x = αρ1 +αρ2 +αρ3 +0 +0 +0;

αΘ
x = αρ1 +αρ2 +0 +0 +0 +0;

α
{x}
x = αρ1 +αρ2 +αρ3 +αρ4 +αρ5 +αρ6 ;

which clearly admits as solution αρ6 = αΘ
z , αρ5 = α

{x,y}
x , αρ4 = α

{y,z}
y , αρ3 =

α
{x,z}
x , αρ2 = αΘ

x , αρ1 = α
{x}
x , a valid convex combination of the pρ[b].

General solution. As like in the ternary case the normalization constraint is
in fact trivially satisfied as from (11) it follows that when A = {x}, x ∈ Θ

1 = αx
x =

∑
ρ:xρ(j) �∈{x}∀j<i,x=xρ(i)

αρ =
∑

ρ

αρ

i.e.
∑

ρ αρ = 1. Let us denote by x|A| any element representative of A. Due to
the normalization constraint the system of equations (11) reduces to{

αA
x =

∑
ρ:xρ(j) �∈A∀j<i,x=xρ(i)

αρ ∀A ⊆ Θ, x �= x|A|. (12)

Again ∀A s.t. |A| = 1 we get simply the normalization constraint.
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To understand the structure of (12) consider some arbitrary ordering of the
elements of Θ, x1, ..., xn. If we take as representative of any event A its last
element according to this ordering, we can write (12) as{

αA
xk

=
∑

ρ:xρ(j) �∈A∀j<i,xk=xρ(i)

αρ,
A ⊇ {xk}
A �⊂ {x1, ..., xk}

(13)

each block associated with xk, k = 1, ..., n− 1. The number of equations in each
block k for a frame Θ of size |Θ| = n is |{A ⊆ Θ : A ⊇ {xk}, A �⊂ {x1, ..., xk}}| =
|{A ⊆ Θ : A ⊇ {xk}, A ∩ {x1, ..., xk}c �= ∅}| = 2i−1(2n−i − 1) = 2n−1 − 2i−1.

Now, all the equations of each block k involve (amongst others) the αρ related
to permutations ρ which put xk in the first position: xk = xρ(1), as it obviously
has no predecessors so that there is no j < i in the subscript of the sum in (12)
or (13). The number of such permutations is clearly (n − 1)! (the number of
possible orderings of the n − 1 successors of xk).

But for n > 4 we have that (n − 1)! ≥ 2n−1 − 2i−1: Each block has less
equations than the number of permutations associated with variables αρ which
appear in all the equations of the block. Therefore we can assign the first term
of each equation of the block to one of those variables: αA

xk
= αρ for some ρ

which puts xk in the first position, this for all A : A ⊇ {xk}, A �⊂ {x1, ..., xk}
(all equations in the block).

Variables associated with the remaining permutations can be set to zero. This
yields a convex solution to (12), and therefore to the original system (11).

If n = 3 we have seen that a solution also exists. For n = 2 the solution is
trivial. If n = 4 the condition (n − 1)! ≥ 2n−1 − 2i−1 still holds for all blocks
but the first one, for which the number of equations is 2n−1 − 2i−1 = 7 while
the number of variables in common is (n − 1)! = 6. But it suffices to use the
normalization constraint to replace the equation for Θ in the block x1 (which
is in excess) with an equation for Θ in the block x3 and obtain an equivalent
system of equations which meets the desired property. �
Uniqueness. We may wonder whether all the extremal points (8) generated by
distinct permutations of singletons are guaranteed to be distinct. The answer
is negative. Consider a belief function with b.p.a. mb(x) = 0.2, mb(y) = 0.1,
mb(z) = 0.3, mb({x, y}) = 0.1, mb({y, z}) = 0.2, mb(Θ) = 0.1 defined on a
ternary frame Θ = {x, y, z}. In this case there are six possible element permu-
tations. Therefore by Theorem 1 P [b] has as vertices

ρ1 = {x, y, z} : pρ1
[b](x) = .4, pρ1

[b](y) = .3, pρ1
[b](z) = .3;

ρ2 = {x, z, y} : pρ2
[b](x) = .4, pρ2

[b](y) = .1, pρ2
[b](z) = .5;

ρ3 = {y, x, z} : pρ3
[b](x) = .2, pρ3

[b](y) = .5, pρ3
[b](z) = .3;

ρ4 = {y, z, x} : pρ4
[b](x) = .2, pρ4

[b](y) = .5, pρ4
[b](z) = .3;

ρ5 = {z, x, y} : pρ5
[b](x) = .3, pρ5

[b](y) = .1, pρ5
[b](z) = .6;

ρ6 = {z, y, x} : pρ6
[b](x) = .2, pρ6

[b](y) = .2, pρ6
[b](z) = .6;

(14)

and we can notice that the permutations ρ3 = {y, x, z} and ρ4 = {y, z, x} yield
the same function: pρ3

[b] = pρ4
[b]. According to the classical expression (7) of
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Fig. 2. The actual number of vertices (8), (14) of P [b] (red squares) is much smaller
than the number of candidate points (6) of the classical expression. Here they are
plotted as black stars for the belief function of the example. Some of them even fall
inside the polytope.

P [b], instead, there are many more (candidate) vertices (6):
∏

A⊆Θ:mb(A) �=0 |A|.
Many fall on the sides or the interior of P [b] (Figure 2).

4 Bayesian and Consonant Approximations: A Symmetry

Besides including finite probabilities as a special case, belief measures also gen-
eralize finite possibility [25] measures, i.e. functions Pos : 2Θ → [0, 1] on Θ such
that Pos(

⋃
i Ai) = supi Pos(Ai) for any family of sets {Ai, i ∈ I} (where I is an

arbitrary set index).
More precisely, a b.f. is consonant (co.b.f.) when its focal elements {Ei, i =

1, ...,m} are nested: E1 ⊂ E2 ⊂ ... ⊂ Em. As a matter of fact it can be proven
that [5,26] the plausibility function plb associated with a belief function b on a
domain Θ is a possibility measure iff b is consonant.

As possibility measures form a subclass of belief functions we can pose the
problem of approximate a belief function with a possibility (or equivalently with
a consonant b.f.) in perfect analogy to the case of Bayesian approximation. In
particular, “outer consonant approximations” form a dual couple with inner
Bayesian approximations or consistent probabilities.

Outer consonant approximations. We call outer consonant approximations
of a belief function b [22] all the co.b.f.s which are less committed than the
original belief function b: O[b] =

{
co ∈ CO : co(A) ≤ b(A) ∀A ⊆ Θ

}
. Here CO

denotes the set of all consonant b.f.s.
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According to the interpretation of the weak inclusion relation (5), b′ ≤ b is
equivalent to say that b′ is obtained by letting the mass of each focal element A
of b float to one or more events containing A: B ⊇ A.

If b′ is also consonant, its focal elements have to form a chain E1 ⊂ · · · ⊂ En,
|Ei| = i. An outer consonant approximation of b is then obtained by letting the
mass of each f.e. be re-distributed to one or more elements of the chain.

Example. As an example, an outer consonant approximation of the belief func-
tion (4) of Figure 1 can be obtained by re-assigning the mass 2/3 of A = {x, y}
one half (1/3) to {x, y} itself and one half (1/3) to Θ ⊃ {x, y}, and the mass
of A = {y, z} to Θ ⊃ {y, z} also. What we get is a consonant b.f. with focal
elements {x, y} ⊂ Θ and b.p.a. m′({x, y}) = 2/3, m′(Θ) = 1/3.

Outer consonant approximations generated by permutations. In par-
ticular, with the purpose of finding outer approximations which are minimal
with respect to the weak inclusion relation (5), Dubois and Prade [21] have in-
troduced a family of outer consonant approximations obtained by considering
all permutations ρ of the elements {x1, ..., xn} of the frame of discernment Θ:
{xρ(1), ..., xρ(n)}. A family of nested sets can be then built{

Sρ
1 = {xρ(1)}, Sρ

2 = {xρ(1), xρ(2)}, · · · , Sρ
n = {xρ(1), ..., xρ(n)}

}
(15)

so that a new consonant belief function coρ can be defined with b.p.a.

mcoρ(Sρ
j ) =

∑
i:Ei⊆Sρ

j ,Ei �⊂Sρ
j−1

mb(Ei). (16)

Sρ
j concentrates all the mass of the f.e.s Ei of b included in Sρ

j but not in Sρ
j−1.

Example. Let us consider again the belief function (4). A possible permutation
of the singletons of Θ is, for instance, ρ = {xρ(1), xρ(2), xρ(3)} = {y, z, x}.
This permutation generates the following list of nested sets (15):{

Sρ
1 = {xρ(1)} = {y}, Sρ

2 = {xρ(1), xρ(2)} = {y, z},
Sρ

3 = {xρ(1), xρ(2), xρ(3)} = {x, y, z}
}
.

By Equation (16) we assign to Sρ
1 = {y} the mass of all focal elements (4) of b

included in {y}: there are none, so that mcoρ({y}) = 0. To Sρ
2 = {y, z} we assign

the mass of all f.e.s inside {y, z} not contained in {y}, i.e. the mass 1/3 of {y, z}
itself. Finally, Sρ

3 = {x, y, z} is assigned the mass of all f.e.s which are subsets of
{x, y, z}, but not of Sρ

2 = {y, z}, namely the mass 2/3 of {x, y}.

Binary case. In the binary case (Figure 3) a compelling symmetry emerges
between O[b] and P [b]. Given the definition of weak inclusion (5) it is straight-
forward to recognize that (as the abscissa measures the degree of belief b(x) of
x, and the ordinate the d.o.f. b(y)) the sets of inner Bayesian and outer con-
sonant approximations form respectively a segment P [b] delimited by a pair of
probabilities, and the union of two segments Ox,Θ[b] and Oy,Θ[b].
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b Θ

b =[0,1]'y

b =[1,0]'
x

b

O   [b]
x,Θ

O   [b]
y,Θ

P[b]

y,x
co

x,y
co

y,x
p

x,y
p

Fig. 3. Geometry of outer consonant approximations and inner Bayesian approxima-
tions in the binary case. Each b.f. is represented as a point b of coordinates b(x), b(y).
The set of all b.f.s on {x, y} is the triangle in the figure. All probabilities lie on the line
bx, by. Inner Bayesian P [b] and outer consonant O[b] approximations are highlighted.

From Figure 3 we can notice the existence of an apparent bijection between
vertices of O[b] and P [b]. The vertex py,x of the interval of consistent proba-
bilities has the same belief value on x as the vertex cox,y of outer consonant
approximation associated with the opposite permutation {x, y}.

In fact we can prove that the outer consonant approximations (16) generated
by permutations of singletons form a subset of the vertices of O[b] [27] even in
the general case. Furthermore, the correspondence between vertices of O[b] and
P [b] generated by permutations of singletons hold in the general case.

1-1 Correspondence. Indeed, the family of outer consonant approximations
(16) generated by permutations of singletons is linked by a very elegant geometric
duality to the vertices (8) of the polytope of consistent probabilities P [b].

Let us go back to the example of the ternary frame Θ = {x, y, z}. Given for
instance the trivial permutation ρ = {x, y, z} the vertex coρ has focal elements
{x}, {x, y}, and {x, y, z} and b.p.a.

mcoρ({x, y})=
∑

A⊆{x,y},A �⊂{x}
mb(A)=mb(y) + mb({x, y}); mcoρ(x)=mb(x);

mcoρ(Θ) =
∑

A⊆Θ,A �⊂{x,y}
mb(A)=mb(z) + mb({x, z}) + mb({y, z}) + mb(Θ).

Consider instead the reverse permutation ρ̄ = {z, y, x}. The corresponding
vertex pρ̄ of P [b] has b.p.a.
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pρ̄(z) =
∑

A⊇{z}
mb(A) = mb({z}) + mb({x, z}) + mb({y, z}) + mb(Θ);

pρ̄(y) =
∑

A⊇{y},A �⊃{z}
mb(A) = mb({y}) + mb({x, y});

pρ̄(x) =
∑

A⊇{x},A �⊃{y},{z}
mb(A) = mb(x)

i.e. the b.p.a.s of coρ and pρ̄ coincide. This is true in the general case.

Theorem 2. There exists a 1-1 correspondence between the vertices coρ (16) of
the set of outer consonant approximations of b generated by a permutation ρ of
the singletons, and the vertices pρ̄ (8) of the polytope of probabilities consistent
with b (all of which are associated with permutations of singletons), s.t.

pρ̄(xρ̄(i)) = mcoρ({xρ(1), ..., xρ(n−i+1)}) (17)

i.e. their b.p.a.s on {Sρ
n, ..., S

ρ
1}, {xρ̄(1), ..., xρ̄(n)} respectively coincide.

Proof. It suffices to show that, as ρ̄(i) = ρ(n − i + 1),

pρ̄(xρ̄(i)) =
∑

A�xρ̄(i),A ��xρ̄(j)∀j<i

mb(A) =
∑

A�xρ(n−i+1),A ��xρ(j)∀j>n−i+1

mb(A)

=
∑

A ⊆ {xρ(1), ..., xρ(n−i+1)},

A �⊂ {xρ(1), ..., xρ(n−i)}

mb(A) = mcoρ({xρ(1), ..., xρ(n−i+1)}) = mcoρ(Sρ
n−i+1).

5 Conclusions

Belief functions possess a strong credal semantics in terms of convex sets of
probability distributions or consistent probabilities, for whose values on all events
belief values provide lower bounds. These probabilities can also be seen as more
committed or “inner” Bayesian approximations of the original b.f.

In this paper we proved a more compact form of the polytope of consistent
probabilities, as the latter has n! (candidate) vertices each corresponding to a
different permutation of the elements of the domain. This unveils an interest-
ing link with the vertices of the polytopes of outer consonant approximations
also generated by permutations of singletons both in terms of their analytical
expression and their convex geometry.
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Abstract. Plan constraints are the most recent addition to the ever growing Plan-
ning Domain Definition Language (PDDL). In this work we consider the PDDL
fragment consisting of basic ADL extended by plan constraints. We provide a
purely declarative semantics for this fragment by interpreting it in the basic Fluent
Calculus. We thus obtain a logical semantics for this fragment of PDDL instead
of the usual meta-theoretical state transition semantics.

1 Introduction

Research in specialized planning languages originates with STRIPS [1]. Over the years
this basic language has seen numerous extensions: first to the language ADL [2] and
then to PDDL [3], the ever growing language that underlies the annual planning com-
petitions. The new feature in the most recent version PDDL 3.0 [4] are plan constraints
that allow to express both requirements and preferences with regard to plan quality.

Traditionally the semantics of planning languages is given in terms of state transi-
tions. There also is a parallel line of research that seeks to provide a logical semantics
for planning languages. Such complementary semantics exist for STRIPS [1,5] and
ADL [6,7]. The recent works [8,9] aim at successively covering all of the semantics of
PDDL 2.1 [10].

In this work we provide a purely declarative semantics for the fragment of PDDL 3.0
consisting of basic ADL and plan constraints. We do so by interpreting this fragment in
the basic Fluent Calculus. The resulting system is both natural and expressive.

2 Preliminaries

In this section we recall the theoretical basis upon which our work rests. We start by
recalling the basics of Fluent Calculus. Then we identify the fragment of PDDL under
consideration — ADL with plan constraints.

2.1 Fluent Calculus

The Fluent Calculus [11] can be seen as a modern extension of the classical Situation
Calculus [12]. One of the major differences between Fluent and Situation Calculus is
that the former is action-centered while the latter is fluent-centered — at least in the
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popular version based on Reiter’s successor state axioms [12]. That is to say, in Fluent
Calculus we specify for each action the effects it has while a successor state axiom
specifies for a fluent by which actions it is affected. Thus Fluent Calculus arguably is
closer to current planning languages, which are also action-centered.

Our work uses a reformulation of the basic Fluent Calculus in a recently proposed
unifying action calculus (UAC) [13] that allows us to keep the technical overhead to a
minimum. A comprehensive treatment of the classical Fluent Calculus — which also
captures the notion of state, i.e. of collections of fluents — can be found in [11].

Unifying Action Calculus. The UAC has been introduced with the stated goal of
bundling research efforts in the reasoning about action community; it has been shown
to encompass the Event, Fluent, and Situation Calculus, as well as planning languages
such as ADL.

Formally, the UAC is based on many-sorted first order logic with equality and the
four sorts TIME, FLUENT, OBJECT, and ACTION.1 Fluents are reified, i.e. modeled as
terms, and the predicate Holds : FLUENT×TIME is used to indicate whether a particular
fluent evaluates to true at a particular time. For axiomatizing action preconditions the
predicate Poss : ACTION×TIME×TIME is used.2 There are only finitely many function
symbols into sorts FLUENT and ACTION, respectively.

The UAC abstracts from a particular time structure. It can be instantiated, e.g., by
the natural numbers that serve as the linear time structure of the Event Calculus, or by
situations that provide the branching time structure of the Fluent and Situation Calculus.

Fluent Calculus Domains. Fluent Calculus domains are axiomatized in the UAC with
the help of the following formula types:

Definition 1 (Basic Formulas)
For s̄, a sequence of variables of sort TIME, a state formula Φ[s̄ ] in s̄ is a first-order
formula with free variables s̄ and where

– for each occurrence of Holds(f, s) we have s ∈ s̄;
– predicate Poss does not occur.

Let A be a function into sort ACTION.

– A domain constraint is a state formula in s:

(∀s)δ[s].

– A precondition axiom is of the form

(∀)Poss(A(x̄), s1, s2) ≡ πA[s1] ∧ s2 = Do(A(x̄), s1),

where πA[s1] is a state formula in s1 with free variables among s1, x̄.3

1 By convention variable symbols s, f , x, and a are used for terms of sort TIME, FLUENT,
OBJECT, and ACTION, respectively.

2 Having two arguments of sort TIME allows to model actions with duration or indirect effects.
3 By (∀)ϕ we denote the universal closure of ϕ.
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– An effect axiom is of the form

(∀)Poss(A(x̄), s, t) ⊃∨
k

(∃ȳk)(Φk[s] ∧ (∀f) [
∨
i

f = fki ∨ Holds(f, s) ∧
∧
j

f �= gkj ≡ Holds(f, t)])

The fki and gkj are fluent terms with variables among x̄, ȳk and denote the positive
and negative effects, respectively. The Φk are state formulas in s with free variables
among s, x̄, ȳ and represent conditions under which the effects materialize. Positive
and negative action effects are subject to a natural consistency assumption, namely,
we require that ∧

i

∧
j

fki �= gkj

holds for all k = 1, . . . , n.
– An initial state axiom is a state formula in the least element S0 of sort TIME.
– Foundational axioms Σaux contain a first order axiomatization of situations (the

underlying time structure). It is based on two functions into sort TIME; the constant
S0 denotes the initial situation and the function Do of sort ACTION × TIME is used
to construct successor situations:

(∀)Do(a1, s1) = Do(a2, s2) ≡ a1 = a2 ∧ s1 = s2

(∀)¬s � S0

(∀)s � Do(a, s′) ≡ s * s′

φ[S0] ∧ (∀s, a)(φ[s] ⊃ φ[Do(a, s)]) ⊃ (∀s′)φ[s′]

where in the axiom scheme on the last line φ ranges over all state formulas in s,
with only s free. Foundational axioms Σaux also contain unique name axioms for
sorts ACTION and FLUENT; that is, an axiom of the form

(∀x̄∀ȳ)
∧

i=1..n−1

∧
j=i+1..n

Ti(x̄) �= Tj(ȳ) ∧
∧

i=1..n

Ti(x̄) = Ti(ȳ) ⊃ x̄ = ȳ,

where the Ti range over all function symbols of the respective sorts. For dealing
with arithmetic later on we introduce the sort NUMBER and include an axiomati-
zation of Presburger arithmetic.

Definition 2 (Domain Axiomatizations). A domain axiomatization Σ consists of a set
ΣPoss of precondition-, and a set ΣEffects of effect axioms, each containing one axiom
for every function into sort ACTION, along with a finite set of domain constraints Σdc,
a finite set of initial state axioms ΣInit, and foundational axioms Σaux.

Let us illustrate all the introduced notions by an axiomatization of the familiar blocks
world domain:
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Example 1 (Blocks World Axiomatization). The precondition of moving a block from
some location x to location y is expressed by the following axiom:

(∀)Poss(Move(block1, x, y), s1, s2) ≡
Holds(On(block1, x), s1) ∧ x �= y ∧
(¬∃block2)Holds(On(block2, block1), s1) ∧
(¬∃block3)(Holds(On(block3, y), s1) ∨ y = Table) ∧
s2 = Do(Move(block1, x, y), s1).

The effects of moving a block are axiomatized as follows:

(∀)Poss(Move(block1, x, y), s1, s2) ⊃
[(∀f)(f = On(block1, y) ∨ (Holds(f, s1) ∧ f �= On(block1, x))) ≡ Holds(f, s2)].

The following domain constraint expresses the fact that every block is situated at ex-
actly one location4:

(∃!y)Holds(On(x, y), s).

Finally, suppose that the following axiom describes what is known about the initial
situation:

(∀f)Holds(f, S0) ≡ f = On(Block1, Table) ∨ f = On(Block2, Table).

It can be easily verified that this axiomatization, together with the unique name axioms
for the blocks and the table, entails

Holds(On(Block2, Block1), Do(Move(Block2, Table, Block1), S0)).

3 ADL with Plan Constraints

In this section we introduce the fragment of PDDL 3.0 that we consider in this work
— ADL with plan constraints. For a general introduction to action languages based on
state transition semantics the reader is referred to [14].

3.1 ADL

ADL has originally been introduced to cover the expressive middle-ground between
STRIPS and the Situation Calculus. It still plays an important role in the sequential,
deterministic part of the international planning competitions.

Definition 3 (ADL Signature). An ADL signature is based on a finite set of types,
where types may also be defined as unions of other types. The basic type OBJECT is
always included. The signature then contains a finite set of typed constants C and typed
variables V . It also includes a finite set of typed fluents F of arity ≥ 0 and likewise a
finite set of typed operator names A with associated arity.

4 By ∃!xφ[x] we abbreviate the first order formula expressing that there is exactly one x such
that φ[x].
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Planning problems are expressed in ADL with the help of the following constructs:

Definition 4 (Basic ADL Constructs)

– A state formula φ[x̄] is a first order formula with free variables among x̄ containing
as atoms only fluents F (t̄) and equalities t̄1 = t̄2.

– An effect formula is the universal closure of a first order conjunction built from the
following inductively defined admissible components:
• fluent literals F (t̄) and ¬F (t̄) are admissible;
• if φ and ψ are admissible then the conjunction φ∧ψ and the universally quan-

tified (∀x̄)φ are;
• if φ is a state formula and ψ is admissible with no occurrence of ⇒ or ∀ then

φ ⇒ ψ is.
– For an operator name A ∈ A the ADL operator A is a triple 〈x̄, πA, εA〉, where

• the variables x̄ denote the operator’s typed parameters (possibly zero);
• the state formula πA[x̄] denotes the operator’s precondition; and
• the effect formula εA[x̄] denotes the operator’s effects.

The ⇒ construct is not to be confused with implication; its purpose is to relate states
and successor states. The definition ensures that to the right of the ⇒ construct there
is always a conjunction of fluent literals. We proceed by defining a normal form for
ADL operators; the informed reader should note that this definition deviates from the
one used in [9,13].

Definition 5 (Operator Normal Form). An ADL operator A is in normal form if its
effect formula has the following syntactic form:∨

k

(∀x̄k)φk[x̄k] ⇒ δk[x̄k]

where φk[x̄k] is a state formula with free variables among x̄k and δk[x̄k] is a conjunc-
tion of fluent literals with free variables among x̄k. Further, we require that all φk are
mutually exclusive.

The following proposition states that we lose nothing by making this operator normal
form mandatory:

Proposition 1 (Operator Normal Form). For every effect formula there exists an
equivalent effect formula in normal form.

Proof (Sketch). The key observation is that we can always replace e.g.� ⇒ δ1∧φ ⇒ δ2

by the formula (φ ⇒ δ1 ∧ δ2) ∨ (¬φ ⇒ δ1). ��

Observe that rewriting an operator to normal form may introduce an exponential blowup.

Example 2 (Blocks World ADL Operator). The following is an ADL operator in normal
form for the action Move(block, x, y) in the blocks world:

Precondition: On(block1, x) ∧ x �= y∧
(¬∃block2)On(block2, block1)∧
(¬∃block3)(On(block3, y) ∨ y = Table)

Effects: � ⇒ On(block1, x) ∧ ¬On(block1, y)
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Definition 6 (ADL Problem Descriptions). An ADL planning problem consists of :

– an ADL operator in normal form for each operator name;
– an initial state specification in the form of a conjunction of ground fluent literals;

and
– a goal description in the form of a closed state formula.

The following is an ADL problem description analogous to the Fluent Calculus domain
from example 1:

Example 3 (ADL Blocks World Description). The only operator shall be as given in ex-
ample 2above. Let the initial state be specified by On(Block1, Table)∧On(Block1, Table)
and the goal consist of stacking up all blocks, axiomatized as (∃!block)On(block, Table).

ADL admits both open and closed world reasoning – in the open world case the truth-
value of fluent literals may be unknown. The existing state transition semantics for
ADL from [10], however, is based on the closed world assumption. In this setting the
initial state specification is a conjunction of ground fluent atoms. This specification is
completed by adding the negation of every ground fluent atom that does not yet occur in
the initial state specification, so that eventually every ground fluent atom of the language
or its negation occurs in the initial state specification.

The semantics of ADL also makes strong assumptions about the meaning of the con-
stants C: no two constants denote the same object (uniqueness of names) and all existing
objects are named by some constant. This latter requirement allows for substitutional
quantification: e.g. a subformula (∀x)P (x) can equivalently be written as

∧
Ci

P (Ci)
where the Ci are all the constants of the domain. Thus, although ADL uses the language
of first order logic it does not employ first order semantics.

A plan for an ADL planning problem is a ground sequence 〈A1(t̄1), . . . , An(t̄n)〉
of operators Ai with constants t̄i substituted for the parameters x̄i. A plan is a solution
for the planning problem iff the state obtained by sequentially applying the operators
Ai(t̄i) to the initial state yields a state satisfying the goal description.

3.2 Plan Constraints

Plan constraints allow to express both hard and soft constraints on the computed plans:
“hard” means that a constraint has to be satisfied while “soft” means that it should, if
possible.

State Trajectory Constraints. State trajectory constraints are the hard constraints.
They allow to express that some property has to hold throughout/at some point/etc. in
the plan.

Formally, state trajectory constraints are handled by introducing modalities that can
be used in goal descriptions. The available modalities are at end, always,
sometime, at-most-once, sometime-after, and sometime-before. We
omit the modalities within and always-within since these require an explicit no-
tion of time that is not supported by the ADL subset of PDDL. The modalities may
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not be nested. They can be combined by logical conjunction and be universally quan-
tified from the outside. Universally quantified constraints only serve as shorthand for
the equivalent ground formula.5 For example we can enforce that a property φ holds
throughout a plan that achieves the goal ψ by writing ψ ∧ always φ.

The original semantics for state trajectory constraints in PDDL has been defined in
terms of sequences of state-timepoint pairs 〈(S0, 0), (S1, t1), . . . , (Sn, tn)〉, where the
Si denote all the states that occur during plan execution in chronological order. In the
case of ADL this can be simplified to sequences of states 〈S0, . . . , Sn〉.

Definition 7 (Semantics of Temporal Modalities). The semantics of the temporal
modalities is then as follows:

〈S0, . . . , Sn〉 � φ iff Sn � φ
〈S0, . . . , Sn〉 � at end φ iff Sn � φ
〈S0, . . . , Sn〉 � always φ iff ∀i : 0 ≤ i ≤ n : Si � φ
〈S0, . . . , Sn〉 � sometime φ iff ∃i : 0 ≤ i ≤ n : Si � φ
〈S0, . . . , Sn〉 � at-most-once φ iff ∀i : 0 ≤ i ≤ n : if Si � φ then

¬∃j, k : i < j < k ≤ n :
Sj � ¬φ and Sk � φ

〈S0, . . . , Sn〉 � sometime-after φ ψ iff ∃i : 0 ≤ i ≤ n : Si � φ implies
∃j : i < j ≤ n : Sj � ψ

〈S0, . . . , Sn〉 � sometime-before φ ψ iff ∃i : 0 ≤ i ≤ n : Si � φ implies
∃j : 0 ≤ j < i : Sj � ψ

The expression at-most-once φ prohibits that φ changes its truth-value to false
and back to true in the course of a plan. A constraint using the always modality
might conflict with the initial state specification; we tacitly assume that initial state
specifications φ do not violate any constraints. State trajectory constraints can appear
both in the planning problem file and in the action domain file [4].

Preferences. Preferences are the soft constraints, i.e. properties that are desired but not
required to hold. Instead of an elaborate qualitative model of preferences PDDL adopts
a quantitative model.

The syntax for ADL preferences is

preference φ,

where φ denotes a state formula possibly containing state trajectory constraints.6 As
in the case of state trajectory constraints preferences may not be nested, and only be
combined by logical conjunction. Again, formulas of the form

(∀x̄)preference φ(x̄)

may be used as shorthand for the logical equivalent conjunction∧
t̄

preference φ(t̄)

5 Recall that ADL admits substitutional quantification.
6 But note that state trajectory constraints may not contain preferences.



A Fluent Calculus Semantics for ADL with Plan Constraints 147

where t̄ denotes all possible ground substitutions for the variables x̄. ADL preferences
may occur in goals and in operator preconditions. In the latter case they must not contain
the state trajectory modalities.

The semantics of preferences is simple and intuitive. A preference simply always
evaluates to true. However, a preference can be satisfied or violated. Let 〈S0, . . . , Sn〉
denote the sequence of states corresponding to a plan. If the precondition of the oper-
ator applied to state Si contains a preference preference φ, then the preference is
violated if 〈Si〉 � ¬φ. Likewise a preference occurring in the planning goal is violated
if 〈S0, . . . , Sn〉 � ¬φ. An overall penalty is assigned to the plan and equals the sum of

– the number of preference φ expressions from operator preconditions that have
been violated; and

– the number of preference φ expressions from the goal description that have
been violated.

The optimal plan in the setting of ADL with plan constraints is the plan with the
minimal number of preferences violated. It is worth pointing out that the notion of
optimality crucially depends on complete information — in the case of open world
ADL it may be impossible to identify whether a plan is optimal.

4 The Fluent Calculus Semantics for ADL with Plan Constraints

The Fluent Calculus semantics for ADL with plan constraints is obtained by correctly
embedding the latter into the former.

4.1 Scope of the ADL Constraints

First off we have to decide whether the constraints from the action domain file and the
planning problem file should be treated alike or not. Quoting from [4], “constraints (...)
specified in the action domain file (...) might be seen as safety conditions (...) that must
alway be respected in any valid plan for the domain (...).” This seems to suggest that
these constraints are intended to serve a purpose similar to that of domain constraints in
the Fluent Calculus. However, quoting from [15] constraints from the planning problem
file “(...) are added to those (if any) in the domain file and together they represent a
collection of goals that must be satisfied by any valid plan.”. So we adopt the viewpoint
that the constraints apply only to the planning goal and not to the action domain as a
whole. Let us illustrate the issue at hand by a small example.

Example 4 (Scope of ADL Constraints). Assume that in the ADL blocks world domain
from example 3 the constraint always On(Block1, Table) is part of the action domain
file. Let Σ denote the Fluent Calculus axiomatization of this domain from example 1. If
we extend Σ by the domain constraint (∀s)Holds(On(Block1, Table), s) the resulting
theory is inconsistent. Instead we extend the reasoning problem Σ � (∃s)φ(s) to the
additionally qualified Σ � (∃s)φ(s) ∧ ¬(∃s′)s′ * s ∧ ¬Holds(On(Block1, Table), s′)
— where φ denotes the goal description.
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4.2 The Mapping

We are finally ready to define the mapping:

A Corresponding Language. We start by defining a Fluent Calculus signature based
on the ADL signature. In order to simplify the presentation we will assume that ADL
problems only include the single type OBJECT. Our results can easily be reformulated
in an appropriately sorted version of the Fluent Calculus, so that this is without loss
of generality. Given an ADL problem based on a signature with constants C, operator
names A, and fluent predicates F we create a Fluent Calculus signature with corre-
sponding constants C′, functions into sort ACTION A′, and functions into sort FLUENT

F ′. In order to deal with preferences we introduce the additional sort NUMBER and
extend the foundational axioms Σaux by an axiomatization of the natural numbers.

Based on this signature we include unique-name-axioms for sort OBJECT. Likewise
we include a domain closure axiom for sort OBJECT, that is an axiom of the form:

(∀x)
∨

i=1..n

x = ci,

where x is a variable of sort OBJECT and the ci denote all object constants of the signa-
ture. For dealing with preferences we introduce a special fluent, Penalty/1, that takes a
natural number as argument.

The Initial State. Mapping ADL initial state specifications φ to Fluent Calculus ini-
tial state axioms φ′[S0] is done in the obvious way: replace every fluent F (x̄) in φ
by Holds(F ′(x̄), S0). Below for an ADL state formula ψ by ψ′[s] we will denote the
corresponding Fluent Calculus state formula obtained in this fashion for an arbitrary
situation s. Finally we include Holds(Penalty(0), S0) into φ[S0]. The purpose of this
fluent will be to accumulate the number of preferences violated.

The Operators. Mapping ADL operators to Fluent Calculus consists of creating corre-
sponding precondition and effect axioms. First we introduce a bit of notation. Let A be
an operator with operator precondition πA. Without loss of generality we assume that
πA is of the form πA1 ∧ πA2 where πA1 is an ordinary ADL precondition and πA2 is a
conjunction of preferences. Then denote

– by ΠApref the set consisting of the logical parts ψi of the preferences preference
ψi from πA2 ; and

– by ΠApref-cases the set of pairs 〈
∧

i(¬)ψi, nj〉 where each ψi ∈ ΠApref and nj ∈ N
equals the number of ¬ψi that occur in

∧
i(¬)ψi where ψi ∈ ΠApref .

That is to say, nj denotes the number of preferences that are violated if
∧

i(¬)ψi

holds. There are 2i such pairs in ΠApref-cases and by construction these pairs are mutually
exclusive.

For every ADL operator A = 〈x̄, πA, εA〉 from the planning problem we define the
action precondition axiom

(∀x̄, s)Poss(A(x̄), s1, s2) ≡ π′A1
∧ s2 = Do(A(x̄), s).
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Recall that we assume εA to be of the form
∨

k(∀x̄k)φ[x̄k] ⇒ δ[x̄k]. By Δ+ (Δ−)
denote the set of positive (negative) literals from δ[x̄k]. Define the corresponding Fluent
Calculus effect axiom as:

(∀)Poss(A(x̄), s1, s2) ⊃∨
ki

φ′[x̄k, s1] ∧ γ′i[s1] ∧ Holds(Penalty(n1), s1) ∧ n2 = n1 + ni ∧

�(∀f)[f = Penalty(n2) ∨
∨

F (x̄)∈Δ+

f = F (ȳ)]∨

[Holds(f, s1) ∧ f �= Penalty(n1) ∧
∧

F (x̄)∈Δ−

f �= F (x̄)]

≡ Holds(f, s2)�,

where 〈γi, ni〉 ∈ ΠApref-cases . Each of the ki disjuncts states that, if prior to action appli-
cation

– the accumulated penalty equates n1; and
– case k of the ADL operator applies,

then after action application a fluent f holds if-and-only if

– f is equal to Penalty(n2) where n2 is the new accumulated penalty; or
– f is a positive effect of the ADL operator; or
– f does not equal Penalty(n1); or
– f held prior to action application and is not a negative effect of the ADL operator.

Let us stress that all the ki disjuncts are mutually exclusive. This completes the defini-
tion of a Fluent Calculus domain Σ corresponding to an ADL planning problem.

The Goal Descriptions. We now turn to goal descriptions. These will be mapped to
Fluent Calculus queries that will be evaluated with regard to the domain axiomatization
Σ. If the ADL goal description φ does not contain any constraints our task is easy: we
simply ask whether

Σ � (∃s, n)φ′[s] ∧ Holds(Penalty(n), s)∧
(¬∃s′, n′)φ′[s′] ∧ Holds(Penalty(n′), s′) ∧ n′ < n.

(1)

We proceed by extending this mapping to goal descriptions containing constraints.
Without loss of generality we can assume that the goal description φ is of the form
φ1 ∧ φ2 ∧ φ3, where

– φ1 is an ordinary ADL goal;
– φ2 is a conjunction of state trajectory constraints; and
– φ3 is a conjunction of preferences.

The corresponding Fluent Calculus query is of the form

(∃s, n, nfinal)ψ1[s, n] ∧ ψ2[s] ∧ ψ3[s, n, nfinal],

where ψ1[s, n]
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– is the formula from (1) if there are no preferences φ3 in the goal description;
– is (∃s, n)φ′[s] ∧ Holds(Penalty(n), s) otherwise.

The mapping from the hard state trajectory constraints φ2 to ψ2[s] can be obtained
from the base cases depicted in figure 1.

ADL constraint Fluent Calculus subquery

at end ψ ψ′[s]

always ψ (∀s1)s1 � s ⊃ ψ′[s1]

sometime ψ (∃s1)s1 � s ∧ ψ′[s1]

at-most-once ψ (∃s1)s1 � s ∧ ψ′[s1] ⊃
¬(∃s2, s3)s1 � s2 ∧ s2 � s3 ∧ s3 � s ∧ ¬ψ′[s2] ∧ ψ′[s3]

sometime-after ψ1 ψ2 (∃s1)s1 � s ∧ ψ′
1[s1] ⊃ (∃s2)s1 � s2 ∧ s2 � s ∧ ψ′

2[s2]

sometime-before ψ1 ψ2 (∃s1)s1 � s ∧ ψ′
1[s1] ⊃ (∃s2)s2 � s1 ∧ ψ′

2[s2]

Fig. 1. Mapping State Trajectory Constraints to Fluent Calculus

For the mapping from the preferences φ3 =
∧

k preference ϕk in the goal de-
scription to the Fluent Calculus subquery ψ3[s, n, nfinal] we introduce again some nota-
tion: denote by Φcases the set of pairs 〈

∧
k(¬)ϕk, nk〉 where nk ∈ N equals the number

of ¬ϕk that occur in
∧

k(¬)ϕk . Without loss of generality we assume that ϕk is of the
form ϕk1 ∧ ϕk2 , where ϕk1 is an ADL state formula and ϕk2 is a conjunction of state
trajectory constraints. We map ϕk1 to ϕ′k1

[s] and ϕk2 to ϕ∗k2
[s] — where ϕ∗k2

[s] is ob-
tained analogously to the mapping from φ2 to ψ2[s]. With a little abuse of notation we
denote ϕ′k1

[s] ∧ ϕ∗k2
[s] by ϕ′k[s].

We now define the Fluent Calculus subquery ψ3[s, n, n′] corresponding to φ3 to be∧
i

∧
k

(¬)ϕ′k[s] ⊃ nfinal = n + ni)∧

(¬∃s′, n′, n′final)ψ1[s′, n′] ∧ ψ2[s′]∧∧
i

∧
k

(¬)ϕ′k[s′] ⊃ n′final = n′ + ni) ∧ n′final < nfinal,

where 〈
∧

k(¬)ϕk, ni〉 ∈ Φcases. This subquery ensures plan optimality by requiring that

– nfinal is the sum of
• The penalty n that stems from violated preferences in action preconditions and
• The number ni of preferences ϕk from the goal description violated by s; and

– there does not exists a situation s′ satisfying the goal description ψ1 and the hard
plan constraints ψ2 with a smaller final penalty.

4.3 Correctness of the Translation

We have defined a mapping from ADL planning problems with plan constraints to Flu-
ent Calculus domain axiomatizations Σ and Fluent Calculus queries (∃s)φ[s]. We are
now ready to state our main result:
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Theorem 1 (Correctness of the Translation). Let the Fluent Calculus domain Σ and
query (∃s)φ[s] be obtained from an ADL planning problem via our mapping. A sequence
〈A1(t̄1), . . . , An(t̄n)〉 of ground ADL operators Ai(t̄i) is an optimal solution for the
planning problem if and only if Σ � φ[Do(An(t̄n), Do(An−1(t̄n−1), . . . S0) . . .)].

Proof (Sketch). The full proof of this theorem is quite tedious and therefore omitted.
However, in order to provide some evidence for the correctness of the theorem, we point
out that our embedding is very generic, in the sense that the Fluent Calculus domain
axiomatization Σ and the ADL planning problem correspond axiom-by-axiom. ��

5 Summary

5.1 Related Work

The series of works [7,8,9] successively provided logical semantics for more and more
expressive fragments of PDDL by interpreting these in a recently proposed first order
modal variant of the Situation Calculus [16]. None of these works covers plan con-
straints yet. Many ontological features of PDDL like e.g. concurrent actions and actions
with duration are not present in the basic Situation Calculus, however. Thus, in order to
obtain a mapping from PDDL fragments to Situation Calculus the underlying logic had
to be considerably extended. For Fluent Calculus such extensions have first been intro-
duced in [17]. Most likely these ideas can be adapted in order to obtain Fluent Calculus
semantics for equally expressive fragments of PDDL as those covered in [7,8,9].

Using a mapping defined in [13] we can obtain Situation Calculus axiomatizations
corresponding to their Fluent Calculus counterparts. This immediately yields a Situation
Calculus semantics for ADL with plan constraints.

Instead of plan constraints costs associated to actions have been introduced for the
sequential deterministic part of this year’s planning competition at ICAPS-08.7 This
system can also very naturally be interpreted in the Fluent Calculus; plan costs can be
computed by summing over situation terms.

Our result identifies a fragment of the Fluent Calculus for which reasoning can be
based on efficient specialized planning software instead of the more general constraint
logic programming implementation Flux [11]. A tight integration may be achieved by
adopting ideas from [18], where planning problems have efficiently been encoded and
solved in CLP(FD). Note that reversing our mapping does not introduce an additional
blowup as opposed to compiling operators to normal form.

5.2 Conclusion

We have given a purely declarative semantics for ADL with plan constraints by inter-
preting it in the basic Fluent Calculus. Our semantics is logical, as opposed to the only
previously available semantics, which was based on state transitions. Along the way we
have clarified the role played by state trajectory constraints by determining their scope.
The resulting system is expressive and — since both PDDL and the Fluent Calculus are
action-centered formalisms — very natural.

7 See http://ipc.informatik.uni-freiburg.de/.
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Abstract. Semi-stable semantics offer a further extension based for-
malism by which the concept of “collection of justified arguments” in
abstract argumentation frameworks may be described. In contrast to the
better known stable semantics, one advantage of semi-stability is that any
finite argumentation framework always has at least one semi-stable ex-
tension. Although there has been some development of the formal logical
theory of semi-stable semantics so that several computational properties
of these extensions have been identified, with the exception of some algo-
rithmic studies, more detailed investigation of computational complexity
issues has been neglected. Our purpose in this article is to present a num-
ber of results on the complexity of some natural decision questions for
semi-stable semantics.

1 Introduction

The semi-stable semantics for formal argumentation can be traced back to the
work of Bart Verheij [1,2] and has recently been revived as a research topic
by Caminada [3]. Semi-stable semantics can be positioned between stable se-
mantics and preferred semantics in the sense that each stable extension is also
a semi-stable extension and each semi-stable extension is also a preferred ex-
tension. Moreover, for argumentation frameworks that have at least one stable
extension, the set of semi-stable extensions is exactly the same as the set of
stable extensions. That is, in situations where there exists at least one stable
extension, stable semantics and semi-stable semantics coincide. The advantage
of semi-stable semantics, however, is that for finite argumentation frameworks
semi-stable extensions are always guaranteed to exist, even in situations where
stable extensions do not. These properties, as well as those described in [4], make
semi-stable semantics an interesting alternative to stable semantics, which, de-
spite the criticisms raised by researchers such as Dung [5], continue to be widely
used in fields like logic programming [6] and answer set programming [7].

The virtues of semi-stable semantics and how it relates to stable semantics
can perhaps be illustrated by examining the virtues of paraconsistent logic and
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how it relates to classical logic. One of the properties of classical logic is that
inconsistency can lead to a collapse of all entailment. That is, relatively small and
local problems in the knowledge base can cause a global collapse of entailment.
Paraconsistent logic, such as [8], has been proposed as an approach to deal with
this problem. The idea of paraconsistent logic is not only to be “crash resistant”
[4], meaning that no collapse can occur, but it should ideally also be “backward
compatible” [4] with classical logic, meaning that in cases where there is no
collapse of classical logic (no inconsistencies) the new paraconsistent formalism
should yield the same outcome as classical logic.

For stable semantics, as well as for formalisms that apply stable semantics
such as Default Logic [9] and Answer Set Programming [7], one can identify the
same kind of issue: relatively small and local problems (such as a rule p ← not p)
can cause a global collapse of all entailment (the absence of stable extensions). It
would be desirable to have an alternative approach that is “crash resistant” [4],
implying that there should always be at least one extension, but also “backward
compatible” [4] to the original stable semantics. That is, in cases where stable
extensions do exist, the same outcome is yielded as under stable semantics.
Semi-stable semantics is an approach that satisfies these properties. One can
say that semi-stable semantics relates to stable semantics in the same way as
paraconsistent logic (like [8]) relates to classical logic.

Several properties of semi-stable semantics, also in relation to other semantics,
have been studied by Baroni and Giacomin [10,11]. Further work on proof pro-
cedures has recently been started by Caminada, who provides an algorithm for
computing the set of all semi-stable extensions, given an argumentation frame-
work [12]. What has been missing, however, is a complexity analysis of the
various decision problems associated with semi-stable semantics, especially since
the the issue of computational complexity has received quite some attention with
respect to other semantics in Dung’s framework, e.g. the work of Dimopoulos
and Torres [13] concerning basic questions in preferred and stable semantics,
Dunne and Bench-Capon [14] with regard to deciding when preferred and stable
semantics coincide, and the more recent developments presented by Dunne [15]
dealing with complexity-theoretic questions within the ideal semantics of Dung et
al. [16,17]. Thus, while semi-stable semantics may offer several advantages com-
pared to other semantics (especially compared to stable [4]), it is unclear at what
cost (if any) such advantages are gained. It is this question that the current paper
intends to address.

The remainder of this paper is structured as follows. In Section 2 we describe
the basic components of Dung’s abstract model of argument from [5] together
with a brief review of some notions from computational complexity theory. We
then, in Section 3, describe a number of general decision questions relating to
extension-based semantics in argumentation frameworks. Our results on the com-
plexity of these questions for the specific instantiation of semi-stable semantics
are given in Section 4. Finally, conclusions and open questions are reviewed in
Section 5.
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2 Background

The model of abstract argumentation which forms the basis for the results of this
paper was proposed by Dung [5], wherein the following concepts were introduced.

Definition 1. An argumentation framework (af) is a pair H = 〈X ,A〉, in
which X is a finite set of arguments and A ⊆ X × X is the attack relationship
for H. A pair 〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x attacks y’.
For R, S subsets of arguments in the af H(X ,A), we say that s ∈ S is attacked
by R – written attacks(R, s) – if there is some r ∈ R such that 〈r, s〉 ∈ A. For
subsets R and S of X we write attacks(R,S) if there is some s ∈ S for which
attacks(R, s) holds; x ∈ X is acceptable with respect to S if for every y ∈ X
that attacks x there is some z ∈ S that attacks y. A subset, S, is conflict-free if
no argument in S is attacked by any other argument in S. For S ⊆ X ,

S− =def { p : ∃ q ∈ S such that 〈p, q〉 ∈ A}
S+ =def { p : ∃ q ∈ S such that 〈q, p〉 ∈ A}

Conflict-free sets underpin the concept of “collection of justified arguments” ad-
vanced through a number of forms of so-called extension-based models. Thus,
although conflict-free sets are internally consistent since no attacks are present
between members, in themselves these are too weak in order to capture the idea
of set of justified arguments: such sets may still be attacked by external argu-
ments. Informally an extension-based semantics prescribes additional conditions
that a conflict-free set of arguments ought to satisfy in order to be regarded as
justifiable, hence an extension basis, E , defines a mapping from afs H(X ,A) to
subsets of X . The following models have been proposed and widely studied in
previous work.

Definition 2. In the description below, H(X ,A) is an arbitrary af and S, T
denote subsets of X . For a given extension model, E, E(H) are the subsets of X
satisfying the conditions prescribed by E.

a. Grounded (gnd)
Let F(S) = { x ∈ X : x is acceptable to S}. The grounded extension
(gnd(H)) is the smallest fixed point of F . It is shown in [5] that F(∅) ⊆
F(F(∅)) ⊆ · · · ⊆ Fk(∅) and that in (finitary) afs the grounded extension is
equal to

⋃∞
k=0 Fk(∅).

b. Admissible (adm)

adm(H) = {S : S is conflict-free and every x ∈ S is acceptable to S}.

c. Preferred (pe)

pe(H) = {S : S is a maximal (w.r.t. ⊆) set in adm(H)}.

d. Stable (se)

se(H) = {S : S ∈adm(H) and every x �∈ S is attacked by S}.
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e. Ideal (idl) (Dung et al. [16,17])

idl(H) = {S : S ∈adm(H) and S ⊆ ∩T∈pe(H) T }.

f. Semi-stable (sse) (Caminada [3])

sse(H) = {S : S ∈adm(H) and ∀ T (S∪S+ ⊂ T ∪T+) ⇒ T �∈ adm(H)}.

We assume the reader is familiar with the standard complexity classes p, np,
conp together with classes in the so-called Polynomial Hierarchy (ph), in par-
ticular Σp

2 and Πp
2 . We further assume some familiarity with the concept of

polynomial-time many-one reducibility between decision problems. An accessi-
ble introduction to these may be found in Papadimitriou’s text [18].

The class d
p is formed by decision problems L, whose positive instances are

characterised as those belonging to L1 ∩ L2 where L1 ∈ np and L2 ∈ conp.
The problem sat-unsat whose instances are pairs of 3-cnf formulae 〈ϕ1, ϕ2〉
accepted if ϕ1 is satisfiable and ϕ2 is unsatisfiable has been shown to be complete
for this class [18, p. 413]. We may interpret d

p as those decision problems solvable
by a (deterministic) polynomial time algorithm allowed to make at most two calls
upon an np oracle. More generally, the complexity class p

np consists of decision
problems that can be solved by a (deterministic) polynomial time algorithm
provided with access to an np oracle (calls upon which take a single step so
that only polynomially many invocations are allowed). An important (presumed)
subset of p

np is defined by distinguishing whether oracle calls are adaptive – i.e.
the exact formulation of the next oracle query may be dependent on the answers
received to previous questions – or whether such queries are non-adaptive, i.e.
the form of the questions to be put to the oracle is predetermined allowing all
of these to be performed in parallel. The latter class has been denoted p

np

||
and considered in Wagner [19,20], Jenner and Toran [21]. Under the standard
complexity-theoretic assumptions, it is conjectured that,

p ⊂
{

np

conp

}
⊂ d

p ⊂ p
np

|| ⊂ p
np ⊂

{
Σp

2

Πp
2

}

3 Decision Questions in AFs

Given an af, H(X ,A), and a particular extension based semantics E , e.g. E could
be any of se (stable), pe (preferred), or sse (semi-stable), Table 1 describes a
number of general decision problems relative to E .

The list above is concerned with properties of afs with respect to a sin-
gle extension semantics, E . There are in addition, however, a number of natural
problems that relate to the behaviour of frameworks regarding distinct extension
semantics. In particular given extension semantics E and F the decision prob-
lem Coincident (coinE,F) whose instances H(X ,A) are accepted if and only if
E(H) = F(H). Table 2 and its annotations summarise what is known concerning
the computational complexity of the decision problems outlined above w.r.t. to
E ∈ {gnd, adm, pe, se, idl}.
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Table 1. Decision Problems in afs

Problem Name Instance Question

Verification (verE) H(X ,A); S ⊆ X Is S ∈ E(H)?

Credulous Acceptance (caE) H(X ,A); x ∈ X Is there any S ∈ E(H) for which x ∈ S?

Sceptical Acceptance (saE) H(X ,A); x ∈ X Is x a member of every T ∈ E(H)?

Existence (existsE) H(X ,A) Is E(H) non-empty?

Non-emptiness (exists
¬∅
E ) H(X ,A) Is there any S ∈ E(H) for which S 	= ∅?

Maximality (maxE) H(X ,A); S ⊆ X Is S a maximal (w.r.t. ⊆) set in E(H)?

Table 2. Computational Complexity w.r.t. E

E ver ca sa exist exists
¬∅

max

gnd p ([5]) p ([5]) p ([5]) Trivial ([5]) p ([5]) p ([5])

adm p ([5]) np-c ([13]) Trivial ([5]) Trivial ([5]) np-c ([13]) conp-c ([13])

pe conp-c ([13]) np-c ([13]) Πp
2 -c ([14]) Trivial ([5]) np-c ([13]) conp-c ([13])

se p ([5]) np-c ([13]) conp-c / d
p-c np-c ([13]) np-c ([13]) p

idl conp-c ([15]) p
np

|| -c (*) ([15]) Trivial ([17]) Trivial ([17]) p
np

|| -c (*) [15]) p
np

|| -c (*) ([15])

Remarks

1. For a complexity class C, C − c denotes C-completeness.
2. Cases which are described as “trivial” are either those for which the property

in question always holds such as existence of preferred extensions, or for
which it never holds, e.g. membership in every ideal set (since the empty set
is ideal).

3. The two distinct classifications for sase arise from the two possible inter-
pretations of sceptical acceptance w.r.t. stable extensions for afs without
any, i.e. if one regards x ∈ ∩S∈se(H) S as holding even when se(H) = ∅
then the decision problem is conp–complete ([13] via commentary of [14,
p. 189]). If, however, one requires H to have at least one stable extension as
a precondition for x to be sceptically accepted the decision problem becomes
d

p-complete. While this upper bound is straightforward, space precludes de-
tails of the matching lower bound proof.

4. For E ∈ {gnd, pe, se, sse}, the verification and maximality problems are
equivalent, i.e. verE(H, S) ⇔ maxE(H, S).

5. The cases annotated by (*) for ideal sets make use of randomized polynomial
time reductions in the style of [22]. Only weaker lower bounds have been
obtained by standard deterministic reductions.

4 Computational Complexity of Semi-stable Semantics

In this paper we show that Table 2 may be extended as described in Table 3.
The results described in the first three lines of Table 3 are straightforward

developments of constructions originally presented in [13] and [14]. The hardness
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Table 3. Computational Complexity w.r.t. Semi-stable extensions

Problem Lower Bound Upper Bound

versse conp-hard conp Theorem 1

exists
¬∅
sse

np-hard np Corollary 1

coinpe,sse Πp
2 -hard Πp

2 Theorem 2

casse p
np

|| -hard Σp
2 Theorem 3

sasse p
np

|| -hard Πp
2 Theorem 4

results regarding credulous and sceptical acceptance under semi-stable semantics
exploit a technical characterisation of complete problems within p

np

|| due to
Chang and Kadin [23]. This introduces the concepts of a language having the
properties op2 and opω where op is one of the Boolean operators {and, or}.

Definition 3. ([23, pp. 175–76] Let L be a language, i.e. a set of finite words
over an alphabet. The languages, andk(L) and ork(L) (k ≥ 1) are

andk(L) =def {〈w1, w2, . . . , wk〉 : ∀ 1 ≤ i ≤ k wi ∈ L}
ork(L) =def {〈w1, w2, . . . , wk〉 : ∃ 1 ≤ i ≤ k wi ∈ L}

The languages andω(L) and orω(L) are,

andω(L) =def

⋃
k≥1

andk(L) ; orω(L) =def

⋃
k≥1

ork(L)

A language, L, is said to have property opk (resp. opω) if opk(L) ≤p
m L (resp.

opω(L) ≤p
m L).

The reason why these language operations are of interest is the following result.

Fact 1. ([23, Thm. 9, p. 182])
A language L is p

np

|| –complete (via ≤p
m reducibility) if and only if all of the

following hold.

F1. L ∈ p
np

|| .
F2. L is np–hard and L is conp–hard.
F3. L has property and2.
F4. L has property orω.

Theorem 1. versse is conp–complete.

Proof. Given H(X ,A) and S ⊆ X , S defines a semi-stable extension of H if and
only if, S is admissible and

∀ T ⊆ X T ∈ adm(H) ⇒ ¬ (S ∪ S+ ⊂ T ∪ T+)

a test which is easily accomplished by a conp algorithm.
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For conp-hardness it suffices to consider the special case S = ∅, i.e. the prob-
lem versse(H, ∅), which is the complement of exists

¬∅
sse

. Given an instance of
unsatisfiability – without loss of generality a 3-cnf formula ϕ(Zn) = ∧m

j=1 Cj

– with each Cj a disjunction of literals from {z1, . . . , zn,¬z1, . . . ,¬zn}, the af,
Hϕ(X ,A) has

X = {ϕ,C1, . . . , Cm} ∪ {zi, ¬zi : 1 ≤ i ≤ n}
A = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪ {〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪

{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj}

As shown by [13], there is an admissible set containing the argument ϕ if and
and only if ϕ(Zn) is satisfiable, i.e. ¬caadm(Hϕ, ϕ) if and only if ϕ(Zn) is
unsatisfiable. Modify Hϕ to the af, Kϕ as follows: add a single new argument ψ
to X together with 2n + 1 new attacks {〈ψ, zi〉 : 1 ≤ i ≤ n}, {〈ψ,¬zi〉 : 1 ≤
i ≤ n}, and 〈ϕ, ψ〉. The af, Kϕ has a non-empty preferred extension if and only
if the cnf, ϕ is satisfiable. Hence, versse(Kϕ, ∅) holds if and only if ϕ(Zn) is
unsatisfiable.

Corollary 1. exists
¬∅
sse

is np-complete.

Proof. For membership in np it suffices to test if exists
¬∅
adm

(H). The np-
hardness lower bound is immediate from the the proof of Thm. 1.

Theorem 2. coinpe,sse is Πp
2 –complete.

Proof. Given H(X ,A) every preferred extension of H is also a semi-stable ex-
tension if and only if,

∀ S ⊆ X S �∈ pe(H) ∨ S ∈ sse(H)

This may be re-written as, ∀ S, T ∃ U f(S, T, U) where f(S, T, U) is the (poly-
nomial time decidable) predicate

(S �∈ adm(H))
∨

(U ∈ adm(H))∧(S ⊂ U))
∨

( (S∪S+⊂T∪T+)⇒(T �∈ adm(H)))

That is, “for every subset (S), either S does not define a preferred extension of
H (by reason of inadmissibility or containment in a larger admissible set, U) or
(should S be a preferred extension), there is no (admissible) set (T ) for which
S ∪ S+ is strictly contained in T ∪ T+”.

The test described can be accomplished in Πp
2 .

To establish Πp
2 –hardness we reduce to the complementary problem – i.e.

that of deciding if a given H has a preferred extension which fails to be semi-
stable, using the Σp

2–complete problem, qsat
Σ
2 instances of which comprise a

cnf formula, ϕ(Yn, Zn) over disjoint sets of propositional variables, that are
accepted if there is some instantiation (αY ) of Yn for which every instantiation,
(βZ) of Zn fails to satisfy ϕ(Yn, Zn), i.e. ∃ αY ∀ βZ ¬ϕ(αY , βZ). Given an
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instance, ϕ(Yn, Zn), consider the af Gϕ(W ,B) formed from the af Hϕ(X ,A) of
Thm. 1, i.e. X ⊂ W and A ⊂ B, so that

W = {ϕ,C1, . . . , Cm} ∪ {yi,¬yi, zi,¬zi : 1 ≤ i ≤ n} ∪ {b1, b2, b3}
B = {〈Cj , ϕ〉 : 1 ≤ j ≤ m} ∪

{〈yi,¬yi〉, 〈¬yi, yi〉, 〈zi,¬zi〉, 〈¬zi, zi〉 : 1 ≤ i ≤ n} ∪
{〈yi, Cj〉 : yi occurs in Cj} ∪ {〈¬yi, Cj〉 : ¬yi occurs in Cj} ∪
{〈zi, Cj〉 : zi occurs in Cj} ∪ {〈¬zi, Cj〉 : ¬zi occurs in Cj} ∪
{〈ϕ, b1〉, 〈ϕ, b2〉, 〈ϕ, b3〉, 〈b1, b2〉, 〈b2, b3〉, 〈b3, b1〉} ∪
{〈b1, zi〉, 〈b1,¬zi〉 : 1 ≤ i ≤ n}

From [14] this framework has a non-stable preferred extension if and only if
ϕ(Yn, Zn) is accepted as an instance of qsat

Σ
2 .1 In particular, every satisfying

instantiation of ϕ(Yn, Zn) induces a corresponding stable extension of Gϕ. Now,
noting that ϕ(Yn, Zn) is accepted as instance of qsat

Σ
2 if and only if the cnf,

ψ(Yn ∪ {u}, Zn) in which each clause of ϕ has a new variable u added to it, is
also so accepted we claim that the af, Gψ has a preferred (but not semi-stable)
extension if and only if there is an instantiation, α of Yn ∪ {u} under which
ψ(α,Zn) is unsatisfiable. First suppose sse(Gψ) ⊂ pe(Gψ). Since, u = � satisfies
ψ, from the properties of Gψ it follows that this has at least one stable extension,
hence

se(Gψ) = sse(Gψ) ⊂ pe(Gψ)

and so Gψ must contain a preferred extension which is not stable. From the
analysis given in [14] we can construct an instantiation αY of Yn which has
ψ(αY , u = ⊥, Zn) unsatisfiable.

A similar analysis to that of [14] identifies a (non-stable) preferred extension
for any instantation of α of Yn ∪ {u} under which ψ(α,Zn) is unsatisfiable, i.e.
if ψ is accepted as an instance of qsat

Σ
2 then the set of preferred extensions of

Gψ does not coincide with its set of semi-stable extensions.

As a consequence of Fact 1, the lower bounds on casse and sasse are derived
using the following four part constructions.

S1. Prove that casse (resp. sasse) is np–hard.
S2. Prove that casse (resp. sasse) is conp–hard.
S3. Prove that casse (resp. sasse) has property and2 (in fact we will show

both to have property andω).
S4. Prove that casse (resp. sasse) has property orω.

Theorem 3

a. casse is in Σp
2 .

b. casse is p
np

|| –hard.

1 Each witnessing non-stable but preferred extension is formed by a subset of
{yi,¬yi 1 ≤ i ≤ n} for which the instantiation, αY of the corresponding literals
in Yn to � results in ϕ(αY , Zn) being unsatisfiable.
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Proof. We omit the relatively easy upper bound stated in (a) and concentrate
on the second part of the theorem statement. Using the characterisation of p

np

|| –
complete languages described in Fact 1 the theorem follows given arguments that
(S1)–(S4) all hold.

S1. casse is np–hard.
Given an instance, ϕ(Zn) of sat form an instance 〈Hϕ, ϕ〉 of casse in which
Hϕ is the af described in the proof of Thm. 1. The argument ϕ is in a stable
(hence semi-stable) extension of Hϕ if and only if ϕ(Zn) is satisfiable. We
deduce that casse is np–hard as a result.

S2. casse is conp–hard.
Given an instance ϕ(Zn) of unsat, first form the af, Hϕ as described in
S1. Modify Hϕ to a system Kψ which has a new argument ψ added together
with attacks 〈ϕ, zi〉 and 〈ϕ,¬zi〉 for each 1 ≤ i ≤ n and {〈ϕ, ψ〉 〈ψ, ϕ〉}.
The instance is completed by choosing ψ as the argument of interest. The
instance 〈Kψ, ψ〉 is accepted if there is a semi-stable extension containing ψ.
If, however, there is a preferred extension containing ϕ, then this extension
is also a stable extension which would preclude membership of ψ in a semi-
stable set. Such a preferred extension exists if and only if ϕ(Zn) is satisfiable,
so that 〈Kψ , ψ〉 is accepted as an instance of casse if and only if ϕ(Zn) is
unsatisfiable.

S3. casse has property andω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of andk(casse).
Form an instance 〈H, z〉 of casse in which the k frameworks, Hi are ex-
tended by adding a set of k arguments {y1, . . . , yk}, an argument z, and at-
tacks {〈yi, z〉, 〈xi, yi〉} for each 1 ≤ i ≤ k. We claim that 〈H, z〉 is accepted
as an instance of casse if and only if each 〈Hi, xi〉 is accepted as such an
instance. Suppose the latter is true and that Si is a semi-stable extension in
Hi that contains xi. Then S = ∪k

i=1 Si ∪ {z} is certainly admissible (since
each attack 〈yi, z〉 is countered by the attack 〈xi, z〉. Furthermore S is a
semi-stable extension as

S ∪ S+ =
k⋃

i=1

Si ∪ S+
i ∪ {y1, y2, . . . , yk, z}

so that all of the new arguments {y1, . . . , yk, z} occur within S ∪ S+. In
total from semi-stable extensions Si containing xi we construct a semi-
stable extension S containing z.

Conversely suppose S is a semi-stable extension of H and that z ∈ S. It
is certainly the case that {x1, . . . , xk} ⊂ S since this is required in order
to defend the attacks 〈yi, z〉. Consider the set Si = S ∩ Xi where Xi is
the set of arguments in Hi. Noting that xi ∈ Si we claim that Si is a
semi-stable extension in Hi. Suppose this were not the case so that some
admissible subset, T of Xi satisfies Si ∪ S+

i ⊂ Ti ∪ T+
i . Without loss of

generality we may assume xi �∈ T so that xi ∈ T+. Now consider the set
R = S\(Si∪{z})∪Ti∪{yi}. Observe that R is admissible: yi being defended
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by the argument attacking xi in Ti. In addition, however,

S ∪ S+ = ∪k
j=1 Sj ∪ S+

j ∪ {y1, . . . , yk, z}
⊂ ∪k

j �=i Sj ∪ S+
j Ti ∪ T+

i ∪ {y1, . . . , yk, z}
= R ∪ R+

with R admissible and z �∈ R: this contradicts the premise that S is semi-
stable.

S4. casse has property orω.
Let 〈〈H1, x1〉, 〈H2, x2〉, . . . , 〈Hk, xk〉〉 define an instance of ork(casse). Form
an instance 〈H, z〉 of casse in which the k frameworks, Hi are extended by
adding arguments {y, z} and attacks {〈xi, y〉 : 1 ≤ i ≤ k} and 〈y, z〉. First
suppose, without loss of generality the x1 ∈ S1 a semi-stable extension of
H1. Let 〈S2, . . . , Sk〉 be semi-stable extensions of Hi for 2 ≤ i ≤ k. Then it
easily follows that S = {z}∪∪k

i=1 Si is not only admissible but a semi-stable
of H containing z. On the other hand suppose S with x ∈ S is a semi-stable
extension of H. There must be at least one Hi for which xi ∈ S in order to
defend the attack by y on z. Now considering the set S∩Si gives a semi-stable
extension in Hi containing xi by a similar argument to that used in S3.

Theorem 4

a. sasse is in Πp
2 .

b. sasse is p
np

|| –hard.

Proof. (Outline) We again omit the easy upper bound proof, concentrating on
(b). As before we obtain the result in 4 stages.

T1. sasse is np–hard.
Given an instance ϕ(Zn) of satisfiability, form the framework Kϕ described
in Thm 1. The instance of sasse is given by 〈Kϕ, ϕ〉. If ϕ(Zn) is satisfiable
then the subset 〈a1, a2, . . . , an〉 of {zi, ¬zi : 1 ≤ i ≤ n} indicated by
any satisfying assignment together with ϕ is a stable extension and hence
also semi-stable. Hence ϕ(Zn) satisfiable implies sasse(Kϕ, ϕ) holds. On
the other hand if ϕ(Zn) is unsatisfiable then (as argued in the proof of
Thm. 1) Kϕ has only the empty set as a semi-stable extension. We deduce
that sasse is np–hard.

T2. sasse is conp–hard.
Given an instance, ϕ(Zn) of unsatisfiability, construct the framework Kϕ

described above but without the attacks 〈ψ, zi〉 and 〈ψ,¬zi〉. The instance
of sasse is 〈Kϕ, ψ〉. If ϕ(Zn) is satisfiable then ψ cannot belong to the semi-
stable extension induced by a satisfying instantiation (since this contains the
argument ϕ). On the other hand, if ϕ(Zn) is unsatisfiable then every stable
extension of Kϕ has the form: exactly one of each of the pairs {zi,¬zi},
the subset of clause arguments which are unattacked; and the argument ψ.
Hence ψ is a member of every semi-stable extension if and only if ϕ(Zn) is
unsatisfiable.

T3. sasse has property andω. Similar to (S3).
T4. sasse has property orω. Similar to (S4).
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5 Conclusions and Further Work

The main aim of this paper has been to initiate a detailed study of computational
complexity within semi-stable semantics the eventual goal being to have an un-
derstanding of complexity issues in this model comparable to that demonstrated
in earlier work on complexity in Dung’s model, e.g. [13,14,24,15]. Although we
have been able to demonstrate non-trivial lower bounds for the six fundamental
decision problems described in Table 3, a number of questions remain unresolved.
By far the most significant of these concern the gaps between p

np

|| -hardness for
deciding credulous or sceptical acceptance of an argument under semi-stable
semantics and the Σp

2 (resp. Πp
2 ) upper bounds for these problems.

There are some (admittedly far from conclusive) indications that the credulous
acceptance problem is within p

np

|| , i.e. that Σp
2 is an overestimate. For example,

we observe that of the semantics specified in Defn. 2 (a)–(e), the problem caE
is decidable in p (E = gnd) or np (E ∈ {adm,pe,se}); even for the notionally
“hardest” case – E = idl – the upper bound is p

np

|| . Thus, in the event of our
p
np

|| -hardness failing to be optimal, deciding credulous acceptance within this
semantics becomes “significantly harder” than the analogous problems in any
of the semantics proposed to date. The labelling techniques of Verheij [25] and
Caminada [12] may well offer useful starting points from which to construct p

np

||
methods for casse. The challenge is to develop an argument labelling scheme
Λ : X → {λ1, λ2, . . . , λk} with the following properties: given 〈H(X ,A), x, λ〉
the question “is there a Λ labelling of H in which Λ(x) = λ?” is decidable in
np; and, given a correct Λ-labelling of H, membership of x in a semi-stable
extension can be decided in polynomial time. We note that the p

np

|| algortihm
to decide caidl from [15] can be interpreted as using exactly this approach with
Λ : X → {I,O} and Λ(x) = I if and only if caadm(H, x). In contrast, by
analogy with the known complexity of sape proven in [14], we conjecture that
the Πp

2 upper bound for the sceptical variant is exact.
As stated in the introduction, one of the aims of this paper was to examine at

what computational cost the advantages of semi-stable over stable semantics are
obtained. Despite the absence of exact bounds for the credulous and sceptical ac-
ceptance variants it is clear from the proven lower bounds that some non-trivial
increase in complexity is incurred: these problems being np-complete (resp. conp-
complete/dp-complete) for stable semantics but p

np

|| -hard in the semi-stable case;
the verification problem is in p (stable) but conp-complete (semi-stable). Deciding
if there is a (non-empty) semi-stable extension (resp. any stable extension) are,
however, of equivalent complexity both being np-complete. In order fully to assess
this cost would, of course, require further progress to be made on exact classifi-
cation. We note, however, that if casse ∈ p

np

|| (as conjectured above) there is a
case for regarding the computational cost of testing credulous acceptance in semi-
stable semantics as “similar” to that of case: in informal terms the class p

np

|| is
arguably “closer” to np than to Σp

2 . In particular, if a suitable labelling approach
can be adopted, the computational cost of implementing this is that of solving |X |
independent np-complete problems as opposed to a single such problem.
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Finally it would be of interest to consider complexity-theoretic aspects of semi-
stable semantics within the assumption-based frameworks (abfs) of Bondarenko
et al [26]. While an important core of such results considering the generic decision
problems of Table 1 with respect to preferred and stable semantics, is presented
in work of Dimopoulos et al [27,28,29] similar treatments for semi-stable (and
indeed ideal) semantics have yet to be developed.
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Abstract. We provide an ExpTime algorithm for answering conjunc-
tive queries (CQs) in Horn-SHIQ, a Horn fragment of the well-known
Description Logic SHIQ underlying the OWL-Lite standard. The al-
gorithm employs a domino system for model representation, which is
constructed via a worst-case optimal tableau algorithm for Horn-SHIQ;
the queries are answered by reasoning over the domino system. Our al-
gorithm not only shows that CQ answering in Horn-SHIQ is not harder
than satisfiability testing, but also that it is polynomial in data complex-
ity, making Horn-SHIQ an attractive expressive Description Logic.

1 Introduction

Driven by the development of semantically enhanced systems, as in the context
of the Semantic Web and of Enterprise Application Integration, query answer-
ing in Description Logics (DLs) has emerged as an important topic. A variety
of algorithms have been proposed for this problem and, aiming at different ap-
plications, aspects like combined and data complexity have been guiding their
development. The former characterizes the cost of query answering in the gen-
eral case, while the latter in the case when the query and the knowledge base
except the factual part are fixed. Data complexity is especially important for
applications in which DLs are used to formalize rich data models for data repos-
itories, as in such context the model is static as compared to the data contents,
and typical user queries are known. For querying DLs, conjunctive queries (CQs)
have been most widely considered and three major settings have been addressed:

• Very expressive DLs for which standard reasoning tasks, like satisfiability
testing or instance checking, are intractable both in data and combined com-
plexity. As query answering is at least as hard, the problem is trivially in-
tractable in general. For example, CQs in SHIQ have 2ExpTime-complete
combined complexity [13] and coNP-complete data complexity [6].
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• Tailored DLs, like DL-Lite [5], which aim at lower complexity at the price
of limited expressiveness. In DL-Lite, CQ answering is coNP-complete in
combined complexity, but polynomial if the query is fixed, and has very low
data complexity (reducible to FOL, thus inside logarithmic space).

• Weak DLs, like EL [1], for which standard reasoning and CQ answering
under data complexity are P-complete, while CQ answering under combined
complexity is intractable [17]. Several extensions of EL sharing this property
(e.g., ELH, ELIf , EL+, EL++) can be found in [17,12,10].

Since CQ answering is intractable under combined complexity already over very
simple knowledge bases, fragments of expressive DLs with tractable data com-
plexity are of particular interest. Ideally, such fragments should also allow for
CQ answering with combined complexity not higher than of standard reasoning.

In this paper, we identify Horn-SHIQ as a DL with this property. It was intro-
duced in [9] as a Horn fragment of SHIQ, in which the syntax is restricted in a
way that disjunction is not expressible. While standard reasoning in Horn-SHIQ
is ExpTime-complete in general [11], it is polynomial if the taxonomy is fixed [9].

Our main contributions and results are briefly summarized as follows:

• We provide an ExpTime algorithm for answering CQs in Horn-SHIQ. The
algorithm is based on answering tree-shaped queries over particular trees
(that capture a universal model of the KB) finitely represented by domino
systems. The latter are relatives of saturated mosaic sets known in other
branches of logic, and the recent knot sets [16] and domino sets [18] in DLs.

• For constructing domino systems, we exploit a dedicated tableaux-based
algorithm for consistency checking in Horn-SHIQ, which is of independent
interest. It adapts the standard SHIQ tableaux [8] (using, e.g., anywhere
blocking [15] and a kind of lazy unfolding [7]) to terminate in deterministic
single exponential time, yielding a representation of a universal model of K
such that each CQ over K can be answered on it. This may also be exploited
to precompile K into a (query-independent) domino system for on-line query
answering.

• Based on our algorithm, we show that CQs in Horn-SHIQ have ExpTime-
complete combined complexity and P-complete data complexity. We also
present a fragment of Horn-SHIQ for which CQs are easier. In Horn-SHQ−,
which forbids inverse roles and existential projection on the left hand side of
containment axioms, the combined complexity of CQs is lowered to PSpace-
completeness.

As Horn-SHIQ is an expressive fragment of OWL-Lite, our results are relevant
for the Semantic Web context. They extend in fact from CQs to the class of
positive (existential) queries. Our result on the combined complexity of CQs in
Horn-SHIQ is of particular interest. Firstly, it reveals another expressive DL
for which CQ answering is not harder than standard reasoning (cf. [16,13,14]).
Secondly, it suggests that the exponential jump in combined complexity of CQs
by adding inverse roles to ALC, which was found by Lutz [13], relies on their
interaction with disjunction. In other words, if disjunction is eliminated, then
inverse roles do not make CQ answering harder.
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2 Preliminaries

The Description Logics SHIQ and Horn-SHIQ. We assume countably
infinite sets C, R and I of concept names, role names, and individuals respec-
tively, where C contains special concepts names � and ⊥. Roles are expressions
R and R−, where R ∈ R, and their inverses are Inv(R) = R− and Inv(R−) = R,
respectively. For any roles R and S, R*S is a role inclusion axiom (RI), and
Trans(R) is a transitivity axiom (TA). For any set R of RIs and TAs, *∗R denotes
the reflexive transitive closure of {(R,S) | R*S ∈ R or Inv(R)* Inv(S) ∈ R};
we write TransR(R′) if R′ *∗R R and R *∗R R′ for some R s.t. Trans(R)∈R or
Trans(R−)∈R. A role R is simple w.r.t. R, if there is no S*∗RR with TransR(S).

Concepts are inductively defined as follows: (a) each A ∈ C is a concept, and
(b) if C, D are concepts, R is a role, and S is a simple role, then C �D, C �D,
¬C, ∀R.C, ∃R.C, ≥ nS.C and ≤ nS.C, for n ≥ 1, are concepts.

An expression C *D, where C,D are concepts, is a general concept inclusion
axiom (GCI), and expressions a:A and 〈a, b〉:R, where A ∈ C, a and b are
individuals, and R is a role, are concept and role assertions, respectively. A
SHIQ knowledge base (KB) is a tuple K=〈T ,R,A〉, where the TBox T is a
finite set of GCIs, the RBox R is a finite set of RIs and TAs, and the ABox A
is a finite nonempty set of assertions. We denote by C(K), R(K) and I(K) the
sets of concept names, role names, and individuals occurring in K.

An interpretation I = 〈ΔI , ·I〉 for a KB K consists of a nonempty domain
ΔI and a valuation function ·I that maps each individual c∈ I(K) to an element
cI ∈ΔI , each concept name C ∈C(K) to a subset CI of ΔI , and each role name
R∈R(K) to a subset RI of ΔI×ΔI , in such a way that �I=ΔI and ⊥I=∅.
The function ·I is extended to all concepts and roles in the standard way (see,
e.g., [11]), and satisfaction of K by I (I |= K), i.e. modelhood, is also standard.

The DL Horn-SHIQ was introduced [9] as a fragment of SHIQ. The main
idea is to restrict the syntax in a way that � is not expressible, establishing a
correspondence to a Horn fragment of first-order logic with equality. Without
loss of generality, we focus here on a normal form of Horn-SHIQ in [11], to which
each Horn-SHIQ KB can be efficiently rewritten while preserving the answers
to arbitrary CQs (as follows from [11]).

Definition 1. (Normal) Horn-SHIQ KBs contain only GCIs of the forms
A � B*C A*∀R.B A*≥ mS.B
∃R.A*B A*∃R.B A*≤ 1 S.B

where A,B,C are concept names, R is a role, S is a simple role, and m ≥ 1.

Example 1. Assume two Horn-SHIQ KBs K1 = 〈T , ∅,A〉 and K2 = 〈T ,R,A〉,
where T = {A*∃R.A,B*∃P.C}, R= {P *R}, andA= {a :A, a :B}. Note that
both are consistent, however adding A * ∀R.⊥ to T makes them inconsistent.

Conjunctive Queries. Let V be a countably infinite set of variables. A (Boolean)
conjunctive query (CQ, or query) over a KB K is a finite set q of atoms of the
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form A(x) or R(x, y), where A is a concept name, R is a role and x, y∈V.1 By
V(q) we denote the variables occurring in the atoms of q. The query graph of q
is the directed graph Gq over nodes V(q) with an edge between nodes x and y iff
R(x, y) ∈ q for some role R. The query q is tree-shaped if Gq is a tree.

A match for q in an interpretation I is a mapping θ : V(q) → ΔI s.t. (i)
θ(x)∈AI for each A(x)∈ q, and (ii) 〈θ(x), θ(y)〉 ∈RI for each R(x, y)∈ q. We
say that I satisfies q (I |= q), if q has a match in I, and that K entails q (K |= q),
if q has a match in each model I of K.

Example 2. Assume the queries tq1 = {A(x), R(x, y), A(y), R(x, z), C(z)} and
tq2 = {B(x), R(x, y), A(y), P(x, z), C(z)}. As easily seen, K1 �|= tq1 and K1 |= tq2,
while K2 |= tq1 and K2 |= tq2. Note that both queries are tree-shaped.

3 Tree Queries over Domino Trees

This section describes an algorithm for answering CQs over trees induced by
domino systems, which is exploited in the next sections for deciding CQ entail-
ment in Horn-SHIQ KBs. A domino system finitely represents a possibly infinite
tree-shaped interpretation that be can built by connecting matching dominoes.

Definition 2. A domino is a tuple 〈c, r, c′〉 where c, c′ are sets of concepts
names and r is a set of roles (w.r.t. an underlying alphabet). A domino sys-
tem is a tuple 〈D,�,R〉, where D is a set of dominoes, � ⊆D ×D is a direct
successor relation with c′1 = c2 whenever 〈c1, r1, c

′
1〉 � 〈c2, r2, c

′
2〉, and R is an

RBox. We also require that for each 〈c, r, c′〉 ∈ D, the set r is closed under role
inclusions in R, i.e., R ∈ r and R * R′ ∈ R imply R′ ∈ r. Furthermore, D
contains one designated initial domino of the form 〈∅, ∅, c′〉.

Following the terminology in [14], we define next the tree-shaped interpretation
induced by a domino system. Its domain is represented by a prefix-closed set of
words; for a word w = e1· · ·en, let 〈w|en+1〉 denote the word e1· · ·en·en+1.

Definition 3. The tree base of a domino system D = 〈D,�,R〉 is the inter-
pretation I = 〈ΔI , ·I〉 (w.r.t. the alphabet underlying D) defined as follows:

1. The domain ΔI is the smallest set of words over dominoes such that:
- if t ∈ D is the initial domino, then t ∈ ΔI ;
- if t1· · ·tn ∈ ΔI and tn � tn+1, then t1· · ·tn·tn+1 ∈ ΔI .

2. The valuation function ·I is defined as follows:
- For each atomic concept A, AI = {〈s|t〉 ∈ ΔI | t = 〈c, r, c′〉 ∧ A ∈ c′}.
- For each role name R,

RI = {(s, 〈s|t〉)∈ΔI ×ΔI | t = 〈c, r, c′〉 ∧ R ∈ r}∪
{(〈s|t〉, s)∈ΔI ×ΔI | t = 〈c, r, c′〉 ∧ Inv(R) ∈ r}.

1 W.l.o.g, no individuals occur in q; we can replace each a in q by a new variable y, add
Ca(y) to q and a : Ca to A, where Ca is a new concept name. Non-Boolean queries
(i.e., with answer variables) can be reduced to Boolean queries as usual.
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function: checkRoleSucc
input:D= 〈D, �,R〉; dominoes t1= 〈c1, r1, c

′
1〉, t3 = 〈c3, r3, c

′
3〉 from D; role set r 	= ∅;

output: true iff t3 is an r-successor of t1
if t1 has no direct successor in D, then return false;
Initialize t with some direct successor 〈c2, r2, c

′
2〉 of t1;

s := r2; i := 0
repeat

if t = t3 and r ⊆ s then return true;
if r 	⊆ s or t has no direct successor in D, then return false;
Reassign t to some direct successor 〈c2, r2, c

′
2〉 of t;

Set s′ to the smallest set closed under the following rule:
if S �∗

R R, S ∈ s, S ∈ r2, and TransR(S), then R ∈ s′;
s := s′

until i > |D|; return false

Fig. 1. Verifying Successor Dominoes

The domino tree TD = 〈ΔT , ·T 〉 of D is the interpretation identical to I except
that, for each role R, we have RT = RI ∪

⋃
S�∗

RR∧TransR(S)(S
I)+.

Query entailment in a domino system is naturally defined via the existence of
matches in the represented domino tree. We first provide a procedure to verify
the existence of special ordered matches for tree-shaped queries, and we then
extend the result to all CQs via the standard method of query treeification.

Definition 4. A domino system D entails a CQ q (D |= q), if there is a match
for q in TD. A match π for a tree-shaped CQ tq in TD is ordered if, for each
x, y ∈ V(tq), π(x) is a proper prefix of π(y) whenever R(x, y) ∈ tq for some R.
We write D |=o tq, if there is some ordered match for tq in TD.

Let tq be a fixed tree-shaped query and D = 〈D,�,R〉 a domino system with
tree TD. To obtain a procedure for deciding D |=o tq, we provide some necessary
and sufficient conditions for the existence of ordered matches that can be verified
without building TD explicitly. Roughly, we search for an association of dominoes
from D with the variables of tq. As the association must witness an ordered
match, the domino tx associated with variable x must encode the concept names
needed to satisfy each unary atom A(x) ∈ tq, while for each role atom R(x, y) ∈
tq, the domino tx must ‘reach’ the domino ty via an R-path.

Definition 5. For two dominoes t1 = 〈c1, r1, c
′
1〉 and t3 = 〈c3, r3, c

′
3〉 in D and a

set of roles r �= ∅, we say t3 is a r-successor of t1 if one of the following holds:

(a) t1 � t3 and r ⊆ r3, or
(b) for some role set r′, D contains an r′-successor t2 of t1 such that t2 � t3

and for each R ∈ r there exists S ∈ r′ with TransR(S), S *∗R R and S ∈ r3.

We are ready to define domino associations, which characterize the |=o relation.

Definition 6. A domino association for tq is a mapping μ that assigns to each
z ∈V(tq) a domino μ(z)∈D in a way such that, for each pair x, y∈V(tq):
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(a) if A(x) ∈ tq, then A ∈ c′, where μ(x) = 〈c, r, c′〉; and
(b) if r = {R | R(x, y) ∈ tq} is not empty, then μ(y) is an r-successor of μ(x).

B

t1

t4

t3

BR
t2

B

B R A A

CP, R

Fig. 2. Domino D

Example 3. Consider the domino system D = 〈D,�
,R〉 in Figure 2, where the black arrows show the
dominoes of D and the dashed arrows the � relation;
R= {Trans(R)} and the initial domino is t1. A pos-
sible domino association for tq1 in Example 2 is the
mapping μ1 with μ1(x) = t2, μ1(y) = t2, μ1(z) = t4.
Note that t2 and t4 are {R}-successors of t2 as R is
transitive, and that tq1 has no domino association

for R= ∅. The query tq2 in Example 2 has a domino association even in this
case, witnessed by μ2 with μ2(x) = t3, μ2(y) = t2, and μ2(z) = t4.

The following is immediate from the definition of |=o and Definition 6.

Theorem 1. D |=o tq iff there exists a domino association for tq.

By Theorem 1, we can decide D |=o tq by deciding existence of a domino as-
sociation. We exploit for the latter the procedure checkRoleSucc in Figure 1,
which nondeterministically checks whether a domino t2 is an r-successor of a
domino t1.

Proposition 1. Let t1, t2 be dominoes of D, and r a role set. Then t2 is an
r-successor of t1 iff some run of checkRoleSucc(D, t1, t2, r) returns true.

Now the following simple procedure assocDominoes(D, tq) non-deterministically
decides the existence of a domino association for tq w.r.t. D: (1) guess a mapping
μ from V(tq) to dominoes of D, and (2) check satisfaction of the conditions (a)
and (b) in Definition 6; to check (b), call checkRoleSucc for each arc in tq.

Theorem 2. D |=o tq iff some run of assocDominoes(D, tq) returns true.

Having a procedure to decide D |=o tq for tree-shaped queries tq, we now set-
tle deciding D |= q for arbitrary CQs q. Following [4,6,14], we consider query
treeifications, i.e., tree-shaped queries whose matches induce matches for q.2

Definition 7. For every CQ q, let qR be the smallest query such that: (a)
q⊆ qR, (b) R(x, y)∈ qR and R*P ∈R implies P (x, y)∈ qR, (c) R(x, y)∈ qR,
R(y, z)∈ qR and TransR(R) imply R(x, z)∈ qR, and (d) R(x, y)∈ qR implies
Inv(R)(y, x)∈ qR. A treeification of q is a tree-shaped query q′ such that
|q′| ≤ 2|q| and there exists a mapping θ from V(q) to V(q′) fulfilling

a) A(x) ∈ q implies A(θ(x)) ∈ q′, and
b) R(x, y) ∈ q implies R(θ(x), θ(y)) ∈ (q′)R.

2 Unlike [4,6,14], we do not use treeifications to reduce CQ entailment to concept
satisfiability, as this would require the use of role conjunction and the decidability
of this extension of Horn-SHIQ in ExpTime is not apparent.
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As easily shown, each match for a treeification q′ of q in TD is also a match for
q. On the other hand, from each match for q in TD, we can obtain a treeification
q′ that is mappable into TD via an ordered match.3 Hence, we obtain:

Theorem 3. For any CQ q, D |= q iff D |=o q′, for some treeification q′ of q.

It follows that we can decide D |= q by listing all treeifications of q and posing
them separately over D. Note that there are finitely many treeifications of q.

4 A Tableaux Algorithm for Horn-SHIQ
In order to exploit the results of Section 3 for query answering in Horn-SHIQ, we
first provide a tableau algorithm for KB satisfiability. Like the standard SHIQ
tableau [8], it uses a completion forest to represent a model; in the next section
we extract from it a domino system that can be used for query answering.

In what follows, K=〈T ,R,A〉 is a Horn-SHIQ KB. We use A,B,C to denote
concepts names; D,E to denote (arbitrary) concepts; R,R′ to denote a role; S
a simple role; and a, b to denote individuals.

Most of the following definitions are based on [8], while 9 and 14 follow [15] and
are related to anywhere blocking. Definition 8 is simplified since only normalized
KBs are considered, and the ≈ relation from [8] is omitted in Definition 10.4

Definition 8. (concept closure) We define Cl(K) as the smallest set of concepts
closed under subconcepts such that (i) D,E ∈Cl(K) for every D*E ∈T ; and
(ii) if ∀R.A∈Cl(K), TransR(R′) and R′*∗RR for some R′, then ∀R′.A∈Cl(K).

Definition 9. ((named/unnamed) nodes) We assume a countably infinite set N
of nodes and a strict total order � on N. Each a∈ I(K) is associated with one
fixed node na ∈ N; the nodes na are named, all other nodes are unnamed.

Definition 10. (completion forest) A completion forest for a KB K is a tuple
F = 〈N , E ,L, �≈〉 where N ⊆ N and E ⊆ N × N define a directed graph; L
is a labeling function assigning each n∈N a subset of Cl(K) and each pair
u, u′ ∈N ×N to a set of roles (over K), in such a way that L(u, u′) = ∅ for all
(u, u′) �∈ E; and �≈⊆ N×N is a binary relation, tacitly assumed to be symmetric.

Definition 11. (successor, neighbor) For a completion forest F=〈N , E ,L, �≈〉
and a pair u, u′ ∈N , u′ is a successor of u if (u, u′) ∈ E. The inverse of successor
is called predecessor; the transitive closures of successor and predecessor are
ancestor and descendant respectively. For all R, u′ is an R-successor of u if
R′ ∈L(u, u′) for some R′ with R′ *∗R R. We call u′ an R-neighbor of u, if u′ is
an R-successor of u, or if u is an Inv(R)-successor of u′.
3 As implicit in [6], such a q′ with |q′| ≤ 2|q| exists: to obtain a treeification from

a match, one replaces each atom R(x, y) ∈ q with a pair of atoms in case x, y are
mapped (i) to the same node, or (ii) to nodes in different branches of the domino tree.

4 It is irrelevant for query answering, but could be emulated e.g. using node labels Ca.
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Definition 12. (clash-free completion forest) A completion forest F contains
a clash, if ( i) for some u∈N , ⊥ ∈ L(u); or ( ii) for some u∈N with ≤
nS.C ∈L(u), u has n + 1 S-neighbors w0, . . . , wn such that, for all 0 ≤ i <
j ≤ n, C ∈L(wi) and wi �≈ wj ∈F . If F contains no clash, then F is clash-free.

Definition 13. (initial completion forest) The initial completion forest FA for
K has the named node na labeled with L(na) = {A∈C(K) | a : A ∈ A} for each
individual a ∈ I(K), and an edge (na, nb)∈E labeled L(na, nb) = {R | 〈a, b〉 :
R ∈ A} for each pair a, b ∈ I(K); the relation �≈ is empty.

Definition 14. (blocking) For a completion forest F = 〈N , E ,L, �≈〉, a node
u∈N is blocked if u is unnamed and u is either directly or indirectly blocked;
u is indirectly blocked if one of its ancestors is blocked; u is directly blocked
if none of its ancestors is blocked and there is some u′ � u such that u, u′ are
unnamed nodes, L(u) = L(u′), L(v) = L(v′), and L(v, u) = L(v′, u′), where v
and v′ are the predecessors of u and u′ respectively.

The expansion rules are given in Figure 3, where a node u∈N is new in F if
u′ � u for every u′ ∈N . The ≤-rule calls the operation merge(u,N) described in
Figure 4. The rules are similar to those in [8], except for the first three, which
(lazily) ensure the satisfaction of the TBox axioms. Also, the restricted form of
at-most number restrictions allows us to have just one ≤-rule and a deterministic
merge(u,N) that simultaneously merges all nodes in N into one.5

The initial FA is expanded by exhaustively applying the rules in Figure 3.
The expansion stops, if a clash is reached; otherwise, it continues until the forest
is complete, i.e., no rule is applicable. It can be shown similarly as in [8,15] that
this algorithm is a decision procedure for KB satisfiability in Horn-SHIQ.

Theorem 4. Let K be a Horn-SHIQ KB. Then K is satisfiable iff a complete
and clash-free completion forest for K can be obtained.

Note that after applying any rule from Figure 3, the resulting forest is uniquely
determined up to renaming of nodes. The only source of differences in the re-
sulting forests lies in possibly different orderings of rule applications (this could
be eliminated, e.g., using � and any fixed ordering on Cl(K) and on the rules).
However, these differences are not relevant: each F represents a universal model
IF (defined as its standard unravelling [8]) that is embeddable into every model
of K, and can be used for query answering. The following is shown by a straight-
forward induction on the construction of IF :

Theorem 5. Let I be a model of K, let F be a complete and clash-free comple-
tion forest for K, and let IF be the model of K represented by F . Then there is a
homomorphic embedding of IF into I. Hence, for any CQ q, K |= q iff IF |= q.

5 Note that the TBox internalization of [8] is not adequate for Horn-SHIQ, and that
the other rules of [8] are not necessary due to the normal form of the KB.
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T -rule: if A�D ∈ T , A ∈ L(u), and D /∈ L(u),
then L(u) := L(u) ∪ {D}.

T�-rule: if A � B �C ∈ T , {A, B} ⊆ L(u),
u is not indirectly blocked, and C 	∈ L(u),

then L(u) := L(u) ∪ {C}.
T∃-rule: if ∃R.A�B ∈ T , B 	∈ L(u), u is not indirectly blocked, and

u has an R-neighbor u′ with A ∈ L(u′),
then L(u) := L(u) ∪ {B}.

∃-rule: if ∃R.A ∈ L(u), u is not blocked,
and u has no R-neighbor u′ with A ∈ L(u′),

then set N = N ∪ {u′}, E = E ∪ {(u, u′)}, L(u, u′) := {R}
and L(u′) := {A} for some u′ new in F .

∀-rule: if ∀R.A ∈ L(u), u is not indirectly blocked, and
u has an R-neighbour u′ with A /∈ L(u′),

then L(u′) := L(u′) ∪ {A}.
∀+-rule: if ∀R.A ∈ L(u), u is not indirectly blocked,

there is some R′ with TransR(R′) and R′ �∗
R R,

and there is an R′-neighbour u′ of u with ∀R′.A /∈ L(u′),
then L(u′) := L(u′) ∪ {∀R′.A}.

≥-rule: if ≥ mS.A ∈ L(u), u is not blocked,
and there are no m S-neighbours u1, . . . , um of u
such that A ∈ L(ui) and ui 	≈ uj for 1 ≤ i < j ≤ m,

then set N = N ∪ {u1, . . . , um}, E = E ∪ {(u, u1), . . . , (u, um)},
L(u, ui) := {S}, L(ui) := {A} and ui 	≈ uj

for 1 ≤ i < j ≤ m and u1, . . . , um new in F .

≤-rule: if ≤ 1S.A ∈ L(u), u is not indirectly blocked,
N is the set of all S-neighbours u′ of u with A ∈ L(u′),
|N | > 1 and there is no pair u′, u′′ in N with u′ 	≈ u′′,

then merge(u, N).

Fig. 3. Tableaux expansion rules

5 Conjunctive Queries over Horn-SHIQ
To answer CQs over Horn-SHIQ KBs, we exploit the method for answering
tree-shaped queries over domino systems. For this section, we assume that K =
〈T ,R,A〉 is a consistent Horn-SHIQ KB, and q is an arbitrary CQ.6 From a
complete and clash-free completion forest FK for K, we extract a domino system
DFK that encodes a forest-shaped universal model of K for query answering. We
then rewrite q into a set of tree-shaped queries which can be posed separately
over DFK , such that K |= q iff one of the generated queries is entailed by DFK .

The transformation of the completion forest into DFK , which we now present,
eliminates the ‘graph part’ of the forest by encoding it into the initial domino.

Definition 15. Let F = 〈N , E ,L, �≈〉 be a complete and clash-free completion
forest for K. For every u ∈ N , let L′(u) = L(u) ∩ C(K).

6 Note that in case of inconsistent KBs, query entailment is trivial.
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(1) let u0 be the �-minimal element of N ;
(2) let N ′ = N \ {u0}; let N ′′ be the minimal set containing N ′,

each unnamed successor u′ of a node in N ′, and all descendants of u′;
(3) if (u′, n) ∈ E for some u′ ∈ N ′ and some named n,

then E := E ∪ (u0, n) and L(u0, n) := L(u0, n) ∪ L(u′, n);
if (n, u′) ∈ E for some u′ ∈ N ′ and some named n,
then E := E ∪ (n, u0) and L(n, u0) := L(n, u0) ∪ L(n, u′);

(4) set N := N \ N ′′, E := E \ {(v, u′) | u′ ∈ N ′′}, restrict L and �≈ to the new N , E ;
(5) add u0 �≈ v for every v ∈ N such that u′ �≈ v for some u′ ∈ N ′;
(6) set L(u0) := L(u0) ∪ L(N ′), where L(N ′) =

S
u′ ∈ N′ L(u′);

(7) if (u0, u)∈E then L(u0, u) :=L(u0, u)∪L(N ′, u), else L(u, u0) :=L(u, u0)∪ L(u, N ′),
where L(u, N ′) =

S
u′ ∈ N

L(u, u′) and L(N ′, u) = {Inv(R) |R∈L(u, N ′)}.

Fig. 4. The merge(u, N) operation on F = 〈N , E ,L, 	≈〉

Let t0 = 〈∅, ∅, c〉 be the domino where c is the smallest set of fresh concept
names such that Root ∈ c and, for each pair na, nb of named nodes in N , (i)
A ∈ L′(na) implies Aa ∈ c, (ii) if nb is an R-neighbour of na, then Ra,b ∈ c,
(iii) Ra,b ∈ c and R * R′ ∈ R implies R′

a,b ∈ c, (iv) Ra,b ∈ c, Rb,d ∈ c and
TransR(R) implies Ra,d ∈ c, and (v) Ra,b ∈ c implies Inv(R)b,a ∈ c.

For each named node na ∈ N , let ta denote the domino ta = 〈c, {Qa}, c′〉,
where Qa is fresh and c′ = L′(na). For a pair (u, u′)∈E, let t(u, u′) denote the
domino 〈L′(u), {R | u′ is an R-neighbour of u},L′(u′)〉. Then DF = 〈D,�,R〉
is the domino system with initial domino t0, where

- D is the smallest domino set containing (i) t0, (ii) ta for each named na ∈ N ,
and (iii) each t(u, u′) such that (u, u′)∈E and u′ is unnamed and not blocked.
- � is the smallest relation s.t. (i) for all named na ∈N , t0 � ta and ta � t(na, u)

for every t(na, u)∈ D; and (ii) if t(u, u′), t(u′, v) ∈ D for some (u, u′), (u′, u′′)∈E
such that either u′′ = v is not blocked or u′′ is blocked by v, then t(u, u′) � t(u′, v).

Since the specific complete and clash-free F does not matter, we assume in what
follows a fixed arbitrary FK and denote its domino system DFK simply by DK.
As easily seen, we can reconstruct a universal model of K from the domino tree of
DK. However, for querying DK, we need to rewrite q in order to handle the links
between individuals encoded as concept names in the initial domino.

Definition 16. A link rewriting of q w.r.t. K is a CQ obtained from q as follows:

1. Exhaustively replace, one by one, R(y, x) by Inv(R)(x, y) whenever there are
atoms of the form R(y, x) and S(x, y) in q.

2. Let μ : V(q)→ I(K) be a partial function, and let ν(x)∈ {r (root), i (inside)}
be a choice for each x∈ dom(μ). Let {z} ∪ {x′ | x ∈ V(q)} be fresh variables.
Then, for each R(x, y) ∈ q with {x, y}⊆dom(μ), let S*∗RR be arbitrary such
that TransR(S) holds if either ν(x) = i or ν(y) = i, and (i) replace R(x, y)
in q by Root(z), Sa,b(z), where μ(x) = a and μ(y) = b, and (ii) add in q,
depending on the choice [ν(x), ν(y)], the following atoms:
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[r, r]: Qa(z, x), Qb(z, y); [i, i]: Qa(z, x′), Qb(z, y′), S(x, x′), S(y′, y);
[i, r]: Qa(z, x′), Qb(z, y), S(x, x′); [r, i]: Qa(z, x), Qb(z, y′), S(y′, y).

Roughly speaking, possible R-connections between matches for x and y in IFK

via two individuals a, b are reflected in the query by the atoms Root(z), Sa,b(z)
and [ν(x), ν(y)]. For example, if R= {Trans(S), S *R}, the CQ q′ = {Root(z),
Sa,b(z), Qa(z, x′), S(x, x′), A(x), Qb(z, y), B(y)} is a link rewriting of q = {A(x),
R(x, y), B(y)}, obtained by choosing μ(x) = a, μ(y) = b, ν(x) = i, ν(y) = r and S.
A match for q′ in TDK corresponds to a match for q in IFK mapping x to a
descendant of a (i.e., inside the tree rooted at a) and y to b (i.e., the root of b’s
tree), which are connected via an S-path and thus in the extension of R. Note
that, as ν(x) = i was chosen, the non-transitive R can not link the matches of x
and y. Choosing μ(x) = a, μ(y) = b, ν(x) = r, ν(y) = r and R we obtain a rewriting
q′′ = {Root(z), Ra,b(z), Qa(z, x), A(x), Qb(z, y), B(y)} that captures the matches
for q which map x and y to a and b if they are R-neighbors in IFK .

Theorem 6. K |= q iff DK |= q′ for some link rewriting q′ of q. Hence, due to
Theorem 3, K |= q iff DK |=o tq, for some treeification tq of a link rewriting of q.

Theorem 6 suggests a procedure for deciding K |= q: it suffices to verify the
existence of a treeification of a link rewriting of q that has an ordered match in the
domino tree of DK. The latter can be verified using the method from Section 3.

6 Computational Complexity

We now show that CQ entailment in Horn-SHIQ is decidable in exponential
time. The presented method relies on the extraction of a domino system from a
complete and clash-free completion forest. Hence, the following is important.

Theorem 7. The tableau algorithm for Horn-SHIQ in Section 4 decides con-
sistency of Horn-SHIQ KBs in single exponential time. For a consistent KB, it
constructs a complete and clash-free completion forest of at most exponential size.

Proof (Sketch). Definition 14 ensures that if a completion forest F contains two
pairs of nodes with the same node-arc-node label combination, one of them is
blocked. The number of such combinations, and thus of nodes in a forest, is single
exponential in the input KB K (in fact, it is bounded by 22|Cl(K)|×2|R(K)|). Using
the usual arguments [8], it can be shown that the number of rule applications
needed to generate F is polynomially bounded by the maximal number of nodes
it can have, as the shrinking rules do not cause repeated rule applications. ��

We are ready to formulate the main complexity results of this paper.

Theorem 8. Conjunctive query entailment K |= q in Horn-SHIQ is ExpTime-
complete in combined complexity, i.e., in the size of the KB K and the query q.
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Proof (Sketch). By Theorem 7, we can check the consistency of K using the
tableau-based algorithm in exponential time. If K is found inconsistent, then
K |= q trivially holds. Otherwise, we can extract the domino system DK from
the completion forest FK that was constructed, in time polynomial in |FK|.

Each link rewriting q′ of q, as well as each treeification tq of q′, has size poly-
nomial w.r.t. |K| + |q|. The are at most exponentially many q′ and, for each q′,
at most exponentially many tq; hence, there are at most exponentially many
tq in total, and they can be traversed in polynomial space. To show ExpTime

membership of K |= q, it is thus sufficient to show that DK |=o tq is decidable
in exponential time w.r.t. |K| + |q|. Indeed, checkRoleSucc runs in NPSpace

w.r.t. |K| + |q| if DK is precomputed (note that the counter i needs only poly-
nomial space). The procedure assocDominoes runs in NP (w.r.t. |K|+ |q|) using
checkRoleSucc as an oracle. Hence, DK |=o tq is in NP

NPSpace = PSpace w.r.t.
|K|+ |q|, if DK is precomputed. As computing DK is feasible in exponential time,
it follows that deciding K |= q is in ExpTime. The matching lower bound follows
from the ExpTime-hardness of consistency checking in Horn-SHIQ [11]. ��

The next result shows that CQs in Horn-SHIQ are tractable in data complexity.

Theorem 9. Conjunctive query entailment K |= q in Horn-SHIQ is P-complete
in data complexity, i.e., in the size of the ABox A of the KB K= 〈T ,R,A〉.

Proof (Sketch). As in Theorem 8, we can check the consistency of K when we
construct the completion forest FK. As T and R are fixed, |FK| is polynomial
w.r.t. A, so FK and DK can be constructed in time polynomial w.r.t. A. Next, for
fixed q, T and R, there are polynomially many treeifications tq of link rewritings
q′ of q w.r.t. A, and they can be traversed in polynomial time. By Theorem 1,
it remains to show that the existence of a domino association μ : V(tq) → D,
where D is the domino set of DK, is decidable in polynomial time w.r.t. A.
Since |V(tq)| is bounded by a constant w.r.t. A and |D| is polynomial w.r.t. A,
there are polynomially many candidate μ w.r.t. A. We can check r-successorship
between dominoes t1, t2 of DK in time polynomial in |DK|, i.e., polynomial w.r.t.
A. Hence, we can check whether μ satisfies Definition 6 in polynomial time
w.r.t. A. The resulting P membership bound is tight, as consistency checking in
any DL allowing for conjunction on the left hand side and quantified universal
restrictions on the right hand side of GCIs is P-hard in data complexity [3]. ��

The source of ExpTime-hardness of consistency testing in Horn-SHIQ, and
hence of query entailment, are inverse roles and concepts of the form ∃R.A on
the left hand side of the GCIs. Intuitively, both constructs allow to propagate
information from a node to its ancestors in a completion forest; any one of them
allows for an encoding of a generic Alternating PSpace Turing machine. If we
disallow both, obtaining the DL Horn-SHQ−, consistency testing and CQ entail-
ment drop to PSpace-completeness. Roughly, the direct successors of a node in
a completion forest can be inferred in polynomial time from its label. Hence,
the existence of a complete and clash-free completion forest F is refutable in
PSpace without building it, by non-deterministically following a path in F (of
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at most exponential length) that leads to a clash. CQ entailment is decidable in
PSpace by supplying checkRoleSucc with a PSpace oracle for navigating the
domino system DK (note that the explicit construction of DK may require expo-
nential space). This procedure is worst-case optimal, as consistency checking in
Horn-SHQ− is PSpace-hard (provable, e.g., by a generic Turing machine encod-
ing). Finally, also our P-completeness result for data complexity of CQs carries
over from Horn-SHIQ to Horn-SHQ−. Details will be given in the full paper.

7 Related Work and Conclusion

As found recently, answering CQs in some expressive DLs, including ALCH [16]
and ALCHQ [14], is not harder than standard reasoning, and in fact ExpTime-
complete in combined complexity. Horn-SHIQ is another such DL but orthogonal
to those mentioned, as it offers transitive and inverse roles but excludes disjunc-
tion (we note that one can infer from [2] the ExpTime-completeness result for the
DL Horn-ALCHI, i.e., Horn-SHIQ without transitive roles and number restric-
tions). Moreover, the data complexity of CQs is polynomial in Horn-SHIQ but
intractable in ALCH and ALCHQ (in fact, it is coNP-hard already for AL [3]).

Different approaches have been recently used to show that CQs have tractable
data complexity in some DLs. A large class of such DLs are extensions of EL [1],
considered e.g. in [17,12,10], of which ELH, ELIf , and EL++ are particularly
noticeable. For EL and ELH, which are subsumed by Horn-SHIQ but not by
Horn-SHQ− (due to the absence of existential restrictions on the LHS of the
GCIs), a reduction to Datalog has been given in [17]. In both EL and ELH, CQs
have coNP-complete combined complexity and P-complete data complexity.
For ELIf , which is also strictly subsumed by Horn-SHIQ (as the latter offers
qualified universal quantification on the RHS of axioms and more general num-
ber restrictions) an explicit (partial) construction of a universal model was used
in [10]. Like in Horn-SHIQ and Horn-SHQ−, CQs have P-complete data com-
plexity in ELIf . Finally, for EL++, which is orthogonal to both Horn-SHIQ
and Horn-SHQ− (EL++ has nominals and regular role hierarchies, but lacks
universal quantification), special proof-graphs with automata were used in [12].
Noticeably, CQs in EL++ have PSpace-complete combined and P-complete data
complexity respectively, and thus the same complexity as in Horn-SHQ−.

Another prominent family for which data complexity has been deeply investi-
gated is DL-Lite [5]. For the core DL-Lite and its extension with functionality and
conjunction, which is subsumed by Horn-SHIQ but not by Horn-SHQ−, query
rewriting into first-order logic over relational databases has been been employed.
CQ answering has very low data complexity (inside logarithmic space), and its
coNP-complete combined complexity is also much lower than for Horn-SHQ−.

Our ongoing and future work is devoted to the following issues. The first con-
cerns richer query syntax. As the normal form and the universal model property
of Horn-SHIQ carry over to unions of CQs and the more general positive exis-
tential queries (PQs), our results can be immediately extended to them. In fact,
answering PQs in Horn-SHIQ is reducible to answering at most exponentially
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many (in the size of the PQ) CQs. Further, since the universal model property al-
lows us to precompile a knowledge base K into a (query-independent) domino
system DK for on-line query answering, the identification of cases in which DK
is small would be beneficial. Finally, an obvious issue is a detailed study of other
fragments of Horn-SHIQ besides Horn-SHQ−. The effect of syntactic restric-
tions similarly as in [3] on data complexity is here of particular interest.
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Abstract. Accommodative revision is a novel method of non-prioritized belief
revision. The epistemic state of an agent contains both knowledge that is immune
to revision and beliefs that are allowed to change. Incoming information is first
revised by the knowledge of the agent, and then the epistemic state of the agent
is revised using this modified input. The properties of the method are studied and
examples of its use are given.

Keywords: belief change, belief revision, non-prioritized belief revision,
integrity constraints, knowledge.

1 Introduction

In belief revision, an agent obtains new information about a static world. On one hand,
the input may be considered as the most recent and as such the most reliable piece of
information. In that case, if the new information contradicts the beliefs of the agent,
it needs to give up some of the old beliefs in order to maintain consistency of be-
liefs [1]. However, this framework, called prioritized belief revision, allows even self-
contradictory input to be accepted into the beliefs of the agent.

On the other hand, in non-prioritized belief revision (see [16] for a survey) the input
is not necessarily accepted. The agent may have some information that it will refuse to
give up at any situation. In computer science such information might be called integrity
constraints [22], in philosophy knowledge [17]. In belief revision literature the term
core beliefs has also been used [16].

Instead of rejecting the input that the agent knows to be impossible, we aim to find
a charitable interpretation that retains as much as possible of the input. For instance,
suppose that we hear that “Jaakko Kuusisto, a winner of the Sibelius violin contest,
gives a concert at the forthcoming open air music festival”. However, we know for a
fact that although Jaakko has participated in the contest as well, it is actually his brother
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c© Springer-Verlag Berlin Heidelberg 2008



Accommodative Belief Revision 181

Pekka who has managed to win it. Our natural reaction would be to think that “the
speaker must have got either the first name or the bit about the contest victory wrong.
But there will be a concert by either of the two brothers, that much I can believe now”.

The amount of information obtained from an “unbelievable input” may vary. Let
us consider a modification of an example by Hansson [15]. Amy tells the agent that
she saw a three-toed woodpecker with a red forehead and a red rump just outside her
window. When it comes to birds, the agent has more knowledge than Amy: The agent
knows that a three-toed woodpecker neither has a red forehead nor a red rump. The
agent has various possibilities when making sense of the impossible statement. With
some benevolence, it can come to one of the following conclusions: (1) Amy saw a bird
with a red forehead and a red rump, but it was not a three-toed woodpecker, (2) Amy
saw a bird with a red forehead and a red rump or Amy saw a three-toed woodpecker
(but not one with a red forehead or a red rump), or (3) at least Amy saw some kind of a
bird outside her window.

In this paper, we introduce accommodative revision, a method for non-
prioritized belief revision. The basic idea is to use knowledge as a filter that the in-
coming information has to pass through before the epistemic state can be revised. The
agent will modify the input to accord with its knowledge.

Our proposal has the following properties: (1) input inconsistent with knowledge
will not be accepted, but the input will be modified to produce an acceptable formula
prior to revising the epistemic state, (2) only knowledge is used to modify the input, and
(3) the modification of the input and the revision of the epistemic state are performed as
two separate phases. We will also describe an implementation that is publicly available
to allow small-scale experimentation of our proposal1.

In our two-phase revision, at first the input is revised by the knowledge of the agent,
giving a new input formula. Then the epistemic state of the agent is revised by the new
formula. Thus our proposal is closely related to selective revision [12] and might be
considered as a generalization of the revision method presented in [2] (see Sect. 3 for
comparison). Other, more recent non-prioritized belief revision proposals based on the
modification of input sentence do also exist, e.g. [5], [20] and [3], but they are based
on syntactic manipulation whereas our method uses previously defined (semantically-
oriented) belief-revision operators already known to satisfy certain principles.

The outline of the paper is as follows. Section 2 recalls the basic ideas of belief
revision. In Sect. 3 we give the definition of our method, and in Sect. 4 we study its
properties. In Sect. 5 we introduce an implementation of accommodative revision with
various sample operators. In Sect. 6 we analyze some examples. Section 7 is devoted
for conclusions.

2 Preliminaries

In belief revision, an agent evolves its epistemic state due to incoming information
called epistemic input. At first the input is classified, and the way the epistemic state
will be changed depends on the result of the classification. On the meta level, the change
is guarded by rationality criteria. Alchourrón, Gärdenfors and Makinson [1] have pro-
posed a set of principles for belief revision known as the AGM-postulates. Darwiche

1 http://www.cs.helsinki.fi/group/protean/abr/

http://www.cs.helsinki.fi/group/protean/abr/
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and Pearl [7,8] have proposed an additional set of postulates for belief revision in or-
der to rule out change operators that give unintuitive results in iterated revisions. The
main principles in these sets of postulates are maintaining consistency of the beliefs and
minimality of change.

We assume that the set of propositional formulas believed in any epistemic state is
deductive closed. For each epistemic state T , let TB denote the belief set of the state,
that is, the deductive closure of formulas believed in the state. Let ◦ denote a revision
operator, that is, a function from epistemic states and propositional input formulas into
epistemic states. The AGM-postulates and the DP-postulates are rephrased here as fol-
lows:

(R1): A ∈ (T ◦ A)B .
(R2): If ¬A �∈ TB , then (T ◦ A)B = TB + A.
(R3): If A �|=⊥, then ⊥�∈ (T ◦ A)B .
(R4): If A ≡ B, then (T ◦ A)B = (T ◦ B)B .
(R5): (T ◦ (A ∧ B))B ⊆ (T ◦ A)B + B.
(R6): If ¬B �∈ (T ◦ A)B , then (T ◦ A)B + B ⊆ (T ◦ (A ∧ B))B .
(DP1): If A |= B, then ((T ◦ B) ◦ A)B = (T ◦ A)B .
(DP2): If A |= ¬B, then ((T ◦ B) ◦ A)B = (T ◦ A)B .
(DP3): If A ∈ (T ◦B)B , then A ∈ ((T ◦ A) ◦ B)B .
(DP4): If ¬A �∈ (T ◦ B)B , then ¬A �∈ ((T ◦ A) ◦ B)B .

Here A and B denote propositional (input) formulas, and TB +A denotes the deductive
closure of the set TB ∪ {A}. In the AGM-postulates (R1)–(R6), the epistemic input is
always prioritized over the old beliefs due to postulate (R1). Postulates (R1)–(R4) are
considered basic: every (prioritized) belief-revision operator should satisfy them. Pos-
tulates (R5)–(R6) are supplementary. Note that only belief sets of epistemic states are
used in the formulation: Because we do not make other assumptions about the repre-
sentation of epistemic states, we do not use equality nor equivalence of epistemic states
in the formulation.

If epistemic states were functionally dependent on the belief sets in the states, then
the joint set of postulates would result in triviality of logic, that is, no three satisfiable but
pairwise inconsistent formulas could exist [13,10]. Ruling out inconsistent epistemic
states and self-contradictory epistemic input does not solve the problem [10,11]. Thus
for the joint set of postulates, more elaborate epistemic states are needed.

As known [14], belief revision involves ordering among possible worlds. Those pos-
sible worlds that are minimal in the ordering are the most plausible worlds (the doxastic
alternatives) in the state. The possible worlds modelling the new formula that are min-
imal in the ordering will be the most plausible worlds in the revised state. Spohn [24]
has argued that this ordering should be part of the epistemic state, because it is altered
in the process of revision.

To represent epistemic states, Spohn [24] introduced ranking functions (alias Ordi-
nal Conditional Functions, OCFs), which are functions from the set of possible worlds
into ordinals. The ordinal of a world is its rank. The smaller the rank, the less disbe-
lieved is the world. The most plausible worlds (the doxastic alternatives) are the worlds
with rank 0. The rank of a proposition (a set of possible worlds) is the minimum of
the ranks of the worlds within it. Spohn rules out both inconsistent epistemic states
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and self-contradictory epistemic input. To update the ranking, Spohn [24] also intro-
duced a method, in which the rankings are shifted. Darwiche and Pearl [7] introduced
a belief-revision operator based on Spohn’s framework to accommodate the principles
for iterated belief revision. We, too, shall adopt and elaborate on Spohn’s framework in
Sect. 5.1.

We will treat knowledge in belief change as integrity constraints have been con-
sidered in theory change. Integrity constraints are used to express those properties that
should always hold. When defining the effect that the integrity constraints have on belief
change, Katsuno and Mendelzon [18] have required that the result entails the integrity
constraints. Then, with any belief-revision operator satisfying the AGM-postulates, the
integrity constraints actively take part in belief revision.

Let us consider the definition by Katsuno and Mendelzon [18] in more detail. Us-
ing T to denote an epistemic state, A to denote an epistemic input, ◦ to denote a belief
revision operator, and IC to denote a propositional formula expressing integrity con-
straints, they defined the effect of integrity constraints on belief revision as

T ◦IC A =def T ◦ (A ∧ IC). (1)

We will adopt this definition and develop it further.

3 The Principle of Accommodative Revision

Before introducing accommodative revision, let us specify our framework. For each
epistemic state T , let TB denote the belief set of the state as in Sect. 2, and let TK

denote the set of all the propositional formulas constituting the knowledge in the state.
Both sets are deductively closed, thus all the tautologies will be included in them. We
shall restrict our accommodative revision only to those epistemic states in which the
following static constraints are satisfied:

(S1): TK ⊆ TB .
(S2): ⊥�∈ TK .

Condition (S1) says that the agent believes what it knows, and condition (S2) says that
the knowledge set does not include contradictions.

However, we do not assume that the sets TB and TK constitute the epistemic state.
In fact, Sect. 5.1 uses Spohn’s [24] ranking functions to represent epistemic states, yet
the general method is independent of the representation.

We shall make a strong assumption that the set TK can be represented by a propo-
sitional formula. This assumption can be justified when assuming that the knowledge
in the epistemic state is obtained in a finite sequence of monotonous knowledge expan-
sions starting from a state in which nothing (except tautologies) was known. Our way
of meeting this assumption will be given in Sect. 5.1.

We extend Definition (1) as follows. Let T denote an epistemic state, let K denote
a propositional formula representing the set TK , and let A denote a propositional input
formula. We define the accommodative revision of the state T by the formula A as

T ⊗A =def T ◦ (A ∗ K) (2)
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in which ⊗ denotes an accommodative revision operator, ◦ denotes belief revision of
epistemic states, and ∗ denotes revision of propositional formulas. Note that we do not
propose a single operator but a scheme in which various operators can be applied.

The philosophical justification of our method is the following: We consider the mod-
ified input as an estimate of the formula that the source of the input would have given,
had it had all the knowledge that our agent has.

Let us compare our proposal with some related work. As a special case of accom-
modative revision, we will get screened revision [19] by defining that A ∗ K ≡ K
whenever ¬A ∈ TK . Our proposal resembles the proposal by Bellot et al. [2], which
also has the same two phases, but uses the same fixed distance-based revision operator
to update both the input by the knowledge and the epistemic state. Our proposal lets
the agent choose the two components separately, without imposing limitations on the
representation of epistemic states. Thus our proposal is a generalization of theirs.

In selective revision [12], some function is to be used to replace the input by a new
formula that is typically entailed by the original input. In our proposal, not only is
the complement of the knowledge contracted from the input, but the knowledge is in-
corporated into the input. Without the latter, our proposal could be considered as an
instantiation of selective revision.

4 Features of Accommodative Revision

Let us analyze some features of our accommodative revision. We want to prove that the
operators in the family of accommodative revision accomplish non-prioritized belief
revision satisfying the AGM postulates (R2)–(R4) and a modification of (R1). We first
make some assumptions of the operators ∗ and ◦ used as components in accommodative
revision.

We assume that the modification function ∗ is a function from pairs of propositional
formulas into propositional formulas and it satisfies at least the basic AGM-postulates
rephrased here for this framework as follows: (MR1): A∗K |= K , (MR2): If K �|= ¬A,
then A ∗ K ≡ A ∧ K , (MR3): If K �|=⊥, then A ∗ K �|=⊥, (MR4): If A ≡ A′ and
K ≡ K ′, then A ∗K ≡ A′ ∗K ′. Here A, A′, K and K ′ denote propositional formulas.

We assume that ◦ is a function from epistemic states and propositional formulas
into epistemic states. We assume that the operator ◦ satisfies at least the basic AGM-
postulates (R1)–(R4). We shall also use the following extra condition to ensure that ◦
does not change the knowledge in the state:

(R0): (T ◦ A)K = TK .

We shall restrict our accommodative revision only to those epistemic states in which
the static constraints (S1) and (S2) from Sect. 3 are satisfied.

Now, using these assumptions, we can prove that an accommodative-revision opera-
tor ⊗ preserves these static constraints and has the following features:

(AR0): (T ⊗A)K = TK .
(AR1): If ¬A �∈ TK , then A ∈ (T ⊗A)B .
(AR2): If ¬A �∈ TB , then (T ⊗A)B = TB + A.
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(AR3): ⊥�∈ (T ⊗A)B .
(AR4): If A ≡ A′, then (T ⊗A)B = (T ⊗A′)B .

(AR0), (AR2), and (AR4) are equivalent to postulates (R0), (R2), and (R4) correspond-
ingly. (AR3) is stronger than (R3): It says that accommodative revision always results
in epistemic states with non-contradictory belief sets. According to (AR1), the new for-
mula is accepted, if it is not contradictory to the knowledge in the state. Note that all
these are derived properties, not principles set for accommodative revision.

We can see that accommodative revision fails to satisfy the basic AGM-postulates
only when the input is contradictory to the knowledge in the state: In those cases the
success postulate (R1) fails. Thus accommodative revision is non-prioritized belief revi-
sion. Accommodative revision preserves the static constraints, and it is able to guarantee
non-contradictory belief sets at all occasions.

Theorem 1. If the operators ∗ and ◦ used as components in an accommodative revision
operator ⊗ satisfy postulates (MR1)–(MR4) and (R0)–(R4) respectively, then given any
epistemic state T satisfying constraints (S1) and (S2), then the state T ⊗ A satisfies
(S1), (S2), and (AR0)–(AR4).

Proof. Let T denote an epistemic state, A denote a propositional formula, and let K
denote a propositional formula equivalent to TK . We assume that TK ⊆ TB and ⊥�∈
TK . By definition, (T ⊗A) = (T ◦ (A ∗ K)).

By (R0), (T ⊗ A)K = (T ◦ (A ∗ K))K = TK , thus (AR0) holds. Then because
⊥�∈ TK , ⊥�∈ (T ⊗A)K and (S2) holds. Because by (R1), A ∗ K ∈ (T ◦ (A ∗ K))B =
(T ⊗ A)B , (MR1) gives us A ∗ K |= K , thus K ∈ (T ⊗ A)B . Then by (AR0), (S1)
holds.

To prove (AR1), let us assume ¬A �∈ TK . Then by (MR2), A∗K ≡ A∧K , and (R4)
gives us (T ◦ (A∗K))B = (T ◦ (A∧K))B . Thus by (R1), A∧K ∈ (T ◦ (A∧K))B =
(T ◦ (A ∗ K))B = (T ⊗A)B and then A ∈ (T ⊗A)B .

To prove (AR2), assume ¬A �∈ TB . Then by (S1), ¬A �∈ TK , and (MR2) gives us A∗
K ≡ A∧K . Then by (R4), (T ◦(A∗K))B = (T ◦(A∧K))B. For contradiction, assume
¬(A ∧ K) ∈ TB . Because ¬(A ∧ K) ≡ ¬A ∨ ¬K and K ∈ TB , we get ¬A ∈ TB, a
contradiction. Thus¬(A∧K) �∈ TB . Then (R2) gives us (T ◦(A∧K))B = TB +A∧K .
Because K ∈ TB, TB +A∧K = TB +A. Thus (T⊗A)B = (T ◦(A∗K))B = TB +A.

Let us next prove that (AR3) holds. Because K �|=⊥, (MR3) gives us A ∗ K �|=⊥.
Then by (R3), ⊥�∈ (T ◦ (A ∗ K))B = (T ⊗A)B .

To prove (AR4), assume A ≡ A′. Then by (MR4), A ∗K ≡ A′ ∗K , thus (R4) gives
us (T ⊗A)B = (T ◦ (A ∗ K))B = (T ◦ (A′ ∗ K))B = (T ⊗A′)B . ��

Whenever input does not contradict knowledge, accommodative revision retains the
properties of the revision operator ◦ used in definition.

Theorem 2. If the operators ∗ and ◦ satisfy postulates (MR1)–(MR4) and (R0)–(R4)
respectively, then for each postulate (R5), (R6), (DP1)–(DP4), if the operator ◦ satisfies
the postulate in question, accommodative revision also has the corresponding property
below:

(AR5): If ¬(A ∧ B) �∈ TK , then (T ⊗ (A ∧B))B ⊆ (T ⊗A)B + B.
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(AR6): If ¬(A ∧ B) �∈ TK and ¬B �∈ (T ⊗A)B , then
(T ⊗A)B + B ⊆ (T ⊗ (A ∧B))B .

(AR7): If A |= B and ¬A �∈ TK , then ((T ⊗B) ⊗A)B = (T ⊗A)B .
(AR8): If A |= ¬B, ¬A �∈ TK and ¬B �∈ TK ,

then ((T ⊗B) ⊗A)B = (T ⊗A)B .
(AR9): If A ∈ (T ⊗B)B , then A ∈ ((T ⊗A) ⊗B)B .
(AR10): If ¬A �∈ (T ⊗B)B , then ¬A �∈ ((T ⊗A) ⊗B)B .

Proof. Assume ¬(A ∧ B) �∈ TK . By (S2), ⊥�∈ TK , thus ¬A �∈ TK and ¬B �∈ TK . By
(MR2), (A∧B) ∗K ≡ (A∧B ∧K) and A ∗K ≡ A∧K . By (R4), (T ⊗A∧B)B =
(T ◦ ((A ∧ B) ∗ K))B = (T ◦ (A ∧ B ∧ K))B . If ◦ satisfies (R5), then by (R5), (R4)
and (MR2), (T ◦ (A ∧ B ∧ K))B ⊆ (T ◦ (A ∧ K))B + B = (T ◦ (A ∗ K))B + B =
(T ⊗ A)B , (AR5) holds. To prove (AR6), assume also that ¬B �∈ (T ⊗ A)B . Then by
definition, ¬B �∈ (T ◦ (A ∧ K))B . If ◦ satisfies (R6), then by (R6), (R4) and (MR2),
(T ⊗A)B +B = (T ◦(A∗K))B +B = (T ◦(A∧K))B +B ⊆ (T ◦(A∧B∧K))B =
(T ◦ ((A ∧ B) ∗ K))B = (T ⊗ (A ∧ B))B , (AR6) holds.

To prove (AR7), assume ¬A �∈ TK and A |= B. Then ¬B �∈ TK and (A ∧ K) |=
(B ∧ K). If ◦ satisfies (DP1), then by (MR2), (R4), and (DP1), ((T ⊗ B) ⊗ A)B =
((T ◦ (B ∗ K)) ◦ (A ∗ K))B = ((T ◦ (B ∧ K)) ◦ (A ∧ K))B = (T ◦ (A ∧ K))B =
(T ◦ (A ∗ K))B = (T ⊗A)B .

To prove (AR8), assume ¬A,¬B �∈ TK and A |= ¬B. Thus A∧K |= ¬B ∧K . If ◦
satisfies (DP2), then by (MR2), (R4), and (DP2), ((T⊗B)⊗A)B = ((T ◦(B∗K))◦(A∗
K))B = ((T ◦(B∧K))◦(A∧K))B = (T ◦(A∧K))B = (T ◦(A∗K))B = (T ⊗A)B .

To prove (AR9), let us assume A ∈ (T ⊗ B)B . Then by (AR3), (S1), and (AR0),
¬A �∈ TK and A∧K ∈ (T ⊗B)B = (T ◦ (B ∗K))B . By (MR2) and (R4) ((T ⊗A)⊗
B)B = ((T ◦ (A∗K))◦ (B ∗K))B = ((T ◦ (A∧K))◦ (B ∗K))B. If ◦ satisfies (DP3),
then by (DP3), A∧K ∈ ((T ◦ (A∧K))◦ (B ∗K))B = ((T ◦ (A∗K))◦ (B ∗K))B =
((T ⊗A) ⊗B)B .

To prove (AR10), assume ¬A �∈ (T ⊗ B)B . Then by (S1) and (AR0), ¬A �∈ (T ⊗
B)K = TK , and thus by (MR2), (A ∗ K) ≡ (A ∧ K). For contradiction, assume
¬(A ∧K) ∈ (T ⊗B)B . Because ¬(A ∧K) ≡ ¬A ∨ ¬K and K ∈ (T ⊗B)B , we get
¬A ∈ (T ⊗B)B , a contradiction. Thus ¬(A ∧K) �∈ (T ⊗B)B = (T ◦ (B ∗K))B . If
◦ satisfies (DP4), then by (DP4) and (R4), ¬(A∧K) �∈ ((T ◦ (A∧K)) ◦ (B ∗K))B =
((T ◦ (A ∗ K)) ◦ (B ∗ K))B = ((T ⊗A) ⊗B)B . ��

5 An Implementation

5.1 The Underlying Framework

As stated in Sect. 3, we have adopted Spohn’s ranking functions (OCFs) κ [24, Defini-
tion 4] as our representation for the epistemic state T . However, we restrict their range to
the natural numbers augmented with infinity ∞. Intuitively, the rank κ(w) is the agent’s
degree of disbelief towards this world w being the actual one. This ranking extends to
formulas A as the minimum rank of their models: κ(A) = min {κ(w) : w ∈ Mod(A)}.
Their connection to beliefs is that TB = {A : κ(¬A) > 0} and to knowledge that TK =
{A : κ(¬A) = ∞}. The OCF definition has two more requirements: (i) κ−1(0) �= ∅ so
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that the lowest rank is normalized to be 0. (ii) The agent must be indifferent towards new
vocabulary: if κ(w) �= κ(w′) then w and w′ must disagree on some atomic formula p
which it has already encountered in some formula.

At least one of κ(A) or κ(¬A) is 0 [24, Theorem 2 (a)]. If they both are, then the
agent believes neither A nor ¬A. For instance, in the initial ranking function κ0, which
is everywhere 0, only the tautologies are known and nothing else is believed.

Spohn’s A,α-conditionalization [24, Definition 6] constructs from a given OCF κ
another OCF

κA,α(w) =def

⎧⎪⎨⎪⎩
κ(w) − κ(A) if κ(w) < ∞ and w ∈ Mod(A)

α + (κ(w) − κ(¬A)) if κ(w) < ∞ and w �∈ Mod(A)
κ(w) if κ(w) = ∞

(3)

where Mod(A) is ranked to 0 while Mod(¬A) is ranked to the given constant α > 0
without altering the distances within these two moving parts. However, we must ensure
κ(A) < ∞ to meet requirement (i). Following Darwiche and Pearl [7], we use κA,1 as
our belief revision operation when A is not believed and κ otherwise.

5.2 The Program

We have implemented the approach taken in Sect. 5.1 as a library of functions in the
functional programming language Haskell [21]. This library can be loaded into a Haskell
interpreter such as GHCi (see http://haskell.org/ghc/) which then provides
a text-based environment where the user can experiment with different instantiations of
our operator scheme. It offers the following three functions:

initial = κ0. (4)

know κ A =

{
κA,∞ if κ(A) < ∞
κ otherwise.

(5)

hear∗ κ A =

⎧⎪⎨⎪⎩
κ if κ(A) = 0
κA,1 if 0 < κ(A) < ∞
hear∗ κ (A ∗ K) otherwise.

(6)

Constant (4) is the initial OCF. Requirement (ii) shows how the logical vocabulary can
be extended dynamically as needed, so we do not have to give it explicitly. Function (5)
expands the knowledge at κ with A, but discards A if ¬A ∈ TK already. Function (6)
is our revision scheme from Definition (2). Here the higher-order parameter ∗ is the
syntactic propositional formula revision operator used. This representation of TK as a
single formula K assumed in Sect. 3 is now justified since the current TK has developed
from the initial OCF through a finite sequence of know steps.

The main goal in designing the implementation was to allow experimenting with dif-
ferent ∗. It is namely not clear at the outset which one corresponds best to our intuition
about “the closest alternative to A which I can believe”, as witnessed by the different
choices in the woodpecker example in the introduction. Currently the implementation
offers the four operators described in Sect. 5.3. Defining additional ones is also straight-
forward using Haskell.

http://haskell.org/ghc/
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Compared with the COBA 2.0 system [9], ours is decidedly much narrower in scope:
it has neither a graphical user interface (GUI) nor a satisfiability (SAT) solver to support
processing any but the smallest knowledge bases. On the other hand, experimentation
dictates that our implementation must in turn be able to retain and view several versions
for the same knowledge base concurrently in memory, namely the revisions of the same
base using different operators ∗. This is conveniently supplied by the underlying Haskell
interpreter.

5.3 Modification Operators

We shall next give the definitions of the four semantically-oriented belief-revision op-
erators we implemented as modification operators.

For defining these operators, we define the difference w - w′ between two worlds
w,w′ ∈ W as the set of the atomic formulas having a different truth value in w and w′,
that is, w - w′ = (w \ w′) ∪ (w′ \ w). These sets are compared either by using the
subset relation or the cardinalities of the sets:

diff(T,A) = min({w - w′ : w ∈ Mod(T ), w′ ∈ Mod(A)},⊆),
dist(T,A) = min({|w - w′| : w ∈ Mod(T ), w′ ∈ Mod(A)},≤),
p_diff(w,A) = min({w - w′ : w′ ∈ Mod(A)},⊆).

When determining the minimal difference, diff and p_diff use the subset relation in
comparison, while dist compares the cardinalities of the sets. The first two of the func-
tions search for the minimal differences between two model sets, while the last function
compares one model to a set of models pointwise.

We use four semantically-oriented belief-revision operators as modification opera-
tors: Dalal’s [6] operator ∗D, Satoh’s [23] operator ∗S , Weber’s [25] operator ∗W , and
Borgida’s [4] operator ∗B . For all the operators, we define Mod(A ∗ K) = Mod(K)
whenever Mod(A) = ∅, otherwise the operators are defined as follows [18]:

Mod(A ∗D K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(A), |w - w′| = dist(A,K)},
Mod(A ∗S K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(A), w - w′ ∈ diff(A,K)},
Mod(A ∗W K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(T ), w - w′ ⊆

⋃
diff(A,K)},

Mod(A ∗B K) = Mod(A ∧ K), if A ∧K is satisfiable, otherwise
Mod(A ∗B K) =

⋃
w∈Mod(A){w′ ∈ Mod(K) : w - w′ ∈ p_diff(w,K)}.

Only Dalal’s operator satisfies all (R1)–(R6), Satoh’s and Borgida’s operators satisfy
(R1)–(R5), Weber’s operator satisfies (R1)–(R4).

The operators define rules to produce the new set of models, but they do not define
the outcome of the addition as a formula. A formula A′ may be the result of the revision
A ∗ K , if Mod(A′) = Mod(A ∗ K).

6 Experiments on Accommodative Revision

We shall next experiment. Let us start by considering the classic, simple example of a
dinosaur and a vase given by Fermé and Hansson [12].
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Example 1 (”Dinosaur broke grandma’s vase!”)
On your return home, your son tells you that a dinosaur has broken grandmother’s
vase in the living room. Assuming that you know that dinosaurs do not exist this claim
cannot be entirely correct, but you may still want to accept as true that the vase has been
broken2. We can formalize the example as follows:

a grandma’s vase is intact,
b grandma’s vase is in the living room,
c a dinosaur broke grandma’s vase,
d dinosaurs exist.

What you know is ¬d ∧ (¬d → ¬c). Assume that you have come to believe (inde-
pendently) that a and that b. This means that we have four epistemically possible worlds
with both c and d false in each. The most plausible one is the world in which a and b
are true. Thus prior to the revision the epistemic state is

world a b c d rank
w12 1 1 0 0 0
w4 0 1 0 0 1
w8 1 0 0 0 1
w0 0 0 0 0 2

Your son then tells you that b ∧ c∧ ¬a. Revising this with a formula K representing
your knowledge, ¬c ∧ ¬d, gives as result A ∗ K ≡ ¬a ∧ b ∧ ¬c ∧ ¬d.

Revision of beliefs with this formula makes the only world satisfying this formula to
become the most plausible one. As a result, you believe that grandma’s vase is broken
in the living room but not that it was a dinosaur that broke it.

The execution of the example with our Haskell implementation confirms the result.
The example is so simple that all the modification operators we implemented result in
the same revised epistemic state:

world a b c d rank
w4 0 1 0 0 0
w12 1 1 0 0 1
w8 1 0 0 0 2
w0 0 0 0 0 3

As an example of a case where different modification functions give us different results,
let us consider again the three-toed woodpecker example from the introduction.

Example 2 (The three-toed woodpecker)
We formalize the situation as follows:

a Amy saw a bird,
b Amy saw a three-toed woodpecker,
c Amy saw a bird with a red forehead,
d Amy saw a bird with a red rump.

2 In fact, the world changes in this example so it might be more appropriate to do a belief update
rather than a revision, but we will ignore this now since the example has often been used to
illustrate non-prioritized revision.
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Initially the agent knows that a three-toed woodpecker neither has a red forehead nor
a red rump, and that if Amy saw a three-toed woodpecker or she saw a bird with a red
forehead or she saw a bird with a red rump outside her window, then she saw a bird outside
her window. Thus the agent has the knowledgeK ≡ (b → (¬c∧¬d))∧((b∨c∨d) → a).

Amy then tells that a ∧ b ∧ c ∧ d. Now, the agent may have different results of the
modification of the input depending on which modification function is used:

(a ∧ b ∧ c ∧ d) ∗D K ≡ (a ∧ ¬b ∧ c ∧ d),
(a ∧ b ∧ c ∧ d) ∗S K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(a ∧ b ∧ c ∧ d) ∗B K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(a ∧ b ∧ c ∧ d) ∗W K≡ (a ∧ ¬b) ∨ (a ∧ b ∧ ¬c ∧ ¬d).

Here Dalal’s operator gave the result (1) mentioned in the example in Sect. 1, Satoh’s
and Borgida’s operators gave the result (2), and Weber’s operator gave the result (3).

However, had Amy told that b ∧ c ∧ d, the results would have been different:

(b ∧ c ∧ d) ∗D K ≡ (a ∧ ¬b ∧ c ∧ d),
(b ∧ c ∧ d) ∗S K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(b ∧ c ∧ d) ∗B K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ ¬b ∧ ¬c ∧ ¬d)
(b ∧ c ∧ d) ∗W K≡ K .

Here Dalal’s and Satoh’s operators still give charitable results, but Borgida’s and We-
ber’s operators do not.

In general, the more permissive is the revision operator, the less information is left to
be obtained from the modified input (but the less likely it is that the agent has ruled out
the actual state of affairs). Also the combination of pointwise revision and incomplete
input is likely to give uncharitable results.

7 Conclusion

To illustrate the effect of knowledge on belief revision, we have presented a non-
prioritized belief revision method that we call accommodative revision. In this method,
the input is first revised with the knowledge of the agent. Beliefs are then revised with
the resulting modified input. The properties of the method have been studied, a proto-
type implementation has been described, and some experiments have been analyzed.

The two components of accommodative revision can be chosen separately.The method
does not call for any particular representation of epistemic states nor any principles on the
components of accommodative revision other than the basic AGM-postulates. Accom-
modative revision is not meant to be the only way for an agent to update its epistemic state.
Rather, it is to provide the agent with a set of tools to build convenient new belief-change
operators to go with the old ones.
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Abstract. In this paper we propose a nonmonotonic extension ALC +
Tmin of the Description Logic ALC for reasoning about prototypical
properties and inheritance with exception. The logic ALC + Tmin is
built upon a previously introduced (monotonic) logic ALC + T, that
is obtained by adding a typicality operator T to ALC. The operator T
is intended to select the “most normal” or “most typical” instances of a
concept, so that knowledge bases may contain subsumption relations of
the form“T(C) is subsumed by P”, expressing that typical C-members
have the property P . In order to perform nonmonotonic inferences, we
define a “minimal model” semantics ALC + Tmin for ALC + T. The
intuition is that preferred, or minimal models are those that maximise
typical instances of concepts. By means of ALC + Tmin we are able to
infer defeasible properties of (explicit or implicit) individuals. We also
present a tableau calculus for deciding ALC + Tmin entailment.

1 Introduction

The family of description logics (DLs) is one of the most important formalisms
of knowledge representation. They have a well-defined semantics based on first-
order logic and offer a good trade-off between expressivity and complexity. DLs
have been successfully implemented by a range of systems and they are at the
base of languages for the semantic web such as OWL.

A DL knowledge base (KB) comprises two components: the TBox, containing
the definition of concepts (and possibly roles), and a specification of inclusions
relations among them, and the ABox containing instances of concepts and roles.
Since the very objective of the TBox is to build a taxonomy of concepts, the need
of representing prototypical properties and of reasoning about defeasible inher-
itance of such properties naturally arises. The traditional approach is to han-
dle defeasible inheritance by integrating some kind of nonmonotonic reasoning
mechanism. This has led to study nonmonotonic extensions of DLs [1,2,3,5,6,12].
However, finding a suitable nonmonotonic extension for inheritance with excep-
tions is far from obvious.
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To give a brief account, [1] proposes the extension of DL with Reiter’s de-
fault logic. However, the same authors have pointed out that this integration
may lead to both semantical and computational difficulties. Furthermore, Re-
iter’s default logic does not provide a direct way of modeling inheritance with
exceptions. This has motivated the study of extensions of DLs with prioritized
defaults [12,2]. A more general approach is undertaken in [5], where an extension
of DL is proposed with two epistemic operators. This extension, called ALCKNF ,
allows one to encode Reiter’s default logic as well as to express epistemic con-
cepts and procedural rules. However, this extension has a rather complicated
modal semantics, so that the integration with the existing systems requires sig-
nificant changes to the standard semantics of DLs. [9] extends the work in [5]
by providing a translation of an ALCKNF KB to an equivalent flat KB and by
defining a simplified tableau algorithm for flat KBs, which includes an optimized
minimality check. In [3] an extension of DL with circumscription is proposed to
express prototypical properties with exceptions, by introducing “abnormality”
predicates whose extension is minimized. The authors provide algorithms for
checking satisfiability, subsumption and instance checking which are proved to
have an optimal complexity, but are based on massive nondeterministic guess-
ing. A calculus for circumscription in DL has not been developed yet. More-
over, the use of circumscription to model inheritance with exceptions is not that
straightforward.

In this work, we propose a new nonmonotonic logic ALC + Tmin for defea-
sible reasoning in description logic. Our starting point is the monotonic logic
ALC + T introduced in [7], obtained by adding a typicality operator T to ALC.
The intended meaning of the operator T, for any concept C, is that T(C) singles
out the instances of C that are considered as “typical” or “normal”. Thus asser-
tions as “normally students do not pay taxes”, or “typically users do not have
access to confidential files” [3] are represented by T(Student) * ¬TaxPayer and
T(User) * ¬∃HasAccess .ConfidentialFile . As shown in [7], the operator T is
characterised by a set of postulates that are essentially a reformulation of KLM
[10] axioms of preferential logic P, namely the assertion T(C) * P is equivalent
to the conditional assertion C |∼ P of P. It turns out that the semantics of the
typicality operator can be equivalently specified by a suitable modal logic.

The idea underlying the modal interpretation is that there is a global prefer-
ence relation (a strict partial order) < on individuals, so that typical instances
of a concept C can be defined as the instances of C that are minimal with
respect to <. In this modal logic, < works as an accessibility relation R with
R(x, y) ≡ y < x, so that we can define T(C) as C��¬C. The preference relation
< does not have infinite descending chains as we adopt the so-called Smooth-
ness condition or Limit Assumption of conditional logics. As a consequence, the
corresponding modal operator � has the same properties as in Gödel-Löb modal
logic G of arithmetic provability.

In our setting, we assume that a KB comprises, in addition to the standard
TBox and ABox, a set of assertions of the type T(C) * D where D is a concept
not mentioning T. For instance, let the KB contain: T(Student) * ¬TaxPayer ;
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T(Student � Worker) * TaxPayer ; T(Student � Worker � ∃HasChild .�) *
¬TaxPayer , corresponding to the assertions: normally a student does not pay
taxes, normally a working student pays taxes, but normally a working student
having children does not pay taxes. Suppose further that the ABox contains al-
ternatively the following facts about john: 1. Student(john); 2. Student(john),
Worker (john); 3. Student(john), Worker (john), ∃HasChild .�(john). We would
like to infer the expected (defeasible) conclusion about john in each case: 1.
¬TaxPayer (john), 2. TaxPayer (john), 3. ¬TaxPayer (john). Moreover, we
would like to infer (defeasible) properties also of individuals implicitly intro-
duced by existential restrictions, for instance, if the ABox further contains
∃HasChild .(Student � Worker)(jack) it should derive (defeasibly) the “right”
conclusion ∃HasChild .TaxPayer(jack) in the latter. Finally, adding irrelevant
information should not affect the conclusions. Given the KB as above, one
should be able to infer as well T(Student � SportLover ) * ¬TaxPayer and
T(Student � Worker � SportLover ) * TaxPayer , as SportLover is irrelevant
with respect to being a TaxPayer or not. For the same reason, the conclu-
sion about john being a TaxPayer or not should not be influenced by adding
SportLover(john) to the ABox.

The monotonic logic ALC+T is not sufficient to perform the kind of defeasible
reasoning illustrated above. Concerning the example, we get for instance that:
KB ∪ {Student(john), Worker (john)} �|= TaxPayer (john); KB �|= T(Student �
SportLover) * ¬TaxPayer . In order to derive the conclusion about john we
should know (or assume) that john is a typical working student, but we do
not dispose of this information. Similarly, in order to derive that also a typical
student who loves sport must not pay taxes, we must be able to infer or assume
that a “typical student loving sport” is also a “typical student”, since there is no
reason why it should not be the case; this cannot be derived by the logic itself
given the nonmonotonic nature of T. The basic monotonic logic ALC + T is
then too weak to enforce these extra assumptions, so that we need an additional
mechanism to perform defeasible inferences. In [7], we proposed a completion of
the KB that adds, for each individual, the assumption that the individual is a
typical member of the most specific concept to which it belongs. However, this
solution presents some difficulties: (i) it is not clear how to take into account
implicit individuals, (ii) the completion might be inconsistent, so that we must
consider alternative maximal completions, (iii) it is not clear whether and how
the completion has to take into account concept instances that are inferred from
previous typicality assumptions introduced by the completion itself (this would
require a kind of fixpoint definition).

In this work we follow another approach, rather than defining an ad-hoc mech-
anism to perform defeasible inferences or making nonmonotonic assumptions,
we strenghten the semantics of the logic by proposing a minimal model seman-
tics. Intuitively, the idea is to restrict our consideration to models that max-
imise typical instances of a concept. In order to define the preference relation
on models we take advantage of the modal semantics of ALC + T: the prefer-
ence relation on models (with the same domain) is defined by comparing, for
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each individual, the set of modal (or more precisely �-ed) concepts contain-
ing the individual in the two models. Similarly to circumscription, where we
must specify a set of minimised predicates, here we must specify a set of con-
cepts LT of which we want to maximise the set of typical instances (it may
just be the set of all concepts occurring in the knowledge base). We call the
new logic ALC + Tmin and we denote by |=LT

min semantic entailment deter-
mined by minimal models. Taking the KB of the examples above we obtain,
for instance, KB ∪ {Student(john), Worker (john)} |=LT

min TaxPayer (john); KB
∪ {∃HasChild .(Student � Worker)(jack)} |=LT

min ∃HasChild .TaxPayer(jack)
and KB |=LT

min T(Student � SportLover) * ¬TaxPayer . As the second exam-
ple shows, we are able to infer the intended conclusion also for the implicit
individuals.

We provide a decision procedure for checking satisfiability and validity in
ALC + Tmin. Our decision procedure has the form of tableaux calculus, with a
two-step tableau construction. The idea is that the top level construction gen-
erates open branches that are candidates to represent minimal models, whereas
the auxiliary construction checks whether a candidate branch represents indeed
a minimal model. Termination is ensured by means of a standard blocking mech-
anism. Our procedure can be used to determine constructively an upper bound
of the complexity of ALC +Tmin. Namely we obtain that checking query entail-
ment for ALC + Tmin is in co-NExp

NP.

2 The Logic ALC + T

In this section, we summarize the characteristics of the original ALC+T, which is
an extension of ALC by a typicality operator T. Given an alphabet of concept
names C, of role names R, and of individuals O, the language L of the logic
ALC +T is defined by distinguishing concepts and extended concepts as follows:
(Concepts) A ∈ C and � are concepts of L; if C,D ∈ L and R ∈ R, then
C � D,C �D,¬C, ∀R.C, ∃R.C are concepts of L. (Extended concepts) if C is a
concept of L, then C and T(C) are extended concepts of L, and all the boolean
combinations of extended concepts are extended concepts of L. A knowledge
base is a pair (TBox, ABox). TBox contains subsumptions C * D, where C ∈ L
is either a concept or an extended concept T(C′), and D ∈ L is a concept. ABox
contains expressions of the form C(a) and aRb where C ∈ L is an extended
concept, R ∈ R, and a, b ∈ O.

Definition 1 (Semantics of ALC+T). A model M is any structure 〈Δ,<, I〉,
where Δ is the domain; < is a strict partial order over Δ. For all S ⊆ Δ, we
define Min<(S) = {a : a ∈ S and � ∃b ∈ S s.t. b < a}. We say that < satisfies
the Smoothness Condition i.e., for all S ⊆ Δ, for all a ∈ S, either a ∈ Min<(S)
or ∃b ∈ Min<(S) such that b < a. I is the extension function that maps each
extended concept C to CI ⊆ Δ, and each role R to a RI ⊆ ΔI ×ΔI . For concepts
(built from operators of ALC), CI is defined in the usual way. For the T operator:
(T(C))I = Min<(CI). A model satisfying a Knowledge Base (TBox,ABox) is
defined as usual. We assume the unique name assumption.
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Notice that the meaning of T can be split into two parts: for any a of the domain
Δ, a ∈ (T(C))I just in case (i) a ∈ CI , and (ii) there is no b ∈ CI such that b < a.
In order to isolate the second part of the meaning of T (for the purpose of the
calculus that we will present later), we introduce a new modality �. The basic
idea is simply to interpret the preference relation < as an accessibility relation.
By the Smoothness Condition, it turns out that � has the properties as in Gödel-
Löb modal logic of provability G. The Smoothness Condition ensures that typical
elements of CI exist whenever CI �= ∅, by preventing infinitely descending chains
of elements. This condition therefore corresponds to the finite-chain condition
on the accessibility relation (as in G). The interpretation of � in M is as follows:

Definition 2. (�C)I = {a ∈ Δ | for every b ∈ Δ, if b < a then b ∈ CI}

We have that a is a typical instance of C (a ∈ (T(C))I ) iff a ∈ (C � �¬C)I .
Since we only use � to capture the meaning of T, in the following we will always
use the modality � followed by a negated concept, as in �¬C.

3 The Logic ALC + Tmin

The logic ALC + T allows one to reason about typicality. As a difference with
respect to standard ALC, in ALC + T we can consistently express, for instance,
the fact that three different concepts, as student, working student and work-
ing student with children, have a different status as taxpayers. As we have seen
in the introduction, this can be consistently expressed by including in a knowl-
edge base the three formulas: T(Student) * ¬TaxPayer ; T(Student�Worker ) *
TaxPayer ; T(Student�Worker�∃HasChild .�) * ¬TaxPayer . Assume that john
is an instance of the concept Student�Worker �∃HasChild .�. What can we con-
clude about john? If the ABox contains the assertion (∗) T(Student �Worker �
∃HasChild .�)(john), then, in ALC+T, we can conclude that ¬TaxPayer(john).
However, in the absence of (*), we cannot derive ¬TaxPayer(john).

We would like to infer that individuals are typical instances of the concepts
they belong to, if consistent with the KB. In order to maximize the typicality of
instances, we define a preference relation on models, and we introduce a semantic
entailment determined by minimal models. Informally, we prefer a model M to
a model N if M contains more typical instances of concepts than N .

Given a KB, we consider a finite set LT of concepts occurring in the KB, the
typicality of whose instances we want to maximize. The maximization of the set
of typical instances will apply to individuals explicitly occurring in the ABox as
well as to implicit individuals. We assume that the set LT contains at least all
concepts C such that T(C) occurs in the KB.

We have seen that a is a typical instance of a concept C (a ∈ (T(C))I ) when
it is an instance of C and there is not another instance of C preferred to a,
i.e. a ∈ (C � �¬C)I . In the following, in order to maximize the typicality of
the instances of C, we minimize the instances of ¬�¬C. Notice that this is
different from maximising the instances of T(C). We have adopted this solution
since it allows to maximise the set of typical instances of C without affecting
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the extension of C (whereas maximising the extension of T(C) would imply
maximising also the extension of C).

We define the set M�−

LT
of negated boxed formulas holding in a model, relative

to the concepts in LT . Given a model M = 〈Δ,<, I〉, let M�−

LT
= {(a,¬�¬C) |

a ∈ (¬�¬C)I , with a ∈ Δ,C ∈ LT }.
Let KB be a knowledge base and let LT be a set of concepts occurring in KB.

Definition 3 (Preferred and minimal models). Given a model M = 〈ΔM,
<M, IM〉 of KB and a model N = 〈ΔN , <N , IN 〉 of KB, we say that M is
preferred to N with respect to LT , and we write M <LT N , if the following
conditions hold: ΔM = ΔN and M�−

LT
⊂ N�−

LT
. A model M is a minimal model

for KB (with respect to LT ) if it is a model of KB and there is no a model M′

of KB such that M′ <LT M.

Definition 4 (Minimal Entailment in ALC+Tmin). A query F (see section
below) is minimally entailed from a knowledge base KB with respect to LT if it
holds in all models of KB minimal with respect to LT . We write KB |=LT

min F .

While the original ALC+T is monotonic (see [7]), ALC+Tmin is nonmonotonic.
Consider the following example: KB= {T(S) * ¬P, S(a),W (a)} and LT =

{S,W}. We have KB |=LT

min ¬P (a). Indeed, there is a unique minimal model of
KB on the domain Δ = {a}, in which a is an instance of T(S) (as well as an
instance of T(W )), and hence ¬P holds in a. Observe that ¬P (a) is obtained
in spite of the presence of the irrelevant property W (a).

Consider the knowledge base KB’ obtained by adding to KB the formula
T(S �W ) * P and to LT concept S�W . From KB’, ¬P (a) is not derivable any
more. Instead, we have that KB’ |=LT

min P (a). KB’ has a unique minimal model
on the domain Δ = {a, b}, in which a is an instance of T(S � W ) and T(W ),
but is not an instance of T(S) (as there is a b, such that b < a and S holds at
b). This example shows that, in case of conflict (here, a cannot be both a typical
instance of S and S �W ), typicality in the more specific concept is preferred.

In general, a knowledge base KB may have no minimal model or more than
one minimal model, with respect to a given LT . The following properties hold:

Proposition 1. (i) If KB has a model, then KB has a minimal model with
respect to any LT . (ii) Let us replace all inclusions of the form T(C) * C′ in
KB with C * C′, and call KB’ the resulting knowledge base. If KB |=LT

min F
then KB’ |=ALC+T F , where F is a query.

4 Reasoning

In this section we present a tableau calculus for deciding whether a formula
(query) F is minimally entailed from a knowledge base (TBox,ABox). We intro-
duce a labelled tableau calculus called TABALC+T

min , which extends the calculus
TALC+T presented in [7], and allows to reason about minimal models.
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TABALC+T
min performs a two-phase computation in order to check whether a

query F is minimally entailed from the initial KB. In particular, the proce-
dure tries to build an open branch representing a minimal model satisfying KB
∪ {¬F}. A query F is either a formula of the form C(a) or a subsumption rela-
tion C * D such that, for all T(C′) occurring in F , C′ ∈ LT . In the first phase,
a tableau calculus, called TABALC+T

PH1 , simply verifies whether KB ∪{¬F} is sat-
isfiable in an ALC+T model, building candidate models. In case F has the form
C * D, then ¬F corresponds to (C �¬D)(x), where x does not occur in KB. In
the second phase another tableau calculus, called TABALC+T

PH2 , checks whether
the candidate models found in the first phase are minimal models of KB, i.e.
for each open branch of the first phase, TABALC+T

PH2 tries to build a “smaller”
model of KB, i.e. a model whose individuals satisfy less formulas ¬�¬C than the
corresponding candidate model. The whole procedure TABALC+T

min is described
at the end of this section (Definition 8).

TABALC+T
min is based on the notion of a constraint system. We consider a set

of variables drawn from a denumerable set V . TABALC+T
min makes use of labels,

which are denoted with x, y, z, . . .. Labels represent objects. An object is either
a variable or an individual of the ABox, that is to say an element of O ∪ V . A
constraint is a syntactic entity of the form x

R−→ y or x : C, where R is a role
and C is either an extended concept or has the form �¬D or ¬�¬D, where D

is a concept. A constraint of the form x
R−→ y says that the object denoted by

label x is related to the object denoted by y by means of role R; a constraint
x : C says that the object denoted by x is an instance of the concept C.

Let us now separately analyze the two components of the calculus TABALC+T
min ,

starting with TABALC+T
PH1 .

A tableau of TABALC+T
PH1 is a tree whose nodes are pairs 〈S | U〉, where S

contains constraints (or labelled formulas) of the form x : C or x
R−→ y, whereas

U contains formulas of the form C * DL, representing subsumption relations
C * D of the TBox. L is a list of labels. As we will discuss later, this list is used
in order to ensure the termination of the tableau calculus.

A node 〈S | U〉 is also called a constraint system. A branch is a sequence of
nodes 〈S1 | U1〉, 〈S2 | U2〉, . . . , 〈Sn | Un〉 . . ., where each node 〈Si | Ui〉 is obtained
from its immediate predecessor 〈Si−1 | Ui−1〉 by applying a rule of TABALC+T

PH1 ,
having 〈Si−1 | Ui−1〉 as the premise and 〈Si | Ui〉 as one of its conclusions. A
branch is closed if one of its nodes is an instance of (Clash), otherwise it is open.
A tableau is closed if all its branches are closed.

In order to check the satisfiability of a KB, we build the corresponding con-
straint system 〈S | U〉, and we check its satisfiability.

Definition 5 (Corresponding constraint system). Given a knowledge base
KB=(TBox,ABox), we define its corresponding constraint system 〈S | U〉 as
follows: S = {a : C | C(a) ∈ ABox} ∪ {a R−→ b | aRb ∈ ABox} and U = {C *
D∅ | C * D ∈ TBox}.

Definition 6 (Model satisfying a constraint system). Let M be a model as
defined in Definition 1. We define a function α which assigns to each variable of
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V an element of Δ, and assigns every individual a ∈ O to aI ∈ Δ. M satisfies
x : C under α if α(x) ∈ CI and x

R−→ y under α if (α(x), α(y)) ∈ RI . A
constraint system 〈S | U〉 is satisfiable if there is a model M and a function α
such that M satisfies every constraint in S under α and that, for all C * DL ∈ U
and for all x occurring in S, we have that if α(x) ∈ CI then α(x) ∈ DI .

Proposition 2. Given a knowledge base, it is satisfiable if and only if its cor-
responding constraint system is satisfiable.

To verify the satisfiability of KB ∪{¬F}, we use TABALC+T
PH1 to check the sat-

isfiability of the constraint system 〈S | U〉 obtained by adding the constraint
corresponding to ¬F to S′, where 〈S′ | U〉 is the corresponding constraint sys-
tem of KB. To this purpose, the rules of the calculus TABALC+T

PH1 are applied
until either a contradiction is generated (Clash) or a model satisfying 〈S | U〉
can be obtained from the resulting constraint system.

As in the calculus proposed in [7], given a node 〈S | U〉, for each subsumption
C * DL ∈ U and for each label x that appears in the tableau, we add to S the
constraint x : ¬C � D (unfolding). As mentioned above, each formula C * D
is equipped with a list L of labels in which it has been unfolded in the current
branch. This is needed to avoid multiple unfolding of the same subsumption by
using the same label, generating infinite branches.

Before introducing the rules of TABALC+T
PH1 we need some more definitions.

First, as in [4], we define an ordering relation ≺ to keep track of the temporal
ordering of insertion of labels in the tableau, that is to say if y is introduced in
the tableau, then x ≺ y for all labels x that are already in the tableau.

Given a tableau node 〈S | U〉 and an object x, we define σ(〈S | U〉, x) = {C |
x : C ∈ S}. Furthermore, we say that two labels x and y are S-equivalent, written
x ≡S y, if they label the same set of concepts, i.e. σ(〈S | U〉, x) = σ(〈S | U〉, y).
Intuitively, S-equivalent labels represent the same element in the model built by
TABALC+T

PH1 . Last, we define SM
x→y = {y : ¬C, y : �¬C | x : �¬C ∈ S}.

The rules of TABALC+T
PH1 are presented in Figure 1. Rules (∃+) and (�−) are

called dynamic since they introduce a new variable in their conclusions. The
other rules are called static. The side condition on (∃+) is introduced in order
to ensure a terminating proof search, by implementing the standard blocking
technique described below. The (cut) rule ensures that, given any concept C ∈
LT , an open branch built by TABALC+T

PH1 contains either x : �¬C or x : ¬�¬C for
each label x: this is needed in order to allow TABALC+T

PH2 to check the minimality
of the model corresponding to the open branch, as we will discuss later.

The rules of TABALC+T
PH1 are applied with the following standard strategy: 1.

apply a rule to a label x only if no rule is applicable to a label y such that
y ≺ x; 2. apply dynamic rules ((�−) first) only if no static rule is applicable.
This strategy ensures that the labels are considered one at a time according to
the ordering ≺. The calculus so obtained is sound and complete with respect
to the semantics in Definition 6.

Theorem 1 (Soundness and Completeness of TABALC+T
PH1 ). Given a con-

straint system 〈S | U〉, it is unsatisfiable iff it has a closed tableau in TABALC+T
PH1 .
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〈S, x : C, x : �¬C | U〉

〈S, x : ¬�¬C | U〉〈S, x : ¬C | U〉 〈S, x : ∀R.C, x
R−→ y, y : C | U〉

〈S, x : ∀R.C, x
R−→ y | U〉

〈S, x : ¬�¬C | U〉

〈S, x : ∃R.C | U〉

(Unfold)
〈S, x : ¬C � D | U,C � DL,x〉

〈S | U,C � DL〉

(∃+)

(∀+)

〈S, x : ¬¬C | U〉
(¬)〈S, x : C | U〉

(T+)
〈S, x : T(C) | U〉

(T−)
〈S, x : ¬T(C) | U〉

〈S, x : ∃R.C, x
R−→ y, y : C | U〉

if 	 ∃z ≺ x s.t. z ≡S,x:∃R.C x and 	 ∃u s.t. x
R−→ u ∈ S and u : C ∈ S

if y : C 	∈ S

if x occurs in S and x 	∈ L

(�−)
. . .

. . . 〈S, x : ∃R.C, x
R−→ vn, vn : C | U〉〈S, x : ∃R.C, x

R−→ v1, v1 : C | U〉

(cut)
〈S | U〉

〈S, x : �¬C | U〉〈S, x : ¬�¬C | U〉

(Clash)〈S, x : ¬C, x : C | U〉

∀vi occurring in S, x 	= vi. y new

∀vi occurring in S, x 	= vi. y new

If x : �¬C 	∈ S and x : ¬�¬C 	∈ S, C ∈ LT

〈S, x : ¬�¬C, y : C, y : �¬C,SM
x→y | U〉 〈S, x : ¬�¬C, v1 : C, v1 : �¬C,SM

x→v1
| U〉 〈S, x : ¬�¬C, vn : C, vn : �¬C,SM

x→vn
| U〉

If 	 ∃u s.t. u : C ∈ S, u : �¬C ∈ S, and SM
x→u ⊆ S.

x occurs in S

Fig. 1. The calculus TABALC+T
PH1 . To save space, we omit the standard rules for � and

�, as well as the rules (∀−) and (∃−), dual to (∃+) and (∀+), respectively.

To ensure termination, we adopt the standard loop-checking machinery known
as blocking: the side condition of the (∃+) rule says that this rule can be applied
to a node 〈S, x : ∃R.C | U〉 only if there is no z occurring in S such that z ≺ x
and z ≡S,x:∃R.C x. In other words, if there is an “older” label z which is equiv-
alent to x wrt S, x : ∃R.C, then (∃+) is not applicable, since the condition and
the strategy imply that the (∃+) rule has already been applied to z. In this case,
we say that x is blocked by z. By virtue of the properties of �, no other addi-
tional machinery is required to ensure termination. Indeed, we can show that the
interplay between rules (T−) and (�−) does not generate branches containing
infinitely-many labels. Intuitively, the application of (�−) to x : ¬�¬C adds
y : �¬C to the conclusion, so that (T−) can no longer consistently introduce
y : ¬�¬C. This is due to the properties of � (no infinite descending chains of <
are allowed). The (cut) rule does not affect termination, since it is applied only
to the finitely many formulas belonging to LT .

Theorem 2 (Termination of TABALC+T
PH1 ). Let 〈S | U〉 be a constraint sys-

tem, then any tableau generated by TABALC+T
PH1 is finite.

Since TABALC+T
PH1 is sound and complete (Theorem 1), and since a KB is satis-

fiable iff its corresponding constraint system is satisfiable (Proposition 2), from
Theorem 2 above it follows that checking whether a given KB (TBox,ABox) is
satisfiable is a decidable problem. It is possible to prove that, with the calculus
above, the satisfiability of a KB can be decided in nondeterministic exponential
time in the size of the KB.

Let us now introduce the calculus TABALC+T
PH2 which, for each open branch B

built by TABALC+T
PH1 , verifies if it is a minimal model of the KB.

Definition 7. Given an open branch B of a tableau built from TABALC+T
PH1 , we

define: (i) D(B) as the set of objects occurring on B; (ii) B�−
= {x : ¬�¬C |

x : ¬�¬C occurs in B}.
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(∃+)
. . .

(�−)
. . .

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉 (Clash)∅ (Clash)�−〈S | U | ∅〉 〈S, x : ¬�¬C | U | K〉
if x : ¬�¬C 	∈ K

〈S | U,C � DL | K〉
〈S, x : ¬C � D | U,C � DL,x | K〉

〈S, x : ¬�¬C | U | K, x : ¬�¬C〉
〈S, vn : C, vn : �¬C,SM

x→vn
| U | K〉〈S, v2 : C, v2 : �¬C,SM

x→v2
| U | K〉〈S, v1 : C, v1 : �¬C,SM

x→v1
| U | K〉

〈S, x : ∃R.C | U | K〉
〈S, x

R−→ v1, v1 : C | U | K〉 〈S, x
R−→ v2, v2 : C | U | K〉 〈S, x

R−→ vn, vn : C | U | K〉
x ∈ D(B) If 	 ∃u ∈ D(B) s.t. x

R−→ u ∈ S and u : C ∈ S. ∀vi ∈ D(B)

∀vi ∈ D(B), x 	= vi

and x 	∈ L

Fig. 2. The calculus TABALC+T
PH2

A tableau of TABALC+T
PH2 is a tree whose nodes are triples of the form 〈S | U |

K〉, where 〈S | U〉 is a constraint system, whereas K contains formulas of the
form x : ¬�¬C, with C ∈ LT .

The basic idea of TABALC+T
PH2 is as follows. Given an open branch B built

by TABALC+T
PH1 and corresponding to a model MB of KB ∪{¬F}, TABALC+T

PH2

checks whether MB is a minimal model of KB by trying to build a model of KB
which is preferred to MB. Checking (un)satisfiability of 〈S | U | B�−〉, where
〈S | U〉 is the corresponding constraint system of the initial KB, allows to verify
whether the candidate model MB is minimal. More in detail, TABALC+T

PH2 tries
to build an open branch containing all the objects appearing on B, i.e. those in
D(B). To this aim, the dynamic rules use labels in D(B) instead of introducing
new ones in their conclusions. The additional set K of a tableau node, initialized
with B�−

, is used in order to ensure that any branch B’ built by TABALC+T
PH2

is preferred to B, that is B’ only contains negated boxed formulas occurring in
B and there exists at least a x : ¬�¬C that occurs in B and does not occur in
B’. The rules of TABALC+T

PH2 are shown in Figure 2. TABALC+T
PH2 also contains

analogues of the following rules from TABALC+T
PH1 in Figure 1: (¬), (T+), (T−),

(cut), (∀+), where the rules in TABALC+T
PH2 include the additional component K.

More in detail, the rule (∃+) is applied to a constraint system containing a
formula x : ∃R.C; it introduces x

R−→ y and y : C where y ∈ D(B), instead of y
being a new label. The choice of the label y introduces a branching in the tableau
construction. The rule (Unfold) is applied in the same way as in TABALC+T

PH1 to
all the labels of D(B) (and not only to those appearing in the branch). The rule
(�−) is applied to a node 〈S, x : ¬�¬C | U | K〉, when x : ¬�¬C ∈ K, i.e. when
the formula x : ¬�¬C also belongs to the open branch B. In this case, the rule
introduces a branch on the choice of the individual vi ∈ D(B) which is preferred
to x and is such that C and �¬C hold in vi. In case a tableau node has the form
〈S, x : ¬�¬C | U | K〉, and x : ¬�¬C �∈ K, then TABALC+T

PH2 detects a clash,
called (Clash)�− : this corresponds to the situation in which x : ¬�¬C does not
belong to B, while S, x : ¬�¬C is satisfiable in a model M only if M contains
x : ¬�¬C, and hence only if M is not preferred to the model represented by B.

The calculus TABALC+T
PH2 also contains the clash condition (Clash)∅. Since

each application of (�−) removes the principal formula x : ¬�¬C from the set
K, when K is empty all the negated boxed formulas occurring in B also belong
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to the current branch. In this case, the model built by TABALC+T
PH2 satisfies the

same set of negated boxed formulas (for all individuals) as B and, thus, it is not
preferred to the one represented by B.

Theorem 3 (Soundness and completeness of TABALC+T
PH2 ). Given a KB

and a query F , let 〈S′ | U〉 be the corresponding constraint system of KB, and
〈S | U〉 the corresponding constraint system of KB ∪{¬F}. An open branch
B built by TABALC+T

PH1 for 〈S | U〉 is satisfiable by an injective mapping in a
minimal model of KB iff the tableau in TABALC+T

PH2 for 〈S′ | U | B�−〉 is closed.

TABALC+T
PH2 always terminates. Indeed, only a finite number of labels can occur

on the branch (only those in D(B) which is finite). Moreover, the side condi-
tions on the application of the rules copying their principal formulas in their
conclusion(s) prevent the uncontrolled application of the same rules.

It is possible to show that the problem of verifying that a branch B represents
a minimal model for KB in TABALC+T

PH2 is in NP in the size of B.
The overall procedure TABALC+T

min is defined as follows:

Definition 8. Let KB be a knowledge base whose corresponding constraint sys-
tem is 〈S | U〉. Let F be a query and let S′ be the set of constraints obtained
by adding to S the constraint corresponding to ¬F . The calculus TABALC+T

min

checks whether a query F can be minimally entailed from a KB by means of the
following procedure: (phase 1) the calculus TABALC+T

PH1 is applied to 〈S′ | U〉; if,
for each branch B built by TABALC+T

PH1 , either (i) B is closed or (ii) (phase 2)
the tableau built by the calculus TABALC+T

PH2 for 〈S | U | B�−〉 is open, then KB
|=LT

min F , otherwise KB �|=LT

min F .

TABALC+T
min is therefore a sound and complete decision procedure for verifying

if a formula F can be minimally entailed from a KB. We can also prove that:

Theorem 4 (Complexity of TABALC+T
min ). The problem of deciding whether

KB |=LT

min F is in co-NExp
NP.

As an example, let KB contain {T(C) * ¬P,C(a), D(a)}. We show that KB
|=LT

min ¬P (a) with LT = {C}. The tableau TABALC+T
PH1 is initialised with 〈S∪{a :

¬¬P} | U〉, where S = {a : C, a : D} and U = {T(C) * ¬P ∅}. We apply
(Unfold), (�+) and then the (T−) rule. Disregarding the nodes that contain a
clash, the only left branch B contains (after the application of the (¬) rule) as
lowest node: 〈S′ | U ′〉, where U ′ = {T(C) * ¬P {a}} and S′ = {a : C, a : D, a :
P, a : ¬�¬C}. B may be further expanded. By applying (�−), (Unfold), (�+)
and then (T−) we can generate only one open extension of B and it contains:
S′′ = {a : C, a : D, a : P, a : ¬�¬C, b : C, b : �¬C, b : ¬P}. We now apply
the procedure TABALC+T

PH2 to B: the tableau is initialised with 〈S | U | K〉,
where K = {a : ¬�¬C}; its expansion contains a branch whose lowest node is
〈S1 | U ′ | K〉, where S1 = {a : C, a : D, a : �¬C, a : ¬P} and U ′ is as above. This
node can be further expanded by applying (Unfold) wrt. b ∈ D(B) and (T−)
obtaining three nodes 〈S1,1 | U ′′ | K〉, 〈S1,2 | U ′′ | K〉, 〈S1,3 | U ′′ | K〉 where
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S1,1 = S1 ∪ {b : ¬C}, S1,2 = S1 ∪ {b : ¬�¬C}, S1,3 = S1 ∪ {b : ¬P} and U ′′ =
{T(C) * ¬P {a,b}}. The node 〈S1,2 | U ′′ | K〉 is closed by (Clash)�−, the two
others may be expanded by (cut) on b : (¬)�¬C, obtaining finally the following
open nodes: 〈S1,1 ∪ {b : �¬C} | U ′′ | K〉 and 〈S1,3 ∪ {b : �¬C} | U ′′ | K〉.
Since the two nodes are open, the tableau TABALC+T

PH2 for B is open, whence B
is closed. Thus the whole procedure TABALC+T

min verifies that KB |=LT

min ¬P (a).

5 Discussion and Conclusion

We have proposed a nonmonotonic extension called ALC + Tmin of ALC for
reasoning about prototypical properties in Description Logic framework. The
extension is obtained by adding first a typicality operator, originally defined in
[7], to ALC. This extension, called ALC + T, provides a monotonic extension of
ALC that enjoys a simple modal semantics. One advantage of the use of a typi-
cality operator is that we can express prototypical properties directly in the form
“the most typical instances of concept C have the property P” (corresponding
to T(C) * P ), as opposed to rather complicated encodings within other non-
monotonic formalisms. However, ALC +T is not sufficient to perform defeasible
reasoning. For this reason in the present work we develop a preferential seman-
tics, called ALC + Tmin. This nonmonotonic extension allows one to perform
defeasible reasoning in particular in the context of inheritance with exceptions to
some extent. We have then developed a procedure for deciding query-entailment
in ALC + Tmin. The procedure has the form of a two-phase tableau calculus
for generating ALC + Tmin minimal models. The procedure is sound, complete,
and terminating, whereby giving a decision procedure for deciding ALC + Tmin

entailment in co-NExp
NP.

We plan to extend this work in several directions. First of all, the tableau
procedure we have described can be optimised in many ways. For instance, we
guess that the calculus TABALC+T

PH1 , dealing with the monotonic logic ALC + T,
can be made more efficient by applying standard techniques such as caching.
More precisely, we expect to obtain an Exp decision procedure. Furthermore,
the (cut) rule could be applied in TABALC+T

PH2 by distinguishing if x : ¬�¬C
belongs to K or not: in the second case, the branch where x : ¬�¬C is introduced
is closed by (Clash)�− . Although the calculus TABALC+T

min provides a decision
procedure, we have still to determine the exact complexity of ALC+Tmin itself.

From the point of view of knowledge representation, a limit of our logic is the
unability to handle inheritance of multiple properties in case of exceptions as
in the example: T(Student) * ¬HasIncome, T(Student) * ∃Owns .LibraryCard ,
PhDStudent * Student, T(PhDStudent) * HasIncome. Our semantics does not
support the inference T(PhDStudent) * ∃Owns .LibraryCard , that is PhDStu-
dents typically own a library card, as we might want to conclude (since having an
income has nothing to do with owning a library card). The reason why our seman-
tics fails to support this inference is that the first two inclusions are obviously
equivalent to the single one T(Student) * ¬HasIncome � ∃Owns .LibraryCard
which is contradicted by T(PhDStudent) * HasIncome. To handle this type of
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inferences we would need a tighter semantics where the truth of T(C) * P is
no longer a function of T(C) and P or a smarter (and less direct) encoding of
the knowledge. Observe that the same problem arises for instance with circum-
scription, where we would need at least different abnormality predicates for each
pair of concept-defeasible property. This problem is perhaps better addressed by
probabilistic extensions of description logics such as [8].

KLM logics, which are at the base of our semantics, are related to probabilistic
reasoning. In [8], the notion of conditional constraint allows typicality assertions
to be expressed (with a specified interval of probability values). In order to
perform defeasible reasoning, a notion of minimal entailment is introduced based
on a lexicographic preference relation on probabilistic interpretations. We plan
to compare in details this probabilistic approach to ours in further research.

Moreover, we intend to investigate the precise relation of ALC + Tmin with
other formalisms for nonmonotonic reasoning, first of all with circumscription.
To this regard, Moinard in [11] has shown that several kinds of preferential
entailment (in propositional logic) can be translated into generalised forms of
circumscription by extending the vocabulary, as a matter of fact, to an expo-
nentially larger vocabulary. It might be worth investigating if a similar encoding
works in our case. More concretely, we may wonder if there is a direct transla-
tion of knowledge bases from ALC+Tmin to circumscription and viceversa. As a
starting point, concerning the direction from ALC+Tmin to circumscription, we
guess that the translation should map every subsumption relation T(Ci) * Qi

of a KB into a subsumption relation of the kind Ci * Qi � AbnCi , where, for
each concept Ci, AbnCi is a distinct abnormality concept name to minimize.
Then we may ask whether there exists a circumscription pattern [3] CP where
(i) all concept names different from AbnCi and all roles vary and (ii) concept
names AbnCi are minimised according to a suitable partial order (to be discov-
ered), such that the queries entailed by the KB in ALC + Tmin coincide with
the queries entailed by the translated KB under circumscription with respect to
pattern CP. We shall deal with this and related questions in future research.
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Abstract. Abduction is an important method of non-monotonic reasoning with
many applications in artificial intelligence and related topics. In this paper, we
concentrate on propositional abduction, where the background knowledge is
given by a propositional formula. We have recently started to study the counting
complexity of propositional abduction. However, several important cases have
been left open, namely, the cases when we restrict ourselves to solutions with
minimal cardinality or with minimal weight. These cases – possibly combined
with priorities – are now settled in this paper. We thus arrive at a complete picture
of the counting complexity of propositional abduction.

1 Introduction

Abduction is a method of non-monotonic reasoning which has taken a fundamental
importance in artificial intelligence and related topics. It aims at giving explanations for
observed symptoms and is, therefore, widely used in diagnosis – notably in the medical
domain (see [17]). Other important applications of abduction can be found in planning,
database updates, data-mining and many more areas (see e.g. [11, 12, 16]).

Logic-based abduction is formally described as follows. Given a logical theory T ,
a set M of manifestations, and a set H of hypotheses, find a solution S, i.e., a set
S ⊆ H such that T ∪S is consistent and logically entails M . In this paper, we consider
propositional abduction problems (PAPs, for short), where the theory T is represented
by a propositional formula over a Boolean algebra B = ({0, 1};∨,∧,¬,→,≡) and
the sets H and M consist of variables from some set V . A diagnosis problem can
be represented by a PAP P = 〈V,H,M, T 〉 as follows: The theory T is the system
description. The hypotheses H ⊆ V describe the possibly faulty system components.
The manifestations M ⊆ V are the observed symptoms, describing the malfunction of
the system. The solutions S of P are the possible explanations of the malfunction.

Example 1. Consider the following football knowledge base.

T = {weak defense ∧ weak attack → match lost ,
match lost → manager sad ∧ press angry
star injured → manager sad ∧ press sad }

� This work was partially supported by the Austrian Science Fund (FWF), project P20704-N18.

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 206–218, 2008.
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Moreover, let the set of observed manifestations and the set of hypotheses be

M ={manager sad }
H = { star injured , weak defense, weak attack }

This PAP has the following five abductive explanations (= “solutions”).

S1 = { star injured }
S2 = {weak defense , weak attack }
S3 = {weak attack , star injured }
S4 = {weak defense , star injured }
S5 = {weak defense , weak attack , star injured }

Obviously, in the above example, not all solutions are equally intuitive. Indeed, for
many applications, one is not interested in all solutions of a given PAP P but only in
all acceptable solutions of P . Acceptable in this context means minimal with respect
to some preorder / on the powerset 2H . Two natural preorders are subset-minimality
and cardinality-minimality, where the preorder is ⊆ and ≤, respectively. In Example 1,
both S1 and S2 are subset-minimal but only S1 is cardinality-minimal. If we have a
weight function on the hypotheses then we may define the acceptable solutions as the
weight-minimal ones. This preorder (i.e., smaller or equal weight) is denoted as *.

All three criteria ⊆, ≤, and * can be further refined by a hierarchical organization
of our hypotheses according to some priorities (cf. [5]). In this context, priorities may
be used to represent a qualitative version of probability. The resulting preorder is de-
noted by ⊆P , ≤P , and *P . For instance, suppose that for some reason we know that
(for a specific team) star injured is much less likely to occur than weak defense and
weak attack. This judgment can be formalized by assigning lower priority to the for-
mer. Then S2 is the only minimal solution with respect to the preorders ⊆P and ≤P .
Actually, in this simple example, S2 is also the only *P -minimal solution indepen-
dently of the concrete weight function. Finally, if indeed all solutions are acceptable,
then the corresponding preorder is the syntactic equality =.

The usually observed algorithmic problem in logic-based abduction is the existence
problem, i.e. deciding whether at least one solution S exists for a given abduction prob-
lem P . Another well-studied decision problem is the so-called relevance problem, i.e.
Given a PAP P and a hypothesis h ∈ H , is h part of at least one acceptable solution?
However, this approach is not always satisfactory. Especially in database applications,
in diagnosis, and in data-mining there exist situations where we need to know all ac-
ceptable solutions of the abduction problem or at least an important part of them. Con-
sequently, the enumeration problem (i.e., the computation of all acceptable solutions)
has received much interest (see e.g. [3, 4]). Another natural question is concerned with
the total number of solutions to the considered problem. The latter problem refers to the
counting complexity of abduction. Clearly, the counting complexity provides a lower
bound for the complexity of the enumeration problem. Moreover, counting the num-
ber of abductive explanations can be useful for probabilistic abduction problems (see
e.g. [18]). Indeed, in order to compute the probability of failure of a given component in
a diagnosis problem (under the assumption that all preferred explanations are equiprob-
able), we need to count the number of preferred explanations as well as the number of
preferred explanations that contain a given hypothesis.
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Table 1. Counting complexity of propositional abduction

#-Abduction = ⊆ ⊆P ≤ ≤P �,�P

General case #·coNP #·coNP #·Π2P #·Opt2P[log n] #·Opt2P #·Opt2P

Horn #P #P #·coNP #·OptP[log n] #·OptP #·OptP

definite Horn #P #P #P #·OptP[log n] #·OptP #·OptP

dual Horn #P #P #P #·OptP[log n] #·OptP #·OptP

bijunctive #P #P #·coNP #·OptP[log n] #·OptP #·OptP

The study of counting complexity has been initiated by Valiant [19, 20] and is now
a well-established part of the complexity theory, where the best known class is #P.
Many counting variants of decision problems have been proved #P-complete. Higher
counting complexity classes do exist, but they are not commonly known. A counting
equivalent of the polynomial hierarchy was defined by Hemaspaandra and Vollmer [8],
whereas generic complete problems for these counting hierarchy classes were presented
in [1]. We enlarged in [10] the approach of Hemaspaandra and Vollmer to classes of op-
timization problem, obtaining this way a new hierarchy of classes #·OptkP[log n] and
#·OptkP for arbitrary k ∈ N. These classes are sandwiched between the previously
known counting classes #·ΠkP, i.e., for each k ∈ N we have

#·ΠkP ⊆ #·Optk+1P[log n] ⊆ #·Optk+1P ⊆ #·Πk+1P.

It was shown in [10] that these inclusions are proper unless the polynomial hierarchy
collapses to the k-th level. The most important special case is k = 1, where we write
#·OptP[log n] and #·OptP as a short-hand for #·Opt1P[log n] and #·Opt1P. On
the first two levels, we thus have the inclusions #P ⊆ #·OptP[logn] ⊆ #·OptP ⊆
#·coNP ⊆ #·Opt2P[log n] ⊆ #·Opt2P ⊆ #·Π2P. It will turn out that these new
counting complexity classes are precisely the ones needed to pinpoint the exact counting
complexity of the open cases in propositional abduction.

Results. We considered in [9] propositional abduction counting problems with the three
preorders =, ⊆, and ⊆P . Together with the general case where T can be an arbitrary
propositional formula, we also considered the special cases where T is Horn, definite
Horn, dual Horn, and bijunctive. These are the most frequently studied subcases of
propositional formulas. Our results from [9] are summarized in the first three columns
of Table 1. In this paper we continue the investigation on counting complexity of propo-
sitional abduction, focusing on the preorders ≤, *, ≤P , and *P . Note that these are
practically highly relevant cases for the following reasons: If the failure of any com-
ponent in a system is independent of the failure of the other components and all com-
ponents have equal failure probability, then explanations with minimum cardinality are
the ones with highest probability. If we have numeric values available for the repair cost
or for the robustness of each component (e.g., based on data such as the empirically col-
lected mean time to failure and component age), then weight-minimal abduction seeks
for the cheapest repair respectively for the most likely explanation. If in addition dif-
ferent sets of components can be ranked according to some criterion that is not well
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suited for numeric values (like, e.g., a qualitative rather than a quantitative robustness
measure of components, the accessibility of components, or how critical the failure of
a certain component would be), then this ranking can be expressed by priorities on the
hypotheses, for both the cardinality and weight minimal case. Our results obtained in
this work are summarized in the last three columns of Table 1. In total, we have thus
achieved a complete picture of the counting complexity of propositional abduction.

2 Preliminaries

2.1 Propositional Abduction

A propositional abduction problem (PAP) P consists of a tuple 〈V,H,M, T 〉, where V
is a finite set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of
manifestations, and T is a consistent theory in the form of a propositional formula.
A set S ⊆ H is a solution (also called explanation) to P if T ∪ S is consistent and
T ∪ S |= M holds. Priorities P = 〈H1, . . . , HK〉 are a stratification of the hypotheses
H = H1 ∪ · · · ∪HK into a fixed number of disjoint sets. The minimal cardinality with
priorities relation A ≤P B holds if A = B or there exists an i ∈ {1, . . . ,K} such that
A ∩ Hj = B ∩ Hj for all j < i and |A ∩Hi| < |B ∩Hi|. The minimal weight with
priorities relation A *P B holds if A = B or there exists an i ∈ {1, . . . ,K} such
that A ∩ Hj = B ∩ Hj for all j < i and

∑
a∈A∩Hi

w(a) <
∑

b∈B∩Hi
w(b), where

w : H → N is the weight function on the hypotheses H .
We study the following family of counting problems, which are parameterized by a

preorder / on 2H .

Problem: #-/-ABDUCTION

Input: A propositional abduction problem P = 〈V,H,M, T 〉.
Output: Number of /-minimal solutions (explanations) of P .

We considered the abduction counting problems with the preorders of equality =, sub-
set minimality ⊆, and subset minimality with priorities ⊆P in [9]. In this paper we
consider the preorders of minimal cardinality ≤, minimal weight *, as well as their
versions with priorities ≤P and *P , respectively. It is clear that an upper bound for
a minimal weight decision or counting abduction problem subsumes that for the cor-
responding abduction problem for minimal cardinality. Similarly, a lower bound for a
minimal cardinality abduction problem subsumes that for minimal weight abduction.
In both cases, setting the weight of each hypothesis x ∈ H to w(x) = 1 corresponds
to the cardinality version. Throughout this paper, we follow the formalism of Eiter and
Gottlob [2], allowing only positive literals in the solutions.

Together with the general case where T can be an arbitrary propositional formula,
we consider the special cases where T is Horn, definite Horn, dual Horn, and bijunctive.
A propositional clause C is said to be Horn, definite Horn, dual Horn, or bijunctive if it
has at most one positive literal, exactly one positive literal, at most one negative literal,
or at most two literals, respectively. A theory T is Horn, definite Horn, dual Horn, or
bijunctive if it is a conjunction (or, equivalently, a set) of Horn, definite Horn, dual
Horn, or bijunctive, clauses, respectively.
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2.2 Counting Complexity

The study of counting problems was initiated by Valiant in [19, 20]. While decision
problems ask if at least one solution of a given problem instance exists, counting prob-
lems ask for the number of different solutions. The most intensively studied counting
complexity class is #P, which denotes the functions that count the number of accept-
ing paths of a non-deterministic polynomial-time Turing machine. In other words, #P
captures the counting problems corresponding to decision problems in NP. By allowing
the non-deterministic polynomial-time Turing machine access to an oracle in NP, Σ2P,
Σ3P, . . . , we can define an infinite hierarchy of counting complexity classes.

Alternatively, a counting problem is presented using a witness function which for
every input x returns a set of witnesses for x. A witness function is a function w : Σ∗ →
P<ω(Γ ∗), where Σ and Γ are two alphabets, and P<ω(Γ ∗) is the collection of all finite
subsets of Γ ∗. Every such witness function gives rise to the following counting problem:
given a string x ∈ Σ∗, find the cardinality |w(x)| of the witness set w(x). According
to [8], if C is a complexity class of decision problems, we define #·C to be the class of
all counting problems whose witness function w satisfies the following conditions.

1. There is a polynomial p(n) such that for every x ∈ Σ∗ and every y ∈ w(x) we
have |y| ≤ p(|x|);

2. The problem “given x and y, is y ∈ w(x)?” is in C.

It is easy to verify that #P = #·P. The counting hierarchy is ordered by linear inclu-
sion [8]. In particular, we have that #P ⊆ #·coNP ⊆ #·Π2P ⊆ #·Π3P, etc

In [10] we introduced new counting complexity classes for counting optimal solu-
tions. We followed the aforementioned approach, where the complexity class C was
chosen among OptP and OptP[logn], or, more generally, OptkP and OptkP[log n]
for arbitrary k ∈ N, respectively. These classes were previously defined by Krentel [14,
15]. A large collection of completeness results for these classes is given in [7]. As
Krentel observed, the classes OptP[logn] and OptP, which are closely related to
FPNP[log n] and FPNP, contain problems computing optimal solutions with a logarith-
mic and polynomial number of calls to an NP-oracle, respectively.

The application of the counting operator to the aforementioned optimization classes
allowed us to define in [10] the counting complexity classes #·OptP, #·OptP[log n]
and, more generally, #·OptkP, #·OptkP[log n] for each k ∈ N. To formally introduce
these classes, we need some supplementary notions.

A non-deterministic transducer M is a non-deterministic polynomial-time bounded
Turing machine, which writes a binary number on the output at the end of every ac-
cepting path. If M is equipped with an oracle from the complexity class C, then it is
called a non-deterministic transducer with C-oracle. A ΣkP-transducer M is a non-
deterministic transducer with a Σk−1P oracle. We identify non-deterministic transduc-
ers without oracle and Σ1P-transducers. For x ∈ Σ∗, we write optM (x) to denote the
optimal value, which can be either the maximum or the minimum, on any accepting path
of the computation of M on x. If no accepting path exists then optM (x) is undefined.

We say that a counting problem #·A : Σ∗ → N is in the class #·OptkP for some
k ∈ N, if there is a ΣkP-transducer M , such that #·A(x) is the number of accept-
ing paths of the computation of M on x yielding the optimum value optM (x). If
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no accepting path exists then #·A(x) = 0. If the length of the binary number writ-
ten by M is bounded by O(log |x|), then #·A is in the class #·OptkP[log n]. For
k = 1, we write #·OptP[log n] and #·OptP as a short-hand for #·Opt1P[log n] and
#·Opt1P, respectively. It was shown in [10] that these new classes #·OptkP[log n] and
#·OptkP are robust, i.e., they do not collapse to already known counting complexity
classes unless the polynomial hierarchy collapses as well. Finally, these new counting
classes were shown to be sandwiched between the classes #·ΠkP, i.e., we obtained
the inclusions #P ⊆ #·OptP[logn] ⊆ #·OptP ⊆ #·coNP ⊆ #·Opt2P[logn] ⊆
#·Opt2P ⊆ #·Π2P, etc.

The prototypical #·ΠkP-complete problem for k ∈ N is #ΠkSAT [1], defined as
follows. Given a formula

ϕ(X) = ∀Y1∃Y2 · · ·QkYk ψ(X,Y1, . . . , Yk)

where ψ is a Boolean formula and X , Y1, . . . , Yk are sets of propositional variables,
count the number of truth assignments to the variables in X that satisfy ϕ. We ob-
tain the prototypical #·Optk+1P[log n]-complete problem #MIN-CARD-ΠkSAT and
the prototypical #·Optk+1P-complete problem #MIN-WEIGHT-ΠkSAT [10] by ask-
ing for the number of cardinality-minimal and weight-minimal models of ϕ(X). In
the latter case, there exists a weight function w : X → N assigning positive values
to each variable x ∈ X . As usual, the counting problems #MIN-CARD-Π0SAT and
#MIN-WEIGHT-Π0SAT are just denoted by #MIN-CARD-SAT and #MIN-WEIGHT-
SAT, being respectively #·OptP[log n]- and #·OptP-complete.

3 General Case

Theorem 1. #-≤-ABDUCTION is #·Opt2P[log n]-complete and #-*-ABDUCTION is
#·Opt2P-complete.

Proof. In order to prove the membership, we show that these problems can be solved
by an appropriate Σ2P-transducer M , i.e., M works in non-deterministic polynomial
time with access to an NP-oracle and, in case of #-≤-ABDUCTION, the output of M is
logarithmically bounded. We give a high-level description of M : It takes an arbitrary
PAP P = 〈V,H,M, T 〉 as input and non-deterministically enumerates all subsets S ⊆
H , such that every computation path of M corresponds to exactly one S ⊆ H . By
two calls to an NP-oracle, M checks on every path whether T ∪ S is consistent (i.e.,
satisfiable) and if T ∪ S |= M holds. If both oracle calls answer “yes”, then S is
a solution of P and the computation path is accepting. The output written by M on
each path is the cardinality of the corresponding set S (resp. the sum of the weights of
the elements in S) for the #-≤-ABDUCTION problem (resp. for the #-*-ABDUCTION

problem). Finally, we define the optimal value of M to be the minimum. Obviously,
the accepting paths of M outputting the optimal value correspond one-to-one to the
cardinality-minimal (resp. weight-minimal) solutions of the PAP P .

The hardness of #-≤-ABDUCTION (resp. of #-*-ABDUCTION) is shown by reduc-
tion from #MIN-CARD-Π1SAT (resp. from #MIN-WEIGHT-Π1SAT). Let an arbitrary
instance of #MIN-CARD-Π1SAT (resp. of #MIN-WEIGHT-Π1SAT) be given by the
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quantified Boolean formula ϕ(X) = ∀Y ψ(X,Y ) with X = {x1, . . . , xk} and
Y = {y1, . . . , yl}. In case of #MIN-WEIGHT-Π1SAT, we additionally have a weight
function w defined on the variables in X . Let X ′ = {x′1, . . . , x′k}, X ′′ = {x′′1 , . . . , x′′k},
Q = {q1, . . . , qk}, R = {r1, . . . , rk}, and t be fresh variables. Then we define the PAP
P = 〈V,H,M, T 〉 as follows.

V = X ∪ X ′ ∪X ′′ ∪ Y ∪ Q ∪ R ∪ {t}, H = X ∪ X ′ ∪ X ′′, M = Q ∪ R ∪ {t}
T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬x′i, xi → qi, x

′
i → qi | i = 1, . . . , k}

∪ {¬x′i ∨ ¬x′′i , x
′
i → ri, x

′′
i → ri | i = 1, . . . , k}.

In case of #-*-ABDUCTION, we leave the weights of the variables in X unchanged. For
the remaining hypotheses, we set w(xi) = w(x′i) = w(x′′i ) for every i ∈ {1, . . . , k}.

For each i, the clauses ¬xi∨¬x′i, xi → qi, x′i → qi in T ensure that every solution S
of P contains exactly one of {xi, x

′
i}. Similarly, the clauses ¬x′i ∨¬x′′i , x′i → ri, x′′i →

ri ensure that every solution contains exactly one of {x′i, x′′i }. The sets of variables X ′

and X ′′ both represent the complement X � A, but X ′′ is there to get the cardinalities
right, since without it, the cardinality |A ∪ (X � A)′| would be the same for all S.

For a subset of variables A ⊆ X , let A′ and A′′ be defined as A′ = {x′ | x ∈ A}
and A′′ = {x′′ | x ∈ A}. Then, the effect of the conjunct ψ(X,Y ) → t in T is that,
for every subset A ⊆ X the following equivalence holds: The assignment I on X with
I−1(1) = A is a model of ϕ(X) if and only if A∪ (X � A)′ ∪ {ψ(X,Y ) → t} |= {t}.
Thus, for every A ⊆ X , we have the following equivalences. The assignment I on X
with I−1(1) = A is a model of ϕ(X) if and only if A∪(X�A)′∪A′′ is a solution of P .
Moreover, the previous assignment I is cardinality-minimal (resp. weight-minimal) if
and only if A ∪ (X � A)′ ∪ A′′ is a cardinality-minimal (resp. a weight-minimal)
solution of P . This accomplishes a parsimonious reduction to #-≤-ABDUCTION (resp.
#-*-ABDUCTION). ��

#-≤P -ABDUCTION with no restriction on the number of priorities requires some
preparatory work. For this purpose, we first consider the appropriate version of #SAT.

Problem: #MIN-LEX–ΠkSAT
Input: A quantified Boolean formula ϕ(X) = ∀Y1∃Y2 · · ·QYk ψ(X,Y1, . . . , Yk) and a
subset X ′ = {x1, . . . , x
} ⊆ X , such that Q = ∀ (resp. Q = ∃) and ψ(X,Y1, . . . , Yk)
is in DNF (resp. in CNF) if k is odd (resp. k is even).
Output: Number of satisfying assignments I : X → {0, 1} of the formula ϕ(X), such
that (I(x1), . . . , I(x
)) is lexicographically minimal.

As usual, #MIN-LEX–Π0SAT represents the aforementioned problem for unquantified
formulas, therefore we denote it as #MIN-LEX-SAT.

Theorem 2. #MIN-LEX–ΠkSAT is #·Optk+1P-complete. In particular, #MIN-LEX-
SAT is #·OptP-complete.

Proof. We only give the proof for #MIN-LEX-SAT, since the generalization to higher
levels of the hierarchy is obvious.

In order to prove the membership, we show that #MIN-LEX-SAT can be solved
by an appropriate NP-transducer M . We give a high-level description of M : It takes
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as input an arbitrary propositional formula ϕ with variables in X plus a subset X ′ =
{x1, . . . , x
} ⊆ X of distinguished variables. M non-deterministically enumerates all
possible truth assignments I : X → {0, 1}, such that every computation path of M
corresponds to exactly one assignment I . On each path, M checks in polynomial time
if I is a model of ϕ. If this is the case, then the computation path is accepting. The
output written by M on each path is the binary string (I(x1), . . . , I(x
)). Finally, we
define the optimal value of M to be the minimum. Obviously, the accepting paths of M
outputting the optimal value correspond one-to-one to the satisfying assignments I of ϕ,
such that (I(x1), . . . , I(x
)) is lexicographically minimal.

For the hardness proof, let L be an arbitrary minimum problem in #·OptP. We
show that there exists a parsimonious reduction from L to #MIN-LEX-SAT. Since L
is in #·OptP, there exists an NP-transducer M for L. On input w, the transducer M
produces an output of length ≤ p(|w|) on every branch for some polynomial p. Without
loss of generality, we may assume that M actually produces an output of length exactly
= p(|w|). Now let w be an arbitrary instance of L and let N = p(|w|) denote the length
of the output on every computation path. Analogously to Cook’s theorem (see [6]),
there exists a propositional formula ϕ with variables X , such that there is a one-to-one
correspondence between the satisfying truth assignment of ϕ and the successful com-
putations of M on w. Moreover, X and ϕ can be extended in such a way that the output
on each successful computation path is encoded by the variables X ′ = {x1, . . . , xN},
i.e., for every successful computation path π, the truth values (I(x1), . . . , I(xN )) of the
corresponding model I of ϕ represent exactly the output on the path π. But then there
is indeed a one-to-one correspondence between the computation paths of M on w, such
that M outputs the minimum on these paths and the satisfying assignments of the (ex-
tended) formula ϕ, such that the truth values on (x1, . . . , xN ) are lexicographically
minimal. ��

We also need the usual restriction of the previous problem to three literals per clause.

Problem: #MIN-LEX-3SAT
Input: A propositional formula ϕ in conjunctive normal form over the variables X with
at most three literals per clause and a subset X ′ = {x1, . . . , x
} ⊆ X .
Output: Number of satisfying assignments I : X → {0, 1} of the formula ϕ, such that
(I(x1), . . . , I(x
)) is lexicographically minimal.

Since there exists a parsimonious reduction from #SAT to #3SAT (see [13]), the same
reduction implies the following consequence of Theorem 2.

Corollary 1. #MIN-LEX-3SAT is #·OptP-complete.

Theorem 3. #-≤P -ABDUCTION without restriction on the number of priorities and #-
*P -ABDUCTION with or without restriction on the number of priorities are #·Opt2P-
complete. #-≤P -ABDUCTION is #·Opt2P[log n]-complete if the number of priorities
is bounded by a constant.

Proof. For the membership proof, we slightly modify the Σ2P-transducer M from the
membership proof of Theorem 1. Again, M non-deterministically enumerates all sub-
sets S ⊆ H , such that every computation path of M corresponds to exactly one S ⊆ H .
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By two calls to an NP-oracle, M checks on every path whether T ∪S is consistent (i.e.,
satisfiable) and whether T ∪ S |= M holds. If both oracle calls answer “yes”, then S is
a solution of P and the computation path is accepting. Only the output written by M on
each path has to be modified with respect to the proof of Theorem 1: Suppose that the
input PAP P has K priorities H1, . . . , HK . Then M computes on every computation
path the vector (c1, . . . , cK), where ci is the cardinality (resp. the total weight) of S∩Hi

for every i. Without loss of generality we may assume for every i that, on all paths, the
binary representation of the numbers ci has identical length (by adding appropriately
many leading zeros). Then M simply outputs this vector (c1, . . . , cK), considered as a
single number in binary. Finally, we again define the optimal value of M as the min-
imum. Obviously, the accepting paths of M outputting the optimal value correspond
one-to-one to the ≤P -minimal (resp. *P -minimal) solutions of the PAP P . If there are
no restrictions on the number K of priorities or if we consider weight-minimality, then
the output of M has polynomial length. Indeed, Since K ≤ |H | always holds, because
in the extremal case each hypothesis has its own priority class, we need at most |H |
bits. The length of each ci is bounded by log |H | bits, since ci ≤ |H | holds. We need
O(K log |H |) bits to represent the vector (c1, . . . , cK). If K is constant, this becomes
O(log |H |).

For the hardness part, only the #·Opt2P-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow
from the corresponding hardness result without priorities in Theorem 1. We reduce the
#MIN-LEX–Π1SAT problem to #-≤P -ABDUCTION. Let an arbitrary instance of #MIN-
LEX–Π1SAT be given by the quantified Boolean formula ϕ(X) = ∀Y ψ(X,Y ) with
X = {x1, . . . , xn} and the subset X ′ = {x1, . . . , x
} ⊆ X . Let t, Q = {q1, . . . , qn}
R = {r1, . . . , r
}, Z = {z1, . . . , zn}, and Z ′ = {z′1, . . . , z′
} be fresh variables. Then
we define the PAP P = 〈V,H,M, T 〉 as follows:

V = X ∪ Y ∪ Z ∪ Z ′ ∪ Q ∪R ∪ {t}
H = X ∪ Z ∪ Z ′ with

H1 = {x1}, . . . , H
 = {x
}, and H
+1 = (X � X ′) ∪ Z ∪ Z ′

M = Q ∪ R ∪ {t}
T = {ψ(X,Y ) → t} ∪ {¬xi ∨ ¬zi, xi → qi, zi → qi | 1 ≤ i ≤ n}

∪ {¬zi ∨ ¬z′i, zi → ri, z
′
i → ri | 1 ≤ i ≤ �}

The idea of the variables in Q, R, Z , and Z ′ is similar to the the variables Q, R, X ′,
and X ′′ in the proof of Theorem 1. They ensure that every solution S of P contains
exactly n variables out of the 2n variables in H
+1. This can be seen as follows. By
the clauses ¬xi ∨ ¬zi, xi → qi, zi → qi with i ∈ {1, . . . , n}, every solution contains
exactly one of {xi, zi}. Of course, the variables xi with i ∈ {1, . . . , �} are not in H
+1.
However, the clauses ¬zi ∨¬z′i, zi → ri, z

′
i → ri with i ∈ {1, . . . , �} ensure that every

solution contains exactly one of {zi, z
′
i}. In other words, for every i ∈ {1, . . . , �} every

solution contains either {xi, z
′
i} or {zi}.

There is a one-to-one correspondence between the models of ϕ(X) which are lex-
icographically minimal on X ′ and the ≤P -minimal solutions of P . Indeed, let I be a
model of ϕ(X) which is lexicographically minimal on X ′. Then I can be extended to
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exactly one ≤P -minimal solution S of P , namely S = I−1(1) ∪ {zi | 1 ≤ i ≤ n and
I(xi) = 0} ∪ {z′i | 1 ≤ i ≤ � and I(xi) = 1}.

Conversely, let S be a ≤P -minimal solution of P . Then we obtain a lexicographically
minimal model I of ϕ(X) simply by restricting S to X , i.e. I(x) = 1 for all x ∈ S ∩X
and I(x) = 0 otherwise. ��

4 Special Cases

We consider the special cases of propositional abduction problems, where the theory is
presented by Horn, definite Horn, dual Horn, or bijunctive formulas. Recall the follow-
ing counting problem introduced in [10].

Problem: #MIN-CARD-VERTEX-COVER (RESP. #MIN-WEIGHT-VERTEX-COVER)
Input: Graph G = (V,E) (plus a weight function w : V → N in case of #MIN-
WEIGHT-VERTEX-COVER).
Output: Number of vertex covers of G with minimal cardinality (resp. with minimal
weight), i.e., cardinality-minimal (resp. weight-minimal) subsets C ⊆ V such that
(u, v) ∈ E implies u ∈ C or v ∈ C.

In [10], it was shown that #MIN-CARD-VERTEX-COVER is #·OptP[log n]-complete
while #MIN-WEIGHT-VERTEX-COVER is #·OptP-complete.

Theorem 4. #-≤-ABDUCTION is #·OptP[log n]-complete and #-*-ABDUCTION is
#·OptP-complete for Horn, definite Horn, dual Horn, or bijunctive theories.

Proof. For the membership part, we construct a transducer M exactly as in the proof of
Theorem 1. The only difference is that we can now check in deterministic polynomial
time whether T ∪ S is consistent (i.e., satisfiable) and whether T ∪ S |= M holds.
Hence, we end up with the desired NP-transducer (rather than a Σ2P-transducer) since
we no longer need an NP-oracle.

The hardness is shown by a reduction from #MIN-CARD-VERTEX-COVER

(resp. #MIN-WEIGHT-VERTEX-COVER). Let an arbitrary instance of #MIN-CARD-
VERTEX-COVER be given by the graph G = (V,E) with V = {v1, . . . , vn} and
E = {e1, . . . , em}. By slight abuse of notation, we consider the elements in V and E
also as propositional variables and set X = {v1, . . . , vn} and R = {e1, . . . , em}. In
case of #MIN-WEIGHT-VERTEX-COVER, we additionally have a weight function w
defined on the variables in X . Then we define the PAP P = 〈W,H,M, T 〉 as follows.

W = X ∪ R, H = X, M = R

T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m}

The resulting theory contains only clauses which are, at the same time, Horn, defi-
nite Horn, dual Horn, and bijunctive. Obviously, for every subset X ′ ⊆ X = V
the following equivalence holds: X ′ is a solution of P if and only if X ′ is a ver-
tex cover of G. But then there exists also a one-to-one correspondence between the
cardinality-minimal (resp. weight-minimal) solutions of P and the cardinality-minimal
(resp. weight-minimal) vertex covers of G. ��
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Again, #-≤P -ABDUCTION with no restriction on the number of priorities requires some
preparatory work. For this purpose, we first consider an appropriate variant of counting
the vertex covers of a graph.

Problem: #MIN-LEX-VERTEX-COVER

Input: Graph G = (V,E) and a subset V ′ = {v1, . . . , v
} ⊆ V .
Output: Number of vertex covers C of G, such that (χ(v1), . . . , χ(v
)) is lexicograph-
ically minimal, where χ is the characteristic function of the vertex cover C.

Theorem 5. #MIN-LEX-VERTEX-COVER is #·OptP-complete.

Proof. In order to prove the membership, we show that #MIN-LEX-VERTEX-COVER

can be solved by the following NP-transducer M . It takes as input an arbitrary graph
G = (V,E) with distinguished vertices V ′ = {v1, . . . , v
}. M non-deterministically
enumerates all subsets C ⊆ V , such that every computation path of M cor-
responds to exactly one such subset C. If C is a vertex cover of G, then the
computation path is accepting. The output written by M on each path is the bi-
nary vector (χC(v1), . . . , χC(v
)). Obviously, the accepting paths of M outputting
the minimal value correspond one-to-one to the vertex covers C of G, such that
(χC(v1), . . . , χC(v
)) is lexicographically minimal.

The hardness proof is by a parsimonious reduction from #MIN-LEX-3SAT. In fact,
this is the same reduction as in the standard NP-completeness proof of VERTEX COVER

by reduction from 3SAT to VERTEX COVER, see e.g. [6]. Let ϕ(x1, . . . , xk) be a
propositional formula in CNF with three literals per clause. We construct the graph
G = (V,E) as follows. For each variable xi we construct an edge ei = (xi, x

′
i). For

each clause ci = l1i ∨ l2i ∨ l3i we construct three edges (l1i , l
2
i ), (l2i , l

3
i ), (l3i , l

1
i ) forming

a triangle ti. Finally, we connect each positive literal z in the triangle ti to its counter-
part z in an edge ej = (z, z′) , as well as each negative literal ¬z in the triangle ti to its
counterpart z′. The set of distinguished variables X ′ from #MIN-LEX-3SAT becomes
the set of distinguished vertices V ′ in #MIN-LEX-VERTEX-COVER. ��

Theorem 6. #-≤P -ABDUCTION without restriction on the number of priorities and #-
*P -ABDUCTION with or without restriction on the number of priorities are #·OptP-
complete for Horn, definite Horn, dual Horn, or bijunctive theories. #-≤P -ABDUCTION

for Horn, definite Horn, dual Horn, or bijunctive theories is #·OptP[log n]-complete
if the number of priorities is restricted by a constant.

Proof. For the membership part, we construct a transducer M exactly as in the proof
of Theorem 3. The only difference is that we get an NP-transducer (rather than a Σ2P-
transducer) since we no longer need an NP-oracle for checking whether T ∪ S is con-
sistent (i.e., satisfiable) and whether T ∪ S |= M holds.

For the hardness part, only the #·OptP-hardness of #-≤P -ABDUCTION without
restriction on the number of priorities has to be shown. The remaining cases follow
from the corresponding hardness result without priorities in Theorem 4. Let an arbi-
trary instance of #MIN-LEX-VERTEX-COVER be given by the graph G = (V,E) with
V = {v1, . . . , vn} and E = {e1, . . . , em} and let V ′ = {v1, . . . , v
} with � ≤ n.
As in the proof of Theorem 4, we consider the elements in V and E also as propo-
sitional variables and set X = {v1, . . . , vn} and R = {e1, . . . , em}. In addition, let
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Q = {q
+1, . . . , qn}, and Z = {z
+1, . . . , zn} be fresh variables. Then we define the
PAP P = 〈V,H,M, T 〉 as follows.

V = X ∪ R ∪ Q ∪ Z, M = R ∪ Q

H = X ∪ Z with H1 = {v1}, . . . , H
 = {v
}, and H
+1 = (X � V ′) ∪ Z

T = {vi → ej | vi ∈ ej , 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪
{vi → qi, zi → qi | � + 1 ≤ i ≤ n}

The resulting theory contains only clauses which are, at the same time, Horn, definite
Horn, dual Horn, and bijunctive. The variables Q and Z realize the familiar idea that
in every ≤P -minimal solution S of P , for every i ∈ {� + 1, . . . , n}, exactly one of vi

and zi is contained in S. It can then be easily shown that there is a one-to-one correspon-
dence between the lexicographically minimal vertex covers of G and the ≤P -minimal
solutions of P . ��

5 Conclusion

In this paper, we have completed the analysis of the counting complexity of propo-
sitional abduction. Together with previous results presented in [9], we have thus
achieved a full picture. Recall from [19] that counting problems may display a sig-
nificantly different complexity behavior from the corresponding decision problems.
Hence, the complexity of a class of problems is better understood when we analyse
the counting complexity in addition to the decision complexity. By complementing
the complexity results of Eiter and Gottlob [2] on decision problems related to propo-
sitional abduction with our counting complexity results in Table 1, we have thus ar-
rived at a better understanding of the complexity of propositional abduction in various
settings.

From a complexity theoretic point of view, there is another interesting aspect to the
counting complexity results shown here. The class #P has been studied intensively and
many completeness results for this class can be found in the literature. In contrast, for
the higher counting complexity classes #·ΠkP, #·OptkP[logn], and #·OptkP (with
k ≥ 1) very few problems had been shown to be complete. Our results on the counting
complexity of propositional abduction thus also lead to a better understanding of these
counting complexity classes.

For future work, we plan to extend the complexity analysis of many more families of
decision problems in the artificial intelligence domain (like, e.g., closed-world reason-
ing in various settings) to counting problems. Moreover, we would also like to extend
the abduction cases studied in this paper to yet another case, namely the case of affine
theories, i.e.: the theory T is an affine system AX = b over Z2. This case was in fact
dealt with in [9] for #-/-abduction with /∈ {=,⊆,⊆P}. There are obvious upper and
lower bounds also for #-/-abduction with affine theories when the preorder / is in
{≤,*,≤P ,*P }. However, proving tight complexity bounds also for these cases has to
be left as an open problem for future work.
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Abstract. The problem of computing a uniform interpolant of a given formula
on a sublanguage is known in Artificial Intelligence as variable forgetting. In
propositional logic, there are well known methods for performing variable for-
getting. Variable forgetting is more involved in modal logics, because one must
forget a variable not in one world, but in several worlds. It has been shown that
modal logic K has the uniform interpolation property, and a method has recently
been proposed for forgetting variables in a modal formula (of mu-calculus) given
in disjunctive normal form. However, there are cases where information comes
naturally in a more conjunctive form. In this paper, we propose a method, based
on an extension of resolution to modal logics, to perform variable forgetting for
formulae in conjunctive normal form, in the modal logic K.

1 Introduction

An interpolant of logical formulae φ and ψ such that φ |= ψ in a logic L is a formula
χ that contains only variables that appear in both φ and ψ, and such that φ |= χ and
χ |= ψ. A uniform interpolant of φ with respect to a sublanguage L′ of the language
of φ is a formula χ ∈ L′ entailed by φ that can act as an interpolant for any ψ ∈ L′:
if φ |= ψ, then χ |= ψ. In other words, χ behaves like φ when L′ is concerned, in the
sense that ψ has the same L′-logical consequences as φ [1].

When the language L′ is defined as the set of formulae that contain no variable of
a given set P , the problem of computing a uniform interpolant of φ on L′ is known
in Artificial Intelligence as variable forgetting. In propositional logic, there are well
known methods for performing variable forgetting [2,3].

Variable forgetting is more involved in modal logics, because one must forget a vari-
able not in one world, but in several worlds. It has been shown that modal logic K
has the uniform interpolation property [4,5] (examples of logics that do not have the
uniform interpolation property include classical first order logic and S4 [6]).

[1] propose a simple method for forgetting variables in a modal formula (of μ-
calculus) given in disjunctive normal form.[7,8] propose methods to construct modal
interpolants for general modal formulas, based on sequent calculus or tableaux meth-
ods; both methods work by implicitly decomposing the formula in disjunctive normal
form first. However, there are cases where information comes naturally in a more con-
junctive form. In this paper, we propose a method, based on an extension of resolution
to modal logics, to perform variable forgetting for formulae in conjunctive normal form,
in the modal logic K .

In the next section, we briefly recall the syntax and semantics of K , and the defini-
tions of disjunctive and conjunctive normal forms in this logic. In section 3, we recall
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Enjalbert and Fariñas’ resolution system for K . In section 4, we explain how their res-
olution system can be used to perform variable forgetting in that logic.

2 The Logic K

The language of K , over a set of propositional variables P , is the smallest set L of
formulae that contains P and is closed under conjunction ∧, negation ¬ and necessity.

��
A pointed model for K is a tuple m = (W,R, I, w), where W is a non-empty set,
R is a binary relation over W , I assigns to every p ∈ P and every w′ ∈ W a value
I(p, w′) ∈ {true, false}.

Satisfaction of formula φ by model m = (W,R, I, w) is defined by induction as
follows:

– m |= p if and only if I(p, w) = true, for every p ∈ P ;
– m |= ¬φ if and only if m �|= φ;
– m |= φ ∧ ψ if and only if m |= φ and m |= ψ;
– m |= �φ if and only if (W,R, I, w′) |= φ for every w′ ∈ W such that wRw′.

A set of formulae S is said to entail formula ψ, written S |= ψ, if for every pointed
model m that satisfies every formula in S, m satisfies ψ too. In this case, we will also
say that ψ is a logical consequence of S. We will write S �|= ψ when this is not the case.
Given a finite set of formulae {φ1, . . . , φn}, we will sometimes write φ1, . . . , φn |= ψ
instead of {φ1, . . . , φn} |= ψ.

As usual, two other connectors ∨ and � are introduced and defined as abbreviations:
φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ) and �φ ≡ ¬�¬φ.

For that local definition of logical consequence, the deduction theorem holds for
finite S: S |= φ if and only if {} |= ¬

∨
S ∨ φ.

There are various ways to define conjunctive and disjunctive normal forms in modal
logic (see e.g. [9,1,10]). In this paper, we will consider normal forms close to the ones
defined by Enjalbert and Fariñas. Literals, clauses and terms can be defined using a
grammar in BNF:

LitC ::= p | ¬p | �Clause | �CNF

LitT ::= p | ¬p | �DNF | �Term

Clause ::= LitC | Clause ∨ Clause | ⊥
Term ::= LitT | Term ∧ Term | �
CNF ::= Clause | CNF,CNF

DNF ::= Term | DNF ∨ DNF

According to this definition, clauses are disjunctions of literals of type “C” (for “Clause”):
such a literal is either a propositional literal, or a clause behind a �, or a set/conjunction of
clauses behind a �. A CNF is then a set/conjunction of clauses. This corresponds exactly
to the definition of clauses used by Enjalbert and Fariñas. A term is the dual of a clause: it
is a conjunction of literals of type “T”, where such a literal is either a propositional literal,
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or a term behind a �, or a disjunction of terms behind a �. Every formula of K has an
equivalent DNF and an equivalent CNF.

Uniformly interpolating a DNF is relatively simple, because of two properties of
interpolation. The first one is general in extensions of classical propositional logic: if χ
and χ′ are respective uniform interpolants of φ and φ′ (on a same language), then χ∨χ′

is a (uniform) interpolant of φ ∨ φ′ (since if φ ∨ φ′ |= ψ, then φ |= ψ and φ′ |= ψ,
thus χ |= ψ and χ |= ψ′). The second one concerns the interplay of modal connectives
and interpolation: a uniform interpolant of φ∧�φ′ ∧�φ1 ∧ . . .�φn, where φ does not
contain any modality, is simply χ∧�χ′ ∧�(χ1 ∧χ)′ ∧ . . .∧�(χn ∧χ)′, where the ′s
indicate interpolants of the formulas to which they are applied (this is equivalent to the
result proved in [1], and used in [11], on interpolation for slightly different disjunctive
normal forms: a uniform interpolant of φ ∧ �φ1 ∧ . . . ∧ �φn ∧ �(φ1 ∨ . . . ∨ φn) is
φ′ ∧ �φ′1 ∧ . . . ∧ �φ′n ∧ �(φ′1 ∨ . . . ∨ φ′n)).

In the sequel, we propose a method to compute a uniform interpolant of a CNF.

3 Resolution in Modal Logic

From a model theoretic point of view, resolution can be understood as an application of
the general set theoretic property:

(M ∪ N) ∩ (M ′ ∪ N ′) ⊆ (M ∩ M ′) ∪N ∪N ′.

In terms of logical formulae, this can be rephrased as:

φ ∨ C,ψ ∨C′ |= (φ ∧ ψ) ∨ C ∨ C′.

In the case where ψ = ¬φ, we obtain the usual resolution rule of classical logic: φ ∨
C,¬φ ∨ C′ |= C ∨ C′. But in modal logic, this can be used to produce other inference
rules. In particular, if φ ∧ ψ |= χ, then �φ,�ψ |= �χ and �φ,�ψ |= �χ, thus

�φ ∨ C,�ψ ∨ C′ |= �χ ∨ C ∨ C′

�φ ∨ C,�ψ ∨ C′ |= �χ ∨C ∨ C′

Note that these deductions can be made at any depth in a modal formula in negation
normal form, since if φ |= χ, then �φ |= �χ, and �(φ ∧ ψ) |= �(φ ∧ ψ ∧ χ).

In order to define a practical inference system, one has to define precisely which in-
ferences are allowed. Enjalbert and Fariñas [10] define a set of inference rules that we
recall below. In the sequel, we adopt an in line notation for inference rules: A1, . . . , An

=⇒ B denotes an inference rule whose premisses are A1, . . . , An, and whose conse-
quent is B. Enjalbert and Fariñas’ resolution system for K is defined by a set of condi-
tional, recursive “meta”-rules; it is the smallest set of inference rules that contains, for
α ∈ P ∪ {⊥}:1

1 The “meta”-system of [10] is slightly different from the presentation given here, mainly be-
cause we do not separate the introduction of ∨ from the introduction of modalities or of ⊥.
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– (rule ⊥) �⊥ ∨ C′
1, �E ∨ C′

2 =⇒⊥ C′
1 ∨ C′

2;
– (rule p) p ∨ C′

1, ¬p ∨C′
2 =⇒p C′

1 ∨ C′
2;

– (rule ��) �C1 ∨ C′
1, �(C2, E) ∨ C′

2 =⇒α �(C2, E, C3) ∨C′
1 ∨ C′

2

if C1, C2 =⇒α C3;

– (rule ��) �C1 ∨ C′
1, �C2 ∨ C′

2 =⇒α �C3 ∨ C′
1 ∨ C′

2 if C1, C2 =⇒α C3;

– (rule �2) �(C1, C2, E) ∨ C =⇒α �(C1, C2, E, C3) ∨ C if C1, C2 =⇒α C3;

– (rule �1) �(C1, E) ∨ C =⇒α �(C1, E, C2) ∨ C if C1 =⇒α C2;

– (rule �) �C1 ∨ C =⇒α �C2 ∨ C if C1 =⇒α C2;

We assume that the consequents are always normalized, that is simplified using the
following equivalences: A ∨ A ∨ B ≡ A ∨ B, A ∨ ⊥ ≡ A, �⊥ ≡ ⊥, A ∧ ⊥ ≡ ⊥.
Hence �p,�¬p ⇒ ⊥ because �p,�¬p ⇒ �⊥ is inferred from the axiom (rule p):
p,¬p ⇒ ⊥ by (rule �,�), and then �⊥ is normalized to ⊥. In the description above,
we have drawn a box around, in each premiss, the literal resolved upon. Let us stress that
each of the inference rules of this resolution system is “meta”-derived from a unique
simple (rule ⊥) or (rule p) for some p ∈ P ; if it is derived from some rule ¬p, we call p
the resolved variable. The α that indexes the rules denotes this variable or ⊥. The height
of the derivation of a resolution rule will be the number of meta-rules used to obtain it,
minus 1.

Example 1. The following are derivations of resolution rules:

– ¬r, r ∨ ��¬p =⇒r ��¬p (rule r)
(rule ��)

�¬r,�(r ∨ ��¬p) =⇒r ���¬p

(This derivation is of height 1.)
– ¬p, p =⇒p ⊥ (rule p)

(rule ��)
�¬p,�p =⇒p ⊥

(rule ��)
��¬p,��p ∨ s =⇒p s

(rule ��)
���¬p,�(��p ∨ s) =⇒p �s

(This derivation is of height 3.)

Definition 1. A deduction by resolution of clause C from clause set S is a sequence of
inferences by resolution I1, . . . , In such that for every Ii, each premises of Ii belongs
to S, or is the consequent of rule Ij for some j < i.

Example 2. Let S = {�¬r,�(r ∨ ��¬p),�(��p ∨ s),�(¬s,�q)}. There is a de-
duction by resolution of ⊥ from S, for example with the rules I1 = �¬r,�(r ∨
��¬p) =⇒r ���¬p, I2 = ���¬p,�(��p∨s) =⇒p �s, and I3 = �s,�(¬s,�q)
=⇒s ⊥:
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�¬r �(r ∨ ��¬p) �(��p ∨ s) �(¬s,�q)

���¬p

r

�s

p

⊥
s

Enjalbert and Fariñas show that their resolution system is sound and complete for
K with respect to refutation: a given clause set S is unsatisfiable (S |= ⊥) if and only
if there is a deduction by resolution of ⊥ from some subset of S. Moreover, since the
modal depth of the consequent of some inference by resolution cannot be greater that
the depth of its premises, there can be only a finite set of clauses that can be deduced by
resolution from a finite set of clauses S (remember that redundant literals are implicitly
simplified when resolutions are performed).

We will show in the next section that forgetting variables from P in a set of modal
clauses S can be done by performing all possible resolutions on variables from P ,
and then eliminating all occurrences of the variables of P . The property of resolution
that will enable us to do that is that, given a subset of propositional variables P , we
can re-arrange inferences so that resolutions on variables from P appear before other
resolutions. Formally:

Proposition 1. Given a subset of propositional variables P ⊆ P , if there is a deduction
by resolution of clause C from clause set S, then there is a deduction by resolution
I1, . . . , In of some clause C∗ from S such that C∗ subsumes C and for every i, j, if Ii

resolves on a variable from P whereas Ij resolves on ⊥ or a variable from P−P , then
i < j.

Note that the resulting clause C∗ may not exactly be the original one, it may in fact be
stronger. More precisely, we define subsumption as follows:

Definition 2. A clauseC subsumes a clauseD if every literal ofC subsumes some literal
of D, and a set of clauses E subsumes a set of clauses F if every clause of F is subsumed
by some clause of E. A propositional literal subsumes itself; a literal �C subsumes a
literal �D if C subsumes D; and a literal �E subsumes �F if E subsumes F .

Example 3. �e ∨ �(r, s, p) ∨ q subsumes p ∨ �(e ∨ f) ∨ �(r ∨ t, s) ∨ q because:

– �e subsumes �(e ∨ f) because e subsumes e ∨ f ;
– �(r, s, p) subsumes �(r ∨ t, s) because r ∨ t is subsumed by r and s is subsumed

by s.
– q subsumes q

Example 2 (continued). We can re-arrange resolutions, so that resolutions on r come
last:
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�¬r �(r ∨ ��¬p) �(��p ∨ s) �(¬s,�q)

�(¬s,�q,��p)

s

�(¬s,�q,��p, r)

p

⊥
r

Prop. 1 is an easy consequence of the following lemma, which we prove in appendix:

Lemma 1. Given clauses A, B, C, I and F , if there is an α-resolution from A, possibly
using side clause B, giving clause I , and a β-resolution from I , possibly using side
clause C, giving clause F , then there exist clauses I∗, F ∗

1 , . . . , F ∗
n (for some n ≥ 0)

and F ∗ such that F ∗ subsumes F and there is a β-resolution from A, possibly using side
clause C, giving clause I∗, and a sequence of α-resolutions from I∗, possibly using side
clause B, giving successively F ∗

1 , . . . , F ∗
n , F ∗. In other words, if A(, B) =⇒α I and

I(, C) =⇒β F , then A(, C) =⇒β I∗, and I∗(, B) =⇒α F ∗
1 and F ∗

1 (, B) =⇒α F ∗
2

and . . . and F ∗
n(, B) =⇒α F ∗. Or, with some pictures:

if we have

A (B)(C)

I
α

F
β

then we also have:

A (B)(C)

I∗
β

F ∗
1

α

F ∗
2

α

F ∗
n

α

F ∗
α

4 Uniform Interpolation by Resolution

Suppose now that we want to compute a uniform interpolant for clause set S and a
sublanguage LnoP defined by a subset of variables P : LnoP is the sublangage of L
whose formulas have no occurrences of atoms in P . We can proceed as follows:

1. Recursively add to S all clauses obtained from S by resolutions on variables from
P : this gives a set of clauses Sres(P ); then

2. Suppress from Sres(P ) all information about variables from P ; formally, we de-
fine an operator Supp such that Supp(P,C) associates to clause C a clause that
“forgets” what C says about variables from P :

– if C is of the form p ∨ C′ or ¬p ∨ C′ for some p ∈ P , then Supp(P,C) = �;
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– otherwise, that is, if no variable of P appears at “ground” level in C:
Supp(P,C′ ∨ �R1 ∨ . . . ∨ �Rn ∨ �C1 ∨ . . . ∨ �Cn) = C′ ∨
�Supp(P,R1)∨ . . .∨�Supp(P,Rn)∨�Supp(P,C1)∨ . . .∨�Supp(P,Cn)
where for each i, Supp(P,Ri) = {Supp(P,C) | C ∈ Ri}. We also perform
the natural simplification: �� ≡ C ∨ � ≡ � and R ∪ {�} ≡ R.

Let SnoP = {Supp(P,C) | C ∈ Sres(P )}. We claim that SnoP is a uniform in-
terpolant of S on LnoP . In order to see this, suppose that φ is a formula of LnoP

such that S |= φ: let S′ be a conjunctive normal form of ¬φ, by refutation complet-
ness of Enjalbert and Fariñas’ resolution system, there is a deduction by resolution of
⊥ from S ∪ S′. Let us use Prop. 1 and re-arrange this deduction to get a sequence
of inferences where all resolutions on variables from P are before the others: it has
the form I1, . . . Ik, . . . , In, where inferences I1, . . . , Ik are on variables from P , and
Ik+1, . . . , In are resolutions on ⊥ or on other variables. Let C1, . . . , Cm be the pre-
misses of the inferences Ik+1, . . . , In that are in S or that are consequents of infer-
ences I1, . . . , Ik; and let R be the set of clauses obtained by applying Supp(P, •) to
C1, . . . , Cm: then R ⊆ SnoP , and there is a deduction by resolution from R∪S′ for ⊥,
since there is a deduction by resolution from {C1, . . . , Cm} ∪ S′ and clauses in R are
“simpler” than C1, . . . , Cm. Thus SnoP ∪ S′ |= ⊥, hence SnoP |= φ.

Example 2 (continued). Suppose we need to compute aLnoP interpolant of R = {�(r∨
��¬p),�(��p ∨ s),�(¬s,�q)} where P = {p, q, s}. We first perform all possible
resolutions on p, q, s:

�(r ∨ ��¬p) �(��p ∨ s) �(¬s,�q)

�(¬s,�q,��p)

s

�(¬s,�q,��p, r)

p

�(r ∨ s)

p

We now compute Supp(P,R). The clauses �(¬s,�q), �(¬s,�q,��p) and �(��p∨
s) are suppressed by Supp(P, •) because they contain only occurrences of s p, and q.
The clauses �(r ∨��¬p) and �(r ∨ s) are discarded too, because they do not specify
in which case r is true. In the clause �(¬s,�q,��p, r), one conjunct is kept, r. So
RnoP = {�r}.

5 Discussion

The results above show that, although it is more complicated than in propositional logic,
resolution can be used to compute a uniform interpolant in modal logic K . Note that
resolution works with clauses, thus formulas have to be put in conjunctive normal form
first, a step which has exponential worst-case complexity. In fact, for formulas in a
rather disjunctive form, methods of [1,7,8] would be preferable, since they work best on
formulas in Disjunctive Normal Form. The method of [1] supposes that the formula to
be interpolated is actually in DNF. [7] proposes an operator to compute a pre-interpolant
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of a modal sequent. In order to give an idea of how the method works, suppose Γ is a
set of modal formulas: [7] defines an operator Ap, such that Ap(Γ ) is a formula that
contains only variables of Γ , except p, which is inconsistent with Γ and such that for
every φ such that φ does not contain p and Γ |= φ, |= Ap(Γ ) ∨ φ; so ¬Ap(Γ ) is a
uniform interpolant of Γ (in fact, it is a post-interpolant of Γ , whereas Ap(Γ ) would
be a pre-interpolant of the sequent Γ ) ⊥). The definition of Ap is inductive. For the
sake of simplicity, let us assume that the formulas in Γ are in negation normal form (all
negations appear only before propositional variables). Then:

1 ¬Ap(Γ ′, C1 ∧ C2) = ¬Ap(Γ ′, C1, C2)
2 ¬Ap(Γ ′, C1 ∨ C2) = ¬Ap(Γ ′, C1) ∨ ¬Ap(Γ ′, C2)
3 ¬Ap(p,¬p, . . .) = ⊥
4 ¬Ap(l1, . . . , lm,�Γ1, . . . ,�Γn,�Γ ′1, . . . ,�Γ ′n′)

=
∧

li �=p,¬p

li ∧
∧
i

�¬Ap(Γ1, . . . , Γn, Γ ′i ) ∧ �¬Ap(Γ1, . . . , Γn)

Here, rules 1 and 2 are used to decompose Γ in disjunctive normal form. When a con-
junction contains both p and ¬p, it is marked inconsistent with rule 3. Finally, rule 4 is
applied when Γ cannot be decomposed further, and when it does not contain opposite
literals: we keep all propositional literals of Γ that do not involve p, interpolate the con-
junction of the � literals, and interpolate each � literal with the conjunction of the �

literals: this is similar to the approach of [1]. The method of [8] works by constructing
a tableau for a (single) formula Γ to be interpolated: essentially, all leaves that close on
p,¬p are replaced by ⊥, and all occurrences of p are removed from all other leaves; it is
then possible to construct “backwards” (starting from the leaves) a new, closed tableau
for a uniform interpolant of Γ . Again, the tableau construction implicitly decomposes
the formula in disjunctive normal form.

However, conjunctive normal forms do occur naturally in many situations, for exam-
ple when one must represent a number of properties of a given system: each property
can be described by a formula, and the conjunction of theses formulas will describe
the system. In this case, it is the transformation into a DNF which will be exponential.
Consider for example the following conjunctive formula: (p ∨ C1) ∧ . . . (p ∨ Cm) ∧
(¬p ∨ C′

1) ∧ . . . (¬p ∨ C′
n). There are m × n resolutions on variable p that lead to

m×n clauses. If we were to put the formula in disjunctive form, we would have 2m+n

disjuncts, of which 2n + 2m − 1 do not contain both p and ¬p (assuming p does not
appear in the Cis nor in the C′

is).
In order to have an effective algorithm for computing the interpolant using resolu-

tion, one would need to precise a procedure to recursively compute P -resolvants of a
given set of clauses. An algorithm like [12]’s saturation by set could be used, coupled
with the elimination of subsumed clauses. From an implementation point of view, an
important difference between resolution in propositional logic and in modal logic is
the representation of clauses: they can be efficiently represented in a table when there
are no modalities. From this point of view, the approach of [13] seems promising: they
“flatten” modal formulas, using a naming scheme for the possible worlds, a little like
skolemization in first-order logic, and then perform resolution on flat clauses. In order
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to properly use this approach for interpolation, one would need to define a sort of “de-
skolemization” in order to regain modal formulas after interpolation has been performed
on flat clauses.
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Appendix: Proof of Lemma 1

The proof is by induction on the height of the derivation height of the α-resolution. The
base case corresponds to an α-resolution whose derivation height is zero: these are the
propositional resolutions and the �⊥ resolution. These are particular cases of a more
general case, where the second resolution is not on the literal obtained from the first
resolution (when the α resolution is a propositional one or a �⊥, it produces no literal).
Then A is of the form A = lA ∨ l′A ∨ A′, whereas B = lB ∨ B′ and C = lC ∨ C′

(if needed), with lA(, lB) =⇒α lI , and l′A(, lC) =⇒β lF . Then we just have to take
I = lA ∨ lF ∨ A′(∨C′) and F ∗ = F . Pictorially:

lA ∨ l′A ∨A′ ( lB ∨B′)( lC ∨ C ′)

lI ∨ l′A ∨A′(∨B′)

α

lI ∨ lF ∨A′(∨B′)(∨C ′)

β

(b
ef

or
e)

⇓

lA ∨ l′A ∨A′ ( lB ∨B′)( lC ∨ C ′)

lA ∨ lF ∨A′(∨C ′)

β

lI ∨ lF ∨A′(∨B′)(∨C ′)

α

(a
ft

er
)

Suppose now that the result holds when the derivation height of the α resolution is
less than n, and let us consider what happens with an α resolution whose derivation
height is n. We have already covered the case where the second resolution is not on the
literal obtained from the first resolution.

If the literal resolved upon in the second resolution is the one obtained in the first
resolution, this means that the first resolution is not a propositional one, nor a �⊥ one
(since in these cases, two literals are discarded and not replaced by anything), and thus
the second one is not propositional either, since it operates on a modal literal.

If the α-resolution involves a �-literal, say in clause A, then it can be a �1 or a
�2 resolution on A alone, or a ��-resolution with a “side” clause B of the form B =
�B′′∨B′. Note that we cannot have here B′′ = ⊥, for this would mean that the literals
of A and B that are involved would not be replaced by anything, so the literal of A
involved in the β-resolution would be another one, a case we have already covered.
Thus B′′ �= ⊥, and the resulting literal is a �-literal containing one new clause I ′

that is not in the �-literal of A. The resulting �-literal is then resolved upon in the
β-resolution, with or without the help of side-clause C, which must then be of the form
C = �C′′ ∨ C′.
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If the β-resolution does not involve I ′, we can conclude quite easily: in this case,
A is of the form A = �(E,A′′, A′′′) ∨ A′, where E is a set of clauses and A′′ and
A′′′ are the clauses involved in the α- and β-resolution: we have A′′(, B′′) =⇒α I ′

and A′′′(, C′′) =⇒β F ′, so we also have �(E,A′′, A′′′) ∨ A′(,�C′′ ∨ C′) =⇒β

�(A′′, A′′′, E, F ′) ∨ A′(∨C′) and �(A′′, A′′′, E, F ′) ∨ A′(∨C′),�B′′ ∨ B′ =⇒α

�(A′′, A′′′, E, I ′, F ′) ∨ A′(∨B′)(∨C′). Pictorially:

�( A′′ , A′′′, E) ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

�(A′′, A′′′ , E, I ′) ∨A′(∨B′)

α

�(A′′, A′′′, E, I ′, F ′) ∨A′(∨B′)(∨C ′)

β

(b
ef

or
e)

⇓

�(A′′, A′′′ , E) ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

�( A′′ , A′′′, E, F ′) ∨A′(∨C ′)

β

�(A′′, A′′′, E, I ′, F ′) ∨A′(∨B′)(∨C ′)

α

(a
ft

er
)

If the β-resolution does involve I ′, then we’ll have to use some inductive argument in
order to conclude: A is of the form A = �(E,A′′)∨A′, and we have A′′(, B′′) =⇒α I ′

and I ′(, C′′) =⇒β F ′:

�( A′′ , E) ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

�(A′′, E, I ′ ) ∨A′(∨B′)

α

�(A′′, E, I ′, F ′) ∨A′(∨B′)(∨C ′)

β

Since the derivation height of A′′(, B′′) =⇒α I ′ is n − 1, by induction hypothesis
there exist I ′∗, F ′∗

1 , . . . , F ′∗
n (for some n ≥ 0) and F ′∗ such that F ′∗ subsumes F ′

and A′′(, C′′) =⇒β I ′∗ and I ′∗(, B′′) =⇒α F ′∗
1 and F ′∗

1 (, B′′) =⇒α F ′∗
2 and . . . and

F ′∗
n (, B′′) =⇒α F ′∗. Now, we can use another resolution to obtain I ′, since we still

have A′′(, B′′) =⇒α I ′. Thus we have:
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�( A′′ , E) ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

�(A′′, E, I ′∗ ) ∨A′(∨B′)

β

�( A′′ , E, I ′∗, F ′∗
1 ) ∨A′(∨B′)(∨C ′)

α

�( A′′ , E, I ′∗, F ′∗
1 , F ′∗

2 ) ∨A′(∨B′)(∨C ′)

α

�( A′′ , E, I ′∗, F ′∗
1 , . . . , F ′∗

n , F ′∗) ∨A′(∨B′)(∨C ′)

α

�(A′′, E, I ′∗, F ′∗
1 , . . . , F ′∗

n , F ′∗, I ′) ∨A′(∨B′)(∨C ′)

α

Let us turn now to the case where there is no �-literal involved in the α-resolution:
this resolution is derived using a ��-rule or a �-rule. Then there is a clause A of
the form A = �A′′ ∨ A′, and possibly a “side”-clause B = �B′′ ∨ B′, such that
A′′(, B′′) =⇒α I ′, and thus I = �I ′ ∨ A(∨B′). The β-resolution involves the literal
produced in the α-resolution (we have studied the other case first). Let us start with
the case where this β-resolution does not involve any �-literal: it is a ��- or a �-
resolution, and there may be a clause C = �C′′ ∨ C′, with I ′(, C′′) =⇒β F ′, and
F = �F ′ ∨ A′(∨B′) ∨ (C′). Using our induction hypothesis again, there are clauses
I ′∗ and F ′∗ such that A′′(, C′′) =⇒β I ′∗ and I ′∗(, B′′) =⇒α F ′∗. (For the sake of
simplicity, we assume that there are no other intermediate clauses F ′∗

1 , . . . , F ′∗
n ; the

proof would be very similar with more intermediate clauses.) In this case, we can choose
I∗ = �I ′∗ ∨A′(∨C′) and F ∗ = F ′∗ ∨ A′(∨B′)(∨C′):

� A′′ ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

� I ′ ∨A′(∨B′)

α

�F ′ ∨A′(∨B′)(∨C ′)

β

(b
ef

or
e)

⇓
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� A′′ ∨A′ (� B′′ ∨B′)(� C ′′ ∨ C ′)

� I ′∗ ∨A′(∨C ′)

β

�F ′∗ ∨A′(∨B′)(∨C ′)

α

(a
ft

er
)

If the other literal of the β-resolution is a �-literal, we have C = �(C′′, E)∨C′, and
F = �(C′′, E, F ′) ∨ A′(∨B′)(∨C′), with I ′, C′′ =⇒β F ′. Since A′′(, B′′) =⇒α I ′,
the same inductive hypothesis again allows us to assume that there are clauses I ′∗ and
F ′∗ such that A′′, C′′ =⇒β I ′∗ and I ′∗(, B′′) =⇒α F ′∗. In order to get I ′ in the �

literal after the resolution, we need to perform another α-resolution. In the end, we can

choose I∗ = �( C′′ , E, I ′∗ )∨A′(∨B′) and F ∗ = �(C′′, E, F ′∗, I ′)∨A′(∨B′)∨C′:

� A′′ ∨A′ (� B′′ ∨B′)�( C ′′ , E) ∨ C ′

� I ′ ∨A′(∨C ′)

α

�(C ′′, E, F ′) ∨A′(∨B′) ∨ C ′

β

(b
ef

or
e)

⇓

� A′′ ∨A′ (� B′′ ∨B′)�( C ′′ , E) ∨ C ′

�( C ′′ , E, I ′∗ ) ∨A′(∨B′)

β

�(C ′′, E, F ′∗) ∨A′(∨B′) ∨ C ′

α

�(C ′′, E, F ′∗, I ′) ∨A′(∨B′) ∨ C ′

α

(a
ft

er
)
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Abstract. It is commonly believed there is a big gap between agent logics and
computational agent frameworks. In this paper, we show that this gap is not as big
as believed by showing that GOAL agents instantiate Intention Logic of Cohen
and Levesque. That is, we show that GOAL agent programs can be formally
related to Intention Logic. We do so by proving that the GOAL Verification Logic
can be embedded into Intention Logic. It follows that (a fragment of) Intention
Logic can be used to prove properties of GOAL agents. The work reported is an
important step towards the application of standard tools from modal logic for e.g.
model checking agent programs. Our results also prove useful for extending the
expressiveness of the GOAL agent language. This is illustrated by incorporating
temporally extended goals into GOAL agents.

1 Introduction

As has been observed by many others, there is still a considerable gap between logical
theories of rational agents and most computational frameworks for such agents [10,12].
Though it is generally hard to connect computational frameworks for rational agents to
logics for such agents, in this paper we show that it is possible to formally relate the
GOAL agent programming language [4,8] and Intention Logic of Cohen and Levesque
[3]. The result proven establishes that GOAL agents instantiate the theory of rational
agents as proposed by Intention Logic, although we also argue that the theory needs
revision at a number of points.

The motivation behind our work is the observation that there are a number of basic
similarities between Intention Logic and the GOAL Verification Logic (“GOAL Logic”
for short, see [4]). Most notably, both are based on linear time frames and both incorpo-
rate basic notions of a common sense perspective on rational action - beliefs and goals
in relation to action. Intention Logic has been proposed as a theory of the “rational
balance” of beliefs, goals, intentions and actions, inspired by Bratman’s theory of in-
tention. It thus proposes a set of rationality principles rational agents should comply
with. The GOAL agent programming language is based on and aspires to incorporate
similar rationality principles, and has been proposed as a theory of computation based
on the common-sense notions of belief and goal. Relating both formally thus would be
a significant step in bridging the gap between agent theory and engineering.

Establishing a formal connection between GOAL and Intention Logic is useful for
a number of reasons. First of all, it connects the GOAL agent programming language

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 232–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to an agent logic in a formally precise sense, contributing to one of the long-standing
challenges of agent research of bridging the gap between agent theory and agent pro-
gramming [10]. It shows that agent logics such as Intention Logic can be applied and
used for the verification of properties of computational agents. Conceptually it is inter-
esting to compare the agent concepts and rationality principles incorporated in Inten-
tion Logic with those used by GOAL agents. Related to this we show that establishing
a formal connection turns out to be useful for extending GOAL agents with temporally
extended goals [1]. On top of this, technically, the mapping of GOAL Logic into a stan-
dard modal logic is useful since it makes available the rich set of tools available for
such logics. These include, for example, tools for model checking, which can be used
to achieve one of the main goals of our work - to establish verification tools that can
be practically applied to computational rational agents. Finally, combining the frame-
works of two approaches also has an effect in the opposite direction: we will argue that
assumptions made for Intention Logic can be broadly categorised threefold: those that
constitute a basic logic for intention, those that can be conceived of as natural in special
situations, and those that seem to be not necessary, or even, not intuitive.

The paper is organized as follows. In Section 2 we briefly introduce the agent pro-
gramming language GOAL and its verification logic as proposed in [4]. In Section 3
the propositional fragment of Intention Logic used in this paper is introduced. In Sec-
tion 4 we show that GOAL Logic can be embedded into Intention Logic. In Section 5
we (re)use the embedding proof to show how to incorporate temporally extended goals
into GOAL agents. Finally, in Section 6 we conclude the paper and discuss possible
directions for future work.

2 The Agent Programming Language GOAL

GOAL agents derive their choice of action from their beliefs and their goals. GOAL
agents consist of four components: (i) a set of beliefs called a belief base, (ii) a set of
goals called a goal base, (iii) a set of action rules, called the agent program, and (iv) a set
of action specifications. The beliefs and goals are drawn from some logical language.
The basic ingredients needed are a knowledge representation language and associated
inference relation and update operators. Here we follow [4] and throughout the paper
we assume a propositional language L0 (with typical elements φ) defined over a set of
Atoms with entailment operator |=. The beliefs and goals of a GOAL agent define its
mental state, which needs to satisfy a number of rationality constraints.

Definition 1. (Mental State)
A mental state of a GOAL agent is a pair 〈Σ,Γ 〉 with Σ a belief base and Γ a goal
base consisting of sentences drawn from a classical propositional language L0, i.e.
Σ,Γ ⊆ L0. A mental state needs to satisfy the following rationality constraints:

– Belief bases are consistent: Σ �|= false,
– Individual goals are consistent: ∀γ ∈ Γ : γ �|= false,
– Goals are not believed to be achieved: ∀γ ∈ Γ : Σ �|= γ.

Rational agents are assumed to have consistent beliefs and goals that are not (logi-
cally) impossible to achieve which motivates the introduction of the first two rational-
ity constraints. Goals of a GOAL agent are achievement goals that the agent wants to
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achieve some time in the future. As such, an agent may have multiple achievement goals
that taken together are inconsistent but may be achieved in either order over time (cf.
[4,7,8]). A GOAL agent is assumed to be committed to achieving these goals. A rational
agent however will not invest resources in pursuing goals that are already (completely)
achieved, which motivates the third rationality constraint.

In order to be able to decide on its next action a GOAL agent inspects its belief and
goal bases. To do so, so-called mental state conditions are introduced to reason about
the agent’s beliefs and goals. The language Lm of mental state conditions extends L0

with a modal belief B and goal G operator, which can be used to express conditions on
the mental state of an agent.

Definition 2. (Mental State Conditions: Syntax)
The language Lm (with typical elements ψ, ψ′) of mental state conditions is defined by:

φ ∈ L0 ::= any element in L0

ψ ∈ Lm ::= Bφ | Gφ | ¬ψ | ψ ∧ ψ

The set of mental state conditions consists of Boolean combinations of formulae of the
form Bφ and Gφ with φ ∈ L0. It is not allowed to nest the operators B and G in mental
state conditions. Also note that simple propositional formulas without occurrences of
B or G operators are not mental state conditions. These formulae are called objective
and are used to represent properties of the agent’s environment instead. The semantics
of mental state conditions is evaluated with respect to mental states.

Definition 3. (Mental State Conditions: Semantics)
The semantics of mental state conditions is defined relative to a mental state 〈Σ,Γ 〉.

〈Σ,Γ 〉 |= Bφ iff Σ |= φ,
〈Σ,Γ 〉 |= Gφ iff ∃γ ∈ Γ such that γ |= φ and Σ �|= φ,
〈Σ,Γ 〉 |= ¬ψ iff 〈Σ,Γ 〉 �|= ψ,
〈Σ,Γ 〉 |= ψ ∧ ψ′ iff 〈Σ,Γ 〉 |= ψ and 〈Σ,Γ 〉 |= ψ′.

The semantics of the goal operator G defines an agent’s achievement goals as those
propositions that follow from a single goal in the agent’s goal base that is not believed
to be the case; in other words, Gφ expresses that φ is an achievement goal in this sense.

GOAL agents select actions using a rule-based action selection mechanism. In the
remainder, we assume a set of actions A (with typical element α, α′) has been pro-
vided. Action rules of the form if ψ then α are used to specify that action α can
be performed, or, is enabled, whenever condition ψ holds, where ψ is a mental state
condition. This mechanism allows agents to derive their choice of action from their be-
liefs and goals. The semantics of action selection and execution are formally specified
in GOAL by means of an operational semantics; here, however, we abstract from the
formal details (see [4]) and we will represent action selection implicitly by means of
action occurrences in a set of possible traces. A trace simply is a sequence of mental
states and actions.

Definition 4. (Trace)
A trace t is an infinite sequence m0, α0,m1, α1, . . . of mental states mi and actions αi.
We also write tmi to denote the ith mental state and tai to denote the ith action.
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Intuitively, a trace corresponding to a possible computation of a GOAL agent needs to
start with a mental state that corresponds to the initial state of the GOAL agent. The
changes in mental states over time are the result of executing actions (which ideally
correspond to changes in the agent’s environment). Action rules and preconditions do
not need to determine a unique action to be taken by the agent at a time point. The
semantics associated with the action selection and execution of a GOAL agent thus
does not define a unique computation but corresponds to a set of computations. This
motivates defining the meaning of a GOAL agent A as a set of traces, in line with the
fact that we abstract from the semantics of action selection and execution in this paper.

2.1 GOAL Logic

To obtain a verification logic for GOAL agents temporal operators are added on top of
mental state conditions to be able to express temporal properties over traces. Addition-
ally an operator start is introduced to be able to pinpoint the start of a trace.

Definition 5. (Temporal Language: Syntax)
The temporal language LG (with typical elements χ, χ′) is defined by:

χ ∈ LG ::= start | ψ ∈ Lm | ¬χ | χ ∧ χ | χ until χ | [α ∈ A]χ

The semantics of LG is defined relative to an agent A, trace t ∈ A and time point i.

Definition 6. (Temporal Language: Semantics)
The truth conditions of sentences from LG given a GOAL agent A, trace t ∈ A and
time point i are inductively defined by:

A, t, i |= start iff i = 0,
A, t, i |= Bφ iff tmi |= Bφ,
A, t, i |= Gφ iff tmi |= Gφ,
A, t, i |= ¬ϕ iff A, t, i �|= ϕ,
A, t, i |= ϕ ∧ ψ iff A, t, i |= ϕ and A, t, i |= ψ,
A, t, i |= ϕ until ψ iff ∃j ≥ i : A, t, j |= ψ and ∀i ≤ k < j : A, t, k |= ϕ,
A, t, i |= [α]ϕ iff ∀t ∈ A(tai = α ⇒ A, t, i + 1 |= ϕ).

Note that formulas of the form [α]ϕ specify universal action postconditions, in partic-
ular, we have A, t, i |= [α]ϕ iff A, t′, i′ |= [α]ϕ iff A |= [α]ϕ. This operator allows
to define the Hoare system for GOAL which was proven complete in [4] and facilitates
reasoning about actions. This operator is crucial in GOAL Logic to be able to compo-
sitionally prove properties of all traces induced by a GOAL agent [4].

3 Basic Intention Logic

Our interest in this paper is in the single-agent, propositional fragment of Intention
Logic without dynamic (composition) operators such as sequential composition. In
essence, Intention Logic can be considered a single-agent logic (cf. [12]) and the sin-
gle agent restriction boils down to excluding multiple agent labels and variables ranging
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over such labels from the logical language. The restriction to the propositional fragment
implies that we do not introduce quantifiers and variables ranging over events, agents or
domains. Temporal operators are also introduced explicitly in the language rather than
defining these as rather complex quantifications over events. The fragment of Intention
Logic introduced here is referred to henceforth as Basic Intention Logic, or sometimes
also simply as Intention Logic.

Definition 7. (Basic Intention Logic: Syntax)
The language LBI is defined by:

α ::= any element from A | IF ϕ THEN α ELSE NIL,
φ ::= any element from Atom,
ϕ ::= φ | ¬ϕ | ϕ ∧ ϕ | BEL ϕ | GOAL ϕ | HAPPENS α |

DONE α | t | BEFORE ϕ ϕ | Eϕ,
t ::= any non-negative numeral (0,1, . . .)

The main modification made to Intention Logic is the addition of a global modal opera-
tor E (cf. [2]). The operator HAPPENS is too weak to reason about all possible effects
of executing an action which is crucial for verifying properties of the behaviour of an
agent program (compare the dynamic operator [α]χ introduced above and the usual dy-
namic modality in Dynamic Logic [6]). The standard abbreviations are used for true
and disjunction ∨. Some additional abbreviations used are:

UNTIL ϕ ψ
df
= ¬(BEFORE ψ ¬ϕ), �ϕ

df
= (true UNTIL ϕ), �ϕ

df
= ¬�¬ϕ

KNOW ϕ
df
= ϕ ∧ BEL ϕ, KNOWIF ϕ

df
= KNOW ϕ ∨ KNOW ¬ϕ.

After introducing the fragment we refer to as Basic Intention Logic, the question re-
mains how much of the theory of Intention Logic about rational agency survives. As it
will turn out, a large part can be (re)formulated by using temporal operators only. This
issue will be revisited at the end of this Section.

3.1 A Run-Based Semantics for Intention Logic

Semantically we first introduce a run-based semantics for Intention Logic and then
discuss how our semantics relates to that introduced in [3]. Different from [7] we use
standard linear orders L to define models for Intention Logic to ensure our models have
the same basic structure as traces of GOAL agents. Here, we will restrict ourselves to
L = 〈N, <〉 and L = 〈Z, <〉. We use linear orders to define the concept of a run.

Definition 8. (Run-Based Model)
Let an arbitrary set of labels S also called states be given. A run based on S and A is
a function r : L → (S × A) that assigns to every time point a state-action pair. Given
n ∈ L, we will write rst

n for the first component of r(n), and rac
n for the second. The set

of runs based on S and A is denoted R(S,A).
A run-based model M (over Atoms) is a tuple M = 〈S,L, B,G, V 〉, where

– S is a non-empty set of states;
– L is a linear order;
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– B ⊆ R × L × R × L is a Euclidean, transitive and serial belief accessibility
relation,

– G ⊆ R× L ×R× L is a serial goal accessibility relation, and
– V : S → Atoms.

The semantics of Basic Intention Logic can now be defined using run-based models.

Definition 9. (Run-Based Semantics for Basic Intention Logic)
Let M = 〈S,L, B,G, V 〉 be a run-based model, r ∈ R, and n ∈ L. Then the satisfac-
tion relation |= relative to M is defined by:

M, r, n |= p iff p ∈ V (rst
n )

M, r, n |= ¬ϕ iff M, r, n �|= ϕ
M, r, n |= ϕ ∧ ϕ′ iff M, r, n |= ϕ and M, r, n |= ϕ′

M, r, n |= t iff t denotes n,
M, r, n |= DONE α iff ∃j ∈ L M, r, j[[α]]n
M, r, n |= HAPPENS α iff ∃j ∈ L M, r, n[[α]]j
M, r, n |= BEL ϕ iff ∀r′, n′(B(r, n, r′, n′) ⇒ M, r′, n′ |= ϕ)
M, r, n |= GOAL ϕ iff ∀r′n′(G(r, n, r′, n′) ⇒ M, r′, n′ |= ϕ)
M, r, n |= BEFORE ϕ ψ iff ∀j ≥ n(M, r, j |= ψ ⇒ ∃i ≤ j(M, r, i |= ϕ))
M, r, n |= Eϕ iff ∃r′, n′ M, r′, n′ |= ϕ

where M, r, n[[α]]n′, to interpret DONE α and HAPPENS α, is defined as follows:

1. M, r, n[[α]]n′ iff rac
n = α and n′ = n + 1.

2. M, r, n[[IF ϕ THEN α ELSE NIL]]n′ iff M, r, n |= ϕ ⇒ M, r, n[[α]]n′.

Note in particular the definition of semantics of the global modality E, which is an
extension of Intention Logic: this operator allows inspection of arbitrary states within
a model, which is useful to translate the dynamic operator [α]χ of GOAL Logic into
Intention Logic.

3.2 CL Models for Intention Logic

How do our Run-Based Models (RBM, from now) compare to the Cohen & Levesque
Models, as presented in [3] (CLM, henceforth)?

Observation 1. The following relates RBM with CLM:

1. CLM models are a special case of RBM models in the following sense: In CLM

models,
(a) L is taken to be Z
(b) agents know the correct time: If B(r, n, r′, n′) then n = n′

(c) agents “want” the current time: If G(r, n, r′, n′) then n = n′

(d) G and B are related through realism: G ⊆ B
(e) a run is of type L → A
(f) runs are determined by their action part, i.e.,

∀r, r′(∀n : rac
n = r′ac

n ⇒ ∀n V (rst
n ) = V (r′st

n )
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(g) agents remember the last atomic action they have done: if B(r, n, r′, n′) then
n = n′ and rac

n = r′ac
n .

(h) assume the property of No persistence / deferral forever, see below.
2. However, RBM models are also a specialisation of CLM models:

(a) CLM allows for quantification over a domain of objects and events;
(b) CLM models have a richer notion of composed actions, and accordingly an

extended definition of M, r, n[[α]]n′.
(c) CLM models are defined for multiple agents.

Some of the differences mentioned above are merely a matter of choice or design. For
instance, it is straightforward to extend the notion of Run-Based Model in such a way
that they encompass item 2(b,c) of Observation 1. As regarding item 1, there are some
deeper issues involved. As to 1a, it seems natural for computational systems to assume
that computations have a start somewhere. Syntactically, item 1a amounts to the re-
quirement that there is always some atomic action α for which DONE α holds.1 To
assume that agents know the correct time (1b) makes sense in many scenario’s, and,
given that an agent knows the time, it does not make sense to have a “goal” that the
time were different. Where realism of CLM ensures BEL ϕ → GOAL ϕ, the weak
realism of RBM amounts to BEL ϕ → ¬GOAL ¬ϕ. We don’t think realism is a very
realistic(!) assumption, and we even think that Cohen and Levesque had weak realism
in mind when they presented their semantics ([3][p. 227]):

. . . ‘the worlds that are consistent with what the agent has chosen are not ruled
out by his beliefs. Without this constraint, the agent could choose world involv-
ing (for example) future events that he believes will never happen.’

Hence, we will assume that R and G satisfy weak realism: for every r ∈ R, and
n ∈ L, there is a r′ ∈ R and n′ ∈ L such that (r, n, r′, n′) ∈ G ∩ B.

Let us now consider item 1f, which is related to item 1e which restricts runs to
L → A. Suppose we take runs as basic entities, like in CLM. This does not do justice
to the intensional notion of the logic, as can be seen as follows. Suppose that we have
only one atom p ∈ Atoms, and two basic actions α, α′. Let B̂EL ϕ be ¬BEL ¬ϕ: the
agent considers ϕ doxastically possible. Let ψ be 0 ∧ �(p ∧ DONE α). Now consider

B̂EL (ψ ∧ GOAL p) ∧ B̂EL (ψ ∧ ¬GOAL p). This is not satisfiable in CLM, since ψ
determines a unique run, and what the goals and beliefs of an agent are is determined by
the run. More natuaral examples present themselves in the multi-agent case, where we
would have for instance that B̂EL 1(ψ∧BEL 2p)∧B̂EL 1(ψ∧¬BEL 2p) is unsatisfiable2.

Given that CLM models identify runs and paths, and a run in CLM is of type L → A,
already brings a problem to the fore that is more basic than on the intensional level. In
CLM, a valuation Φ checks whether Φ(p, σ, n) holds, where p is an atomic proposition, σ
is a ‘event-run’: Z → A and n ∈ Z. But this implies that the truth of atomic propositions

1 Since we do not have quantification over events in the propositional version of IL, we assume
that all transitions are labeled with an atomic action.

2 for readers familiar with modal epistemic logic, this is exactly the reason why states are not
identified with valuations: there would not be enough valuations (in case of one atom) to satisfy
¬K1¬(p ∧K2p) ∧ ¬K1¬(p ∧ ¬K2p)
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(and hence, of objective formulas) is compeletely determined once we know which
actions are taken along σ. In other words, it is not possible to have two event-runs that
agree on all the actions, but still objective formulas along them differ. Suppose the event
α represents the throwing of a dice, (σ(n) = α, for all n) and that pi(i ≤ 6) represents
the outcome. Now, let Φ determine how the propositions pi are distributed over σ, say
Φ(pi, σ, n) iff i = n mod 6. Now, the type of Φ dictates that there cannot be another
event run σ′ in which a dice is continuously thrown but the outcomes are different! In
particular, this implies that if our agent knows that α always happened and will always
happen, he will also know all the outcomes (there is no alternative run with the same
actions and different outcomes). Summarising (let G−1 refer to the past):

KNOW (� HAPPENS α ∧ G−1DONE α) → KNOWIF ϕ (1)

Property 1g of Observation 1 is implicitly imposed by [3] since they require

[3, Assumption 3.20] |= (DONE α) ↔ (BEL (DONE α))

Let us now look at 1h. This is the semantic counterpart of another assumption made in
[3], motivated by the fact that an agent should not endlessly pursue the same goal:

[3, Assumption 3.25] |= �¬(GOAL (¬ϕ ∧ �ϕ))

Writing ĜOAL ϕ for ¬GOAL ¬ϕ, it is not hard to see that this is equivalent to:

|= � ĜOAL (ϕ → �ϕ) (2)

However, (2) as a scheme corresponds, in the sense of modal logic [2] to a semantic
property that is incompatible with the models we are currently looking at. Note that for
ϕ → �ϕ to be true in a world x corresponds to the fact that ∀y(x ≤ y → y = x) (there

is at most one instance that is later than x, and this is x itself. Then for � ĜOAL (ϕ →
�ϕ) to be true in all worlds z corresponds to

∀z∃u∃x(z ≤ u & (Gux & ∀y(x ≤ y → y = x))) (3)

In words: for every time point, there is a future time point with a GOAL-accessible
point, such that the latter point only has itself as a future successor. This property is in-
compatible with our models (and indeed, with CLM models), since (1) time is supposed
to go on forever, and (2) we have ‘nominals’ that are true at only one time point: in the
x state above, some time expression x must be only in x itself, and not its successors.

[3, Assumption 3.25] expresses that ‘there is a future point such that in some goal-
accessible world, no goal is true anymore’, while the intuition [3] seem to want to
capture is ‘for every goal there will be a time point in the future that it is dropped’. The
latter seems hard to be conceived of as a structural property on models, and indeed, we
think it should be a property of the protocol, or behaviour, of the agent.

Summarising, for our semantics, we assume time has a starting point, and that agents
know and want the time. The other restrictions 1d - 1h are either properties that give un-
desired properties (1d, 1e, 1f, 1h), or can be added on top of a basic class of
models (1g).
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Definition 10 (Run-Based IL-Models). The class of Run-Based Basic Intention Logic
Models, RBBILM for short, is the class of Run-Based Models M = 〈S,L, B,G, V 〉
such that:

1. L = Z
2. agents know the correct time
3. agents want the correct time
4. B and G are connected through weak realism.

Validity in the class RBBILM is denoted |=BI .

4 Connecting GOAL and Intention Logic

In this Section we show how to formally relate GOAL and Intention Logic. First, we
define a translation function from GOAL into Intention Logic. Except for the goal oper-
ator and the dynamic modality of GOAL Logic this is straightforward. The main result
we want to prove is that properties proven to hold in one logic are preserved under trans-
lation from that logic to the other. We do so by showing that satisfaction of a formula is
preserved under translation.

Definition 11. (Translating LG into LBI )
The translation function τ mapping GOAL Logic formulae and action rules onto Inten-
tion Logic formulae is defined by:

τ(start) = 0,
τ(Bφ) = BEL φ,
τ(Gφ) = GOAL �φ ∧ ¬BEL φ,
τ(¬χ) = ¬τ(χ),
τ(χ1 ∧ χ2) = τ(χ1) ∧ τ(χ2),
τ(χ1 until χ2) = τ(χ1)UNTIL τ(χ2),
τ([α]χ) = U(DONE α → τ(χ)),
τ(if ψ then α) = IF τ(ψ) THEN α ELSE NIL.

The most interesting case in the definition of the translation function τ is the translation
of Gφ. An achievement goal in GOAL requires that the agent does not believe φ to be
the case, whereas [3] require the agent to believe that φ is not the case. Whereas the
goal operator G does not satsify axiom D (cf. [4]; see also [7] for a discussion), the
achievement goal operator of [3] does, implying that an agent cannot have inconsistent
achievement goals.

The proof showing that satisfaction is preserved under translation is based on model
constructions. Lemma 1 shows how to derive a GOAL Logic model (a trace) from
an RBBILM model that preserves satisfaction of formulae from GOAL Logic, whereas
Lemma 2 shows how to construct an RBBILM model from a GOAL trace. Theorem 2
states our main result that satisfaction is preserved under translation, which shows that
Basic Intention Logic can be used to prove properties of GOAL agents.
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Lemma 1. Let M = 〈S,L, B,G, V 〉 be an RBBILM model. Then there is a GOAL
agent A and a function f from runs to traces such that the set of traces in A is {f(r) |
r ∈ R(S,A)} and for all ϕ ∈ LG:

M, r, n |=BI τ(ϕ) iff A, f(r), n |=G ϕ

Proof. We need to construct a GOAL trace f(r) = t = m0, α0,m1, α1, . . . for every
run r ∈ R, where each mental state mi is of the form 〈Σi, Γi〉. The components can be
derived from r as follows:

– Σi = {φ ∈ L0 | M, r, i |=BI BEL φ},
– Γi = {φ ∈ L0 | M, r, i |=BI GOAL �φ ∧ ¬BEL φ}, and
– αi = rac

i .

Since the relation B in RBBILM models is serial, each Σi is consistent. For a similar
reason every γ ∈ Γi is consistent. Moreover, by constuction of Γi, we have ∀γ ∈
Γi, Σ �|= γ. We now show the equivalence of τ(ϕ) in M, r, n with that of f(r), n in A
by induction on ϕ as follows.

If ϕ is start, we have M, r, n |=BI 0 iff n = 0 iff A, f(r), 0 |=G start. For the
intensional operators, the equivalence follows immediately from the definition of men-
tal states in the trace f(r). Finally, let ϕ = [α]χ. Then M, r, n |=BI U((DONE α) →
τ(χ)) iff for every run r′ and n′, we have M, r′, n′ |=BI DONE α → τ(χ). Now let
t′ be an arbitrary trace in A, and suppose t′ai = α. Obviously, this trace must be the
image of a run r′ for which r′ac

i = αi. But then, M, r′, i + 1 |=BI DONE α and,
hence M, r′, i + 1 |=BI τ(χ). By induction, A, t′, i + 1 |=G χ. This demonstrates
A, t, n |=G [α]χ. The other direction is similar. �

Lemma 2. Let A be an agent, that is, a set of traces. Then we can construct an RBBILM

model M = 〈S,L, B,G, V 〉 such that there is a function g : A → R satisfying, for
every ϕ ∈ LG and every n ∈ N:

A, t, n |=G ϕ iff M, g(t), n |=BI τ(ϕ)

Proof. Let Constraints = {[α]χ | A |=G [α]χ}. Let ε be an action symbol not
occurring in LG. Call a run r minimal if for all n, V (rst

n ) = ∅ and rac
n = ε. Call

a run r peak-once if it is like a minimal run, except that for at most one k ∈ N, we
can have V (rst

k ) �= ∅. Given a trace t, we have to find its associated run g(t). Let
t = m0, α0,m1, α1, . . .. For the run g(t), we put g(t)ac

i = αi. Let the mental state
at ti be 〈Σi, Γi〉. For every valuation π for which π |= Σi, add a state 〈t, i, π〉. Put
V (〈t, i, π〉) = π and, for every such state 〈t, i, π〉, add a peak-once run r′ such that
r′st
i = 〈t, i, π〉. Put B(g(t), i)(r′, i) for each such run. This procedure guarantees that

For all φ M, g(t), i |=BI BEL φ iff φ ∈ Σi (4)

For the goals Γi, we distinguish two cases. First, suppose Γi = ∅. Then, for the goal-
associated runs in g(t), i we take exactly the belief-associated runs as described above.
Apart from weak realism, this guarantees

Γi = ∅ ⇔ for no φ : M, g(t), i |=BI GOAL �φ ∧ ¬BEL φ (5)
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Now, if Γi �= ∅, let γ1, γ2, . . . be an infinite enumeration of all elementes of Γi: if Γi

only has a finite number h of elements, we put γh+j = γj . Since each γj is consistent, it
comes with a set of propositional valuations Πj . Let k be the biggest cardinality of those
sets Πj , which could be an element of N or else ∞. Now we associate k goal-accessible
runs r with g(t), i such that for every m,m′ > i, V (rst

m), V (rst
m′) are valuations from

Πm, whenever γm = γm′ then V (rst
m) = V (rst

m′ ), and, conversely, every valuation
in Πm occurs in at least one goal-accessible run. Since the language LG cannot talk
about the past, it does not matter how such a run looks like at j ≤ i, although, in
order to obtain weak realism, we take care that there is at least one of the goal-runs rg

just created for which rg(i) = rb(i), where rb is one of the belief-accessible runs. We
finally specify rac

n = ε for all n, for all such runs r. Since we know that 〈Σi, Γi〉 |= Gφ
implies that φ �∈ Σi, this procedure guarantees that

For all φ φ ∈ Γi iff M, g(t), i |=BI GOAL �φ ∧ ¬BEL φ (6)

Now, the model M is built by taking all runs g(t) from t ∈ A, and adding the associated
goal and belief runs (the states that we need are defined when we defined the runs).

The proof of the overall claim again follows using induction on ϕ, where the in-
tensional operators follow directly from (4), (5) and (6). The only interesting remain-
ing case are Constraints. So let us consider ϕ = [α]χ, and the property proven
for χ. Suppose furthermore A, t, n |=G [α]χ. This means that for all t′ and m that
t′am = α ⇒ A, t′,m + 1 |=G χ. In M , the only runs r for which there is an i such that
M, r, i+ 1 |=BI DONE α holds, are runs for which there is a trace t such that r = g(t)
and in t, αi equals α (since the constructed goal and belief runs only refer to action ε).
But using induction, we have M, g(t),m + 1 |=BI τ(χ), which completes the proof. �

Theorem 2. GOAL semantics |=G and semantics of Run-Based Basic Intention Logic
|=BI are equivalent for the LG and τ(LG).

Proof. Imediate from Lemma 1 and 2. �

5 Extending GOAL Agents with Temporally Extended Goals

The mapping of goals in the GOAL language onto Intention Logic as in Definition 11
shows that these are naturally interpreted as achievement goals, as originally intended
[4,8]. The future-directed interpretation of such goals is left implicit in GOAL whereas
it is made explicit in the definition of such goals in Intention Logic. By making the
temporal component explicit it is straightforward to define other goal types in Intention
Logic. For example, maintenance goals can be defined as GOAL (�φ). The idea to
introduce a primitive “goal” operator GOAL (or Choice as [7] call it) in Intention Logic
that allows defining various goal types can be introduced in GOAL as well to increase
expressivity [9]. In this Section we show how we can apply the result of the previous
Section to extend GOAL with temporally extended goals [1] while still maintaining the
connection between GOAL Logic and Intention Logic.

To this end, we now allow pure temporal formulae ϕ in the belief and goal base of
GOAL agents. As the idea is to define achievement and other goals now in GOAL in
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the same way as in Intention Logic, the semantics of the goal operator G in GOAL is
modified analogously, and is now simply defined as:

〈Σ,Γ 〉 |= Bφ iff Σ |=LTL φ,
〈Σ,Γ 〉 |= Gφ iff Γ |=LTL φ.

As we now allow temporal formulae φ without occurrences of other modal operators
in both the belief and goal base, the entailment relation of linear temporal logic is used
[5]. It is clear that with these operators we can reintroduce the notion of an achievement
goal by definition as G�φ∧¬Bφ. Moreover we no longer require as in Definition 1 that
individual goals in a goal base Γ are consistent (this is now taken care of by the temporal
operators) but instead require that Γ itself is consistent. A further simplification as a
result of this modified setup is that the rationality constraint of Definition 1 that goals
are not believed to be the case is no longer needed as this now follows by definition.3

It turns out that to show that the connection with Intention Logic is maintained re-
quires only minor modifications of the proofs provided in Section 4 and actually sim-
plifies matters somewhat. The proof of Lemma 1 only requires a modification of the
derivation of mental states from a run r, as follows:

– Σi = {φ ∈ LLTL | M, r, i |=BI BEL φ},
– Γi = {φ ∈ LLTL | M, r, i |=BI GOAL φ}.

As for Lemma 2, since in the new setup (see definitions above) belief and goal bases
have the same logical properties there is no need anymore to distinguish them in the
proof. It thus suffices to show how to construct a run r such that we have (4∗) M, g(t),
i |=BI BEL φ iff Σi |=LTL φ (cf. Lemma 2). As before, for a given trace t we have to
find an associated run g(t). Call a run r silent if it consists of ε-steps only, i.e. rac

n = ε for
all n. Then put B(g(t), i, r, i) for each silent run such that M, r, i |= Σi. This procedure
guarantees (4∗). The same procedure can be used to prove (5∗) M, g(t), i |=BI GOAL φ
iff Γi |=LTL φ, and we are done. Finally, by changing the translation mapping of
Definition 11 for Gφ to GOAL φ we obtain:

Theorem 3. The GOAL semantics |=G and semantics of Run-Based Basic Intention
Logic |=BI are equivalent for the languages LLTL

G and τ(LLTL
G ) that include tempo-

rally extended goals and beliefs.

6 Conclusion

We showed that GOAL agents instantiate Intention Logic and can be formally related by
means of translating GOAL Logic into Intention Logic. Two important results follow:
(i) GOAL Logic is equivalent to a propositional fragment of Intention Logic, and (ii)

3 There remains however the problem of how and when to remove goals from the goal base of
an agent. In [9] a progression operator has been introduced as a solution to this problem (see
also [1]). In the setup of this Section the main difference between the belief and goal base is
this automatic mechanism of removing goals from the goal base, which represents the default
commitment strategy of an agent (cf. [4,8,11]).



244 K. Hindriks and W. van der Hoek

this fragment - a standard normal tense logic - can be used to verify GOAL agents using
a Hoare logic for actions performed by GOAL agents (using additional derivation rules
for verification introduced in [4]). The result proved useful for incorporating temporally
extended goals into GOAL while maintaining the connection with Intention Logic.

We argued that Intention Logic at a number of points needs revision. In particular, we
argued that the principle of No Persistence Forever that requires an agent to drop every
one of its goals sometime is too strong. Moreover, the notion of achievement goals used
in GOAL is slightly different from that of [3] and more in line with that proposed in [7].

Future work will involve applying our results in model checking of GOAL agents.
Conceptually we are interested in including preferences into the language while main-
taining a logical connection with a standard modal logic, which involves extensions to
the programming language GOAL [9] as well as to Basic Intention Logic. The addi-
tional expressivity introduced by incorporating temporally extended goals and tempo-
ral formulae into the belief base of GOAL agents also raises many new questions about
goal persistence and the operationalization of, for example, maintenance goals [9].
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Abstract. It is known that Girard’s linear logics can elegantly represent
the concept of “resource consumption”. The linear exponential operator !
in linear logics can express a specific infinitely reusable resource (i.e., it is
reusable not only for any number, but also many times). It is also known
that the propositional intuitionistic linear logic with ! and the first-order
intuitionistic linear logic without ! (called here ILL) are undecidable
and decidable, respectively. In this paper, a new decidable first-order
intuitionistic linear logic, called the resource-indexed linear logic RL[l],
is introduced by extending and generalizing ILL. The logic RL[l] has
an l-bounded exponential operator !l, and this operator can express a
specific finitely usable resource (i.e., it is usable in any positive number
less than l+1, but only once). The embedding theorem of RL[l] into ILL
is proved, and by using this theorem, the cut-elimination and decidability
theorems for RL[l] are shown.

1 Introduction

1.1 Motivations and Aims

The notion of “resource”, encompassing concepts such as processor time, mem-
ory, cost of components and energy requirements, is fundamental to compu-
tational systems [13]. In the area of AI, this notion is also very important in
handling real scheduling problems to construct complex plans of actions, since
many actions consume resources, such as money, gas and raw materials [14]
(see Section 12 in [14]). An approach towards a logical theory of resources has
been developed by Pym, O’Hearn and Yang [13], using the logic BI of bunched
implications, which is a combination of both the multiplicative fragment of intu-
itionistic linear logic and the intuitionistic logic. The present paper’s approach
is regarded as an alternative to such an approach.

It is known that Girard’s linear logics can elegantly represent the concept of
“resource consumption” [2]. The linear exponential operator ! in linear logics can
express a specific infinitely reusable resource (i.e., it is reusable not only for any
number, but also many times). In this respect, however, there is no infinite re-
source in the real world, and hence the original exponential operator is considered

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 245–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to be inappropriate in order to formalize realistic resource-sensitive reasoning.
Formalizing such realistic finite resource-aware reasoning needs a modified or
restricted version of the original operator.

The central aim of this paper is to express a more appropriate (i.e., finite) and
fine-grained form of resource-sensitive reasoning based on a new decidable first-
order intuitionistic linear logic, called the resource-indexed linear logic RL[l].
The proposed logic RL[l] has an l-bounded exponential operator !l, and this
operator can represent a specific finitely usable resource (i.e., it is usable in any
positive number less than l + 1, but only once). An example of such a resource
is a computer virus or vaccine program. For example, an expression “!l virus” in
RL[l] means “The virus program can be scattered in a number less than l + 1,
but only once (i.e., it is consumed after use).”

1.2 Linear Exponentials as Resource Operators

A characteristic inference rule for the original exponential operator ! in Girard’s
classical and intuitionistic linear logics is:

!α, !α, Γ ⇒ γ

!α, Γ ⇒ γ
,

which is regarded as a modal refinement of the contraction rule:

α, α, Γ ⇒ γ

α, Γ ⇒ γ
.

This characteristic rule corresponds to the Hilbert-style axiom scheme !α→!α∗!α.
The intended meaning of the formula of the form !α is then:

• “The resource α is reusable in any number and many times (i.e., it is reusable
as many times as needed),”

The soft exponential operator !s in Lafont’s soft linear logic (SLL) [10] is
useful for representing specific infinitely usable resources [4]. The operator !s is
characterized by the multiplexing rule:

n︷ ︸︸ ︷
α, ..., α, Γ ⇒ γ

!sα, Γ ⇒ γ

where n can be any natural number. This rule corresponds to the Hilbert-style

axiom scheme !sα→1∧
n︷ ︸︸ ︷

α ∗ α ∗ · · · ∗ α, and hence represents the infinite (onetime)
usability of a resource formula α (i.e., it is consumed after use). The intended
meaning of the formula of the form !sα is:

• “The resource α is usable in any number, but only once (i.e., it is not reusable
many times, but usable any number).”
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The bounded soft exponential operator !r in bounded soft linear logic (BSLL)
[5], which is a restricted verson of !s, is characterized by the bounded multiplexing
rule:

0 ≤ n ≤ r︷ ︸︸ ︷
α, ..., α , Γ ⇒ γ

!rα, Γ ⇒ γ

where r is a fixed positive integer. The intended meaning of the formula of the
form !rα is:

• “The resource α is usable in any finite number less than r + 1, but only once
(i.e., it is consumed after use)”.

It is remarked that the idea of “bounded exponentials” is not a new idea. Such
an idea was first developed by Girard et al. [3] in order to characterize polynomial-
time computation by bounded linear logic (BLL). The original bounded exponen-
tial !b proposed by them are different from the bounded soft exponential !r and
the proposed bounded exponential !l in this paper. The bounded exponential !b of
BLL was based on the notion of resource polynomials, and the inference rules for
!b were quite different from those for !r and !l. The bounded exponential rules for
!b have the same forms as in the original linear logic such as the !-contraction and
the !-dereliction, and these rules are modified by putting the resource polynomial
bound. We cannot obtain a simple intuitive interpretation for !b because of the
complexity of the setting of the inference rules for !b.

1.3 Proposed Approach

In the present paper, a modified new l-bounded exponential operator !l, which
is useful for representing specific finitely usable resources, is introduced. The
proposed new logic RL[l] is obtained from the first-order intuitionistic linear
logic by replacing ! by !l and by generalizing initial sequents and inference rules
by putting explicit resource indexes.

The operator !l is characterized by the following inference rules: for a fixed
positive integer l,

1 ≤ n ≤ l︷ ︸︸ ︷
α ∗ · · · ∗ α, Γ ⇒ γ

!lα, Γ ⇒ γ
Γ ⇒ α Γ ⇒ α ∗ α · · · Γ ⇒

l︷ ︸︸ ︷
α ∗ · · · ∗ α

Γ ⇒ !lα

which correspond to the Hilbert-style axiom scheme:

!lα ↔ α ∧ (α ∗ α) ∧ (α ∗ α ∗ α) ∧ · · · ∧ (
l︷ ︸︸ ︷

α ∗ · · · ∗ α).

Since the intended meaning of the formula of the form
i︷ ︸︸ ︷

α ∗ · · · ∗ α is:

• “The resource α is usable just in the number i, but only once”, the intended
meaning of the formula of the form !lα is1:

1 We do not determine the rigid expression of the following sentence using !l: “α is
usable in any positive number [of times] less than 5.” The following modified sentence
may be expressed as (!4α)2: “α is usable in any positive number [of times] less than
5, but only twice”.
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• “The resource α is usable in any finite positive number less than l + 1, but
only once (i.e., it is consumed after use).”

A technical merit of introducing !l is that the decidability of RL[l] can be
shown.

1.4 Decision Problems in Linear Logics

It is known that the modal propositional intuitionistic linear logic with ! and the
non-modal first-order intuitionistic linear logic without ! (called here ILL) are
undecidable and decidable, respectively [2,6,7,8,11,12].

A brief history of decision problems in linear logics is explained below. It
is known that the first-order classical and intuitionistic logics are undecidable,
but some sublogics of these first-order logics by deleting the contraction rule(s)
are decidable [1,6,8,7,12]. A decidable sublogic of the first-order classical logic
was studied by Ketonen and Weyhrauch [6]. Such a logic, called by them direct
predicate calculus, has indeed no contraction rule. A similar setting of decid-
able contraction-free first-order logic was studied by Mey [12]. A more detailed
decision procedure for the direct predicate calculus was studied by Bellin and
Ketonen from the point of view of proof nets and implementation [1]. Some
sublogics of the first-order intuitionistic logics by deleting the contraction rule
were studied by Komori [8]. He showed that some first-order intuitionistic sub-
structural logics without the contraction rule, including ILL, are decidable. A
role of the contraction rule in decision problems for sublogics of the intuition-
istic logic was clarified by Kiriyama and Ono [7]. They showed that ILL is still
decidable in the language with function symbols.

In comparison with the non-modal first-order cases without !, “modal” propo-
sitional cases with ! has a different situation. Decision problems for propositional
linear logics were comprehensively studied by Lincoln et al. [11]. It was shown
in [11] that the modal propositional classical and intuitionistic linear logics with
! are undecidable. It was shown by Kopylov [9] that the modal propositional
affine linear logic with ! (i.e., the logic has weakening) is decidable. Although
the decision problem for the propositional SLL with !s has not been solved yet,
the propositional BSLL with !r was shown to be decidable [5]. It is unknown
whether the first-order version of BSLL is decidable or not.

Some simple questions, which are motivated to extend ILL in order to ex-
press fine-grained and expressive resource-aware reasoning more appropriately,
are now arisen: “Can a decidable first-order linear logic with restricted expo-
nentials be constructed?” The result of this paper is regarded as an answer of
this question: The logic RL[l], which is a natural extension and generalization
of ILL by adding a finite l-bounded version !l of !, is shown to be decidable. The
decidability of RL[l] is proved by using an embedding of RL[l] into ILL.

1.5 Summary of This Paper

In Section 2, the resource-indexed linear logic RL[l] and its infinite version RL[ω]
are introduced as sequent calculi, and an admissible sequent and some provable
sequents are addressed.
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In Section 3, firstly, the embedding theorem of RL[ω] into ILL is proved, and
then, the cut-elimination and decidability theorems of RL[ω] are shown using
the embedding theorem.

In Section 4, some extensions of RL[l], such as an extended RL[l] with the
“why not” version of !l and the original exponential operator !, are presented.
The (modified) embedding and cut-elimination theorems can also be shown for
these extensions.

In Section 5, this paper is concluded, and some remarks are given.

2 Sequent Calculus

Prior to the precise discussion, the language L used for RL[l] is introduced as
follows: L consists of individual variables, (n-ary) predicate symbols, 1 (multi-
plicative truth constant), ⊥ (additive falsity constant), → (implication), ∧ (con-
junction), ∗ (fusion), ∨ (disjunction), ∀ (for all), ∃ (exists) and !l (l-bounded
exponential operator or l-bounded “of course” operator). Small letters x, y, z,
... are used for individual variables, small letters p, q,... are used for (n-ary)
predicate symbols or atomic formulas, Greek small letters α, β, ... are used for
formulas, and Greek capital letters Γ ,Δ, ... are used for finite (possibly empty)
multisets of formulas. The symbol ω is used to represent the set of natural num-
bers. The symbol ω+ is used to represent the set of positive integers. Let l be
a fixed finite positive integer. Then, the symbol ωl is used to represent the set
{i ∈ ω | i < l}. Lower-case letters i, j and k are sometimes used to denote any

positive integers. An expression αi for any i ∈ ω+ is used to denote
i︷ ︸︸ ︷

α ∗ α ∗ · · · ∗ α.
In this expression, the superscript ·i of α is called the resource index of α. The
intended meaning of αi is thus “The resource α is usable just in the number i,
but only once.” The symbol ≡ means the equality of sequences (or multisets)
of symbols. A sequent is an expression of the form Γ ⇒ γ (the succedent of the
sequent is non empty). If a sequent S is provable in a sequent calculus L, then
such a fact is denoted as L ) S or ) S. The parentheses for ∗ is omitted since ∗
is associative, i.e., ) α ∗ (β ∗ γ) ⇒ (α ∗ β) ∗ γ and ) (α ∗ β) ∗ γ ⇒ α ∗ (β ∗ γ) for
any formulas α, β and γ. Since all logics discussed in this paper are formulated
as sequent calculi, a sequent calculus will occasionally be identified with the logic
determined by it.

A resource-indexed linear logic RL[l] with a resource bound l is defined below.

Definition 1 (RL[l]). An expression αi with i ∈ ω+ is inductively defined by
(α1 := α) and (αi+1 := αi ∗α). Let l be a fixed positive integer (called a resource
bound).

The initial sequents of RL[l] are of the form: for any atomic formula p and
any i ∈ ω+,

pi ⇒ pi ⇒ 1i ⊥i, Γ ⇒ γ.

The cut rule of RL[l] is of the form: for any i ∈ ω+,

Γ ⇒ αi αi, Δ⇒ γ

Γ , Δ ⇒ γ
(cut).
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The logical inference rules of RL[l] are of the form: for any i ∈ ω+,

Γ ⇒ γ

1i, Γ ⇒ γ
(1we)

Γ ⇒ αi βi, Δ ⇒ γ

(α→β)i, Γ , Δ⇒ γ
(→left)

αi, Γ ⇒ βi

Γ ⇒ (α→β)i
(→right)

αi, βi, Γ ⇒ γ

(α ∗ β)i, Γ ⇒ γ
(∗left) Γ ⇒ αi Δ⇒ βi

Γ, Δ ⇒ (α ∗ β)i
(∗right)

αi, Γ ⇒ γ

(α ∧ β)i, Γ ⇒ γ
(∧left1)

βi, Γ ⇒ γ

(α ∧ β)i, Γ ⇒ γ
(∧left2)

Γ ⇒ αi Γ ⇒ βi

Γ ⇒ (α ∧ β)i
(∧right)

αi, Γ ⇒ γ βi, Γ ⇒ γ

(α ∨ β)i, Γ ⇒ γ
(∨left)

Γ ⇒ αi

Γ ⇒ (α ∨ β)i
(∨right1)

Γ ⇒ βi

Γ ⇒ (α ∨ β)i
(∨right2)

αi[y/x], Γ ⇒ γ

(∀xα)i, Γ ⇒ γ
(∀left)

Γ ⇒ αi[z/x]

Γ ⇒ (∀xα)i
(∀right)

αi[z/x], Γ ⇒ γ

(∃xα)i, Γ ⇒ γ
(∃left)

Γ ⇒ αi[y/x]

Γ ⇒ (∃xα)i
(∃right)

where αi[z/x] (αi[y/x]) is the formula obtained from αi by replacing all free
occurrences of x in αi by an arbitrary individual variable z not occurring in the
lower sequent (an arbitrary individual variable y, respectively), but avoiding the
clash of variables.

The l-bounded exponential inference rules of RL[l] are of the form: for any
i ∈ ω+,

αi+k, Γ ⇒ γ

(!lα)i, Γ ⇒ γ
(!lleft)

{ Γ ⇒ αi+j }j∈ωl

Γ ⇒ (!lα)i
(!lright)

where k ∈ ωl.

Definition 2 (RL[ω]). RL[ω] is obtained from RL[l] by replacing (!lleft) and
(!lright) by the unbounded exponential inference rules of the form: for any n ∈ ω
and any i ∈ ω+,

αi+n, Γ ⇒ γ

(!ωα)i, Γ ⇒ γ
(!ωleft)

{ Γ ⇒ αi+j }j∈ω

Γ ⇒ (!ωα)i
(!ωright).

Definition 3 (ILL). A sequent calculus ILL for Girard’s non-modal first-order
intuitionistic linear logic is obtained from RL[l] by deleting (!lleft), (!lright), and
replacing i by 1. The modified inference rules for ILL by replacing i by 1 are
denoted by labelling “ILL” in superscript, e.g., (→leftILL). It is noted that ILL
is a special case of the !l-free fragment of RL[l].
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It is remarked that the exchange rule is omitted in RL[l], since multisets as the
antecedents of sequents are adopted. It is also remarked that for any formula
α, the sequent of the form αi ⇒ αi is provable in RL[l]. This can be shown by
induction on α. Thus, the sequents of the form αi ⇒ αi can also be regarded as
the initial sequents of RL[l].

Proposition 4. The !l-free fragment RL of RL[l] is strictly stronger than ILL.

Proof. For an atomic formula p, the sequent p2→p2 ⇒ (p→p)2 is not provable
in ILL, but it is provable in RL.

It is remarked that RL[l] is just a logic parameterized by a fixed concrete pos-
itive integer l. Thus, before the detailed discussion, we have to fix RL[l] as a
concrete logic such as RL[5]. Indeed, for example, RL[3] is different from RL[2]:
p ∧ p2 ⇒ !2p is provable in RL[2], but p ∧ p2 ⇒ !3p is not provable in RL[3].
The unprovability of the sequent is due to the cut-elimination theorem for RL[l]
(Theorem 10), which theorem will be proved in a later section.

Proposition 5. Let m and n be distinct fixed positive integers. The logics RL[m]
and RL[n] are not theorem-equivalent.

Proof. By using Theorem 10.

The specific inference rules (!lleft) and (!lright) in RL[l] characterize the following
Hilbert-style axiom scheme: !lα ↔ (α ∧ α2 ∧ · · · ∧ αl), and hence the intended
meaning of !lα is “The resource α is usable in any number less than l+l, but only
once.” The unbounded inference rules (!ωleft) and (!ωright) in RL[ω] characterize
the following Hilbert-style axiom scheme: !ωα ↔ (α∧α2∧α3∧· · ·∞), and hence
the intended meaning of !ωα is “The resource α is usable in any number, but only
once.” It is noted that the inference rule (!ωleft) is similar to the multiplexing
rule of the soft exponential operator !s in Lafont’s SLL. Since the treatment of
the infinite premises rule (!ωright) is somewhat difficult, we do not know whether
RL[ω] is decidable or not. Such a problem is remained as an open question. In
this paper, we do not discuss more about RL[ω], since the aim of this paper is
to obtain a decidable first-order linear logic.

Some admissible rules and provable sequents in RL[l] are presented in Propo-
sitions 6 and 7. These propositions imply that every resource index ·i with i ≥ 2
is ragarded as a modal operator stronger than that of the modal logic K.

Proposition 6. An expression Γ i means the multiset {γi | γ ∈ Γ}. The rules
of the form: for any i ∈ ω+ with i ≥ 2,

Γ ⇒ γ

Γ i ⇒ γi
(·i regu)

are admissible in cut-free RL[l].

Proposition 7. An expression α ⇔ β means the sequents α ⇒ β and β ⇒ α.
The following sequents are provable in RL[l]: for any formulas α, β and any
i ∈ ω+,
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(1) 1i ⇔ 1,
(2) ⊥i ⇔ ⊥,
(3) (α ◦ β)i ⇔ αi ◦ βi where ◦ ∈ {→,∧, ∗,∨},
(4) ( xα)i ⇔  x(αi) where  ∈ {∀, ∃},
(5) (!lα)i ⇔ !l(αi),
(6) !lα ⇔ α ∧ α2 ∧ · · · ∧ αl.

3 Embedding, Cut-Elimination and Decidability

An expression like
∧
{αi | i ∈ ωl} where {αi | i ∈ ωl} is a multiset means

α0 ∧ α1 ∧ · · · ∧ αl. For example,
∧
{α, α, β} means α ∧ α ∧ β.

Definition 8. We fix a countable non-empty set Φ of atomic formulas, and de-
fine the sets Φi := {pi | p ∈ Φ} (2 ≤ i ∈ ω) and Φ1 := Φ of atomic formulas.
The language LRL[l] of RL[l] is defined by using Φ, 1,⊥,→,∧, ∗,∨, ∀, ∃ and !l. The
language LILL of ILL is defined by using

⋃
i∈ω+ Φi, 1,⊥,→,∧, ∗,∨, ∀ and ∃.

A mapping f from LRL[l] to LILL is defined by: for any i ∈ ω+,

1. f(pi) := pi ∈ Φi for any p ∈ Φ (especially, f(p) := p ∈ Φ1),
2. f(1i) := 1,
3. f(⊥i) := ⊥,
4. f((α ◦ β)i) := f(αi) ◦ f(βi) where ◦ ∈ {→,∧, ∗,∨},
5. f(( xα)i) :=  xf(αi) where  ∈ {∀, ∃},
6. f((!lα)i) :=

∧
{f(αi+j) | j ∈ ωl}.

An expression f(Γ ) denotes the result of replacing every occurrence of a formula
α in Γ by an occurrence of f(α).

Strictly speaking, the embedding function f is strongly depend on the resource
bound l, i.e., f should be denoted as fl. Indeed, f3(!3p) and f5(!5p) are different.
But, for the sake of brevity, a simple expression f will be used in the following.

Theorem 9 (Embedding). Let Γ be a multiset of formulas in LRL[l], γ be a
formula in LRL[l], and f be the mapping defined in Definition 8.

(1) RL[l] ) Γ ⇒ γ iff ILL ) f(Γ ) ⇒ f(γ).
(2) RL[l] − (cut) ) Γ ⇒ γ iff ILL − (cutILL) ) f(Γ ) ⇒ f(γ).

Proof. Since the case (2) can be obtained as the subproof of the case (1), we
show only (1).

(=⇒) : By induction on a proof P of Γ ⇒ γ in RL[l]. We distinguish the cases
according to the last inference of P , and show some cases.

Case (pi ⇒ pi): The last inference of P is of the form: pi ⇒ pi. In this case,
we obtain f(pi) ⇒ f(pi), i.e., pi ⇒ pi (pi ∈ Φi). This is an initial sequent of ILL.

Case (→left): The last inference of P is of the form:

Γ ⇒ αi βi, Δ⇒ γ

(α→β)i, Γ , Δ⇒ γ
(→left).
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By the hypothesis of induction, we have ILL ) f(Γ ) ⇒ f(αi) and ILL ) f(βi),
f(Δ) ⇒ f(γ). Then, we obtain

....
f(Γ )⇒ f(αi)

....
f(βi), f(Δ)⇒ f(γ)

f(αi)→f(βi), f(Γ ), f(Δ) ⇒ f(γ)
(→leftILL)

where f(αi)→f(βi) = f((α→β)i).
Case (!lleft): The last inference of P is of the form: for any k ∈ ωl,

αi+k, Γ ⇒ γ

(!lα)i, Γ ⇒ γ
(!lleft).

By the hypothesis of induction, we have ILL ) f(αi+k), f(Γ ) ⇒ f(γ), and hence
obtain: ....

f(αi+k), f(Γ )⇒ f(γ)
.... (∧leftILL)∧

{f(αi+j) | j ∈ ωl}, f(Γ ) ⇒ f(γ)

where
∧
{f(αi+j) | j ∈ ωl} = f((!lα)i), and f(αi+k) is in the multiset {f(αi+j) |

j ∈ ωl}.
Case (!lright): The last inference of P is of the form:

{ Γ ⇒ αi+j }j∈ωl

Γ ⇒ (!lα)i
(!lright).

By the hypothesis of induction, we have ILL ) f(Γ ) ⇒ f(αi+j) for all j ∈ ωl.
Let Φ be the multiset {f(αi+j) | j ∈ ωl}. We obtain

....
{ f(Γ )⇒ f(αi+j) }

f(αi+j)∈Φ.... (∧rightILL)

f(Γ )⇒
∧

Φ

where
∧

Φ = f((!lα)i).
(⇐=) : By induction on a proof Q of f(Γ ) ⇒ f(γ) in ILL. We distinguish the

cases according to the last inference of Q, and show only the following case.
Case (∧rightILL): The last inference of Q is of the form:

f(Γ )⇒ f(αi) f(Γ )⇒ f(βi)

f(Γ )⇒ f((α ∧ β)i)
(∧rightILL)

where f((α∧β)i) = f(αi)∧f(βi). By the hypothesis of induction, we have RL[l]
) Γ ⇒ αi and RL[l] ) Γ ⇒ βi. Then, we obtain

....
Γ ⇒ αi

....
Γ ⇒ βi

Γ ⇒ (α ∧ β)i
(∧right).
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Using this theorem, we can prove the following.

Theorem 10 (Cut-elimination). The rule (cut) is admissible in cut-free RL[l].

Proof. Suppose RL[l] ) Γ ⇒ γ. Then, we have ILL ) f(Γ ) ⇒ f(γ) by
Theorem 9 (1), and hence ILL − (cutILL) ) f(Γ ) ⇒ f(γ) by the well-known
cut-elimination theorem for ILL. By Theorem 9 (2), we obtain RL[l] − (cut) )
Γ ⇒ γ.

In this paper, the cut-elimination theorem for RL[l] is proved by the way via
the embedding theorem. The directed syntactical cut-elimination proof of RL[l]
may be obtained using the standard way of Gentzen.

Theorem 11 (Decidability). RL[l] is decidable.

Proof. By Theorem 9, the provability of RL[l] can be transformed into that of
ILL. The translation from the formulas of RL[l] to the corresponding formulas of
ILL can finitely be performed. Since ILL is decidable, RL[l] is also decidable.

4 Extensions

The logic R[l] can be extended with the addition of various constructors, and
the embedding and cut-elimination results can also be shown for such extended
logics in a similar way. For the decidability issue, although extensions with the
original exponential operator ! are undecidable, a number of !-less extensions are
shown to be decidable.

4.1 Adding Function Symbols and Constants

Although in the previous sections, the first-order language does not include func-
tion and individual constant symbols, an extended language with these symbols
can naturally be adapted for the results of the embedding, cut-elimination and
decidability. The decidability of ILL with such an extended language was inves-
tigated in [7].

An extended language with the multiplicative falsity constant 0 and the ad-
ditive truth constant � can also be adapted for the results of the embedding,
cut-elimination and decidability. In the case with 0, the sequent notion in the
underlying sequent calculus must be changed to allowing an empty multiset in
the succedent, and the following initial sequents and inference rules must be
added: for any i ∈ ω+,

0i ⇒
Γ ⇒

Γ ⇒ 0i
.

4.2 Adding Bounded “Why Not” Operator

It is remarked that the “why not” version ?l of !l (i.e., ?l is the dual of !l) can
be introduced. The inference rules for ?l are of the form: for any i ∈ ω+ and any
k ∈ ωl,

{ αi+j , Γ ⇒ γ }j∈ωl

(?lα)i, Γ ⇒ γ

Γ ⇒ αi+k

Γ ⇒ (?lα)i
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which correspond to the Hilbert-style axiom schemes: ?lα ↔ (α ∨ α2 ∨ · · · ∨ αl).
The embedding, cut-elimination and decidability theorems for the underlying
extended system can be shown with some obvious modifications.

4.3 Adding Original Exponentials

It is remarked that the framework of RL[l] can be combined with the original
exponential operator !. For this case, the following inference rules are introduced:
for any i, j ∈ ω+,

αi, Γ ⇒ γ

(!α)i, Γ ⇒ γ

(!Γ )i ⇒ αj

(!Γ )i ⇒ (!α)j

(!α)i, (!α)i, Γ ⇒ γ

(!α)i, Γ ⇒ γ

Γ ⇒ γ

(!α)i, Γ ⇒ γ

where (!Γ )i means the multiset {(!γ)i | γ ∈ Γ}. The results of the embedding
(into ILL with !), cut-elimination and undecidability can be obtained for the
extended logic.

4.4 Adding Strong Negation

An extended language with the strong negation connective ∼ can be considered.
The extended ILL with ∼, called here WILL, was introduced and studied by
Wansing [15]. By using a similar way, the logic WILL can be generalized and
extended to the indexed version RWL[l]. For example, the following inference
rules for ∼ are adopted for RWL[l]: for any i ∈ ω+,

(∼α)i, Γ ⇒ γ (∼β)i, Γ ⇒ γ

(∼(α ∧ β))i, Γ ⇒ γ

(∼α)i, Γ ⇒ γ

(∼(α ∧ β))i, Γ ⇒ γ

(∼β)i, Γ ⇒ γ

(∼(α ∧ β))i, Γ ⇒ γ

αi, Γ ⇒ γ

(∼∼α)i, Γ ⇒ γ

Γ ⇒ αi

Γ ⇒ (∼∼α)i

{ (∼α)i+j , Γ ⇒ γ }j∈ωl

(∼!lα)i, Γ ⇒ γ

Γ ⇒ (∼α)i+k

Γ ⇒ (∼!lα)i
.

The embedding (into WILL), cut-elimination and decidability theorems can be
shown for RWL[l].

4.5 Adding All Constructors

The extended logic with function symbols, 0, �, ?l, ! and ∼ can be constructed
naturally, and the corresponding embedding and cut-elimination theorems can
be shown for that logic.

5 Concluding Remarks

In this paper, a new first-order logic, resource-indexed linear logic RL[l], was
introduced based on the l-bounded exponential operator !l, and the embedding,
cut-elimination and decidability theorems were shown for RL[l].

In the theoretical point of view, the decidability of RL[l] is a novel feature,
since the standard ILL with ! is known as undecidable. In the practical point of
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view, the operator !l in RL[l] is useful for representing “finite” and “fine-grained”
resource-sensitive reasoning appropriately.

It is remarked that the proposed operators !l and !ω can be used to express
some specific programs, such as computer virus and vaccine programs. Such
a program like virus is, roughly speaking, executable or usable simultaneously
in any number, but only once (i.e., not reusable many times, or only one exe-
cutable). Indeed, any existing old virus and vaccine programs are regarded as
unavailable many times. These programs and software may be appropriately
expressed using !l and !ω. The original exponential ! is interpreted as the “un-
bounded replication operator” for programs or processes in concurrency the-
ory. In contrast, the restricted exponentials !l and !ω can be interpreted as the
“bounded (onetime) replication operators”.

We hope that the new exponentials are applicable in a wide range of real
situations concerning resource-aware reasoning. We now show such an example
below. We consider that a real vending machine can deal with less than 51 cans
of juice. Such a situation is briefly expressed as (1): ) coin ⇒ juice, (2): ) coinn

⇒ !50juice (1 ≤ n < 51) and (3): ) coin51 ∗ !ωcoin ⇒ break, where (1) means
“if we put just one coin in a vending machine, then we can get exactly one
cans of juice from the machine”, (2) means “we can get 50 cans of juice” and
(3) means “if we put the coins more than 50 simultaneously, then the vending
machine breaks”.

Finally in this paper, it is remarked that RL[ω] is analogous to the well-
known linear-time temporal logic LTL. The index ·i and the operator !ω in RL[ω]
respectively resemble to the next-time operator X and the globally operator G
in LTL. Indeed, the formula Gα in LTL can informally be interpreted as

Gα ↔ α ∧ Xα ∧ X2α ∧ X3α ∧ · · ·∞

where Xi means

i︷ ︸︸ ︷
XX · · ·X. This interpretation just corresponds to !ωα ↔ (α ∧

α2 ∧ α3 ∧ · · ·∞) in RL[ω]. Although the propositional LTL and the first-order
LTL are known as decidable and undecidable, respectively, the decision problems
for the propositional RL[ω] and the first-order RL[ω] have not been solved yet.
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Abstract. We introduce a fibrational semantics for many-valued logic
programming, use it to define an SLD-resolution for annotation-free
many valued logic programs as defined by Fitting, and prove a soundness
and completeness result relating the two. We show that fibrational se-
mantics corresponds with the traditional declarative (ground) semantics
and deduce a soundness and completeness result for our SLD-resolution
algorithm with respect to the ground semantics.
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1 Introduction

Declarative semantics for logic programming characterises logic programs from
the model-theoretic point of view, in particular, it shows a procedure for comput-
ing (Herbrand) models of logic programs. Commonly, it is given by defining an ap-
propriate semantic operator that works recursively over the Herbrand base and the
ground instances of clauses and finally settles on the least Herbrand model of a pro-
gram, [12]. An assortment of many-valued logic programs has received appropriate
declarative semantics: annotation-free logic programs [6,7,3,16], implication-based
logic programs [17], annotated logic programs [1,4,8,13]. The declarative semantics
received algebraic [4] and categorical [5] account.

Another type of semantics for logic programming is called operational. Oper-
ational semantics gives a proof-theoretic view on logic programming. Often, it
is given by the SLD-resolution, [12]. As for many-valued generalisations of logic
programming, the (SLD) resolution procedures were suggested for a number of
different many-valued logic programs, [1,8,13,17,3,16].

A third type of semantics, a fibrational semantics for logic programming was
suggested; [9]. It gave structural (categorical) characterisation of the syntax of
logic programs. Unlike declarative semantics, fibrational semantics does not use
Herbrand models. As a consequence, this kind of semantics does not depend
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on ground instances of terms, atoms and clauses. Instead, fibrational seman-
tics shows that the syntax of a logic program - sorts of variables, arities of
terms, arities of conjunctions in the clause bodies and “←” , - induces a partic-
ular structure that characterises the logic program uniquely up to the variable
renaming. We will explain this in Section 3. Due to its non-groundness, fibra-
tional semantics can be easily and naturally related to operational semantics
and SLD-resolution: neither fibrational, nor operational semantics depend on
ground instances of atoms. This is why, the fibrational semantics was used to
give a category-theoretic account of SLD-resolution [9,15].

Despite of its elegance, the fibrational semantics has never been extended to
any kind of non-classical logic programming. And there was a serious obstacle
for such extensions: namely, the fibrational semantics of [9] gave no answer to
the question of what role a truth value assignment plays in the new semantics.
In fact, this question had no particular importance in case of classical, two
valued, logic programs that were analysed in [9], because the evaluation true
could be automatically assumed for all the clauses constituting a program. And
thus, without explicitly mentioning, the fibrational semantics [9] structurally
interpreted true unit clauses, and true logical implications between clause bodies
and clause heads.

However, in case of many-valued extensions, one cannot simply assume that
all the unit clauses are true. Moreover, in case if truth values are not allowed as
annotations [6,7], one cannot deduce the truth value of a formula looking simply
at the structure of a logic program. Furthermore, it is impossible to assign a
truth value to a non-ground formula. In this paper, we analyse this situation
categorically. In Section 4 we give a ground semantics to many-valued logic
programs, respecting the tradition [6,7,4,1] to assign truth values only to ground
formulae. In Section 5 we give a fibrational semantics to annotation-free logic
programs, and prove that it is equivalent to the ground semantics.

We believe that Proposition 1 and Theorem 1 establishing precise relations
between ground and fibrational semantics give theoretical justification for fibra-
tional semantics and break new grounds for future development of the fibrational
approach to non-classical logic programming. As an evidence that fibrational
semantics can lead to useful applications, we show, in Section 6, that the fibra-
tional semantics for many-valued logic programs gives rise to a novel algorithm of
SLD-resolution for annotation-free logic programs. We prove its soundness and
completeness relative to the ground and fibrational semantics of Sections 4, 5.
In comparison to alternative approaches to many-valued resolution algorithms
in [3,16], this novel algorithm provides the ideal compromise between expressive-
ness and efficiency, as we briefly explain in Section 7.

2 Many-Valued Logic Programs

A conventional (two-valued) logic program [12] consists of a finite set of clauses,
some of which form its core, and the rest of which form a database.
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Example 1. Let GC (for graph connectivity) denote the logic program with core
(connected(x, x) ←), (connected(x, y) ← edge(x, z), connected(z, y)).

A database for GC lists the edges of a particular graph: edge(a, b) ←,
edge(b, c) ←, . . ..

For the formal analysis of this paper, we need more precision, as follows.

Definition 1. Given a set T , the set Sort(T ) of sorts generated by T is the set
of all finite, possibly empty, sequences of elements of T .

We use T1, T2 etc., to refer to elements of T ; and T = T1, . . . , Tn to refer to
sequences of elements of Sort(T ). Using categorical notation, we will use the
symbol 1 to denote the terminal object (given the empty sequence) in a Cartesian
category Sort(T ), where sequences T1, . . . , Tn are seen as finite products. More
generally, we will use symbol 1 throughout the paper whenever we talk about
an empty product in a given Cartesian category.

Definition 2. A sorted language is a triple L = (T ,F ,P) consisting of

– a set T of primitive sorts;
– for each T ∈ Sort(T ) and a primitive sort T ∈ T , a set F(T , T ) of function

symbols of sort (T , T ), and
– for each T ∈ Sort(T ), a set P(T ) of predicate symbols of sort T .

Given a sorted language L = (T ,F ,P) and a set V of variables, we can define
terms and atomic formulae as usual, all of these with sorts.

Example 2. The language underlying the logic program from Example 1 is a
triple (T ,F ,P) as follows: T = {D}; F(1, D) = {a, b, c, . . .}, otherwise F(T , T )
is empty; and P(DD) = {connected, edge}, otherwise P(T ) is empty.

So, there is one sort D. And there are several nullary function symbols, i.e,
constants a, b, c . . .. And there are two binary predicates “connected” and “edge”.
The sortedness of the predicate amounts simply to their being binary, as the
language is single sorted.

Example 3. Suppose we wish to enumerate edges of a given graph using the set
of natural numbers. This would require the use of the second sort N. We use
predicate “rank” for this purpose. E.g, the clause (rank(0, a, b) ← edge(a, b))
describes the basic step of enumeration. Then, we redefine T of Example 2:
T = {D,N}; and add F(1, N) = {0, 1, 2, 3, . . .}; and P(NDD) = {rank}. One
can use standard predicates “odd” and “even” over natural numbers. Then we
would additionally have P(N) = {odd, even}.

Definition 3. A sorted logic program Γ over the language L consists of a finite
set of clauses (T ,ϕ, ϕ), where T is a sort of a clause, ϕ is a formula of the form
P1(t1) ∧ . . . ∧ Pn(tn) and ϕ is an atomic formula of the form P (t); both ϕ and
ϕ are of sort T .
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Example 4. Example 1 is an example of a logic program with one sort. In
Example 2, we expressed the language formally, with the sort denoted by D.
The logic program has two clauses (connected(x, x) ←) and (connected(x, y) ←
edge(x, z), connected(z, y)) in its core. They are of sorts D and DDD respec-
tively. Additional clauses (edge(a, b) ←), (edge(b, c) ←) are of sort 1.

Thus, the sort of a clause depends on the number and sorts of free
variables. That is, although the predicate “connected” is binary, the clause
(connected(a, x) ←) would be of sort D. The clause (rank(0, a, b) ← edge(a, b))
from Example 3 would be of sort 1. The clause (rank(n + 1, x, y) ←
edge(x, y), rank(n, z, x)) would be of sort NDDD.

Many-valued annotation-free logic programs [6,7], are formally the same as two-
valued logic programs, see Definition 3. But while each atomic ground formula
of a two-valued logic program is given an interpretation in {0, 1}, an atomic
formula of a many-valued logic program receives an interpretation in an arbitrary
specified preorder Ω with finite meets.

Example 5. Our leading example of an annotation-free logic program is as fol-
lows. Let Ω be the unit interval [0, 1]. The logic program of Example 1 is, by
definition, also an annotation-free ([0, 1]-based) logic program. But each ground
atom, e.g., (edge(a, b)) or (connected(a, b)), is assigned a truth value from [0, 1],
(cf. the notion of probabilistic graph, where edges and connections in a graph
exist with some probability).

If we have a ground clause (connected(a, b) ← edge(a, c), connected(c, b)),
we say that the clause is true relative to an interpretation if |edge(a, c)| ∧
|connected(c, b)| ≤ |connected(a, b)| in [0, 1].

3 The Syntax Viewed through Fibers

In this section we give a fibrational, or equivalently, indexed category based
semantics to logic programs. In this section, we consider only the syntax of logic
programs, prior to assigning any truth values, and so we essentially rephrase the
fibrational semantics outlined in [9]. The reader can find missing definitions and
explanations in [14,2,10].

We start by giving a structural interpretation to terms.

Definition 4. Given (T ,F) (before one adds the set P of predicate symbols) and
given a category C with strictly associative finite products, a pre-interpretation
of (T ,F) in C is a function γ : T → ob(C) together with, for each function
symbol f of sort (T , T ) a map in C from γ(T1) × . . . × γ(Tn) to γ(T ).

One needs to show that such pre-interpretation exists and that it is unique.
(Uniqueness of (pre)-interpretation is synonymous to its minimality in conven-
tional terminology.) This was proved in [9] by constructing the category CT ,F
with strictly associative finite products and the unique pre-interpretation ‖ ‖T ,F
of (T ,F) in CT ,F , as follows. The objects of CT ,F are finite sequences of ele-
ments of T . An arrow from T to T is an equivalence class of terms of arity
T1 × . . .× Tn and type T , i.e, terms are factored out by renaming of variables.
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Having interpreted terms, we continue with interpretation for formulae. For
this, we need the notion of an indexed category with finite products.

Definition 5. An indexed category over a small category C is a functor p :
Cop → Cat. An indexed functor from p to q is a natural transformation τ : p ⇒
q : Cop → Cat.

Let FPs be the category of small categories with finite products and functors
that strictly preserve finite products.

Definition 6. If a small category C has finite products, an indexed category
p : Cop → Cat has finite products if p : Cop → Cat factors through FPs, i.e,
there is a functor f : Cop → FPs such that p = U ◦ f , where U : FPs → Cat is
inclusion.

An indexed functor h : p ⇒ q between indexed categories with finite products
respects finite products if each component does so.

We say that p has strictly associative finite products if C and each p(X) have
strictly associative finite products.

We extend the definition of an interpretation of (T ,F) in CT ,F to an interpre-
tation of a language L = (T ,F ,P) in an indexed category with finite products
over CT ,F as follows.

Definition 7. An interpretation of a sorted language L = (T ,F ,P) in an
indexed category p : CT ,F → Cat with finite products is given by the pre-
interpretation ‖ ‖T ,F : of (T ,F) in CT ,F , together with, for each sort T =
T1, . . . Tn, a function ‖ ‖P(T) : P(T ) → ob(p(‖T1‖T ,F × . . . × ‖Tn‖T ,F )).

Existence and uniqueness of such interpretation was proved in [9]. The free
indexed category pL with strictly associative finite products over CT ,F , with an
interpretation ‖ ‖L of L in pL for a sorted language L = (T ,F ,P), is given as
follows.

* For each T ∈ ob(CT ,F), pL(T ) is the category with strictly associative finite
products freely generated by (ΦT , ∅), where ΦT is the set of all triples (U,P, v)
with U ∈ Sort(T ), a predicate symbol P ∈ P(U ) and an arrow v ∈ CT ,F(T , U).
(The symbol ∅ in (ΦT , ∅) indicates that the logic programming arrows “←” are
not interpreted yet. Finite products of triples (U,P, v) give account to finite
conjunctions.)

** For each v ∈ CT ,F(T , U), we define the functor pL(v) : pL(U ) → pL(T ) by
specifying the value of pL(v)(V , P, s), with s ∈ CT ,F (U, V ), to be (V , P, s ◦ v).

We can identify an object of pL(T ) with an equivalence class of finite sequences
of atomic formulae with free variables of sort T . We treat the finite sequence as
a conjunction.

Definition 8. Given a logic program Γ over the language L, an interpretation
of Γ in an indexed category p with strictly associative finite products is given by
the following data:
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– an interpretation ‖ ‖ of L in p and
– for each sort T , formula ϕ and atomic formula ϕ in p(T ), a function

‖ ‖ : ΓT (ϕ,ϕ) → p(T )(‖ϕ1‖× . . .×‖ϕn‖, ‖ϕ‖), where ΓT (ϕ,ϕ) is the family
of clauses in Γ of the form (T ,ϕ, ϕ).

The existence and uniqueness of such interpretation was proved in [9]. The unique
interpretation was called pΓ , and was essentially pL, but with added arrows that
model the implication arrows “←”.

Example 6. In Example 4, categories pΓ (1), pΓ (D), pΓ (DD), pΓ (DDD),
pΓ (NDDD) would be “fibers” generated by clauses of corresponding types.

In the many-valued setting that we will develop in the following sections, our
attention will be on indexed category p for which each p(T ) is a preorder Ω with
finite meets. In this case, the new “condition” in pΓ amounts to the assertion
that each clause ϕ ← ϕ is sent to an inequality ‖ϕ1‖ ∧ . . . ∧ ‖ϕn‖ ≤ ‖ϕ‖.

4 Ground Semantics, Fibrationally

We first show how the fibrational semantics fits into the framework of traditional
declarative (ground) semantics.

We first choose a preorder Ω with finite meets in which to take values. By
ground semantics for the underlying language L we mean the assignment, to
each ground formula, of an element of Ω, respecting the structure of L. This
amounts to a finite product preserving functor from pL(1) to Ω, where the latter
is seen as a category with finite products. We extend it to the logic program Γ .

By previous discussions, CT ,F is the category with strictly associative finite
products freely generated by (T ,F). Let 1 be the terminal object of CT ,F . So,
for each T ∈ ob(CT ,F), the homset CT ,F(1, T ) is the set of ground terms of
type T . Moreover, pL(1) is the category with strictly associative finite products
freely generated by (ΦI , ∅), with ΦI being the set of all triples (U,P, v), where
v ∈ CT ,F(1, U ). Thus pL(1) is the set of all ground formulae of the language L
with finite meets, and it corresponds to the Herbrand base. An interpretation | |
of L in Ω is defined to be a finite meet preserving function from pL(1) to Ω.

We now consider clauses. We do not simply assert that each clause is sent to
an inequality in Ω, as that is not the practice in many-valued logic programming.
We must allow unit clauses, i.e., clauses of the form ϕ ←, to be assigned values
other than 1. We do this as follows.

Definition 9. Given a many-valued annotation-free logic program Γ over the
language L, a valuation v of Γ in a preorder Ω with finite meets is an assignment
to each unit clause ϕ ← of Γ of an element v(ϕ ←) of Ω.

The notion of a valuation is often used in many-valued logic programming to
describe a map from the elements of the Herbrand base to Ω. In our setting,
the latter map would be redundant. Using Definition 9, we can interpret clauses
directly, as follows.
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Definition 10. Given an annotation-free logic program Γ over the language
L, and a valuation v of Γ , a ground interpretation of Γ with respect to the
valuation v in a preorder Ω with finite meets is an interpretation | | : pL(1) → Ω
of L such that for each clause in Γ of the form ϕ ← ϕ, with ϕ non-empty, and
each ground substitution [g],

|ϕ1[g]| ∧ . . . ∧ |ϕn[g]| ≤ |ϕ[g]|,

and, for each unit clause ϕ ← and ground substitution g, v(ϕ ←) ≤ |ϕ[g]|.

Due to its inductive nature, this definition corresponds to the notion of the se-
mantic operator (and its iterations) for many-valued logic programs; that is, the
ground interpretation of a program is computed stepwise, starting with formulae
which have received their valuation and then computing values for the rest of
the formulae using the given data.

Example 7. If we fix [0, 1] to be the chosen preorder, then a valuation for the
logic program GC from Example 1 can be given as follows.
v(connected(x, x) ←) = 1, v(edge(a, b) ←) = 0.75, v(edge(b, c) ←) = 0.25

The minimal ground interpretation would be given by
|connected(a, a)| = 1, |connected(b, b)| = 1, |connected(c, c)| = 1;
min(|edge(a, b)| = 0.75, |connected(b, b)| = 1) ≤ |connected(a, b)| = 0.75,
min(|edge(b, c)| = 0.25, |connected(c, c)| = 1) ≤ |connected(b, c)| = 0.25,
min(|edge(a, b)| = 0.75, |connected(b, c)| = 0.25) ≤ |connected(a, c)| = 0.25,
|edge(a, b)| = 0.75, |edge(b, c)| = 0.25

There is a standard way of defining a minimal model for many-valued logic pro-
grams, described, for example, in [7,4]. We can emulate this in our own terms by
defining an ordering on a set of all the ground interpretations as follows. Let | |1
and | |2 be ground interpretations with respect to a valuation v for a logic pro-
gram Γ over the language L. Then we say that | |1 ≤ | |2 if |ϕ[g]|1 ≤ |ϕ[g]|2 for
every ground substitution of every formula ϕ in Γ . The set of all ground interpre-
tations forms a preorder M with objects the ground interpretations and arrows
given by ≤ defined as above. We define the ground model of an annotation-free
logic program Γ to be the least element of M .

One needs to be careful in regard to the ground models as the following
examples illustrate.

Example 8. Consider a logic program of the form p(a) ←, p(x) ← q(x), q(a) ←,
with valuation v in [0, 1] given by v(p(a) ←) = 0.3; v(q(a) ←) = 0.7.

By Definition 10, in any ground interpretation, 0.3 ≤ |p(a)|, 0.7 ≤ |q(a)|, and
also |q(a)| ≤ |p(a)|. Thus, 0.7 ≤ |p(a)| in any ground interpretation. So, there
is a one-step proof that 0.3 ≤ |p(a)| and a two-step proof that 0.7 ≤ |p(a)|.
This situation evidently can be extended to logic programs involving proofs of
indefinite length, so needs to be taken seriously when giving SLD-resolution, in
particular in determining the ground model.
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Example 9. Consider the logic program of Example 8 with valuation in [0, 1] ×
[0, 1] given by v(p(a) ←) = (0, 0.5); v(q(a) ←) = (0.5, 0). Then, in any ground
interpretation, (0.5, 0) ≤ |p(a)| and (0, 0.5) ≤ |p(a)|, so (0.5, 0.5) ≤ |p(a)|, but
there is no computation that shows this directly. This will lead us to requiring
finite joins in Ω in Section 6. Variants of this example exist in Kleene’s logics
and logics which generalise Kleene’s logics, [6,7].

5 Fibrational Many-Valued Semantics

The fibrational semantics will provide us with non-ground interpretations for
logic programs. In Theorem 1 we relate ground and fibrational semantics.

Let C be a small category and D have all products, and let 1 be a terminal
object of C. The diagonal functor Δ : D → DCop

has a right adjoint given
by sending F ∈ DCop

to F (1). I.e., a right adjoint to the diagonal is given by
evaluation at 1, and we will denote the right adjoint by ev1 : DCop → D.

Proposition 1. The functor ev1 : DCop → D has a right adjoint R : D → DCop

,
given by R(D)(C) = DC(1,C), for each D ∈ D and each C ∈ Cop.

Corollary 1. The functor ev1 : FP
CT ,F
s → FPs has a right adjoint given by

R(Ω) = ΩCT ,F (1,−).

Recall that in Section 4, we studied maps of the form pL(1) → Ω in FPs. By
Corollary 1, they are equivalent to natural transformation pL → ΩCT ,F (1,−). So,
consider a natural transformation ψ : pL → ΩCT ,F (1,−). This is equivalent to
giving, for each T and each ground term t of sort T , a finite meet preserving
function | | : pL(1) → Ω natural in T .

Since Ω is a preorder with finite meets, ΩCT ,F (1,T) has a preorder structure
with finite meet given pointwise. We use that fact in our definition of fibrational
interpretation, which by the above discussion will be equivalent to Definition 10.

Definition 11. Given an annotation-free logic program Γ over the language L,
a fibrational interpretation, or f-interpretation, with respect to the valuation v
of Γ in Ω is given by an interpretation ‖ ‖ of L in ΩCT ,F (1,−), such that:

– For each unit clause ϕ ← in Γ , v(ϕ ←) ≤ ‖ϕ‖;
– For each clause in Γ of the form ϕ ← ϕ, where ϕ is non-empty,

‖ϕ1‖ ∧ . . . ∧ ‖ϕn‖ ≤ ‖ϕ‖.

Theorem 1. Given an annotation-free logic program Γ over the language L, a
preorder Ω, and a valuation v of Γ in Ω, to give an f-interpretation with respect
to v is equivalent to giving a ground interpretation of Γ with respect to v.

Proof. This follows from the adjointness of Corollary 1 and the definition of
interpretation and valuation.
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Example 10. We take the valuation of the program GC from Example 7. The
minimal f-interpretation generated by the valuation is:
‖connected(x, x)‖ = 1, ‖edge(a, b)‖ = 0.75, ‖edge(b, c)‖ = 0.25,
min(‖edge(x, z)‖, ‖connected(z, y)‖) ≤ ‖connected(x, y)‖.

The last line subsumes all the possible substitutions. Notably, ground substi-
tutions agree with the ground interpretation for GC from Example 7.

Given a logic program Γ , we will call the least f-interpretation of Γ an f-model
for Γ . It is the least element in the preorder of all f-interpretations of Γ , similarly
to Section 4.

6 SLD-Resolution

Motivated by our fibrational semantics, we give a definition of the SLD-
resolution for annotation-free logic programs. The idea is as follows. The syntax
of annotation-free logic programs is exactly the same as that of conventional
logic programs. So we can first do SLD-resolution for an annotation-free logic
program qua conventional logic program which is expressible in terms of fibra-
tional semantics and is sound and complete with respect to fibrational semantics;
[9]. Now we introduce valuations. Given a refutation tree, we consider the leaves.
These amount to unit clauses, so have valuation. We then proceed in the back-
ward direction from the leaves to the root of the refutation tree to generate a
minimal value for the substituted goal. Note that the leaves are not necessarily
ground, and hence fibrational rather than ground approach is appropriate.

We restrict the choice of Ω by requiring Ω to have all, not only finite, meets.
The existence of all meets in Ω implies the existence of all joins. A delicate anal-
ysis allows us to restrict to finite joins in addition to finite meets. As Example 9
indicates, we need some such assumption in order to justify the existence of
ground models and f-models for annotation-free logic programs.

We start with a definition of SLD-resolution in terms of state transition ma-
chines. See also [9], where mgus were characterised as pullbacks. We will call
[s1, s2] an mgu of atomic formulae A and B with terms modelled by arrows u
respectively v in CT ,F , if [s1, s2] is an mgu of u and v.

Definition 12. Given an annotation-free logic program Γ in L, the state transi-
tion machine MΓ associated to Γ is the directed graph (N,E) defined as follows.
N is the set of all formulae in L. An edge with source ϕ = ϕ1 × . . . × ϕn is a
triple (l, ρ, (s1, s2)), where l : H ← B is a clause in Γ , ρ = πi : ϕ → ϕi is the
projection to ϕi, and (s1, s2) is an mgu for ϕi and H. The target of (l, ρ, (s1, s2))
is ϕ1[s1, s2] × . . . × ϕi−1[s1, s2] ×B[s1, s2] × ϕi+1[s1, s2] × . . . × ϕn[s1, s2].

Definition 13. Given a logic program Γ and a goal G in L, a computation in
MΓ with goal G is a directed path T in MΓ starting at G, in particular, if the
endpoint is a terminal 1 in some fibre of pL, then it is said to be a successful
computation or refutation. Finally, if
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G = ϕ
(l1,ρ1,(s1

1,s1
2))−→ ϕ

(l2,ρ2,(s2
1,s2

2))−→ . . .
(lm−1,ρm−1,(sm−1

1 ,sm−1
2 ))−→ ϕ

is a computation, (s1
1, s

1
2), (s2

1, s
2
2), . . . , (sm−1

1 , sm−1
2 ) is defined to be its answer.

The SLD-refutation is sound and complete with respect to the (two-valued)
fibrational semantics, that is, the following theorem holds:

Theorem 2. [9] Let Γ be a logic program in L. Substitution s : U → T is the
answer of a refutation in MΓ with goal G of sort T if and only if there is an
arrow m : 1 → G[s] in the fibre pΓ (U ).

Next we introduce a valuation into a mechanism of refutation to the annotation-
free logic programs and give the inductive definition of a tree computing a value
for the goal G as follows.

Definition 14. Let MΓ be the state transition machine associated to a logic
program Γ and a goal G as in Definition 12. Let T be a directed path in MΓ

such that T performs a refutation for a formula G in L with the computed answer
s, and let v be a valuation of Γ . A computation of a value for G is a directed
path T op starting at 1 and ending at ‖G[s]‖ in Ω, such that the following holds:

1. Whenever there is an edge (l, ρ, (s1, s2)) from ϕ1[s1, s2]× . . .×ϕi−1[s1, s2]×
ϕi+1[s1, s2]×, . . . ,×ϕn[s1, s2] to ϕ = ϕ1 × . . .×ϕi × . . .×ϕn, as described in
Definition 12, with ρ = πi and l of the form H ←, then we use the valuation
v of H and substitute ϕi in ϕ by v(H).

2. For every edge (l, ρ, (s1, s2)) from ϕ1[s1, s2] × . . . × ϕi−1[s1, s2] ×
B1[s1, s2], . . . , Bk[s1, s2]×ϕi+1[s1, s2]×, . . . ,×ϕn[s1, s2] to ϕ = ϕ1× . . .×ϕn,
with ρ = πi and l of the form H ← B1, . . . Bk, we use v(B1)∧ . . .∧ v(Bk) to
transform the node ϕ into ϕ1×. . .×ϕi−1∧(v(B1)∧. . .∧v(Bk))∧ϕi+1×. . .×ϕn.

It is easy to see that for every such computation of a value for G = ϕ′1× . . .×ϕ′m,
the endpont of T op will be ‖G[s]‖ =

∧
(v(B′

1[s]))∧ . . .∧
∧

(v(B′
m[s])), where each∧

(v(B′
j [s])) performs the value of the goal atom ϕ′j [s].

Definition 15. Let Γ be an annotation-free logic program interpreted in a pre-
order Ω with the least element 0. Let G be a goal in Γ . We say that ω ∈ Ω is a
computed value for G if one of the following conditions holds:

– There is a refutation for G with answer s and the algorithm of computation
of a value outputs ‖G[s]‖ = ω;

– There is no refutation for G and we put ω = 0.

Example 11. Consider the logic program GC from Example 1 and the goal G
of the form (connected(a, x)). The leftmost tree T performs a refutation for G
with the answer s = (x/b). The rightmost tree T op shows how the value for G[s]
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is computed by the algorithm of computation of a value. We use the valuation
v from Example 10.

connected(a, x) 0.75

edge(a, z)× connected(z, x)

(γ2, π1, (x/a), (y/x))

�
0.75 ∧ 1

�

connected(b, x)

(γ3, π1, (z/b))

�
1

�

1

(γ1, π1, (x/b))

�
∅

�

Thus, the goal (connected(a, x)[x/b]) receives the computed value 0.75. Note
that this agrees with the minimal ground interpretation of GC from Example 7
and f-model of GC from Example 10.

The algorithm of computation of a value for G[s] is sound and complete with
respect to both ground model and f-model of a logic program.

Theorem 3 (Soundness relative to fibrational semantics). Let Γ be a
logic program and G be a goal formula, such that there is a tree T in the state
transition machine MΓ and T performs refutation for {Γ ∪G} with the computed
answer s. Then the following holds. If the algorithm of computation of a value
outputs the value ω for G[s], then in the f-model of Γ , ‖G[s]‖ ≥ ω.

Proof. We use Theorem 2; the rest of the proof proceeds by induction on the
length of the tree T ∈ MΓ .

Theorem 4 (Completeness relative to fibrational semantics). If
‖G[s]‖ = ω is in the f-model of Γ , then there exists a finite set of trees T1, . . . , Tn

which compute the substitution s as answer, such that ω is the supremum of the
computed values for G[s] in T1, . . . , Tn.

Proof. We use Theorem 2; then we proceed by induction on complexity of clauses
interpreted by the ground model of Γ . Finite joins are required in order to
account for cases such as Examples 8, 9. Only finite joins are needed as each
valuation v only makes finitely many assignments. (Note that as we have assumed
the existence of all meets in Ω, it follows that Ω also has finite joins.)

In practice, one needs to use the conventional algorithm of backtracking to com-
pute all the values. Annotation-free logic programs can have infinitely long com-
putations and infinitely long trees T in MΓ , as in Example 12:
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Example 12. The following logic program may have infinitely long refutations
for the goal (← p(x)): q(x) ←, p(x) ← q(x), q(x) ← p(x).

But the number of unit clauses in any logic program is finite, and so is the
number of values assigned to them. This is why, refutations for annotation-free
logic programs will always have finitely many computed values. In our example,
the only possible computed value for p(x) will be the value v(q(x) ←).

We now show that traditional-style soundness and completeness of the SLD-
resolution relative to the ground semantics can be obtained as a corollary of
Theorems 1, 3, 4. We make use of Theorem 1 and use | | instead of ‖ ‖ when
talking about interpretations for ground atoms.

In conventional logic programming [12], one speaks of the success set of a
program Γ . That is the set of all ground atoms for which refutation exists. We
cannot directly use that definition here because of the presence of non-trivial
values. But, to give the success set of a conventional logic program is equivalent
to giving function from pL(1) to {0, 1}, satisfying a success condition. We could
call that the success map corresponding to the success set, cf. [5]. So we generalise
the success map as follows.

Definition 16. Given an annotation-free logic program Γ over L, a preorder
Ω with meets, and a valuation v of Γ in Ω, the success map of Γ is the map
| | : pL(1) → Ω such that for each ground instance ϕ[g] of a formula ϕ, |ϕ[g]| is
the supremum of all computed values ω of ϕ[g].

The soundness and completeness of the algorithm of computation of a value
relative to the ground model of a given program can now be stated as follows.

Corollary 2 (Soundness and completeness relative to ground seman-
tics). Let Γ be a many-valued annotation-free logic program. The success map
of Γ is equal to its ground model.

7 Conclusions and Further Work

We have given ground and fibrational semantics to many-valued logic program-
ming. We have proved theorems showing the exact relationship between the two
kinds of semantics. This gave theoretical justification of the appropriateness of
the fibrational (non-ground) approach to logic programming semantics. Fibra-
tional semantics easily relates to existing resolution procedures [9] and gives rise
to novel proof search algorithms. In particular, we have developed the novel al-
gorithm of SLD-resolution for annotation-free many-valued logic programs. We
proved that this algorithm is sound and complete relative to the fibrational se-
mantics and showed that soundness and completeness of the algorithm relative
to ground semantics can be obtained as a corollary of that.

Related Work. Comparing with other kinds of many-valued resolution algo-
rithms [3,16], the algorithm we have described turns out to be the ideal com-
promise between expressiveness and efficiency. Unlike [16], we do not impose
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syntactical restrictions on the shape and groundness of clauses and goals; and
instead allow any first-order definite logic program to be processed. E.g., pro-
grams as in Example 12 would not be allowed in the setting of [16]. So, fibrational
approach gives a clear advantage of expressiveness.

The algorithm of [3] is not restricting the syntax of logic programs, but it
is very complex and in general non-terminating. In [3] one has to go through
5 consecutive stages of building a forest the trees of which would present all
possible branches of refutation. Our algorithm avoids this by using conventional
method of backtracking to find all the possible values and substitutions.

It is remarkable that both [3] and [16] use ground semantics in order to prove
soundness and completeness of the algorithms. And this adds complications.
Thus, proofs of soundness and completeness of the resolution in [3] exclude the
non-terminating cases like the one in Example 12. So, it would seem that the shift
towards non-ground, fibrational approach to resolution simplifies the algorithm
as well as makes proofs of soundness and completeness easier.

Further work may involve extensions of the fibrational semantics to other
types of many-valued logic programs: implication-based and annotated (signed).

We intentionally analysed only the simplest type of logic programs, that is,
definite programs which allow only conjunctions in clause bodies. One can adapt
existing categorical interpretations of other connectives [11] to the setting.

We also hope that the result relating ground and fibrational semantics will
open new horizons for the structural characterisation of other types of non-
classical logic programs (such as (e.g.) multimodal, non-monotonic) whose
declarative semantics depends on truth assignments.

References

1. Baaz, M., Fermuller, C.G., Sazler, G.: Automated deduction for many-valued logics.
In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2,
pp. 1355–1402. Elsevier, Amsterdam (2001)

2. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice-Hall, En-
glewood Cliffs (1990)

3. Damásio, C., Medina, M., Ojeda-Aciego, J.: A tabulation procedure for first-order
residuated logic programs. In: Proc. IPMU 2006 (2006)

4. Damásio, C.V., Pereira, L.M.: Sorted monotonic logic programs and their embed-
dings. In: Proc. IPMU 2004, pp. 807–814 (2004)

5. Finkelstein, S.E., Freyd, P., Lipton, J.: Logic programming in tau categories. In:
Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933. Springer, Heidelberg
(1995)

6. Fitting, M.: A Kripke/Kleene semantics for logic programs. J. of logic program-
ming 2, 295–312 (1985)

7. Fitting, M.: Fixpoint semantics for logic programming — a survey. TCS 278(1-2),
25–51 (2002)

8. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming
and its applications. J. of logic programming 12, 335–367 (1991)

9. Kinoshita, Y., Power, A.J.: A fibrational semantics for logic programs. In: Herre,
H., Dyckhoff, R., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050. Springer,
Heidelberg (1996)



Fibrational Semantics for Many-Valued Logic Programs 271

10. Komendantskaya, E., Power, J.: Fibrational semantics for many-valued logic pro-
grams. Tech. Report N 00295027, INRIA (2008),
http://hal.inria.fr/inria-00295027/en/

11. Lambek, J., Scott, P.: Higher Order Categorical Logic. Cambridge University Press,
Cambridge (1986)

12. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
13. Lu, J.J., Murray, N.V., Rosenthal, E.: Deduction and search strategies for regular

multiple-valued logics. J. of Multiple-valued logic and soft computing 11, 375–406
(2005)

14. MacLane, S.: Categories for the working mathematician. Springer, Berlin (1971)
15. Power, A.J., Sterling, L.: A notion of a map between logic programs. In: Logic

Programming, Proc. 7th Int. Conf., pp. 390–404. MIT Press, Cambridge (1990)
16. Straccia, U.: A top-down query answering procedure for normal logic programs

under the any-world assumption. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS
(LNAI), vol. 4724, pp. 115–127. Springer, Heidelberg (2007)

17. van Emden, M.: Quantitative deduction and fixpoint theory. J. Logic Program-
ming 3, 37–53 (1986)

http://hal.inria.fr/inria-00295027/en/


Confluence Operators

Sébastien Konieczny1 and Ramón Pino Pérez2
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Abstract. In the logic based framework of knowledge representation and rea-
soning many operators have been defined in order to capture different kinds of
change: revision, update, merging and many others. There are close links between
revision, update, and merging. Merging operators can be considered as extensions
of revision operators to multiple belief bases. And update operators can be con-
sidered as pointwise revision, looking at each model of the base, instead of taking
the base as a whole. Thus, a natural question is the following one: Are there nat-
ural operators that are pointwise merging, just as update are pointwise revision?
The goal of this work is to give a positive answer to this question. In order to do
that, we introduce a new class of operators: the confluence operators. These new
operators can be useful in modelling negotiation processes.

1 Introduction

Belief change theory has produced a lot of different operators that models the different
ways the beliefs of one (or some) agent(s) evolve over time. Among these operators,
one can quote revision [1,5,10,6], update [9,8], merging [19,14], abduction [16], ex-
trapolation [4], etc.

In this paper we will focus on revision, update and merging. Let us first briefly de-
scribe these operators informally:

Revision. Belief revision is the process of accomodating a new piece of evidence that
is more reliable than the current beliefs of the agent. In belief revision the world is
static, it is the beliefs of the agents that evolve.

Update. In belief update the new piece of evidence denotes a change in the world. The
world is dynamic, and these (observed) changes modify the beliefs of the agent.

Merging. Belief merging is the process of defining the beliefs of a group of agents.
So the question is: Given a set of agents that have their own beliefs, what can be
considered as the beliefs of the group?

Apart from these intuitive differences between these operators, there are also close
links between them. This is particularly clear when looking at the technical definitions.
There are close relationship between revision [1,5,10] and KM update operators [9].
The first ones looking at the beliefs of the agents globally, the second ones looking at
them locally (this sentence will be made formally clear later in the paper)1. There is

1 See [8,4,15] for more discussions on update and its links with revision.

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 272–284, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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also a close connection between revision and merging operators. In fact revision op-
erators can be seen as particular cases of merging operators. From these two facts a
very natural question arises: What is the family of operators that are a generalization
of update operators in the same way merging operators generalize revision operators?
Or, equivalently, what are the operators that can be considered as pointwise merging,
just as KM update operators can be considered as pointwise belief revision. This can
be outlined in the figure below. The aim of this paper is to introduce and study the oper-
ators corresponding to the question mark. We will call these new operators confluence
operators.

UpdateRevision

Merging ?

Fig. 1. Revision - Update - Merging - Confluence

These new operators are more cautious than merging operators. This suggest that
they can be used to define negotiation operators (see [2,20,18,17,12]), or as a first step
of a negotiation process, in order to find all the possible negotiation results.

In order to illustrate the need for these new operators and also the difference of
behaviour between merging and confluence we present the following small example.

Example 1. Mary and Peter are planning to buy a car. Mary does not like a German car
nor an expensive car. She likes small cars. Peter hesitates between a German, expen-
sive but small car or a car which is not German, nor expensive and is a big car. Taking
three propositional variables German car, Expensive car and Small car in
this order, Mary’s desires are represented by mod(A) = {001} and Peter’s desires by
mod(B) = {111, 000}. Most of the merging operators2 give as solution (in seman-
tical terms) the set {001, 000}. That is the same solution obtained when we suppose
that Peter’s desires are only a car which is not German nor expensive but a big car
(mod(B′) = {000}). The confluence operators will take into account the disjunctive
nature of Peter’s desires in a better manner and they will incorporate also the interpre-
tations that are a trade-off between 001 and 111. For instance, the worlds 011 and 101
will be also in the solution if one use the confluence operator �dH ,Gmax (defined in
Section 7).

This kind of operators is particularly adequate when the base describes a situation that
is not perfectly known, or that can evolve in the future. For instance Peter’s desires can
either be imperfectly known (he wants one of the two situations but we do not know
which one), or can evolve in the future (he will choose later between the two situations).
In these situations the solutions proposed by confluence operators will be more adequate
than the one proposed by merging operators. The solutions proposed by the confluence
operators can be seen as all possible agreements in a negotiation process.

2 Such as�dH ,Σ and �dH ,Gmax [14].
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In the next section we will give the required definitions and notations. In Section 3 we
will recall the postulates and representation theorems for revision, update, and merging,
and state the links between these operators. In Section 4 we define confluence operators.
We provide a representation theorem for these operators in Section 5. In Section 6 we
study the links between confluence operators and update and merging. In Section 7 we
give examples of confluence operators. And we conclude in Section 8.

2 Preliminaries

We consider a propositional language L defined from a finite set of propositional vari-
ables P and the standard connectives, including � and ⊥.

An interpretation ω is a total function from P to {0, 1}. The set of all interpretations
is denoted by W . An interpretation ω is a model of a formula φ ∈ L if and only if it
makes it true in the usual truth functional way. mod(ϕ) denotes the set of models of
the formula ϕ, i.e., mod(ϕ) = {ω ∈ W | ω |= ϕ}. When M is a set of models we
denote by ϕM a formula such that mod(ϕM ) = M .

A base K is a finite set of propositional formulae. In order to simplify the notations,
in this work we will identify the base K with the formula ϕ which is the conjunction of
the formulae of K3.

A profile Ψ is a non-empty multi-set (bag) of bases Ψ = {ϕ1, . . . , ϕn} (hence
different agents are allowed to exhibit identical bases), and represents a group of n
agents.

We denote by
∧

Ψ the conjunction of bases of Ψ = {ϕ1, . . . , ϕn}, i.e.,
∧

Ψ =
ϕ1 ∧ . . . ∧ ϕn. A profile Ψ is said to be consistent if and only if

∧
Ψ is consistent. The

multi-set union is denoted by �.
A formula ϕ is complete if it has only one model. A profile Ψ is complete if all the

bases of Ψ are complete formulae.
If ≤ denotes a pre-order on W (i.e., a reflexive and transitive relation), then < de-

notes the associated strict order defined by ω < ω′ if and only if ω ≤ ω′ and ω′ �≤ ω,
and 2 denotes the associated equivalence relation defined by ω 2 ω′ if and only if
ω ≤ ω′ and ω′ ≤ ω. A pre-order is total if ∀ω, ω′ ∈ W , ω ≤ ω′ or ω′ ≤ ω. A pre-
order that is not total is called partial. Let ≤ be a pre-order on A, and B ⊆ A, then
min(B,≤) = {b ∈ B | �a ∈ B a < b}.

3 Revision, Update and Merging

Let us now recall in this section some background on revision, update and merging, and
their representation theorems in terms of pre-orders on interpretations. This will allow
us to give the relationships between these operators.

3 Some approaches are sensitive to syntactical representation. In that case it is important to
distinguish between K and the conjonction of its formulae (see e.g. [13]). But operators of
this work are all syntax independant.
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3.1 Revision

Definition 1 (Katsuno-Mendelzon [10]). An operator ◦ is an AGM belief revision op-
erator if it satisfies the following properties:

(R1) ϕ ◦ μ ) μ
(R2) If ϕ ∧ μ 	 ⊥ then ϕ ◦ μ ≡ ϕ ∧ μ
(R3) If μ 	 ⊥ then ϕ ◦ μ 	 ⊥
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2 then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2

(R5) (ϕ ◦ μ) ∧ φ ) ϕ ◦ (μ ∧ φ)
(R6) If (ϕ ◦ μ) ∧ φ 	 ⊥ then ϕ ◦ (μ ∧ φ) ) (ϕ ◦ μ) ∧ φ

When one works with a finite propositional language the previous postulates, proposed
by Katsuno and Mendelzon, are equivalent to AGM ones [1,5]. In [10] Katsuno and
Mendelzon give also a representation theorem for revision operators, showing that each
revision operator corresponds to a faithful assignment, that associates to each base a
plausibility preorder on interpretations (this idea can be traced back to Grove systems
of spheres [7] ).

Definition 2. A faithful assignment is a function mapping each base ϕ to a pre-order
≤ϕ over interpretations such that:

1. If ω |= ϕ and ω′ |= ϕ, then ω 2ϕ ω′

2. If ω |= ϕ and ω′ �|= ϕ, then ω <ϕ ω′

3. If ϕ ≡ ϕ′, then ≤ϕ=≤ϕ′

Theorem 1 (Katsuno-Mendelzon [10]). An operator ◦ is a revision operator (ie. it
satisfies (R1)-(R6)) if and only if there exists a faithful assignment that maps each base
ϕ to a total pre-order ≤ϕ such that

mod(ϕ ◦ μ) = min(mod(μ),≤ϕ).

This representation theorem is important because it provides a way to easily define revi-
sion operators by defining faithful assignments. But also because their are similar such
theorems for update and merging (we will also show a similar result for confluence),
and that these representations in term of assignments allow to more easily find links
between these operators.

3.2 Update

Definition 3 (Katsuno-Mendelzon [9,11]). An operator 3 is a (partial) update opera-
tor if it satisfies the properties (U1)-(U8). It is a total update operator if it satisfies the
properties (U1)-(U5), (U8), (U9).

(U1) ϕ 3 μ ) μ
(U2) If ϕ ) μ, then ϕ 3 μ ≡ ϕ
(U3) If ϕ 	 ⊥ and μ 	 ⊥ then ϕ 3 μ 	 ⊥
(U4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2 then ϕ1 3 μ1 ≡ ϕ2 3 μ2

(U5) (ϕ 3 μ) ∧ φ ) ϕ 3 (μ ∧ φ)
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(U6) If ϕ 3 μ1 ) μ2 and ϕ 3 μ2 ) μ1, then ϕ 3 μ1 ≡ ϕ 3 μ2

(U7) If ϕ is a complete formula, then (ϕ 3 μ1) ∧ (ϕ 3 μ2) ) ϕ 3 (μ1 ∨ μ2)
(U8) (ϕ1 ∨ ϕ2) 3 μ ≡ (ϕ1 3 μ) ∨ (ϕ2 3 μ)
(U9) If ϕ is a complete formula and (ϕ 3 μ) ∧ φ 	 ⊥, then ϕ 3 (μ ∧ φ) ) (ϕ 3 μ) ∧ φ

As for revision, there is a representation theorem in terms of faithful assignment.

Definition 4. A faithful assignment is a function mapping each interpretation ω to a
pre-order ≤ω over interpretations such that if ω �= ω′, then ω <ω ω′.

One can easily check that this faithful assignment on interpretations is just a special
case of the faithful assignment on bases defined in the previous section on the complete
base corresponding to the interpretation.

Katsuno and Mendelzon give two representation theorems for update operators. The
first representation theorem corresponds to partial pre-orders.

Theorem 2 (Katsuno-Mendelzon [9,11]). An update operator 3 satisfies (U1)-(U8) if
and only if there exists a faithful assignment that maps each interpretation ω to a partial
pre-order ≤ω such that

mod(ϕ 3 μ) =
⋃

ω|=ϕ

min(mod(μ),≤ϕ{ω})

And the second one corresponds to total pre-orders.

Theorem 3 (Katsuno-Mendelzon [9,11]). An update operator 3 satisfies (U1)-(U5),
(U8) and (U9) if and only if there exists a faithful assignment that maps each interpre-
tation ω to a total pre-order ≤ω such that

mod(ϕ 3 μ) =
⋃

ω|=ϕ

min(mod(μ),≤ϕ{ω})

3.3 Merging

Definition 5 (Konieczny-Pino Pérez [14]). An operator - mapping a pair Ψ, μ (pro-
file, formula) into a formula denoted -μ(Ψ) is an IC merging operator if it satisfies
the following properties:

(IC0) -μ(Ψ) ) μ
(IC1) If μ is consistent, then -μ(Ψ) is consistent
(IC2) If

∧
Ψ is consistent with μ, then -μ(Ψ) ≡

∧
Ψ ∧ μ

(IC3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2, then -μ1(Ψ1) ≡ -μ2(Ψ2)
(IC4) If ϕ1 ) μ and ϕ2 ) μ, then -μ({ϕ1, ϕ2}) ∧ ϕ1 is consistent if and only if

-μ({ϕ1, ϕ2}) ∧ ϕ2 is consistent
(IC5) -μ(Ψ1) ∧-μ(Ψ2) ) -μ(Ψ1 � Ψ2)
(IC6) If -μ(Ψ1) ∧-μ(Ψ2) is consistent, then -μ(Ψ1 � Ψ2) ) -μ(Ψ1) ∧-μ(Ψ2)
(IC7) -μ1(Ψ) ∧ μ2 ) -μ1∧μ2(Ψ)
(IC8) If -μ1(Ψ) ∧ μ2 is consistent, then -μ1∧μ2(Ψ) ) -μ1(Ψ)
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There is also a representation theorem for merging operators in terms of pre-orders on
interpretations [14].

Definition 6. A syncretic assignment is a function mapping each profile Ψ to a total
pre-order ≤Ψ over interpretations such that:

1. If ω |= Ψ and ω′ |= Ψ , then ω 2Ψ ω′

2. If ω |= Ψ and ω′ �|= Ψ , then ω <Ψ ω′

3. If Ψ1 ≡ Ψ2, then ≤Ψ1=≤Ψ2

4. ∀ω |= ϕ ∃ω′ |= ϕ′ ω′ ≤{ϕ}�{ϕ}′ ω
5. If ω ≤Ψ1 ω′ and ω ≤Ψ2 ω′, then ω ≤Ψ1�Ψ2 ω′

6. If ω <Ψ1 ω′ and ω ≤Ψ2 ω′, then ω <Ψ1�Ψ2 ω′

Theorem 4 (Konieczny-Pino Pérez [14]). An operator - is an IC merging operator
if and only if there exists a syncretic assignment that maps each profile Ψ to a total
pre-order ≤Ψ such that

mod(-μ(Ψ)) = min(mod(μ),≤Ψ )

3.4 Revision vs. Update

Intuitively revision operators bring a minimal change to the base by selecting the most
plausible models among the models of the new information. Whereas update operators
bring a minimal change to each possible world (model) of the base in order to take into
account the change described by the new infomation whatever the possible world. So, if
we look closely to the two representation theorems (propositions 1, 2 and 3), we easily
find the following result:

Theorem 5. If ◦ is a revision operator (i.e. it satisfies (R1)-(R6)), then the operator 3
defined by:

ϕ 3 μ =
∨

ω|=ϕ

ϕ{ω} ◦ μ

is an update operator that satisfies (U1)-(U9).
Moreover, for each update operator 3, there exists a revision operator ◦ such that the

previous equation holds.

As explained above this proposition states that update can be viewed as a kind of point-
wise revision.

3.5 Revision vs. Merging

Intuitively revision operators select in a formula (the new evidence) the closest infor-
mation to a ground information (the old base). And, identically, IC merging operators
select in a formula (the integrity constraints) the closest information to a ground infor-
mation (a profile of bases).

So following this idea it is easy to make a correspondence between IC merging op-
erators and belief revision operators [14]:

Theorem 6 (Konieczny-Pino Pérez [14]). If - is an IC merging operator (it satisfies
(IC0-IC8)), then the operator ◦, defined as ϕ◦μ = -μ(ϕ), is an AGM revision operator
(it satisfies (R1-R6)).

See [14] for more links between belief revision and merging.
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4 Confluence Operators

So now that we have made clear the connections sketched in figure 1 between revision,
update and merging, let us turn now to the definition of confluence operators, that aim
to be a pointwise merging, similarly as update is a pointwise revision, as explained in
Section 3.4. Let us first define p-consistency for profiles.

Definition 7. A profile Ψ = {ϕ1, . . . ϕn} is p-consistent if all its bases are consistent,
i.e ∀ϕi ∈ Ψ , ϕi is consistent.

Note that p-consistency is much weaker than consistency, the former just asks that all
the bases of the profile are consistent, while the later asks that the conjunction of all the
bases is consistent.

Definition 8. An operator � is a confluence operator if it satisfies the following
properties:

(UC0) �μ(Ψ) ) μ

(UC1) If μ is consistent and Ψ is p-consistent, then �μ(Ψ) is consistent
(UC2) If Ψ is complete, Ψ is consistent and

∧
Ψ ) μ, then �μ(Ψ) ≡

∧
Ψ

(UC3) If Ψ1 ≡ Ψ2 and μ1 ≡ μ2, then �μ1(Ψ1) ≡ �μ2(Ψ2)
(UC4) If ϕ1 and ϕ2 are complete formulae and ϕ1 ) μ, ϕ2 ) μ,

then �μ({ϕ1, ϕ2}) ∧ ϕ1 is consistent if and only �μ({ϕ1, ϕ2}) ∧ ϕ2 is consistent
(UC5) �μ(Ψ1) ∧ �μ(Ψ2) ) �μ(Ψ1 � Ψ2)
(UC6) If Ψ1 and Ψ2 are complete profiles and �μ(Ψ1) ∧ �μ(Ψ2) is consistent,

then �μ(Ψ1 � Ψ2) ) �μ(Ψ1) ∧ �μ(Ψ2)
(UC7) �μ1(Ψ) ∧ μ2 ) �μ1∧μ2(Ψ)
(UC8) If Ψ is a complete profile and if �μ1(Ψ) ∧ μ2 is consistent,

then �μ1∧μ2(Ψ) ) �μ1(Ψ) ∧ μ2

(UC9) �μ(Ψ � {ϕ ∨ ϕ′}) ≡ �μ(Ψ � {ϕ}) ∨ �μ(Ψ � {ϕ′})

Some of the (UC) postulates are exactly the same as (IC) ones, just like some (U)
postulates for update are exactly the same as (R) ones for revision.

In fact, (UC0), (UC3), (UC5) and (UC7) are exactly the same as the correspond-
ing (IC) postulates. So the specificity of confluence operators lies in postulates (UC1),
(UC2), (UC6), (UC8) and (UC9). (UC2), (UC4), (UC6) and (UC8) are close to the cor-
responding (IC) postulates, but hold for complete profiles only. The present formulation
of (UC2) is quite similar to formulation of (U2) for update. Note that in the case of a
complete profile the hypothesis of (UC2) is equivalent to ask coherence with the con-
straints, i.e. the hypothesis of (IC2). Postulates (UC8) and (UC9) are the main difference
with merging postulates, and correspond also to the main difference between revision
and KM update operators. (UC9) is the most important postulate, that defines confluence
operators as pointwise agregation, just like (U8) defines update operators as pointwise
revision. This will be expressed more formally in the next Section (Lemma 1).
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5 Representation Theorem for Confluence Operators

In order to state the representation theorem for confluence operators, we first have to be
able to “localize” the problem. For update this is done by looking to each model of the
base, instead of looking at the base (set of models) as a whole. So for “localizing” the
aggregation process, we have to find what is the local view of a profile. That is what we
call a state.

Definition 9. A multi-set of interpretations will be called a state. We use the letter e,
possibly with subscripts, for denoting states. If Ψ = {ϕ1, . . . , ϕn} is a profile and
e = {ω1, . . . , ωn} is a state such that ωi |= ϕi for each i, we say that e is a state of the
profile Ψ , or that the state e models the profile Ψ , that will be denoted by e |= Ψ . If e =
{ω1, . . . , ωn} is a state, we define the profile Ψe by putting Ψe = {ϕ{ω1}, . . . , ϕ{ωn}}.

State is an interesting notion. If we consider each base as the current point of view
(goals) of the corresponding agent (that can be possibly strengthened in the future) then
states are all possible negotiation starting points.

States are the points of interest for confluence operators (like interpretations are for
update), as stated in the following Lemma:

Lemma 1. If � satisfies (UC3) and (UC9) then � satisfies the following

�μ(Ψ) ≡
∨

e|=Ψ

�μ(Ψe)

Defining profile entailment by putting Ψ ) Ψ ′ iff every state of Ψ is a state of Ψ ′, the
previous Lemma has as a corollary the following:

Corollary 1. If � is a confluence operator then it is monotonic in the profiles, that
means that if Ψ ) Ψ ′ then �μ(Ψ) ) �μ(Ψ ′)

This monotony property, that is not true in the case of merging operators, shows one of
the big differences between merging and confluence operators. Remark that there is a
corresponding monotony property for update.

Like revision’s faithful assignments that have to be “localized” to interpretations for
update, merging’s syncretic assignments have to be localized to states for confluence.

Definition 10. A distributed assignment is a function mapping each state e to a total
pre-order ≤e over interpretations such that:

1. ω <{ω,...,ω} ω′ if ω′ �= ω

2. ω 2{ω,ω′} ω′

3. If ω ≤e1 ω′ and ω ≤e2 ω′, then ω ≤e1�e2 ω′

4. If ω <e1 ω′ and ω ≤e2 ω′, then ω <e1�e2 ω′

Now we can state the main result of this paper, that is the representation theorem for
confluence operators.
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Theorem 7. An operator � is a confluence operator if and only if there exists a dis-
tributed assignment that maps each state e to a total pre-order ≤e such that

mod(�μ(Ψ)) =
⋃

e|=Ψ

min(mod(μ),≤e) (1)

Unfortunately, we have to omit the proof for space reasons. Nevertheless, we indicate
the most important ideas therein. As it is usual, the if condition is done by checking
each property without any major difficulty. In order to verify the only if condition we
have to define a distributed assigment. This is done in the following way: for each
state e we define a total pre-order ≤e by putting ∀ω, ω′ ∈ W ω ≤e ω′ if and only
if ω |= �ϕ{ω,ω′}(Ψe). Then, the main difficulties are to prove that this is indeed a
distributed assigment and that the equation (1) holds. In particular, Lema 1 is very
helpful for proving this last equation.

Note that this theorem is still true if we remove respectively the postulate (UC4) from
the required postulates for confluence operators and the condition 2 from distributed
assignments.

6 Confluence vs. Update and Merging

So now we are able to state the proposition that shows that update is a special case of
confluence, just as revision is a special case of merging.

Theorem 8. If � is a confluence operator (i.e. it satisfies (UC0-UC9)), then the oper-
ator 3, defined as ϕ 3 μ = �μ(ϕ), is an update operator (i.e. it satisfies (U1-U9)).

Concerning merging operators, one can see easily that the restriction of a syncretic
assignment to a complete profile is a distributed assignment. From that we obtain the
following result (the one corresponding to Theorem 5):

Theorem 9. If - is an IC merging operator (i.e. it satisfies (IC0-IC8)) then the opera-
tor � defined by

�μ(Ψ) =
∨

e|=Ψ

-μ(Ψe)

is a confluence operator (i.e. it satisfies (UC0-UC9)).
Moreover, for each confluence operator �, there exists a merging operator - such

that the previous equation holds.

It is interesting to note that this theorem shows that every merging operator can be
used to define a confluence operator, and explains why we can consider confluence as a
pointwise merging.

Unlike Theorem 5, the second part of the previous theorem doesn’t follow straight-
forwardly from the representation theorems. We need to build a syncretic assignment
extending the distributed assignment representing the confluence operator. In order to
do that we can use the following construction: Each pre-order ≤e defines naturally a
rank function re on natural numbers. Then we put

ω ≤Ψ ω′ if and only if
∑
e|=Ψ

re(ω) ≤
∑
e|=Ψ

re(ω′)



Confluence Operators 281

As a corollary of the representation theorem we obtain the following

Corollary 2. If � is a confluence operator then the following property holds:

If
∧

Ψ ) μ and Ψ is consistent then
∧

Ψ ∧ μ ) �μ(Ψ)

But unlike merging operators, we don’t have generally �μ(Ψ) )
∧

Ψ ∧ μ.

Note that this “half of (IC2)” property is similar to the “half of (R2)” satisfied by update
operators.

This corollary is interesting since it underlines an important difference between
merging and confluence operators. If all the bases agree (i.e. if their conjunction is
consistent), then a merging operator gives as result exactly the conjunction, whereas a
confluence operator will give this conjunction plus additional results. This is useful if
the bases do not represent interpretations that are considered equivalent by the agent,
but uncertain information about the agent’s current or future state of mind.

7 Example

In this section we will illustrate the behaviour of confluence operators on an example.
We can define confluence operators very similarly to merging operators, by using a
distance and an aggregation function.

Definition 11. A pseudo-distance between interpretations is a total function d : W×
W &→ R+ s.t. for any ω, ω′ ∈ W: d(ω, ω′) = d(ω′, ω), and d(ω, ω′) = 0 if and only if
ω = ω′.

A widely used distance between interpretations is the Dalal distance [3], denoted dH ,
that is the Hamming distance between interpretations (the number of propositional
atoms on which the two interpretations differ).

Definition 12. An aggregation function f is a total function associating a nonnegative
real number to every finite tuple of nonnegative real numbers s.t. for any x1, . . . , xn, x,
y ∈ R+:

– if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn) (non-decreasingness)
– f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 (minimality)
– f(x) = x (identity)

Sensible aggregation functions are for instance max, sum, or leximax (Gmax)4 [14].

Definition 13 (distance-based confluence operators). Let d be a pseudo-distance be-
tween interpretations and f be an aggregation function. The result �d,f

μ (Ψ) of the
confluence of Ψ given the integrity constraints μ is defined by: mod(�d,f

μ (Ψ)) =⋃
e|=Ψ min(mod(μ),≤e), where the pre-order ≤e on W induced by e is defined by:

4 Leximax (Gmax) is usually defined using lexicographic sequences, but it can be easily repre-
sented by reals to fit the above definition (see e.g. [13]).
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– ω ≤e ω′ if and only if d(ω, e) ≤ d(ω′, e), where
– d(ω, e) = f(d(ω, ω1) . . . , d(ω, ωn)) with e = {ω1, . . . , ωn}.

It is easy to check that by using usual aggregation functions we obtain confluence
operators.

Proposition 1. Let d be any distance, �d,Σ
μ (Ψ) and �d,Gmax

μ (Ψ) are confluence op-
erators (i.e. they satisfy (UC0)-(UC9)).

Example 2. Let us consider a profile Ψ = {ϕ1, ϕ2, ϕ3, ϕ4} and an integrity constraint
μ defined on a propositional language built over four symbols, as follows: mod(μ) =
W \ {0110, 1010, 1100, 1110}, mod(ϕ1) = mod(ϕ2) = {1111, 1110}, mod(ϕ3) =
{0000}, and mod(ϕ4) = {1110, 0110}.

Table 1.

W 1111 1110 0000 0110 e1 e2 e3 e4 e5 e6 �d,Σ
μ �d,Gmax

μ

Σ Gmax Σ Gmax Σ Gmax Σ Gmax Σ Gmax Σ Gmax

0000 4 3 0 2 11 4430 10 4420 10 4330 9 4320 9 3330 8 3320
0001 3 4 1 3 11 4331 10 3331 12 4431 11 4331 13 4441 12 4431
0010 3 2 1 1 9 3321 8 3311 8 3221 7 3211 7 2221 6 2211 × ×
0011 2 3 2 2 9 3222 8 2222 10 3322 9 3222 11 3332 10 3322 ×
0100 3 2 1 1 9 3321 8 3311 8 3221 7 3211 7 2221 6 2211 × ×
0101 2 3 2 2 9 3222 8 2222 10 3322 9 3222 11 3332 10 3322 ×
0110 2 1 2 0 7 2221 6 2220 6 2211 5 2210 5 2111 4 2110
0111 1 2 3 1 7 3211 6 3111 8 3221 7 3211 9 3222 8 3221 × ×
1000 3 2 1 3 9 3321 10 3331 8 3221 9 3321 7 2221 8 3221 × ×
1001 2 3 2 4 9 3222 10 4222 10 3322 11 4322 11 3332 12 4332
1010 2 1 2 2 7 2221 8 2222 6 2211 7 2221 5 2111 6 2211
1011 1 2 3 3 7 3211 8 3311 8 3221 9 3321 9 3222 10 3322 ×
1100 2 1 2 2 7 2221 8 2222 6 2211 7 2221 5 2111 6 2211
1101 1 2 3 3 7 3211 8 3311 8 3221 9 3321 9 3222 10 3322 ×
1110 1 0 3 1 5 3110 6 3111 4 3100 5 3110 3 3000 4 3100
1111 0 1 4 2 5 4100 6 4200 6 4110 7 4210 7 4111 8 4211 ×

The computations are reported in Table 1. The shadowed lines correspond to the in-
terpretations rejected by the integrity constraints. Thus the result has to be taken among
the interpretations that are not shadowed. The states that model the profile are the fol-
lowing ones:
e1 = {1111, 1111, 0000, 1110}, e2 = {1111, 1111, 0000, 0110},
e3 = {1111, 1110, 0000, 1110}, e4 = {1110, 1111, 0000, 0110},
e5 = {1110, 1110, 0000, 1110}, e6 = {1110, 1110, 0000, 0110}.

For each state, the Table gives the distance between the interpretation and this state
for the Σ aggregation function, and for the Gmax one. So one can then look at the best
interpretations for each state.

So for instance for �d,Σ
μ (Ψ), e1 selects the interpretation 1111, e2 selects 0111

and 1111, etc. So, taking the union of the interpretations selected by each state, gives
mod(�d,Σ

μ (Ψ)) = {0010, 0100, 0111, 1000, 1111}.
Similarly we obtain mod(�d,Gmax

μ (Ψ)) = {0100, 0011, 0010, 0101, 0111, 1000,
1011, 1101}.
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8 Conclusion

We have proposed in this paper a new family of change operators. Confluence operators
are pointwise merging, just as update can be seen as a pointwise revision. We provide
an axiomatic definition of this family, a representation theorem in terms of pre-orders
on interpretations, and provide examples of these operators.

In this paper we define confluence operators as generalization to multiple bases of
total update operators (i.e. which semantical counterpart are total pre-orders). A per-
spective of this work is to try to extend the result to partial update operators.

As Example 1 suggests, these operator can prove meaningful to aggregate the goals
of a group of agents. They seem to be less adequate for aggregating beliefs, where
the global minimization done by merging operators is more appropriate for finding the
most plausible worlds. This distinction between goal and belief aggregation is a very
interesting perspective, since, as far as we know, no such axiomatic distinction as been
ever discussed.
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Abstract. Abstract argumentation (Dung 1995) is a theory of dialectic
that allows us to formalise and study various notions of argument accept-
ability. We depart from this standard approach and formalise a measure
of argument strength by applying the concept of value of a game, as de-
fined in Game Theory (von Neumann 1928). The measure thus obtained
satisfies a number of intuitively appealing properties that can be derived
mathematically from the minimax theorem.

1 Introduction

Dialectic corresponds informally to the art or practise of logical discussion as
employed in investigating the truth of a theory or an opinion. In classical phi-
losophy, dialectic is controversy and consists in the exchange of arguments and
counter-arguments respectively advocating propositions (theses) and counter-
propositions (antitheses). Abstract argumentation (Dung 1995) can be seen as
a modern theory of dialectic that allows us to model conflict between argu-
ments and formalise various notions of argument acceptability. The adoption of
arguments thus deemed dialectically acceptable combined with the rejection of
unacceptable arguments constitutes a natural approach to deliberation.

This type of deliberation is however somewhat simplistic, as it classifies ar-
guments into two categories only, viz., acceptable and unacceptable arguments.
Several works, e.g. (Krause et al. 1995, Jakobovits and Vermeir 1999, Besnard
and Hunter 2001, Cayrol and Lagasquie-Schiex 2005) have considered and ex-
plored the possibility of discriminating between arguments using a larger number
of categories or continuous numerical scales. The implicit common objective of
such approaches is to eventually elaborate a theory of “careful deliberation”
rooted in dialectic. We aim at following these works by assessing the strength
of arguments on a scale of values ranging from 0 to 1 so as to finely compare
and rank arguments in decreasing order of acceptability, identify the weakest
arguments and better understand the influences that arguments have on each
other in disputes. This fits well with recent interest in quantitative measures
for the analysis of persuasion dialogues (Amgoud and Dupin de Saint-Cyr 2008,
Budzyńska et al. 2008).

The most fundamental ideas used to formalise argument strength in this paper
are essentially the same as those found in abstract argumentation theory: an
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argument may be called strong whenever the argument can be defended by one or
several well-formed opinion(s) that properly withstand(s) external criticism. In
order to assess the strength of a given argument in a dispute, we will essentially
have to confront two fictitious persons, endorsing the roles of proponent and
opponent of the argument. Situations of conflict between two persons such as
this one can be rigorously analysed using the paradigm of Game Theory (von
Neumann and Morgenstern 1944). We will thus introduce a special two-person
game called game of argumentation strategy to confront the opinions of the
proponent and opponent of an argument and assess its strength.

The remainder of the paper is organised as follows. In Section 2, we provide
a short introduction to abstract argumentation theory. In Section 3, we set the
exact rules of a game of argumentation strategy. In Section 4, we justify why the
expected outcome of the game – also called game’s value – may be adopted as
strength value. We dedicate Section 5 to the mathematical study of this game-
theoretic argument strength measure. We finally summarise the contribution of
the paper and discuss related works in Section 6.

2 Abstract Argumentation

Arguments, opinions and the conflicts opposing opinions in a dispute can be
represented in an elegant fashion using directed graphs whereby arguments ap-
pear as nodes and attacks between pairs of arguments appear as directed edges.
Such graphs correspond to abstract argumentation frameworks and constitute
the basis of abstract argumentation theory (Dung 1995). Formally,

Definition 1 (abstract argumentation framework). An abstract argumen-
tation framework is a pair (Arg, att) where Arg is a set of arguments and
att ⊆ Arg ×Arg is a binary relation between arguments.

For example, a framework F = (Arg, att) may consist of Arg = {a, b, c, d, e, f}
and att = {(a, b), (b, a), (b, c), (c, d), (e, c), (f, e)}. The corresponding directed
graph is shown in Fig. 1.

The opinions held by the participants of a dispute can be simply represented
by the sets of arguments they embrace. Thus, opinions formally correspond to
sets of arguments X ⊆ Arg. Conflicts between opinions can be formalised in
terms of attack between sets of arguments. We say that an opinion X ⊆ Arg

a ��b��

��
c

��

e�� f��

d

Fig. 1. A simple abstract argumentation framework
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attacks the opinion Y ⊆ Arg when there exists an attack (x, y) ∈ X × Y which
originates from an argument x ∈ X and is directed against an argument y ∈ Y .
In the framework of Fig. 1, it holds for instance that {a, c, f} attacks {b, e}, that
{b, e} attacks {c, d} and that {c, d} attacks itself.

The main purpose of argumentation theory is to identify which arguments and
opinions are rationally ”acceptable”. To address this problem, several notions of
acceptability have been put forward in the literature (Dung 1995, Bondarenko
et al. 1997, Dung et al. 2006, 2007). In this paper, we will mostly deal with the
notions of conflict-freeness, admissibility and stability.

Definition 2 (acceptability). A set X ⊆ Arg of arguments is said to be

– conflict-free if and only if X does not attack itself
– admissible if and only if X is conflict-free and attacks every argument that

attacks X
– stable if and only if X is conflict-free and attacks every argument that is not

an element of X

Intuitively, conflict-freeness conveys the idea that well-formed opinions should be
internally consistent. Admissibility is a stronger notion of acceptability accord-
ing to which opinions should not only be conflict-free but also incorporate the
counter-arguments necessary to resist (external) criticism. Finally stability is an
even stronger notion of admissibility which requires all arguments not embraced
by the opinion to be attacked.

In the example of Fig. 1, {a, c, f} is conflict-free, admissible and stable, {b}
is conflict-free and admissible but not stable, {c, f} is conflict-free but not ad-
missible and {a, b, c} is neither stable nor admissible nor conflict-free.

3 Games of Argumentation Strategy

In classical abstract argumentation, arguments are either acceptable or unac-
ceptable, given a chosen notion of acceptability. This gives a rather coarse way
to compare arguments. So, for example, for the framework given in Fig. 1, b and
f are both equally admissible arguments. However, intuitively f can be deemed
to be “stronger” than b, as it is not “weakened” by any attacking argument
(whereas b is “weakened” by a). In general, in order to assess the strength of
an argument, we will essentially weigh the opinions embracing that argument
(opinions pro) against the possible criticisms that can be raised against them
(opinions con). We will define, in Section 4, a notion of argument strength match-
ing this intuition. This notion will be defined in terms of the value of a game of
strategy (Borel 1921, von Neumann 1928, von Neumann and Morgenstern 1944)
confronting two fictive players endorsing the roles of proponent and opponent of
some argument of interest. In this section we will define this game.

Let us assume given and fixed an abstract argumentation framework (F, x)
representing a dispute and denote by x ∈ Arg the argument whose strength is
to be measured. In the remainder of this section, we introduce the exact rules
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of a game that is specific to the argument x and based on the structure of F .
This game will be referred to as (F, x) game of argumentation strategy, or for
convenience simply as (F, x) game.

In Game Theory, the choices available to the players are referred to as pure
strategies. In the (F, x) game, strategies are sets of arguments X ⊆ Arg and are
interpreted as opinions. The proponent of argument x is required to embrace it,
so we impose that x belongs to the set of arguments (strategy) played by the
proponent. The opponent is however free to select any set of arguments to play
the game.

Definition 3 (pure strategies). The sets of pure strategies for the proponent
and opponent players are {P |P ⊆ Arg, x ∈ P} and {O |O ⊆ Arg} respectively.

Let (P,O) be an arbitrary pair of strategies chosen by the proponent and op-
ponent respectively. A degree of acceptability of P with respect to O can be
defined on the basis of the attacks directed from P to O and from O to P within
the abstract argumentation framework F . Let us then denote for every set of
arguments A,B ⊆ Arg in the framework F = (Arg, att)

Notation 1 (set of attacks). B←A
F = {(a, b) ∈ A ×B | (a, b) ∈ att}

the set of attacks from A against B. According to this notation, O←P
F represents

the set of attacks from P against O and P←O
F the set of attacks from O against

P in F . In a dispute, it is better for the proponent of an argument to have more
attacks against opponents to the argument and fewer attacks from them. To
make sense dialectically, the degree of acceptability φ(P,O) of P with respect
to O shall thus be as great as O←P

F is big and as low as P←O
F is small. The

sets of attacks O←P
F and P←O

F may be arbitrarily large, so in order to construct
a bounded acceptability scale, we transform their sizes |O←P

F | and |P←O
F | into

values x = f(|O←P
F |) and y = f(|P←O

F |) using a monotonic increasing mapping
f : N → [0, 1[ such that f(0) = 0 and limn→∞ f(n) = 1. The degree of accept-
ability may then be expressed as a function h of the variables x and y. Several
choices are possible for such a function h, but the function h(x, y) = 1

2 (1+x−y)
is remarkably the only one amongst those of the general form h(x, y) = ax+by+c
which fulfils simultaneously h(x, y) = 1−h(y, x) and h(0, 1) = 0. We thus adopt
the following simple analytical expression

Definition 4 (degree of acceptability of P with respect to O)

φ(P,O) =
1
2

[ 1 + f( |O←P
F | ) − f( |P←O

F | ) ]

Concretely, for illustration purposes (and for the first part of proposition 5), we
will use the mapping f defined ∀n ∈ N as

f(n) = 1 − 1
n + 1

=
n

n + 1

For abstract the argumentation framework F shown in Fig. 1 and considering the
opinions P = {a, c, f} and O = {b, d, e}, the sets of attacks from P to O and from
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O to P are respectively O←P
F = {(a, b), (c, d), (f, e)}, P←O

F = {(b, a), (e, c)} and
the degree of acceptability of P with respect to O is φ(P,O) = 1

2 [1+f(3)−f(2)] =
1
2 [1 + 3

4 − 2
3 ] = 13

24 .
The notion of degree of acceptability can be used to define the notion of reward

for the players in the given game of argumentation strategy. To properly defend
the argument x, the proponent should naturally avoid self-contradiction. In other
words, P should if possible be chosen so as to be conflict-free. Furthermore, to
really play his role in the game, the opponent should contradict the proponent,
therefore he should be maximally penalised whenever his opinion O fails to attack
P . Finally, each player should seek to maximise the degree of acceptability of his
opinion with respect to the one of his adversary. Rewards can be assigned to the
players of the game of argumentation strategy in such a way as to give them a
(material) incentive to follow these three fundamental principles of rationality.

Definition 5 (players’ reward). If P is not conflict-free, then the opponent
should pay the proponent the sum rF (P,O) = 0. If P is conflict-free and O does
not attack P , then the opponent should pay the proponent the sum rF (P,O) = 1.
Otherwise, the opponent should pay the proponent the sum rF (P,O) = φ(P,O).

The following properties, which will only be used later (see Section 5), can be
proved straightforwardly.

Proposition 1
1) 0 ≤ rF (P, O) ≤ 1
2.a) rF (P, O) = 0 if and only if P is not conflict-free
2.b) rF (P, O) = 1 if and only if P is conflict-free and O does not attack P
3) if P is admissible (or stable), then rF (P, O) ≥ 1

2
[1 + f(|O|) − f(k |O|)], where k is

the maximal out-degree (number of outgoing attacks) of the arguments contained in O
4) if there exist k attacks from O against P in F , then rF (P, O) < 1− 1

2
f(k)

According to definition 5, the proponent’s reward is always equal to the op-
ponent’s loss. Games of argumentation strategy thus fall into the category of
zero-sum games1. Note also that if the opponent fails to attack the proponent,
then he is penalised with a maximal loss of 1. To reduce his loss, the opponent
must then seek to minimise the number |O←P

F | of attacks against his opinion O
and maximise the number |P←O

F | of attacks against the proponent’s opinion P .
Finally, we impose that the players choose their strategy without prior knowl-

edge of the strategy their adversary intends to play with. Games of argumen-
tation strategy therefore also fall within the category of games with imperfect
information. Since the outcome of a single round of an (F, x) game is random,
in the nest section we will be exclusively interested in the game’s outcome in
the long run / after a large number of rounds – as is customary in Game The-
ory (Dresher 1981) when considering two-person zero-sum games with imperfect
information.

1 Such games have been extensively studied in the literature on Game Theory and
used for analysing conflict situations in non-cooperative domains.
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4 Strength of Arguments

In this section we define the proponent’s long run expected payoff (the game’s
value) as a value of strength for the argument he embraces. Below, we explain
how this value is mathematically defined and actually computed.

Intuitively, the proponent wants his reward rF (P,O) to be as large as possible,
but he controls only the choice of P . The opponent wants to make his loss
rF (P,O) as small as possible, but he only controls the choice of his strategy O.
What are the guiding principles which should determine the player’s choices and
what is the expected outcome of such a game ?

As indicated at the end of section 3, each game of strategy needs to be repeated
a large number of times. If a player were always to choose the same strategy,
then his adversary could adapt his own strategy to it and get a better payoff.
Therefore, it is important for players engaged in a repeated game with imperfect
information to randomise their strategies over time. We therefore consider that
each time the game is played, the proponent and opponent choose their strategies
according to some probability distributions X = (xi) and Y = (yj). Thus, the
probability of the proponent choosing his ith strategy Pi corresponds to xi and
the probability of the opponent choosing his jth strategy Oj corresponds to yj .
The probability distributions X and Y are called mixed strategies. If we denote
by m and n the number of strategies available to the proponent and opponent
respectively, then, to be valid distributions, X and Y must obviously be positive
(xi, yj ≥ 0) and sum up to 1 (

∑m
i=1 xi =

∑n
j=1 yj = 1).

By denoting the payoff matrix R = ((ri,j))m×n where ri,j = rF (Pi, Oj) and
by XT the transpose of the m-dimensional vector X = (xi), the proponent’s
expected payoff is given by

E = XTRY =
n∑

j=1

m∑
i=1

ri,j xi yj

The proponent can therefore expect to get at least minY XTRY , where the
minimum is taken over all mixed strategies available to the opponent. Since
the proponent has the choice of X , he will select X so that this minimum is
as large as possible. Hence the proponent can pick a mixed strategy, denoted
X∗, which will guarantee him an expectation of at least maxX minY XTRY
irrespective of what the opponent does. Similarly, the opponent can make the
proponent’s expected payoff at most equal to minY maxX XTRY by playing
with some strategy Y ∗. The minimax theorem (von Neumann 1928) states that
these two quantities always have a common value v

max
X

min
Y

XTRY = min
Y

max
X

XTRY = v

which is called the value of the game. This value is both the expected payoff that
is guaranteed to the proponent and the maximal expected loss of the opponent.
The strength measure we are after can be consequently defined as follows.
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Definition 6 (argument strength). The strength sF (x) of the argument x in
the framework F is the value of the (F, x) game of argumentation strategy.

Textbooks on Operations Research (Hillier and Lieberman 1995) explain how
to compute v – when the game’s value can be shown to be a priori positive –
by solving a linear program with the simplex algorithm (Dantzig et al. 1955).
It can be shown that v corresponds to the solution of the problem that consists
in maximising the variable xm+1, subject to the following (n + m + 2) linear
inequality constraints

∀j ∈ {1, . . . , n} :
m∑

i=1

ri,j xi − xm+1 ≥ 0

m∑
i=1

xi = 1

x1, . . . , xm, xm+1 ≥ 0

Table 1. Strength (given in alphabetical order of the arguments) and ordering of
arguments obtained in several abstract argumentation frameworks F = (Arg, att)

Ref. Arguments Arg Attacks att Strength values Ordering

F1 {a} {} 1 a
F2 {a, b} {(a,b)} 1, 0.25 a > b
F3 {a, b} {(a,b), (b,a)} 0.5, 0.5 a = b
F4 {a,. . . , d} {(a,b), (c,b), (d,c)} 1, 0.25, 0.25, 1 a = d > b = c
F5 {a,. . . , d} {(a,b), (c,b), (d,b), (b,d)} 1, 0.167, 1, 0.625 a = c > d > b
F6 {a,. . . , e} {(a,b), (c,b), (d,a), (e,c)} 0.25, 0.5, 0.25, 1, 1 d = e > b > a = c
F7 {a,. . . , f} {(a,b), (b,c), (c,d), (d,e), (e,f)} 1, 0.25, 0.5, 0.386, 0.5, 0.425 a = c = e > f > d > b
F8 {a,. . . , f} {(a,b), (b,a), (b,c), (c,d), (e,c), (f,e)} 0.5, 0.5, 0.417, 0.5, 0.25, 1 f > a = b = d > c > e

a0.5
��b0.5

��

��
c0.417

��

e0.25
�� f1.0

��

d0.5

Fig. 2. Strength of arguments in F8 in Table 1

Several examples of argument strength in elementary argumentation frame-
works are provided in Table 1. For each one of these frameworks F = (Arg, att)
and each single argument x in them, we have constructed the (F, x) game payoff
matrix R = ((ri,j)) where rF (Pi, Oj) and computed the game’s value using the
simplex algorithm, as described above. The given ordering on the right-hand col-
umn provides a ranking over arguments, for each given framework. Fig. 2 shows
the results obtained with framework F8 (this is the framework already illustrated
in Fig. 1). The proponent’s optimal strategy 2 is to play {a, f} for argument a,
2 An optimal strategy is a (mixed) strategy with maximal expected payoff.
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{b} for b, {a, c, f} with probability 2
3 and {a, c} with probability 1

3 for c, {b, d}
for d, {b, e} for e and {f} for f . The ranking obtained is in decreasing order of
strength f > a = b = d > c > e. This ranking mismatches with the ranking
f > d > a = b > e > c obtained using the measures proposed in (Besnard
and Hunter 2001) and (Cayrol and Lagasquie-Schiex 2005). We regard the latter
ranking as unintuitive, as it ranks argument e higher than argument c despite
the facts that c is contained in the stable set of arguments {a, c, f} and e is not
even contained in an admissible set of arguments.

5 Core Properties of Argument Strength

In this section we conduct a thorough mathematical analysis of the properties
of this game-theoretic measure of argument strength. Our first result shows that
the argument strength scale is bounded.

Proposition 2 (bounds of argument strength). The strength sF (x) of an
argument x is such that 0 ≤ sF (x) ≤ 1.

Proof. According to proposition 1, item 1), ∀(i, j), ri,j ∈ [0, 1]. For every mixed strate-
gies X and Y , we also have XT R Y ∈ [0, 1], which implies 0 ≤ minY XT R Y and
maxX XT R Y ≤ 1. Therefore, 0 ≤ maxX minY XT R Y and minY maxX XT R Y ≤ 1.
By the minimax theorem, 0 ≤ v ≤ 1, and thus v = sF (x) ∈ [0, 1].

The next two propositions show that the bounds found are both tight.

Proposition 3 (self-contradiction must be avoided). The strength sF (x)
of an argument x is 0 if and only if x attacks itself.

Proof. ⇒: sF (x) = v = minY maxX XT R Y = 0 implies the existence of Y ∗ such that
∀X, XT R Y ∗ ≤ 0. This holds notably for any X = ei (the vector whose components
are all equal to 0 except the ith one which is equal to 1), hence, ∀i,

∑
j ri,jy

∗
j ≤ 0.

Since ri,jy
∗
j ≥ 0, it is clear that ∀(i, j), ri,jy

∗
j = 0. Y ∗ is a probability distribution, so

there exists k such that y∗
jk

> 0. It is then necessary that ∀i, ri,jk = 0. According to
proposition 1, item 2.a), ∀i, Pi attacks itself. In particular, Pi = {x} attacks itself, i.e.
argument x attacks itself.
⇐: If x attacks itself, then all proponent strategies in the (F, x) game are non-

conflict-free sets of arguments. By proposition 1, item 2.a), R = ((0)) and v = 0.

Proposition 4 (unattacked arguments are the strongest). The strength
sF (x) of argument x is 1 if and only if there is no argument attacking x in F .

Proof. ⇒: If sF (x) = v = 1, then we have maxX minY XT R Y = 1. Y ranges over
the set of all real-valued probability distributions which is larger than the set S of all
zero-one valued probability distributions. Thus, ∀X, minY ∈S XT R Y ≥ minY XT R Y .
Therefore, maxX minY ∈S XT R Y ≥ maxX minY XT R Y = 1. This can be rewritten as
maxX minj

∑
i ri,jxi ≥ 1. ∃X∗ s.t. minj

∑
i ri,jx

∗
i ≥ 1, i.e. ∀j,

∑
i ri,jx

∗
i ≥ 1. Since

∀(i, j), ri,j ≤ 1 and X∗ is a probability distribution, ∀j,
∑

i ri,jx
∗
i ≤ 1, so that in fact

∀j,
∑

i ri,jx
∗
i = 1. This may only hold if ∀(i, j), ri,j < 1 ⇒ x∗

i = 0. X∗ is a probability
distribution, so there exists k such that x∗

k > 0. By contraposition of the previous
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implications, ∀j, ¬(rk,j < 1), i.e. rk,j ≥ 1. By proposition 1, item 1), ∀j, rk,j = 1. By
proposition 1, item 2.b), ∀j, Pk is conflict-free and Oj does not attack Pk. x ∈ Pk so
there is no opponent strategy or argument that attacks x.
⇐: By selecting strategy {x} with probability 1, the proponent has a guaranteed

payoff of 1 irrespective of what the opponent does. Therefore, v ≥ 1. In fact, v is
bounded up by 1 (by proposition 2) and sF (x) = 1.

We can also show that admissible and stable arguments occupy the band of
medium to high strength values 3 but that attacks against arguments reduce
their strength below 1. We assume in part a) of the next proposition that f is
defined, ∀n ∈ N, by f(n) = n

n+1 as suggested in Section 3.

Proposition 5 (acceptable arguments have medium to high strength).
a) If there exists an admissible (or stable) set of arguments containing x, then
sF (x) ≥ 1

2 [1 + 1
2 − k

k+1 ] where k is the maximal out-degree of arguments in F .
b) If there exist n attacks against x, then sF (x) < 1 − 1

2f(n).

Proof. a) If P is admissible, then by proposition 1, item 3), ∀O, rF (P, O) ≥ 1
2
[1 +

f(|O|)−f(k |O|)] ≥ 1
2
[1+f(1)−f(k)] (when f(n) = n

n+1
). By playing P with probability

1 the proponent of x can secure a payoff of at least 1
2
[1 + 1

2
− k

k+1
]. If P is stable, then

P is also admissible and the same inequality holds. b) If there exist n attacks against
x, then there exists an opponent strategy O with n attacks against x. For this strategy,
and whatever the proponent strategy P , there must also exist at least n attacks from
O against P and rF (P, O) < 1 − 1

2
f(n) by proposition 1, item 4). By playing O with

a probability of 1, the opponent can secure a strict maximum loss of 1 − 1
2
f(n).

Note that when the maximal out-degree in F is k = 1, the strength of acceptable
arguments is greater than 1

2 , hence the use of the term “medium”.
We now study how the strength of arguments varies as argumentation frame-

works are expanded. This should allows us to understand quantitatively the
impact of adding new arguments and attacks to a dispute. Then, suppose first
that we add an attack (a, b) to the framework F = (Arg, att), where (a, b) /∈ att
and a, b ∈ Arg. For convenience, in this case we adopt

Notation 2. F+(a,b) = (Arg, att ∪ {(a, b)} )

As intuitively expected, adding an attack against an argument reduces its
strength:

Proposition 6 (criticism reduces argument strength). sF+(a,b)(b) ≤ sF (b).

Proof. The sets of strategies available to the proponent and opponent are the same in
the (F, b) and (F+(a,b), b) games. Let P and O be proponent and opponent strategies.
Note that P←O

F ⊆ P←O
F+(a,b)

and either O←P
F = O←P

F+(a,b)
(if a /∈ P ) or P attacks itself

in F+(a,b) (if a ∈ P ). By monotonicity of f , φF+(a,b)(P, O) ≤ φF (P, O). In any case
(a ∈ P or a /∈ P ), rF+(a,b)(P, O) ≤ rF (P, O). It follows that sF+(a,b)(b) ≤ sF (b).

3 This property can be generalised to any notion of acceptability “stronger” than
admissibility, such as e.g. the preferred, complete, grounded and ideal semantics
(Dung 1995, Bondarenko et al. 1997, Dung et al. 2006, 2007).
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Adding an attack from argument a against b gives an advantage to the pro-
ponent of a as long as b is not useful in the defence of a. Otherwise, this new
attack constitutes a handicap for the proponent. To distinguish between these
two possible cases, we say that

Definition 7 (superfluous argument). Argument b is superfluous with re-
spect to a if forbidding the proponent of a to play with strategies containing b
does not decrease the proponent’s payoff in the (F, a) game (the game’s value).

Proposition 7 (cautious extra-aggressiveness increases strength). By
adding an attack (a, b) one increases a’s strength (sF+(a,b)(a) ≥ sF (a)) if b is
superfluous with respect to a and diminishes it (sF+(a,b)(a) ≤ sF (a)) otherwise.

Proof. If b is superfluous with respect to a then there exists an optimal mixed strategy
X∗ for the (F, a) game such that ∀i, x∗

i > 0 ⇒ b /∈ Pi. Let then P be an active strategy,
i.e. P = Pi and x∗

i > 0. Then, ∀O, we have O←P
F ⊆ O←P

F+(a,b)
, P←O

F = P←O
F+(a,b)

(if it is

not the case that a ∈ O and b ∈ P ) or P attacks itself in F+(a,b) (if a ∈ O and b ∈ P ).
The last case does not occur (b /∈ P ) since b is assumed to be superfluous with respect
to a. By monotonicity of f , φF (P, O) ≤ φF+(a,b)(P, O). Since b /∈ P , P is conflict-free
in F iff P is conflict-free in F+(a,b) and O attacks P in F iff O attacks P in F+(a,b).
Therefore, for every active strategy P under X∗ we have rF (P, O) ≤ rF+(a,b)(P, O). By
playing with X∗ in the (F+(a,b), a) game, the proponent can secure a payoff of at least
sF (a). Hence, sF+(a,b)(a) ≥ sF (a). If b is not superfluous with respect to a, then the
proponent of a is forced (otherwise his payoff is null) to play strategies containing a
but not b, and thus his payoff is reduced.

Moreover, the strength of an argument x may be partially restored by adding
an attack (a, b) against one of its attackers b.

Proposition 8 (indirect counter-attack brings support). If b attacks x,
adding an attack (a, b) to F increases x’s strength (sF+(a,b)(x) ≥ sF (x)).

Proof. The sets of strategies of the players are the same in the (F, x) and (F+(a,b), x)
games. We have O←P

F ⊆ O←P
F+(a,b)

(if a ∈ P and b ∈ O) or O←P
F = O←P

F+(a,b)
otherwise.

We also have P←O
F ⊆ P←O

F+(a,b)
(if b ∈ P and a ∈ O) and P←O

F = P←O
F+(a,b)

otherwise. Note

that if b ∈ P then P attacks itself in both F and F+(a,b). So, rF (P, O) ≤ rF+(a,b)(P, O)
and sF (x) ≤ sF+(a,b)(x).

So far we have considered adding attacks between existing arguments in a given
dispute (argumentation framework). We finally consider adding new arguments,
and show that, as intuitively expected, the status of arguments in this dispute
is left unchanged if the newly added arguments are “disconnected” from the
original ones.

Proposition 9 (insensitivityto irrelevant information). IfF ′ = (Arg′, att′)
is such that Arg ∩ Arg′ = ∅, then sF+F ′(x) = sF (x) where F + F ′ = (Arg ∪
Arg′, att ∪ att′).

Proof. Let us consider the (F + F ′, x) game where x ∈ Arg. Since no argument in
Arg′ attacks x (the two frameworks are disconnected), the proponent of x is at least
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as well off in this new game as in the (F, x) game if he restricts himself to his old set
of strategies build only from Arg. Therefore, sF+F ′(x) ≥ sF (x). The same proposition
also holds for the opponent of x, which means that −sF+F ′ ≥ −sF (x) or equivalently
sF+F ′(x) ≤ sF (x). In conclusion, sF+F ′(x) = sF (x).

6 Conclusion

Arguments, opinions and conflicts between opinions in disputes can conveniently
be modelled using abstract argumentation frameworks (Dung 1995). In order to
assess the strength of an argument in a dispute, we defined a repeated game
of argumentation strategy whereby two players, viz. the proponent and oppo-
nent of the argument, simultaneously exchange sets of arguments representing
respectively opinions for and against it. We defined a degree of acceptability and
reward function for a single round based on the intuition that it is better to have
more attacks on and fewer attacks from adversarial opinions within the frame-
work representing the dispute considered. Then, players choose their opinions
randomly in each round with a certain probability so as to maximise their ex-
pected reward in the long run. The strength of the argument of interest is finally
determined by the value of the proposed game (von Neumann 1928) as defined
in Game Theory for two-person zero-sum games with imperfect information and
computed using the simplex algorithm (Dantzig et al. 1955).

We have shown that such a measure of strength is bounded (between 0 and
1), that these bounds are attained for arguments that respectively attacks them-
selves and that are not attacked, and also that arguments contained into admis-
sible or stable extensions (Dung 1995, Bondarenko et al. 1997, Dung 2006, 2007)
always have medium to high strength values, but that attacks against such ac-
ceptable arguments reduce their strength value below 1. This result also holds
for preferred, complete, grounded or ideal extensions, but we have omitted its
proof here for lack of space. We have examined the sensitivity of strength values
with respect to changes operated on the underlying argumentation framework.
Notably, we have seen that adding a new attack against an argument reduces its
strength, that adding a new attack against another argument either increases or
reduces its strength, depending on the usefulness of the target in the defence of
that argument, and that the addition of indirect counter-attacks could restore
the strength of an argument. Finally, we have proved that the addition of ir-
relevant groups of arguments to a dispute does not influence the status of its
original arguments.

Several notions of argument strength have already been proposed in the lit-
erature on argumentation. One shall distinguish between the so-called ”intrin-
sic” and ”interaction-based” measures. The term intrinsic is used to refer to
approaches whereby the strength of an argument is independent of its inter-
action with other arguments (Pollock 1992, Krause et al. 1995, Ambler 1996,
Parsons 1997, Prakken and Sartor 1997, Amgoud and Cayrol 1998, Kohlas et
al. 2000, Pollock 2001). On the other hand, the term interaction-based refers to
measures whereby the strength of an argument depends on the arguments at-
tacking it (attackers), the attackers of its attackers (the defenders), etc. Amongst
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interaction-based measures of argument strength, one may again distinguish be-
tween qualitative (Dung 1995, Jakobovits and Vermeir 1999) and quantitative
(Besnard and Hunter 2001, Cayrol and Lagasquie-Schiex 2005) measures.

Our interaction-based and quantitative measure is thus closest to the ap-
proaches by (Besnard and Hunter 2001) and (Cayrol and Lagasquie-Schiex 2005).
However, we have observed (see last paragraph of Section 4), that these mea-
sures may produce a different ranking of arguments than ours, and have argued
that in general they do not convey the intuition according to which the dialec-
tical properties of admissibility and stability should confer more strength to an
argument in a dispute. These measures thus somewhat transgress the principles
of dialectic originally proposed by (Dung 1995).

There is other work in the field of argumentation which directly relates to
Game Theory. This typically involves “extensive” games, namely multi-stage
games that can be represented as trees. Argumentation games in extensive form
have been proved to be useful to test the acceptability of arguments under various
semantics (Vreeswijk and Prakken 2000, Dunne and Bench-Capon 2003) and to
determine optimal strategies (Riveret et al. 2008) in dialogues (Prakken 2005).
To this date and to the best of our knowledge, the only other work in the
domain of argumentation that has sought to exploit strategic games is (Rahwan
and Larson 2008), but to model argumentation between self-interest agents.
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Abstract. It can be desirable to specify polices that require a system
to achieve some outcome even if a certain number of failures occur.
The temporal logic of robustness RoCTL* extends CTL* with operators
from Deontic logic, and a novel operator referred to as “Robustly” [7].
The only known decision procedure for RoCTL* involves a reduction
to QCTL*. This paper presents a tableau for the related bundled tree
logic RoBCTL*; this is the first decision procedure for RoBCTL*, and al-
though non-elementary in degenerate cases has much better performance
than the QCTL* based decision procedure for RoCTL*. The degenerate
cases where this tableau performs poorly provide clues as to where we
might look to prove that RoBCTL* is non-elementary.

Keywords: Logic, Tableau, Robustness, Bundled, Diagnosis, QCTL*.

1 Introduction

The RoCTL* logic [11,7] is an extension of CTL* introduced to represent issues
relating to robustness and reliability in systems. It does this by adding an Oblig-
atory operator and a Robustly operator. The Obligatory operator specifies how
the systems should behave by quantifying over paths in which no failures occur.
The Robustly operator specifies that something must be true on the current
path and similar paths that ”deviate” from the current path, having at most
one more failure occurring. This notation allows phrases such as ”even with n
additional failures” to be built up by chaining n simple unary Robustly opera-
tors together. We have previously given examples of robust systems that can be
concisely represented in RoCTL* [7].

The RoCTL* Obligatory operator is similar to the Obligatory operator in
Standard Deontic Logic (SDL), although in RoCTL* the operator quantifies over
paths rather than worlds. SDL has many paradoxes. Some of these, such as the
“Gentle Murderer” paradox spring from the inadequacy of SDL for dealing with
obligations caused by acting contrary to duty such as “If you murder, you must
murder gently”. Contrary-to-Duty (CtD) obligations are important for modeling
� The author would like to thank Mark Reynolds and Tim French for their valuable

feedback on the construction of the tableau presented in this paper.
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a robust system, as it is often important to state that the system should achieve
some goal and also that if it fails it should in some way recover from the failure.
RoCTL* can represent CtD obligations by specifying that the agent must ensure
that the CtD obligation is met even if a failure occurs. For further discussion of
CtD obligations and motivations for RoCTL*, see [7].

Unfortunately the only known decision procedure for RoCTL* [7] involves a
reduction to QCTL* which is non-elementary to decide. Attempts to find an
automaton based decision procedure for RoCTL* were hampered by the impor-
tance that replacing path quantifiers with atoms plays in existing automaton
based decision procedures [4] for CTL*. In RoCTL* the robustly operator is a
path quantifier, but unlike the “All paths” operator, a formula starting with
“robustly” is not a state formula and thus cannot be replaced with an atom.
For this reason research has focused on finding resolution and tableau based
decision procedures. Unfortunately there are currently no known resolution or
tableau decision procedures for CTL*.

A CTL like restriction RoCTL was proposed with a resolution based decision
procedure [3]. In this paper we present a more expressive logic RoBCTL*, a
bundled tree variant of RoCTL*, and extend Reynolds’ [12] tableau for BCTL*
to decide RoBCTL*. This decision procedure is the first for RoBCTL* as the
reduction to QCTL* used for RoCTL* does not work for RoBCTL* as we know
of no decision procedure for bundled variants of QCTL*.

Two features of the RoBCTL* tableau not present in the BCTL* tableau are
the ability to deal with path quantifiers that do not result in state formulae and
the ability to deal with eventualities that change over time. With QCTL* we
implemented the robustly operator by marking the current path. Our attempts
to extend the BCTL* tableau to allow marked paths, or bundles of deviating
paths resulted in non-finite tableaux. We have instead used a successor function
that adds enough formulae to the closure that we can handle deviations without
having to distinguish paths in the Tableau. For example, the successor of “Next
A” is “A”. This can make the closure set large, although the size of the closure set
will be elementary if the alternations between Robustly and Until are bounded.

Another feature not present in the BCTL* tableau is the ability to deal with
eventualities that change over time. In BCTL* the only eventuality is of the
form “A Until B”, which remains unchanged until it is resolved by B occurring.
In RoBCTL* we have “Eventually a path will deviate and along that path A
will be hold”, at the next step this becomes “... the successor of A will hold”.

There is currently no axiomatisation of RoBCTL* or RoCTL* that is known
to be complete. An interesting question is whether the robustly operator can be
expressed in CTL* and BCTL*. It is not known if this is the case, as will be
discussed in this paper.

A number of other extensions of temporal logics have been proposed to deal
with Deontic or Robustness issues [2,9,8,1,13]. As noted previously [7], each of
these logics are substantially different from RoCTL*. Additionally RoBCTL*
logic is the first such logic to use the bundled tree semantics.
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2 RoBCTL* Logic

2.1 RoBCTL* Syntax

As with the RoCTL* Logic, the RoBCTL* logic has a set V of atomic proposi-
tions that we call variables, including a special atom Viol. Where p varies over
V , we define formulæ according to the following abstract syntax

φ := � | p | ¬φ | (φ ∧ φ) | (φUφ) |Nφ |Aφ |Oφ |	φ .

For consistency with [7], we do not consider a formula that explicitly contains
Viol to be a RoBCTL* formula, although this tableau makes use of such formulae
internally and can work with input formulae that contain Viol.

The �, ¬, ∧, N, U and A are the familiar “true”, “not”, “and”, “next”, “un-
til” and “all paths” operators from CTL. The abbreviations ⊥, ∨, F , G, W , E
→ and ↔ are defined as in CTL* logic. As with Standard Deontic Logic (SDL)
logic, we define P ≡ ¬O¬. Finally, we define the abbreviation Δ ≡ ¬	¬.

The formula 	φ is read as “robustly φ” and means roughly “φ is true and
will remain true if a deviation occurs”. The formula Oφ is read as “obligatory
φ” and means roughly “φ is true if no failures occur”.

2.2 RoCTL-Structures

Definition 1. We say that a binary relation R on S is serial (total) if for every
a in S there exists b in S such that aRb.

A transition frame is a pair (A,→), where A is a non-empty set of states and
→ is a serial relation on A.

Definition 2. We let V be our set of variables. The set V contains a special
variable Viol. A valuation g is a map from a set of states A to the power set of
the variables. The statement p ∈ g(w) means roughly “the variable p is true at
state w”.

Definition 3. We call an ω-sequence σ = 〈w0, w1, . . .〉 of states a fullpath iff for
all non-negative integers i we have wi → wi+1. For all i in N we define σ≥i to
be the fullpath 〈wi, wi+1, . . .〉, we define σi to be wi and we define σ≤i to be the
sequence 〈w0, w1, . . . , wi〉. We say that a set of fullpaths B is fusion closed iff for
all non-negative integers i, j and σ, π ∈ B we have 〈σ0, σ1, . . . , σi, πj , πj+1, . . .〉 ∈
B if σi+1 = πj. We say that a set of fullpaths B is suffix closed iff for all integers
i and σ ∈ B we have σ≥i ∈ B. We say a set of fullpaths is a bundle if it is non-
empty, suffix closed and fusion closed.

Definition 4. A BCTL-structure M = (A,→, g, B) is a 4-tuple containing a
set of states A, a serial binary relation →, a valuation g on the set of states A,
and B is a bundle on (A,→).

Definition 5. We say that a fullpath σ is failure-free iff for all i > 0 we have
Viol /∈ g (σi). We define SF (w) to be the set of all fullpaths in B starting with w
and S(w) to be the set of all failure-free fullpaths in B starting with w. We call
a BCTL structure a RoBCTL structure iff S(w) is non-empty for every w ∈ A.
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Definition 6. For two fullpaths σ and π we say that π is an i-deviation from
σ iff σ≤i = π≤i and π≥i+1 ∈ S(πi+1). We say that π is a deviation from σ if
there exists a non-negative integer i such that π is an i-deviation from σ. We
define a function δ from fullpaths to sets of fullpaths such that where σ and π
are fullpaths, a fullpath π ∈ B is a member of δ(σ) iff π is a deviation from σ.

We see that S (σ0) ⊆ δ(σ) ⊆ SF (σ0). Below is an example of an i-deviation π
from a fullpath σ. The arrows labeled with s represents transitions that must be
successful, and are followed by nodes labelled ¬Viol.

s s · · ·s
πi+1 πi+2 πi+3

σ0 σi σi+1 σi+2σ1 σi+3

¬Viol ¬Viol· · ·

2.3 RoBCTL* Semantics

We define truth of a RoBCTL* formula φ on a fullpath σ = 〈w0, w1, . . .〉 in a
BCTL-structure M recursively as follows:

M,σ � Nφ iff M,σ≥1 � φ

M, σ � φUψ iff ∃i∈N s.t. M,σ≥i � ψ and ∀j∈Nj < i =⇒ M,σ≥j � ψ

M, σ � Aφ iff ∀π∈SF (σ0)M,π � φ

M, σ � Oφ iff ∀π∈S(σ0)M,π � φ

M, σ � 	φ iff ∀π∈δ(σ)M,π � φ and M,σ � φ .

The definitions for �, p, ¬ and ∧ are as we would expect from classical logic.
We say that a formula φ is valid in RoBCTL* iff for all RoBCTL structures
M = (A,→, g, B), for all fullpaths σ in B we have M,σ � φ.

2.4 An Interesting Question

It is clear that if we expose the Viol atom to the logic, the O operator becomes
redundant, as we can write Oφ as A(GN¬Viol → φ). We do not know if we
can likewise remove the 	 operator. We have shown that we can remove the 	
operator if we introduce the ∃ and ∀ operators from QCTL* [7]. We can translate
some simple formulae into (B)CTL*. For example, 	Gp becomes

pW (E(GN¬Viol ∧ Gp)).

Since the proposal of this logic [11], one of our primary research goals has been
attempting to show that we can express Ro(B)CTL* in (B)CTL*. We have at-
tempted to find a recursive translation f that removes 	 operators. Translating
conjunctions is non-trivial, we cannot let f (Δ (φ ∧ ψ)) = f(Δφ) ∧ f(Δψ) as
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this would allow φ and ψ to hold on two different deviations. For simple for-
mulae we can divide the formulae into stages, and enumerate the stages, e.g. if
we are taking the conjunction of aUb and cUd we can consider three cases: b
occurs before d, b occurs together with d and b occurs after d. It is then easy to
take the conjunction of each stage. This becomes tricky with nested untils, e.g.
(aUb)Uc, as stages can occur in cycles and it can become difficult to find a finite
enumeration of all possibilities in a form that can be expressed in CTL*.

Another approach we have considered is to take a translation into QCTL*,
and attempt to rearrange the formula to remove the ∃ and ∀ operators. We have
also considered taking the translation for CTL* into automata, modifying the
automata so as to express RoCTL*. However, we have not found any way of
translating the automata back into CTL* Given that we have considered several
translations into (B)CTL* and each had flaws we could not fix, we conjecture
that no correct translation exists.

Conjecture 1. There exist RoBCTL* formulae that cannot be expressed in
BCTL*. Likewise, there exist RoCTL* formulae that cannot be expressed
in CTL*.

3 A Tableau for RoBCTL*

Here we define a tableau RoBCTL-TAB for deciding RoBCTL*. This tableau is
derived from Reynolds’ [12] tableau for BCTL*.

Definition 7. We define logical operations on sets of formulae as follows:

(S ∗ T ) = {ε : ∃φ∈S∃ψ∈T s.t. ε = (φ ∗ ψ)} where ∗ ∈ {U,∧}
∗S = {ε : ∃φ∈S s.t. ε = ∗φ} where ∗ ∈ {¬,	, A,N,O}

We define the abbreviations Δ,E, P,∨,→,↔ on sets similarly.

Definition 8. We let Ξ be a formula translation function such that Ξ(φ) =
Ξ(ψ) iff φ is equivalent to ψ under classical logic taking all subformulae with
non-classical operators of highest precedence as atoms. Likewise we define Ξ on
sets of formulae such that Ξ(Φ) = {Ξ (φ) : φ ∈ Φ}.We leave the choice of Ξ as
an implementation detail. We could choose Ξ such that it simply normalises all
formulae into clausal form. However to improve human understanding of the
tableau, we may wish to choose Ξ such that it maximises the number of cases
where Ξ(φ) = φ and/or attempts to produce short formulae.

Definition 9. Below we define a function N−1 from formulae to sets of for-
mulae. The intention is that N−1 is in some sense the inverse of prefixing a
formula with N and thus that A

(
φ ↔ NN−1φ

)
is true. However, (p ↔ N�) is

true if p is true whereas (p ↔ N⊥) is true if p is false. Thus the “inverse” of N
depends on the truth of state formulae at the current state, and so N−1 returns
a set rather than just a single formula.
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Definition 10. We define a function N−1 from formulae to sets of formulae:

N−1 (φUψ) =
(
N−1(φ) ∧ {(φUψ)}

)
∨ N−1(ψ)

N−1(¬φ) =¬N−1(φ)

N−1(Nφ) = {φ}
N−1(φ ∧ ψ) =N−1(φ) ∧ N−1 (ψ)

N−1 (p) = {�,⊥}
N−1(Aφ) = {�,⊥}
N−1(Oφ) = {�,⊥}
N−1(	φ) = {⊥} ∪

(
	Ξ

(
N−1(φ)

))
N(⊥) ={⊥}

We extend N−1 to operate on sets of formulae as follows: given a set of formulae
Φ, a formula ψ is a member of N−1 (Φ) iff there exists φ ∈ Φ such that ψ ∈
N−1 (φ).

Definition 11. We define N−i recursively as N−i(Φ) = N−1
(
N1−i(Φ)

)
and

N0 (Φ) = Φ. Let N� (Φ) be the normalised closure of a set of formulae Φ under
N−1. That is, φ ∈ N� (Φ) iff there exists a non-negative integer i such that
φ ∈ Ξ

(
N−i (Φ)

)
Although N� and N−1 are finite, they can become very large. See 5 for a detailed
discussion of cardinality.

Definition 12. For any pair of formulae (φ, ψ), we say that φ ≤ ψ iff φ is a
subformula of ψ.

Definition 13. Let γ = NG¬Viol represent the statement “this path is failure-
free” (this statement is not a RoBCTL* formula because it contains Viol). The
closure clφ of the formula φ is defined as the smallest set that satisfies the four
following requirements:

1. clφ ⊇ {φ, γ}
2. For all ψ ∈ clφ, if δ ≤ ψ then δ ∈ clφ.
3. For all ψ ∈ clφ, ¬ψ ∈ clφ or there exists δ such that ψ = ¬δ and δ ∈ clφ.
4. If 	ψ ∈ clφ then clφ ⊇ 	N�(ψ) and clφ ⊇ ANON�(ψ).

Recall that we have defined logical operations on sets of formulae (Definition 7).
Thus ANON�(ψ) represents a set of formulae, each prefixed with ANO.

The requirement (4) above is required to ensure that the successor formulae
from Definitions 10 and 16 are included in the closure set.

Definition 14 (MPC). We say that a ⊆ clφ is MPC iff for all α, β ∈ a

(M1) if β = ¬α then β ∈ a iff α /∈ a,
(M2) if α ∧ β ∈ clφ then (α ∧ β) ∈ a ↔ (α ∈ a and β ∈ a)
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A hue is roughly speaking a set of formulae that could hold along a single
fullpath.

Definition 15 (Hue). A set a ⊆ clφ is a hue for φ iff

(H1) a is MPC;
(H2) if αUβ ∈ a then α ∈ a or β ∈ a;
(H3) if ¬ (αUβ) ∈ a then β /∈ a; and
(H4) if Aα ∈ a or 	α ∈ a then α ∈ a.

Let Hφ be the set of hues of φ.

Definition 16. For each hue a in Hφ, we define a formula translation function
N−1

a . Note that N−1
a (φ) ∈ N−1 (φ).

N−1
a (φUψ) =

(
N−1

a (φ) ∧ (φUψ)
)
∨N−1

a (ψ)

N−1
a (¬φ) =¬N−1

a (φ)

N−1
a (Nφ) =φ

N−1
a (φ ∧ ψ) =N−1

a (φ) ∧N−1
a (ψ)

N−1
a (p) =

{
⊥ if p /∈ a
� if p ∈ a

N−1
a (Aφ) =

{
⊥ if Aφ /∈ a
� if Aφ ∈ a

N−1
a (Oφ) =

{
⊥ if Oφ /∈ a
� if Oφ ∈ a

N−1
a (	φ) =

{
⊥ if ANOΞ

(
N−1

a (φ)
)

/∈ a
	Ξ

(
N−1

a (φ)
)

otherwise

Definition 17. We define a function h on paths such that

h (π) = {α : α ∈ clφ and π � α}

From the semantics of RoBCTL*, we see that for each π ∈ B, h(π) is a hue.

Lemma 1. If h (π) = a and θ0 = π0 then θ � φ iff θ≥1 � N−1
a φ.

Proof. For any formula φ, let Lφ be the statement: “for all structures, and paths
θ through that structure, we have θ � φ iff θ≥1 � N−1

a φ.”
It is clear that Lφ is true when φ is a state formula or a formula of the form

Nψ. For some pair of formulae (φ, ψ), say that Lφ and Lψ is true, then:
(=⇒)

1. Say that θ � (φUψ),
(a) If θ � ψ then θ≥1 � N−1

a ψ and so θ≥1 � N−1
a (φUψ).

(b) If θ � ψ then θ � φ and θ≥1 � (φUψ). Hence θ≥1 � N−1
a (ψ) and so

θ≥1 � N−1
a (φUψ).
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2. Say that θ � ¬φ. Then θ � φ and so θ≥1 � N−1
a (φ). Finally, θ≥1 � ¬N−1

a (φ).
3. Say that θ � φ ∧ ψ. Then θ � φ and θ � ψ. Thus θ≥1 � N−1

a φ and θ≥1 �
N−1

a ψ. Hence θ≥1 � N−1
a (φ) ∧ N−1

a (ψ) = N−1
a (φ ∧ ψ)

4. Say that θ � 	φ;
(a) Thus σ � φ for any deviation σ from θ. Note that as a deviation, σ0 = θ0,

and hence σ≥1 � N−1
a (φ); additionally for any path σ with σ0 = θ0, if

σ≥1 is failure-free then σ is a deviation from θ and so θ � ANON−1
a (φ).

As Ξ is a normalization function, it follows that θ � ANOΞ
(
N−1

a (φ)
)
.

(b) We will show that θ≥1 �	Ξ
(
N−1

a (φ)
)
. Say that σ′ is a deviation from

θ≥1. Then from fusion closure of the set of paths B, there exists a path
σ such that σ≥1 = σ′ and σ0 = θ0. This path σ is a deviation from θ,
and so σ � φ and thus σ′ � N−1

a (φ). Hence θ≥1 � 	N−1
a (φ).

(⇐=)

1. Say that θ≥1 � N−1
a (φUψ) =

(
N−1

a (φ) ∧ (φUψ)
)
∨ N−1

a (ψ)
(a) If θ≥1 � N−1

a (φ) ∧ (φUψ) then θ � φ and θ≥1 � (φUψ) so θ � (φUψ).
(b) If θ≥1 � N−1

a (ψ) then θ � ψ and so θ � (φUψ).
2. Say that θ≥1 � ¬N−1

a (φ). Then θ≥1 � N−1
a (φ) and so θ � φ. Thus θ � ¬φ.

3. Say that θ≥1 � N−1
a (φ ∧ ψ). Then, from the definition of N−1

a we have
θ≥1 � N−1

a φ and θ≥1 � N−1
a ψ. Thus θ � φ and θ � ψ. Hence θ � φ ∧ ψ

4. Say that θ≥1 � N−1
a (	φ). Clearly θ≥1 � ⊥, and so N−1

a (	φ) �= ⊥. Thus, from
Definition 16, we know that N−1

a (	φ) = 	N−1
a (φ) and that ANO

(
N−1

a (φ)
)

∈ a = h(π). It follows that θ � ANO
(
N−1

a (φ)
)
. Say σ is a deviation from θ;

we will show that σ≥1 � N−1
a (φ), and so σ � φ. Since every deviation forces

φ it follows that θ � 	φ:
(a) as θ � ANO

(
N−1

a (φ)
)
, if σ is a 0-deviation then σ≥1 � N−1

a (φ);
(b) if σ is an i-deviation where i > 0, then σ≤1 = θ≤1 and so σ≥1 is an (i−1)-

deviation from θ≥1. As θ≥1 � 	N−1
a (φ), it follows that σ≥1 � N−1

a (φ).

By induction on the length of the formula we see that the lemma holds.

Definition 18 (rX). The temporal successor rX relation on hues below is de-
fined as in Reynolds [12], but with the additional requirements (R5) and (R6);
For all hues a, b put (a, b) in rX iff the following conditions are satisfied:

(R1) Nα ∈ a implies α ∈ b
(R2) ¬Nα ∈ a implies α /∈ b
(R3) αUβ ∈ a and β /∈ a implies αUβ ∈ b
(R4) ¬(αUβ) ∈ a and α ∈ a implies ¬(αUβ) ∈ b
(R5) 	α ∈ a implies N−1

a (	α) ∈ b
(R6) ¬	α ∈ a implies ¬N−1

a (	α) ∈ b

Definition 19 (rA). For hues a, b, we put (a, b) in rA iff the following condi-
tions hold:

(A1) Aα ∈ a iff Aα ∈ b and Oα ∈ a iff Oα ∈ b
(A2) For all p ∈ V , we have p ∈ a iff p ∈ b
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Note that if (a, b) ∈ rA then for all formulae φ we have N−1
a (φ) = N−1

b (φ) (i.e.
N−1

a = N−1
b ). The rA relation is used to specify which pairs of hues can exist in

the same “colour”; a colour represents a set of hues for paths which could start
at the same state.

Definition 20. A set of hues C is a colour of φ iff

(C1) for all a, b ∈ C we have (a, b) ∈ rA; and
(C2) if a ∈ C and ¬Aα ∈ a or ¬	α ∈ a then there is b ∈ C such that

¬α ∈ b; and
(C3) if a ∈ C and ¬Oα ∈ a then there is b ∈ C such that ¬α ∈ b and

γ ∈ b; and
(C4) there exists a ∈ C such that γ ∈ a

Let Cφ be the colours of φ. We define a successor relation on Cφ as follows:.

Definition 21 (RX). We define a temporal successor function RX on colours
as follows: for all C,D ∈ Cφ, put (C,D) ∈ RX iff for all b ∈ D there exists
a ∈ C such that (a, b) ∈ rX .

4 Pruning the Tableau

To adapt the pruning technique in [12] to RoBCTL* we add a new type of
eventuality: ¬	ψ. This formula can be interpreted as “either ¬ψ or there ex-
ists a path which eventually deviates, and ¬ψ holds along that path.” It is
necessary to handle this eventuality. Imagine a tableau with only one colour
C = {{¬	Gp,Gp, p,¬Viol,�}}, it is clear that (C,C) ∈ RX so without han-
dling eventualities of the form ¬	ψ this tableau would be accepted. We need to
ensure that eventually a path deviates on which Gp is false.

Initially, we let the set S′ of colours equal Cφ. We say that a 3-tuple (C, c, α)
is an instance iff C ∈ S′, c is a hue, α is a formula and α ∈ c ∈ C. We iteratively
remove colours from S′ according to the following rules until no more colours
can be removed:

1. Remove C from S′ if we cannot find successors for every hue in C. That is
we remove C from S′ if there exists a hue c in C such that for every D ∈ S′,

(a) (C,D) /∈ RX , or
(b) for every d ∈ D, the pair (c, d) /∈ rX .

2. An instance (C, c, αUβ) is directly fulfilled iff β ∈ c. Initially, an instance is
fulfilled iff it is directly fulfilled; we iteratively mark (C, c, αUβ) as fulfilled
iff there exists a fulfilled instance (D, d, αUβ) such that (C,D) ∈ RX and
(c, d) ∈ rX . We finish when we can no longer mark instances as fulfilled.
Finally, for all instances (C, c, αUβ) that are not fulfilled, we remove C
from S′.
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3. An instance (C, c,¬	α) is directly fulfilled iff ANOΞ
(
N−1

a (φ)
)

/∈ c or α /∈ c.
Initially, an instance is fulfilled iff it is directly fulfilled; we iteratively mark
(C, c,¬	α) as fulfilled iff there exists a fulfilled instance (D, d,¬	α′) such
that (C,D) ∈ RX , (c, d) ∈ rX and 	α′ = N−1

c (	α); we finish when we can
no longer mark instances as fulfilled. Finally, for all instances (C, c,¬	α)
that are not fulfilled, we remove C from S′.

We say that the tableau succeeds if there exists a hue h and colour C such that
φ ∈ h ∈ C ∈ S′.

5 Cardinality of the Closure Set

The complexity of the tableau is doubly exponential [12] with respect to |clφ|. We
see that |clφ| is linear with respect to |φ|maxψ≤φ |N� (ψ)|, from Definition 13 of
clφ. Thus if |N� (ψ)| is n-exponential then the overall complexity of the tableau
is (n + 2)-exponential. In this section we will discuss the size of |N� (ψ)|.
Theorem 1. For any formula of finite length, |N� (ψ)| is finite and is 3m-
exponential on the size of the formulae when we require that there are no more
than m pairs of alternations between 	 and U that are not broken by an A
(or O).

We prove this by showing that we can build |N� (ψ)| recursively: below we show
that we can recurse through any number of 	 operators with singly exponential
blowup until we reach a U operator, and we can recurse through any number of
U operators with doubly exponential blowup until we reach a 	 operator;

Lemma 2. Say that Φ is a set of array of formulae, and ψ is a formula con-
structed from any number of instances of ∧ and ¬ operators, x instances of
state formulae, y instances of 	 operators, and z instances of N operators (we
exclude the U operator) and elements of Φ. Let # (φ), be the number of times
that φ occurs in ψ without being part of a state formula. Then |N� (ψ)| is singly
exponential with respect to maxφ∈Φ N� (φ).

Proof. Consider the set N−i (ψ). By inspecting the definition of N−1 we see that
we have two choices when we reach a state formula, � and ⊥. When we reach a
	 operator, we have two choices, terminate with ⊥ or continue to recurse. It is
clear that for all φ ∈ Φ and j ∈ [0,∞] it is the case that

∣∣N−j (φ)
∣∣ ≤ |N� (φ)|.

It follows that: ∣∣N−i (ψ)
∣∣ ≤ 2x2y

∏
φ∈Φ

|N� (φ)|#(φ)

Note that for i > z we have already removed all N in ψ that do not form part
of an element of |N� (ψ)|, and have already replaced all state formulae do not
form part of an element of |N� (ψ)| with either � or ⊥. It follows that∣∣∣∣∣⋃

i>z

N−i (ψ)

∣∣∣∣∣ ≤ 2x2y
∏
φ∈Φ

|N� (φ)|#(φ)
.
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Since N� =
⋃

i≥0 ΞN−i (ψ) and N−0 (ψ) = 1,

|N� (ψ)| ≤
∣∣∣∣∣⋃
i>0

N−i (ψ)

∣∣∣∣∣ ≤ 1 + (1 + z) 2x2y
∏
φ∈Φ

|N� (φ)|#(φ)
.

Lemma 3. Say that Φ is a set of formulae each starting with 	, and ψ is a
formula constructed from x instances of state formulae, y instances of ∧, U,N,¬
operators (we exclude the 	 operator) and elements of Φ. Let # (φ), be the num-
ber of times that φ occurs in ψ without being part of a state formula. Then N� (φ)
is doubly exponential with respect to maxφ∈Φ N� (φ).

Proof. Let C be a function such that C(Φ) represents all normalized classical
formulae with the elements of Φ as atoms. Note that a truth table on n atoms
has 2n rows, and hence there are 22n

equivalence classes on such formulae. It
follows that |C(Φ)| ≤ 22|Φ|

. Let
∮

be a function from formulae to sets of formulae
such that φ ∈

∮
(ψ) iff Nφ ≤ ψ or φ = (φ1Uφ2) ≤ ψ. For any set of formulae Φ,

we define
∮

(Φ) as
⋃

φ∈Φ

∮
(φ). We see that the following statement holds:

N� (ψ) ⊆ C

⎛⎝=
∮

(ψ) ∪

⎛⎝ ⋃
�φ∈Φ

N� (	φ)

⎞⎠⎞⎠
It follows that N� (ψ) ∈ O

(
22(x+y)+

∑
�φ∈Φ N�(�φ)

)
. In other words, N� (φ) is

doubly exponential with respect to maxφ∈Φ N� (φ).

Definition 22. Let 	n be a sequence 		 . . .	 of n instances of the 	 operator.

We see that also N� (	nφ) = {	x : x ∈ N�(φ)}∪{⊥}. The 	n shorthand opera-
tor is interesting as it represents the statement “even with n additional failures”
and a significant factor in the design of the 	 was to provide a simple unimodal
operator that could represent this statement. However, in the QCTL* based
decision procedure for RoCTL* [7] the 	n operator involves a non-elementary
blowup in the complexity. By comparison, in this tableau the complexity is in-
dependent of n in 	n.

6 Soundness and Completeness

The proof of soundness and completeness [10] is too long to be reproduced here.
It broadly follows the proof for BCTL*. However a substantial amount of extra
material is required to handle the eventualities of the form ¬	ψ. Note that while
eventualities of the form (αUβ) remain unchanged until they are resolved by β
occurring, eventualities of the form ¬	ψ change over time. For example, the
eventuality ¬	Nφ becomes ¬	φ at the next step.
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7 Conclusion

We have presented a tableau for RoBCTL*. This tableau is more efficient than
the QCTL* based decision procedure for RoCTL*. The QCTL* based deci-
sion procedure has an exponential blowup for every alternation of propositional
quantifiers [6,5] whereas this tableau only has exponential blowup on alterna-
tions between 	 and U that are not broken by an A or O. In the examples of
RoCTL* formulae presented previously [7], each clause either has the U or 	
nested directly within an A or O, so it seems that most use cases for RoBCTL*
would only require subclasses of RoBCTL* that are elementary to decide. Ad-
ditionally, if a formula has no U operators, then as well as being elementary to
decide, the interpretation of the formulae is the same in RoBCTL* as RoCTL*.
Note also that the blowup only applies to the subformulae contained within the
nesting, so systems represented by the conjunction of many clauses each of short
length can be reasoned with efficiently; the examples [11,7] demonstrating the
expressivity of the RoCTL* follow this pattern.

We hope that a truly elementary decision procedure for Ro(B)CTL* will be
found. However, the degenerate cases that are inefficient on this decision pro-
cedure give a clue as to where a proof that RoCTL* is non-elementary may be
found. The RoCTL logic [3] includes an 	G operator. It would be interesting
to discover if, unlike this tableau, the resolution procedure [3] for RoCTL was
efficient for nestings of 	G. Also of interest is that alternations between 	 and
Δ do not increase the complexity of the tableau based decision procedure.

Although finding an elementary decision procedure for RoBCTL* or RoCTL*
is important, optimising for actual formulae would be of more practical interest.
Even if it were to be shown that RoCTL* was 2-exponential like CTL*, this
would not necessarily mean that it would be feasible to decide even small ex-
ample formulae. Even the simple co-ordinated attack problem [7] required over
50 symbols to specify. Thus research into the actual time taken of a sample im-
plementation on example formulae would be of interest. For many purposes the
RoCTL fragment [3] of RoCTL* may be sufficient, and RoCTL may be easier
to decide than CTL* or BCTL*.

Now having decision procedures for RoCTL*-like logics, we intend to apply
RoCTL* to further practical problems. Some examples of how RoCTL* can suc-
cinctly represent robustness properties of simple systems have been given [7].
However, to test the decision procedures fully much larger and more complex
examples need to be formalised and examined. For some uses, RoCTL* may
need to be extended. RoCTL* can use the prone operator to discuss whether
it is possible for a failure to be detected at a particular step. Diagnosis prob-
lems require that failures will be detected. For these purposes, an “If at least
one additional failure occurs” operator and a knowledge operator are desirable.
It would be useful to find an extension that satisfies these requirements while
preserving decidability. Since the tableau does not rely on hiding the Viol atom,
adding such an operator to the tableau should be trivial.
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A Proof-Theoretic Approach to Deciding

Subsumption and Computing Least Common
Subsumer in EL w.r.t. Hybrid TBoxes

Novak Novaković

Theoretical Computer Science, TU Dresden, Germany

Abstract. Hybrid EL-TBoxes combine general concept inclusions
(GCIs), which are interpreted with descriptive semantics, with cyclic
concept definitions, which are interpreted with greatest fixpoint (gfp)
semantics. We introduce a proof-theoretic approach that yields a
polynomial-time decision procedure for subsumption, and present a
proof-theoretic computation of least common subsumers in EL w.r.t.
hybrid TBoxes.

1 Introduction

The EL-family of description logics (DLs) is a family of inexpressive DLs whose
main distinguishing feature is that they provide their users with existential re-
strictions rather than value restrictions as the main concept constructor involving
roles. The core language of this family is EL, which has the top concept (�),
conjunction (�), and existential restrictions (∃r.C) as concept constructors. This
family has recently drawn considerable attention since, on the one hand, the
subsumption problem stays tractable (i.e., decidable in polynomial time) in sit-
uations where the corresponding DL with value restrictions becomes intractable.
In particular, subsumption in EL is tractable both w.r.t. cyclic TBoxes inter-
preted with gfp or descriptive semantics [3] and w.r.t. general TBoxes (i.e., finite
sets of GCIs) interpreted with descriptive semantics [6,4]. On the other hand,
although of limited expressive power, EL is nevertheless used in applications,
e.g., to define biomedical ontologies. For example, both the large medical ontol-
ogy Snomed ct [14] and the Gene Ontology [1] can be expressed in EL, and
the same is true for large parts of the medical ontology Galen [12].

In some cases, it would be advantageous to have both GCIs interpreted
with descriptive semantics and cyclic concept definitions interpreted with gfp-
semantics available in one TBox. One motivation for such hybrid TBoxes comes
from the area of non-standard inferences in DLs. For example, if one wants to
support the so-called bottom-up construction of DL knowledge bases, then one
needs to compute least common subsumers (lcs) and most specific concepts (msc)
[5]. In [2], it was shown that the lcs and the msc in EL always exist and can be
computed in polynomial time if cyclic definitions that are interpreted with gfp-
semantics are available. In contrast, if cyclic definitions or GCIs are interpreted
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with descriptive semantics, neither the lcs nor the msc need to exist. Hybrid EL-
TBoxes have first been introduced in [8]. Basically, such a TBox consists of two
parts T and F , where T is a cyclic TBox whose primitive concepts occur in the
GCIs of the general TBox F . However, defined concepts of T must not occur in
F . It was shown in [8] that subsumption w.r.t. such hybrid TBoxes can still be de-
cided in polynomial time. The algorithm uses reasoning w.r.t. the general TBox
F to extend the cyclic TBox T to a cyclic TBox T̂ such that subsumption can
then be decided considering only T̂ . In [7] it was shown that, w.r.t. hybrid EL-
TBoxes, the lcs and msc always exists and can be computed in polynomial time.

Both, the existing algorithm for deciding subsumption ([8]), and the algo-
rithms for computing lcs and mcs ([7]) in EL w.r.t. hybrid TBoxes include a
pre-processing step of normalization of the terminologies. Normalization is, con-
sequently, also required for the algorithms for deciding subsumption, and the
algorithms for computing lcs and mcs in EL w.r.t. descriptive and greatest fix-
point semantics from [13]. This pre-processing step has two undesirable features.
From the complexity point of view, it causes quadratic blow-up of the terminolo-
gies, and thus, a quadratic blowup in the size of the input to the algorithms.
Even more important, especially in the cases of lcs and mcs, normalization re-
places the original concept definitions from the terminologies by new ones, by
introducing new concept names that occur in those modified definitions. For in-
stance, assume one wants to extend an existing large life-science ontology (and
those are usually not normalized) by adding just a single lcs of some two defined
concepts. The existing procedure results in quadratic blow-up of the entire on-
tology, its modification for all users of the ontology, and introduction of some
new (generic and unintuitive) concept names.

An approach for deciding subsumption in EL that significantly differs from
the ones described in [3,6,4] was introduced in [9]. It is based on sound and com-
plete Gentzen-style proof calculi for subsumption w.r.t. cyclic TBoxes interpreted
with gfp semantics and for subsumption w.r.t. general TBoxes interpreted with
descriptive semantics. These calculi yield polynomial-time decision procedures
since they satisfy an appropriate sub-description property.

This paper shows that a polynomial-time decision procedure can be obtained
for deciding subsumption w.r.t. hybrid EL-TBoxes by combining the two calculi
introduced in [9]. Another contribution of this paper is a proof-theoretic com-
putation of lcs in EL w.r.t. hybrid TBoxes. In both cases, the normalization of
the ontologies is avoided, together with the undesirable features that come along
with it.

2 Hybrid EL-TBoxes

Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept descriptions are built using the concept constructors top concept (�),
conjunction (�), and existential restrictions (∃r.C). The semantics of EL is de-
fined in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns



A Proof-Theoretic Approach to Deciding Subsumption 313

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept � �I = DI

conjunction C �D (C �D)I = CI ∩DI

exist. restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

subsumption C � D CI ⊆ DI

binary relations on DI to role names and subsets of DI to concept descriptions,
as shown in the semantics column of Table 1. A concept definition is an ex-
pression of the form A ≡ C, where A is a concept name and C is a concept
description, and a general concept inclusion (GCI) is an expression of the form
C * D, where C,D are concept descriptions. An interpretation I is a model of
a concept definition or GCI if it satisfies the respective condition given in the
semantics column of Table 1. This semantics for GCIs and concept definitions
is usually called descriptive semantics. A TBox is a finite set T of concept def-
initions that does not contain multiple definitions, i.e., {A ≡ C,A ≡ D} ⊆ T
implies C = D. Note that TBoxes are not required to be acyclic, i.e., there
may be cyclic dependencies among the concept definitions. A general TBox is a
finite set of GCIs. The interpretation I is a model of the TBox T (the general
TBox F) iff it is a model of all concept definitions (GCIs) in T (in F). The
name general TBox is justified by the fact that concept definitions A ≡ C can
of course be expressed by GCIs A * C,C * A. However, in hybrid TBoxes to be
considered, concept definitions will be interpreted by greatest fixpoint semantics
rather than by descriptive semantics. We assume in the following that the set of
concept names Ncon is partitioned into the set of primitive concept names Nprim

and the set of defined concept names Ndef . In a hybrid TBox, concept names
occurring on the left-hand side of a concept definition are required to come from
the set Ndef , whereas GCIs may not contain concept names from Ndef .

Definition 1 (Hybrid EL-TBoxes). A hybrid EL-TBox is a pair (F , T ),
where F is a general EL-TBox containing only concept names from Nprim , and
T is an EL-TBox such that A ≡ C ∈ T implies A ∈ Ndef .

An example of a hybrid EL-Tbox, taken from [8], is given in Fig. 1. It defines the
concepts ‘disease of the connective tissue,’ ‘bacterial infection,’ and ‘bacterial peri-
carditis’ using the cyclic definitions in T . The general TBox F states some proper-
ties that the primitive concepts and roles occurring in T must satisfy, such as the
fact that a disease located on connective tissue also acts on the connective tissue.
In general, the idea underlying the definition of hybrid TBoxes is the following:
F can be used to constrain the interpretation of the primitive concepts and roles,
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T : ConnTissDisease ≡ Disease � ∃acts on.ConnTissue
BactInfection ≡ Infection � ∃causes.BactPericarditis

BactPericarditis ≡ Inflammation � ∃has loc.Pericardium
� ∃caused by.BactInfection

F : Disease � ∃has loc.ConnTissue � ∃acts on.ConnTissue
Inflammation � Disease
Pericardium � ConnTissue

Fig. 1. A small hybrid EL-TBox

whereas T tells us how to interpret the defined concepts occurring in it, once the
interpretation of the primitive concepts and roles is fixed.

A primitive interpretation J is defined like an interpretation, with the only
difference that it does not provide an interpretation for defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and Nrole , but it cannot interpret concept descriptions containing elements of
Ndef . Given a primitive interpretation J , we say that the (full) interpretation
I is based on J if it has the same domain as J and its interpretation function
coincides with J on Nprim and Nrole .

Given two interpretations I1 and I2 based on the same primitive interpreta-
tion J , we define

I1 /J I2 , iff AI1 ⊆ AI2 for all A ∈ Ndef .

It is easy to see that the relation /J is a partial order on the set of interpretations
based on J . In [3] the following was shown: given an EL-TBox T and a primitive
interpretation J , there exists a unique model I of T such that

– I is based on J ;
– I ′ /J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-TBoxes). An interpretation I is a
hybrid model of the hybrid EL-TBox (F , T ), iff I is a gfp-model of T and the
primitive interpretation J it is based on is a model of F .

It is well-known that gfp-semantics coincides with descriptive semantics for
acyclic TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (F , T )
according to the semantics introduced in Definition 2, iff it is a model of T ∪ F
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in F and of every
concept definition in T .
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3 Subsumption w.r.t. Hybrid EL-TBoxes

Based on the semantics for hybrid TBoxes introduced above, we can now define
the main inference problem that we want to solve in this paper.

Definition 3 (Subsumption w.r.t. hybrid EL-TBoxes). Let (F , T ) be a
hybrid EL-TBox, and A,B defined concepts occurring on the left-hand side of a
definition in T . Then A is subsumed by B w.r.t. (F , T ) (written A *gfp,F ,T B),
iff AI ⊆ BI holds for all hybrid models I of (F , T ).

Defining (and computing) subsumption only for concept names A,B defined in
T rather than for arbitrary concept descriptions C,D is not a real restriction
since one can always add definitions with the right-hand sides C,D to T .

Assume that the hybrid EL-TBox (F , T ) is given, and that we want to de-
cide whether, for given defined concepts A,B, the subsumption relationship
A *gfp,F ,T B holds or not. Following the ideas in [9], we introduce a sound and
complete Gentzen-style calculus for subsumption. The reason why this calculus
yields a decision procedure is basically that it has the sub-description property,
i.e., application of rules can be restricted to sub-descriptions of concept descrip-
tions occurring in F or T .

A sequent for (F , T ) is of the form C *n D, where C,D are sub-descriptions
of concept descriptions occurring in F or T , and n ≥ 0. The rules of the Hybrid
EL-TBox Calculus HC depicted in Fig. 2 can be used to derive new sequents from
sequents that have already been derived. For example, the sequents in the first row
of the figure can always be derived without any prerequisites, using the rules Refl,
Top, and Start, respectively. Using the rule AndR, the sequent C *n D � E can
be derived in case both C *n D and C *n E have already been derived. Note
that the rule Start applies only for n = 0. Also note that, in the rule DefR, the
index is incremented when going from the prerequisite to the consequent.

C �n C (Refl) C �n � (Top) C �0 D (Start)

C �n E

C �D �n E (AndL1)

D �n E

C �D �n E (AndL2)

C �n D C �n E

C �n D �E (AndR)

C �n D

∃r.C �n ∃r.D (Ex)

C �n D

A �n D (DefL)

D �n C

D �n+1 A (DefR)

C �n E F �n D

C �n D (GCI)

for A ≡ C ∈ T for A ≡ C ∈ T for E � F ∈ F

Fig. 2. The rule system HC
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Infl �n Infl D �n D

Infl �n D

Infl  ∃hl.P �n D

Infl �n Infl D �n D

Infl �n D

Infl  ∃hl.P �n D

P �n P CT �n CT

P �n CT

∃hl.P �n ∃hl.CT

Infl  ∃hl.P �n ∃hl.CT

Infl  ∃hl.P �n D  ∃hl.CT ∃ao.CT �n ∃ao.CT

Infl  ∃hl.P �n ∃ao.CT

Infl  ∃hl.P �n D  ∃ao.CT

Infl  ∃hl.P  ∃cb.BI �n D  ∃ao.CT

BP �n D  ∃ao.CT

BP �n+1 CTD

Fig. 3. An example of a derivation in HC

Fig. 3 shows a derivation in HC w.r.t. the hybrid EL-TBox from Fig. 1, where
obvious abbreviations of concept and role names have been made. This derivation
tree demonstrates that the sequent BactPericarditis *n+1 ConnTissDisease can
be derived for every n ≥ 0. Note that we can also derive BactPericarditis *0

ConnTissDisease using the rule Start.
The calculus HC defines binary relations *n for n ∈ {0, 1, . . .} ∪ {∞} on the

set of sub-descriptions of concept descriptions occurring in F or T :

Definition 4. Let C,D be sub-descriptions of the concept descriptions occurring
in F or T . Then C *n D holds, iff the sequent C *n D can be derived using
the rules of HC. In addition, C *∞ D holds, iff C *n D holds for all n ≥ 0.

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-TBoxes
in the following sense.

Theorem 1 (Soundness and Completeness of HC). Let (F , T ) be a hy-
brid EL-TBox, and A,B defined concepts occurring on the left-hand side of a
definition in T . Then A *gfp,F ,T B, iff A *∞ B holds.

A detailed proof of this theorem is given in [11]. Though the rules of HC are
taken from the sound and complete subsumption calculi introduced in [9] for
subsumption w.r.t. cyclic EL-TBoxes interpreted with gfp-semantics and for
subsumption w.r.t. general EL-TBoxes interpreted with descriptive semantics,
respectively, the proof that their combination is sound and complete for the case
of hybrid EL-TBoxes requires non-trivial modifications of the proofs given in [9].
Nevertheless, these proofs appear to be simpler and easier to comprehend than
the ones given in [8,10] for the correctness of the reduction-based subsumption
algorithm for hybrid EL-TBoxes introduced there.

In our example, we have BactPericarditis *∞ ConnTissDisease, and thus sound-
ness of HC implies that the subsumption relationship BactPericarditis *gfp,F ,T
ConnTissDisease holds.

It is not hard to show that *0 is the universal relation on sub-descriptions
of the concept descriptions occurring in F or T , and that *n+1 ⊆ *n holds
for all n ≥ 0 (see [11] for a proof). Thus, to compute *∞ we can start with
the universal relation *0, and then compute *1,*2, . . ., until for some m we
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have *m = *m+1, and thus *m = *∞. Since the set of sub-descriptions is
finite, the computation of each relation *n can be done in finite time, and we
can be sure that there always exists an m such that *m = *m+1. This shows
that the calculus HC indeed yields a subsumption algorithm. Even more so, the
decision procedure will terminate in polynomial time. This can easily be seen
by noticing that we can compute each of the relations *m in polynomial time
by performing the proof search for each pair of subconcepts of the TBox with
caching the intermediate derived subsumption pairs. Notice that the number of
subconcepts of the TBox is linear in the size of the TBox. Also, the maximal
number m0 of different *m relations corresponds to the case where *i and *i+1

differ in a single subsumption pair, for all i ≤ m0. Thus, the total number of
different *m relations is bounded by the number of subsumption pairs +1, i.e.
bounded by a quadratic function in the size of the TBox.

A detailed description of the implementation of this decision procedure can
be found in [15].

4 Computing Least Common Subsumer in EL w.r.t.
Hybrid TBoxes

This section is dedicated to employing the developed proof-theoretic techniques
in calculating and showing the correctness of the computation of the least-
common subsumer of two defined concepts with respect to hybrid TBoxes. We
start by introducing the notion of a conservative extension of a hybrid EL-TBox.

Definition 5. Given a hybrid EL-TBox (F , T ′) we say that the hybrid TBox
(F , T ′′) is a conservative extension of (F , T ′), iff T ′ ⊆ T ′′, and T ′ and T ′′ have
the same primitive concepts and roles.

It is well known that the conservative extensions do not change the set of sub-
sumption pairs (see [2]), i.e. (F , T ) |= C * D, iff (F , T ′) |= C * D, for all sub-
concepts C, D occurring in (F , T ). This can also be shown in a proof-theoretic
way by noticing that C *∞ D can be derived in the HC calculus for (F , T ), iff
it can be derived in HC for (F , T ′).

Notice that, for instance, *n, *∞ and Ndef are defined w.r.t. a concrete TBox.
That is why, in the cases where multiple TBoxes are concerned, superscripts are
used to specify the appropriate TBoxes. The following definition introduces the
notion of least-common subsumer in the hybrid setting.

Definition 6. (Hybrid lcs) Let (F , T1) be a hybrid EL-TBox and A,B ∈ NT1
def .

Let (F , T2) be a conservative extension of (F , T1) with Z ∈ NT2
def . Then Z in

(F , T2) is a hybrid least-common subsumer (lcs) of A,B in (F , T1), iff the fol-
lowing conditions hold:

1. A *gfp,F ,T2 Z and B *gfp,F ,T2 Z; and
2. if (F , T3) is a conservative extension of (F , T2) and D ∈ NT3

def such that
A *gfp,F ,T3 D and B *gfp,F ,T3 D then Z *gfp,F ,T3 D.
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Concept D from the previous definition is an arbitrary concept defined in some
conservative extension (F , T3). It would suffice, though, to restrict D to be arbi-
trary concept defined in T3 \T1, i.e. it is sufficient to consider only newly defined
concepts for testing the condition 2 of the definition above. Indeed, if we want
to test whether Z *gfp,F ,T3 D for D ∈ NT1

def , we can equivalently check whether
Z *gfp,F ,T4 AD, where T4 consists of T2 with a definition D ≡ AD for a new
concept AD.

One can observe that, as mentioned in the introduction, the existing algorithm
for computing lcs for EL w.r.t. TBoxes interpreted by greatest fixpoint semantics
from [13], and the algorithm for computing lcs for EL w.r.t. hybrid TBoxes from
[7], strictly speaking, do not result in a conservative extension of the original
TBox due to the normalization step.

Assume now that, given a hybrid TBox (F , T ), one wants to know the least
common subsumer of two defined concepts A and B occurring in a hybrid TBox.
We give a definition of an extension of the hybrid TBox which contains definitions
of lcs of defined concepts occurring in the original TBox.

Before doing so, consider the set subcon of all subconcepts of concept descrip-
tions occurring in the TBox (F , T ) and consider the sets

ExRest = {C | C ∈ subcon and there is an r ∈ Nrole such that ∃r.C ∈ subcon},
Npair = {(C, D) | C, D ∈ (NT

def ∪ExRest)}, and
Prims = {C | C ∈ subcon and C does not have elments of Ndef as subconcepts}.

Notice that elements of Prims are concept descriptions built using only primitive
concept names and role names. Now we define the conservative extension of the
TBox as follows.

Definition 7. Let (F , T ) be a hybrid EL-TBox. A conservative extension
(F , Tlcs) of (F , T ) is obtained by adding to the (F , T ) definitions

(C,D) ≡ θ1 � ... � θk � X1 � ... � Xl � ∃r1.(C1, D1) � ... � ∃rm.(Cm, Dm)

for each (C,D) ∈ Npair, where:

1. θ ∈ {θ1, ..., θk}, iff C *(F ,T )
∞ θ, D *(F ,T )

∞ θ, and θ ∈ Prims

2. X ∈ {X1, ..., Xl}, iff C *(F ,T )
∞ X, D *(F ,T )

∞ X, and X ∈ NT
def ;

3. ∃r.(τ, σ) ∈ {∃r1.(C1, D1), ...,∃rm.(Cm, Dm)}, iff C *(F ,T )
∞ ∃r.τ , D *(F ,T )

∞
∃r.σ and (τ, σ) ∈ Npair.

Least common subsumer of two defined concepts A and B occurring in the TBox
will be newly defined concept (A,B). Once the *(F ,T )

∞ relation is computed,
computation of the extension (F , Tlcs) can be done by a simple computation in
polynomial time, and the resulting TBox is indeed a conservative extension of
the original one.

In what follows we show that the definition above provides computation of
lcs of two given concepts, i.e. that the least common subsumer of two defined
concepts A and B occurring in the TBox is the newly defined concept (A,B).
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What needs to be shown is that conditions 1 and 2 from Definition 6 hold for
all (A,B). In order to do so, we will simplify the discussion by restricting our
attention to those conservative extensions from condition 2 for which newly
added definitions are of a certain regular structure. Such an assumption, of
course, is done without loss of generality.

Definition 8. We say that a conservative extension (F , T ′) of the hybrid EL-
TBox (F , T ) is obtained by adding normalized definitions modulo (F , T ) if every
definition in T ′ \ T is of the form:

Z ≡ P1 � ... � Pm � A1 � ... � Ak � ∃r1.B1 � ... � ∃rn.Bn

where Pi is a primitive concept for every i = 1, ...,m, Ai is a concept defined
in T , for every i = 1, ..., k, and Bj is a concept defined in T ′ \ T , for every
j = 1, ..., n.

The proof of the following proposition can be found in [11].

Proposition 1. Let (F , T ) be a hybrid EL-TBox, and (F , T ∪A1) some conser-
vative extension of (F , T ). Then, there is a conservative extension (F , T ∪ A2)
of (F , T ) obtained by adding normalized definitions modulo (F , T ) to it, such
that the set of defined concepts in (F , T ∪ A1) is a subset of the set of defined
concepts in (F , T ∪ A2), and (F , T ∪ A1) |= C * D, iff (F , T ∪ A2) |= C * D
for every two concepts C and D defined in (F , T ∪ A1).

This proposition shows that one can restrict the attention to the conservative
extensions obtained by adding the normalized definitions modulo a TBox when
checking for property 2 from the definition of lcs. Indeed, let Φ be a concept
defined in a conservative extension (F , T ∪A1) of hybrid TBox (F , T ), such that
Φ subsumes both A and B. By the previous proposition, there is a conservative
extension (F , T ∪ A2) of the TBox (F , T ) by normalized definitions modulo
(F , T ), such that (A,B) will be subsumed by Φ w.r.t. (F , T ∪ A1), iff (A,B)
is subsumed by Φ w.r.t. (F , T ∪ A2). In particular, (A,B) will be subsumed by
every concept Φ that subsumes both A and B w.r.t. an arbitrary conservative
extension of the TBox, iff it is subsumed by every concept Φ that subsume both A
and B w.r.t. conservative extensions of the TBox obtained by adding normalized
definitions modulo (F , T ).

We continue by introducing a relation 
. We say that C 
 D, iff C *n D can
be derived for some n using only the rules that consider the left-hand side of a
sequent, i.e. (Ref), (AndL1), (AndL2), (DefL) and (GCI). Notice that if C *n D
can be derived using only those rules for some n, then it can be derived for any
n. The following, rather technical lemmas are given here without proofs, which
can be found in [11].

Lemma 1. Suppose that n > 0.

– F *n+1 A, iff F *n CA, where A ≡ CA is an axiom of the TBox.
– F *n ∃r.D, iff there exist α, β, ρ such that F *n α, β 
 ∃r.ρ and ρ *n D

for some subconcept ρ of the TBox, and α and β being such that either
α = β = F or α * β being a GCI from F .
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Lemma 2. Let D, C and F be arbitrary subconcepts occurring in a TBox
(F , T ). If D *∞ F and F *n C, then D *n C.

We are equipped now to show that our newly defined concepts are indeed the
subsumers.

Lemma 3. Let D and C be arbitrary concepts from NT
def ∪ ExRest. Then,

D *(F ,Tlcs)
n (D,C) and C *(F ,Tlcs)

n (D,C) for every n.

Proof. We give a proof of D *(F ,Tlcs)
n (D,C), proof of C *n (D,C) is analogous.

Proof is carried out by induction on n. For n = 0, D *(F ,Tlcs)
0 (D,C) follows

from the rule (Start). Assume now that D *(F ,Tlcs)
l (D,C) holds for all l ≤ n.

We prove that D *(F ,Tlcs)
n+1 (D,C). Let

(D,C) ≡ θ1 � ... � θk � X1 � ... � Xu � ∃s1.(Dl1 , Cm1) � ... � ∃st.(Dlt , Cmt)

be the definition of (D,C) in the extended hybrid TBox (F , Tlcs). Lemma 1
applied to this definition yields D *(F ,Tlcs)

n+1 (D,C), iff D *(F ,Tlcs)
n θ1 � ... � θk �

X1 � ... �Xu � ∃s1.(Dl1 , Cm1) � ... � ∃st.(Dlt , Cmt). Therefore, it is sufficient to
show D *(F ,Tlcs)

n θ1� ...�θk �X1� ...�Xu �∃s1.(Dl1 , Cm1)� ...�∃st.(Dlt , Cmt).
Due to (AndR), one way to show this is to give a proof of D *(F ,Tlcs)

n θi for
i = 1, ..., k, D *(F ,Tlcs)

n Xi for i = 1, ..., u, and D *(F ,Tlcs)
n ∃sj .(Dlj , Cmj ) for

j = 1, ..., t.

– D *(F ,Tlcs)
n θi: by Definition 7, D *(F ,Tlcs)

∞ θi. Therefore, by definition of
*(F ,Tlcs)
∞ , D *(F ,Tlcs)

n θi, for i = 1, ..., k. Similarly, D *(F ,Tlcs)
n Xi.

– D *(F ,Tlcs)
n ∃sj .(Dlj , Cmj ): by Definition 7, D *(F ,Tlcs)

∞ ∃sj .Dlj , therefore
D *(F ,Tlcs)

n ∃sj .Dlj . Since both Dlj and Cmj belong to the Ndef ∪ ExRest,
induction hypothesis can be applied and it yields Dlj *(F ,Tlcs)

n (Dlj , Cmj ).
Then, ∃sj .Dlj *(F ,Tlcs)

n ∃sj .(Dlj , Cmj ) follows by applying the rule (Ex).
Since D *(F ,Tlcs)

∞ ∃sj .Dlj , Lemma 2 yields D *(F ,Tlcs)
n ∃sj .(Dlj , Cmj ).

By definition of *(F ,Tlcs)
∞ , and due to the soundness of HC, both A and B are

subsumed by (A,B), for all defined concepts A and B in (F , T ).
We give here another technical property of conservative extensions and 
(F ,T )

relation.

Lemma 4. Let (F , T2) be an arbitrary conservative extension of (F , T ). If σ is
a subconcept occurring in (F , T ) and σ 
(F ,T2) ∃r.τ , then ∃r.τ is a subconcept
occurring in (F , T ).

Finally, we show the minimality condition.

Lemma 5. Let (F , T2) be a conservative extension of (F , Tlcs) by normalized
definitions modulo (F , Tlcs). Let D and C be two concepts from NT

def ∪ExRest,

and let Φ be a concept defined in T2 \ T . If D *(F ,T2)
∞ Φ and C *(F ,T2)

∞ Φ, then
(D,C) *(F ,T2)

n Φ, for every n.
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Proof. Assume

Φ ≡ θ1 � ... � θk � X1 � ... � Xu � ∃r1.Φ1 � ... � ∃rl.Φl

is a definition in T2\T . Here, θi, for i = 1, .., k, is an element of Prims ( from the
definition of (F , Tlcs)), (and in the case Φ is defined in T2 \ Tlcs, it is a primitive
concept). Xi, for i = 1, .., u, is a concept defined in (F , Tlcs) (in T in the case
Φ is defined in Tlcs), while Φi, for i = 1, ..., l is a concept defined in T2 \ T (in
Tlcs \ T in the case Φ is defined in Tlcs). Again, proof is carried out by induction
on n. For n = 0, (D,C) *(F ,T2)

0 Φ follows from the rule (Start).
Assume now that (D,C) *(F ,T2)

k Φ for all k ≤ n. We prove that (D,C) *(F ,T2)
n+1

Φ. One of the properties of the *(F ,Tlcs)
n relation, shown in Lemma 1 in our case

yields (D,C) *(F ,T2)
n+1 Φ iff (D,C) *(F ,T2)

n θ1 � ... � θk �X1 � ... �Xu � ∃r1.Φ1 �
... � ∃rl.Φl. Therefore, it suffices to prove (D,C) *(F ,T2)

n θ1 � ... � θk �X1 � ...�
Xu � ∃r1.Φ1 � ...� ∃rl.Φl. Again due to (AndR), one way to show this is to give
a proof of (D,C) *(F ,T2)

n θi for i = 1, ..., k, (D,C) *(F ,T2)
n Xi for i = 1, ..., u,

and (D,C) *(F ,T2)
n ∃rj .Φj for j = 1, ..., l.

– (D,C) *n θi: by soundness and completeness of HC, D *(F ,T2)
∞ Φ implies

D *(F ,T2)
∞ θi, similarly, C *(F ,T2)

∞ θi, and therefore θi occurs on the right-
hand side of the definition of (D,C) by Definition 7, since θi belongs to
Prims. Therefore, (D,C) *(F ,T2)

n θi follows from completeness of the HC
calculus and the fact that (D,C) * θi holds in all models of (F , T ).

– (D,C) *n Xi: we distinguish two cases

1. Xi is defined in T : by soundness and completeness of HC, D *(F ,T2)
∞ Φ

implies D *(F ,T2)
∞ Xi, similarly, C *(F ,T2)

∞ Xi, and therefore Xi occurs
on the right-hand side of the definition of (D,C) by Definition 7. Thus,
(D,C) *(F ,T2)

n Xi follows from completeness of the HC calculus and the
fact that (D,C) * Xi holds in all models of (F , T ).

2. Xi is defined in Tlcs \ T : then, Xi is of the form (γ, δ). By soundness
and completeness of HC, D *(F ,T2)

∞ Φ implies D *(F ,T2)
∞ (γ, δ), similarly,

C *(F ,T2)
∞ (γ, δ). Now, the induction hypothesis can be applied, since

(γ, δ) is defined in Tlcs \ T ⊆ T2 \ T , and it yields (D,C) *n (γ, δ).

– (D,C) *(F ,T2)
n ∃rj .Φj : again, by soundness and completeness of HC,

D *(F ,T2)
∞ Φ implies D *(F ,T2)

∞ ∃rj .Φj and C *(F ,T2)
∞ Φ implies C *(F ,T2)

∞
∃rj .Φj . By Lemma 1, this means that there exist concepts α, β and ρ and
such that

D *(F ,T2)
∞ α, β 
(F ,T2) ∃rj .ρ, ρ *(F ,T2)

∞ Φj

C *(F ,T2)
∞ α1, β1 
(F ,T2) ∃rj .ρ1, ρ1 *(F ,T2)

∞ Φj

where α * β ∈ F or D = α = β; α1 * β1 ∈ F or C = α1 = β1; and ρ and
ρ1 are some concepts occurring in (F , T2).
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This further implies D *(F ,T2)
∞ ∃rj .ρ by applying rule (Concept) to

D *(F ,T2)
n α and β *(F ,T2)

n ∃rj .ρ for every n. Analogously, C *(F ,T2)
∞ ∃rj .ρ1.

Lemma 4 applied to β 
(F ,T2) ∃rj .ρ and β1 
(F ,T2) ∃rj .ρ1 yields the fact
that ∃rj .ρ and ∃rj .ρ1 are concepts from (F , T ). Even more, they are from
ExRest.

Now, the induction hypothesis can be applied to ρ *(F ,T2)
∞ Φj and

ρ1 *(F ,T2)
∞ Φj to obtain (ρ, ρ1) *(F ,T2)

n Φj . On the other hand, by Defini-
tion 7, ∃rj .(ρ, ρ1) is one of the conjuncts in the definition of (D,C). Now,
(D,C) *(F ,T2)

n ∃rj .Φj can be derived from (ρ, ρ1) *(F ,T2)
n Φj , by applying

(Ex) rule, (AndL1) or (AndL2) rules several times and (DefL) in the end.

Again, due to the soundness of derivations in HC, considering defined concepts
A, B and the corresponding (A,B), we have that (A,B) is subsumed by every
concept defined in T2\T that subsumes both A and B. (We use notation from the
previous lemma.) By the comment after Definition 6, this conclusion is sufficient
to show property 2 from the definition of hybrid lcs.

Notice also, that, as shown before, the assumption made on the added defini-
tions within the conservative extensions, namely the assumption of them being
normalized modulo the TBox, does not cause loss of generality.

Combined with the previously shown property 1 from the definition of hybrid
lcs, this proves the following theorem.

Theorem 2. The concept description (A,B) from the extended hybrid TBox
(F , Tlcs) is a least common subsumer of A and B w.r.t. the hybrid TBox (F , T ).

5 Conclusion

In this paper, we have described a Gentzen-style calculus for subsumption
w.r.t. hybrid EL-TBoxes, which is an extension to the case of hybrid TBoxes
of the calculi for general TBoxes and for cyclic TBoxes with gfp-semantics
that have been introduced in [9]. Based on this calculus, we have developed a
polynomial-time decision procedure for subsumption w.r.t. hybrid EL-TBoxes.
The second result described in this paper was the proof-theoretic computation of
least common subsumers w.r.t. hybrid EL-TBoxes. We provide a technique that
avoids the undesirable features of normalization. Since the main motivation for
considering hybrid TBoxes was that, w.r.t. them, the lcs and msc always exist,
the natural next step is to develop a proof-theoretic approach to computing the
msc, and we currently investigate that possibility. Other future work in this
direction is to try to extend the described techniques to more expressive DLs
from the EL family.
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Abstract. This work studies the extension of the existential entailment algorithm
of CARIN to DLs of the SH family. The CARIN family of knowledge representa-
tion languages was one of the first hybrid languages combining DATALOG rules
and Description Logics. For reasoning in one of its prominent variants, which
combines ALCNR with non-recursive DATALOG, the blocking conditions of
the standard tableaux procedure for ALCNR were modified. Here we discuss
a similar adaptation to the SHOIQ tableaux, which provides some new decid-
ability results and tight data complexity bounds for reasoning in non-recursive
CARIN, as well as for query answering over Description Logic knowledge bases.

1 Introduction

Description Logics (DLs) are specifically designed for representing structured knowl-
edge in terms of concepts (i.e., classes of objects) and roles (i.e., binary relationships
between classes). In the last years, they have evolved into a standard formalism for
ontologies which describe a domain of interest in different applications areas. In the
context of the Semantic Web, DL-based ontologies have been designated via the Web
Ontology Language (OWL) as a standard for describing the semantics of complex Web
resources, in order to facilitate access by automated agents. Driven by the need to over-
come limitations of DLs and to integrate them into applications, recent research focuses
on combining DLs with other declarative knowledge representation formalisms, and in
particular with rule-based languages, which play a dominant role in Databases (as query
languages) and in Artificial Intelligence [3,8,15,19].

One of the first such hybrid languages, CARIN [15], integrates DATALOG programs
with some DLs of the ALC family, being ALCNR (the basic DL ALC with number
restrictions and role intersection) the most expressive. The limited decidability of hy-
brid languages was recognised already with the introduction of CARIN, as even very
weak DLs yield an undecidable formalism when combined with recursive DATALOG.
Three alternatives were proposed to regain decidability: (i) the DL constructors causing
undecidability are disallowed; (ii) only non-recursive rules are allowed; or (iii) the vari-
able occurrences in the DL atoms appearing in rules are restricted according to some
safety conditions that limit their ability to relate unnamed individuals.

In this work, we enhance CARIN with a more expressive DL component and fo-
cus on its non-recursive variant (safe rules are briefly discussed in Section 4). We con-
sider the popular DLs of the SH family, which extend ALC with role transitivity and
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containment. The most expressive DL here considered,SHOIQ (which essentially cor-
responds to OWL-DL), also supports concepts denoting a single individual called nom-
inals (O), inverse roles (I), and qualified number restrictions (Q). By disallowing one
of these three constructs, we obtain the expressive and mutually incomparable sublogics
known as SHIQ (corresponding to OWL-Lite), SHOQ, and SHOI respectively.

For reasoning in non-recursive CARIN, the authors of [15] identified the existen-
tial entailment problem as a key task and proposed an algorithm for it, based on a
tableau (there named constraint system) algorithm for satisfiability of ALCNR knowl-
edge bases with modified blocking conditions. In this way, they also obtained the first
algorithm for answering Conjunctive Queries (CQs) and Union of Conjunctive Queries
(UCQs) in DLs and for deciding their containment, problems that have become a cen-
tral topic of interest in recent years. Another central contribution of CARIN was to
show a tight CONP upper bound for the aforementioned tasks under data complexity,
i.e., w.r.t. to the size of the data, assuming that the query/rule component and the ter-
minological part of the knowledge base are fixed. This setting is of major importance,
as data repositories can be very large and are usually much larger than the terminology
expressing constraints on the data.

In [17] the tableaux algorithm for deciding SHOIQ knowledge base satisfiability
of [11] was adapted following the ideas introduced in [15], to provide an algorithm for
the entailment and containment of positive queries in the SH family of DLs. In this
paper we show how this algorithm, analogous to CARIN’s existential entailment one,
can be exploited for reasoning in non-recursive CARIN and in other hybrid languages.
Like [17], the results have two limitations: transitive roles are not allowed in the rule
component, and the interaction between number restrictions, inverses and nominals in
SHOIQ may lead to non-termination. However, reasoning is sound and complete if the
DL component of the hybrid knowledge base is written in SHIQ, SHOQ or SHOI ,
and sound if it is in SHOIQ. We obtain a precise characterisation of the data com-
plexity of reasoning whenever the DATALOG component is non-recursive, and for some
cases where it is recursive, e.g., if it satisfies the weak safety conditions of DL+log.

2 Preliminaries

In this section, we define CARIN knowledge bases. The languages that are used in the
two components are defined first: DL knowledge bases and DATALOG programs.

Throughout the paper, we consider a fixed alphabet containing the following pair-
wise disjoint countably infinite sets: a set C of DL predicates of arity 1, called concept
names; a set R of DL predicates of arity 2, called role names, with a subset R+ ⊆ R of
transitive role names; an alphabet P of rule predicates, where each p ∈ P has an asso-
ciated arity m ≥ 0; a set I of individuals; and a set V of variables. This alphabet is used
for defining knowledge bases, whose semantics is given by (first-order) interpretations.

Definition 1 (Interpretation). An interpretation I = (ΔI , ·I) is given by a non-empty
domain ΔI and an interpretation function ·I that maps each predicate p ∈ P∪C∪R
of arity n to a subset of (ΔI)n, and each individual in I to an element of ΔI .
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2.1 Description Logics

The DL SHOIQ and its sublogics SHIQ, SHOQ and SHOI are defined as usual.1

Definition 2 (SHOIQ Knowledge Bases). A role expression R (or simply role) is a
role name P ∈ R or its inverse P−. A role inclusion axiom is an expression R * R′,
where R and R′ are roles. A role hierarchy R is a set of role inclusion axioms.

As usual, Inv(R) = P− if R = P for some P ∈ R and Inv(R) = P if R = P−.
For a role hierarchy R, the relation *∗R denotes the reflexive, transitive closure of *
over R ∪ {Inv(R) * Inv(R′) | R * R′ ∈ R}. We write Trans(R,R) if R *∗R R′ and
R′ *∗R R for some R′ ∈ R+ ∪ {R− | R ∈ R+}. A role S is simple w.r.t. R if for no
role R with Trans(R,R) we have that R *∗R S.

Let a, b ∈ I be individuals, A ∈ C a concept name, C and C′ concepts, P ∈ R
a role name, R a role, S a simple role, and n ≥ 0 an integer. Concepts are defined
inductively according to the following syntax:

C,C′ −→ A | {a} | C � C′ | C � C′ | ¬C | ∀R.C | ∃R.C | ≥ nS.C | ≤ nS.C

Concepts of the form {a} are called nominals. A concept inclusion axiom is an ex-
pression C * D. An assertion is an expression A(a), P (a, b) or a �≈ b. A TBox is
a finite set of concept inclusion axioms, and an ABox is a finite set of assertions. A
(SHOIQ) knowledge base (KB) is a triple K = 〈T ,R,A〉, where T is a TBox, R is
a role hierarchy, and A is an ABox.2

Definition 3 (SHOQ, SHIQ, and SHOI Knowledge Bases). Roles and concepts in
SHOQ, SHIQ, and SHOI are defined as in SHOIQ, except that

– in SHOQ, the inverse role constructor P− is not available;
– in SHIQ, nominals {a} are not available;
– in SHOI , number restrictions ≥ nS.C, ≤ nS.C are not available,

For L one of SHOQ, SHIQ, or SHOI , an L knowledge base is a SHOIQ knowl-
edge base K=〈T ,R,A〉 such that all roles and concepts occurring in it are in L.

Definition 4 (Semantics of DL KBs). Let I = (ΔI , ·I) be an interpretation such
that RI = (RI)+ for each R ∈ R+. To interpret K , the interpretation function is
inductively extended to complex concepts and roles as follows:

(¬C)I=ΔI \CI (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(C �D)I=CI ∩DI (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
(C �D)I=CI ∪DI (≤ n R.C)I = {x | |{y | (x, y) ∈ RI ∧ y ∈ CI}| ≤ n}

(P−)I={(y, x) | (x, y) ∈ P I} (≥ n R.C)I = {x | |{y | (x, y) ∈ RI ∧ y ∈ CI}| ≥ n}

I satisfies an assertion α, denoted I |= α, if α = A(a) implies aI ∈ AI , α = P (a, b)
implies 〈aI , bI〉 ∈ P I and α = a �≈ b implies aI �= bI; I satisfies a role inclusion

1 For the sake of uniformity, we use the name SHOI instead of the also common SHIO.
2 Note that only concepts and role names may occur inA, but this is no limitation. Indeed, for a

complex C, an assertion C(a) can be expressed by Ac(a) and an axiom Ac � C in T , while
an assertion R−(x, y) can be replaced by Inv(R)(a, b).
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axiom R * R′ if RI ⊆ R′I , and a concept inclusion axiom C * C′, if CI ⊆ C′I .
I satisfies a role hierarchy R and a terminology T , if it satisfies every axiom of R and
T respectively. Furthermore, I satisfies an ABox A, if it satisfies every assertion in A.
Finally, I is a model of K = 〈T ,R,A〉, denoted I |= K , if it satisfies T , R, and A.

2.2 DATALOG

We now define DATALOG programs and their semantics, also given by interpretations.3

Definition 5 (DATALOG rules and DATALOG programs). A (rule/DL) atom is an ex-
pression p(x), where p is a (rule/DL) predicate, and x is a tuple from V∪ I of the same
arity as p. If x ⊆ I, then p(x) is ground.

A DATALOG rule is an expression of the form q(x) :− p1(y1), . . . , pn(yn) where n ≥
0, q(x) is a rule atom, each pi(yi) is an atom, and x ∩ V ⊆ y1 ∪ . . . ∪ yn. As usual,
q(x) is called the head of the rule, and p1(y1), . . . , pn(yn) is called the body. A rule
with n = 0 is called a fact and can be written simply q(x).

A DATALOG program P is a set of DATALOG rules. Its dependency graph is the
directed graph whose nodes are the predicates p occurring in P with an edge p→ p′ if
p′ occurs in the head and p in the body of a rule in P . P is recursive if its dependency
graph contains some cycle, and non-recursive otherwise.

Definition 6 (Semantics of DATALOG Programs). An interpretation I satisfies a
ground atom p(a), written I |= p(a), if (a)I ∈ pI . A substitution is a mapping
σ : V ∪ I → ΔI with σ(a) = aI for every a ∈ I. For an atom p(x) and a substi-
tution σ, we say that σ makes p(x) true in I, in symbols I, σ |= p(x), if I |= p(σ(x)).
We say that I satisfies a rule r, denoted I |= r, if every substitution that makes all the
atoms in the body true also makes the atom in the head true. If I |= r for each r ∈ P ,
then I is a model of P , in symbols I |= P .

2.3 CARIN Knowledge Bases

Now we define the CARIN language. In what follows, L denotes a DL of the SH family.

Definition 7 (CARIN knowledge bases). A CARIN-L knowledge base is a tuple 〈K,P〉
where K is an L knowledge base, called the DL component of K , and P is a DATALOG

program, called its rule (or DATALOG) component. A CARIN-L knowledge base is (non-)
recursive if its rule component P is (non-) recursive.

Note that only rule predicates can occur in the head of rules of P . This is a common
feature of many hybrid languages that assume that the DL knowledge base provides
a commonly shared conceptualisation of a domain, while the rule component defines
application-specific relations that can not change the structure of this conceptual model.

The semantics of CARIN KBs arises naturally from the semantics of its components.
As in the original CARIN, we define as main reasoning task the entailment of a ground
atom, which may be either a DL assertion or a DATALOG ground fact.

3 Note that we consider first-order semantics, without the minimality requirement.
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Definition 8 (CARIN-L entailment problem). An interpretation I is a model of a
CARIN-L knowledge base K = 〈K,P〉, in symbols I |= K, if I |= K and I |= P .
For a ground atom α, K |= α denotes that I |= K implies I |= α for every I. The
CARIN-L entailment problem is to decide, given K and α, whether K |= α.

We note that the standard DL reasoning tasks (e.g., KB consistency and subsumption)
are reducible to entailment in CARIN, as the latter generalises instance checking.

3 Reasoning in Non-recursive CARIN

In this section, we provide an algorithm for reasoning in non-recursive CARIN. The key
to the decidability in this variant of CARIN is the limited interaction between the DL and
rule predicates. Indeed, if we have a non-recursive DATALOG programP and we want to
verify entailment of an atom p(a), it is sufficient to consider the rules in P whose head
predicate is p and unfold them into a set of rules where only p(a) occurs in the head, and
the bodies contain only DL atoms and ground facts. The CARIN-L entailment problem
with such a restricted rule component is then reducible to the entailment of UCQs.

The query entailment (or informally, query answering) problem is DLs has gained
much attention in recent times. Many papers have studied the problem of answering
CQs and UCQs over DL knowledge bases, e.g., [1,5,6,14,20]. We consider the more
expressive language of positive existential queries.

3.1 Non-recursive CARIN and Query Entailment

We introduce positive (existential) queries (PQs), which generalise CQs and UCQs.4

Definition 9 (Positive Queries, Query Entailment). A positive (existential) query
(PQ) over a KB K is a formula ∃x.ϕ(x), where x is a vector of variables from V
and ϕ(x) is built using ∧ and ∨ from DL atoms whose variables are in x. If ϕ(x) is a
conjunction of atoms then ∃x.ϕ(x) is a conjunctive query (CQ); if ϕ(x) is in disjunctive
normal form then it is a union of conjunctive queries (UCQ).

Let Q = ∃x.ϕ(x) be a PQ over K and let I be an interpretation. For a substitution
σ, let Qσ be the Boolean expression obtained from ϕ by replacing each atom α with �
if I, σ |= α, and with ⊥ otherwise. We call σ a match for I and Q, denoted I, σ |= Q,
if Qσ evaluates to �. I is a model of Q, written I |= Q, if I, σ |= Q for some σ.

We say that K entails Q, denoted K |= Q, if I |= Q for each model I of K . The
query entailment problem is to decide, given K and Q, whether K |= Q.

Note that a PQ can be rewritten into an equivalent, possibly exponentially larger, UCQ.
The UCQ (and thus PQ) entailment problem and CARIN entailment problem are

closely related. In fact, we can reduce the former to the latter as follows:

Proposition 1. Let K be a SHOIQ knowledge base and let Q = ∃x.ϕ1(x1) ∨ . . . ∨
ϕn(xn) be a UCQ over K . Then K |= Q iff 〈K,P〉 |= q, where q ∈ P is fresh, P is
the DATALOG program containing the rules q :−ϕ′i(xi) for each 1 ≤ i ≤ n, and each
ϕ′i(xi) is obtained from ϕi(xi) by replacing each connective ∧ by a comma.

4 We consider Boolean queries, to which non-Boolean ones can be reduced as usual, and disre-
gard the difference between the equivalent query entailment and query answering problems.
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We show next that the converse also holds, i.e., the CARIN-SHOIQ entailment prob-
lem can be reduced to query entailment over the DL component. As a consequence,
whenever we have a procedure for deciding query entailment, we obtain a sound and
complete algorithm for reasoning in non-recursive CARIN.

Definition 10 (Rule unfolding and program depth). Given two DATALOG rules:

r1 = q1(x1) :− p1(y1), . . . , pn(yn), and r2 = q2(x2) :− p′1(y′1), . . . , p′m(y′m),

where q2 = pi for some 1 ≤ i ≤ n, let θ be the most general unifier of x2 and yi. Then
the following rule r′ is an unfolding of r2 in r1:

q1(θx1):− p1(θy1), . . ., pi−1(θyi−1),p′1(θy′1), . . ., p′m(θy′m),pi+1(θyi+1), . . .pn(θyn).

The width of a rule r, denoted width(r), is the number of atoms in its body. The depth of
a non-recursive DATALOG programP , written depth(P), is w + 1, where w is the width
of the longest rule that can be obtained from some rule in P by repeatedly unfolding in
it other rules of P , until no more unfoldings can be applied. If P = ∅, width(r) = 1.

Note that depth(P) is finite and can be effectively computed, as P is non-recursive.

Definition 11 (Unfolding). The unfolding of a non-recursive DATALOG program P for
a ground rule atom p(a) is the program Pp(a) obtained as follows:

(1) Let P1 denote the set of rules in P where the head is of the form p(x) and there
is a unifier of of a and x. P2 is the set of rules p(θx) :− q1(θy1), . . . , qn(θyn) where
p(x) :− q1(y1), . . . , qn(yn) ∈ P1 and θ is the most general unifier of a and x.
(2) For a rule r, let rP denote the set of unfoldings in r of a rule from P (note that it may
be empty). Apply exhaustively the following rule: if r∈P2 and the body of r contains a
rule atom α such that α /∈P , replace r by rP in P2. The resulting program is Pp(a).

Every model of P is also a model of Pp(a). Intuitively, Pp(a) captures the part of P that
is relevant for the entailment of p(a). Each rule in Pp(a) has p(a) as head, and its body
contains only DL atoms and ground facts from P , which are true in every model of P .
Due to this restricted form, Pp(a) can easily be transformed into an equivalent UCQ.

Definition 12 (Query for a ground atom). The query for a ground atom α w.r.t. a non-
recursive DATALOG program P , denoted UP,α, is the UCQ defined as follows:

- If α is a DL atom, then UP,α = α.
- Otherwise UP,α = ∃x.Q1∨ . . .∨Qm, where r1. . .rm are the rules of Pα, each Qiis the
conjunction of the DL atoms in the body of ri, and x contains the variables of each Qi.

Note that if a rule atom α occurs as a fact in P , it also occurs as a fact in Pα, and UP,α

is trivially true (since it has an empty disjunct which is always true). If Pα = ∅ then
UP,α is always false; this is the case, e.g., if α does not unify with the head of any rule.

Proposition 2. Let K = 〈K,P〉 be a non-recursive CARIN-SHOIQ knowledge base
and let α be a ground atom. Then K |= α iff K |= UP,α.
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3.2 A Tableaux Algorithm for Query Entailment

We have shown that the non-recursive CARIN-SHOIQ entailment problem can be
reduced to the entailment of a PQ (in fact, a UCQ suffices). In this section, we describe
the algorithm given in [17] to solve the latter for the SH family DLs. Provided that the
query contains only simple roles, it is sound and complete for SHOQ, SHIQ, and
SHOI; for SHOIQ it is sound, but termination remains open.

The algorithm is an extension of the one in [15] for the existential entailment problem,
which informally speaking, simultaneously captures UCQ entailment and CQ/UCQ con-
tainment (i.e., given a CQQ1 and a UCQQ2, decide whetherK |= Q1 impliesK |= Q2).
We present it as a query entailment algorithm: this suffices for reasoning in non-recursive
CARIN and the generalisation to containment is trivial. A first extension to CQs inSHIQ
was presented in [18]. Here we recall the extension to PQs in SHOIQ of [17], where
the reader may find detailed definitions, proofs and examples.

We build on [11] and use completion graphs, finite relational structures that rep-
resent models of a SHIQ knowledge base K . After an initial completion graph GK

for K is built, new completion graphs are generated by repeatedly applying expansion
rules. Every model of K is represented in some completion graph that results from the
expansion, thus K |= Q can be decided by considering a suitable set of such graphs.

In what follows, K=〈T ,R,A〉 denotes a SHOIQ knowledge base; the set of roles
occurring in K and their inverses is denoted RK . A denotes a concept name; D,E
denote concepts; R,R′ denote roles; and a, b denote individuals.

A completion graph G for K comprises a finite labelled directed graph whose nodes
nodes(G) are labelled by concepts and whose arcs arcs(G) are labelled by roles. The
nodes in nodes(G) are of two kinds: individual nodes and variable nodes. The label
of each individual node contains some nominal {a} indicating that the node stands for
the individual a ∈ I. A variable node contains no nominal concepts and represents one
or more unnamed individuals whose existence is implied by the knowledge base. An
additional binary relation is used to store explicit inequalities between the nodes of G.

In a completion graph G, each arc v→w is labelled with a set L(v→w) of roles
from RK and each node v is labelled with a set L(v) of ‘relevant’ concepts. The set
of all the relevant concepts is denoted by clos(K) and contains the standard concept
closure of ¬C � D for each axiom C * D in the knowledge base K (closed under
subconcepts and their negations) and some additional concepts that may be introduced
by the rules (e.g., to correctly ensure the propagation of the universal restrictions, con-
cepts of the form ∀R′.D for some ∀R.D ∈ clos(K) and R′ a transitive subroles of R
are used, so they are also included in the closure).

The usual relations between the nodes in a completion graph G are defined as in
[11,17]: if v→w ∈ arcs(G), then w is a successor of v and v a predecessor of w. The
transitive closures of successor and predecessor are ancestor and descendant respec-
tively. If R′ ∈ L(v→w) for some role R′ with R′ *∗ R, then w is an R-successor of
v. We call w an R-neighbour of v, if w is an R-successor of v, or if v is an Inv(R)-
successor of w. The distance between two nodes in G is defined in the natural way.

The initial completion graph GK for K contains a node a labelled L(a) = {{a}}∪
{¬C �D |C *D∈T }∪{¬C �D |C *D∈TA} for each individual a in K , where
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TA = {{a}*A |A(a) ∈ A}∪{{a}*∃P .{b} |P (a, b) ∈ A}∪{{a}*¬{b} | a �= b ∈
A} is a set of concept inclusion axioms representing the assertions in A.

We apply expansion rules to the initial GK and obtain new completion graphs. The
rules may introduce new variable nodes, but they are always successors of exactly one
existing node. Hence the variable nodes form a set of trees that have individual nodes
as roots. Some of these variable nodes may have an individual node as a successor, thus
a tree can have a path ending with an arc to an individual node.

Blocking conditions are given to ensure that the expansion stops after sufficiently
many steps. They are inspired by [15], but adapted to these more expressive logics, and
depend on a depth parameter n ≥ 0, generalising the non-parametrised blocking of [11].
This blocking is the crucial difference between our algorithm and [11]. According to the
blocking conditions of [11], the expansion of a completion graph G terminates when
a node v with a predecessor u is reached such that there is some ancestor u′ of u that
has in turn a successor v′ such that the pairs (u′, v′) and (u, v) have the same node-arc-
node labels, i.e., when a pair of nodes that is isomorphic to a previously existing one
appears in G. This pairwise blocking condition ensures that the expansion stops when
G already represents a model of K. If the knowledge base is satisfiable, then there is a
way to non-deterministically apply the expansion rules until this blocking occurs, and
a completion graph that represents a model of the knowledge base is obtained.

Since we want to decide query entailment, this is not enough: we need to obtain a set
of models that suffices to check query entailment. Our modified blocking ensures that a
completion graph is blocked only if it represents a set of models that are indistinguish-
able by the query. Instead of halting the expansion when a previously occurred pair
of nodes appears, we stop when a repeated instance of an n-graph occurs, where the
n-graph of a node v is a tree of variable nodes of depth at most n rooted at v, plus arcs
to the individual nodes that are direct successors of a node in this tree. We now define
formally this modified blocking. The next definition is technically quite involved. It is
taken from [17], where more explanations and some examples can be found.

Definition 13 (n-graph blocking). Given an integer n ≥ 0 and a completion graph
G, let vn(G) denote the set of variable nodes in G. The blockable n-graph of node
v ∈ vn(G) is the subgraph Gn,v of G that contains v and (i) every descendant w ∈
vn(G) of v within distance n, and (ii) every successor w′ ∈ in(G) of each such w.
If w has in Gn,v no successors from vn(G), we call w a leaf of Gn,v. Nodes v, v′ of
G are n-graph equivalent via a bijection ψ from nodes(Gn,v) to nodes(Gn,v′

) if (1)
ψ(v) = v′; (2) for every w ∈ nodes(Gn,v), L(w) = L(ψ(w)); (3) arcs(Gn,v′

) =
{ψ(w)→ψ(w′) | w→w′ ∈ arcs(Gn,v)}; and (4) for every w→w′ ∈ arcs(Gn,v)
L(w→w′) = L(ψ(w)→ψ(w′)).

Let v, v′ ∈ vn(G) be n-graph equivalent via ψ, where both v and v′ have predeces-
sors in vn(G), v′ is an ancestor of v in G, and v is not in Gn,v′

. If v′ reaches v on a
path containing only nodes in vn(G), then v′ is a n-witness of v in G via ψ. Moreover,
Gn,v′

graph-blocks Gn,v via ψ, and each w ∈ nodes(Gn,v′
) graph-blocks via ψ the

node ψ−1(w) in Gn,v.
Let ψ be a bijection between two subgraphs G′, G of G such that G′ graph-blocks

G via ψ. A node v ∈ nodes(G) is n-blocked, if v ∈ vn(G) and v is either directly or
indirectly n-blocked; v is indirectly n-blocked, if one of its ancestors is n-blocked; v
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is directly n-blocked iff none of its ancestors is n-blocked and v is a leaf of G; in this
case we say that v is (directly) n-blocked by ψ(v). An R-neighbour w of a node v in G
is n-safe if v ∈ vn(G) or if w is not n-blocked.

Note that v is m-blocked for each m≤n if it is n-blocked. When n ≥ 1, then n-
blocking implies pairwise blocking.

The expansion rules are analogous to the ones in [11], where ‘blocked’ is replaced
by ‘n-blocked’ and‘safe’ is replaced by ‘n-safe’. Due to space restrictions, we can not
present the expansion rules here, but they can be found in [17].

A clash in a completion graph G is an explicit contradiction (e.g.,{A,¬A} ⊆ L(v)
for some node v), and it indicates that G represents an empty set of models and thus the
expansion can stop. If G does not contain a clash it is called clash-free. If G contains a
clash or no more rules are applicable to it, then we say that it is n-complete. We denote
by GK the set of completion graphs that can be obtained from the initial GK via the
expansion rules, and by ccfn(GK) the ones that are n-complete and clash free.

We view each graph in GK as a representation of a (possibly infinite) set of models
of K . Intuitively, the models of K are all the relational structures containing A that
satisfy the constraints given by T and R. Each completion graph G contains the initial
A and additional constraints, implicit in T and R, that were explicated by applying the
rules. When there is more than one way to apply a rule to a graph G (e.g. in the �-rule
either C1 or C2 can be added), the models represented by G are ‘partitioned’ into the
sets of models represented by each of the different graphs that can be obtained.5

Importantly, every model of K is represented by some G in GK . Thus, the union of
all the models of the graphs in ccfn(GK) coincides with all the models of K , indepen-
dently of the value of n. Therefore, in order to decide query entailment, we can choose
an arbitrary n ≥ 0 and check all the models of all the completion graphs in ccfn(GK).
This is still not enough to yield a decision procedure: although the set ccfn(GK) is
finite, we do not have an algorithm for deciding entailment of query Q in all (possibly
infinitely many) models of a completion graph G. However, if a suitable n is chosen,
the latter can be effectively decided by finding a syntactic mapping of the query into G.

Definition 14 (Query mapping). Let Q = ∃x.ϕ(x) be a PQ and let G be a completion
graph. Let μ : VI(Q) → nodes(G) be a total function such that {a} ∈ L(μ(a)) for
each individual a in VI(Q). We write C(x) ↪→μ G if C ∈ L(μ(x)), and S(x, x′) ↪→μ G
if μ(x′) is an S-neighbour of μ(x). Let γ be the Boolean expression obtained from ϕ(x)
by replacing each atom α in ϕ with �, if α ↪→μ G, and with ⊥ otherwise. We say that μ
is a mapping for Q into G, denoted Q ↪→μ G, if γ evaluates to �. Q can be mapped into
G, denoted Q ↪→G, if there is a mapping μ for Q into G.

It is not hard to see that if Q ↪→G, then there is a mapping for Q in every model rep-
resented by G. The converse is slightly more tricky and only holds if Q contains only
simple roles and if a suitable value for the blocking parameter n is chosen. Very roughly,
n-blocking ensures that all paths of length ≤ n that occur in the models of K are already
found in some G ∈ ccfn(GK). Since the query contains only simple roles, matches for

5 This view slightly differs from the more common one (e.g., [11]) in which a completion graph
is a representation of one single model (the one obtained from G by standard unravelling).
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Q in a model do not require paths larger than the number nr(Q) of role atoms in the
largest disjunct when Q is transformed into a UCQ (which is in turn bounded by the to-
tal role atoms in Q). As a consequence, Q can not distinguish models that are equivalent
up to nr(Q)-blocking. The following theorem is shown in [17]:

Theorem 1. Let Q be a positive query where only simple roles occur, let K be a
SHOIQ KB, and let n ≥ nr(Q). Then K |= Q iff Q ↪→G for every G ∈ ccfn(GK).

The theorem suggests to verify PQ entailment as follows: (i) obtain all the completion
graphs in ccfnr(Q)(GK), and (ii) check each of them for query mappability. This yields
a decision procedure provided that both steps can be effectively executed. We show
below that this is the case if the KB is in any of SHIQ, SHOQ and SHOI .

Due to Proposition 2, we can use the same decision procedure for the CARIN-L
entailment problem. For any atom α, the number of atoms in each disjunct in UP,α is
bounded by depth(P). Trivially, if only simple roles occur in P , the same holds for
UP,α. Therefore, from Proposition 2 and Theorem 1, we easily obtain:

Corollary 1. Let α be a ground atom, let K= 〈K,P〉 be a non-recursive CARIN-
SHOIQ knowledge base where only simple roles occur in P , and let n ≥ depth(P).
Then K |= α iff UP,α ↪→G for every G ∈ ccfn(GK).

Note that the outlined decision procedure requires that, for each given input the query
α, UP,α is built by unfolding P . If several atoms are to be evaluated, a more efficient
alternative can be to obtain the completion graphs in ccfn(GK) and then evaluate all the
rules of the program over each graph, in a bottom-up way. Roughly, for a completion
graph G and a program P , we can obtain the smallest set S(G,P) of atoms that contains
all the DL ground facts entailed by G, and that contains the head of a rule r whenever
there is a match of the body atoms to the atoms in the set S(G,P) (under suitable
substitutions). It is not hard to see that, for every atom α, α ∈ S(G,P) iff K |= Uα,P .6

4 Complexity of Reasoning in Hybrid KBs

We have shown that we can effectively solve the non-recursive-CARIN and the PQ
entailment problem whenever we have an effective procedure or obtaining the graphs
in ccfn(GK) and deciding query mappability for each of them. The latter is trivially
decidable if each G and the set ccfn(GK) are finite (e.g., by traversing, for each G, the
finitely many possible mappings from the query variables to the nodes of G).

As for the first part, it was shown in [17] that the expansion of an initial GK into
the set ccfn(GK) terminates if there is no interaction between the number restrictions,
inverses and nominals. Roughly, whenever variable nodes can cause a number restric-
tion to be violated at an individual node a, the so-called o?-rule is applied to generate
new individual neighbours for a. This rule is never applicable for SHOQ, SHIQ, and
SHOI KBs, allowing us to prove termination. For SHOIQ, however, due to the mu-
tual dependency between the depth of the forest and the number of individual nodes
generated by the o?-rule that results from our modified blocking, we cannot ensure that

6 This procedure has the same worst-case complexity as the one outlined above.
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it terminates (although we believe that, using the prioritised strategy for rule application
of [11], it will do so in many cases).

The following bounds for the modified tableaux algorithm were shown in [17], while
in the CARIN-entailment setting they are analysed in more detail in [16]. Given a KB
K=〈T ,R,A〉 and PQ Q, ||K,Q|| denotes the combined size of the strings encoding
the K and Q (assuming unary encoding of numbers in the number restrictions), and |A|
the number of assertions in A. Similarly, ||P|| denotes the size the string encoding a
given DATALOG program P .

Proposition 3. The expansion of GK into some G ∈ ccfn(GK), n ≥ 0, terminates in
time triple exponential in ||K,Q|| if n is polynomial in ||K,Q||. If n is a constant and
Q and all of K except A are fixed, then it terminates in time polynomial in |A|.

The same bounds apply to the number of nodes in each G ∈ ccfn(GK). Checking
whether Q ↪→G can be easily done in time single exponential in the size of Q and
polynomial in |nodes(G)|; if Q is fixed, Q ↪→G can be tested in time polynomial in the
size of G (as there are only polynomially many candidate assignments).

Theorem 2. The PQ entailment problem is decidable if the input KB is in any of
SHIQ, SHOQ and SHOI and only simple roles occur in the query. Furthermore,
it can be refuted non-deterministically in time polynomial in the size of the ABox.

A matching lower bound holds already for instance checking in the very weak AL [1].

Theorem 3. For every DL extendingAL and contained in SHIQ, SHOQ, or SHOI ,
deciding the entailment of a PQ in which only simple roles occur has CONP-complete
data complexity.

For a non-recursive DATALOG program P , depth(P) is finite and effectively com-
putable, and nr(Uα,P) ≤ depth(P). Although depth(P) is single exponential in ||P||,
it is constant if P is fixed. Hence we obtain:

Theorem 4. The non-recursive CARIN-L entailment problem is decidable if L is any of
SHIQ, SHOQ and SHOI and only simple roles occur in the rule component of the
KB. Furthermore, it has CONP-complete data complexity if L is a DL extending AL.

This result provides an exact characterisation of the data complexity of the non-recursive
CARIN-L entailment problem for a wide range of description logics. Unfortunately, our
work does not provide optimal upper bounds with respect to the combined complexity.
In fact, the tableaux algorithm from [11] on which our work is based terminates in non-
deterministic double exponential time in the worst case, even if the input is a SHIQ,
SHOQ or SHOI knowledge base whose satisfiability problem is known to be EXP-
TIME-complete [21,7,9]. This suboptimality carries on to our results. Additionally, our
reduction from the CARIN-entailment problem to UCQ entailment causes an exponen-
tial blow-up whose inevitability has not been explored.

The DL+log Family. In [19], Rosati introduced the DL+log family of formalisms
coupling arbitrary DLs with DATALOG rules. It allows for recursive programs and, in
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order to preserve decidability, imposes some weak safety conditions on the rules which
are a relaxed version of CARIN’s safety.

An L+log knowledge base is composed of a knowledge base in the DL L and a set
of weak-safe DATALOG rules (possibly with disjunction and negation as failure). Its
decidability depends on the one of query containment in L: as shown in [19] (Theorem
11), satisfiability in L+log is decidable iff CQ/UCQ containment is decidable in L.7

From well known results that relate query containment and query answering, it follows
that our method can be exploited for deciding this problem.

Theorem 5. Satisfiability of an L+log knowledge base is decidable if L is SHOQ,
SHIQ or SHOI and the DATALOG component contains only simple roles.

Furthermore, it follows from [19] that whenever the data complexity of query entail-
ment is strictly lower than that of reasoning in the rule component, the latter carries on
to the overall data complexity of reasoning. As a consequence, it can also be concluded
from our results that reasoning in the above setting has Σp

2 -complete data complexity
when the DATALOG component is a disjunctive program with negation.

Related Complexity Results. Since this work started, many query answering algo-
rithms have been proposed and new complexity bounds have been found. Due to
Proposition 2 (which is independent of the particular DL in the DL component), the new
decidability results for answering UCQs in DLs imply new decidability boundaries for
non-recursive CARIN, similarly as the decidability of CQ/UCQ containment carries on
to the DL+log setting. Furthermore, the data complexity of UCQ answering can be
directly transferred to non-recursive CARIN.

From this and recent results, the decidability statements in Theorems 4 and 5 holds
also in the presence of transitive roles in the query if L is SHOQ [6], SHIQ [5],
or ALCQIbreg, another expressive DL [2]. Further interesting results can be obtained
from the latter, which is to our knowledge the most general algorithm for query an-
swering in DLs without nominals. In particular, the DL known as SRIQ [10] (closely
related to the DL SROIQ underlying OWL 2) can be reduced to (a minor extension of)
ALCQIbreg. Exploiting the regular expressions in the query atoms in [2], one can use
that algorithm to decide PQ entailment and containment in SRIQ (note that contain-
ment of queries with regular expressions does not follow from [2] in general, but it does
if the query on the left is a plain CQ); hence both CARIN and DL+log are decidable for
SRIQ. We also note that the algorithm in [2] provides an optimal 2EXPTIME upper
bound for satisfiability of SRIQ knowledge bases; this was reported open in [12].

As for data complexity, CONP completeness for CARIN entailment, DL+log sat-
isfiability and UCQ answering (with arbitrary query/rule component) for SHIQ fol-
lows from [5]. Most recently, the PTIME-complete data complexity of PQ answering in
Horn-SHIQ (a disjunction-free fragment of SHIQ) was established [4]; this carries
on to both non-recursive CARIN entailment and DL+log satisfiability. To our knowl-
edge, no other tight bounds for the SH family have been established. CARIN entailment
and DL+log satisfiability (with a positive DATALOG component) are PTIME-complete
for EL and some of its extensions contained in EL++ [14] and ELIf [13], see also [20].

7 In general, ‘satisfiability’ means under both FOL and NM semantics.
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Finally, due to the results in [1], the non-recursive CARIN entailment problem is in
LOGSPACE for the DLs of the DL-Lite family; their PTIME-completeness had already
been established for DL+log [19].

5 Conclusion

In this paper, we have presented an algorithm for the CARIN entailment problem in
knowledge bases that combine a SHIQ, SHOQ or SHOI KB with a non-recursive
DATALOG program containing only simple roles. It relies on a tableaux-based algorithm
for positive query entailment which builds on the techniques from [11] and generalises
the existential entailment algorithm given in [15] for a DL which is far less expressive
than SHIQ, SHOQ and SHOI .

For the three mentioned sublogics of SHOIQ, our algorithm is worst-case opti-
mal in data complexity, and allows us to characterise the data complexity of reasoning
with non-recursive DATALOG programs for a wide range of DLs, including very ex-
pressive ones. Namely, for all DLs of the SH family except SHOIQ, the problem has
CONP-complete data complexity, and is thus not harder than instance checking in AL.

Combining the aforementioned DLs with recursive DATALOG results in an unde-
cidable formalism. However, our results can be combined with those of Rosati [19] to
show decidability if the rules are weakly safe and the query contains no transitive roles.
Further decidability and data complexity results for reasoning in hybrid languages can
be obtained from the reduction of non-recursive CARIN to UCQ entailment presented
here and from the results in [19], some of them were discussed in this work.
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Abstract. The paper offers a proof of the compactness theorem for
the ∗R-valued polynomial weight formulas. We also provide a complete
axiomatization for the polynomial weight formulas.

1 Introduction

One of the main proof-theoretical issues when someone analyzes a logic concerns
providing an axiom system and proving its completeness. There are two kinds
of completeness theorems:

– The simple completeness theorem (’every consistent formula is satisfiable’)
and

– The extended completeness theorem (’every consistent set of formulas is
satisfiable’).

In the presence of the compactness theorem (every finitely satisfiable set of
formulas is satisfiable), extended completeness is a consequence of the simple
completeness.

Probabilistic logics formalize uncertain reasoning. The standard approach
[2,4,7,8,9,10,11,12,13,14,16,18] adds probability operators to classical logic. The
paper [2] was the first one containing some recursive axiom systems for prob-
abilistic logics and the corresponding simple completeness proofs. For so called
linear weight formulas a simple complete axiomatization was given, together with
a companion NP complete decision procedure. The case of polynomial weight
formulas was also discussed, but without any axiomatization. However, some
papers [11,18] that followed [2] pointed out the non-compactness phenomena of
the proposed real-valued probabilistic semantics. It implies a big logical problem:
there are consistent sets that are not satisfiable, where ’consistent set’ means that
contradiction is not derivable from the set using the assumed axiom system. For
example, using the notation that will be introduced below (where w(p) can be
read as ’probability of the primitive proposition p’), every finite subset of the
set T = {¬w(p) = 0}∪{w(p) < 1/n : n is a positive integer} is satisfiable, while
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the set itself is not. However, T is consistent with respect to the axiom systems
from [2].

There are several possible ways to overcome this problem. First, one can
consider probabilistic functions with a fixed finite range [11,14,18]. In that case
the set T is not even finitely satisfiable. From the syntactical point of view, the
following axiom: ∨

r∈I

w(α) = r,

where I = {0, 1
n , 2

n , . . . , n−1
n , 1} is a fixed set, guarantees the finiteness of the

range of probabilistic functions. The next possibility is to allow non-recursive
axiomatization with infinitary inference rules [10,11,16]. An example is:

From the set of premises

{ϕ → w(α) � r − 1
k

| k ∈ N ∧ k � 1
r
}

infer ϕ → w(α) � r.

The rule intuitively says that if the probability is arbitrarily close to r, then it is
at least r. It has two purposes: to eliminate the possibility of non-archimedean
probability functions, and to allow construction of the canonical model. Note
that, in this approach, the above set T becomes inconsistent.

The aim of this paper is to analyze another possibility: how to restore compact-
ness into probabilistic logics by using non-archimedean probabilistic functions.
In other words, we will consider ∗R-valued probabilities. We will show that in
that case compactness holds and discuss the corresponding consequences. We
would like to note that ∗R-valued probabilities were also used in [6] to model
default reasoning.

In [16], the logic with nonstandard (hyperreal) probabilistic semantics was
discussed, in order to model default reasoning by means of conditional proba-
bilities. The strong completeness of the introduced formalism was achieved by
means of another kind of infinitary inference rule:

From the set of premises

{ϕ → P�=sα | s ∈ [0, 1]F}

infer ¬φ.

Here [0, 1]F is a unit interval in some countable non-Archimedean field F (for
instance, F can be a Hardy field Q(ε), where ε is a proper infinitesimal), and
P�=sα reads “the probability of α is not equal to s”. Notice that the above rule
provides that the range of any measure appearing in arbitrary measurable model
(for definition see Section 3) is a subset of [0, 1]F.

It is interesting to point out that certain fuzzy logics, such as �LΠ1
2 , can be com-

bined with probabilistic modalities in order to obtain a logic for reasoning about
conditional probabilities. Namely, both �Lukasiewicz and product implications
behave like standard ordering of the reals (more precisely, product implication
behaves like a truncated division), product conjunction behaves like the usual
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multiplication of the reals, �Lukasiewicz disjunction behaves like a truncated sum,
and all rational numbers from the real unit interval [0, 1] are definable in �LΠ1

2 .
In particular, all polynomial weight inequalities with coefficients from [0, 1] ∩ Q
can be formally expressed in such logic, which makes it slightly less expressive
than the logic of polynomial weight formulas (semantically introduced in [2]). A
finitary strong completeness theorem of mixed probability–�LΠ1

2 logic was proved
in [7], while the strong completeness theorem with respect to non-Archimedean
measures was proved in [3].

The rest of the paper is organized as follows. In section 2 and 3 we introduce
syntax and semantics of logics with linear and polynomial weight formulas. In
the section 4 we prove the compactness theorem for the ∗R-valued polynomial
weight formulas. Theorem 5, also proved in the section 4, is somewhat stronger
form of the compactness theorem for the ∗R-valued linear weight formulas. In the
section 5 we discuss the consequences of the previously proved compactness, and
provide a simply-complete axiomatization for the polynomial weight formulas.
Concluding remarks are in the section 6.

2 Syntax

Let P = {pn | n < ω} be the set of propositional letters. By ForP we will denote
the set of all Boolean combinations of propositional letters, and we will refer to
it as the set of propositional formulas. The variables for propositional letters are
α, β and γ, indexed if necessary.

The set LWT of linear weight terms is recursively defined as follows:

1. LWT0 = {0, 1} ∪ {w(α) | α ∈ ForP}
2. LWTn+1 = LWTn ∪ {(f + g) | f, g ∈ LWTn} ∪ {(−f) | f ∈ LWTn}
3. LWT =

⋃
n<ω

LWTn.

To simplify notation, we will use the usual abbreviations. For instance,

w(α) − 2w(β) + 3

is the abbreviated version of the linear weight term

((w(α) + ((−w(β)) + (−w(β)))) + ((1 + 1) + 1)).

Linear weight terms will be denoted by f , g and h, indexed if necessary.
The set PWT of polynomial weight terms is recursively defined as follows:

1. PWT0 = {0, 1} ∪ {w(α) | α ∈ ForP}
2. PWTn+1 = PWTn ∪ {(f + g), (f · g), (−f) | f, g ∈ PWTn}
3. PWT =

⋃
n<ω

PWTn.

Clearly, LWT ⊆ PWT . Again, we will use the usual abbreviations. For example,

2w(α)2w(β) − 3

is the abbreviated version of
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((((w(α) · w(α)) · w(β)) + ((w(α) · w(α)) · w(β))) + (((−1) + (−1)) + (−1))).

The variables for polynomial weight terms are f, g and h, indexed if necessary.

Definition 1. A basic linear weight formula is any formula of the form

f � 0,

where f ∈ LWT . The set LWF of linear weight formulas is the set of all Boolean
combinations of the basic linear weight formulas. �

Definition 2. A basic polynomial weight formula is any formula of the form

f � 0,

where f ∈ PWT . The set PWF of polynomial weight formulas is the set of all
Boolean combinations of the basic polynomial weight formulas. �

Polynomial weight formulas will be denoted by φ, ψ and θ, indexed if necessary.
As above, we will use the usual abbreviations in order to simplify notation. Some
examples are listed below.

– f � 1
3 is 3f− 1 � 0.

– f � 0 is −f � 0.
– f > 0 is ¬(f � 0).
– f < 0 is ¬(f � 0).
– f = 0 is f � 0 ∧ f � 0.
– f �= 0 is ¬(f = 0).
– f � g is f − g � 0. Similarly are defined f � g, f > g, f < g, f = g and

f �= g.

3 Semantics

By ∗R we will denote some ω1-saturated elementary extension of the ordered
field of the reals. Let ∗[0, 1] be the unit interval in ∗R (see [5,17]). A model is
any quadruple M = 〈S,H, μ, v〉 with the following properties:

1. S is a nonempty set.
2. H ⊆ P (W ) is an algebra of sets on S.
3. μ : ForP −→ ∗[0, 1] is a finitely additive probability measure.
4. v : ForP ×W −→ {0, 1} is a truth evaluation.

If M is any model and α ∈ ForP , then let

[α]M = {s ∈ S | v(α, s) = 1}.

We will omit M from the subscript whenever the context is clear. A model M
is measurable if [α] ∈ H for all α.



342 A. Perović et al.

Definition 3. Let M be any measurable model and let φ ∈ PWF . We define
the satisfiability relation M |= φ recursively on the complexity of φ as follows:

1. M |= f � 0 if fM � 0, where:
(a) 0M = 0, 1M = 1
(b) w(α)M = μ([α])
(c) (f + g)M = fM + gM

(d) (f · g)M = fM · gM .
(e) (−f)M = −fM .

2. M |= ψ ∧ θ if M |= ψ and M |= θ.
3. M |= ¬ψ if M �|= ψ. �

The notions of satisfiability and validity are introduced in the usual way.

4 Compactness

In this section we will prove the compactness theorem for the polynomial weight
formulas, and also prove that each finitely satisfiable theory in LWF has a model
whose measure is a hyper-time valued. We remind the reader that a hyper-time
interval is any set of the form {0, 1

K , 2
K , . . . , K−1

K , 1}, where K is an infinite
natural number.

Theorem 4. Suppose that T ⊆ PWF is finitely-satisfiable. Then, T is
satisfiable.

Proof. Let LOF = {+, ·,�, 0, 1} be the language of the ordered fields and let

L = LOF ∪ {w(α) | α ∈ ForP},

where each w(α) is a new symbol for a constant. Clearly, T may be seen as a set
of Σ0 L-sentences, i.e., each sentence in T is a quantifier-free formula without
variables. We define an L-theory Γ as a union of the following L-theories:

1. RCF (the theory of real closed fields)
2. T
3. {w(α) = 1 | α is a tautology}
4. {w(¬α) = 1 − w(α) | α ∈ ForP}
5. {w(α) = w(β) | α ↔ β is a tautology}
6. {w(α ∨ β) = w(α) + w(β) − w(α ∧ β) | α, β ∈ ForP}.

Due to the compactness theorem for the first order logic, to show that Γ is
consistent we only need to show that Γ is finitely satisfiable.

Let {φ1, . . . , φn} ⊆ T . Since T is finitely satisfiable (as a PWF -theory), there
is a model M which satisfies φ1, . . . , φn. Now we can define L-model M as
follows:
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– The universe of M is ∗R.
– LOF is interpreted in M in the same way as in ∗R.
– Each w(α) is interpreted in M as μ([α]).

Clearly, M |= (Γ \ T ) ∪ {φ1, . . . , φn}, so Γ is finitely satisfiable.
By the downward Löwenheim-Skolem-Tarski theorem, Γ has a countable

model N . Since ∗R is ω1-saturated, there is an elementary embedding (with
respect to the LOF ) F : N −→ ∗R. Finally, we can define the model of T in the
following way:

– S is the set of all classical propositional models
– v(α, s) = 1 if s(α) = 1
– H = {[α] | α ∈ ForP}
– μ([α]) = F (w(α)N ). �

Theorem 5. Suppose that T ⊆ LWF is finitely satisfiable. Than, T has a model
M = 〈S,H, μ, v〉 such that rng(μ) ⊆ {0, 1

K , 2
K , . . . , K−1

K , 1}, where K = K ′! and
K ′ ∈ ∗N \ N.

Proof. First of all, we will need some additional notation. Given linear weight
formula φ, by ‖φ‖ we will denote the maximal m < ω such that pm appears in
φ. The set of all finite sequences (functions of the form a : n −→ 2) of 0’s and
1’s will be denoted by <ω2. Here 0 = ∅, 1 = {0}, 2 = {0, 1} etc. If |a| = n > 0,
then pa is the formula

pa0
0 ∧ · · · ∧ p

an−1
n−1 ,

where p0
i is ¬pi and p1

i is pi. Let T = {φn | n < ω}. Without any loss of generality,
we may assume that φn+1 → φn is a valid formula for all n (instead of T , we can
consider the theory {φ0, φ0∧φ1, φ0∧φ1∧φ2, . . .}). Furthermore, we may assume
that each w(α) that appears in φn has a form w(pa), where a : ‖φn‖ −→ 2.

Now we are ready to proceed with the proof. For each n < ω, let An be the
set of all x : �K2 −→ {0, 1

K , 2
K , . . . , K−1

K , 1}, where �K2 denotes the set of all
binary sequences of length at most K, with the following properties:

1. For each a : ‖φn‖ −→ 2, formula φn (in the sense of the language L intro-
duced in the proof of the theorem 4) is satisfied in the valuation w(pa) &→
x(a).

2.
∑

a∈‖φn‖2

x(a) = 1.

3. For each a ∈ <‖φn‖2,

x(a) =
∑

b∈‖φn‖−|a|2

x(a�b),

where a�b is the concatenation of the sequences a and b.

Notice that if x ∈ An, then each measurable model 〈S,H, μ, v〉 such that

μ[pa] = x(a), a ∈ <‖φn‖2,

is a model of φ0 ∧ · · · ∧ φn (by assumption, φn is equivalent with φ0 ∧ · · · ∧ φn).
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It is easy to see that each An is a nonempty internal set (in the sense of
the non-standard analysis). Indeed, the fact that An is a internal set immedi-
ately follows from the definition of An. To see that An is nonempty, we will
use the finite satisfiability of T : let 〈S,H, μ, v〉 |= φn. Define x : �‖φn‖2 −→
{0, 1

K , 2
K , . . . , K−1

K } by

x(a) = μ[pa], a ∈ �‖φn‖2.

The first item of the definition of An is satisfied by x since 〈S,H, μ, v〉 is a model
of φn. The remaining two items follow from the fact that μ is a finitely additive
probability measure.

Since An, n < ω is a descending sequence of nonempty internal sets, by the
ω1 saturation principle,

⋂
n<ω

An �= ∅. Let x ∈
⋂

n<ω
An. Then we can define the

model M = 〈S,H, μ, v〉 of T in the following way:

– S is the set of all classical truth evaluations.
– v(α, s) = 1 if s(α) = 1.
– H = {[α] | α ∈ ForP}.
– For each α ∈ ForP let I(α) be the unique subset of ‖α‖2 such that the

formula
α ↔

∨
a∈I(α)

pa

is a tautology. Then, let

μ([α]) =
∑

a∈I(α)

x(a).

By the choice of x, the above construction is correct. �

5 Axiomatization

Since we proved the compactness theorem for the polynomial weight formulas,
in order to provide the strongly complete axiomatization of LWF and PWF
logics, we only need to provide a simply complete axiomatization. In the case
of linear weight formulas, we can use the well known axiomatization of Fagin,
Halpern and Megiddo given in [2].

The case of polynomial weight formulas is much more difficult. On the one
hand, the PWF logic is decidable, so we can trivially axiomatize it by the single
axiom schemata:

– φ, whenever φ is a valid formula.

In this trivial case we do not need any inference rule and the simple completeness
immediately holds. The key issue here is how to obtain a non-trivial finitary
axiomatization which is simply complete. To provide such an axiomatization,



How to Restore Compactness into Probabilistic Logics? 345

we will need to investigate the structure of valid formulas with respect to their
complexity.

The next lemma is an immediate consequence of the definition of the satisfi-
ability relation |=.

Lemma 6. Suppose that T is an arbitrary set of polynomial weight formulas.
Then:

1. (L→) T |= φ → ψ iff T ∪ {φ} |= ψ.
2. (L¬¬) T |= ¬¬φ iff T |= φ.
3. (L¬ →) T |= ¬(φ → ψ) iff T |= φ and T |= ¬ψ.
4. (R¬¬) T ∪ {¬¬φ} |= ψ iff T ∪ {φ} |= ψ.
5. (R¬ →) T ∪ {¬(φ → ψ)} |= θ iff T ∪ {φ,¬ψ} |= θ.
6. (R→) T ∪ {φ → ψ} |= θ iff T ∪ {¬θ} |= φ and T ∪ {¬θ} |= ¬ψ.

We can use L and R “rules” of the previous lemma to reduce the complexity of
sub-formulas of the given probabilistic formula φ, and consequently, equivalently
reduce |= φ to the finite conjunction of sequents of the form

{±(f1 � 0), · · · ,±(fn � 0)} |= ±(g � 0).

To make the reduction strategy clearer, we give the following two examples.

Example 7.

|= (f � 0 → g � 0) → h � 0
iff {f � 0 → g � 0} |= h � 0 (L→) of Lemma 6
iff {h < 0} |= f � 0 and {h < 0} |= g < 0 (R→) of Lemma 6

Example 8.

|= (¬ψ → ¬φ) → (φ → ψ)
iff {¬ψ → ¬φ} |= φ → ψ (L→) of Lemma 6
iff {¬ψ → ¬φ, φ} |= ψ (L→) of Lemma 6
iff {¬ψ, φ} |= ¬ψ and {¬ψ, φ} |= ¬¬φ (R→) of Lemma 6
iff {¬ψ, φ} |= ¬ψ and {¬ψ, φ} |= φ (L¬) of Lemma 6

Now we are ready to define the axiomatization AxPWF of polynomial weight
formulas.

5.1 Propositional Axioms

This group of axioms contains two axiom schemata:

A1. All instances of tautologies.
A2. All valid formulas of the form

±(f1 � 0) ∧ · · · ∧ ±(fn � 0) → ±(g � 0),

where f1, . . . , fn, g are in the so called normal form∑
i

ki

∏
a∈m2

(w(pa))lai .
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5.2 Probabilistic Axioms

This group of axioms contain five axiom schemata:

A3 0 � w(α) � 1.
A4 w(α) = 1, whenever α is a tautology.
A5 w(¬α) = 1 − w(α).
A6 w(α) = w(β), whenever α ↔ β is a tautology.
A7 w(α ∨ β) = w(α) + w(β) − w(α ∧ β).

5.3 Algebraic Axioms

This group of axioms contains the following axiom schemata:

A8 f + g = g + f.
A9 (f + g) + h = f + (g + h).

A10 f + 0 = f.
A11 f− f = 0.
A12 f · g = g · f.
A13 (f · g) · h = f · (g · h).
A14 f · 1 = f.
A15 f · (g + h) = (f · g) + (f · h).
A16 f � g ∨ g � f.
A17 (f � g ∧ g � h) → f � h.
A18 f � g → f + h � g + h.
A19 (f � g ∧ h > 0) → f · h � g · h.

5.4 Inference Rules

The only inference rule is modus ponens:

MP From φ and φ → ψ derive ψ.

The notions of a proof, consistency, theorem etc are introduced in the usual
way.

5.5 Completeness Theorem

It is easy to see that the introduced axiom system AxPWF is sound with respect
to the class of measurable models. An immediate consequence of the A1 and MP
is the following lemma:

Lemma 9. Suppose that T is an arbitrary set of polynomial weight formulas.
Then:

1. (L→) T ) φ → ψ iff T ∪ {φ} ) ψ.
2. (L¬¬) T ) ¬¬φ iff T ) φ.
3. (L¬ →) T ) ¬(φ → ψ) iff T ) φ and T ) ¬ψ.
4. (R¬¬) T ∪ {¬¬φ} ) ψ iff T ∪ {φ} ) ψ.
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5. (R¬ →) T ∪ {¬(φ → ψ)} ) θ iff T ∪ {φ,¬ψ} ) θ.
6. (R→) T ∪ {φ → ψ} ) θ iff T ∪ {¬θ} ) φ and T ∪ {¬θ} ) ¬ψ.

Theorem 10. Every consistent set T ⊆ PWF is satisfiable.

Proof. Since the compactness theorem holds for the ∗R-valued polynomial weight
formulas, it is sufficient to prove the simple completeness:

) φ iff |= φ.

It is easy to prove that each theorem is a valid formula, so let us assume that
φ is valid. By means of MP, A1, algebraic axioms and probabilistic axioms, we
can transform φ into the formula ψ whose only connectives are negation and
implication, and each polynomial weight term appearing in ψ is in the normal
form. Clearly, ψ is also valid. Now applying Lemma 6 and the reduction strategy
illustrated in the above examples, we obtain finitely many sequents of the form

{±(f1 � 0), · · · ,±(fn � 0)} |= ±(g � 0).

Since each of these sequents is satisfied, by A2 and Lemma 9, we may replace |=
by ) in the entire reduction of ψ. It follows that ψ is a theorem, which concludes
the proof. �

6 Conclusion

In this paper we proved compactness theorems for the logics with linear and
polynomial weight formulas, introduced in [2], where the corresponding proba-
bility functions are ∗R-valued. In this way, the axiomatization for linear weight
formulas given in [2] became complete in the extended sense. In addition, we
provided a finitary extended-complete axiomatization for the polynomial weight
formulas. As we noted above, [2] gave simple completeness for linear weight
formulas, while failed to obtain a Hilbert-style complete axiomatization of poly-
nomial weight formulas.

An obvious line of further research would be to try to apply the methodology
of restoring compactness introduced here to some other probabilistic logics, e.g.
the one introduced in [16] (logic with approximate conditional probabilities),
which are used to model default reasoning. Alternatively, we might try adding the
approximate equality ≈ to the present system AxPWF , in order to model defaults
directly. However, it turns out that only the positive fragment of such logic might
be amenable to our methodology and thus to recursive axiomatization, which
remains to be further investigated.
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Combining Modes of Reasoning: An Application

of Abstract Argumentation
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Abstract. Many reasoning problems involve subproblems that can be
solved in different ways. Therefore, hybrid reasoning architectures have
long been a research topic in AI. However, most work in this area has
either focused on particular combinations of reasoning methods or has
ignored the problem of handling alternative solutions to subproblems.
The present paper proposes an abstract framework for combining modes
of reasoning and handling alternative solutions. It is argued that current
abstract argumentation systems are either too abstract or too specific
for this purpose, so that an intermediate level of abstraction is needed.

1 Introduction

Many reasoning problems involve subproblems that can be solved in different
ways. Legal reasoning provides a good example. First there is the problem of
determining the facts. This problem can, for instance, be modelled with statis-
tical methods [1], as abduction [2], as a problem of explanatory coherence [3] or
as argumentation [4]. Then there is the problem of classifying the facts under
the conditions of legal rules. This has been modelled, for instance, as case-based
reasoning [5], as argumentation [6], and with neural nets [7]. Finally, when a
rule’s conditions have been satisfied, it must be applied. Since legal rules can
have exceptions, this is often modelled as default reasoning [8].

Hybrid reasoning architectures have therefore long been a research topic in AI.
However, most work in this area has either focused on particular combinations
of formalisms, such as different logics or logics and probability theory (e.g. [2]),
or on general methods for combining (monotonic) logics (e.g. [9]). The present
paper instead proposes an abstract framework in which any set of problem solv-
ing methods can be combined, whether logical, probabilistic, connectionist or
otherwise. Also, unlike the work on general techniques for combining logics, the
aim is not to combine different methods into a single new one but to define a
framework for defining intput-output relations between methods, while keeping
the individual methods as they are. A final distinguishing feature of the present
approach is the handling of alternative solutions to subproblems. A main mo-
tivation for this is the observation that in practical applications of KR & R
formalisms often the hardest part is the modelling of a problem. While tradi-
tionally this is regarded as a knowledge engineering problem, in certain cases it
is fruitful to explicitly model disagreements about the modelling of a problem.
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I will in particular investigate the suitability of current abstract argumenta-
tion systems. The idea is that since these systems abstract from the nature of
arguments, they could be suitable for combining different modes of reasoning.
The most abstract argumentation system is that of Dung [10], which assumes
nothing but a set of arguments with unspecified structure and an abstract rela-
tion of attack between arguments. However, this is too abstract for our purposes,
since we also need support relations between arguments, to capture dependen-
cies between subproblems. Abstract support relations have been added to [10]’s
framework by [11] but this is still insufficient, since for giving guidance on how
modes of reasoning can be combined, an account is needed of the nature of
support and attack relations between modes of reasoning.

Still less abstract are systems with abstract inference rules, such as OSCAR
[12], Abstract Argumentation Systems [13] and Carneades [14]. These systems
model reasoning as the application of inference rules defined over some logical
language. The systems are abstract in that nothing else is assumed on the nature
of inference rules except that they are either strict (beyond attack) or defeasible
(prone to attack). Support relations between arguments are captured in inference
trees as usual in logic, and conflict relations are defined with logical negation.

At first sight, it would seem that the abstraction from specific sets of inference
rules makes these systems suitable for combining modes of reasoning. However, it
is not obvious that all modes of reasoning can be fruitfully modelled in the format
of defeasible inference rules, let alone that their combination can be modelled as
the combination of such rules: inference rules relate propositions, while we need
to relate applications of possibly quite complex modes of reasoning.

Yet a strong point of rule-based argumentation systems is that they offer a
well-founded formal machinery for managing conflicts given dependencies be-
tween issues. The present paper can be seen as an attempt to retain these strong
points without having to commit to a modelling in terms of inference rules. This
will be achieved by making the formalism isomorphic to the framework of [12].
Since that framework is known to be an instance of [10]’s abstract framework,
the theory developed on abstract argumentation in the last thirteen years also
applies to the present formal framework. The new contribution is that the ele-
ments of Pollock’s framework will be given a different interpretation than in [12]:
instead of propositions connected by inference rules, we will have applications of
problem solving methods connected by output/input transformers.

Below in Section 2 the running example of this paper will be introduced, after
which in section 3 the formalism is defined and illustrated with the running
example. A discussion and concluding remarks are provided in Section 4.

2 A Running Example

Throughout this paper an imaginary legal case will be used as a running exam-
ple. A criminal court has to decide whether a suspect is guilty of murder. The
main rule of the criminal code is that someone who kills with intent is guilty
of murder. This rule has two main statutory exceptions, namely, that there was
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some ground of justification for the killing (for instance, self-defence) and that
the killer cannot be held responsible for the killing (for instance, because he was
insane). Therefore, application of the main rule can arguably best be modelled
in a logic for reasoning with default rules. Let us, since it is so well known, use
default logic as this logic. It divides input information into facts F , which are
propositional or first-order formulas, and defaults D, which are domain-specific
inference rules of the form P :Q/R, in which P , Q and R are propositional or first-
order formulas. P is the prerequisite and R the consequent of the default, while
Q is its justification. The informal meaning of a default is that R is derivable if P
is derivable and Q is consistent with what is derivable. If defaults conflict, then
the derivation process branches into alternative conclusion sets (‘extensions’).
The formal definition of extensions is rather involved but need not be explained
here since our example is quite simple and intuitive. A formula is skeptically im-
plied by a default theory if it is in all its extensions and it is credulously implied
by the theory if it is in some but not all of its extensions. Exceptions to a default
can be modelled as defaults whose consequents contradict its justification.

To apply the default theory to the issue of murder, information is needed
about whether the suspect was the killer. The reasoning about this issue will
be modelled as an application of Bayesian probability theory. The evidence is
that the DNA of the suspect matches the DNA of the killer found at the crime
scene. The conditional probability of a random match with that DNA given that
a person is not the killer is given as 1 in 2 million. What we want to compute
is the posterior conditional probability that the suspect is the killer given the
match of his DNA with that of the killer.

This is not all, since to transform a posterior probability into an element of
a default theory we need to apply proof standards. For simplicity this will be
modelled as logical reasoning with a simple consistent first-order theory, saying
that for criminal issues the proof standard is 0.99 (making precise ‘beyond rea-
sonable doubt’) while for civil issues it is 0.51 (making precise ‘on the balance
of probabilities’). In fact there is an ongoing debate on how in legal applications
of Bayesian statistics these legal proof standards should be defined [1]: such a
debate could be modelled as a problem using some argumentation method.

We are still not done. Bayesian statistics requires prior probabilities to derive
posterior probabilities from conditional ones and in our example there happens to
be disagreement between the experts on what is the correct prior probability that
the suspect is the killer. This disagreement will be modelled as an application of
the method of first-order default logic (first-order since we want to talk about
numerical values of variables). Discussions about prior probabilities are in fact
very common in legal applications of Bayesian statistics [1]. Here the example
will for reasons of space be kept very simple. The main disagreement is about
the population of the potential suspects (let us assume that each of them has
equal probability of being the murderer). One point of view is: ’the group of
potential suspects consists of all male inhabitants over 16 of town X, which is
50.000 people’, while another position is ’the group of potential suspects consists
of all male inhabitants over 16 of quarter Y of town X, which is 10.000 people’.
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With this information, it is convenient to use the odds formulation of Bayes’
theorem:

Pr(h|e)
Pr(¬h|e)

=
Pr(h)

Pr(¬h)
× Pr(e|h)

Pr(e|¬h)

Now we are interested in the prior odds that the suspect is the killer (k), in

Pr(k)
Pr(¬k)

3 The Formal Framework

As illustrated by our running example, the main idea is that an overall problem
is decomposed into several related subproblems, each solved in so-called problem
treatments with possibly different methods. The input of a problem treatment is
partly given and partly obtained from the output of one or more other problem
treatments by so-called output-input transformers. A problem decomposition
can also have conflict relations between its problem treatments, namely when
they are alternative ways to model the same ‘informal’ problem, reflected by
mutually contradictory input.

An important distinction of the framework is that between the object and
metalanguages of problem solving methods. Different subproblems may be for-
mulated in different object languages, such as propositional, first-order or modal
logical languages, the language of probability theory, and so on. Yet the formal-
ism defined below assumes that the input and output of all problems is described
in a first-order language. This is since the output/input transformers operate on
and produce first-order metalevel descriptions of the output and input of prob-
lem solving methods.

Let us now formalise these ideas.

Definition 1. A problem solving method M is a tuple (LI
M ,LO

M , RM ) where

– LI
M and LO

M , both first-order languages, are the input language and output
language of M ;

– RM is a function from the powerset of LI
M into the powerset of LO

M .

The function RM is the heart of a method M , specifying how M relates input
to output. A method is applied in a ‘problem treatment’, which applies RM to
a set of problem input statements to produce a set of problem solutions:

Definition 2. A problem treatment is a tuple 〈M, Ig, Id, S〉 where

– M is a problem solving method;
– Ig ⊆ LI

M is the given problem input;
– Id ⊆ LI

M is the derived problem input;
– Ig ∪ Id is consistent;
– S ⊆ LO

M are the problem solutions, such that S ⊆ RM (Ig ∪ Id).
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The elements of a problem treatment P will also be denoted by M(P ), Ig(P ),
Id(P ) and S(P ).

In applications of this definition the given input should include general con-
straints that ensure that the problem-specific input is of the required type.
For example, if R is the reasoning of probability theory, then the constraints
should ensure that the input is a probability distribution according to the laws
of probability theory; this ensures, for instance, that two probability statements
Pr(A) = x and Pr(A) = y (or Pr(A|B) = x and Pr(A|B) = y) are inconsistent
if x �= y. In the rest of this paper such constraints will be left implicit if there is
no danger for confusion.

Note that since the input language of a method is regarded as its metalan-
guage, consistency of a problem’s input does not imply that it specifies a con-
sistent theory. For example, the statement ‘T contains p and ¬p’ is a consistent
first-order description of an inconsistent propositional theory T .

The four problem treatments of our running example are as follows. First the
ultimate problem treatment P1 on the issue of murder is given.

– M(P1) is propositional default logic (MPropDL) with the constraint that if
ϕ ∈ F , then � : ϕ/ϕ �∈ D. It takes as input the specification of a proposi-
tional default theory Δ = (F,D).

– Ig(P1) =
k ∧ i : ¬e1 / m ∈ D
k : ¬e2 / i ∈ D
(k ∧ i ∧ j) ⊃ e1 ∈ F
(k ∧ i ∧ ¬r) ⊃ e1 ∈ F

– We are interested in solutions that are ground instances of the formula ‘m is
x-implied by Δ’, where x can take the values ‘credulously’, ‘skeptically’ or
‘not’, and Δ is the default theory specified by Ig(P1) ∪ Id(P1).

The first default says that someone who kills (k) with intent (i) is guilty of
murder (m) unless there is an exception to this statutory rule (e1). The second
default expresses the commonsense generalisation that killing is normally (¬e2)
done with intent (for simplicity, exceptions to this rule are not listed). The facts
in F contain the two exceptions to the rule on murder.

The problem treatment P2 about the likelihood that the suspect is the killer
is specified as follows.

– M(P2) is Bayesian probability theory (MBayes), taking as input probability
distributions Π and sets E of evidence.

– Ig(P2) =
E = {d}
Pr(d|k) = 1 ∈ Π
Pr(d|¬k) = 0.0000005 ∈ Π

– We are interested in solutions that are ground instances of the formula
‘Pr(k|E) ⊗ p is implied by Π ’, where ⊗ ranges over {<,≤, =,≥, >}, and
Π is the probability distribution specified by Ig(P2) ∪ Id(P2).
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Here d stands for ‘DNA of the suspect matches DNA of the killer found at the
crime scene’ and k stands for ‘The suspect is the killer’. The first conditional
probability statement in Ig(P2) expresses that the DNA of the killer will certainly
match with the DNA found at the murder scene, while the second one says that
the probability of a random match of someone’s DNA profile with any sample of
DNA (so also with the DNA found at the murder scene) is one in two million.

The third problem treatment P3 on what is the proof standard for the issue
of killing is as follows.

– M(P3) = first-order predicate logic (MFOL), relating first-order theories T
to output of the form ‘ϕ is/is not implied by T ’.

– Ig(P3) =
∀ϕ(CriminalIssue(ϕ) ⊃ Standard(ϕ) = 0.99) ∈ T
∀ϕ(CivilIssue(ϕ) ⊃ Standard(ϕ) = 0.51) ∈ T
CriminalIssue(k) ∈ T .

– We are interested in solutions that are ground instances of the formula
‘Standard(k) = x is implied by T ’, where 0 ≤ x ≤ 1, and T is the first-
order theory specified by Ig(P3) ∪ Id(P3).

The final problem treatment P4 on what is the prior probability that the suspect
is the killer is defined as follows.

– M(P4) is first-order default logic (MFolDL) with the constraint that if ϕ ∈
F , then � : ϕ/ϕ �∈ D, taking as input first-order default theories Δ and
producing as output formulas of the form ‘ϕ is x-implied by Δ’ (where x can
take the values ‘credulously’, ‘skeptically’ or ‘not’).

– Ig(P4) =
male16X(k) : ¬e1 / N = 50.000 ∈ D
male16YX(k) : ¬e2 / N = 10.000 ∈ D
N = x : ¬e3 / priorodds(k) = 1

x−1 ∈ D

male16X(k) ∈ F
male16YX(k) ∈ F

– We are interested in solutions that are ground instances of the formula
‘priorodds(k) = p is x-implied by Δ’, where x can be ‘credulously’, ‘skepti-
cally’ or ‘not’, and Δ is the default theory specified by Ig(P4) ∪ Id(P4).

Note that the default theory of P4 has two extensions, one containing priorodds(k)
= 1

9999 and the other containing priorodds(k) = 1
49999 . So our informal problem

statement has two solutions, viz.

s1 = ‘priorodds(k) = 1
9999 is credulously implied by Δ’; and

s2 =‘priorodds(k) = 1
49999 is credulously implied by Δ’.

Now the first solution yields (approximately) Pr(k|d) = 0.995 while the sec-
ond results in (approximately) Pr(k|d) = 0.976, so since the proof standard for
k is 0.99, the outcome of the debate on the prior odds of k is crucial to the
question whether k can be proven beyond reasonable doubt.
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As explained above, subproblems are related by output-input transformers. They
are formally defined as follows.

Definition 3. An O/I transformer from problem solving methods M1, . . . ,Mm

to a problem solving method Mn is a function from LO
M1 × . . .×LO

Mm into LI
Mn.

In other words, an O/I transformer takes a set of formulas stated in the out-
put languages of a set of problem solving methods, and converts it into a for-
mula in the input language of a single problem solving method. Note that O/I
transformers need not be translation functions between languages: firstly, an
O/I transformer can take output formulated in a set of languages as input, and
secondly, O/I transformers may express problem solving knowledge that goes be-
yond semantic knowledge, as the following transformers of our running example
show.

We first define the following O/I transformer schemes from MBayes and
MFOL to MPropDL.

T1: If Pr(H |E) ≥ s is implied by Π in MBayes and ‘The proof standard
for H is s’ is implied by T in MFOL then H ∈ F in MPropDL.
T2: If (1 − s) ≤ Pr(H |E) < s is implied by Π in MBayes and ‘The
proof standard for H is s’ is implied by T in MFOL then �:�/H ∈ D
in MPropDL.

In other words, if a proof standard for H has been met, it is put into the facts
F of a default theory, while if it has been met for neither H or ¬H then both
are put into the defaults D of the default theory (strictly speaking the defaults
�:�/H and �:�/¬H are added to D). With the laws of probability this implies
for any h that � : h/h ∈ D iff � : ¬h/¬h ∈ D, that no proposition and its
negation are in F and that for any proposition to which a transformer can be
applied, either the proposition or its negation is in F , or one of the corresponding
defaults is in D. Note that T2 is an example of an O/I transformer that is not
a translation function between languages: it takes input from a set of problems;
and it expresses substantive legal instead of just semantic knowledge.

Which O/I transformers are appropriate from P4 to P2? Here there are several
options. It is clear that any prior odds on k that is skeptically implied by a
default theory will be part of Π in P2. However, what if it is only credulously
implied, as in the above default theory of P4? Then there are two options. One
is to ‘block the ambiguity’ and to input neither odds statement into P2. In that
case it is easy to see that no posterior probability on k can be calculated by P2

so that P1 receives no input on k and m is not derivable in P1 in any sense.
However, another option is to ‘propagate the ambiguity’, that is, to input two
alternative prior odds of k into MBayes and to see whether their difference makes
a difference in P1. Here I do not want to argue for one option as the best and
I simply choose the latter option to illustrate how the abstract formalism deals
with conflicting problems. We thus have the following transformer scheme:

T3: If priorodds(k) = p is skeptically or credulously implied by Δ in
MFolDL then priorodds(k) = p ∈ Pr in MBayes .
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Problem treatments are assumed to be based on a so-called general problem
specification, which is a set of pairs where each pair is a problem solving method
plus a set of formulas in its input language.

Definition 4. A general problem specification (GPS) is a set G of pairs (M, Ig)
where

1. M is a problem solving method;
2. Ig ⊆ LI

M

3. If (M, Ig) ∈ G and (M ′, Ig) ∈ G then M = M ′.

Further constraints on GPS could be defined but their study must be left for
future research.

In our running example we have in fact specified the following GPS:

{(MPropDL, Ig(P1)), (MBayes , Ig(P2)), (MFOL, Ig(P3)), (MFolDL, Ig(P4))}

It can now be defined how problem treatments can be combined.

Definition 5. A combination of problem treatments based on a GPS G is a
finite sequence A = P1, . . . , Pm of problem treatments satisfying the following
conditions for every Pi in A.

1. There exists a pair (M, Ig) ∈ G such that M(Pi) = M and Ig(Pi) = Ig; and
2. for each ϕi ∈ Id(Pi) there exist one or more problem treatments Pj , . . . , Pk

(j, k < i) in A with solutions ϕj , . . . , ϕk and a transformer T from M(Pj)×
. . .M(Pk) to M(Pi) such that T (ϕj , . . . , ϕk) = ϕi. (In such cases we say
that Pi depends in A on Pj , . . . , Pk.)

For any combination of problem treatments A the set A∗ = {P | there exists an
A ∈ A that contains P}.

So the input of a problem treatment must be treated with the method specified
by the GPS, and its ‘derived’ input must be provided via O/I transformers by,
possibly combined, solutions of other problem treatments. Note that together
Definitions 4 and 5 formalise that, for all problem treatments, Ig is given while
Id is obtained from other treatments.

On the basis of our example GPS the following combined problem treatments
can be constructed for our solutions of interest.

A1 =
P4 = 〈MFolDL, Ig(P4), ∅, {s1, s2}〉
P3 = 〈MFOL, Ig(P3), ∅, {s3}〉
P2a = 〈MBayes , Ig(P2a), {s1}, {s4}〉 (T3 applied to P4)
P1a = 〈MPropDL, Ig(P1a), {s5}, {s6}〉 (T1 applied to P3 and P2a)
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Where
s1 = priorodds(k) = 1

9999 is credulously implied by Δ
s2 = priorodds(k) = 1

49999 is credulously implied by Δ
s3 = Standard(k) = 0.99 is implied by T
s4 = Pr(k|E) = 0.995 is implied by Π
s5 = k ∈ F
s6 = m is skeptically implied by Δ

A2 =
P4 = 〈MFolDL, Ig(P4), ∅, {s1, s2}〉
P3 = 〈MFOL, Ig(P3), ∅, {s3}〉
P2b = 〈MBayes , Ig(P2b), {s2}, {s7}〉 (T3 applied to P4)
P1b = 〈MPropDL, Ig(P1b), {s8}, {s9, s10}〉 (T2 applied to P3 and P2a)

Where
s7 = Pr(k|E) = 0.976 is implied by Π
s8 = k ∈ D
s9 = m is credulously implied by Δ
s10 = m is not skeptically implied by Δ

We now come to an important element of the formalism. To deal with situations
in which different problem treatments provide mutually contradictory input for
a certain problem, a binary relation of conflict between problem treatments is
introduced. This relation captures situations in which the same ‘informal’ prob-
lem can be formalised in different ways. For instance, if an informal problem is to
be modelled as an application of probability theory but there are two conflicting
inputs on what are the correct probabilities for a certain set of probabilistic vari-
ables, then there should be two alternative probability distributions. To ensure
this, the conflict relation is a necessary ingredient.

Definition 6. A problem treatment P conflicts with a problem treatment P ′ if
Ig(P ) ∪ Id(P ) ∪ Ig(P ′) ∪ Id(P ′) ) ⊥. A set S of problem treatments is called
conflict-free if no member of S conflicts with a member of S.

Note that the conflict relation is not only symmetric but also irreflexive since a
problem treatment’s input is assumed consistent.

In our example P2a and P2b conflict with each other since Id(P2a) contains
‘priorodds(k) = 1

9999 ∈ Π ’ while Id(P2b) contains ‘priorodds(k) = 1
49999 ∈ Π ’.

(Recall that Ig(P2a) and Ig(P2b) are assumed to contain axioms that make
these two statements contradictory.) Likewise P1a and P1b are conflicting since
Id(P1a) contains ‘k ∈ F ’ while Id(P1b) contains ‘k ∈ D’. The two combined
problem treatments and these conflict relations are displayed in Figure 3 below
(O/I transformers are displayed as solid lines and conflict relations as dashed
lines.)

How can ‘overall’ solutions to general problem specifications be defined? Here
we can exploit the fact that at a certain level of abstraction the structure of the
present formalism is isomorphic to that of [12]. Firstly, in the present framework
combined problem treatments are sequences of elementary problem treatments
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Fig. 1. The of the murder case

connected by applications of O/I transformers, so they can be represented as di-
rected acyclic graphs. Likewise, in Pollock’s framework arguments are sequences
of elementary ‘lines of argument’ (statements plus a set of assumptions and a
strength) connected by applications of inference rules, so Pollock’s arguments can
also be represented as directed acyclic graphs. Secondly, in the present frame-
work conflict relations can hold between the elements of a combined problem
treatment; likewise, in Pollock’s framework ‘defeat’ relations can hold between
lines of arguments. Now Pollock defines so-called defeat status assignments as
labellings of argument lines, and he does so in terms of just a set of arguments
represented as DAGs plus the defeat relation between lines of these arguments:
he does not use the internal structure of argument lines nor the nature of the
defeat relations for these purposes. Therefore, because of the just-explained iso-
morphism between the two frameworks, the same labellings can be defined for
the present framework.

Note that despite this isomorphism, there are at a more concrete level two
main differences between the present formalism and Pollock’s. Firstly, while a
problem treatment contains two sets of formulas related by an application of
a problem solving method (which can be quite a complex process), a line of
argument is just a single proposition plus a set of assumptions and a strength:
within a line of argument no process takes place at all. Secondly, while prob-
lem treatments are connected via O/I transformers, lines of argument are
connected by inference rules, which are quite different in nature from O/I
transformers.
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Let us now formalise these observations, adapting the notation and terminol-
ogy of [12] to the present formalism.

Definition 7. [labellings.] Let A be a combination of problem treatments. A
labelling of A is a labelling of the elements of A∗ defined as follows. For every
P ∈ A∗ belonging to the combination of problem treatments A:

1. P is labelled ‘in’ if:
(a) all problem treatments on which P depends in A are labelled ‘in’; and
(b) all problems in A∗ that conflict with P are labelled ‘out’;

2. P is labelled ‘out’ if:
(a) some problem treatment on which P depends in A is labelled ‘out’; or
(b) P conflicts with a problem in A∗ that is labelled ‘in’.

A labelling L of A is maximal if for all P and all labellings L′ of A it holds that
if P is in (out) in L′ then P is in (out) in L. A labelling of A is complete if all
nodes in A∗ are labelled.

Intuitively, that a problem treatment is ‘in’ means that it can be regarded as
a possible (but maybe not the only) way to solve a problem given the other
problem treatments to which it is related by transformer and conflict relations.

In our running example the set {A1, A2} has two complete labellings, viz L1,
in which P2b and P1b are out and the other problems are in, and L2, in which
P2a and P1a are out and the other problems are in.

It is now possible to define overall solutions to a GPS, analogously to the
skeptical and credulous consequence notions of [12].

Definition 8. Relative to a combination of problem treatments A a problem
treatment P ∈ A∗ is defensible if some maximal labelling of A labels P ‘in’,
and P is justified if all maximal labellings of A label P ‘in’. A formula ϕ is a
defensible solution if ϕ is a solution of a defensible problem treatment, and ϕ is
a justified solution if all labellings of A make some problem treatment ‘in’ that
has ϕ as a solution.

In our running example P3 and P4 are justified problem treatments while the
other treatments are defensible. In consequence, there are two defensible solu-
tions on the issue of murder. The first is that murder is skeptically derivable
(based on L1) while the second is that murder is not skeptically but only cred-
ulously derivable (based on L2). So in the end there is no justification for con-
victing the suspect for murder.

The isomorphism with the formalism of [12] makes that the following proper-
ties can be proven.

Proposition 1. Let A be an arbitrary combination of problem treatments.

1. All labellings of A are conflict-free.
2. A has at least one maximal labelling.
3. All maximal labellings of A are complete.
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4. If A∗ is conflict-free, then A has a unique labelling which is complete and
which makes all problems of A∗ ‘in’.

Proof. First, since Pollock’s defeat status assignments are by Theorem 6.15 of
[15] equivalent to an argumentation framework in the sense of [10] with preferred
semantics, the results of [10] on preferred semantics also hold for labellings of
GPS. Then (1) and (2) follow from Theorem 1 of [10]. Furthermore, (3) follows
from Theorem 33 of [10] and symmetry and irreflexivity of the conflict relation
between problems, so that all cycles through C relations are of even length. From
this, property (4) also follows.

To conclude this section, it should be noted that Definitions 7 and 8 are not
the only possible ones. Since [15] have shown that Pollock’s system is an in-
stance of Dung’s abstract argumentation frameworks, any other semantics of
[10] could also be used. The above definitions have been chosen since they allow
for ‘floating solutions’ to a problem statement, analogous to floating conclusions
in nonmonotonic logic. In the present context this seems useful: if a problem has
alternative conflicting modellings but they solve some subproblem in the same
way then the above definitions say that that solution is justified.

4 Discussion and Conclusion

This paper has presented an abstract formalism for combining different modes
of reasoning. The model is abstract enough to include a wide variety of reason-
ing methods, ranging from purely symbolic to purely numeric ones. The aims to
capture dependencies between problems and to manage alternative solutions of
problems have been realised by exploiting a formal relation between our prob-
lem specifications and [12]’s system. Thus established theory on argumentation
systems can be applied to a new phenomenon. A practical benefit of the present
approach is the possibility to reason in one formalism about modelling decisions
in another formalism, rather than to leave this to an unspecified knowledge engi-
neering phase. Although several examples in this paper involved the combination
of a nonmonotonic logic with probability theory, the formalism is by no means
restricted to such combinations but can combine any set of reasoning methods.
Moreover, in such combinations the individual methods can be left as they are,
which is another practical benefit of the present approach.

Although the formalism uses techniques from the formal study of argumenta-
tion in AI, it does not require that problems are formalised in terms of inference
rules, arguments and counterarguments as in [12,13,14]. Instead it allows the
use of any reasoning method, which is achieved by abstracting from their inter-
nal structure. A key idea of this paper has been that O/I transformers do not
operate on object-level descriptions of problems, as inference rules do, but on
metalevel descriptions: thus existing formalisations (or even implementations)
of problem solving methods can simply be ‘plugged into’ the present formalism,
without the need to translate them into a new format. These ideas cannot be
formalised with purely abstract support and conflict relations as in [11].
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Finally, much work remains to be done. Firstly, it would be interesting to
investigate whether conflicts between problem treatments can be resolved in
other problem treatments (cf. [16] for an extension of [10]’s framework with
attacks on attacks.) Also, a systematic study of the nature of O/I transformers
between different modes of reasoning must be carried out, profiting whenever
possible from existing work on integrating KR & R systems.
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Abstract. We investigate the possibility of incorporating Boolean role construc-
tors on simple roles into some of today’s most popular description logics, fo-
cussing on cases where those extensions do not increase complexity of reasoning.
We show that the expressive DLs ����� and �����, serving as the logical
underpinning of OWL and the forthcoming OWL 2, can accommodate arbitrary
Boolean expressions. The prominent OWL-fragment ���� can be safely ex-
tended by safe role expressions, and the tractable fragments ���� and DLP re-
tain tractability if extended by conjunction on roles, where in the case of DLP the
restriction on role simplicity can even be discarded.

1 Introduction

Research on description logics (DLs) is directed by two main goals: increasing expres-
sivity while preserving desirable computational properties such as decidability (as a
factual conditio sine qua non) and eÆciency of reasoning, the latter qualitatively esti-
mated in terms of worst-case complexities. These antagonistic dimensions gave rise to
a great variety of logics: ����� and ����� being of high expressiveness and com-
plexity represent one side of the spectrum, whereas the so called tractable fragments like
���� and DLP provide lower expressivity yet allow for polynomial time reasoning.

In DL history, Boolean constructors (negation, conjunction, disjunction) on roles
have occurred and have been investigated sporadically in many places, but have never
been integrated into the mainstream of researched languages nor influenced standardis-
ation e�orts. In this paper, we argue that those constructors can – sometimes with appro-
priate restrictions – be incorporated into several of the most prominent DL languages,
thereby significantly enhancing expressivity without increasing reasoning complexity.

To illustrate this gain in expressivity, we give some examples on the modelling ca-
pabilities of Boolean role constructors:

Universal role. A role U that connects all individuals of the described domain can e.g.
be defined via U 	 
N as the complement of the empty role N, which in turn can be
axiomatized by the GCI � � N��.
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Role conjunction. This modelling feature comes in handy if certain non-tree-like prop-
erties (namely cases where two individuals are interconnected by more than one role)
have to be described. The fact that somebody testifying against a relative is not put un-
der oath can e.g. be formalised by �(testifiesAgainst � relativeOf )�� � 
UnderOath.
Likewise, role conjunction allows for specifying disjointness of roles, as Dis(R� S ) can
be paraphrased as � � (R � S )��.

Concept products. Thoroughly treated in [1], the concept product statement C �D � R
expresses that any instance of C is connected with any instance of D via role R. As
an example, the fact that alkaline solutions neutralise acid solutions, which could ex-
pressed by the concept product axiom AlkalineSolution � AcidSolution � neutralises,
can equivalently be stated by AlkalineSolution � (
neutralises)�
AcidSolution by us-
ing role negation.

Qualified role inclusion. Likewise, the specialisation of roles due to concept mem-
berships of the involved individuals can be expressed. The rule-like FOL statement
C(x) � R(x� y) � D(y) � S (x� y) (expressing that any C-instance and D-instance that
are interconnected by R are also interconnected by S ) can be cast into the GCI C �

(R � 
S )�
D. For example, the fact that any person of age having signed a contract
which is legal is bound to that contract can be expressed by OfAge � (hasSigned �

boundTo)�
(Contract � Legal).

The latter two types of statements have recently gained increased interest in the con-
text of identifying rule-like fragments of DLs [2].

The rest of the paper is organised as follows. After providing the necessary defini-
tions, we review existing work on Boolean role constructors. Then, we deal with the
extension of ����� and ����� by full Boolean role expressions on simple roles.
Thereafter, we provide an according result for integrating safe Boolean role expressions
into the description logic ����. The subsequent two sections settle the case for the
tractable fragments ���� and DLP, respectively, extending them by role conjunction.
Finally, we conclude and elaborate on future work. Due to lack of space, some proofs
had to be omitted. Those can be found in [3].

2 Preliminaries

In this section, we give the definition of the expressive description logic ������s

which is obtained from the well-known description logic ����� [4] by allowing arbi-
trary Boolean constructors on simple roles. We assume that the reader is familiar with
description logics [5].

The DLs considered in this paper are based on four disjoint sets of individual names
NI , concept names NC , and simple role names Ns

R (containing the universal role U � NR)
as well as non-simple role names Nn

R. Furthermore, we let NR � Ns
R � Nn

R.

Definition 1. A ������s Rbox for NR is based on a set R of atomic roles defined
as R � NR � �R� � R � NR�, where we set Inv(R) � R� and Inv(R�) � R to simplify
notation. In turn, we distinguish simple atomic roles Rs

� Ns
R�Inv(Ns

R) and non-simple
atomic roles Rn

� Nn
R � Inv(Nn

R).
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In the sequel, we will use the symbols R� S , possibly with subscripts, to denote atomic
roles.

The set of Boolean role expressions B is defined as follows:

B � R � 
B � B � B � B � B�

The set Bs of simple role expressions comprises all those role expressions containing
only simple role names. In the sequel, V and W will denote simple role expressions if
not stated otherwise. Moreover, a role expression will be called safe, if in its disjunctive
normal form, every disjunct contains at least one non-negated role name.

A generalised role inclusion axiom (RIA) is a statement of the form V � W with
simple role expressions V and W, or of the form

S 1 Æ � � � Æ S n � R

where each S i is a simple role expression or a non-simple atomic role, and where R is a
non-simple atomic role. A set of such RIAs will be called a generalised role hierarchy.
A role hierarchy is regular if there is a strict partial order � on the non-simple roles Rn

such that

– S � R i� Inv(S ) � R, and
– every RIA is of one of the forms
� R Æ R � R,
� R� � R,
� S 1 Æ � � � Æ S n � R,
� R Æ S 1 Æ � � � Æ S n � R,
� S 1 Æ � � � Æ S n Æ R � R,

such that R � NR is a (non-inverse) role name, and S i � R for i � 1� � � � � n whenever
S i is non-simple.

A role assertion is a statement of the form Ref(R) (reflexivity), Asy(V) (asymmetry), or
Dis(V�W) (role disjointness), where V and W are simple role expressions, and R is a
simple role expression or a non-simple role. A ������s Rbox is the union of a set of
role assertions together with a role hierarchy. A ������s Rbox is regular if its role
hierarchy is regular.

Definition 2. Given a ������s Rbox �, the set of concept expressions C is defined
as follows:

– NC � C, � � C, � � C,
– if C�D � C, R � Bs � Rn a simple role expression or non-simple role, V � Bs a

simple role expression, a � NI , and n a non-negative integer, then 
C, C�D, C�D,
�a�, R�C, �R�C, �V�Self, �n V�C, and �n V�C are also concept expressions.

Throughout this paper, the symbols C, D will be used to denote concept expressions.
A ������s Tbox is a set of general concept inclusion axioms (GCIs) of the form
C � D.

An individual assertion can have any of the following forms: C(a), R(a� b), 
V(a� b),
a � b, with a� b � NI individual names, C � C a concept expression, and R� S � R roles
with S simple. A ������s Abox is a set of individual assertions.
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Name Syntax Semantics
inverse role R� 	(x� y) 
 �� � �� � (y� x) 
 R�

universal role U �� � ��

role negation �V 	(x� y) 
 �� � �� � (x� y) � R�

role conjunction V �W V� �W�

role disjunction V �W V� �W�

top � ��

bottom � �

negation �C �� � C�

conjunction C � D C� � D�

disjunction C � D C� � D�

nominals 	a 	a�
univ. restriction �R�C 	x 
 �� � (x� y) 
 R� implies y 
 C�

exist. restriction �R�C 	x 
 �� � for some y 
 �� , (x� y) 
 R� and y 
 C�

Self concept �V�Self 	x 
 �� � (x� x) 
 V�

qualified number �n V�C 	x 
 �� � #	y 
 �� � (x� y) 
 V� and y 
 C� � n
restriction �n V�C 	x 
 �� � #	y 
 �� � (x� y) 
 V� and y 
 C� � n

Fig. 1. Semantics of concept and role constructors in ������s for an interpretation � with
domain ��

A ������s knowledge base KB is the union of a regular Rbox �, and an Abox 
and Tbox ! for �. We use the term axiom to uniformly refer to any single statement
contained in �,  , or ! .

We further give the semantics of ������s knowledge bases.

Definition 3. An interpretation � consists of a set �� called domain together with a
function "� mapping individual names to elements of ��, concept names to subsets of
��, and role expressions to subsets of �� � ��.

The function "� is inductively extended to role and concept expressions as shown in
Fig. 1. An interpretation � satisfies an axiom � if we find that � �� �:

– � �� V � W if V� � W�,
– � �� V1 Æ � � � Æ Vn � R if V�

1 Æ � � � Æ V�
n � R� (Æ being overloaded to denote the

standard composition of binary relations here),
– � �� Ref(R) if R� is a reflexive relation,
– � �� Asy(V) if V� is antisymmetric and irreflexive,
– � �� Dis(V�W) if V� and W� are disjoint,
– � �� C � D if C� � D�,
– � �� C(a) if a� � C�,
– � �� R(a� b) if (a�� b�) � R�,
– � �� 
V(a� b) if (a�� b�) � V�,
– � �� a � b if a� � b�.

An interpretation � satisfies a knowledge base KB (we then also say that � is a model
of KB and write � �� KB) if it satisfies all axioms of KB. A knowledge base KB is
satisfiable if it has a model. Two knowledge bases are equivalent if they have exactly
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the same models, and they are equisatisfiable if either both are unsatisfiable or both are
satisfiable.

We obtain ����� from ������s by disallowing all junctors in role expressions.
Further details on ����� can be found in [4]. We have omitted here several syntac-
tic constructs that can be expressed indirectly, especially role assertions for transitivity,
reflexivity of simple roles, and symmetry. Moreover, the DL ����� is obtained from
����� by discarding the universal role as well as reflexivity, asymmetry, role disjoint-
ness statements and allowing only RIAs of the form R � S or R Æ R � R.

3 Related Work

Boolean constructors on roles have been investigated in the context of both description
and modal logics. [6] used them extensively for the definition of a DL that is equivalent
to the two-variable fragment of FOL.

As a classical result on complexities, it was shown in [7], that augmenting  �#
with full Boolean role constructors ( �#�) leads to NE��T���-completeness of the
standard reasoning tasks (while restricting to role negation [7] or role conjunction [8]
only retains E��T���-completeness). This complexity does not further increase when
allowing for inverses, qualified number restrictions, and nominals as was shown in [8]
by a polynomial translation of �#��� into #2, the two variable fragment of first or-
der logic with counting quantifiers, which in turn was proven to be NE��T���-complete
in [9]. Also the recently considered description logic ��� [10] falls in that range of
NE��T���-complete DLs.

On the contrary, it was also shown in [8] that restricting to safe Boolean role con-
structors keeps  �#’s reasoning complexity in E��T���, even when adding inverses
and qualified number restrictions ( �#��b).

For logics including modelling constructs that deal with role concatenation like tran-
sitivity or – more general – complex role inclusion axioms, results on complexities in
the presence of Boolean role constructors are more sparse. [11] shows that �# can be
extended by negation and regular expressions on roles while keeping reasoning within
E��T���. Furthermore, [12] provided E��T��� complexity for a similar logic that in-
cludes inverses and qualified number restriction but reverts to safe negation on roles.

An extension of����with role conjunction (denoted�����) is presented in [13]
in the context of conjunctive query answering, the results implying an upper bound of
2E��T���.

4 ������s and ������s

In this section, we show that adding arbitrary (i.e. also unsafe) Boolean role expres-
sions to the widely known description logics ����� and ����� does not harm
their reasoning complexities – N2E��T��� [14] and NE��T��� [8], respectively – if this
extension is restricted to simple roles.

Note that in the sequel, ����� (resp. ������s) will be treated as a special case
of ����� (resp. ������s), as most considerations hold for both cases.
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Table 1. Additional transformation for ������s and ������s. A, B are concept names. V ,
W are simple role expressions. Vi are simple role expressions or non-simple roles. V̂ is a simple
role expression that is not just a role. R is a non-simple role name. S is a new simple role name.

A � �V̂�B �� 	A � �S �B� V̂ � S 
A � �n V̂�B �� 	A � �n S �B�S � V̂
A � �n V̂�B �� 	A � �n S �B� V̂ � S 
A � �V̂�Self �� 	A � �S �Self� S � V̂

Dis(V� W) �� 	V � W � S �� � �S ��

V1 Æ � � � Æ V̂ Æ � � � Æ Vn � R ��

	V1 Æ � � � Æ S Æ � � � Æ Vn � R� V̂ � S 

As shown in [14], any ����� (�����) knowledge base can be transformed into
an equisatisfiable knowledge base containing only axioms of the form:

A � R�B
A � �n S �B
A � �n S �B

�
Ai �

�
B j

A 	 �a�
A 	 �S �Self

S 1 � S 2

S 1 � S �

2
Dis(S 1� S 2)

R1 Æ � � � Æ Rn � R.

Trivially, this normalization can be applied to ������s (������s) as well, yield-
ing the same types of axioms whereas simple role expressions may occur in the place of
simple roles. A second transformation carried out by exhaustively applying the trans-
formation steps depicted in Table 1 yields an equisatisfiable knowledge base containing
only the original axiom types depicted above (i.e. again only simple role names in
places of S (i) and role names in places of Ri) and just one additional axiom type W � V
with W,V simple role expressions. As shown in [14], any of these original axiom types
except the one containing role concatenation can be translated into #2, the two-variable
fragment of first order logic with counting quantifiers. The additionally introduced type
of axiom can clearly also be transformed into #2 statements namely into the proposition
xy(�(W)� �(V)) where � is inductively defined by:

�(S ) � S (x� y)
�(S �) � S (y� x)
�(
V) � 
�(V)

�(V �W) � �(V) � �(W)
�(V �W) � �(V) $ �(W)

Further following the argumentation from [14], the remaining complex role inclusions
not directly convertible into#2 can be taken into account by cautiously materializing the
consequences resulting from their interplay with axioms of the type A � R�B through
automata encoding techniques – see also [15]. This way, one obtains a #2 theory that is
satisfiable exactly if the original knowledge base is. In the case of ����� (and hence
������s), this can result in an exponential blowup of the knowledge base while for
������s (and hence �����) the transformation is time polynomial. Thus we see
that the upper complexity bounds for ����� and ����� carry over to ������s
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and ������s by just a slight extension of the according proofs from [14] while the
lower bounds follow directly from those of ����� and �����. Hence, we can es-
tablish the following theorem.

Theorem 1. Knowledge base satisfiability checking, instance retrieval, and comput-
ing class subsumptions for ������s (������s) knowledge bases is N2E��T���-
complete (NE��T���-complete).

While the results established in this section are rather straightforward consequences of
known results, their implications for practice might be more significant: they show that
the DLs underlying OWL and OWL 2 can be extended by arbitrary Boolean construc-
tors on simple roles without increasing the worst case complexity of reasoning.

5 ����bs

���� is a rather expressive fragment obtained from ����� by disallowing nomi-
nals, where (in contrast to the NE��T���-complete �����) reasoning is known to be
E��T���-complete [8].

In this section we will introduce the extension of ���� by safe role expressions
on simple roles. Thereafter, we will present a technique for removing transitivity state-
ments from ����bs knowledge bases in a satisfiability preserving way. This yields
two results: on the one hand, we provide a way how existing reasoning procedures for
 �#���b like e.g. those described in [8,12,16] can be used to solve����bs reason-
ing tasks. On the other hand, as the transformation procedure can be done in polynomial
time, the known upper bound for the complexity of reasoning in �#���b – namely
E��T��� – carries over to ����bs.

Definition 4. A ����bs knowledge base is a ������s knowledge base that con-
tains no nominals and only safe role expressions.

Based on a fixed knowledge base KB, we define �� as the smallest binary relation
on the non-simple atomic roles Rn such that:

– R �� R for every atomic role R,
– R �� S and Inv(R) �� Inv(S ) for every Rbox axiom R � S , and
– R �� T whenever R �� S and S �� T.

Given an atomic non-simple role R, we write Trans(R) � KB as an abbreviation for:
R Æ R � R � KB or Inv(R) Æ Inv(R) � Inv(R) � KB.

Slightly generalising according results from [8,17] (as we allow safe boolean expres-
sions – in GCIs and role inclusion axioms – already for the original logic), we now
show that any ����bs knowledge base can be transformed into an equisatisfiable
knowledge base not containing transitivity statements.

Definition 5. Given a ����bs knowledge base KB, let clos(KB) denote the smallest
set of concept expressions where

– NNF(
C � D) � clos(KB) for any Tbox axiom C � D,
– D � clos(KB) for every subexpression D of some concept C � clos(KB),
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– NNF(
C) � clos(KB) for any �n R�C � clos(KB),
– S �C � clos(KB) whenever Trans(S ) � KB and S �� R for a role R with R�C �

clos(KB).

Moreover, let �(KB) denote the knowledge base obtained from KB by

– Removing all transitivity axioms R Æ R � R and
– Adding the axiom R�C � S �(S �C) for every R�C � clos(KB) with Trans(S ) �

KB and S �� R.

Proposition 1. Let KB ba a ����bs knowledge base. Then, KB and �(KB) are equi-
satisfiable.

Taking into account that the presented transformation is time polynomial, this result can
now be employed to determine the complexity of ����bs.

Theorem 2. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for ����bs knowledge bases is E��T���-complete.

Proof. Clearly, all standard reasoning problems can be reduced to knowledge base sat-
isfiability checking as usual.

Now, by Proposition 1, any given ����bs knowledge base KB can be transformed
into an  �#���b knowledge base �(KB) in polynomial time. Furthermore, all role
inclusion axioms can be removed from�(KB) as follows. First, all role names contained
in �(KB) can be declared to be simple without violating the syntactic constraints. Sec-
ond, every role inclusion axiom V � W (with V�W being safe by definition) can be
equivalently transformed into the GCI � � (V � 
W)��. Note that then V � 
W is
safe as well and therefore admissible. Moreover the transformation is obviously time
linear. So we end up with an  �#��b knowledge base whose satisfiability checking
is E��T���-complete due to [8]. ��

So we have shown that allowing safe Boolean expressions on simple roles does not
increase the E��T��� reasoning complexity of ����. On the other hand, the recent
results on����� [13] seem to indicate that the role simplicity condition is essential for
staying within E��T��� even though no definite hardness result for general����� was
provided. The safety condition on role expressions, in turn, is clearly needed: dropping
it would lead to a DL comprising �#�which is known to be NE��T���-complete [7].

6 �	
��(
s)

In this section, we investigate role conjunction for the DL ���� [18], for which many
typical inference problems can be solved in polynomial time. We simplify our presenta-
tion by omitting concrete domains from ���� – they are not a�ected by our extension
and can be treated as shown in [18].

Definition 6. An atomic role of ����(�s) is a (non-inverse) role name. An ����(�s)
role expression is a simple role expression that contains only role conjunctions. An
����(�s) Rbox is a set of generalised role inclusion axioms (using ����(�s) role ex-
pressions and non-simple atomic roles). An ����(�s) Tbox is a ������s Tbox that
contains only the concept constructors: �, �, �, � and only ����(�s) role expressions.
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Note that we do not have any requirement for regularity of roles but we have to introduce
the notion of role simplicity in the context of ����. In a first step, we observe that any
����(�s) knowledge base can be converted into a normal form.

Definition 7. An ����(�s) knowledge base KB is in normal form if it contains only
axioms of one of the following forms:

A � C A � B � C R � T
�R�A � B A � �R�B R Æ S � T

R � S � T

where A� B � NC � ��a� � a � NI� � ���, C � NC � ��a� � a � NI� � ���, and R� S � T � NR.

Proposition 2. Any ����(�s) knowledge base can be transformed into an equisatis-
fiable ����(�s) knowledge base in normal form. The transformation can be done in
linear time.

Subsequently, we show that the only axiom type of this normal form not covered by
���� can be removed from an ����(�s) knowledge base while preserving satisfiability
if the relevant consequences are materialized before.

Definition 8. Given an ����(�s) knowledge base KB in normal form, let ��(KB) de-
note the knowledge base obtained from KB by

– Adding R1 � R2 for all R2 � R�

1 where S � � NR denotes the smallest set of role
names containing S and satisfying
� T � S �, whenever R � S � and R � T � KB as well as
� T � S �, whenever R1�R2 � S � and R1 � R2 � T � KB,

– Removing every axiom of the form S 1 � S 2 � R and instead adding the axioms
�S 1��o� � �S 2��o� � �R��o� for every individual name �o�.

Note that ��(KB) can be computed in polynomial time. In particular, finding the closed
sets R� can be done in linear time w.r.t. the size of KB, e.g. using the linclosure algo-
rithm from [19].

Proposition 3. Let KB be an ����(�s) knowledge base. Then, KB and ��(KB) are
equisatisfiable.

The shown reduction – besides providing a way of using existing ���� reasoning
algorithms for reasoning in ����(�s) – now gives rise to the complexity result for
����(�s).

Theorem 3. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for ����(�s) knowledge bases is P-complete w.r.t. the size of the
knowledge base.

Proof. Given an arbitrary ����(�s) knowledge base KB, Proposition 2 ensures that it
can be transformed in polynomial time into an equisatisfiable knowledge base KB� in
normal form. Again in polynomial time, we can compute the knowledge base ��(KB�)
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that – by Proposition 3 – is equisatisfiable with KB� (and hence also with KB). Finally,
as ��KB� is an ���� knowledge base, we can check satisfiability in polynomial time.

P-hardness for ����(�s) follows from the well known P-hardness of �� (also being
a straightforward consequence of the P-completeness of Horn satisfiability). ��

We finish this section with some general remarks. On the one hand, note that con-
junction on roles enhances expressivity of ���� significantly. For example, it allows
for the following modelling features:

– Disjointness of two simple roles S �R. This feature, also provided by ����� as
Dis(S �R), can be modelled in ����(�s) by the axiom �(S � R)�� � �.

– Atleast cardinality constraints on the right hand side of a GCI. The axiom A �
�n R�B can be modelled by the axiom set �Ri � R� A � �Ri�B � 1 � i � n� � ��(Ri �

R j)�� � � � 1 � i � j � n� where R1� � � � �Rn are new simple role names.

On the other hand, it is easy to see that incorporating more than just conjunction on
simple roles into ���� would render the respective fragment intractable at best: Al-
lowing conjunction on non-simple roles would even lead to undecidability as stated
in Theorem 1 of [20]. Allowing disjunction or negation on simple roles would al-
low to model disjunction on concepts: for instance, the GCI A � B � C can be ex-
pressed by the axiom set �A � �(R � S )����R�� � B��S �� � C� or the axiom set
�A � �R��o� � C� A � �
R��o� � B� for new roles R� S and a new individual name o.
Hence, any extension of ���� into this direction would be E��T���-hard [18].

7 DLP(
)

Description Logic Programs (DLP) constitutes a tractable knowledge representation
formalism in the spirit of (Horn) logic programming [21]. Essentially, it consists of
those ����� axioms which can be naively translated into (non-disjunctive) Datalog,
such that the original knowledge base and its translation are semantically equivalent.
As such it represents the fragment of ����� that can entail neither disjunctive infor-
mation nor the existence of anonymous individuals as extensively studied in the context
of Horn description logics [22]. Though rather complex syntactic definitions can be
given to characterise all admissible axioms of such logics, we use a simpler definition
comprising all essential expressive features of DLP without including all their syntactic
varieties.

Definition 9. Atomic roles of DLP are defined as in �����, including inverse roles. A
DLP body concept is any����� concept expression that includes only concept names,
nominals, �, �, �, and �. A DLP head concept is any ����� concept expression that
includes only concept names, nominals, �, , �, �, and expressions of the form �1�C
where C is a DLP body concept.

A DLP knowledge base is a set of Rbox axioms of the form R � S and R Æ R � R,
Tbox axioms of the form C � D, and Abox axioms of the form D(a) and R(a� b), where
C � C is a body concept, D � C is a head concept, and a� b � NI are individual names.

DLP(�) knowledge bases are defined just as DLP knowledge bases, with the addition
that conjunctions of roles may occur in DLP(�) in all places where roles occur in DLP.
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Note that we do not have to distinguish between simple and non-simple roles for
DLP.

In [22] it is shown that DLP is of polynomial worst-case complexity. This can be seen
most easily by realising that DLP knowledge bases can be transformed in polynomial
time (in the size of the knowledge base) into an equisatisfiable set of function-free first-
order Horn rules (i.e. non-disjunctive Datalog rules) with at most three variables per
formula. On the basis of this result, it is easy to show that DLP(�) is also of polynomial
complexity. We give a brief account of the argument.

Consider a DLP(�) knowledge base K. We now perform the following transforma-
tion of K: For any role conjunction R1 � " " " � Rn occurring in the knowledge base,
replace the conjunction by a new role R, and add the axioms R1 � " " " � Rn � R and
R � Ri, for all i � 1� � � � � n, to the knowledge base.

The resulting knowledge base is obviously equisatisfiable with K. It consists of two
types of axioms: Axioms which are in DLP and axioms of the form R1 � " " " � Rn �

R. The latter axioms correspond to function-free Horn rules with only two variables.
Hence, any DLP(�) knowledge base can be transformed in polynomial time into an
equisatisfiable set of function-free Horn rules.

Theorem 4. Knowledge base satisfiability checking, instance retrieval, and computing
class subsumptions for DLP(�) knowledge bases is P-complete w.r.t. the size of the
knowledge base.

Proof. First note that instance retrieval and class subsumption can be reduced to sat-
isfiability checking: Retrieval of instances for a class C is done by checking for all
individuals a if they are in C – which in turn is reduced to satisfiability checking by
adding the axioms C�E � � and E(a) to the knowledge base, where E is a new atomic
class name. Class subsumption C � D is reduced by adding the axioms C(a), E(a) and
D � E � �, for a new individual a and a new atomic class name E.

Now to check satisfiability of a DLP(�) knowledge base, it is first transformed into
an equisatisfiable set of function-free first-order Horn rules as mentioned above. The
satisfiability of such a set of formulae can be checked in polynomial time, since any
Horn logic program is semantically equivalent to its grounding (the set of all possible
ground instances of the given rules based on the occurring individual names). For a
program with a bounded number n of variables per rule, this grounding is bounded by
r � in, where i is the number of individual names and r is the number of rules in the
program. Finally, the evaluation of ground Horn logic programs is known to be in P.

P-hardness for DLP directly follows from the P-completeness of satisfiability check-
ing for sets of propositional Horn clauses. ��

8 Conclusion

In our work, we have thoroughly investigated the reasoning complexities of DLs al-
lowing for Boolean constructors on simple roles. We found that the expressive DLs
����� (being the basis of the forthcoming OWL 2 standard) and ����� (the log-
ical underpinning of OWL) can accommodate full Boolean role operators while keep-
ing their reasoning complexities N2E��T��� and NE��T���, respectively. Likewise, the
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Fig. 2. Overview of complexities and expressivity relationships of DLs in the context of this paper

E��T���-complete���� can be safely extended by safe Boolean expressions. Finally,
both the tractable fragments���� and DLP retain polynomial time reasoning complex-
ity when adding just role conjunction, where in the case of DLP the role simplicity con-
dition is not necessary. Figure 2 shows our findings integrated with other well-known
complexity results relevant in this respect.

In particular, we want to draw the reader’s attention to the fact that – as opposed to
hitherto proposed ways – the modelling of concept products and qualified role inclu-
sions as presented in Section 1 does not automatically render the inferred roles non-
simple. Moreover, due to the safety of the respective axiom, qualified role inclusions
can even be modelled in ����bs.

Future work on that topic includes the further integration of the established results
with our work on DL Rules [2], as well as the further investigation of the e�ects on com-
plexity and decidability when allowing for Boolean constructors on non-simple roles.

Finally note that our results for ����bs, ��
��(�s), and DLP(�) provide direct

ways for adapting existing reasoning algorithms for ����, ����, and DLP, respec-
tively. For ������s and ������s, however, setting up eÆcient algorithms seems
less straightforward and represents another interesting direction of future research.
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Abstract. This paper introduces improvements for second-order quan-
tifier elimination methods based on Ackermann’s Lemma and investi-
gates their application in modal correspondence theory. In particular,
we define refined calculi and procedures for solving the problem of elimi-
nating quantified propositional symbols from modal formulae. We prove
correctness results and use the approach to compute first-order frame
correspondence properties for modal axioms and modal rules. Our ap-
proach can solve two new classes of formulae which have wider scope
than existing classes known to be solvable by second-order quantifier
elimination methods.

1 Introduction

Propositional modal logics, when defined syntactically, are a priory second-order
logics, but can often be characterized by classes of model structures (frames)
which satisfy first-order conditions. Using second-order quantifier elimination
methods, these first-order conditions, called frame correspondence properties,
can frequently be derived from the axioms in an axiomatization of a logic. For
example, the axiom D = ∀p[�p → ♦p] is translated to ∀P∀x[∀y[R(x, y) →
P (y)] → ∃z[R(x, z) ∧ P (z)]]. Eliminating the second-order quantifier ∀P with
a second-order quantifier elimination method returns the formula ∀x∃y[R(x, y)].
This is the first-order frame correspondence property equivalent to the axiom D.
Rather than translating the modal input formula into second-order logic and
then passing it to a second-order quantifier elimination algorithm, we focus on
approaches that perform second-order quantifier elimination directly in modal
logic. Only in a subsequent step translation to first-order logic is performed.
Given ∀p[�p → ♦p] such an approach eliminates ∀p and returns the formula ♦�.
Subsequently this is translated to first-order logic to give ∀x∃y[R(x, y)].

Several automated second-order quantifier elimination methods exist (and
have various applications [7]). These methods belong to two categories: (i) those
based on Ackermann’s Lemma [5,3], and (ii) those based on resolution [6,2]. In
this paper we are interested in methods of the first kind. Ackermann’s Lemma [1]
tells us when quantified predicate variables are eliminable from second-order
formulae. Common to methods based on Ackermann’s Lemma are inference
rules, called Ackermann rules, which are designed to apply to formulae in forms
specified by the lemma. Crucial are therefore suitable equivalence preserving
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transformation rules which transform formulae into appropriate forms so that
Ackermann rules can be applied. Past experience shows that optimization tech-
niques which simplify formulae are crucial in making it easier, and even possible,
to obtain the necessary syntactic forms for Ackermann rules to become appli-
cable. While it has been possible to show strong completeness and canonicity
results [3,4], developing computationally feasible transformation and optimiza-
tion techniques has so far received little attention.

In this paper we present an enhanced approach based on Ackermann’s Lemma
designed for propositional multi-modal tense logics. Which symbols are to be
eliminated can be flexibly specified. The quantified propositional variables to be
eliminated are the non-base symbols. All other symbols are assumed to be base
symbols. Given a set of modal logic formulae, the goal is to find a set of formulae
equivalent to the original set but does not contain any of the non-base symbols.

A main design criterion of our approach has been increased efficiency, as
well as increased success rate and scope. In our approach an ordering on the
non-base symbols must be specified. The ordering provides a mechanism for
controlling how a derivation is constructed, reducing non-determinism and re-
ducing the search space. An important novelty is the inclusion of general notion
of redundancy, which allows for the flexible definition of practical simplification
and optimization techniques to reduce the search space further and improve the
success rate.

A second motivation is to gain a better understanding of when quantifier elim-
ination methods succeed, and to pinpoint precisely which techniques are crucial
for successful termination. We define two new classes of formulae for which our
approach succeeds: the class C and an hierarchical version called C>. The classes
define normal forms for when Ackermann-based second-order quantifier elimi-
nation methods succeed and subsume both the well-known Sahlqvist class of
formulae [9] and also the class of monadic inductive formulae due to Goranko
and Vakarelov [8]. We present minimal requirements for successful termination
for all these classes. This allows us to sharpen and strengthen existing results
on the termination behaviour of second-order quantifier elimination methods.

The third motivation is the provision of methods for correspondence theory
of modal rules. Previous work has only investigated the utilization of second-
order quantifier elimination methods for computing correspondence properties
of modal axioms. We show that the methods can be used for the study of corre-
spondence properties of modal rules as well.

Our approach is closely related to the Dls algorithm of [5] and the Sqema

algorithm of [3], but we introduce various improvements which can be trans-
ferred to both these algorithms. Both Sqema and Dls are based on versions of
Ackermann’s Lemma. They both operate on formulae in negation normal form.
Because negation normal form has a number of drawbacks, we use a different nor-
mal form. Our normal form allows our method to succeed quicker and more often
because more cases of obvious redundancies can be detected and eliminated with
little effort. Another difference is that our calculi contain less non-deterministic
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choices, and are equipped with general, efficient redundancy criteria which are
important for the success rate and practical implementations.

The paper is structured as follows. The next section defines the necessary
logical apparatus and notation. The calculi which form the basis of our approach
are introduced in Section 3. Section 4 describes two procedures based on these
calculi. In Section 5 it is described how these can be used to compute first-order
frame correspondence properties for modal axioms and rules, and examples are
given. Section 6 introduces the two new classes C and C>. C is basically the
subclass of formulae in C> for which the order in which non-base symbols are
eliminated, sign switching and redundancy elimination are not essential. It is
shown that the Sahlqvist class of formulae and the class of monadic inductive
formulae are subsumed by C and thus also C>.

The paper is based on an unpublished manuscript by the author from 2006
and Chapter 13 in [7]. Due to space limitations many details and all proofs are
omitted. These can be found in the long version at http://www.cs.man.ac.uk/
~schmidt/publications/Schmidt08b.pdf, together with more examples.

2 Modal Tense Logics

The general setting of this paper is the logic Kn
(m)(�, π+) with forward and back-

ward looking modalities, nominals, and second-order quantification over propo-
sitional variables. Kn

(m)(
�, π+) is the extension of the multi-modal tense logic

K(m)(�) with second-order quantification and nominals.
Let V be an enumerable set of propositional variables p1, p2, . . . and let A be

an enumerable set of nominals a1, a2, . . .. Intuitively, nominals are propositional
variables which are true in exactly one world. A formula in Kn

(m)(
�, π+) is

either a propositional atom, i.e., a propositional variable, ⊥ or a nominal, or a
formula of the form ¬α, α ∧ β, �kα, ��

k α, and ∀pi[α], where α and β denote
Kn

(m)(
�, π+)-formulae, i ≥ 1 and k ≥ 1. The connectives �, ∨, →, ↔, ♦k,

♦�
k , ∃pi are defined as usual, e.g., the converse diamond operator is specified

by ♦�
i α =df ¬��

k ¬α, where α denotes an arbitrary Kn
(m)(

�, π+)-formula. We
assume that ∨ and ∧ are commutative and associative.

We say ��
k (resp. ♦�

k , �k, ♦k) is the converse operator of �k (resp. ♦k, ��
k ,

♦�
k ). As alternative notation we also use �k for ��

k . To simplify the notation we
use the symbol κ for k or k. If κ = k (κ = k) then �κ denotes �k (��

κ ). Further
let �κ,� denote the converse of �κ. (♦κ, ♦κ,� are defined similarly.) Let Rκ(s, t)
be Rk(s, t), if κ = k, and Rk(t, s), if κ = k, for any terms s and t.

Now we define the semantics of Kn
(m)(

�, π+). A Kripke frame is a relational
structure 〈W, 〈Rk〉k〉, where W is a non-empty set (of worlds) and 〈Rk〉k is a
family of binary (accessibility) relations over W . A Kripke model (interpretation)
is a tuple M = 〈W, 〈Rk〉k, v〉, where 〈W, 〈Rk〉k〉 is the underlying frame and v is
the valuation function. v assigns subsets of W to propositional variables.

In modal logic there are various ways of defining the semantics of second-
order quantification. We use the standard definition in which the semantics of
quantified propositional variables is defined in terms of p-equivalent models.

http://www.cs.man.ac.uk/~schmidt/publications/Schmidt08b.pdf
http://www.cs.man.ac.uk/~schmidt/publications/Schmidt08b.pdf
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Let p be a propositional symbol and let M and M ′ be two Kripke models. We
say M and M ′ are p-equivalent if M and M ′ coincide but differ possibly in the
valuation of p. More generally, suppose Σ = {p1, . . . , pm} ⊆ V , M and M ′ are
Σ-equivalent if M and M ′ are the same but differ possibly in the valuation of
the propositional symbols in Σ.

Truth of arbitrary Kn
(m)(

�, π+)-formulae in a world x of a model M is defined
inductively by:

M,x |= �; M,x |= pi iff x ∈ v (pi); M,x |= aj iff v(aj) = {x};
M,x |= α ∧ β iff both M,x |= α and M,x |= β; M,x |= ¬α iff M,x �|= α;
M,x |= �κα iff for any y ∈ W , Rκ(x, y) ⇒ M, y |= α;
M,x |= ∀pi[α] iff for any model M ′ pi-equivalent to M , M ′, x |= α.

If M,x |= α for some x then α is said to be locally satisfiable in M . We write
M |= α when M,x |= α for all worlds x of M .

Kn
(m)(

�, π+) can be embedded into second-order logic with equality and con-
stant symbols using the standard translation mapping. The standard translation
of formulae is a mapping π inductively defined as follows:

π(�, x) = �; π(pi, x) = Pi(x); π(aj , x) = x ≈ cj ;
π(α ∧ β, x) = π(α, x) ∧ π(β, x); π(¬α, x) = ¬π(α, x);
π(�κα, x) = ∀y[Rκ(x, y) → π(α, y)]; π(∀pi[α], x) = ∀Pi[π(α, x)].

Here, x denotes a first-order variable and y is a fresh first-order variable, when-
ever required. It is assumed that the symbols Pi are predicate symbols uniquely
associated with the propositional variables pi. The nominals aj are uniquely as-
sociated with constants cj , and Rk is a binary predicate symbol representing
the accessibility relation associated with �k and ��

k . The symbol ≈ denotes the
first-order equality predicate. (We use the symbol = for syntactic equality.)

We have that α is locally satisfiable in Kn
(m)(

�, π+) iff ∃x[π(α, x)] is satisfiable
in classical second-order logic. (Note the freely occurring propositional symbols
in α are interpreted as propositional constants.)

Axiomatizations of traditional modal logics without second-order quantifiers
can be defined in terms of modal axioms and rules. In this paper a modal rule
is a pair Δ/Δ′ of sets of modal formulae without second-order quantifiers. A
modal axiom is a modal rule in which Δ is empty. The semantics of a rule is the
following: For any model M ,

∀p
[
M |=

∧
α∈Δ α ⇒ M |=

∧
β∈Δ′ β

]
,

where p denotes the sequence of propositional variables occurring in Δ and Δ′.
Thus, the semantics of an axiom α =

∧
Δ′ is given by ∀p[M |= α], or M |= ∀p[α].

Accordingly, the translation of modal rules and axioms is defined by a mapping
Π from rules/axioms to second-order formulae, given by:

Π(Δ/Δ′) = ∀P
[
∀x[π(

∧
α∈Δ α, x) → ∀x[π(

∧
β∈Δ′ β, x)]

]
;
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Π(α) = ∀P∀x[π(α, x)] ( ≡ ∀x[π(∀p[α], x)]).

Suppose L is a sublogic of Kn
(m)(�, π+). By L(R) we denote the extension of

L with a set R of modal rules or axioms. We have that a formula α is locally
satisfiable in L(R) iff

∧
R∈RΠ(R) ∧ ∃x[π(α, x)] is satisfiable in second-order

logic. (As above the freely occurring propositional symbols in α are interpreted
as constants.)

For the rest of the paper we need some more definitions, terminology and
notation. By ε we denote the empty sequence, by . sequence concatenation,
and by σ any (possibly empty) sequence of natural numbers which may be
overlined. By definition, let �εα =df α, �ε,�α =df α, �κ.σα =df �κ�σα, and
�κ.σ,�α =df �σ,��κ,�α. Define ♦ε, ♦σ, ♦σ,� similarly. For any terms s and t,
let Rε(s, t) =df s ≈ t, Rε,�(s, t) =df s ≈ t, Rκ.σ(s, t) =df ∃x[Rκ(s, x) ∧ Rσ(x, t)],
and Rκ.σ,�(s, t) =df ∃x[Rσ(t, x) ∧ Rκ(x, s)].

For any formula α, not containing ∼, let ∼α denote β, if α = ¬β, and ¬α,
otherwise.

A modal atom is a propositional atom or a formula �κβ, where β is in modal
disjunctive normal form. A modal literal is a modal atom or a negated modal
atom. A formula α is in modal disjunctive normal form iff it is a disjunction of
conjunctions of modal literals. Every Kn

(m)(
�)-formula can be effectively reduced

to modal disjunctive normal form.
An occurrence of a propositional variable in a modal formula α is positive

(negative) iff it occurs in the scope of an even (odd) number of explicit and
implicit negations. A modal formula α is positive (negative) in a variable p iff all
occurrences of p in α are positive (negative). Let Σ denote a (possibly empty)
set of propositional variables. A modal formula α is positive (negative) (in Σ)
iff all occurrences of p (from Σ) in α are positive (negative).

If Σ = {p1, . . . , pm} ⊆ V then ∃Σ[α], resp. ∀Σ[α], denotes ∃p1 . . . ∃pm[α],
resp. ∀p1 . . . ∀pm[α].

We write β(p) to indicate that p occurs freely in the formula β. By βγ1,...γn
α1,...αn

we mean the formula obtained from β by replacing all occurrences of γi by αi.
If N denotes a set of formulae, then Nγ1,...γn

α1,...αn
is defined similarly.

3 Modal Ackermann Calculi

The rules of our calculi operate on sets of Kn
(m)(

�)-clauses. A (modal) clause C
is a disjunction of modal logic formulae which is globally satisfiable, i.e., true
in every world of a model. For any inference rule of the form N/N ′, where N
and N ′ are sets of Kn

(m)(�)-clauses, their meaning is characterized by the follow-
ing property: M |= ∃Σ[

∧
N ] iff M |= ∃Σ[

∧
N ′], for any Kn

(m)(
�, π+)-model M .

The calculi are parameterized by a set Σ = {p1, . . . , pm} ⊆ V of propositional
variables, an ordering > on Σ and an ordering � of formulae and clauses. The
symbols in Σ are referred to as the non-base symbols. All other symbols are
assumed to be base symbols. The aim of the calculi is to eliminate the non-base
symbols from the input problem. The ordering > specifies in which sequence the
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Table 1. The calculus MAsw

Ackermann:
{α1 ∨ p, . . . , αn ∨ p} ∪N(p)

(Np
∼α1∨...∨∼αn

)¬¬α1,...,¬¬αn
α1,...,αn

provided (i) p is a non-base symbol, (ii) p is strictly maximal with respect to
each αi, and (iii) N is negative with respect to p. We refer to the clauses α1 ∨ p,
. . . , αn ∨ p as the positive premises of the rule.

Surfacing:
N ∪ {α ∨ �σβ(p)}

N ∪ {�σ,�α ∨ β(p)}
provided (i) p is the largest non-base symbol which occurs in α ∨ �σβ, (ii) p does
not occur in α, and (iii) �σβ is positive with respect to p. It is assumed that σ
is non-empty.

Skolemization:
N ∪ {¬a ∨ ¬�σβ(p)}

N ∪ {¬a ∨ ¬�σ¬b,¬b ∨ ∼β(p)}
provided (i) p is the largest non-base symbol which occurs in ¬a ∨ ¬�σβ,
(ii) ¬�σβ is positive with respect to p and (iii) b is a new nominal. It is as-
sumed that σ is non-empty.

Clausify:
N ∪ {¬(α ∨ β)}
N ∪ {∼α,∼β}

Purify:
N(p)

Np
�

N(p)

(Np
¬�)¬¬�

�
provided p is a non-base symbol, N is positive with respect to p, for the left rule,
and N is negative with respect to p, for the right rule.

Sign switching:
N(p)

(Np
¬p)

¬¬p
p

provided (i) N is closed with respect to the other rules, (ii) p is the maximal
non-base symbol in N , and (iii) sign switching with respect to p has not been
performed before.

non-base symbols are eliminated. We assume > is defined by: pi > pj if 1 ≤ i <
j ≤ m. The elimination operations eliminate strictly maximal symbols first. We
say p is strictly maximal with respect to a formula α if for any propositional
symbol q in α, p > q. � is any reduction ordering, i.e., a well-founded, rewrite
relation, on formulae and clauses which is compatible with the ordering > of the
non-base symbols.

Let MA be the calculus comprising the rules in Table 1, except for the sign
switching rule. The calculus with the sign switching rule is denoted by MAsw.
We use the subscript red for the calculi with the redundancy elimination rules
of Table 2. Brackets in (sw) and (red) indicate optionality.

In the MA calculus the Ackermann rule is one of two rules which eliminate
non-base symbols. Condition (ii) of the rule implies that p does not occur in
α1, . . . , αn and no non-base symbol occurring in any of the αi is larger than p.
By repeated use of the surfacing rule, positive occurrences of maximal non-base
symbols are moved upward in the formula tree, so that this formula can be used
as positive premise of the Ackermann rule. Note that if α is empty then this
is interpreted as ¬� and �σβ is replaced by �σ,�¬� ∨ β. The Skolemization
rule expands the existential formula in a clause of the form ¬a ∨ ¬�σα. Since a
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Table 2. Redundancy elimination rules

Delete:
N ∪ {α}

N
provided α is redundant with respect to N .

Replace:
N ∪ {α}
N ∪ {β}

provided (i) M |= α iff M |= β, for any Kn
(m)(

�)-model M ,
and (ii) α  β.

denotes a nominal this formula is interpreted as M, v(a) |= ¬�σα and can be
viewed as a locally satisfiable existential formula. The clausify rule replaces any
top-level conjunction by the set of conjuncts appearing in the conjunctions. The
purify rule is the other elimination rule. It eliminates a non-base symbol that
occurs only positively or only negatively by substitution with � or ¬�. The sign
switching rule is only applied when it has not been possible to eliminate the
maximal non-base symbol in the set. The strategy implicit in the definition is
to postpone the application of the rule as much as possible. This is however not
essential for correctness or termination of the calculus.

The delete rule (Table 2) is based on the following notion of redundancy. By
definition, a formula α is redundant with respect to a set N of clauses iff there
is a finite subset {β1, . . . , βl} of N such that (i) for any Kn

(m)(
�)-model M , if

M |= β1 ∧ . . . ∧ βl then M |= α, and (ii) α � βi for each 1 ≤ i ≤ l. It is possible
to define � in such a way that standard simplifications are possible. The replace
rule allows the replacement of formulae with logically equivalent formulae. The
replaced formulae are in fact redundant. Testing redundancy is in general a
computationally hard problem, in fact it has at least the complexity of the
base logic. For Kn

(m)(
�) the complexity is EXPTIME-complete. The delete and

replace rules have the advantage that they provide flexibility for using suitable,
tractable instances of the rules. We apply redundancy elimination only when β
is smaller than α with respect to the ordering �. Intuitively, β is then “simpler”
than α with respect to the ordering. Table 3 lists examples of logical equivalences
in Kn

(m)(
�) that when used as rewrite rules from left-to-right replace formulae by

Table 3. Sample rewrite rules (σ 	= ε)

Eliminate ↔, →, ∧, ♦σ, ⊥:
α↔ β ⇒ ¬(¬(∼α ∨ β) ∨ ¬(∼β ∨ α))

¬(α↔ β) ⇒ ¬(∼α ∨ β) ∨ ¬(∼β ∨ α)
α ∧ β ⇒ ¬(∼α ∨ ∼β) ♦σα ⇒ ¬�σ∼α

¬(α ∧ β) ⇒ ∼α ∨ ∼β ¬♦σα ⇒ �σ∼α

α → β ⇒ ∼α ∨ β
¬(α → β) ⇒ ∼α ∨ ∼β

⊥ ⇒ ¬�
¬⊥ ⇒ �

Distributivity of ∨, �σ over ∧: Obvious simplifications:
¬(α ∨ β) ∨ γ ⇒ ¬(¬(∼α ∨ γ) ∨ ¬(∼β ∨ γ))

¬(¬�σα ∨ ¬�σβ) ⇒ �σ¬(∼α ∨ ∼β)
Simplifications involving �σ and �σ,� :
¬a ∨ ¬�σ¬�σ,�¬a ∨ β ⇒ ¬a ∨ β

α ∨ �σ¬�σ,�α ⇒ �
α ∨ �σ�σ,�α ⇒ α ∨ �σ¬�

α ∨ α ⇒ α
α ∨ ¬α ⇒ �
α ∨ � ⇒ �

α ∨ ¬� ⇒ α
�σ� ⇒ �
¬¬α ⇒ α
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equivalent smaller formulae which can be implemented efficiently. Ignoring the
distributivity of disjunction over conjunction (which can lead to an exponential
blow-up), the transformations can be implemented with constant overhead. In
the remainder of the paper we assume that only effectively computable instances
of the delete and replace rules are used.

For the next theorem we need the notion of Skolem formulae. Suppose b
is the nominal introduced by the Skolemization rule reducing ¬a ∨ ¬�σα to
¬a ∨ ¬�σ¬b and ¬b ∨ ¬α. Then the formula (¬a ∨ ¬�σα) → ((¬a ∨ ¬�σ¬b) ∧
(¬b ∨ ¬α)) is the Skolem formula for b.

Subsequently we always assume N is the set of input clauses and Σ =
{p1, . . . , pm} is the ordered set of non-base symbols we want to eliminate. We
say a derivation in MA

(sw)
(red) is successful if none of the non-base symbols occur

in the result N∞ of the derivation, and a derivation is unsuccessful, otherwise.

Theorem 1 (Correctness and termination of MA
(sw)
(red)). For any MA

(sw)
(red)-

derivation N0(= N), N1, N2, . . . from N with result N∞: (i) No rules are ap-
plicable to N∞ with respect to Σ; (ii) There is an n ≥ 0 such that Nn = N∞;
(iii) If the derivation is successful, then for any Σ-equivalent models M and M ′,
M |=

∧
N ∧

∧
S(a1, . . . , al) iff M ′ |=

∧
N∞(a1, . . . , al), where a1 . . . al are the

nominals introduced during the derivation and S(a1, . . . , al) is the set of Skolem
formulae for a1, . . . , al.

If (iii) holds we say that N∞ corresponds to ∃Σ[N ] (modulo Skolem formulae).
The theorem says that any MA(sw)-derivation with respect to symbols in Σ

terminates, and when the non-base symbols have been successfully eliminated
then the input set is equivalent to the resulting set in the sense of (iii). (iii) is a
consequence of the property that all rules preserve equivalence modulo second-
order quantification of non-base symbols. For the Ackermann rule the preserva-
tion of this equivalence follows from a specialization of Ackermann’s Lemma [1]
for second-order logic to modal logic. Namely:

Theorem 2 (Ackermann Lemma). Let α and β be Kn
(m)(�)-formulae and

suppose the propositional symbol p does not occur in α. Let M be an arbitrary
Kn

(m)(�)-model. If p occurs only negatively in β then M |= βp
α iff there is a

model M ′ which is p-equivalent to M and M ′ |= (α → p) ∧ β(p).

Theorem 1 says in fact that for any given set N of formulae every MA-derivation
(with or without the sign switching rule and with or without the redundancy
elimination rules) stops after finitely many steps, i.e., termination is always guar-
anteed. It is however not guaranteed that there is a sequence of transformations
that succeeds for the particular ordering of non-base symbols. As a consequence,
in general, it may be necessary to attempt all possible orderings of the non-base
symbols. Even when all possible orderings are tried, success cannot be guar-
anteed because there is no rule for bringing non-base symbols occurring below
sequences of modal operators to the surface where a diamond operator occurs
below a box operator.
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4 Quantifier Elimination Procedures

Next we turn the MAsw
red-calculus into a procedure, called Msqel (instead of

MAsw
red we can also use one of the other calculi). Suppose that α is a given

Kn
(m)(�)-formula. The aim is to eliminate the non-base symbols in Σ from α.

The Msqel procedure involves two stages:

1. Pre-process input : While performing simplifications (e.g., based on the rules
of Table 3, except for the distributivity rules), transform the input formula α
into modal disjunctive normal form. That is, α is transformed into a disjunc-
tion of formulae of the form β ∧

∧
j �κjγj ∧

∧
l ¬�κlδl, where β is a con-

junction of propositional literals, and both γj and δl are in modal disjunctive
normal form. If one of the top-level disjuncts is a negated nominal ¬a, then
pick one of these, say ¬a, delete it but add it to the other top-level disjuncts.
E.g., α = ¬a ∨ ¬b ∨ α′1 ∨ α′2 becomes (¬a ∨ ¬b) ∨ (¬a ∨ α1) ∨ (¬a ∨ α2).
Suppose the result is the formula

∨
i αi.

2. Reduce disjuncts: This stage takes each disjunct αi in turn, selects an order-
ing of the non-base symbols in Σ and applies the rules of the calculus MAsw

red

to the set {αi} with respect to this ordering. If this succeeds and returns a
set Ni of Kn

(m)(
�)-clauses (which are free of non-base symbols) then we say

that Msqel has successfully reduced αi to Ni. If this stage is unsuccessful
then construct a derivation for αi with respect to a different ordering of the
non-base symbols.

The motivation for the pre-processing stage is to improve the success rate of
the elimination process, because it allows smaller formulae to be processed in
the separate reductions by MAsw

red. Whenever the simplifications performed are
effective, the pre-processing stage can be performed effectively for any Kn

(m)(
�)-

formula. The worst-case complexity of this stage is in general bounded by at
least an exponential function in the size of the formula. Observe however that
for the preservation of logical equivalence of the entire procedure, pre-processing
is not essential. Nevertheless the transformation is useful because it means that
smaller formulae are considered in the reduction stage. The transformation to
disjunctive normal form is in fact essential for the termination results of Sahlqvist
formulae and monadic inductive formulae. The purpose of the ‘distribution’ of
a negated nominal ¬a is to maximize the number of clauses of the form ¬a ∨ α′

passed to the reduction stage, because more rules can be invoked.

Theorem 3 (Correctness and termination of Msqel). For any Kn
(m)(

�)-
formula α and Σ ⊆ V : (i) Any implementation of Msqel terminates; (ii) If
it terminates successfully and returns a family of sets 〈Ni〉i then: (a) 〈Ni〉i is
a bounded family of bounded sets of Kn

(m)(
�)-formulae free of symbols in Σ;

(b) For any model M there is a Σ-equivalent model M ′ such that M |= α ∧
∧

S
iff M ′ |=

∨
i〈
∧

Ni〉i, where S is the set of modal Skolem formulae for nominals
introduced during the execution of the procedure.

If (ii.b) holds we say that
∨

i〈
∧

Ni〉i corresponds to ∃Σ[α] (modulo Skolem for-
mulae).
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For computing first-order correspondence properties the formulae returned by
Msqel need to be translated to first-order logic. Let Msqel

π be the procedure
which consists of the pre-processing and reduction stages of Msqel plus the
following translation stage.

3. Translate to first-order logic: This stage is performed only when every dis-
junct αi has been successfully reduced to a set Ni of Kn

(m)(
�)-formulae. Each

set is first transformed into a set Mi of first-order formulae in the obvious way
using the standard translation π. It remains to eliminate the constants cor-
responding to the nominals introduced by applications of the surfacing rule.
This can be done by unskolemization which is always successful. Hence, the
procedure terminates successfully and returns the formula ∀x

[∨
i UnSk(Mi)

]
,

where UnSk denotes the unskolemization operator and ∀x binds the free vari-
able that may occur in each Mi.

Theorem 4 (Correctness and termination of Msqelπ). For any Kn
(m)(

�)-
formula α and Σ ⊆ V : (i) Any implementation of Msqel

π terminates; (ii) If
Msqel

π terminates successfully and returns the formula β then: (a) β is a first-
order formula; (b) For any model M there is a Σ-equivalent model M ′ such that
M |= α iff M ′∗ |= β, where M ′∗ is the first-order model which corresponds to M ′.

When condition (ii.b) holds, we say that β corresponds to ∃Σ[α]. In this case we
also say ¬β corresponds to ∀Σ[¬α].

5 Computing Correspondences

Msqel
π can be used to compute first-order correspondence properties for modal

axioms and modal rules. This is how:

1. Take the given rule Δ/Δ′ and pass the formula β =
∧

Δ ∧
∧
{¬a ∨ ¬α |α ∈

Δ′}, where a is a fresh nominal, to Msqel
π. a is the Skolem constant asso-

ciated with the quantifier in the negation of the succedent of Π(Δ/Δ′). The
aim is to eliminate all propositional symbols that occur in β, i.e., Σ = V .

2. If Msqel
π succeeds, suppose it returns the formula γ.

By Theorem 4 we have that: ¬γ corresponds to the rule Δ/Δ′. (In fact, if Δ = ∅
then ¬γ is a local frame correspondence property for the axiom

∨
Δ′.) With

Msqel instead of Msqel
π the derived formula is a pure Kn

(m)(
�)-formula.

For illustration we consider two examples; more examples can be found in
the long version. First, the first-order correspondence property of ∀p∀q[�(�p ↔
q) → ♦�¬p] is ∀x∃y∀z[R(x, y) ∧ ¬R(y, z)]. Negating the modal formula gives:

1. ¬a ∨ �(�p ↔ q)
2. ¬a ∨ ¬♦�¬p

We want to eliminate the variables p and q. Using the ordering p > q the
reduction by MAsw

red does not succeed (cf. long version). Msqel
π now tries to

reduce the problem using a different ordering, namely q > p.
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3. ��¬a ∨ (�p ↔ q) 1, surf.

4. ��¬a ∨ ¬�p ∨ q 3, repl., cl.

5. ��¬a ∨ �p ∨ ¬q 3, repl., cl.

6. ��¬a ∨ �p ∨ ��¬a ∨ ¬�p 4 into 5, Acker.
7. � 6, repl.
8. ¬a ∨ ¬♦�¬� {2}, purify

The procedure returns the first-order translation of the negation of ¬a ∨ ¬♦�¬�
which gives the property we expect to obtain.

The example shows the general sensitivity to the order in which variables
are eliminated and the importance of detecting redundancy, without which the
second attempt would fail, too. The example is not a Sahlqvist formula or a
monadic inductive formula, but can, as we see, still be solved.

The second example illustrates how modal rules can be reduced. The rule
��p/♦p corresponds to ∀x∃y∃z[R(x, y) ∧ R2(z, y)]. A derivation is:

1. �2p

2. ¬a ∨ ¬♦p

3. �2,�¬� ∨ p 1, surf.
4. ¬a ∨ �¬p 2, repl.

5. ¬a ∨ ��2,�¬� 3 into 4, Acker.

Now translate clause 5 into first-order logic and negate.

6 The Classes C and C>

Next we define the classes C and C> for which we can guarantee successful
termination.

Assume Σ = {p1, . . . , pm} ⊆ V is the set of propositional non-base sym-
bols. Let p be a propositional variable (not necessarily in Σ). A formula in the
following form

�σ1(β1 ∨ �σ2(β2 ∨ . . .�σn(βn ∨ p) . . .))

is called a universal formula (positive) in p, if β1, . . . , βn are negative formulae
in Σ and each �σi is a possibly empty sequence of box operators (1 ≤ i ≤
n). Let N be a set of universal formulae. The dependency relation �d over
occurrences of the non-base symbols is defined by: p �d q iff there is γ ∈ N ,
p is a positive occurrence in γ and q is a negative occurrence in γ. Let �+

d be
the transitive closure of �d. If there is no variable occurrence of p such that
p �+

d p then we say that there are no cycles over Σ in N . (Note, the dependency
relation �d should not be confused with � or the ordering > on Σ.)

We define the class C as follows. Let N be a set of Kn
(m)(

�)-clauses and let Σ
be a non-empty set of propositional symbols. A pair 〈N,Σ〉 belongs to C if the
following conditions hold:



386 R.A. Schmidt

1. Each clause in N is a clause of one of these forms:

negative clause: β; universal clause: γ; local clause: ¬b ∨ ¬�σδ;

where σ �= ε, b denotes a nominal, β a negative clause1 in Σ, γ a universal
clause, and δ either a negated universal formula or a disjunction of negated
universal formulae and positive formulae in Σ.

2. There are no cycles over Σ in N .

Theorem 5. For any 〈N,Σ〉 ∈ C: (i) For any ordering of the variables in Σ,
any derivation based on MA effectively reduces N to a set N ′ of Kn

(m)(
�)-

formulae which are free of symbols in Σ, and N ′ corresponds to ∃Σ[N ] (modulo
Skolem formulae); (ii) Any Msqel

π derivation effectively computes a first-order
formula which corresponds to ∃Σ[N ].

The theorem says that the class C is equivalently reducible to formulae defined
only over the base symbols. Moreover, these can be computed with the rules
of MA, i.e., without sign switching, redundancy and using any ordering. This
means that Msqel and Msqel

π are successful without needing to attempt dif-
ferent orderings. Note however that for efficiency reasons the ordering of the
non-base symbols and the order of rule application do matter.

Since the ordering of the non-base symbols, sign switching and redundancy is
irrelevant for the success of the elimination of the non-base symbols, it is possible
to define an even larger class of formulae for which these are relevant. C> is such
a class.

We define C> as a class of tuples 〈N,Σ,>〉, where N is a set of Kn
(m)(

�)-
clauses, Σ = {p1, . . . , pm} is an ordered set of non-base symbols and > is
the ordering of Σ. By definition, 〈N,Σ,>〉 ∈ C> iff there is a sequence N1(=
N), N2, . . . , Nm of sets of clauses, such that

1. (Ni, {pi}) each belong to C, and
2. each Ni+1 is the output of MAsw

red on the input Ni and {pi}, where 1 ≤ i ≤ m.

Consider the set of clauses N = {2, 4, 5} to which the first example in Section 5
can be reduced. Let Σ = {q, p} and q > p. While 〈N,Σ〉 does not belong to C,
〈N,Σ,>〉 does belong to C>. This shows that C> strictly subsumes C.

Theorem 6. For any 〈N,Σ,>〉 ∈ C>: (i) Using the ordering > of the non-base
symbols in Σ, MAsw

red effectively reduces N to a set N ′ of Kn
(m)(

�)-formulae which
are free of symbols in Σ and N ′ corresponds to ∃Σ[N ] (modulo Skolem formu-
lae); (ii) Msqel

π effectively computes a first-order formula which corresponds
to ∃Σ[N ].

How do the Sahlqvist’s class [9] and the more general class of monadic inductive
axioms [3] relate to C and C>? The next result tells us that C accommodates
both the Sahlqvist class and the class of monadic inductive formulae. For both
the latter Σ = V . Thus C represents a strictly larger set of problems.
1 A clause with a property, e.g. being negative, universal, etc, is a clause which is a

formula with that property.
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Lemma 1. Any negated Sahlqvist formula over Kn
(m)(

�) and any negated mo-
nadic inductive formula over Kn

(m)(
�) can be reduced by standard equivalence

preserving transformations to a set of clauses in C.

Theorem 7. Let α be any Sahlqvist formula over Kn
(m)(�). Then: (i) Any

derivation of Msqel on ¬a ∨ ¬α successfully computes an equivalent, corre-
spondent Kn

(m)(
�)-formula which is free of any propositional variables; (ii) Any

derivation of Msqel
π on ¬a ∨ ¬α successfully computes an equivalent first-

order correspondent. In both cases any ordering may be used, and sign switching
and redundancy elimination are optional.

Theorem 8. The appropriate reformulation of Theorem 7 is true for any mo-
nadic inductive formula over Kn

(m)(
�).

Based on our analysis it is possible to define syntactic classes of modal rules
which are equivalently reducible to first-order correspondence properties. See
the long version for details.

7 Conclusion

The setting of our investigation was modal tense logic but all the techniques
and results are based on general principles which apply to polyadic modal log-
ics including polyadic inductive formulae defined in [8]. The ideas and results
also carry over to other logics. For example, it is immediate that all the results
transfer to description and hybrid logics which correspond to the logics consid-
ered in this paper. The integration of the ideas and techniques into methods for
first-order logic and classical fixpoint logic (Dls) does not pose any technical
difficulties either.

References

1. Ackermann, W.: Untersuchung über das Eliminationsproblem der mathematischen
Logik. Math. Ann. 110, 390–413 (1935)

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hi-
erarchic first-order theories. Appl. Algebra Engineering, Comm. Computing 5(3/4),
193–212 (1994)

3. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic: I. The core algorithm SQEMA. J. Logic Computat. 2(1-5),
1–26 (2006)

4. Conradie, W., Goranko, V., Vakarelov, D.: Algorithmic correspondence and com-
pleteness in modal logic: II. Polyadic and hybrid extensions of the algorithm
SQEMA. J. Logic Comput. 16, 579–612 (2006)

5. Doherty, P., Lukaszewicz, W., Sza�las, A.: Computing circumscription revisited: A
reduction algorithm. J. Automat. Reason. 18(3), 297–336 (1997)

6. Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
S. Afr. Computer J. 7, 35–43 (1992)



388 R.A. Schmidt

7. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publ. (2008)

8. Goranko, V., Vakarelov, D.: Elementary canonical formulae: Extending Sahlqvist’s
theorem. Ann. Pure Appl. Logic 141(1-2), 180–217 (2006)

9. Sahlqvist, H.: Completeness and correspondence in the first and second order se-
mantics for modal logics. In: Proc. 3rd Scandinavian Logic Symposium, 1973, pp.
110–143. North-Holland, Amsterdam (1975)



Literal Projection for First-Order Logic

Christoph Wernhard

Universität Koblenz-Landau
wernhard@uni-koblenz.de

Abstract. The computation of literal projection generalizes predicate
quantifier elimination by permitting, so to speak, quantifying upon an
arbitrary sets of ground literals, instead of just (all ground literals with)
a given predicate symbol. Literal projection allows, for example, to
express predicate quantification upon a predicate just in positive or neg-
ative polarity. Occurrences of the predicate in literals with the comple-
mentary polarity are then considered as unquantified predicate symbols.
We present a formalization of literal projection and related concepts,
such as literal forgetting, for first-order logic with a Herbrand semantics,
which makes these notions easy to access, since they are expressed there
by means of straightforward relationships between sets of literals. With
this formalization, we show properties of literal projection which hold
for formulas that are free of certain links, pairs of literals with comple-
mentary instances, each in a different conjunct of a conjunction, both
in the scope of a universal first-order quantifier, or one in a subformula
and the other in its context formula. These properties can justify the
application of methods that construct formulas without such links to
the computation of literal projection. Some tableau methods and direct
methods for second-order quantifier elimination can be understood in
this way.

1 Introduction

Predicate quantifier elimination has a large variety of applications in knowledge
processing, which continue to become apparent since the early nineties until
very recently [1,2,3,4,5,6,7,8]. This is sometimes not obvious, because opera-
tions such as the computation of uniform interpolants, forgetting and projection
are in fact variants of predicate quantifier elimination. In parallel to discover-
ing applications, the development of methods that perform predicate quantifier
elimination in first-order and related logics has been of continued interest since
the early nineties [1,3,9,8]. In recent years also predicate quantifier elimination
in propositional logic became a subject of research, driven largely by advances
in SAT-solving [4,5,10,11,12].

In this paper we focus on literal projection, which generalizes predicate
quantification by permitting, so to speak, quantifying upon an arbitrary set of
ground literals, instead of just (all ground literals with) a given predicate symbol.
Literal projection allows, for example, to express predicate quantification upon a
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predicate just in positive or negative polarity. Eliminating such a quantifier from
a formula in negation normal form results in a formula that might still contain
the quantified predicate, but only in literals whose polarity is complementary
to the quantified one. The result of wrapping a formula into such an existential
quantifier, followed by eliminating it, has – among the formulas that do not
contain the quantified predicate in the quantified polarity – exactly the same
theorems as the original formula. The result can be considered as an extract
of the original formula, where knowledge about the quantified predicate in the
quantified polarity is “forgotten”, but all other knowledge is retained. A look
over the 40000 theorems in the Mizar mathematical library, the largest collection
of formalized mathematical knowledge, indicates the order of magnitude of the
role of asymmetric polarity in actual knowledge bases: In 98.2 percent of the
theorems, at least one predicate symbol occurs only in a single polarity. In 66.9
percent, no predicate symbol occurs in both polarities. On average, 0.89 percent
of the predicate symbols in the signature of a theorem occur in the theorem only
in a single polarity.1

Literal forgetting, a variant of literal projection, has been formalized for propo-
sitional logic in [11]. We generalize this formalization to first-order logic with
Herbrand interpretations. A new formulation of the characterization in [11] fa-
cilitates the formal access to literal projection and related notions, which then
can be expressed by means of straightforward relationships between sets of liter-
als. With this formalization, we show some properties of literal projection which
hold for formulas that are free of certain links, pairs of literals with complemen-
tary instances, each in a different conjunct of a conjunction, both in the scope
of a universal first-order quantifier, or one in a subformula and the other in its
context formula. These properties can justify the application of methods that
construct formulas without such links to predicate quantifier elimination, or,
more generally, to the computation of literal projection. Some tableau construc-
tion procedures and direct methods [8] for second-order quantifier elimination
can be understood in this way.

The structure of the paper is as follows: In Sect. 2 the semantic frame-
work with the characterization of literal projection is defined and illustrated
by some examples. Further related concepts are defined in Sect. 3, in partic-
ular a formal account of the set of literals “about which a formula expresses
something.” In Sect. 4 basic properties of literal projection are summarized,
properties that relate to linklessness and conjunction are developed, and their
application to computation methods is outlined. A further property that relates
to linklessness between a subformula and its context is discussed in Sect. 5. In
the conclusion, applications of literal projection in knowledge-based systems are
suggested.

1 These statistics have been obtained with the MPTP 0.2 translation of the Mizar
library [13]. About 1000 theorems which have just equality as predicate or translate
to true have not been considered. Predicates that are only implicit in the original
Mizar syntax (modes, attributes and aggregates), as well as predicate occurrences in
set abstractions and type specifiers, have been taken into account.
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2 Semantic Framework, Projection and Forgetting

Notation. We write the positive (negative) literal with atom A as +A (−A).
We understand a first-order formula as in negation normal form, constructed
from literals, truth value constants �,⊥, binary connectives ∧,∨, and quantifiers
∀, ∃. Implication →, negation ¬ and dropping the sign of positive literals are
understood as meta-level notation with respect to this syntax. We assume a
fixed first-order signature with at least one constant symbol. The sets of all
ground terms and all ground atoms, with respect to this signature, are denoted
by GTERMS and GATOMS. Variables are x, y, z, also with subscripts. To avoid
clumsy handling of quantifier scopes, we assume that in a formula all occurrences
of the same variable are either free or are bound by an occurrence of a quantifier,
and that no two quantifier occurrences bind occurrences of the same variable.

The Projection Operator and Literal Scopes. A formula in general is like
a first-order formula, but in its construction a further operator, project(F, S),
is permitted, where F is a formula and S specifies a set of ground literals. We
call a set of ground literals in the role as argument to project a literal scope. The
formula project(F, S) is called the literal projection of F onto S. Literal projection
generalizes existential second-order quantification. It is further discussed below.

Interpretations. We characterize the semantics with a notational variant of the
framework of Herbrand interpretations: An interpretation is a pair 〈I, β〉, where
I is a structure, that is, a set of ground literals that contains for all ground
atoms A exactly one of +A or −A, and β is a variable assignment, that is, a
mapping of the set of variables into GTERMS.

Satisfaction Relation. The satisfaction relation between interpretations 〈I, β〉
and formulas is defined by the clauses in Tab. 1, where L matches a literal,
F, F1, F2 match a formula, and S matches a literal scope specifier. Two opera-
tions are defined on variable assignments β : If F is a formula, then Fβ denotes F
with all variables replaced by their image in β. If x is a variable and t a ground
term, then β t

x is the variable assignment that maps x to t and all other variables
to the same values as β.

The semantic definition of literal projection in Tab. 1 gives a formal account
of the following more intuitive characterization: An interpretation 〈I, β〉 satisfies
project(F, S) if and only if there is a structure J such that 〈J, β〉 satisfies F
and I can be obtained from J by replacing literals that are not in S with their
complements. This includes the special case I = J , where no literals are replaced.

Entailment and equivalence can be straightforwardly defined in terms of the
satisfaction relation: A formula F1 entails a formula F2, in symbols F1 |= F2,
if and only if for all interpretations 〈I, β〉 it holds that if 〈I, β〉 |= F1 then
〈I, β〉 |= F2. A formula F1 is equivalent to a formula F2, in symbols F1 ≡ F2, if
and only if F1 |= F2 and F2 |= F1.

Relation to Conventional Model Theory. Literal sets as components
of interpretations permit the straightforward definition of the semantics of
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Table 1. The Satisfaction Relation with the Semantic Definition of Literal Projection

〈I, β〉 |= �
〈I, β〉 	|= ⊥
〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ GTERMS it holds that 〈I, β t
x 〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ GTERMS such that 〈I, β t
x 〉 |= F

〈I, β〉 |= project(F, S) iffdef there exists a structure J such that
〈J, β〉 |= F and J ∩ S ⊆ I

literal projection given in the last clause in Tab. 1. The set of literals I of
an interpretation 〈I, β〉 is called “structure”, since it can be considered as rep-
resentation of a structure in the conventional sense used in model theory: The
domain is the set of ground terms. Function symbols f with arity n ≥ 0 are
mapped to functions f ′ such that for all ground terms t1, ..., tn it holds that
f ′(t1, ..., tn) = f(t1, ..., tn). Predicate symbols p with arity n ≥ 0 are mapped to
{〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}. Moreover, an interpretation 〈I, β〉 represents
a conventional second-order interpretation [14] (if predicate variables are con-
sidered as distinguished predicate symbols): The structure in the conventional
sense corresponds to I, as described above, except that mappings of predicate
variables are omitted. The assignment is β, extended such that all predicate
variables p are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}.

Some More Notation. If L is a literal, S is a literal scope, I is an interpre-
tation, x is a variable, and t is a term, then: L̃ denotes the complement of L;
S̃ def= {L̃ | L ∈ S}; S def= GLITS− S; S is called consistent if it does not contain a
literal and its complement; I[L] def= (I−{L̃})∪{L}; I[S] def= (I− S̃)∪S; F{x &→ t}
is F with all occurrences of x replaced by t.

Literal Forgetting. In some applications it is natural to consider projection
onto all literals with exception of those in a given set. The concept of forgetting
allows to express this conveniently: The literal forgetting in F about S, in symbols
forget(F, S), is defined by forget(F, S) def= project(F, S).

Atom Projection and Forgetting. In the special case where the literal scope
S is equal to S̃, we speak of atom projection and atom forgetting. The condition
J ∩S ⊆ I in the semantic definition of project is then equivalent to I∩S = J ∩S.
Existential second-order quantification can be expressed in terms of atom forget-
ting: ∃p F corresponds to forget(F, {L | L is a ground literal with predicate p}).

By the way, at least for propositional logic, it is also possible to define literal
forgetting in terms of atom forgetting, since for propositional formulas F and
ground literals L it holds that forget(F, {L}) ≡ (forget(L∧F, {L, L̃})∨ (L̃∧F )).
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Table 2. Examples of Literal Projection

(i) M1
def= {+p, +q, +r},

M2
def= {−p, +q, +r},

M3
def= {−p,−q, +r},

M4
def= {−p,−q,−r}.

(ii) M1 ∩ S = {+p, +q, +r},
M2 ∩ S = {−p, +q, +r},
M3 ∩ S = {−p, +r},
M4 ∩ S = {−p,−r}.

(iii) M ′
1

def= {+p, +q, +r},
M ′

2
def= {−p}.

(iv) M1 ∩ S = {+p, +r},
M2 ∩ S = {−p, +r},
M3 ∩ S = {−p,−q, +r},
M4 ∩ S = {−p,−q,−r}.

(v) M1 ∩ S = {+p, +r},
M2 ∩ S = {−p, +r},
M3 ∩ S = {−p, +r},
M4 ∩ S = {−p,−r}.

Example 1 (Forgetting a Negative Literal). Let F def= ((p → q)∧ (q → r))
and S def= {+p,−p, +q, +r,−r}. We now illustrate that project(F, S) ≡ ((p →
q) ∧ (p → r)). It is not hard to see that the models of F are exactly those
interpretations whose structures are a superset of at least one of M1, ...,M4,
defined as shown in Tab. 2.(i). Thus the equations in Tab. 2.(ii) hold. By the
semantic definition of literal projection, project(F, S) is a formula whose models
are exactly the interpretations which are a superset of at least one of the Mi∩S,
for i ∈ {1, ..., 4}. It is easy to see that this condition on interpretations, being
a superset of at least one of the Mi ∩ S, is equivalent to being a superset of
M ′

1 or M ′
2, defined as in Tab. 2.(iii). It is not hard to see that the models of

((p → q) ∧ (p → r)) are exactly the interpretations that satisfy this condition.

Example 2 (Forgetting a Positive Literal). Let F be defined as in Examp. 1
and S def= {+p,−p,−q, +r,−r}. Thus, S is as in Examp. 1, except that it contains q
negatively instead of positively. Analogously to Examp. 1, it can be shown that
project(F, S) ≡ ((p → r) ∧ (q → r)), where, if M1, ...,M4 are defined as in
Examp. 1, the equations in Tab. 2.(iv) hold.

Example 3 (Forgetting an Atom). Let F be defined as in Examp. 1 and
S def= {+p,−p, +r,−r}. Thus, S is as in Examp. 1 and 2, except that it does not
contain a literal with atom q. Analogously to Examp. 1, it can be shown that
project(F, S) ≡ (p → r), where, if M1, ...,M4 are defined as in Examp. 1, the
equations in Tab. 2.(v) hold.

3 Essential Literal Base and Related Concepts

Literal Base and Essential Literal Base. The signature, that is, the set of
predicate and function symbols, of a knowledge base hints the objects, concepts
and relations about which it expresses “knowledge”. But the signature might be
too large: For example the formula KB = (p ∨ (q ∧ ¬q)) is clearly equivalent
to p. Thus KB does express something about p but not about q, although q is
in its signature. One might argue that in practice such redundancies might be
avoided by carefully engineering knowledge bases. But such redundancies may
also arise by combining knowledge bases that are free of them. For example
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conjoining (q → p) with (¬q → p) results in an equivalent to KB, which, as we
have seen, does not express anything about q, although each of the conjuncts
expresses something about q. We call the set of ground literals “about which a
formula expresses something” its essential literal base, made precise in Def. 2.
The essential literal base of KB, for example, is {p}.

Definition 1 (Literal Base). The literal base of a formula F, in symbols L(F ),
is the set of ground instances of literals in F .

Definition 2 (Essential Literal Base). The essential literal base of a for-
mula F, in symbols LE(F ), is defined as LE(F ) def= {L | L is a ground literal and
there exist an interpretation 〈I, β〉 such that 〈I, β〉 |= F and 〈I[L̃], β〉 �|= F}.

The essential literal base of a formula is a subset of its literal base. The essential
literal base is independent of syntactic properties: equivalent formulas have the
same essential literal base.2

Switching Values Outside the [Essential] Literal Base. Prop. 1 below
states a property of literal bases that is useful to prove further properties: From
a given model of a formula another model can be obtained by switching only
literals not in the literal base of the formula. The precondition S ∩ L(F ) = ∅ is
equivalent to S̃ ∩ L̃(F ) = ∅. This suggests a second way to read the proposition:
another model can be obtained by switching literals in a way such that none of
the new values is complementary to an element of the literal base.

Proposition 1. If 〈I, β〉 is an interpretation, F is a formula and S is a con-
sistent set of ground literals such that 〈I, β〉 |= F and S ∩ L(F ) = ∅, then
〈I[S̃], β〉 |= F.

The analog to Prop. 1 for the essential literal base can be shown for first-order
formulas which do not contain existential quantifiers. For such formulas F, inter-
pretations 〈I, β〉, and consistent sets of ground literals S, it can be proven that
if 〈I, β〉 |= F and 〈I[S], β〉 �|= F, then there exists a finite set S′ ⊆ S such that
〈I[S′], β〉 �|= F. From this property, the analog to Prop. 1 for the essential literal
base can be derived. Since this analog is useful to prove properties of projection,
we give formulas that satisfy it a name, E-formulas:

Definition 3 (E-Formula). A formula F is called E-formula if and only if
for all interpretations 〈I, β〉 and consistent sets of ground literals S such that
〈I, β〉 |= F and S ∩ LE(F ) = ∅ it holds that 〈I[S̃], β〉 |= F.

As indicated above, first-order formulas without existential quantifier – including
propositional formulas and first-order clausal formulas – are E-formulas. Being
an E-formula is a property that just depends on the semantics of a formula, that
is, an equivalent to an E-formula is also an E-formula.
2 For propositional formulas, literal base and essential literal base are defined in [11],

called the sets of literals on which a formula is syntactically (semantically, resp.)
Lit-dependent.
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4 Properties of Projection

Basic Properties. Based on the semantic definition of project, it is not hard
to prove properties of projection as displayed in Tab. 3 and 4. They hold for
all formulas F, F1, F2, E-formulas E, literals L, and literal scopes S, S1, S2. The
properties in Tab. 4 strengthen properties in Tab. 3, but apply only to E-formulas.

Projection is “semantically determined”, in the sense that projections of equiv-
alent formulas onto the same scope are equivalent (Tab. 3.iii). The projection of a
formula onto its literal base is equivalent to the original formula (Tab. 3.vii). The
essential literal base of a projection is a subset of the projection scope and also a
subset of the essential literal base of the projection formula (Tab. 3.xii,xiii). Only
the intersection of the given scope with the literal base of the argument formula
is relevant for projection and forgetting (Tab. 3.xv,xvi). Property Tab. 3.xvii is
behind many applications of predicate quantifier elimination and its variants: A
formula Query is entailed by a formula KB if and only if it is entailed by the pro-
jection of KB onto the literal base of Query. Properties Tab. 3.xviii–xxiii show
relationships of projection with other logic operators.

Conjunction and Linklessness. While projection distributes straightfor-
wardly over disjunction and existential first-order quantification (Tab. 3.xx, xxii),
only one direction of the corresponding equivalences holds for conjunction and

Table 3. Properties of Projection

(i) F |= project(F, S)
(ii) if F1 |= F2, then project(F1, S) |= project(F2, S)
(iii) if F1 ≡ F2, then project(F1, S) ≡ project(F2, S)
(iv) if S1 ⊇ S2, then project(F, S1) |= project(F, S2)
(v) project(project(F, S1), S2) ≡ project(F, S1 ∩ S2)
(vi) F1 |= project(F2, S) if and only if project(F1, S) |= project(F2, S)
(vii) project(F,L(F )) ≡ F
(viii) project(F, GLITS) ≡ F
(ix) project(�, S) ≡ �
(x) project(⊥, S) ≡ ⊥
(xi) F is satisfiable if and only if project(F, S) is satisfiable
(xii) LE(project(F, S)) ⊆ S
(xiii) LE(project(F, S)) ⊆ LE(F )
(xiv) if project(F, S) |= F, then LE(F ) ⊆ S
(xv) project(F, S) ≡ project(F,L(F ) ∩ S)
(xvi) forget(F, S) ≡ forget(F,L(F ) ∩ S)
(xvii) F1 |= F2 if and only if project(F1,L(F2)) |= F2

(xviii) if no instance of L is in S, then project(L, S) ≡ �
(xix) if all instances of L are in S, then project(L, S) ≡ L
(xx) project(F1 ∨ F2, S) ≡ project(F1, S) ∨ project(F2, S)
(xxi) project(F1 ∧ F2, S) |= project(F1, S) ∧ project(F2, S)
(xxii) project(∃xF, S) ≡ ∃x project(F, S)
(xxiii) project(∀xF, S) |= ∀x project(F, S)
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Table 4. Properties of Projection for E-Formulas

(i) project(E,LE(E)) ≡ E (strengthens Tab. vii)
(ii) LE(E) ⊆ S if and only if project(E, S) ≡ E (strengthens Tab. xiv)
(iii) project(E, S) ≡ project(E,LE(E) ∩ S) (strengthens Tab. xv)
(iv) forget(E, S) ≡ forget(E,LE(E) ∩ S) (strengthens Tab. xvi)
(v) F |= E if and only if project(F,LE(E)) |= E (strengthens Tab. xvii)

universal first-order quantification (Tab. 3.xxi,xxiii). The precondition of the fol-
lowing theorem is sufficient for the converse of property Tab. 3.xxi. The essential
part of its proof is deferred to Lemma 1 below. The theorem is based on the rela-
tion linkless outside, which applies to a pair of formulas and a literal scope if all
ground atoms “involved in links” between the formulas (that is, are the atoms of
complementary ground instances of two literals, one in each component of the pair)
are contained in the literal scope, positively as well as negatively. For example, the
pair of formulas 〈p ∨ q, ¬p ∨ q〉 is linkless outside the literal scope {+p,−p}. The
relation is symmetric with respect to the pair components. Its formal definition is:

Definition 4 (Linkless Pair of Formulas). A pair of formulas 〈F1, F2〉 is

called linkless outside a literal scope S if and only if L(F1) ∩ L̃(F2) ⊆ S ∩ S̃.

Theorem 1 (Projection and Linkless Conjunction). If F1, F2 are for-
mulas and S is a literal scope such that 〈F1, F2〉 is linkless outside S, then
project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S).

Proof. The case where F1 = F2 is trivial. Assume F1 �= F2. Left-to-right is stated
as Tab. 3.xxi. Right to left follows from Lemma 1 below, with Φ = {F1, F2}, along
with the semantic definitions of projection and conjunction (Tab. 1). ��

Applications of Theorem 1. Boolean quantifier elimination is generalized by
propositional projection computation, that is, computing for a propositional for-
mula with the projection operator an equivalent formula without the projection
operator. Theorem 1 can be applied to justify methods for this task. They take
as input a formula project(F, S), where F is a propositional formula in negation
normal form, and proceed as follows:

1. Compute a formula F ′ which is equivalent to F and has the property that
for all conjunctive subformulas (F1 ∧ F2) it holds that 〈F1, F2〉 is linkless
outside S.

2. Replace all literals in F ′ that are not in S by �. The obtained formula is
the result of projection computation.

Propositional formulas that satisfy the condition of step (1.) for the empty set
as S (and thus also for any other set of literals as S) are called linkless [10].
Subclasses of linkless formulas are DNNF [5] and DNF, if complementary literals
are not permitted in the same clause. Step (2.) is justified, since by property 3.xx
and Theorem 1 the project operator in project(F ′, S) can be distributed inwards,
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immediately in front of literal subformulas, where its value is determined by
Tab. 3.xviii and xix. Regular tableaux, including semantic trees, whose nodes are
labeled with literals, either propositional, or with just non-rigid variables, can
be considered as representations of formulas – which are linkless. This is utilized
by propositional tableau- and DPLL-based knowledge compilation methods that
also perform Boolean quantifier elimination [10,15,12,16].

Another application of Theorem 1 is the justification of methods for proposi-
tional Lit-simplifying [11]. That is, computing for a given propositional formula
an equivalent formula containing only literals in the essential literal base, which
is assumed to be known. By Tab. 3.i, this task can be computed as described
above for projection computation: transforming to an equivalent formula where
all pairs of conjuncts are linkless outside the essential literal base, followed by
replacing the literals not in the essential base by �. There is also a dual alter-
native: From Tab. 3.i follows project(F,LE (F )) ≡ ¬project(¬F,LE (¬F )). Thus,
Lit-simplifying can also be performed by operating on ¬F instead of F, or, con-
sidered dually, by computing a formula that is equivalent to F and has the
property that for all disjunctive subformulas (F1 ∨ F2) it holds that 〈F1, F2〉 is
linkless outside the essential literal base of F (CNF formulas without tautolog-
ical clauses, for example, have this property). The literals not in the essential
base are then replaced by ⊥.3

Conjunction and Essential Linklessness. Theorem 2, which follows,
strengthens Theorem 1 for E-formulas. In its precondition the property essen-
tially linkless outside (Def. 5) takes the place of the stronger linkless outside.
That essentially linkless outside is weaker follows from the fact that the essen-
tial literal base of a formula is a subset of its literal base. Essentially linkless
outside is in a further respect different from linkless outside: it is independent
of syntactic properties – if 〈F1, F2〉 is essentially linkless outside S, and F ′

1, F
′
2

are formulas such that F ′
1 ≡ F1 and F ′

2 ≡ F2, then also 〈F ′
1, F

′
2〉 is essentially

linkless outside S. This follows, since equivalent formulas have the same essential
literal base.

Definition 5 (Essentially Linkless Pair of Formulas). A pair of formu-
las 〈F1, F2〉 is called essentially linkless outside a literal scope S if and only if

LE(F1) ∩ L̃E (F2) ⊆ S ∩ S̃.

Example 4 (Essentially Linkless Pair of Formulas). Let S be the set of
literals {+p,−p}. Then 〈p ∨ (q ∧ ¬q), ¬p ∨ q〉 is not linkless outside S, but
essentially linkless outside S.

3 In [11, Sect. 3.2] it is erroneously stated that Lit-simplifying of a propositional for-
mula in negation normal form (NNF) can be performed by (in our terminology)
substituting the literals which are not in the essential literal base with ⊥, and thus
would be a polynomial operation. The statement is false: Let F def= (p∨¬p). Then F
is in NNF and LE(F ) = ∅. Substituting in F the literals not in LE(F ) with ⊥ yields
(⊥ ∨⊥), which is not equivalent to F .
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Theorem 2 (Projection and Essentially Linkless Conjunction). If F1, F2

are E-formulas and S is a literal scope such that 〈F1, F2〉 is essentially linkless
outside S, then project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S).

Proof. Can be shown in the same way as Theorem 1, but based on a variant of
Lemma 1, where Φ is a set of E-formulas, and linkless outside in (A1) is replaced
by essentially linkless outside. The varied lemma can be proven like the original
one, with LE in place of L and referring to Def. 3 instead of Prop. 1. ��

Universal Quantification and Linklessness. The same principles that per-
mit to push the projection operator inside conjunctions can be applied to univer-
sal quantification. We state it for linkless outside as precondition in the following
theorem.

Theorem 3 (Projection and Linkless Universal Quantification). If F is
a formula, x is a variable that occurs free or not at all in F, and S is a literal scope
such that for all t, u ∈ GTERMS where t �= u it holds that 〈F{x &→ t}, F{x &→ u}〉
is linkless outside S, then project(∀xF, S) ≡ ∀x project(F, S).

Proof. The case where x does not occur in F is trivial. Assume x occurs free
in F . Left-to-right is stated as Tab. 3.xxiii. Right-to-left follows from Lemma 1
below, with Φ = {F{x &→ t} | t ∈ GTERMS}, along with the semantic definitions
of projection and universal quantification (Tab. 1). ��

The Lemma Underlying Theorems 1–3. We conclude this section by stating
the lemma underlying Theorems 1–3 and giving a proof sketch for it.

Lemma 1. If 〈I, β〉 is an interpretation, S is a literal scope, and Φ a set of
formulas such that

(A1) for all formulas F,G ∈ Φ such that F �= G it holds that
〈Fβ,Gβ〉 is linkless outside S, and

(A2) for all formulas F ∈ Φ it holds that 〈I, β〉 |= project(F, S),
then there exists an interpretation 〈J, β〉 such that

(C1) for all formulas F ∈ Φ it holds that 〈J, β〉 |= F , and
(C2) J ∩ S ⊆ I.

Proof (Sketch). Let 〈I, β〉, S, and Φ be as specified for the lemma, and assume
that they satisfy preconditions (A1) and (A2). For all F ∈ Φ let JF be a structure
such that 〈JF , β〉 |= F and JF∩S ⊆ I. The existence of such JF follows from (A2)
and the semantic definition of project. We prove the lemma by showing the
construction of a structure J such that consequences (C1) and (C2) are satisfied.
The construction of J is based on two auxiliary sets of literals, L+A and L−A,
which are associated with each ground atom A:

L+A def=
⋃

+A ∈ JF , F∈Φ

L(Fβ), L−A def=
⋃

−A ∈ JF , F∈Φ

L(Fβ).
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The structure J is then defined by:

If +A /∈ L+A and (−A ∈ L−A or −A ∈ I), then −A def
∈ J, else +A def

∈ J.

For all elements F of Φ let MF
def= JF ∩ J̃ . Then J = JF [M̃F ]. It can be verified

that MF ∩ L(Fβ) = ∅. Since 〈JF , β〉 |= F, consequence (C1) then follows from
Prop. 1. It can be verified that J ⊆

⋃
F∈Φ JF ∪I. Consequence (C2) then follows

since JF ∩ S ⊆ I. ��

5 Unlinked Literal Occurrences

The following theorem uses the linkless outside property related to specific oc-
currences of literals in formulas. If a literal is “not linked” to its context within
a formula, then replacing the literal by � yields a formula whose projection is
equivalent to the projection of the original one. The idea is to use the equiv-
alence stated in the theorem as building block for methods to eliminate the
projection operator, although this remains largely future work. As a first ap-
proach, we show below, with Prop. 2, that a restricted variant of the Ackermann
lemma [17,18], the basis of several known methods for second-order quantifier
elimination [3,9,8], can be modeled with the theorem.

Following the terminology of [19], if F is a formula with a subformula oc-
currence replaced by a hole, and G is a formula, then F [G] is F with the hole
replaced by G. At the same time F [G] indicates that the formula F contains an
occurrence of the subformula G.

Theorem 4 (Eliminating an Unlinked Literal Occurrence). If S is a
literal scope, L is a literal of which no instance is in S, and F [L] is a first-order
formula such that

(A1) for all subformulas (F1[L] ∧ F2) and (F2 ∧ F1[L]) of F [L] it holds that
〈L, F2〉 is linkless outside S, and

(A2) for all subformulas (∀xF ′[L]) of F [L] and
t1, t2 ∈ GTERMS such that t1 �= t2 it holds that
〈L{x &→ t1}, F ′[L]{x &→ t2}〉 is linkless outside S,

then
project(F [L], S) ≡ project(F [�], S).

Proof (Sketch). The left-to-right direction follows from Tab. 3.ii, since F [L] |=
F [�]. The right-to-left direction can be shown as follows: Let 〈I, β〉 be an inter-
pretation such that 〈I, β〉 |= project(F [�], S). By the definition of project, there
exists an interpretation 〈J, β〉 such that 〈J, β〉 |= F [�] and J ∩ S ⊆ I. We need
to show that 〈I, β〉 |= project(F [L], S), that is, that there exists an interpreta-
tion 〈K,β〉 such that 〈K,β〉 |= F [L] and K ∩ S ⊆ I. In case 〈J, β〉 |= F [L], we
have found in J a suitable K. The other case, where 〈J, β〉 �|= F [L], can be shown
by induction on first-order formulas F [L], where L is a literal, and F [L] satisfies
(A1) and (A2). Before stating the induction property, we need some more nota-
tion: If F,G are formulas and β is a variable assignment, then F (β ↓ G) denotes
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F with those variables that are free in G replaced by their images in β. The in-
duction property is: If S is a literal scope such that no instance of L is in S and
〈J, β〉 is an interpretation such that 〈J, β〉 |= F [�] and 〈J, β〉 �|= F [L], then there
exists a set M of ground instances of L(β ↓ F [L]) such that 〈J [M ], β〉 |= F [L].
The set of literals M is defined such that S ∩ M = ∅, which allows to conclude
J [M ] ∩ S ⊆ J ∩ S. If K = J [M ], then from J ∩ S ⊆ I follows K ∩ S ⊆ I.

We sketch the base case for literals, and the induction steps for conjunction
and universal quantification. The remaining induction steps for disjunction and
existential quantification are straightforward to show. In the base case where
F [L] = L it holds that 〈J, β〉 �|= L. A suitable M is {Lβ}. The induction step for
F [L] = (F1[L] ∧ F2) can be shown as follows: From 〈J, β〉 |= (F1[�] ∧ F2) and
〈J, β〉 �|= (F1[L]∧F2) follows 〈J, β〉 �|= F1[L], hence by the induction assumption,
there exists a set M of instances of L(β ↓ F1[L]) such that 〈J [M ], β〉 |= F1[L].
By condition (A1) it holds that L(F2) ∩ M̃ = ∅. From 〈J, β〉 |= F2, then by
Prop. 1 follows 〈J [M ], β〉 |= F2.

The induction step for F [L] = (∀xF ′) can be shown as follows: From 〈J, β〉 |=
∀x F ′[�] follows that for all ground terms t it holds that 〈J, β t

x 〉 |= F ′[�].
Let T be the set of ground terms t such that 〈J, β t

x〉 �|= F ′[L]. From 〈J, β〉 �|=
∀x F ′[L] follows that T is not empty. For all t ∈ T let Mt be a set of literals,
ground instances of L(β t

x ↓ F ′[L]) such that 〈J [Mt], β
t
x 〉 |= F ′[L]. The existence

of these Mt follows from the induction assumption. Let M def=
⋃

t∈T Mt. The
induction conclusion 〈J [M ], β〉 |= ∀xF ′[L] is implied by the fact that for all
ground terms t it holds that 〈J [M ], β t

x 〉 |= F ′[L], which can be shown as follows:
Let t be an element of T and s be an arbitrary ground term, different from t. By
(A2) it holds that ˜L(L{x &→ t})∩L(F ′[L]{x &→ s}) = ∅. Since Mt ⊆ L(F ′[L]{x &→
t}), it follows that

M̃t ∩ L(F ′[L]{x &→ s}) = ∅. (i)

If t ∈ T, then 〈J [Mt], β
t
x 〉 |= F ′[L], hence 〈J [Mt], β

t
x 〉 |= F ′[L]{x &→ t}. From

Eq. (i) follows (M−Mt)∩L(F ′[L]{x &→ t}) = ∅. By Prop. 1 follows 〈J [M ], β t
x 〉 |=

F ′[L]{x &→ t}, hence 〈J [M ], β t
x 〉 |= F ′[L]. Else, if t /∈ T, from Eq. (i) follows

M ∩ L(F ′[L]{x &→ t}) = ∅. From 〈J, β t
x 〉 |= F ′[L] it can be concluded, similarly

as in the case where t ∈ T , with Prop. 1 that 〈J [M ], β t
x 〉 |= F ′[L]. ��

Application of Theorem 4. The Ackermann lemma states an equivalence of
formulas of a certain form and with a second-order quantifier to first-order for-
mulas. Proposition 2 can be used to prove a restricted variant of the Ackermann
lemma (the restriction is that the subformula which may contain multiple in-
stantiated occurrences of the quantified predicate is not permitted to contain the
existential first-order quantifier). The proposition statement shows that equiv-
alence with respect to the projection (expressed conveniently as forgetting) is
preserved by eliminating a single occurrence of a positive literal with predicate p.
The way the literal occurrence is eliminated is identical to the way in which ac-
cording to the Ackermann lemma all occurrences of literals with positive p are
eliminated. By iterated rewriting with the equivalence of Prop. 2, all positive
occurrences of p can be eliminated, permitting the negative occurrence finally to
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be eliminated directly according to Theorem 4, followed by dropping the forget
operator. The result is then the same first-order formula that would be obtained
by a single rewriting step with the Ackermann lemma. Of course, as for the
Ackermann lemma, there is also a dual variant of Prop. 2 with polarities of the
occurrences of p switched, but we do not state this explicitly here.

We use additional notation: A sequence of terms t1, ..., tn is abbreviated by t. If
F is a formula, then F (t) denotes F with all occurrences of variables xi replaced
by term ti, for i ∈ {1, ..., n}.

Proposition 2 (Ackermann Lemma Step for Universal Formulas). Let p
be a n-ary predicate symbol, and F,G be first-order formulas such that p does not
occur in F and does occur in G only in positive literals, G has the form G[p(t)],
and G does not contain an existential quantifier. Then

(F1) forget((∀x ¬p(x) ∨ F (x)) ∧ G[p(t)], P+) ≡
(F2) forget((∀x ¬p(x) ∨ F (x)) ∧ G[F (t)], P+),

where P+ is the set of all positive ground literals with predicate p.

Proof (Sketch – see [16] for more details). Formula (F1) is equivalent to the
following formula (F1′), since the formula arguments in both forget expressions
are equivalent.

(F1′) forget(∀x (p(x) ∧ F (x) ∧G[�]) ∨ (¬p(x) ∧ G[x �= t]), P+)

The leftmost literal p(x) in (F1′) meets the requirements on L in Theorem 4.
By that theorem (F1′) is equivalent to (F2′), which, again by equivalence of the
formula arguments in both forget expressions, is equivalent to (F2).

(F2′) forget(∀x (� ∧ F (x) ∧ G[�]) ∨ (¬p(x) ∧G[x �= t]), P+)
��

6 Conclusion

We expect that the consideration of polarity will play an important role in some
applications of predicate quantifier elimination – for example to compute knowl-
edge base extracts that just keep information about a predicate in one polarity
and thus suffice to answer queries containing the predicate just in this polarity, or
for knowledge base modularization, where it should be ensured that additions to
a knowledge base affect some predicate only in a certain polarity. We presented
a formalization that expresses polarity sensitive predicate quantification in an
easily accessible way by means of literal sets. It applies to first-order logic, and
thus should provide a basis also for other logics used in knowledge representation
that are more expressive than just propositional logic. We applied the formal-
ization to show some properties of literal projection which relate to methods
for predicate quantifier elimination. These properties already suffice as building
blocks to justify some methods that can in practice be used for predicate quan-
tifier elimination, and provide a basis to extend the successful applications of
projection computation in the context of propositional knowledge compilation
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to more expressive logics. The investigation of further methods, especially for
non-propositional formulas, remains future work.

Acknowledgments. I am grateful to Renate A. Schmidt for valuable comments
and discussions on earlier versions of some of the material in the paper, and to
anonymous referees for helpful suggestions to improve the presentation.
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Abstract. In this paper, we propose a logic framework for meta level reasoning
as well as default reasoning in a general sense, based on an arbitrary underlying
logic. In this framework, meta level reasoning is the task of how to deduce new
meta level rules by giving a set of rules, whilst default reasoning is the problem of
what are the possible candidate beliefs by giving them. We define the semantics
for both meta level reasoning and default reasoning and investigate their relation-
ships. We show that this framework captures various nonmonotonic paradigms,
including answer set programming, default logic, contextual default reasoning,
by applying the underlying logic to different classes. Finally, we show that this
framework can be reduced into answer set programming.

1 Introduction

Consider that an agent A is reasoning about a system S, where information can be
captured by a logic consisting of a language L and an entailment relation |=L among
formulas in L. In principle, if the agent A has perfect reasoning power, then its informa-
tion about S should be a set of formulas in L closed under |=L, say a candidate belief.
Suppose that Γ is a set of formulas, representing the information that A considers to
be true about S. Thus, Cn(Γ ), the closure of Γ under |=L, should be included in every
possible candidate beliefs.

However, Cn(Γ ) is not the only information that A can have about S. More can
be obtained by meta level rules, which represent statements about possible candidate
beliefs in a meta level language. For instance, a statement may claim that ”if a candidate
belief does not contain F1, then it must contain F2”. In fact, the well-known closed
world assumption is a special case of this statement when F2 is ¬F1, providing that the
language L has the connective ¬ to represent negative information in the system.

Meta level rules cannot be represented in the language L itself since the objects they
deal with are not formulas in L but statements about candidate beliefs. More precisely,
meta level rules are composed by primitive statements and meta level connectives. The
former are sentences stating whether a formula is contained in a possible candidate be-
lief, while the latter are words connecting those primitive statements in a meta language.
Consider the example mentioned above. There are two primitive statements, namely,
”the candidate belief contains F1” and ”the candidate belief contains F2”. Furthermore,
they are connected by two meta level connectives, namely ”not” and ”if then”.
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Hence, the problem of how to represent meta level rules can be divided into two parts,
how to represent primitive statements and how to represent meta level connectives.
In this paper, we simply write a formula F in L to represent the primitive statement
”the candidate belief contains F ”. On the other hand, we adopt a set of propositional
meta level connectives, including rule and ( & ), rule or (4), rule negation (∼) and rule
implication (⇒). For example, the meta level statement in the above example can be
represented as ∼F1 ⇒ F2.

There are two fundamental reasoning tasks in relation to reasoning about meta level
rules. The first one is called meta level reasoning. That is, which meta level rules can
be deduced by giving a set of rules. Another reasoning task is default reasoning, which
is the problem of what are the possible candidate beliefs by giving a set of rules.

In this paper, we propose a logic framework for both meta level reasoning and default
reasoning in a general sense, based on an arbitrary underlying logic, which consists of a
language L and an entailment relation |=L under some restrictions. In this sense, there
are numerous instances of the underlying logic, such as set inclusion, propositional
logic, epistemic logic and so on.

The reasons why we consider arbitrary underlying logics are threefold. Firstly, due
to diversity of applications, the logic for representing the system S may vary from the
simplest one to more complicated ones. Secondly, considering the two reasoning tasks
in a general sense may help us to reveal the nature of them. Finally, a general framework
not only unifies a number of existing approaches but also initiates promising ones.

The rest of this paper is organized as follows. Next, we propose the syntax and ba-
sic semantics of the logic framework. In Section 3, we define both meta level reasoning
and default reasoning of the framework semantically, and investigate their relationships.
Then, we show that this framework is powerful enough to capture various existing ap-
proaches and possible new ones in Section 4. In Section 5, we show that it can be
reduced into its simplest case, namely answer set programming. Finally, we draw our
conclusions.

2 Syntax and Basic Semantics

To begin with, we need to specify what a logic is. We adopt Gentzen’s idea [1] of stan-
dard logic system, which consists of two components. Firstly, it has a syntax, namely, a
formal language to define what are the objects dealt with in this logic system. We denote
it by a language L. Basically, it can be represented as a set. Elements in L are called
formulas. Secondly, the logic system should have reasoning ability, that is, to answer
the question whether a formula can be derived by other formulas. This is formalized
by an entailment relation |=L between a set of formulas and a formula in L. In other
words, |=L is a relation |=L⊆ 2L × L, that satisfies the following two restrictions:

Reflexivity if F ∈ Γ , then Γ |=L F ;
Transitivity (cut) if for all F ′ ∈ Γ ′, Γ |=L F ′, then Γ ′ |=L F implies that Γ |=L F ,

where Γ, Γ ′ ⊆ L, F, F ′ ∈ L.
According to reflexivity and transitivity, a logic system also satisfies the following

properties.
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Proposition 1. Let L be a language and |=L the corresponding entailment relation
satisfying reflexivity and transitivity. Then, it also satisfies the following properties:

Monotonicity if Γ ⊆ Γ ′, then for all F ∈ L such that Γ |=L F , Γ ′ |=L F ;
Equivalency if for all F ′ ∈ Γ ′, Γ |=L F ′ and for all F ∈ Γ , Γ ′ |=L F , then for all

G ∈ L, Γ |=L G iff Γ ′ |=L G;
Extendability if for all F ′ ∈ Γ ′, Γ |=L F ′, then for all F ∈ L, Γ ∪ Γ ′ |=L F iff

Γ |=L F .

Of course, classical propositional logic is a typical example of such a logic. There are
numerous other examples, such as first order logic, modal logic, probabilistic logic,
intuitionistic logic and so on. In particular, set inclusion can also be considered as a
logic. Let Atom be a set of atoms. The formulas in the language L of set inclusion are
defined as elements in Atom, and the entailment relation between a set Γ of formulas
(i.e. a subset of Atom) and a formula F (i.e. an element in Atom) is defined as set
inclusion (i.e. Γ |=L F iff F ∈ Γ ). It is obvious that this entailment relation (i.e. set
inclusion) satisfies reflexivity and transitivity.

However, Reiter’s default logic is not a logic according to this definition if the en-
tailment relation is defined as credulous reasoning or skeptical reasoning. One reason is
that both credulous reasoning and skeptical reasoning do not satisfy transitivity. Another
reason is that the consequence of both credulous reasoning and skeptical reasoning is
not a default rule but a propositional formula1.

A closure is a set C of formulas in L closed under the entailment relation |=L. That
is, C is a closure iff for all F ∈ L such that C |=L F , F ∈ C. By reflexivity, it is easy
to see that if C �|=L F 2, then F �∈ C. Hence, C |=L F iff F ∈ C. It is easy to see that
if C1 and C2 are two closures, then so is C1 ∩ C2.

Proposition 2. Let L be a language and |=L the corresponding entailment relation
satisfying reflexivity and transitivity. Let Γ be a set of formulas in L. There exists a
unique closure C such that for all F ∈ L, Γ |=L F iff C |=L F .

We write Cn(Γ ) to denote this closure of Γ . For convenience, we simply use Γ to
denote Cn(Γ ) if it is clear from the context. Clearly, if Γ1 ⊆ Γ2, then Cn(Γ1) ⊆
Cn(Γ2).

Based on the underlying logic L, we define a meta level languageML(L), following
a similar construction of general default logic [3]. One major difference is that, instead
of classical propositional logic, we use an arbitrary underlying logic as discussed above.

The meta level language ML(L) is defined upon L by introducing a set of meta
level rule connectives (rule connectives for short), including rule and ( & ), rule or (4),
rule implication (⇒), and a special 0-ary connective falsity ⊥ as follows:

R := F | ⊥ | R & R | R 4 R | R ⇒ R,

1 Hence, our definition of logic is not the same as Brewka and Eiter’s [2]. According to their
definition, both default logic and answer set programming are logics.

2 We write Γ 	|=L F if it is not the case that Γ |=L F , the same for other similar notations used
later.
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where F ∈ L. We also introduce other rule connectives truth �, rule negation ∼, and
rule equivalence⇔. �, ∼R and R1 ⇔ R2 are considered as shorthand of⊥ ⇒ ⊥, R ⇒
⊥ and (R1 ⇒ R2) & (R2 ⇒ R1) respectively. Formulas in ML(L) are called meta
level rules (rules for short). In particular, formulas in L are also rules. For convenience,
we call them facts. A rule base is a set of rules. The subrule relationship between two
rules are defined recursively.

– R1 is a subrule of R1.
– Both R1 and R2 are subrules of R1 & R2, R1 4R2 and R1 ⇒ R2.

In particular, if F is a fact and also a subrule of R, we say that F is a subfact of R.
In the basic semantics, we define the satisfaction relation |=B between closures in

the underlying language L and meta level rules recursively as follows:

– If R is a fact, then C |=B R iff C |=L R;
– C �|=B ⊥;
– C |=B R & S iff C |=B R and C |=B S;
– C |=B R 4 S iff C |=B R or C |=B S;
– C |=B R ⇒ S iff C �|=B R or C |=B S.

Thus, C |=B �. C |=B ∼R iff C |=B R ⇒ ⊥ iff C �|=B R or C |=B ⊥ iff C �|=B R.
C |=B R ⇔ S iff C |=B (R ⇒ S) & (S ⇒ R) iff C |=B R ⇒ S and C |=B S ⇒ R
iff (a) C |=B R and C |=B S or (b) C �|=B R and C �|=B S. We say that C satisfies
R, also C is a model of R iff C |=B R. We say that two rules are weakly equivalent if
they have the same set of models. We say that C satisfies a rule base Δ iff C satisfies
all rules in Δ.

Example 1. Consider the rule ∼F1 ⇒ F2. If a closure contains neither F1 nor F2, then
it is not a model of this rule. On the other hand, a closure containing F1 satisfies this
rule, so does a closure containing F2.

Note that the underlying logic may have internal relationships among formulas. For
instance, consider a rule F1 & ∼F2. If in an underlying logic L, {F1} |=L F2, then
there is no model of the rule F1 & ∼F2. However, if in another underlying logic L′,
{F1} �|=L′ F2, then a closure containing F1 but not F2 is a model of the rule F1 &∼F2.

The basic semantics can be translated into classical propositional logic. Let At(L) be
a set of atoms in propositional logic and At a one-to-one mapping from L to At(L).
Given a meta level rule R, by TrCL(R) we denote the propositional formula obtained
from R by simultaneously replacing every subfact F in R with At(F ) and every rule
connective with corresponding classical propositional connectives. Given a closure C,
by At(C), we denote the propositional assignment3 over At(L) such that F ∈ C iff
At(F ) ∈ At(C).

Theorem 1. Let R be a rule and C a closure. C |=B R iff At(C) is a model of
TrCL(R) in classical propositional logic.

Corollary 1. Let R1 and R2 be two rules. If TrCL(R1) is equivalent to TrCL(R2) in
classical propositional logic, then for all closures C, C |=B R1 iff C |=B R2.

3 We identify a propositional assignment as the set of atoms assigned to be true in it.
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3 Meta Level Reasoning and Default Reasoning

A natural question is so-called meta level reasoning, namely, how to derive new meta
level rules by giving a set of rules. We use a bi-level semantics for this reasoning task.
The semantics is originated from the logic of here-and-there, which was developed by
Heyting and adopted by Pearce [4] for answer set programming.

A bi-level interpretation in ML(L) is a pair 〈C1, C2〉, where C1 and C2 are both
closures in L. The satisfaction relation |=BI between bi-level interpretations and meta
level rules is defined recursively as follows:

– if R is a fact, then 〈C1, C2〉 |=BI R iff C1 |=B R and C2 |=B R;
– 〈C1, C2〉 �|=BI ⊥;
– 〈C1, C2〉 |=BI R1 & R2 iff 〈C1, C2〉 |=BI R1 and 〈C1, C2〉 |=BI R2;
– 〈C1, C2〉 |=BI R1 4 R2 iff 〈C1, C2〉 |=BI R1 or 〈C1, C2〉 |=BI R2;
– 〈C1, C2〉 |=BI R1 ⇒ R2 iff

1. 〈C1, C2〉 �|=BI R1 or 〈C1, C2〉 |=BI R2 and
2. C2 |=B R1 ⇒ R2.

We say that 〈C1, C2〉 is a bi-level model of R iff 〈C1, C2〉 |=BI R. We say that a rule
base Δ implies a rule R, denoted by Δ |=BI R, iff all bi-level models of Δ are bi-level
models of R as well.

The reason why we call this semantics bi-level is that the two components of the
pair represent two levels of information respectively. The second lies on the underlying
level, which represents a possible guess of the agent about the system, while the first
one lies on the meta level, which represents the actual set of information that the agent
can have by fixing the underlying level information.

Example 2 (Example 1 continued). Consider the rule ∼F1 ⇒ F2. Suppose that C0 is
the closure TH(∅), while C1 is a closure containing F1. Then, 〈C1, C1〉 is a bi-level
model of ∼F1 ⇒ F2, so is 〈C0, C1〉. However, 〈C1, C0〉 and 〈C0, C0〉 are not. Thus,
{∼F1 ⇒ F2} �|=BI F1 4 F2 since 〈C0, C1〉 is a bi-level model of ∼F1 ⇒ F2 but not a
bi-level model of F1 4 F2. However, one can check that {F1 4 F2} |=BI ∼F1 ⇒ F2 no
matter what the underlying logic is.

The bi-level semantics and the basic semantics are closely related. By induction on the
structure of R, we have the following result.

Proposition 3. Let 〈C1, C2〉 be a bi-level interpretation and R a rule.

– 〈C1, C2〉 |=BI ∼R iff C2 |=B ∼R.
– 〈C1, C1〉 |=BI R iff C1 |=B R.
– If 〈C1, C2〉 |=BI R, then C2 |=B R.

The result of Proposition 3 is not new; it holds for the logic of here-and-there as well [5].
In fact, the bi-level semantics shares the nature of the logic here-and-there. There are
two major differences. Firstly, the bi-level semantics is generalized into an arbitrary
case, whilst the logic of here-and-there is only concerned with set inclusion (i.e. atom
sets). Secondly, in the bi-level semantics, we do not require the restriction that the first
component of the pair has to be a subset of the second one.
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Proposition 4. Let Δ be a rule base and R1 and R2 two rules. Δ ∪ {R1} |=BI R2 iff
Δ |=BI R1 ⇒ R2.

Proposition 5. Let Δ be a rule base and R1 and R2 two rules. If Δ |=BI R2, then
Δ ∪ {R1} |=BI R2.

Proposition 6. Let Δ be a rule base, R a rule and C a closure. If C |=B Δ and
Δ |=BI R, then C |=B R.

Proposition 7. Let 〈C1, C2〉 be a bi-level interpretation and R a rule. 〈C1, C2〉 |=BI R
iff 〈C1 ∩C2, C2〉 |=BI R.

According to Proposition 7, the bi-level semantics, when the underlying logic is set
inclusion, is indeed identical to the logic of here-and-there. The reasons why we make
this minor change (i.e. to remove the restriction) are twofold. On the one hand, the
restriction seems unnecessary and not natural from a mathematical point of view. On
the other hand, the intuitions behind the bi-level semantics without the restriction are
clearer than that with it.

Perhaps, another reasoning task is more interesting, namely default reasoning, which
is the problem of what are the possible candidate beliefs by giving a set of meta level
rules. We introduce two semantics for default reasoning. One is a reduction style exten-
sion semantics, following the idea from Ferraris’ work [6] on answer set semantics for
so-called propositional theories, and extended to general default logic by Zhou et al. [3].
The other is equilibrium semantics, originated from Pearce’s equilibrium logic [4].

The reduct of a rule R relative to a closure C, denoted by RC , is the rule obtained
from R by simultaneously replacing every maximal subrule not satisfied by C with ⊥.
A closure C is said to be a candidate belief4 of a rule R if it is the minimal closure (in
the sense of set inclusion) satisfying RC . That is, C |=B RC and there does not exist
another closure C1 ⊂ C such that C1 |=B RC . We say that two rules are equivalent if
they have the same set of candidate beliefs. Clearly, this definition can be generalized
to rule bases, similar for definitions presented later.

Example 3 (Example 2 continued). Consider the example ∼F1 ⇒ F2 again. Assume
that F1 and F2 are not related in the underlying logic5. Let C1 be the closure Cn({F1})
and C2 be the closure Cn({F2}). Then, (∼F1 ⇒ F2)C1 is ⊥ ⇒ F2. Of course, C1 is
a model of ⊥ ⇒ F2. However, Cn(∅) is also a model of ⊥ ⇒ F2. Thus, C1 is not a
candidate belief of ∼F1 ⇒ F2. On the other hand, C2 is the minimal closure satisfying
(∼F1 ⇒ F2)C2 , which is ∼⊥ ⇒ F2. Thus, C2 is a candidate belief of ∼F1 ⇒ F2.

We introduce a notion of strong equivalence between two rules. The notion of strong
equivalence, introduced by Lifschitz [7] for answer set programming, and extended to
default logic by Turner [8], plays a very important role in default reasoning. Two rules
R1 and R2 are said to be strongly equivalent iff for all other rules R3, R1 & R3 has the
same set of candidate beliefs as R2 & R3.

4 This is different from the notion of belief or knowledge in epistemic reasoning.
5 There are four possible relationships between F1 and F2: (a) there is no closures containing

both F1 and F2; (b) {F1} |=L F2; (c) {F2} |=L F1, or (d) none of the above. In the first three
cases, F1 and F2 are related.
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We also define the equilibrium semantics for default reasoning. A bi-level interpreta-
tion 〈C1, C2〉 is said to be an equilibrium model of a rule R iff (a) 〈C1, C2〉 is a bi-level
model of R; (b) C1 = C2; (c) there does not exist C′

1 ⊂ C1 such that 〈C′
1, C2〉 is also a

bi-level model of R.
Equilibrium semantics is essentially a fixed point semantics. In this sense, it shares

the same basic idea of the extension semantics. Both of them can be viewed as three
steps. First, guess a possible set of information. Second, derive a minimal set of infor-
mation by fixing the guess. Finally, if these two sets coincide with each other, then it is
a possible candidate belief.

Example 4 (Example 3 continued). Again, consider the example ∼F1 ⇒ F2. Let C0,
C1 and C2 be three closures Cn(∅), Cn({F1}) and Cn({F2}) respectively. We have
that 〈C1, C1〉 is a bi-level model of ∼F1 ⇒ F2, so is 〈C0, C1〉. Thus, 〈C1, C1〉 is not
an equilibrium model of ∼F1 ⇒ F2. On the other hand, 〈C2, C2〉 is a bi-level model of
∼F1 ⇒ F2, and there is no other closure C′ such that C′ ⊂ C2 and 〈C′, C2〉 is also a
bi-level model of ∼F1 ⇒ F2. Thus, 〈C2, C2〉 is an equilibrium model of ∼F1 ⇒ F2.

Certainly, the four semantics, basic semantics, bi-level semantics, extension semantics
and equilibrium semantics are closely related.

Proposition 8. Let Δ be a rule base and C a closure. If C is a candidate belief of Δ,
then C |=B Δ.

However, the converse of Proposition 8 does not hold in general. For instance,Cn({F1})
is a model of ∼F1 ⇒ F2 but not a candidate belief of it.

Proposition 9. Let Δ be a rule base and C1 and C2 two closures. 〈C1, C2〉 |=BI Δ iff
C1 |=B ΔC2 .

Theorem 2. Let Δ be a rule base and C a closure. C is a candidate belief of Δ iff
〈C,C〉 is an equilibrium model of Δ.

Proposition 10. Let R1 and R2 be two rules. R1 and R2 are strongly equivalent iff
|=BI R1 ⇔ R2.

Corollary 2. Let Δ be a rule base and R a rule. Δ |=BI R iff Δ ∪ {R} is strongly
equivalent to Δ.

To sum up, we have defined three levels of semantics, the basic semantics lies on the
underlying level and the bi-level semantics lies on the meta level, whilst on the middle
level are two equivalent semantics, namely the extension semantics and the equilib-
rium semantics. Although basic semantics, equilibrium semantics and reduction-style
semantics are used for answer set programming, the idea that they can be used in a
much more general sense has not been proposed yet. In addition, the idea of using bi-
level semantics for meta level reasoning is a novel approach. The equivalence relations
of those three levels are captured by weak equivalence, strong equivalence and equiva-
lence respectively.

Proposition 11. Let R1 and R2 be two rules. If R1 and R2 are strongly equivalent,
then R1 and R2 are equivalent and weakly equivalent as well.
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Example 5 (Example 4 continued). Consider four rules ∼F1 ⇒ F2, F2, ∼∼F1 4F2 and
F1 4F2 and assume that F1 and F2 are not related in the underlying logic (See Footnote
5). We have that ∼F2 ⇒ F1 is strongly equivalent to ∼∼F1 4 F2. ∼F1 ⇒ F2 is
equivalent to F2, but neither strongly equivalent nor weakly equivalent to F2. ∼F1 ⇒
F2 is weakly equivalent to F1 4 F2, but neither strongly equivalent nor equivalent to
F1 4 F2.

The results proposed in this section are not surprising since they hold for answer set
programming as well. However, their proofs in general do not follow directly from the
simplest cases since the underlying logic is not simply a set. There are many features
which can be exploited in set inclusion. For instance, in set inclusion, a set of atoms is a
closure. However, it might be not the case for an arbitrary logic. In addition, the atoms
in set are not related, but they may have very complex relationships in an arbitrary logic.

4 The Underlying Logic

In this section, we show that the logic framework presented above is powerful enough to
capture various existing approaches by applying the underlying logic to different classes.
Due to a space limit, we only briefly outline the basic ideas and results in this paper and
leave backgrounds, detailed comparisons and discussions to a future full version.

4.1 Set Inclusion (with Classical Negation)

As we have shown in Section 2, set inclusion can be considered as a logic. Similarly,
set inclusion with classical negation can be treated as a logic as well. Let Atom be a set
of atoms and Lit the set of literals, i.e., atoms or their classical negations. The formulas
in the language S¬ of set inclusion with classical negation are defined as elements in
Lit. Let Γ be a set of formulas (i.e. a set of literals) and F a formula (i.e. a literal).
Γ |=S¬ F iff (a) F ∈ Γ or (b) there exists an atom a such that a,¬a ∈ Γ . Clearly, this
entailment relation satisfies reflexivity and transitivity.

Answer set programming (with classical negation) corresponds to default reason-
ing in meta level language when the underlying logic is set inclusion (with classical
negation). On the other hand, it also explains why the answer set semantics for logic
programs with classical negation work very well.

Theorem 3. Let P be a disjunctive logic program (with classical negation) [9] and
X a set of atoms (literals). X is an answer set of P iff X is a candidate belief of
P̂ in ML(S) (ML(S¬)), where P̂ is the set of meta level rules obtained from P by
replacing each rule p1 | . . . | pn ← q1, . . . , qm, not r1, . . . , not rl by a meta level rule
q1 & . . . & qm & ∼r1 & . . . & ∼rl ⇒ p1 4 . . . 4 pn.

Clearly, Theorem 3 also holds for normal logic programming [10]. More generally, it
holds for Ferraris’ answer set semantics for propositional theories [6] as well.

Theorem 4. Let Γ be a set of propositional formulas and X a set of atoms. X is an
answer set of Γ iff X is a candidate belief of Γ̂ in ML(S), where Γ̂ is the set of meta
level rules obtained from Γ by replacing every classical propositional connectives with
corresponding rule connectives.
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4.2 Propositional Logic

Certainly, classical propositional logic CL is a typical example of the underlying logic.
The following theorem shows that Zhou et al.’s general default logic is a special case of
the logic framework by applying the underlying logic to propositional logic.

Theorem 5. Let Δ be a rule base in general default logic [3]. A theory T is an exten-
sion of Δ iff T is a candidate belief of Δ in ML(CL).

As shown in [3], Reiter’s default logic in the propositional case [11] and Gelfond et al.’s
disjunctive default logic [12] are special cases of general default logic. Therefore these
two approaches are also special cases of default reasoning of ML(CL).

4.3 First Order Logic: Closed Case

Let FOL be a first order language. By FOLS , we denote the subclass of FOL by
restricting the formulas to sentences, i.e., first order formulas without free variables.

Theorem 6. A set of sentences is an extension of a closed default theory 〈D,W 〉 iff it
is a candidate belief of W ∪ D̂ in ML(FOLS)6.

4.4 Multi-context Logic

It is well argued that the notion of context plays a very important role in AI [13, 14, 15,
16]. A context of an agent about the environment represents its own (local) subjective
view of the environment. There is an increasing interest on formalizing a multi-context
language, which defines not only the information of a number of contexts themselves
but also the information of interrelationships among them.

Given a set L1, . . . ,Ln of n languages and their corresponding entailment relations
satisfying both reflexivity and transitivity, we define a multi-context languageL1×. . .×
Ln. The formulas in L1 × . . . × Ln are labeled formulas, which have the form 〈k, F 〉,
where k is a label to denote which context it comes from and F is a formula in Lk. A
formula 〈k, F 〉 is entailed by a set Γ of formulas in L1 × . . . × Ln iff F is entailed in
the logic Lk by the set of formulas in Γ labeled by k. Formally,

Γ |=L1×...×Ln 〈k, F 〉 iff {G | 〈k,G〉 ∈ Γ} |=Lk
F.

Clearly, |=L1×...×Ln satisfies reflexivity and transitivity as well.
A set Γ of formulas in L1 × . . . × Ln can be equivalently written as an n-tuple

(Γ1, . . . , Γn), where Γk = {G | 〈k,G〉 ∈ Γ}. Under this reformulation, we show that
Brewka et al.’s contextual default reasoning, which can be considered as a ”syntactical”
counterpart of Roelofsen and Serafini’s information chain approach [15], is a special
case of the framework when the underlying logic is a multi-context propositional logic.

6 D̂ is the set of rules inML(FOLS) by rewriting each rule F1, MF2, . . . , MFn/Fn+1 in D
to F1 &∼¬F2 & . . . &∼¬Fn ⇒ Fn+1.
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Theorem 7. Let L1, . . . ,Ln be n propositional languages (built over different sets of
atoms). (Γ1, . . . , Γn) is a contextual extension of a normal multi-context system C [16]
iff (Γ1, . . . , Γn) is a candidate belief of Ĉ in ML(L1 × . . .× Ln)7.

Furthermore, Brewka et al.’s approach is a homogeneous one (i.e. all the contexts are
propositional languages), whilst our approach allows heterogenous contexts. Our ap-
proach is also an generalization of Giunchiglia’s heterogenous multi-context logic [14],
which does not consider nonmonotonic rules.

A related work is due to Brewka and Eiter [2]. They also intend to integrate heteroge-
nous contexts by nonmonotonic rules. However, in their approach, the underlying logic
is defined as a tuple (KB,BS,ACC), where KB is the set of all possible knowledge
bases, BS is the set of all possible belief sets, and ACC is a function from KB to 2BS ,
for describing the ”semantics” of this logic. A logic in our sense can be decried as a
special kind of this tuple as follows: KB are the sets of formulas in L; BS are the sets
of closures; ACC is the closure operator. When restricting Brewka and Eiter’s sense of
logic to ours, their approach of equilibria coincides with default reasoning of the meta
level language by applying the underlying logic to multi-context logic.

5 Reducing into Answer Set Programming

In this section, we show that the logic framework proposed in this paper can be reduced
into its simplest case, namely answer set programming, by identifying the internal re-
lationships among formulas in the underlying logic. Here, we consider the general case
of answer set programming in the propositional case [6].

Let R be a rule. We write Fact(R) to denote the set of subfacts of R. Suppose that
Fact(R) = {F1, . . . , Fn}. We introduce n new atoms P = {p1, . . . , pn} associated
with each fact in Fact(R). By P (R) we denote the answer set program obtained from
R by simultaneously replacing each occurrence of Fi, (1 ≤ i ≤ n) in R with pi. By
I(R) we denote the programs of all rules of the following form:

pi1 & pi2 & . . . & pik ⇒ pj,

where {i1, i2, . . . , ik, j} ⊆ {1, . . . , n} such that {Fi1, Fi2, . . . , Fik} |=L Fj . By
Tr(R) we denote the program {P (R), I(R)}.

Let Γ and Γ ′ be two sets of formulas in L such that Γ ⊆ Γ ′. We say that Γ is
maximal to Γ ′ iff for all formulas F ∈ Γ ′\Γ , Γ �|=L F .

Proposition 12. Let R be a rule and C a closure. If C is a candidate belief of R, then
there exists a subset Γ of Fact(R) such that C = Cn(Γ ).

Theorem 8. Let R be a rule and Fact(R) = {F1, . . . , Fn}. Let P = {p1, . . . , pn} be
n new atoms associated with each fact in Fact(R).

7 Here, Ĉ is the set of rules inML(L1 × . . .× Ln) obtained from C by rewriting each fact F
in Wi to 〈i, Fi〉, and each rule 〈c1, G1〉, . . . , 〈cm, Gm〉 : 〈cm+1, H1〉, . . . , 〈cm+n, Hn〉/F in
Di to 〈c1, G1〉 & . . . & 〈cm, Gm〉 & ∼〈cm+1,¬H1〉 & . . . & ∼〈cm+n,¬Hn〉 ⇒ 〈i : F 〉,
where F , Gi, Hj are propositional formulas in corresponding contexts.
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1. If {pi1, . . . , pik} is an answer set of Tr(R), then Cn{Fi1, . . . , Fik} is a candidate
belief of R and {Fi1, . . . , Fik} is maximal to Fact(R).

2. If C is a candidate belief of R and {Fi1, . . . , Fik} is the set of formulas obtained
in Proposition 12 such that C = Cn({Fi1, . . . , Fik}), then {pi1, . . . , pik} is an
answer set of Tr(R).

Theorem 9. Let R be a rule. |=BI R iff all HT-models of I(R) are also HT-models of
P (R).

Intuitively, the rule R is constructed from Fact(R) by rule connectives. P (R) repre-
sents the structure of R (i.e. the way of constructing R), while I(R) identifies all the
internal relationships among Fact(R). Theorem 8 and 9 show that, both meta level
reasoning and default reasoning in any meta level language can be captured in answer
set programming by separating the structure of rules and the interrelationships among
underlying facts.

The translation introduces n new atoms, where n is the number of facts in Fact(R).
Clearly, n is polynomial, in fact linear, in the length of R. Interestingly, the original
atoms in R no longer occur in Tr(R). However, in some cases, n could be exponential
in the number of the original atoms since atoms can compose exponential number of
formulas in some underlying logics (e.g. propositional logic).

One of the most important problems is whether this translation is polynomial or not.
Unfortunately, although P (R) is linear in the size of R, I(R) may contain exponential
number of rules. The reason is that there may be exponential number of such internal
relationships among Fact(R). Observing that not all rules in I(R) are necessary, we
can pick up those ”minimal” ones, namely, the set of premises is the minimal set satisfy-
ing the consequence in Fact(R). However, even only taken these internal relationships
into account, the number is still exponential. For example, in classical propositional
logic, let Atom = {a1, . . . , am} be m atoms. Let Fij , (1 ≤ i ≤ m), (1 ≤ j ≤ m)
be the formula ai → aj . Then, we have m2 formulas. However, we have exponential
number of such internal relationships. For instance, for any set of atoms ai1, . . . , aik

different from two atoms ai, aj , {ai → ai1, ai1 → ai2, . . . , aik−1 → aik, aik → aj}
is a minimal set satisfying ai → aj .

Despite this negative result, the translation is not only of theoretical interests but also
of practical uses. It enables us to easily analyze the meta level language in small-scale
case studies. Also, it is a useful tool to investigate properties in meta level language. For
instance, the following propositions follow from Theorem 8 and 9 straightforwardly.

Corollary 3. If L is a decidable language, then both meta level reasoning and default
reasoning of ML(L) are decidable.

Corollary 4. Contextual ASP [16] has the same computational complexity as normal
logic programming.

6 Conclusion

In this paper, we proposed a logic framework for meta level reasoning as well as de-
fault reasoning about meta level rules. In this framework, meta level reasoning is the
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reasoning task of how to deduce new meta level rules by giving a set of rules, while
default reasoning is the problem of what are the possible candidate beliefs by giv-
ing them. Default reasoning has attracted a lot of attentions in the past three decades
[3, 6, 8, 9, 10, 11, 12, 16, 17]. On the other hand, meta level reasoning, although also im-
portant, was relatively less studied. A closely related topic is normative reasoning [18],
which can be considered as a fragment of meta level reasoning of default logic. Another
topic is so-called SE-consequence [19, 20] in answer set programming, which actually
coincides with meta level reasoning task of answer set programming.

Some technical results, although not trivial, might not be surprising since they hold
for corresponding cases of answer set programming and default logic as well [3, 5].
However, surprisingly, all these can be summarized in a general framework with simple
semantics. Hence, we argue that, this framework, indeed, captures the nature of both
meta level reasoning and default reasoning in a general sense.

It is worth mentioning that default reasoning is nonmonotonic (in the sense of skep-
tical reasoning or credulous reasoning), whilst meta level reasoning is actually mono-
tonic (See Proposition 5). Furthermore, meta level reasoning also satisfies reflexivity
and transitivity. This means that meta level reasoning itself can also be treated as a
logic in our sense. However, default reasoning is not. In other words, in this framework,
”default” is not a logic but a meta level reasoning task.

We demonstrated this framework’s expressiveness to capture several existing ap-
proaches of default reasoning by applying the underlying logic to different classes.
More precisely, answer set programming, default logic in propositional case, default
logic in closed first order case and contextual default logic coincide with default rea-
soning of meta level language of set inclusion, propositional logic, first order logic and
multi-context logic respectively (See Theorem 3-7).

Also, the framework will initiate some new promising formalisms. One of them is to
consider description logic, for instance SHIQ, as the underlying logic. This provides
a natural combination of description logic and rule-based formalism, which is a crucial
step to fulfil the blueprint of Semantic Web Initiative [21,22]. However, rule connectives
considered in this paper are basically propositional. In other words, meta level rules with
free variables cannot be represented in this approach. One possible way to overcome this
barrier is to use the technique of grounding [9,10]. That is, to define a first order meta
level language powerful enough to represent rules with variables, and then to transfer
them to propositional meta level rules by grounding for all instances. However, this topic
is beyond the scope of this paper. We leave it to our future investigations. Certainly,
there are many other interesting and important candidates of the underlying logic, such
as epistemic logic, logic of multi-agents, temporal logics, logics of uncertainty, and so
on. Many of them are worth pursuing. We leave them to our future work as well.

We showed that both meta level reasoning and default reasoning in a general sense
can be reduced to its simplest case (Theorem 8 and 9), namely answer set programming,
by identifying the internal relationships (represented by I(R) in the translation) among
formulas in the underlying logic. This provides a powerful tool to study the general
framework without going through the details of the underlying logic.

To sum up, the main contributions of this framework are as follows. Firstly, it unifies
a bunch of existing approaches for default reasoning, and it can be easily seen that this
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approach can also initiate other promising paradigms of default reasoning. In addition,
it suggests a new reasoning task, namely meta level reasoning, for deriving new meta
level rules given a rule base. Finally, it can be interestingly reduced to the simplest case,
namely answer set programming.
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Abstract. We consider the problem of how a default rule can be deduced from
a default theory. For this purpose, we propose an axiom system which precisely
captures the deductive reasoning about default rules. We show that our axiomatic
system is sound and complete under the semantics of the logic of here-and-there.
We also study other important properties such as substitution and monotonicity
of our system and prove the essential decision problem complexity. Finally, we
discuss applications of our default rule calculus to various problems.

1 Introduction

Default logic is one of the predominant approaches for nonmonotonic reasoning. Many
research topics related to default logic have been considerably studied including exten-
sions, variations and alternatives [1, 2, 3] of Reiter’s original definition [4], computa-
tional issues [5, 6] and so on.

However, one problem in default logic has been neglected in previous research. That
is, how can we deduce a default rule from a default theory? In other words, in which
sense can we say that a default rule is a consequence of a given default theory? This
problem of rule deduction is of special interests from both theoretical and practical
viewpoints. For instance, we may consider whether we can have a deductive system to
formalize reasoning about default rules, and also implement a nonmonotonic knowl-
edge system for more complex decision making where a decision could be a default
rule. Quite obviously, to achieve such goals, the first fundamental task is that we should
develop a logic or calculus for default rule reasoning.

In this paper, we propose a logical calculus, called default rule calculus (rule cal-
culus for short), to address the problem of rule deduction. We first extend the logic of
here-and-there to define a model-theoretical semantics for rule calculus, and discuss
its relationships to the extension semantics. Then we define an axiom system, which
extends both classical propositional calculus and the intermediate logic G3 (Gödel’s
3-valued logic) [7], and prove its soundness and completeness. We further investigate
some important properties of our system such as substitution and monotonicity, and
prove the essential decision problem complexity. Finally, we discuss how our work can
be applied to various problems such as the extension of generality among default rules
and revision of nonmonotonic knowledge bases.

The reasons why we use the logic of here-and-there are as follows. Firstly, it is well
studied in philosophical logic and it also has a simple axiomatic counterpart, namely

S. Hölldobler, C. Lutz, and H. Wansing (Eds.): JELIA 2008, LNAI 5293, pp. 416–428, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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G3 [7]. Secondly, it is proven to be a very useful foundation of answer set program-
ming [2, 8, 9, 10]. As pointed out in [3], answer set programming is a special case of
default logic by restricting the propositional formulas to atoms. Thus, the extended
version of the logic of here-and-there should, analogously, serve as a foundation of de-
fault logic. Thirdly, the logic of here-and-there naturally captures [2, 11] the notion of
strong equivalence [11], which is argued to be the notion of ”real equivalence” among
answer set programs. As a consequence, it will also capture real equivalence among
default rules.

In this paper, we will use general default logic [3] as a basis for the development of
default rule calculus. Reasons for this are of three aspects: firstly, general default logic
is a generalization of Reiter’s default logic [4], Gelfond et al.’s disjunctive default logic
[1] and Turner’s nested default logic [2], which provides the most generalized default
reasoning in the default logics paradigm; secondly, the syntax of general default logic
is defined as arbitrary compositions of propositional formulas and rule connectives;
finally, its extension semantics is defined in a very simple way as that for answer set
programming [9].

The rest of the paper is organized as follows. In Section 2, we briefly review the syn-
tax and semantics of general default logic, and then define the semantics of rule calcu-
lus. In Section 3, we present an axiom system for rule calculus and prove its soundness
and completeness result. We then study relevant important properties of our axiom sys-
tem for default rule calculus in Section 4. In Section 5, we discuss possible applications
of rule calculus. Finally, in Section 6 we conclude the paper with some remarks.

2 Rule Calculus: Syntax and Semantics

To begin with, we recall some basic notions of classical propositional logic. The classi-
cal propositional languageL is defined recursively by a set Atom of atoms (or primitive
propositions, variables) and a set of classical connectives ⊥, → and ¬. Other connec-
tives, such as �, ∧, ∨, ↔, are defined as usual. Literals are atoms and their negations.
The satisfaction relation |= is defined as usual. A set of formulas in L is said to be a the-
ory iff it is closed under classical entailment. Moreover, it is inconsistent iff it contains
both a formula F and ¬F , otherwise, it is consistent. Let Γ be a set of formulas, by
Th(Γ ) we denote the theory containing all formulas entailed by Γ . For convenience,
we also use a set of formulas Γ to denote a theory T if T = Th(Γ ).

The language R of general default logic [3] is defined upon L by adding a set of rule
connectives ⇒, & and | recursively:

R ::= F | R ⇒ R | R & R | R | R,

where F ∈ L. −R and R1 ⇔ R2 are considered as shorthand of R ⇒ ⊥ and (R1 ⇒
R2) & (R2 ⇒ R1) respectively. The order of priority for these connectives are

{¬} > {∧,∨} > {→,↔} > {−} > { & , | } > {⇒,⇔}.

Formulas in R are called rules, whilst formulas in L are called facts. A rule base is
a set of rules. The satisfaction relation |= between a theory T and a rule R is defined
recursively as follows:
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– If R is a fact, then T |= R iff R ∈ T .
– T |= R & S iff T |= R and T |= S;
– T |= R | S iff T |= R or T |= S;
– T |= R ⇒ S iff T �|= R or T |= S.

Hence, if T is consistent, then T |= −R iff T �|= R. If T is inconsistent, then for every
rule R, T |= R. We say that T is a model of R iff T |= R.

The extension semantics of general default logic defined in [3] is not defined as
the same as Reiter’s original definition [4]. However, it is defined in a reduction-style
similarly to that of answer set programming [9]. The reduct of a rule R relative to a
theory T , denoted by RT , is the rule obtained from R by replacing every maximal
subrule1 of R which is not satisfied by T with ⊥. The reduct of a rule base relative
to a theory is defined as the set of reducts of its rules relative to this theory. A theory
T is said to be an extension of a rule base Δ iff it is the minimal (in the sense of set
inclusion) theory satisfying ΔT .

As shown in [3], Reiter’s default logic [4] in propositional case is a special case of
general default logic by restricting the rules to the following form

F & −G1 & . . . & −Gn ⇒ H,

where n ≥ 0, F , Gi, (1 ≤ i ≤ n) and H are facts. Yet, under the context of Reiter’s
default logic, this form is represented as

F : M(¬G1), . . . ,M(¬Gn)
H

.

Similarly, both Gelfond et al.’s disjunctive default logic [1] and Turner’s nested default
logic [2] are also special cases of general default logic.

Here, we adopt Turner’s (Section 7 in [2]) extended notion of Heyting’s logic of
here-and-there, introduced by Pearce [10] into answer set programming, as the basic
semantics for general default logic. An HT-interpretation is a pair 〈T1, T2〉, where T1

and T2 are theories such that T1 ⊆ T2. The satisfaction relation |=2 between an HT-
interpretation 〈T1, T2〉 and a rule R is defined recursively:

– for a fact F , 〈T1, T2〉 |= F iff F ∈ T1;
– 〈T1, T2〉 |= R1 & R2 iff 〈T1, T2〉 |= R1 and 〈T1, T2〉 |= R2;
– 〈T1, T2〉 |= R1 |R2 iff 〈T1, T2〉 |= R1 or 〈T1, T2〉 |= R2;
– 〈T1, T2〉 |= R1 ⇒ R2 iff

1. 〈T1, T2〉 �|= R1 or 〈T1, T2〉 |= R2, and
2. T2 |= R1 ⇒ R2.

We say that 〈T1, T2〉 is an HT-model of a rule R iff 〈T1, T2〉 |= R. We say that a rule
base Δ implies a rule R, denoted by Δ |= R, iff all HT-models of Δ are also HT-models
of R. It is easy to see that the HT-interpretation 〈⊥,⊥〉 is a model of all rules. We say

1 The subrule relation is defined recursively: a) R1 is a subrule of R1, and b) R1 and R2 are
subrules of R1 & R2, R1 |R2 and R1 ⇒ R2.

2 For convenience, we overload the notation |= in this paper.
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that a rule R is a rule contradiction iff 〈⊥,⊥〉 is the only HT-model of R. We say that
a rule R is a rule tautology iff every HT-interpretation is an HT-model of R.

Intuitively, a theory T is a possible set of information of an agent about the world,
and a rule R is a description or constraint about the information of the world. T |= R
means that the set T of information obeys (or does not violate) the constraint R; T is an
extension of R means that T is one of the possible sets of information can be derived
by giving the only constraint R. Given a rule base Δ and a rule R, Δ |= R means that
the set of constraints Δ is more powerful than the constraint R. In other words, R can
be eliminated by giving Δ.

Example 1. Consider the notorious bird-fly example. The statement ”birds normally
fly” can be represented as a default rule bird&−¬fly ⇒ fly. Given an instance of bird,
represented as a fact bird, by the extension semantics, the only extension of the rule base
{bird & − ¬fly ⇒ fly, bird} is {bird, f ly}. However, fly is not a rule consequence
of the rule base {bird & − ¬fly ⇒ fly, bird} since 〈{bird}, {bird,¬fly}〉 is an HT-
model of {bird & − ¬fly ⇒ fly, bird} but not an HT model of {bird, f ly}. This
shows a difference between the extension semantics and the HT-semantics.

Similarly, bird & − ¬fly ⇒ fly �|= bird ⇒ fly. However, one can check that all
HT-models of bird ⇒ fly are also HT-models of bird & − ¬fly ⇒ fly. Therefore,
bird ⇒ fly |= bird& −¬fly ⇒ fly. This means that, intuitively, the statement ”birds
normal fly” is strictly weaker than the statement ”birds fly”.

Example 2. Let p1, p2 and p3 be three atoms. Consider the rule base {p1 & − ¬p2 ⇒
p2, p2 & − ¬p3 ⇒ p3}, which has an HT-model 〈{p1}, {p1,¬p2}〉. However, this HT-
interpretation is not an HT-model of p1 & −¬p3 ⇒ p3. This shows that {p1 & −¬p2 ⇒
p2, p2 & − ¬p3 ⇒ p3} �|= p1 & − ¬p3 ⇒ p3.

The extension semantics and HT-semantics of general default logic are closely related.

Proposition 1. Let T1 and T2 be two consistent theories such that T1 ⊆ T2 and R a
rule.

– T1 |= R iff 〈T1, T1〉 |= R.
– If 〈T1, T2〉 |= R, then T2 |= R.
– 〈T1, T2〉 |= −R iff T2 |= −R.

Proposition 2. Let Δ be a rule base and F a fact. If Δ |= F , then F is in all extensions
of Δ.

However, the converse of Proposition 2 does not hold in general. For instance, {p1} is
the unique extension of −p2 ⇒ p1. Thus, p1 is in all extensions of −p2 ⇒ p1. However,
−p2 ⇒ p1 �|= p1 since 〈{p2}, {p2}〉 is an HT-model of −p2 ⇒ p1 but not an HT-model
of p1.

Proposition 3. Let T1 and T2 be two theories such that T1 ⊆ T2 and Δ a rule base.
〈T1, T2〉 is an HT-model of Δ iff T1 |= ΔT2 .
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Proposition 4. Let T be a theory and Δ a rule base. T is an extension of Δ iff 〈T, T 〉
is an HT-model of Δ, and for all theories T1 ⊂ T , 〈T1, T 〉 is not an HT-model of Δ.

The notion of strong equivalence, introduced by [11] into answer set programming,
plays an important role from both a theoretical and a practical viewpoints. A similar
notion is introduced into default logic in [2]. We say that two rules R1 and R2 are
strongly equivalent, denoted by R1 ≡ R2, iff for all other rules R3, R1 & R3 has the
same set of extensions as R2 & R3. Strong equivalence can also be defined in another
way. That is, two rules R1 and R2 are strongly equivalent iff for all other rules R3, R3

has the same set of extensions as R3(R1/R2), where R3(R1/R2) is the rule obtained
from R3 by replacing every occurrence of R1 in R3 with R2 simultaneously. It is clear
that the notion of strong equivalence can be extended for the cases of rule bases.

In fact, strong equivalence in general default logic can be captured in the logic of
here-and-there.

Proposition 5. Let R1 and R2 be two rules. R1 and R2 are strongly equivalent iff they
have the same set of HT-models in the logic of here-and-there. That is, R1 ≡ R2 iff
|= R1 ⇔ R2.

Since general default logic is both an extension of general logic programming and
nested default logic, Proposition 5 is a generalization of both Proposition 2 in [9] and
Theorem 3 in [2]. As a consequence of Proposition 5, checking whether a rule is im-
plied by a rule base can be reduced to checking whether two rule bases are strongly
equivalent.

Corollary 1. Let Δ be a rule base and R a rule. Δ |= R iff Δ ∪ {R} is strongly
equivalent to Δ.

Corollary 1 indicates the intuition behind rule deduction, that is, a rule R is a conse-
quence of a rule base Δ means that R provides no more information by giving Δ. In
other words, R can be eliminated by giving Δ.

3 Rule Calculus: Axiom System

In this section, we propose an axiom system for default rule calculus and prove the
soundness and completeness results.

Axioms The axioms of rule calculus are:
A1. all tautologies in classical propositional logic.
A2. (F1 → F2) ⇒ (F1 ⇒ F2), where F1 and F2 are two facts.
A3. R1 ⇒ (R2 ⇒ R1).
A4. (R1 ⇒ (R2 ⇒ R3)) ⇒ ((R1 ⇒ R2) ⇒ (R1 ⇒ R3)).
A5. R1 ⇒ (R2 ⇒ (R1 & R2)).
A6. R1 & R2 ⇒ R1; R1 & R2 ⇒ R2.
A7. R1 ⇒ R1 |R2; R2 ⇒ R1 |R2.
A8. (R1 ⇒ R3) ⇒ ((R2 ⇒ R3) ⇒ (R1 |R2 ⇒ R3)).
A9. (R1 ⇒ R2) ⇒ ((R1 ⇒ −R2) ⇒ −R1).
A10. R1 | (R1 ⇒ R2) | −R2.
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Rules. The only3 inference rule of rule calculus is
Rule Modus Ponens from R1 and R1 ⇒ R2 to infer R2.

Axiom 1 simply means that all classical tautologies are also rule tautologies; Axiom 2
is for bridging the gap between facts and rules; Axiom 3-9, together with Rule Modus
Ponens, are generalization of the axiom system of intuitionistic logic [12]; Axiom A10 is
the extended version of an additional axiom in the intermediate logic G3. That is, Axiom
3-10 and Rule Modus Ponens are generalization of the axiom system of G3 [10].

A rule R is said to be a consequence of a rule base Δ, denoted by Δ ) R, iff there is
a sequence of rules R1, . . . , Rn such that Rn = R and for each i, (1 ≤ i ≤ n), either
a) Ri is an instance of axiom, or b) Ri is in Δ, or c) Ri is obtained by an inference
rule from some proceeding rules in this sequence. Such a sequence is called a proof (or
deduction) of R from Δ. rules in Δ are called premises. A rule R is said to be a rule
theorem, denoted by ) R, iff there exists a proof of R from the empty rule base. We use
Δ �) R to denote it is not the case that Δ ) R.

As an example, we prove the following rule theorem.

Proposition 6. ) (F1 → F2) ⇒ (F1 ⇒ −¬F2), where F1 and F2 are two facts.

Proof. We construct a proof as follows:

1. (¬F2 → ⊥) ⇒ (¬F2 ⇒ ⊥) by A2,
2. (F2 ⇒ −¬F2) ⇒ (F1 ⇒ (F2 ⇒ −¬F2)) by A3,
3. F1 ⇒ (F2 ⇒ −¬F2) by 1, 2 and RMP,
4. (F1 ⇒ (F2 ⇒ −¬F2)) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2)) by A4,
5. (F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2) by 3, 4 and RMP,
6. ((F1 ⇒ F2) ⇒ ((F1 ⇒ −¬F2)) ⇒ ((F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒

−¬F2)))) by A3,
7. (F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2)) by 5, 6 and RMP,
8. ((F1 → F2) ⇒ ((F1 ⇒ F2) ⇒ (F1 ⇒ −¬F2))) ⇒ (((F1 → F2) ⇒ (F1 ⇒

F2)) ⇒ ((F1 → F2) ⇒ (F1 ⇒ −¬F2))) by A4,
9. ((F1 → F2) ⇒ (F1 ⇒ F2)) ⇒ ((F1 → F2) ⇒ (F1 ⇒ −¬F2)) by 7, 8 and RMP,

10. (F1 → F2) ⇒ (F1 ⇒ F2) by A2,
11. (F1 → F2) ⇒ (F1 ⇒ −¬F2) by 9, 10 and RMP.

This completes the proof.

A simple property following from the definition of proof of rule calculus is so-called
compactness as follows.

Proposition 7 (Compactness). Let Δ be a rule base and R a rule such that Δ ) R.
There exists a finite subset Δ′ of Δ such that Δ′ ) R.

Proposition 8 (Deduction theorem). Let Δ be a rule base and R1 and R2 two rules.
Δ ∪ {R1} ) R2 iff Δ ) R1 ⇒ R2.

3 In fact, the Modus Ponens rule in classical logic is, of course, also an inference rule in rule
calculus. However, since axiom A1 takes all classical tautologies into account, we can omit
the classical Modus Ponens rule here.
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Deduction theorem is a very useful tool for proving the consequence relationships in
rule calculus. Consider the following example.

Example 3. [Example 1 continued] We prove that bird ⇒ fly ) bird&−¬fly ⇒ fly.
By deduction theorem, we only need to prove {bird ⇒ fly, bird & − ¬fly} ) fly.
This is quite simple from A6 and RMP.

Proposition 9. ) (R1 ⇒ R2) ⇒ (−R2 ⇒ −R1).

Proof. We construct a proof of −R1 from {R1 ⇒ R2,−R2}.

1. −R2 ⇒ (R1 ⇒ −R2) by A3,
2. −R2 by premises,
3. R1 ⇒ −R2 by 1, 2 and RMP,
4. (R1 ⇒ R2) ⇒ ((R1 ⇒ −R2) ⇒ −R1) by A9,
5. R1 ⇒ R2 by premises,
6. (R1 ⇒ −R2) ⇒ −R1 by 4, 5 and RMP,
7. −R1 by 3, 6 and RMP.

Thus, {R1 ⇒ R2,−R2} ) −R1. By deduction theorem, {R1 ⇒ R2} ) −R2 ⇒ −R1.
Again, by deduction theorem, ) (R1 ⇒ R2) ⇒ (−R2 ⇒ −R1).

Proposition 10. Let F , G and Q be three facts.

1. ) F ⇒ −¬F .
2. ) (F & G) ⇔ (F ∧ G).
3. ) (−F | −G) ⇔ (¬F ∨ ¬G).
4. ) (F ∧ Q → G) ⇒ (F & −G ⇒ −Q).
5. ) (F → G) ⇒ (−G ⇒ −F ).

Theorem 1 (Soundness and completeness). Let R be a rule. R is a rule tautology iff
R is a rule theorem. That is, |= R iff ) R.

Proof. ”soundness:” We first show that all instances of axioms are rule tautologies. As
an example, we only present the proofs of A2 and A10 here. Let 〈T1, T2〉 be an HT-
interpretation other than 〈⊥,⊥〉.

A2. Assume that 〈T1, T2〉 is not an HT-model of (F1 → F2) ⇒ (F1 ⇒ F2). Then,
there are two cases. Case 1: 〈T1, T2〉 |= F1 → F2 and 〈T1, T2〉 �|= F1 ⇒ F2.
That is, T1 |= F1 → F2 and a) 〈T1, T2〉 |= F1 and 〈T1, T2〉 �|= F2 or b) T2 �|=
F1 ⇒ F2. Thus, T1 |= F1 → F2 and a) T1 |= F1 and T1 �|= F2 or b) T2 |= F1

and T2 �|= F2. Whichever the case is, it leads to a contradiction. Case 2: T2 �|=
(F1 → F2) ⇒ (F1 ⇒ F2). Then, T2 |= F1 → F2 and T2 �|= F1 ⇒ F2. That is,
T2 |= F1 → F2 and T2 |= F1 and T2 �|= F2, a contradiction.

A10. Assume that 〈T1, T2〉 is not an HT-model of R1 | (R1 ⇒ R2) | − R2. Then,
〈T1, T2〉 �|= R1 and 〈T1, T2〉 �|= R1 ⇒ R2. Therefore T2 �|= R1 ⇒ R2. Thus,
T2 �|= R2. However, 〈T1, T2〉 �|= −R2. Thus, By Proposition 1, T2 �|= −R2, a
contradiction.
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We then show that all inferences rules preserve rule tautologies. Suppose that both R1

and R1 ⇒ R2 are rule tautologies. Given an HT-interpretation 〈T1, T2〉, we have that
〈T1, T2〉 |= R1 and 〈T1, T2〉 |= R1 ⇒ R2. Thus, 〈T1, T2〉 |= R2. This shows that R2 is
also a rule tautology. Hence, soundness holds.

”completeness:” As recently shown in [8], each formula in the logic of here-and-
there is equivalent to a set of formulas of the following form:

p1 ∧ . . . ∧ pn ∧ ¬pn+1 ∧ . . . ∧ ¬pm → pm+1 ∨ . . . ∨ pk ∨ ¬pk+1 ∨ . . . ∨ ¬pl,

where pi, (1 ≤ i ≤ l) are atoms. A similar result for rule calculus can be proved in the
same way. That is, each rule is equivalent to a set of rules of the following form:

F1 & . . . &Fn & −Fn+1 & . . . & −Fm ⇒ Fm+1 | . . . |Fk | −Fk+1 | . . . | −Fl, (1)

where Fi, (1 ≤ i ≤ l) are facts.
Thus, we only need to prove that for each rule R of form (1), if |= R, then ) R. For

convenience, we assume that

R = F1 & . . . & Fn & −G1 & . . . & −Gm ⇒ P1 | . . . | Pk | −Q1 | . . . | −Ql.

Let F =
∧

1≤i≤n Fi and Q =
∧

1≤i≤l Qi Then, one of the following statements must
hold.

1. There exists i, (1 ≤ i ≤ k) such that F → Pi is a classical tautology.
2. F → ¬Q is a classical tautology.
3. There exists j, (1 ≤ j ≤ m) such that (F ∧ Q) → Gj is a classical tautology.

Suppose otherwise, then there exists a propositional assignment π0 such that π0 |= F ∧
Q; there exists a propositional assignment πi, (1 ≤ i ≤ k) such that πi |= F∧¬Pi; there
exists a propositional assignment π′j , (1 ≤ i ≤ m) such that π′j |= F ∧Q∧¬Gj . Let T1

be the theory such that the set of its models is {π0, πi, π
′
j , (1 ≤ i ≤ k), (1 ≤ j ≤ l)},

and T2 be the theory such that the set of its models is {π′j , (1 ≤ j ≤ l)}. It is easy to
check that 〈T1, T2〉 is not an HT-model of R, a contradiction.

Thus, one of the three previous statements holds. Hence, R can be proved according
to axioms and Proposition 6, Proposition 9 and Proposition 10. As an example, we prove
the third case. Without loss of generality, suppose that (F ∧ Q) → G1 is a classical
tautology. Then, by point 4 in Proposition 10, F & − G1 ⇒ −Q is a rule tautology.
Then, by point 2 and point 3 in Proposition 10, F1& . . . &Fn&−G1 ⇒ −Q1| . . . |−Ql

is a rule tautology. By A6 and A7, R is a rule tautology.

From compactness, deduction theorem and soundness and completeness, we have the
following result.

Corollary 2. Let Δ be a rule base and R a rule. R is implied by Δ iff R is a conse-
quence of Δ. That is, Δ |= R iff Δ ) R.

4 Other Properties

In this section, we discuss some other important properties of rule calculus.
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From Proposition 10, one may claim that rule connectives and corresponding classi-
cal connectives play the same roles to some extent. However, this is not the case. For
instance, �) (F |G) ⇔ (F ∨G), where F and G are two facts. As another example, from
A2, ) (F → G) ⇒ (F ⇒ G). However, �) (F ⇒ G) ⇒ (F → G). Consequently,
�) −F ⇒ ¬F although ) ¬F ⇒ −F .

In fact, rule calculus is more like the intermediate logic G3. It is clear that the former
is an extension of the latter. Hence, theorems not in G3 are not rule theorems in rule
calculus. For example, R | − R is not a rule theorem. On the other hand, theorems in
G3 can be extended for rule calculus. For example, the following property holds.

Proposition 11. Let R1, R2, R3 and R4 be four rules.

1. {R1 ⇒ R2, R2 ⇒ R3} ) R1 ⇒ R3.
2. {R1 ⇒ R2, R3 ⇒ R4} ) R1 |R3 ⇒ R2 |R4.
3. R1 ⇒ −−R1.

Proposition 12. Let R be a theorem in G3 composed from a set of atoms P =
{p1, . . . , pn} and Δ = {Ri, (1 ≤ i ≤ n)} are n rules associated with each pi. Then,
R(P/Δ) is a rule theorem, where R(P/Δ) is the rule obtained from R by replacing
every occurrence of pi, (1 ≤ i ≤ n) with corresponding Ri simultaneously.

Proposition 13. Let F1 and F2 be two facts. F1 | F2 ) F1 ∨ F2.

However, F1 ∨ F2 �) F1 | F2. For example, 〈{F1 ∨ F2}, {F1 ∨ F2}〉 is an HT-model of
F1 ∨ F2 but not an HT-model of F1 | F2.

Proposition 14 (Substitution). Let R be a rule theorem and R1 and R2 two rules.
R(R1/R2), the rule obtained from R by replacing every occurrence of R1 with R2

simultaneously, is a rule theorem as well.

Proposition 15. Let F1, F2 and F3 be three facts. {F1 ⇒ F2, F2 & − ¬F3 ⇒ F3} )
F1 & − ¬F3 ⇒ F3.

However, {F2 ⇒ F3, F1&−¬F2 ⇒ F2} �) F1&−¬F3 ⇒ F3 since 〈{p1}, {p1∧¬p2}〉
is an HT-models of {p2 ⇒ p3, p1&−¬p2 ⇒ p2} but not an HT-models of p1&−¬p3 ⇒
p3. In addition, as shown in Example 2, {F1 & − ¬F2 ⇒ F2, F2 & − ¬F3 ⇒ F3} �)
F1 & − ¬F3 ⇒ F3.

Interestingly, rule calculus is monotonic although the extension semantics of default
logic is dealing with nonmonotonicity.

Proposition 16 (Monotonicity). Let R be a rule and Δ and Δ′ are two rule bases such
that Δ ⊆ Δ′. If Δ ) R, then Δ′ ) R.

Theorem 2 (Complexity). Checking whether a rule R has at least one HT-model is
NP complete.

Proof. Hardness is obvious since a fact is satisfiable iff it has at least one HT-model.
For membership, we first prove a lemma by induction. Given two HT-interpretations
〈T1, T2〉 and 〈T ′1, T ′2〉 and a set of facts Γ , if for all F ∈ Γ , T1 |= F iff T ′1 |= F , and so
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do T2 and T ′2, then for all rules R composed from Γ and rule connectives, 〈T1, T2〉 |= R
iff 〈T ′1, T ′2〉 |= R.

Suppose that R is composed from the set of facts Γ = {F1, . . . , Fn} and 〈T1, T2〉 |=
R. Without loss of generality, suppose that T1 |= Fi, (1 ≤ i ≤ m) and T1 �|= Fi, (m <
i ≤ n). Therefore, there exists a propositional assignment πi, (m < i ≤ n) such that
πi |=

∧
1≤j≤m Fj ∧¬Fi. Let T ′1 be the theory such that its models are πi, (m < i ≤ n).

It is easy to see that T1 and T ′1 agree the same on Γ . We can construct T ′2 in the same
way. We have that T ′1 ⊆ T ′2. Therefore 〈T ′1, T ′2〉 |= R. This shows that if a rule R has
a model, then it has a model which can be represented polynomially. It follows that
checking whether a rule R has at least one HT-model is in NP.

It is well known that most of the decision problems in default logics lie on the second
level of polynomial hierarchy [6], even restricted to some special subclasses [5]. Sur-
prisingly, although rule calculus seems more complicated than others such as skeptical
and credulous reasoning, its complexity is lower than them according to Theorem 2.
This draws an opposite conclusion. That is, the problem of rule calculus is, indeed,
simpler than other reasoning tasks of default logic. However, this does not mean that
the former is weaker than the latter since they are dealing with different reasoning tasks
of default rules.

5 Applications

Since the notion of rule deduction is an extension of deduction in propositional calculus,
many propositional logic based deductive reasoning tasks can be lifted to corresponding
cases in rule calculus. In this section, we briefly discuss three applications, which seem
to be hard to deal with in default logic on their own. However, by using rule calculus,
these problems can be easily solved. Due to a space limit, we only outline the basic
ideas here.

Irrelevance in Default Logic

As pointed by Lang et al. [13], irrelevance is an important notion in propositional logic.
According to Lang et al.’s definition, a propositional formula F is irrelevant to a set V of
atoms iff there exists another formula G such that F is equivalent to G and Atom(G)∩
V = ∅, where Atom(G) is the set of atoms appeared in G. The notion of irrelevance in
rule calculus can be defined in a similar way. That is, a rule R1 is irrelevant to a set V of
atoms iff there exists another rule R2 such that |= R1 ⇔ R2 and Atom(R2) ∩ V = ∅,
where Atom(R2) is the set of atoms occurred in R2.

Having defined the notion of irrelevance in rule calculus, we can define other related
notions such as forgetting in a similar way as shown in [13].

Generality among Default Rules

The concept of generality is a foundational basis of inductive logic programming [14,
15] - a subfield of machine learning and has been successfully applied to some real
domains. Inductive logic programming started from propositional logic [14] but then
has focused on Horn clauses (namely logic programs) [15].
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In propositional logic, the generality relationships between two formulas can be de-
fined in a simple way as shown in [14]. That is, a formula F1 is said to be more general
than a formula F2 iff F1 |= F2 and F2 �|= F1. We can lift this notion to the case between
two rules. A rule R1 is said to be more general than a formula R2 iff R1 |= R2 and
R2 �|= R1. Moreover, this notion can be easily extended to the cases with a background
rule base. A rule R1 is said to be more general than a rule R2 relative to a rule base Δ
iff Δ ∪ {R1} |= R2 and Δ ∪ {R2} �|= R1. It is obvious that this definition is a gener-
alization of the definition of generality in propositional calculus since all propositional
formulas are also rules.

Inoue and Sakama [16] introduced several kinds of generality relationship between
default theories. Although their definitions are based on disjunctive default logic, these
can be easily extended to general default logic. We write Ext(R) to denote the set of
extensions of a rule R. Let R1 and R2 be two rules, according to Inoue and Sakama’s
definitions, R1 is said to be more  -general than R2 iff for all T1 ∈ Ext(R1), there
exists T2 ∈ Ext(R2) such that T2 ⊆ T1; R1 is said to be more $-general than R2 iff
for all T2 ∈ Ext(R2), there exists T1 ∈ Ext(R1) such that T2 ⊆ T1; R1 is said to
be strongly more  -general than R2 iff for all rules R3 R1 & R3 is more  -general than
R2 & R3; R1 is said to be strongly more $-general than R2 iff for all rules R3 R1 & R3

is more $-general than R2 & R3. However, the cases relative to a background default
theory were not considered in their approach.

Our definition of generality does not coincide with any of these notions. For instance,
let p1 and p2 be two atoms. We have that � is both  -general and $-general than −p1

but the former is not more general than the latter in our definition. Meanwhile, p1 ∧
p2 is more general than p1 in our definition but the former is neither strongly more
 -general nor strongly $-general than the latter. One major difference between these
two approaches is that Inoue and Sakama’s notions are defined based on the sets of
extensions of default theories. However, two rules sharing the same set of extensions
may play completely different roles in rule calculus.

Revising Default Rule Bases

Belief revision has been an important topic in solving information conflict in reasoning
about agents. In most existing approaches and systems, an agent’s knowledge base is
usually represented by a set of classical propositional formulas, then various revision
methods have been developed by researchers to solve the inconsistency by revising a
knowledge base by a new piece of information.

Under the framework of rule calculus, this work can be generalized to nonmonotonic
knowledge base revision. That is, in our setting, each agent’s knowledge is represented
as a rule base, and the problem is how to revise this rule base by giving a new default
rule.

We may specify a formulation of rule base revision by generalizing approaches for
propositional belief revision, for instance, the WIDTIO approach [17]. Given a rule
base Δ and a rule R, we say that Δ′ is a maximal subset of Δ consistent with R iff
a) Δ′ ⊆ Δ, b) Δ′ ∪ {R} is not a rule contradiction, and c) there does not exist Δ′′

satisfying the above two conditions and Δ′ ⊂ Δ′′ ⊆ Δ. The rule base revision operator
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◦ is defined as Δ◦R =
⋂

Δ′∪{R}. This revision operator also satisfies the well-known
AGM postulates.

6 Conclusion

In this paper, we extend the logic of here-and-there as a general semantics for default
rules. Meanwhile, we propose a corresponding axiom system for rule calculus and prove
the soundness and completeness theorem (see Theorem 1). We also discuss other prop-
erties in rule calculus, including complexity issues (see Theorem 2).

The notion of strong equivalence in default logic can be directly captured in rule cal-
culus (See Corollary 1). Corollary 1 also indicates the intuition behind rule deduction,
that is, a rule R is a consequence of a rule base Δ means that R provides no more in-
formation by giving Δ. In other words, R can be eliminated by giving Δ. On the other
hand, given the fact that answer set programming is a special case of default logic,
our approach also shows that the logic of here-and-there and its axiomatic counterpart
G3 can capture the consequence relationships among answer set programs. In fact, re-
stricted to answer set programs (i.e., facts are atoms instead of arbitrary propositional
formulas), rule calculus coincides with the notion of SE-consequence [18, 19].

Rule calculus is an extension of propositional calculus and also an extension of the
intermediate logic G3 [7] in the sense that the connectives in G3 are represented as rule
connectives. It can also be considered as an extended logic of formalizing normality
[20] since the sentence ”A normally implies B” can be represented as A& −¬B ⇒ B
as suggested by Reiter [4].

Rule calculus is different from conditional logic [21] although both of them intro-
duce new connectives into propositional calculus. There are two syntactic differences.
First, conditional logic only introduces a conditional connective >. Second, whereas
conditional logic allows arbitrary compositions of atoms and connectives including >,
in most cases, it uses > as a lower level connective, whilst in rule calculus, classical
connectives are at the lower level. Certainly, the axiom systems and semantics of these
two logics are basically dissimilar. For instance, the conditional connective > is intu-
itively stronger than → in conditional logic, whilst the rule implication ⇒ is, to some
extent, weaker than → in rule calculus.

Another related work is so-called proof theory of default logic [22, 23], which aims
to define a proof-theoretical system for determining whether a propositional formula is
in all (or some) extensions of a default theory. It differs from rule calculus in several
aspects. Firstly, proof theory of default logic is operating on the level of extension se-
mantics, whilst rule calculus is focused on the here-and-there semantics. Secondly, The
consequence concerned in rule calculus is, in general, default rules instead of proposi-
tional formulas. Finally, even restricted to the cases of facts, as we mentioned earlier
(See Proposition 2), these two systems do not coincide with each other.
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vol. 2923, pp. 87–99. Springer, Heidelberg (2004)

19. Wong, K.: Sound and complete inference rules for se-consequence. Journal of Artificial In-
telligence Research 31, 205–216 (2008)

20. Geffner, H., Pearl, J.: Conditional entailment: bridging two approaches to default reasoning.
Artificial Intelligence 53(2-3), 209–244 (1992)

21. Nute, D.: Conditional logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical
Logic: Extensions of Classical Logic, vol. II, pp. 387–439 (1984)

22. Bonatti, P.A., Olivetti, N.: A sequent calculus for skeptical default logic. In: Galmiche, D.
(ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 107–121. Springer, Heidelberg (1997)

23. Lakemeyer, G., Levesque, H.J.: Towards an axiom system for default logic. In: Proceedings
of the AAAI 2006 (2006)



Author Index

Aguado, Felicidad 8
Artemov, Sergei 1
Aucher, Guillaume 21

Billington, David 34
Bozzelli, Laura 48
Bresolin, Davide 62
Bria, Annamaria 76
Broersen, Jan 89

Cabalar, Pedro 8
Caminada, Martin 153
Caroprese, Luciano 100
Coste-Marquis, Sylvie 113
Cuzzolin, Fabio 126

Drescher, Conrad 140
Dunne, Paul E. 153

Eiter, Thomas 166
Eloranta, Satu 180

Faber, Wolfgang 76

Giordano, Laura 192
Gliozzi, Valentina 192
Gottlob, Georg 166

Hakli, Raul 180
Hermann, Miki 206
Herzig, Andreas 219
Hindriks, Koen 232
Hitzler, Pascal 362

Kamide, Norihiro 245
Komendantskaya, Ekaterina 258
Konieczny, Sébastien 272
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