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Abstract. Cyber-physical systems represent a new class of systems that inte-
grate physics with computation. Their correct design is frequently of great im-
portance as they are applied in safety- or business-critical contexts. This paper 
introduces a model-integrated development approach that addresses the devel-
opment needs of such systems through the pervasive use of models. A complete 
model-based view is proposed that covers all aspects of the hardware and soft-
ware components, as well as their interactions. Early experiments and work in 
progress are also reported.  
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1   Introduction 

Cyber-physical systems (CPS) are systems that combine a physical system with an 
embedded information processing system such that the resulting system has novel 
capabilities that could not be achieved by either the physical or the computational 
entity alone1. To give examples for a cyber-physical system consider an unmanned 
aerial vehicle with active (fixed) wings. In such a UAV, an embedded controller 
monitors the airflow over the wing surface and modulates it through electromechani-
cal actuators to ensure laminar flow such that the vehicle is capable of extreme ma-
neuvers. Another example is a structural beam whose deflection is active monitored 
and modified through a piezoelectric actuator, resulting in a lighter, thinner structure 
whose resulting physical properties (‘strength’) is greater than that of the original 
beam without the embedded controller. 

It is easy to see that the design of such systems cannot be accomplished following 
the classical strictly disciplinary approach – the design of the physical and computa-
tional aspects is an integrated activity. Design decisions made in one aspect (e.g. 
selecting the scheduling technique used in the embedded software) interacts with the 
physical component and has profound consequences on the dynamic properties of the 
entire system. We argue that the design of such systems could only be accomplished 
by taking an integrated view and co-designing the physical with the computational. 
                                                           
1 This definition of cyber-physical systems is due to Janos Sztipanovits.  
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Model-driven development of embedded software systems [1] has gained accep-
tance during the past decade, and it is the de-facto approach used in systems industries 
(automotive and aerospace), and is well-supported by industrial-strength commercial 
tools, like Simulink/Stateflow [2] and Matrix-X [3]. Benefits of the model-driven 
approach are obvious, and the industry has built up a significant amount of knowledge 
and well-tested solutions.  

The question naturally arises: are cyber-physical systems fundamentally different 
such that they need a different development approach, or the current approach is suf-
ficient and no new research is necessary? In this paper we propose an answer to this 
question that is based on experience with the existing tools and practices, and the 
proposed answer is: we need new techniques, and a new view.  

Our argument is as follows. The engineering of non-software artifacts is often 
based on models that typically have a computational manifestation (i.e. an executable 
form in some computational sense). The engineering of software using model-based 
techniques is an active area of research and it started to find its way into the overall 
software engineering practice. However, very little is being done with regard to an 
integrated approach, where both the ‘physical artifacts’ and the software would be 
engineered based on a set of coupled models. The closest practice comes to this ideal 
is the approach followed in Simulink/Stateflow and Matrix-X:  ‘plant models’ and 
executable controller models are (co-)simulated in a shared simulation environment, 
under the control of a simulation engine. The approach increases the productivity of 
domain (in this case, control) engineers, because they don’t have to deal with the 
accidental complexities of software engineering, and the tools (and the hardware 
platforms) are powerful enough such that code automatically generated could be im-
mediately used in the application.  

However, we believe this is not sufficient for the next generation of CPS-s. First, 
the approach does not consider the properties of the execution platforms (i.e. the 
properties and performance of processing units, the operating systems, the middle-
ware, the QoS machinery, etc.). Although new tools like TrueTime [4] make progress 
in this direction, it is unclear how arbitrary platforms should be modeled and ana-
lyzed. Second, the Model of Computation (MoC) [5] used by the tools is rather lim-
ited: it is almost always some variant of the approach followed in the synchronous 
languages. Other approaches, like CDMA-style communication, or publish-subscribe 
approaches, or even priority based scheduling with potential priority inversion are 
rarely considered. Third, it is unclear how algorithms that apply search, do not have a 
guaranteed termination time, or are of the anytime variety could be considered in the 
systems. We simply don’t have good models of the dynamics for such algorithms, and 
thus the analysis of the end-to-end system is very difficult to do.  

In an engineering process for CPS-s we need to address the above and other issues 
related to para-functional properties like security, reliability, fault tolerance, etc. 
Modern development techniques, like extreme programming, test-based development, 
and continuous integration also need to be considered, as these represent the best 
practices in the industry today – and their track record is well-documented. In the 
paper we propose a fully model-integrated approach that allows the combined use of 
such techniques.  
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2   Models and Cyber-Physical Systems 

If one needs to consider a full spectrum modeling for CPS-s, a scheme shown on the 
figure below could be used as a starting point. On the left we show the ‘model ele-
ments’, on the right their ‘real world’ counterparts are shown that exists in the imple-
mentation.  

Environment Model
Assumptions, Dynamics

Physical System Model
Components, Dynamics, Faults

Computational System Model

MoC/MoE/Platform Model
Component  framework, OS, Network 

Application Model
Components, Behaviors, Interactions

Environment

Physical System

Computational System

Middleware, OS, Network

Application
Component implementation, 

configuration

“Model” world Real world

 

Fig. 1. Models and the real world in Cyber-Physical Systems 

Note that the ‘real world’ includes the ‘application software’ as implemented on 
some computation platform (that includes the component middleware, operating sys-
tem, compute engines, network), that is layered upon and interacts with a physical 
system (the ‘hardware’ of the CPS), which then interacts with the physical environ-
ment. What is envisioned here is a complete model-integrated approach across all 
levels of the hierarchy. In short, one needs models for the environment (that is outside 
of the CPS), for the physical system (that is part of the CPS but is not computational), 
for the computational platform (that includes all hardware and software elements that 
are reusable across different CPS-s), and for the application (i.e. the software that 
implements all the functions of the CPS).  

As we assume model-driven development, orthogonal to the models we find the 
tools that support modeling (i.e. model creation and editing), model analysis (i.e. 
verification, validation, etc.) and synthesis (i.e. implementation generation). There are 
various tools in existence today that address some of the problems here (e.g. dedicated 
modeling environments, code generators, code verification tools), but they are often 
difficult to use together, in an integrated manner. For CPS-s better tool integration is 
needed that is based on the semantic integration of the models used across the layers. 
After all, we need to model a physical system’s dynamics, and study how it interacts 
with the dynamics of the implementation of a particular MoC on a specific hardware 
and software platform.  
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2.1   Challenges in CPS 

Developers of CPSs face several challenges, many of which are well-known from the 
work on embedded systems. Here we would like to highlight a few challenging as-
pects that arguably have received less attention in the past.  

First, CPSs imply a major integration problem. Both the system that is being built, 
as well as the process used to build it are highly heterogeneous and unforeseen inter-
actions often arise. There are two major perspectives on integration: model integration 
and system integration.  

Model integration problems arise when we want to simulate, for instance, the en-
tire CPS, including all implementation layers. One needs simulators that (1) either 
follow the same, shared execution semantics (which seems to be the approach used in 
Simulink where all simulations are executed in continuous time), or (2) they are fed-
erated and can run under the control of a coordinating authority (which is the ap-
proach followed in the HLA model). The situation is further complicated by the fact 
that models are often on different levels of abstraction, and one needs different mod-
els of the same system for different work (e.g. transaction level models vs. register 
transfer level models for hardware). Another problem in model integration is the de-
coupling between models used in design, the model verification tools, and the final 
executable system. When subjecting design models to analysis (e.g. model checking), 
we need to carry over the results to the final system, i.e. the system as implemented 
by executable code running on a real, physical software and hardware platform. Often 
design languages (e.g. UML activity diagrams) and analysis languages (e.g. SMV 
model checker’s language) are different, and we need to use translators. However 
these translators must be correct for the analysis results be valid. We need this triangle 
of design models / analysis models / executable models ‘verified’ such that analysis 
results are provably true for the executable system. 

System integration is perhaps the most challenging aspect of CPS engineering, but 
arguably, this is the area where models are extremely beneficial. The physical and the 
computational parts of the CPS have to be designed together, and should be modeled 
and analyzed together. Note that this is notably different from hardware-software 
codesign, where functions are designed in a common framework, and where the parti-
tioning is decided late in the process. In CPSs the ‘hardware’ is not computational and 
thus it is fixed early on, such that the computational part has to be designed accord-
ingly. Naturally, codesign techniques are highly applicable to the design of the ‘cy-
ber’ part. As discussed in more detail below, for the system integration we envision 
an incremental, simulation-based development and integration approach. The concept 
is that initially the entire system is executed in a simulated environment, and later 
simulated parts are incrementally replaced by real implementations and real hardware.  

The second major challenge is the support for certification of CPSs that are used in 
critical environments (e.g. vehicles, medical systems, etc.). Note that we need end-to-
end certification, according to current practices followed in the aerospace industry 
(‘we certify the airplane, not the software’). However, this approach becomes very 
hard to sustain, and a modular approach is more desirable. One can consider three 
methods for providing arguments for certification: simulation-based, verification-
based, and hardware-based testing. In the first, a high-fidelity simulation of the physi-
cal system and environment is created, that is independently validated. Next, the 
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computational ‘stack’ is subjected to exhaustive testing in the ‘context’ provided by 
the simulation. Here, the simulation must be ‘interface-compatible’ with the real 
physical system, i.e. the interfaces that the computational system interacts with must 
be the same as in the real implementation. For the second, verification-based ap-
proach we build assurances via checking the models of computational system and/or 
the code itself. Obviously, this necessitates robust and verified translations on the 
models, as discussed above. For the third, the computational system is tested in the 
context of a hardware test setup, and arguments for certification are collected through 
exhaustive testing again. In summary, when certification is needed for CPSs the de-
velopment process and tools should incorporate various elements to produce the ar-
guments to be used in the certification process. These steps and tools need to become 
part of the toolchain.  

The third group of challenges includes mode changes and fault management. CPSs 
often have a large number of operational modes, where their dynamics and behavior 
are radically different. For instance an aircraft flies very differently when landing than 
in cruising mode. The CPS should be prepared to handle and manage these different 
modes and changes between modes. Often we cannot simply reinitialize software 
components upon mode changes as this would lead to intolerable transients.  

The ultimate test for modal systems is the management of faults. Faults can happen 
in the physical system, in the platform, as well as in the application software, and the 
application needs to be prepared for handling them. Obviously, fault needs to be de-
tected, their primary cause isolated, and then a corrective action needs to be taken. This 
process is traditionally known under the name ‘Fault Detection, Isolation, and Recov-
ery’, FDIR. A good CPS design is not only a functional design, but it also anticipates 
faults and has provisions for managing them, through the steps described above. When-
ever the CPS is in a critical application, such fault management is unavoidable, and it 
has to be ‘designed in’ to the system from the beginning. Fault management may in-
clude simply redundancy management (which involves complex mode changes), but 
could also be as complex that a full FDIR approach is needed. In complex physical 
systems, continuous on-line testing and verification is often used for FDIR. For CPSs 
these techniques need to be applied to the software ingredients as well.  

2.2   An Approach to Development and Integration 

As it was emphasized in the previous section, integration is of utmost importance in 
CPSs: in fact the definition of this category refers to it. Hence, the integration of the 
physical and the computational should be the key design activity; in fact, it should 
possibly drive the entire design process.  

Here we propose a continuous integration process that establishes the interfaces be-
tween the physical and computational from the beginning, and the integration of the 
system is performed continuously. This approach is not new for software developers: 
the concept of nightly build and continuous integration is a well-known practice to-
day. Here, we extend this idea in the context of CPSs.  

The approach requires some assumptions about the CPS design as follows. We as-
sume that the system is constructed in layers (as shown on the figure below), and for 
each layer we have models that are executable (perhaps with the help of simulation 
engine).  
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The general layers of a CPS include the environment, the physical systems, the 
coputational platform, and the application. The computational platform interacts with 
the physical system via sensors and actuators, and the application interacts with the 
platform via APIs. Note that this is the same organization discussed earlier.  

In the proposed continuous integration ap-
proach we assume that models are available for 
each layer, and these models could be used in an 
executable form. Initially, these could be low-
fidelity, approximate models, that are incremen-
tally replaced by high-fidelity models, and finally 
with implementations.  

The key observation about this approach is that 
interface and architecture design are primary 
activities. In fact, architecture modeling and 
analysis is done early in the design process. Fur-
thermore, interfaces are designed early. As the 
basic tenet of systems engineering, interfaces are 
designed first, well-before the system is imple-
mented. In the scheme above this involves at least 
two essential interfaces: the one between the 
computational and physical world, and the other 
one between the application and the platform.  
Architecture is a primary driver, and it needs to 
be designed and refined, before the component 
implementation happens. Architecture models 
should be preserved and used throughout the 
development process.   

We envision that eventually high-fidelity models of the platform and the physical 
system are available. While for physical devices this is a well-established practice, for 
software systems (platforms) this is not always possible, as it could be too expensive 
to develop. In this situation, the (software) models could be low-fidelity, and they 
need to be replaced with real implementations as soon as feasible.  

The key process element in the above approach is the continuous existence of an 
executable system, with a concrete architecture, well-defined interfaces, and an ex-
ecutable form. This can give the designers an early feedback about their work, and for 
the customers the opportunity for early evaluation. The design and implementation 
evolves from a fully simulated version to a fully implemented version as shown on 
the figure below.  

The development starts with a fully simulated system, then the real computational 
platform is introduced (as this is the hardest to model and simulate). Note that the real 
platform should have timing-accurate interfaces towards a (real-time) simulation 
engine, and functional interfaces towards the simulated application. This step is fol-
lowed by a step where the real application is run on the real platform, with a simu-
lated physical system and environment, and the final step is the full realization of the 
real system.  

Layers

Environment

Physical System

Platform

Application

Sensors Actuators

APIs

Fig. 2. Layers of CPS design 
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Fig. 3. Continuous concurrent integration 

3   Related Work 

The approach described above has grown out from the well-known development prac-
tices of model-driven development [6,7]. In the various MDD approaches the use of 
models is pervasive, models are used for ‘higher-order’, domain-specific program-
ming, for code generation, and for analysis and verification. Our approach uses these 
techniques and concepts, but it also considers the effects of and the integration with 
the physical system and the environment.  

The use of simulation in developing complex embedded systems is a well-known 
practice as well [8]. The use of simulations to approximate the behavior of software 
systems has been proposed in [9]. A key concept for carrying over results from simu-
lations to implementations is ‘model continuity’ has been proposed in [12]. These 
techniques provide valuable insights into the simulation-based integration of systems, 
and technology (e.g. the DEVS-based approach for simulation) for actually time-
synchronization and coordination. The proposed approach builds on these founda-
tions, but extends and integrates them with the model-based development framework.  

4   Status 

We have started work on an integrated toolchain [10][13] that supports the develop-
ment paradigm outlined above. The toolchain uses Simulink/Stateflow as the primary 
simulation environment (for fully simulated implementations). The platform modeling 
aspect is handled with a modified version of the TrueTime package, which allows the 
co-simulation of controller models, platform models, and physical plant models. The 
controller models are then imported into our modeling tool that supports a modeling 
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language called EsMoL, which is then used to specify (1) hardware platform models, 
(2) software component models (whose implementation comes from the Simulink 
controller models), and (3) deployment models that connect the two. A set of inte-
grated code generator tools produces executable code from the models that could be 
run either in the Simulink environment, or on a target platform. If the code is run in 
Simulink, physical plant models and TrueTime platform models could be used to 
study how the ‘real code’ runs against a simulated platform and plant. We have two 
target platforms: one is a TTP/C cluster from TTTech Inc.: a time-triggered platform 
of four controllers connected via a TTP/C bus running periodically scheduled compo-
nents; the other one is a software emulation of the TTP/C cluster using Linux nodes 
connected via an isolated TCP/UDP network. For the latter, we have built a scheduler 
tool to compute time-triggered scheduled. The code generators produce all the ‘wrap-
ping code’ needed to run controller code on the platform. The toolsuite also includes 
interfaces towards verification tools: the code generators produce the code executable 
code first in an abstract form that could be used to ‘print’ imperative code. This way 
the executable code could be subjected to analysis via using a tool like the Java Path 
Finder (JPF) [14]. Currently we are testing the toolchain on various applications fol-
lowing the development paradigm described.  

5   Conclusions  

In this paper we have introduced a framework for the design of cyber-physical system 
that is model-based and places great emphasis on early integration, based on the mod-
els. Some elements of the framework are already available (e.g. modeling languages 
and generators for embedded systems), and technology is available [11] for construct-
ing the rest.  Currently we are working on realizing and trying out a toolchain that 
implements the concepts and architecture described above, and which also integrates 
code verification tools.  
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