

Lecture Notes in Computer Science 5287
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Uwe Brinkschulte Tony Givargis
Stefano Russo (Eds.)

Software Technologies
for Embedded and
Ubiquitous Systems

6th IFIP WG 10.2 International Workshop, SEUS 2008
Anacarpi, Capri Island, Italy, October 1-3, 2008
Proceedings

13

Volume Editors

Uwe Brinkschulte
University of Frankfurt
Faculty of Computer Science and Mathematics
Chair for Embedded Systems
Frankfurt am Main, Germany
E-mail: brinks@es.cs.uni-frankfurt.de

Tony Givargis
University of California, Irvine
Department of Computer Science
Center for Embedded Computer Systems
Irvine, CA, USA
E-mail: givargis@uci.edu

Stefano Russo
Università di Napoli Federico II
Dipartimento di Informatica e Sistemistica
Naples, Italy
E-mail: stefano.russo@unina.it

Library of Congress Control Number: 2008935377

CR Subject Classification (1998): C.3, C.2, D.4.7, E.1, H.3.4, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-87784-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87784-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12530472 06/3180 5 4 3 2 1 0

Preface

Embedded and ubiquitous computing systems have considerably increased their
scope of application over the past few years, and they now also include mission-
and business-critical scenarios. The advances call for a variety of compelling is-
sues, including dependability, real-time, quality-of-service, autonomy, resource
constraints, seamless interaction, middleware support, modeling, verification,
validation, etc.

The International Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS) brings together experts in the field of embed-
ded and ubiquitous computing systems with the aim of exchanging ideas and
advancing the state of the art about the above-mentioned issues. I was honored
to chair the sixth edition of the workshop, which continued the tradition of past
editions with high-quality research results. I was particularly pleased to host
the workshop in the wonderful scenario of Capri, with its stunning views and
traditions.

The workshop started in 2003 as an IEEE event, and then in 2007 it became
a flagship event of the IFIP Working Group 10.2 on embedded systems. The
last few editions, held in Hakodate (Japan), Vienna (Austria), Seattle (USA),
Gyeongju (Korea), and Santorini (Greece), were co-located with the IEEE In-
ternational Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC).

This year, SEUS was held as a stand-alone event for the first time, and, de-
spite the additional organizational difficulties, it resulted in a high-quality event,
with papers from four continents (from USA, Europe, East Asia and Australia),
(co-) authored and presented from senior scientists coming from academia or
leading industrial research centers.

SEUS 2008 would not have been possible without the effort of many people,
first of all, the authors, who contributed with their invaluable advances in the
field. I am particularly thankful to the Program Co-chairs, Uwe Brinkshulte
and Tony Givargis, and to the Program Committee members for their great
work in selecting the best papers and making up the technical program that
is contained this book. I would also like to thank Local Arrangements Chairs
Marcello Cinque, Domenico Cotroneo, and Isabella Scarpa, for their effort in
organizational issues. I am greatly thankful to Kane Kim and Franz Rammig for
their continuous support and advice. Finally, thanks are due to Springer and to
the following supporting institutions: IFIP WG 10.2; the Federico II University
of Naples, that hosted the workshop in its congress center in Anacapri; and the
Italian Inter-universities Consortium for Informatics (CINI) for organizational
support.

October 2008 Stefano Russo

Message from the Program Co-chairs

It was a great pleasure for us to welcome attendees to Capri and to announce
the technical program of the 6th IFIP Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS 2008). Following the success
of SEUS 2007, the first workshop edition sponsored by IFIP, the current edition
continued with its focus on topics like emerging applications, software architec-
ture and programming models, model-driven development, quality-of-service and
performance, middleware and operating systems, synthesis, verification and pro-
tection, pervasive and mobile systems, organic computing, real-time, and wireless
embedded systems. In contrast to previous editions, SEUS 2008 was held as a
stand-alone event for the first time.

SEUS 2008 was a forum where researchers and practitioners with substantial
experience and serious interests in advancing the state of the art and the state
of practice in the field of future embedded and ubiquitous computing systems
gather and engage in a review of the areas, exchange of significant developments,
and brain-storm on promising directions for future research. The program was
composed of invited and submitted contributions, both undergoing a strict re-
view process by the international and well-reputed Program Committee. We se-
lected 38 high-quality papers, contributions that present advances in integrating
the fields of embedded computing and ubiquitous systems.

Many people worked hard to make SEUS 2008 a success. We would like to
thank the Program Committee members and the reviewers for their hard work
and for their input in the selection of papers. We would also like to thank all those
who submitted papers for their efforts and for the quality of their submissions.
Furthermore, this conference would not have been possible without the great
work of the General Chair, Stefano Russo, and the local arrangements provided
by Marcello Cinque, Domenico Cotroneo and Isabella Scarpa. Finally, special
thanks to Kane Kim for his invaluable support and advice.

October 2008 Uwe Brinkshulte
Tony Givargis

Organization

General Chair

Stefano Russo Federico II University of Naples, Italy

Program Co-chairs

Uwe Brinkschulte University of Karlsruhe, Germany
Tony Givargis University of California-Irvine, USA

Program Committee

Gabriella Carrozza Federico II University of Naples, Italy
Tharam Dillon Curtin University of Technology, Australia
Stephen A. Edwards Columbia University, USA
Sebastian N. Fischmeister University of Waterloo, Canada
Kaori Fujinami Tokyo University of Agriculture and

Technology, Japan
Chris Gill Washington University, St. Louis, USA
Jan Gustafsson Malardalen University, Sweden
Doo-Hyun Kim Konkuk University, Korea
Tei-Wei Kuo National Taiwan University, Taiwan
Sunggu Lee POSTECH, Korea
Yunmook Nah Dankook University, Korea
Yukikazu Nakamoto University of Hyogo and Nagoya University,

Japan
Roman Obermaisser Vienna University of Technology, Austria
Michael Paulitsch Honeywell AES Centers of Excellence, USA
Peter Puschner Vienna University of Techonology, Austria
Franz J.Rammig University of Paderborn, Germany
Theo Ungerer University of Augsburg, Germany
Frank Vahid University of California, Riverside, USA
Allan Wong Hong Kong Polytech, China

Publication and Local Arrangements Co-chairs

Marcello Cinque Federico II University of Naples, Italy
Domenico Cotroneo Federico II University of Naples, Italy
Isabella Scarpa Consorzio Interuniversitario Nazionale per

l’Informatica, Italy

X Organization

Supporting Institutions

IFIP Working Group 10.2 “Embedded Systems”
Dipartimento di Informatica e Sistemistica, Federico II University of Naples,

Italy
Consorzio Interuniversitario Nazionale per l’Informatica, Italy

Table of Contents

Model-Driven Development

Using UML 2.1 to Model Multi-agent Systems . 1
Darshan S. Dillon, Tharam S. Dillon, and Elizabeth Chang

Designing Fault-Tolerant Component Based Applications with a Model
Driven Approach . 9

Brahim Hamid, Ansgar Radermacher, Agnes Lanusse,
Christophe Jouvray, Sébastien Gérard, and François Terrier

Model Based Synthesis of Embedded Software . 21
Daniel D. Gajski, Samar Abdi, and Ines Viskic

Formal Specification of Gateways in Integrated Architectures 34
Roman Obermaisser

Model-Integrated Development of Cyber-Physical Systems 46
Gabor Karsai and Janos Sztipanovits

Middleware

Towards a Middleware Approach for a Self-configurable Automotive
Embedded System . 55

Isabell Jahnich, Ina Podolski, and Achim Rettberg

Context-Aware Middleware for Reliable Multi-hop Multi-path
Connectivity . 66

Paolo Bellavista, Antonio Corradi, and Carlo Giannelli

Service Orchestration Using the Chemical Metaphor 79
Jean-Pierre Banâtre, Thierry Priol, and Yann Radenac

Guiding Organic Management in a Service-Oriented Real-Time
Middleware Architecture . 90

Manuel Nickschas and Uwe Brinkschulte

Self-describing and Data Propagation Model for Data Distribution
Service . 102

Chungwoo Lee, Jaeil Hwang, Joonwoo Lee, Chulbum Ahn,
Bowon Suh, Dong-Hoon Shin, Yunmook Nah, and Doo-Hyun Kim

XII Table of Contents

Real Time

Improving Real-Time Performance of a Virtual Machine Monitor Based
System . 114

Megumi Ito and Shuichi Oikawa

A Two-Layered Management Architecture for Building Adaptive
Real-Time Systems . 126

Florian Kluge, Sascha Uhrig, Jörg Mische, and Theo Ungerer

Real-Time Access Guarantees for NAND Flash Using Partial Block
Cleaning . 138

Siddharth Choudhuri and Tony Givargis

An Operating System for a Time-Predictable Computing Node 150
Guenter Khyo, Peter Puschner, and Martin Delvai

Data Services in Distributed Real-Time Embedded Systems 162
Woochul Kang and Sang H. Son

Quality of Service and Performance

QoS-Adaptive Router Based on Per-Flow Management over NGN 174
Boyoung Rhee, Sungchol Cho, Sunyoung Han,
Chun-hyon Chang, and Jung Guk Kim

Analysis of User Perceived QoS in Ubiquitous UMTS Environments
Subject to Faults . 186

Andrea Bondavalli, Paolo Lollini, and Leonardo Montecchi

Cost-Performance Tradeoff for Embedded Systems 198
Julie S. Fant and Robert G. Pettit

Resolving Performance Anomaly Using ARF-Aware TCP 209
Seehwan Yoo, Tae-Kyung Kim, and Chuck Yoo

Applications

Context-Aware Deployment of Services in Public Spaces 221
Ichiro Satoh

An Ontology Supported Meta-interface for the Development and
Installation of Customized Web Based Telemedicine Systems 233

Jackei H.K. Wong, Wilfred W.K. Lin, Allan K.Y. Wong, and
Tharam S. Dillon

Cyber Biosphere for Future Embedded Systems . 245
Franz J. Rammig

Leveraging GIS Technologies for Web-Based Smart Places Services 256
Cristiano di Flora and Christian Prehofer

Table of Contents XIII

Pervasive and Mobile Systems

VeryIDX – A Digital Identity Management System for Pervasive
Computing Environments . 268

Federica Paci, Elisa Bertino, Sam Kerr, Aaron Lint,
Anna Squicciarini, and Jungha Woo

Delay-Aware Mobile Transactions . 280
Brahim Ayari, Abdelmajid Khelil, and Neeraj Suri

An Operating System Architecture for Future Information
Appliances . 292

Tatsuo Nakajima, Hiroo Ishikawa, Yuki Kinebuchi, Midori Sugaya,
Sun Lei, Alexandre Courbot, Andrej van der Zee, Aleksi Aalto, and
Kwon Ki Duk

M-Geocast: Robust and Energy-Efficient Geometric Routing for Mobile
Sensor Networks . 304

Lynn Choi, Jae Kyun Jung, Byong-Ha Cho, and Hyohyun Choi

Wireless Embedded Systems

Toward Integrated Virtual Execution Platform for Large-Scale
Distributed Embedded Systems . 317

Yukikazu Nakamoto, Issei Abe, Tatsunori Osaki,
Hiroyuki Terada, and Yu Moriyama

A Novel Approach for Security and Robustness in Wireless Embedded
Systems . 323

Mohammad Iftekhar Husain, Shambhu Upadhyaya, and
Madhusudhanan Chandrasekaran

The Role of Field Data for Analyzing the Dependability of Short Range
Wireless Technologies . 336

Gabriella Carrozza and Marcello Cinque

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor
Devices . 348

Adam Ji Dou and Vana Kalogeraki

Methods for Increasing Coverage in Wireless Sensor Networks 360
Sunggu Lee and Younggyu Yang

Synthesis, Verification and Protection

Locks Considered Harmful: A Look at Non-traditional
Synchronization . 369

Michel Raynal

XIV Table of Contents

From Model Driven Engineering to Verification Driven Engineering 381
Fabrice Kordon, Jérôme Hugues, and Xavier Renault

On Scalable Synchronization for Distributed Embedded Real-Time
Systems . 394

Sherif F. Fahmy, Binoy Ravindran, and E. Douglas Jensen

Implementation of an Obfuscation Tool for C/C++ Source Code
Protection on the XScale Architecture . 406

Seongje Cho, Hyeyoung Chang, and Yookun Cho

Automated Maintainability of TTCN-3 Test Suites Based on Guideline
Checking . 417

George Din, Diana Vega, and Ina Schieferdecker

Author Index . 431

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 1–8, 2008.
© IFIP International Federation for Information Processing 2008

Using UML 2.1 to Model Multi-agent Systems

Darshan S. Dillon, Tharam S. Dillon, and Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute,
Curtin University of Technology Perth, Australia
{Darshan.Dillon,Tharam.Dillon,

Elizabeth.Chang}@cbs.curtin.edu.au

Abstract. The use of UML 2.1 to model a broad range of systems is evident
from the variety of UML diagrams in academia and in the marketplace. One
class of systems currently gaining popularity are Multi-Agent Systems. There
are efforts underway to use UML to model these systems and these efforts are
both productive and form the basis for both a methodology and a notation for
systems of this type.

1 Introduction

In this paper we first introduce what an Agent is, the key characteristics of an Agent,
the scope of this paper in terms of what we model in Multi-Agent Systems, and
finally future directions.

2 What Is an Agent ?

In order to define what an agent is we should first consider a definition from the
literature.

An agent is a computer system that is situated in some environment, and that is ca-
pable of autonomous action in this environment in order to meet its design
objectives.1

From this definition a number of points are clear. Firstly, the location of the com-
puter program is important. This is so because the program can migrate from one
machine to another. This is not the usual pattern of behaviour for computer programs.
They usually are installed, configured and run on a particular machine. They do not
travel, as such. Secondly, the computer program is capable of acting automously,
which means it is not dependant on any other program. This goes together with the
fact that agents are mobile. They can be launched by a user on a particular machine,
and travel, severing their connection with the user and concentrating their state related
information within themselves. Thirdly, the computer program is goal-driven and can
choose to act in a way that satisfies it’s design objectives. Most computer programs
are data-driven, reacting to inputs.

Finally, agents play an important role in embedded and ubiqitious computer sys-
tems. They are particularly important in goal-oriented or mission-oriented environ-
ments. The modeling and design of agents is an important first step for the building of
agent- based systems.

2 D.S. Dillon, T.S. Dillon, and E. Chang

3 Characteristics of an Agent2

There are six key characteristics of an agent. They are as follows.

1. Autonomous – That is, an agent can perform independently from other agents by
making decisions based on it’s internal state and information from it’s environment.

2. Sociable – That is, an agent can co-operate and collaborate with other agents by
using a common language to communicate with each other.

3. Service Discovery – Agents are able to identify desired services.
4. Reactive – That is, an agent is pro-active. It can perform tasks that may be bene-

ficial to the user even though it has not been explicitly asked to perform those
tasks.

5. Mobility – Agents can move across networks from any location. They can be as-
signed a task and sent over the web after which their connection to the user can be
severed. Their state can be centralized within themselves.

6. Goal-Driven Execution – Each Agent has a goal that is it constantly trying to
meet.

4 Scope

As with any paper, we need to define the scope we will work within. In the case of
this paper, we will seek to illustrate how sociable and goal-driven nature of agents can
be expressed using UML 2.1.

5 Agent Characteristics Modelled

5.1 Sociable

In modeling Agents, one of their key characteristics is that they are sociable. This
means that they are able to interact with each other in order to co-operate, collaborate
and negotiate with respect to information, knowledge and services. Very often each
agent will have only part of the full picture needed to solve the problem at hand. The
ability to subdivide the tasks in order to reduce the complexity of the problem, have
individual agents work only on their aspect of the problem, and then combine sub-
solutions into a final solution is extremely helpful and productive.

In AgentUML, previous researchers have been modeling Agent protocols5,6 using a
non-standard version of sequence diagrams where each rectangle represents an agent
playing a different role. We say non-standard because the rectangles at the head of
lifelines are meant to represent classes, not agents. Having multiple rectangles each
representing the same Agent is also non-standard, where each rectangle represents the
Agent playing a particular role.

Each agent is defined by specifying a specific set of roles that it plays. Each role
could be associated with a distinct interface. These interfaces could be specified by a
technique called method lifting outlined below. Method lifting defines a composite
class. What are composite classes ? If we first consider a hierarchy of component

 Using UML 2.1 to Model Multi-agent Systems 3

classes, each of which has an interface. If we relate these component classes to a
composite class that also has an interface, and which is formed by taking a selection
of methods from the interfaces of the component classes. This process of relating the
interface of component classes to the interface of a composite class is known as
method lifting. In the example below, the methods A, B & C are individually chosen
from different component classes and combined in the composite class at the head of
the hierarchy. This is shown below.

Fig. 1. An example of Method Lifting 3

Secondly, a particular class may have more than one lifeline. For example, a par-
ticular class may have many ports, each one with it’s own lifeline. This is invaluable
in the case of modeling Agents since we need the facility to be able to represent an
Agent in a sequence diagram, where it plays more than one role concurrently. You
can see figure 2 for an example of this. The agent may be represented by a rectangle,
and have many ports, each with it’s own lifeline. In the case of the method lifting
paradiagm above the composite class may have many interfaces, each of which
chooses a selection of methods from a hierarchy of component classes used as the
source for method lifting. A sequence diagram where a composite classes that have
more than one port is shown below in figure 2.

Generally, communication between objects is done in UML in a sequence dia-
gram, or a communication diagram (used to be called a collaboration diagram in
UML 1.x). They are semantically similar although a sequence diagram can generally
be made to contain additional information. A sequence diagram is generally defined
across the page by a series of rectangles, each of which represents a class. Each of
these rectangles has a dotted line running vertically down the page. These dotted
lines are known as lifelines. As you go down the page, time passes as messages flow
between objects.

4 D.S. Dillon, T.S. Dillon, and E. Chang

A sequence diagram where composite classes have more than one port is shown
below in figure 2.

Fig. 2. Sequence diagram giving an example of a composite class with ports

In terms of previous work done using ports to represent an Agent/Class playing
different roles Hanish & Dillon8 have previously used a similar and related approach.

We now proceed to an illustrative example involving a set of Agents, one of which
(Agreement Agent) plays two roles concurrently represented by P1 and P2. Depend-
ing on which role the agent is acting in when it sends/receives messages will the
sequence diagram show arrows to/from a particular lifeline for the agent. The corre-
sponding sequence diagram of a rental car being returned to a depot (for a car rental
system) and payment being done by the customer is shown below.

If we follow the sequence across and down the page, we note a number of points.
Firstly, P1 (or port 1) represents the :Agreement agent in it’s role to establish status.
P2 represents the :Agreement agent in it’s role to perform transactions. Note that
each port has it’s own lifeline. If there are two ports, this signifies two roles that are
played by the agent from which the ports come. Initially, the request is made to return
a car. Secondly, the Agreement agent checks that the car is fine, and receives a mes-
sage back that this is so. The same agent then performs a transaction to request the
money owing on the car and the customer agent pays the money. Note that the
Agreement agent plays two different roles here. Firstly, the role to check the status of
the car, and secondly to perform the transaction. Then, the Agreement agent sets the
status of the car to “free”, and receives a message back from the Vehicle agent that
the car status is “free”. Again, the Agreement agent is acting in its role to compute
status of the car. The Agreement agent makes a request to the Customer agent to set it
to free. The Customer agent sets the status to free and returns the message to the

 Using UML 2.1 to Model Multi-agent Systems 5

Fig. 3. Sequence Diagram illustrating Sociability of Agents

Agreement agent that the Customer is free. Finally, the Agreement agent sends a
message to the Manager agent that the car is returned, and the Manager agent sends a
message that the car is returned to the Employee.

All the interaction between different Agents is shown on this sequence diagram.
Importantly, an agent (Agreement) is shown playing two different roles on the same
sequence diagram (Status and Transaction) in the same timeframe.

5.2 Goal-Driven

Being goal driven is a feature of many different agents. In order to consider what this
means we can reexamine the concept of search space. Forward-chaining begins with data
which drives the reasoning toward goals. Backward-chaining goes backwards decompos-
ing goals into subgoals and then checking to see if any of them is true. If so, the ultimate
goal is considered to be true. If not, then the process of decomposition is continued.

Most traditional software is not goal driven as such, but is a black box. That is,
specific combinations of inputs lead to specific outputs. The fact that an agent has an
overriding goal, regardless of the specifics of it’s processing, endows it with many
other features. Specifically, it will be pro-active. ie. even if there are no events

6 D.S. Dillon, T.S. Dillon, and E. Chang

Fig. 4. Definition of <<Agent>> stereotype

generated by human users that trigger the agent, it will take actions on it’s own to try
and meet it’s goals. It will also be intelligent in trying to make use of it’s enviroment.
For example, if the goal of the agent is to find certain data, it may migrate to another
site once it has exhausted all possibilities at the current site. The decision to migrate
may come from within the agent, rather than being triggered by an external event.

In this case, we use the composite structure diagram, and extend it by using a
stereotype in order to define the constructs necessary to define the goal-driven aspect
of an Agent.

The basic definition for a composite structure diagram in UML 2.1 is as follows.4
“A composite structure diagram is a diagram that shows the internal structure of a

classifier, including its interaction points to other parts of the system. It shows the
configuration and relationship of parts, that together, perform the behavior of the
containing classifier.

Class elements have been described in great detail in the section on class diagrams.
This section describes the way classes can be displayed as composite elements expos-
ing interfaces and containing ports and parts.”

Below (in figure 4) is contained the definition of the <<Agent>> stereotype based
on the composite structure . diagram. From the definition it must have a name, at least
a Manager part which controls the efforts of the Agent to achieve a goal, and at least
one port, which relates to it’s playing a role.

Having seen the definition of an <<Agent>> stereotype we can proceed to an ex-
ample to realize it’s usage. In the case of the Agreement agent in the Car Rental sys-
tem, we can model the goal driven aspect of the agent by a Composite Structure Dia-
gram with Parts, and Ports. Each part represents a distinct area of processing within
the agent. Each port represents a different role played by the agent. The diagram en-
capsulating this information is shown in figure 5.

 Using UML 2.1 to Model Multi-agent Systems 7

Fig. 5. Composite Structure Diagram representing Goal Driven characteristic of Agent

Note that the same two ports that were present in the sequence diagram are also pre-
sent here. Each of the ports is a construct which enables the Agent to interact with the
environment and with other Agents. For example, if the goal of the Agent is to close
out processing with respect to a specific Rental Agreement, then the Agent will have
to consult the Goal Driven part of the Agent to decide to check the car and the cus-
tomer processing part of the Agent to finalize return and payment, and the goal driven
part itself to see that the necessary checklist of items have been finalized for the return
of the car.

6 Conclusion

This paper has examined the use of UML 2.1 to model Multi-Agent Systems. In par-
ticular, we have examined and illustrated the Agent characteristics of being Sociable
and also Goal-Driven. Specifically, in order to illustrate the fact that Agents are so-
ciable we used a sequence diagram with ports. In order to illustrate the fact that
Agents are goal-driven we used a composite structure diagram where the Agent is
modeled with ports, which is new in UML 2. The use of ports is central where each
port represents the Agent playing a different role.

Future work may include the modeling of Agents to illustrate other characteristics
of an Agent discussed in section 3.

Acknowledgement. The authors would like to acknowledge the invaluable assistance
and suggestions of Maja Hadzic as we authored this paper.

8 D.S. Dillon, T.S. Dillon, and E. Chang

References

1. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester
(2002)

2. Hadzic, M.: Ontology-based Multi-agent Systems for Human Disease Knowledge Sharing.
DEBII, Curtin University of Technology (July 2006)

3. Gardner, W.: Human Computer Interaction for Web Application. DEBII, Curtin University
of Technology (August 2006)

4. PIlone, D.: UML 2.0 in a Nutshell. O’Reilly, Sebastopol (2005)
5. Bauer, Muller, Odell: Agent UML: A Formalism for Specifying Multiagent Interaction. In:

Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented Software Engineering. Held at the
22nd International Conference on Software Engineering (ISCE), pp. 91–103. Springer, Ber-
lin (2001)

6. Huhns,: Agent UML Notation for Multiagent System Design. Internet Computing 8(4), 63–
71 (2004)

7. OMG Group, OMG UML 2.1.2 Superstructure (02/11/2007)
8. Hanish, A.A., Dillon, T.S.: Object-oriented behaviour modelling for real-time design. In:

IEEE Computer Society 3rd International Workshop on Object-Oriented Real-Time De-
pendable Systems (WORDS 1997), Newport Beach, California (1997)

Designing Fault-Tolerant Component Based
Applications with a Model Driven Approach

Brahim Hamid, Ansgar Radermacher, Agnes Lanusse, Christophe Jouvray,
Sébastien Gérard, and François Terrier

CEA, LIST
Laboratoire d’Ingénierie dirigée par les modèles pour les Systèmes Embarqués

Boite 65, Gif sur Yvette, F-91191 France
{brahim.hamid,ansgar.radermacher,agnes.lanusse,

christophe.jouvray,sebastien.gerard,francois.terrier}@cea.fr

Abstract. The requirement for higher reliability and availability of systems is
continuously increasing even in domains not traditionally strongly involved in
such issues. Solutions are expected to be efficient, flexible, reusable on rapidly
evolving hardware and of course at low cost. Model driven approaches can be
very helpful for this purpose. In this paper, we propose a study associating model-
driven technology and component-based development. This work is illustrated
by the realization of a use case from aerospace industry that has fault-tolerance
requirements: a launch vehicle.

UML based modeling is used to capture application structure and related non-
functional requirements thanks to the profiles CCM (CORBA Component Model)
and QoS&FT (Quality of Service and Fault Tolerance). The application model
is enriched with infrastructure component dedicated to fault-tolerance. From this
model we generate CCM descriptor files which in turns are used to build boot-
code (static deployment) which instantiates, configures and connects components.
Within this process, component replication and FT properties are declaratively
specified at model level and are transparent for the component implementation.

Keywords: Connector, CORBA Component Model, Distributed applications,
Model-driven approach, Profile QoS+FT, Replication.

1 Introduction

A distributed system is a system which involves several computers, processors or
processes which cooperate in some way to do some task. However, such systems require
a specific treatment of faults. Faults may be hardware defects (link failures, crashes) or
software faults which prevent a system to continue functioning in a correct manner.

In such systems, solutions are expected to be efficient, flexible, reusable on rapidly
evolving hardware and of course at low cost. Model-driven engineering [19] provides a
very useful contribution for the design of fault-tolerant systems, since it bridges the gap
between design issues and implementation preoccupation. It helps the designer to con-
centrate on application structure and required behavior and permits to specify in a sepa-
rate way non-functional requirements such as Quality of Service and/or fault-tolerance

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 9–20, 2008.
c© IFIP International Federation for Information Processing 2008

10 B. Hamid et al.

issues that are very important to guide the implementation process. The model(s) can
be analyzed at a very early stage in order to detect potential misconceptions; and then,
exploited by specific tools through several steps of model transformation and/or in-
terleaving with platform models in order to produce the application components and
configuration files.

In this paper, we propose a study associating model-driven approach and component-
based development to design distributed applications that has fault-tolerance require-
ments. We focus on the run-time support offered by the component framework,
notably the replication-aware interaction mechanism and additional system components
for fault-detection and reference management. To illustrate the power of our approach
we examine a test case from aerospace industry that has fault-tolerance requirements: a
launch vehicle.

UML based modeling is used to capture application structure and related non-
functional requirements thanks to two specialized extensions CCM (CORBA Compo-
nent Model) [13] and QoS&FT (Quality of Service and Fault Tolerance) OMG
profiles [15]. From this model we generate descriptor files (according to Deployment
and Configuration standard (DnC) [14]). These descriptors are in turn used to configure
a devoted infrastructure consisting of a container/component based architecture and to
load configured components. Within this process, component replication and FT prop-
erties are declaratively specified at model level and are transparent for the component
implementation.

The work is conducted in the context of a national project called “Usine Logicielle”1.
This project is three-folded : modeling, validation and infrastructure/middleware sup-
port along with configuration support.

The rest of the paper is organized as follows. In the next section we present the
model including the distributed computing systems, component model and the connec-
tor extension. In Section 3, we present briefly the proposed framework to implement
fault-tolerance mechanisms. Section 4 describes the proposed methodology to design
fault-tolerant distributed applications for component systems. We outline the profiles
used on model level and describe the code generation and platform configuration
process. In section 5 we review some related works. The last section summarizes and
gives an outlook of future work.

2 Background

In this section, we outline two different aspects: the assumptions about the underly-
ing computing system (mainly its network) and the component platform, namely the
CORBA Component Model extended with the connector paradigm.

2.1 Distributed Computing System Model

A distributed system is a set of processes (or processors) and communication links.
Processes communicate and synchronize by sending and receiving messages through

1 This work has been performed in the context of the Usine Logicielle project of the System@tic
Paris Région Cluster (http://www.usine-logicielle.org).

Designing Fault-Tolerant Component Based Applications 11

the links. The network topology is unspecified and each node communicates only with
its neighbors. Two processes are considered as neighbors if and only if there is a link
(channel) between them. We deal exclusively with connected topologies. A process
can fail by crashing, i.e. by permanently halting. A process can also produce wrong
computation results (e.g. due to spontaneous bit failures). Communication links are
assumed to be reliable. The system is improved by failure detector modules. After a
node fails, a dedicated protocol involving these modules notifies all neighbors of this
node about the failure.

Networks are asynchronous in the sense that processes operate at arbitrary rates and
messages transfer delay are unbounded, unpredictable but finite. We assume that mes-
sage order is preserved. To implement failure detection, the dedicated protocol use a
weak form of synchrony such as [1,6].

2.2 Fault-Tolerance Mechanisms

Fault-tolerance can be achieved by multiple mechanisms, for instance parity check-
ing on memory on a hardware level. In the scope of this paper, furthermore to use
fault detection functionality, we consider replication management. Obviously, replica-
tion relates to hardware as well as to software. With respect to hardware, it means that
processing resources (nodes) and network links are replicated. With respect to software
it denotes that the same component instance is deployed on multiple nodes. There are
different well known variants of how redundant components may work, they fall in
three main categories: all replicas can execute the same request and results are voted
("hot" or active with vote), only a single replica is active ("cold") or mixed policies
where replicas are active but only one, the master sends its result. Indeed, the actual
redundancy policy chosen for an application results from a compromise between pow-
erful redundancy mechanisms offering better reliability at a high cost in terms of price,
communication, size and weaker mechanisms in terms of recovery time but at lower
costs. These considerations are particularly important in the domain of embedded sys-
tems and have driven our will to promote flexible design and implementation of such
mechanisms.

In this experiment, the faults handled relate to hardware fault (node not responding)
detected by the Fault Detector component through liveliness control as described below,
and software error (no answer or wrong result from a replica detected by the voting
mechanism). If a software error is detected on the result coming from a replica, the
node on which this replica resides is desactivated and considered as faulty.

2.3 Connector Extension of the CORBA Component Model(CCM)

Our work is based on the CORBA Component Model (CCM) extended with the connec-
tor paradigm. A main advantage of this model is its separation of business code located
in the component from the non-functional or service code located within a container.

The CCM standard supports three different communication paradigms (port types):
synchronous method calls based on CORBA (provided/required interface), event pub-
lishing and reception and the recently added streaming. One drawback is that the imple-
mentation of such communication mechanisms is generally fixed, i.e. a CCM

12 B. Hamid et al.

implementation provides a single realization of the interactions between port types.
This is quite restrictive, in particular for embedded systems requiring:

1. Flexible interaction implementations
2. Additional communication models or variations of existing communication models

There is no way to model this in a suitable way within the standard CCM model.
The limitations of this standard have driven us to propose an extension named the

eC3M which introduces the concept of Connector in the context of Component/
Container paradigm. This permits the definition of specific interaction semantics and
to associate multiple implementations of a particular one when defining the deploy-
ment configuration. The connector extension to CCM has first been published in [18].
Here, we’ll have a short look at it with a focus on specific connectors supporting the
interaction with replicated components.

A connector has certain similarities with a component. It has a type definition con-
sisting of ports providing or requiring interfaces and an implementation chosen at de-
ployment time. The main difference is (1) its genericity – its interfaces are adapted to
the component using it and (2) it is a fragmented entity: since the connection between
a component and its connector is always a direct local call, each port of the connector
is co-located with the component it is connected with.

3 Our Infrastructure

We propose a simple infrastructure based on a set of non functional components. It has
similar elements as in FT-CORBA [11], but since these are realized as CCM compo-
nents they are independent of an ORB, in particular the connector extensions allows for
choosing different interaction implementations. The separation between components
and containers in CCM allows to keep fault-tolerance aspects out of the business code.
Only the container and the associated connector fragments (which can be seen as part
of the container) manage FT aspects.

3.1 Fault-Tolerance Framework

Here we show the set of non-functional (control) components used to support fault-
tolerance and the run-time support, notably the replication-aware interaction mecha-
nisms. To handle faults, we use the following control components:

1. A fault detector (FD): Each node is equipped with a fault detector to detect other
faulty nodes. These components communicate with each other to build the list of
faulty nodes. This component implements a fault detection protocol such as heart-
beat or interrogation. In our framework, we use the following: at periodic rate,
each fault detector (source node) performs broadcasting of aliveness requests to all
other nodes (destination nodes). A requested destination node answers (or not) the
source node. Thus, each fault detector node maintains the list of nodes and their
states (alive, not alive).

Designing Fault-Tolerant Component Based Applications 13

2. A fault tolerance manager (FTM): The fault tolerance manager component per-
forms reconfiguration to deal with detected faults [7]. It keeps tracks of ongoing
status of replicas and defines fault processing. Reconfiguration is defined as the
operation of transition from a source mode to a target mode when an event (faulty
node) occurs. This is to keep the number of valid replicas, i.e after each failure
occurrence, it checks that the number of valid replicas is higher than the minimum
number of replicas. That is, the FTM changes the configuration of the system to
satisfy the dependability requirements specified by the designer of the application
at the design level.

3. A replica manager (RM): The role of this component is to store references of all
replicated components (replicas) on a certain node. This component is not repli-
cated, but deployed on each node. It handles a list of references to replicated com-
ponents deployed in this node. It enables the creation /deletion replicas and their
deployment in the case of dynamic reconfiguration.

Instances of these control components are activated on each node. However, the fault
tolerance manager instance is in a leader mode on only one node, which may change
dynamically when a faulty node event occurs.

3.2 Replication at a Connector Level

In the context of fault tolerance, a connection with a replicated component should per-
form group communication, i.e. the transparent communication with a set of replicas.
Whereas this could be done with standard CCM and a specific CORBA implementa-
tion supporting group communication, it would be impossible to configure and con-
trol it (in case for instance of node failures) from standard CCM. As shown in the
Section 2.3, the communication system is abstracted at a connector level. Since it is
responsible for incoming and outgoing messages, it is an ideal place for the integration
of replication protocol. Therefore, the user code interacts transparently with a group of
replicas. Along with a replicated instance, the fragments of a connector are replicated
as well.

Currently, we implemented an active replication (“hot”) with vote mechanism as a
proof of concept. In this variant, all replicas of a component instance are active at a
given time and synchronize entries (optional) and results by a vote. We can separate the
realization of a connector supporting this replication style into two phases. In the first,
a unique request has to be distilled and sent to all replicas. In the second, the message
is received by all replicas of the destination component and these (optionally) have to
check that all got the same message.

Replicated components have a voter object in their container and a reference to this
object is automatically passed to the connector fragment. The voter object is part of
the run-time required for fault-tolerance. The code validates (acknowledgeRequests)
the parameters with the other replicas by means of the voter object, before it sends a
message to all replicas to the target object. The call of method acknowledgeRequest
blocks until the result has been confirmed. If the current replica is leader, it sends the
request to all replicas of the server fragment thanks to the replica manager instance in
that node. Moreover, the fault detector instance is invoked to avoid sending request to
the crashed node.

14 B. Hamid et al.

4 Designing Fault-Tolerant Distributed Applications (MDE
Approach)

As described above, a simple redundancy management system can be implemented
thanks to specific middleware components devoted to generic mechanisms such as fault-
detectors, voters and so on...and specialized services implemented into connectors.

Here we describe how a MDE approach can help developers design their application
and take full benefits of this infra-structure to build flexible efficient fault-tolerant com-
ponent based applications. We present the approach chosen and the tools developed to
support it.

Our laboratory LISE 2 has developed a tool that supports UML modeling (Papyrus
UML 3) based on the Eclipse environment. This tool suite provides a graphic UML
modeling editor and code generation components (Java, C, C++). The tool supports
also advanced UML profile management. We have developed additional plug-ins which
generate CCM descriptor files from a model containing component instances with fault-
tolerance requirements.

Our methodology is illustrated by means of a test case from aerospace industry that
has fault-tolerance requirements: a launch vehicle. For simplicity, many functions of
this test case have been omitted. Two components are identified:

– Calculation component (Calc) : this component makes some computations and
then invokes the display method provided by the interface of the (Display) :
component.

– Display component (Display) : it is responsible of displaying the result of the
computations done by the Calc components. It provides display method through
its interfaces to be used by the Calc components.

The sample application is described as follows: a calculation component is periodically
activated by a timer; the result of the calculation is passed to a display component. Here,
component Calc is replicated three times and we use an active with voting replication
style. For this application, dependability requirement is that it must tolerate one node
crash.

4.1 Application Modeling

Application modeling when dealing with component based approaches consists of de-
scribing components, their required and offered services and then define component
instances and finally how these instances are connected to form the final system.

The modeling basis is UML on which a variant of the profile for CORBA Compo-
nent Model (eC3M) is applied. The application is described in terms of components and
provided and required interfaces; profile properties permit to complete the description
so that complete IDL can be generated from the description. Assembly characteristics

2 Laboratory of Model Driven Engineering for Embedded Systems, which is part of the CEA
LIST.

3 http://papyrusuml.org

Designing Fault-Tolerant Component Based Applications 15

and deployment information are also provided through the eC3M profile with stereo-
types close to DnC concepts. From this information deployment plans can be generated
for regular applications.

To handle fault-tolerant requirements we apply a complementary profile named FT
profile which is composed of a subset of QoS&FT [15] and uses NFP (Non Functional
Properties) sub-profile of MARTE [16] (standard UML profile for Modeling and Analy-
sis of Real-Time Embedded systems). Stereotypes dedicated to fault-tolerance spec-
ify the fault-detection policy, replication management style, replica group management
style etc.. Fig.1 shows the structure of this profile. Black ended arrows denote concept
extension (stereotype FTInitialReplicationStyle is an extension of UML Class). White
ended arrows are standard UML generalization relations.

Once application components and interfaces have been defined, the system software
architecture is described thanks to the UML composite diagram used to specify an as-
sembly and hierarchical components. This diagram permits to determine what are the
constitutive parts of the system and how they are inter-connected. Fig.2 shows the com-
posite diagram corresponding to our sample application. The diagram indicates that the
application consists of one component calc, one component display and one component
timer. Connectors are defined between timer and calc, and calc and display. This is the
description of the system without infrastructure components.

Since we want to specify that redundancy is required we stereotype component calc
with FTActiveWithVotingReplicationStyle stereotype and we indicate that membership
policy is controlled by infrastructure and that initial number of replicas will be 3. In the
same manner we indicate that connectorType of the connector between calc and display
is ConnFTCORBA which means that a connector support for fault tolerance based on
CORBA should be used (see next section).

Fig. 1. The structure of the FT-Profile

16 B. Hamid et al.

Fig. 2. Applying fault-tolerance stereotypes

From this model we can configure the final application, install binary files, generate
appropriate connectors and configure specialized infrastructure services. This process
follows several steps and uses different transformation tools described in the next
section.

4.2 Code Generation

Code generation is intended to support CCM implementation steps. This requires to
generate : (1) CCM descriptor files from the model, (2) the code corresponding to a
CCM implementation.

The first point concerns generation of component descriptors, a platform description
and a deployment plan. A deployment plan contains information on the implementa-
tion and required artifacts (usually libraries), components instances, as well as alloca-
tion information (allocation of instances onto nodes), and connections between ports
of these instances. The second one concerns the parsing of the deployment plan by a
dedicated CCM implementation: microCCM. This framework is a tool set developed
jointly with Thales which prepares application deployment from the analysis of the de-
ployment plan. It produces a static deployment in which a bootloader file is generated
for each node. This file contains code that instantiates components as well as connector
fragments and performs the connections according to the deployment plan. Connector
fragments are generated when necessary (this step is needed, since connectors adapt
themselves to component interfaces, as shortly outlined in the previous section).

Designing Fault-Tolerant Component Based Applications 17

void FTCORBA_IDisplay_client::display (CORBA::Float value)
{

if (m_voter != NULL) {
// calculate hash of request (used to simplify comparisons).
Hash hash;
hash.add (m_voter->getRequestNr ());
hash.add (value);
m_voter->acknowledgeRequest (hash.get ());

}
if (amILeader ()) {

for (int i = 0; i<MAX_NR_OF_NODES; i++) {
if (myRM->isOnNode ("DISPLAY",i) && !myFD->is_faulty_node(i))

myRM->getObj ("DISPLAY",i)->display (value);
}

}
}

Fig. 3. Code of connector fragment associated with the node in which Calc component is
deployed

The following code (see Fig.3) gives a rough idea of the generated code contained
within a connector fragment. In this case, fragment that is responsible for sending a
result from the calculation component towards the display component.

4.3 Discussion

Overhead of connector fragments code : The following table provides an idea about
the overhead of the connector fragments at some node. The figures are obtained for a
prototype on a Linux PC. As said before, the bootloader file performs the instantiations
and configuration of components and connector fragments and the connections between
these. The connector fragments use a naming scheme that correspond to their name
followed by the interface to which they adapt to and followed finally by the port name
within the connector type. The overhead of a connector supporting fault-tolerance is
relatively small, in general it depends on the number of operations and their parameters.
The voter run-time adds about 11 Kb.

Efficiency, evolutivity, reusability : In order to use another replication style it suffices
to (1) adapt our infrastructure to deal with such a replication style, i.e. provide a con-
nector and (2) specify the use of this connector by means of a stereotype attribute of a
connection on model level (as shown in Fig.2). A re-generation of the descriptor files
and the connector generation will take this change automatically into account.

Thus, multiple deployment variants can be easily produced and tested (benchmarked)
and optimized to find a suitable solution.

5 Related Work

Some CORBA implementations provided proprietary fault tolerance mechanisms such
as OmniORB, Orbix and Orbacus. They are based on an embedded set of “contact

18 B. Hamid et al.

text data bss dec filename
13788 12 828 14628 gcc_linux_mico/obj/bootloader.o
372 4 1 377 gcc_linux_mico/obj/CCM_hooks.o
2936 4 1 2941 gcc_linux_mico/obj/CORBA_IFault_Detector_client.o
2339 4 1 2344 gcc_linux_mico/obj/CORBA_IFault_Detector_server.o
3245 4 1 3250 gcc_linux_mico/obj/FT_CORBA_IDisplay_client.o
1271 4 1 1276 runtime/FT/gcc_linux_mico/obj/ReferenceSet.o
11458 5 1 11464 runtime/FT/gcc_linux_mico/obj/Voter_impl.o

Fig. 4. Overhead of the connector fragments corresponding to the proposed implementation for a
prototype on a Linux PC

details" within an interoperable object reference (IOR). These solutions are vendor spe-
cific and not interoperable. Therefore, the OMG standardizes fault-tolerant mechanisms
(short FT-CORBA) [12] within the CORBA specification. The replication manager in-
terface is the core of the FT-CORBA infrastructure, inheriting from three interfaces that
deal with object groups, a generic factory and the fault-tolerance properties. The latter
is also referred to by the FT-profile outlined in this paper. A full implementation of the
FT-CORBA specification tends to be “big", therefore it is not implemented by many
ORBs, in particular not by ORBs that are tailored for small and medium embedded
systems.

AQuA (Adaptive Quality of service Availability, see[17] and [9]) is incompatible
with FTCORBA. Fault-tolerance is obtained by active or passive replication and re-
quires reliable group communication. It allows developers to specify the desired level
of dependability, through the configuration of the system according to the availabil-
ity of resources and the faults occurred. This system uses QoS contract as in Quality
Objects [20]. The group communication service is based on Ensemble [8].

The AFT-CCM (Adaptive Fault-Tolerance) model [5] is based on CCM and treats
fault-tolerance as a specific QoS requirement. For each component with fault-tolerance
requirements, an AFT manager is created. This seems to be quite costly, but enables
the modification of QoS parameters at run-time such as the replication coordinator im-
plementing the replication technique (one component for each replica). A prototype of
this system was built using OpenCCM (http://openccm.objectweb.org) running under
ORBacus. Only passive replication style was implemented since active replication style
requires group communication mechanisms that are not supported in the used ORB.
Another approach for CORBA components replication is studied in [10]. This approach
uses interceptor objects that accomplish replication management: each replicated com-
ponent is associated with an interceptor object. In the AFT-CCM, a generic connector is
used to avoid the implementation of a new interceptor object for each new component.

The MEAD (Middleware for Embedded Adaptive Dependability) group has
proposed a fault-tolerant CCM in cooperation with Raytheon. This extension uses addi-
tional descriptor files containing deployment rules and container descriptions that spec-
ify the fault-tolerance properties of the application. The link between components and

Designing Fault-Tolerant Component Based Applications 19

FT services (including fault monitoring, checkpoint (log) components) is done at the
container level. There is a separation between logical and physical assembly in CCM
process: for example, the number of replicas is logical and the placement is a physi-
cal concern. This deployment is achieved using an assembly manager/deployer that is
installed at each host. Both active and passive replication styles are supported by the
proposed extension using the extended virtual synchrony model [2]. This model guar-
antees that events are delivered in the same order at each node.

Different modeling approaches can be followed, several specialized description lan-
guages have been defined and are well adapted to describe system implementation
(AADL and its error annex [3,4]), EAST ADL which focuses particularly on the speci-
fication of allocation constraints, or some dedicated languages devoted to the develop-
ment of critical systems based on formal techniques and synchronous calculus (as in the
SCADE tool). But none of these approaches are well suited to the Container/Component
paradigm.

The main difference between the fault-tolerant CCM approaches above and our
approach is the focus on a specification based on UML and a standardized profile
(QoS+FT). Another difference is that we integrated the fault-tolerance mechanism into
a generic CCM extension. Note that our connectors replace interaction tailoring via
interceptors that are used by other approaches to enable transparent replication.

6 Summary and Future Work

We have shown that fault-tolerant applications can be generated directly from a specifi-
cation of the architecture (component assembly & deployment) in UML and component
descriptions as well as their implementation. The whole approach is largely based on
standards: UML with CCM as well as a fault-tolerance profile and the execution mid-
dleware based on CCM. The extension of the middleware renders it more flexible and
enables the transparent support for group communication. Unlike other approaches, the
connector extension of the middleware is not a specific extension for fault-tolerance –
fault tolerance is merely a good example of the enhanced flexibility that can be achieved
within this component approach. It is then possible to implement distributed applica-
tions onto heterogeneous platforms running under different operating systems and com-
munication stacks at low cost and with high implementation efficiency. The application
are currently runs on a PC using Linux and on a GR-XC3S-1500 LEON development
board using RTEMS OS (a Posix compliant). The latter is used to show that our ap-
proach may be used easily to design embedded systems.

The next steps are primarily a support for an automatic re-configuration of the ap-
plication, for instance the transition between a nominal and a reduced-functionality
mode. Re-configuration mechanisms in a non-FT context are already implemented by
the project partner Thales; and recently we propose a model driven approach to help
specify reconfigurability issues [7]. The challenges of the integration include for in-
stance the replication of the component performing the reconfiguration steps. Another
objective for the near future is to implement other replication styles than the active with
vote and to examine footprint and performance overheads in detail.

20 B. Hamid et al.

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed system. Journal
of the ACM 43(2), 225–267 (1996)

2. Dumitras, T., Srivastava, D., Narasimhan, P.: Architecting and implementing versatile de-
pendability. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems III. LNCS, vol. 3549, pp. 212–231. Springer, Heidelberg (2005)

3. Feiler, P., Rugina, A.: Dependability Modeling with the Architecture Analysis & Design
Language (AADL). Technical report, CMU/SEI-2007-TN-043 (2007)

4. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Technical report, CMU/SEI-2006-TN-011 (2006)

5. Fraga, J., Siqueira, F., Favarim, F.: Adaptive Fault-Tolerant Component Model. In: Ninth
IEEE international workshop on Object-Oriented Real-Time Dependable Systems (2003)

6. Hamid, B.: Distributed fault-tolerance techniques for local computations. Ph.D thesis, Uni-
versity of Bordeaux 1 (2007)

7. Hamid, B., Lanusse, A., Radermacher, A., Gérard, S.: Designing Reconfigurable Compo-
nent Systems with a Model Based Approach. In: Workshop on Adaptive and Reconfigurable
Embedded Systems, APRES (to appear, 2008)

8. Hayden, M.G.: The Ensemble System. Ph.D thesis, Cornell University (1998)
9. Kobusinska, A., Kobusinski, J., Szychowiak, M.: An Analysis of distributed platforms apply-

ing replication mechanisms. Technical Report Report RA-014, Poznan University of Tech-
nology (2001)

10. Lung, L.C., Favarim, F., Santos, G.T., Correia, M.: An Infrastructure for Adaptive Fault
Tolerance on FT-CORBA. In: ISORC 2006: Proceedings of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC
2006), Washington, DC, USA, 2006, pp. 504–511. IEEE Computer Society Press, Los
Alamitos (2006)

11. OMG. CORBA Core specification, Version 3.0.3. OMG Document formal/2004-03-12
(2004)

12. OMG. CORBA Core specification, Version 3.0.3. OMG Document formal/2004-03-12
(2004)

13. OMG. CORBA Component Model Specification, Version 4.0, 4. OMG Document
formal/2006-04-01 (2006)

14. OMG. Deployment and Configuration of Component Based Distributed Applications, v4.0.
OMG document ptc/2006-04-02 (2006)

15. OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms, 5. OMG Document formal/2006-05-02 (2006)

16. OMG. UML Profile for MARTE. OMG document ptc/07-08-04 (2007)
17. Ren, Y., Cukier, M., Sanders, W.H.: An adaptive algorithm for tolerating value faults and

crash failures. IEEE transaction on parallel an distributed systems 2, 173–192 (2001)
18. Robert, S., Radermacher, A., Seignole, V., Gérard, S., Watine, V., Terrier, F.: Enhancing inter-

action support in the corba component model. In: From Specification to Embedded Systems
Application

19. Schmidt, D.: Model-driven engineering. IEEE computer 39(2), 41–47 (2006)
20. Zinky, J.A., Bakken, D.E., Schantz, R.E.: Architectural support for quality of service for

CORBA objects. Theory and Practice of Object Systems 3(1) (1997)

Model Based Synthesis of Embedded Software

Daniel D. Gajski, Samar Abdi, and Ines Viskic

Center for Embedded Computer Systems
University of California, Irvine, CA 92617

{gajski,sabdi,iviskic}@uci.edu

Abstract. This paper presents SW synthesis using Embedded System Environ-
ment (ESE), a tool set for design of multi-core embedded systems. We follow
a design process that starts with an application model consisting of C processes
communicating via abstract message passing channels. The application model is
mapped to a platform net-list of SW and HW cores, buses and buffers. A high
speed transaction level model (TLM) is generated to validate abstract communi-
cation between processes mapped to different cores. The TLM is further refined
into a Pin-Cycle Accurate Model (PCAM) for board implementation. The PCAM
includes C code for all the communication layers including routing, packeting,
synchronization and bus transfer. The generated embedded SW provides a library
of application level services to the C processes on individual SW cores. There-
fore, the application developer does not need to write low level SW for board
implementation. Synthesis results for an multi-core MP3 decoder design, using
ESE, show that the embedded SW is generated in order of seconds, compared to
hours of manual coding. The quality of synthesized code is comparable to manu-
ally written code in terms of performance and code size.

1 Introduction

Multi-core embedded systems are being increasingly used to meet the complexity and
performance requirements of modern applications. Embedded application developers
need a library of communication services to validate and debug their multi-threaded
code. On the other hand, system designers need to provide board prototypes and system
SW for application development. Model based design is widely seen as an enabler for
early application development before the prototype is ready. Software simulation mod-
els for multi-core embedded systems may be created at various levels of abstraction
for different purposes. Models at higher abstraction levels, such as TLM, execute faster
and are therefore better for application development. However, with higher abstraction,
there are fewer design details to allow realistic estimation of design metrics. Pin-cycle
accurate models (PCAMs) provide accurate performance estimates and are required for
prototyping. However, they are too slow to use for application development. Further-
more, PCAMs require an implementation of core, platform and application-specific
system SW services on top of the SW core’s instruction set. Some of these services are
available directly in an RTOS for the SW core. Others, such as external communication
methods, must be manually written or may require RTOS configuration.

Integrated design environments, such as ESE [3], are needed to transform application
level models into platform specific TLMs for exploration and PCAMs for implementa-
tion. In this paper we will discuss the model based design methodology of ESE, with

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 21–33, 2008.
c© IFIP International Federation for Information Processing 2008

22 D.D. Gajski, S. Abdi, and I. Viskic

focus on embedded SW synthesis. Our methodology and synthesis technique allows
automatic transformation of application level models with abstract message passing
communication into PCAMs with an embedded SW stack of communication services.
The automation not only cuts design time, but results in modular embedded SW that is
consistent with the application level model.

2 Related Work

There has been significant research in model based design for embedded systems in the
recent years. Standardization approaches such as AUTOSAR [2] and OSEK [4] provide
common API and middleware for automotive SW development. On the other hand,
system level design languages such as SystemC [5] and SpecC [9] allow multi-core
system modeling with simulation speeds suitable for SW development. Such efforts
have provided the groundwork for developing and deploying model automation tools
such as the one presented in this paper.

There has also been much work in embedded system modeling frameworks and SW
code generation from specific input languages. POLIS [7] (Co-Design Finite State Ma-
chine), DESCARTES [19] (ADF and an extended SDF), Cortadella [8] (petri nets) and
SCE [10] (SpecC) provide limited automation for SW generation from certain mod-
els of computation. In contrast, our approach provides a C based input with multi-core
support and has been demonstrated with actual board implementation.

Modular communication modeling has been proposed for application domains such as
real-time systems and platforms such as heterogeneous multi-core systems. Kopetz [13]
proposes component model for dependable automotive systems. Sangiovanni-
vincentelli [21] has proposed a three phase simulation model for platform based design.
These approaches tackle security, dependability and heterogeneity at the system level,
but require underlying SW services and tools to implement the models. Communication
optimization techniques [18,20,17] on the other hand have dealt primarily with platform
and application transformations using simulation models. In contrast, our communica-
tion SW synthesis focuses on code generation for accurate optimization feedback and is
fast and flexible enough to incorporate application and platform modifications on the fly.

Hardware dependent SW [15] has been a topic of active research lately and
our work contributes to it. Commercial vendors provide a board support package
(BSP) [6,1] with their board IDEs, but such software is customized for the limited set of
IP cores available or synthesizable on the board. Most academic approaches so far have
dealt with porting of simulation models on RTOS, discounting external communication.
Herrara [12] proposes overloading SystemC library elements to reuse the same model
for specification and target execution, but partly replicates the simulation engine on the
host and thereby imposes strict input requirements. Krause [14] proposes generation
of source code from SystemC mapped onto an RTOS, while Gauthier’s method [11]
provides generation of application-specific RTOS and the corresponding application
SW. Both techniques cannot be extended to muti-core platforms with inter-core com-
munication synthesis. Yu [23] shows generation of application C code from concurrent
SpecC, which requires the initial system modeling to be done in SpecC. The Phantom
Serializing Compiler [16] translates multi-tasking POSIX C code input into sequential

Model Based Synthesis of Embedded Software 23

Fig. 1. ESE Design Flow

C code by custom scheduling, but is a purely SW core-specific optimization. Schirner
[22] also proposes hardware dependent synthesis from SpecC models but only consid-
ers platforms with single core connected to several peripherals. In contrast to all the
above techniques, ESE provides generation of core, platform and application-specific
embedded SW for multi-core systems, starting from an abstract C based application
model.

3 Model Based Design with ESE

Our model based design methodology is shown in Figure 1. We start with an applica-
tion model that consists of C processes communicating via synchronized point-to-point
handshake channels and shared variables. The platform definition is a graphical net list
of processing elements (PEs), buses and transducers. Processes and variables in the ap-
plication model are mapped to the PEs in the platform. Channels are mapped to routes
in the platform. If the route includes a buffer, then the communicated data may need to
be broken up into smaller packets according to the buffer size limitations. The above
design decisions and data models of PEs, buses and RTOSes are used by the ESE Front-
End to generate a TLM. The TLM models the PEs as SystemC modules connected to
the communication architecture model consisting of bus channels and buffer modules.
The original application processes are encapsulated as SystemC threads instantiated in-
side the PE modules. The point-to-point channel accesses of the application model are
mapped into equivalent packet transactions routed over the communication model.

The step of refining the TLM into a PCAM is performed by the ESE Back-End. The
component data models in TLM are replaced with respective implementation libraries
in the PCAM. Synchronization is modeled in the TLM via abstract SystemC flags and
events. The flag and event accesses must be transformed into interrupts or polling in
the PCAM. Similarly, the packet transactions over the bus channels in the TLM must
be transformed into equivalent arbitration and data transfer cycles on the system buses.
The transformations applied to the model result in various C functions per SW core.
These functions form the embedded SW library for that core. If there are HW IPs in the

24 D.D. Gajski, S. Abdi, and I. Viskic

platform, they will require RTL interface blocks for the same functions, with platform
specific timing constraints. In this section, we will discuss the above models in greater
detail to provide an idea of the input and output of the embedded SW synthesis process.

3.1 Platform Template

In order to automate the synthesis of embedded SW, we first need to define the platform
components and connections. The platform is composed of processing elements (PEs),
memories, buses and transducers. PEs are our generic term for HW and SW cores on
which application processes are mapped. Memories are storage cores that do not have
any active thread of computation. Shared variables in the application are mapped to
memories. Buses are generic communication units that can act as point-to-point links
or shared buses with arbitration. Buses have well defined protocols and may connect to
compatible ports on a given core.

Transducers are generic interface cores that provide functionality of (1) protocol
conversion and (2) store-and-forward static routing. Transducers consist of internal
buffers and may connect to incompatible buses via different ports. For each bus con-
nection, they have an IO interface and a Request Buffer. This request buffer stores all
send/receive requests made to the transducer for storing and forwarding data on a chan-
nel. Thus, they allow sending data from one PE to another if the two PEs are not con-
nected to a common bus. A route in the platform is a sequence of buses and transducers
with the following regular expression:

PEsender → Bus0 → [Transduceri → Busi →] ∗ PEreceiver

Channels in the application are mapped to routes in the platform. As a result, each
transducer in the platform may have several channels routed through it. For each such
channel, the transducer defines (1) a unique buffer partition to be used by data on that
channel, (2) a unique bus address for a send request, and (3) a unique bus address
for a receive request. Since transactions on a channel are sequential, the partitioning
of transducer buffers guarantees safety and liveness of implementation, provided the
application model is safe and live.

3.2 Application Model

Figure 2. shows the application model of an MP3 Decoder. The decoding algorithm is
captured with a set of eight concurrent processes, each executing sequential C code.
Process Huffman Decoder inputs MP3 stream organized in frames, performs Huffman
decoding, re-quantization and frame reordering. The frames are then classified into ei-
ther left or right stereo stream and processed separately. Left and Right Alias Reduc-
tion processes reduce the aliasing effects in frames, while the Left and Right IMDCTs
convert the frequency domain samples to frequency sub-band samples. The two DCT
processes transform the individual frequency sub-bands into PCM samples and send
them to the PCM process for correction verification.

Communication in application model is enabled with calls to (a) send/recv
methods for direct process communication, and (b) read/write methods for access-
ing variables shared between processes. The send/recv methods are encapsulated in

Model Based Synthesis of Embedded Software 25

Fig. 2. Application model

process-to-process channels with no message buffering. Instead, process-to-process
channels follow handshake synchronization semantics, where the receiver process
blocks until the sender has sent the communicated data. All communication in MP3
Decoder is modeled using process-to-process channels Ch1 through Ch9.

On the other hand, the communication with read/write methods is unblocking.
The shared variables are in the global scope and are accessed with unsynchronized ac-
cess channels. The two communication mechanisms are sufficient to model more com-
plex communication services such as FIFOs, mutexes, mailboxes or events. Therefore,
the synthesis of the basic communication models of handshake channels and shared
variable access channels is necessary and sufficient for implementing any inter-process
communication service at this level of abstraction.

The set of processes, variables and channels are built on top of the SystemC sim-
ulation kernel, as shown on Figure 2. The processes execute as concurrent threads on
the simulation kernel. The process to process channels use the notify-wait semantics
of the kernel events to implement handshake synchronization. The shared variables are
modeled as passive SystemC modules that export read and write interfaces, which are
used to connect them to the access channels. Interfaces are also defined for processes
to allow connection to channels. A well defined interface template provides a commu-
nication API with the following functions, where < i > is the name of used interface:

– < i > Send(void *data, int size) Synchronized send

– < i > Recv(void *data, int size) Synchronized receive

– < i > Write(void *data, int size) Non-blocking write

– < i > Read(void *data, int size) Non-blocking read

By separating the communication interface from the rest of the computation code,
we are able to successively refine only the interface implementation code. The API
provided to the application developer stays the same throughout SW synthesis.

26 D.D. Gajski, S. Abdi, and I. Viskic

Fig. 3. TLM resulting from application to platform mapping

3.3 Transaction Level Model

The TLM is derived by mapping the application model in Section 3.2 to an embedded
platform. The platform components are modeled with a well defined SystemC code
template. PEs are modeled as SystemC modules that instantiate application processes.
The system buses are modeled with a universal bus channel (UBC), that provides meth-
ods for synchronized send/receive, non-blocking read/write and memory service. Mem-
ories are modeled as SystemC modules with a local array. Transducers are modeled as
SystemC modules with local buffer and controller threads for each bus interface.

Figure 3 shows the TLM of the MP3 Decoder. Processes Left and Right DCT are
mapped to the HW units (IP1 and IP2), while all other processes reside in a SW core
(CPU) model. The route between the core and the HW units includes two UBCs and
a Transducer. Access to units from the SW core is modeled with Channel API that
encapsulate routing and packeting methods. These methods in turn are implemented
with the UBC functions. Routing includes programming the Transducer with encoded
route using UBC write method. Packeting divides the message into data packets of
selected size. Since multiple processes are mapped to the SW core, a dynamic scheduler
model that exports a threading API emulates processor multitasking.

Channels between processes in the SW core are implemented with an inter-process
communication (IPC) model. The IPC and scheduler model are only core dependent
and can be included into the TLM from a library. However, the external communication
code is application, platform and core dependent. Therefore, its has to be generated for
every communication change in the design.

3.4 Pin-Cycle Accurate Model

The TLM is refined into a PCA model that is used for board implementation. Board
design tools such those from Xilinx and Altera can be used to convert PCAMs into
bitstreams for board implementation. Board debugging tools can then be used to run
and debug the design in real time.

Figure 4. shows the PCAM of the MP3 Decoder. The platform consisting of one
SW core and two IP units connected with two buses and a transducer is now modeled in

Model Based Synthesis of Embedded Software 27

Fig. 4. PCAM refined from TLM for board prototyping

synthesizable RTL. The six MP3 Decoder processes mapped to a SW core are compiled
with the appropriate C compiler (e.g. Xilinx compiler for Microblaze core) and linked
with the system SW libraries for download. The processes mapped to hardware can be
either synthesized using C-to-RTL tools or replaced with the respective RTL IP. The
system SW stack includes the threading and IPC libraries of the RTOS, and the external
communication library generated by our synthesis tool. The RTOS itself may consist of
several other services such as file handling, memory management, standard C library,
networking and so on.

The communication SW library consists of four layers as shown in Figure 4. The
lowest layer consists of a set of interrupt handlers (IHs) and memory access functions.
Each application level handshake channel requires synchronization that may be im-
plemented as interrupt or polling. For interrupt based synchronization an IH is imple-
mented per handshake channel. For polling implementation, a memory mapped flag is
implemented in the slave device that is periodically checked by the master SW core.
The memory access functions also provide basic IO to the peripherals. The synchro-
nization and data transfer layer consists of C methods that use the IHs and memory
access methods to manage packet level synchronization and bus word transfers. The
higher level layers for routing and packeting and the channel API are imported directly
from the TLM. In summary, the communication in PCAM is implemented with core
specific C methods as opposed to SystemC kernel methods in TLM.

4 Embedded SW Generation

In this section we describe the embedded SW synthesis and code generation from a
set of design parameters. The design parameters are determined from the application
and platform decisions as well as core properties and are treated as constants for SW
code generation. Two layers of communication functions are generated,namely for rout-
ing/packeting and synchronization/transfer. These functions are specific to the interface
of the application process. An example shows a typical code synthesized for a Send
interface.

28 D.D. Gajski, S. Abdi, and I. Viskic

4.1 Communication Design Parameters

In order to automate the communication SW code generation, we define a set of com-
munication specific system parameters. Based on our platform template, explained in
Section 3.1, we define a Global Static Routing Table (GSRT). The GSRT stores the
mapping of each application level channel to a platform route. For each channel Ch,
routed through a transducer Tx, we define BufferSize(Tx, Ch) to be the buffer partition
size in bytes for Ch on Tx. We also define the transducer send and receive request buffer
addresses per channel as SendRB(Tx, Ch) and RecvRB(Tx, Ch), respectively. The above
parameters are required to generate routing and packeting layers for the SW core.

For each channel Ch, routed over a bus B, we define SyncType(B, Ch) to be the syn-
chronization method to be used for ch for the route segment at B. The two possible syn-
chronization methods are Interrupt and Polling. For direct memory accesses that do not
require routing through transducer, synchronization is not required. A synchronization
flag table is maintained for each core. Each channel Ch gets a unique entry SyncFlag Ch
in this table. For interrupt based synchronization, we also define a binding from the inter-
rupt source to the flag and the handler instance. For polling, the flag is bound to an address
in the slave PE. Finally, for the data transfer implementation, we define the bus word size
and the low to high address range for each channel Ch on bus B as AR(B, Ch). For each
SW core we also define WordSize as the number of bytes per word.

4.2 Routing and Packeting

The communication functions are synthesized for each interface i that is bound to a
channel Ch. Since we allow only static routing, a route object Rt is stored in the GSRT
corresponding to each channel. Note that the GSRT does not need to be part of the com-
munication library, since the routing per channel is static. The route for Ch determines
the channel packet size as follows:

PktSz = Min (∀Tx ∈ Rt, BufferSize(Tx, Ch))

Hence, packet size is the largest data size that can fit into any transducer buffer alloca-
tion for Ch. Again, note that PktSz is a constant per channel, due to static routing.

The code generated for the interface communication method is a do-while loop, with
a temporary variable to keep track of already sent/received data. A lower level method
i SyncTr is called by the routing/packeting layer to synchronize with the corresponding
process and send or receive each packet.

4.3 Synchronization and Transfer

The routing of channel Ch determines the synchronization code generated inside the
i SyncTr method. Given the route object Rt, as obtained from the GSRT, we determine
the first bus B in Rt. We also determine if Rt contains any transducers. If so, we assign
Tx to be the first transducer in Rt. The first step of packet synchronization is top make
a transducer request for the transaction. This is done by generating code to write the
packet size (in bytes) into the request buffer at the address given by the parameter
SendRB(Tx, Ch) or RecvRB(Tx, Ch), depending on the transaction type. Once the

Model Based Synthesis of Embedded Software 29

Fig. 5. Embedded SW code example

request is written, the transducer initiates lower level synchronization via interrupt or
polling, just like any other slave core.

Lower level synchronization is implemented by generating code for busy waiting
over flag SyncFlag Ch in the i SyncTr method. The flag is either set by the interrupt
handler for Ch or by the corresponding slave core, in case of polling. The busy-wait
code is followed by resetting the synchronization flag. Finally, data transfer is per-
formed by generating a call to the core-specific WrMem or RdMem functions. These
functions write or read data of given bytes using bus transactions of size WordSize. The
starting address of the transfer is obtained from the address range AR(B,Ch).

Figure 5 shows an example for the embedded SW code generated for send method of
interface i. The sender process is mapped to a SW core, and its interface i is connected
to bus B. Interface i is bound to channel Ch that is routed over B and transducer Tx
and onto the destination core. Interrupt signal (Interrupt) from the transducer to the SW
core is used for synchronization, and is bound to handler IH Ch and flag SyncFlag Ch.

5 Experimental Results

Figure 6 shows a multi-core design with an MP3 decoder application mapped to a plat-
form consisting of one SW core (Microblaze) and four HW cores (Left/Right DCT and
IMDCT) used as accelerators. The HW cores use a DoubleHandshake (DH) Bus in-
terface, while the SW core is connected to the Open Peripheral Bus (OPB). Since the
two bus protocols are incompatible, a transducer is used to interface between the cores.
The block diagram of the stereo MP3 application with left and right channel decoding
blocks is shown inside Microblaze.

We created four mappings of the application, that we refer to as SW+1DCT, SW+2D
CT, SW+2IMDCT and SW+2DCT+2IMDCT, with parts of the application mapped to
the hardware accelerators, as indicated by the mapping name. As the DCT and IMDCT

30 D.D. Gajski, S. Abdi, and I. Viskic

Fig. 6. MP3 Decoder Platform: SW + 2 DCT + 2 IMDCT

processes are moved from SW core to the HW cores, the inter-core bidirectional chan-
nels are routed over the OPB, DH buses and transducer Tx. The communication SW
on Microblaze for PCAMs of the different designs are generated using our SW syn-
thesis tool. Xilinx EDK [6] is used to convert our generated PCAMs into bitstream for
implementation on the FF896 Virtex-II device. The decoding performance for all the
synthesized designs is measured with an OPB timer on the board, using a common
MP3 input file.

Table 1 shows a comparison between manually implemented and automatically syn-
thesized PCAMs using quality metrics of SW code size and communication delay. It
can be seen that the synthesized SW binary is only marginally larger than manual
implementation (between 1-4%). However, the performance of the synthesized code,
as measured by the on-chip timer, is 6-9% better than manual implementation. The
code quality difference was because the manual implementation shared the synchro-
nization function for different application channels, while the synthesized code had
unique synchronization function for each channel. Therefore, the manual code had
fewer total instructions, but incurred more instruction fetches for each communication
call at run-time.

Table 1. Comparison of manual vs. synthesized PCAMs of the MP3 Decoder

Design Code size(in bytes) Total comm. delay Total comm.
(% diff.) (in cycles) (% diff.) delay (in ms)

SW+1DCT 171,362 957,060 35.45
Manually SW+2DCT 160,640 1,914,120 70.89
implemented SW+2IMDCT 163,492 1,875,588 69.46
PCAM SW+2DCT+2IMDCT 153,420 3,789,708 140.36

SW+1DCT 172,072 (+4.14%) 949,932 (-7.44%) 35.18
Automatically SW+2DCT 161,280 (+3.98%) 1,899,864 (-7.44%) 70.04
generated SW+2IMDCT 164,132 (+3.91%) 1,863,972 (-6.19%) 69.04
PCAM SW+2DCT+2IMDCT 153,624 (+1.33%) 3,763,836 (-6.83%) 139.40

Model Based Synthesis of Embedded Software 31

Table 2. Comparison of manual vs. synthesized communication SW

Design Code size (in lines) Development Time
(% diff.) (% diff.)

SW+1DCT 162 5 h + 2 h
Manual SW+2DCT 192 5 h + 2.5 h
communication SW+2IMDCT 192 5 h + 2.5 h
library SW+2DCT+2IMDCT 252 5 h + 3.5 h

SW+1DCT 168 (+3.70%) 5 h + 0.14 s (-28%)
Synthesized SW+2DCT 208 (+8.33%) 5 h + 0.14 s (-33%)
communication SW+2IMDCT 208 (+8.33%) 5 h + 0.14 s (-33%)
library SW+2DCT+2IMDCT 288 (+13.83%) 5 h + 0.14 s (-37%)

Table 2 shows a comparison of lines of code between manual and synthesized em-
bedded SW. Due to difference in synchronization implementation, as mentioned above,
we can see that synthesized source code is marginally larger than manual code. The de-
velopment time includes the 5 hours that it took to define the application level channels
and the design parameters. It took 2-4 hours to implement and test the manual commu-
nication code. In contrast, with the given parameters, our synthesis tool generated the
embedded SW library in fraction of a second. This resulted in an overall development
time savings of 33% on average.

6 Conclusions

We presented a model based technique and methodology for synthesis of embedded
SW for heterogeneous multi-core systems. The novelty of our work lies in defining
embedded system models at different abstraction level with clear synthesis semantics.
Application level models were defined as a set of processes communicating via mes-
sage passing channels and shared variables. A well defined, yet highly flexible, platform
template and associated design parameters were presented. We also presented a synthe-
sis procedure to generate core, application and platform specific embedded SW for the
design. Synthesis results for an MP3 decoder example demonstrated the applicability
of our technique for large industrial size embedded systems. Our automatic embedded
SW synthesis reduces overall design time, while consistently providing better perfor-
mance and negligible increase in code size over manual implementation. For future
work, we are investigating SW synthesis from dependability and security oriented ap-
plication models. We are also working extending our model based design framework
with application and platform templates for real-time architectures such as time trig-
gered network.

Acknowledgments. This work builds on several years of system level design research
at Center for Embedded Computer Systems, UC Irvine. We wish to thank Hansu Cho
for providing the Verilog implementation of transducers, Pramod Chandraiah for the C
reference of the MP3 Decoder, and Gunar Schirner for discussions on hardware depen-
dent software.

32 D.D. Gajski, S. Abdi, and I. Viskic

References

1. Altera SOPC Builder, http://www.altera.com/
2. Automotive Open System Architecture, http://www.autosar.org/
3. Embedded System Environment, http://www.cecs.uci.edu/∼ese/
4. OSEK, http://www.osek-vdx.org/
5. SystemC, OSCI, http://www.systemc.org/
6. Xilinx Embedded Development Kit, http://www.xilinx.com/
7. Balarin, F., et al.: Hardware-Software Co-Design of Embedded Systems: The POLIS Ap-

proach. Kluwer, Dordrecht (1997)
8. Cortadella, J., et al.: Task generation and compile time scheduling for mixed data-control

embedded software. In: Proceedings of the Design Automation Conference (June 2000)
9. Gajski, D., Zhu, J., Domer, R., Gerstlauer, A., Zhao, S.: SpecC: Specification Language and

Methodology. Kluwer Academic Publishers, Dordrecht (January 2000)
10. Gerstlauer, A., Shin, D., Peng, J., Domer, R., Gajski, D.D.: Automatic, layer-based genera-

tion of system-on-chip bus communication models. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 26(9) (September 2007)

11. Guthier, L., Yoo, S., Jerraya, A.: Automatic generation and targeting of application specific
operating systems and embedded systems software. In: Proceedings of the Design Automa-
tion and Test Conference in Europe, pp. 679–685 (2001)

12. Herrera, F., Posadas, H., Snchez, P., Villar, E.: Systematic embedded software generation
from systemc. In: Proceedings of the Design Automation and Test Conference in Europe
(2003)

13. Kopetz, H., Obermaisser, R., Salloum, C.E., Huber, B.: Automotive software development
for a multi-core system-on-a-chip. In: SEAS 2007: Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems, Washington, DC, USA, p. 2.
IEEE Computer Society, Los Alamitos (2007)

14. Krause, M., Bringmann, O., Rosenstiel, W.: Target software generation: an approach for
automatic mapping of systemc specifications onto real-time operating systems. Design Au-
tomation for Embedded Systems 10(4) (December 2005)

15. Makkelainen, T.: Hds from system-house perspective. In: Hardware dependent Software
Workshop at DAC (2007)

16. Nacul, A.C., Givargis, T.: Lightweight multitasking support for embedded systems using the
phantom serializing compiler. In: Proceedings of the Design Automation and Test Confer-
ence in Europe, pp. 742–747 (2005)

17. Pasricha, S., Park, Y.-H., Kurdahi, F.J., Dutt, N.: System-level power-performance trade-offs
in bus matrix communication architecture synthesis. In: CODES+ISSS 2006: Proceedings of
the 4th international conference on Hardware/software codesign and system synthesis, pp.
300–305. ACM, New York (2006)

18. Pinto, A., Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Constraint-driven communication
synthesis. In: Proceedings of the Design Automation Conference, pp. 783–788 (2002)

19. Ritz, S., et al.: High-level software synthesis for the design of communication systems. IEEE
Journal on Selected Areas in Communications (April 1993)

20. Ryu, K.K., Mooney, V.: Automated bus generation for multiprocessor soc design. In: Pro-
ceedings of the Design Automation and Test Conference in Europe, p. 10282 (2003)

21. Sangiovanni-Vincentelli, A., et al.: A next-generation design framework for platform-based
design. In: Conference on Using Hardware Design and Verification Languages (DVCon)
(February 2007)

http://www.altera.com/
http://www.autosar.org/
http://www.cecs.uci.edu/~ese/
http://www.osek-vdx.org/
http://www.systemc.org/
http://www.xilinx.com/

Model Based Synthesis of Embedded Software 33

22. Schirner, G., Gerstlauer, A., Dömer, R.: Automatic generation of hardware dependent soft-
ware for mpsocs from abstract system specifications. In: Proceedings of the Asia-Pacific
Design Automation Conference, pp. 271–276 (2008)

23. Yu, H., Dömer, R., Gajski, D.: Embedded software generation from system level design
languages. In: Proceedings of the Asia-Pacific Design Automation Conference, pp. 463–468
(2004)

Formal Specification of Gateways in Integrated
Architectures

R. Obermaisser

Vienna University of Technology, Austria

Abstract. Complex embedded computer systems can encompass multiple appli-
cation subsystems, such as a multimedia, a powertrain, a comfort and a safety
subsystem in the in-vehicle electronic system of a typical premium car. Infor-
mation exchanges between these application subsystems are essential to realize
composite services that involve more than one application subsystem and to re-
duce redundant computations and sensors. A major challenge is to resolve the
property mismatches at the interfaces between application subsystems, such as
incoherent naming, divergent syntax, or different communication protocols. Also,
fault isolation capabilities are required to prevent common mode failures induced
by the propagation of faults between application subsystems. The contribution of
this paper is a formal specification of gateways that contain structured collections
of time-sensitive variables associated with timing information (called real-time
databases) in order to separate the application subsystems. The formal specifica-
tion can serve as a basis for automatic code generation or formal verification.

1 Introduction

Large distributed embedded systems (e. g., complete on-board electronic system of a
car) consist of numerous application subsystems, each providing a part of the overall
application functionality. Designers follow a divide-and-conquer strategy in order to
manage the system’s complexity by structuring the overall functionality into nearly-
independent subsystems [1, chap. 8]. For example, in-vehicle electronics are usually
grouped into several domains, including the safety-related powertrain and chassis do-
mains, as well as the non-safety critical comfort and multimedia domains [2]. Each do-
main comprises a set of Electronic Control Units (ECUs) interconnected by a network
(e. g., Controller Area Network (CAN) [3], FlexRay [4]).

However, the subdivision of the overall system usually does not lead to fully indepen-
dent application subsystems. Interactions between application subsystems are required
for improved quality-of-service, for implementing application services that span more
than one application subsystem, and for exploiting redundancy [5].

The requirement of sharing information between application subsystems becomes
a challenge, if the overall system encompasses heterogeneous application subsystems,
which exchange messages using different communication protocols, incoherent nam-
ing, and divergent syntax or semantics. In this case, property mismatches at the inter-
faces between application subsystems need to be resolved.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 34–45, 2008.
c© IFIP International Federation for Information Processing 2008

Formal Specification of Gateways in Integrated Architectures 35

In previous work [5], we have introduced a framework for the realization of gateways
between application subsystems as part of the Dependable Embedded Components and
Systems (DECOS) architecture [6]. The gateways proposed in this framework support
selective redirection of information between networks in conjunction with the necessary
property transformations. Central to this framework is a real-time database [7, p. 289],
which is contained in the gateway and stores real-time images for the information ex-
change between the interconnected networks.

This paper describes the formal specification of these gateways. The formal gateway
specification is expressed using state machines with timing constraints and gateway-
specific operations (e. g., operations for accessing the real-time database). Existing so-
lutions for the specification of real-time systems, such as timed automata [8], calendar
automata [9] and time-triggered automata [10], were considered for developing this for-
mal gateway specification. The formal gateway specification serves as the input for an
automatic code generation tool, which yields data structures and code that serve as a
parameterization of a generic architectural gateway service. Furthermore, the formal
gateway specification is a baseline for the formal verification of systems using the pro-
posed gateways.

The paper is structured as follows. Section 2 explains the gateway framework. The
formal specification of the gateways is the focus of Section 3. The gateway specification
formally captures the information to control the behavior of the gateway (i. e., selective
redirection and property transformations). Section 4 gives an overview of the model-
based generation of the gateways using the gateway specification as a starting point.
The paper concludes with a discussion in Section 5.

2 Gateways Based on a Real-Time Database

A real-time system can be modeled using a set of real-time entities [11], which are
significant state variables that are located in the computer system or the environment.
The current value of such a real-time entity is called a real-time image and can be sent
within a message on network. Redirection of information through a gateway occurs
when a real-time image contained in a message is required by another Distributed Ap-
plication Subsystem (DAS) connected to the gateway. We denote such a real-time image
that is relevant at the gateway as a convertible element.

The presented gateways recombine convertible elements acquired from one network
into messages for another network, while converting between different temporal and
syntactic specifications and resolving naming incoherences. For this purpose, the gate-
way maintains a real-time database with convertible elements called the gateway repos-
itory. The gateway repository decouples the different networks accessed by the gateway
and allows the convertible elements that are necessary for constructing a particular mes-
sage to arrive at different points in time.

In addition, the gateway contains for each accessed DAS a so-called network-adapter,
which implements the communication protocol of the network of the DAS and performs
information exchanges between the network and the gateway repository (see Figure 1).

36 R. Obermaisser

Network
Port
Port

Job

Port Port Port

Job

Port Port Port

Job

Port Port Port

Job

PortPortPort

Job

PortPortPort

Job

PortPortPort

Gateway

Network
Adaptor Network

Port

Port
Port

Port

Network
AdaptorCEs CEs Msgs.Msgs.

DAS A DAS B

Real-Time Database
with Convertible
Elements (CEs)

Gateway
Repository

Implements
Protocol for

Network of DAS A

Implements
Protocol for

Network of DAS B

Fig. 1. Gateway

2.1 Network Adaptors

A network adaptor can acquire convertible elements from a network and write them into
the gateway repository. Depending on the protocol, the acquisition of a message with
convertible elements can involve the exchange of several messages at input and output
ports, e. g., the transmission of a request message before a response message carrying the
convertible elements arrives. Secondly, a network adaptor can read convertible elements
from the gateway repository, construct messages and disseminate them on a network.
Thereby, information can be redirected between networks, if the read convertible ele-
ments have been placed in the gateway repository by another network adaptor.

The specification of the network adaptors occurs using state machines with timing
constraints and will be explained in Section 3.

2.2 Gateway Repository

For the storage of convertible elements, the gateway repository takes into account the
information semantics of convertible elements. Due to the respective characteristics of
state and event semantics, the gateway repository distinguishes two types of storage ele-
ments in analogy to state and event ports. For convertible elements with state semantics,
the repository contains state variables that are overwritten whenever a new version of the
convertible element arrives (update-in-place). Convertible elements with event seman-
tics, on the other hand, are stored in queues.

In addition to the data of the convertible elements, the gateway repository also stores
meta-information about convertible elements. The meta-information maintained in the
gateway repository includes three dynamic attributes (most recent update instant, update
request indication, number of queued instances) and a static attribute (temporal accuracy
offset).

– Most Recent Update Instant. The point in time of the most recent update tupdate is
a dynamic attribute associated with each convertible element with state semantics.
tupdate is set to the current time tnow, whenever a network adaptor overwrites the
convertible element in the gateway repository.

– Temporal Accuracy Interval and Offset. Due to the dynamics of real-time en-
tities, the validity of convertible elements is time-dependent. For this reason, the
gateway repository maintains for each convertible element with state semantics a
dynamic attribute called the temporal accuracy interval dacc. At any given instant,
dacc denotes how long the convertible element will still remain a valid image of the
respective real-time entity in case no update of the convertible elements occurs in
the meantime.

Formal Specification of Gateways in Integrated Architectures 37

The temporal accuracy offset doffset is a static attribute that determines the tem-
poral accuracy interval immediately after an update of the convertible element.
In conjunction with the instant of the most recent update, the temporal accuracy
offset allows to compute the temporal accuracy interval of a convertible element:
dacc = doffset − (tnow − tupdate). Hence, only the temporal accuracy offset needs to
be stored in the gateway repository, because the temporal accuracy interval can be
computed on-the-fly.

– Update Request Indication. In order to support on-demand communication ac-
tivities, the gateway repository contains boolean update request indications. For a
convertible element with state or event semantics, the respective update request in-
dication breq denotes whether a new convertible element needs to be transferred into
the gateway repository. By setting the update request indication, a network adap-
tor can demand convertible elements from the other network adaptors. A network
adaptor receiving messages from a network can initiate receptions conditionally,
based on the value of the update request indication.

– Number of Queued Instances. Every convertible element with event semantics
possesses this dynamic attribute. It denotes the number of instances of the convert-
ible element that are currently queued in the gateway repository.

Using the introduced attributes, we can control the behavior of a network adaptor. For
example, the meta-information provides the network adaptors with information for the
decision whether to actively engage in the acquisition of convertible elements for the
update of the gateway repository. A network adaptor can react to the imminent inval-
idation of temporal accuracy, e. g., by starting a protocol to perform an update of the
convertible element in the gateway repository.

3 Formal Specification of Gateways

This section formally defines a gateway with multiple network adaptors and a real-time
database. Based on the notion of the gateway state, we also describe the execution of a
gateway over time.

3.1 Definition of Network Adaptor

A network adaptor is a state machine with local variables, clock variables, locations,
and edges. An edge interconnects two locations of the network adaptor and can be as-
sociated with a guard, assignments to variables and communication actions. The guard
expresses a boolean condition, which defines whether the edge can be taken. Commu-
nication actions are used to express interactions with the gateway repository and the
ports. Variables are used to capture the internal state of the network adaptor. In particu-
lar, variables can store messages and convertible elements. In a communication action,
variables can serve as the source for the transfer of a convertible element into the gate-
way repository or the transfer of a message to a port for being transmitted. In analogy,
variables can serve as the destination when executing a communication action to read a
convertible element from the gateway repository or to receive a message from a port.

38 R. Obermaisser

Formally, a network adaptor is a tuple 〈L, l, X, R, E〉, where

L is a finite set of symbols denoting locations,
l ∈ L is the initial location,
X is a finite set of clocks X = {X1, X2, ...},
R is a set of local variables: R ⊂ {(a, b)|a ∈ N ∧ b ∈ P(N)} Each local vari-

able is associated with a name a ∈ N. We call the set of all variable names
η(R) := {z|∃(z, b) ∈ R}. In addition, each variable possesses a corresponding do-
main described by a subset of N. We use the function domain(x) to determine the
domain of a variable with name x: domain(x) := b where (a, b) ∈ R ∧ x = a

E is a set of edges: E ⊆ L × L × Φ(Z̄) × α(Z̄) × χ(Z̄), where
Z̄ is the state of the gateway (cf. Section 3.3)
Φ is the guard defined by the function Z̄ �→ {T, F}
α is the assignment action defined by the function Z̄ �→ R̄, where R̄ denotes the

local variables state (cf. Section 3.3), i. e., the values of the local variables at a
certain point in time

χ is the communication action defined by a function χ : Z̄ �→ P(N)×P(N)×
P(N)×P(N), controlling in each state Z̄ the effect of the network adaptor on
the port and repository state. χ(Z̄) = (Cout, Cin, Min, Mout}, where Cout is
the set of convertible elements, which are pushed into the gateway repository.
The set of messages pulled out of the gateway repository is captured by Cin.
Min is the set of messages, which are received by the gateway, i. e., transferred
from a port to variables. Mout is the set of messages, which are sent by the
gateway, i. e., transferred from variables to a port.

3.2 Definition of a Gateway

A gateway consists of one or more network adaptors, ports with messages, and the
gateway repository with convertible elements. Formally, a gateway is a tuple Z =
〈A, V, M, C, Y 〉, where

A is a finite set of network adaptors: A =< A0, A1, ..., Az >,
A0 =< L0, l0, X0, R0, E0 >, . . . , Az =< Lz, lz, Xz, Rz, Ez >

V is the global set of variables (i.e., local variables of all network adaptors extended
with network adaptor names): V = {(c, b)|c = (i, a) ∧ (a, b) ∈ Ri ∧ 0 � i � z}

M is a finite set of messages: M ⊂ {(u, v, p, n, d, τ)|u ∈ N, v ⊂ η(V), p ∈ {ET,TT},
n ∈ N, d ∈ N, τ : domain(v) �→ domain(v)}, where each message possesses
a message name u, a set of associated variables v, a control paradigm p, a queue
length n (only relevant for event information), and a temporal accuracy offset d
(only relevant for state information). A transfer syntax can be specified using the
function τ : domain(v) �→ domain(v) The associated variables are defined with
respect to the set of all variable names η(V) := {z|∃(z, b) ∈ V }.

C is a finite set of convertible elements: C ⊂ { (u, v, p, n, d)|u ∈ N, v ⊂ η(V), p ∈
{ET,TT}, n ∈ N, d∈N},whereeachconvertibleelementspossessesanameu,asetof
associated variables v, a control paradigm p, a queue length n (only relevant for event
information), and a temporal accuracy offset d (only relevant for state information).

Y is the global set of clocks (i.e., local clock variables of all network adaptors extended
with network adaptor names): Y = {((z, a), b)|b ∈ N, a ∈ Xi ∧ 0 � i � z}

Formal Specification of Gateways in Integrated Architectures 39

3.3 Gateway State

The capturing of the gateway state serves the definition of the execution semantics of
a gateway. The gateway state embodies all past history of the gateway. Thus, at any
specific time the future outputs of the gateway depend only on the current state of the
gateway and the future inputs (i. e., messages at ports).

Formally, the state of a gateway Z̄ =
〈
t, V̄ , M̄ , C̄, Ȳ

〉
at time t consists of the global

time t (t ∈ N), the variables state V̄ , the message state M̄ , the repository state C̄, and
the clocks state Ȳ . These constituting elements of the gateway state will be explained
in the following.

State of Variables. At a certain time t, the variables state V̄ of the gateway encom-
passes the values of the local variables of all network adaptors:

V̄ ⊂ {(x, y)|∃(a, b) ∈ V with a = x ∧ y ∈ b} where ∀
x∈η(V)

∣
∣(x, y) ∈ V̄

∣
∣ = 1

︸ ︷︷ ︸
exactly one value for each variable

The name of each variable is a 2-tuple (x ∈ N×N) identifying the network adaptor and
the local variable. The value y of the variable is an element of the variable domain.

In addition, we can also define the local variables state R̄ of a single network adaptor,
where each variable name is a natural number (x ∈ N).

R̄ ⊂ {(x, y)|∃(a, b) ∈ R with a = x ∧ y ∈ b} where ∀
x∈η(R)

∣
∣(x, y) ∈ R̄

∣
∣ = 1

︸ ︷︷ ︸
exactly one value for each variable

Port State. The port state consists of the state of the state ports (M̄ (tt)) and the state
of the event ports (M̄ (et)). Each element of the port state (M̄ (tt) and M̄ (et)) is a 5-tuple
< x, y, z, l, t >, where x is a message name, y is a variable name, z is a value, l is the
number of queued elements, and t is the global point in time of the last update.

Formally, we can define the state of event and state ports as follows:

M̄ (tt) ⊂ {(x, y, z, 1, t)|∃(u, v, p, n, d, τ)∈M,∃(a, b)∈V with x = u ∧ y ∈ v ∧ y = a ∧ z ∈ b ∧ p = TT, t ∈ N}
M̄ (et) ⊂{(x, y, z, l, 0)|∃(u, v, p, n, d, τ)∈M,∃(a, b)∈V with x=u ∧ y∈v ∧ y=a ∧ z ∈ bn ∧ p=ET ∧ l∈{0, 1, ..., n}}

For state ports, the queue length in the 5-tuple is always 1, because state ports provide no
message queues. The value z of a constituting variable v of a message u is an element
of the variable’s domain b. For event ports, l is the actual number of messages and
must be smaller or equal to the maximum queue length. The value z is an element of
the Cartesian power bn of the domain b over the maximum queue length n. We model
the queue at an event port as a vector of dimension n, where the first vector element
represents the most recently enqueued message.

The port state needs to assign exactly one value to each constituting variable of a
message. In order to express this property, we demand that the following constraint
holds:

40 R. Obermaisser

∀
(x,y)∈Smsg

∣
∣∣(x1, y1, z1, l1, t1)∈M̄ (tt) with x1 = x ∧ y1 = y

∣
∣∣ +

∣
∣∣(x2, y2, z2, l2, t2) ∈ M̄ (et) with x2 = x ∧ y2 = y

∣
∣∣ = 1

Smsg = {(x, y)|(u, v, p, n, d, τ)∈M ∧ u = x ∧ v = y}

Repository State. The repository state encompasses the state of convertible elements
with state information (C̄(tt)) and the state of convertible elements with event informa-
tion (C̄(et)). For each convertible element the repository state (C̄(tt) and C̄(et)) contains
a 6-tuple < x, y, z, l, t, r >, where x is a convertible element name, y is a variable name,
z is a value, l is the number of queued elements, t is the global point in time of the last
update, and r is the number of update request indications.

Formally, we can define the repository state as follows:

C̄(tt) ⊂ {(x, y, z, 1, t, 0)|∃(u, v, p, n, d)∈C,∃(a, b)∈V with x = u ∧ y ∈ v ∧ y = a ∧ z ∈ b ∧ p = TT, t ∈ N}
C̄(et) ⊂{(x, y, z, l, 0, r)|∃(u, v, p, n, d)∈C,∃(a, b)∈V with x=u ∧ y∈v ∧ y=a ∧ z ∈ bn ∧ p=ET ∧ l∈{0, 1, ..., n}, r ∈ N}

For the convertible element with event information, l is the actual number of convertible
elements in the queue, bn is the Cartesian power of the domain b over the maximum
queue length n, and r is the number of requested convertible elements.

The repository state needs to assign exactly one value to each combination of con-
vertible element name and variable name. In order to express this property, we demand
that the following constraint holds:

∀
(x,y)∈Smsg

∣∣∣(x1, y1, z1, l1, t1)∈M̄ (tt) with x1 = x ∧ y1 = y
∣∣∣ +

∣∣∣(x2, y2, z2, l2, t2) ∈ M̄ (et) with x2 = x ∧ y2 = y
∣∣∣ = 1

Smsg = {(x, y)|(u, v, p, n, d, τ)∈M ∧ u = x ∧ v = y}

Clock State. At any specific time, the clock state consists of the values of all clock
variables.

Ȳ ⊂{(x, y)|x ∈ Y, y ∈ N} where ∀
x∈Y

∣∣ (x, y) ∈ Ȳ
∣∣ = 1

︸ ︷︷ ︸
exactly one value for each clock

3.4 Formal Definition of Gateway Execution

In the execution of a gateway, we can distinguish two types of transitions, namely timed
transitions and untimed transitions. In the following these two types of transitions and
the sequence of their execution will be explained.

Timed Transitions. During the execution of a timed transition, a tick of the global
time base elapses. The time progress of one tick is reflected by incrementing the clock
variables by a value of one, while the variables state, port state, and repository state

remain unchanged. Formally, a timed transition Z̄i
T→ Z̄i+1 is defined as follows:

Z̄i =
〈
ti, V̄i, M̄

(tt)
i , M̄

(et)
i , C̄

(tt)
i , C̄

(et)
i , Ȳi

〉
,

Z̄i+1 =
〈
ti+1, V̄i+1, M̄

(tt)
i+1 , M̄

(et)
i+1 , C̄

(tt)
i+1, C̄

(et)
i+1 , Ȳi+1

〉

ti+1 = ti + 1, V̄i+1 = V̄i, M̄
(tt)
i+1 =M̄

(tt)
i , M̄

(et)
i+1 =M̄

(tt)
i , C̄

(tt)
i+1 = C̄

(tt)
i , C̄

(et)
i+1 = C̄

(tt)
i

Ȳi = {{x1, y1}, {x2, y2}, ...} , Ȳi+1 = {{x1, y1 + 1}, {x2, y2 + 1}, ...}

Formal Specification of Gateways in Integrated Architectures 41

Untimed Transitions. The execution of untimed transitions is instantaneous. During

an untimed transition Z̄i
I,O→
A

Z̄i+1 a network adaptor A processes input (i. e., incoming

messages I and outgoing messages O at ports) and executes assignment and communi-

cation actions. Like a timed transition, an untimed transition Z̄i
I,O→
A

Z̄i+1 links a source

state Z̄i with a target state Z̄i+1:

Z̄i =
�
ti, V̄i, M̄

(tt)
i , M̄

(et)
i , C̄

(tt)
i , C̄

(et)
i , Ȳi

�
,

Z̄i+1 =
�
ti+1, V̄i+1, M̄

(tt)
i+1 , M̄

(et)
i+1 , C̄

(tt)
i+1, C̄

(et)
i+1 , Ȳi+1

�

As described in Section 2, ports are the interface between the gateway and the networks.
Consequently, both the gateway and the networks can cause changes to the port state.
The effects on the port state due to networks are captured by the sets I and O:

I = {(u1, v1, z1), (u2, v2, z2), . . . | ∀
j=1,2,...

: uj ∈ η(M) ∧ ∃(a, b) ∈ V with a = vj ∧ zj ∈ b}

O = {(u1, v1), (u2, v2), . . . | ∀
j=1,2,...

: uj ∈ η(M) ∧ vj ∈ η(V)}

η(M) = {u|∃(u, v, p, n, d, τ) ∈ M}

The set I contains tuples each with a message name, a variable name and a value of
the respective value domain. The value is used to perform an update-in-place of the
message at a state port or to enqueue a message at an event port. The set O contains
only message and variable names, which are used to dequeue messages at event ports.
η(M) is the set of all message names.

The update of the port state is defined below. The new state of a state port is the union
of the unmodified ports (i. e., no update by the gateway or a network) and the ports
with updated messages (i. e., either through the network or through the communication
action of a network adaptor). In case of an update-in-place of the port, the most recent
update instant is equal to the current global time t.

() ()

1

neither send operation nor update of port through communication system

()

{(, , , ,) | (, ,) with }

{(, , , ,) | (, , , ,) (, ,)

tt tt
i i out

tt
i

M x y z l t M x M u v b I u x

x y z l t t t x y z l t M u v b
communication system delivers msg. to port

()

1

value of a variable is copied as par

with }

{(, , , ,) | (, , , , ') (,) }tt
i out i

I u x y v z b

x y z l t t t x y z l t M x M i j V i y z j
t of a send operation of a state message

In analogy, the new state of an event port is the union of the unmodified ports and the
ports with enqueued or dequeued messages.

() ()

1

communication system delivers event message to port

{(, , , ,0) | (, , , ,0) (, ,) with (, , , ,0) (, , , ,0,) }

{(

et et
i iM x y z l x y z l M u v b I u x v y x y z l enqueue x y z l b

x ()

communication system retrieves event message from port

()

1

, , , ,0) | (, , , ,0) (,) 1}

{(, , , ,0) | (, , , ,0) (,) (, ,

et
i

et
i out i

y z l x y z l M u v O u x v y l l

x y z l x y z l M x M i j V i y x y
send operation of an event message

()

receive operation of an event message

, ,0) (, , , ,0,)}

{(, , , ,0) | (, , , ,0) 1}et
i in

z l enqueue x y z l j

x y z l x y z l M x M l l

()

neither send operation, receive operation, nor update of port through communication system

{(, , , ,0) | (,) (, ,) with }et
i out inx y z l M x M x M x y O u v b I u x v y

42 R. Obermaisser

Networks can deliver messages to a port, thereby adding another queue element (first
line in the definition of M̄

(et)
i+1). Also, networks can retrieve a message from a port, thus

leading to the removal of a message from the queue (second line in the definition). Fur-
thermore, the addition or removal of messages can occur through the send and receive
operations within the communication action (lines 3 and 4 in the definition).

In the definition of the port state update, we use a supporting function enqueue,
which inserts an additional message at the queue of an event port. The message queue
of an event port with a maximum length of n is represented as a vector of size n.
enqueue rotates all messages in this queue using a matrix multiplication of the vector.
Subsequently, the new message is inserted at position 1 of the vector.

enqueue(x, y, z, l, n, d) = (x, y, z′, l′, d) where l′ = l + 1 ∧ z′ =z ·

�
�������

0 0 · · · 0 0
1 0 · · · 0 0

0 1
...

...

0 0
. . . 0 0

0 0 · · · 1 0

�
�������

+

�
������

n
0
0
...
0

�
������

The update of the gateway repository state is similar to the update of the port state.
However, the union contains only the unmodified convertible elements and the con-
vertible elements altered by the communication actions. Unlike the ports, the gateway
repository is only accessed by the gateway (and not by the networks). In case of an
update-in-place, the most recent update instant t′′ of the convertible element is set to
the current global time t.

() () ()

1 1

no push operation (state information) variable is copied as part of a push operat

{(, , , ,) | } {(, , , ,) | (, , , ,) (,) }tt tt tt
i i out i out iC x y z l t C x C x y z l t t t x y z l t C x C i j V i y j z

ion of a convertible element with state information

() ()

1 1

push operation

{(, , , ,0) | (, , , ,0) (,) (, , , ,0) (, , , ,0,)}et et
i i out iC x y z l x y z l C x C i j V i y x y z l enqueue x y z l j

of a convertible element with event information

() ()

pull operation of a convertible ele

{(, , , ,0) | } {(, , , ,0) | (, , , ,0) 1}et et
i in i inx y z l C x C x y z l x y z l C x C l l

ment with event information

()

neither push nor pull (event information)

{(, , , ,0) | }et
i out inx y z l C x C x C

The new variables state is the union of the variables which remain unchanged by com-
munication actions, the variables which are assigned a new value through a pull opera-
tion (i. e., new value from the gateway repository), and the variables which are assigned
a new value through a receive operation (i. e., new value from a port). In the definition
of the variables state, we use a supporting function front, which yields the first element
in the queue of a port or a convertible element in the gateway repository.

front(z, l, n) = z · el where el is the canonical unit vector of dimension n

e1 =
	
1 0 0 · · · 0

T
, e2 =

	
0 1 0 · · · 0

T
, en =

	
0 0 0 · · · 1

T

Finally, the global time and the clock state of an untimed transition remain unchanged
(i. e., Ȳi+1 = Ȳi, ti+1 = ti).

Formal Specification of Gateways in Integrated Architectures 43

Sequence of Timed and Untimed Transitions. A gateway contains an ordered set
of network adaptors. The execution of the network adaptors occurs in cycles. Starting
with the first network adaptor, untimed transitions are taken as long as guards Φ of the
first network adaptor are fulfilled. When no guard is satisfied any more, the execution
proceeds with the second network adaptor. A cycle terminates with the last network
adaptor when no more untimed transitions of the last network adaptor can be executed,
because no guard is satisfied. At this point, a timed transition is taken advancing the
value of all clock variables by 1. Subsequently, the next cycle starts with the execution
of untimed transitions of the first network adaptor.

1

variables after no pull operation operation affecting this variable no receive operation o
assgnment

{(,) | (,) () (, , , ,) with () (, , , , ,) with ()i i in inV i j i j Z u v p n d C i v u C u v p n d M i v u M
peration affecting this variable

(

variables after pull operation affecting this variable
assgnment

}

(,) | (,) () (, , , ,) with () (, , , , ,) t
i in ii j i j Z u v p n d C i v u C x y z l t r C)

value of state-conv.elem. read from the gateway repository
 and used as new value of the variable

variables after
assgnment

}

(,) | (,) () (, , , ,) with (

t

z
j i

i

x u y i j z

i j i j Z u v p n d C i v u ()

pull operation affecting this variable value of event-conv.elem. read from the gateway repository
 and used as new value of the variab

) (, , , , ,) (, ,)et
in i

z
j

C x y z l t r C x u y i j front z l n

le

()

variables after receive operation affecting this variable val
assgnment

}

(,) | (,) () (, , , , ,) with () (, , , ,) ()

i

tt
i in ii j i j Z u v p n d M i v u M x y z l t M x u y i j z

ue of state msg. read from the port
 and used as new value of the variable

variables after receive operation affecting
assgnment

}

(,) | (,) () (, , , , ,) with ()

z
j i

i ini j i j Z u v p n d M i v u M ()

this variable value of event msg. read from the port
 and used as new value of the variable

(, , , ,) ((, ,))}et
i

z
j i

x y z l t M x u y i j front z l n

1 1 1 1 1 1 m 1 1

0 0 0 1 1 1 2

10

, , , , , I , , ,

1 1 1

guard of network adaptor A guard of network adaptor A
is enabledis enabled

k k k k l l l l l l m m m n n

x x

I O I O I O I O I O O I O I O

k k l l m n n
A A A A A A A A A

Z Z Z Z Z Z Z
1 1 1 1

0 0

x

0 x

, , ,

1 1

timedguard of network adaptor A
transition

is enabled

transitions of all network adaptors A ...A of the gateway

n n o o o o

x

I O I O I O IT

o o o
A A A

Z Z Z
1 1

0

0

,,

guard of network adaptor A
is enabled

p po o
I OO

A

4 Model-Based Generation of Gateways

Based on the introduced formal specification of the gateway, we have realized a tool
for automatic code generation of gateways in a prototype implementation of the DE-
COS architecture [12,13]. The protoype implementation consists of five nodes inter-
connected by the Time-Triggered Protocol (TTP) [14], a cluster with three nodes in-
terconnected by the Controller Area Network (CAN), and a cluster with three nodes
interconnected by the Local Interconnect Network (LIN). The gateways execute
within the TTP nodes, each of which is a multiprocessor node consisting of a connector
unit and two application computers.

The purpose of the connector unit is the implementation of the time-triggered com-
munication protocol for the physical network. The connector unit provides the appli-
cation computers with a global time base and supports the periodic exchange of state
messages at a priori specified global points in time. The connector unit contains a TTP
communication controller and is realized using a single board computer equipped with
a MPC855 PowerPC from Freescale.

The application computers host the application software (i. e., jobs belonging to one
or more DASs) in conjunction with the gateways. Each application computer is imple-
mented on a Soekris net4521 embedded computer from Soekris Engineering1, which

1 www.soekris.com

www.soekris.com

44 R. Obermaisser

Makefile

Generation

Module
Parser

Module
Code

Generation

Module

Gateway

Specification

C-Code for

Middleware

Makefile

Configuration

Files

Parse

Tree

Parse

Tree

XMI

C-Code

Gateway Generation Tool

Fig. 2. Overview of Gateway Generation Tool

is based on a 133 MHz 486 class ElanSC520 processor from AMD. We deploy on all
application computers the real-time Linux variant LXRT/RTAI [15] extended by a time-
triggered scheduler [12] as the operating system. Time-triggered LXRT/RTAI tasks are
used both for executing the jobs containing the application code, as well as for the
middleware implementing the gateways.

As an input, the code generation tool uses an instance of a UML meta-model that has
been derived from the formal definition of a gateway in Section 3. UML was selected
for the code generator due to the availability of code libraries (e. g., for parsing and
checking compliance to the meta-model) that have eased the implementation of the
code generation tool. In addition, a wide range of supporting tools (e. g., editors for
creating UML models) can be used for creating gateway specification models.

Both the code for the network adaptors and configuration data structures are auto-
matically generated from the gateway specification model using a gateway generation
tool. The tool is based on the XML C parser toolkit developed for the Gnome project.
It takes as input an XML Metadata Interchange (XMI) representation of the gateway
specification UML model. The output of the code generation tool are C source files
with code for the network adaptors and configuration data structures.

Figure 2 depicts the structure of the gateway generation tool. The parser module
processes the XMI input and builds a parse tree in memory. The parse tree is used for
producing code for the gateway middleware, as well as for constructing a makefile.

5 Discussion

The use of gateways for the interconnection of networks with different communication
protocols is an important problem that has received much attention in previous work.
Many authors have focused on formal specifications based on communicating finite
state machines. This paper describes a novel solution for the specification of gateways
based on a real-time database in-between the interconnected networks. The real-time
database stores temporally accurate real-time images in conjunction with meta infor-
mation (e. g., instant of most recent update, information w.r.t. to update requests). The
major benefit of the real-time database is the ability for a constructive realization of
gateways in distributed real-time systems. Large, complex gateways can be divided into

Formal Specification of Gateways in Integrated Architectures 45

smaller modules, which are not only simpler but facilitate reuse and localize changes.
For each network, developers can independently specify which messages update the
real-time database and which messages are sent with the information from the real-
time database. The introduced state machines with timing constraints provide a power-
ful and intuitive formalism for this task. They enable developers to specify the proto-
cols for accessing specific networks along with the corresponding syntax and naming
transformations.

Acknowledgments

This work has been supported in part by the European IST project ARTIST2 under
project No. IST-004527.

References

1. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
2. Leen, G., Heffernan, D.: Expanding automotive electronic systems. Computer 35(1), 88–93

(2002)
3. Gmbh, R.B.: Stuttgart, Germany. CAN Specification, Version 2.0 (1991)
4. FlexRay Consortium. BMW AG, DaimlerChrysler AG, General Motors Corporation,

Freescale GmbH, Philips GmbH, Robert Bosch GmbH, and Volkswagen AG. FlexRay Com-
munications System Protocol Specification Version 2.0 (July 2004)

5. Obermaisser, R.: A model-driven framework for the generation of gateways in distributed
real-time systems. In: Proc. of the 28th IEEE Real-Time Systems Symposium, Tucson, Ari-
zona, USA (September 2007)

6. Obermaisser, R., Peti, P., Huber, B., El Salloum, C.: DECOS: An integrated time-triggered
architecture. e&i journal (journal of the Austrian professional institution for electrical and
information engineering) 3, 83–95 (2006), http://www.springerlink.com

7. Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, Dordrecht (1997)

8. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

9. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time startup pro-
tocol using calendar automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 199–214. Springer, Heidelberg (2004)

10. Krcal, P., Mokrushin, L., Thiagarajan, P.S., Yi, W.: Timed vs time-triggered automata. In:
Proc. of the 15th International Conference on Concurrency Theory (September 2004)

11. Kopetz, H., Kim, K.H.: Temporal uncertainties in interactions among real-time objects. In:
Proc. of Ninth Symposium on Reliable Distributed Systems, Huntsville, AL,USA, October
1990, pp. 165–174 (1990)

12. Huber, B., Peti, P., Obermaisser, R., El Salloum, C.: Using RTAI/LXRT for partitioning in a
prototype implementation of the DECOS architecture. In: Proc. of the Third Int. Workshop
on Intelligent Solutions in Embedded Systems (May 2005)

13. Obermaisser, R., Peti, P.: Realization of virtual networks in the decos integrated architecture.
In: Proc. of the 14th Int. Workshop on Parallel and Distributed Real-Time Systems (April
2006)

14. Time-Triggered Protocol TTP/C – High Level Specification Document (July 2002)
15. Beal, D., et al.: RTAI: Real-Time Application Interface. Linux Journal (April 2000)

http://www.springerlink.com

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 46–54, 2008.
© IFIP International Federation for Information Processing 2008

Model-Integrated Development of
Cyber-Physical Systems

Gabor Karsai and Janos Sztipanovits

Institute for Software-Integrated Systems
Vanderbilt University

Nashville, TN 37205, USA
gabor.karsai@vanderbilt.edu, janos.sztipanovits@vanderbilt.edu

Abstract. Cyber-physical systems represent a new class of systems that inte-
grate physics with computation. Their correct design is frequently of great im-
portance as they are applied in safety- or business-critical contexts. This paper
introduces a model-integrated development approach that addresses the devel-
opment needs of such systems through the pervasive use of models. A complete
model-based view is proposed that covers all aspects of the hardware and soft-
ware components, as well as their interactions. Early experiments and work in
progress are also reported.

Keywords: model-driven development, model-integrated computing, cyber-
physical systems, executable models, system integration.

1 Introduction

Cyber-physical systems (CPS) are systems that combine a physical system with an
embedded information processing system such that the resulting system has novel
capabilities that could not be achieved by either the physical or the computational
entity alone1. To give examples for a cyber-physical system consider an unmanned
aerial vehicle with active (fixed) wings. In such a UAV, an embedded controller
monitors the airflow over the wing surface and modulates it through electromechani-
cal actuators to ensure laminar flow such that the vehicle is capable of extreme ma-
neuvers. Another example is a structural beam whose deflection is active monitored
and modified through a piezoelectric actuator, resulting in a lighter, thinner structure
whose resulting physical properties (‘strength’) is greater than that of the original
beam without the embedded controller.

It is easy to see that the design of such systems cannot be accomplished following
the classical strictly disciplinary approach – the design of the physical and computa-
tional aspects is an integrated activity. Design decisions made in one aspect (e.g.
selecting the scheduling technique used in the embedded software) interacts with the
physical component and has profound consequences on the dynamic properties of the
entire system. We argue that the design of such systems could only be accomplished
by taking an integrated view and co-designing the physical with the computational.

1 This definition of cyber-physical systems is due to Janos Sztipanovits.

 Model-Integrated Development of Cyber-Physical Systems 47

Model-driven development of embedded software systems [1] has gained accep-
tance during the past decade, and it is the de-facto approach used in systems industries
(automotive and aerospace), and is well-supported by industrial-strength commercial
tools, like Simulink/Stateflow [2] and Matrix-X [3]. Benefits of the model-driven
approach are obvious, and the industry has built up a significant amount of knowledge
and well-tested solutions.

The question naturally arises: are cyber-physical systems fundamentally different
such that they need a different development approach, or the current approach is suf-
ficient and no new research is necessary? In this paper we propose an answer to this
question that is based on experience with the existing tools and practices, and the
proposed answer is: we need new techniques, and a new view.

Our argument is as follows. The engineering of non-software artifacts is often
based on models that typically have a computational manifestation (i.e. an executable
form in some computational sense). The engineering of software using model-based
techniques is an active area of research and it started to find its way into the overall
software engineering practice. However, very little is being done with regard to an
integrated approach, where both the ‘physical artifacts’ and the software would be
engineered based on a set of coupled models. The closest practice comes to this ideal
is the approach followed in Simulink/Stateflow and Matrix-X: ‘plant models’ and
executable controller models are (co-)simulated in a shared simulation environment,
under the control of a simulation engine. The approach increases the productivity of
domain (in this case, control) engineers, because they don’t have to deal with the
accidental complexities of software engineering, and the tools (and the hardware
platforms) are powerful enough such that code automatically generated could be im-
mediately used in the application.

However, we believe this is not sufficient for the next generation of CPS-s. First,
the approach does not consider the properties of the execution platforms (i.e. the
properties and performance of processing units, the operating systems, the middle-
ware, the QoS machinery, etc.). Although new tools like TrueTime [4] make progress
in this direction, it is unclear how arbitrary platforms should be modeled and ana-
lyzed. Second, the Model of Computation (MoC) [5] used by the tools is rather lim-
ited: it is almost always some variant of the approach followed in the synchronous
languages. Other approaches, like CDMA-style communication, or publish-subscribe
approaches, or even priority based scheduling with potential priority inversion are
rarely considered. Third, it is unclear how algorithms that apply search, do not have a
guaranteed termination time, or are of the anytime variety could be considered in the
systems. We simply don’t have good models of the dynamics for such algorithms, and
thus the analysis of the end-to-end system is very difficult to do.

In an engineering process for CPS-s we need to address the above and other issues
related to para-functional properties like security, reliability, fault tolerance, etc.
Modern development techniques, like extreme programming, test-based development,
and continuous integration also need to be considered, as these represent the best
practices in the industry today – and their track record is well-documented. In the
paper we propose a fully model-integrated approach that allows the combined use of
such techniques.

48 G. Karsai and J. Sztipanovits

2 Models and Cyber-Physical Systems

If one needs to consider a full spectrum modeling for CPS-s, a scheme shown on the
figure below could be used as a starting point. On the left we show the ‘model ele-
ments’, on the right their ‘real world’ counterparts are shown that exists in the imple-
mentation.

Environment Model
Assumptions, Dynamics

Physical System Model
Components, Dynamics, Faults

Computational System Model

MoC/MoE/Platform Model
Component framework, OS, Network

Application Model
Components, Behaviors, Interactions

Environment

Physical System

Computational System

Middleware, OS, Network

Application
Component implementation,

configuration

“Model” world Real world

Fig. 1. Models and the real world in Cyber-Physical Systems

Note that the ‘real world’ includes the ‘application software’ as implemented on
some computation platform (that includes the component middleware, operating sys-
tem, compute engines, network), that is layered upon and interacts with a physical
system (the ‘hardware’ of the CPS), which then interacts with the physical environ-
ment. What is envisioned here is a complete model-integrated approach across all
levels of the hierarchy. In short, one needs models for the environment (that is outside
of the CPS), for the physical system (that is part of the CPS but is not computational),
for the computational platform (that includes all hardware and software elements that
are reusable across different CPS-s), and for the application (i.e. the software that
implements all the functions of the CPS).

As we assume model-driven development, orthogonal to the models we find the
tools that support modeling (i.e. model creation and editing), model analysis (i.e.
verification, validation, etc.) and synthesis (i.e. implementation generation). There are
various tools in existence today that address some of the problems here (e.g. dedicated
modeling environments, code generators, code verification tools), but they are often
difficult to use together, in an integrated manner. For CPS-s better tool integration is
needed that is based on the semantic integration of the models used across the layers.
After all, we need to model a physical system’s dynamics, and study how it interacts
with the dynamics of the implementation of a particular MoC on a specific hardware
and software platform.

 Model-Integrated Development of Cyber-Physical Systems 49

2.1 Challenges in CPS

Developers of CPSs face several challenges, many of which are well-known from the
work on embedded systems. Here we would like to highlight a few challenging as-
pects that arguably have received less attention in the past.

First, CPSs imply a major integration problem. Both the system that is being built,
as well as the process used to build it are highly heterogeneous and unforeseen inter-
actions often arise. There are two major perspectives on integration: model integration
and system integration.

Model integration problems arise when we want to simulate, for instance, the en-
tire CPS, including all implementation layers. One needs simulators that (1) either
follow the same, shared execution semantics (which seems to be the approach used in
Simulink where all simulations are executed in continuous time), or (2) they are fed-
erated and can run under the control of a coordinating authority (which is the ap-
proach followed in the HLA model). The situation is further complicated by the fact
that models are often on different levels of abstraction, and one needs different mod-
els of the same system for different work (e.g. transaction level models vs. register
transfer level models for hardware). Another problem in model integration is the de-
coupling between models used in design, the model verification tools, and the final
executable system. When subjecting design models to analysis (e.g. model checking),
we need to carry over the results to the final system, i.e. the system as implemented
by executable code running on a real, physical software and hardware platform. Often
design languages (e.g. UML activity diagrams) and analysis languages (e.g. SMV
model checker’s language) are different, and we need to use translators. However
these translators must be correct for the analysis results be valid. We need this triangle
of design models / analysis models / executable models ‘verified’ such that analysis
results are provably true for the executable system.

System integration is perhaps the most challenging aspect of CPS engineering, but
arguably, this is the area where models are extremely beneficial. The physical and the
computational parts of the CPS have to be designed together, and should be modeled
and analyzed together. Note that this is notably different from hardware-software
codesign, where functions are designed in a common framework, and where the parti-
tioning is decided late in the process. In CPSs the ‘hardware’ is not computational and
thus it is fixed early on, such that the computational part has to be designed accord-
ingly. Naturally, codesign techniques are highly applicable to the design of the ‘cy-
ber’ part. As discussed in more detail below, for the system integration we envision
an incremental, simulation-based development and integration approach. The concept
is that initially the entire system is executed in a simulated environment, and later
simulated parts are incrementally replaced by real implementations and real hardware.

The second major challenge is the support for certification of CPSs that are used in
critical environments (e.g. vehicles, medical systems, etc.). Note that we need end-to-
end certification, according to current practices followed in the aerospace industry
(‘we certify the airplane, not the software’). However, this approach becomes very
hard to sustain, and a modular approach is more desirable. One can consider three
methods for providing arguments for certification: simulation-based, verification-
based, and hardware-based testing. In the first, a high-fidelity simulation of the physi-
cal system and environment is created, that is independently validated. Next, the

50 G. Karsai and J. Sztipanovits

computational ‘stack’ is subjected to exhaustive testing in the ‘context’ provided by
the simulation. Here, the simulation must be ‘interface-compatible’ with the real
physical system, i.e. the interfaces that the computational system interacts with must
be the same as in the real implementation. For the second, verification-based ap-
proach we build assurances via checking the models of computational system and/or
the code itself. Obviously, this necessitates robust and verified translations on the
models, as discussed above. For the third, the computational system is tested in the
context of a hardware test setup, and arguments for certification are collected through
exhaustive testing again. In summary, when certification is needed for CPSs the de-
velopment process and tools should incorporate various elements to produce the ar-
guments to be used in the certification process. These steps and tools need to become
part of the toolchain.

The third group of challenges includes mode changes and fault management. CPSs
often have a large number of operational modes, where their dynamics and behavior
are radically different. For instance an aircraft flies very differently when landing than
in cruising mode. The CPS should be prepared to handle and manage these different
modes and changes between modes. Often we cannot simply reinitialize software
components upon mode changes as this would lead to intolerable transients.

The ultimate test for modal systems is the management of faults. Faults can happen
in the physical system, in the platform, as well as in the application software, and the
application needs to be prepared for handling them. Obviously, fault needs to be de-
tected, their primary cause isolated, and then a corrective action needs to be taken. This
process is traditionally known under the name ‘Fault Detection, Isolation, and Recov-
ery’, FDIR. A good CPS design is not only a functional design, but it also anticipates
faults and has provisions for managing them, through the steps described above. When-
ever the CPS is in a critical application, such fault management is unavoidable, and it
has to be ‘designed in’ to the system from the beginning. Fault management may in-
clude simply redundancy management (which involves complex mode changes), but
could also be as complex that a full FDIR approach is needed. In complex physical
systems, continuous on-line testing and verification is often used for FDIR. For CPSs
these techniques need to be applied to the software ingredients as well.

2.2 An Approach to Development and Integration

As it was emphasized in the previous section, integration is of utmost importance in
CPSs: in fact the definition of this category refers to it. Hence, the integration of the
physical and the computational should be the key design activity; in fact, it should
possibly drive the entire design process.

Here we propose a continuous integration process that establishes the interfaces be-
tween the physical and computational from the beginning, and the integration of the
system is performed continuously. This approach is not new for software developers:
the concept of nightly build and continuous integration is a well-known practice to-
day. Here, we extend this idea in the context of CPSs.

The approach requires some assumptions about the CPS design as follows. We as-
sume that the system is constructed in layers (as shown on the figure below), and for
each layer we have models that are executable (perhaps with the help of simulation
engine).

 Model-Integrated Development of Cyber-Physical Systems 51

The general layers of a CPS include the environment, the physical systems, the
coputational platform, and the application. The computational platform interacts with
the physical system via sensors and actuators, and the application interacts with the
platform via APIs. Note that this is the same organization discussed earlier.

In the proposed continuous integration ap-
proach we assume that models are available for
each layer, and these models could be used in an
executable form. Initially, these could be low-
fidelity, approximate models, that are incremen-
tally replaced by high-fidelity models, and finally
with implementations.

The key observation about this approach is that
interface and architecture design are primary
activities. In fact, architecture modeling and
analysis is done early in the design process. Fur-
thermore, interfaces are designed early. As the
basic tenet of systems engineering, interfaces are
designed first, well-before the system is imple-
mented. In the scheme above this involves at least
two essential interfaces: the one between the
computational and physical world, and the other
one between the application and the platform.
Architecture is a primary driver, and it needs to
be designed and refined, before the component
implementation happens. Architecture models
should be preserved and used throughout the
development process.

We envision that eventually high-fidelity models of the platform and the physical
system are available. While for physical devices this is a well-established practice, for
software systems (platforms) this is not always possible, as it could be too expensive
to develop. In this situation, the (software) models could be low-fidelity, and they
need to be replaced with real implementations as soon as feasible.

The key process element in the above approach is the continuous existence of an
executable system, with a concrete architecture, well-defined interfaces, and an ex-
ecutable form. This can give the designers an early feedback about their work, and for
the customers the opportunity for early evaluation. The design and implementation
evolves from a fully simulated version to a fully implemented version as shown on
the figure below.

The development starts with a fully simulated system, then the real computational
platform is introduced (as this is the hardest to model and simulate). Note that the real
platform should have timing-accurate interfaces towards a (real-time) simulation
engine, and functional interfaces towards the simulated application. This step is fol-
lowed by a step where the real application is run on the real platform, with a simu-
lated physical system and environment, and the final step is the full realization of the
real system.

Layers

Environment

Physical S ystem

Platform

Application

Sensors Actuators

APIs

Fig. 2. Layers of CPS design

52 G. Karsai and J. Sztipanovits

Real Platform Simulated Plant Real SystemAll Simulated

Simulated Plant
+

Environment

Simulated
Platform

Simulated
Application

Simulated Plant
+

Environment

Real Platform

Simulated
Application

Simulated Plant
+

Environment

Real Platform

Real Application

Real Platform

Real Application

Environment

Physical System

API

Sensor
Signal i/f

Actuator
Signal i/f

Sensors Actuators

API

Sensor
Signal i/f

Actuator
Signal i/f

Sim/API Adapter

API

Sim/Sim if

Sim/Sim if

Fig. 3. Continuous concurrent integration

3 Related Work

The approach described above has grown out from the well-known development prac-
tices of model-driven development [6,7]. In the various MDD approaches the use of
models is pervasive, models are used for ‘higher-order’, domain-specific program-
ming, for code generation, and for analysis and verification. Our approach uses these
techniques and concepts, but it also considers the effects of and the integration with
the physical system and the environment.

The use of simulation in developing complex embedded systems is a well-known
practice as well [8]. The use of simulations to approximate the behavior of software
systems has been proposed in [9]. A key concept for carrying over results from simu-
lations to implementations is ‘model continuity’ has been proposed in [12]. These
techniques provide valuable insights into the simulation-based integration of systems,
and technology (e.g. the DEVS-based approach for simulation) for actually time-
synchronization and coordination. The proposed approach builds on these founda-
tions, but extends and integrates them with the model-based development framework.

4 Status

We have started work on an integrated toolchain [10][13] that supports the develop-
ment paradigm outlined above. The toolchain uses Simulink/Stateflow as the primary
simulation environment (for fully simulated implementations). The platform modeling
aspect is handled with a modified version of the TrueTime package, which allows the
co-simulation of controller models, platform models, and physical plant models. The
controller models are then imported into our modeling tool that supports a modeling

 Model-Integrated Development of Cyber-Physical Systems 53

language called EsMoL, which is then used to specify (1) hardware platform models,
(2) software component models (whose implementation comes from the Simulink
controller models), and (3) deployment models that connect the two. A set of inte-
grated code generator tools produces executable code from the models that could be
run either in the Simulink environment, or on a target platform. If the code is run in
Simulink, physical plant models and TrueTime platform models could be used to
study how the ‘real code’ runs against a simulated platform and plant. We have two
target platforms: one is a TTP/C cluster from TTTech Inc.: a time-triggered platform
of four controllers connected via a TTP/C bus running periodically scheduled compo-
nents; the other one is a software emulation of the TTP/C cluster using Linux nodes
connected via an isolated TCP/UDP network. For the latter, we have built a scheduler
tool to compute time-triggered scheduled. The code generators produce all the ‘wrap-
ping code’ needed to run controller code on the platform. The toolsuite also includes
interfaces towards verification tools: the code generators produce the code executable
code first in an abstract form that could be used to ‘print’ imperative code. This way
the executable code could be subjected to analysis via using a tool like the Java Path
Finder (JPF) [14]. Currently we are testing the toolchain on various applications fol-
lowing the development paradigm described.

5 Conclusions

In this paper we have introduced a framework for the design of cyber-physical system
that is model-based and places great emphasis on early integration, based on the mod-
els. Some elements of the framework are already available (e.g. modeling languages
and generators for embedded systems), and technology is available [11] for construct-
ing the rest. Currently we are working on realizing and trying out a toolchain that
implements the concepts and architecture described above, and which also integrates
code verification tools.

Acknowledgements

This work was sponsored (in part) by the Air Force Office of Scientific Research,
USAF, under grant/contract number FA9550-06-0312. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research or the U.S. Government.

References

1. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development of em-
bedded software. Proceedings of the IEEE 91(1), 145–164 (2003)

2. Mathworks, Inc., http://www.mathworks.com
3. National Instruments, http://www.ni.com
4. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Årzén, K.-E.: How Does Control Timing

Affect Performance? IEEE Control Systems Magazine 23(3), 16–30 (2003)

54 G. Karsai and J. Sztipanovits

5. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A denotational framework for comparing mod-
els of computation. Technical Report UCB/ERL M97/11, EECS Department, University of
California, Berkeley (1997)

6. Model-Driven Architecture, http://www.omg.org/mda
7. Model-Integrated Computing,

http://www.isis.vanderbilt.edu/research/MIC
8. Papp, Z., Dorrepaal, M., Verburg, D.J.: Distributed Hardware-in-the-Loop Simulator for

Autonomous Continuous Dynamical Systems with Spatially Constrained Interactions. In:
Proceedings of the 17th international Symposium on Parallel and Distributed Processing.
IPDPS, April 22 - 26, 2003, vol. 119, p. 1. IEEE Computer Society, Washington (2003)

9. Huang, D., Sarjoughian, H.S.: Software and Simulation Modeling for Real-time Software-
intensive System. In: The 8th IEEE International Symposium on Distributed Simulation
and Real Time Applications, Budapest, Hungary, October, pp. 196–203.

10. Sztipanovits, J., Karsai, G., Neema, S., Nine, H., Porter, J., Thibodeaux, R., Volgyesi, P.:
Towards a Model-based Toolchain for the High-Confidence Design of Embedded Sys-
tems. In: Work-in-Progress Workshop at the Real-Time Application Systems conference
(2008)

11. Karsai, G., Ledeczi, A., Neema, S., Sztipanovits, J.: The Model-Integrated Computing
Toolsuite: Metaprogrammable Tools for Embedded Control System Design. In: IEEE Joint
Conference CCA, ISIC and CACSD, Munich, Germany (2006)

12. Hu, X., Zeigler, B.P.: Model continuity in the design of dynamic distributed real-time sys-
tems. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(6), 867–878 (2005)

13. Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thibodeaux, R.,
Sztipanovits, J.: Towards Model-Based Integration of Tools and Techniques for Embedded
Control System Design, Verification, and Implementation. In: The Models 2008 workshop
on Model Based Architecting and Construction of Embedded Systems (submitted, 2008)

14. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering Journal 10(2) (April 2003)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 55–65, 2008.
© IFIP International Federation for Information Processing 2008

Towards a Middleware Approach for a Self-configurable
Automotive Embedded System

Isabell Jahnich1, Ina Podolski1, and Achim Rettberg2

1 University of Paderborn/C-LAB, Germany,
2 Carl von Ossietzky University Oldenburg, Germany

isabell.jahnich@c-lab.de, ina.podolski@c-lab.de,
achim.rettberg@informatik.uni-oldenburg.de

Abstract. In this paper a middleware architecture for distributed automotive
systems that supports self-configuration by dynamic load balancing of tasks is
presented. The inclusion of self-configurability is able to offer reliability within
the multimedia network of the vehicle (Infotainment). Load balancing of tasks
could be applied if an error occurred within the network. The error detection in
the network and the load balancing should run automatically. Therefore, the
middleware architecture has to deal on one hand with the error detection and on
the other hand with the migration of tasks. Additionally, to enable the migration
it is important to identify the requirements of all electronic control units (ECU)
and tasks within the network.

1 Introduction

Future application scenarios for vehicle electronic systems include on one side the ac-
cess to mobile devices that build ad-hoc networks with the built-in devices of the vehi-
cle and on the other side the support of robustness, redundancy and dependability within
the vehicle network. Modern electronic vehicle networks have to be as flexible as possi-
ble to cope the actual requirements. The idea to build up a self-configurable system
could help to overcome these requirements. A mobile device could automatically be at-
tached and integrated in the existing system if the system supports self-configurability.
If an ECU has a failure all task could be migrated to other ECUs inside the vehicle net-
work by a self-configurable system middleware. Self-configuration could be applied to
distributed networks. In modern vehicles three types of networks are built in. That is
namely the Powertrain, Body or Chasis and Infotainment network. Within the Power-
train safety critical tasks like the anti-blocking system and the motor management are
located. The Body or Chasis network contains also critical tasks, but the vehicle will run
if a failure occurs. The window opener is a typical task of this network. The Infotain-
ment network consists of more or less media based tasks, like the radio or navigation
system. Due to safety critical reasons our approach will focus on the Infotainment
network.

To increase the quality of the vehicle it is important to built in fault-tolerant sys-
tems in the network. In a distributed system fault-tolerance can be include in three
ways: Replication, redundancy, and diversity. While the former provides multiple

56 I. Jahnich, I. Podolski, and A. Rettberg

identical instances of a system, the tasks and requests are directed to all of them in
parallel, and the choosing of the correct result is based on a quorum, redundancy is
characterized by multiple identical instances and a switching to one of the remaining
instances in case of failure. Diversity provides different implementations of a system
that are used like replicated systems.

A self-configurable system is able to provide redundancy, diversity and replication
of tasks, therefore, it helps to make the system more stable.

In the context of self-configuration of automotive systems redundancy of data, ap-
plications, and tasks can be used to get an increased fault-tolerance in case of ECU
failures. Crucial data, applications or tasks are distributed as backup components on
the ECUs of the vehicle system that they can be used of or executed by other ECU if
their originally ECUs failed.

The way of distribution and the number of replicas and the decision which compo-
nents are replicated depends on an adequate algorithm. At this costs of replication and
migration and load of other ECUs will be considered.

In the following a vehicle middleware architecture is presented that supports self-
configuration by load balancing strategies for non-critical tasks within the Infotainment
network. In our case we enable a dynamic reconfigurable system by load balancing. In
existing approaches self-configuration is enabled, by including redundancy and replica-
tion of tasks during design time. This is a static system reconfiguration. Furthermore,
our middleware offers services to realize a load balancing based on different strategies
for the Infotainment network. This work is part of the DySCAS project (ref.). The main
objective of the DySCAS project is the elaboration of fundamental concepts and archi-
tectural guidelines, as well as methods and tools for the development of self-
configurable systems in the context of embedded vehicle electronic systems. The reason
is the increasing demand on configurational flexibility and scalability of the systems
imposed by future applications which will include simultaneous access to a number of
mobile devices and ad-hoc networking with the built-in devices.

The rest of the paper is organized as follows: Section 2 will describe the related
work in the field of research where our architectural approach is located. As a motiva-
tion for this paper Section 3 motivates and describes a use case scenario. Afterwards
our middleware architecture is presented, see Section 4. In Section 5 we describe the
load balancing strategy we use within the middleware. A short description of the
simulation and some early results are discussed in Section 6. We conclude the paper
with a summary and give an outlook for future work.

2 Related Work

In this section we will give a short overview of existing load balancing approaches to
support self-configuration and on middleware approaches in automotive systems.

There are several publications regarding load balancing and extensive research has
been done on static and dynamic strategies and algorithms [6].

On the one hand, load balancing is a topic in the area of parallel and grid computing,
where dynamic and static algorithms are used for optimization of the simultaneous task
execution on multiple processors. Cybenko addresses the dynamic load balancing for dis-
tributed memory multiprocessors [3]. In [5] Hu et. al. regard an optimal dynamic

Towards a Middleware Approach for a Self-configurable Automotive Embedded System 57

algorithm and Azar discusses on-line load balancing. Moreover Diekmann et. al. differ-
entiate between dynamic and static strategies for distributed memory machines [4]. Heiss
and Schmitz introduce the Particle Approach that deals with the problem of mapping
tasks to processor nodes at run-time in multiprogrammed multicomputer systems solved
by considering tasks as particles acted upon by forces.

All these approaches have the goal of optimizing the load balancing in the area of
parallel and grid computing by migrating tasks between different processors, while
our approach focuses the direct migration of selected tasks to a newly added resource.
Furthermore we regard load balancing that is located on the middleware-layer.

Moreover there are static approaches, like [11], that address a finite set of jobs, op-
erations and machines, while our approach deals with a dynamic set of tasks and
processors within the vehicle system.

Balasubramanian, Schmidt, Dowdy, and Othman consider in [7], [9], and [8] mid-
dleware load balancing strategies and adaptive load balancing services. They intro-
duce the Cygnus, an adaptive load balancing/monitoring service based on CORBA
middleware standard. Their concept is primarily described on the basis of a single
centralized server, while decentralized servers that collectively form a single logical
Load Balancer is not explained in detail.

Moreover the topic of dynamic reconfigurable automotive systems is regarded in
[2], [1], [13] and [14]. In the following paragraphs we discuss several middleware ap-
proaches for automotive systems.

The Autosar consortium [19] suggested a middleware approach based on a run-
time environment (RTE). The RTE is developed to support a common infrastructure
for automotive systems. The self-configurability developed in our approach will en-
rich the Autosar RTE especially by dynamic reconfiguration management through
load balancing.

In [15] a formal specification for developing distributed, embedded, real-time con-
trol systems is described. The middleware supports dependable, adaptive dynamic re-
source management based on replicated services.

An additional approach according fault-tolerance and dynamic reconfiguration is
discussed in [16]. Again replicated services are used in this model. In [17] a middle-
ware architecture for telematics software based on OSGi and AMI-C specification is
presented. An application manager is introduced for telematic applications. The archi-
tecture enable in-vehicle terminal to provide various telematics services to increase
driver’s safety.

The authors of [18] describe trends for automotive systems. They give an overview
of requirements for middleware systems in this area. Especially what industry de-
mands for such middleware services. Hiding the distribution and the heterogeneity of
such platforms is demanded as well as providing high-level services (e.g. mode and
redundancy management) and ensuring QoS.

3 Motivation

In this section we give a motivation for our approach. We identify three use cases:

• Task fails on an ECU and have to migrate to another one
• ECU has a defect - all task will be migrated
• New device is attached to the network

58 I. Jahnich, I. Podolski, and A. Rettberg

As an example we will use the second use case. If an ECU of the vehicle Infotain-
ment system failed, a migration to another ECU within the vehicle that is able to exe-
cute the applications or tasks should be possible. Thus it is possible to migrate for
example tasks of the ECU with the radio system to the ECU running the navigation
system.

After the failure occurred within the vehicle the system starts a self-reconfiguration
without avoiding overloading ECUs. The self-reconfiguration is surely based on spe-
cific characteristics from the tasks and the ECUs. That means, it has to be ensured that
a task could only run on an ECU that is able to execute it.

In consideration of all running processes and the resources situation within the ve-
hicle network appropriate services decide on a possible load balancing according to
different strategies and initiate the task migration where required. Thus in our exam-
ple where an error occurred inside the radio system the appropriate tasks migrate from
the radio to the navigation system. Let us assume that the navigation system respec-
tively the ECU is able to run the tasks from the radio system.

4 Proposed Middleware Architecture

To realize the use case scenario (failure in the radio system) described above and
other possible services for example device detection a middleware architecture is re-
quired that fulfills several requirements. We introduce four sub-modules to handle
self-configuration in the middleware. The Event Management detects failures in the
vehicle network and it is responsible for detection and removal of additional ECUs.
Detailed information and capabilities of existing ECUs as well as the registration of
newly added devices is realized within the Device Registration module. All status in-
formation and the resource load of each ECU within the vehicle are stored by the Re-
source Management. Finally, the Load Balancing initiates the task migration based on
specific characteristics and requirements of the tasks and ECUs. In the following we
give a more detailed view of the middleware.

The operating system builds the interface between the hardware and the middle-
ware (see Figure 1). Additionally, device drivers are necessary for specific hardware
parts. The tasks run on top of the middleware. Middleware is a software layer that
connects and manages application components running on distributed hosts. It exists
between network operating systems and application components. The middleware
hides and abstracts many of the complex details of distributed programming from ap-
plication developers. Specifically, it deals with network communication, coordination,
reliability, scalability, and heterogeneity. By virtue of middleware, application devel-
opers can be freed from these complexities and can focus on the application's own
functional requirements.

Before explaining the design of our automotive middleware and the specific ser-
vices, we enumerate the five requirements of automotive middleware. These require-
ments are resource management, fault-tolerance, and specialized communication
model for automotive networks, global time base, and resource frugality. These re-
quirements are derived from the distributed, real-time, and mission-critical nature of
automotive systems and differentiate automotive middleware from conventional en-
terprise middleware products.

<

Towards a Middleware Approach for a Self-configurable Automotive Embedded System 59

Operating System

Middleware

Resource
ManagerDevice

Driver Load
Balancer

T
as

k
1

T
as

k
2

T
as

k
3

T
as

k
4

T
as

k
5

T
as

k
n

Hardware

Registry

Event
Manager

Operating System

Middleware

Resource
ManagerDevice

Driver Load
Balancer

T
as

k
1

T
as

k
2

T
as

k
3

T
as

k
4

T
as

k
5

T
as

k
n

Hardware

Registry

Event
Manager

Fig. 1. Self-configurable architecture

A vehicle has a real-time nature. It is a system in which its correctness depends not
only on the correctness of the logical result, but also on the result delivery time. Since
a vehicle is subject to various timing constraints, every component in a vehicle should
be designed in a way that its timing constraints are guaranteed a-priori. At the same
time, the timing constraints of a vehicle should be guaranteed in an end-to-end man-
ner since an automobile is a distributed system and its timing constraints are usually
specified across several nodes. For example, let us consider a typical timing constraint
of an automobile. If pressing a brake pedal is detected at the sensor node, then the
brake actuator node must respond to it within 1 ms. To meet this constraint, there
must be a global Resource Manager that calculates the required amount of resources
on each node and actually makes resource reservations to network interface control-
lers and operating systems on distributed nodes. Automotive middleware is responsi-
ble for such resource management.

The middleware in our approach includes four components that offer specific ser-
vices: Registry, Event Manager, Resource Manager and Load Balancer.

The Event Manager is responsible for the failure detection and the device discov-
ery. If a failure occurred the Event Manger triggers the Load Balancer to initiate a
feasible migration of tasks. Additionally, if a new device is added to the automotive
system via technologies like Bluetooth or WLAN for example, it is recognized by the
Event Manager component. Vice versa the Event Manager also notices the detaching
of the device. In both cases it will inform the Registry of the middleware about the
availability or the detaching of the additional device.

Existing and new devices are registered and detached devices are unsubscribed
within the Registry service. During the registration the specific characteristics of the
device (like memory, CPU, etc.) are stored within the Registry. Due to the distributed
system the Registries of each vehicle ECU (Electronic Control Unit) communicate
with each other to guarantee that each Registry of an ECU knows the actual status of
all devices within the network inclusive of the newly added devices.

60 I. Jahnich, I. Podolski, and A. Rettberg

The Load Balancer spread tasks between the vehicle ECUs in order to get optimal
resource utilization and decrease computing time. It evaluates possible migration of
tasks based on different load balancing strategies. To guarantee a suitable migration
the Load Balancer considers the current resource situation on the ECUs with aid of
the Resource Manager. If a failure is occurred the Load Balancer tries to find based
on the characteristics of the tasks and ECUs a feasible migration. Once a load balanc-
ing on an additional device is started, and this device is detached while the migrated
tasks are executed, they will be re-started on the original ECU again. In this case the
Event Manager is responsible to inform the Load Balancer to initiate this re-start.

The Resource Manager supervises the resources of the local ECU. To be aware of
the complete network resource situation all Resource Managers synchronize with
each other. Thus the Load Balancer gets the current resource situation of the complete
vehicle infrastructure with aid of its local Resource Manager.

In our approach, the middleware is located on each ECU in the vehicle. Every ECU
has a unique ID. The ECU with the lowest ID is the master. Thus it is responsible for
the control of the entire vehicle network, and newly connected and the detaching of
additional devices are discovered by its Event Manager, device information is regis-
tered by its Registry, and its Load Balancer is responsible for the evaluation of the
possible migration with the aid of the local Resource Manager. If the master ECU
fails a new master will be chosen with the aid of the Bully-Algorithm [10].

The failure detection if a node fails will be handled by a hardware interrupt. It ini-
tiates an error correction in our middleware. That means, to correct the error, tasks of
the omitted node are migrated to other ones, which are able to execute them. In this
paper we will not focus on the failure detection but on error correction. Therefore, our
middleware must be able to migrate tasks. A detailed knowledge of the task character-
istics is needed. It is important to know if it is a real-time task or not.

Fig. 2. Failure correction handling - the task migration mechanism

Towards a Middleware Approach for a Self-configurable Automotive Embedded System 61

Figure 2 presents our approach for task migration. We assume that each task has a
priority and we have a detailed knowledge about their hardware requirements. Addi-
tionally, the data dependencies between the tasks are known. As we can see from fig-
ure 2 we start with a priority scheduler. He will schedule the tasks according their pri-
ority in priority queues. That means, we have for each priority an own task queue.
Within the queues the tasks are scheduled by a simple earliest deadline first (EDF)
scheduler to ensure a flexible schedule [12]. Real-time (RT) tasks have a high prior-
ity. The Load Balancer works on the priority queues beginning from the queue with
the highest up to the lowest priority. For each selected task a possible set of ECUs
who are able to execute the task is evaluated. After that a data dependency check will
be done. That means, we look at those tasks that interact with the inspected one. In
that case the interaction is weak the Load Balancer selects an ECU from the previ-
ously evaluated set of ECU and finally migrate the task to that one and delete the task
in the priority queue. In case of a strong interaction the Load Balancer will try to
avoid unnecessary busload, by selecting an ECU from the ECU set that is able to exe-
cute both tasks. Afterwards both tasks will be deleted in the priority queue. If the
Load Balancer could not find a possible ECU for migration the task will be deleted
from the queue with the outcome that a migration is not possible.

The previous paragraph give an overview of the migration, but there are still some
open issues we will discuss in the following. If an ECU with more than one task run-
ning on it fails we will migrate the tasks to one or more ECUs according the classifi-
cation of the tasks (see Figure 2). That means tasks with high-priority will migrated
first followed by the other ones. During the migration phase the timing of the tasks
are taken into account. After a task migration we have to decide to start the task new
or from that state before the ECU fails, but how to recognize this state? Therefore, we
need the context of the task. Our solution is the following, if we have a context avail-
able (e.g. store in an external flash memory of the ECU and still available) we will in-
voke the task with the context, otherwise not. This gives a brief overview how our
middleware migrate tasks. Finally the decision which tasks are migrated is done by
the Load Balancer, see section 6.

Figure 3 shows a sequence diagram where a failure occurred in the radio system.
We assume the tasks from the radio system can migrated to the navigation system.

As we can see in Figure 3 the Event Manager detects the failure of the radio sys-
tem, this is done by the function failure_detection(error_code). Afterwards the Event
Manager triggers the Load Balancer with the initialize() function. The Load Balancer
ask for all device information from the Registry (req_loads(*device[0..n])). Then the
Resource Manager runs the schedule() function to calculate all possible schedules.
The Load Balancer will get the device information back from the Resource Manager
with ack_loads(*device[0..n]). Finally the Load Balancer will calculate (initi-
ate_load_balancer()) which tasks could be move from device with the failure to
another one based on the information of the schedules, the load of each processing
element in the car-network, the communication costs and regarding the feasibility. In
our case he will decide to move tasks from the radio to the navigation system.

In the last paragraph we describe the interactions between the four tasks, which are
necessary to support load balancing. Now we will discuss the internal data structure
of our middleware. The Event Manager triggers the Registry and initialize the Load
Balancer. The Registry itself interacts with the Resource Manager and the Load Bal-
ancer. The Resource Manager hands over the actual status of the entire system to the
Load Balancer.

62 I. Jahnich, I. Podolski, and A. Rettberg

Fig. 3. Failure detection of the radio system

To perform the scheduling in the Resource Manager we can select between differ-
ent scheduling strategies. They are instantiated within the scheduling mechanism class
of the internal data structure.

The Registry as well as the scheduling mechanism needs information’s of all tasks
and devices. This is handled by the so called list class. It contains linked lists of de-
vices and tasks and offers functions to manage the lists. As described before list offers
all functions to manage the task list, but additionally functions to set the status of the
tasks are needed. The status of the task is running, waiting or sleeping. Besides this
the task manager is able to create a new task. The information of a task is stored in the
data structured provided by the task control block. The parameters of the generated
structure are set by the task manager with functions from the list class. The list class
uses the functions from the task control block to get information’s from tasks.

For the devices we have the same functions available as for the tasks. This is real-
ized in the device control block. Each device has a list containing the task-id's that are
running on the device. By setting the global variables of our middleware we can ini-
tialize the system and can set it in running mode.

5 Load Balancing Strategy

There are several possibilities to balance the load after an error happened inside the
vehicle Infotainment network. Initiated by the Load Balancer component the new re-
sources can be used and applications or tasks can be migrated to the additional device.

In the following the cost-based load balancing strategy is briefly described. Within
the cost based strategy the Load Balancer evaluates possible migration of tasks from
one ECU to another. He evaluates a set of ECUs where the task could be migrated.
Hence that the migration is only a useful option if

Towards a Middleware Approach for a Self-configurable Automotive Embedded System 63

 the cost of migrating is lower than the cost of keeping tasks with their
original device and

 it is feasible to migrate a task or a set of tasks from one ECU to another
one (feasibility).

The cost benefit ratio for tasks of busy devices is computed which helps the Load
Balancer to form the decision of whether to migrate or not. The calculation of migra-
tion costs of task is realized according to the priority list of the Most Loaded strategy.
Most Loaded generates a priority list which ranks the tasks from the busiest proces-
sor. In that way the tasks with the highest priority will be migrated to the resources of
the additional device.

Let us assume we have tasks ti with i = 1 to n, and the utilization of the task run-
ning on an ECU is ui. Additionally, let Uj the maximum utilization of ECU ej with j =
1 to m. Then the upper bound for the utilization of an ECU ej is:

∑
=

≤
n

i

ji Uu
1

For the communication we can make the following assumptions. Let ck with k = 1
to r the communication channels in the vehicle and Ck the maximum costs a channel
ck has. Furthermore, let mi,k the cost task ti produce on channel ck. Then we can define
the following bound for the communication cost a channel ck:

∑
=

≤
n

i

kki Cm
1

,

Now our Load Balancer has to find an optimal balancing for all tasks within in the
vehicle network regarding the utilization, communication cost and the feasibility. This
can be done with integer linear programming (ILP) or other optimization methods.
This is ongoing work right now and in the final version of the paper we will show
some simulation results.

6 Simulation and Results

In this section we will describe the implementation status of our middleware w.r.t.
simulation and results. Our middleware was implemented in C code. We choose C,
because it is more or less the language used for ECUs. Therefore, the code transfer
from a PC based simulation to a real target platform doesn’t need too much effort.

The implementation follows the class diagram structure presented in the previous
section, see Figure 5. Within the PC based simulation we are able to parameterize our
virtual software tasks and virtual ECUs with real values to achieve a software simula-
tion of the entire system. The simulation is due to the fact that we use real values, near
to the real system behavior.

As we figured out from the simulation that the migration time, to start a task on an
ECU needs more time as our implemented scheduling and load balancing approach.
Therefore, the time our middleware needs is dominated by the task migration of the
underlying hardware (ECUs).

64 I. Jahnich, I. Podolski, and A. Rettberg

7 Conclusion and Outlook

We presented a middleware architecture for automotive systems that enables dynamic
load balancing within the Infotainment network. The integration of load balancing is a
step towards a self-reconfiguration within the vehicle and to integrate redundancy by
task migration. We focus on a specific use case scenario whereby an error occurred
within the vehicle network. Tasks running on the ECU with an error are migrates to
another ECU by regarding the so-called feasibility, utilization and communication
costs. With the help of the requirements, we described the middleware architecture
and their enrichment with new services to support the distribution and exchange of
tasks. Furthermore, we present briefly a cost-based load balancing strategy we will
use for our approach.

Future work will be a detailed evaluation of the already existing load balancing
strategies in the context of automotive systems. Additionally, the extension of existing
or the development of new load balancing strategies will be done together with the
implementation of the proposed architecture.

Acknowledgements

This project was funded by the EU Commission within the project DySCAS (Dy-
namically Self-Configuring Automotive Systems).

References

[1] Athony, R., Ekelin, C., Chen, D., Törngren, M., de Boer, G., Jahnich, I., et al.: A future
dynamically reconfigurable automotive software system. In: Proceedings of the Elek-
tronik im Kraftfahrzeug, Dresden, Germany. LNCS. Springer, Heidelberg (2006)

[2] Athony, R., Rettberg, A., Jahnich, I., Ekelin, C., et al.: Towards a dynamically recon-
figurable automotive control system architecture. In: Rettberg, A., Dömer, R., Zanella,
M., Gerstlauer, A., Rammig, F. (eds.) Proceedings of the IESS 2007, Irvine, California,
USA. Springer, Heidelberg (2007)

[3] Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput. (1989)

[4] Diekmann, R., Monien, B., Preis, R.: Load balancing strategies for distributed memory
machines. In: Satz, H., Karsch, F., Monien, B. (eds.) Multiscale Phenomena and Their
Simulation, pp. 255–266. World Scientific, Singapore (1997)

[5] Hu, Y.F., Blake, R.J.: An optimal dynamic load balancing algorithm, vol. DL-P-95-011
(1995), http://citeseer.ist.psu.edu/hu95optimal.htm

[6] Hui, C.-C., Chanson, S.T.: Improved strategies for dynamic load balancing. In: IEEE
Concurrency (1999)

[7] Jaiganesh, B., Douglas,: Evaluating the performance of middleware load balancing
strategies (2004), http://citeseer.ist.psu.edu/635250.html

[8] Othman, O., Schmidt, D.: Optimizing distributed system performance via adaptive mid-
dleware load balancing. In: Othman, O., Schmidt, D.C. (eds.) ACM SIGPLAN Workshop
on Optimization of Middleware and Distributed Systems (OM 2001), Snowbird, Utah,
June 18, 2001 (2001)

Towards a Middleware Approach for a Self-configurable Automotive Embedded System 65

[9] Othman, O., Schmidt, D.C.: Issues in the design of adaptive middleware load balancing.
In: LCTES 2001: Proceedings of the ACM SIGPLAN workshop on Languages, compil-
ers and tools for embedded systems, pp. 205–213. ACM Press, New York (2001)

[10] Stoller, S.: Leader election in distributed systems with crash failures. Technical report,
Indiana University, April 1997, p. 169 (1997)

[11] van der Zwaan, S., Marques, C.: Ant Colony Optimisation for Job Shop Scheduling. In:
Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life (GAAL
1999) (1999)

[12] Buttazzo, G.C.: Hard real time computing systems. Kluwer Academic Publishers,
Dordrecht (2000)

[13] Jahnich, I., Rettberg, A.: Towards Dynamic Load Balancing for Distributed Embedded
Automotive Systems. In: Rettberg, A., Dömer, R., Zanella, M., Gerstlauer, A., Rammig,
F. (eds.) Proceedings of the IESS 2007, Irvine, California, USA. Springer, Heidelberg
(2007)

[14] Jahnich, I., Podolski, I., Rettberg, A.: Integrating Dynamic Load Balancing into the Car-
Network. In: 4th Proc. of the Electronic Design, Test and Application (DELTA 2008),
Hong Kong, January 23–25 (2008)

[15] Ravindran, B., Welch, L.R., Kelling, C.: Building Distributed Scalable Dependable Real-
Time Systems. In: Proceedings of the IEEE Conference on Engineering of Computer-
Based Systems, March 24-28 (1997)

[16] Chaaban, K., Shawky, M., Crubillé, P.: A Distributed Framework For Real-Time In-
Vehicle Applications. In: Proceedings of the 8th International IEEE Conference on Intel-
ligent Transportation Systems, Vienna, Austria, September 13–16 (2005)

[17] Kim, M., Choi, Y., Moon, Y., Kim, S., Kwon, O.: Design and Implementation of Status
based Application Manager for Telematics. In: The 8th International Conference on Ad-
vanced Communication Technology (CACT), February 20-22 (2006)

[18] Navet, N., Song, Y., Simonot-Lion, F., Wilwert, C.: Trends in Automotive Communica-
tion Systems. In: Proceedings of the IEEE (June 2005)

[19] http://www.autosar.org

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 66–78, 2008.
© IFIP International Federation for Information Processing 2008

Context-Aware Middleware for
Reliable Multi-hop Multi-path Connectivity

Paolo Bellavista, Antonio Corradi, and Carlo Giannelli

Dip. Elettronica, Informatica e Sistemistica - Università di Bologna
Viale Risorgimento, 2 - 40136 Bologna - Italy

Tel.: +39-051-2093001; Fax: +39-051-2093073
{paolo.bellavista,antonio.corradi,carlo.giannelli}@unibo.it

Abstract. The widespread diffusion of portable devices with multiple wireless
interfaces, e.g., UMTS/GPRS, IEEE 802.11, and/or Bluetooth, is enabling mul-
ti-homing and multi-channel scenarios, possibly made up by multi-hop coopera-
tive paths towards the traditional Internet infrastructure. There is the need for
novel middleware supports, aware of innovative context information, to select
and dynamically re-configure the most suitable interfaces and connectivity pro-
viders for each client application. In particular, novel middlewares should effec-
tively exploit concise and lightweight context indicators about expected node
mobility, path throughput, and energy availability to take proper connectivity
management decisions at session startup and to promptly re-configure them
with limited overhead at runtime. Here, we present how our MMHC middle-
ware originally uses mobility/throughput/energy context to manage connectivity
opportunities effectively, i) by filtering out connectivity opportunities that are
considered insufficiently reliable, and ii) by carefully evaluating the residual
candidates in two distinguished local/global management phases to achieve the
most suitable tradeoff between promptness and management costs.

1 Introduction

Nowadays mobile devices, usually equipped with multiple wireless interfaces, can get
connectivity to the traditional wired Internet by taking advantage of multiple connec-
tivity opportunities provided by many infrastructure-based components, which tend to
be ubiquitously available, e.g., IEEE 802.11 Access Points (APs) or UMTS Base
Stations (BSs). In the following, we will call these connectivity components as infra-
structure connectors. In addition, the increasing and increasing resources of mobile
terminals potentially enable novel and more complex scenarios where client nodes
can also help other clients to achieve Internet connectivity in a peer-to-peer fashion,
e.g., via Bluetooth Personal Area Network (PAN) or IEEE 802.11 Independent Basic
Service Set (IBSS) connections, by acting as intermediate entities in a multi-hop (pos-
sibly heterogeneous) path towards the Internet. We use the term peer connectors to
indicate these novel connectivity opportunities. Peer connectors are in charge of creat-
ing and properly managing a simple and small Mobile Ad-hoc NETwork (MANET)
with the peers in proximity and of correctly routing packets between their MANET
and the Internet by exploiting the near infrastructure connectors.

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 67

The increased complexity of this scenario enabled by the concurrent exploitation of
infrastructure/peer connectors is widely counterbalanced by the potential benefits of
exploiting a significantly wider set of heterogeneous connectivity opportunities,
among which to dynamically choose based on system/user/node/application-specific
requirements, e.g., load balancing available connectors, always exploiting connec-
tivity opportunities that are for free, preserving node battery, or respecting bandwidth
requirements, as exemplified in Section 2. Of course, it is inappropriate to leave to
client application designers the whole burden of properly managing the wide set of
Multi-hop Multi-path Heterogeneous Connectivity (MMHC) opportunities that are
dynamically available. Therefore, we claim the crucial role of client-side middleware
solutions for effective MMHC management.

These middlewares should have effective visibility of different kinds of innovative
context data to take proper MMHC decisions, especially to ensure usability of enabled
MMHC opportunities by selecting the ones expected to be more reliable during the
service session that will be established. In particular, lightweight estimations about
client mobility (with regards to both fixed infrastructure and mobile peer connectors)
could allow to exclude the connectors that are probably going out of the coverage area
of the considered client soon, thus reducing the space of connectivity opportunities to
take into account. Similarly, context data about the estimated throughput achievable
by a single wireless hop and by the multi-hop path composed by that hop can help
filtering out connectivity opportunities that do not comply with session quality re-
quirements. Finally, context data about the residual energy of involved connectors
could help in balancing energy consumption among connectors and in taking proac-
tive re-configuration operations of currently exploited paths if some composing hops
are expected to fail soon due to power exhaustion.

According to these context awareness needs, we have designed and implemented our
innovative middleware for multi-hop multi-path connectivity management, called
MMHC [1]. MMHC properly handles different kinds of context data, from user prefer-
ence profiles to application requirements, from Received Signal Strength Indications
(RSSI) for mobility estimations to battery power indicators, to select and dynamically
re-configure the most suitable MMHC opportunity for each running application. In
particular, in this paper, we originally focus on how MMHC portably gathers mobil-
ity/throughput/energy context data and exploits them to perform lightweight connec-
tivity management. The primary ideas are i) of exploiting context data to reduce the
space of potential candidates for selected connectivity opportunities and ii) of splitting
management operations into a local phase (where mainly local context is exploited to
achieve rapid, effective, but sub-optimal MMHC decisions) and a global phase (where
lightweight distributed context guides proactive path re-configuration and procedures
for role switch to counteract node failures/exits). Given the extreme dynamicity of the
addressed deployment scenarios, the main goal is the selection of connectivity opportu-
nities with an expectation of reasonable reliability for the served applications. The first
results obtained by deploying the MMHC middleware prototype* over real testbeds
demonstrate the feasibility of the approach, with limited overhead and MMHC selec-
tion/re-configuration times compatible with most applications.

* The code of the MMHC prototype is available for download, together with additional implementa-

tion insights and experimental results, at http://lia.deis.unibo.it/research/
MMHC/

68 P. Bellavista, A. Corradi, and C. Giannelli

2 Deployment Scenario and Problem Statement

The MMHC scenario relevantly improves the traditional networking capabilities of
wireless environments. First of all, it extends connectivity opportunities via multi-hop
ad-hoc paths, thus allowing the Internet access of nodes not directly in the coverage
area of infrastructure connectors. Second, it enables the exploitation of multiple paths
simultaneously, e.g., to improve the overall throughput available at a client node.
Third, it permits to increase connectivity availability, e.g., by enabling the rapid re-
routing of traffic flows to other paths when the exploited one becomes unavailable.

To better and practically point out these advantages, let us rapidly sketch an exam-
ple of a possible MMHC deployment scenario. Consider the realistic case of a group
of tourists moving together and sharing pictures via Wi-Fi/Bluetooth single-hop links.
Due to their limited coverage range, there could be the need for multi-hop paths to
reach target friends who are currently lingering in a shop; that is enabled by collabo-
rating tourist devices that, for instance, can transparently exploit IEEE 802.11 in ad-
hoc mode to receive packets and Bluetooth to forward them along the right direction,
e.g., node C in Figure 1. In addition, some tourists may be willing to periodically
publish their pictures on their Web blogs even if they have no direct UMTS connec-
tivity, e.g., they do not want to subscribe to a local UMTS provider while visiting
Italy. These tourists can benefit from Bluetooth multi-hop ad-hoc connectivity toward
the devices of friends with flat-rate UMTS subscription, who offer them free Internet
connectivity, e.g., node A. Note that tourists' mobility may reduce the reliability of
MMHC opportunities; usually there is the need to favor the selection of MMHC op-
portunities with compatible reliability (especially in terms of expected durability).

A

C D

E

InternetInternet

BS1 BS2

UMTS

Bluetooth

Wi-MAX

IEEE 802.11

getting
connectivity

offering
connectivity

F

B

IEEE 802.11

Fig. 1. An example of MMHC scenario

Similarly, when moving from city to city by train, tourists should be able to exploit
MMHC opportunities offered by other passengers, possibly in other wagons, reachable
via multi-hop heterogeneous paths, and connected to the Internet via Wi-Fi/WiMAX
APs, such as node B. In this case the nodes tend to move together (joint mobility) and
MMHC opportunities have similar expected durability. Therefore, MMHC selection
should not only be mobility-aware, but also consider application-specific quality re-
quirements, e.g., expected throughput. Moreover, if node A leaves the network, e.g., to
limit its battery consumption, node D can reroute its active connections from node A to

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 69

B, thus minimizing user-perceived service disruption. However, in that case, node C
would have no access to the Internet anymore, since A was its only connector. It could
be useful that nodes in that simple MANET self-organize themselves to provide new
Internet access opportunities, for instance with node F starting to play the role of con-
nector, thus providing C with connectivity towards BS2.

We claim that, to support the effective self-organization of MMHC networks, there
is the need of proper, effective, and concise context data describing capabilities and
characteristics of available connectivity opportunities. Novel context indicators about
expected node mobility, path throughput, and energy availability are needed to take
proper MMHC management decisions at session startup and to promptly re-configure
them at runtime, with limited overhead and impact on on-going service sessions.

3 Context Data for MMHC Management

We claim that MMHC management decisions should primarily take into account
enhanced forms of context data, such as expected node mobility and path throughput,
which are specific representatives, respectively, of the general properties of reliability
and quality. On the one hand, given that clients and peer connectors are all mobile and
may join/leave their networks abruptly, MMHC reliability is far more “fragile” than
in traditional AP/BS single-hop connectivity. On the other hand, once reliability is
potentially ensured as the primary goal, it is reasonable to perform MMHC manage-
ment depending on coarse-grained estimated throughput. Let us note that, as better
detailed in the following, it is possible to obtain these context data with reasonable
accuracy by means of localized and lightweight exchange of monitoring information.
In addition, MMHC management should consider the energy availability of the whole
network. Based on coarse-grained and lightweight information about the battery of
peer connectors, it is possible: i) to fairly exploit node energy capabilities; and ii) to
proactively reconfigure the network when the battery level of a peer connector goes
under a threshold, thus avoiding abrupt path disruptions due to battery exhaustion.

3.1 MMHC Node Mobility

We claim that mobility awareness is the most important context information needed
to take proper MMHC management decisions, especially with the aim of choosing
reliable connectivity opportunities based on durability expectations. Even if the litera-
ture is starting to recognize that claim, there are currently no practical, lightweight,
decentralized, and client-side ways for coarse-grained estimation of node mobility. In
our previous work [1], we have experimentally shown how to obtain mobility indica-
tors by exploiting only lightweight local monitoring.

In particular, we claim that, in first approximation, single-hop connection durabil-
ity depends on mutual mobility of involved nodes and coverage range of the em-
ployed wireless technology. These two simple parameters concisely summarize two
main properties affecting reliability in wireless environments: user mobility, as the
inclination to either stay close to or move away from nodes offering connectivity, and
wireless technology characteristics, e.g., higher durability of medium-range IEEE
802.11 links if compared with short-range Bluetooth ones.

70 P. Bellavista, A. Corradi, and C. Giannelli

By delving into finer details, we define mutual mobility as the mobility relationship
between a given participating node X and a fixed/mobile device offering connectivity
to X, such as an AP or a collaborating peer connector. We introduce two indicators: i)
CMob to measure X's mobility with regard to a fixed AP/BS device; ii) Joint to evalu-
ate X's tendency to move together with another mobile peer (relative stillness). Both
indicators have a value in the [0, 1] range and are inferred via a simplified technique
based on RSSI measurement at X and on RSSI variation in a recent timeframe; addi-
tional details about how to effectively obtain these indicators are in [1, 2].

For each single-hop path opportunity, we propose to quantitatively evaluate its En-
durance Estimation (EE), i.e.:

EE = (1 - CMob) • CR for APs/BSs (1)
EE = Joint • CR for mobile peers (2)

where Coverage Range (CR) is in [0, 1] and, in first approximation, only depends on
the exploited wireless technology.

While EE provides single-hop context information about expected durability, ob-
tained locally without any access to distributed monitoring data, we introduce Path
Mobility (PM) for coarse-grained evaluation of multi-hop path durability:

• PM is equal to EE in the case of a single-hop path;
• the PM of a k-hop path is equal to the EE of the kth hop multiplied by the PM of

the remaining sub-path starting from the (k-1)th node.

Let us observe that PM quickly degrades while increasing the number of path hops, to
model the desired effect of strongly favoring the selection of short durable paths. In
fact, the MMHC goal is not of supporting the complex realization of any kind of
MANET, but only to enable short reliable ad-hoc paths towards infrastructure connec-
tors, even by abruptly filtering out connectivity opportunities that are estimated too
unreliable because of excessive mobility.

3.2 MMHC Path Throughput

Similarly to context data about mobility for coarse-grained estimations of connector
reliability (to infer MMHC opportunity durability), we have worked to properly
model the expected throughput of potentially available multi-hop heterogeneous
paths depending on lightweight monitoring data. In particular, based on our large
campaign of measurements on heterogeneous wireless networks, we have observed
that three elements are crucial, in first approximation, for throughput: i) the wireless
technology of each single-hop sub-path, ii) the number of hops in the path, and iii)
the number of clients/peer connectors simultaneously served by each connector in
the path. Other factors, which have partial influence on the overall path perform-
ance, are not so relevant for a coarse-grained throughput estimation. For instance,
about iii), we have experimentally verified that in the challenging case of simulta-
neous transmit/receive operations by all clients over the same single-hop link up to
throughput saturation, competing devices tend to fairly share the total bandwidth.
We adopt the conservative simplifying assumption that in any case a node can
achieve a maximum throughput inversely proportional to the number of active

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 71

nodes on that single-hop (see Figure 2). Given the above considerations, we pro-
pose a simplified lightweight model to evaluate Estimated Throughput (ET):

ET = NB for APs/BSs (3)
ET = (1 - HD) • MT / #clients for mobile peers (4)

where Nominal Bandwidth (NB) depends on the exploited wireless technology, Hop
Degradation (HD) models per-hop throughput degradation (experimentally measured
and set to 20% in first approximation), which is almost independent of the number of
local clients, and Maximum Throughput (MT) is the expected maximum throughput
toward the wired Internet, i.e., min {ET of previous single-hop sub-path, NB of the
considered single-hop sub-path}. Note that the number of clients is not considered in
the case of direct connections to APs/BSs, also given the practical impossibility to
portably obtain this information when working with currently deployed AP/BS net-
work equipment. Let us finally stress again that this procedure for ET estimation is
only a rough calculation of actual runtime throughput, but is very simple and light-
weight, thus enabling scarcely intrusive comparison of multi-hop paths.

Internet

EEap = (1–CMoba) • CRap

EEab = Jointab • CRa

EEbc = Jointbc • CRb

PMap = EEap

= (1–CMoba) • CRap

PMa = EEab • PMap

= (Jointab • CRa) • ((1–CMoba) • CRap)

PMb = EEbc • PMa

= (Jointbc • CRb) • ((Jointab • CRa) • ((1–CMoba) • CRap))

AP

A

B

C

Internet

ETA = (1–0.2) • 4 Mbps / 3 clients
= 1.07 Mbps

ETB = (1–0.2) • 1.07 Mbps / 2 clients
= 0.428 Mbps

AP

A

B

ETAP = 4 Mbps

Fig. 2. Our coarse-grained PM (left) and ET (right) estimation

3.3 MMHC Energy Availability

While PM and ET are useful to provide estimations about mobility-related durability
and throughput, they do not provide any information about expected path durability
due to energy consumption. Analogously to what presented before, MMHC adopts a
simplifying approach for coarse-grained and lightweight energy considerations. The
primary ideas are of simply avoiding the paths composed by nodes with low battery
levels and of not overloading a small set of connectors with a large amount of travers-
ing traffic to avoid to quickly consume their batteries due to traffic routing. The goal
is twofold: i) preserving the battery level of each node, by focusing on those nodes
whose battery level is running out, and ii) trying to increase path durability. Let us
rapidly point out that the MMHC approach does not replace but is additional to other
more sophisticated and effective techniques for power consumption reduction, e.g.,
IEEE 802.11 awake/doze periodic state switch or Bluetooth Sniff/Park states.

72 P. Bellavista, A. Corradi, and C. Giannelli

By going into finer details, MMHC distributes context information related to Node
Battery Level (NBL) and thus permits to take informed decision sufficiently in ad-
vance for reconfiguring the network prior to path disruption. In particular, we define
the Average Path Energy (APE) indicator of the kth hop of the path as:

(5)

i.e., the average battery level of nodes in the path to the Internet. In addition, we de-
fine the Residual Path Energy (RPE) indicator as:

NBL1 for the 1st hop of the path (6)

 for the kth hop of the path (7)

Note that APE and RPE convey different context information. The former gives a
fairness estimation about the distribution of power consumption, useful to quantita-
tively compare available paths. For instance, given two paths with good ET values,
MMHC can chose to exploit the one with greater APE to optimize peer connector
power consumption. The latter alerts about the possibility that a given path becomes
unavailable in a short time, e.g., since one of the connectors is running out of energy.
Again, the RPE indicator is built to favor the exploitation of short paths. Considering
the example in Figure 3, based on APE, node F should prefer the BS1-A-C path
(APE=0.51) instead of BS1-A-C (APE=0.45). However, the first path has a consid-
erably lower RPE than the second (respectively 0.0665 and 0.20), correctly modeling
the fact that a node of the first path, i.e., node C, is exhausting its battery.

A

C D

E

InternetInternet

BS1 BS2

F

B NBT = 0.40

APE = 0.45
RPE = 0.20

NBT = 0.07

NBT = 0.95

APE = 0.40
RPE = 0.40

NBT = 0.50

APE = 0.95
RPE = 0.95

APE = 0.51
RPE = 0.0665

Fig. 3. APE and RPE estimation for two different paths

4 Local and Global Management for Reliable Paths in MMHC

We envision the self-organization of MMHC networks as a two-phase procedure: a
local phase where nodes aim to quickly achieve a form of Internet connectivity at
session startup and a global phase where nodes coordinate themselves to incremen-
tally improve their network exploitation in terms of availability and quality.

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 73

The local phase performs connector evaluation rapidly and efficiently to ensure
prompt but sub-optimal response; it is based on context data that is either locally
available (EE) or gathered at single-hop connection establishment time (PM and ET),
thus providing coarse-grained estimation of path reliability and quality. In particular,
the local phase is reactively activated only when an active single-hop connection fails,
e.g., because one in-use connector becomes unavailable. In this phase, nodes:

1) gather RSSI sequences of their visible peer connectors to compute CMob/Joint;
2) perform a single-hop connection with the most reliable connector from the point

of view of mobility, i.e., with greatest EE;
3) estimate PM and ET of the whole path, by gathering and exploiting PM and ET

of previous hops in case of peer connectivity.

Nodes connected to multiple connectors exploit PM and ET values to estimate
which is the most suitable path. Due to the volatility of MMHC networks, the main
purpose of these evaluations is to ensure path durability, while throughput is consid-
ered only as a secondary objective. In fact, MMHC allows users to specify the Re-
quired Reliability (RR) for each of their applications (RR ranges in the [0,1] interval,
with 1 for maximally privileging reliability at the expense of throughput). By delving
into finer details, MMHC nodes:

1) as a first try, select the path with greatest ET among the only paths with PM >=
80% RR. If at least one compliant path is found, the algorithm stops;

2) otherwise, they also examine paths with PM >= 50% RR. If at least one compli-
ant path is found, the algorithm stops;

3) otherwise, they take into account any potentially available path, with no more
limitations on the space of connectivity opportunities.

Let us point out that the local management phase leads to the establishment of a
tree-network topology: connections can only follow bottom-up paths because they are
built up from clients towards the Internet access points. For instance, in Figure 1 cli-
ents can achieve Internet connectivity by establishing 1-to-many tree-like connec-
tor/client relationships; clients connected to multiple connectors can access multiple
tree-networks simultaneously; instead, connectors cannot exploit connectivity offered
by their clients at the same time.

The global phase is in charge of enhancing the connectivity paths established in the
local phase, by ensuring long-term availability. It exploits a wider set of context data
and connectivity opportunities. On the one hand, APE and RPE data are spread to
proactively modify network topology to avoid nodes with scarce battery. On the other
hand, the already established connectivity allows clients with simultaneous connec-
tion to multiple connectors to periodically notify their single-hop connectors that they
can potentially work as bridges among different tree-networks. In this phase, nodes:

1) periodically collect up-to-date context data about PM, ET, APE, and RPE of
available paths from peer connectors/clients;

2) change routing rules when the currently exploited path becomes unavailable or its
RPE value goes below 0.1;

3) select new paths, as the local phase does, by privileging paths with APE in the
[0.5, 1.0] range (preferred exploitation of nodes with high battery resources):

74 P. Bellavista, A. Corradi, and C. Giannelli

a. if the new path exploits a new connector, the involved nodes simply have to
change their local routing rules;

b. if the new path uses a client connected to other tree-networks, a role-switch
procedure is triggered (see below).

This metric is conservative, by proactively triggering a network reconfiguration
only based on APE: However, it is easy to change MMHC behavior to adopt more
aggressive approaches that take into account also ET and other parameters, at the cost
of additional monitoring overhead.

It is worth noting that the local phase is rather static, letting nodes establish new
connections only when already available ones disappear. Instead, the global phase
provides dynamic network management not only by changing the exploited connector
via routing rule updates, but also by switching the role between connectors and clients
(role-switch procedure). In fact, role-switch relevantly improves topology dynamicity
and widens networking opportunities: for instance, a connector can select, as next-hop
to the Internet, one of its current clients such as node F in Figure 4. Then, MMHC
starts its role-switch procedure as follows:

1) the connector notifies its client that there is the need for role-switch;
2) the client enables forwarding capabilities and update routing rules;
3) the connector starts forwarding packets to the selected client.

C D

E

InternetInternet

BS1 BS2

F

BA

Fig. 4. Nodes C/F role-switch procedure after
node A failure

Network Interface Provider

pr
ov

id
e

co
nn

ec
tiv

ity

single-hop
opportunities

multi-hop
paths

Connection
Manager

connect

IEEE 802.11 Bluetooth UMTS

Routing
Manager

local node
requirements

single-hop
connections

receive remote context

send local context

Fig. 5. MMHC middleware architecture

The role-switch procedure affects only the pair of nodes directly involved in it (lo-
calized management operation). After the switch, the original connector is still the
node contributing to the existence of the physical network, e.g., working as Bluetooth
master and DHCP server; the novel element is that the old client starts playing the role
of gateway. In this way, the role-switch procedure imposes limited overhead, e.g., not
requiring the time consuming establishment creation of new single-hop links (see Sec-
tion 5) and permits the decoupling of the roles of connection establisher and gateway.
In addition, other possible clients of a connector are not affected by role-switch: they
keep on sending packets to their old connector, thus possibly delving into sub-optimal
node configurations but limiting reconfiguration actions to minimize manager

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 75

overhead. Figure 4 shows how C and F reconfigure their network after A failure; note
that E continues to exploit C as peer connector, which forwards packets to F.

5 Architecture and Implementation Insights

Figure 5 gives a high-level overview of our middleware architecture, which is layered
to properly separate connection/routing level local/global management operations and
to limit the unnecessary visibility of implementation details, thus increasing usability.
Network Interface Provider (NIP) provides homogeneous access to heterogeneous
interfaces and local context sources; it provides a common API by hiding low-level
peculiarities of underlying drivers and operating systems. Connection Manager per-
forms single-hop connections; it gathers RSSI sequences to evaluate CMob/Joint and
EE for any single-hop MMHC opportunity; on this basis, it takes local decisions on
the subset of single-hop paths to activate. Routing Manager works to perform multi-
hop paths; it manages routing rules and triggers role-switch procedures when needed.

For the sake of briefness, to give a practical idea of some MMHC implementation
issues, here we focus on how (lower layer) MMHC achieves portability over different
platforms. Additional details are available on the MMHC Web site. The current
MMHC prototype supports IEEE 802.11 and Bluetooth interfaces, by including
wrappers for both Linux and Windows XP/Vista. Wi-Fi interfaces are accessed via
Linux Wireless Extensions on Linux client nodes and via the Microsoft Network
Driver Interface Specification User-mode I/O (NDISUIO) on Windows XP/Vista
(NDISUIO is platform-dependent but portable among different wireless interface
implementations). For instance, NIP exploits the NDISUIO function DeviceIOCon-
trol() to query the OID_802_11_BSSID_LIST_SCAN object to retrieve the com-
plete list of currently reachable connectors, either IEEE 802.11 APs or peer nodes in
ad-hoc configuration. Bluetooth interfaces are accessed via the standard API provided
by the BlueZ protocol stack on Linux client nodes, while via the API provided by the
Windows Driver Kit and the Software Development Kit on Windows XP/Vista. For
example, NIP achieves visibility of the set of Bluetooth devices in proximity by in-
voking BluetoothFindFirstDevice and BluetoothFindNextDevice functions.

In addition, NIP can gather battery-related context information on both Linux and
Windows XP. In the former case, it exploits status and info files in the
/proc/acpi/battery/BAT0 directory; it estimates the NBL parameter comparing
the remaining capacity and the last full capacity values. In the latter case,
the System Event Notification Service (SENS) BatteryLevel property is exploited
to access the battery status and directly get the NBL parameter.

We have worked and are working on the extensive experimental validation of the
MMHC prototype. Due to space limitations, here we rapidly present some performance
measurements about MMHC overhead, by referring to the MMHC Web site for addi-
tional experimental results. MMHC has demonstrated to add a limited overhead, negli-
gible if compared with the long delays imposed by several wireless technologies to
handle handovers and establish new connections, e.g., the Bluetooth inquiry [3]. In
particular, we have tested Connection and Routing Manager performance when creating
new single-hop connections and managing routing rules for multi-hop paths. In the case
of a new Wi-Fi/Bluetooth connector joining the managed network, Connection Manager

76 P. Bellavista, A. Corradi, and C. Giannelli

spends 3.102/17.916s to configure the new single-hop connection, e.g., due to
3.041/14.370s to discover the connector (almost all deriving from long Wi-Fi/Bluetooth
standard operations), only 0.039/0.116s to evaluate the connector suitability (under
MMHC responsibility), and 0.022/3.430s to connect to it via association/PAN connec-
tion. Routing Manager is much faster, requiring only 273ms on average to establish a
new path: 60ms to select the best path and consequently update routing rules, the re-
maining time to distribute context data.

The main performance differences between the two interface types have been ex-
hibited for connector discovery and connection establishment: the longer IEEE 802.11
discovery phase is mainly due to the time for setting up the ad-hoc mode, which is of
infrequent usage and not optimized in several Wi-Fi cards; Bluetooth inquiries and
PAN connections are slower than IEEE 802.11 scans and associations [3]. In addition
to interface types, the reported indicators have demonstrated to significantly depend
on card model and driver implementations. For instance, Orinoco Gold interfaces
have exhibited larger IEEE 802.11 ad-hoc throughput than PROWireless cards (about
6 times) because the latter only support ad hoc transmission at 1MB/s. Similarly,
MMHC can halve the Bluetooth inquiry period over MS operating systems at the
expense of risking not to sense a small fraction of connectors, as proposed first in
[13]; that optimization is impossible with Linux-based BlueZ drivers.

Let us stress that the greater delay for network setup than for network reconfigura-
tion justifies the MMHC approach, with a local management phase reactively acti-
vated only when a single-hop connection is lost and a global phase that periodically
updates routing rules to optimize performance once the network is working (to
shorten the long and expensive startup phase of first connection establishment).

6 Related Work

Several proposals have recently investigated some specific partial aspects of the
MMHC scenario. For instance, [4] points out the primary technical aspects of
WLAN-based multi-hop networks, while [5] aims to extend cellular network capabili-
ties via relay stations, with the main goal of increasing cellular coverage. [6] and [7],
instead, specifically address the issue of managing client mobility among heterogene-
ous multi-hop networks. Other proposals focus on the effective allocation of the
shared wireless medium frequencies and the scheduling of time slots to minimize
interferences and packet collisions [8, 9]. These contributions were crucial for the full
understanding of both the theory and the main characteristics of multi-hop networks.
However, they did not concentrate on realistic, feasible, and practical solutions to
guide the design and implementation of prototypes for seamless and mobility-aware
MMHC. Also [10] and [11] provide some relevant contribution by identifying major
drawbacks and weaknesses of theoretical work in the literature; however, they do not
propose practical solutions to address these weaknesses.

In a wider perspective, it is possible to note that most work in the literature proposes
elegant but complex models for MMHC, without considering concise context indica-
tors to simplify MMHC management (reduced overhead at the expense of limited
distance from decision optimality). In particular, only recent contributions start to
recognize the importance of providing lightweight mechanisms to maximize reliability.

 Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity 77

To the best of our knowledge, [12] is the only notable proposal that practically ad-
dresses the issue of improving network reliability by spreading context data about path
robustness; however, it does not estimate availability based on mobility/energy consid-
erations and does not consider path quality as our MMHC prototype does.

7 Conclusions

Recent research activities are starting to recognize the suitability of novel middlewares
to leverage the adoption of MMHC scenarios, thus fully exploiting the frequent, ubiqui-
tous, and heterogeneous networking opportunities available nowadays. Our research
work points out how innovative context data are crucial to inform management solu-
tions that effectively answer to the reliability, throughput, and availability requirements
of running applications. In particular, our MMHC prototype demonstrates the feasibility
of our approach, with prompt sub-optimal connectivity decisions and limited costs,
thanks to the proper adoption of a reactive local management phase for connectivity
establishment at session startup and a proactive global management phase for connec-
tion re-configuration.

The promising results already achieved are stimulating our further work. In par-
ticular, we are investigating effective models to dynamically evaluate and evolve the
trust degree that clients, in a completely decentralized way, associate to their peer
connectors, in order to affect connectivity offerings via incentives. In addition, we are
extending the MMHC prototype to transparently handle also the splitting of the traffic
flow of a single application at a client along different multi-hop heterogeneous paths.

References

1. Bellavista, P., Corradi, A., Giannelli, C.: A Layered Infrastructure for Mobility-Aware
Best Connectivity in the Heterogeneous Wireless Internet. In: First Int. Conf. MOBILe
Wireless MiddleWARE, Operating Systems, and Applications (Mobilware), Austria (Feb-
ruary 2008)

2. Bellavista, P., Corradi, A., Giannelli, C.: Evaluating Filtering Strategies for Decentralized
Handover Prediction in the Wireless Internet. In: 11th IEEE Symp. Computers and Com-
munications (ISCC), Italy (June 2006)

3. Ferro, E., Potorti, F.: Bluetooth and Wi-Fi Wireless Protocols: a Survey and a Comparison.
IEEE Wireless Communications 12(1), 12–26 (2005)

4. Faccin, S.M., Wijting, C., Kenckt, J., Damle, A.: Mesh WLAN Networks: Concept and
System Design. IEEE Wireless Communications 13(2), 10–17 (2006)

5. Le, L., Hossain, E.: Multihop Cellular Networks: Potential Gains, Research Challenges,
and a Resource Allocation Framework. IEEE Communications Magazine 45(9), 66–73
(2007)

6. Pack, S., Shen, X., Mark, J.W., Pan, J.: Mobility Management in Mobile Hotspots with
Heterogeneous Multihop Wireless Links. IEEE Communications Magazine 45(9), 106–
112 (2007)

7. Lam, P.P., Liew, S.C.: Nested Network Mobility on the Multihop Cellular Network. IEEE
Communications Magazine 45(9), 100–104 (2007)

78 P. Bellavista, A. Corradi, and C. Giannelli

8. Badia, L., Erta, A., Lenzini, L., Zorzi, M.: A General Interference-Aware Framework for
Joint Routing and Link Scheduling in Wireless Mesh Networks. IEEE Network 22(1), 32–
38 (2008)

9. Cheng, H.T., Zhuang, W.: Joint Power-Frequency-Time Resource Allocation in Clustered
Wireless Mesh Networks. IEEE Network 22(1), 45–51 (2008)

10. Conti, M., Giordano, S.: Multihop Ad Hoc Networking: the Theory. IEEE Communica-
tions Magazine 45(4), 78–86 (2007)

11. Conti, M., Giordano, S.: Multihop Ad Hoc Networking: the Reality. IEEE Communica-
tions Magazine 45(4), 88–95 (2007)

12. Baumann, R., Heimlicher, S., Plattner, B.: Routing in Large-Scale Wireless Mesh Net-
works Using Temperature Fields. IEEE Network 22(1), 25–31 (2008)

13. Peterson, B.S., Baldwin, R.O., Kharoufeh, J.P.: Bluetooth Inquiry Time Characterization
and Selection. IEEE Trans. on Mobile Computing 5(9), 1173–1187 (2006)

Service Orchestration Using the Chemical

Metaphor

Jean-Pierre Banâtre1, Thierry Priol1, and Yann Radenac2,�

1 INRIA/IRISA
Campus de Beaulieu, F-35042 Rennes Cedex, France

jean-pierre.banatre@irisa.fr, thierry.priol@irisa.fr
2 Research Center for Grid and Service Computing

Institute of Computing Technology, Academy of Sciences
Beijing 100080, P.R. China

yann.radenac@software.ict.ac.cn

Abstract. Service-oriented architectures (SOA) provide sets of opera-
tions through a network. A program built mainly upon calling services is
called an orchestration of services. Different programming languages can
be used to be the “glue” between services in an orchestration. This arti-
cle shows how a programming language inspired by a chemical metaphor
can be used to program service orchestration.

1 Introduction

Service-based infrastructures are shaping tomorrow’s distributed computing sys-
tems. It is rather difficult to come up with a strict definition, widely accepted,
of what is a service. In the scope of this paper, a service can be seen as a set of
operations that are available on a machine or through a network. After several at-
tempts to design distributed programming paradigms, such as remote-procedure
call [1], distributed objects [2] or distributed components [3], the service para-
digm seems to solve one of the main issue when dealing with distributed systems:
how to design loosely-coupled distributed applications based on the composition
of a set of independent software modules called services that are spread over a
set of resources available on a network such as the Internet. The loosely-coupled
aspect is important when dealing with a distributed system. It allows an appli-
cation to adopt a late binding to software modules. Services are discovered and
brokered at runtime and bound when needed. This provides a lot of flexibility
enabling the selection of the best services, in terms of Qualities of Service (QoS)
such as performance and cost, but also to cope with failures since a given service
can be replaced at runtime. It is foreseen in the near future that the program-
ming of distributed applications will be just the expression of the composition
of services available on the Internet. In fact, the Internet will be considered as

� This work was partially carried out for the EchoGRID IST project no045520, funded
by the European Commission.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 79–89, 2008.
c© IFIP International Federation for Information Processing 2008

80 J.-P. Banâtre, T. Priol, and Y. Radenac

a large scale computing system that shares some similarities with the micro-
processors we have in our desktop or laptop computers but of course with a
larger computing granularity. Internet will provide access, acting as a bus, to a
large number of processing and storage units under the form of utility computing
systems such as Grids [4] or Cloud computers like the Google [5] and Amazon [6]
ones. To conclude with this analogy, services could be considered as the instruc-
tion set of such distributed computing infrastructures. With such analogy, the
issue that is immediately emerging is how to express the instruction and data
flows? Another issue that prevents us to go further in the analogy between a
microprocessor and a service-based computing infrastructure is that failures can
occur at any time and it is considered as a basic property of any distributed
system.

Expressing the control and data flows, or simply workflows, in such large scale
distributed computing infrastructures is thus challenging in many aspects. We
think that existing approaches to express workflows need to be rethought to take
into account the large scale dimension of these infrastructures allowing massively
parallel coarse-grain computations and the dynamicity due to frequent failures.
This paper investigates the use of an unconventional approach which is chemi-
cal programming that possesses two nice properties: it is implicitly parallel and
autonomic. It gets its inspiration from the chemical metaphor, formally repre-
sented here by a chemical language called HOCL which stands for Higher-Order
Chemical Language [7]. In HOCL, computation is seen as reactions between
molecules in a chemical solution. HOCL is higher-order: reaction rules are mole-
cules that can be manipulated like any other molecules, i.e., HOCL programs
can manipulate other HOCL programs. Reactions only occur locally between
few molecules that are chosen non-deterministically. The execution is implicitly
parallel since several reactions can occur simultaneously and it can also be be
seen as chaotic and possesses nice autonomic properties as shown in [8]. This
model has already been applied in the contexts of Grid workflow enactment [9,10]
and of Desktop Grids [11] and shown its suitability to express coordination of
computations.

The objective of this paper is to show, through an example, that chemical
programming can be a good candidate for service programming, such as the com-
position and coordination of services. On one side, applications are programmed
in an abstract manner describing essentially the chemical coordination between
(not necessarily chemical) abstract services. On the other side, chemical pro-
grams are specifically provided to the service run-time system in order to obtain
the expected qualities of service in terms of efficiency, reliability, security, etc.
These programs can be seen as special coordination programs providing guide-
lines to the runtime system allowing a better use of resources in order to obtain
the expected Quality of Service.

Section 2 introduces chemical programming through the HOCL language.
Section 3 shows how to orchestrate services using HOCL. In section 4, we present
briefly some of the main existing approaches to express workflow of services in
the Web Services framework. Finally, we conclude in Section 5.

Service Orchestration Using the Chemical Metaphor 81

2 Chemical Programming Model

A chemical program can be seen as a (symbolic) chemical solution where data
is represented by floating molecules and computation by chemical reactions be-
tween them. When some molecules match and fulfill a reaction condition, they
are replaced by the result of the reaction. That process goes on until an inert
solution is reached: the solution is said to be inert when no reaction can occur
anymore. Formally, a chemical solution is represented by a multiset and reaction
rules specify multiset rewritings.

We use a higher-order chemical programming language called HOCL [7].
HOCL is based on the γ-calculus [12], a higher-order chemical computation
model which can be seen as an higher-order extension of the Gamma lan-
guage [13]. In HOCL, every entity is a molecule, including reaction rules.

A program is a molecule, that is to say, a multiset of atoms (A1, . . . , An)
which can be constants (integers, booleans, etc.), sub-solutions (〈M〉) or reaction
rules. Compound molecules (M1, M2) are built using the associative and com-
mutative (AC) operator “,”. The corresponding AC laws formalize the Brownian
motion and can always be used to reorganize molecules.

The execution of a chemical program consists in triggering reactions until the
solution becomes inert.

A reaction involves a reaction rule oneP by M if V and a molecule N that
satisfies the pattern P and the reaction condition V . The reaction consumes the
rule and the molecule N , and produces M . Formally:

(oneP by M if V), N −→ φM
if P match N = φ and φV

where φ is the substitution obtained by matching N with P . It maps every
variable defined in P to a sub-molecule from N . For example, the rule in the
following solution

〈0, 10, 8, onex::Intby 9 if x > 9〉

can react with 10 (the variable x is mapped to 10). They are replaced by 9. The
solution becomes the inert solution 〈0, 8, 9〉.

A molecule inside a solution cannot react with a molecule outside the solution
(the construct 〈.〉 can be seen as a membrane). A HOCL program is a solution
which can contain reaction rules that manipulate other molecules (reaction rules,
sub-solutions, etc.) of the solution.

In the remaining of the paper, we use some syntactic sugar such as declarations
letx = M1 inM2 which is equivalent to M2 where all the free occurrences of x
are replaced by M1. The reaction rules oneP by M if C are one-shot: they are
consumed when they react. Their variant denoted by replaceP by M if C are
n-shot, i.e., they do not disappear when they react (like in Gamma).

There are usually many possible reactions making the execution of chemical
programs highly parallel and non-deterministic. Since reactions involve only a
few molecules and react independently of the context, many distinct reactions

82 J.-P. Banâtre, T. Priol, and Y. Radenac

can occur at the same time. For example, consider the following program that
computes the prime numbers lower than 10 using a chemical version of the
Eratosthenes’ sieve:

let sieve = replacex, y by x if x div y in
〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

The rule sieve reacts with two integers x and y such that x divides y, and replaces
them by x (i.e., removes y). Initially several reactions are possible, for example
sieve, 2, 8 (replaced by sieve, 2) or sieve, 3, 9 (replaced by sieve, 3) or sieve, 2, 10
or etc. The solution becomes inert when the rule sieve cannot react with any
couple of integers in the solution, that is to say, when the solution contains only
prime numbers. The result of the computation in our example is 〈sieve, 2, 3, 5, 7〉.

To access within a sub-solution (e.g., to get the result of a sub-program), a
reaction rule has to wait for its inertia. That means that a reaction rule matches
only inert sub-solutions. For example, if we want to compute the largest prime
number lower than 10, we can use the previous program as a sub-program, i.e.,
a sub-solution, and then compute the maximum of its result:

let sieve = replacex, y by x if x div y in
letmax = replacex, y by x if x ≥ y in
〈〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, one〈sieve = s, ω〉by ω, max〉

Initially, the one-shot rule cannot react with the non-inert sub-solution, and
only reactions inside the sub-solution can occur. When the sub-solution becomes
inert, the one-shot rule matches the sub-solution: the variable s matches the rule
named sieve and the variable ω matches all the remaining atoms of the solution
(the prime numbers). In the reaction, the one-shot rule and the sub-solution are
replaced by the prime numbers (ω) and the rule max which, in turn, triggers new
reactions until one element remains. More formally, the execution steps occur as
follows:

〈〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, one〈sieve = s, ω〉by ω, max〉
↓ ∗

〈〈sieve, 2, 3, 5, 7〉, one〈sieve = s, ω〉by ω, max〉
↓

〈2, 3, 5, 7, max〉
↓ ∗

〈7, max〉

This example shows the higher-order property of HOCL: the one-shot rule
removes and adds other (named) rules. This property allows to express coordi-
nation of chemical programs within the language.

The examples provided here are simple and fine grain in order to illustrate
the mechanisms of chemical programming through HOCL. But HOCL can also
be used as a coordination language of services (coarse grain).

Service Orchestration Using the Chemical Metaphor 83

3 Service Orchestration Using HOCL

A service orchestration is a program that describes a coordination of services.
HOCL can be used as a data-driven coordination language according a chemical
metaphor. For example, the previous HOCL examples can be viewed as data-
driven coordination of integers and of functions on integers (div, ≥).

3.1 Coordination with HOCL

In [9], workflows are expressed as chemical program. It shows that all coordi-
nation mechanism of workflow can be translated into a chemical setting. The
enactment of workflows can also be described by a chemical program. In fact,
many classical coordination mechanism can be expressed as a chemical coordina-
tion [14]: sequential execution, parallel execution, mutual exclusion, atomicity,
message passing, shared memory, rendez-vous, Kahn networks, etc.

HOCL programs are self-organizing systems [8]. When a HOCL program
reaches an inert state (i.e., a stable state), and if then some new molecules
are added (i.e., perturbation of the system), then some new reactions happen
with the new molecule until a new inert state is reached (i.e., a new stable state).
A simple mail system has been developed as an example of programming self-
organization with HOCL. It features self-healing, self-optimizing, self-protection
and self-configuration.

HOCL as a coordination language has also been applied to program Desktop
Grids. A Desktop Grid is made of non dedicated resources (e.g., any personal
computer connected on the Internet). Such a grid can be highly volatile and
non reliable. In [11], HOCL is used as a coordination language to specify the
execution of a simple ray-tracer in a Desktop Grid. The HOCL program contains
rules that adapt the on-going executions of programs according to the availability
of resources in the Desktop Grid.

3.2 Orchestrating Services with HOCL

Principle. A chemical service architecture consists of a solution of services, i.e.,
a solution of sub-solutions, each representing one service (cf Figure 1).

A service is represented by a solution that contains molecules performing the
operations that this service proposes. To call a service, one adds a molecule of
the form Call:s:n:p in the solution representing the called service, where s is the
calling service, n is the identifier of the call for the calling service, and p are the
parameters for the operation to be performed.

When a service makes a call to another service it generates a molecule of the
form ExtCall:s:n:p where s is the called service, n is the identifier of the call for
the current (calling) service, and p are the parameters for the operation to be
performed.

At a given time, a service may be running different computations related to
different simultaneous call. That’s why, to prevent a service to mix the compu-
tation and the result of different and independent calls, each call has a unique
identifier n

84 J.-P. Banâtre, T. Priol, and Y. Radenac

let withdrawServ iceCal l =
replace serv1 : 〈 ExtCall : serv2 : n : param , w〉

by serv1 : 〈w〉 , Ca l l : serv1 : serv2 : n : param
in
let depo s i t S e r v i c eCa l l =

replace Cal l : serv1 : serv2 : n : param , serv2 : 〈w〉
by serv2 : 〈 Cal l : serv1 : n : param , w〉

in
〈 withdrawServiceCal l , d epo s i t S e rv i c eCa l l ,
S e rv i c e1 : 〈 . . . 〉 , . . . , ServiceN : 〈 . . . 〉

〉

Fig. 1. Generic chemical service architecture

A call is performed in two steps by two rules. The rule withdrawServiceCall
extracts an ExtCall molecule from a service sub-solution and puts it in the
main solution. The rule depositServiceCall takes a call in the main solution and
forwards it into one corresponding service sub-solution.

Two remarks:

– A call to a service to perform an action, and a call to a service to provide
a result are just two ordinary calls: there is no distinction between the two
calls. In fact, a call message and its result message are not explicitly coupled
like in a RPC for example.

– According to the semantics of HOCL, a rule may react only with an in-
ert solution. So the rules withdrawServiceCall and depositServiceCall could
only react with inert sub-solutions, i.e., with services that do not do any
computation, i.e., with services that only perform communication (input or
output of calls). In fact, that inertia constraint may be released for these two
rules. These two rules manage molecules that represent messages. So these
molecules are independent of computations happening inside the solutions
representing the services. Adding or removing a call from these solutions do
not depend on the internal state of these solutions. So adding a call to or
removing a call from a solution that represents a service can happen even if
the solution is not inert.

A travel organizer example. Let’s take the example of a travel organizer (cf
Figure 2). This travel organizer makes the reservations of a flight and a hotel
according some parameters provided by a user.

The service is a solution named TravelOrgService. It contains an integer used
as a counter to provide unique identifiers to separate different molecules related
to different calls. For each call to the travel organizer service, the rule find-
FlightHotel generates two calls: one call to a flight service and one call to a hotel
service. It also updates the counter, and stores the reference to that call as a
molecule s:m:n where s:m identifies the calling service, and n is the identifier to

Service Orchestration Using the Chemical Metaphor 85

let f i ndF l i gh tHo t e l =
replace Cal l : s :m: p , n

by ExtCall : F l i g h tS e r v i c e : n : param ,
ExtCall : Hote lSe rv i c e : n : param ,
s :m: n , (n+1)

in
let r e s u l tF l i g h tHo t e l =

replace Cal l : F l i g h tS e r v i c e : n : f ,
Ca l l : Hot e lSe rv i c e : n : h ,
s :m: n

by ExtCall : s :m: (f : h)
in
Trave lOrgServ ice : 〈 0 , f i ndF l i gh tHote l , r e s u l tF l i g h tHo t e l 〉

Fig. 2. A travel organizer service in HOCL

this call to the travel organizer service. The rule resultFlightHotel reacts when
the results are available. The results appear as two calls: one from a flight service,
and one from a hotel service. They both concern the same initial call identified
by the counter n.Then the rule generates a call back to the calling service s with
its identifier m, and the flight and hotel results f:h.

Execution example. We describe here a possible execution of the travel or-
ganizer example (cf Figure 3). The system is represented by a solution that
contains the rules withdrawServiceCall and depositServiceCall that perform the
calls, the sub-solutions representing the services (the travel organizer service,
the flight services and the hotel services), and two calls to the travel organizer
by two different users.

〈 withdrawServiceCal l , d epo s i t S e rv i c eCa l l ,
Trave lOrgServ ice : 〈 f i ndF l i gh tHo t e l 〉 ,
F l i g h tS e r v i c e : 〈Name : AirFrance , . . . 〉 ,
F l i g h tS e r v i c e : 〈Name : Br it i shAirways , . . . 〉 ,
Ho t e lSe rv i c e : 〈Name : Accor , . . . 〉 ,
. . . ,
Ca l l : UIServ ice1 : Trave lOrgServ ice : (Dates1 : Places1 : Pre f1) ,
Ca l l : UIServ ice2 : Trave lOrgServ ice : (Dates2 : Places2 : Pre f2)

〉

Fig. 3. Running the travel organizer service in HOCL

Two users have queried a search for their travel and the system has added
the respective calls of the form Call:UIServiceX:TravelOrgService:... into the
main solution, where UIServiceX is the identifier of the user interface service

86 J.-P. Banâtre, T. Priol, and Y. Radenac

that has emitted the call to the travel organizer service TravelOrgService, where
DatesX, PlacesX are the dates and places constraints for the required travels,
and PrefX some additional preferences. Initially, the rule depositServiceCall can
forward the two calls to the travel organizer service. Then the travel organizer
will generate the calls to the flight services and the hotel services using the
rule findFlightHotel. Then the rule withdrawServiceCall will extract the calls
to the main solution, and the rule depositServiceCall will forward these calls
to a corresponding service. After, some reactions these services will generate
their result inside their solution as an ExtCall molecule addressed to the travel
organizer. The rules withdrawServiceCall and depositServiceCall will then bring
these messages to the travel organizer. When both result from the flight service
and the hotel service are available inside the TravelOrgService for the same initial
call, the rule resultFlightHotel will generate an external call to the service that
invoked the travel organizer service. Finally, the rule withdrawServiceCall will
extract that result from the travel organizer service solution and put it in the
main solution, so that it is available to the external world (outside the main
solution).

At any time, at execution time in particular, some new services may be added
inside the main solution, and some services may be removed from the main solu-
tion. This is not a problem, since a coupling between a call and a corresponding
service is dynamic and non deterministic. The service type of the called service
must be satisfied: for example, several services provide a flight service, and a call
to a service flight may react with any of them.

4 Related Work

Coordination and composition of services have attracted a lot of attention of
both the industry and the academia. Several approaches have been proposed
following either the orchestration or the choreography paradigms. These two
paradigms differ from their execution scenario which is mainly centralized for
the first one and distributed for the later.

Starting from industry-led initiatives, the standard approach to compose Web
Services is the Business Process Execution Language, WS-BPEL [15]. WS-BPEL
is a language that provides several powerful control flow structures such as
condition, loops, switches and activities, such as Web Service invocation, can
be executed either sequentially or concurrently. In addition, WS-BPEL pro-
vides variables to store temporary data and fault compensation. WS-BPEL
is very verbose largely due to XML root and it shares some similarities with
programming languages. Its level of abstraction is rather very low forcing pro-
grammers to “think parallel” and to anticipate all possible failures during the
workflow execution. Finally, since WS-BPEL is about orchestration, workflow
execution is centralized thanks to a WS-BPEL engine. Regarding choreogra-
phy, the main standard today is the Web Service Choreography Description
Language, WS-CDL [16]. Choreography models the interactions and dependen-
cies between a set of services by describing their exchanges of messages. As for

Service Orchestration Using the Chemical Metaphor 87

WS-BPEL, WS-CDL provides control structures such as sequence, parallel and
choice. Loops are allowed thanks to the WorkUnit activity that provides a way
to repeat the execution of an activity depending on a guard condition. As for
WS-BPEL, WS-CDL is based on XML and thus is verbose with a low level of
abstraction.

On the research side, there is a vast amount of work dealing with Web Service
composition. One of the main drawback of WS-BPEL is its lack of formal seman-
tics. In [17,18], a formal semantics of some of the WS-BPEL features, such as
the specification of events, fault and compensation handler behaviors or trans-
actions, are introduced. As chemical programming takes its root from rewriting
systems, we can mention the work presented in [19] that describes a dynamic
service customization and composition framework for Web services based on a
rule-based service integration language with concepts borrowed from rewriting
systems. Composition of services using an Event-Condition-Action rule based
approach, that is even closer to chemical programming, is described in [20]. Self-
coordination of Web Services using a Linda-like tuple space, similar to a multiset
in our approach, is introduced in [21].

5 Conclusion and Future Work

Originally, the Gamma formalism was invented as a basic paradigm for parallel
programming [13]. It was proposed to capture the intuition of a computation
as the global evolution of a collection of atomic values evolving freely. Gamma
appears as a very high level language which allows programmers to describe
programs in a very abstract way, with minimal constraints and no articial se-
quentiality. Later, it became clear that a necessary extension to this simple
formalism was to allow elements of a multiset to be Gamma programs them-
selves, thus introducing higher-order. This lead to the HOCL language used in
this paper.

Basically, the chemical paradigm (as introduced in HOCL) offers four basic
properties: mutual exclusion, atomic capture, parallelization and serialization.
These properties have been exploited in [14] in order to give a chemical expression
of well known coordination schemes.

Along the same lines, this paper investigates the utilization of the Chemi-
cal Programming Model, in order to describe Service Coordination. We develop
this idea with a simple, yet practical, example dealing with travel organiza-
tion. The example developed throughout section 3 shows that our approach
provides a very abstract and generic way of programming service orchestration.
This is made possible due to the higher order property of HOCL. Programs
(services) can be handled naturally by appropriate synchronization rules. Here,
we have limited our investigations to service orchestration, it is clear that we
could have tackled more elaborated synchronization schemes dealing with service
choreography.

88 J.-P. Banâtre, T. Priol, and Y. Radenac

References

1. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2(1), 39–59 (1984)

2. OMG: The Common Object Request Broker: Architecture and Specification V3.0.
Technical Report OMG Document formal/02-06-33 (June 2002)

3. Open Management Group (OMG): CORBA components, version 3. Document
formal/02-06-65 (June 2002)

4. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing In-
frastructure, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2003)

5. Google app engine, http://code.google.com/appengine
6. Amazon services, http://aws.amazon.com
7. Banâtre, J.P., Fradet, P., Radenac, Y.: Generalised multisets for chemical program-

ming. Mathematical Structures in Computer Science 16(4), 557–580 (2006)

8. Banâtre, J.P., Fradet, P., Radenac, Y.: Chemical specification of autonomic sys-
tems. In: Proc. of the 13th Int. Conf. on Intelligent and Adaptive Systems and
Software Engineering (IASSE 2004) (2004)

9. Németh, Z., Pérez, C., Priol, T.: Workflow enactment based on a chemical
metaphor. In: The 3rd IEEE International Conference on Software Engineering
and Formal Methods (September 2005)

10. Németh, Z., Pérez, C., Priol, T.: Distributed workflow coordination: Molecules
and reactions. In: The 9th International Workshop on Nature Inspired Distributed
Computing, p. 241. IEEE, Los Alamitos (2006)

11. Banâtre, J.P., Le Scouarnec, N., Priol, T., Radenac, Y.: Towards “chemical” desk-
top grids. In: Proceedings of the 3rd IEEE International Conference on e-Science
and Grid Computing (e-Science 2007). IEEE Computer Society Press, Los Alami-
tos (2007)

12. Banâtre, J.P., Fradet, P., Radenac, Y.: Principles of chemical programming. In:
Abdennadher, S., Ringeissen, C. (eds.) Proceedings of the 5th International Work-
shop on Rule-Based Programming (RULE 2004). ENTCS, vol. 124, pp. 133–147.
Elsevier, Amsterdam (2005)

13. Banâtre, J.P., Le Métayer, D.: Programming by multiset transformation. Commu-
nications of the ACM (CACM) 36(1), 98–111 (1993)

14. Banâtre, J.P., Fradet, P., Radenac, Y.: Classical coordination mechanisms in the
chemical model. In: From semantics to computer science: essays in honor of Gilles
Kahn. Cambridge University Press, Cambridge (2008)

15. Barreto, C., Bullard, V., Erl, T., Evdemon, J., Jordan, D., Kand, K., Knig,
D., Moser, S., Stout, R., Ten-Hove, R., Trickovic, I., van der Rijn, D., Yiu,
A.: Web services business process execution language version 2.0 (May 2007),
http://www.oasis-open.org/committees/wsbpel

16. Ross-Talbot, S., Fletcher, T.: Web services choreography description language:
Primer (June 2006)

17. Mazzara, M., Govoni, S.: A case study of web services orchestration. In: Jacquet,
J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 1–16.
Springer, Heidelberg (2005)

18. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming (January 2007)

19. Chen, J.: Rewrite rules as service integrators. In: Antoniou, G., Boley, H. (eds.)
RuleML 2004. LNCS, vol. 3323, pp. 182–187. Springer, Heidelberg (2004)

http://code.google.com/appengine
http://aws.amazon.com
http://www.oasis-open.org/committees/wsbpel

Service Orchestration Using the Chemical Metaphor 89

20. Chen, L., Li, M., Cao, J.: A rule-based workfow approach for service composition.
In: Pan, Y., Chen, D.-x., Guo, M., Cao, J., Dongarra, J. (eds.) ISPA 2005. LNCS,
vol. 3758, pp. 1036–1046. Springer, Heidelberg (2005)

21. Maamar, Z., Benslimane, D., Ghedira, C., Mahmoud, Q.H., Yahyaoui, H.: Tuple
spaces for self-coordination of web services. In: SAC 2005: Proceedings of the 2005
ACM symposium on Applied computing, pp. 1656–1660. ACM, New York (2005)

Guiding Organic Management in a
Service-Oriented Real-Time Middleware

Architecture

Manuel Nickschas and Uwe Brinkschulte

Institute for Computer Science
University of Frankfurt, Germany

{nickschas,brinks}@es.cs.uni-frankfurt.de

Abstract. To cope with the ever increasing complexity of today’s com-
puting systems, the concepts of organic and autonomic computing have
been devised. Organic or autonomic systems are characterized by so-
called self-X properties such as self-configuration and self-optimization.
This approach is particularly interesting in the domain of distributed,
embedded, real-time systems. We have already proposed a service-ori-
ented middleware architecture for such systems that uses multi-agent
principles for implementing the organic management. However, organic
management needs some guidance in order to take dependencies be-
tween services into account as well as the current hardware configura-
tion and other application-specific knowledge. It is important to allow
the application developer or system designer to specify such information
without having to modify the middleware. In this paper, we propose
a generic mechanism based on capabilities that allows describing such
dependencies and domain knowledge, which can be combined with an
agent-based approach to organic management in order to realize self-X
properties. We also describe how to make use of this approach for in-
tegrating the middleware’s organic management with node-local organic
management.

1 Introduction

Distributed, embedded systems are rapidly advancing in all areas of our lives,
forming increasingly complex networks that are increasingly hard to handle
for both system developers and maintainers. In order to cope with this ex-
plosion of complexity, also commonly referred to as the Software Crisis [1],
the concepts of Autonomic [2,3] and Organic [4,5,6] Computing have been
devised. While Autonomic Computing is inspired by the autonomic nervous
system (which controls key functions without conscious awareness), Organic
Computing is inspired by information processing in biological systems. However,
both notions boil down to the same idea of having systems with self-X proper-
ties, most importantly self-configuration, self-optimization and self-healing. More
specifically,

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 90–101, 2008.
c© IFIP International Federation for Information Processing 2008

Guiding Organic Management 91

– self-configuration means the system’s ability to detect and adapt to its en-
vironment. An example for this property would be the plug-and-play found
in modern computers, which is used to automatically detect and configure
certain attached devices;

– self-optimization allows the system to autonomously make best use of the
available resources, and deliver an optimal performance;

– self-healing describes the detection of and automatic recovery from run-time
failures, for example by using heartbeat signals and restarting services that
are not responding in time.

To present to the applications a homogeneous view on a distributed system
of heterogeneous components, there usually is a layer called middleware on top
of the components’ individual operating systems, making the distributed nature
of the system mostly transparent to the application developer. Within an organic
computing system, we expect the middleware layer to autonomously achieve
a high degree of transparency. This includes self-configuration even within a
dynamic environment (such as found in ad-hoc networks), self-optimization at
run-time, and self-healing in case of failures, thus providing a robust, efficient
and uniform platform for the applications without human maintenance or
intervention.

Another increasingly important requirement for today’s distributed embedded
systems is real-time capability. A real-time system must produce results and react
to events in a timely, predictable manner, guaranteeing temporal restraints that
are imposed by the applications.

In [7], we have proposed a service-oriented organic real-time middleware ar-
chitecture that achieves self-X properties through a multi-agent-based approach.
Services act as intelligent agents that use an auction mechanism to coordinate.
These agents may move around within the system, finding optimal nodes to run
on, and tasks are allocated to agents that are most appropriate. This approach
handles self-organization and self-optimization. However, a mechanism needs to
be devised that describes and defines dependencies between services, between
resources and between tasks in order to provide guidance for task and resource
allocation. This mechanism must also be able to describe properties of the hard-
ware (such as attached sensors or actors or available resources). Since that kind
of information is often domain specific, it is essential that the application or
system designer be able to specify these properties without modifying the mid-
dleware, therefore a generic mechanism is needed. In this paper, we propose an
approach for such a mechanism.

In Sect. 2 we mention related work. Section 3 gives an overview about our
own architecture and motivates the need for guiding organic management in
more detail. In Sect. 4 we describe our mechanism and analyze its properties.
Sect. 5 shows how to combine that approach with our agent-based middleware
architecture in order to achieve a sensible organic management, and Sect. 6 how
to integrate it with the node-local organic management. Finally, in Sect. 7 we
provide an example that demonstrates our ideas.

92 M. Nickschas and U. Brinkschulte

2 Related Work

In autonomic and organic computing, much research has been done in recent
years (e.g. [8] for an overview). There are different approaches for implementing
organic middlewares. The DoDOrg project [9] develops a digital organism con-
sisting of a large number of rather simple, reconfigurable processor cells, which
coordinate through an artificial hormone system. The OCμ middleware [10] fea-
tures an observer-controller architecture with centralized organic managers. It
targets smart office buildings with powerful, connected networks rather than em-
bedded real-time systems. The service-oriented real-time middleware OSA+ [11]
has a low footprint and is very scalable, thus it is particularly suitable for embed-
ded distributed real-time systems. However, it does not feature self-X properties.
The general architecture for an organic, service-oriented middleware inspired by
the OSA+ approach has been developed in [12]. For this architecture, we de-
scribed an agent-based approach for implementing self-X properties in [7], which
uses concepts from multi-agent systems for coordination and task allocation. A
short summary of our approach is given in Sect. 3. We are currently imple-
menting and evaluating the proposed mechanism within the CAR-SoC project
[13,14].

Other agent-based approaches for organic middlewares, such as [15,16,17], do
not feature real-time capabilities. To our knowledge, a flexible, generic mecha-
nism for describing service and resource dependencies in a service-oriented mid-
dleware has not yet been developed. Services in OSA+ are fixed on the resources
they manage, and tasks are dispatched globally. Other approaches use central
planning or do not consider dependencies at all.

3 Overview and Motivation

For an organic middleware, a service-oriented architecture proves to be a good
choice. For implementing self-configuration, self-optimization and self-healing, a
modular concept is vital. In such an architecture, tasks are processed by services,
which in most cases are not part of the middleware core, but run as independent,
loosely coupled entities, leading to a microkernel design. We have proposed and
explained in detail such a design in [7]; here, we will only give a short overview.
We have chosen a microkernel-based approach primarily for scalability, flexibil-
ity, reliability, recovery and extensibility. In our proposed system, services are
intelligent agents as defined in [18]. Task allocation is done using an auction
mechanism based on ContractNet [19,20]. This mechanism uses cost/benefit cal-
culations in order to determine the most suitable service agent for processing
a given task. This approach is distributed (i.e. does not require central control,
thus avoiding a single point of failure) and real-time capable.

In addition to influencing the task allocation mechanism by computing sensi-
ble cost/benefit functions, service agents can perform self-optimization by nego-
tiating with other agents (potentially swapping or delegating already allocated
tasks if this proves to be more optimal) or by migrating to another node of the

Guiding Organic Management 93

distributed system that is more suitable. Sandholm [21] has shown that an op-
timal task allocation can achieved in a ContractNet that allows re-allocation of
tasks in certain ways. By periodically re-evaluating the current task allocation
and agent distribution, and appropriate reactions, the system will also adapt
to a changing environment. In addition, the middleware core can start or shut
down service agents on particular system nodes as needed in order to improve
scalability and optimize work load.

All this should happen autonomously, without human intervention or config-
uration. However, dependencies between tasks or between agents, the need for
particular resources and hardware limitations on particular nodes restrict the
configuration space for an agent. For example, if a task needs a certain resource
locally, an agent can only offer to process it if it sits on a node that has that re-
source available. Or, a particular agent can only run on a node that has a certain
hardware sensor attached. Or an agent might require another service running on
the same node in order to perform certain functions or run at all. In order to
define such restraints and dependencies, a mechanism is needed that guides the
system’s self-configuration in a way that does not require manual intervention
after initial setup. In particular, the following properties are desirable:

– Many dependencies and restraints are application-specific. Thus we need a
generic mechanism that is separated from the middleware implementation
such that the application developer (or even the user) can define them as
needed.

– The same is true for describing the hardware configuration. A node’s op-
erating system must be able to communicate its hardware setup (such as
attached sensors and actors) to the middleware in a way that is flexible and
extensible. It must not be necessary to recompile or reconfigure the middle-
ware if e.g. a new type of hardware device is available; an application service
that supports this device should be able to recognize its existence and to
make use of it without explicit support by the middleware.

– The mechanism needs to be real-time capable.
– The mechanism should be transparent to the application. In particular, it

should not matter for the application where (on which node and by which
service agent) a task is executed, as long as it is executed at all. Of course,
the application needs to be able to specify the requirements for processing a
task.

In the following sections we propose and describe a mechanism that has these
properties.

4 A Capability-Based Mechanism for Guiding Organic
Management

The proposed mechanism is based on so-called capabilities. Roughly speaking,
a capability c is a globally unique, possibly application-specific identifier repre-
senting a particular feature, ability or resource. More formally, we have a set C

94 M. Nickschas and U. Brinkschulte

containing all known capabilities, hence c ∈ C. Most of the time we will consider
sets of capabilities, taken from the power set P(C). Furthermore, on a given
node, we have a set R of hardware resources (such as sensors or actors) and a
set A of service agents. The subset A0 ⊂ A shall denote agents currently not
running on the node, whereas A1 ⊂ A is the set of currently executing agents.

A hardware resource r ∈ R provides a set Sprov
r ∈ P(C) of supported capa-

bilities. A service agent a ∈ A, on the other hand, usually requires a certain
set of capabilities Sreq

a ∈ P(C) to run. Moreover, a running service agent might
provide additional capabilities Sprov

a ∈ P(C) to the node it is executed on.
This allows the specification of dependencies between services, such that a

service will only be started on a node if another service is already running on
that node, or formally, an agent b ∈ A0 can be started on the node if and only if

Sreq
b ⊂

(
⋃

a∈A1

Sprov
a ∪

⋃

r∈R

Sprov
r

)

.

The management of capabilities of a node’s resources and agents then boils
down to performing set operations, and since we are targetting the real-time
domain, we need to consider if those can be implemented efficiently. In particular,
the middleware core needs to join sets and it needs to test if one set is a subset
of another. For removing capabilities from sets, subtraction is needed.

A very time-efficient implementation represents capability sets by bitstrings,
with each bit representing a given capability that is either present or not. In this
case, the afforementioned set operations boil down to bit-wise logical operations
that can be done efficiently in constant time. Let S and T ∈ P(C) be capability
sets, and s and t the corresponding bitstrings. Then the following are equivalent:

Set operation Logical operation
S ∪ T s OR t
S − T s AND NOT t

T ⊂ S ? (s AND t) = t ?

If the core maintains a capability set containing all offered capabilities (by
joining Sprov for all resources as well as started services), it can check if a given
service agent can be started in constant time. Removing a service, however, can
only be done in constant time if we can assume that a capability cannot be
provided by more than one resource or agent; only then can we use set substrac-
tion to remove the provided capabilities from the global set. Otherwise, the core
needs to check all remaining providers for that capability, so this operation needs
linear time (in the number of resources and running agents).

One drawback of this mechanism is the fact that the global number of ca-
pabilities must be known beforehand (at compile time) in order to guarantee
constant time operations; otherwise, one needs to provide for dynamically grow-
ing capability sets. Another drawback is that the representation of a capability
set is not the most space efficient. If we have n capabilities in the system, we

Guiding Organic Management 95

need a bitstring of length n to represent a capability set regardless of the num-
ber of elements contained. A single capability, however, can be represented as
an integer number and mapped to its corresponding bit using a list of bitmasks
for set operations.

If the real-time constraints and hardware resources allow for a more complex
implementation, one can also use a more dynamic approach, for example using a
hierachical tree structure containing named capabilities, where each node acts as
a namespace for its children. A capability is then described by its path starting
from the root of the tree. The most prominent advantage of such an approach
is that it is dynamically extensible; the number of known capabilities needs
not to be known beforehand, and the use of namespaces allow for arbitrarily
(application-specific) named capabilities without the risk of collisions. However,
this data structure does not allow for constant-time processing of sets.

5 Combining the Capabilities-Based Approach with
Service Agents

As summarized in Sect. 3, we have proposed a middleware architecture that real-
izes self-X properties using service agents that coordinate using an auction mech-
anism. Essentially, for a given task, an announcement is sent out to suitable agents
within the system – where the suitability of an agent can be checked by com-
paring its set of provided capabilities to the task’s set of required capabilities.
Every suitable agent determines the cost processing the task would incur and
sends this information to the core. The agent with the best offer gets awarded
the task.

For this auction mechanism, it is vital that a service agent be able to compute
a sensible cost/benefit function for processing the task. Such a function should
consider the cost of using needed resources, and also capture quality-of-service
parameters (such that the price for processing a task depends on the quality
of the result). Thus, it makes sense to attach cost information directly to the
capabilities. This means, that using a resource is mapped to “using” a capability,
and the provider of that capability (e.g. the node operating system or another
service agent) determines an appropriate cost value. Of course, the same is true
for delegating subtasks to other agents, which also would be mapped to using the
corresponding set of capabilities. Quality-of-service parameters can be attached
to the cost inquiry. Thus, the total cost for processing a given task is composed
of the cost of the needed resources and subtask processing, represented by the
corresponding capabilities.

6 Integrating Capabilities with Node-Local Organic
Management

Within the CAR-SoC project, we are currently implementing our proposed ap-
proach in a middleware we call CARISMA1. CAR-SoC aims to build a
1 Connected AutonomousReal-time Intelligent Service-based Middleware Architecture.

96 M. Nickschas and U. Brinkschulte

Fig. 1. Integration of node-local and global organic management. The shaded parts
are components of the HAL Service agents, while white boxes belong to local organic
management.

distributed embedded real-time system, with organic properties being employed
throughout the whole stack. The individual nodes within the network run an
operating system (called CAROS [22]) that features node-local organic manage-
ment as described in [23]. We will not go into this concept in detail here, but
only summarize the basic principles in a very concise and simplified manner as
far as it concerns the interaction of the middleware layer’s organic manager with
the individual nodes (Fig. 1).

CAROS employs a two-staged organic management approach. On the lower
level, small management units, so-called Module Managers, each manage a small
set of system parameters, usually tied to a specific hardware or software mod-
ule. Module managers receive raw monitoring data and can directly change the
system parameters they manage. If a decision cannot be made on this lowest
level, pre-interpreted monitoring data in a generic format is forwarded to the
upper level, the node-local organic manager, which can make decisions based on
node-wide status information.

As it turns out, this approach integrates very well with the capability-based
approach for global organic management we propose here. A special middleware
service agent (called HAL Agent, for Hardware Abstraction Layer) manages the
interaction between the middleware core and the underlying node operating sys-
tem. Its main task is to translate the specific hardware features into capabilities,
and to attach a sensible cost/benefit function to using a given capability in or-
der to influence the global organic management by way of the afforementioned
auctioning mechanism. To accomplish that, the HAL agent registers itself as
a module manager for the system parameters that can be monitored and/or
influenced by the middleware layer.

On the middleware level, using a capability will generally require the usage of
node resources. The module manager for a given resource attaches a cost scale to
using that resource. In addition, system parameters might need to be adjusted.
For example, using a capability might require a certain amount of processing

Guiding Organic Management 97

power, which in turn might require to increase the node’s processor frequency.
On the node level, any actor that changes system parameters also has a cost scale
attached. Changing a parameter, or a combination of parameters, will improve
or worsen the node’s state; for example, increasing the processor frequency in
order to offer required computing power also increases energy consumption and
system temperature and therefore the overall cost value of the action. In order to
influence the global organic management, the node’s cost scales are integrated
by the HAL Agent and attached to the capabilities to be used by the global
auctioning mechanism. Summarizing this, the cost/benefit function for using a
given capability is derived from both the cost scales for the needed resources and
for changing the node’s state.

On the other hand, the HAL Agent can also register its own actors on the node
level, thus allowing the node’s organic manager to actively influence global or-
ganic management. For example, one actor might be “move this service from this
node to another”. The attached cost scale would reflect the possible alternative
locations for running the given service (obtained as the result of an auctioning
round). Another possibility might be to change quality-of-service (QoS) param-
eters of a running service in order to improve the node’s state; the cost scale the
HAL agent provides for this actor would reflect the incurring quality degradation
on a global level.

This shows that within the architecture proposed in the CAR-SoC project,
both global and local organic management can interact in various ways. Capa-
bilities as suggested here allow mapping global properties to local resources and
system parameters and vice versa. This diversity in implementation of organic
features will be very interesting to explore; in particular, how to fine-tune the
balance between the global and local organic managers, since both levels can
influence the other’s decisions passively (by modifying cost values) or actively
(by performing actions).

7 Example

For a better understanding, we will in this section discuss a simple example that
demonstrates auction-based task allocation using capabilities in order to provide
self-X properties. For the sake of brevity and simplicity, we will only describe
the global level of organic management and not consider the interaction with
the node-local organic management as described in Sect. 6.

Consider the front lighting control of a car. We assume that this car has a left
and a right headlight, a left and a right turn signal and a left and a right front
fog light. These lights are controlled by two microcontrollers running our agent-
based middleware (Fig. 7). As example scenario for self-X properties, consider
that one of the turn signals breaks and can no longer be used. The system shall
detect this failure and then autonomously decide to let the corresponding fog
light blink in the future, since this behavior (signaling a turn with a fog light)
is still safer than not signaling a turn at all. In addition, if the fog light also
stops working, the system shall decide to use the headlight instead (which is

98 M. Nickschas and U. Brinkschulte

Fig. 2. Example scenario. Two controllers (Node A and B) each control three lights.
Hardware is accessed through the HAL service providing appropriate capabilities. Con-
trol services make these available to higher-level, more complex services such as Sig-
nalLeft and SignalRight.

the worst method, but still better than nothing). This is an example for self-
healing.

The system nodes provide capabilities (possibly through a hardware abstrac-
tion layer service HAL) that describe the hardware configuration. Each node
has the capabilities HEADLIGHT, TURNSIGNAL and FOGLIGHT. In addi-
tion, the physical location of these lights needs to be defined, so the nodes have
the capabilities RIGHT resp. LEFT. Each light is controlled by a service that
allows to toggle its state and that monitors the function of the corresponding
light. Thus, these services need the corresponding capability to run, and they
provide the capabilities ON and OFF for their lamp. In addition, information
about the nature of the light is provided. All lights can ILLUMINATE the road,
and all lights can SIGNAL a turn. However, they are not equally suited for these
tasks, so these capabilities carry a cost value2 with them that describes how ap-
propriate a job is for the given light. Here, application-specific knowledge is used
in order to influence the organic management appropriately. Since a headlight
can illumante the road quite well, the cost is 0; on the other hand, using it as
a turn signal is only desired if it is the only working light left, so we associate
a cost of 100 with that. A fog light can illuminate the road somewhat, but not
very good. We give it a cost of 50. It also can signal a turn if necessary, and is
preferred to the headlight for that task, so the cost for signaling should not be
0, but also less than 100. We give it a 50. The turn signal can hardly illuminate
the road, but we still want to turn it on if the other lights are all broken; so the
cost for illumination is 500. Of course, it signals a turn for free because it is the
preferred device for that task. The services, capabilities and cost are summarized
in Tab. 1.

2 Note that the absolute number does not matter; it is the relation between different
cost values that guides task allocation.

Guiding Organic Management 99

Table 1. System services in the example scenario, provided capabilities and associated
cost. The left table shows the capabilities provided by the hardware configuration of
the two nodes; the right table shows the services for controlling the lighting.

Service Capability Cost
HEADLIGHT 0

Node A FOGLIGHT 0
HAL TURNSIGNAL 0

LEFT 0
HEADLIGHT 0

Node B FOGLIGHT 0
HAL TURNSIGNAL 0

RIGHT 0

Service Capability Cost
ON 0

HeadlightCtrl OFF 0
ILLUMINATE 0

SIGNAL 100
ON 0

FoglightCtrl OFF 0
ILLUMINATE 100

SIGNAL 50
ON 0

TurnSignalCtrl OFF 0
ILLUMINATE 500

SIGNAL 0

7.1 Capabilities in Action

Now, services for signaling a right or left turn shall be started. To run, these
services (named SignalLeft and SignalRight) need the capabilities SIGNAL and
LEFT or RIGHT, respectively. Consider the service SignalLeft. The middleware
core can only start this on Node A, which provides the necessary capabilities. If
all lights are working, SignalLeft will use the SIGNAL capability provided by the
TurnSignalCtrl service, since it is the cheapest. It can then offer the capability
SIGNAL_LEFT with an attached cost of 0 to the application. Now assume that
the blinker lamp breaks. TurnSignalCtrl will notice this and notify the system
that it can no longer provide its capabilities. This information is forwarded
to SignalLeft. It now tries to find another service that provides the SIGNAL
capability; FoglightCtrl can do this for 50. This means that SIGNAL_LEFT is
still being provided to the application, but for a cost of 50 now. Only if the fog
light also breaks will SignalLeft resort to the headlight, since it is even more
expensive to use. Should all lights on the left side be disabled, SignalLeft could
no longer find the SIGNAL capability and would need to shut down. A similar
scenario can be imagined for road illumination, causing the system to resort to
the fog light if the headlight breaks, and still using the turn signal if all else is
gone.

7.2 Summary

This example demonstrates how capabilities can be used to describe the hard-
ware configuration of a system, and how an auction-based task allocation
mechanism can make use of appropriately defined capabilities for realizing self-
configuration and self-healing.

100 M. Nickschas and U. Brinkschulte

8 Conclusion

In this paper, we have presented a method for describing dependencies between
services and resources in a service-oriented organic middleware. In such a mid-
dleware, self-X properties are realized by allocating tasks to the most suitable
service, and executing services on the most suitable node. This information is
often application-specific and cannot be hard-coded within the middleware. We
have shown a generic mechanism based on capabilities that allows guiding the
organic management. It is possible to specify both dependencies between services
and dependencies on resources. By combining the capability mechanism with an
auction-based task allocation mechanism as described in [7], self-optimization,
self-configuration and self-healing can be achieved.

We are currently implementing the proposed mechanism in our middleware
CARISMA, which is part of the CAR-SoC project [13]. This project extends
the focus of organic computing to the hardware by developing an embedded
hard-real-time system supporting autonomic computing principles. CARISMA
closely interacts with the local (per-node) organic management to create a robust
self-configuring, self-optimizing and self-healing distributed system. We have de-
scribed how we plan to integrate both the global and node-local organic man-
agement by mapping capabilities and attached cost functions to local monitors
and actors.

References

1. Gibbs, W.W.: Software’s chronic crisis. Scientific American, 72–81 (September
1994)

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer,
41–50 (January 2003)

3. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM Research, Armonk (October 2001)

4. Müller-Schloer, C., v.d. Malsburg, C., Würtz, R.P.: Organic computing. Aktuelles
Schlagwort in Informatik Spektrum, 332–336 (2004)

5. Schmeck, H.: Organic computing – a new vision for distributed embedded systems.
In: Proc. of the Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005), pp. 201–203. IEEE Computer Society,
Los Alamitos (2005)

6. VDE/ITG/GI: Positionspapier Organic Computing: Computer und Systemar-
chitektur im Jahr 2010 (2003)

7. Nickschas, M., Brinkschulte, U.: Using multi-agent principles for implementing
an organic real-time middleware. In: Proc. 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing (ISORC
2007), Santorini, Greece, pp. 189–195. IEEE Computer Society, Los Alamitos
(2007)

8. Deutsche Forschungsgemeinschaft: DFG SPP 1183 Organic Computing
9. Becker, J., Brändle, K., Brinkschulte, U., Henkel, J., Karl, W., Köster, T., Wenz,

M., Wörn, H.: Digital on-demand computing organism for real-time systems. In:
ARCS Workshops, GI. LNI, vol. 81, pp. 230–245 (2006)

Guiding Organic Management 101

10. Trumler, W.: Organic Ubiquitous Middleware. Ph.D thesis, Universität Augsburg
(2006)

11. Picioroagă, F.: Scalable and Efficient Middleware for Real-Time Embedded Sys-
tems. A Uniform Open Service Oriented, Microkernel Based Architecture. Ph.D
thesis, Université Louis Pasteur, Strasbourg (December 2004)

12. Nickschas, M.: Konzeption einer Anwendungsschnittstelle für eine echtzeitfähige
Middleware mit Selbst-X-Eigenschaften. Master’s thesis, Universität Karlsruhe
(TH) (September 2006)

13. Uhrig, S., Maier, S., Ungerer, T.: Toward a Processor Core for Real-time Capable
Autonomic Systems. In: Proceedings of the 5th IEEE International Symposium on
Signal Processing and Information Technology, December 2005, pp. 19–22 (2005)

14. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: Car-SoC – towards an autonomic
SoC node. In: ACACES 2006, L’Aquila, Italy, July 2006, Academia Press, Ghent,
Belgium (2006) (Poster Abstracts)

15. Kasinger, H., Bauer, B.: Combining multi-agent-system methodologies for or-
ganic computing systems. In: Proceedings of the 16th International Workshop on
Database and Expert Systems Applications (DEXA 2005). IEEE Computer Soci-
ety, Los Alamitos (2005)

16. Mamei, M., Zambonelli, F.: Self-organization in multi agent systems: A middleware
approach. In: Engineering Self-Organising Systems, pp. 233–248 (2003)

17. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organization in multi-
agent systems. Knowl. Eng. Rev. 20(2), 165–189 (2005)

18. Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. The MIT Press, Cambridge (1999)

19. Smith, R.G.: The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1980)

20. Sandholm, T.W.: An implementation of the contract net protocol based on
marginal cost calculations. In: Proceedings of the 12th International Workshop
on Distributed Artificial Intelligence, Hidden Valley, Pennsylvania, pp. 295–308
(1993)

21. Sandholm, T.W.: Contract types for satisficing task allocation: I Theoretical re-
sults. In: AAAI Spring Symposium Series: Satisficing Models, Stanford University,
CA, March 1998, pp. 68–75 (1998)

22. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: An Operating System Architecture for
Organic Computing in Embedded Real-Time Systems. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060. Springer,
Heidelberg (2008)

23. Kluge, F., Uhrig, S., Mische, J., Ungerer, T.: A two-layered management archi-
tecture for building adaptive real-time systems. In: Proceedings of the 6th IFIP
Workshop on Software Technologies for Future Embedded & Ubiquitous Systems
(SEUS 2008) (2008)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 102–113, 2008.
© IFIP International Federation for Information Processing 2008

Self-describing and Data Propagation Model
for Data Distribution Service

Chungwoo Lee1, Jaeil Hwang1, Joonwoo Lee1, Chulbum Ahn1, Bowon Suh1,
 Dong-Hoon Shin1, Yunmook Nah1, and Doo-Hyun Kim2

1 Department of Computer Science and Engineering, Dankook University,
126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701, Korea

{cman,jihwang,jwlee,ahn555,bwsuh,dhshin,ymnah}@dblab.
dankook.ac kr

2 Department of Internet and Multimedia Engineering, Konkuk University,
1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea

doohyun@konkuk.ac.kr

Abstract. To realize real-time information sharing in generic platforms, it is es-
pecially important to support dynamic message structure changes. For the case
of IDL, it is necessary to rewrite applications to change data sample structures.
In this paper, we propose a dynamic reconfiguration scheme of data sample
structures for DDS. Instead of using IDL, which is the static data sample struc-
ture model of DDS, we use a self describing model using data sample schema,
as a dynamic data sample structure model to support dynamic reconfiguration
of data sample structures. We also propose a data propagation model to provide
data persistency in distributed environments. We guarantee persistency by
transferring data samples through relay nodes to the receiving nodes, which
have not participated in the data distribution network at the data sample distri-
bution time. The proposed schemes can be utilized to support data sample struc-
ture changes during operation time and to provide data persistency in various
environments, such as real-time enterprise environments and connection-less
internet environments.

Keywords: data distribution service, dynamic message reconfiguration, persis-
tency, real-time information sharing.

1 Introduction

Recently, real-time distributed data processing requirements are ever increasing in
many real-world applications, such as weapon systems, sensor-based embedded sys-
tems [1,2], airplane software, flight simulator [3,4], and normal business
systems [5]. In the past, such real-time processing techniques were primary concern in
the military applications, which have to develop embedded systems for weapon sys-
tems. Nowadays, it becomes essential to share and utilize various information and
knowledge in real-time, even in the normal business environments. For example, the
OLTP data need to be transferred in real-time to enterprise data warehouse for more

 Self-describing and Data Propagation Model for Data Distribution Service 103

correct decision making. To realize such real-time information sharing in more ge-
neric platforms, it is especially important to support dynamic message structure
changes. To realize such real-time distributed environments, real-time distributed
middleware technologies are required. RT-CORBA, which was evolved from
CORBA, TMO, which was developed at UCI, and DDS (Data Distribution Service),
which is announced as a standard specification by OMG, are representative middle-
ware technologies for such environments. RT-CORBA is a standard proposed by
RT-SIG of OMG to allow QoS specification, real-time service and performance opti-
mization, which have not been well supported in CORBA [6,7]. TMO is a natural and
syntactically minor but semantically powerful extension of the conventional
objects [8,9]. DDS is a publish-subscribe model for real-time environments and was
adopted as a middleware standard to develop data distribution services by
OMG [10,11,12]. These middleware technologies have some problems to be used in
the real-time business environments, because they often require dynamic changes of
message structures, as compared to the embedded environments, which seldom re-
quire data structure changes. Such changes are required because of database schema
changes or XML document structure changes. For the case of IDL (Interface Defini-
tion Language), it is necessary to rewrite applications to change data sample
structures.

In this paper, we propose a dynamic reconfiguration scheme of data sample struc-
tures for DDS and explain the APIs to support such dynamic restructuring of data
sample structures in distributed real-time applications. We also describe how to sup-
port persistency, which is one of important QoS (Quality of Service) elements of
DDS. Instead of using IDL, which is the static data sample structure model of DDS,
we use a self describing model using data sample schema, as a dynamic data sample
structure model to support dynamic reconfiguration of data sample structures. In our
case, we can dynamically support data sample structure changes, because data sample
schema can be determined in run-time. We explain how to create and change data
sample structures and how to send and receive data samples using data sample
schema. We also propose a data propagation model to provide data persistency in
distributed environments. We guarantee persistency by transferring data samples
through relay nodes to the receiving nodes, which have not participated in the data
distribution network at the data sample distribution time. Finally, to show the useful-
ness and efficiency of our schemes, some experimental results are shortly provided.
The proposed schemes can be utilized to support data sample structure changes during
operation time and to provide data persistency in various environments. The remain-
der of this paper is organized as follows. Section 2 describes overview of data distri-
bution service. A dynamic reconfiguration scheme of data sample structures for DDS
are proposed in Section 3. Section 4 explains how to support persistency and section 5
provides some experimental results. Finally, section 6 concludes the paper.

2 Overview of Data Distribution Service

DDS is networking middleware that simplifies complex network programming. It
implements a publish/subscribe model for sending and receiving data, events, and

104 C. Lee et al.

commands among the nodes. Nodes that are producing information (publishers) create
topics (e.g., temperature, location, pressure) and publish samples (data values of
topics). DDS takes care of delivering the sample to all subscribers that declare an
interest in that topic. DDS handles all the transfer chores: message addressing, data
marshaling and de-marshalling (so subscribers can be on different platforms than the
publisher), delivery, flow control, retries, etc. Any node can be a publisher,
subscriber, or both simultaneously. The DDS publish-subscribe model virtually
eliminates complex network programming for distributed applications.

The DDS specification describes two levels of interfaces. A lower DCPS (Data-
Centric Publish-Subscribe) level is targeted towards the efficient delivery of the
proper information to the proper recipients. According to the conceptual model of
DCPS [13], ‘Publisher,’ ‘Subscriber,’ ‘DataReader,’ ‘DataWriter,’ and ‘Topic’ are
‘DomainEntity.’ Also, ‘DomainEntity’ and ‘DomainParticipant’ are ‘Entity.’ ‘Entity’
has a relationship with ‘QosPolicy.’ Each ‘Publisher’ can have multiple ‘DataWriters’
and each ‘Subscriber’ can have multiple ‘DataReaders.’ An optional higher DLRL
(Data Local Reconstruction Layer) level allows for a simple integration of DDS into
the application layer.

In the network-centric model usually used in previous middleware technologies,
the position of receiving node must be specified, like ‘Node 1 sends data to Node 2.’
Therefore, special treatments were required for sending nodes when positions of re-
ceiving nodes are changed or new receiving nodes are inserted. As compared to this,
the DCPS of DDS does not specify the position of receiving nodes. Sending nodes
just specify topic of data and receiving nodes receive data when they are interested in
the topic of current data. For example, node 1 sends data to the DDS network specify-
ing that the topic of that data is ‘A.’ At node 2, if the topic of the data that the node
wants to receive is ‘A,’ it waits for that topic from the DDS network and receives the
data having that topic. As such, the DDS network is extendable and flexible, because
position changes of receiving nodes and insertions of new receiving nodes do not
affect the network.

Fig. 1. Instance examples

Figure 1 shows example instances of two topics ‘Temperature’ and ‘Rainfall.’ The
field values, such as ‘Seoul’ and ‘Busan,’ which identify instances, are called keys. A
group of data having the same key is called an instance. Each instance shows the

 Self-describing and Data Propagation Model for Data Distribution Service 105

history of data samples having the same key. Each individual data within an instance
is called a data sample, which is the unit of data transmission in DDS networks. The
DDS provide QoS elements, such as USER_DATA, TOPIC_DATA,
GROUP_DATA, DURABILITY, PRESENTATION, DEADLINE, OWNERSHIP,
LIVELINESS, PARTITION, RELIABILITY, HISTORY, etc.

3 Self-describing Model to Support Dynamic Reconfiguration

In this section, we describe a self-describing model and data sample schema to
support dynamic reconfiguration of data samples.

3.1 Self-describing Model

The IDL is used to define data structures of data samples in the DDS standard specifi-
cation. Therefore, data structures of data samples are fixed and application programs
have to be rebuilt to change data structures during system operation. To allow dy-
namic definition of sample structures, there must exist ways to define data structures
and transmit such structures dynamically.

Fig. 2. Schema model

Figure 2 shows the proposed schema model. In our self-describing model of DDS,
data schema is first broadcasted as a built-in topic and then data samples, with data
structure identifiers attached, are transmitted.

3.2 Data Sample Schema

An entity to define a data structure of data samples is called a data sample schema,
which is an enumerated list of data types of corresponding data fields in a data sam-
ple. This structure must exist in the DomainParticipant before the corresponding data
samples are created or interpreted. The structure of internal topic DCPSSchema to
transmit schema information is shown in Table 1.

The ‘key’ is used to manage schema changes. The ‘participant_key’ is the DCPS
key which make registration of the given data sample schema. Therefore, only data
samples created by this participant can reference this schema. In the ‘topic_name,’ the
topic of data sample referencing this schema is specified. The sequence number given
to this schema is recored in the ‘schema_seq.’

Figure 3 shows an example using data sample schema. The schema S with key
value 1 and sequence number 1, created by the participant 1 to send topic T, is

106 C. Lee et al.

Table 1. The structure of DCPSSchema

Field name Type Meaning
key BuiltinTopicKey_t DCPS key to identify registration
participant_key BuiltinTopicKey_t DCPS key of the participant which make regis-

tration of data sample schema
topic_name string topic name associated with data sample schema
schema_seq integer sequence number of data sample schema
field_count integer number of fields of data sample schema
field_types TypeArray_t array of field data types

broadcasted to the DCPSSchema. The schema S consists of 3 fields, with data types
{INTEGER, STRING, FLOAT}. For data transmission, the Publisher writes a sample
D1 with the sample schema S. It first writes the key value 1 and sequence number 1
for the sample schema S in the header of the data sample. Then, the values of each
fields, 1234(the value of 0th field), 3(the length of the first field), “DKU”(the value of
the first field), 0.5678(the value of the second field) are written. The Subscriber re-
ceiving this data sample D1 uses the key value 1 and sequence number 1 to identify
the data sample schema S and interprets the data sample using this schema.

Fig. 3. Example of schema usage

Now, let’s see how data sample structures can be dynamically reconfigured, as
shown in Figure 4. Suppose we have data samples D1 and D2, all following the
schema S. The key value and schema sequence number in the header information of
D1 and D2 is (1,1). Also suppose that the data sample schema S is changed dynami-
cally to S’, having field data types {INTEGER, STRING} and such change is updated
into the DCPSSchema. Data samples, such as D3 and D4, which are created after this
schema change, will have new header information (1,2), which means the key value is

 Self-describing and Data Propagation Model for Data Distribution Service 107

Fig. 4. Example of schema change

Fig. 5. Schema handling sequence

the same but the sequence number is incremented(changed). The Subscriber can now
interpret new data samples by new schema S’, because the sequence number in the
header of data samples is now 2.

108 C. Lee et al.

The workflow to support the dynamic reconfiguration of data sample structures is
shown in Figure 5. The Publisher defines the schema(data structure) to send data(①).
Then, this schema is registered to the DDS network(②). The Publisher then creates a
data sample regarding this schema(③) and transmits it to the DDS network(④). The
Subscriber receives this data sample(⑤) and then looks for the schema referenced by
this data sample and interprets this data sample using the corresponding schema(⑥).

We have implemented the following APIs to support dynamic configuration of
data sample structures.

• APIs for schema definition: create_schema_handle(), delete_schema_handle(),
register_schema_handle(), unregister_schema_handle(), insert_schema_fields(),
append_schema_fields(), remove_schema_fields(), replace_schema_fields(),
get_schema_fields_type(), get_schema_fields_count

• APIs for instance definition: set_schema_key_fields(), get_schema_key_fields(),
create_key_handle(), delete_key_handle(), extract_key_handle(), set_key_field(),
get_key_field(), register_instance(), unregister_instance(), lookup_instance()

• APIs for data writing: create_sample_handle(), delete_sample_handle(), write(),
read(), set_sample_field(), get_sample_field()

4 Data Propagation Model to Support Data Persistency

The enterprise data should not be lost during transmission in distributed environ-
ments. The DURABILITY and RELIABILITY are DDS QoS elements related with
data loss. The DURABILITY is related with the persistency of data transmitted by
publishers and the RELIABILITY is related with the reliability of communication
lines. If the DURABILITY is VOLATILE, data sent by publishers are not saved at all
and those subscribers which joined at the network later than the data publishing time
can not read the data. If the DURABILITY is TRANSIENT_LOCAL or TRAN-
SIENT, the published data is saved in the publishers’ memory for later request and
those subscribers which joined at the network later than the data write time can read
the data. But, it is impossible to read the data after the corresponding publishers are
disconnected from the network. If the DURABILITY is PERSISTENT, all subscrib-
ers can read their data at any time, even after the publishers are disconnected from the
network.

4.1 Data Propagation Model

To support persistency in DDS network, we propose a data propagation model, as
shown in Figure 6. The Subscriber C, which could not receive data from the Publisher
A because it did not exist at the broadcasting time, can receive that data from the
intermediary node, such as the Node B, even after the original Publisher, such as
Node A, is disconnected from the network.

To realize this propagation model, we need intermediary nodes, also called relay
nodes, that can propagate data instead of the publishing node. In our method, every
participant whose DURABILITY is PERSISTENT can take role of intermediary
nodes. Each intermediary node is required to have a persistent repository for data

 Self-describing and Data Propagation Model for Data Distribution Service 109

Fig. 6. Data propagation model

propagation. Each intermediary node stores its received data in its persistent reposi-
tory and forwards received data if required. The structure of persistent repository for
an intermediary node is shown in Table 2.

Table 2. The structure of persistent repository

Field name Type Meaning
participant_key BuiltinTopicKey_t DCPS key of the publisher which sent data sample
instance_key KeyValue_t instance key of data sample
sample_count integer number of stored data samples
samples Integer array of {sample_seq, sample}

When a data sample is received by an intermediary node, it is stored in the entry of
persistent repository with the matching ‘participant_key’ and ‘instance_key.’ The
corresponding ‘sample_count’ is incremented, while the sample itself is stored in the
‘samples’ array. Because the resources for persistent repositories are limited, we can
not allow every data sample to be stored. We have to manage only recent history by
limiting the number of history according to the system configuration. We can decide
the detail limitation by using the QoS element DURABILITY_SERVICE, as shown
in Table 3.

Table 3. The QoS element DURABILITY_SERVICE

attribute Meaning
service_cleanup_delay interval to delete all samples in persistent repository
history_kind store every sample(KEEP_ALL) or recent sam-

ple(KEEP_LAST)
history_depth number of recent samples to be kept, when history_kind is

KEEP_LAST
max_samples maximum number of samples to be stored in the repository
max_instances maximum number of instances to be stored in the reposi-

tory
max_samples_per_instance maximum number of samples to be stored per instance

110 C. Lee et al.

Fig. 7. Example using persistent repositories

Figure 7 is an example showing the use of persistent repositories. Suppose the
DURABILITY of all nodes A, B and C are specified as PERSISTENT. Also, assume
the ‘history_kind’ is KEEP_LAST and the ‘history_depth’ is 2 for all nodes, meaning
that all three nodes keep last 2 data samples.

Figure 7 shows the status of persistent repositories after the Node A send data
samples {100, ‘a’}, {200, ‘b’}, the Node B send data samples {300, ‘c’}, {300, ‘d’},
and the Node C send data samples {400, ‘e’}, {400, ‘f’}, {400, ‘g’}. Here, the values,
such as 100 and 200, are key values.

4.2 Data Propagation Protocol

The protocol to receive data which can not be received at the broadcasting time is
shown in Figure 8.

Fig. 8. Data propagation protocol

 Self-describing and Data Propagation Model for Data Distribution Service 111

Fig. 9. Case of new subscriber with lower sample number

The newly joined subscriber checks the last sample number from its own persistent
repository(①). The new subscriber then sends ‘join’ message to the DDS net-
work(②). Each intermediary node gets its last data sample number(③) and responds
this last number to the subscriber(④). The new subscriber compares sample numbers
and send transmission request, if the sample number of itself is less than one of the
sample numbers of intermediary nodes(⑤). The intermediary node which receives
transmission request sends the required data to the new subscriber(⑥).

Figure 9 shows an example case where newly joined subscriber has a last sample
number(2) less than one of the last sample number(12) of the intermediary nodes. The
relay node send two samples {100, ‘a’} and {200, ‘b’} whose sample numbers are
greater than 2.

5 Experiments

For our experiments, we used the API of the open source project ORTE (Ocera Real-
Time Ethernet) 0.3.1[14] which implements the RTPS (Real-Time Publish-Subscribe)
protocol [15], the low level communication protocol of DDS. In a distributed envi-
ronments consisting of 1 publisher and 3 subscribers, we compared turnaround delays
of DDS/IDL with DDS/Schema(the proposed method). We also compared such delay
for the case implemented by Sun Java System Message Queue 3.7[16], which is a
kind of message queue middleware for ESB(Enterprise Service Bus) service.

Fig. 10. Turnaround delay time in distributed environments

112 C. Lee et al.

Fig. 11. The initial sample propagation time of subscribers

Figure10 shows the turnaround delay in distributed environments. The turnaround
delay for DDS/IDL was 2,012μs, DDS/Schema was 1,956μs and ESB/JMS was
2,448μs. This result shows us that the performance of DDS/IDL and DDS/Schema is
almost the same, but the proposed method has better ability allowing dynamic recon-
figuration of data sample structures without re-programming overhead.

We also compared the data propagation time in the test system consisting of 4 par-
ticipants. Figure 11 shows the initial data sample propagation time of subscribers. The
propagation time for DDS/DPM(the proposed method) was 8 seconds, while
ESB/MQ was 72.1 seconds, which shows us that our persistency mechanism is faster
than ESB/MQ.

6 Conclusion

In this paper, we proposed a dynamic reconfiguration scheme of data sample struc-
tures for DDS. We also described how to support persistency, which is one of impor-
tant QoS elements of DDS. Instead of using IDL, which is the static data sample
structure model of DDS, we used a self describing model using data sample schema.
We also proposed a data propagation model to provide data persistency in distributed
environments. We guaranteed persistency by transferring data samples through relay
nodes to the receiving nodes, which could not participated in the DDS network at the
broadcasting time. Finally, some experimental results to show the usefulness and
efficiency of our schemes were shortly provided. The proposed schemes can be util-
ized to support data sample structure changes during operating time and to provide
data persistency in various environments, such as real-time enterprise environments
and connection-less internet environments.

Our effort for experimental implementation of the proposed techniques is at an
early stage. The detail algorithms to handle node failures and to optimize message
passing overheads need to be carefully designed to realize our approach. We believe
that both analytical and experimental studies of the communication overhead and
performance aspects on massive number of nodes are highly meaningful subjects for
future research.

 Self-describing and Data Propagation Model for Data Distribution Service 113

Acknowledgments. This research was supported by the Ministry of Knowledge
Economy, Korea, under the Information Technology Research Center support pro-
gram supervised by the Institute of Information Technology Advancement (grant
number IITA-2008-C1090-0801-0031). This work was also supported by the Korea
Science and Engineering Foundation (KOSEF) grant number R01-2007-000-20958-0
funded by the Korea government (MOST).

References

1. Pardo-Castellote, G., Schneider, S.: The Network Data Delivery Service: Real-Time Data
Connectivity for Distributed Control Applications. In: Proc. IEEE International Confer-
ence on Robotics and Automation, pp. 2870–2876. IEEE Press, Los Alamitos (1994)

2. Schneider, S.A., Ullman, M.A., Chen, V.W.: ControlShell: A Real-Time Software Frame-
work. In: Proc. IEEE International Conference on Systems Engineering, pp. 129–134.
IEEE Press, Los Alamitos (1991)

3. Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems. Prentice
Hall, Englewood Cliffs (1999)

4. Dahmann, J.S., Morse, K.L.: High Level Architecture for Simulation: An Update. In: Proc.
2nd International Workshop on Distributed Interactive Simulation and Real Time Applica-
tions, pp. 32–40 (1998)

5. Khosla, V., Pal, M.: Real Time Enterprises: A Continuous Migration Approach. Informa-
tion, Knowledge, Systems Management 3(1), 53–79 (2002)

6. Schmidt, D.C., Kuhns, F.: An Overview of the Real-Time CORBA Specification. Com-
puter 33(6), 56–63 (2000)

7. Cooper, G., DiPippo, L., Esibov, L., Ginis, R., Johnston, R., Kortman, P., Krupp, P.,
Mauer, J., Squadrito, M., Thuraisingham, B., Wohlever, S., Wolfe, V.: Real-Time CORBA
Development at MITRE, NRaD, Tri-Pacific and URI. In: Proc. IEEE Workshop on Mid-
dleware for Distributed Real-Time Systems and Services, pp. 69–74. IEEE Press, Los
Alamitos (1997)

8. Kim, K.H.: A TMO Based Approach to Structuring Real-Time Agents. In: Proc. 14th
IEEE International Conference on Tools with Artificial Intelligence, pp. 165–172. IEEE
Press, Los Alamitos (2002)

9. Kim, K.H.: APIs for Real-Time Distributed Object Programming. IEEE Computer, 72–80
(2000)

10. Zieba, B., Sinderen, M.: Preservation of Correctness During System Reconfiguration in
Data Distribution Service for Real-Time Systems(DDS). In: Proc. 26th IEEE International
Conference on Distributed Computing Systems Workshops, pp. 30–35. IEEE Press, Los
Alamitos (2006)

11. Pardo-Castellote, G.: OMG Data-Distribution Service: Architectural Overview. In: Proc.
23rd International Conference on Distributed Computing Systems Workshops, pp. 200–
206 (2003)

12. Hugues, J., Pautet, L.: A Framework for DRE middleware, an Application to DDS. In:
Proc. 9th IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, pp. 224–231. IEEE Press, Los Alamitos (2006)

13. Data Distribution Service for Real-time Systems, V1.2. OMG (2007)
14. Smolik, P., Sebek, Z., Hanzalek, Z.: ORTE-Open Source Implementation of Real-Time

Publish-Subscribe protocol. In: Proc. 2nd International Workshop on Real-Time LANs in
the Internet Age, pp. 68–72. Universidade de Porto, Porto (2003)

15. Real-Time Publish-Subscribe (RTPS) Wire Protocol Specification, V.1.0. ICE (2004)
16. Schmidt, M.T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus:

Making Service-Oriented Architecture Real. IBM Systems Journal 44(4), 781–797 (2005)

Improving Real-Time Performance of a Virtual Machine
Monitor Based System

Megumi Ito� and Shuichi Oikawa

Department of Computer Science, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Abstract. This paper describes our approach to enable Gandalf VMM (Virtual
Machine Monitor) to be interruptible. Although Gandalf is shown to be a light-
weight VMM, the detailed performance analysis using PMC (Performance Mon-
itoring Counters) showed Gandalf executes with interrupts disabled for a rather
long duration of time. By making Gandalf interruptible, we are able to make
VMM based systems more suitable for embedded and ubiquitous systems. We
analyzed the requirements to make Gandalf interruptible, designed and imple-
mented the mechanisms to realize it. The experimental results shows that making
Gandalf interruptible significantly reduces a duration of execution time with in-
terrupts disabled while it does not impact the performance.

1 Introduction

As embedded and ubiquitous systems are rapidly moving towards having multi-core
CPUs in order to balance performance and power consumption, there is more need for
virtualized execution environments to be used in those systems. Such virtualized ex-
ecution environments are realized upon virtual machine monitors (VMMs) [4]. VMM
based systems enable the provision of secure and reliable, yet efficient execution
environments.

A major barrier of employing VMMs on embedded and ubiquitous systems is their
limited resources. In order to overcome such a barrier, we have been developing a light-
weight VMM, called Gandalf, that targets those resource constrained systems [7,8].
It currently operates on IA-32 CPUs, and two independent Linux operating systems
(OSes) concurrently run on it as its guest OSes. The code size and memory footprint
of Gandalf is much smaller than that of full virtualization. The number of the modified
parts and lines is significantly fewer than paravirtualization, so that the cost to bring up
a guest OS on Gandalf is extremely cheap. Guest Linux on Gandalf performs better than
XenLinux. Therefore, Gandalf is an efficient and lightweight VMM that suits resource
constrained embedded and ubiquitous systems.

The detailed performance analysis, which was performed by using CPU’s perfor-
mance monitoring counters (PMC), also revealed Gandalf executes with interrupts dis-
abled for a rather long duration of time [8]. This is because Gandalf handles events that

� She is currently with IBM Research, Tokyo Research Laboratory. Work conducted when she
was with University of Tsukuba.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 114–125, 2008.
c© IFIP International Federation for Information Processing 2008

Improving Real-Time Performance of a Virtual Machine Monitor Based System 115

are reported as faults, and such handling of faults is usually done with interrupts dis-
abled. There paper describes our effort to improve Gandalf’s real-time performance. We
analyzed the requirements to make Gandalf interruptible, designed and implemented the
mechanisms to realize it. The experimental results show that making Gandalf interrupt-
ible significantly reduces a duration of execution time with interrupts disabled while it
does not impact the performance.

The rest of this paper is organized as follows. Section 2 describes the overview of
Gandalf VMM. In Section 3 we describe how we made Gandalf interruptible.
Section 4 shows the performance of interruptible Gandalf and Section 5 describes the
related work. Finally, Section 6 concludes the paper.

2 Overview of Gandalf

This section describes the overall architecture of Gandalf, a multi-core CPU oriented
lightweight VMM. It targets the IA-32 architecture [6] as a CPU and Linux as a guest
OS. Fig. 1 shows the structure of a Gandalf VMM based system. Gandalf is a

Virtual Machine

Guest OS Guest OS

Gandalf VMM

Virtual Machine

Host CPU Host CPU

Host Machine

Fig. 1. Structure of Gandalf based system

Type-I VMM, which executes directly upon a host physical machine and creates multi-
ple virtual machines for guest OSes. The virtual machines are isolated from each other,
so that a guest OS can execute independently on each virtual machine. Gandalf keeps
the management of physical hardware resources as simple as possible in order to im-
plement a lightweight VMM for embedded systems. Therefore, Gandalf tries to man-
age resource spatially rather than temporarily whenever possible. For example, Gandalf
maps one physical CPU to one virtual CPU while many other VMMs multiplex multi-
ple virtual CPUs on one physical CPU to be shared among multiple virtual machines.
Gandalf’s spatial resource management scheme enables a simpler and smaller imple-
mentation and then leads to a lightweight VMM, while the multiplexing model tends
to impose higher overheads for the management of virtual CPUs and virtual machines.
In this paper, we use the term VMM interchangeably to mean Gandalf if not otherwise
specified.

116 M. Ito and S. Oikawa

Ring 3

Ring 2

Ring 1

Ring 0

original Linux

Linux
User Process

Linux Kernel

Linux Kernel

Linux
User Process

VMM

Linux + VMM

Fig. 2. Privilege level usage

The IA-32 architecture provides 4 privilege levels (rings) from 0 to 3. A numerically
less privilege level is more privileged; thus, Ring 0 is the most privileged. Some impor-
tant instructions, which operate on the machine state, are called privileged instructions,
and can be executed only in Ring 0. As the left part of Fig. 2 shows, Linux normally
executes its kernel in Ring 0 and its user processes in Ring 3. Thus, the kernel can
manage CPUs using privileged instructions and can protect itself from user processes.
A VMM needs to be executed in a more privileged (numerically less) level than Linux
kernels because the VMM has to manage CPUs and Linux kernels. Therefore, as the
right part of Fig. 2 shows, we execute the VMM in Ring 0 and the Linux kernels in
Ring 1, which is one level less privileged than the VMM. Because we moved the Linux
kernels from Ring 0 to 1, their uses of privileged instructions cause general protection
faults. The VMM handles those faults to emulate privileged instructions appropriately.
The privileged instruction emulator of Gandalf handles faulted instructions. The emu-
lator first reads the instruction words at a faulted address and decodes them to find out
which instruction caused the fault. Decoding instructions is complicated especially for
IA-32 because of variable length instruction words. A lightweight emulator requires a
simpler instruction decoder. Thus, the emulator handles only the privileged instructions
that the Linux kernels execute.

Native Linux kernels normally use all the physical memories in the system.
However, when executing multiple Linux kernels on a VMM at the same time, they
need to divide up the physical memory. We allocate the upper area of the physical
address space for the VMM, divide the remaining area, and allocate a divided part for
each Linux. The left most part of Fig. 3 shows the physical memory map. Shadow pag-
ing is used to enforce Linux kernels to use only the allocated physical
memories [8]. Shadow paging lets Linux kernels manage their own page tables (guest
page tables) and separates them from the shadow page table that is referenced by a
physical CPU. The VMM manages the shadow page table in order to keep its consis-
tency with guest page tables and also to observe improper uses of physical memories.
Concerning a virtual address space, there needs to be an area where a VMM resides.
Linux kernels, however, normally use all the virtual address space, which overlaps the
virtual memory area for the VMM. To avoid Linux kernels accessing the VMM, we
exclude the virtual memory area for the VMM from the available virtual memory for

Improving Real-Time Performance of a Virtual Machine Monitor Based System 117

OS 1

VMM

0x100000

0x7500000

Physical Memory

VMM

OS 1
0x100000

0xFC500000

Virtual Memory
for Guest OS 1

OS 2

VMM

OS 2

Virtual Memory
for Guest OS 2

VMM

Guest OS 2

Guest OS 1

Fig. 3. Memory map

Linux kernels by modifying the source code.1 We also use the segment mechanism to
limit the accessible virtual memory space. For simplicity, we allocate the upper area of
the virtual address space for the VMM.

3 Interruptible Gandalf

We have shown that Gandalf is a lightweight VMM from intensive performance evalu-
ations using CPU’s performance monitoring counters (PMC) [8]. The evaluations using
PMC also revealed Gandalf executes with interrupts disabled for a rather long dura-
tion of time. This is because Gandalf handles events that are reported as faults, such as
general protection faults and page faults. A guest Linux’s execution of a privileged in-
struction causes a general protection fault, and Gandalf handles the fault to emulate the
instruction. When a page fault occurs, Gandalf handles the fault to maintain the shadow
page table. It is natural for those faults to be handled with interrupts disabled because
the causes of those faults are themselves indivisible.

Embedded systems require quick and timely responses to interrupts. An interrupt can
be an event that processes have been waiting for; thus, in that case, it unblocks those
processes. For example, a timer interrupt unblocks a process that has been sleeping for
a certain time. Gandalf enables the quick and timely handling of an interrupt by a guest
OS when it is not running. An interrupt invokes the guest Linux’s corresponding inter-
rupt handler directly without Gandalf’s intervention. This is possible because Gandalf’s
spatial resource management scheme maps one physical CPU to one virtual CPU and it
is guaranteed that all interrupts go to the same guest Linux.

If a lower priority process caused a fault and invoked a VMM before the timer inter-
rupt occurred, however, the delivery and handling of the interrupt is delayed because the
VMM executes with interrupts disabled. Such a delay of handling an interrupt causes
the priority inversion problem. Therefore, it is important for a VMM to be interruptible,
so that it can handle an interrupt that occurs even while the VMM are handling a fault.

1 Only one line of a modification is needed for this change.

118 M. Ito and S. Oikawa

Linux

Gandalf

User

Kernel

PF handler

IRETInterrupt handler#PF

Interrupt

#GP
IRET

GP handler GP handler PF handler

Fig. 4. Example of an execution path to invoke Linux’s interrupt handler in order to respond to
an interrupt that occurred when Gandalf is running

We successfully made Gandalf interruptible and reduced a duration where Gandalf
executes with interrupts disabled. The rest of this section describes in detail the design
and implementation of interruptible Gandalf.

3.1 Rationale

We first investigate the mechanisms to make Gandalf interruptible. Supposing Gandalf
is interruptible, Fig. 4 depicts an example execution path that Gandalf responds to an in-
terrupt, which occurred when Gandalf is handling a page fault of a user process. When
Linux’s user process causes a page fault, Gandalf’s page fault handler is invoked. An
interrupt occurs while the page fault handler is still running. Since the corresponding
interrupt handler is in the Linux kernel and a CPU does not allow a handler in a lower
privilege ring to be invoked, an attempt to invoke the handler in Ring 1, which is for
the Linux kernel, causes a general protection fault. Gandalf’s general protection fault
handler finds that the interrupt caused the fault; thus, it manually invokes the Linux’s
corresponding interrupt handler. When Linux finishes the interrupt handling, it exe-
cutes the IRET instruction to return from the handler. Such an execution of IRET again
causes a general protection fault because IRET cannot be used to return to the higher
privilege ring. Gandalf’s general protection fault handler takes this chance to resume
the execution of the page fault handler.

This example suggests that, in order to handle interrupts occurred during Gandalf’s
execution, Gandalf needs to support the nest of traps because the appropriate handling
of general protection faults is required during the original trap handling. Specifically,
interruptible Gandalf needs to be able to invoke Linux’s interrupt handler during Gan-
dalf’s execution and to have the handler return to Gandalf to resume its execution. In
this scheme, during the execution of Linux’s kernel or user process, an interrupt still
can directly invoke Linux’s interrupt handler without Gandalf’s intervention. Since the
execution is in the Linux for the most of time, it is advantageous to keep the lightweight
interrupt handling implemented in Gandalf.

3.2 Invoking Linux’s Interrupt Handler

If an interrupt occurs during the execution of Gandalf with interrupts enabled, the in-
vocation of Linux’s interrupt handler causes a general protection fault because of the
IA-32’s protection architecture as described above. Gandalf’s general protection fault

Improving Real-Time Performance of a Virtual Machine Monitor Based System 119

Linux Kernel Stack
Kernel ESP in

previous trap stack
frames or

ESP1 in TSS

Kernel ESP

EFLAGS
CS
EIP

Error Code

EFLAGS
CS
EIP

ESP
SS

VMM Stack

Kernel ESP

__GUEST_CS
Linux Interrupt

Handler’s Address

(2) copy

(3) copy

saved
registers

__GUEST_DS

current
trap stack

frames

previous
trap stack

frames

EFLAGS
CS
EIP

Error Code

saved
registers

old_context
(1) save

Kernel EFLAGS

__HYPERVISOR_DS
VMM ESP

Fig. 5. Manipulation of Gandalf and the Linux kernel stacks for the preparation to invoke Linux’s
interrupt handler from Gandalf

handler is invoked by two reasons, Linux’s execution of privileged instructions and in-
terrupts; thus, it has to be able to differentiate between them and to identify the exact
cause of the fault. The handler can distinguish interrupts from the execution of priv-
ileged instructions by looking at the error code of a fault. A general protection fault
pushed an error code onto the VMM stack, and its value is different for each reason.
If it finds the fault was caused by an interrupt, it reads the ISR (In-Service Register) in
APIC (Advanced Programmable Interrupt Controller) to obtain the interrupt number;
therefore, all information needed to invoke Linux’s interrupt handler can be obtained.

Once Gandalf’s general protection fault handler obtains the necessary information to
invoke Linux’s interrupt handler, Gandalf sets up the stacks of Gandalf and the Linux
kernel to prepare for the invocation. Both of the stacks need to be manipulated because
they carry different information. The preparation takes the following three steps. First,
Gandalf saves the current context by copying the current stack frame on the Gandalf
stack to the old context save area, which was allocated in advance at the boot time
(Fig. 5 (1) save). It also need to save some additional bytes above the current frame be-
cause they are corrupted by the third step, which will be described below. Only one save
area is needed because the following interrupts are handled directly in Linux and can
avoid general protection faults. Second, Gandalf pushes the interrupted context infor-
mation onto the Linux kernel stack and creates the structure as if the interrupt directly
invoked the Linux’s interrupt handler (Fig. 5 (2) copy). The pushed data is used to re-
turn to Gandalf after Linux’s interrupt handler finished handling the interrupt. The next
section describes the returning to Gandalf in detail. Finally, Gandalf sets up the stack

120 M. Ito and S. Oikawa

EFLAGS
CS
EIP

Error Code

VMM Stack

saved
registerscurrent

trap stack
frames

previous
trap stack

frames

EFLAGS
CS
EIP

Error Code

saved
registers

old_context
restore

Fig. 6. Stack usage when return to Gandalf

frame on the Gandalf stack so that it can upcall Linux’s handler using the IRET in-
struction (Fig. 5 (3) copy). IRET restores the data, such as the instruction pointer (EIP),
the stack pointer (ESP), and the text and data segment selectors (CS, DS), which were
pushed onto the Gandalf stack by the third step, and then the execution starts from the
address specified by EIP at the privilege specified by CS. Since the current implemen-
tation pushes the DS and ESP values onto the previous trap stack frame and corrupts 8
bytes, they are also saved in the first step described above.

3.3 Returning to Gandalf

After Linux’s interrupt handler finished handling an interrupt, Linux executes the IRET
instruction to resume the interrupted execution. When Gandalf invokes Linux’s inter-
rupt handler as described above, the execution of IRET with the stack frame created
by Gandalf causes a general protection fault. The CS in the stack frame to be used by
IRET points to Gandalf’s text segment, of which privilege is higher than Linux’s seg-
ment. Since IRET does not allow the execution to return to the higher privilege, Gandalf
receives a general protection fault handler and finds that Linux’s interrupt handler fin-
ished its execution.

When Gandalf’s general protection fault handler finds that the cause of a fault is
Linux’s execution of IRET and also that there is valid information saved in the old
context save area, it determines that is needs to resume the interrupted execution. The
information to be restored was saved at the first step to invoke Linux’s interrupt handler
(Fig. 5 (1) save). Gandalf restores the interrupted context by copying data from the
old context save area back to the Gandalf stack (Fig. 6) and makes the stack the same
as the point when interrupt just occurred. Gandalf then executes IRET to return to the
interrupted point and resume the execution.

3.4 Implementation

We implemented the mechanisms to make Gandalf interruptible described in the previ-
ous sections, and enabled interrupts at the following sections in Gandalf:

Improving Real-Time Performance of a Virtual Machine Monitor Based System 121

– handle set pte() hypercall,
– flush shadow pgd() hypercall,
– a part of the page fault handler where the shadow page table is updated,
– INVLPG emulator in the general protection handler.

These sections manipulate shadow page tables and the number of executing instructions
are large; thus, making these sections interruptible are considered to be effective in order
to decrease the total number of interrupt masked cycles in Gandalf.

4 Performance

We experimented with a single guest OS to evaluate the costs to make Gandalf interrupt-
ible and its improvement in the total number of interrupt masked cycles in Gandalf. We
used the Dell Precision 490 equipped with the Intel Xeon 5130 2.0 GHz processor. We
used Linux 2.6.18 with few changes required for the guest OS to run on Gandalf VMM.
We employed PMC (Performance Monitoring Counter) to measure the total number of
interrupt masked cycles. The experiment to measure the interrupt latency was also per-
formed. We performed the same experiments with the native Linux 2.6.18 and paravir-
tualized XenLinux2 on Xen 3.1 [1], and compared their results with those of Gandalf.

4.1 Evaluation with LMbench Microbenchmark

First, we show the results from the LMbench benchmark programs [11] in Fig. 7. The
LMbench consists of a number of benchmark programs that measure the basic opera-
tion costs of an OS. We chose three programs, pipe latency, process fork-and-exit and
process fork-and-exec, to make the baseline of the performance. From the results, we
can compare the performance of interruptible Gandalf with the non-interruptible ver-
sion of Gandalf, the original Linux, and Xen.

The results show that Linux on Gandalf performs slightly slower than the original
Linux for those benchmark programs, but much faster than Xen. Although Xen applies
paravirtualization to XenLinux for better performance, Gandalf outperforms Xen by its
simple and lightweight design and implementation.

The differences between the interruptible and non-interruptible versions of Gandalf are
negligible. Interruptible Gandalf slows down only 5% at most for process fork-and-exit,
but it performs almost the same (less than 1%) for the rest of the benchmark programs.

4.2 Interrupt Masked Cycles

We further analyze the differences between the interruptible and non-interruptible ver-
sions of Gandalf by using PMC (Performance Monitoring Counter) provided by the
target CPU. PMC counts the number of occurrences of the selected events. PMC can
also be configured to count an event that occurred only when the execution is in Ring 0.

2 This version of XenLinux is also based on Linux 2.6.18. Therefore, we used the same version
2.6.18 of the original Linux, XenLinux, and Linux on Gandalf for fair comparisons.

122 M. Ito and S. Oikawa

Fig. 7. Basic performance evaluation performed by using the LMbench benchmark programs

By this feature, we can see what portion of the number of events occurred in a VMM,
which executes in Ring 0. There are many kinds of events PMC can count, such as L1
and L2 cache misses, TLB misses, and so on. We used PMC to investigate why Gandalf
outperforms Xen and found that the memory footprint is the major source of overheads
in Xen [8].

This paper focuses on the CYCLES INT MASKED event, by which PMC counts
the cycles when interrupts are disabled (masked). We used the three programs that are
not from the LMbench benchmark but function the same as them. Fig. 8 shows the
results of the measurements that were performed on the both versions of Gandalf and
the original Linux. For the both versions of Gandalf, the measurements were performed
to count events occurred in all protection rings and only in Ring 0. The events in Ring
0 means that they occurred during the execution of Gandalf only.

The results show that the interrupt masked cycles are significantly reduced on inter-
ruptible Gandalf for the process fork-and-exit and process fork-and-exec programs. The
results from the pipe latency program are almost the same. As described in Section 3.4,
Gandalf currently enables interrupts only during certain sections, which are considered
large enough, so that the costs of upcalling Linux’s interrupt handler pays. Those sec-
tions are mostly related to the manipulation of shadow page tables. The process fork-
and-exit and process fork-and-exec programs exercises those sections that are made
interruptible. Therefore, we see the significant difference. On the other hand, the exe-
cution of the pipe latency program does not involve the manipulation of shadow page
tables; thus, we do not see any improvement.

4.3 Interrupt Latency

Finally, we show the measurement results of the interrupt latency on the both versions
of Gandalf, the original Linux, and Xen, in Fig. 1. We measured the latency from the
time the interrupt handler in the Linux kernel starts to handle the interrupt until the

Improving Real-Time Performance of a Virtual Machine Monitor Based System 123

Fig. 8. Comparison of CYCLES INT MASKED counts

Table 1. Results of interrupt latency

Native Linux Gandalf Interruptible Gandalf Xen

TSC counts 21868 22908 22977 23902
latency (μsec) 10.96 11.48 11.52 11.98

time the process waiting for the interrupt resumes its work, using the RTC (Real-Time
Clock) device.

Comparing with the native Linux, interruptible Gandalf is 5.1% slower while the
non-interruptible version of Gandalf is 4.8% slower. The differences between the in-
terruptible and non-interruptible versions of Gandalf are very small and negligible. Al-
though Gandalf is slower than the native Linux, it can respond to the interrupt faster
than Xen.

The evaluation results described in Section 4 have shown that the effort of making
Gandalf interruptible significantly reduced the sections where interrupts are disabled
while it does not impact the performance. We, however, need to investigate where we
can further reduce the sections where interrupts are still disabled.

5 Related Work

There have been lots of efforts to make OS kernels preemptive in order to improve the
real-timeliness of systems. Preemptive kernels can dispatch a higher priority process,
which was made runnable by an event, such as an interrupt or a message, while another
process is executing in the kernel. Non-preemptive kernels allow another process to
be dispatched only at the certain point where the current process finished its execution
in the kernel and is returning to the user level. There are mainly two approaches to

124 M. Ito and S. Oikawa

make kernels preemptive. One is to place multiple preemption points where the current
process can be safely preempted. The DEC ULTRIX [2], Sun OS 5.0 [9], and Linux
2.6’s CONFIG PREEMPT option took this approach. The other approach is to handle
interrupts in the context of kernel threads and to make such interrupt handling threads
schedulable. Sun Solaris [10] took this approach, and there is an effort to incorporate
such changes in Linux [13]. This approach, however, requires the significant changes to
the kernel software architecture and thus quite a number of modifications in the kernel
source code. L4 [5] is a microkernel that convert interrupts into IPC messages, and then
threads handle the messages at the user level. L4 microkernel itself is, however, not
preemptive. REAL/IX [3] comes between the two approaches.

Our work is somewhat similar to the above efforts to make OS kernels preemptive,
supposing an OS kernel is a VMM and a user process is a guest OS. Our work is, how-
ever, inherently different since the major components of a VMM are the handlers of
exceptions and faults, of which causes are themselves indivisible. We incorporated the
first approach, placing preemption points, to make our VMM interruptible. Although
the approach itself is not new, the architecture of the target software system is com-
pletely different; thus, this work is a step to make VMMs more suitable for embedded
systems.

6 Conclusion

We described our approach to enable Gandalf VMM to be interruptible. Although Gan-
dalf was shown to be a lightweight VMM, the detailed performance analysis using
PMC showed that Gandalf executes with interrupts disabled for a rather long duration
of time. By making Gandalf interruptible, we are able to make VMM based systems
more suitable for embedded and ubiquitous systems. We analyzed the requirements
to make Gandalf interruptible, designed and implemented the mechanisms to realize
it. The experimental results showed that making Gandalf interruptible significantly re-
duced a duration of execution time with interrupts disabled while it did not impact the
performance. We will further investigate where we can reduce the sections where inter-
rupts are currently disabled.

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th ACM Symposium
on Operating System Principles, October 2003, pp. 164–177 (2003)

2. Fisher, T.: Real-Time Scheduling Support in Ultrix-4.2 for Multimedia Communication. In:
Rangan, P.V. (ed.) NOSSDAV 1992. LNCS, vol. 712, pp. 321–327. Springer, Heidelberg
(1993)

3. Furht, B., Parker, J., Grostick, D.: Performance of REAL/IX-Fully Preemptive Real Time
UNIX. ACM SIGOPS Operating Systems Review 23(4), 45–52 (1989)

4. Goldberg, R.P.: Survey of Virtual Machine Research. IEEE Computer (June 1974)
5. Hartig, H., Hohmuth, M., Liedtke, J., Schonberg, S., Wolter, J.: The Performance of μ-

Kernel-Based Systems. In: Proceedings of the 16th ACM Symposium on Operating System
Principles (October 1997)

Improving Real-Time Performance of a Virtual Machine Monitor Based System 125

6. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual
7. Ito, M., Oikawa, S.: Meso virtualization: Lightweight Virtualization Technique for Embed-

ded Systems. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) SEUS 2007.
LNCS, vol. 4761, pp. 496–505. Springer, Heidelberg (2007)

8. Ito, M., Oikawa, S.: Lightweight Shadow Paging for Efficient Memory Isolation in Gan-
dalf VMM. In: Proceedings of the 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC 2008) (May 2008) (to ap-
pear)

9. Khanna, S., Serbree, M., Zolnowsky, J.: Realtime Scheduling in SunOS 5.0. In: Proceedings
of the Winter 1992 Usenix Conference, pp. 375–390 (1992)

10. Kleiman, S., Eykholt, J.: Interrupts as Threads. ACM SIGOPS Operating Systems Re-
view 29(2), 21–26 (1995)

11. McVoy, L., Staelin, C.: LMbench: Portable Tools for Performance Analysis. In: Proceedings
of the USENIX Annual Technical Conference, January 1996, pp. 279–294 (1996)

12. Meyer, R., Seawright, L.: A Virtual Machine Time Sharing System. IBM Systems Jour-
nal 9(3), 199–218 (1970)

13. Real-Time Linux Wiki, http://rt.wiki.kernel.org/
14. Rosenblum, M., Garfinkel, T.: Virtual Machine Monitors: Current Technology and Future

Trends. IEEE Computer, 39–47 (May 2005)

http://rt.wiki.kernel.org/

A Two-Layered Management Architecture for

Building Adaptive Real-Time Systems

Florian Kluge, Sascha Uhrig, Jörg Mische, and Theo Ungerer

Department of Computer Science - University of Augsburg
86159 Augsburg, Germany

{kluge,uhrig,mische,ungerer}@informatik.uni-augsburg.de

Abstract. The concepts of Autonomic and Organic Computing
(AC/OC) promise to make modern computer systems more secure and
easier to manage. In this paper, we extend the observer/controller
architecture typically used in AC/OC systems towards a new target area
– embedded real-time systems. As a result we present a two-layered man-
agement architecture. We discuss aspects of internal communication and
design a communication model. Finally, we present a generic classifica-
tion system for the upper layer of the management architecture.

1 Introduction

Academic and industrial research investigate concepts to master the growing
complexity of today’s computer systems. In 2001, IBM introduced the con-
cept of Autonomic Computing (AC) [1] for the management of growing IT in-
frastructures with focus on the so-called Self-X properties of Self-Configuring,
Self-Healing, Self-Optimising, and Self-Protecting. In 2003, Kephart and Chess
presented an architecture for the design of such self-X systems [2]. A productive
system is embedded into a loop of Monitor, Analyse, Plan, and Execute. The
different stages of this MAPE cycle have access to a common knowledge base.
The MAPE cycle optimises the operations of the underlying productive system
with respect to the self-X properties.

Müller-Schloer introduced the concept of Organic Computing (OC) in 2004 [3]
to convey the ideas of Autonomic Computing into the field of embedded comput-
ing devices. Richter et al. developed a generic observer/controller architecture
for the design of OC systems [4]. Here, similar to the MAPE architecture, the
production system is embedded into the control loop of observation and control
which aims to improve the system’s operation. Both the MAPE cycle as well as
the observer/controller architecture can be equipped with functionalities for the
learning resp. prediction of behaviour.

Both concepts have the following features in common: Based on monitoring of
relevant system parameters, the management unit (called Autonomic or Organic
Manager) models in its observer part (Monitor, Analyse; MA- -) the current
system state. The monitored data is aggregated with previous state informa-
tion and analysed. Future trends may be predicted. The controller part (Plan,

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 126–137, 2008.
c© IFIP International Federation for Information Processing 2008

A Two-Layered Management Architecture 127

Execute; - -PE) plans new actions and triggers their execution on the System un-
der Observation/Control (SuOC), i.e. the productive system. These architecure
models are designed very generic and do not take the particular requirements of
embedded hard real-time systems into account.

Within the German Science Foundation (DFG) priority program Organic
Computing, there are some projects dealing with real-time or embedded sys-
tems. The project DoDOrg [5] investigates a digital organism for real-time ap-
plications. It aims at the use of reconfigurable hardware to implement virtual
organs that can handle specific tasks. In the EPOC project [6], methods of per-
formance analysis and optimisation are developed. The ASoC project aims at
the development of an architecure and design methodology to embed autonomic
and organic computing principles into a System-on-Chip [7]. However, neither of
these projects does address the fundamental concepts of software architectures
for embedded real-time systems in depth. Solomon et al. presented a reference
architecture for autonomic real-time systems [8], but did not incorporate the
resource constraints of embedded systems.

The contribution of this paper is an analysis of applying the concepts of Au-
tonomic and Organic Computing to embedded real-time systems. It is based on
the observation that the extensive analysis and the planning part are not feasible
for real-time applications. Therefore a new two-layered reaction system inspired
by the natural reflex system is proposed. An extensive analysis of communica-
tion concepts leads to a detailed communication model between the two layers.
On base of this communication model and on further requirements from real-
time systems we developed a classification system for the derivation of reactions
responding to harmful states of the managed system.

In section 2 we present the two-layered management architecture. Section 3
gives a detailed discussion of communication between the two layers, and in
section 4 we present DCERT, a concept for Dynamic Classification in Embedded
Real-Time systems. Section 5 concludes this paper.

2 The Two-Layered Management Architecture

In the targeted environment of embedded systems we have to heed several con-
straints originating in hardware restrictions and application requirements. Hard
real-time applications must never miss a deadline. So it is necessary to guarantee
that an AC/OC management does not influence the timing behaviour of such
an application in any unpredictable way. The microcontrollers and the software
usually are built to fit, so that no money is wasted on unused performance. Si-
multaneously, the AC/OC management should support the real-time operation
of such systems and therefore provide fast reactions with a fixed timing overhead
that has a low upper bound in terms of execution cycles.

An embedded system usually comprises a vast range of parameters relevant for
system monitoring. Also, there are many points where decisions of the manage-
ment can be applied to. However, the interpretation of all monitored parameters

128 F. Kluge et al.

M

A P

E
K

M

A P

E
K

Monitor

Analyse Plan

Execute

Knowledge

Global

Management

Module

Management

Power

Supply
Thread... ...

M

A

K
M

A

E
K

Fig. 1. The two-layered management architecture

would be very expensive. Also, in most cases it is possible to find a reasonable
solution when regarding only a small subset of all parameters. There might be
better solutions, when taking a larger set of parameters into account, however
due to planning or learning algorithms this would happen at the cost of a higher
reaction time possibly without any upper timing bound.

The following example will clarify this idea. As initial situation, a observer
service monitors the progress of a real-time application thread. If the application
impends to miss its deadline, several countermeasures are possible. The easiest
solution would be to increase the processing time of the application, if possible.
This solution only needs to monitor two parameters: the knowledge of the appli-
cation’s progress and the possibility to increase the processing time. Also there is
just one parameter affected, the processing time of the thread. A further solution
is to increase the clock frequency, which however affects the power consumption.
Finally, the monitoring information of several embedded control units (ECUs)
can be brought together. Then it can be decided to move the application to a
higher-performance ECU or one with more free processing time. However, the
latter two solutions, especially the last one, need to evaluate much more data.

Therefore, we introduce two levels of decision making (see fig. 1). On the
lower level, small management units (Module Managers) are attached to distinct
hardware or software modules. These module managers only work on a very small
parameter set and hence, they comprise just a small and static rule set. Thus,
they can reach a decision very fast within an upper bounded timing budget.
These module managers correspond to the reflexes in nature.

If a module manager has performed its reaction or cannot find a solution for
a specific state, it conducts a pre-interpretation of the monitored data. This ab-
stracted information is forwarded to the Global Manager. The pre-interpretation
transforms the monitored data into a domain common to all module managers.

A Two-Layered Management Architecture 129

Thus, the global manager and the algorithms it comprises can be designed in a
generic way. Furthermore, the module managers place their actions to the global
manager’s disposal.

The global manager merges the abstract monitoring information of all module
managers. It takes over, if a global view of all modules is required to react to some
failure state. For decision making, several techniques are possible. This could be
some kind of classifier system or generic rules, but also a planner to deduce
complex operation sequences. Using these techniques, the global manager infers
necessary actions from the current monitoring data. These actions are executed
within the module managers that provided them.

The module managers need not implement the complete MAPE cycle. As
figure 1 shows, several parts can be left out. If only the Planning part is miss-
ing (MA-E), the the monitoring information is always forwarded to the global
manager for decision making. Sometimes, it may be also sensible to build pure
monitors, although these must always be accompanied by an analysis component
for the data abstraction (MA- -). An example for such a module would be the
monitoring of a battery. Apparently, there are no actions that can be executed
directly on the battery. It is even possible to define a pure actor module (- - -E).
However, the developer has to be very careful in this case, as most action have
some kind of preconditions in their related module that must be met for their
execution.

The partition of the AC/OC Management into two layers has several ad-
vantages. Another approach would be to develop application-specific AC/OC
Managers, which are based on a broad parameter set. However, this would de-
crease their reusability and increase development costs, because for each new
application with a different parameter set a new set of managers would have
to be developed. The proposed small module managers are bound to a distinct
hard- or software module, instead to a specific application. They can be reused
in several similar applications, thus saving development costs.

Using complex managers based on a broad parameter set inevitable leads to
complex decision processes in the manager. This aggravates the timing analysis
of an application using such managers. Small managers will bring less overhead
into the application, so the timing behaviour will not be influenced that much
and will be easier to analyse.

The solution of complex problems in the global manager is done by a generic
rule system. Specificity for an application results from the combination of mod-
ule managers and from the developer-defined system strategies. The derivation
process itself is not influenced by the nature of its application.

3 Communication between the Two Management Layers

3.1 Information Flows

Within the two-layered management architecture, we have to regard two infor-
mation flows. On the one hand, the module managers provide status messages to
the global management within a single node. These status messages represent

130 F. Kluge et al.

the current parameter values monitored by the module managers. The values are
mapped to a common domain, to keep the communication interface between the
two layers lean. Also, the global manager is able to compare the status messages
regardless of their origin.

On the other hand, the global management notifies the module managers
about its decisions. Thus, the execution of appropriate reactions is triggered.

Synchrony. Synchrony in the communication between the two management
layers concerns the question how far the appearance of status messages triggers
the derivation of reactions. There is no point in triggering a decision for each
single status message that is received by the global management. This would only
lift the work of the module managers up to the global level. Instead, the global
management must accumulate the status messages of several module managers
for some time before devising a reaction. Only this way the reaction would be
based on a real global view. Hence, the process of decision making should run
rather asynchronously to the module-global communication.

3.2 Types of Monitors and Actors

For the design of a communication model it is necessary to take a look at the
ways monitors and actors can be implemented.

Monitors. Runtime information, i.e. status messages, can be generated in the
following ways:

– Instrumentation: The monitored application’s code is instrumented with
small code blocks that generate status messages. Thus, the module manager
is integrated directly into the application code.

– Monitoring Service: The module manager runs as a service independently
of the real applications. If at one point it cannot cope with the parameter
values it is responsible for, it raises an event.

– Explicitly: The module manager generates the status message on explicit
enquiry of the global manager.

Each of these approaches has its own problem domain, where it fits best. Appli-
cation instrumentation could be used to monitor and evaluate the application’s
runtime behaviour at predefined points. To monitor a battery continuously, it
is possible to use a observer service running independently, e.g. at a low prior-
ity or as a timer-driven interrupt service routine. Simple status requests for a
processor’s current clock frequency would be done directly by explicit requests
from the global manager.

As these examples show, in a final system most likely all three of these mon-
itoring concepts will be used. Thus, they must all be taken into account by the
design of the global management and the communication interface.

Actors. System design must also distinguish at what place the derived reactions
are executed. Clearly, the execution is the duty of the module managers’ actors,

A Two-Layered Management Architecture 131

however following the above concepts there are several ways to implement an
actor:

– Within the Application: This approach raises two problems. First, there
needs to be some way of synchronisation between the application and the
global management. Second, the reaction will influence the timing behaviour
of the application and thus must be developed very carefully.

– Separate Service: The influences on the timing behaviour of the applica-
tion as well as the global management are minimal in this case. However,
there is again the problem of synchronisation between the global manage-
ment and the reaction service.

– Part of the Global Management: Here, no synchronisation problems
occur, but the actor may delay the global management in its operation in
an unpredictable way.

Like the generation of status messages, all of these ways have their own domain
where they perform best. So the design decisions for the actor should be based
mostly on the complexity of the actor’s task.

3.3 Communication Model

Based on the preceding discussion of communication parameters, we are now able
to propose a basic model for the communication between the module managers
and the global management.

Collection of Status Messages. Basically two concepts exist that can be
applied to the communication between the two layers, the Observer Pattern and
Polling. Both have their dis-/advantages for use in system monitoring. Through
the observer pattern, communication is minimised. However, it stays unclear,
when the global management should derive a reaction. As mentioned it is not
sensible to trigger a decision for each single status message. On the other hand,
using periodic polling, the decision process would start just after all messages are
collected. But also in this case there are problems. The communication between
the two layers is very high, as each module is questioned regularly. The whole
process of message collection and possible decision making is gone through even
if there is no real necessity due to a sound system state.

On this account, we propose a hybrid solution consisting of two modes.

GM async. Only the global manager’s monitoring service is active. The mod-
ule managers notify the global manager about critical states. These status
messages are accumulated. If a predefined critical limit is reached, the whole
management is switched into mode GM sync.

GM sync. Now the global management starts actively collecting status mes-
sages from all modules. Based on these data, it goes through the decision
process. After the execution of the derived reactions, the system falls back
into mode GM async.

132 F. Kluge et al.

Using this model, the global management is only executed if it is really necessary.
Simultaneously we ensure that it works on a complete global view of the system
without the overhead of periodic polling. The definition of the critical limit for
the activation of the the global management presents a degree of freedom to the
developer. It is not necessary that each module manager can publish messages
to the communication layer in mode GM async.

Reaction. Reactions always should be executed synchronously to the decision
process. Apparently, the global manager should play the active part and notify
the affected actors about its decision. Thus, most of the reactions will be executed
through the global manager. Actors that run as separate services or integrated
into an application have to provide a broker actor that is notified in their place.
This broker will activate the reaction service, or set a flag for the application-
integrated actor.

4 Decision-Making of the Global Management

This section describes a concept for Dynamic Classification in Embedded Real-
Time systems (DCERT). Its basic ideas relate to the fields of Learning Classi-
fier Systems (LCS) [9] and automated planning [10,11]. Both concepts have in
common that their algorithmic implementation is independent of the problem
domain they are applied to, i.e. they present generic concepts.

In LCS, for an input state a reaction is derived using a dynamic rule set.
A learning function, usually coupled with a genetic algorithm, modifies and
improves the rule set over time. The rules are usually based on a combination
of true/false/don’t care-values. This allows an easy choice of rules matching the
input state. Each classification cycle usually brings the system one step further
towards its target state. However, during the advancement of the rule set by
the genetic algorithm it is possible for disadvantageous rules to arise. Although
these might be removed later by the learning function, in our problem domain
they must not occur at all.

The basic target of automated planning is to derive a series of actions that will
bring the system from a given start state into a predefined end state. Bad states
are completely avoided. Although, the planning process itself is very complex and
can consume lots of processing time. This is not applicable in the domain of real-
time systems, which are usually embedded computers with limited performance.

In the design of the DCERT system, we unite the advantages of these two
concepts, but simultaneously avoid their worst disadvantages.

4.1 Monitors - Status Messages

The module managers respectively their monitoring parts have access to the
raw values of their associated parameters. For communication with the global
management, these raw values are mapped into an abstract threefold metric.

A Two-Layered Management Architecture 133

Definition 1 (Status Parameters and Messages). σ denotes a monitored
system parameter. Its raw value is mapped into the characteristics σ+, σ− (ex-
treme states), σ0, and in special cases σ±. The set of all monitored parameter
is denoted as Σ = {σ1, σ2, . . . , σn}.
σ itself represents a monitored systems parameter. Its characteristics σ+, σ−

can represent extreme states like “energy level high/low” or the possibilities
for actions, like “clock frequency can be in-/decreased”. In the latter case, also
the σ± characteristic can be used to denote the possibility for increment and
decrement. The σ0 characteristic represents a balanced state.

The state messages can be furnished with a semantic meaning denoting pre-
ferred and undesired states.

Definition 2 (Status Semantics). Σ+ resp. Σ− denote the sets of preferred
resp. undesired states. If σ+

k ∈ Σ+, then σ−
k ∈ Σ−. A semantic rating is not

required for every σk ∈ Σ.

States contained in the semantic set usually represent states that have impor-
tant influence on the operation of the whole system. States not contained in
the semantic set only have marginal influence on the operation, or none at all.
However, they may be preconditions for some reactions and thus are necessary
to be monitored. An order extends the semantic set:

Definition 3 (State Order). The state order is a total order ≤ on the
semantic sets with the following properties:

– σ−
k ≤ 0 ∀σ−

k ∈ Σ−; 0 ≤ σ+
k ∀σ+

k ∈ Σ+

– σx
i ≤ σz

k ⇔ σ−x
i ≥ σ−z

k , (x �= 0, z �= 0, i �= k)

The latter status semantics and state order are user-defined. They provide a way
for the developer to influence the behaviour of the system and can be altered at
runtime. The choice of Σ and the relation of the σk to specific system parameters
depends on the application. The semantic set of states provides a canonical
trigger for mode change of the Global Manager from GM async to GM sync
(cf. 3.3), because these states have per definitionem heavy influence on the proper
operation of the system. However, the user may define another boundary state
as trigger.

The basic design of the state messages allows an efficient implementation by
means of bit sets. The order of the states can be represented by a state’s position
in a bit string.

For the selection of actors, we need to equip the states from the semantic set
with weights. Therefore, we state the following requirements:

Definition 4 (State Weights). A weight wσ+ for a semantic state σ+ ∈ Σ+

has the following properties:

– wσ− = −wσ+ , and
– σ, τ : σ+ ≤ τ+ ⇔ wσ+ ≤ wτ+

Which values are assigned to these weights again lies in the responsibility of the
developer.

134 F. Kluge et al.

Example 1. Monitored Parameters
States Description

E+/E0/E− energy consumption high/normal/low
B+/B0/B− battery power high/acceptable/low
T +/T 0/T− timing behaviour of an application thread (soft real-

time) frequently free time until deadline/timing behav-
iour ok/frequently deadline misses

F+/F 0/F− clock frequency can be increased / in-/decreased
order 0 ≤ E+ ≤ B+ ≤ T+ (desired states), Σ+ =

{E+, T +, B+}

4.2 Actors

In the reaction path, the main elements are actors:

Definition 5 (Actor). An actor is a 5-tuple A = (a, V, N, E, s) with syntactic
elements a, V, N and semantic elements E, s:

– performed action a,
– precondition V ⊂ Σ, which must be met by the current system state,
– postcondition N ⊂ Σ, which are guaranteed for the subsequent system state,
– optional preconditional states E ⊂ Σ, these can be used to decrease the costs

s of the action a; the actor guarantees to balance/remove these states, if they
are prevailing,

– cost scale value s denoting the complexity and costs k of action a.

The syntactic and semantic elements of an actor constitute the base for decision
making.

Example 2. Actors
incfreq decfreq

a increase of clock frequency f by
x MHz

decrease of clock frequency f by
x MHz

V {F+/0, B+/0} {F−/0}
f can be increased and there is
sufficient energy left

f can be decreased

N {F−} {F+}
f can be decreased f can be increased

E {T−, E+} {T +, E−}
application’s timing behaviour
will be increased, energy con-
sumption will increase

no more surplus processing
time, energy consumption will
decrease

s sinc sdec

cheap cheap

4.3 Decisions

The aim of the decision logic is to select such actors that balance prevalent
undesired states as far as possible.

A Two-Layered Management Architecture 135

Definition 6 (World State and Basic Candidates). The world state S ⊂ Σ
contains the current state messages of all registered monitors. Based on this set
the basic candidate actors Abasic can be chosen as

Abasic = {A | A Actor and VA ⊆ S}

Filtering. A further and finer selection of actors shall avoid that prevailing
states are treated multiple times or even aggravated. At this point also the
complexity of an action will be regarded.

1. An evaluation of the actors’ postcondition NA removes such actors that
would aggravate a prevailing state (NA ∩ S = ∅).

2. The costs of a reaction should be as low as possible. In the first place, this
would exclude complex actors with a high cost scale value cA and a possibly
high benefit from the reaction. However, their optional pre-conditional states
that are met by the current systems state, i.e. EA∩S can be used to decrease
their costs. Thus, also complex reactions can be chosen, if only they promise
to have a good influence on the general system state. The directive for the
decreasing of costs can be chosen freely by the developer. We will propose
an example in sect. 4.4.

3. Finally, DCERT should avoid that prevailing system states are treated
repeatedly in one reaction. Therefore, only actors are chosen whose op-
tional preconditions are pairwise disjoint in respect to the current state,
i.e. (EA ∩ S) ∩ (EB ∩ S) = ∅ for actors A, B. Actors that have a higher
influence on the system state are preferred. This influence is measured as
the weight of EA ∩ S using the weight metric of definition 4.

The decision process is designed in a way that makes it possible to exchange
monitors and actors online.

4.4 Implementation Remarks

The definition of DCERT gives the developer some freedom in the choice of
metrics and weights. In the following section we will describe the baseline of our
approach to implement a DCERT-based autonomic management.

Status messages can occur in four characteristics at most (σ+, σ−, σ0, σ±, see
def. 1). Thus, each monitored parameter can be represented by two bits in a bit
string. The position of a parameter in this bit string simultaneously relates to its
weight. The weights of parameters (def. 4) increase exponentially with increasing
importance and thus also determine the weights order (def. 3). Accordingly, the
cost scale value s of an actor (def. 5) should be chosen proportional to the cost’s
logarithm, i.e. s ∼ log2 c.

In these baselines we see several advantages for the implementation of DCERT
in embedded real-time systems. Through the use of bit strings, a whole set
of monitored parameters can be represented by one or more integer variables.
Only the maximum number of monitored parameters must be limited. The set

136 F. Kluge et al.

operations on such an integer are performed using bitwise logic operators, which
are usually supported natively by the processor.

The cost reduction of an action can be done using the integer logarithm of
the weight of the fulfilled optional preconditions, i.e. log2 w(EA ∩S). Hence, the
most important fulfilled state defines the cost reduction.

5 Conclusion and Future Work

We presented an architecture which will ease the introduction of the AC/OC
concepts into the domain of embedded real-time systems. The small module
managers allow a fast and cheap reaction. On the higher level of the global
management, more complex and more sophisticated reactions will be deduced.
Although we used the MAPE cycle throughout this paper for our illustrations,
our architecture concept is not refined to it.

A discussion of communication aspects led to the design of a communication
model between the module managers and the global management. The global
monitoring is performed using a hybrid solution of the observer pattern and
polling. The execution of reactions follows a similar model.

The presented DCERT system is used in the global management to devise
reactions, if the capabilities of the module managers do not suffice. It is based
on Learning Classifier Systems and Automated Planners, bringing together the
advantages of both concepts for the use in real-time systems.

The global manager may also exchange status messages with the global man-
agers of other nodes in a distributed system. A middleware managing a distrib-
uted system of several nodes can be integrated using a pseudo-module.

Although throughout this paper we regarded only a single node, our concepts
are also applicable in distributed systems. A middleware connecting the single
nodes can be integrated by providing another module manager to the global
management on each node. This module is able to introduce monitoring infor-
mation from other nodes and to initiate distributed reactions. In the future we
will integrate the presented architecture into the CAR-SoC project [12]. It will
be built on top of our operating system CAROS [13], which is designed to sup-
port the concepts of Organic Computing inherently. By an integration with the
CARISMA middleware [14] we will also prove its applicability for distributed
embedded real-time systems.

References

1. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM Manifesto, IBM Corporation (2001)

2. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

3. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence.
In: CODES+ISSS 2004: Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pp. 2–5. ACM
Press, New York (2004)

A Two-Layered Management Architecture 137

4. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
Generic Observer/Controller Architecture for Organic Computing. In: Informatik
2006 - Informatik für Menschen, Band 1, Beiträge der 36, Jahrestagung der
Gesellschaft für Informatik e.V (GI), October 2-6, 2006, pp. 112–119 (2006)

5. Becker, J., Brändle, K., Brinkschulte, U., Henkel, J., Karl, W., Köster, T., Wenz,
M., Wörn, H.: Digital On-Demand Computing Organism for Real-Time Systems.
In: ARCS Workshops, GI. LNI, vol. 81, pp. 230–245 (2006)

6. Stein, S., Hamann, A., Ernst, R.: Real-time Management in Emergent Systems.
In: Hochberger, C., Liskowsky, R. (eds.) Emergent Systems, GI. LNI, vol. 93, pp.
104–111 (2006)

7. Herkersdorf, A., Rosenstiel, W.: Towards a framework and a design methodology
for autonomic integrated system. In: INFORMATIK - GI Workshop on Organic
Computing, Ulm, Germany, pp. 610–615 (2004)

8. Solomon, B., Ionescu, D., Litoiu, M., Mihaescu, M.: Towards a Real-Time Reference
Architecture for Autonomic Systems. In: SEAMS 2007: Proceedings of the 2007
International Workshop on Software Engineering for Adaptive and Self-Managing
Systems, Washington, DC, USA, p. 10. IEEE Computer Society, Los Alamitos
(2007)

9. Holland, J.H.: Processing and processors for schemata. In: Jacks, E.L. (ed.) Asso-
ciative Information Processing, pp. 127–146. American Elsevier, New York (1971)

10. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs (1995)

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufman, San Francisco (2004)

12. Uhrig, S., Maier, S., Ungerer, T.: Toward a Processor Core for Real-time Capable
Autonomic Systems. In: Proceedings of the 5th IEEE International Symposium on
Signal Processing and Information Technology, pp. 19–22 (2005)

13. Kluge, F., Mische, J., Uhrig, S., Ungerer, T.: An Operating System Architecture
for Organic Computing in Embedded Real-Time Systems. In: Rong, C., Jaatun,
M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp.
343–357. Springer, Heidelberg (2008)

14. Nickschas, M., Brinkschulte, U.: Guiding Organic Management in a Service-
Oriented Real-Time Middleware Architecture. In: Proceedings of The 6th IFIP
Workshop on Software Technologies for Future Embedded & Ubiquitous Systems
(SEUS 2008), Capri Island, Italy. Springer, Heidelberg (2008)

Real-Time Access Guarantees for NAND Flash

Using Partial Block Cleaning

Siddharth Choudhuri and Tony Givargis

Center for Embedded Computer Systems,
School of Information and Computer Sciences,

University of California, Irvine CA, USA
{sid,givargis}@uci.edu

Abstract. Increasing use of NAND flash in newer application domains
has been possible due to lowering cost per GB, consumer demands for
storage and advantages of NAND flash over traditional disks. However,
NAND flash has its idiosyncrasies resulting in asymmetric read/write
times due to garbage collection and wear leveling requirements. Such
asymmetric (non-deterministic) read/write times poses a challenge for
the adoption of NAND flash in real-time systems.

We present the implementation details of a flash translation layer
called GFTL that guarantees strict upper bounds on read/write times
that are comparable to a theoretical ideal case. Such guarantees are made
possible by dividing the source of non-determinism into deterministic in-
tervals using our proposed approach called partial block cleaning. Using
partial block cleaning, the process of garbage collection is divided into
several smaller, deterministic steps. Partial block cleaning comes with
an overhead of additional space requirements. We provide a proof on the
limit of the additional space requirements.

Keywords: NAND flash, real-time, file system, embedded systems.

1 Introduction

The use of NAND flash as a storage subsystem is on the rise. NAND flash man-
ifests itself in a wide variety of embedded systems such as mp3 players, digital
camera cards, USB based flash drives, set-top boxes, routers to name a few.
The driving forces behind the widespread adoption of NAND have been − (i)
The advantages of NAND flash over hard disk drives such as small form factor,
shock resistance and fast access times; (ii) The falling cost per GB of NAND
flash [1] [2]; and (iii) The push from end users for increased storage in consumer
electronics. With lowering cost per GB, NAND flash is poised to be used in
newer application domains that impose timing guarantees on storage accesses.
For example, the One Laptop Per Child (OLPC) project, Canon’s HD camcoder
use NAND flash as the only non-volatile storage medium [3][4]. While the eco-
nomics of price has been favorable, the use of NAND flash in mission critical
and real-time applications that demand determinism, has been a challenge due
to NAND flash idiosyncrasies.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 138–149, 2008.
c© IFIP International Federation for Information Processing 2008

Real-Time Access Guarantees for NAND Flash 139

NAND flash has certain unique characteristics that are atypical of either RAM
or hard disk drives. Specifically, NAND flash does not support in-place updates,
i.e., an update (re-write) to a page (the minimum of write) is not possible, unless
a larger region containing the page (known as a block) is first erased. Erase
operation on a block is an order of magnitude slower, making it undesirable.
Further, a block has a limited erase lifetime (typically 100,000) after which a
block becomes unusable. Such characteristics require special handling of NAND
flash using either a dedicated file system or wrapping the NAND flash with
a layer of hardware/software known as the flash translation layer (FTL). The
FTL performs three important functions (i) Exports a view of NAND flash that
resembles a disk drive, thereby hiding the peculiarities of NAND flash. Thus, an
FTL translates a read/write request from the file system (sector) into a specific
〈block, page〉 of the NAND flash; (ii) Reclaims space by erasing obsoleted blocks
(due to out of place updates), also known as garbage collection; (iii) Performs
wear leveling to make sure that blocks across a flash get evenly erased.

NAND flash management (wear leveling and garbage collection) is workload
dependent resulting in asymmetric read/write times. Therefore, typically FTLs
do not provide service guarantees. Such asymmetric read/write latency might
be tolerable for single-threaded or dedicated applications. However, as we move
towards newer application domains, a deterministic service guarantee becomes
desirable to design and run applications.

In this paper, we present implementation details of an FTL called as GFTL
(for Guarantee Flash Translation Layer) based on the concept of “partial block
cleaning”. An FTL based on partial block cleaning is capable of providing strict
service guarantees for file system accesses (reads/writes) independent of the state
or utilization of the flash. Partial block cleaning comes at a cost of additional
flash storage. It is our opinion that with rising capacities and lowering cost per
GB, additional NAND flash overhead (less than 20% across benchmarks) to
provide deterministic guarantee is tolerable. The following are the contributions
of this paper:

– GFTL algorithms for read/write access to a NAND flash which provides
strict service guarantees due to partial block cleaning.

– Proof for determining the limit on additional space requirements for GFTL.

The rest of the paper is organized as follows: Section 2 briefly describes the
NAND flash characteristics. Section 3 presents our problem formulation followed
by Section 4 which describes the read/write algorithms for GFTL and presents a
proof on the space overhead of GFTL. Section 5 describes the benchmarks used
followed by results. Section 7 summarizes related work followed by conclusion.

2 Preliminaries

A NAND flash consists of multiple erase blocks. Each such erase block is further
divided into multiple pages, a page being the minimum unit of data transfer
(read/write). Associated with each page is a spare area known as the Out Of

140 S. Choudhuri and T. Givargis

Band (OOB) area, primarily meant to store the Error Correction Code (ECC)
of the corresponding page (also used to store meta-data such as inverse page
table). A page is 512 bytes for older, small block NAND flash and 2 KB for
newer large block NAND flash. Three basic operations can be performed on a
NAND flash. An erase operation “wipes” an entire erase block turning every
byte into all 1s i.e., 0xff. A write operation works on either a page or an OOB
area, selectively turning desired 1s into 0s. A read operation reads an entire page
or an OOB area. Updates (re-writes) are out-of-place i.e., directed to a different
page unless the entire block is erased. Table 1 depicts NAND flash specifications
for the basic operations. There are two possible mappings between a sector and

Table 1. NAND flash specifications

Characteristics Samsung 16MB Samsung 128MB
Small Block Large Block

Block size 16384 (bytes) 65536 (bytes)
Page size 512 (bytes) 2048 (bytes)
OOB size 16 (bytes) 64 (bytes)
Read Page 36 (usec) 25 (usec)
Read OOB 10 (usec) 25 (usec)
Write Page 200 (usec) 300 (usec)
Write OOB 200 (usec) 300 (usec)

Erase 2000 (usec) 2000 (usec)

a 〈block, page〉. A page based mapping where a translation table maps each
sector to a 〈block, page〉 pair. However, the size of translation table can become
a limiting factor as flash size increases. In order to deal with such a problem, a
block based translation layer is widely used. For instance, in one of the popular
block based translation layers known as NFTL [5], a sector is divided into a
virtual block and an offset. The virtual block maps to a physical block (known
as the primary block) on the NAND flash. In case of a rewrite (or if the primary
block is full), a new physical block called a secondary block is chosen to perform
the writes. When the two blocks become full, an operation known as fold merges
the primary and the replacement blocks into a new primary block and freeing the
old primary and replacement block. Garbage collection is invoked either when
the NAND flash runs out of space (which does a fold across several blocks) or
using a heuristic. Interested reader can find more details on mapping and garbage
collection heuristics in [6] [7]. For the rest of the paper, the term flash refers to
NAND flash. Table 2 denotes the terminology used throughout the paper (to be
described in later sections)

3 Problem Formulation

We model I/O request (incoming from file system to the FTL) as a real-time
task τ = {p, e, d} where p is the periodicity, e is the execution time and d is the

Real-Time Access Guarantees for NAND Flash 141

Table 2. Terminology

Symbol Definition

Twrpg Time to write a page and OOB area
Trdpg Time to read a page
Trdoob Time to read an OOB area
Ter Time to erase a block

π Pages per block
N Number of blocks
L Length of the write pending queue

deadline. Without loss of generality, we assume that p is equal to d. We have
two kinds of tasks: a read request task τr = {pr, er}, and a write request task
τw = {pw, ew}. pr and pw denote “how often” a read or write request arrives
from the file system. er is the time taken to search for a given sector, read the
corresponding 〈block, page〉 of the flash, and return a success/failure to the file
system. Similarly, ew is the time taken to write a sector to a given 〈block, page〉 .
The bounds on p and e are determined by the FTL. Specifically, a lower bound on
p (denoted by L(p)) determines the maximum request arrival rate that an FTL
can handle. The worst case execution time, i.e., an upper bound on e (denoted by
U(e)), determines the worst case rate at which requests are serviced by the FTL.
For a file system, U(e) represents the average memory access time (AMAT) for
read/write and L(p) represents the maximum rate at which requests are issued
to the flash.

A flash needs to perform flash management (wear leveling and garbage collec-
tion) which involves erasing atleast one or more blocks. Ter is the longest atomic
operation on a flash, i.e., when a block is being erased, the flash is locked and
hence non-interruptible. Therefore, Ter is the limiting factor which decides the
inter-arrival time (periodicity) of requests. Therefore, in an ideal case, L(p) is at
least Ter. The latency due to Ter could be hidden by having buffers in the RAM.
However, while this solution works in an average case, in a worst case scenario
(i.e., when every access results in a block erase), one would require an infinitely
large buffer in RAM as the arrival rate would exceed the service rate. Table 3
depicts the bounds guaranteed by GFTL (details in the next section).

Table 3. Service guarantee bounds

Bounds Ideal GFTL

U(ew) Twrpg Twrpg

U(er) Trdpg + Trdoob πTrdoob + Trdpg

L(pr) L(pw) Ter Ter+max{U(ew), U(er)}

GFTL guarantees (Table 3) a worst case execution time for writes that is as
good as an ideal case and a worst case execution time for reads that is mar-
ginally ((π − 1)Trdoob) larger than an idea case. Further, GFTL provides service

142 S. Choudhuri and T. Givargis

guarantees for requests that have an inter-arrival time [L(p)] that is only slightly
larger than an ideal case while still performing garbage collection.

4 Technical Approach

GFTL is a block based approach. A sector is treated as a logical address and
a logical block is derived from the most significant bits of the logical address
(Figure 1). A block mapping table is used to map a logical block to a physical
block of flash. For a given flash with N blocks, there is a 1 : 1 mapping between
the logical blocks and the physical blocks, resulting in N entries in the block
mapping table. Further, GFTL requires an additional Q blocks for a write queue.

4.1 GFTL Writes

The first write to a given virtual block is written to a free physical block. Due
to a 1 : 1 mapping, a free physical block is guaranteed to be available. Once a
physical block is found, pages are written sequentially starting from page 0. The
sector number is written in the OOB area and serves as an inverse page table.
After π writes, the physical block becomes full. The full physical block is added
to a garbage collection queue called as GCQ. Additional writes that map to a
full physical block are written to pages in the write queue (shown as dark gray in
Figure 1). The write queue serves as a buffer for writes from the time a physical
block becomes full until that physical block is garbage collected. A write queue
tail serves as the index to the next available page in the write queue. There is
only one write queue for the entire flash, thus, there exists a write queue map
which maps the logical address (sector) to a 〈block, page〉 of the write queue.
Algorithm 1 shows that the bounds on taken by write is Twrpg.

4.2 GFTL Reads

A read to a given sector is first searched in the write queue map since it holds
the most recent copy. In case of a write queue map miss, the block mapping
table is used to determine the physical block corresponding to the sector. The

.........

0 1 2 3 4 N+Q-2 N+Q-1

0

1

2

3

4

N-1

Block mapping
table

logical address
(sector)

indexphysical
block

write queue
 tail

Page written

Write queue
block

NAND
Flash

logical
block

... ...

L

Write queue
map

Free page

Single block

GCQ

2

Fig. 1. GFTL Data Structures

Real-Time Access Guarantees for NAND Flash 143

Algorithm 1. GFTL write
1: writesect(sector, buffer)
2: Input: Function writesect, Sector sect, Buffer buf
3: Output: return status
4: vba ← sector/blocksize
5: if (fsm.state = READ ∨ ERASE) ∧ fsm.blk = vba then
6: cached ← true
7: writebuffer(buffer); /* Write to RAM O(1) */
8: goto PartialGC

9: end if
10: if ¬ cached then
11: pba ← blockmap[vba].block /* RAM lookup O(1) */
12: if pba = NULL then
13: pba = find free blk() /* RAM lookup O(1) */
14: nandwrite(pba, 0, buf) /* Write to flash O(Twrpg) */
15: goto PartialGC

16: end if
17: if pba.status = BLOCK FULL then
18: pba ← writequeue.block
19: page ← writequeue.tail
20: else
21: pba ← blockmap[vba].index
22: end if
23: nandwrite(pba, page, buf) /* Write to flash O(Twrpg) */
24: end if
25: PartialGC:

26: if GCQ.size > 0 then
27: do fsm() /* Invoke partial GC FSM to determine next state */
28: end if
29: return

OOB area of the physical block is searched backwards starting from the page
pointed to by the index field of the block mapping table.

A read from the write queue will result in one OOB read and one page read. A
read from block mapping table on the other hand will result in π OOB reads in
the worst case followed by the actual page read. Therefore, the best case AMAT
for reads is Trdpg + Trdoob and the worst case is πTrdoob + Trdpg.

A write either goes to the next available location pointed to by the index
field of block mapping table (Figure 1) or into the write queue in case of a full
physical block. In either case the time taken is constant i.e., Twrpg. Due to the
1 : 1 mapping between virtual and physical blocks, a physical block is guaranteed
available for the very first write. Further, in case of a full block, the size of write
queue is such that a page is guaranteed to be available.

4.3 GFTL Flash Management

The only flash management performed in GFTL is based on partial block clean-
ing which takes care of both garbage collection and wear leveling. The idea

144 S. Choudhuri and T. Givargis

Algorithm 2. GFTL read
1: readsect(sector, buffer)
2: Input: Function readsect, Sector sect, Buffer buf
3: Output: return status
4: if sector ∈ writequeue then
5: pba ← writequeue[sector].block
6: page ← writequeue[sector].page
7: else
8: pba ← blockmap[vba].block /* RAM lookup O(1) */
9: for all page ∈ pba do

10: nand read oob(pba, page, oob) /* O(π × Trdoob) */
11: if sector = oob.sec then
12: nand read page(pba, page, buf) /* O(Trdpg) */
13: end if
14: end for
15: end if
16: if GCQ.size > 0 then
17: do fsm() /* Invoke partial GC FSM to determine next state */
18: end if

behind partial block cleaning is to perform garbage collection on a single block
at a time. Further, each such single block garbage collection is divided into “par-
tial” steps such that the time taken to perform each step is no longer than the
longest atomic flash operation i.e., Ter. The partial steps are interleaved between
servicing read/write requests. The garbage collection of a single block, say Bi,
amounts to the following phases:

1. Block Read: In this phase, the pages that belong to Bi are first read from the
write queue followed by reading the remaining valid pages out of the block
Bi. In a worst case, this step can result in reading (π − 1) pages from the
write queue followed by π OOB reads of Bi to search the remaining valid
page. Thus, the worst case time is (2π − 1)Trdoob + πTrdpg.

2. Block Erase: Block Bi is erased in time Ter.
3. Block Write: The pages that were read in phase 1 are written to a free block,

say, Bnew. In a worst case, π pages will be written resulting in a worst case
time of πTwrpg.

The idea behind partial block cleaning is to divide the block read and block write
phases into partial steps, each of which is of a duration equal to Ter as shown in
Figure 2(a). Let α = �(2π−1)Trdpg/Ter� denote the number of partial steps into
which a read phase can be split as multiple of Ter. Similarly, β = �πTwrpg/Ter�
denotes the number of partial steps that a block write can be broken into. Thus
partial block cleaning divides the three block cleaning phases into (α + 1 + β)
steps, each of a duration Ter.

The core of GFTL acts as a real-time executive that implements the finite state
machine shown in Figure 2(b). As shown in Figure 2(a), GFTL first dispatches

Real-Time Access Guarantees for NAND Flash 145

Fig. 2. Partial block cleaning and FSM

any read/write request followed by performing a step of partial block cleaning
(if the GCQ is non-empty). This approach lets GFTL provide read/write service
guarantees shown in Table 3 while accepting requests at a rate equal to L(p). The
wear level is taken care of in GFTL due to a round robin approach to allocating
free blocks.

4.4 Write Queue Limit

In order to determine the write queue limit (i.e., the limit on L), we consider a
worst case write request arrival sequence. The following is a worst case write re-
quest arrival sequence: N ×π write requests arrive such that each request is to a
unique page. Thus, at the end of N ×π write requests, we have a full flash. Now,
each subsequent request will start filling the write queue. Note that if each re-
quest filling up a write queue belongs to a unique logical block, garbage collecting
such write queue block cannot be started until each block whose page is written
to the write queue block has been reclaimed. For example, if a write queue block
Qi has π pending writes that belong to unique logical blocks {B1, B2, ..., Bπ},
the write queue block Qi cannot be reclaimed (garbage collected) until each
block in {B1, B2, ..., Bπ} has been reclaimed. Therefore, the worst case sequence
of logical blocks to which writes arrive are {0, 1, 2, ..., N − 1, 0, 1, 2, ..., N − 1, ...}
(Figure 3 “Block Numbers Arrival Sequence”). This results in each write queue
block being filled with π pending writes, each of which belongs to a unique logical
block. Therefore, a write queue block cannot be reclaimed until π blocks are first
garbage collected (i.e., worst case for a write queue block). Thus, the write re-
quest grows at a rate equal to 1/L(p) (Figure 3 “Arrival Rate”). However, every
(α + β + 1) × L(p) time units, a block is garbage collected (Figure 3 “Service
Rate”) resulting in a net growth of write queue (Figure 3 “Theoretical Write
Queue Length”). In this case the arrival rate 1/L(p) is greater than the service
rate 1/(α + β + 1)L(p) (Figure 3) leading to an infinite queue length. However,
in our worst case arrival model, after N writes, every incoming write request al-
ready has at least one other pending write in the write queue that belongs to the
same logical block as the incoming write. Similarly, after 2N writes, every write
request has 2 pending requests that belong to the same logical block. Thus, with
time, the growth of the write queue length decreases every N requests reaching
a steady state value (Figure 3 “Write Queue Length”). Specifically, the write

146 S. Choudhuri and T. Givargis

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

G
ro

w
th

 (
W

rit
e

Q
ue

ue
 L

en
gt

h)

Time (Requests)

L = N x (alpha + beta + 1)/2

Theoretical Write Queue Length

Write Queue Length
Block Numbers Arrival Sequence (ramp function)

Service Rate
Theoritical Write Queue Length

L = N x (alpha + beta + 1)/2
Arrival Rate

Fig. 3. Write Queue Length Growth

queue length reaches a maximum value of L = [N × (α + β + 1)/2] after which
the write queue attains a steady state. Figure 3 depicts the growth of write queue
buffer with L(p) = 1.

The following proof provides a limit on the upper bound of the write queue
length. The proof is derived for the worst case arrival sequence mentioned above
(i.e., the write queue pages fill up such that each page belongs to a different
logical block and the distance between two pages in the write queue that belong
to the same block is N).

In Figure 3, the ramp function denotes the growth of write queue in terms of
the logical block numbers. The actual growth is denoted by the curve entitled
“Write Queue Length”. Assuming κ = (α + β + 1), the service rate is given by
y(x) = x/κ.

Every κ interval, a physical block Bi is reclaimed. Since the block Bi is re-
claimed, every page p | p ∈ writequeue∧physical block(p) = Bi is also rendered
obsolete. Every N th interval, the number of such write queue pages | p | (that
are rendered obsolete) increases by 1 until κ times. This can be seen as the in-
tersection of “Service Rate” and the ramp function in Figure 3. After κ times,
the growth of the write queue reaches a steady state as the number of pages
that are rendered obsolete i.e., | p | equals κ. Therefore, the write queue length
reaches a steady state where it grows by an amount κ and then decreases by the
same amount every κ intervals due to multiple pages in the write queue being
rendered obsolete.

Thus, the upper bound on the length of the write queue can be obtained by
summing the growth of write queue (given the arrival rate) and the decrease
in write queue due to partial garbage collection. The write queue increases
monotonically in the worst case. The decrease due to block cleaning is given
by intersection of the service rate with the ramp function. The first intersection
is found at y = x/κ for x = N . The second intersection is found at y = 2x/κ for

Real-Time Access Guarantees for NAND Flash 147

x = 2N and so on. The summation until the steady state gives the worst case
bound on the write queue length L

End of 1st interval L1 = N − �N/κ�
End of 2nd interval L2 = N − �2N/κ�
...
End of κ − 1th interval Lκ−1 = N − �(κ − 1)N/κ�

Summing, Σκ−1
i Li = (N × (κ − 1)) − (N × (κ − 1)/2)

ΣL = N × (κ − 1)/2

To this summation, we add N additional entries to accommodate the floor func-
tion rounding off as a buffer. Thus, the upper bounds on write queue limit is

L = N × (κ − 1)/2 + N
= N(κ + 1)/2

Note that though L is greater than N (total blocks), the actual write queue
length in terms of the number of additional blocks is [N(κ+1)/2]/π as each block
can store π pending writes. Thus, for a given flash the write queue length (L),
can be calculated at design time by looking at the flash specs and independent
of workload or flash state.

5 Results

We used the following benchmarks representing a variety of workloads. The
Andrew benchmark [8] consists of five phases involving creating files, copying
files, searching files, reading every byte of a file and compiling source files.
The Postmark benchmark measures performance of file systems running net-
worked applications like e-mail, news server and e-commerce [9]. The iozone
benchmark [10] is a well known synthetic benchmark. We ran iozone to do read,
write, rewrite, reread, random read, random write, backward read, record rewrite
and stride read. The file sizes ranged from 64KB to 32MB in strides of 2×
(i.e., 64, 128, . . . 32768). Besides these standard benchmarks, we used our own
benchmark called consumer which simulates flash activities used in consumer
electronics devices such as image manipulation, data transfer, audio and video
playback.

A set of benchmarks were run in sequence to generate a file system trace. The
first trace, called the synthetic trace was generated by running the following
sequence: format flash → andrew → postmark → iozone. Similarly, consumer
trace was generated by formating a flash followed by running the consumer
benchmark. In order to perform a rigorous evaluation of GFTL, each read/write
in the trace was simulated with a periodicity of L(p) i.e., there is no idle period.
Further, the synthetic trace consists of 4.3 million writes and 27, 841 reads and

148 S. Choudhuri and T. Givargis

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

S
ta

nd
ar

d
D

ev
ia

tio
n

(L
og

 s
ca

le
)

T
im

e
(u

se
c)

 (
Lo

g
sc

al
e)

 Synthetic Consumer

Std. Dev. GFTL
Std. Dev. NFTL

Max write time NFTL
Max write time GFTL

Fig. 4. NFTL vs. GFTL writes

 100

 1000

 10000

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

 100 16pgs

 50 16pgs

 100 32pgs

 50 32pgs

 100 64pgs

 50 64pgs

S
ta

nd
ar

d
D

ev
ia

tio
n

(L
og

 s
ca

le
)

T
im

e
(u

se
c)

 (
Lo

g
sc

al
e)

 Synthetic Consumer

Std. Dev. GFTL
Std. Dev. NFTL

Max read time NFTL
Max read time GFTL

Fig. 5. NFTL vs. GFTL reads

the consumer trace consists of 125, 596 writes and 76, 479 reads. The flash size at
100% utilization for synthetic trace is 136 and 260 MB for the consumer trace.

Figures 4 and 5 compares GFTL and NFTL in terms of read/write perfor-
mance. The variation in write times is more than an order of magnitude less
for GFTL due to partial block cleaning. The maximum write time of GFTL is
constant as opposed to NFTL. The maximum read time is proportional to the
number of pages per block i.e., π. This is due to the fact that reads requires
a sequential read of the OOB area until a desired sector is found. The average
overhead calculated across the traces and across all page, block size combinations
is 16%.

6 Related Work

While there have been several block based FTLs, the real time aspect of
NAND flash was first investigated by [11]. The authors proposed an innova-
tive approach towards using a garbage collector thread (instance) for each real
time task. The garbage collector thread has a execution time of
(π − α) × (Trdpg + Twrpg) + Ter+cpu time). In [11] each garbage collector in-
vocation is takes at least (π − 1)(Trdpg + Twrpg) + Ter) time (ignoring cpu time)
in the best case. In our approach, the overhead of partial GC is Ter in the worst
case. Moreover, with GFTL we do not associate an additional GC task thereby
avoiding overhead. [11] requires file system support for special ioctl calls. GFTL
can be run on top any unmodified file system. Results from [11] are based on
two tasks T 1 = (3, 20) and T 2 = (5, 20) resulting in creation of two GC tasks
G1 = (22, 160) and G2 = (22, 600) at 50% utilization. The execution time of
GC thread is comparable to 10 times Ter. GFTL on the other hand provides a
delay that is around Ter. Moreover, we provide a rigorous where each request is
considered a real-time task along with high utilization.

In [12], the authors address soft real-time issues by modifying the file sys-
tem. The techniques in [12] focus on commonly used access patterns and not
strict guarantees. In [6], the authors survey a wide range of garbage collection

Real-Time Access Guarantees for NAND Flash 149

algorithms as part of their study. However, the garbage collectors are not aimed
at real-time systems. An exhaustive research on flash memories for real time
systems was done by [13]. The conclusions in [13], supports our motivation for
the lack of real-time, deterministic guarantees for flash. The results on wear level
and details on benchmark performance is in[14].

7 Conclusion

In this paper we provided the algorithms to implement an FTL called GFTL
that guarantees O(1) write time and a read time that takes π (pages per block)
searches of the flash OOB in the worst case. Further, we provided a proof that
determines the bounds on space overhead required by GFTL using partial block
cleaning. Thus, for a given flash the write queue can be computed at design
time independent of flash workload or state. Using the approach of partial block
cleaning, real-time guarantees can be provided for NAND flash (that are close
to an ideal case). The overhead of partial block cleaning is less than 20% across
the benchmarks used in our experiments.

References

1. Lawton, G.: Improved flash memory grows in popularity. Computer 39(1), 16–18
(2006)

2. MemCon: MemCon. (July 2007),
http://linuxdevices.com/news/NS6633183518.html

3. One Laptop Per Child Project, http://laptop.org
4. Canon: Vixia HD Camcoder (January 2008)
5. Ban, A.: Flash file system optimized for page-mode flash technologies. US Patent

5,937,425 (August 10, 1999)
6. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Comp.

Surv. 37(2), 138–163 (2005)
7. Chang, L.P., Kuo, T.W.: Efficient management for large-scale flash-memory storage

systems with resource conservation. Trans. Storage 1(4), 381–418 (2005)
8. Howard, J.H., et al.: Scale and performance in a distributed file system. ACM

Trans. Comput. Syst. 6(1), 51–81 (1988)
9. Katcher, J.: Postmark: A new file system benchmark. Technical report, Net App.

Inc. (TR 3022) (1997)
10. Norcutt, W.: IOZONE benchmark, http://www.iozone.org
11. Chang, L.P., Kuo, T.W., Lo, S.W.: Real-time garbage collection for flash-memory

storage systems of real-time embedded systems. TECS 3(4), 837–863 (2004)
12. New techniques for real-time fat file system in mobile multimedia devices. IEEE

Transactions on Consumer Electronics 52, 1–9 (2006)
13. Parthey, D.: Analyzing real-time behavior of flash memories. Diploma Thesis,

Chemnitz University of Technology (April 2007)
14. Choudhuri, S., Givargis, T.: Deterministic service guarantees for NAND flash using

partial block cleaning. In: CODES+ISSS 2008. ACM, New York (to appear, 2008)

http://linuxdevices.com/news/NS6633183518.html
http://laptop.org
http://www.iozone.org

An Operating System for a Time-Predictable

Computing Node

Guenter Khyo, Peter Puschner, and Martin Delvai

Vienna University of Technology
Institute of Computer Enginering

A1040 Vienna, Austria
peter@vmars.tuwien.ac.at,
http://ti.tuwien.ac.at

Abstract. The increasing complexity of speed-up mechanisms found in
modern computer architectures makes it difficult to predict the timing
of the software that runs on this hardware, especially when the soft-
ware itself has many different execution paths. To fight this combined
hardware-software complexity that makes an accurate timing analysis in-
feasible, we have conceived a very simple software structure for real-time
tasks: We do not allow that decisions about the control flow are made
at runtime, i.e., all decisions are resolved in an off-line analysis before
runtime.

In this paper we show that simple control structures generated before
runtime can as well be used within the operating system of an embedded
real-time system. In this way we make not only task timing but also the
timing of the operating system and thus the timing of the entire real-time
computer system fully deterministic, thus time-predictable. We explain
the principles and mechanisms we use to achieve this predictability and
show the results of an experiment that demonstrates the feasibility of
our concepts.

Keywords: Real-Time Operating Systems, Time-Triggered Architec-
ture, Determinism, Temporal Predictability.

1 Introduction

Real-time systems need to provide timing guarantees in order to provide safe
operation. In practice, the problem in achieving these guarantees is that hard-
ware and software systems have become overly complex. It is therefore difficult
to design time-predictable systems and provide evidence that a constructed sys-
tem really meets the demanded timing properties. The reason for this complex
behavior, which is hard to analyze, is mainly the fact that (a) dynamic decisions
are taken at runtime, and that (b) the effects of a possibly long execution history
have to be considered when argueing about the system state at a particular time
instant.

The goal of our work is to develop an architecture that provides predictable
and repeatable timing. The focus of this paper is on the operating system. We

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 150–161, 2008.
c© IFIP International Federation for Information Processing 2008

http://ti.tuwien.ac.at

An Operating System for a Time-Predictable Computing Node 151

describe the architecture and operation of an operating system that provides
completely deterministic, reproducable timing and can thus be the basis for
constructing entire applications with predictable timing.

The operating system shall serve as a basis for building real-time systems
for which the timing of every operation can be predicted with an accuracy of a
single CPU clock cycle. We will show how we can achieve this goal by using an
adequate task-execution model – the single-path model – and a time-triggered,
table driven control approach in the operating system, together with a realization
of all kernel and operating-system routines in single-path code.

The interface of the proposed architecture is a time-triggered state message
interface that blocks all asynchronous external control signals (Section 2). The
propose software architecture builds on a simple task model and time-triggered,
table-driven scheduling (Section 3.1) as well as on a deterministic code execu-
tion scheme (single-path code) in applications and in the operating-system code
(Section 4). Within the paper we will focus on the description of the operating
system that manages the resources of the system in a pre-planned manner. We
will demonstrate that it is possible to get along with an OS implementation that
uses a combination of single-path code and a static parameterization, i.e., the
parameters of all calls to the operating system can be evaluated before runtime.
This design yields a timing that can be fully predicted in a pre-runtime timing
analysis (Section 5). The predictability will finally be demonstrated by a simple
evaluation of a prototype implementation of the operating system (Section 6).

2 The Safety-Critical Subsystem Interface

In this section we describe the interface of the proposed architecture. As a pre-
requisite for building a time-predictable (sub)system, the interface of this system
has to be predictable as well.

The following description uses the model and terminology of the DECOS
integrated architecture [1]. This does, however, not mean that our work is only
useful in the context of DECOS. On the contrary, the architecture can be adopted
to any architecture that provides a time-triggered state message interface.

2.1 The Connector Unit

A DECOS component consists of two separated subsystems, the safety-critical
subsystem for executing all safety-critical tasks and the non safety-critical sub-
system for performing all other, non-critical services. Both types of subsystems
are connected to the rest of the distributed computer system via so-called connec-
tor units. The connector units realize the architectural services of the distributed
architecture, comprising the predictable transportation of messages, the fault-
tolerant clock synchronization, fault isolation, and the consistent diagnosis of
node failures [1].

Within this paper our focus is on the operating system of the safety-critical
subsystem of a component (see Figure 1). This is where time predictability is

152 G. Khyo, P. Puschner, and M. Delvai

Application Computer

S
a

fe
H

R
T

o
f a

 Time-Triggered

Symbols

e
ty-c

ritic
a

T
 S

u
b

syst
C

o
m

p
o

n
e

gg
State Message Port

Memory Element

Control Signal Port

Safety-
Critical

Connector
Unit

a
l

te
m

e
n

t

Memory Element
for a Single State
Message

Synchronized Clock

Time-Triggered Communication

Fig. 1. Interfacing between the safety-critical hard real-time subsystem of a component
and the time-triggered communication channel

needed. The application computer of this subsystem communicates with its envi-
ronment solely via the safety-critical connector unit. The connector unit provides
the following services in support of the time-predictable software architecture of
the application computer.

– The connector unit implements a temporal firewall interface [2] for all data
elements exchanged between the application computer and the communica-
tion subsystem. The read and write operations of the communication sub-
system access the memory elements of the temporal firewalls only at prede-
fined times, according to the a-priory known time-triggered communication
schedule (in Figure 1 small rectangles represent the memory elements and
the arrows marked with light clocks show the accesses of the communication
subsystem to the firewalls).

– The time windows during which the communication system accesses the
memory elements of the connector unit are known for each temporal firewall.

– The communication system provides a time-signal service to the application
computer. A dedicated memory element in the connector unit can be written
to set the timer (Figure 1, left). When the global system time reaches the
timer value, the connector unit sends an interrupt signal over the signal port
to the application processor.

3 A Time-Predictable Application Computer

The timing of the actions performed by a computer system depends on both, the
software running on the computer and the properties of the hardware executing
the software [3]. We therefore list the hardware and software features that in
combination allow us to make an application computer time-predictable.

An Operating System for a Time-Predictable Computing Node 153

3.1 Hardware Architecture

A central idea of our approach is to obtain time predictability by constructing
software that has an invariable control flow. By applying this restrictive software
model we can allow for the use of hardware features that are otherwise considered
as being “unpredictable” (e.g., instruction caches) and yet build systems whose
timing is invariable. So the idea is to keep hardware restrictions and modifica-
tions within limits (e.g., we restrict caches to direct-mapped caches but do not
demand special hardware modifications as, for example, needed for the SMART
cache [4]). To support our execution model, the following hardware properties
have to be fulfilled:

– The execution times of instructions do not depend on operand values.
– The CPU supports a conditional move instruction or a set of predicated

instructions that have invariable execution times.
– Instruction caches are either direct mapped or set-associative with LRU

replacement strategy.
– Memory access times for data are invariable for all data items. (This is the

strongest limitation. We will try to relax it in future work).
– The CPU has a programmable instruction counter that can generate an

interrupt when a given number of instructions has been completed.

3.2 The Software Architecture

To construct a time-predictable computer system we need to be very strict about
the software structure. The proposed software architecture does not allow for any
decisions in the control flow whose outcome has not already been determined
before the start of the system. This property is true for both the application tasks
and the operating system. Even task preemptions are implemented in a way that
does not allow for any timing variation between different task invocations.

Task Model. The structure of all tasks follows the simple-task model (S-
task model) found in [5]. Tasks never have to wait for the completion of an
input/output operation and do never block. There are no statements for ex-
plicit input/output or synchronization within a task. It is assumed that the
static schedule of application tasks and kernel routines ensures that all inputs
for a task are available when the task starts and that outputs are ready in the
output variables when the task completes. The actual data transfers for input
and output are under control of the operating system and are scheduled before
respectively after the task execution.

An important and unique property of our task model is that all tasks have
only a single possible execution path. By translating the code of all real-time
tasks into single-path code we ensure that all tasks follow the only possible, pre-
determined control flow during execution and have invariable timing. For more
details about the single-path translation see Section 4.

Operating System Structure. If not properly designed, the activities of the
operating system can create a lot of indeterminism in the timing of a computer

154 G. Khyo, P. Puschner, and M. Delvai

system. We have therefore been very restrictive in the design of the operating
system and its mechanisms (see Section 5).

Predictability in the code execution of the operating system is achieved by two
mechanisms. First, single-path coding is used wherever possible. Second, all data
that are relevant for run-time decisions of the operating system are computed
at compile time. These data include the pre-determined times for I/O, task
communication, task activation, and task switching. They are stored in static
decision tables that the operating system interprets at runtime.

Task communcation and I/O is implemented by simple read and write opera-
tions to specific memory locations. As these memory accesses are pre-scheduled
together with the application tasks, no synchronization and no waiting is neces-
sary at run time.

The programmable time interrupt provided by the communication system is
used to synchronize the operation of the application computer with the global
time base. This way we ensure that the application computer performs all ac-
tivities in synchrony with its environment, i.e., the rest of the system.

3.3 Tool Support

The software structure of our architecture is very specialized. Code generation
for an application therefore needs to be supported by a number of tools:

– To generate single-path code, either a special compiler or a code conversion
tool that converts branching code into single-path code is needed.

– A tool for worst-case execution-time analysis returns the execution times of
the tasks and the operating system routines.

– An off-line scheduler generates the tables that control all operations of the
application computer. The scheduler has to resolve all precedence and mutual
exclusion constraints between task pairs as well as tasks and the communi-
cation system. It further has to plan all preemptions, thereby taking into
account the effects of the preemptions on the system timing.

4 Deterministic Single-Path Task Execution

As all branches in the control flow of some code may cause variable timing, we
translate the code of all tasks as well as the operating-system code into single-
path code [6]. The code resulting from the single-path translation has only a
single execution trace, hence the name single-path translation.

The strategy of the single-path translation is to remove input-data dependen-
cies from the control flow. To achieve this, the translation replaces all
input-data dependent branching operations by predicated code. It serializes
the input-dependent alternatives of the code and uses predicates (instead of
branches) and, if necessary, speculative execution to select the right code to
be executed at runtime. All loops with an input-data dependent termination
condition are transformed into loops with a constant number of iterations. The
termination condition of the original loop is transformed into a condition that

An Operating System for a Time-Predictable Computing Node 155

occurs in the body of the new loop and makes the loop body execute condition-
ally, thus simulating the semantics of the original loop. More information about
the conversion can be found in [7].

5 The Time-Predictable Operating System

The operating system has to be carefully designed in order to achieve predictabil-
ity at the instruction level of the CPU. There must be no jitter in the execution
times of the operating system routines.

5.1 Kernel Design

One of the key design decisions was to follow a microkernel-based design. From
the perspective of timing analysis, microkernels have two significant advantages:
First, microkernels are very small in code size and therefore, timing analysis gets
much easier. More importantly, however, most of the activities of the operating
system can be controlled at the task level, and thus, the static schedule and the
progress of time determine the actions of the OS.

All components of the OS, i.e., the microkernel and the system tasks, are
written in single-path code. The if-conversion is the most frequently applied rule
to the code, followed by the rule for loop conversions.

5.2 Communication

Communication is an integral part of every operating system. In our OS, we
use a simple model of interprocess communication which S-Tasks may use when
they need to communicate with other tasks or the real-time environment.

Interprocess Communication. Figure 2 illustrates our model of interprocess
communication. This model has been adopted from [8].

Every task has access to a local buffer in which messages are stored (1). These
messages will be copied by a privileged task (the IPC task) into a global buffer
called the message base upon its activation(2). All tasks have read access to
the message base. The IPC task further has access to the message schedule.
This schedule contains an entry for each message that has to be processed and
copied to the message base. Messages are always broadcast within a node and
written to a specific address in the message base. This address is determined
offline and listed in the message schedule. If specified in the schedule, a message
can also be sent to another node over the network. In this case, the IPC task
accesses the temporal firewall and writes the message into the message buffer
of the temporal firewall (see Section 2). The main advantage of this model is
temporal transparency, as the point in time when a message is being processed
is solely determined by the message schedule. This schedule is calculated offline.

System Calls. Most operating systems provide a set of system calls to en-
able tasks to communicate with the kernel. Because interprocess communication

156 G. Khyo, P. Puschner, and M. Delvai

Fig. 2. Interprocess communication

depends on the corresponding IPC task (and thus, has to be scheduled), the
scheduler makes use of system calls to communicate with the kernel. As ex-
plained in Section 5.3, the scheduler informs the dispatcher about the tasks that
have to be executed according to the off-line calculated schedule. The sched-
uler also requests the reset of the global timer to an offline-calculated, specific
value. All other tasks have to use the underlying IPC model and do not need to
communicate with the kernel.

5.3 Scheduling and Mode Switches

In a time-triggered RTOS, the schedule is determined offline. The scheduler is
invoked at each global clock tick. After invocation, the scheduler interpets the
scheduling table and tells the dispatcher which tasks have to be executed. To
avoid blocking, these tasks are not invoked immediatly, instead the dispatcher
“waits” until the scheduler has finished its current execution before executing
all other tasks.

Any task may request a mode switch. We define the term mode switch as the
transition from the current schedule to the requested schedule. A mode-switch
request is encoded as a special message and written to a special location in the
message base. Upon invocation, the scheduler and the IPC task read from this
location and switch to the requested tables. The point in time when a mode-
switch can be carried out is determined offline and implicitly defined by the
scheduling and message tables.

5.4 Implementation of S-Tasks and Task Preemption

For each task, the programmer has to define two procedures. One procedure de-
fines the initialization semantics of the task. This procedure is not constrained
to timing bounds; it may take an arbitrary, non-defined amount of time for the

An Operating System for a Time-Predictable Computing Node 157

procedure to finish. Memory for all tasks is allocated during the initialization
phase. When all tasks have been initialized, the operating system switches to
real-time mode. In real-time mode, when a task is activated, its real-time proce-
dure will be called. The real-time procedure must be written in single-path code,
i.e., it must have constant timing. The operating system will detect a deviation
of the specified timing of a task within an uncertainty of one clock cycle.

5.5 Temporal Characteristics

For the real-time application designer and the planning tool, knowledge of the
execution times of the core components of the OS is essential. Table 1 lists the
timing of the various components of the OS which are relevant to timing analysis.

Table 1. Timing of the OS

Functionality Component Timing in CPU cycles

Scheduling Scheduler 666+Max(Tasks)×621
Context switch Dispatcher 253
Task execution Kernel/Scheduler 1626
IPC IPC task 349+Mi × 199 + 10 × Mi × Size(Mi)

Most parts of the operating system have constant timing. However, compo-
nents like the scheduler and IPC task use bounded counting loops. Therefore,
the entire timing behaviour of the OS is dependend on three parameters: (a) The
maximum number of tasks that can be scheduled per timeslot, Max(Tasks), (b)
(for the moment) the maximum size of a message, Size(Mi), and the number of
messages that have to be copied to the message base, Mi, where i refers to the
corresponding index in the messaging table. All these parameters are determined
offline and are stored in the scheduling and message tables.

6 Experiments

In order to show the feasibility of the presented approach we implemented a
prototype operating system running on Spear2, a micro-controller developed at
our department. In this section we first describe the hardware platform. Subse-
quently we explain two experiments performed on it. The first experiment shows
that the timing of the OS is stable and free from execution-time jitter. The sec-
ond experiment illustrates the impact of traditional code (i.e., branching code)
on the timing of the OS.

6.1 Hardware Platform

Our platform consists of the soft processor core, Spear2 (Scalable Processor
for Embedded Applications in Real-time environments 2) and associated tools.
Spear2 constitutes a harvard architecture with separated data and instruction

158 G. Khyo, P. Puschner, and M. Delvai

Fig. 3. Spear2 processor core

memories. While the instruction memory is always 16 bit wide, the data mem-
ory can be configured (16 or 32 bit). The register file comprises 16 registers,
whereas two registers are reserved for storing the return addresses for subrou-
tines (JSR and ISR). The instruction set consists of 119 instructions, most of
them are predicated. All instructions are executed within one single clock cycle.
Currently, there is no instruction caching.

However, tasks must not be preempted when they execute a jump instruction
and trigger a pipeline flush because this could cause timing glitches.

Spear2 can be customized by mapping so called extension modules into the
data memory. These modules can be accessed by ordinary load/store instruc-
tions. An extension module itself is an application specific hardware module
which has a well defined interface: It consists of 32 eight-bit wide registers. The
two first registers provide module status information while registers three and
four are reserved for passing configuration parameters to the module. The re-
maining 28 registers can be used for data exchange. The position of the extension
module register inside the data memory is defined by the so called base address.
For instance, the instruction/clock cycle counter required to realize our operating
system was implemented within an extension module.

A further interface – an AMBA interface – for the Spear2 processor core is
under development. In this way Spear2 can be equipped with wide range of
AMBA IP cores, among others a cache control. In the future, this will allow us
to extend our investigations to more complex hardware structures.

Software is developed in C, using a C compiler based on gcc (spear32-gcc). The
compiler creates either binaries for execution by SPEAR or a text file containing

An Operating System for a Time-Predictable Computing Node 159

Fig. 4. Simple schedule of three S-Tasks

assembler code. The assembler code can be fed into a simulator that serves as
debugging environment.

6.2 A Simple Application

Figure 1 depicts a simple schedule consisting of three S-tasks. This schedule is
executed periodically, i.e., after task TB finishes, task TAwill be executed again,
then task TB, and so on.

The following roles are assigned to the tasks: (a) TA iteratively generates
all permutations of a fixed-size array consisting of the numbers 1 to 5. The
computed permutation is transferred to the message base by the IPC task. As
task TB sorts the array, it is interrupted by a high priority, dummy task TC .
After the completion of task TC , TB resumes and sorts the remaining part of the
array.

6.3 Timing Measurements and Test Results

The goal of the experiments was to verify that for every execution cycle of the
schedule, the timing behaviour is stable and identical to all other cycles. We
used a logic analyzer to keep track of the program counter and the progress of
time. We set the timing parameters as follows: Size(Mi) = 8 and Mi=1 for the
IPC task and Max(Tasks) = 8 for the scheduler (for testing purposes we set
the values of the parameters higher than necessary). For every task (TA, TC and
TB, Scheduler and Kernel) we measured the execution time in CPU cycles.

We took approximately 280 measurements using different input data sets and
all samples showed exactly the same temporal behaviour. Table 2 lists the results
we obtained with the logic analyzer.

For each task T , the time it takes the kernel to activate T is exactly 1626
CPU cycles. The only exception is the scheduler which is always activated after
1341 cycles. The activation times for all tasks are identical for every execution
cycle. Note that after the (partial) execution of each task, 43 cycles have to be
added. These 43 cycles are consumed by the kernel which checks the timing of
the corresponding task.

160 G. Khyo, P. Puschner, and M. Delvai

Table 2. Test results of all samples

Task Time of activation Execution time Termination

Kernel 0 1341 1341
Scheduler 1341 5634 6975

Kernel 6975 1626(+43) 8644
TA 8644 611 9255
Kernel 9255 1626(+43) 10924
IPC 10924 628 11552
Kernel 11552 1626(+43) 13221
TB 13221 1000 14221
Kernel 14221 1626(+43) 15890
TC 15980 37 15927
Kernel 15927 1626(+43) 17596
TB(resumed) 17596 1771 19369

Because the OS and the tasks are written in single-path code, we implicitly
tested all possible execution scenarios (with the exception of those that involve
the change of the timing parameters, i.e., the modification of loop bounds).
Therefore, we can conclude that the timing is indeed stable and predictable.

The Impact of Traditional Code on the Timing Behaviour. An interest-
ing question is how severe the implications of traditional code are on the timing
behaviour of the OS. After all, in a time-triggered system, decision are taken of-
fline. So one might hastily conclude that the execution-time jitter is neglectable.
Therefore, we modified the kernel by transforming some parts of the interrupt
service routine and the dispatcher back to the original (branching) code. By per-
forming the same type of measurements again the kernel showed a variation of
52 clock cycles, which equals a jitter of 3.5%. Clearly, if we had modified more
parts of the OS, the results would have been even more dramatic.

7 Summary and Conclusion

In this paper we showed that the realization of a time-deterministic operating
system is feasible. The software of the operating system uses single-path code
together with a parameterization of OS tasks that is based on a pre-runtime
analysis to avoid that run-time decisions influence the run-time behavior of the
operating system. The operating system synchronizes its time base with the
environment by means with a programmable clock interrupt that the design
system of an application guarantees to arrive at a time instant when no other
system or task activity is in progress.

Experiments on a prototype implementation have demonstrated the feasibility
of our approach: The task execution times and the execution times of the kernel
routines and operating system tasks are invariable and can be predicted with
the accuracy of a single CPU clock cycle.

An Operating System for a Time-Predictable Computing Node 161

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement no. 214373.

References

1. Obermaisser, R., Peti, P., Kopetz, H.: Virtual Networks in an Integrated Time-
Triggered Architecture. In: Proc. 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, Feburary 2005, pp. 241–253 (2005)

2. Kopetz, H., Nossal, R.: Temporal Firewalls in Large Distributed Real-Time Systems.
In: Proc. 6th IEEE Workshop on Future Trends of Distributed Computing Systems,
October 1997, pp. 310–315 (1997)

3. Puschner, P., Burns, A.: A review of worst-case execution-time analysis. Journal of
Real-Time Systems 18(2/3), 115–128 (2000)

4. Kirk, D.B.: Smart (strategic memory allocation for real-time) cache design. In: Proc.
10th Real-Time Systems Symposium, Santa Monica, CA, USA, December 1989, pp.
229–237 (1989)

5. Kopetz, H.: Real-Time Systems. Kluwer Academic Publishers, Dordrecht (1997)
6. Puschner, P., Burns, A.: Writing temporally predictable code. In: Proc. 7th IEEE

International Workshop on Object-Oriented Real-Time Dependable Systems, Jan-
uary 2002, pp. 85–91 (2002)

7. Puschner, P.: Transforming execution-time boundable code into temporally pre-
dictable code. In: Kleinjohann, B., Kim, K.K., Kleinjohann, L., Rettberg, A. (eds.)
Design and Analysis of Distributed Embedded Systems. IFIP 17th World Computer
Congress - TC10 Stream on Distributed and Parallel Embedded Systems (DIPES
2002), pp. 163–172. Kluwer Academic Publishers, Dordrecht (2002)

8. Reisinger, J.: Konzeption und Analyse eines zeitgesteuerten Betriebssystems
für Echtzeitanwendungen. Ph.D thesis, Technisch-Naturwissenschaftliche Fakultät,
Technische Universität Wien, Wien, Österreich (July 1993)

Data Services in Distributed Real-Time

Embedded Systems

Woochul Kang and Sang H. Son

University of Virginia, Charlottesville VA 22904, USA

Abstract. The computing systems are becoming deeply embedded into
ordinary life and interact with physical processes and events. They moni-
tor the physical world with sensors and provide appropriate reaction and
control over it. This cyber-physical interaction, which occurs through
ubiquitous embedded systems, has the potential to transform how hu-
mans interact with and control the physical world. Applications of such
systems include infrastructure management and environmental moni-
toring. For these applications, the demand for real-time data services
is increasing since they are inherently data-intensive. However, provid-
ing real-time data services in such large-scale and geographically dis-
tributed environment is a challenging task. In particular, both unpre-
dictable communicational delays and computational workloads of large-
scale distributed systems can lead to large number of deadline misses. In
this paper, we propose a real-time data service architecture called DRA-
CON (Decentralized data Replication And CONtrol), which is designed
to support large-scale distributed real-time applications. DRACON uses
cluster-based replica-sharing and a decentralized control structure to ad-
dress communication and computational unpredictability.

1 Introduction

Recent years have seen the emergence of large-scale distributed real-time em-
bedded (DRE) systems. They monitor the physical world with sensors and pro-
vide appropriate reaction and control over it. The scale of such cyber-physical
interactions is very wide; embedded systems of such interactions range from
resource-constrained stand-alone devices to global-scale networked embedded
systems. This cyber-physical interaction, which occurs through ubiquitous em-
bedded systems, has the potential to transform how humans interact with and
control the physical world. Applications of such systems include advanced traffic
control, global environment control, irrigation network control, and nation-wide
electric power grid control. For many of these systems, providing real-time data
services is essential since they need to handle large amounts of data in real-
time to satisfy the timing constraints from physical processes and events. The
issues involved in providing predictable real-time data services in centralized or
small-scale distributed database systems have been studied and the results are
promising [1][2][3].

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 162–173, 2008.
c© IFIP International Federation for Information Processing 2008

Data Services in Distributed Real-Time Embedded Systems 163

In large-scale distributed environments, it is challenging to provide data ser-
vices with QoS guarantees while still meeting temporal requirements of trans-
actions. One main difficulty lies in long and highly variable remote data access
delays. Unlike small-scale systems, which utilize highly deterministic local-area
networks, large-scale DRE systems in wide geographical areas have to use a
network that is shared by many participants for cost-effectiveness. A second
challenge involves the complex interactions among a large number of nodes,
which can incur unpredictable workloads for each node. For instance, a local
node may experience a dramatic load increase during cascading disturbance in
power grids. A third challenge is the data-dependent nature of transactions or
tasks. End-to-end QoS can be achieved only when both timely access to remote
data and timely computation are guaranteed. For example, QoS management
schemes that do not consider the timely access to remote data [4][5] can not
provide the eventual QoS guarantees in DRE systems, in which large number of
nodes have complex remote data access patterns.

In this paper, we propose a distributed real-time database (DRTDB) archi-
tecture called DRACON (Decentralized data Replication And CONtrol), which
supports QoS in a scalable manner. In particular, DRACON features a scalable
replica-sharing mechanism that enables not only bounded-delay remote data ac-
cess, but also a decentralized, thus scalable, QoS control structure. DRACON is
designed to support scalable real-time data services, by considering both commu-
nicational and computational unpredictability of large-scale DRE systems. Pre-
vious approaches either ignore the data-dependent nature of tasks/transactions
in providing QoS guarantees [4][5], or are not scalable [3].

Data replication can help database systems meet the stringent temporal re-
quirements of real-time applications [3][6]. A node can access local replicas, which
are updated periodically for freshness, without long communication delays. How-
ever, näıve replication approaches such as full replication, which is commonly
found in small-scale distributed database systems, can incur high computational
and communicational overhead as the system size scales up, leading to a large
number of deadline misses. In DRACON, nodes are partitioned into clusters for
high scalability, in which replicas are shared by member nodes of the cluster, in-
stead of having a local replica at each node. Each node of a cluster is responsible
for maintaining a fair share of replicas. Further, the replica-sharing clusters are
constructed such that the intra-cluster communication delay to access the shared
replicas is bounded with high statistical guarantees. This clustering algorithm
is implemented and tested on PlanetLab [7], a world-wide distributed Internet
testbed. The result demonstrates that, despite the variability of wide-area net-
works, delay bounds can be guaranteed with a high probability.

Even though the replica sharing technique in DRACON should decrease the
replication overhead significantly, replication still incurs non-negligible overhead,
making the system sensitive to workload unpredictability. To deal with this prob-
lem, DRACON provides a decentralized and hierarchical control technique that
guarantees tight deadline miss ratio under unpredictable workload. In particular,
the workload control structure of DRACON is decentralized into replica-sharing

164 W. Kang and S.H. Son

clusters. Since all remote data access requests from a node are handled within the
cluster, clusters have less interactions with each other and are decoupled. This
decoupling enables highly scalable decentralized control structure in DRACON.

The rest of the paper is organized as follows. The design of DRACON is
described in detail in Section 2. Related work is briefly discussed in Section 3.
Section 4 concludes the paper and discusses further research issues.

2 Approach

In this section, we present the design of DRACON that provides data services
with QoS guarantees for large-scale DRE systems.

2.1 DRACON Architecture

Figure 1 shows the architecture of one node of DRACON. The architecture has
3 layers, remote data access layer, QoS enforcement layer, and real-time DBMS
layer.

The remote data access layer enables transparent access to remote data within
a bounded communication time. Remote temporal data are replicated locally to
provide timely access to them. However, to avoid the high cost of full replication
in large-scale distributed systems, the system is partitioned into clusters, and
member nodes of each cluster share replicas of the cluster, instead of having
respective local replicas. A local replica of remote data is made only if a replica
is not found in the cluster that the node belongs to. Each node of a cluster is
responsible for maintaining a fair share amount of replicas of remote data. The
fair share amount of replicas for each node is controlled by the QoS enforcement
layer to guarantee the desired QoS.

In QoS enforcement layer, QoS is guaranteed by feedback control loops. The
primary metrics of QoS are transaction deadline miss ratio and utilization. A
key intuition that affects the architecture of the feedback control loops is that
the dynamics of DRACON manifest two different time-scales. At each node, fast

QoD Manager Monitor

Transaction Handler

FM CC SC
Ready Queue

Dispatch

Abort/Restart

Block

Δupdate_rate

ΔW
Local

Controller

Replica Update Trans.

User Trans.

Data Registry

Global

Controller

MR(k)/ U(k)

to/from neighbors

Local Update Trans.

MR(t)/

U(t)

Set points

MRL(k)/UL(k)

Temporal Data

Dissemination

Replica update

QoS Enforcement Layer

Remote Data Access Layer

RTDBMS LayerBlock Queue

MR(k)/U(k)

Replica migration

Fig. 1. The architecture of one DRACON node

Data Services in Distributed Real-Time Embedded Systems 165

dynamics are observed. These dynamics arise from changing data access pat-
terns. At the global system level, slower dynamics are observed. They arise from
changing global load distribution. Therefore, DRACON’s feedback control archi-
tecture has two sets of control loops, local and global ones. In particular, since
the cluster-based replica-sharing decouples clusters and decreases the interac-
tion between clusters, DRACON’s global control structure is decentralized into
each cluster, making DRACON highly scalable. The global control information
is exchanged only among member nodes of each cluster.

The real-time database (RTDBMS) layer does typical real-time transaction
handling; the incoming transactions are dispatched and processed by the transac-
tion handler. The transaction handler consists of a concurrency controller (CC),
a freshness manager (FM), and a scheduler (SC). In the SC, update transactions
are scheduled in the high priority queue while user transactions are scheduled in
the low priority queue. Update transactions are either updates from local sensors
to local data objects or updates from primary nodes to replicated temporal data
objects. Within each queue, transactions are scheduled using Earliest Deadline
First (EDF). The FM checks the freshness before accessing a data object using
the corresponding absolute validity interval (avi). A sensor data object Oi is
considered valid, or fresh, as long as (current time− timestamp(Oi)) < avi(Oi)
If the data object is not fresh, user transactions accessing the data object are
blocked until the data object is updated.

2.2 Bounded-Delay Communication

In a distributed real-time system like the power grid, which interacts with phys-
ical processes and events, the latency of data propagation from one node to
the other should be predictable and bounded in time to make a timely con-
trol decision. For example, the power grid monitoring and control in wide-area
requires that status information from a control station should be delivered to
the other control stations in a bounded time to prevent cascading disturbances.
However, deterministic delay bound guarantees is virtually impossible to achieve
in Internet-like networks. Instead, we try to achieve delay bounds with a high
probability.

In DRACON, the temporal data is delivered indirectly from a source node to
a destination node via a node that has a replica of the original data. Therefore,
the total propagation delay of temporal data from a source node to a destination
node in a different cluster is sum of inter- and intra-cluster communication delay
as shown in Equation 1.

PropagationDelay(ni, nj) = Comminter + Commintra(nj), (1)

where Comminter is the inter-cluster communication delay and Commintra

(nj) is the intra-cluster communication delay of the cluster that node nj belongs
to. Figure 2 shows inter- and intra communication delays with 2 replica-sharing
clusters.

166 W. Kang and S.H. Son

Inter-cluster delay

Intra-cluster delay

replica holder of n1

Cluster A Cluster B

n1

Fig. 2. Clusters and inter/intra delays

Since a temporal data of one node can be replicated by any node in the
system, Comminter is the communication delay between any arbitrary nodes of
the system, and it is the global property of a given communication network;
the bound on Comminter is not affected by a cluster construction mechanism.
However, the bound on Commintra(N) of an arbitrary cluster N is determined
by the member nodes of the cluster. Commintra(N) is bounded by d with p
probability:

p ≤ Pr {Commintra(N) ≤ d} , (2)

where
d = max

ni,nj∈N ,
(p quantile of measured delays btw. ni and nj) . (3)

Therefore, clusters should be constructed to guarantee that the partitioned clus-
ters satisfy the requirement of an application on its data propagation delay
bound. Generally speaking, the bound on Commintra of a cluster is inversely
proportional to the size of the cluster. However, the computational and commu-
nicational overhead increases proportionally to the number of clusters as will be
shown in the Evaluation section.

In power grids and other wide-area DRE systems, the requirement on the
data propagation delay is highly related to the geographical distance between
two nodes since the travel speed of physical disturbances is linearly proportional
to the geographical distance. For example, disturbances travel at the speed of
500km/sec in power grids [8]. Therefore, the geographical distance should be
considered in constructing clusters. The requirement can be stated as follows:

PropagationDelay(ni, nj) + α ≤ Dist(ni, nj)

PSpeed
, (4)

where Dist(ni, nj) is the geographical distance between the two nodes,
PSpeed is the travel speed of the disturbance, and α is the additional overhead
to process the data including actuation latency. Intuitively, this requirement tells
that status data should be delivered and processed faster than the propagation
of a physical disturbance.

Given this requirement, the system is partitioned into clusters using
Algorithm-1 when the system is deployed. In Algorithm-1, clusters are recur-
sively partitioned into smaller clusters until each cluster satisfies application’s re-
quirement. In the resulting replica-sharing structure, each cluster N
has Commintra(N) as its remote data access delay bounds. The temporal data

Data Services in Distributed Real-Time Embedded Systems 167

Algorithm 1. GeographicalPartitioning(cluster N)
Input: Distance between nodes
Input: End-to-end delay bounds between nodes
foreach node ni in neighbor clusters do

foreach node nj in cluster N do
if PropagationDelay(ni, nj) + α ≤ Dist(ni,nj)

PSpeed
then

continue;
else

partition N geographically into N1 and N2;
GeographicalPartitioning(N1);
GeographicalPartitioning(N2);

end
end

end

propagation delay bound from an arbitrary node to a node in the cluster N is
given as Comminter + Commintra(N). In wide-area networks, the delay bounds
are statistical.

Algorithm-1 runs only when the system is first deployed since we assume that
the network characteristic of future Internet-like networks for critical infrastruc-
tures will be less dynamic than the current Internet once they are deployed.
In a network with highly time-varying characteristics, Algorithm-1 should be
extended to include post-adjustment capability with dynamic network probing.
We leave this as our future work.

Delay Bounds in Wide-Area Networks. We demonstrate the communica-
tion delay bounds that can be achieved in the current Internet with the pro-
posed replica-sharing mechanism. This also shed light on the feasibility of the
proposed approach in future Internet-like networks. Algorithm-1 is implemented
and tested on PlanetLab, a world-wide distributed Internet testbed, with 64
nodes in eastern United States.

Before running Algorithm-1, the round-trip communication latencies were
probed for 24 hours at every 30 second. Figure 3 shows the probability dis-
tribution of round-trip communication latencies between arbitrary two nodes.
This graph shows that 99.999% of round-trip times between any arbitrary two
nodes are less than 250ms. The size of data packet has little impact on communi-
cation latency. The result indicates that the tight delay bounds for inter-cluster
communication, Comminter , is 250ms with 99.999% statistical guarantees.

The measured delay bounds between arbitrary two nodes were provided as
inputs to Algorithm-1. Instead of setting a specific requirement on the propaga-
tion delay, a cluster with the longest intra-cluster delay bound was partitioned
recursively until we had 8 clusters.

The resulting replica-sharing clusters has 300km inter-cluster distance at a
minimum. In power grid, this implies that it takes at least 600ms for the elec-
tric disturbance to propagate to neighbor clusters. The average intra-cluster
delay bounds, Commintra, of the 8 clusters is 181ms with 99.99% probability.

168 W. Kang and S.H. Son

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Roundtrip time (in miliseconds)

C
um

ul
at

iv
e

D
en

si
ty

256 bytes/packet

1024 bytes/packet

4096 bytes/packet

Fig. 3. Round trip time between arbitrary two nodes

Therefore, the propagation delay bounds of data from a node to the other in a
different cluster is 431ms(= 250ms + 181ms) with 99.99% probability.

This result shows that the indirect access to temporal data through replica-
sharing does not violate the requirement on the data propagation delay as long as
an application requires data propagation delay no less than 431ms. For example,
it is feasible to take control action to avoid cascading electric disturbance between
clusters as long as overhead for data processing and actuation takes less than
about 169ms since it takes 600ms on average for a disturbance to propagate to
a neighbor cluster in the stated geographical setting1.

In practice, the requirement on the data propagation delay of most wide-
area DRE systems, which were mentioned in Introduction, is much longer since
the speed of physical process is much slow, e.g., the speed of road traffic, and
tsunami.

2.3 Decentralized QoS Control

In this section, we design feedback control loops for DRACON. The goal of
the feedback control loops is to maintain the desired deadline miss ratio and
utilization both locally and globally.

Local QoS Control. At each node, there are a local miss ratio controller and
a local utilization controller as shown in Figure 4. The local feedback controllers
are responsible for tracking the QoS set points set by global controllers, MRL

and UL, and ensuring that transactions have a minimum miss ratio and the node
remains fully utilized.

Each node has a desired deadline miss ratio, MRL, and a desired utiliza-
tion, UL, as its specification from the node’s global miss ratio and utilization
controllers. At each sampling instant, the local miss ratio controller takes the
current miss ratio, compares them with the desired miss ratio, and computes

1 In practice, electric disturbances typically take minutes before they become serious
enough to cause widespread disruption [9].

Data Services in Distributed Real-Time Embedded Systems 169

RTDB
Miss Ratio

Control
ΔWMRerrorMRL

+

-

MR(t)
RTDB

Utilization

Control
ΔWUerrorUL

+

-

U(t)

(a) Miss ratio controller (b) Utilization controller

Fig. 4. Local controllers

the local workload control signal, ΔWMR, which is used to adjust the utilization
at the next sampling period. The local utilization control loop takes the similar
control action as the local miss ratio controller. Employing a utilization control
loop is to avoid a trivial solution, in which all the miss ratio requirements are
trivially satisfied by under-utilizing the system. At each sampling instant, we
set the current control signal DeltaW = Minimum(ΔWMR, ΔWU) to support
a smooth transition from one system state to another.

The target utilization from the local controller is achieved by switching
between the on-demand update scheme and the immediate update scheme for se-
lected temporal data objects. The candidate data objects of this dynamic update-
mode switch are selected based on the communication delays between a primary
node ni and its replica holder node nj of data object Oi. The avi(Oi) should
be large enough for Oi to be still fresh even when the data object is updated
on-demand as shown in Equation 5.

Comminter + Commintra(nj) + β < avi(Oi). (5)

In the equation, Comminter + Commintra(nj) is the communication delay for
on-demand update, and β is the expected processing time to retrieve Oi at the
primary node. Since the communication delay bounds of any two arbitrary nodes
are known with high statistical guarantees from the system partitioning proce-
dure, we can get the set of candidate data objects, Ocand, which satisfy the above
condition. When the estimated load adaptation from the update-mode switch
of data object Oi is Uc(Oi), the maximum adjustable load is

∑
Oi∈Ocand

Uc(Oi).
After the candidate data objects for the update-mode switch are selected, the
notion of Access Update Ratio (AUR) for a data object is applied Oi as follows
to select target data objects:

AUR[i] =
Access Frequency [i]

Update Frequency [i]
. (6)

AUR models the ratio of the benefit (Access Frequency) to the cost (Update
Frequency) of Oi. It is clear that data objects with high AUR should be up-
dated aggressively; if they are out-of-date when accessed, potentially multiple
transactions may miss their deadlines waiting for the updates. Therefore, data
objects are considered in the order of smaller AUR for update mode switch.

In the design of controllers, each local RTDB is modeled as an first-order
time-invariant linear model, and proportional integral (PI) control law is used
for controllers. The details of our local controller design procedure can be found
in [2].

170 W. Kang and S.H. Son

Global QoS Control and Load Balancing. In DRACON, replicas are shared
by cluster member nodes; hence, the nodes in the same cluster have closer inter-
actions. This close interaction in a cluster incurs a changing load distribution.
Global controllers at each node balance this load distribution.

At each global sampling period, global controllers exchange utilization/miss
ratio information with other member nodes in the same cluster to calculate the
average miss ratio, MRA, and utilization, UA. The global control outputs of each
node are determined from the following difference equations:

MRL(k) = MRL(k − 1) + KM (MRA − MR(k − 1)). (7)

UL(k) = UL(k − 1) + KU (UA − U(k − 1)). (8)

The global control outputs, MRL(k) and UL(k), are the set points for the lo-
cal miss ratio controller and the local utilization controller, respectively. The
controller gains, KM and KU , determine the characteristics of the controllers.
Note that global control information is exchanged only among cluster members
since cluster-based replica sharing decouples each cluster from the others. Fur-
thermore, the control information delivery time is highly predictable since the
communication delay in an arbitrary cluster c is bounded by Commintra(c) with
high statistical guarantees.

KMMRA

+
-

MR(k)Z
Z-1 1

MRL(k)

Local control loop

KUUA

+
-

U(k)Z
Z-1 1

UL(k)

Local control loop

(a) Global Miss ratio control (b) Global Utilization control

Fig. 5. Block diagram for the global system

The interaction between local and global controllers is modeled by simplifying
a local feedback control loop into an identity transfer function. This simplifica-
tion of the local feedback control loop is possible since a local feedback control
loop has several orders of magnitude faster dynamics than a global control loop.
When a system has multiple dynamics, the fast mode of the system can be
discarded for model simplification [10][11]; this enables modeling of a complex
system. With this technique, the global system can be modeled as shown in
Figure 5. In the figure, the blocks with an identity transfer function are local
feedback control loops. Intuitively, modeling a local feedback control loop into
an identity transfer function means that a QoS set point (MRL or UL) from a
global controller is achieved instantaneously by the local controller and the state
is maintained until the next global sampling period.

In the above block diagrams, the poles of closed loops are 1
Km+1 and 1

KU+1 ,
respectively. A discrete system is stable if and only if the poles of the closed
loop are inside a unit circle [12]. Therefore, the closed loop for the global system

Data Services in Distributed Real-Time Embedded Systems 171

in Figure 5 is stable if positive values for the controller gains, KM and KU , are
selected. The final controller parameters are determined in consideration of other
desired characteristics of the closed loop system such as a settling time and an
overshoot.

Once target miss ratio and utilization are set for local controllers, they are
tracked by local controllers at each node. However, the maximum achievable load
adjustment from a local control loop can be limited by data freshness require-
ments; the update mode of a data object can be switched to on-demand update
only if Equation 5 is satisfied. The remaining workload adaptation is achieved
by migrating replicas between cluster member nodes. At each global sampling
period k, the amount of load that a node i needs to transfer (or to receive),
ΔTWi(k), is the difference between the required load adaptation to achieve the
new set points, ΔWi(k), and the local controller’s maximally achievable load
adaption, AWi(k):

ΔTWi(k) = ΔWi(k) − AWi(k). (9)

If ΔTWi(k) is positive, the node is overloaded and it can not be fully controlled
by its local controller. Therefore, some replicas are migrated to neighbor nodes,
which have a negative ΔTW (k), until ΔTWi(k) becomes less than or equal to
zero. Since local target set points, MRL and UL, are determined to track the
average miss ratio and the utilization of cluster nodes,

∑
i ΔTWi(k) approaches

zero, making each cluster balanced.

3 Related Works

Distributed real-time databases (DRTDBs) have drawn research attention in
recent years [13][14]. Wei et. al. proposed replication techniques for DRTDBs
[3][6]. However, their approaches do not consider communication delay bounds
in wide-area networks, and their workload control mechanism is not scalable in
large-scale systems.

Feedback control has been applied to QoS management in real-time systems
due to its robustness against unpredictable operating environments [15][1]. In
particular, several distributed feedback control schemes have been proposed for
distributed real-time systems [5][11][4]. However, those approaches target small-
scale distributed systems and do not consider communication delays in wide-area
networks.

4 Conclusions

DRACON has been designed to provide a highly scalable data service with QoS
guarantees in large-scale distributed real-time systems. DRACON features a
replica sharing mechanism that enables bounded-delay access to remote data

172 W. Kang and S.H. Son

in a highly scalable manner. Furthermore, the replica sharing resolves the com-
plex interactions between nodes by decoupling clusters, allowing a decentralized,
hence scalable, QoS control structure.

Currently we are evaluating the performance of DRACON in large-scale ap-
plications. The preliminary results show that DRACON is capable of achieving
a significant performance improvement compared to baselines in providing the
desired miss ratios while maintaining high utilization in wide-area networking
environments. While these results are promising, there are several technical chal-
lenges that need further research. We plan to address the following questions:

1. Variability of Network: How does the variability of the network affect the
replica-sharing scheme? Our preliminary work is based on the assumption
that the communication network is stable in its delay characteristics. How-
ever, if a communication network’s end-to-end delay characteristics change
significantly in different time periods, e.g., days and nights, the clusters need
to be post-adjusted at runtime. A dynamic scheme for network status mon-
itoring and modeling is required to achieve that.

2. Inter-Cluster Load Balancing: How can the load-imbalance between clusters
be resolved? In DRACON, each cluster is decoupled by cluster-level replica-
sharing. However, it is still possible that there exist some interactions be-
tween clusters. In such situations, we may need higher level controllers/load
balancers to resolve the inter-cluster load imbalance. What would be the
constraints in designing such inter-cluster level controllers?

3. Dependability: DRACON considers real-time data replication to reduce data
access time. However, replication is also effective in improving the depend-
ability of the system. By having multiple replicas of sensor data, the system
can guarantee that the critical information is accessible on time even when
some nodes are unavailable, although it requires additional cost. We will
investigate how to improve the dependability with minimal cost, using the
idea of adaptive virtual replication we have developed for embedded sensor
networks [16].

4. Interaction with physical processes: How does the timing constraints from
physical processes affect the QoS management architecture? We will use
real-world examples to investigate appropriate QoS models for networked
embedded systems.

References

1. Kang, K.D., Son, S.H., Stankovic, J.A.: Managing deadline miss ratio and sensor
data freshness in real-time databases. IEEE Transacctions on Knowledge and Data
Engineering 16(10), 1200–1216 (2004)

2. Kang, W., Son, S.H., Stankovic, J.A., Amirijoo, M.: I/O-aware deadline miss ra-
tio management in real-time embedded databases. In: The 28th IEEE Real-Time
Systems Symposium (RTSS) (December 2007)

3. Wei, Y., Son, S.H., Stankovic, J.A., Kang, K.D.: Qos management in replicated
real time databases. In: RTSS 2003: Proceedings of the 24th IEEE International
Real-Time Systems Symposium (2003)

Data Services in Distributed Real-Time Embedded Systems 173

4. Wang, X., Jia, D., Lu, C., Koutsoukos, X.: DEUCON:Decentralized End-to-End
Utilization Control for Distributed Real-Time Systems. IEEE Transactions on Par-
allel and Distributed Systems 18(7), 996–1009 (2007)

5. Stankovic, J.A., He, T., Abdelzaher, T., Marley, M., Tao, G., Son, S., Lu, C.:
Feedback control scheduling in distributed real-time systems. In: RTSS 2001: Pro-
ceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS 2001) (2001)

6. Wei, Y., Shlinger, A.A., Son, S.H., Stankovic, J.A.: ORDER: A Dynamic Replica-
tion Algorithm for Periodic Transactions in Distributed Real-Time Databases. In:
RTCSA 2004, Gothenburg, Sweden (August 2004)

7. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the internet im-
passe through virtualization. IEEE Computers 38(4), 34–41 (2005)

8. Thorp, J.S., Seyler, C.E., Phadke, A.G.: Electromechanical wave propagation in
large electric power systems. IEEE Transactions on Circuits and Systems 45(6),
614–622 (1998)

9. Birman, K.P., Chen, J., Hopkinson, E.M., Thomas, R.J., Thorp, J.S., Renesse,
R.V., Vogels, W.: Overcoming communications challenges in software for monitor-
ing and controlling power systems. In: Proceedings of the IEEE (2005)

10. Nils, R., Sandell, J., Varaiya, P., Athans, M., Safonov, M.G.: Survey of decen-
tralized control methods for large scale systems. IEEE Transactions on Automatic
Control 23(2), 108–128 (1978)

11. Lin, S., Manimaran, G.: Double-loop feedback-based scheduling approach for
distributed real-time systems. In: Conference on High Performance Computing
(HiPC) (2003)

12. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley, IEEE press (2004)

13. Peddi, P., DiPippo, L.C.: A replication strategy for distributed real-time object-
oriented databases. In: Symposium on Object-Oriented Real-Time Distributed
Computing, pp. 129–136 (2002)

14. Wei, Y., Prasad, V., Son, S.H., Stankovic, J.A.: Prediction-based qos management
for real-time data streams. In: RTSS 2006, pp. 344–358 (2006)

15. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Syst. 23(1-2), 85–126 (2002)

16. Mathiason, G., Andler, S., Son, S.H.: Virtual full replication for saclable and adap-
tive real-time communication in wireless sensor networks. In: Second International
Conference on Sensor Technologies and Applications, Cap Esterel, France (August
2008)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 174 – 185, 2008.
© IFIP International Federation for Information Processing 2008

QoS-Adaptive Router Based on Per-Flow Management
over NGN*

Boyoung Rhee1, Sungchol Cho1, Sunyoung Han1,**, Chun-hyon Chang1,
and Jung Guk Kim2

1 Department of Computer Science and Engineering, Konkuk University
1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea

{boyoung,cschol,syhan,chchang}@konkuk.ac.kr
2 Deptment of Computer Engineering, Hankuk University of Foreign Studies

San 89-1, Wangsan, Mohyun, YongIn City, Kyunggi-do, Korea
jgkim@hufs.ac.kr

Abstract. In the present paper, we designed a specific router which provides
the required level of QoS over NGN(Next Generation Network) by controlling
data flows. We called this router QoS-Adaptive router, which consists of two
parts, a legacy routing part and a QoS guarantee routing part. In order to pro-
vide differentiated services, QoS-Adaptive router enables data taking broad
bandwidth or data requiring high-level QoS to be processed immediately and
not to be affected by other services. And, we used the definition of flow for per-
flow management, and assigned new service types to the flow label field of
IPv6 header so as to provide differentiated services according to the packet
type. By doing this, we designed a distinguishing mechanism in order to adapt
to NGN that concentrates upon QoS. We built not only a small network to test
QoS-Adaptive router but also a simulation environment called OMNeT++, and
we could verify the performance of QoS-Adaptive router supporting QoS based
on subscriber and service levels.

Keywords: QoS, NGN(Next Generation Network), Resource Management,
Data Flow, User Level, Service Level, Bandwidth.

1 Introduction

The requirements of quality of services using the Internet increase continuously.
However, there is a limit to QoS because IP transport technology focuses on internet
services based on ‘best effort’. Therefore, the current network architecture is evolving
to NGN(Next Generation Network), which supports guaranteed quality of broadband
multimedia services that are integrated with communication, broadcast and the inter-
net. According to the main concept of NGN, NGN architecture should support various
services requiring high-level QoS such as a real-time service even though users use

* This research was supported by the MKE(Ministry of Knowledge and Economy), Korea, under

the ITRC(Information Technology Research Center) support program supervised by the
IITA(Institute for Information Technology Advancement) (IITA-2008-C1090-0804-0015).

** Corresponding Author.

 QoS-Adaptive Router Based on Per-Flow Management over NGN 175

any kinds of communication networks and terminals. To provide integrated network
services, NGN needs different network architecture from the existing network one,
and the development of some equipment such as a router, should evolve so as to be
suitable for NGN. Therefore, we added a few functions, such as classifying packets,
adjusting bandwidth and keeping flows from others, to the existing router in order to
support QoS. Furthermore, we extended the role of RACF(Resource and Admission
Control Functions) in NGN QoS architecture to communicate with the proposed
router.

2 Background

2.1 RACF in NGN QoS Architecture

NGN QoS architecture is made up of ‘Service Stratum’ in charge of application signal-
ing and ‘Transport Stratum’ in charge of packet transmission as shown in Fig. 1 [1].

Fig. 1. RACF in NGN QoS Architecture

SCF(Service Control Functions), which implements signaling with terminals,
transmits QoS requirements to real networks via RACF in order to provide network
services. TCF(Transport Control Functions), which is made up of NACF and RACF,
acts as an arbitrator for connecting two strata, Service Stratum and Transport Stratum.
NACF (Network Attachment Control Functions) provides a registration function at
the access level and an initialization function of end-user functions to access NGN
services. These functions provide network-level identification/authentication, and also
authenticate an access session. RACF(Resource and Admission Control Functions)
provides QoS control functions including a resource reservation, admission control
and gate control in order to get desired QoS for communication and permission to

176 B. Rhee et al.

access certain resources. RACF is composed of PDF(Policy Decision Function) which
exchanges signaling and resources information with SCF, and TRCF(Transport
Resources Control Function) which analyzes network resources and status. TF (Trans-
port Functions) is the set of functions that support the transmission of media informa-
tion and control information [1].

The router in the present paper sets itself up with QoS policies, and communicates
with TRCF in order to receive QoS policies and report the data flow status which this
router collects and analyzes. TRCF, which received the status from this router, also
communicates with PDF.

2.2 Legacy Router vs. Flow-Based Router

A legacy router accepts input data irrespective of its bandwidth, and this router is not
responsible for the result such as packet loss, delay, and so forth. In NGN environ-
ment, however, if some services affected by one abnormal flow bring about a falloff
in router’s whole quality, it will be a serious problem because NGN is on the assump-
tion that NGN should guarantee QoS. Therefore, if NGN consists of only these legacy
routers, the whole service quality cannot be guaranteed.

A flow-based router, on the other hand, manages data stream as several flows. The
definition of a flow is a sequence of packets with the same 5-tuple: source IP address,
destination IP address, protocol number, source port, and destination port. This
router’s whole bandwidth is divided into several bandwidths called ‘flow’, and the
number and the bandwidth capacity of flows are controlled. That is, a flow-based
router keeps several flows, and the flows that are not allocated by packets are man-
aged as the left resource. If the problem that one flow affects others happens in the
flow-based router, this router adjusts bandwidth, after the packets that have problems
are dropped in advance. The stable state can be kept up because this process does not
allow one flow to affect others. In addition, if an abnormal flow appears, this router
just can drop this flow so that other flows are not affected by this one. Therefore, this
per-flow management makes QoS providing to be easier [2].

In the present paper, we propose ‘QoS-Adaptive router’ including specific features
which are composed of a few advantages of a legacy router and a flow-based one.

3 Requirements and Design

3.1 RACF’s Information Collection

CPE(Customer Premises Equipment) sends service request signaling to SCF(Service
Control Functions), and then SCF informs PDF of QoS requirements from CPE. Once
receiving a resource requirement, PDF collects information about the subscriber and
available resources. In order to get the subscriber information, PDF communicates with
NACF(Network Attachment Control Functions) which provides control functions about
network attachments based on the information of subscriber’s registration such as a
subscriber level and security level, and of a terminal used by the subscriber. To obtain
the network resources information, PDF gets a message from TRCF periodically. This

 QoS-Adaptive Router Based on Per-Flow Management over NGN 177

Fig. 2. Relationship between RACF’s Parts and QoS-Adaptive router

message is the information that TRCF makes up of by receiving and analyzing mes-
sages from QoS-Adaptive router. In this way, PDF can get two kinds of reports; one is
about subscriber’s level from NACF, and the other is about network information from
TRCF, actually QoS-Adaptive router. PDF makes a decision about whether this service
can be accepted or not, and about QoS policies if it is accepted. Fig. 2 shows the rela-
tionship of RACF’s parts and QoS-Adaptive router as stated above.

To support QoS for NGN, a core network is made up of MPLS(Multi Protocol Label
Switching) and QoS-Adaptive router is located at each edge, a traffic ingress point [4].
We also designed TRCF including some extended roles such as to communicate with
several parts in QoS-Adaptive router, to make up new messages, and to inform PDF of
the network’s status. We call this TRCF ‘ext_TRCF’.

3.2 QoS-Adaptive Router Architecture

Two NGN objects for QoS are to provide differentiated quality services and to protect
services from others. These will make most of subscribers be satisfied with the QoS
over NGN. Therefore, QoS-Adaptive router, that can guarantee QoS and differenti-
ated services, will be a meaningful component of NGN.

QoS-Adaptive router consists of a legacy part that acts as a legacy router and a
flow part which supports QoS and controls bandwidth. As Fig. 3 depicts, QoS-
Adaptive router needs Classifier to classify packets according to their own levels,
Premium Processor to handle some high-level packets, and Legacy Processor to han-
dle the others. In addition, to communicate with each other or ext_TRCF in RACF, a
few communication passages are needed.

1) Classifier
Discriminative transport can be done according to the designated value of the flow
label as a newly added field in IPv6, which can support real-time traffic controls or
packets that require the same processing [3]. Classifier, as a module in a data input
part, classifies packets into several types of packets referring to the flow label field in

178 B. Rhee et al.

Fig. 3. QoS-Adaptive Router Architecture

IPv6 header. We used just low 9-bit of the flow label field. We assigned an urgent
mark to 1 bit, types of service to 4 bits, and the rest 4 bits are for subscriber levels in
our mechanism. - The detailed contents like using more bits can be adjusted according
to the policy by service providers and administration or RACF manager.

Classifier communicates with ext_TRCF periodically in order to obtain a classifi-
cation policy which is applied in classifying packets, and to report real information
about the component ratio of packets. For example, A level’s rate is 15%, B level’s
rate is 23%, and so on. There is the information on messages between Classifier and
ext_TRCF in Table 1.

Bandwidth allocation in Legacy Processing Area is done by PDF, and PDF decides
which level’s packets move into Premium Processing Area. This information is sent
to Classifier that classifies real packets. After applying a policy from PDF, Classifier
observes packet streams that move into Premium Processing Area and into Legacy
Processing Area for a while, and then reports a classified packets’ ratio to PDF via
ext_TRCF. This process is done periodically. PDF controls the whole bandwidth in
QoS-Adaptive router based on this report continually.

2) Legacy Processor
General data move through Legacy Processing Area. Specific data, however, should
move through Premium Processing Area by the flow label field in IPv6 header. There
are a few cases that data streams move from Legacy Processing Area to Premium
Processing Area.

 QoS-Adaptive Router Based on Per-Flow Management over NGN 179

Table 1. Information between Classifier and ext_TRCF

Information Description

Message ID
Message Identification
(Including a mark that this message is from Classifier, Prem
ium Processor or Legacy Processor)

Sequence No. Sequence Number
Total Stream Total number of stream in each processor or Classifier

Level Level type (for instance, ‘A’)
Rate Component rate of this packets’ stream
Loss Packet loss of this stream
Level Level type (for instance, ‘B’)
Rate Component rate of this packets’ stream
Loss Packet loss of this stream

Information

… …
(a) From Classifier to ext_TRCF

Information Description
Message Type General Processing / Emergency Processing

Stream Information
(Level)

If processing for a general or warning message from Legacy
Processor, the minimum level of stream moving into Pre-
mium Processing Area.
If processing for an emergency message from Premium
Processor, the level of stream that should move into Legacy
Processing Area or dropped.

Bandwidth

Initial bandwidth value to move streams from Legacy Proc-
essing Area to Premium Processing Area
If processing to an emergency message from Premium
Processor, this information is not needed.

(b) From ext_TRCF to Classifier

Packet is urgent one or requiring high quality. Data, which are urgent or require
high quality, should move from Legacy Processing Area into Premium Processing
Area, since these kinds of data should be transmitted immediately even though the
performance of QoS-Adaptive router may slow down. For this, we designed an urgent
mark and level marks in IPv6 header, and Classifier makes these packets move into
Flow Processing Area based on packets’ flow label field.

There is little bandwidth in Legacy Processing Area. When almost all of the
bandwidth in Legacy Processing Area is used, Legacy Processor should make a
stream using the largest bandwidth move into Flow Processing Area. In this case,
Legacy Processor sends a warning message to ext_TRCF. After getting this warning
message, ext_TRCF sends this status to PDF. And then, PDF regulates the amount of
bandwidth in Legacy Processing Area which should be left, and sends a reply with a
new policy including the level bound, which should be moved into Premium Process-
ing Area, to ext_TRCF which takes a role of communicating with Classifier in order
to apply this new policy. This process is done in large-bandwidth order until the
amount of bandwidth in Legacy Processing Area appointed by PDF is left. This
mechanism not only allows the bandwidth used in Legacy Processing Area to lower,
but also guarantees the QoS in this area. Table 2 tells us the information that Legacy
Processor sends to ext_TRCF.

180 B. Rhee et al.

Table 2. Information from Legacy Processor to ext_TRCF

Information Description

Message ID
Message identification
(Including a mark that this message is from Classifier,
Premium Processor or Legacy Processor)

Sequence No. Sequence Number
Message Type General message / Warning message

Level
The highest level among packets’ levels which are through
this area to find out level boundary.

Stream ID
and Level

Stream’s identifier and its level
(For instance, ‘0001’ and ‘A’)

Loss Packet loss of this stream
Bandwidth Bandwidth size of this stream
Stream ID
and Level

Stream’s identifier and its level
(For instance, ‘0011’ and ‘B’)

Loss Packet loss of this stream
Bandwidth Bandwidth size of this stream

Information

… …

3) Premium Processor
Data which move through Premium Processing Area are managed as flows of a flow-
based router. There are three cases where data move into Premium Processing Area.
First, if a packet includes a high quality level mark in IPv6 header, this packet moves
into Premium Processing Area. Soon after CPE sends service request signaling to
SCF, this high level is decided by PDF based on the subscriber and service informa-
tion. This means that the packet’s level is assigned before this packet comes into QoS-
Adaptive router. Second, if a packet is an urgent one, this packet moves into Premium
Processing Area irrespective of its level. In our mechanism, this packet has priority
over the packets in the first case, and this urgent sign also is marked in the flow label
field of IPv6 header. Last, if there is little bandwidth which is left in Legacy Process-
ing Area, a stream holding the largest bandwidth moves into Premium Processing
Area. Since this stream is taking big bandwidth but the service level is not high, the
bandwidth of this stream should be lowered in order not to affect other streams. To
this management, this stream should move from Legacy Processing Area into Pre-
mium Processing Area. Premium Processor allocates some bandwidth to this stream
based on the surplus bandwidth in Premium Processing Area and the level of this
stream. In most cases, Premium Processor allocates lower the amount of bandwidth
than the amount which this stream required.

In Premium Processing Area, following problems can happen, and Premium Proc-
essor should handle these cases.

Abnormal flow takes almost bandwidth. If the problem that one abnormal flow
takes almost bandwidth in Premium Processing Area happens, once Premium Proces-
sor has to drop this flow in advance, and then rearrange its bandwidth based on the
surplus bandwidth in this area. This is to protect normal flows from an abnormal flow.
This status is reported to PDF via ext_TRCF.

 QoS-Adaptive Router Based on Per-Flow Management over NGN 181

There is little bandwidth in Premium Processing Area. In this case, Premium
Processor sends an emergency message to ext_TRCF. ext_TRCF analyzes the status
of Legacy Processing Area, and distributes some flows’ bandwidth in Premium Proc-
essing Area into Legacy Processing Area in low-grade order if there is extra band-
width in Legacy Processing Area. However, if there is no extra bandwidth, to protect
high level services, Legacy Processor starts dropping the lowest level stream until
there is the amount of bandwidth settled by PDF.

The information from Premium Processor to ext_TRCF is similar to Table 2. Just
two different things are that there is emergency information in a message from Pre-
mium Processor instead of warning information, and this message is processed first.
And the information of ‘Level’ is the lowest level among packets’ levels which are
through this area.

3.3 Procedure of QoS-Adaptive Router

Fig. 4 shows us the whole procedure of QoS-Adaptive router.

Fig. 4. Procedure of QoS-Adaptive router

182 B. Rhee et al.

This procedure is repeated periodically. As a matter of fact, general reports are sent
to each destination by periodic, but a warning message from Legacy Processor or an
emergency message from Premium Processor is reported to ext_TRCF immediately
so as to be managed without delay.

4 Performance Evaluation

We implemented a simulation using a network simulator named OMNeT++ to evalu-
ate the performance in a broader range [9]. For QoS-Adaptive router, we configured a
network environment as shown in Fig. 5.

Fig. 5. QoS-Adaptive Network to be Simulated

We adopted delays between each QoS-Adaptive Router and an access router in
each access network, differently from 5 ms to 20 ms considering real network’s fea-
tures. Therefore, there are differences of packet loss, latency, and so forth in each
access network.

Source node is a packet generator that generates several types of packets including
their own service level and destination. Simulation operator can control the ratio of
levels and the speed of generation. We generated each level’s packet randomly. QoS-
Adaptive Routers are located in front of general routers and on the border of core
networks. Each terminal receives its own data including each level. In our test, we
sent 1st level data to terminal 2, 4 and 7, 2nd level data to terminal 3 and 11, 3rd level
data to terminal 1, 6 and 8, and 4th level data to terminal 5, 9 and 10. And we made
the level of data to terminal 5 be upgraded to the 2nd level in course of the test.

 QoS-Adaptive Router Based on Per-Flow Management over NGN 183

Fig. 6. Simulation Result (1) - Queuing Time

Fig. 6 illustrates the queuing time to arrive at each terminal as a result of our simu-
lation. There were few data in the early stage of the test. As the number of data in-
creases, however, the difference of queuing time to reach each terminal can be
checked. The queuing time of the data including 1st level mark is short, whereas the
one of the data including 4th level mark is rather long. Also, we can check that the
queuing time of upgraded data diminished abruptly.

Packet Loss Rate

3.30%

1.23%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

1 2 3 4 5 6 7 8 9 10 11

terminal no.

lo
ss

 r
at

e

Fig. 7. Simulation Result (2) – Packet Loss

184 B. Rhee et al.

Also, we can see the result of packet loss in each terminal shown in Fig. 7, and this
was simulated for 10 days in simulation time. When network overhead happens, high
level flows can be guaranteed because these ones have priority over the others, and
are processed first by QoS-Adaptive router.

This bar graph tells us that there are numerical differences of packet loss between
high level data and low level data. For example, terminal 7 and terminal 9 are in the
same access network, and the level of terminal 7 is much higher than terminal 9. As
Fig. 7 illustrates the result, the packet loss of terminal 7 is low, 1.23%. However, the
result of terminal 9 shows rather high packet loss, 3.30%.

5 Conclusion

To guarantee QoS, RACF in NGN QoS architecture was proposed and has been stud-
ied in many ways. We not only designed QoS-Adaptive router to combine the features
of legacy routing and flow-based routing, and a new packet type to mark levels, but
also extended the role of TRCF in RACF to enable PDF and a QoS-Adaptive router to
communicate with each other. By this mechanism, we could provide per-flow man-
agement which is based on subscriber and service level, and is suitable for QoS char-
acteristics. As a result, QoS-Adaptive router takes charge of a QoS supporter over
NGN by working based on subscriber and service levels.

This mechanism could be used in any network services for guaranteeing QoS such
as real-time services. In addition, one main aspect of NGN services is to grasp the
receiver’s situation and feeling of satisfaction about services in order to analyze and
provide QoE(Quality of Experience). QoE means end-to-end QoS in subscriber’s point
of view, and makes subscribers be served with suited services for each one. Our
mechanism will help this work. Also, Quality Management Center, which acts on be-
half of specific service or content providers and NGN Managers, can obtain the service
and network status from QoS-Adaptive routers, and this information will be used to
regulate a NGN policy, fix the price of the service, create new services, and so on.

References

1. ITU-T Y.2111: Resource and Admission Control Functions (2005)
2. Jeong, Y.H., Chung, H.S., Yoon, S.H., Lee, K.H.: Technology Trends of BcN-Resource

Admission Control: Electronics and Telecommunications Trends Analysis, vol. 21(6), pp.
20–31 (2006)

3. Rajahalme, J., Conta, A., Carpenter, B., Deering, S.: IPv6 Flow Label Specification: RFC
3697 (2004)

4. Choi, J.K.: QoS Guarantee Technology over NGN: Communications of the Korea informa-
tion science society, vol. 21(8), pp. 51–66 (2003)

5. Cho, S., Rhee, C., Kim, E., Han, S.: Study on for the efficient access network management
on BcN. In: KIPS Spring Science Conference, vol. 14(1), pp. 1147–1150 (2007)

6. National Information Society Agency: A Study on Quality Measurement Plans Based on
Resource Management Functions in BcN Environment: NIA II-PER-06041 (2006)

 QoS-Adaptive Router Based on Per-Flow Management over NGN 185

7. Rhee, B.Y., Kim, C.C., Koh, K.M., Han, S.Y., Chang, C.H.: QoS-Aware Overlay Multicast
Architecture over NGN. In: International Conference on Ubiquitous Information Technol-
ogy and Application, pp. 474–482 (2007)

8. Song, J.T., Park, H.: NGN QoS Control Technology Trend Focusing on Resource and Ad-
mission. IPTV and BcN Convergence Feature Articles, 65–70 (2006)

9. OMNeT++ version 3.3, http://www.omnetpp.org

Analysis of User Perceived QoS in Ubiquitous

UMTS Environments Subject to Faults

Andrea Bondavalli, Paolo Lollini, and Leonardo Montecchi

Università degli Studi di Firenze,
Dipartimento di Sistemi e Informatica,

viale Morgagni 65, I-50134, Firenze, Italy
http://rcl.dsi.unifi.it/

{bondavalli,lollini,lmontecchi}@unifi.it

Abstract. This paper provides a QoS analysis of a dynamic, ubiquitous
UMTS network scenario in the automotive context identified in the on-
going EC HIDENETS project. The scenario comprises different types of
mobile users, applications, traffic conditions, and outage events reducing
the available network resources. Adopting a compositional modeling ap-
proach based on Stochastic Activity Networks formalism, we analyze the
Quality of Service (QoS) both from the users’ perspective and from the
mobile operator’s one. The classical QoS analysis is enhanced by taking
into account the congestion both caused by the outage events and by the
varying traffic conditions.

Keywords: QoS analysis, UMTS networks, partial outages, composi-
tional modeling, stochastic activity networks, simulation.

1 Introduction

Ubiquitous infrastructures are typically composed by a high number of mobile
devices that move within some physical areas, while being connected to networks
by means of wireless links. The supported mobile-based applications should be
capable to provide the expected services in a dependable way, and maintaining
the required Quality of Service (QoS) levels.

In this paper we adopt a compositional modeling approach based on Stochastic
Activity Networks to assess the QoS provided over complex, ubiquitous and dy-
namic infrastructures, taking as motivating example a use-case scenario defined
in the ongoing EC HIDENETS project [1]. The analyzed system is character-
ized by a UMTS communication network composed by several partially over-
lapping cells, and by a set of users (i.e., cars and emergency vehicles, equipped
with UMTS network devices) moving through the network and requiring dif-
ferent UMTS-based applications (e.g., voice call and entertainment). The user
perceived QoS level should always be higher than a minimum level, and this
aspect becomes particularly critical when emergency situations are considered,
for example in the case of an ambulance that is using a streaming application to
transmit the ECG traces of an injured person while moving to the hospital. Since

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 186–197, 2008.
c© IFIP International Federation for Information Processing 2008

http://rcl.dsi.unifi.it/

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 187

the user perceived QoS level depends on the availability of network resources,
base stations’ faults are also considered. More in detail we allow the presence of
partial outages that may affect the availability of the UMTS resources.

The rest of this paper is organized as follows. Section 2 provides the descrip-
tion of the analyzed system and it outlines the corresponding QoS measures of
interest. The main UMTS aspects influencing the QoS analysis are discussed in
Section 3. The modeling approach is then sketched in Section 4, while Section 5
presents and discusses some of the obtained results. Finally, the conclusions are
drawn in Section 6.

2 The System Context and the QoS Indicators

HIDENETS [1] is an ongoing EC project addressing the provision of available and
resilient distributed applications and mobile services with critical requirements
on highly dynamic and possibly unreliable open communication
infrastructures. A set of representative use-case scenarios has been identified,
each one composed by different applications (mostly selected from the field of
car-to-car and car-to-infrastructure communications), different network domains
(ad-hoc/wireless multi-hop domains, infrastructure network domains), different
actors (end users, servers, routers, gateways), and characterized by different fail-
ure modes and challenges. In the following we give a brief description of the
“car accident” scenario, which is analyzed in this paper and used as motivating
example to describe the modeling process.

2.1 Definition of the “Car Accident” Use-Case Scenario

The “car accident” use-case scenario evolves around a scene with an accident
on a road, involving cars. The use-case covers mainly what happens after the
accident but also involves some issues directly before and during the accident.
The analyzed network scenario is composed by a set of overlapping UMTS cells
covering a high-way, and a set of mobile network devices (embedded or inside
cars and emergency vehicles) moving in the high-way and requiring different
UMTS class of services (e.g., conversational, interactive, and background).

Directly before the accident, several applications are used by the different
mobile users, like entertainment and voice call. Right after the accident, many
people may try to call the emergency services, call home, and send text and mul-
timedia messages. Some time after the accident, an ambulance is approaching.
Arriving at the place of the accident, and heading back to the hospital with the
injured, there will be a need to transmit information on the positioning of the
ambulance to communicate that it is approaching the hospital and at the same
time maintain a multimedia connection with the medical expertise by use of
voice, video and data transmission (“access to medical expertise” application).

The concrete UMTS scenario under analysis is depicted in Figure 1. Four base
stations are considered: A, B, C and D. The base stations are subject to faults,
which may reduce their available network resources. The users are moving in

188 A. Bondavalli, P. Lollini, and L. Montecchi

Fig. 1. The analyzed scenario

two different road lanes: part in the left to right lane (from A to D) and part in
the right to left one (from D to A). We assume that the accident occurs in the C
zone, in the left to right lane, forcing other users approaching that area to stop
until the ambulance arrives, the crash site is cleaned and the normal traffic flow
restored. The emergency vehicle heads back to the hospital towards the A zone
where we suppose the hospital is located.

Concerning the available UMTS services, we suppose that a generic user can
use three different services (Telephony, Web Browsing and File Transfer), while
the ambulance uses the “access to medical expertise” application that consists of
two simultaneously running services (Emergency Streaming to transmit the ECG
traces, and Emergency Video-conference to fully interact with the hospital), hav-
ing higher requirements in term of signal to interference ratio with respect to the
non-emergency services. The services mainly differ for the activity factor, the
uplink and downlink throughput and the required signal-to-interference ratio.
Using well-known UMTS formulas (e.g., see [2]), these parameters are summa-
rized into a single value that represents the workload increment they produce
on the network (δul and δdl parameters of Equation (1), Section 3).

2.2 QoS Indicators

The measures of interest concern the QoS levels both from the users’ perspective
and from a mobile operator’s point of view. The QoS level perceived by users
(both normal cars and emergency vehicles) depends on their capability to suc-
cessfully use the network services when required and for the time required. The
users involved in the traffic-jam should be capable to call home, while the ambu-
lance should be capable to maintain the multimedia connections while moving
towards the hospital. Typical user-oriented QoS indicators are: the following:

– The probability that a service request is successfully completed (Psucc),
– The probability that a service request is blocked (Pblock) or dropped (Pdrop).

The network workload is another system aspect that deserves special attention.
Right after the accident, the behavior of the users involved in the consequent
traffic-jam changes from normal to emergency, for example intensifying the ser-
vice requests and trying to call the emergency services and call home, and this
may cause congestion in the radio access network. In this context, typical mobile
operator-oriented indicators are the following:

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 189

– The load factor, both in uplink (ηul) and downlink (ηdl),
– The number of allocated traffic channels, which corresponds to the average

number of served users.

3 Communication-Level Aspects Influencing the QoS
Analysis

In this section we focus on the communication level aspects related to the “car
accident” use-case, and in particular on three UMTS characteristics having im-
portant effects on the QoS: the random-access procedure, the admission con-
trol strategy and the soft handover mechanism. These characteristics mainly
influence the so called “connection-level” QoS, which are the quality indicators
related to the connectivity properties of the network, like the call blocking or
dropping probability.

When a user needs a service from the UMTS network, its User Equipment
(UE) sends a channel request to the network through the Physical Random
Access CHannel (PRACH), a specific channel dedicated to the uplink transmis-
sion of channel request. The access method, based on a random-access procedure
(RACH), may cause collisions among requests by different UEs, thus worsening
the expected QoS (e.g., see [3] for more details on this aspect).

The admission control strategy is needed to decide whether a new service
request can start based on the available network “capacity”. Once the network
receives the channel request, it performs the admission control procedure to
decide if a traffic channel can be allocated to this new request. The goal is, in
general, to ensure that the interference created after adding a new call does not
exceed a pre-specified threshold, thus preventing the QoS to degrade below a
certain level. There are several types of admission control algorithms studied
in the literature, each one having different properties and aiming at optimizing
different network parameters (e.g., [4]). Here we consider an admission control
algorithm based on the workload of the UMTS cell: a new call is accepted if
the workload level reached after adding the call does not exceed a pre-specified
threshold, both in uplink and in downlink. Equivalently:

ηul + δul ≤ ηul threshold, ηdl + δdl ≤ ηdl threshold, (1)

where ηul, δul and ηul threshold (or ηdl, δdl and ηdl threshold) are, respectively, the
cell workload before the admission of the new call, the workload increment due
to the admission of the new call and the pre-specified threshold level in uplink
(or downlink).

Another key aspect to be addressed is soft handover, a feature of the 3rd
generation mobile networks, where a User Equipment can have two or more
simultaneous connections with different cells (or cell sectors) and receive from
them the same information signal. The signal received from different sources is
then combined using rake receivers and under certain conditions this results in
a amplified signal and better link quality. Beside providing better link quality,
soft handover is also a key point in maintaining an ongoing service call, since it
provides seamless switching between base stations.

190 A. Bondavalli, P. Lollini, and L. Montecchi

4 Modelling Process

In such ubiquitous landscape, system complexity comes out to be a paramount
challenge to cope with from a number of different points of view, including de-
pendability and QoS evaluation. In order to master complexity, a modelling
methodology is needed so that only the relevant system aspects need to be de-
tailed, allowing numerical results to be effectively computable. The complexity
of models depends on the dependability measures to be evaluated, the modelling
level of detail, and the stochastic dependencies among the components. Several
works have been presented in the literature trying to cope with the complexity
problem (see [5] for a nice survey), and some of them try to tackle the com-
plexity problem building models in a modular way through a composition of its
submodels (e.g., [6,7]), which are then solved as a whole. Most of the works be-
longing to this class define the rules to be used to construct and interconnect the
sub-models, and they provide an easy way to describe the behavior of systems
having a high degree of dependency between subcomponents.

In this paper we adopt a compositional modeling approach based on Stochastic
Activity Networks (SAN) [8], that are stochastic extensions to Petri Nets. The
composition operators available for SAN are the join and replicate operators [9]:
the first is used to compose different system models possibly sharing some places,
while the second is used to combine multiple identical copies of a submodel,
which are called replicates. Another key point of the modeling approach is the
“model parametrization”. Following the object oriented philosophy, we develop
some “template” SAN models describing the general behavior of the main system
components. The overall model results from the composition of some “instances”
of such classes, where an instance is a specification of a template model with a
proper parameters’ setting. Using this approach we avoid duplicating the code
and the structure of similar models, which is a very time-consuming and error-
prone process; as a consequence, the overall model is easier to be modified and
it can be more easily adapted to represent different scenarios.

In Figure 2 we have depicted the main basic SAN models (called “atomic”
models in the SAN language) with their dependency relations (the arrows). An
arrow from model X to Y means that model X can influence the stochastic
behavior of model Y or, equivalently, that the Y state can depend on the X
state.

For the sake of brevity the actual implementation of the atomic models is not
described here. An exhaustive and detailed description of such models can be
found as a technical report in [10]. In the following we outline the main system
aspects captured by the different models.

– Phases atomic model. It represents the sequence of periods (phases) com-
posing the system lifetime, each one characterized by diverse applications
running, diverse types of users’s behavior (normal behavior, before the car
accident, or emergency behavior, right after the car accident) and different
dependability properties to be ensured.

– User atomic model. It describes the user’s behavior mainly in terms of
services requested, duration of the services and idle periods.

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 191

Fig. 2. Atomic models and their interactions

– UserMobility atomic model. It represents the user movement across the
UMTS network scenario.

– The “UMTS Network” model consists of several instances of the BaseSta-
tion atomic model and a number of models representing the available ser-
vices. A network service is represented using three kinds of atomic models:
Service, ServiceManager and CellManager. The Service atomic model
represents the upper network layers and it is directly connected with the User
model. When the user requests a network service, the User model interacts
with the respective Service model which serves as interface between the user
and the network. The Service model then asks for the needed resources to
the ServiceManager atomic model, which handles the soft handover mecha-
nisms allowing user to be served by multiple base stations. This is achieved
using several instances of the CellManager atomic model, which serve as
interfaces between the ServiceManager atomic model and each BaseStation
model. Finally the BaseStation model represent a UMTS base station, with
failure and repair activities, and holds the current base station state, like its
current workload and the number of allocated channels. In case of outage
events this model also implements the congestion control algorithm, which
drops (interrupt) a certain number of connections if the current workload
exceeds the remaining available system resources.

Once such basic template models have been developed, several different scenarios
can be easily obtained resembling different network topologies, users’ behaviors,
users’ mobility patterns and available applications. Therefore, the modularity of
the modeling framework improves both the readability and the maintenance of
the models, as well as their reusability. In the following Section 4.1 we detail the
overall model for the “car accident” use-case scenario defined in Section 2.1.

192 A. Bondavalli, P. Lollini, and L. Montecchi

Fig. 3. The overall composed model corresponding to the analyzed use-case scenario

4.1 The Overall UMTS Network Model

As described in Section 2.1, the analyzed scenario consists of four partially over-
lapping base stations and five services: services 1 (Telephony), 2 (Web Brows-
ing) and 3 (File Transfer) are assumed to be services for the “normal” users,
while 4 (Emergency Streaming) and 5 (Emergency Video-conference) are as-
sumed to be services used by the emergency vehicle and will have higher re-
quirements in term of signal to interference ratio.

Figure 3 depicts the corresponding composed model. The composition in-
volves three join levels. Starting from the lower level (the boxed part of the
figure), joins relative to different services are shown, each one formed by four
CellManager models (one for each base station), a Service and a ServiceManager
model, as sketched in Figure 2. In the second level the services are joined with
the respective user models, so services 1-3 are composed with User Generic and
UserMobility Generic (on left part of the figure), while services 4-5 are composed
with User Ambulance and UserMobility Ambulance (on right part). The generic
user is then replicated as needed and added to the top-level join, which also in-
cludes the ambulance join, the four BaseStation models, the Phases model and
the Startup model (used to initialize the multiple instances of the other atomic
models with the proper values).

The advantage of using model parametrization is evident considering the ef-
fort required for the model construction process. To build the composed model
shown in Figure 3, 40 atomic models are needed (exactly 20xCellManager, 5xSer-
viceManager, 5xService, 4xBaseStation, 1xStartup, 1xPhases, 1xUser Generic,
1xUserMobility Generic, 1xUser Ambulance and 1xUserMobility Ambulance).
Using model parametrization we need to create the basic template atomic models
only, one for each type. For this scenario only 10 atomic models have been built,
and those depicted in Figure 3 are just instances of these basic 10 models. Once

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 193

the basic template models have been defined, we can easily build and analyze
different scenarios with a very small effort. For example, deleting the JoinAm-
bulance composed model in Figure 3 we can limit the analysis to normal (not
emergency) services, while adding another base station (thus obtaining a dif-
ferent network topology) would simply consist in adding another CellManager
atomic model to each JoinSV composed model, and another BaseStation atomic
model (BaseStationE) to the CarAccident composed model.

5 Numerical Evaluations

In this section we sketch some of the results that we obtain through the solution
of the models previously described. A transient analysis has been performed,
using the simulator provided by the Möbius tool [11]. Each point of the graphs
has been computed as a mean of at least 1000 simulation batches, converging
within 95% probability in a 0.1 relative interval, and a AMD Athlon XP 2500+
PC (2Gb RAM) has been used for the computations.

Table 1. Workload increment per accepted service, in uplink (δul) and downlink (δdl),
with or without soft-handover

Service1 Service2 Service3 Service4 Service5

Workload increment (no SHO)
Downlink (δdl) 0.01357 0.08774 0.2125 0 0.09917

Uplink (δul) 0.01632 0.06675 0.0620 0.11923 0.10814

Workload increment (with SHO)
Downlink (δdl) 0.00995 0.03781 0.1275 0 0.07083

Uplink (δul) 0.00984 0.03411 0.03781 0.08543 0.0620

The setting of the model’s parameters has been mainly derived from [2] and
adapted to the analyzed scenario. With reference to Equation (1), the values
assigned to δul and δdl are shown in Table 1, while the maximum load factor in
uplink (ηul threshold) and downlink (ηdl threshold) has been set, respectively, to
0.65 and 0.8. Each base-station has a coverage area of 2 Km, and 25% of the cell
radius is overlapping with the adjacent cell. Whenever not differently specified,
we consider a total of 50 cars moving in the scenario (and 1 ambulance), with
an average speed of 90 Km/h (120 Km/h for the ambulance) when not involved
in the traffic jam caused by the car accident. Moreover, we suppose that the car
accident happens in the C cell at time t=10500 sec., and that the ambulance
stays 600 sec. at the crash site before heading back to the hospital. The complete
set of model’s parameters and their setting can be found in [10], and it is not
reported here for the sake of brevity.

5.1 Results

Figure 4 shows the load factor of the base station C, considering no outage
events (i.e., 100% of the network resources are always available). The vertical
line represents the instant of time when the accident occurs, while the horizontal
ones represent the maximum allowed load factor in downlink (ηdl threshold) and

194 A. Bondavalli, P. Lollini, and L. Montecchi

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 11000 12000 13000 14000 15000

Lo
ad

 F
ac

to
r

Time (seconds)

Load Factor - Base Station C

Downlink
Uplink

Fig. 4. Load Factor of the base station C

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 11000 12000 13000 14000 15000

Lo
ad

 F
ac

to
r

Time (seconds)

Load Factor - Downlink - Base Stations B,C,D

B
C
D

Fig. 5. Load Factor of different base sta-
tions (downlink)

in uplink (ηul threshold). As shown in Figure 4, right after the accident the C cell
becomes rapidly congested due to the users that are stopped in that area (due
to the consequent traffic-jam). The congestion phenomenon is also exacerbated
considering that the users’ behavior changes during emergency conditions, in
particular reducing the idle time between two consecutive service requests. Af-
ter a while the load factor starts to decrease, because the normal traffic flow
is restored after the ambulance heads back to the hospital, and because the
users behavior becomes again normal. The load factors of base stations near the
accident zone are summarized in Figures 5 (downlink) and 6 (uplink). After a
certain delay a congestion is also produced on the base station B and this is due
to the traffic-jam reaching its coverage area. On the contrary, the load factor of
D rapidly decreases right after the accident, since the cars are blocked in the
preceding cells. When the crash site is cleared and user (cars) are capable to
move again all the load factors slowly return to the level they had before the
car-accident.

Figure 7 shows the impact of an outage affecting the base station C at
time t=11000 sec. on the “access to medical expertise” application used by the
ambulance (plot ‘4+5 Combined’). The probability of service interruption
rapidly increases considering higher percentage of resources unavailability, reach-
ing its maximum for values greater than 60%. Analyzing the single services
forming the application (plots ‘Emergency Streaming’ and ‘Emergency Video-
conference’), initially the probability is lower for ‘Emergency Streaming’, but
when limited resources are available ‘Emergency Video-conference’ has a lower
probability of interruption. This happens because we have assumed that
‘Emergency Streaming’ requires more uplink resources than ‘Emergency Video-
conference’ (see Table 1), and after the outage the available uplink resources are
lower than the downlink ones. For a better understanding, in Figure 8 we depict
the uplink and downlink load factor of the base station C considering an outage
equal to 70% (i.e., 70% of the cell resources becomes unavailable), at varying of
time. The load factor (both in uplink and downlink) increases after the car ac-
cident (at time t=10500 sec.), and then rapidly decreases after the outage event

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 195

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 11000 12000 13000 14000 15000

Lo
ad

 F
ac

to
r

Time (seconds)

Load Factor - Uplink - Base Stations B,C,D

B
C
D

Fig. 6. Load Factor of different base sta-
tions (uplink)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 s

er
vi

ce
 in

te
rr

up
tio

n
(A

m
bu

la
nc

e)

Radio resources not available due to the outage (%)

Base station C outage at tout=11000 sec.

4. Emergency Streaming (64 Kbps)
5. Emergency Video-conference (64 Kbps)

4+5 Combined

Fig. 7. Probability of interruption of
emergency services, with C cell outage

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 10500 11000 11500 12000

Lo
ad

 F
ac

to
r

Time (seconds)

Load Factor - Base Station C - Outage=70% at tout=11000 sec.

Downlink
Uplink

Fig. 8. Load Factor of the base station
C, with outage=70%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 s

er
vi

ce
 in

te
rr

up
tio

n
(A

m
bu

la
nc

e)

Radio resources not available due to the outage (%)

Base stations outage at tout=11000 sec.

A Outage
B Outage
C Outage
D Outage

Fig. 9. Probability of interruption of am-
bulance services (4+5 combined) when a
single base station fails

at time t=11000 sec. (due to the dropped services). After the outage the uplink
load factor is near to its maximum allowed value and then the services requir-
ing higher uplink resources will be probably not satisfied (due to the selected
admission control algorithm, see (1)).

Figure 9 shows the impact of the outage on the probability that the “access to
medical expertise” application is interrupted, at varying of the outage severity
(percentage of unavailable cell resources) and at varying of the base station
affected by the outage. As expected, base station C is the most critical one,
since it is the cell where the car accident occurs and the traffic is blocked, thus
determining a high network congestion. Cell D does not influence the ambulance
connection at all, since the ambulance doesn’t even enter the D zone.

Figure 10 shows the probability that the multimedia connections between the
ambulance and the hospital are interrupted while the ambulance is going back
to the hospital, varying the vehicle’s average speed (no outages considered).
Individual probabilities for the emergency services ‘Emergency Streaming’ and

196 A. Bondavalli, P. Lollini, and L. Montecchi

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 90 100 110 120 130 140 150

P
ro

ba
bi

lit
y

of
 s

er
vi

ce
 in

te
rr

up
tio

n
(A

m
bu

la
nc

e)

Ambulance average speed (Km/h)

50 Users

4. Emergency Streaming (64 Kbps)
5. Emergency Videoconference (64 Kbps)

4+5 Combined

Fig. 10. “Access to medical expertise”
interruption probability

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(h

ou
rs

)

Total number of users in the system (ambulance excluded)

AMD Athlon XP 2500+, 2 Gb RAM, Windows XP

Elapsed Time

Fig. 11. Average time to produce Fig-
ure 10, at varying of the total number of
users in the system

‘Emergency Video-conference’ are shown, as well as the overall probability that
corresponds to the “access to medical expertise” application. The probability of
interruption is lower for service ‘Emergency Streaming’ because we assumed that
it only uses uplink bandwidth and then it requires less network resources than
service ‘Emergency Video-conference’. Results also show that the probability
increases when vehicle speed increases and this effect is in part caused by the
RACH procedure delay.

In Section 4.1 we have shown the effectiveness of the modeling approach in fa-
cilitating the construction of the overall model, which can be obtained as compo-
sition of 40 models derived from a set of 10 basic template models only. Anyway,
the modeling approach is really effective only if the computational cost required
to solve the overall model is still manageable. In Figure 11 we present the aver-
age time (in hours) needed to produce Figure 10, at varying of the total number
of users in the system. The values in Figure 10 have been obtained performing
7 simulations, one for each considered ‘ambulance average speed’ value. As we
can see, the computational time increases almost linearly for a low number of
users, and the rate of grow slightly increases considering more than 60 users.
Nevertheless, in the worst case (i.e., for number of users equal to 100) the whole
set of simulations completed in less than 56 hours (therefore, less then 8 hours
for each simulation).

6 Conclusions

In this paper we have proposed a QoS analysis of a dynamic, ubiquitous UMTS
network scenario identified in the ongoing EC HIDENETS project, including dif-
ferent types of mobile users, applications, traffic conditions, and outage events
affecting the availability of the network resources. The final goal was to quan-
titatively evaluate some QoS measures regarding both the users (the probabil-
ity that an ongoing service request is interrupted) and the mobile operators
(the load factor of the UMTS cells). To do this, we have adopted a modular,

Analysis of User Perceived QoS in Ubiquitous UMTS Environments 197

hierarchical modeling approach based on composition, replication and parametriza-
tion, which facilitates the model construction process as well as the model
reusability. The produced numerical results provides a useful insight in the
relationships between the selected QoS measures, the users‘ behavior and the
users’ mobility. In addition, they show the effectiveness of the modeling ap-
proach considering the computational time required to solve the overall model by
simulation.

Acknowledgment

This work has been partially supported by the EC IST Project HIDENETS [1].

References

1. European Project HIDENETS: contract n. 26979, http://www.hidenets.aau.dk
2. Laiho, J., Wacker, A., Novosad, T.: Radio Network Planning and Optimisation for

UMTS, 2nd edn. Wiley, Chichester (2006)
3. Lollini, P., Bondavalli, A., Di Giandomenico, F.: QoS Analysis of a UMTS cell

with different Service Classes. In: CSN-2005 The Fourth IASTED International
Conference on Communication Systems and Networks, September 12-14 (2005)

4. Andersin, M., Rosberg, Z., Zander, J.: Soft and safe admission control in cellular
networks. IEEE/ACM Transaction on Networking 5(2) (1997)

5. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: From depend-
ability to security. IEEE Transactions on Dependable and Secure Computing 1(1),
48–65 (2004)

6. Rojas, I.: Compositional construction of SWN models. The Computer Jour-
nal 38(7), 612–621 (1995)

7. Bernardi, S., Donatelli, S.: Stochastic petri nets and inheritance for dependability
modelling. In: Proceedings of the 10th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC 2004), March 2004, pp. 363–372 (2004)

8. Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and
concepts, pp. 315–343 (2002)

9. Sanders, W.H., Meyer, J.F.: Reduced base model construction methods for stochas-
tic activity networks. IEEE Journal on Selected Areas in Communications 9(1),
25–36 (1991)

10. Lollini, P., Montecchi, L., Bondavalli, A.: On the evaluation of hidenets use-cases
having phased behavior. Technical Report rcl071201, University of Florence, Dip.
Sistemi Informatica, RCL group (December 2007),
http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html

11. Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius:
An extensible tool for performance and dependability modeling. In: Schaumnurg,
I.L., Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS,
vol. 1786, pp. 332–336. Springer, Heidelberg (2000)

http://www.hidenets.aau.dk
http://dcl.isti.cnr.it/Documentation/Papers/Techreports.html

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 198–208, 2008.
© IFIP International Federation for Information Processing 2008

Cost-Performance Tradeoff for Embedded Systems

Julie S. Fant and Robert G. Pettit

The Aerospace Corporation
Chantilly, Virginia USA

{julie.s.fant,robert.g.pettit}@aero.org

Abstract. Software engineering requires creativity, thorough design and analy-
sis, and sound design decisions. Design decisions often have tradeoffs and im-
plications associated with them. Therefore, it is important that design decisions
are based on sound analysis. With respect to embedded systems, key drivers are
often performance and cost. Thus the purpose of this paper is to describe an ap-
proach to aid in the design decision process on cost and performance tradeoffs
for embedded systems. Specifically, it presents a model-driven approach to un-
derstand and communicate the performance-cost tradeoff.

Keywords: software performance, cost, UML, embedded systems, model-
driven design, tradeoff.

1 Introduction

Software engineering, like other engineering disciplines, requires creativity, thorough
design and analysis, and sound design decisions. Design decisions often have trade-
offs and implications associated with them. Thus these decisions should be examined
with proper analysis to ensure the best overall decision is made.

Embedded systems are a special type of system where the computers and associ-
ated software are components embedded within a larger system such as mobile
phones, household appliances, automotive controls, etc. In these types of systems,
performance and cost are often key drivers. Many times the solution to achieving
better performance is simply to purchase more expensive hardware. This, however, is
not always a good solution since the additional cost of the high performance hardware
may not result in an equivalent performance gain. For example, one may spend a
large sum of money for the fastest central processor available but find that in-
put/output (I/O) constraints limit the benefits from the high-performance CPU. There-
fore it is critical to spend the time analyzing the different options to ensure the best
decision is made between cost and performance.

The purpose of this paper is to describe an approach to aid in the design decision
process by helping to understand and communicate the performance-cost tradeoff for
embedded systems. Specifically, it presents a model-driven approach that combines
software performance analysis techniques with techniques to analyze and compare the
cost-performance aspects of potential hardware implementations.

This paper is structured as follows: Section 2 describes the related works. Section 3
presents the approach to cost-performance analysis and its benefits. Section 4 de-
scribes a case study using the proposed approach. Finally, Section 5 contains the ma-
jor conclusions and future work.

 Cost-Performance Tradeoff for Embedded Systems 199

2 Related Work

Many approaches to analyze the performance of embedded and real-time systems have
been developed. For our purposes, these approaches can be broadly categorized as
those exploring performance through analytical techniques [1-6] or through simulation
[7-10]. The cost-performance analysis approach presented in this paper does not pre-
scribe the use of a particular performance analysis method. Rather, it attempts to illus-
trate how cost-performance tradeoff decisions can be compartmentalized and input to
analytical or simulation techniques that will assist the decision making process.

3 Analysis Approach and Benefits

The paper presents an approach to performing cost-performance tradeoff analysis for
embedded systems. The purpose of this approach is to help communicate and under-
stand the cost-performance tradeoffs associated with different hardware implementa-
tion options. It has five major steps, which are as follows: 1) Develop a platform
independent model; 2) Select the hardware configurations to analyze; 3) Conduct
performance analysis on each of the hardware configurations; 4) Perform cost-
performance tradeoff analysis; and 5) Make and document the design decision. Each
step is described below in more detail.

The first step in the proposed tradeoff approach is to build a platform independent
model of the software system. The purpose of this step is to show how the software is
meeting the functional requirements. Additionally the platform independent model
will serve as the foundation for predicting software performance. It is recommended
that the models be captured using the Unified Modeling Language (UML) since it is
the de facto object oriented modeling language in industry.

The next step is to select the hardware implementation options for the software
system. A good way to promote creativity and to enumerate the different potential
options is to develop morphological box. A morphological box is an existing systems
engineering technique that uses a two-dimensional table of components and physical
architecture options, as depicted in Table 1.

Table 1. Morphological Box Generic Example

Component A Component B Component C
Physical Option A1 Physical Option B1 Physical Option C1
Physical Option A2 Physical Option B2 Physical Option C2
Physical Option A3 Physical Option B3

Each column represents a component and each row in the column represents a
physical instantiation option. Different system physical architectures can be analyzed
by selecting one box from each column [11]. This same technique can be applied to
software for determining and selecting hardware implementation options. The col-
umns will represent hardware elements and the rows will represent different physical
hardware options for the elements. For example, one column may be the microcon-
troller with possible options being an H8 or an ARM 7 microcontroller. Once the

200 J.S. Fant and R.G. Pettit

morphological box is created, the engineers can select the hardware implementations
to analyze by selecting one row from each column. The morphological box will
likely produce a large number of potential options. However, not all of these options
need to be analyzed. Engineers should only select a subset that they are considering
for the end system. Selections can be made with certain characteristics in mind such
as lowest cost hardware or highest performance hardware.

Once the potential hardware implementations have been identified, the third step is
to perform software performance analysis for each implementation. Any software
performance analysis technique can be used in the proposed approach. For example,
the UML platform independent model can be annotated with platform specific infor-
mation using a UML profile and then subsequently analyzed. Alternatively, the UML
platform independent model can be converted into a Petri-net model and subse-
quently analyzed for performance. The performance metrics produced in the software
performance analysis should coincide with the software performance requirements.
For example, if the system has a requirement for a maximum latency, then latency
should be calculated in the performance analysis.

The fourth step in the proposed tradeoff approach is to compare the different hard-
ware implementations against cost and performance. This should be done by develop-
ing tradeoff x-y scatter plots of performance and cost. The plots should again be based
on the performance requirements. This will clearly show the tradeoff of different
hardware configuration options on one graph. For example, if there is a performance
requirement on the maximum latency, then the tradeoff x-y scatter plot should plot
latency versus cost. Additionally, the performance requirements can also be added to
the graph to show the system’s threshold. To illustrate this point, consider Figure 1.

0

5

10

15

20

25

30

3 3.5 4 4.5 5 5.5 6 6.5

Cost ($1000)

L
at

en
cy

 (
m

s)

A

B
C

Fig. 1. Example Tradeoff Plot

This is an tradeoff x-y scatter plot of worst case latency versus cost for three hard-
ware options and the performance requirement for maximum latency is denoted with
a red-dotted line. In this example, all the options meet the performance requirement
since they are below the maximum latency threshold. It can be clearly seen that there
is a 28% increase in performance and a 14% cost increase between options A and B.
Between options B and C there is an 11% performance increase, however the cost is

 Cost-Performance Tradeoff for Embedded Systems 201

50% more. In this case, since option B provides the best balance between cost and
performance, it is the best choice for the example system.

Finally, after the different options have been analyzed and a decision has been
made, the design decision should be documented so that future maintainers of the
system will understand why this decision was made.

The proposed tradeoff analysis approach has several benefits. First, the proposed
tradeoff approach does not prescribe any particular performance analysis technique.
This is good because it enables organizations to leverage their currently existing
performance analysis techniques. Another benefit of the proposed tradeoff approach is
that it provides an easy means to understand and communicate tradeoff decisions.
The scatter plots present the data from all the potential hardware options on a single
graph while illustrating the cost-performance impacts of each option. Finally, the
proposed tradeoff approach helps directly link design decisions to performance
requirements.

4 Case Study

In this section, we illustrate the cost-performance tradeoff approach using a robot
controller case study. The robot controller is an autonomous robot with an infrared
light sensor and two motors (actuators). The goal of the robot is to search an area for
colored discs while staying within a course boundary and avoiding obstacles. In this
case study, a light sensor is used as the sole input sensor, responsible for detecting
boundaries, obstacles, and discs according to different color schemes. In order to
avoid hitting obstacles and boundaries, the robot controller must process the light
sensor inputs in a timely manner. For our purposes, the rover has a requirement to
react to a light sensor event within a travel distance of 0.5 cm, which corresponds to
50ms in the configurations used for this study. The following subsections details each
step in the proposed tradeoff approach.

4.1 Platform Independent Model

The first step in the tradeoff approach is to build a platform independent model of the
robot controller to show how the system will meet its functional requirements. We
designed the case study following the COMET method and stereotypes [5]. The sys-
tem is divided into three active, concurrently executing objects (detect, rover, and
nav), one passive object (map), and three external I/O objects for receiving light sen-
sor input and for modeling output to the two motors. Figure 2 depicts a UML
sequence diagram for how the different objects interact. The detect, rover, and nav
objects all operate asynchronously and all messages between the active objects have
synchronous, buffered communication.

4.2 Hardware Configuration Selection

The next step in the tradeoff approach is to develop the different hardware implemen-
tation options. In this example there are four hardware elements which are the two
motors, the light sensor, and the microcontroller platform. In this configuration, the
microcontroller platform performs all of the processing and the light sensor is the sole

202 J.S. Fant and R.G. Pettit

Fig. 2. Platform Independent Sequence Diagram

input for determining discs and obstacles. The microcontroller platform uses two
motors which are used to maneuver the robot. Turning is achieved by rotating the left
(Motor A) and right (Motor C) motors in opposite directions. These four elements
become the columns in our morphological box and each element was given at least
one hardware option.

The final morphological box for the robot controller is depicted in Table 2. In this
example, we consider two types of motors, three different light detectors, and three
different microcontrollers. These platform specific performance characteristics and
costs were also listed in the morphological box. The performance characteristics were
selected based on the notational embedded system framework described in [9]. This
framework shows which platform characteristics need to be included in the design of
concurrent software. We determined the platform specific characteristics and costs
using online pricing, historical data, hardware specifications, and published bench-
marks for the different systems [12-16].

After the morphological box is populated, it is time to select the hardware imple-
mentations that will be considered. In this example, we chose to analyze the cheapest
option which is referred to as RP: two RCX interactive servo motors, the CDS photo-
resister, and the RCX Intelligent Brick. The second option we selected uses the high-
est performance hardware which is called JN: two NXT interactive servo motors, the
NXT light sensor, and JOP. The third option we picked was the standard RCX con-
figuration which is referred to as RR: two RCX interactive servo motors, the RCX
light sensor, and the RCX Intelligent Brick. Finally, we also chose to analyze the new
Mindstorms™ NXT system which is referred to as NN: two NXT servo motors, the
NXT light sensor, and Mindstorms™ NXT processor.

 Cost-Performance Tradeoff for Embedded Systems 203

Table 2. Morphological Box for the Robot Controller

Motor A Motor C Light Sensor Platform

RCX Interactive
Servo Motor

RCX Interactive
Servo Motor

Mindstorms™ Light
Sensor

RCX Intelligent Brick -
Hitachi H8 μμμμ controller

Latency=1ms Latency=1ms detectionLatency=10.3ms IPS=18M
cost=$18 cost=$18 Cost=$17 clockspeed=16MHz

CDS Photoresister csOverhead= < 1ms
detectionLatency=30ms kbMemOverhead=17.5
Cost=$0.60 RAM=28KB

Cost=$45
JOP - Altera Cyclone EP1C6
FPGA Board
IPS=10406M
clockspeed=20 MHz
csOverhead= < 1ms
kbMemOverhead=3KB
RAM=92KBits
Cost=$310.00
Mindstorms™ NXT – ARM
7 μμμμ controller
IPS=80M
clockspeed=40MHz
csOverhead= <1 ms
kbMemOverhead=20
RAM=64MB

NXT Servo
Motor
Latency=1ms
cost=$18

NXT Servo
Motor
Latency=1ms
cost=$18 NXT Light Sensor

detectionLatency=5ms
Cost=$39

Cost=$135

4.3 Performance Analysis

The third step in the tradeoff analysis approach is to conduct the performance analysis.
This is the step where the different hardware implementations are analyzed for per-
formance. In this case study, to illustrate the flexibility of the cost-performance trade-
off approach, we will show the performance analysis using both an analytical and a
simulation approach. The follow subsections show the details for each approach.

4.3.1 Analytical Technique
For an analytical technique, we start with a UML model augmented with platform
specific characteristics and then apply event sequence analysis for certain perform-
ance scenarios. Here, platform specific UML models are annotated using the UML
Profile for Schedulability, Performance and Time (SPT) [17]. The UML SPT profile
is scheduled to be replaced by the UML Profile for Modeling and Analysis of Real-
time and Embedded Systems (MARTE) [18], however the SPT profile is still ade-
quate for the purposes of this paper.

Using this approach, we created a platform specific UML model for each of the
hardware configurations being analyzed. At a minimum, the platform specific UML
model must capture the hardware configuration in a deployment diagram and the
processing steps in interaction diagrams such as a sequence diagram. Figure 3 shows
the platform specific sequence diagram for the RCX Intelligent Brick with CDS
photoresistor (RP) configuration. We estimated demand times for each step by divid-
ing the number of estimated instructions per step by the microcontroller’s IPS rate.

204 J.S. Fant and R.G. Pettit

Fig. 3. Platform Specific UML Sequence Diagram for the RP configuration

 Cost-Performance Tradeoff for Embedded Systems 205

After we created the platform specific UML models, we then performed event
sequence analysis to determine the worst case latency through the system. Event
sequence analysis is used to determine the tasks that need to be executed in order to
service a given event. This is computed by calculating the time for the tasks in the
event sequence plus any time used for context switching and message communication
[5]. Table 3 provides a summary of the results for each of the configurations.

Table 3. Summary Performance Analysis Results

Short Name Configuration Worst Case Latency
JN JOP w/NXT light sensor 6.1ms
RP RCX Intelligent Brick w/photoresistor 50.7ms
RR RCX Intelligent Brick w/RCX light sensor 31ms
NN Mindstorms™ NXT w/NXT light sensor 10.5ms

4.3.2 Simulation
The simulation technique we used in this case study is simulation through coloured
Petri nets(CPNs) by Pettit and Gomaa [7-9]. This method assigns behavioral patterns
to the UML objects and constructs CPN templates for each behavioral pattern. Con-
necting the templates and populating with application and platform specific character-
istics provides for an executable CPN model of the system that can be used to analyze
such properties as throughput and concurrent behavior. Applying time-stamps to the
tokens within the net also allows us to monitor the flow of events and messages over
time and provides us with the capability to analyze response time (latency) from the
receipt of an event to the output action associated with that event.

Fig. 4. CPN Simulated Response Time

206 J.S. Fant and R.G. Pettit

Figure 4 shows the high-level results of simulating response times for the RR con-
figuration. In this scenario, a light sensor event occurs at time 6459 (not shown on
the figure) and a response to the motors is observed at time 6490 (simulation time in
milliseconds). Thus, the reaction time for this case is 31ms. Further execution runs
resulted in response times no greater than this value.

4.4 Cost-Performance Tradeoff Analysis

After we conducted performance analysis on the all the different hardware configura-
tions, we created the cost-performance tradeoff plot. These plots can be derived from
the analysis data, the simulation data, or both, depending on the availability of models
and the desired confidence in the results. Figure 5 is the tradeoff plot of our perform-
ance analysis shows cost versus worst case latency. From this tradeoff plot we can see
that the RP configuration does not meet the performance requirement; therefore it
cannot be selected. We can also tell from the tradeoff plot that the lowest cost option
that still meets the performance requirement is the RR configuration. The tradeoff plot
also clearly shows that while the NN configuration does cost more (∆$112), it does
provide a significant performance increase (∆20.5ms). We can also tell from this
graph that the highest cost option, JN, does yield the fastest performance. However,
this graph illustrates that the relative performance gain of ∆4.4ms between the NN
and JN configuration probably does not outweigh the additional cost of ∆$175.

In summary, the tradeoff plot helps engineers in their design decision process. For
this system, if the overall goal is to keep costs low, then the RR configuration is the
best option since it is the lowest cost option that still meets the performance require-
ments. If the overall goal is to maximize performance while keeping costs down, then
the NN configuration is the logical choice since it has a reasonable balance of cost
and performance.

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450

Cost ($)

W
o

rs
e

C
as

e
L

at
en

cy
 (

m
s)

RP

RR

NN
JN

Fig. 5. Tradeoff plot for robot controller case study

 Cost-Performance Tradeoff for Embedded Systems 207

5 Conclusions and Future Work

In conclusion, the proposed cost-performance tradeoff approach is intended to help in
the design decision processes to ensure the best overall decision is made. Specifi-
cally, it helps to examine and illustrate the tradeoffs between cost and performance
for embedded systems. This helps engineers ensure performance requirements are
met and cost is considered in the processes. This helps avoid the unnecessary pur-
chase of expensive hardware and helps keep the overall system cost low. The ap-
proach is also flexible enough to work with any software performance analysis tech-
nique which companies maybe using. This enables organizations to leverage the
performance analysis technique already in existence. Finally, it provides an easy
means to understand, communicate, and document tradeoff decisions. The tradeoff
plots present the data from all the potential hardware options on a single graph which
makes the data easy to communicate and understand.

A next logical extension of this approach would be to tradeoff decisions with other
non-functional aspects of software such as security or reliability. For example, the
approach can examine the performance impacts of including various security meas-
ures in a system. Tests should also be expanded to larger systems to prove scalability
of the approach.

References

1. Wu, X., Woodside, M.: Performance modeling from software components. In: Proceedings
of the 4th international workshop on Software and performance, Redwood Shores. ACM
Press, California (2004)

2. Woodside, M., et al.: Performance by Unified Model Analysis (PUMA). In: Fifth Interna-
tional Workshop on Software and Performance (WOSP 2005), Palma, Illes Balears, Spain
(2005)

3. Sabetta, A., et al.: Annotating UML Models with Non-Functional Properties for Quantita-
tive Analysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Springer,
Heidelberg (2006)

4. Wu, X., McMullan, D., Woodside, M.: Component Based Performance Prediction. In: 6th
ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, Portland, Oregon (2003)

5. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML,
3rd edn. Addison-Wesley Object Technology Series, Boston (2000)

6. Street, J., Gomaa, H.: An Approach to Performance Modeling of Software Product Lines.
In: 9th International Conference on Model Driven Engineering Languages and Systems
Modeling and Analysis of Real-Time and Embedded Systems (MARTES) Workshop,
Genova (2006)

7. Pettit, I.R.: Analyzing Dynamic Behavior of Concurrent Object-Oriented Software Design
Ph.D Dissertation, in Department of Information and Software Engineering, George Ma-
son University: Fairfax, VA (2003)

8. Pettit IV, R., Gomaa, H.: Modeling Behavioral Design Patterns of Concurrent Objects. In:
Conference on Software Engineering (ICSE), Shanghai, China (2006)

9. Pettit IV, R., Gomaa, H.: Analyzing Behavior of Concurrent Software Designs for Embed-
ded Systems. In: ISORC 2007. IEEE, Los Alamitos (2007)

208 J.S. Fant and R.G. Pettit

10. Ober, I., Graf, S., Ober, I.: Validating timed UML models by simulation and verification.
In: Workshop on SVERTS: Specification and Validation of UML models for Real Time
and Embedded Systems, San Francisco, California, USA (2003)

11. Buede, D.: The Engineering Design of Systems Models and Methods. Wiley Series in Sys-
tems Engineering. Sage, Thousand Oaks (2000)

12. Performance of Various Java Processors (2006) [cited May 2008],
http://www.jopdesign.com/perf.jsp

13. MINDSTORMS(R) - Legos Shop [cited May 2008],
http://shop.lego.com/ByTheme/Leaf.aspx?cn=17&d=70

14. Macron Photoresistor Specification [cited May 2008],
http://www.macron.com.hk/spec_photoersistor.htm

15. Radio Shack [cited May 2008], http://www.radioshack.com/sm-cds-
photoresistorsassortment-of-5–pi-2062590_tb-techSpecs.html

16. Altera Online [cited May 2008], http://www.altera.com/
17. The UML Profile for Schedulability, Performance and Time (January 2005) cited,

http://www.omg.org/technology/documents/formal/schedulabilit
y.htm

18. UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE)
(2007) cited, http://www.omg.org/cgi-bin/doc?ptc/2007-08-04

Resolving Performance Anomaly

Using ARF-Aware TCP

Seehwan Yoo, Tae-Kyung Kim, and Chuck Yoo

Department of Computer Science and Engineering
Korea University

Abstract. In this study, we propose ARF-aware TCP that resolves the
performance anomaly in 802.11 WLAN networks. Performance anomaly
is a network symptom that fairness among the nodes is broken when mul-
tiple nodes in the same channel have different link rates. Recent studies
on the performance anomaly focus on QoS mechanism at MAC layer.
However, MAC layer approach has drawbacks such as framing overhead
or side-effects at transport protocol. ARF-aware TCP successfully pro-
vides a fair-share of wireless links in an easier way. By adjusting the
congestion window size during a RTT period, we can get high fairness
and enhanced throughput. The fairness index in our cases increases from
0.63, 0.74 to 0.99, 0.99 respectively. In addition, it improves the perfor-
mance of sessions up to 30% by resolving the performance anomaly.

1 Introduction

In WLAN network, it has been reported that performance anomaly occurs when
nodes in the same channel have different operating rates[1]. If the nodes have
different sending rates, then the channel utilization of each node becomes dif-
ferent. A slow node consumes the wireless channel longer than a faster node.
Performance anomaly is a network problem that the fairness of channel utiliza-
tion among the nodes is broken because of the link rate adaptation mechanism.
When the performance anomaly happens, the performance of a faster node is
seriously degraded by the neighbor nodes that operate at slower rate regardless
of the current operating rate. In performance anomaly scenario, the higher rate
node and the lower rate node have the same throughput in the end.

WLAN ARF (Automatic Rate Fallback) mechanism changes the network
sending rate as the link status fluctuates[2]. Namely, ARF is not designed for
the link fairness but designed to adapt to link status. It changes the channel
coding scheme so that redundancy in channel coding hides the wireless channel
error. However, ARF makes difficult to keep the fairness among the nodes in the
channel. When a slower rate node grabs the channel, it takes longer to trans-
mit the same-length frame than a higher rate node. Although a slower node is
more resilient against the wireless channel error, it breaks the fairness. Because
WLAN keeps the fairness only based on the medium access probability, a slower
rate node consumes more channel time than the other nodes.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 209–220, 2008.
c© IFIP International Federation for Information Processing 2008

210 S. Yoo, T.-K. Kim, and C. Yoo

The performance anomaly occurs because of this WLAN ARF function.
Namely, channel time is unfairly distributed because the slower rate node grabs
more channel time than the higher rate node. To resolve the performance
anomaly, channel utilization among the nodes should be equally distributed. Re-
cent studies[7,6,5,3,4] on performance anomaly focus on resolving the anomaly
using QoS adaptation at MAC layer.

This paper proposes ARF-aware TCP that is an adaptation protocol for re-
solving the performance anomaly. Existing study on performance anomaly fo-
cuses on MAC layer approach because ARF is a MAC layer function and it can
be resolved at MAC layer using framing modification or adjusting a parameter
to achieve service differentiation. However, it also has drawbacks as follows: 1)
MAC layer QoS adaptation would incur unexpected side-effect on end-to-end
rate control protocols such as TCP-Vegas. When ARF is applied, transmission
delay is changed, and it affects RTT of the session. When RTT is increased,
transport protocol estimates that network is congested, and it starts congestion
control algorithm. This results in performance degradation from unnecessary
congestion control. 2) MAC layer QoS adaptation is hard to be implemented be-
cause it is normally implemented as a firmware. On the other hand, ARF-aware
TCP resolves performance anomaly by just modifying a variable to adjust the
sending window size.

ARF-aware TCP achieves high fairness among the sessions easily and enhances
the performance without side-effects.

2 Related Work

The performance anomaly[1] was analyzed by Heusse. In the study, the perfor-
mance anomaly happens when there are multiple nodes, on the same wireless
channel, that are operating at different rates. The authors have shown that when
the performance anomaly happens, throughputs of all the nodes are equalized
regardless of own link rate. Namely, the higher rate node should get smaller link
utilization and performance is degraded and the throughput drops as much as
that of the lower rate node.

802.11e performance extension standard has a TXOP option[8]. Using TXOP
option, higher rate node combines multiple frames into one, and sends it once
when it grabs the wireless channel. To resolve the unfair network utilization,
TXOP option intentionally gives more time to the higher rate node. It makes a
fair-share of network resources in terms of link utilization.

Kim et al. presents a novel mechanism to resolve the performance anomaly[3].
Proposed scheme adjusts the parameter in the MAC layer, Contention Window
(CW). The authors insist that service differentiation can be achieved by simply
adjusting the CW parameter. Because CW decides the probability to access the
wireless channel, it increases or decreases the CW as the operating link rate. The
scheme resolves performance anomaly by service differentiation. Namely, the link
utilization is differentiated and distributed as the link rate, and utilization is kept
fairly.

Resolving Performance Anomaly Using ARF-Aware TCP 211

Yoo et al. proposed a scheme to eliminate the performance anomaly[4]; the
authors insist that performance anomaly can be eliminated by adjusting the
frame size. In the study, they proved that the aggregated throughput becomes
higher when it is resolved.

Sadeghi proposed an opportunistic media access mechanism for multi-rate
WLAN[5]. In the paper, the authors proposed OAR(Opportunistic Auto Rate)
protocol, which improves performance in multi-rate WLAN networks. In the pro-
tocol, the sender opportunistically transmits multiple back-to-back data packets
whenever the channel is good. The authors insist that OAR achieves a significant
throughput gain because the channel coherence times typically exceed multiple
packet transmission times for both mobile and non-mobile users.

Godfrey revealed inefficiency in multi-rate WLAN network[6]. The authors
proved that multi-rate WLAN DCF function can reach to undesirable Nash equi-
librium that makes total network performance degraded. Their idea has proved
in analytic method as well as simulation. In another paper[7], he presented that
time-based fairness can improve the performance in multi-rate WLAN network.
In the study, the authors focus on the impact of rate adaptation on AP based
WLAN network. They proposed a new traffic regulator, TBR(Time-Based Reg-
ulator), which runs on the AP and works with MAC protocols. TBR presents a
good performance in terms of fairness as well as total throughputs. In addition,
the authors insist that TBR can cooperate with the existing MAC protocols.

3 ARF-Aware TCP: Resolving Performance Anomaly
Using Transport Layer Control

The main idea of ARF-aware TCP is that transport protocol, which is respon-
sible for end-to-end rate adaptation, controls the sending rate considering the
fair link utilization. That is, ARF function at the MAC layer notifies the higher
layer protocol, TCP, to adapt the available bandwidth estimation. If we reduce
the congestion window size of a TCP session, then the packets in the network
will be decreased, and channel utilization will also be reduced. Namely, TCP is
aware of the ARF function at MAC layer, and controls the maximum sending
rate to achieve fair network utilization.

If MAC layer adopts QoS mechanisms, higher layer protocols would experience
unexpected performance degradation. For example, TXOP option of 802.11e can
affect the RTT of the session. TXOP option aggregate multiple packets into one
jumbo packet and send it at once. This affects the RTT experienced at transport
layer because the transmission delay is affected by the link rate and frame size.
Moreover, it affects the RTT variance because the packet error rate becomes
large. Note that larger packets are more probable to have more bit errors and
requires longer time to recover.

MAC layer QoS mechanisms perform fine-grained access control; however,
they do not consider the long term behavior estimation such as available band-
width estimation. On the other hand, rate adaptation at transport protocol is
performed for the larger scale network adaptation. Transport protocol finds a

212 S. Yoo, T.-K. Kim, and C. Yoo

proper sending rate based on bandwidth estimation, and it controls network
congestion using distributed algorithm(AIMD). Because the transport protocol
performs an end-to-end adaptation, it finds the bandwidth of the bottleneck
link and adjust the sending rate to the link. Because ARF function can change
the available bandwidth, the bandwidth estimation at transport layer should be
modified. Otherwise, transport protocol would keep increasing the sending rate
although the available bandwidth is reduced significantly.

Bandwidth estimation at transport layer is performed based on the bottle-
neck link. Consequently, the estimation mechanism should be modified properly
when ARF is activated because it can change the bottleneck link. The transport
protocol should find another bottleneck link with its available bandwidth, which
requires an amount of time.

In addition, ARF-aware TCP is more flexible than the MAC layer QoS adap-
tation mechanisms because MAC layer protocols are difficult to be modified. In
many cases, it is implemented in firmware, and software modification is limited.
On the other hand, TCP can handle rate adaptation by simply modifying some
variables. At the sender side, it works very simply. We adapt the congestion win-
dow size as the current link rate changes. For example, if the link rate is changed
from 11Mbps to 1Mbps, then the congestion window size variable is scaled down
to keep the bandwidth estimation history.

By controlling the congestion window size, we have the identical result with
the adaptation at the MAC layer. If the transport layer does not transmit pack-
ets, then the link layer protocol should wait. If we increase the cwnd size, the
TCP sender would transmit at higher speed, and will utilize more wireless chan-
nel. On the other hand, if we decrease the cwnd size, then the sender would
decrease the sending rate, and the channel utilization will be decreased, in turn.

We introduce a ratio variable k, which is an indicator of ratio between the
current link rate and the maximum link rate.

Detailed algorithm of ARF-aware TCP is as follows:

cwnd := CongestionWindow,

k := [maximumlinkrate/currentlinkrate].

When a WLAN link rate changes, arf cwnd, which is a new congestion window
in arf mode is calculated.

arf cwnd := � cwnd
k �, if � cwnd

k � ≥ 1,

arf cwnd := 1, otherwise.

ARF-aware TCP enters the arf mode when link rate is changed from the highest
speed 11Mbps. When the ARF at MAC layer changes the link rate from the high-
est rate, it notifies ARF-aware TCP, and changes the mode from normal node to
arf mode. TCP uses arf cwnd when in the arf mode, and also saves cwnd.

At this time, new congestion window(arf cwnd) is used to adjust outgoing
traffic. When the link rate is recovered to the highest rate, then the saved cwnd
value is used again. When the link rate is recovered to the highest rate, then
ARF-aware TCP changes mode from the arf mode to the normal mode.

Resolving Performance Anomaly Using ARF-Aware TCP 213

Fig. 1. Simulation Topology

ARF-aware TCP adjusts the sending rate from arf cwnd. Our assumption is
that the WLAN link became an bottleneck in the path. If the bottleneck was
not the WLAN, congestion window does not need to be shrunken as much as the
link rate changes. In the case, congestion window is smaller than a proper value.
However, the AIMD algorithm finds an available bandwidth with increasing the
congestion window size, and the TCP will adapts the sending rate in time.

Our mechanism is easy to be deployed because it does not require global
information. That is, every node controls its sending rate in distributed manner.
Because each node knows its own link rate, TCP sender can get notification from
its own MAC layer. To notify the TCP, a little change at MAC layer is required.

In general, there are two options for implementing the ARF notification. 1)
Device driver can directly notify the link rate change. Because ARF is imple-
mented as a device driver optimization option, it does not require firm-ware level
modification. On the other hand, standardized DCF algorithm is usually imple-
mented in firmware and hard to be modified. 2) Link rate can be known at TCP
indirectly using another protocols such as SNMP(Simple Network Management
Protocol). In this case, no modification is required. However, it has an overhead
to check the link rate periodically.

In this study, we assume that the link modification can be performed easily
and efficiently in terms of modifying the WLAN device driver and having less
overhead, respectively.

4 Simulation Result

To validate our study, we performed extensive simulation using NS-2. At first,
we present whether ARF-aware TCP can resolve the performance anomaly prob-
lem. Figure 1 presents our simulation topology. Node0 and Node1 use FTP ap-
plications using TCP. Both nodes begin sessions at 1 second. Initial link rate is
11Mbps. At 20 second, Node0 changes link rate from 11Mbps to 1Mbps. In real
network environment, link rate is gradually decreased as the operating mode,
but we changed it for the sake of simplicity. Finally, TCP newReno is used for
comparison with Delayed ACK option.

214 S. Yoo, T.-K. Kim, and C. Yoo

ARF-aware TCP successfully achieves high fairness in performance anomaly
scenario. On the other hand, in performance anomaly scenario, TCP new-reno
sessions suffer from the performance anomaly. As shown in performance anomaly
study[1], both sessions have the identical throughput in the end. We can compare
the fairness between the sessions via Jain’s fairness index. Jain’s fairness index[9]
is defined as follow:

FairIndex =
(
∑i=1

n xi)2

n ·
∑i=1

n xi
2
. (1)

We can define xi as follow:

xi =
Ri

Ti
, (2)

where Ri is a measured throughput of session i, and Ti is an optimal throughput
for session i. In addition, we can define optimal throughput Ti as follow:

Ti =
∑

Lr

Lr · (Time duration of operating rate atLr)
(Total simulation time)

, (3)

where operating link rate Lr ∈ {possible operating mode}.
Fairness index ranges from zero to one. If all the nodes perfectly share the net-

work fairly, then the fairness index becomes one. Ti defines the optimal through-
put when there is only one session which uses ARF.

Table 1. Comparison of ARF-aware TCP and TCP newReno (simple topology)

ARF-aware TCP TCP newReno

Throughput of Session1
486 kbps 616 kbps

(11Mbps→ 1Mbps at 20 sec.)
Throughput of Session2

998 kbps 595 kbps
(11Mbps)
Fairness Index 0.926377 0.746335
Aggregated throughput 1484 kbps 1211 kbps

Because ARF-aware TCP resolves performance anomaly, ARF-aware TCP
achieves much higher fairness value as presented in Table 1.

Besides the fairness index, aggregated throughput is also enhanced in ARF-
aware TCP. The reason of aggregated throughput enhancement is that the higher
rate node can utilize the channel more than the lower rate node.

The session throughput variation in performance anomaly scenario is pre-
sented in Figure 2. The graph shows transmitted number of packets per second.
In ARF-aware TCP, throughput of Session1 drops at 20 second because the
sender adjusts the congestion window as arf cwnd. In this scenario, ratio k is
11, and the congestion window size is decreased to cwnd11. On the other hand,
Session2 keeps sending rate as before, and utilizes the channel as before.

Resolving Performance Anomaly Using ARF-Aware TCP 215

Fig. 2. Throughput(pkt/s) variations of ARF-aware TCP sessions and TCP newReno
sessions

On the contrary to ARF-aware TCP, TCP newReno suffers from performance
anomaly as presented in Figure 2. Both sessions utilize the channel time at equal
proportion, and Session2 is also affected by the Session1 regardless of its own
link rate.

Becauseperformanceanomaly is resolved, the aggregated throughputof sessions
is increased. We can compare aggregated throughput through the table 1. ARF-
aware TCP present slightly higher throughput than the Reno sessions. The perfor-
mance gain from resolving performance anomaly is about 20% in this scenario.

To present that the original TCP newReno performs fairly, we measured
throughput of two TCP newReno sessions without performance anomaly sce-
nario. Namely, we did not change the link rate of Session1 in Fair-share scenario
(remains 11Mbps). TCP newReno originally achieves high fairness as shown in
Table 2. However, the fairness is broken when performance anomaly happens.

Table 2. Comparison of TCP newReno in the anomaly and fair-share scenario

Performance of
Fair-share scenario

Performance ano-
TCP newReno maly scenario

Throughput of Session1 1070 kbps 616 kbps
Throughput of Session2 1031 kbps 595 kbps

Fairness Index 0.999656 0.746335
Aggregated throughput 2101 kbps 1211 kbps

Because original TCP newReno keeps fairness, ARF-aware TCP also keeps fair-
ness when both sessions reduce the link rate. We measured throughput result when
bothsessions reduce the link rate from11Mbps to1Mbpsat20 sec.ARF-awareTCP
performs stably when both sessions reduce the link rate as presented in Table 3.

To confirm that ARF-aware TCP performs well in multi-session scenario, we
increased the total number of sessions. In this case, we modified the network
topology as shown in Figure 3. To simplify the simulation, we changed link rate

216 S. Yoo, T.-K. Kim, and C. Yoo

Table 3. ARF-aware TCP in low-rate fair-share scenario

Stability of ARF-aware TCP ARF-aware TCP TCP newReno

Throughput of Session1
407 kbps 411 kbps

(11Mbps→ 1Mbps at 20 sec.)
Throughput of Session2

392 kbps 383 kbps
(11Mbps→ 1Mbps at 20 sec.)
Fairness Index 0.999648 0.998758
Aggregated throughput 799 kbps 794 kbps

Fig. 3. Simulation topology of multi-session scenario

Table 4. Comparison of ARF-aware TCP and TCP newReno in multi-session scenario

ARF-aware TCP TCP newReno

Throughput of Session1
127 kbps 341 kbps

(11Mbps→ 1Mbps at 20 sec.)
Throughput of Session2(11Mbps) 444 kbps 320 kbps
Throughput of Session3(11Mbps) 430 kbps 305 kbps
Throughput of Session4(11Mbps) 485 kbps 298 kbps
Throughput of Session5(11Mbps) 512 kbps 286 kbps
Fairness Index 0.996125 0.626977
Aggregated throughput 1998 kbps 1550 kbps

from 11Mbps to 1Mbps directly. Yet, it does not lose generality because the
operation mode can be set individually. In our best result, throughput gain is
higher than traditional Reno sessions about 30%.

The result is presented in Table 4. ARF-aware TCP achieves much higher
fairness index as well as aggregated throughput.

For more realistic case, we performed simulation for diverse rates. All the five
nodes changes to different operation rates (1Mbps, 2Mbps, 5.5Mbps, 11Mbps).
That is, Node0 changes from 11Mbps to 1Mbps, Node1 from 11Mbps to 2Mbps,
Node2 from 11Mbps to 5.5Mbps, so forth. Note that the ratio variable k is rounded.

Resolving Performance Anomaly Using ARF-Aware TCP 217

Fig. 4. Throughput of ARF-aware TCP in multi-session multi-rate scenario

Fig. 5. Throughput of TCP-newReno in multi-session multi-rate scenario

Table 5. Multi-session, multi-rate scenario

ARF-aware TCP TCP newReno

Throughput of Session1
127 kbps 290 kbps

(11Mbps→ 1Mbps at 20 sec.)
Throughput of Session2

163 kbps 262 kbps
(11Mbps→ 2Mbps at 20 sec.)
Throughput of Session3

277 kbps 256 kbps
(11Mbps→ 5.5Mbps at 20 sec.)
Throughput of Session4

670 kbps 260 kbps
(11Mbps)
Fairness Index 0.94693 0.831825
Aggregated throughput 1237 kbps 1068 kbps

218 S. Yoo, T.-K. Kim, and C. Yoo

Fig. 6. Aggregated throughput of ARF-aware TCP in multi-session multi-rate scenario

Fig. 7. Aggregated throughput of TCP newReno in multi-session multi-rate scenario

The throughput result confirms our study thatARF-awareTCP achieves high fair-
ness as well as enhanced aggregated throughput as presented in Table 5.

We can observe the network utilization among the nodes by the throughput
variation, presented in Figure 4.

ARF-aware TCP shares network bandwidth as the link rate as presented in
Figure 4; however, the TCP newReno shares network bandwidth very inconsis-
tently (Figure 5). Moreover, the cumulated throughput in Figure 6 and presents
an interesting result that ARF-aware TCP keeps network utilization even in the
performance anomaly scenario. On the other hand, the cumulated throughput
drops very seriously in TCP newReno case as the Figure 7.

When the ARF-aware TCP recovers from the arf mode to normal mode,
it boosts the sending rate and recovers the original rate very quickly. Conse-
quently, it keeps fairness very stable when compared with the TCP newReno.

Resolving Performance Anomaly Using ARF-Aware TCP 219

Fig. 8. Throughput(pkt/s) variation of ARF-aware TCP in recovery scenario

Fig. 9. Throughput(pkt/s) variation of TCP newReno in recovery scenario

The following simulation is based on the topology presented in Figure 1. Node0
changes link rate from 11Mbps to 1Mbps at 20 second, and recovers back to
11Mbps at 70 second.

We can observe the quick recovery from the performance anomaly through
the throughput graph shown in Figure 8. Session2 keeps high sending rate in
the anomaly period, and Session1 successfully recovers from the performance
anomaly and shares the link with Session2.

TCP newReno presents performance anomaly during the anomaly period.
However, it also successfully recovers from the anomaly as shown in Figure 9.

Proposing ARF-aware TCP resolves performance and achieves much higher
fairness among sessions. It also naturally enhances aggregated throughput of ses-
sions. In addition, it works stable because it keeps fairness in the case that both
nodes are in arf mode. Finally, it presents much higher fairness and throughput

220 S. Yoo, T.-K. Kim, and C. Yoo

in more practical scenarios that multiple nodes are operating at different rates
at the same time.

5 Conclusion

We present ARF-aware TCP that resolves performance anomaly in the trans-
port layer, which can largely enhance the fairness in multi-rate WLAN networks.
ARF-aware TCP resolves performance anomaly by adjusting the congestion win-
dow size. It can be easily deployed because MAC layer modification is not re-
quired. ARF-aware TCP enhances not only the fairness but also the aggregated
throughput. In our simulation, ARF-aware TCP presents a good performance
in the performance anomaly scenarios. Fairness index among ARF-aware TCP
sessions always achieves higher than 0.9, while TCP newReno achieves 0.74 or
0.62 in cases. ARF-aware TCP achieves high fairness in multi-session, and multi-
session multi-rate scenario, also. In addition to fairness, aggregated throughput
is enhanced by 30% in our best case.

References

1. Heusse, M., et al.: Performance anomaly of 802.11b. In: INFOCOM 2003, Proceed-
ings of the twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, Los Alamitos (2003)

2. Lacage, M., Manshaei, M.H., Turletti, T.: IEEE 802.11 Rate Adaptation: A Practical
Approach. In: Proceedings of the 7th ACM international Symposium on Modeling,
Analysis and Simulation of wireless and mobile systems, pp. 126–134 (2004)

3. Kim, H., Yun, S., Kang, I., Bahk, S.: Resolving 802.11 performance anomalies
through QoS differentiation. Communications Letters 9(7), 655–657 (2005)

4. Yoo, S.-h., Choi, J.-H., Hwang, J.-H., Yoo, C.: Eliminating the Performance
Anomaly of 802.11b. In: Lorenz, P., Dini, P. (eds.) ICN 2005. LNCS, vol. 3421,
pp. 1055–1062. Springer, Heidelberg (2005)

5. Sadeghi, B., Kanodia, V., Sabharwal, A., Knightly, E.: OAR: An Opportunistic
Auto-Rate Media Access Protocol for Ad-Hoc Networks. Wireless Networks 11(1),
39–53 (2005)

6. Tan, G., Guttag, J.: The 802.11 MAC protocol leads to inefficient equilibria. In:
proceedings of the INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 1, pp. 1–11 (2005)

7. Tan, G., Guttag, J.: Time-based fairness improves performance in multi-rate
WLANs. In: Proceedings of the USENIX Annual Technical Conference 2004 on
USENIX Annual Technical Conference, pp. 269–282 (2004)

8. IEEE 802.11e-2005, in Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Amendment 8: Medium Access Control (MAC)
Quality of Service Enhancements, IEEE (2005)

9. Jain, R., Chiu, D.M., Hawe, W.: A Quantitative Measure of Fairness and Discrim-
ination for Resource Allocation in Shared Systems, DEC Research Report TR-301
(1984)

Context-Aware Deployment of Services in Public Spaces

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper presents the context-aware deployment of user-assistant
services in public spaces, e.g., museums. Using location-sensing systems, it de-
tects the locations of users and deploys user-assistant services, e.g., visitor guides,
at computers near to the their current locations. When users move between ex-
hibits in a museum, it enables agents to follow users to annotate the exhibits in
personalized form and navigate them to the next exhibits along their routes. To
demonstrate the utility and effectiveness of the framework, we constructed and
operated a location/user-aware visitor-guide service in a museum as case studies
in the development of context-aware services in public spaces.

1 Introduction

The use of user/location-aware services in public spaces, including cities, stations, and
museums, has attached much attention from researchers over the past few years. This
paper addresses context-aware services to guide visitors in a museum as case studies
for developing ubiquitous computing systems for city-wide public spaces. Few visitors
in museums have sufficient knowledge about the exhibits. Therefore, they need annota-
tions on these. However, their knowledge and experiences are varied so that they may
become puzzled (or bored) if the annotations provided to them are beyond (or beneath)
their knowledge or interest. To solve this problem, we construct a context-aware system
for providing visitors with services to annotate exhibits in their personalized forms at
nearby computers, even when they move between exhibits.

There have been several academic or commercial attempts to develop context-aware
services for museums with the aim of enabling visitors to view or listen to information
about exhibits at the right time and in the right place and to help them navigate between
exhibits along recommended routes. However, most of existing attempts have been de-
veloped to the prototype stage and tested in small-scale laboratory-based experiments.
They have been designed in an ad-hoc manner to provide specific single services in par-
ticular spaces, i.e., research laboratories and buildings. As a result, they are not suitable
for public spaces or for applications that they were not initially designed to support. In
addition, they implicitly or explicitly assume centralized management systems, so their
scalability could be a serious problem.

We construct a framework for providing context-aware services in a real museum
with real users. It provides each user with mobile agent-based software components
to deploy application-specific services at computers independently of the underlying
infrastructure and other services. It can also spatially bind a user to their agent/s using
location-sensing systems. For example, when a user stands in front of an exhibit, his/her

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 221–232, 2008.
c© IFIP International Federation for Information Processing 2008

222 I. Satoh

agent is deployed at a computer close to his/her position and provides him/her with
annotation services about the exhibit in a personalized form that has been adapted to
the individual user.

2 Approach

Our final goal is to construct a general-purpose infrastructure for providing context-
aware services in large public spaces, e.g., building-wide and city-wide spaces. It was
inspired by real requirements of museums rather than our academic interests.

2.1 Background

There have been many academic and commercial attempts to provide context-aware
services to visitors in public museums. A typical approach has been to provide visitors
with audio annotations from portable audio players. These have required end-users to
carry players and explicitly input numbers assigned to exhibits if they wanted to listen
to audio annotations about the exhibits in front of them. Many academic projects have
provided portable multimedia terminals or PDAs to visitors. These have enabled visitors
to interactively look at and operate annotated information displayed on the screen of
their players, e.g, the Electronic Guidebook [3] and Museum Project [2]. They assume
that visitors car carrying portable terminals, e.g., PDAs and smart phones and they
are required to explicitly input their positions, the identifiers of exhibits, and items of
interest by using user interface devices, e.g., buttons, mice, or touch panels of terminals.
However, such operations are difficult for visitors, particularly children, the elderly, and
handicapped people, and often prevent them from viewing the exhibits.

To solve this problem, several projects have used sensing systems to detect the posi-
tions of visitors, e.g., the Hippie [6], the ImogI [5], and the Rememberer [3]. Portable
smart devices, including PDAs, with location sensing systems may be popular in aca-
demic projects, but museums tend to avoid using such devices because they are too
expensive to lend to visitors and also require regular maintenance, e.g., replacing or
recharging the batteries every day. In fact, cost issues are one of the most serious prob-
lems in deploying context-aware services at public spaces, including museums. There-
fore, several existing approaches, which assume to make use of expensive or delicate
devices, will not always be used in real museums, even though they are interesting
within academic research communities. In addition, one of the most serious problems
associated with portable smart devices in museums is that they prevent visitors from fo-
cusing on the exhibits because they tend to become interested in the device rather than
the exhibition itself and therefore concentrate on operating the PDA buttons or touch
panel instead of looking at the exhibits.

2.2 Requirements

To solve these problems, we should support visitors from stationary sensors and com-
puting devices. We discuss the requirements of visitor guides in museums.

– Visitor-guide services for exhibits should be selected and customized according to
the behaviors of users, e.g., the exhibits they looked at, how long they stayed around
specific exhibits, and their current locations in addition to knowledge and interest.

Context-Aware Deployment of Services in Public Spaces 223

– User-assistant services, including visitor-guide services in public spaces, are likely
to be accessed often by users. Such services should be executed at nearby comput-
ers to minimize communication delays between user-interface devices and server-
side computers.

– Visitors move between exhibits in a museum. When he/she moves to another ex-
hibit, his/her agent should be deployed at a computer close to his/her destination by
using location-sensing systems.

– Visitor-guide services should be personalized, even when they are provided in pub-
lic spaces. Services should be provided and interact with users in a personalized
manner adapted to individual needs.

– Computers in ubiquitous computing environments often have only limited resources,
such as restricted levels of CPU power and amount of memory. They cannot support
all the services that may be needed. We therefore have to deploy software that defines
services at computers only while those services are needed.

– Our final aim is widespread building-wide and city-wide deployment of ubiquitous
computing systems. It is almost impossible to deploy and administer a system in
a scalable way when all of the control and management functions are centralized.
Our system consists of multiple servers, which are individually connected to other
servers in a peer-to-peer manner. Each server only maintains up-to-date information
on partial contextual information instead of on tags in the whole space.

2.3 Approach

To meet these requirements, our system uses mobile-agent technology.

– Each mobile agent is a self-contained autonomous programming entity. Our sys-
tem itself is independent of application-specific services. Instead these services are
defined and performed within mobile agents.

– Each agent is spatially bound to, at most, one user. When a user gets closer to
an exhibit, our system detects the migration of the user by using location-sensing
systems and then instructs the user’s agents to migrate to a computer close to the
exhibit.

– Each agent can migrate from computer to computer. When an agent moves to an-
other computer, both the code and the state of the agent are transferred to the des-
tination. After arriving at its destination, an agent can continue working, e.g., on a
user-assistant task, without losing results, such as the content of instance variables
in the agent’s program, at the source computer.

– Each agent can maintain per-user preferences on a user and record the user’s be-
havior, e.g., exhibits that they have looked at. The agent can also define user-
personalized services adapted to the user and access location-dependent services
provided at its current computer.

Mobile agents help to conserve limited resources, because each agent only needs to be
present at the computer while the computer needs the services provided by that agent.
Agents can be managed in a non-centralized manner. When an agent migrates to another
computer, it does not have to interact with the source computer.

224 I. Satoh

3 Deployable Context-Aware Agent Platform

Our context-aware system consists of three subsystems: (1) an agent host, (2) context-
aware directory servers, called CDSs (Fig. 1), and (3) service-provider agents. The first
can execute service-provider agents, where we assume that the computing devices are
located at specified spots in public spaces. The second is an autonomous entity that
defines application-specific services for visitors. The third is responsible for reflect-
ing changes in the real world and the location of users when services are deployed
at appropriate computers. User/location-aware visitor-guide services are encapsulated
within the third subsystem so that the first and second subsystems are independent of
any application specific services and other agents, which are simultaneously running to
provide different services.

Event
dispatcher

Abstraction Filter

Runtime system

Peer-to-peer

communication

Agent
migration

Location-sensing
system (Proximity)

Location-sensing
system (Lateration)

Location-sensing
system (Proximity)

Spot 1

CDS

Agent host
Spot 2

Agent host Agent host Agent host

Agent
information
database

Host
information
database

Contextual event manager

Abstraction Filter

Spot 3 Spot 4

Abstraction Filter

Contextual event manager

Service-provider
agent

Runtime system

Service-provider
agent

Runtime system

Service-providerce-pr
agentagen

pp

Runtime system

Service-provider
agent

Event
dispatcher

CDS

Agent
information
database

Host
information
database

Fig. 1. Architecture of Context-aware Service Provider Agent System

3.1 Agent Host

Each agent host is a computer that can provide visitor-guide services through user-
interface devices, e.g., display screens and loudspeakers. It provides a runtime sys-
tem for executing and migrating agents to other hosts. Each runtime system is built
on the Java virtual machine (Java VM), which conceals differences between the plat-
form architectures of the source and destination hosts. It governs all the agents inside
it and maintains the life-cycle state of each agent. When the life-cycle state of an agent
changes, e.g., when it is created, terminates, or migrates to another host, the runtime
system issues specific events to the agent. Some navigation or annotation content, e.g.,
audio-annotation, should be played without any interruptions. It can exchange agents
with another runtime system on a different host through a TCP channel using mobile-
agent technology. When an agent is transferred over the network, not only the code of
the agent but also its state is transformed into a bitstream by using Java’s object seri-
alization package and then the bit stream is transferred to the destination. The host on
the receiving side receives and unmarshals the bit stream. Agents may have to acquire
various resources, e.g., video and sound, or release previously acquired resources.

Context-Aware Deployment of Services in Public Spaces 225

3.2 Context-Aware Agent Deployment

Each CDS spatially binds an agent to a user. It maintains two databases. The first stores
information about each of the agent hosts and the second stores each of the agents
attached to users. It can exchange this information with other CDSs in a peer-to-peer
manner.

Tracking systems can be classified into two types: proximity and lateration. The first
approach detects the presence of objects within known spots or close to known points,
and the second estimates the positions of objects from multiple measurements of the dis-
tance between known points. The current implementation assumes that museums pro-
vide visitors with tags. These tags are small RF transmitters that periodically broadcast
beacons, including the identifiers of the tags, to receivers located in exhibition rooms.
The receivers locate the presence or position of the tags. To abstract away differences
between the underlying location-sensing systems, CDS maps geometric information
measured by sensing systems to specified areas. We assume such areas contain exhibits
and computing devices to play annotations. We call the areas spots.

When the underlying sensing system detects the presence (or absence) of a tag in a
spot, it sends the arrival and departure message to a CDS. The CDS attempts to query
the locations of the agent tied to the tag from its database. If the database does not
contain any information about the identifier of the tag, it multicasts a query message
that contains the identity of the new tag to other CDSs. It then waits for reply messages
from other CDSs. Next, if the CDS knows the location of the agent tied to the newly
visiting tag, it instructs the agent to migrate to a computing device.

Context-aware virtual agent

Agent runtime system

Java VM

OS / Hardware

Annotative
content

Agent migration
manager

Agent execution
manager

Agent lifecycle
event

dispatcher

User navigation
manager

Built-in service
APIs

Navigation partAnnotation part
Content
selection
function

Content player
program

Annotative
content

Agent
state
manager

User route

Navigation code

User-preference part
Knowledge Interests Visited spots

RFID Tag ID Color name

Fig. 2. Architecture of agent host

4 Context-Aware Service-Provider Agent

Each agent is attached to at most one visitor and maintains the preference information
for its user and programs to provide annotation and navigation to its visitor. To enable

226 I. Satoh

agents to be easily developed and configured agents without any professional adminis-
trators, we divided each agent into three parts:

– The user-preference part maintains and records information about visitors, e.g.,
knowledge, interests, routes, their name, and durations spent at exhibits they visited.

– The annotation part defines a task for playing annotations about exhibits or inter-
acting with visitors.

– The navigation part defines a task for navigating visitors to their destinations.

When an agent is deployed at another computer, the runtime system invokes a specified
callback method defined in the annotation part and then one defined in the navigation
part. Although these parts are implemented as Java objects, they are loosely connected
with one another through data attributes by using Java’s introspection mechanism so that
they can be replaced without any compilations and linkages for their programs. The cur-
rent implementation uses the standard JAR file format for archiving these parts because
the format can support digital signatures, enabling authentication. Each agent keeps the
identifier of the tag attached to its visitor. Each agent can specify a requirement that
its destination hosts must satisfy in CC/PP form and the runtime system can select an
appropriate destination among multiple destination candidates through a comparison
between the capabilities required by agents and the capabilities of the candidates.

4.1 User-Preference Part

This is responsible for maintaining information about a visitor. In fact, it is almost im-
possible to accurately infer what a visitor knows or is interested in from data that are
measured by sensing systems. Instead, the current implementation assumes that admin-
istrators will explicitly ask visitors about their knowledge and interests and manually
input the information into this part. Nevertheless, it is still possible to make a qualified
guess with some probability as to what a visitor may be interested in, if we know which
spots he/she visited, how many he/she visited, and how long he/she visited. Each agent
has a mechanism to automatically record the identifiers, the number of visits to, and
length of stays at spots by visitors. This part is implemented as a hash-table for main-
taining the collection of data entries. Each entry is a pair of a name and a value, where
the former is a string data and the latter is an arbitrary data structure represented as Java
objects. The second and third parts can access entries with key names so that these parts
can be combined loosely and replaced by compatible parts.

4.2 Annotation Part

Each agent is required to select annotations according to the current spot and route in
addition to the information stored in the user-preference part and play the content in
its user’s personalized form. This part defines a content selection function and a set of
programs for playing the selected content. The function maps more than one argument,
e.g., the current spot, the user’s selected route, and the number of times a user has visited
the spot into a URL referring to the annotative content. The content can be stored in the
agent, the current agent host, or external http servers. That is, each agent can carry a
set of its content, play the selected content at its destinations, directly play the content

Context-Aware Deployment of Services in Public Spaces 227

Fig. 3. User-navigation patterns

stored at its destinations, or download and play the content stored in web-servers on the
Internet. Such content is provided in a variety of multimedia representations, e.g., text,
image, video, and sound. The annotation part defines programs for playing this content.
The current implementation supports (rich) text data, html, image data, e.g, JPEG and
GIF, video data, e.g., animation GIF and MPEG, and sound data, e.g., wav and MP3.
The format for content is specified in an MIME-based attribute description. Since the
annotation part is defined as Java-based general-purpose programs, we can easily define
interactions between visitors and agents. The current implementation can divide the part
into three sub-parts: opening, annotation, and closing, which are played by turns.

4.3 Navigation Part

Our agents are required to navigate visitors to their destinations along routes recom-
mended by museums or the visitors. After executing their annotation part, the naviga-
tion part is invoked by the runtime system to provide visual (or audio) information on
the screens of displays (or from loudspeakers) of the current agent host. For example,
the agents display the directions to exhibits that their visitors should next see. We also
introduced visitor movements between exhibits as an implicit operation for selecting
the routes that they wanted and evaluating what they had learned from the exhibits, be-
cause visitor movement is one of the most primitive and natural behaviors in museums.
This part provides the four navigation patterns, outlined in Fig. 3.

– Navigation instructs users to move to at least one specified destination spot.
– Selection enables users to explicitly or implicitly select one spot or route from one

or more spots or routes close to their current spots by moving to the selected spot
or one spot along the selected route.

– Termination informs users that they have arrived at the final spot.
– Warning informs users that they had missed their destination exhibit or their routes.

The user’s route is described as a sequences of primitives corresponding to the above
free patterns with our language for specifying the itineraries of mobile agents for net-
work management [11] and they are stored in the user-preference part. No agent knows
the spatial directions to the destinations because the directions themselves depend on
the spatial relationships between the locations of the current agent host and the loca-
tions of the destinations, as well as the direction to the current host’s screen. The cur-
rent implementation permits administrators to manually input the directions of possible

ENDEND

SELECT
A or B
SELECT
A or B

COURSE-A COURSE-B

Termination

SelectionNavigation

EXIT
Warning

WARNING
GO BACK

228 I. Satoh

Spot 1

Spot 2 Spot 3

Spot 4

Fig. 4. Experiment at Museum of Nature and Human Activities in Hyogo

destinations and the direction to the screen. Agent hosts provide built-in APIs to their
visiting agents. For example, if an agent has at least one destination, it invokes a spec-
ified API corresponding to the first pattern with the name of the destination; its current
host returns the direction to the destination to it or displays the direction on the screen
on its behalf.

5 Experience

To prove the utility of the propose system, we constructed and operated an experiment
at the Museum of Nature and Human Activities in Hyogo, Japan, using the proposed
system. Figure 4 has a sketch that maps the spots located in the museum. The exper-
iment was carried out at four spots in front of specimens of stuffed animals, i.e., a
bear, deer, racoon dog, and wild boar. Each spot could provide five different pieces of
animation-based annotative content about animal, e.g., its ethology, footprints, feeding,
habitat, and features, and had a display and Spider’s active RFID reader with a coverage
range that almost corresponded to the space, as shown in Fig. 5.

Pendant
(with RFID tag)

Ambient
Display

RFID
reader

Fig. 5. Spot at Museum of Nature and Human Activities in Hyogo

Context-Aware Deployment of Services in Public Spaces 229

Opening
animation

Closing
animation

Annotation
about racoon
dog

Fig. 6. Opening animation, annotation animation, and closing animation for orange pendant

When a visitor first participated in the experiment, an operator input the point of
interest and the route for the new visitor and created his/her service-provider agent.
As shown in Fig. 6, an agent tied to a pendant played the opening animation and then
played the annotation. It next plays the closing animation.

We simultaneously provided two kinds of routes for visitors to evaluate the utility of
our user-navigation supports. Both routes navigated visitors to destination spots along
the way (Fig. 7). They made each visitor go around an exhibit booth consisting of four
spots two or three times, as shown on the right of Fig. 4. That is, a visitor might visit the
same spots two or three times depending on the navigation of their agents. In addition,
the first route enabled visitors to explicitly select subjects they preferred by moving to
one of the neighboring spots corresponding to the subjects selected in specified spots
at specified times. The second route provided visitors with several quizzes to review
what they had learnt about the animals by selecting neighboring spots corresponding
to their answers in specified spots at specified timings. Both the experiments offered
visitors animation-based annotative content about the animal in front of them so they
could learn about the animal while observing the corresponding specimen.

The experimental system consisted of one CDS and four agent hosts. It enabled cura-
tors to configure annotation content through a GUI-based monitoring and configuration
for agents (right of Fig. 8) and to operate the assignment of annotation to visitors by
using a Web browser running on a portable terminal (Apple iPod Touch) equipped with
a WiFi interface (left of Fig. 8).

When the CDS detected the presence of a tag bound to a visitor at a spot, it instructed
the agent bound to the user to migrate an agent host contained in the spot. After arriving
at the host, the runtime system invoked a specified callback method defined in the an-
notative part of the agent. The method first played the opening animation defined in the
agent and then called a content-selection function with his/her route, the name of the
current spot, and the number of times that he/she had visited the spot. The latency of
migrating of an agent and starting its opening animation at the destination after visitors

230 I. Satoh

Navigation to one destination Selection from two destinations

Fig. 7. Navigation patterns for user navigation at Museum of Nature and Human Activities in
Hyogo

arrived at a spot was within two seconds, so that visitors could view the opening ani-
mation soon after they stood in front of exhibits. The method next played the selected
content and then played the closing animation. After that, the runtime system invoked a
specified callback method defined in the navigation part. An agent bound to a user could
recommend two or more destination spots by using the Selection pattern provided on its
current agent host. When a visitor moved to one of the spots, his/her agent could record
their selection. If the selection corresponded to a quiz choice, when a user moved to a
spot corresponding to a correct or incorrect answer, their agent modified the visitor’s
profile, which was maintained within it. Furthermore, if a user left out his/her route, the
navigation part invoked a method to play warning content to return him/her to his/her
previous spot.

Portable administration
terminal (iPod touch)

Terminal for monitoring the positions of
visitors and customizing agents

Fig. 8. Portable management terminal (left figure) and GUI-based system for monitoring and
configuring agents (right figure)

We operated the experiment over two weeks. Each day, more than 60 individuals or
groups took part in the experiment. Most of the participants were groups of families or
friends aged from 7 to 16. Most visitors answered questionnaires about their answers
to the quizzes and their feedback on the system in addition to their genders and ages.

Context-Aware Deployment of Services in Public Spaces 231

Almost all the participants (more than 95 percent) had positive feedback on the system.
Their typical feedback were “We were very interested in or enjoyed the system.”, “We
could easily answer to the quizzes by our moving between the spots.”, and “We gained
detail knowledge about the animals with our watching them in front of our standing
positions.” As application-specific services could be defined and encapsulated within
the agents, we were able to easily change the services provided by modifying the cor-
responding agents while the entire system was running and more than two different
visitor-guide services could also be simultaneously supported for visitors. Even while
visitors were participating, curators with no knowledge of context-aware systems were
able to configure the annotative content by doing drag-and-drop manipulations using
the GUI-based configuration system. Such dynamic configuration is useful, because
museums need to provide and configure services with visitors without any stopping.

6 Related Work

As we discussed in Section 2, there have been many attempts to provide visitor-guide
systems in museums, but most existing projects assume that visitors carry smart ter-
minals. On the other hand, there have been several research attempts on smart spaces
equipped with stationary sensors and terminals. Cambridge University’s Sentient Com-
puting project [4] provides a platform for location-aware applications using infrared-
based or ultrasonic-based locating systems in a building. Using the VNC system [7],
the platform can track the movement of a tagged entity, such as individuals and things,
so that the graphical user interfaces of the user’s applications follow him/her while
he/she moves around. Although the platform provides similar functionality to that of
our framework, its management is centralized and their services are executed in cen-
tralized servers. Microsoft’s EasyLiving project [1] enabled services running on differ-
ent computers to be combined dynamically according to contextural changes in the real
world, but aimed at private spaces, e.g., living rooms. It could not deploy services at
different computers.

We discuss differences between the framework presented in this paper and our pre-
vious frameworks. We previously presented an approach for deploying mobile agents
spatially bound to physical places and objects at computers that moved in the places or
were close to the objects [9]. However, it was not designed for user-navigation, unlike
the framework proposed in this paper. We also constructed a location model for ubiq-
uitous computing environments. The model represents spatial relationships between
physical entities (and places) as containment relationships between their programmable
counterpart objects and deploys counterpart objects at computers according to the po-
sitions of their target objects or places [12]. This was a general-purpose location-model
for context-aware services, but was not an infrastructure for deploying and operating
such services. We presented some basic evaluation on the usability of mobile agent-
based services in public museums in our another paper [13].

7 Conclusion

We designed and implemented an agent-based system for building and operating context-
aware visitor-guide services in public museums. When a visitor moves from exhibit to

232 I. Satoh

exhibit, his/her agent can be dynamically deployed at a computer close to the current
exhibit to accompany him/her and play annotations about the exhibit according to his/her
knowledge, interest, and the exhibits that he/she watched. His/her agent can also navigate
him/her to exhibits along his/her route. To support large-scale context-aware systems, the
system is managed in a non-centralized manner. Using the system, we constructed and
operated location/user-aware visitor-guide services at a museum as case studies in our
development of ambient computing services in public spaces.

References

1. Brumitt, B.L., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for In-
telligent Environments. In: Proceedings of International Symposium on Handheld and Ubiq-
uitous Computing, pp. 12–27 (2000)

2. Ciavarella, C., Paterno, F.: The Design of a Handheld, Location-aware Guide for Indoor
Environments. Personal and Ubiquitous Computing 8(2), 82–91 (2004)

3. Fleck, M., Frid, M., Kindberg, T., Rajani, R., O’BrienStrain, E., Spasojevic, M.: From In-
forming to Remembering: Deploying a Ubiquitous System in an Interactive Science Mu-
seum. IEEE Pervasive Computing 1(2), 13–21 (2002)

4. Harter, A., Hopper, A., Steggeles, P., Ward, A., Webster, P.: The Anatomy of a Context-
Aware Application. In: Proceedings of Conference on Mobile Computing and Networking
(MOBICOM 1999), August 1999, pp. 59–68. ACM Press, New York (1999)

5. Luyten, K., Coninx, K.: ImogI: Take Control over a Context-Aware Electronic Mobile Guide
for Museums. In: Workshop on HCI in Mobile Guides, in conjunction with 6th International
Conference on Human Computer Interaction with Mobile Devices and Services (2004)

6. Oppermann, R., Specht, M.: A Context-Sensitive Nomadic Exhibition Guide. In: Thomas,
P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 127–142. Springer, Heidelberg
(2000)

7. Richardson, T., Stafford-Fraser, Q., Wood, K., Hopper, A.: Virtual Network Computing.
IEEE Internet Computing 2(1), 33–38 (1999)

8. Rocchi, C., Stock, O., Zancanaro, M., Kruppa, M., Kruger, A.: The Museum Visit: Gen-
erating Seamless Personalized Presentations on Multiple Devices. In: Proceedings of 9th
international conference on Intelligent User Interface, pp. 316–318. ACM Press, New York
(2004)

9. Satoh, I.: SpatialAgents: Integrating User Mobility and Program Mobility in Ubiquitous
Computing Environments. Wireless Communications and Mobile Computing 3(4), 411–423
(2003)

10. Satoh, I.: A Location Model for Pervasive Computing Environments. In: Proceedings of
IEEE 3rd International Conference on Pervasive Computing and Communications (PerCom
2005), March 2005, pp. 215–224. IEEE Computer Society, Los Alamitos (2005)

11. Satoh, I.: Building and Selecting Mobile Agents for Network Management. Journal of Net-
work and Systems Management, 14(1), 147–169 (2006)

12. Satoh, I.: A Location Model for Smart Environment. Pervasive and Mobile Computing 3(2),
158–179 (2007)

13. Satoh, I.: Context-aware Agents to Guide Visitors in Museums. In: Proceedings of 8th In-
ternational Conference on Intelligent Virtual Agents (IVA 2008), September 2008. LNCS.
Springer, Heidelberg (2008)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 233–244, 2008.
© IFIP International Federation for Information Processing 2008

An Ontology Supported Meta-interface for the
Development and Installation of Customized Web Based

Telemedicine Systems

Jackei H.K. Wong1, Wilfred W. K. Lin1, Allan K.Y. Wong1, and Tharam S. Dillon2

1 Department of Computing, Hong Kong Polytechnic University, Hung Hom,
Kowloon, H.K.S.A.R.

2 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Australia

{cshkwong,cswklin,csalwong}@comp.polyu.edu.hk,
tharam.dillon@cbs.curtin.edu.au

Abstract. The novel and generic meta-interface (MI) paradigm proposed in this
paper automates the generation of customized telemedicine software systems
(CTSS), directly from the customized application interface (CAI) specifications
given. The MI paradigm was tested and verified in the TCM (Traditional Chi-
nese Medicine) telemedicine environment of Nong’s Company Limited of the
PuraPharm Group, a local Hong Kong TCM telemedicine developer that funded
this research. The CAI specification is made by “gluing” together icons selected
from the enterprise icon library (IL). The CTSS generation, in effect, extracts
the corresponding portion of the subsumption hierarchy from the master ontol-
ogy, an enterprise standard. Since CTSS prototypes were verified in the Nong’s
TCM telemedicine environment, they were built with the Nong’s master TCM
ontology core (onto-core) as the basis and reference. In this light, the ontologi-
cal extraction for a CAI specification is turned into the local TCM onto-core for
the CTSS prototype. The enterprise TCM onto-core, the local TCM onto-core,
and the icons in IL all contain formal knowledge derived from the enterprise
TCM vocabulary. In Nong’s case the enterprise vocabulary is the standard of
CTSS terminology, gathered from TCM classics, treatises, and case histories by
domain experts with consensus certification. Using CAI as the single input to
automate the whole CTSS generation process would eliminate MSPM (multi-
site project management) problems. Since the Nong’s MC (mobile clinics)
based telemedicine system is web-based and pervasive, the CTSS is also re-
ferred to as the Nong’s web-based telemedicine systems (WTS).

Keywords: Meta-interface paradigm, software development, CAI, CTSS,
WTS, telemedicine system, ontology, enterprise vocabulary, automated.

1 Introduction

We propose in this paper the innovative meta-interface (MI) paradigm for developing
remotely deployable ubiquitous web-based telemedicine systems (WTS). The goal is
to customize each client's WTS from a single master ontological core (onto-core),

234 J.H.K. Wong et al.

which would then be maintained by the enterprise (i.e. enterprise/master onto-core).
Nong’s Company Ltd., of the PuraPharm Group in the Hong Kong SAR, is one such
enterprise and a local leader in supplying TCM (Traditional Chinese Medicine) WTS
to hospitals and clinics across the globe. The company had created its own enterprise
TCM onto-core with consensus certification [1] to support MC (mobile clinics) based
telemedicine systems. From this enterprise TCM onto-core, Nong’s customizes WTS
variants specified by the customers. After deployment each customized WTS is auto-
matically linked over the mobile Internet to the PuraPharm/Nong’s (PP/N) mobile-
business (MB) core.The proposed MI paradigm now offers a solution to the PP/N
management's long search for a way to effectively automate the WTS customization
process. Their lengthy search is understandable because successful development of
qualitative software systems and applications is no easy task. This development proc-
ess needs to satisfactorily address different contemporary issues [2] that deal with
problem domains, varied operational environments, and cultural differences (e.g.
natural languages). These issues could be complicated when developing web-based
applications that are distributed over diverse geographic locations and involve com-
plex ICT (information communications technology) concerns and MSPM (multi-site
project management) activities. Even with the same project requirements MSPM
linguistic variations could cause ambiguity, resulting in incorrect implementation or
non-interoperable software modules [3]. The lack of an enterprise vocabulary to coor-
dinate and disambiguate software development activities means a high cost-
effectiveness ratio, indicated by the following surveys:

a) High cost: In Australia and USA it is common for 50% or more of enterprise ex-
penditures to be spent on software development and maintenance.

b) Prone to failure: Less than 50% of software development projects in the Western
world were completed successfully.

c) Same trend: The trend of roughly 70% software project failures will continue into
the future, remaining the same as it was three decades ago.

Although the software engineering discipline has been evolving fast [1], the ge-
neric waterfall model in Figure 1 can still abstract the system development cycle in
four phases:

a) Phase 1 - Requirement specification and analysis. Its goal is to analyze and accu-
rately extract the following elements from the narrated requirements: the neces-
sary and sufficient number of functions for the target system; formal parameters
for each of these functions; and the execution serializability (logical control flow)
among the identified functions to ensure coherent and meaningful results. A func-
tion normally performs only one application-specific task of transforming the ac-

tual parameters into the expected result. For example, if),(21 xxf is a function,

),(21 xx are two formal parameters that would assume actual values/parameters

before execution (i.e. the transformation process). The functions and their inter-
twined logical relationships form the functional specification; constraints specified
for these relationships form the constraints specification to govern the ambit of
system behavior/dynamics. The functional and constraints (F&C) specifications
together form the domain of semantics for the system to know exactly what to do.

 An Ontology Supported Meta-interface for the Development and Installation 235

b) Phase 2 – Design specification. Details of how the final system should work are
addressed by: i) organizing the system semantics into small manageable modules
(modularization) by the principle of information hiding; ii) specifying how the
modules should synchronize and associate; iii) proposing the subsumption hierar-
chy for the modules that can be separated into two basic groups by their nature:
control-oriented (CO) and data-oriented (DO); higher-level CO does little computa-
tion but controls the timely invocation of other modules; the objective of the lower-
level DO is to produce useful information from actual parameters for use by the
higher-level modules; iv) proposing the system architecture to support the final sys-
tem operation; and v) evaluating data structures and algorithms/protocols to support
information retrieval and inter-modular synchronizations for coherent operations.

c) Phase 3 – Implementation. This phase aims to correctly translate the design speci-
fication into an intermediate form for: i) human understanding and manipulation,
and ii) conversion into the machine-executable representation. The intermediate
form is a program or software of a specific language (e.g. C++ or Visual Basic).
To humans, the program syntactically represents the system semantics; the ma-
chine executes its compiled form (executable code).

d) Phase 4 – Testing and debugging. Test cases are created to validate and verify that
the implemented system prototype indeed fulfils all the functions indicated in the
requirement specification. Debugging a distributed application is more an art than
science for we can rarely apply traditional approaches. From the literature the only
recognized technique to debug distributed software effectively is program visuali-
zation (e.g. [4,5]).

Fig. 1. Generic waterfall development life cycle

The feedback loops (Figure 1) show that if errors are found in the engineering proc-
ess, changes have to be repeatedly made in the upper source(s). Too many loop-backs
make the process expansive. Thus, the emphasis is on producing correct F&C specifica-
tions, and this can be achieved by using practical formal methods (e.g. Petri net). The
errors in translating the F&C specifications into the design specification can be reduced
by using semi-formal, semi-automatic tools such as the DBDesigner (DBD) by Micro-
soft. The DBD converts the semantic net in the form of a subsumption hierarchy (e.g.
DOM (document object code) tree drawn in the DBD format) into logically matched
XML-annotated code. The SQL system (also by Microsoft) then can convert the anno-
tated code directly into a usable database. If the CO and DO modules are programmed
in VB.net (Visual Basic for the Internet), they interact readily with the SQL database.
DBD, SQL, VB.net together fulfill the congruent automation principle (CAP) to be
explained later. If the activities in Figure 1 are supported by a management scheme that

236 J.H.K. Wong et al.

controls system migration, software changes, system versioning, and maintenance, a
configuration control (CC) framework is formed [1].

2 Related Work

Successful software engineering in the 21st century needs to overcome a set of formida-
ble challenges, including rapid and uncertain technological changes/emergence, cultural
diversity leading to ambiguous understanding of the target system, and heterogeneity in
hardware and software that prevents interoperability. The paper by Boehm [6] sums
these formidable challenges nicely, and one of his guidelines is to avoid THWADI
(“that’s how we’ve always done it”). This applies well to developing remotely deploy-
able ubiquitous web-based telemedicine systems, which is an emerging phenomenon of
the 21st century. In reality, the THWADI guideline is unavoidable, for computing re-
quirements evolve rapidly in different eras, governed by the Moore’s Law [7]: i) Am-
dahl’s era (early 1960s) – synchronizing sequential processes correctly was the focus; ii)
Gustafson-Barsis era (mid-1980s) – parallel computing (i.e. High Performance Comput-
ing (HPC)) to yield speedup; iii) megacomputing era (mid-1990s) – distributed systems
formed with an Internet basis; and iv) pervasive era (early 2000) – concern for the mo-
bility of hardware and software entities supported by location-aware capability. Despite
the rapid evolution driven by various contemporary forces, we still find that: i) the wa-
terfall model is the foundation; ii) optimal placement of program tasks is a focal issue;
and ii) coherent synchronization of these tasks is needed for correct results. From the
literature we identified ten major forces that affect the success of developing remotely
deployable web-based telemedicine systems. These forces are represented as entries in
the set },,,,,,,,,{ JIHGFEDCBAF = as depicted in Figure 2:

A. Synchronization and serializability methods: These govern how entities in the
system interact coherently. Examples include CR (critical region), RPC (remote
procedure call), Corba, and MPI. The method used depends on the problem do-
main and the intended environment of operation.

B. Channel reliability methods: These shorten the service roundtrip time in cli-
ent/server interaction. Usually dynamic or adaptive methods are more effective
than static methods [8].

C. User participation: This is a necessity for effective fast prototyping so that imme-
diate user feedback improves the prototype. It is ideal if the user participates in all
stages of the waterfall model.

D. Software engineering by parts: This is integration of software parts (mod-
ules/artifacts) built by other groups into the system being built. It can be physical
code inclusions (into the system software) or logical remote invocation via prede-
fined linkages. The parts can be in various programming languages but do not af-
fect the final system performance [4].

E. Tools/methods for creating/managing data structures and databases: These repre-
sent the paradigm that data structures on the blueprint are realized automatically
into physical databases; for example, converting a DBD drawing directly into a
physical SQL database (i.e. Microsoft environment).

 An Ontology Supported Meta-interface for the Development and Installation 237

F. Testing and debugging tools: These support different testing and debugging situa-
tions. For example, program/system behavior visualization is suitable for monitor-
ing distributed agent-based software in which agents are mobile in a real-time
sense [4].

G. System security issues: The aim is allow a system run smoothly without unneces-
sary interruptions.

H. MSPM (multi-site project management): Usually teams based in different geo-
graphic locations are involved in the development of a successful enterprise soft-
ware system. To eliminate ambiguity a vocabulary to bridge cultural and language
differences among working groups needs to be created. The creation of such a vo-
cabulary is regarded by many researchers as an ontological approach (i.e. the vo-
cabulary is the “enterprise ontology”) [9].

I. ICT (information communications technology): This discipline combines appro-
priate technologies to build an efficient web application.

J. Trend and era issues/laws: Inevitably, as the computing industry advances through
various trend-setting eras and laws into today's mobility era with mobile hardware
for location-aware networks and mobile software agents that migrate at will, some
of the older methods and tools will be invalidated.

Fig. 2. Ten external forces that affect software system success

The longitudinal and latitudinal axes in Figure 2 form the backbone of the configu-
ration control (CC) to balance these ten forces into equilibrium. Although the water-
fall model is the basis for the CC, the two key issues of modular task placement into
network nodes and ensuring correct task synchronization to achieve coherent results
still need to be addressed. Unfortunately, no previous experience on devising an ef-
fective CC scheme for pervasive telemedicine system development has been found in
the literature. The Nong’s in-house experience, which used the traditional waterfall
model as the basis to balance (by trial-and-error) some of the forces shown in Figure 2
is the only useful clue so far. Besides, very limited experience can be found in the
literature about formulating telemedicine system architectures. The only useful exam-
ple that we encountered was the UMLS (Unified Medical Language System) [10].

238 J.H.K. Wong et al.

Fig. 3. A pervasive telemedicine system model

3 Nong’s Telemedicine Framework Background

Telemedicine, a term that was consolidated around 1999 [12], aim is to electronically
deliver healthcare (i.e. e-health) to every corner of the globe. Its realization over the
mobile Internet, however, is an art for there is little experience published in the literature
for this budding discipline. Since the mobile Internet supports both wireline and wire-
less communication technologies, interacting agents of a telemedicine system on the
web require reliable mobility and communication supports. A telemedicine operation is
basically a digital ecosystem, in which agents/entities of different species (e.g. mobile
clinics (MC) and surrogate agents) collaborate closely [13]. In response to the potential
business benefits of telemedicine the Nong’s Company Ltd. developed several WTS,
which are now deployed in different locations over the globe. The fundamental Nong’s
WTS concept is depicted in the Figures 3 and 4. Figure 3 shows the mobile nature of
the Nong’s telemedicine approach, which has a central PCI (pervasive computing infra-
structure) support on a high-speed wireline network. Once an MC has moved into a
smart space (a wireless communication cell with location-aware capability) it could
interact with other MCs and the PCI at will. Typical MC tasks invoked via the applica-
tion interface of the system include: i) patient record retrieval/update; ii) drug inventory
update (both central (in PCI) and local (on MC)); iii) diagnostic help solicitation from
remote physicians (i.e. collaborated diagnosis); and iv) statistics for effective MC man-
agement and disease control (e.g. as required by the Hong Kong SAR government). An
MC (i.e. local telemedicine unit) is manned typically by: a physician, a dispenser, a
paramedic, and the customized telemedicine software system (CTSS) which is concep-
tually depicted in Figure 4 as CAI. The CTSS is architecturally similar to the UMLS by
having three distinctive layers (Figure 5) but functionally it differs by supporting real-
time frontline clinical practice.

The CTSS (or WTS (web-based telemedicine system)) architecture has three layers:

a) Bottom layer (i.e. CTSS bottom-domain in Figure 5): This is the local TCM onto-
core customized from the enterprise’s time-honored total knowledge as logically
indicated by [V] in Figure 5.

b) Middle layer (i.e. CTSS middle-domain in Figure 5): This is the semantic net
(network) that fully and logically represents the local CTSS TCM onto-core in the
machine process-able form. The parsing mechanism (parser) is the software that
draws the logical conclusion for the query input from the top layer (e.g.

},,{ 321 pppQ ; },,{ 321 ppp are parameters to drive the parsing mechanism).

 An Ontology Supported Meta-interface for the Development and Installation 239

c) Top layer (i.e. CTSS top-domain): This is the customized application interface
(CAI) specification for the target CTSS (i.e. F&C specifications together) to syn-
tactically represent the local CTSS semantic net for human understanding. The
CAI specification is made up of icons selected from IL; new icons can be created
and added to IL anytime. The terms in an icon are standardized by [V]. The whole
CTSS or WTS is realized from the given CAI specification by the MI paradigm,
and the physical GUI of the target WTS has the same appearance as the given CAI
specification.

Fig. 4. Conceptualized CTSS (customized telemedicine software system)

Fig. 5. The three-layer architecture of CTSS

240 J.H.K. Wong et al.

The most engineered CTSS part is the top layer or the CAI specification because
once it has been verified the whole system can be generated automatically. Working
together, the three layers comprise a customized CTSS that effectively realizes the
philosophical arguments of Gruber [14] in an integrated fashion. Gruber’s ontology is
a consensus-certified conceptualization, which is understandable to humans and
meanwhile machine process-able. Guarino deepened this ontology concept by arguing
that it should have a subsumption hierarchy of sub-ontologies with axiomatic associa-
tions to constrain interpretation [11].

4 Meta-interface Paradigm – Proposed Innovative Software
Development Approach

The meta-interface (MI) paradigm combines the THWADI and CAP philosophies to
automate CTSS generation with the software-engineered CTSS application interface
specification as the only required input; that is the customized application interface
(CAI) specification. The physical CTSS has three layers (Figure 5). Its graphical user
interface (GUI) has the same characteristics as the original CAI specification. Key
elements in the MI paradigm include:

a) Enterprise TCM vocabulary: All CTSS terms are verified against it (i.e. [V] in
Figure 5).

b) Unique icon library (IL): This contains all the graphic icons that Nong’s accumu-
lated over time. Any new icons created for customers will be added to IL as evolu-
tion. An icon in the context of the MI paradigm is a modular semantic structure
backed up by its modular ontological structure (Figure 5). For machine process-
ing, every icon is supported by a group of “control-oriented” and “data-oriented”
object classes. An application interface to be customized is physically a collection
of selected icons from IL that meet specific clinical functions of stated constraints.
Icon creation is a formal process, for its terminology is checked and verified
against the standard enterprise vocabulary [V]. This disambiguates communica-
tions within the Nong’s enterprise, between Nong’s and the global TCM commu-
nity, and among the Nong’s customers (e.g. customized WTS).

c) Customized application interface (CAI): In its business plan Nong’s would cus-
tomize the MC based telemedicine software and remotely install it for the client
[13]. The customization process is basically fast prototyping, and the clients need
only to customize the CAI specification correctly together with Nong’s. With the
final CAI specification the generation of the customized WTS artifact and its re-
mote installation (client’s site) are automated. Verification and validation of the
final WTS can be conducted anytime and anywhere by using the semantic TCM
visualizer (STV) – a mandatory element in the MI paradigm. In our research the
customized CAI specification is the input to the automatic meta-interface (MI)
process.

d) Annotated master/enterprise TCM onto-core blueprint: It is the huge piece of
annotated code (or blueprint) for the subsumption hierarchy of the entire enterprise

 An Ontology Supported Meta-interface for the Development and Installation 241

TCM onto-core to match the formal knowledge in the enterprise vocabulary [V].
The blueprint creation is semi-automatic to quicken rectification of errors by the
group of TCM domain experts who perform consensus-certification. This semi-
automatic process has two phases:

i. Manual phase: The DOM (document object model) tree for the master TCM
onto-core has to be drawn manually. The drawing helps experts visualize and
verify the necessary facts quickly against the canonical information in [V]. In
fact, there are usable commercial tools in the field that can be support such
drawing; the DBDesigner (DBD) by Microsoft is an example.

ii. Automatic phase: Firstly, the annotated blueprint is automatically generated
from a drawn DOM tree. Annotation can be achieved by different metadata
systems. For example XML, RDF, and OWL metadata systems are popular
because the codes generated for them are interoperable [1]. In fact, the DBD
system can generate the corresponding XML-annotated codes from its own
drawings. Secondly, the GUI (graphical user interface) subsystem is automati-
cally generated for the final WTS system for human interaction.

e) Automatic CTSS/WTS database generation: A physical CTSS/WTS is generated
from the given CAI specification that indicates what portion of the enterprise
TCM onto-core blueprint to be extracted automatically by the MI paradigm. The
extraction, in the form of a piece of annotated code (blueprint), is then automati-
cally instantiated into the respective local TCM onto-core.

f) Appropriate programming language(s) for the logical object classes: The execu-
table forms of those functions in an icon in the IL are object classes. In the MI
paradigm functions in an icon are instantiated as object classes selected from the
main enterprise object library; the MI paradigm is object-based.

g) Semantic TCM visualizer (STV): This converts an XML-annotated code into the
matching DOM tree and traces the parsing mechanism on line. In this way it veri-
fies and validates any part of the physical CTSS anytime and anywhere.

h) Remote CTSS installation: The CTSS package contains: the GUI for human in-
teraction; wireless communication capability for the MC; the CTSS database; ob-
ject classes; and other auxiliary software tasks. It is sent via the web to remote
sites for installation.

5 Experimental Results

Many experiments were carried out in the Nong’s WTS (mobile clinics (MC) based)
environment over the mobile Internet. The results verified that the novel MI paradigm
proposed by this paper is indeed effective in customizing usable WTS. The set of
results presented here include: i) the CAI specification customized for the physicians’
diagnosis/prescription (D/P) procedure to treat patients; ii) the actual D/P GUI gener-
ated from a CAI specification by the MI paradigm; and iii) a partial DOM tree and its
corresponding XML-annotated code or blueprint as visualized by using STV. The
Chinese TCM terms in the results were translated into English by using the World
Health Organization (WHO) standard [15].

242 J.H.K. Wong et al.

Table 1. Traditional 4-step TCM diagnostic procedure and result examples

look (“望”) listen & smell
(“聞”)

question (“問”) pulse-diagnosis
(“切”)

e.g. pale face e.g. cough, bad
breath

e.g. headache? fever?
loathe cold ambience?
(“惡寒/怕冷”)

e.g. taut and fast

Fig. 6. The GUI generated from a CAI of chosen icons from the IL

5.1 The CAI Example

Figure 6 is a CAI specification (for generating the corresponding physical GUI) that
includes: a) icon (I) – control bar; b) icon (II) – patient registration number (i.e.
MX6060303001) and fields to be filled in the D/P process by the physician, includ-
ing: patient’s complaint (“主訴”), and diagnosis (“診斷”) (e.g. illness/type (“
病”/“証”) and treatment principle (“治則治法”)); c) icon (III) – symptoms (“現病
史”) obtained by a standard TCM diagnostic procedure; d) icon (IV) – pulse diagnosis
(“脈診”); e) icon (V) – prescription(s) (“處方”) to be dispensed with respect to the
diagnosis; f) icon (VI) – experience window (record) entrance specific to the logon
physician with medical practice registration (e.g. 003623); g) icon (IX) –diagnostic
questions (e.g. Do you loathe cold ambience conditions (“惡寒/怕冷”)?) and general
physical inspections (e.g. complexion (“面色”) – pale or red); h) icon (X) – tongue
diagnosis (“舌診”) (e.g. texture and coating color). Table 1 shows four steps in the

 An Ontology Supported Meta-interface for the Development and Installation 243

traditional TCM diagnostic procedure: look (“望”), listen & smell (“聞”), question
(“問”), and pulse-diagnosis (“切”).

5.2 A Customized WTS Example

This example shows the operation of the physical WTS generated automatically from
a given CAI (e.g. Figure 6) by the MI paradigm. The physical GUI for the operating
WTS will appear the same as the parent/input CAI. In the GUI the set of symptoms,

{S 怕冷重 (dislike cold ambience), 發熱輕 (light fever), 無汗 (no perspiration} ,

obtained from the patient were keyed-in and echoed in the symptoms window “現病
史”. Normally the parser will works automatically with the input query (e.g. {Q 怕冷

重, 發熱輕, 無汗}). The parsing process can also be visualized by pressing the

Parse button that invokes the STV (as shown in Figure 7). The parsed result for the
symptoms (in the “現病史” window) includes: a) Diagnosed (診斷) illness (病): Flu
(感冒) & type (証) is “wind cold” (風寒); b) Treatment principle (治則): heating &
sweating (辛温解表); and c) Prescription (處方): “荊防敗毒散”.

Fig. 7. Invoked STV to visualize a parsing operation

6 Conclusion

In this paper the meta-interface (MI) paradigm, which combines the THWADI and
CAP philosophies, is proposed. It automates the generation of a client’s CTSS di-
rectly from the given customized application interface (CAI) specification. This
specification is constructed by “gluing” together icons selected from the enterprise
icon library (IL) as part of a fast prototyping process. The automatic process extracts
the portion of the subsumption hierarchy in the enterprise TCM onto-core that corre-
sponds to the given CAI specification. The next step is to perfect the STV so that it
visualizes and debugs more effectively.

244 J.H.K. Wong et al.

Acknowledgement

The authors thank the Hong Kong Polytechnic University and the PuraPharm Group
for funding the research, grants A-PA9H and ZW93.

References

1. Rifaieh, R., Benharkat, A.: From Ontology Phobia to Contextual Ontology Use in Enter-
prise Information System. In: Taniar, D., Rahayu, J. (eds.) Web Semantics & Ontology,
Idea Group Inc. (2006)

2. Osterweil, L.J., Ghezzi, C., Kramer, J., Wolf, A.L.: Determining the Impact of Software
Engineering Research on Practice, March 2008, pp. 39–49. IEEE Comp., Los Alamitos
(2008)

3. Chan, C.: Ontological Methodologies, - From Open Standards Software Development to
Open Standards Organizational Project Governance. Journal of Computer Science and
Network Security 7(3) (March 2007)

4. Wong, A.K.Y., Lin, W.W.K., Dillon, T.S.: Local Compilation: A Novel Paradigm for
Multilanguage-Based and Reliable Distributed Computing over the Internet. Special Issue:
Mobile & Wireless Communications & Information Processing, Journal of Simula-
tion 75(1), 18–31 (2000)

5. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology Visu-
alization Methods – A Survey. ACM Surveys 39(4) (October 2007)

6. Boehm, B.: Making a Difference in the Software Century. IEEE Computer, 32–38 (March
2008)

7. Bardram, J.E., Christensen, H.B.: Pervasive Computing Support for Hospitals: An over-
view of the Activity-Based Computing Project. IEEE Pervasive Computing 6(1), 44–51

8. Lin, W.W.K., Wong, A.K.Y., Dillon, T.S.: Application of Soft Computing Techniques to
Adaptive User Buffer Overflow Control on the Internet. IEEE Transactions on Systems,
Man and Cybernetics, Part C 36(3), 397–410 (2006)

9. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The Enterprise Entology, Artificial Intel-
ligence Applications Institute, University of Edinburg, UK, http://citesee.ist.
psu.edu/cache/papers/cs/11430/ftp:zSzzSzftp.aiai.ed.ac.ukzSz
pubzSzdocumentszSz1998zSz98-kerent-
ontology.pdf/uschold95enterprise.pdf

10. UMLS, http://www.nlm.nih.gov/research/umls/
11. Taniar, D., Rahayu, J.W.: Web Semantics & Ontology. Idea Group Publishing (2006)
12. Kaar, J.F.: International Legal Issues Confronting Telehealth Care. Telemedicine Journal

(March 1999)
13. Wong, J.H.K., Wong, A.K.Y., Lin, W.W.K., Dillon, T.S.: Dynamic Buffer Tuning: An

Ambience-Intelligent Way for Digital Ecosystem. In: Proc. of the 2nd IEEE International
Conference on Digital Ecosystems and Technologies (IEEE-DEST 2008), Phitsanulok,
Thailand (February 2008)

14. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

15. WHO International Standard terminologies on traditional medicine in the Western Pacific
Region, ISBN 978 92 9061 248 7, World Health Organization (2007)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 245–255, 2008.
© IFIP International Federation for Information Processing 2008

Cyber Biosphere for Future Embedded Systems

Franz J. Rammig

Heinz Nixdorf Institute
Universität Paderborn

Paderborn
Germany

franz@upb.de

Abstract. Future Embedded Systems are heading into a degree of complexity
which is far beyond today`s level. As most technical artifacts will be intercon-
nected in some sense (“Internet of Things”) Embedded Systems of the future
cannot be treated as isolated entities any longer. Two major tendencies to cope
with this challenge can be observed. The first one takes its inspiration from the
technical roots of Embedded Systems. They are looked at from their technical
nature but the traditional boundaries of Embedded Systems, especially to con-
sider them as isolated systems are overcome. This approach became well known
under the name “Cyber Physical Systems (CPS)”. The second approach observes
the existence of highly successful and relatively stable systems in form of our
biosphere. So it seems to be wise to take inspirations from the achievement of
nature. This approach became rather popular under the term “Biologically In-
spired Systems” or “Organic Computing”1. In this paper we will concentrate on
the latter attempt to build the highly complex, highly sophisticated Embedded
Systems of the future. Inspirations from ant colonies, from the hormone system,
and from the immune system will shortly be discussed using specific examples.
Some comparisons with the CPS approach will be made as well.

Keywords: Biologically Inspired Techniques, Ant Colony Algorithms, Artifi-
cial Hormone Systems, Artificial Immune Systems.

1 Introduction

Engineers are interested to build highly efficient, highly reliable, and highly determi-
nistic systems; they are interested to keep their systems completely under control under
all potential circumstances. For this purpose the embedded systems community, espe-
cially the real-time researchers have developed sophisticated solutions: deterministic
real-time scheduling techniques, schedulability analysis, collision-free communication
protocols, time-triggered architectures, formal proof techniques, just to mention some
of them. Adapting inspirations from the biosphere, a world that seems to follow com-
pletely different approaches, appears to be strange idea at the first glance. On the other

1 See http://www.organic-computing.de/ for the Organic Computing Initiative and http://

www.aifb.uni-karlsruhe.de/Forschungsgruppen/EffAlg/projekte/oc/inhalte for the Organic
Computing Priority Program funded by the German Science Foundation (DFG).

246 F.J. Rammig

hand engineers are impressed by the robustness of extremely complex biological sys-
tems. A human, made of billions of cells, interacting in a highly sophisticated manner,
is continuously exposed to billions of enemies (antigens) which change their attacking
strategies rapidly and in a non predictable manner. By simple MTBF calculations one
would conclude that a human’s lifetime should not exceed some hours. However such
a complex system survives in a hostile environment for a very long time. The same can
be said for any kind of complex bio-conglomerates. So, biological systems have
proven to be extremely robust even in dynamically changing hostile environments. Of
course engineers also are able to design highly complex systems. A today’s SoC com-
prises a billion of transistors as well and it runs reliably for a long time. Giant SW
systems like telephone switching systems are very reliable as well. What can be ques-
tioned, however, is the stability and robustness in case of changing environmental
conditions or in case of unforeseen hostile circumstances. Of course biological systems
can handle unforeseen situations also only to a certain amount. In cases beyond this
level of flexibility the respective species disappears. However, it seems that this limit
of biological flexibility is much broader than in conventional technical artifacts. From
this observation it does not surprise that one of the most stable, most robust and most
adaptive complex technical artifact is the internet. In fact the internet follows a couple
of basic principles of biological systems like distributive design, postponing decisions
and actions into the operational phase, self-organization, emerging redundancy, just to
mention some of them.

Common to the highly complex systems of the future are the following key
characteristics:

• complex volatile networks in which components cooperate as well as possibly
compete,

• decentralized control and components acting autonomously,
• an unobservable global system state and thus components with only local

knowledge,
• optimization of own benefits being the driving force of a component’s

cooperation,
• adapting to and learning from environmental changes as a universal ability of

components,
• limited availability of resources combined with security and safety

requirements.

In each of these settings, the global system state is neither observable nor would a
knowledge of it (due to its complexity) be of any help. New properties emerge while
the network’s components adapt to and learn from other components. These funda-
mental characteristics raise a number of new research questions that need to be ad-
dressed in order to achieve any progress in this area. All the mentioned properties are
present in biological systems as well. Therefore it seems to be attractive looking for
inspirations in this domain. Biological systems seem to follow optimal strategies (or
at least near-optimal ones) in the presence of partial or even unreliable information.
Biological components are able to “decide” which information is relevant and which
need not be considered. They follow “algorithms” reaching stable, robust, and desir-
able behavior in a distributed network. Biological entities find out about their right

 Cyber Biosphere for Future Embedded Systems 247

option of interaction with cooperating or even competing other components. Nature
“invented” clever, adaptive, and efficient communication principles. All this is done
under restricted resources and even in case of failing parts. Nature transformed most
of the decisions and actions into the operational phase of biological artifacts which
results in highly adaptable systems. These systems reflect on both their own and their
environment’s behavior and consequently change themselves. Nature provides tech-
niques that can ensure the correctness of emergent volatile systems.

To sum up: Highly complex systems behave like global economy. By their tradi-
tion engineers tend to organize their artifacts in the way of planned economy. Nature
is an economy driven by free enterprise of selfish agents. Such economies may be far
away from optimality, they tend to locally show nondeterministic behavior at certain
points of time. But they seem to be extremely robust on the long term. In this paper
we would like to provide some hints why it could be wise for engineers to accept a
certain amount of free economy as well.

2 Ant Colony Algorithms

The total biomass of ants on earth is more or less the same as the biomass of mankind.
Ants can be seen as one of the most advanced examples of social bio-systems. Ant
colonies can be interpreted as a specific kind of an organism, forming an interesting
compromise between simple swarms of single cell life and highly organized multi-cell
systems (e.g. mammals) where most cells are fixed at a specific location and play a
specific role. Differently from these two extremes in an ant colony the individual
constituent (an ant) is a multi-cell object, mobile, intelligent to a certain degree, but
closely embedded into a global collaborative scheme. Ant Colony Optimization
(ACO) is a cooperative meta-heuristic being successfully applied to various combina-
torial optimization problems. Ants tend to find the shortest path from their nests to a
food source in a relatively short time. For doing so, they communicate in an indirect
manner, called stigmergy. Moving ants deposit traces of pheromone on their trail. On
the other hand, ants have the tendency to follow trails which are marked by phero-
mone. This establishes a positive feedback which makes a marked trail even more
attractive. Evaporation of pheromone establishes a negative feedback. When alterna-
tive trails are chosen randomly in the beginning, the pheromone level of a path is
inverse proportional to the path’s length with high probability. Dorigo et al. [5] were
among the first to apply ACO to graph-related optimization problems like the Travel-
ing Salesman Problem (TSP). A more general theory has been developed in his book
[6], proceedings of dedicated conferences have been published as well [7, 8].

In their papers [3, 4] the authors describe the application of Dorigo’s basic ap-
proach to the scheduling problem of MPEG streams via the 802.11e EDCA. For this
purpose the precedence-constrained MPEG scheduling has to be mapped onto a di-
rected graph, expressing the precedence relationships of MPEG Groups of Pictures
(GoP). This results in a cyclic graph consisting of the various I, P, and B frames con-
tained in the GoP being represented as nodes and the precedences as directed edges. A
feasible solution represents a schedule of MPEG frames where each frame is expected
to be transmitted within its (previously defined) delay bounds. On such a graph a
colony of π ants is deployed. An ant of such a colony sitting on a “border” node of a

248 F.J. Rammig

partially feasible schedule selects an edge from this node to an attainable node accord-
ing to a probabilistic function as in Dorigo’s original work. A tour is said to be com-
pleted if all π ants of a colony have returned to the initial I-frame. Then the best se-
lected path is evaluated by counting the number of timely scheduled frames. On each
edge of this path the pheromone values are updated. The updated value is proportional
to the ratio of the achieved solution and the optimal one (all frames of the GoP sched-
uled timely). As a result, near optimal solutions that entail higher concentration of
pheromone will have a higher impact on the edge selection process in subsequent
tours. In experiments this algorithm turned out to be nearly as efficient (concerning
needed computation time) as a dedicated scheduling algorithm designed at our insti-
tute by the same author. However it showed a much more robust behavior with re-
spect to rapidly changing load and transmission distortions.

Large ad hoc networks can be clustered following an approach based on division of
labor in colonies of social insects like Pheidole Rea. The basic idea in this case is to
treat each node of an ad hoc network either as a “major” ant or a “minor” one. A ma-
jor represents a cluster head which means a higher workload while the minors are
member nodes of clusters. The main power of the approach is originating from the
built-in elasticity. Both types of species have a certain threshold to become major or
minor. On the other hand they are stimulated by received signals. Whenever the
strength of such signals is above a certain threshold the role of a major may change to
a minor or vice versa. Typical stimuli signals are signal strengths of received mes-
sages, frequency of received messages, etc. Thresholds are established e.g. by the
power reserve of a node. A cluster head with flattening power resources has a ten-
dency to become a minor (member node), an “isolated” member node to become a
cluster head; see [10] for more details. This approach again shows enormous robust-
ness against rapidly changing situation.

In our fine-granular distributed RTOS NanoOS, services are distributed over the
nodes of a cluster; the clusters being created as described above. The optimization
goal here is to migrate services dynamically to such nodes that the global communica-
tion costs between services and application tasks requesting these services are mini-
mized. Note that the requesting application tasks may reside on any nodes of a cluster.
This problem again can be mapped onto an ACO problem. In our approach services
are the equivalent of food sources, service locations are the equivalent of shortest
paths, calls made by the requesters are the ants, and requesters are the nests. Wireless
links form the paths which the ants can use for movement. While the requests are
being routed to the destination service, they leave pheromone on the nodes. The
pheromone, on the other hand, evaporates over time. This solution is further enhanced
to also consider the specific workload on the destination nodes of potential migra-
tions. In addition geographically related paths are handled in such a way that they
bundle attracting force into their direction. Details can be found in [11].

3 Artificial Hormone Systems

All biological system can be seen just as a collection of individually operating cells
which follow some collaborative principle of operation based on some communica-
tion means. Electrical signaling via the nerve system constitutes a means of directed

 Cyber Biosphere for Future Embedded Systems 249

communication in the sense of single-cast or multicast. Controlled and centrally coor-
dinated actions like contraction of specific muscles to enable movement may serve as
an example. In other situations when an extremely high number of potentially receiv-
ing cells have to be addressed and if those cells are widely spread across a body a
multi-cast communication scheme is desirable. In bio-systems this is carried out by
means of the hormone system which can be interpreted as a way of biological broad-
casting. Specific chemicals are generated by the sending instance and cause reactions
on the side of receiving cells. It is essential that the receiving cells can react in a spe-
cific manner. This specific reaction may depend on cell type or even on a specific cell
instance and its current environmental setting. Even the set of hormones may be spe-
cific for the different cells. Hormones unknown to a certain receiver are just ignored.
So the intended communication is established only between processing elements that
share a joint reservoir of hormones. By this concept multi-cast can be implemented
easily. This simple basic principle thus can be tailored in numerous ways to result in
the desired behaviors.

In [1] the authors discuss an approach to apply concepts of artificial hormone sys-
tems to task allocation on heterogeneous processing elements. In their approach each
of the processing elements and the tasks to be assigned may secret “hormones” or
may react on receiving ones. This approach strictly follows a decentralized approach.
Each processing element may have an individual rule set for the secretion of hor-
mones or how to react on receiving certain ones. The only common rules are given
by some agreement what hormones to be used. In their approach the authors imple-
ment a distributed feedback controller by means of two principle types of hormones,
so called accelerators (positive feedback) and so called suppressors (negative feed-
back). The first ones are sent out to indicate the willingness of a processing element to
attract additional tasks, the second one to indicate the inability to do so. The approach
results in a couple of self-x properties: self-configuration as there is no central
control, self-optimization as there may be included rules to re-open the assignment
“market” periodically or stimulated by some events, self-healing as a failing task or
processing element is no longer sending hormones and by this disturbs the equilib-
rium which causes some re-allocation. The authors have built a flexible simulation
environment which allows them to experiment with a variety of parameter settings.

Stress response is a special version of a hormone system. The “Fight-or-flight”-
theory by Walter Cannon [2] describes the reaction of humans and animals to threads.
In such stress situations specific physiological actions are taking place by the sympa-
thetic nervous system of the organism as an automatic regulation system without the
intervention of conscious thought. For example, epinephrine a hormone is released
which causes the organism to release energy to react on the threat (fight or flight). This
concept is adopted to control the on-line reconfigurable real-time operating system
DREAMS2 (Distributed Real-time Extensible Application Management System) which
has been developed by our group. This RTOS is able to manage system tasks and user
tasks in the form of different “profiles” by means of a special resource manager [17]

2 Recently a new version of DREAMS has been created, called Organic Reconfigurable Oper-

ating System (ORCOS). It can be downloaded from https://orcos.cs.uni-paderborn.de

250 F.J. Rammig

(Flexible Resource Manager - FRM). DREAMS is tailored to the special demands of
self-optimizing applications. The manager tries to optimize the resource utilization at
run-time. The optimization includes a safe over-allocation of resources, by putting
resources that are held back for worst-case scenarios by tasks at other tasks’ disposal.
The interface to the FRM is called Profile Framework. By means of the Profile
Framework the developer can define a set of profiles per application. Profiles describe
different service levels of the application, including different quality and different
resource requirements. All states belonging to one profile build the state space that can
be reached when the profile is active. The different profiles can be assigned to specific
emergency categories using a generic monitoring concept for self-optimizing systems.
The intent is to protect tasks systematically against hazards or faults. These hazards or
faults might result from their self-optimizing behavior themselves, but self-optimizing
behavior can also support the re-allocation of resources to handle threats. The concept
distinguishes four different emergency categories:

1) The system operates regularly and uses its self-optimization for the major system
objectives.

2) A possible threat has been detected and the self-optimization is not only used to
optimize the behavior but also to reach system states, which are considered to be
safer than the current one.

3) A hazard has been detected that endangers the system. Fast and robust counter-
measures, like a reflex, are performed to reach a safer state (1 or 2).

4) The system is no longer under control; the system must be immediately stopped
or a minimal safe-operational mode must be warranted, to minimize damage.

The artificial hormone system is applied to ensure that the system can provide
more resources to enable more efficient countermeasures whenever it experiences
entering emergency category 2. The idea is, when a task of the system detects a threat
for the system it releases virtual epinephrine. This distributed epinephrine forces non-
critical tasks into a profile with lower resource consumption. By this, resources are
freed and this permits the critical task to handle the threat more appropriately by
switching into a specific emergency handling profile which usually is more resource-
hungry. The virtual epinephrine carries the information how much additional re-
sources the epinephrine secreting task requires to activate its threat-handling profile.
It is assumed that all tasks are sorted according their safety critical nature. Like the
cardiovascular system of an organism the resource manager broadcasts the epineph-
rine to the tasks. Tasks with the lowest safety level have the shortest reaction time.
When the epinephrine is injected into such a task it can react by switching into a spe-
cial profile with lower resource requirements. The task then updates the information
inside the epinephrine how much resources are still required. This updated epineph-
rine then is secreted again, by this over-writing the hormone already received by tasks
at higher safety levels which react more slowly. By this technique finally every task
has information about the threat and can react accordingly. The complexity of this
process is linear with respect to the number of tasks. The reaction of the tasks to the
epinephrine (“consuming” it by update) is done in a short, constant time. Details can
be found in [9].

 Cyber Biosphere for Future Embedded Systems 251

4 Artificial Immune Systems

Immunocomputing intends to establish another kind of computing. The main idea is to
copy the immune system’s ability to identify abnormal objects (“antigens”) with high
separation precision and to attack such antigens using adapted means (“antibodies”) in
an extremely efficient manner. All this is done in a distributed but interlinked manner
and is quickly adapted to varying situations (occurrence of previously unknown anti-
gens) by a sophisticated learning ability. As biological immune systems are based on
chemical reactions of proteins, immunocomputing is based on the “Formal Protein” as
its basic element. A protein is an essential component of organisms and participates in
every process within cells. Proteins constitute epitopes present in antigens and antigen
presenting cells. Proteins constitute also paratopes present in antibodies. An epitope is
the minimum molecular structure that is able to be recognized by the immune system.
One epitope matches with a paratope in molecular recognition. An epitope or a paratope
are made of around 10 amino-acids. An antigen presenting cell is a cell that has digested
an antigen and presents in its surface an epitope. A protein is composed of amino-acids
arranged in a linear chain. The 3D shape or tertiary structure of the epitope is recognized
by a paratope. It means an epitope is a kind of surface protein. That is why proteins will
be seen as the basic element in immunocomputing.

Cytokines are introduced as an additional concept into immunocomputing [18] to
establish collaboration. In biological systems cytokines are groups of proteins se-
creted by many types of cells. Each cytokine binds to a specific cell’s surface receptor
signaling a specific action i.e. differentiation into plasma cells, antibody secretion or
cell death. They bind also through own receptors constituted from proteins, too.

The basic entities in a biological immune system and therefore also in immuno-
computing are so-called B-cells. B-cells in the immune system secrete antibodies, i.e.
the actuators of immune reaction. On the other hand they also secrete cytokines in
order to signal something to another cell. This introduces a positive feedback into the
immune system. Then, a B-cell will be taken as a generic cell Vi with two compo-
nents expressed by Vi = (ci, Pi) where ci ∈ N represents a cytokine (action to be

carried out) and Pi ∈ Rq = ((p1)i, ..., (pq)i) is a point in a q-dimensional space. P lies
within a cube max{| (p1)i |, ..., | (pq)i |} ≤ 1. It represents a protein transformed into the
so-called FIN (Formal Immune Network) space. In biological terms it represents an
antigen binding site (antigen detection) of an antibody or, simplifying, an antibody.

We applied cFIN (cytokine FIN) to build self-repairing FPGAs, following a Built-in
Self-Test (BIST) approach. The circuit under test receives a test pattern and the response
is evaluated by means of cFINs. In this case, an antibody represents the expected output,
transformed into the FIN space. An antigen is the response of the circuit under test. A
cytokine represents the action to be taken for fault recovery purposes. It is important
that the system has to be trained beforehand using a training matrix V(c,A). A = A1,…,An
with Ai = (Inputi, Outputi, Stimulii, Statei) is a matrix with information about expected
responses under defined input patterns. Each expected or unexpected response then is
linked to an action expressed by c with ci = (selfi, actioni). The first component indicates
the differentiation between self and not self, the second one identifies the action to be
taken. Using the cytokine communication system, on-line learning can take place during
operation. Details can be found in [16]. For general readings on immunocomputing see
[19, 20].

252 F.J. Rammig

5 Discussion

The three approaches presented here are just examples of a broad potential when
getting inspiration from nature. Of course these approaches include much more so-
phistication than the simple principles presented here just to initiate a discussion. In
any case it is wise to collect more profound knowledge about biological systems be-
fore gaining real benefit out of them for engineering disciplines. Even the three
sketches presented here, however, show some interesting similarities. The reason is
that nature “invented” life by “inventing” cells. For billions of years life did exist
solely in form of single cell entities. So whatever emerged as biological system re-
mains a collection of individual cells, a collection of cells which may cooperate very
closely, a collection of cells where the cells may be differentiated into highly special-
ized ones. However the cells never lost their property of autonomy. Biological sys-
tems are federated ones. Social insects may be seen as a copy of the same principle;
now using more elaborate “macro cells”. And this principle can be recursively ex-
tended. It may not be so surprising that the federation principle can be found using
more and more complex “cells”, a principle that reaches up to human societies. Fed-
eration seems to be a very useful principle to achieve robustness. Usually there is
some dedication, some division of labor in federated systems. The degree of this divi-
sion of labor increases by the complexity of the federal community. However it can
be observed that in most cases there is more or less elasticity. Components of a com-
munity dedicated to specific tasks can take over other tasks whenever they receive
stimulations beyond their present threshold. This observation certainly is a valuable
inspiration for future embedded systems. Our own experiments in the areas of service
migration, clustering, or real-time scheduling of media streams did show very robust
and fault tolerant behavior when following this principle. Division of labor together
with elasticity provides a good compromise between efficiency and avoidance of
single points of failure.

Federated systems following the basic principle of delegation (distribute globally
only what to do, let the individual components decide how to do) rely on an adequate
communication scheme. It can be observed that nature created the entire bandwidth
from unicast/multicast (nerve system) to multicast/broadcast (secreting hor-
mones/cytokines or pheromones) and from dedicated “cabling” (nerve system) via
“powerline communication” (hormones/cytokines) to wireless (pheromone). Common
to all these communication approaches is the fact that they are tailored for federated
systems. All biological systems are made as a collection of cells and each single cell
is equipped with sensors and actuators. All higher order constructions make use of
this basic principle. By the same reason similarities can be observed between the
different communication concepts. Nerve threads are made by sequences of nerve
cells communicating via their synapses making use of the ability of any cell to cause
and sense electrical potentials. Other capabilities of cells for sensing and acting are
given by the ability to expose specific proteins on their surface and to sense the sur-
face of proteins (necessary in any case as part of a cell’s digestion system). This prin-
ciple is used within the hormone system, in immune-networks via cytokines, and also
when using pheromone for communication. Common to these techniques is again the
principle of delegation. It is up to a cell how to react on a sensed signal. This reaction
may depend of the specific cell type or even cell instance (thus enabling multicast) or

 Cyber Biosphere for Future Embedded Systems 253

on actual environmental or state conditions of a cell. An interesting aspect is the reuse
of energy flows (cardiovascular system) to transmit messages. This is a kind of bio-
logical powerline communication. Stigmergy can be seen as transforming hormones
or cytokines to a more general environment. An important principle in any case is a
decay mechanism for messages, evaporation of pheromones in case of ant colony
communication via stigmergy. Of course, the communication demands in technical
systems differ. However it is worth to consider biological communication techniques
as inspiration as well. Large, complex systems need a certain degree of self-
organization or, even less tight, self-coordination. Under such circumstances pre-
planned communication systems seem to be no longer adequate. By the principle of
delegation the amount of information to be communicated can be reduced dramati-
cally. We discussed in this paper techniques to make efficient use of stigmergy as
part of ACO solutions for service migration and soft real-time scheduling. Hormone-
based communication has been discussed in applications for task allocation and stress
management while cytokine-based communication plays an important role in our
work on self-healing FPGAs based on artificial immune systems. All these communi-
cation techniques turned out to be sufficiently efficient and extremely robust.

More recently the discussion about Cyber Physical Systems (CPS) emerged. One of
the major arguments within this community is that the traditional separation into func-
tional and non functional properties of computation seems to be no longer adequate
when building the deeply embedded but widely distributed systems of the future. Es-
pecially abstracting away time which in most areas of computing is a common princi-
ple turns out to be a dangerous assumption. The solutions proposed include the usage
of a strict and very precise global time source and then abstracting this source to a
“sparse time” model [14, 15]. Based on such a model adequate OO architectures can
be built, e.g. using the TMO approach of UC Irvine [12, 13]. This approach seems to
be completely different from the techniques of handling time in biological systems.
They tend to follow an approach to approximate and correct afterwards if the approxi-
mation turns out to be wrong or not precise enough. It definitely makes no sense to
look for inspirations from biology in an ideological manner. Technology opens poten-
tials that were not available within evolution up to now and these potentials have to be
used. Establishing a precise global time base was made possible by GPS and compara-
ble systems and as it is available it should be used. Other aspects addressed in CPS
research, however, match relatively well with inspirations we can get from biological
systems. As already mentioned several times in this paper, all biological systems are
build bottom-up using a strict cell-based approach. These cells are more comparable to
components than to objects in the OO sense. Communication is done by signaling
values; it then is up to the components how to react. This basic principle of delegation
constitutes much of the success of biological systems and should be considered as a
basic principle for CPSs as well. Biological systems do not distinct between functional
and non functional properties. Nature always is aware of resources, is making use of
what is available (considers the available “platform”), provides solutions how to han-
dle lacking resources to a certain amount. This is another principle to be considered as
inspiration when building CPSs. If such systems are built in a bottom-up manner by
creating cells based on and closely adapted to available platforms, being sensitive for
certain sets of rules, and being highly adaptive, capable of learning, then many of the

254 F.J. Rammig

CPSs’ challenges might be solvable. Building a generic framework, a Cyber Biosphere
(CBS) may be an attempt worth to be worked on.

6 Conclusion

In this paper some arguments are presented for taking inspirations from biology when
designing the complex technical artifacts of the future. Using some examples it has
been shown, that such inspirations may be helpful especially when the systems have
to behave in a robust manner in rapidly changing environments. However, one never
should make the mistake just to copy nature into technical artifacts. Our artifacts have
to work in a dependable manner for some years or decades. Nature “thinks” in terms
of millions of years, short-term behavior is of minor interest. Nature optimizes the
long-term global performance; the specific entity is of no interest. Engineers have to
consider the single entity, they are liable for. So, taking inspiration from nature should
always be an option but never more than an option among others.

References

1. von Renteln, A., Bringschulte, U., Weiss, M.: Examinating Task Distribution by an Artifi-
cial Hormone System Based Middleware. In: Proc. 11th Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2008), pp. 119–123. IEEE, Los Alamitos
(2008)

2. Cannon, W.B.: Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent
Research into the Function of Emotional Excitement. Appleton-Century-Crofts (1929)

3. Ditze, M.: Evaluation of an Ant Colony Optimization Based Scheduler for the Transmis-
sion of Multimedia Traffic in the 802.11e EDCA. In: Proc. of 3rd ACM Interntl. Worksh.
on Wire-less Multimedia Networking and Performance Modeling (WMUNEP), Chania,
Greece (2007)

4. Ditze, M., Becker, M.: An Improved Adaptive ACO Meta Heuristic for Scheduling Mul-
timedia Traffic Across the 802.11e EDCA. In: Proc. of 15th Annual Multimedia Comput-
ing and Networking (MMCN 2008), San Jose, USA (2008)

5. Dorigo, M., Maniezzo, V., Clorni, A.: The Ant System: Optimization by a Colony of Co-
operating Agents. IEEE Transactions on Systems, Man, and Cybernetics 26, 944–955
(1996)

6. Dorigo, M., Stützle, T.: AntColony Optimization. MIT Press, Cambridge (2004)
7. Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.):

ANTS 2004. LNCS, vol. 3172. Springer, Heidelberg (2004)
8. Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.):

ANTS 2006. LNCS, vol. 4150, pp. 3–540. Springer, Heidelberg (2006)
9. Giese, H., Montealegre, N., Müller, T., Oberthür, S.: Acute stress response for self-

optimizing mechatronic systems. In: IFIP Conference on Biologically Inspired Coopera-
tive Computing (BICC 2006). Springer, Heidelberg (2006)

10. Heimfarth, T., Janacik, P., Rammig, F.J.: Self-Organizing Resource-Aware Clustering for
Ad Hoc Networks. In: Obermaisser, R., Nah, Y., Puschner, P., Rammig, F.J. (eds.) SEUS
2007. LNCS, vol. 4761, pp. 319–328. Springer, Heidelberg (2007)

 Cyber Biosphere for Future Embedded Systems 255

11. Heimfarth, T., Janacik, P.: Experiments with Biologically-InspiredMethods for Service
Assignment in Wireless Sensor Networks. In: IFIP Conference on Biologically Inspired
Cooperative Computing (BICC 2008). Springer, Heidelberg (2008)

12. Kim, K.H.: Object Structures for Real-Time Systems and Simulators. IEEE Com-
puter 30(8), 325–333 (1997)

13. Kim, K.H., Li, Y., Rim, K.-W., Shokri, E.: A Hierarchical Resource Management Scheme
Enabled by the TMO Programming Scheme. In: Proc. 11th Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2008), pp. 370–376. IEEE, Los
Alamitos (2008)

14. Kopetz, H.: Embedded System Complexity. In: Self-optimizing Mechatronic Systems: De-
sign the Future. 7th International Heinz Nixdorf Symposium, pp. 469–486. HNI-
Verlagsschriftenreihe (2008)

15. Kopetz, H.: The Complexity Challenge in Embedded System Design. In: Proc. 11th Symp.
on Object-Oriented Real-Time Distributed Computing (ISORC 2008), pp. 3–12. IEEE,
Los Alamitos (2008)

16. Montealegre, N., Rammig, F.: Immuno-repairing of FPGA designs. In: IFIP Conference on
Biologically Inspired Cooperative Computing (BICC 2008). Springer, Heidelberg (2008)

17. Oberthür, S., Böke, C.: Flexible resource management - a framework for self-optimizing
real-time systems. In: Kleinjohann, B., Gao, G.R., Kopetz, H., Kleinjohann, L., Rettberg,
A. (eds.) Proceedings of IFIP Working Conference on Distributed and Parallel Embedded
Systems (DIPES 2004), pp. 177–186. Kluwer Academic Publishers, Dordrecht (2004)

18. Tarakanov, A.O., Kvachev, S.V., Sukhorukov, A.V.: A formal immune network and its
implementation for on-line intrusion detection. In: Gorodetsky, V., Kotenko, I., Skormin,
V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 394–405. Springer, Heidelberg
(2005)

19. de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Approach.
Springer, London (2002)

20. Timmis, J., Bentley, P.J., Hart, E.: ICARIS 2003. LNCS, vol. 2787. Springer, Heidelberg
(2003)

Leveraging GIS Technologies for Web-Based

Smart Places Services

Cristiano di Flora and Christian Prehofer

Office of the CTO, Nokia, Finland
{cristiano.di-flora,christian.prehofer}@nokia.com

http://www.nokia.com

Abstract. This paper describes our experiences and lessons learnt in
building a Geographic Information System (GIS) specifically designed for
indoor location-based services within our smart places infrastructure. The
proposed system was built by mashing-up commodity Open Source soft-
ware and novel research prototypes realized within our labs. The overall
approach relies on intense usage of standard web technologies and REpre-
sentational State Transfer (REST) APIs as a way of enabling easy mashup
of off-the-shelf and proprietary components. The key design and imple-
mentation aspects of our solution are described in detail, including a dis-
cussion on how we represented and augmented the concept of indoor
location within our services. Further, we show how we integrated them
with commodity GIS services originally designed for outdoor scenarios.

Keywords: Indoor, GIS, Smart Spaces.

1 Introduction

A smart space is a multi-user, multi-device, dynamic interaction environment
that enhances a physical space by virtual services [3]. These services enable
the participants to interact with each other as well as with other objects in
the smart space. Indoor smart spaces are of particular interest in this context
because people spend most of their time indoor rather than outdoor, which in
turn makes the potential impact of indoor Location-Based Services (LBS) much
bigger than that of outdoor LBS.

There has been considerable research and commercial success on outdoor
GPS-based LBS, which motivated us to focus on services for indoor smart places.
This paper describes our experiences and lessons learnt in building a Geographic
Information System (GIS) specifically designed for indoor location-based services
within our smart places infrastructure. While many research prototypes are built
from scratch, our focus here is to understand how existing GIS technologies can
be used for our mobile, indoor solution. In this way, we aim both to extend the
scope of GIS systems and to use them as standards for indoor smart place appli-
cations. The proposed system was built by mashing-up commodity Open Source
software and novel research prototypes realized within our labs. The overall ap-
proach relies on intense usage of standard web technologies and REpresentational

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 256–267, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.nokia.com

Leveraging GIS Technologies for Web-Based Smart Places Services 257

State Transfer (REST) APIs as a way of enabling easy mashup of off-the-shelf
and proprietary components.

The paper is organized as follows. Section 2 discusses the rationale behind
our work and related research. The key design and implementation aspects of
our solution are described in detail in Sections 3 and 4, respectively, including a
discussion on how we represented and augmented the concept of indoor location
within our services, as well as on how we integrated them with commodity GIS
services originally designed for outdoor scenarios. Section 5 concludes the paper
by outlining the main lessons learnt and future research directions.

2 Motivation and Background

There is considerable research on ubiquitous and pervasive computing, also re-
cently focusing more on internet of things or ambient computing. Many research
projects have developed and trialed ubiquitous services. Also, several projects
have developed software platforms and frameworks for this purpose. There is
extensive literature on this, for instance [4] surveys 29 approaches up to 2004.
This survey covers many systems for distributed mobile computing and most of
them consider location information, even though positioning technology was not
widely spread at this time. There is also more recent work on indoor positioning
services, such as [5,13], and also on symbolic location models, going beyond plain
coordinates [6].

GPS based LBS have been widely successful and have created an enormous
ecosystem of applications using such services. It could even be argued that the
easy access of web-based map tools has fueled the integration of applications by
using the mashup approach. For instance, it is now very common for web-based
services to show geo-tagged items on a map application. These interactive and
integrated web-based applications have gained enormous momentum and are
also labeled Web 2.0 technologies. Web 2.0 basically means that Web-sites are
interactive, that users are actually creating content, and that the content and
applications can be combined by application mashup and tagging of content.

This issue has been noted and research on user generated content for ubiq-
uitous systems has been developed, e.g. in [7], focusing on annotating and user
generated content. We think that there are a number of more essential research
issues towards a wide spread eco-system of indoor positioning services. In our
view, the key issues for the widespread usage of indoor positioning services are
as follows:

– establishing common standards and practices for indoor positioning and map
services which are interoperable and easily available;

– integrating indoor positioning services into existing web-based services;
– enabling mobile, context aware applications which are easy to deploy and

use;
– ensuring privacy and security regarding personal data such as location in-

formation.

258 C. di Flora and C. Prehofer

Regarding the first item, we see several missing pieces. First, indoor maps are
currently not widely available in well-known standard formats, protocols, and
positioning infrastructures. While GPS is nowadays widely available outdoors,
there is no such established and deployed indoor positioning technology. More-
over, most of them need dedicated device-side or infrastructure-side hardware.
Indoor positioning has been using very different technologies such as bluetooth,
RFID or WLAN based. Even further, there are no established standards for
handling maps and geo-spatial data, whereas such standards are available for
outdoor LBS [12]. Our approach here is to build on WLAN based positioning,
which we see as a widely available technology and further use such open stan-
dards for geospacial information systems for indoor settings.

Regarding the second issue above, integrating with existing services is a must,
as such services not only provide considerable technology but also toolkits and
substantial amount of already available geospatial data as, for example, in out-
door maps applications. This may also include personal data, such as private
contacts or pictures. We also observe here that most of these application mashups
use technologies which are simple and integrate easily into web applications, such
as REpresentational State Transfer (REST) APIs and RSS feeds.

Another problem is that deploying mobile services is difficult, as there is a
large variety of devices and different operating systems (in different version)
on the market. Furthermore, these devices can be quite different in terms of
resources like memory and connectivity. This problem has hampered the de-
ployment of mobile services in general, and it is more severe in our case as
we also want to integrate positioning information with other context data. We
are focusing on web based applications as they are easy to access, to deploy,
and to manage. However, they do not have access to local context data of the
user. Different options can be chosen in this context, based on downloadable
client software for context collection as well also using upcoming standards for
browser-based access to context data such as the W3C Delivery Context Client
Interface (DCCI) initiative [16].

We focus in this paper on the above challenges. In summary, we show how
to use GIS solutions for indoor settings and show how the web can be used as
a platform for these services. This covers connecting to services in other web
based applications. We also discuss how to integrate context information into
our service. A similar architecture for mobile devices is presented in [1], where
the location context data is sent separately to a server, while the service is hosted
from a web server which obtains the context data from this server. This paper
focuses on visibility models and does not cover indoor positioning aspects as done
here. Other works on applying mobile GIS solutions are for instance [8], which
focuses on tour guide applications. [5] focuses on indoor GIS for mobile devices,
but does not address application mashup and platform aspects nor interactive
JavaScript frontends as we do here.

Another challenge, which is closely tied with the above ones, is to connect with
(other) applications and enable application mashups while preserving privacy.
The issue is that ubiquitous context information is typically privacy sensitive

Leveraging GIS Technologies for Web-Based Smart Places Services 259

and existing application mashup techniques do not support this suffciently. We
do not cover in full detail more secure ways for application mashup. Here, we
see a few key ingredients emerging, such as OpenID and OpenAuth [19], which
rely on novel and more flexible, decentralized approaches to authentication and
authorization and thus can provide a mashup-friendly security infrastructure.

3 The Proposed Web-Based Indoor GIS

3.1 The Web as a Platform for Smart Places

Before discussing how we designed and implemented our indoor GIS, it is worth
shedding some light on the architecture of the overall web based smart spaces
platform that the GIS is part of. A detailed discussion of this architecture goes
beyond the scope of this article. The interested reader may refer to [11] for
further details about it. In this sub-section we will focus on the key design
decisions underlying this architecture, and on their effects and implications on
the proposed GIS solution. Compared to related work in this area, the decisions
that characterize our approach are as follows:

HTTP-based communication: HTTP and web services are used as the pri-
mary means for integrating software across devices in the smart space, simi-
larly to what currently happens on the Internet, where HTTP forms the cross
platform glue that allows mashups across such an extremely heterogeneous
network infrastructure like the Internet.

Reuse of existing web technology: a key problem with existing solutions in
the ubiquitous and pervasive computing research community is that they
are rarely reusable. By relying on existing web technology, the infrastructure
opens up to a large number of devices already available in the current market.

Multiple runtimes for application execution: High end mobile devices are
now offering a much wider range of runtimes for implementing and running
applications and services, including traditional Java and C++ runtimes as
well as support for Python and other scripting languages. In this way, plat-
form developers can use several run times. This means that many existing
components used on the web can be used in a smart space context as well.
Moreover, having the basic location enablers available through HTTP based
communication, makes it possible and easy to mashup local (both situated
and on device) and remote location-based web services all together.

The system is organized in multiple layers, which are depicted in Figure 1 and
briefly described in the following. It is worth noting that, as far as indoor GIS
components are concerned, in this sub-section we will only describe their very
high-level role within the overall Smart Places platform picture. Please refer to
Section 4.2 for further details about how we designed the GIS components and
what commodity components we included in them.

The Base Platform & Communication layer contains several commodity
commercial and/or open source components that we see as necessary to realize a

260 C. di Flora and C. Prehofer

Fig. 1. Bird’s eye view of our Smart Places platform, including server-side (left side)
and client-side (right side) components. Greyed boxes represent Indoor GIS compo-
nents. White boxes represent either commodity open source components (dashed bor-
der boxes) or smart places platform specific components (solid border boxes).

full web platform in the smart space. Using commodity web components allows
us to bring many features to the smart space such as, for example, easy creation
and deployment of services using well known authoring/distribution tools and
framework for web applications, user management and security solutions, data-
base and content management systems. As far as location-awareness support
is concerned, the platform currently includes a Maps Manager component,
which is in charge of providing Create Read Update Delete (CRUD) primitives
for indoor maps data, i.e., raster layers representing building and floor plans,
as well as several features (vector) layers representing floor topology elements
(rooms, corridors, halls) and static Points-of-Interests (e.g., in an airport smart
place, they could include restaurants, shops, check-in desks, terminals, gates,
and other categories of interest to people visiting that space).

Platform Services can be created by using the technologies in the Base
Platform & Communication layer. A few typical platform services are shown
in Figure 1. They include two actual indoor GIS components, namely Topol-
ogy Server and Smart Place Directory. The Topology Server is in charge
of providing low-level information about the physical structure of the available
smart places, such as for example details about how a given building is struc-
tured in floors, wings, and rooms. Places are modeled by using a hybrid hier-
archical location model [6], and each physical location is assigned a URI that
other services and applications can use as tags to associate items (e.g. media
contents, blog posts, user location) to a certain physical location. The Smart
Place Directory acts as a mediator between Smart Space Applications and
the other indoor GIS components of the platform (i.e., components belonging

Leveraging GIS Technologies for Web-Based Smart Places Services 261

to either the Platform Services or Base Platform & Communication lay-
ers). It provides a set of REST APIs that allow Smart Space Applications
to access other Platform Services and Base Platform & Communication
functionality through a consistent and common API. The API allows CRUD
access to most of the location-dependent data available in the smart place, such
as people location, location-specific contents, and POIs, in a web-application
friendly way. In fact, it supports several widely adopted data-interchange for-
mats, including XML-based formats like ATOM and RSS feeds, as well as more
lightweight formats such as the JavaScript Object Notation (JSON). All the
mentioned components so far are intended to be deployed on the server-side.

Smart Space Applications re-use and combine the Platform Services
functionality with other on-device features in order to provide meaningful and
helpful functionality to end-users. These may be web applications, which can
be accessed using a browser and which can be hosted on the mobile web ap-
plication server, or alternatively they can be implemented as stand alone ap-
plications written using any of the existing device specific development kits
and that access the deployed Platform Services through http-based commu-
nication. In Figure 1 we show a few key examples of such applications, which
are described in the following. The Smart Place Browser represents a very
generic entry point to available applications, providing an AJAX API for Smart
Space Applications developers to create new end-user applications. The API
exposes and leverages the key abstractions implemented by Platform Services
to a developer-friendly interface. New applications, such as the Indoor Map
Viewer, Location-tagged Contents, or Friend Finder, can be easily imple-
mented on top of this API, as we will show in Section 4.2.

It is worth noting that, as Figure 1 clearly shows, our approach is based on a
very thin-client model, in which no particular Base Platform & Communica-
tion or Smart Space Applications components are assumed to be deployed
and pre-installed on the client-side. In fact, in order to use the services, the client-
side just needs to have a web browser capable of rendering rich web applications.
Additional components, such as for example the Indoor Location Sensor in
Figure 1, might be required in order to enable usage of some applications (like
the Friend Finder) or to improve user experience with other applications (e.g.,
to automatically adapt or initialize the UI of the Indoor Map Viewer and
Location-tagged Contents applications based on the actual indoor location
of the end-user).

3.2 The Adopted Indoor-Positioning Technique

The proposed solution relies on an experimental WLAN indoor positioning tech-
nique under research and development at Nokia Research Center. The technique
is based on WLAN scanning and on further processing of the scanning results,
including measurement of the received signal strength from all reachable access
points, from which the current location of the mobile device is calculated. All
steps are performed on the terminal side, e.g. on end-users smart phone or PDA.
In the rest of this sub-section we will just shed some light on the key aspects of

262 C. di Flora and C. Prehofer

this technique that are required in order to understand the herewith described
indoor GIS solution. The interested reader can refer to [9] for further details on
its design and implementation.

One interesting aspect of the adopted indoor positioning technique lies in
its quick and easy deployment in out-of-the-lab real-world settings. In fact, the
technique only requires a-priori knowledge of a list of known WLAN APs along
with information about their physical location in the target building (which is
typically a well-known piece of information for, but it does not require any off-
line measurements of the received signal strength nevertheless. In other words,
no radio maps of the target environment and related calibration of the algorithm
are required, which in turn makes the proposed smart places infrastructure more
easy to set-up than other state-of-the-art solutions [10].

The outcome of the proposed algorithm is a symbolic location information
structured according to the location model mentioned in Section 3.1. It is worth
noting that the concepts of building, floor, and section could be eventually re-
placed by other concepts and semantics if needed. In other words, different sym-
bolic location models with different granularities could be adopted as far as the
technique is accurate enough to support the required granularity. For example,
in an environment with very large sections and rooms, such as a shopping mall
or an airport, the model could also take into account the concept of rooms within
a single section.

4 Implementation and Prototyping

4.1 Implementing the Indoor GIS Prototype

In Section 3.1 we introduced the main indoor GIS components at a very high-
level of detail. Since we wanted to create a practical GIS solution for indoor
smart spaces that could work also from mobile devices, we needed to combine
the web-based smart space platform and the indoor positioning technique, de-
scribed in Section 3.1 and 3.2, respectively, with additional components providing
traditional GIS functionality, such as maps, navigation, and geo-spatial queries
support to commercial mobile devices.

In compliance with our overall smart spaces approach described in Section
3, we decided to rely on open APIs and protocols suitable for integration with
web-based applications and services. In the following we discuss a few key im-
plementation decisions that we needed to take when prototyping the indoor GIS
part of our smart places platform. In addition, we also provide further details
about how indoor GIS components interact one with each other in order to
fulfill their responsibilities. More specifically, we describe how we implemented
and prototyped our first example of an indoor GIS system based on the design
guidelines and concepts described in Section 3. The overall architecture of the
implemented prototype is depicted in Figure 2.

When implementing the first prototype we had to satisfy the key requirement
of providing simple REST APIs for other services to create composite function-
ality (mashups) out of the basic building boxes provided by our platform. To

Leveraging GIS Technologies for Web-Based Smart Places Services 263

Fig. 2. The architecture of our indoor GIS implementation prototype. Greyed boxes
represent Indoor GIS components. White boxes represent either commodity open source
components (dashed border boxes) or smart places platform specific components (solid
border boxes). Dashed lines, solid lines, and dash-dotted lines represent interaction
related to Indoor Map Viewer, Location-tagged Contents, and Friend Finder case study
applications, respectively.

this aim, we implemented the Smart Place Directory in the Python program-
ming language by using the Django web application framework. Using the Django
framework enabled us to quickly implement different facades for the same back-
end data, in order to support CRUD interfaces to manage location-dependent
smart place resources based on all the data interchange formats (JSON, ATOM,
RSS) mentioned in Section 3.1. Similarly, most of the realized web services were
implemented as Django applications. This gave us a lot of flexibility in design-
ing the actual web service interfaces we wanted to use to expose the indoor
location-dependent data stored in our back-end.

As far as the Maps Manager component is concerned, we wanted to rely as
much as possible on established standards for representing indoor GIS data, such
as maps, points-of-interests, and related meta-data: to this aim, we decided to
adopt the Open Geospatial Consortium (OGC) Web Map Service (WMS) and
Web Feature Service (WFS) [12] to represent maps and POIs in the Maps Man-
ager component. This decision was motivated not only by technical requirements,
but also by our higher level goal of evaluating how easy and feasible was the idea of
using commodity GIS solutions to support indoor LBS. Several commodity imple-
mentations of WMS/WFS servers were available in both the commercial and open
source community. After evaluating the different available options, we decided to
adopt the open source Geoserver platform [14], which provided quite a complete
implementation of WMS and WFS specifications. Geoserver was also very well in-
tegrated with other GIS tools (such as, for example, uDig [17] or GRASS GIS [18]

264 C. di Flora and C. Prehofer

standalone tools, as well as with JavaScript GIS APIs such as OpenLayers [15]).
However, since we wanted to rely just on WMS and WFS services, Geoserver could
be in principle be replaced by any other working implementation of the WMS and
WFS specifications (like the Mapserver software for example), without affecting
the rest of the platform. It is worth noting that, since Geoserver satisfied all the
requirements we had for the Maps Manager, it is indicated in Figure 2 as a com-
modity open source component, and not as a novel indoor GIS component as pre-
viously indicated in the conceptual design diagram of Figure 1.

When designing our solution, we wanted to provide very open APIs for access-
ing the available Indoor GIS data (not only from WMS/WFS sources but also from
other existing solutions) from both mobile devices and fixed/desktop devices. To
this aim we had to consider that, although the OGC web services already provided
a comprehensive set of APIs, their interfaces were not very friendly to JavaScript /
Ajax developers. Moreover, as already mentioned, we wanted to keep the APIs as
open as possible, so as to not preclude interoperability of our solution with other
protocols different from the OGC WMS/WFS standards. To satisfy such require-
ments we decided to adopt the open source OpenLayers JavaScriptAPI [15], which
provided quite a comprehensive and developer-friendly set of JavaScript abstrac-
tions to deal with most common GIS functionality (e.g., dynamic creation of maps
by mashing up map data coming from different sources, DOM interface to most of
the supported GIS data representation formats) while solving already a lot of com-
mon cross-browser issues related to differences in the low-level JavaScript APIs of
different browser engines.

4.2 Evaluating the Indoor GIS Prototype

In order to validate and to refine our JavaScript GIS interfaces, we implemented
a case study application, namely Indoor Map Viewer, which combined our in-
door GIS back-end services and accessed them through an OpenLayers interface.
Similarly, in order to test the indoor location sensing feature, we implemented a
Friend Finder application which allowed end-users to check their own friends’
location, to see it on a map, and to evaluate the distance between themselves
and their friends in the smart place. In order to show indoor maps, the Friend
Finder application re-used most of the Indoor Map Viewer functionality.
Similarly, in order to validate and refine the location-based search functionality,
we implemented a Location-tagged Contents case study application, which
allowed end-users to generate, search, and retrieve location-based contents, such
as pictures, videos, text documents, and blog posts and comments.

The implemented applications allowed us to evaluate and refine the web-based
approach to indoor LBS service provisioning to commercial mobile devices. The
implemented applications confirmed the feasibility of using web technologies for
fast and easy deployment of smart places services. Most of the time was spent to
implement and refine the business logic of our indoor GIS components, and we
were able to easily deploy and run the services on a heterogeneous device base.
As for server-side components, we were able to deploy them on Linux, Windows,
and Apple Mac Os X devices. The implemented case study examples, realized

Leveraging GIS Technologies for Web-Based Smart Places Services 265

as Ajax applications, could be accessed from mobile devices, including Nokia
S60 devices as well as Linux Internet Tablets (Nokia N800 and N810), and in
general from any device running a web browser that included either the Mozilla
or Safari web engines (including desktop / laptop clients).

As far as JavaScript clients for geospatial services are concerned, using Open-
Layers raised a few performance issues for resource constrained devices like the
Nokia S60 devices. These issues included at least the following problems. The first
problem consisted in that dynamic memory footprint requirements of OpenLay-
ers are still too large with respect to a not negligible set of commercial devices.
OpenLayers maps initialization requires about 2.5 MB of RAM memory to be dy-
namically allocated, and further usage of some special OpenLayers controls can
easily increase the amount of dynamically allocated RAM up to 5 or 6 MB. The
dynamic memory footprint analysis also showed that dynamic memory alloca-
tion in OpenLayers components has not been optimized for memory constrained
devices. A lot of RAM resources, allocated by OpenLayers code, were not re-
leased, thus leading to frequent and not negligible memory leaks, which in turn
caused also more recent and powerful devices to return memory full errors when
trying to visualize some of the implemented applications. While these dynamic
memory issues do not cause any problems in desktop or Internet Tablet devices,
on certain low-end or less recent devices (e.g. Nokia N80 or E70) it was impos-
sible to run the implemented applications, due to the limited amount of RAM
memory available on those devices. We believe that this problem will be solved
in future devices, since the amount of RAM memory available on such devices
is rapidly increasing. However, the memory leaking problems can only be solved
with a different and more efficient memory allocation / deallocation approach in
OpenLayers implementation. We believe that similar problems may arise when
trying to reuse other commodity libraries, initially designed for desktop clients,
for mobile rich internet applications development.

Another problem we experienced is related to OpenLayers dependency on
DOM 2.0 APIs. OpenLayers assumes a complete DOM 2.0 or 3.0 model to be
supported by the browser engine. Unfortunately, browser engines even on very
recent devices (like the Nokia N95) do not fully support these specifications.
This created problems when parsing some of the XML documents returned by
our smart places API through the DOM API. The problem was solved by re-
coding the applications in such a way that they were relying on JSON-formatted
interface rather than on ATOM/RSS formatted data. In this way we were able
to guarantee that all applications could still work on all the mentioned types
of devices. Such a modification had also the positive side-effect of improving
the performance of the provided applications due to the more light-weight logic
required for parsing and creating the data.

5 Lessons Learnt and Future Work

This paper discussed our experiences with building an indoor GIS based on
commodity GIS standards and protocols and Web 2.0 application development

266 C. di Flora and C. Prehofer

principles. We showed that the combination of scripting languages with web ap-
plication frameworks, such as Python and Django, gave us a lot of flexibility in
designing the actual web service interfaces we wanted to use to expose indoor
GIS data. We implemented a few case study applications on top of the proposed
GIS solution, which confirmed the feasibility of using web technologies for fast
and easy deployment of smart places services on a heterogeneous set of com-
mercial off-the-shelf devices. As far as JavaScript GIS clients are concerned, we
pointed it our that using commodity libraries, such as OpenLayers, can create a
few performance issues for resource constrained devices. Moreover, commodity
libraries might have not been designed by taking into account the limited RAM
capacity of mobile devices. Frequent and not negligible memory leaks created
problems also on more recent and powerful devices. Overall, we believe there
is a clear need in research and industry to agree on standards for indoor LBS,
with respect to both geospatial data representations and related APIs to re-use
them in a Web 2.0 environment. Existing outdoor-related standards might lay
the groundwork for such activities, even though they should be extended in or-
der to support not only the concept of location as physical position but also
symbolic location concepts. Our future work will concern refinement of the po-
sitioning technique and related location model, as well as work on more thin
clients better suited for mobile usage in terms of memory consumption and UI
paradigms.

Acknowledgments. The authors would like to acknowledge the contributions
from the Smart Place project at Nokia Research, in particular Jilles van Gurp
and Heikki Mattila.

References

1. Simon, R., Fröhlich, P.: A mobile application framework for the geospatial web.
In: WWW 2007: Proceedings of the 16th international conference on World Wide
Web, pp. 381–390. ACM, New York (2007)

2. Griswold, W.G., Shanahan, P., Brown, S.W., Boyer, R., Ratto, M., Shapiro, R.B.,
Truong, T.M.: Activecampus: Experiments in community-oriented ubiquitous com-
puting. Computer 37(10), 73–81 (2004)

3. Wang, X., Dong, J.S., Chin, C.Y., Hettiarachchi, S.R., Zhang, D.: Semantic Space:
an infrastructure for smart spaces. IEEE Pervasive Computing 3(3), 32–39 (2004)

4. Endres, C., Butz, A., MacWilliams, A.: A survey of software infrastructures and
frameworks for ubiquitous computing. Mob. Inf. Syst. 1(1), 41–80 (2005)

5. Candy, J.: A Mobile Indoor Location-based GIS Application. In: 5th International
Symposium on Mobile Mapping Technologies (MMT 2007), Padua, Italy (2007)
(last checked on 6.5.2008),
http://giswww1.bcit.ca/georanger/candy jonathan.pdf

6. Becker, C., Durr, F.: On location models for ubiquitous computing. In: Personal
and Ubiquitous Computing, vol. 9(1), pp. 20–31. Springer, Heidelberg (2005)

7. Lopez-de Ipina, D., Vazquez, J., Abaitua, J.: A context-aware mobile mashup plat-
form for ubiquitous web. In: 3rd IET International Conference on Intelligent En-
vironments, pp. 116–123 (2007)

http://giswww1.bcit.ca/georanger/candy_jonathan.pdf

Leveraging GIS Technologies for Web-Based Smart Places Services 267

8. Kim, J.W., Kim, C.S., Gautam, A., Lee, Y.: Location-Based Tour Guide System
Using Mobile GIS and Web Crawling. In: Kwon, Y.-J., Bouju, A., Claramunt, C.
(eds.) W2GIS 2004. LNCS, vol. 3428, pp. 51–63. Springer, Heidelberg (2005)

9. Hermersdorf, M.: Indoor Positioning with a WLAN Access Point List on a Mobile
Device. In: International Workshop on World-Sensor Web (WSW 2006), Boulder,
CO, USA, October 31 (2006) (last checked on 6.5.2008),
http://www.sensorplanet.org/wsw2006/9 Hermersdorf indoor pos WSW2006
final.pdf

10. Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.:
Practical robust localization over large-scale 802.11 wireless networks. In: Pro-
ceedings of the 10th Annual international Conference on Mobile Computing and
Networking (MOBICOM 2004), pp. 70–84. ACM, New York (2004)

11. Van Gurp, J., Prehofer, C., di Flora, C.: Experiences with Realizing Smart Space
Web Service Applications. In: 1st IEEE International Peer-to-Peer for Handheld
Devices Workshop at the CCNC 2008 conference in Las Vegas (2008)

12. OpenGIS standards specifications, http://www.opengeospatial.org/standards
13. Ekahau Inc., http://www.ekahau.com/
14. Geoserver web site, http://geoserver.org
15. OpenLayers web site, http://www.openlayers.org
16. Delivery Context Client Interfaces (DCCI) 1.0, W3C Candidate Recommendatio

(December 2007), http://www.w3.org/TR/DPF/
17. uDig - User-friendly Desktop Internet GIS, http://udig.refractions.net/
18. GRASS - Geographic Resources Analysis Support System, http://grass.itc.it/
19. OAuth Core 1.0 Protocol (December 2007), http://oauth.net/core/1.0/

http://www.sensorplanet.org/wsw2006/9_Hermersdorf_indoor_pos_WSW2006_final.pdf
http://www.sensorplanet.org/wsw2006/9_Hermersdorf_indoor_pos_WSW2006_final.pdf
http://www.opengeospatial.org/standards
http://www.ekahau.com/
http://geoserver.org
http://www.openlayers.org
http://www.w3.org/TR/DPF/
http://udig.refractions.net/
http://grass.itc.it/
http://oauth.net/core/1.0/

VeryIDX - A Digital Identity Management

System for Pervasive Computing Environments

Federica Paci1, Elisa Bertino1, Sam Kerr1, Aaron Lint1, Anna Squicciarini2,
and Jungha Woo1

1 CERIAS and Computer Science Department, Purdue University
2 Information Sciences and Technology, The Pennsylvania State University

Abstract. The problem of identity theft, that is, the act of imper-
sonating others identities by presenting stolen identifiers or proofs of
identities, has been receiving increasing attention because of its high
financial and social costs. In this paper we address such problem by
proposing an approach to manage user identity attributes by assuring
their privacy-preserving usage. The approach is based on the concept of
privacy preserving multi-factor authentication achieved by a new crypto-
graphic primitive which uses aggregate signatures on commitments that
are then used for aggregate zero-knowledge proof of knowledge (ZKPK)
protocols. We present the implementation of such approach on Nokia
NFC cellular phones and report performance evaluation results.

1 Introduction

Today a global information infrastructure connects remote parties worldwide
through the use of large scale networks, relying on application level protocols
and services, such as recent web service technology. Execution of activities in
various domains, such as shopping, entertainment, business and scientific collab-
oration, and at various levels within those contexts, is increasingly based on the
use of remote resources and services. The interaction between different remotely-
located parties should be based on little knowledge about each other. In such
a scenario, digital identity management (DIM) technology is fundamental in
customizing user experience, protecting privacy, underpinning accountability in
business transactions, and in complying with regulatory controls. Digital identity
can be defined as the digital representation of the information known about a
specific individual or organization. As such, it encompasses not only login names,
but many additional information, referred to as identity attributes. The manage-
ment of identity attributes raises a number of challenges. On one hand, identity
attributes need to be shared to speed up and facilitate authentication of users
and access control in a variety of contexts, including mobile environments. Users
should be able to manage their identity attributes when carrying transactions
or other interactions from portable devices such as cellular phones. On the other
hand, the identity attributes must be protected as they may convey sensitive
information about an individual and can be target of attacks.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 268–279, 2008.
c© IFIP International Federation for Information Processing 2008

VeryIDX - A Digital Identity Management System 269

The management of identity attributes on portable devices is however chal-
lenging. First, it is not trivial to ensure the security and privacy of the identity
attributes. By using technologies such as Bluetooth or RFIDs [13], a party, for
example a service provider, could retrieve information from the user portable
devices without user consent. A second issue is related to the storage and com-
putational constraints of most portable devices which require efficient protocols
for managing identity attributes. To date there are no comprehensive solutions
for handling identity attributes on mobile devices and even solutions for conven-
tional non-mobile environments are still at a preliminary stage.

In this paper we make some steps towards such a solution and present a multi-
factor identity attribute verification approach for mobile devices. By multi-factor
verification we mean that whenever an individual presents an identity attribute
for carrying on a transaction with a party, such party may verify the right of
this individual to use such identity attribute by asking him/her to present other
identity attributes. The specification of which identity attributes have to be
presented is stated by verification policies. Different parties in a distributed sys-
tem may specify different policies. To assure that such an approach does not
undermine privacy, we have developed a cryptographic protocol, referred to as
aggregate zero knowledge proof [4]. Such a protocol allows a user to prove the
knowledge of multiple secrets to a party without having to reveal them to this
party. We have developed a version of such protocol for Near Field Communica-
tion (NFC) [13] enabled cellular phones. NFC is a standard-based, short-range
(∼ 15 centimeters) wireless connectivity technology supporting two-way inter-
actions among electronic devices [13]. A NFC device embedded in the cellular
phone is able to communicate not only with Internet via wireless connections
but also with smart card readers. In addition, the cellular phone applications,
referred to as MIDlets, can access the phone’s tag for reading and writing data.

The rest of the paper is organized as follows. Section 2 provides an overview
of VeryIDX, our system for managing identity attributes. Section 3 introduces
the basic notions on which the multi-factor identity verification is based. Section
4 presents the protocols for securing, managing and using identity attributes on
the cellular phone. Section 5 describes the implementation of the multi-factor
identity verification protocol on Nokia NFC mobile phones. Section 6 presents
experimental performance results. Section 7 discusses related work. Finally, Sec-
tion 8 concludes the paper and outline some future work.

2 VeryIDX Overview

Our approach is based on an extended notion of federation. A federation is
composed of the following entities: identity providers (IdPs), service providers
(SPs), registrars and users. SPs provide services to users as in conventional
e-commerce and other federated environments. IdPs issue certified identity at-
tributes to users and control the sharing of such information. The registrars store
and manage information related to strong identity attributes, that is, identity at-
tributes uniquely identifying an individual, as opposed to weak identity attributes

270 F. Paci et al.

which do not have such property. The information recorded at the registrar is
used to perform multi-factor identity attribute verification. Note that, unlike the
IdPs, the information stored at the registrar does not iclude the values of the
strong identity attributes in clear. Instead, such information only contains the
cryptographic semantically secure commitments of the strong identity attributes
which are then used by the clients, running on behalf of users, to construct
zero knowledge proofs of knowledge (ZKPK) [10] of those attributes. The key
elements of our solution can be summarized as follows:

1. Whenever a party P presents a strong identity attribute to a SP in the
federation, the SP requires additional proofs of identity according to its
local verification policies. The submission of additional proofs of identity
by P and the corresponding verification by the SP is executed through the
use of our aggregated ZKPK protocols. By using such protocol the party can
prove knowledge of any strong identity attributes efficiently. Since the actual
values of the identifiers are not revealed to the SP, this approach preserves
the privacy of the parties.

2. Each strong identity attribute used by a party P in a federation, either
for direct use or just for identity proof, must be registered with a registrar
that, upon registration, provides P with a signature on the commitment of
the identifier. The management of the registered strong identity attributes
is based on a identity record (IdR) created for each registering party. The
identity record collects the commitments corresponding to the strong identity
attributes.

3. To prevent a malicious party from registering with a federation a strong
identity attribute owned by another individual, a duplicate detection proto-
col is run upon registration to determine whether the same strong identity
attribute has already been registered by a different party.

Example 1. Consider a user Bob who is part of the E-Mall federation, that
offers a safe environment for online shopping. Bob enrolls at registrar Reg1 and
registers his strong identifiers: his credit card number (CCN) and his social
security number (SSN). The commitments values of CCN and SSN signed by
the registrar are maintained in Bob’s IdR. Bob now can use his CCN and SSN
to prove his identity. Suppose then that Bob wants to buy a book from e −
Follets SP. According to e − Follets’s policy, this store requires Bob’s CCN
along with a different form of identity verification for authentication. e−Follets
thus challenges Bob’s SSN. As such, Bob, in order to prove the ownership of
CNN, downloads his IdR from the registrar Reg1 onto his NFC cellular phone.
The device retrieves the identity tuples corresponding to CCN and SSN specified
in the SP-’s e − Follets policy and builds the aggregate proof of knowledge to
be sent to e − Follets.

3 Preliminary Concepts

In this section we first introduce the cryptographic protocols that are used to im-
plement our privacy preservingmulti-factor identity verification approach.Wefirst

VeryIDX - A Digital Identity Management System 271

introduce the Pedersen commitments used to generate strong identity attributes
secure commitments and theZKPKprotocol.Then,webrieflydescribe theBoneh’s
protocol [6] to generate aggregate signatures based on bilinear mappings.
Pedersen Commitment. Let g and h be generators of a group G of prime order q.
A value m is committed by choosing r randomly from Zq and giving commitment
C = gmhr. Commitment C is opened (or revealed) by disclosing m and r, and
the opening is verified by checking that C is indeed equal to gmhr. A prover
can prove by using a zero-knowledge proof that it knows how to open such
commitment without revealing either m or r.
Zero-knowledge proof of knowledge. In our approach we use the techniques by
Camenisch and Stadler [7] for the various ZKPK of discrete logarithms and
proofs of the validity of statements about discrete logarithms. We also conform
to the same notation [7]. For instance to denote the ZKPK of values α and β
such that y = gαhβ holds, and u ≤ α ≤ v, we use the following notation:

PK{(α, β) : y = gαhβ ∧ (u ≤ α ≤ v)}

Bilinear maps. For a security parameter k, let q be a prime of length k, and G1,
G2, GT be groups of order q. Let g1 ∈ G1, g2 ∈ G2 be generators. Function e:
G1 × G2 → GT is a bilinear mapping if it satisfies the following properties:

1. For all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua,vb) = e(u,v)ab.
2. e(g1, g2) �= 1 ∈ GT .
3. There exists a computable isomorphism ϕ from G2 to G1, such that ϕ(g2)

= g1.

Bilinear aggregate signatures. The aggregate signature concept has been pro-
posed by Boneh et. al [6]. We refer to such signature scheme as BGLS. Infor-
mally, an aggregate signature scheme allows multiple signatures to be aggregated
into one signature with respect to the public keys of the signers and the signed
messages. The BGLS scheme consists of five algorithms: KeyGen, Sign, Verify,
Aggregate and AggVer. Any principal P uses KeyGen to generate the private
and public key pair (χ,v) such that v = gχ

2 where g2 ∈ G2, χ is the private key
and v is the public key. The Sign algorithm computes the signature on input
message mi in G1 by a full-domain hash function h : {0,1}* → G1. The output
σi = h(mi)χ ∈ G1 is the signature for mi. The Aggregate algorithm aggregates
the signatures σ1, σ2, . . . , σt for t different messages m1, m2, . . . , mt into one
signature σ =

∏t
i=1σi. The AggV er algorithm verifies a signature and works

like the Aggregate signature algorithm. For a set m1, m2, . . . , mt of different
messages, and public keys v1, v2, . . . , vt and a signature σ, the verifier checks if
e(σ, g2) =

∏t
i=1 e(hi,v), where hi = h(mi) and e is the bilinear mapping.

4 Protocols for the Multy-Factor Verification of Strong
Identity Attributes

In this section, we present the protocols for multi-factor strong identity attribute
verification. We first introduce the notion of identity records (IdRs) that provide

272 F. Paci et al.

a representation of user identity attributes. Then, we introduce the protocol for
strong identity attributes enrollment that consists of creating secure commit-
ments and in signing them with the private key of the registrar. Finally, we
present the protocol to create and verify the aggregate ZKPK of strong identity
attributes’ committed values.

4.1 Identity Records

As we mentioned, each principal P in a federation has associated one or more
IdRs, each recorded at some registrar in the federation. Each IdR in turn con-
sists of several identity tuples, denoted as τi. Each identity tuple is associated
with one strong identity attribute and records all information related to the
verification of this identifier at the time of use. In particular, a strong identity
attribute m is associated with a secure commitment denoted as M that is signed
by the registrar upon enrollment. The signature on M , denoted by σ in the pa-
per, is part of the identity tuple associated with m. M is computed as gmhr,
where g and h are generators in group G of prime order q. G and q are public
parameters of the registrar and r is chosen randomly from Zq. m is also tied to
a set of weak identity attributes, denoted by {w1, . . .,wk}. For example, assume
4040330043794877 to be a credit card number and Bob and Smith be the first
and last name of an individual. Here, 4040330043794877 is the strong identity at-
tribute value, while Bob and Smith are the associated weak identity attributes.
All strong identity attributes’ commitments and weak identity attributes are
tagged with an attribute descriptor tag and two types of assurance, namely va-
lidity assurance and ownership assurance. Validity assurance corresponds to the
confidence about the validity of the identity attribute based on the verification
performed at the identity attributes original issuer. Ownership assurance corre-
sponds to the confidence about the claim that the principal presenting a given
identity attribute is its true owner. There are four levels of assurance: absolute
assurance, tagged as A, corresponding to the absolute certainty about the claim;
reasonable assurance, tagged as B, corresponding to case when one or more as-
sertions from trusted parties exist regarding the certainty of the claim; unknown
assurance, tagged as U, when there is no information to assert the certainty of
the claim; and false assurance, tagged as F, denoting that the claim is incorrect.
We assume that absolute validity of a given strong identity attribute can only
be determined by authorities which have issued the strong identity attributes.
This corresponds to value A of the validity-assure of the associated strong iden-
tity attribute. Instead, we mark as B the validity assurance of a strong identity
attribute the validity of which has been asserted by a principal, whose identity
record has a validity assurance set to A. If no entity other than the principal
supports the validity of the strong identity attribute, this attribute is marked
with unknown assurance U.

With reference to Example 1, Figure 1 shows an example of an IdR. Here
the principal is known as Bob@Registrar1 and has enrolled two strong identity
attributes, namely a CCN and SSN.

VeryIDX - A Digital Identity Management System 273

Fig. 1. Simplified graphical representation of an IdR

4.2 Enrollment of Strong Identity Attributes

1. Registrar parameters. The registrar runs parameter generation algorithm
GenKey that picks a prime q and three multiplicative groups G1, G2, GT

of prime order q. Also two generators g1, h1 in G1 such that logg1h1 and a
G2 group generator g2 are returned by GenKey. Then, the registrar runs
algorithm KeyGen to generate the secret key χ that is a random number
from Zq and the public key v = gχ

2 . The resulting set of parameters is (G1,
G2, GT ,g1,h1,g2,v).

2. Commitment of a value m ∈ Zq. The principal chooses a value r ∈ Zq, and
computes M = gm

1 hr
1.

3. Zero-knowledge proof of the committed value. The principal gives ZKPK of
opening the commitment M to the registrar:

PK{(m, r) : y = gm
1 hr

1, m, r ∈ Zq)}

4. Signing of the committed value. After performing the security checks on
the committed value (namely the local consistency and federation duplicate
detection), the registrar executes the Sign algorithm on the commitment M
to output Mχ as the signature where χ is the secret key of the registrar.

4.3 Aggregate Zero-Knowledge Proof of Knowledge (AgZKPK)

Suppose that a principal P requests a service from a SP which requires P
to first authenticate by proving that it knows how to open a specified set of
commitments. To indicate this set of commitments a set of tags is given which
is denoted by πSP . The protocol that provides aggregate proof of knowledge of
the commitments corresponding to πSP is composed of the following steps:

1. Principal’s aggregation. Let σ1, . . ., σt be the signatures corresponding to the
strong identity attributes in πSP . The principal aggregates the signatures
into σ =

∏t
i=1σi, where σi is the signature of committed value Mi = gmi

1 hri
1 .

It also computes M =
∏t

i=1Mi = gm1+m2+...+mt
1 hr1+r2+...+rt

1 . Finally, the
principal sends σ,M , Mi, 1 ≤i≤ t, to the verifier.

2. Zero-knowledge proof of aggregate commitment. The principal and the verifier
SP carry out the following ZKP protocol:

274 F. Paci et al.

Fig. 2. Nokia NFC cellular phone components

PK{(m, r) : y = gm
1 hr

1, m, r ∈ Zq)}

where m = m1 + m2 + . . . + mt and r = r1 + r2 + . . . + rt.
3. Verification of aggregate signature. After the verifier accepts the zero-

knowledge proof of the commitments, it checks if the following verifications
succeed:
M =

∏t
i=1Mi and e(σ, g2) = e(M , v).

5 NFC implementation of the Multy-Factor Identity
Attribute Verification Protocol

In this section we first describe the main components of the Nokia 6131 NFC
cell phone and then we present some details about the implementation of the
multi-factor identity attribute verification protocol.

5.1 NFC Cellular Phone Architecture

We have developed our portable multi-factor identity attribute verification pro-
tocol on the Nokia 6131 NFC cell phone (PhNFC) [13]. We assume that the SPs
have a NFC reader (denoted as NFCSP

reader) which transmits and receives mes-
sages from the NFC cellular phone. The phone is integrated with a NFC device
and thus contains both reader and writer for the embedded smart card and tags
that directly communicate with SP’s reader. PhNFC ’s components are shown
in Figure 2.

The main software component for managing strong identity attributes is the
MIDlet suite. The MIDlet suite consists of a Java Application Descriptor (JAD)
and a MIDlet. A MIDlet (denoted by Phmid) is a Java program that runs on the
Java Virtual Machine(JVM) enabled mobile device. The JAD controls possible
permissions that the MIDlet can have. A Phmid is installed onto a phone and
operates in a sandbox [16] so that different MIDlets are isolated from each other.

VeryIDX - A Digital Identity Management System 275

Fig. 3. Interactions between VeryIDX NFC module and SP card reader

The cellular phone has a secure element which can only be accessed by MIDlets
signed by a trusted third party; these MIDlets should know the access key.
The secure element consists of two main components, namely the Mifare tag
(NFCdev

tag) and Smartcard (NFCdev
sc).

5.2 Implementation

In this section we describe how we have implemented the multi-factor identity
attribute verification protocol on the Nokia 6131 NFC cell phone. We store the
users’ IdR in the external phone memory Phxmem, while the secret r used to
compute the secure commitments is saved in NFCdev

tag . We have implemented
a MIDlet that creates the AgZKPK. The MIDlet execution is triggered when
the user’s cell phone tag NFCdev

tag captures the verification policy sent by the
SP’s NFCSP

reader
1 and the NFCdev

tag transfers this policy to the cell phones main
memory Phmem. The MIDlet retrieves from Phxmemthe commitments corre-
sponding to the strong identity attributes requested by the verification policy.
Then, the MIDlet runs a new MIDlet which is executed in a protected domain
with restricted permissions. This is necessary because the new MIDlet uses cryp-
tographic secrets associated with the strong identity attributes to create the ag-
gregate zero knowledge proof AgZKPK. Once the AgZKPK is computed, the
MIDlet sends it to the main MIDlet. Upon receiving the AgZKPK, the main
MIDlet transfers it to the NFCdev

tag so that it can be read by the NFCSP
reader(see

Figure 3).
The MIDLets developed to generate the AgZKPK run on Java 2 Micro Edition

(J2ME), a subset of Java 2 Standard Edition (J2SE), which provides
environments and APIs for mobile and embedded devices. Since J2ME is aimed
at hardware with limited resources, it contains a minimum set of class libraries
1 The NFC reader is a device that can transmit as well as receive data using NFC

technology.

276 F. Paci et al.

for specific types of hardware. In our AgZKPK implementation on conven-
tional non-mobile platforms, we used the java.math.BigInteger and java.security.
SecureRandom class defined in J2SE to implement secure commitments, but
both java.math and java.security package are not supported in J2ME. There-
fore, we have used the third-party cryptography provider BouncyCastle [1], a
lightweight cryptography APIs for Java and C# that provide implementation of
the BigInteger and SecureRandom classes. In addition, because of the limited
memory size of mobile phone, we reduced the MIDlets’ code size by using code
obfuscation techniques provided by Sun’s NetBeans IDE. Code obfuscation al-
lows one to reduce a file size of 98% by replacing all Java packages and class
names with meaningless characters. For example, a file of size 844KB can be
reduced to a size of 17KB.

Moreover, the MIDlets must have read and write privileges on the user’s phone
tag NFCdev

tag in order to enable the communication with the SP’s NFC reader
NFCSP

reader. In fact, the SP’s verification policy is saved in NFCdev
tag and then

passed to the MIDlet to create the proof. Then, the created AgZKPK is stored
in NFCdev

tag in order to be read by the SP NFCSP
reader. In order to allow the

MIDlets to access NFCdev
tag , the MIDlets must be signed. To sign the MIDlets

we used the Carbide.j tool [2] provided by Nokia that requires a code signing
certificate released by a certification authority (CA) to generate the signature.

6 Experimental Results

In this section we present the results of the tests we have performed to evalu-
ate the performance of the multi-factor identity attribute verification protocol
implementation on the mobile phone. An aspect that might influence the per-
formance of our protocols is the number of strong identity attributes that are
aggregated and verified. Therefore, we have measured the time that the mobile
client application takes to create the aggregate ZKPK and the time that SP’s in-
terface takes to perform the verification by varying the number of strong identity
attributes that are verified from 1 to 50. We have compared the execution time
to create the aggregate ZKPK on the mobile phone with the time to perform
the same operation on the VeryIDX web-based implementation [3].

Figure 4 (a) reports the times required by the VeryIDX mobile phone im-
plementation and by the web-based protocol implementation for generating the
aggregate zero knowledge. In both cases, the AgZKPK protocol takes almost
constant time for the ZKPK generation even if the number of identity attributes
being proven increases. The reason is that the AgZKPK only requires a con-
stant number of exponentiations [4]. Moreover, as expected, the time to create
the proof on the mobile phone is higher than the time to perform the same
operation on the web-based implementation due to the phone’s limited com-
puting power. The average time for the creation of an aggregate proof on the
mobile phone is 2.257 seconds, while on the web-based application is around
0.02 seconds. Figure 4 (b) reports the time that the SP application takes to
perform the strong identity attributes verification. Notice that the verification

VeryIDX - A Digital Identity Management System 277

(a) AgZKPK Creation on Midlet versus
Web-based implementation

(b) AgZKPK Verification versus Creation

Fig. 4. Experimental results

time linearly increases with the number of strong identity attributes to be veri-
fied. The reason is that during the verification the SP is required to multiply all
the commitments to verify the resulting aggregate signature.

7 Related Work

In this section we discuss related work on the use of cellular phones for e- and
m-commerce transactions involving identity attributes and other recent devel-
opments in mobile identity management initiatives.

With the advent of high-speed data networks and feature-rich mobile devices,
the concept of mobile wallet [12,5] has gained importance. A seminal work intro-
duced the concept of wallets with observers [8] enabling off-line digital cash and
credentials to be used in commercial settings. A major difference of our approach
is that it does not require an observer, as the integrity of the strong identifiers
is based on the signature of the registrar on the strong identifiers. The addition
of the observer would, however, be beneficial if the usage of the strong identity
attributes were constrained for example by the number of times of use.

Other mobile identity management initiatives have gained importance with
the rapid adoption of second-generation mobile telecommunication systems, lead-
ing to the growth of m-commerce [14,11]. Two critical specific factors in this do-
main are usability and trust. Several approaches to enhance usability of mobile
devices have been proposed [9]. Trust on the device comprises of several security
and privacy properties such as confidentiality, integrity, user control and minimal
disclosure of the identity data stored on such devices. One approach to mobile
IdM is based on the GSM [14]. GSM based IdM uses the GSM infrastructure
and the Subscriber Identity Module (SIM) as the underlying platform.

The Secure Electronic Transaction (SET) [15] protocol was developed to allow
credit card holders to make transactions without revealing their credit card num-
bers to merchants and also to assure authenticity of the parties. SET deploys
dual signature for merchant and payment gateway. Each party can only read
a message designated for itself since each message is encrypted for a different

278 F. Paci et al.

target. To enable this feature, card holders and merchants must register with
a Certificate Authority before they exchanging a SET message. SET messages
assure both confidentiality and integrity of the messages among card holders,
merchants and payment gateway whereas our protocol is designed to assure in-
tegrity between service providers and registrar. SET authenticates the identity
of the cardholder and the merchant to each other because both of them are
registered with the same certificate authority. However, our protocols do not
mandate this requirement. SET is considered to have failed because of its com-
plexity. It requires cardholders and merchants to register in advance and get
X.509 certificates to make transactions whereas the users need not to have such
PKI certificate in our protocol2.

8 Conclusion

This paper proposes protocols for managing identity attributes in cellular devices
and supporting their secure and privacy preserving usage. The protocols are
based on aggregate zero knowledge proof and aggregate signature on strong
identity attributes’ commitments. We have implemented the protocols on the
Nokia NFC cellular phones and we have shown that the execution time to create
the aggregate proof of knowledge is almost constant with respect to the number
of strong identity attributes being aggregated. As future work we plan to extend
our approach in several directions. A first direction is to adopt Shamir’s secrete
sharing scheme to protect the cryptographic secret r used to compute Pedersen
commitments associated with strong identity attributes. A second direction is
the support of more sophisticated verification policies.

Acknowledgements

This material is based in part upon work supported by the National Science
Foundation under the ITR Grant No. 0428554 “The Design and Use of Digital
Identities” and upon work supported by the U.S. Department of Homeland Secu-
rity under Grant Award Number 2006-CS-001-000001, under the auspices of the
Institute for Information Infrastructure Protection (I3P) research program. The
I3P is managed by Dartmouth College. The views and conclusions contained in
this document are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security, the I3P, or Dartmouth College.

References

1. Bouncy Castle Crypto APIs, http://www.bouncycastle.org/
2. Development tools, http://www.forum.nokia.com/main/resources/tools and

sdks/carbide/index.html

2 Only SPs and registrars must have certificates.

http://www.bouncycastle.org/
http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide/index.html
http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide/index.html

VeryIDX - A Digital Identity Management System 279

3. Bhargav-Spantzel, A., Woo, J., Bertino, E.: Receipt management- transaction his-
tory based trust establishment. In: Proceedings of the 2007 ACM workshop on
Digital identity management, New York, NY, USA, pp. 82–91 (2007)

4. Bhargav-Spantzel, A., Squicciarini, A.C., Xue, R., Bertino, E.: Practical Identity
Theft Prevention using Aggregated Proof of Knowledge, Technical report CERIAS
TR 2006-26 (2006)

5. Boly, J., Bosselaers, A., Cramer, R., Michelsen, R., Mjolsnes, S., Muller, F., Ped-
ersen, T.P., Pfitzmann, B., de Rooij, P., Schoenmakers, B., Schunter, M., Vallee,
L., Waidner, M.: The ESPRIT Project CAFE - High Security Digital Payment
Systems. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 217–230.
Springer, Heidelberg (1994)

6. Boneh, D., Gentry, C., Shacham, H., Lynn, B.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656. Springer, Heidelberg (2003)

7. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

8. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

9. Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A., Palfreyman, K.: Exploiting
space and location as a design framework for interactive mobile systems. ACM
Transactions on Computer Human Interaction 7(3), 285–321, 200 (2000)

10. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Proceedings
of the nineteenth annual ACM conference on Theory of computing, New York, NY,
USA, pp. 210–217 (1987)

11. Jendricke, U., Kreutzer, M., Zugenmaier, A.: Mobile Identity Management. In:
UBICOMP 2002: Workshop on Security in Ubiquitous Computing (2002)

12. Mjolsnes, S.F., Rong, C.: Localized Credentials for Server Assisted Mobile Wallet.
In: Proceedings of International Conference on Computer Networks and Mobile
Computing, Los Alamitos, CA, USA (2001)

13. Near Field Communication Forum, http://www.nfc-forum.org
14. Rannenberg, K.: Identity management in mobile cellular networks and related ap-

plications, Information Security Technical Report, Johann Wolfgang Goethe Uni-
versity Frankfurt (January 2004)

15. SET Secure Electronic Transaction Specification Book 1: Business Description
(1997)

16. Wolfe, A.: Toolkit: Java is Jumpin’. Queue 1(10), 16–19 (2004)

http://www.nfc-forum.org

Delay-Aware Mobile Transactions�

Brahim Ayari, Abdelmajid Khelil, and Neeraj Suri

Technische Universität Darmstadt,
Dependable, Embedded Systems and Software Group,

Hochschulstr. 10, 64289 Darmstadt, Germany
Tel.: +49-6151-16-7066; Fax: +49-6151-16-4310

{brahim,khelil,suri}@informatik.tu-darmstadt.de

Abstract. In the expanding e-society, mobile embedded systems are increasingly
used to support transactions such as for banking, stock or database applications.
Such systems entail a range of heterogeneous entities - both the embedded de-
vices and the networks connecting them. While these systems are exposed to
frequent and varied perturbations, the support of atomic distributed transactions
is still a fundamental requirement to achieve consistent decisions. Guarantee-
ing atomicity and high performance in traditional fixed wired networks is based
on the assumption that faults like node and link failures occur rarely. This as-
sumption is not supported in current and future mobile embedded systems where
the heterogeneity and mobility often result in link and node failures as a domi-
nant operational scenario. In order to continue guaranteeing strict atomicity while
providing for high efficiency (low resource blocking time and message overhead)
and acceptable commit rate, transactional fault-tolerance techniques need to be
revisited perhaps at the cost of transaction execution time. In this paper, a com-
prehensive classification of perturbations and their impact on the design of mobile
transactions is provided. In particular we argue for the delay-awareness of mo-
bile transactions to allow for the fault-tolerance mechanisms to ensure resilience
to the various and frequent perturbations.

Keywords: Transactions, mobile database systems, dependability.

1 Introduction

Future mobile embedded systems are increasingly characterized by frequent and var-
ied perturbations. These are directly apparent to the delivery of services as constraints
and failures. Mobile systems are also constrained by the scarcity of processing, stor-
age and energy resources of mobile devices, and the continuously varying properties
of wireless channels. Most of the failures which can occur in such systems are caused
by node (given the mobility and size of these nodes) or communication failures. These
failures can last from seconds, minutes or even hours e.g., network partitioning. Increas-
ingly, the mobile environments are supporting applications that require strict atomicity
like health-care home systems, coordination across autonomous networked vehicles,

� Research supported in part by EU NoE ReSIST, EU COMIFIN and DFG GRK 1362 (TUD
GKMM).

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 280–291, 2008.
c© IFIP International Federation for Information Processing 2008

Delay-Aware Mobile Transactions 281

m-commerce etc. Atomic commit protocols ensure strict atomicity of database transac-
tions and play therefore a major role for the design of these applications. Most existing
atomic protocols show a restricted perturbation-tolerance leading to either poor trans-
action commit rate or to high resource blocking time which consequently deceases the
efficiency of the mobile system. In our previous work [1], we showed that sacrificing la-
tency (time needed to decide about the outcome of the transaction) is necessary to cope
with frequent and enduring perturbations without sacrificing performance in terms of
efficiency and commit success rate.

In the literature computer transactions are usually delay-sensitive. A limited body of
research exists for real-time transactions [2, 3]. However, to the best of our knowledge,
delay-aware (i.e. also delay-tolerant) transactions have not yet been addressed. In this
paper we argue for the necessity of delay-awareness of mobile transactions [4] in net-
worked embedded systems. Our work in [1] investigated primarily infrastructure-based
system models. We extend this base model here to cope with a more generalized mobile
system that also involves ad-hoc communication scenarios.

The remainder of this paper is organized as follows. In Section 2, the system model is
described along with a set of application scenarios and a classification of perturbations
in mobile environments. The design requirements for mobile transaction protocols and
systems are presented in Section 3. In Section 4, delay-aware mobile transactions are in-
troduced along with a discussion of the main challenges of introducing delay-awareness
in mobile systems. Section 5 concludes the paper and briefly outlines the future work.

2 System Model, Perturbations and Scenarios

2.1 System Model

In order to consider a broad class of mobile and networked embedded systems, we de-
velop a generalized mobile distributed environment consisting of a set of mobile hosts
(MH), a set of fixed hosts (FH) and a set of Wireless Sensor Networks (WSNs) com-
posed of a number of sensor nodes (SN) and a sink. The sink collects data from SNs
about a monitored area or goods etc. The architecture of the environment considered is
illustrated in Fig. 1. The coverage of MSSs is much higher than the transmission area of
ad-hoc communication technologies (e.g., if we compare GSM to bluetooth). The MHs
intermittently connect to the wired network through Mobile Support Stations (MSS)
via wireless channels (Fig. 1). The MHs can communicate directly with each other in
an ad-hoc manner using Bluetooth or WLAN. Some MHs can also communicate with
the sink(s) of involved WSNs. This generalized mobile distributed environment mainly
consists of three basis system models which are usually tackled separately by commit
protocol developers. In this work we will progressively tackle the complexity of the
generalized system model by stepwise considering these sub-systems and finally com-
bining them to our generalized system model:

1. Infrastructure-based scenarios involve only FHs, MSSs and a subset of MHs of the
model of Fig. 1. This subset of MHs can only communicate with each other or with
FHs using the services of MSSs.

282 B. Ayari, A. Khelil, and N. Suri

2. Ad-hoc scenarios involve only a subset of MHs of the model of Fig. 1 and WSNs.
These MHs can communicate with each other or with mobile sinks of WSNs only
in ad-hoc manner.

3. Hybrid scenarios are a combination of both the infrastructure-based and the ad-hoc
scenarios representing our generalized mobile distributed model.

We refer to a distributed transaction where at least one MH participates in its ex-
ecution as a Mobile Transaction (MT). Commit protocols are generally based on the
existence of at least one coordinator (CO), which is responsible for coordinating the
execution of the corresponding transaction. For different transactions and mobile sys-
tem models, different nodes may play the CO role. The CO is responsible for storing
information concerning the state of the transaction execution. Based on the information
collected from and about the participants of the transaction, the CO takes the decision
to commit or abort the transaction and informs all participants about its decision.

Fig. 1. Architecture of environment

2.2 Application Scenarios

In this section we classify the main applications scenarios for future embedded and
ubiquitous systems, where strict atomic mobile transactions are required.

Bank/stock transactions: This type of application scenarios include mobile commerce
(m-commerce) applications where users can buy or sell goods using their mobile de-
vices and involving bank servers in fixed networks to accomplish their transactions.
This is an example of application for infrastructure-based scenarios.

Delay-Aware Mobile Transactions 283

Fig. 2. Coordination between networked autonomous vehicles (livelock scenario)

Coordination between autonomous networked vehicles: In such an application scenario
(which is a pure ad-hoc scenario) we present a potential future application where mobile
transactions are needed for the purpose of coordination for safe navigation of unmanned
autonomous networked vehicles. Like black boxes for airplanes, autonomous vehicles
can be equipped with such black boxes which are basically mobile databases. Fig. 2
shows a scenario of four unmanned vehicles at a crossing. These vehicles need to agree
on an order how they will pass the crossing. Prior to their actual passing this information
needs to be agreed upon and recorded atomically to their corresponding black boxes.
This information is needed e.g., afterwards by assurance companies in case an accident
happens between these vehicles to determine which vehicle was responsible for the
accident.

Health-care ubiquitous systems: For insurance purposes, in order to monitor old people
living alone in their homes a set of WSNs should be deployed in these houses and
transactions are needed to react to certain situations where some actuators e.g. need
to be activated together either all of them or none and this data should also be written
somewhere on MHs or on FHs belonging to hospitals or police etc. This application
scenario is an example of the hybrid scenarios defined in the system model.

2.3 Classification of Perturbations

Within these networked embedded systems supporting such transactional applications,
we now consider two main classes of perturbations: operational constraints (power,
computing, connectivity etc.) and failures. We classify the environmental constraints
relevant to mobile transactions into heterogeneity (of nodes and links), unstable storage
and energy constraints. Failures of the mobile environment are classified into commu-
nication and node failures.

Constraints. The considered mobile environment is constrained mainly by the charac-
teristics of MHs and wireless links. MHs intuitively possess less computational resources

284 B. Ayari, A. Khelil, and N. Suri

than FHs, such as processor speed and storage capacity. Especially some MHs possess
limited disk space which restricts the amount of data to store on them. These resource
constraints increase the time MHs need to execute transaction fragments or may even
lead to execution failures. Furthermore, as MHs are carried by users, they incur oper-
ational wear and tear and can also be easily lost or stolen. MHs are often powered by
batteries. Two of the most important sources of power consumption are transmissions
and disk accesses [5]. We note that transmitting data consumes around three times as
much energy as receiving the same amount of data by a MH. Furthermore, MHs may run
in different energy modes or be put-off to save energy.

Wireless network characteristics are changing more frequently than those of wired
links. For example, the effective bandwidth available for MHs over a wireless link is
highly dynamic. This depends on the wireless technology (like GSM, GPRS, UMTS,
WLAN, Satellite, . . .), access coverage, and number of MHs that have to share the
wireless medium. Other key characteristics of the wireless links are higher latency
and communication charges. These characteristics lead to considerably varied relia-
bility/availability and connectivity of MHs.

Mobile nodes are considered to have unstable storage due to high vulnerability of
these entities to catastrophic failures, e.g., loss, theft or physical damage and the imma-
ture replication strategies used in the mobile environment to replicate data like in [6].
Due to these issues the disk storage on a MH can not be considered as a stable storage.

The limitations and characteristics listed above outline the variation of constraints for
the mobile environment being different from those in fixed networks. These constraints
also complicate the design of appropriate mobile transaction protocols. For example, to
abort a MT because of one slow participant is not a suitable design choice in mobile
environments.

Failures. We now outline the common failure modes which we classify into primary
classes of communication and node failures.

Communication Failures: These constitute the majority of failures in the mobile envi-
ronment. We distinguish between two types of communication failures:

Message loss: Especially, messages exchanged between MHs themselves or between
MHs and MSSs are highly vulnerable to loss due to the high bit error rate of wireless
links and to network congestion and collisions. Message loss is much more probable
to occur in mobile environments than fixed ones and need to be explicitly taken into
consideration in the design of mobile systems.

Network partitioning: While moving, the MH can enter a geographical area out of cov-
erage of any MSS or any other MH (to communicate in ad-hoc manner) so that it loses
its connection to the network. While partitioned from the network, the MH is not able to
send or receive messages. As network partitioning is not exceptional but rather part of
the normal mode of operation, it needs to be explicitly considered in the system design.

Node Failures: We distinguish between MH, FH and CO failures. For MHs, we identify
two main failures classes, i.e., transient and permanent failures. The CO can theoreti-
cally be either implemented on a MH or FH, and correspondingly exhibits either MH or
FH failure modes. However, we separate CO failures from MH and FH failures given

Delay-Aware Mobile Transactions 285

the central role the CO plays in commit protocols. In Section 4, we will fix the entity
implementing the CO role and subsequently discuss the CO failures in detail. We do not
consider deliberate failures such as Byzantine faults or intrusions, but in future work we
want to extend the fault model incorporating deliberate faults.

Transient MH failures: These occur mainly due to either software or hardware faults
and usually disappear if the MH reboots. A further common cause of transient failures
is the lack of battery power to sustain operation of the mobile device. Transient failures
are the most probable failures of MHs in the mobile environment. Opposite to network
partitioning, in the case of a transient MH failure the content of the volatile storage of
the MH and consequently the state of its recent computations is lost. in this work we
concentrate only on network partitioning.

Permanent MH failures: These are irreparable failures such as loss, theft or physical
damage of the MH itself or its non-volatile storage, where the data and logs are stored
(media failure). Consequently, all the data stored in the MH is lost.

FH failures: We assume a crash-recovery model, i.e., if the FH crashes it stops receiving,
sending and processing messages until it recovers after a finite amount of time. Volatile
storage of the FH is checkpointed periodically to stable storage and the FH logs its
computations and received/sent messages between two checkpoints. Once a backup is
done the log is deleted and a fresh logging process is initiated. The FH corresponding
DBMS takes care about the recovery from transaction and media failures. The recovery
includes also all logging operations which need to be done when the FH is executing a
transaction.

3 Design Requirements for Mobile Transactions Protocols

We now present the design requirements of transactions in the considered generalized
mobile environment. A basic issue is on the need for new design requirements for mo-
bile transactions in mobile environments? Is it not sufficient to abort a mobile trans-
action when a perturbation or anomaly appears and then restart it later? The problem
with this methodology is that perturbations in mobile environments are increasingly
the normal case than an exceptional situation. Another important argument is the fact
that restarting the transaction involves other costs in term of energy consumption and
charges for using the wireless links, which are not always tolerable in mobile environ-
ments. For this reasons we need to clearly define the boundaries in terms of design
requirements. We identify the following main requirements and design issues:

Efficiency: The efficiency of mobile transaction protocols is measured in terms of
messages and blocking time. The classical approach to improve the efficiency of such
protocols is to reduce the communication overhead (message number and size) and to
minimize the blocking time. The reason behind minimizing blocking time is that trans-
actions, especially executing on FHs, often lock expensive resources. These resources
can not be accessed by other transactions as long as they are locked by an uncommitted
one. This transaction is isolated from the rest of the transactions by locking all rele-
vant data needed by it. As long as the locks are held, no other transaction can access

286 B. Ayari, A. Khelil, and N. Suri

the same data. This data or resources are blocked. The more transactions per second an
application can process, the better its scalability and throughput are. If resources are
blocked, transactions using them are delayed waiting for the resources to be unlocked.
The throughput of the system then suffers. For this reason blocking time, especially of
FH resources (because they are frequently much more loaded than MHs), should be
minimized.

Scalability: Transaction protocols are said to be scalable if they support growing num-
ber of participants without sacrificing efficiency. The resource blocking time as well as
the capabilities of the CO are the main factors that determine the scalability of commit
protocols.

Resilience to perturbations: (Fault-tolerance and recovery) To build resilient mobile
transaction protocols, defining a comprehensive set of perturbations (constraints and
failures) and a set of techniques to cope with constraints and recover from failures is
mandatory. The categorization of perturbations assists the protocol designer in identi-
fying the main concerns and developing appropriate solutions. The overall objective for
fault-tolerance is to maximize the number of committed mobile transactions. A naive
approach to provide for fault-tolerance is to abort the MT each time a failure occurs
and to restart it (e.g., after a back-off time or after the failure disappears). However,
this simplistic approach introduces a large overhead for the successful participants (due
to frequent re-execution of the fragments) and requires some external intelligence (ei-
ther from the user or from the ability of the system to detect failures). Therefore, we
introduce the delay-tolerance design requirement for MT.

Delay-tolerance and -awareness: Masking latent faults such as long disconnections
imposes that the MT execution time can be delayed till local Commit/Abort decisions
can be collected. This implies that MT can last for minutes or even hours. We are deal-
ing then with transactions that we refer to as delay-tolerant transactions. We believe
that users can sacrifice latency for atomicity. In this paper, we expect that the appli-
cation/user is able to specify an appropriate (tolerable) lifetime for each initiated MT.
The delay-tolerance design requirement is orthogonal to the efficiency requirement and
implies a real challenge for our framework.

4 Delay-Aware Mobile Transactions: Overview of the Basic
Approach

In the considered generalized mobile environment, network partitioning (due to either
node or link failures) is the most important and frequent failure that needs to be taken
particularly into consideration. We investigate the impact of this failure on mobile trans-
actions especially with respect to their delay-awareness and the challenges of the de-
sign of commit protocols resilience to such type of failures. We proceed progressively
in this section. First we consider the existence of powerful fixed participants besides
mobile participants (Infrastructure-based scenario). Then we consider only mobile par-
ticipants that use ad-hoc wireless communication to communicate multi-hop with each
other (Ad-hoc scenario). Finally, we consider a generalized MT, where both mobile
and fixed participants are involved and some Mobile participants can communicate in

Delay-Aware Mobile Transactions 287

ad-hoc manner with each other while being partitioned from the rest of the network
(Hybrid scenario).

4.1 Infrastructure-Based Scenarios

For infrastructure-based scenarios, we investigated the problem of network partitioning
and heterogeneity in nodes and links in [1] and developed a set of efficient and generic
techniques to provide MT’s resilience to these fundamental perturbations. In the follow-
ing we briefly summarize these techniques. First we start with decoupling the commit
of MHs from that of FHs. The execution of the transaction is then split into two phases:
(1) a mobile data gathering phase called pre-commit phase where the votes (either to
Commit or Abort the MT) and the logs of the MHs (containing all operations done by
the MH during the execution of its part of the MT) are collected to provide progress,
and (2) a core Two-Phase-Commit [7] (2PC) phase, which involves only FHs for the
commit action as we represent MHs by agents (which are proxy entities) in the fixed
part of the network. As shown in Fig. 3, these agents representing MHs in the fixed
network store messages sent the MHs participating in the MT and forward them to their
corresponding MHs when they reconnect to the network. Decoupling prohibits network
partitioning of MHs to affect FHs especially their resource blocking times.

As network partitioning in this class of scenarios usually leads to the isolation of
some MHs from the rest of the participants, the CO is chosen to run on one FH in the
fixed part of the network. This is not the only reason why the CO is chosen to run on a
FH, stable storage and energy overhead are also further reasons which consolidate this
choice. So the CO is always able to take a decision about the outcome of the MT and
inform all participants which are connected to the network. The CO usually waits for
a specified time (TOCO) to receive the vote from each MH participating in the MT.
Obviously this time depends on the slowest mobile participant. In oder to have a good
estimation of TOCO, everyone of these participants is requested to send an estimation
of the time it needs to execute its part of the MT and send its vote and its logs to the CO.
This estimation can also be updated when needed. This strategy allows the CO to easily
cope with both heterogeneity of participants and their network partitioning by waiting
for the maximum of received timeouts.

The timeout concept described above introduces delay-awareness to mobile transac-
tions. This awareness is driven by the heterogeneity of the MT participants and their
connectivity. Some applications may impose a certain maximum execution time of the
initiated MT. This models the time the user can sacrifice to receive the MT result. The
initiator of the MT then estimates a lifetime for the MT and hand it to the CO. The CO
aborts the MT when the lifetime expired. The optimal lifetime value should account for
how long disconnections of the participants can last (see Fig. 3). This value is not triv-
ial for a generalized system model, however easier for certain systems such as closed
systems. The optimal lifetime value depends on the heterogeneity of participants and
the duration of their disconnections. Since the user can only decide about his desired
waiting time, recommendations may support the user deciding for an appropriate life-
time value. In order to allow for recommendations, the system should keep a history of
system properties such as the average disconnection time of mobile participants. The
application can also be given the possibility to extent this lifetime if needed.

288 B. Ayari, A. Khelil, and N. Suri

Fig. 3. Infrastructure-based scenario

4.2 Ad-Hoc Scenarios

For ad-hoc scenarios only MHs are participants in the MT and can only communicate
in ad-hoc manner building a mobile ad-hoc network (MANET). Since the MHs are not
connected to the fixed part of the network, the CO of the MT can not be chosen to be
a FH. A MH is also not assumed to have a stable storage and therefore can not play
the CO role alone. Failures of the CO in this case will also lead to the blocking of all
participants. As shown in [8], there exists no non-blocking atomic commit protocol if
network partitioning may occur. [9] proposes to use a cluster of coordinators preferably
in single-hop distance from each other to avoid blocking of mobile participants in case
one CO fails. The cluster of CO is represented by one member called main coordinator.
The cluster of COs use 3PC protocol [10] to agree on a single decision either to commit
or abort the MT. If the cluster of COs is partitioned or the main CO fails the authors use
a termination protocol based on the Paxos Consensus protocol [11]. Two extreme cases
that need to be considered are whether only one CO can be defined in these ad-hoc
scenarios e.g. introducing a more powerful MH (with additional assumptions on it like
stable storage) or the other extreme is whether it is possible to consider every single
participant in the MT as a CO. In the following we illustrate the challenges network
partitioning introduces in the case of ad-hoc scenarios.

Fig. 4 shows that estimating the lifetime of a MT in ad-hoc scenarios mainly depends
on network connectivity, which in turn depends on different parameters like speed of
the MHs, their communication range and obstacles in their vicinity. This makes esti-
mating lifetime in ad-hoc scenarios a real challenge taking into consideration all these
parameters. Another challenge for ad-hoc scenarios is the dissemination of parts of the
MT to their corresponding MHs. For this partition-aware broadcast/multicast protocols
can be used such as Hypergossiping [12].

Assuming that every MH in a partition knows all the members of the partition it
is belonging to like in [13], then the members of every partition can exchange their
votes (either to commit or abort the MT) and take a pre-decision on the outcome of
the MT (Fig. 5 (a)). The pre-decision can be different from the final decision and
is only a temporary decision inside one partition which is communicated to every

Delay-Aware Mobile Transactions 289

Fig. 4. Parameters for estimating lifetime in ad-hoc scenarios

Fig. 5. Network partitioning in ad-hoc scenarios

member of the partition. If the pre-decision is to abort the MT, then every MH partic-
ipant can safely abort the MT. If the pre-decision is to commit the MT, every member
should wait until all participants are in the same partition. Alternatively, when two par-
titions merge or join (Fig. 5 (b)) then the pre-decisions are exchanged and if no further
partition exists the outcome of the MT can be safely decided and all the MH partici-
pants can be informed about this outcome which is challenging as partition-aware proto-
cols are required. The assumption that every MH in a partition knows all the members

290 B. Ayari, A. Khelil, and N. Suri

of the partition it is belonging to is a real challenge especially in the considered ad-
hoc scenarios. Some works addressed the problem of group membership in MANETs
like [14, 15],but a customized solution to mobile transactions remains a challenge. The
real challenge is to guarantee atomicity even if this knowledge is not available in the
scenario under consideration.

4.3 Hybrid Scenarios

As a combination of both the infrastructure-based and the ad-hoc scenarios, hybrid
scenarios can use the advantage of infrastructure-based scenarios when possible for
example choosing the CO to run on a FH or defining agents as representatives for some
of MH participants which can connect to fixed networks using the services of MSSs.
When it is impossible to take some of these advantages the system will behave like
in ad-hoc scenarios. Mobile initiators that are partitioned can also exploit multi-hop
communication in order to reach a pre-decision. This is particulary helpful if one (or
more) participant in the same partition as the initiator aborts the MT.

It is also important in hybrid scenarios to investigate the suitability of ad-hoc solu-
tions involving all MH participants before involving new entities from the fixed net-
work like the CO and agents of MH participants. For example a MH which initiates a
MT should be given the possibility to check whether all other MH participants are in the
same partition or not. If it is the case the initiator can accomplish the pre-phase of [1]
in ad-hoc mode before involving other FH entities in the MT.

5 Conclusion and Future Work

In this work we have introduced the notion of delay-aware mobile transactions. We
have shown how delay-awareness can help in reducing the costs of mobile transactions
and in deceasing the number of aborted transactions in mobile environments. Delay-
awareness can also help in providing perturbation resilience in generalized mobile em-
bedded systems. We have presented the main challenges atomic transaction protocols
face in such mobile systems and also divided the generalized mobile embedded system
into sub-classes.

In our future work, we plan to address the spectrum of mobile ad-hoc scenarios and
find solutions that can be aggregated to present a generalized solution for the mobile
embedded environment introduced in this work.

References

1. Ayari, B., Khelil, A., Suri, N.: FT-PPTC: An efficient and fault-tolerant commit protocol for
mobile environments. In: SRDS 2006, pp. 96–105 (2006)

2. Liu, Y.S., Liao, G., Li, G., Xia, J.: Relaxed atomic commit for real-time transactions in mobile
computing environment. In: Meng, X., Su, J., Wang, Y. (eds.) WAIM 2002. LNCS, vol. 2419,
pp. 397–408. Springer, Heidelberg (2002)

3. Haritsa, J.R., Ramamritham, K., Gupta, R.: The prompt real-time commit protocol. IEEE
Trans. Parallel Distrib. Syst. 11(2), 160–181 (2000)

Delay-Aware Mobile Transactions 291

4. Serrano-Alvarado, P., Roncancio, C., Adiba, M.: A survey of mobile transactions. Distrib.
Parallel Databases 16(2), 193–230 (2004)

5. Forman, G.H., Zahorjan, J.: The challenges of mobile computing. IEEE Computer 27(4),
38–47 (1994)

6. Pradhan, D., Krishna, P., Vaidya, N.: Recovery in mobile wireless environment: Design and
trade-off analysis. In: Proc. of the 26th International Symposium on Fault-Tolerant Comput-
ing, pp. 16–25 (1996)

7. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Advanced Course,
pp. 393–481 (1978)

8. Skeen, D.: Nonblocking commit protocols. In: SIGMOD 1981: Proceedings of the 1981
ACM SIGMOD international conference on Management of data, pp. 133–142 (1981)

9. Bose, J.H., Bottcher, S., Gruenwald, L., Obermeier, S., Schweppe, H., Steenweg, T.: An
integrated commit protocol for mobile network databases. In: IDEAS 2005: Proceedings of
the 9th International Database Engineering & Application Symposium, pp. 244–250 (2005)

10. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed system. IEEE
Transactions on Software Engineering 9(3), 219–228 (1983)

11. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169 (1998)
12. Khelil, A., Marrón, P.J., Becker, C., Rothermel, K.: Hypergossiping: A generalized broadcast

strategy for mobile ad hoc networks. Ad Hoc Netw. 5(5), 531–546 (2007)
13. Xie, W.: Supporting Distributed Transaction Processing Over Mobile and Heterogeneous

Platforms. Dissertation. Georgia Institute of Technology (2005)
14. Roman, G.C., Huang, Q., Hazemi, A.: Consistent group membership in ad hoc networks. In:

ICSE 2001: Proceedings of the 23rd International Conference on Software Engineering, pp.
381–388 (2001)

15. Briesemeister, L., Hommel, G.: Localized group membership service for ad hoc networks.
In: IWAHN 2002: Proceedings of the 1st International Workshop on Ad Hoc Networking,
pp. 94–100 (2002)

An Operating System Architecture

for Future Information Appliances

Tatsuo Nakajima, Hiroo Ishikawa, Yuki Kinebuchi, Midori Sugaya, Sun Lei,
Alexandre Courbot, Andrej van der Zee, Aleksi Aalto, and Kwon Ki Duk

Department of Computer Science and Engineering
Waseda University

3-4-1 Okubo Shinjuku Tokyo 169-8555, Japan
tatsuo@dcl.info.waseda.ac.jp

Abstract. A software platform for developing future information ap-
pliances requires to satisfy various diverse requirements. The operating
system architecture presented in this paper enhances the flexibility and
dependability through virtualization techniques. The architecture allows
a system to use multiple operating systems simultaneously, and to use
multi-core processors in a flexible way. Also, dependability mechanisms
in our architecture will avoid crashing or hanging a system as much as
possible in order to improve the user experience when defects in the soft-
ware are exposed. We present a brief overview of each component in the
operating system architecture and some sample scenarios that illustrate
the effectiveness of the architecture.

1 Introduction

Information appliances become more and more complex for supporting a large
number of new functionalities. For example, current Japanese mobile phones
contain about ten million lines of source code and support a variety of function-
alities such as an electronic wallet, a media player, an Internet browser/e-mail,
and a photo camera. Other information appliances like televisions and car navi-
gation systems contain almost the same size of software. Moreover, information
appliances will need to satisfy diverse requirements for supporting various future
services. Also, different types of information appliances will need to take into ac-
count diverse hardware platforms. In the near future, multi-core processors will
become common although current operating systems for information appliances
still have many issues to support the processors.

This paper proposes an operating system architecture to satisfy the diverse re-
quirements for building attractive future information appliances. The uniqueness
of the architecture is as follows:

– The architecture accommodates multiple operating systems on a multi-core
processor simultaneously. This enables us to reuse a large amount of software
on existing operating systems. Also, the number of CPU cores to execute an
operating system will be changed dynamically due to energy consumption
requirements.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 292–303, 2008.
c© IFIP International Federation for Information Processing 2008

An Operating System Architecture for Future Information Appliances 293

– The architecture virtualizes crashing or hanging of an operating system as
much as possible. The information appliance that adopts the architecture
tries to postpone the crash until the user does not interact with the appliance
anymore. Thus, the user is not aware of crashing or hanging of the appliance,
and the user experience will be improved significantly.

In Section 2, we present some examples of future information appliances, and
the requirements for the operating system architecture for building the appli-
ances. In Section 3, we show the structure and components of the architecture.
Section 4 shows some example scenarios that illustrate the effectiveness of our
architecture. Section 5 concludes the paper.

2 Future Information Appliances and Their Requirements

In the near future, a variety of daily objects near us will become information
appliances. These artifacts are connected to the Internet and enhance our daily
activities. In our research group, we have enhanced various daily objects such
as chairs [1], tables [3], toothbrushes [6], and mirrors [2]. These future infor-
mation appliances will spontaneously collaborate with each other to compose
more complex services from existing services [5] [6]. A variety of middleware
infrastructures is necessary to develop various application services rapidly [4].

There are two characteristics to develop future information appliances. The
first is to offer a huge amount of functionalities that need to satisfy diverse re-
quirements to offer various attractive services. These diverse requirements cannot
be implemented on any one operating system. Current information appliances
adopt various types of operating systems to satisfy different requirements. For
example, appliances controlling a variety of devices have used small operating
systems that include only a real-time thread scheduler and some device drivers.
The operating systems usually do not support memory protection domains, but
are suitable for highly responsive services with tight timing constraints. The fu-
ture operating systems architecture should support multiple operating systems
running on a multi-core processor simultaneously, without violating real-time
requirements of application services.

The second characteristic is diverse hardware platforms. Especially, future in-
formation appliances will need to use a multi-core processor dynamically to save
energy consumption. As described in the previous paragraph, multiple operating
systems should be executed on a multi-core processor. Each operating system
allocates a suitable number of CPU cores according to the current workload. Let
us assume a mobile phone that uses a multi-core processor. While a user does not
use the mobile phone, only one CPU core is used to execute several background
application services on multiple operating systems simultaneously. In this case,
there are a few activities on these operating systems, and it is easy to satisfy all
real-time requirements of these activities on a single CPU core. However, when
a user starts watching a TV program, multiple CPU cores become active and
most of them are used to process the TV program.

294 T. Nakajima et al.

Dependability is one of the most important requirements in future information
appliances. Crashing or hanging of a service on an appliance will degrade user
experience significantly. For example, if the service is hung, a user needs to find
a reset switch and push the switch to restart the appliance. Usually, a user
interacts with information appliances for a short time. Although some errors
inside a kernel may damage the kernel, usually the appliance can be avoided to
crash while a user is interacting with it by repairing the damaged kernel data
structure. The kernel will be restarted for a complete repair after a user finishes
to use the application service.

3 Operating System Architecture

This section presents an operating system architecture for future information
appliances. We describe the structure of the proposed architecture and show why
the architecture satisfies the requirements described in the previous section.

3.1 Overview of Architecture

Figure 1 shows the structure of our operating system architecture. The architec-
ture consists of six components. The first component is the SPUMONE hardware
abstraction layer. The second is the L4 micro-kernel [10]. The third is the ArcOS
dependable real-time operating system. The fourth is the monitoring service, and
the fifth one is the anomaly detection service. The last one is the Linux kernel.

The SPUMONE hardware abstraction layer runs on a multi-core processor,
and it is an infrastructure to satisfy the diverse requirements described in the
previous section. SPUMONE takes into account the diversity of application ser-
vices and hardware platforms.

The L4 micro-kernel is a small real-time kernel. The kernel offers only basic
functionalities such as process and memory management. Most of operating
system services such as a file service and device drivers are implemented in
independently schedulable protection domains. Also, L4 offers a powerful IPC
mechanism that makes it is easy to develop application services decomposed into
multiple protection domains.

The ArcOS dependable real-time operating system runs on the L4 micro-kernel.
Its purpose is to increase the dependability of control processing services running
on ArcOS. The most important concept in ArcOS is self-healing. The integrity of
a system is maintained without help of a system administrator, and is recovered
automatically when the inconsistency inside the application service is exposed.

The monitoring service is running on ArcOS. It maintains the integrity of
the Linux kernel to enhance its dependability, and recovers the integrity au-
tomatically by observing critical data structures inside the Linux kernel. The
monitoring service is isolated from the Linux kernel to avoid the effect of the
inconsistency in the Linux kernel.

The anomaly detection service is implemented in the Linux kernel. It en-
hances the dependability of the Linux application services. The service uses the

An Operating System Architecture for Future Information Appliances 295

Fig. 1. An Overview of Our Operating System Architecture

monitoring and tracing facilities offered by the Linux kernel to detect anomalies
in application services.

The architecture also improves user experience when an anomaly in a sys-
tem occurs. ArcOS increases the robustness of the monitoring service, and the
monitoring service repairs the anomaly in the Linux kernel. When SPUMONE
detects crashing or hanging in Linux, it converts them to recoverable errors that
can be handled in applications services. However, we do not assume that the
monitoring service repairs the damage of the kernel completely. Thus, the mon-
itoring service will restart the Linux kernel while a user does not interact with
an appliance. The anomaly detection service detects the anomaly in application
services on Linux, and restarts the abnormal services to maintain the integrity
of the services.

3.2 SPUMONE: Hardware Abstraction Layer

SPUMONE offers the abstraction called virtual processors to satisfy the diverse
requirements by using multiple operating systems as described in the previous
section. One or multiple virtual processors are assigned to each guest OS. If a
guest OS is configured as an SMP operating system, multiple virtual processors
may be multiplexed on a single CPU core or be executed on different CPU cores.
An instance of SPUMONE is created on each CPU core and may schedule multi-
ple virtual processors. For reducing the overhead of switching virtual processors,
both guest operating systems and SPUMONE are located in the same privileged

296 T. Nakajima et al.

address space. Thus, each guest OS can invoke privileged instructions without
virtualizing them.

A guest OS uses its own process scheduler. When the OS becomes idle,
SPUMONE changes the status of the virtual processor executing the OS to
passive, and the virtual processor will not be selected to be executed until an
interrupt will change its status to active. The physical memory in a processor
is divided into multiple memory areas, and each area is assigned to a different
guest OS. The memory area used by the guest OS can be protected by other
guest OSes for avoiding malicious memory access.

Each virtual processor is assigned a different priority, and SPUMONE chooses
an active virtual processor that has the highest priority to be executed on a
CPU core. The number of virtual processors used by each guest OS is statically
determined when the system is booted. Also, the number of virtual processors
on each CPU core is statically determined. For reducing the power consumption,
SPUMONE can be stopped and resumed independently on each CPU core, so
the number of CPU cores can be dynamically changed according to the system’s
power consumption policy. Also, a guest OS may change the status of its virtual
processor to idle dynamically according to the current condition of the processor
for satisfying real-time constraints of application services on multiple operating
systems.

An interrupt or exception from a hardware device is interposed by SPUMONE.
The mapping between interrupt sources and virtual processors is statically spec-
ified in SPUMONE. In traditional OSes, an interrupt processing is scheduled be-
fore the execution of all processes. However, in SPUMONE, low priority interrupt
processing can be delayed while executing a virtual processor with a high priority.
This means that the priority of interrupt processing is integrated with the prior-
ities of virtual processors. Thus, an interrupt with a low priority does not affect
the execution of a virtual processor with a high priority.

SPUMONE has three mechanisms to increase its flexibility. The first mecha-
nism is the priority integrity mechanism. To guarantee different guest OS’s timing
constraint requirements, each guest OS changes the priority of its virtual proces-
sor dynamically according to the priority of the executing process. When a CPU
core multiplexes several virtual processors, the priority of the executing process
is mapped to its virtual processor. Thus, the virtual processor on which a guest
OS runs to schedule a process with highest priority is selected to be executed on
a CPU core. The second mechanism is a CPU accounting mechanism to limit the
CPU capacity used by each virtual processor. This is useful to protect the ca-
pacity of a CPU core from the monopolization by a specific guest OS. The third
mechanism is a mechanism to virtualize errors occurring on each CPU core. When
SPUMONE detects hanging or crashing on the CPU core, it changes the current
program counter and stack pointer to the initially specified value to convert the
errors to easily recoverable errors. For example, when hanging or crashing is de-
tected during the execution of a system call, the system call raises an exception
to an application process, and the process will recover from the exception by re-
executing the system call or executing an alternative system call.

An Operating System Architecture for Future Information Appliances 297

Currently SPUMONE runs on a single core SH4A architecture processor.
Linux, L4 and TOPPERS are running on SPUMONE and can be run concur-
rently on a single CPU core. We are working on supporting a multi-core processor
that contains four SH4A CPU cores.

3.3 ArcOS: Dependable Real-Time OS

ArcOS is an operating system that has an ability of automatic self-healing.
In ArcOS, each software component is implemented in an isolated protection
domain that can be independently restarted when hanging or crashing occurs
in these components. ArcOS is a multi-server operating system built on top of
the L4 micro-kernel. System components such as a file system and device drivers
run in independently isolated protection domains, and are also restarted in case
these system components violate their integrity and the violation is exposed by
some errors.

The most fundamental functionalities of ArcOS are involved in the root servers
that we assume to be highly reliable. P3, which is one of the root servers, is a
dedicated memory manager of each software component. An error detector and
a persistent storage mechanism described below are implemented in P3, so that
each component can use the mechanism as an infrastructure service.

A component implemented on ArcOS tries to recover an error caused by the
anomaly through various exception handling strategies. Also, ArcOS tries to vir-
tualize the error to convert the unrecoverable error to the recoverable error if
possible. Since the aggressive recovery strategies used in ArcOS may not resolve
the inconsistency in the component, the inconsistency should be completely re-
moved by scheduling the restart of the component when the effect of the restart
becomes minimal. In case the exposed error cannot be recovered with any ag-
gressive recovering strategies, ArcOS will restart the component immediately.

Since each service is decomposed into multiple software components in Ar-
cOS, the integrity of a system is maintained by restarting respective compo-
nents using the micro-rebooting technique [8]. The most important issue when
using the micro-rebooting technique is to quickly restart a software component
to reconstruct internal data structures. Candea et. al.[8] have proposed crash-
only software to make is easy to build highly reliable Internet services. However,
for building information appliances, it takes a long time to reconstruct data
structures in a restarted component if it is implemented as crash-only software.
ArcOS assumes that each component stores some critical data in a persistent
storage. Also, the component defines a recovery procedure, which is invoked when
the component is restarted. The procedure reconstructs internal data structures
quickly by retrieving data from the persistent storage. The persistent storage
stores critical data structures that may take a long time to recover. Also, ses-
sion data maintained by system services are stored in persistent storage. For
example, a file service keeps data about currently opened files for reconstructing
the data when it is restarted. Some errors caused by the anomaly in a compo-
nent may make the data in the persistent storage inconsistent. Since transac-
tional updates are not suitable to implementing various services on information

298 T. Nakajima et al.

appliances, ArcOS virtualizes the errors to prevent data in the persistent storage
from becoming inconsistent. A component continues to execute even when errors
are exposed after the completion to access data structures and the consistency
is maintained.

ArcOS offers three mechanisms to maintain the system’s integrity. The first
mechanism is to invoke a recovery procedure before a software component is
restarted. As described in the previous paragraph, the mechanism enables the
component to be recovered very quickly. The second mechanism is a persistent
storage that is used to store critical data for supporting quick restarting. The
last mechanism is a failure detection service that detects a crash or hang in a
component and restarts it. ArcOS also offers a programming framework that
hides details to use the persistent storage to develop self-healing application
services in an easy way.

In the current implementation, we have developed a couple of device drivers on
ArcOS to show the effectiveness. The device driver is a source of the fragileness
of the current operating systems. As described in previous research [11], it is
not easy to develop self-healing device drivers even when using micro-kernel-
based operating systems. ArcOS enables various device drivers to be recovered
quickly and makes it possible to use the micro-rebooting technique in information
appliances.

3.4 Monitoring Service

The motivation for our monitoring service is driven by handling system anom-
aly and security attacks. When information appliances will become more com-
plicated, they may behave in a strange or unexpected way due to undisclosed
bugs or faults that are not handled correctly, which is known as system anomaly.
Currently once the anomaly of information appliances occurs, it is difficult to
perform either anomaly analysis or further recovery. In a similar way, information
appliances suffer from security attacks. Virus programs might inject malicious
codes into the target host OS through the Internet and then compromise it.
Because most of the end users lack enough technical knowledge, they usually
cannot solve such security problems themselves and even cannot notice that the
system has been compromised. The monitoring service is designed for satisfying
the above requirements by providing both the inconsistency detection inside the
OS kernel and the automatic recovery mechanism.

Conventional solutions usually suffer from the high memory overhead. In prior
researches, the backward-recovery technique takes snapshots at checkpoints to
perform a recovery from some fatal errors. On every checkpoint, the system
will make a memory snapshot of some specific processes, which introduces the
overhead of memory resources. In signature-based intrusion detection systems,
a large mount of persistent memory has been used to track suspicious activi-
ties. Moreover, there will be more overhead when the monitored object behaves
more complicated and nondeterministically, e.g. in the Linux kernel. Current
information appliances are still limited by system resources to reduce its costs.
Obviously, the above solutions are neither suitable for developing information

An Operating System Architecture for Future Information Appliances 299

appliances, nor for the detection and recovery of the anomaly in the Linux kernel.
Moreover, our monitoring service is more light-weight.

The monitoring service observes the integrity in the Linux kernel by monitor-
ing the consistency of its critical data structures. When the service detects an
inconsistency, a repair function is invoked. A similar technique described in [7]
is used for repairing consistent data structures. In the repair function, we do not
assume that the consistency is completely recovered. There is always the possi-
bility that inconsistencies like memory-leakage remains. The consistency will be
recovered completely after the entire Linux kernel is restarted while a user does
not interact with an appliance.

Since the monitoring service is implemented as quickly restart-able compo-
nents by using the ArcOS framework, each component of the service can be
efficiently restarted automatically when a component crashes or hangs. The
monitoring service is developed as several Linux kernel modules and a single
independent inconsistency detection module running on the L4 micro-kernel and
ArcOS. The kernel modules are in charge of the kernel data structure repair. The
inconsistency detection module can access the memory of the Linux kernel at
runtime through shared memory between the Linux kernel and the inconsistency
detection module. The Linux kernel’s internal critical data structures are period-
ically checked for consistency against the built-in anomaly detection database.
Once inconsistency in some data structures has been detected, the corresponding
repair functions will be invoked. Since the inconsistency detection module runs
outside the Linux kernel, and it is completely isolated and hidden from Linux,
the faults or bugs inside the Linux kernel does not affect the detection process
running on ArcOS.

Currently, several case studies have been carried out to show the effectiveness
of the monitoring service, such as the kernel-level hidden process detection and
memory leak recovery.

3.5 Anomaly Detection Service

The role of the anomaly detection service is to detect anomalies in a Linux
application service before the inconsistency caused by the anomaly is exposed.
The user level application services implemented on the Linux kernel becomes
more and more complex in future information appliances. These application
services may misbehave temporally or can be attacked by malicious programs.
For making the behavior of the services more stable, detecting the anomaly of
the services is very important.

The service records the fine-grained CPU resource usage of each process and a
variety of detailed events traced inside the Linux kernel such as invoking system
calls or occurring interrupts and exceptions. The information allows the anom-
aly detection service to analyze the behavior of applications services without
modifying them. For example, the communication patters among user processes
can be extracted by analyzing the kernel events traced in the network protocol
module transparently. The approach is similar to Magpie [13], but our approach
also uses the fine-grained resource usage to make it easy to reduce the overhead
to analyze a large amount of kernel events.

300 T. Nakajima et al.

The anomaly detection service can be used to detect abnormal behavior in
application services, and increase the dependability of a system significantly by
restarting abnormal services before the violation of the integrity becomes serious.
It learns the normal pattern of the behavior of a target application service by
using a variety of machine learning techniques. When it detects the abnormal
pattern, the target service is restarted to recover its integrity. For example, the
fine-grained CPU resource usage of each process may be used to detect intrusion
inside an information appliance. Also, by using a similar approach described
in [12], the service detects the anomaly caused by software bugs in application
services. The approach may enable us to detect unknown anomaly by classifying
abnormal behavior from normal behavior.

The anomaly detection service consists of four modules. The first module is
a kernel tracing module that traces a variety of events inside the Linux kernel.
Currently, LLTng [14] is used as the kernel event tracing module. The second
module is an accounting system that calculates the fine-grained CPU resource
usage for each process [15]. Of course, the information can be extracted from
the information generated by the kernel event tracing module, but our approach
can reduce the overhead caused by analyzing a large amount of kernel events,
and it is more suitable for developing information appliances. The third mod-
ule is a logging module that records the information generated in the first and
second modules. The fourth module is an analysis module that is a set of user
processes retrieving a model from the logs stored in the logging module. A differ-
ent process is implemented to retrieve a different model from the logs. When the
analysis module detects abnormal behavior, the causing process will be restarted
to recover the integrity of an information appliance.

4 Sample Scenarios

The section presents several sample scenarios showing the effectiveness of the
proposed operating system architecture.

Robust Control Processing Service: ArcOS enables us to develop robust control
processing services. The services can be decomposed into multiple components
and each component can be restarted independently. By using the framework
offered by ArcOS, a service recovers its integrity by restarting it when an incon-
sistency is detected.

The execution of Linux is isolated from the execution of a control processing
service by SPUMONE. SPUMONE configures the execution in Linux to be post-
poned when the execution of control processing services is active. The approach
makes it possible that the temporal effect of Linux does not affect the execution
of control processing services. Also, restarting Linux does not affect the execution
of the control processing services. For example, the execution of a continuous
media processing service on ArcOS does not violate its timing constraints even
when Linux is restarted.

Virtual Dependability: If a user is not aware of the restart of an appliance, the
appliance becomes virtually dependent on the user. The monitoring service and

An Operating System Architecture for Future Information Appliances 301

SPUMONE repair the Linux kernel’s internal integrity to continue the execution
even when a crash or hang in the Linux kernel occurs. However, since our repair
takes an optimistic approach, the inconsistency that does not affect the execution
of the kernel for a short time will remain in the kernel. The inconsistency can be
removed completely by restarting the kernel. SPUMONE schedules the reboot
of the kernel when a user does not interact with an appliance.

SMP Emulation on SPUMONE: Interrupt processing time can be very long in
the current Linux kernel when burst network traffic is received while a single CPU
core is used. This violates the timing constraints of real-time applications. Our
approach to solve the problem is that SPUMONE creates two virtual processors
on a single CPU core, and switches the contexts of the virtual processors in a
fine-grained way.

In this approach, one virtual processor executes all interrupt processing, and
another virtual processor executes all other activities. Thus, when a virtual
processor starts to execute a long processing interrupt in a high priority, the
processing is blocked when the interrupt processing time exceeds the specific
threshold. The CPU accounting mechanism in SPUMONE makes the configura-
tion easy.

Using a Multi-core Processor: SPUMONE enables each CPU core to be turned
on or off dynamically according to the current workload in Linux and the policy
of the power management. For example, when the workload of an appliance is
very low, one CPU core is active to execute both Linux and L4. On the other
hand, if the workload is high, all CPU cores will be used to process the workload.

When several application services on multiple operating systems need to en-
sure their timing constraints, the integrity of priorities should be maintained.
SPUMONE supports two approaches to maintain the priority integrity. The
first approach is to coordinate all priorities in multiple operating systems by
mapping them in global priorities. The approach requires taking into account all
real-time activities on the multiple operating systems to ensure their timing con-
straints. The second approach uses different CPU cores for executing multiple
operating systems. When Linux starts a real-time application, Linux and L4 use
different CPU cores to schedule their applications independently. In this case,
since different operating systems use different CPU cores, each operating system
can schedule real-time activities without considering the real-time activities in
other operating systems.

5 Conclusion and Future Directions

This paper presents an operating system architecture for future information
appliances. Currently, we are implementing the operating system architecture
on several hardware platforms that use Hitachi SH4 processors. One of them
contains a multi-core processor with four SH4 processors.

There are a couple of future directions in our research. Of course, one of
the most important directions is to build an actual information appliance using

302 T. Nakajima et al.

the proposed architecture. We are planning to build a simple audio player on
ArcOS in such a way that Linux can be rebooted anytime without disturbing
the execution of the audio player.

The second future direction is to use the monitoring service to monitor the
hardware devices. This is very useful to detect various abnormal conditions of
the appliance. For example, if the source of the anomaly is correctly localized, it
may be possible to replace the damaged hardware easily. This makes the model-
based diagnosis[9] possible. Also, if the damage is serious and has the potential
to cause serious a accident in the near future, the appliance disables to avoid
the risk of an accident. This is very useful to preserve sustain-ability.

The last future direction is to implement ArcOS on Linux. It makes it easy
to decompose an application service into multiple processes. When the anom-
aly detection service detects abnormal processes, the processes are restarted to
recover the integrity of the service. However, current Linux does not support
sufficient functionalities to implement ArcOS. Thus, we will add some system
calls for solving the problem.

References

1. Yamabe, T., Fujinami, K., Nakajima, T.: Experiences with Building Sentient Ma-
terials Using Various Sensors. In: Proceedings of 24th International Conference on
Distributed Computing Systems Workshops (IWSAWC 2004) (2004)

2. Fujinami, K., Kawsar, F., Nakajima, T.: AwareMirror: A Personalized Display Us-
ing a Mirror. In: Proceedings of International Conference on Pervasive Computing
(Pervasive 2005) (2005)

3. Iwasaki, S., Hirakawa, Y., Mase, H., Tokunaga, E., Nakajima, T.: Towards
computer-supported face-to-face knowledge sharing. In: Extended Abstracts Pro-
ceedings of the 2006 Conference on Human Factors in Computing Systems (2006)

4. Nakajima, T., Fujinami, K., Tokunaga, E., Ishikawa, H.: Middleware design issues
for ubiquitous computing. In: Proceedings of the 3rd International Conference on
Mobile and Ubiquitous Multimedia (MUM 2004) (2004)

5. Nakajima, T., Satoh, I.: A software infrastructure for supporting spontaneous and
personalized interaction in home computing environments. Personal and Ubiqui-
tous Computing 10(6), 379–391 (2006)

6. Nakajima, T., Lehdonvirta, V., Tokunaga, E., Kimura, H.: Reflecting Human Be-
havior to Motivate Desirable Lifestyle. In: Proceedings of The 6th ACM Conference
on Designing Interactive Systems (DIS 2008) (2008)

7. Demsky, B., Rinard, M.C.: Goal-Directed Reasoning for Specification-Based Data
Structure Repair. IEEE Transactions on Software Engineering 32(12) (2006)

8. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., Fox, A.: Microreboot - A
Technique for Cheap Recovery. In: Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI 2004) (2004)

9. Peti, P., Obermaisser, R., Ademaj, A., Kopetz, H.: A Maintenance-Oriented Fault
Model for the DECOS Integrated Diagnostic Architecture. In: Proceedings of 19th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005)
(2005)

10. L4 eXperimental Kernel Reference Manual, Version X.2, Revision 6, System Ar-
chitecture Group, Department of Computer Science, Universität Karlsruhe (2006)

An Operating System Architecture for Future Information Appliances 303

11. Herder, J.N., Bos, H., Gras, B., Homburg, P., Tanenbaum, A.S.: Failure Resilience
for Device Drivers. In: Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2007) (2007)

12. Chen, M.Y., Accardi, A., Kiciman, E., Patterson, D., Fox, A., Brewer, E.: Path-
based failure and evolution management. In: Proceedings of the 1st, USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI 2004) (2004)

13. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Ex-
traction and Workload Modelling. In: Proceedings of the International Symposium
on Operating Systems Design and Implementation (OSDI 2004) (2004)

14. Desnoyers, M., Dagenais, M.R.: The LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux. In: Proceedings of the Ottawa Linux Symposium
(2006)

15. Sugaya, M., Oikawa, S., Nakajima, T.: Accounting System: A Fine-Grained CPU
Resource Protection Mechanism for Embedded System. In: Proceedings of the 9th
IEEE International Symposium on Object and Component-oriented Real-Time
Distributed Computing (ISORC 2006) (2006)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 304–316, 2008.
© IFIP International Federation for Information Processing 2008

M-Geocast: Robust and Energy-Efficient Geometric
Routing for Mobile Sensor Networks∗

Lynn Choi1, Jae Kyun Jung1, Byong-Ha Cho1, and Hyohyun Choi2

1 Korea University, Anam-Dong, Sungbuk-Ku, Seoul, Korea
{lchoi,kernel,sntblue}@korea.ac.kr

Tel.: +82-2-3290-3249; Fax: +82-2-921-0544
2 u-Convergence Laboratory, Samsung Electronics Co., Ltd

hyohyun.choi@samsung.com

Abstract. In this paper we investigate a practical routing solution for a new
class of wireless sensor networks where any node can be mobile anytime. As-
suming GPS-enabled sensor nodes we propose a new geometric routing proto-
col called M-Geocast that is designed to efficiently support node mobility as
well as location service for such mobile sensor networks. Unlike existing geo-
metric routing schemes, M-Geocast can also discover a non-geometric path to
the destination by exploiting the path history of location updates. Thus, the
routing void can be minimized by alternating the two. In addition, M-Geocast
employs two location-based optimizations to further reduce the overhead of on-
demand route discovery on inevitable routing voids. Through detailed NS-2
simulations we demonstrate that M-Geocast can not only increase network per-
formance but can also reduce energy consumption compared to the existing pro-
tocols based on on-demand route discovery or a plain geometric routing.

Keywords: mobility, sensor networks, geometric routing, MANET, void.

1 Introduction

Sensors are now sufficiently small and cheap so that people can carry them around.
Coupling these sensors with a nearly billion mobile wireless devices will create a new
network of mobile sensors in the future. Yet, most of existing studies on wireless
sensor networks assume only stationary sensor nodes [1]. Recently several studies
investigate the use of mobile sinks to improve coverage, localization accuracy, or
energy efficiency [2, 4, 9, 11]. However, none of these studies have investigated the
case of fully mobile sensor network (MSN) environment where any node can move
anytime. In this paper we investigate a practical routing solution for this new class of
wireless sensor networks where both sensor nodes and sinks can be mobile anytime.

Node mobility brings several challenges to large-scale sensor networking. First, the
preconstruction of message delivery network may not be useful since the topology may
change too frequently due to node movement. Second, the frequent location updates

∗ This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant

funded by the Korea government (MOST) (No. R01-2007-000-20958-0). This work was also
supported by a Korea University Grant.

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 305

from a mobile node can lead to an excessive drain of sensors’ limited battery power
and increased collisions in wireless transmissions. Third, the situation can get worse
when the number of mobile nodes grows. While MANET protocols [3, 8] may provide
a reasonable performance for MSN but they would incur too much overhead in terms
of traffic and energy consumption since they usually assume peer-to-peer randomized
traffic rather than many-to-one traffic from sources to sinks assumed in MSN. One
possible solution is employing a geometric routing scheme [5, 6, 7] rather than a topol-
ogy-based routing protocol. Assuming location-aware sensor nodes the geometric
routing is scalable, fast, and energy efficient since it does neither require global routing
table maintenance nor the on-demand path discovery used in MANET protocols.

In this paper, we propose a new geometric routing protocol called M-Geocast to ef-
ficiently support routing for mobile sensor networks. In the presence of multiple sinks
M-Geocast designates one of the sinks as the master sink. The master sink acts as a
location service provider and also as a data collection and dissemination server. Only
the master sink needs to flood its location information. Thus, all the nodes including
sinks can send messages to the master sink using a simple geographic forwarding. As
in all the geometric schemes, M-Geocast may encounter geographic holes [5, 6, 7]. To
recover from such a routing void, M-Geocast uses the following novel approach.
First, M-Geocast can discover a second path to the destination by using the path his-
tory of the location updates. This is called path history forwarding. Second, if both
the geometric routing and path history forwarding fail either due to a routing hole or
due to a broken link, M-Geocast can discover a new path to the destination on de-
mand by flooding RREQ messages. Thus, M-Geocast can completely eliminate the
routing void. To avoid excessive flooding caused by such on-demand path discovery,
M-Geocast employs two location-based optimization techniques called path history
projection and geographic void prediction. Together, M-Geocast can substantially
outperform existing routing solutions in terms of both energy efficiency and network
performance as demonstrated in Section IV.

The rest of this paper is organized as follows. Section II surveys the related work.
Section III introduces M-Geocast’s routing, location service, and detour methods.
Section IV discusses the simulation results. Finally, Section VI concludes the paper.

2 Related Works

Numerous geometric routing schemes [5, 6, 7] have been proposed for ad hoc net-
works. In terms of forwarding strategy, existing greedy routing schemes can be classi-
fied as Greedy (minimize the distance to the destination) MFR (most forward progress
within radius r), NFP (nearest with forward progress), Compass routing (select a
neighbor closest to the straight line between the source and the destination), and Ran-
dom selection depending on which neighbor node to forward to [7]. M-Geocast can be
classified as Greedy, which selects a neighbor node that is closest to the destination as
the next forwarding node.

In geometric routing a location service is necessary to learn the current position of
a potential destination. Mobile nodes should register their current position with the
location service provider. GLS [6] partitions the network field as a hierarchy of
squares called quadtree. By issuing position queries up in the hierarchy, GLS ensures

306 L. Choi et al.

the position query to reach the correct location server. Another strategy called Home-
zone [10] uses a hash function to locate the server. Both GLS and Homezone can be
classified as an all-for-some service [7] since all nodes need to store the location in-
formation for some other nodes. In terms of location service, M-Geocast can be clas-
sified as some-for-some approach [7], since only a single location server maintains
the position information of mobile sinks.

In geometric greedy forwarding any node may fail to find the next node when it ar-
rives at a local maximum where none of its neighbors is closer to the destination than
itself. To counter this problem, numerous schemes have been proposed [5, 7]. One
intuitive strategy is selecting the node with the least backward progress if no nodes
can be found in the forward direction. However, this leads to a looping problem [7].
The face-2 algorithm [7] and the perimeter routing strategy of GPSR [5] uses a simple
planar graph traversal to find a path to the destination. However, this approach may
fail to find a path when the network field has an open void [7]. In contrast, M-Geocast
uses path history and other hints to recover from the routing holes and can guarantee
the recovery by using the on-demand route discovery if necessary.

The idea of master sink is similar to the virtual sink concept used in VSR [2] which
can support sink mobility assuming stationary sensor nodes. However, M-Geocast is
different from VSR in the following aspects. First, M-Geocast does neither maintain
routing table nor routing tree as in VSR. Second, VSR assumes only stationary sensor
nodes. To support MSN, VSR needs to rebuild its routing tree continuously whenever
there is a topology change, which might be too expensive to be used in MSN. Third,
only a sink can perform the role of the master sink in M-Geocast, while a normal
stationary sensor node is designated as a virtual sink in VSR. In summary, M-Geocast
is a position-based routing protocol for mobile sensor networks while VSR is a topol-
ogy-based routing protocol for static sensor networks with mobile sinks.

3 M-Geocast

3.1 M-Geocast and Master Sink

As in all geographical routing, M-Geocast marks each packet with the location infor-
mation of its destination. A forwarding node can make a locally optimal, greedy
choice by selecting one of its neighbors that is closest to the destination. This assumes
that each node has the location information of all of its neighbors through neighbor
discovery process as explained in Section III.2. In the presence of multiple mobile
sinks M-Geocast designates one of the sinks as the master sink. The master sink acts
as a data collection and dissemination server for all the nodes in the field. To accom-
plish this task, the master sink needs to periodically flood its location information
throughout the sensor field. Thus, all the nodes in the field can send messages to the
master sink using the geographic greedy forwarding. Figure 1 shows the routing path
of M-Geocast when there are three sources and two destinations. Each source directs
its messages to the master sink using the greedy forwarding. The master sink collects
all the messages from the sources and forwards them to other sinks. To accomplish
this, the master sink needs to track the location of other sinks.

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 307

Fig. 1. Routing through a master sink in M-Geocast

3.2 Location Service and Neighbor Discovery

Adaptive Beaconing: For the geographic forwarding, each node in M-Geocast should
maintain the location information of its neighbors. For this purpose, each node peri-
odically broadcasts its location information to its neighbors. A simple beaconing
provides all nodes with their neighbors’ positions. Periodically, each node transmits a
beacon using a MAC-level broadcast including only its own identifier (e.g., IP ad-
dress) and position. However, in random waypoint model each node spends a signifi-
cant portion of its time without movement. In stationary state, the periodic broadcast
may generate too much unnecessary traffic. To avoid this, M-Geocast requires each
node to broadcast its location only during movement. However, this creates another
problem. Assume that a new node X moves in the area of node Y and node Y is in
stationary state. Since node Y does not broadcast its location, the new node X cannot
recognize the node X even though it does exist. To solve this problem, we propose a
new neighbor discovery scheme called adaptive beaconing. First, a stationary node
usually does not broadcast its beacon. However, whenever it hears the beacon of a
new incoming node, it generates its beacon just once to inform its location to this
newcomer. This allows each node to keep track of their neighbors’ locations even
during movement while suppressing the unnecessary beacon transmissions.

Location Broadcast from Master Sink: While the location information of a sensor
node needs to be broadcast among its own neighbors, the location information of a
master sink needs to be propagated throughout the sensor field because all the nodes
assume the location information of the master sink. This is accomplished by a simple
periodic flooding by the master sink. As in adaptive beaconing, the master sink needs
to flood its location information only during its movement.

Location Unicast from Sink: To forward all the messages collected from sensor
nodes, the location information of other sinks must be tracked by the master sink.
This is accomplished by a simple unicast from each sink to the master sink by using
the geometric greedy forwarding. Like in other location updates, this location update

308 L. Choi et al.

is needed only during the sink movement. Note that without the master sink the loca-
tion service cannot be provided by such a simple unicast.

3.3 Detour Methods for Routing Voids

The power of greedy forwarding comes with one attendant drawback: there are to-
pologies in which the only route to a destination requires a packet move temporarily
farther in geometric distance from the destination [5]. A simple example of such a
topology is shown in Figure 2. Here, a forwarding node X is closer to the master sink
than all of its neighbors. The greedy forwarding cannot make further progress. This
kind of routing void is called a geographic hole. To recover from this situation, we
propose two different detour strategies: detouring with path history and detouring
with on-demand route discovery.

Detour with Path History: The idea of this detour method is to use the path history
of location updates. Note that the path from a source to a sink follows a reverse path
of location updates from the sink to the source via the master sink. Figure 2 illustrates
routing holes and a detour path from the source to the real sinks. It takes advantage of
the fact that every node receives the location update from the master sink. If each
node marks the neighbor node from which it has received the last location update,
then it can follow the reverse path of the location update to find a path to the master
sink as well as a path to the other sinks. In fact, M-Geocast can use two different
routing strategies: one based on geometric greedy forwarding and the other based on
the path history. We will investigate the performance impact of combining two differ-
ent routing strategies in Section IV.

Fig. 2. Detour mechanisms of M-Geocast

Detour with On-Demand Route Discovery: The path history remains valid as long
as the all the nodes in the path remain stationary. However, as time goes by, it is
likely that a link in the path is broken due to node movement. The probability of the

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 309

path failure increases as the distance between the source and the destination increases.
We call this type of routing void as a history hole. For example, node Y in Figure 2
has a broken link to node Z due to Z’s movement. If both the geometric routing and
the path history routing lead to a routing void, we must resort to another detour
method. Although several detour methods have been proposed [5, 7], theoretically it
is possible to come up with a topology that can invalidate any sophisticated detour
method based on a non-exhaustive search. To completely eliminate the routing holes,
we use on-demand path discovery used in reactive MANET routing protocols [3, 8].

On a routing void, the forwarding node broadcasts RREQ (Route Request) which
includes the address of itself, the destination address, and message type (RREQ). The
destination node that receives RREQ replies with RREP (Route Reply) unicast includ-
ing its location information. However, unlike AODV [8], M-Geocast does neither use
source sequence numbers nor it does set up reverse route entries since it assumes
unidirectional traffic from sources to sinks. The RREQ/RREP method is a robust
detour method as it always finds a path to the destination as long as it does exist.
However, the frequent use of RREQ/RREP may result in increased latency and en-
ergy consumption due to its flooding nature. To minimize the use of RREQ/RREP,
we employ the following two location-based optimization techniques.

3.4 M-Geocast Optimizations

Geographic Void Prediction: To minimize the use of RREQ/RREP, we should
avoid encountering a geographic hole whenever possible. From our simulation studies
we found that if the direction pointed by the geometric routing is the opposite direc-
tion of the recent path history, there is a high chance of a geographic hole since the
location updates from the master sink usually takes the shortest path. If such condition
is met, M-Geocast predicts that the geometric routing may lead to a geographic hole
and uses the path history instead. This is implemented by computing cosine θ between
the direction of greedy forwarding and the direction pointed by the path history. If the
value of cosine θ is greater than 0, M-Geocast adopts the path history. Otherwise, M-
Geocast uses the greedy forwarding. To prevent a loop in the routing path, M-Geocast
does not use greedy forwarding once path history is selected. As shown in Section IV,
this can effectively reduce the number of geographic holes.

Path History Projection: The second option in minimizing the use of RREQ/RREP
is to avoid a history hole. However, it is physically impossible to avoid a link failure
if the next hop has disappeared due to node movement. Yet, we can still approximate
the path history on a link failure. By using the location information of its neighbors,
the forwarding node can send messages to a neighbor node which is located in the
same direction as pointed by the previous path history. This is also implemented by
selecting a neighbor node among its neighboring nodes that has the maximum cosine
θ from the direction pointed by the path history. To prevent a routing loop, node S
must be removed from the new path history. Note that both of these optimizations are
possible due to location information of neighbor nodes, which are available only in
geometric routing schemes.

310 L. Choi et al.

4 Simulation

4.1 Simulation Methodology

We have implemented all the routing functions of M-Geocast in the ns-2 simulator
[12]. We generate 200-node sensor field by randomly placing the nodes in a 1500 ×
1500 m2. Each node has a radio range of 250m. Unless otherwise mentioned, all
sources are randomly selected from the sensor field following the random sources
model [1] while sinks are uniformly scattered across the field. Each source generates
one event per second and each event is modeled as a 64-byte packet. All the events
are reported to all the sinks in the field. We use the random waypoint model [3] as a
mobility model. The maximum pause time is 30 seconds. Each simulation run lasts
for 100 seconds.

We use three metrics: average message latency, average dissipated energy, and de-
livery success ratio. Average message latency measures the average one-way commu-
nication latency between a source and a sink. Average dissipated energy measures the
ratio of total dissipated energy per node to the number of distinct events seen by
sinks. Delivery success ratio is the ratio of the number of distinct events successfully
received to the total number of events originally reported. Similar metrics were used
in early works [2, 5, 8]. For each metric, we vary the number of sources, the number
of sinks, node speed, and node density.

All the metrics of M-Geocast are compared against a baseline geographic greedy
forwarding (Geocast) and Active On-demand Distance Vector routing (AODV) [8].
Geocast is used to evaluate the impact of master sink in M-Geocast and AODV is one
of the most popular and effective MANET routing protocol. We use the same energy
model and MAC protocol as adopted in their ns-2 simulators. We use 1.6Mbps 802.11
DCF as the underlying MAC protocol. The idle-time power dissipation is 35mW,
reception power dissipation is 395mW, and transmission power dissipation is
660mW.

4.2 Simulation Results

Varying the number of sinks: Figure 3 shows the results by varying the number of
sinks from 1 to 16. Five sources were used for the simulations. Figure 3(a) shows the
average message latency. AODV’s latency is substantially higher than those of geo-
metric schemes when the number of sinks is greater than 4. This is because RREQ
flooding required by AODV generates significant traffic, and the additional conten-
tion induced by such traffic increases delay significantly. In Geocast the situation is
less severe but its average message delay start to increase as the number of sinks
grows since each sink generates location updates every 3 seconds during its move-
ment. However, the delay remains constant in M-Geocast for all the cases simulated,
which is noticeably faster than that of Geocast. Figure 3(b) shows the average dissi-
pated energy. As the number of sinks grows, the gap between M-Geocast and other
schemes start to grow substantially. For the 16 sink case, M-Geocast consumes only
41% of AODV’s and 51% of Geocast’s average energy consumption respectively. M-
Geocast’s energy savings are due to the fact that it requires location update from a
single master sink while AODV and Geocast incur substantial overhead due to RREQ

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 311

flooding and location broadcasts from multiple sinks respectively. Finally, Figure 3(c)
shows the delivery success ratio. For all the cases simulated M-Geocast successfully
delivers more than 99 % of all the events. Although Geocast shows comparable deliv-
ery ratios but its ratio drops to 94% with 16 sinks. In contrast, the delivery success
ratio of AODV suddenly drops to 12% as the number of sinks increases from 4 to 8.
This is because AODV incurs RREQ path setup for each sink.

 (a) Average message delay (b) Average dissipated energy

(c) Delivery success ratio

Fig. 3. Varying the numbers of sinks

Varying the number of sources: Our second set of simulations evaluates the per-
formance of M-Geocast by varying the number of sources from 1 to 16, which is
shown in Figure 4. Two sinks are assumed for the simulations. As shown in the figure
the latency of AODV increases substantially as we increase the number of sources
because AODV requires RREQ flooding for each source. The numbers of both Geo-
cast and M-Geocast are comparable and substantially smaller than that of AODV. In
addition, the average dissipated energy of M-Geocast is smaller than Geocast and
AODV especially when there are a large number of sources. This is because the pro-
tocol overhead incurred by AODV and Geocast steadily increases as the number of
sources grows compared to M-Geocast. With 16 sources, M-Geocast’s energy con-
sumption is less than 33% of AODV and 66% of Geocast. Finally, M-Geocast suc-
cessfully delivers almost all the events to the sinks while Geocast’s delivery ratio is

312 L. Choi et al.

 (a) Average message delay (b) Average dissipated energy

(c) Delivery success ratio

Fig. 4. Varying the numbers of sources

around 91% for multiple sources and AODV’s delivery ratio suddenly drops down to
below 60% as the number of sources reaches 16.

Varying the node speed: We next evaluate the impact of node speed on the perform-
ance of M-Geocast. Five sources and four sinks are used in each simulation run. Fig-
ure 5 compares the three metrics by varying the average speed of each node from 0 to
20 m/s. As the node speed increases, both the delay of both Geocast and M-Geocast
remains stable. This is because geometric routing does not incur additional overhead
regardless of its speed as long as the location information of the destination remains
valid. Surprisingly, Geocast’s latency actually decreases as the node speed increases.
This is due to the fact that Geocast cannot deliver some of its messages for medium to
high speed movement as illustrated in Figure 5(c). Compared to the geometric
schemes, the average message latency of AODV substantially increases as the node
speed increases. As the node speed increases, the existing route entries cached by
AODV become no longer valid. This requires AODV to flood RREQ for each mes-
sage generated. As a result, the average message delay of AODV linearly increases.
The latency of M-Geocast remains below 38ms while the latency of Geocast varies
for different node speed due to its unstable message delivery. For all the cases simu-
lated M-Geocast’s average dissipated energy remains relatively constant, around 6.5J
while the energy consumption of AODV steadily increases. As we expect from the

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 313

 (a) Average message delay (b) Average dissipated energy

(c) Delivery success ratio

Fig. 5. Varying the node speed

low delay and the low energy consumption of M-Geocast, M-Geocast consistently
delivers more than 96% of all the events for all the cases, whereas Geocast’s success
ratio drops down to 72% for nodes with high speed, which is even lower than that of
AODV. Yet, AODV’s success ratio steadily decreases to 86% when the sink speed
reaches 20m/s.

4.3 Detailed Evaluation of M-Geocast Under Routing Holes

In this section, we evaluate the impact of routing holes on the performance of M-
Geocast by varying the node density in the sensor field. 16 sources and a single sink
are used in each simulation run. Three versions of M-Geocast are tested as follows.

 GHR (Geocast → History → RREQ/RREP): In this scheme, a source node
first uses geographic greedy forwarding. On a geographic hole, it rediscovers a
second path using path history. If both fail, the scheme employs on-demand
route discovery using RREQ/RREP.

 HGR (History → Geocast → RREQ/RREP): In this scheme, a source node
first uses path history to find a path to the destination. If this leads to a broken
link, the scheme tries geographic greedy forwarding. If both fail, the scheme
uses on-demand route discovery.

314 L. Choi et al.

 MG-Opt (HGR with two optimizations): The scheme is essentially same as
HGR except that it uses two optimization techniques, geographic void predic-
tion and path history projection to minimize the use of RREQ/RREP.

Figure 6 compares the three metrics by varying the average number of neighbors
per node from 8 to 30. When the node density is below 10, the latency of both GHR
and HGR suddenly increases. This is due to the increased number of geographic holes
due to the low node density. The latency of HGR is slightly higher than GHR because
we only show the average delay of messages that are successfully delivered. In fact,
the delivery success ratio of HGR is higher as shown in Figure 6(c). In addition, the
latency of HGR is also higher than that of GHR for high density case. However, in
this case, the delivery success ratio of GHR is improved as the number of routing hole
diminishes as shown in Figure 6(d). Thus, for a low density case HGR generally out-
performs GHR while for a high density case both schemes show comparable perform-
ance. In contrast, the average message latency of MG-opt is lower than both schemes
and remains stable throughout all simulation cases. Figure 6(b) shows the per-node
average energy dissipation of the three M-Geocast versions. All three schemes show
comparable energy consumption. GHR shows slightly a lower energy dissipation but
at the cost of low delivery success ratios. Figure 6(c) shows the delivery success ratios
of three M-Geocast schemes. As we expect from the low delay and the low number of

 (a) Average message delay (b) Average dissipated energy

 (c) Delivery success ratio (d) Number of geographic holes

Fig. 6. Impact of routing holes by varying the node density

 M-Geocast: Robust and Energy-Efficient Geometric Routing for MSNs 315

routing holes, MG-opt consistently delivers more than 89% of all the events for all the
cases, which is higher than HGR and GHR. In fact, GHR’s success ratio drops down
to 81% for low to medium density. This suggests that the two optimizations can effec-
tively improve the performance of M-Geocast in terms of both average message delay
and delivery success ratio. Figure 6(d) shows the number of geographic holes encoun-
tered during simulations by varying the node density. As shown in the figure, HGR
can effectively reduce the number of geographic routing holes compared to GHR by
trying history path first and MG-opt can further reduce the number by using the geo-
graphic void prediction and path history projection.

5 Conclusion

This paper proposes a new geometric routing protocol called M-Geocast that is spe-
cifically designed to support mobile sensor networks. M-Geocast provides scalable
and energy efficient routing and location service that targets many-to-one traffic pat-
tern of wireless sensor network and achieves significant performance and energy
improvement over existing MANET routing protocols. Our detailed experimentation
results on the ns-2 platform confirm that M-Geocast can significantly save energy
while it can also reduce both the message delay and the message delivery failures
compared to AODV and a plain geometric routing scheme. We also address the issue
of routing holes, which has been the key focus of existing geometric routing schemes.
By using the path history of location updates and also taking simple yet effective
location-based optimization techniques, we can substantially reduce the number of
geographic holes. As a result M-Geocast can effectively reduce both the energy con-
sumption and average message delay compared to existing geometric schemes. This
suggests that M-Geocast can be a scalable yet robust routing solution for mobile sen-
sor networks when implemented with GPS-enabled mobile sensor nodes.

References

1. Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in Wireless Sensor Networks: A Sur-
vey. Wireless Communications 11(6), 6–28 (2004)

2. Choi, L., Choi, K., Kim, J., Park, B.J.: Virtual Sink Rotation: Low-Energy Scalable Rout-
ing Protocol for Ubiquitous Sensor Networks. In: Proceedings of the 1st International
Workshop on RFID and Ubiquitous Sensor Networks (USN 2005), Japan (December
2005)

3. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks. Mo-
bile Computing, 153–181 (1996)

4. Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., Rubenstein, D.: Energy-efficient
computing for wildlife tracking: design tradeoffs and early experiences with zebranet. In:
Proceedings of the ACM 10th international conference on architectural support for pro-
gramming languages and operating systems (ASPLOS-X), pp. 96–107 (2002)

5. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks.
In: Proceedings of Mobicom 2000 (2000)

6. Li, J., et al.: A Scalable Location Service for Geographic Ad Hoc Routing. In: Proceedings
of Mobicom 2000, pp. 120–130 (2000)

316 L. Choi et al.

7. Mauve, M., Widmer, J.: A Survey on Position-Based Routing in Mobile Ad Hoc Net-
works. IEEE Network (November/December 2001)

8. Perkins, C., Royer, E.: Ad-hoc On-Demand Distance Vector Routing. In: Proceedings of
the 2nd IEEE Workshop on Mobile Computing Systems and Applications (1999)

9. Poduri, S., Sukhatme, G.S.: Constrained Coverage for Mobile Sensor Networks. In: Pro-
ceedings of IEEE International Conference on Robotics and Automation (May 2004)

10. Stojmenovic, I.: Home Agent Based Location Update and Destination Search Schemes in
Ad Hoc Wireless Networks. Technical Report TR-99-10, University of Ottawa (September
1999)

11. Tilak, S., Kolar, V., Abu-Ghazaleh, N.B., Kang, K.D.: Dynamic Localization Control for
Mobile Sensor Networks. In: IEEE International Workshop on Strategies for Energy Effi-
ciency in Ad Hoc and Sensor Networks (April 2005)

12. USC Information Science Institute, The Network Simulator ns-2 Documentation (2002),
http://www.isi.edu/nsnam/ns/

Toward Integrated Virtual Execution Platform

for Large-Scale Distributed Embedded Systems

Yukikazu Nakamoto1, Issei Abe1, Tatsunori Osaki1, Hiroyuki Terada1,
and Yu Moriyama2

1 Graduate School of Applied Informatics, University of Hyogo
1-3-3, Higashi-Kawasaki-cho, Chuou-ku, Kobe 650-0044, Japan

2 FUJITSU TEN Limited
2-28, Gosho-dori, 1-chome,Hyogo-ku, Kobe 652-8510, Japan

nakamoto@ai.u-hyogo.ac.jp

Abstract. The size and complexity of large-scale distributed embedded
systems such as automotive and process control have increased recently.
Sophisticated systems that are safe and environment friendly in the dis-
tributed systems require numerous types of sensor data, which are col-
lected from various devices and sent to computers through networks. In
order to develop the large-scale distributed embedded systems with high
productivity and quality, a virtual execution environment platform is re-
quired. This platform integrates numerous CPU simulators and various
device simulators through the network and provides network-wide simu-
lation functionalities in the distributed system. In this paper, we present
the requirements and initial system designs of a virtual execution en-
vironments platform for the development of the large-scale distributed
embedded system software.

1 Introduction

The size and complexity of large-scale distributed embedded systems such as
automotive and avionics systems have increased recently. The large-scale dis-
tributed embedded systems consist of numerous CPUs and devices which are
controlled and accessed by the CPUs. We call CPUs and devices networked
components. Such device includes physical objects and various hardware. We
explain the situation with the automotive system. Approximately one hundred
electronic control units (ECU), which are controllers for sensing data and ac-
tuating vehicle components, are used shown in Fig 1. The total program size
of these systems is said to be more than seven million lines. Sophisticated au-
tomotive systems that are safe and environment friendly, such as radar cruise
control with an all-speed tracking function and a pre-crash safety system, re-
quires numerous types of sensor data, which are collected from various vehicle
components and sent to computers through vehicle networks. For example, an
adaptive cruise control system (ACC) requires several dozens of input parame-
ters such as brake pressures and throttle angle (Eg. [5]). Further, information
system such as navigation systems and vehicle control functionalities will be
integrated in the next-generation automotive system (Eg. [4]).

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 317–322, 2008.
c© IFIP International Federation for Information Processing 2008

318 Y. Nakamoto et al.

Fig. 1. Network in automotive [9]

Meanwhile, the market pressure reduces the development period of large-scale
distributed embedded systems as automotives is typical. As a consequence of
the shorter development period, various types of simulators have been used to
validate embedded systems. Simulators for the automotive system development
are not only ECU (CPU) simulators but also vehicle component simulators that
are controlled by ECUs, such as engines and brakes. To test ECU programs
in the absence of actual vehicle components, a hardware-in-the-loop simulation
(HILS) is used. The HILS is a real-time simulator and its inputs and outputs
are performed at the same rate as those of actual vehicle components [6].

In order to develop the large-scale distributed embedded systems such as
the next-generation automotive system with high productivity and quality, a
virtual execution environment platform (VEEP) is required. The VEEP aims at
validating of the large-scale distributed embedded system software.

In this paper, we address the requirements and initial system designs based
on the requirements for a virtual execution environment for the large-scale dis-
tributed systems.

2 Requirements

We propose a VEEP for the large-scale distributed embedded systems on the ba-
sis of the software trends in the systems, as mentioned above. In order to perform
the validating of CPU programs in the distributed embedded system networks,

Toward Integrated Virtual Execution Platform 319

Fig. 2. Design level test using virtual environments

various simulators such as CPU simulators and device simulators should be in-
tegrated into the network and provides network-wide simulation functionalities
in the large-scale distributed embedded systems. A device simulator is one that
gives data detected by sensors to CPU and is controlled by the CPU based on
the data. The VEEP implements the integration with the communication mid-
dleware, and the CPU simulators and device simulators are connected to the
communication middleware.

Next, we summarize the requirements for the VEEP. We identify them from
a viewpoint of validating networked components through the whole of the large-
scale distributed systems such as automotive and avionics systems.

R1: Open standardized interface
Various simulators such as CPU simulators and device simulator are conn-
ected to the communication middleware. For the connection to be established
to the communication middleware easily, the interface of the communication
middleware should be open and standardized.

R2: Faster CPU simulation speed
The simulation speed of a cycle-accurate simulator, which is used in hardware-
software co-design, is slow for debugging and testing programs in a CPU. The
execution speed of simulators is expected to be faster and more flexible. For
example, when testing for error injection, a slower simulation speed is desir-
able. Meanwhile, it is expected to be as fast as in an actual hardware in order
to implement a man-machine functionalities or the hybrid simulator, as given
below.

Meanwhile, the time model in the simulators will be quite simple. CPU
and device simulators are synchronized with fine-grain time intervals needed
for the validation in our application areas.

R3: Enabling design level validation
In the test phase, a bug in the design phase is detected and fixing this bug
is expensive. To avoid such situation and to reduce the test time, validating
the system design and software design at a higher level is very effective when
using the device simulators in the VEEP, as shown in Fig 2. In the design

320 Y. Nakamoto et al.

Fig. 3. Integrated Virtual Execution Platform for Large-scale Distributed Embedded
Systems

level, dynamic properties of the programs are evaluated such as controllabil-
ity, stability, and their timeliness.

At the design level of the automotive system, AutoSar1 has proposed an
automotive software architecture and development process to increase the
software productivity. In AutoSar architecture, automotive software is de-
signed as a software component independent of the automotive infrastructure
such as ECUs and networks, and the software is delivered from component
vendors to component users. In order to make the software independent of
the infrastructure, AutoSar defines a virtual function bus (VFB) [1]. If we
use AutoSar software components on the top of the VFB along with the
device simulators in the VEEP, it becomes very effective for validating the
ECU software design.

R4: Enabling hybrid simulation
If an actual device such as an ECU or a hardware simulator of a device is
used, it connects to the communication middleware of the VEEP instead
of the corresponding software simulator. Thereby the embedded software
can be validated in the execution environment that is closer to the actual
execution environment.

3 Initial System Designs of VEEP

The proposed architecture of the VEEP is shown in Fig. 3. The VEEP consists
of a communication middleware, CPU simulators, and device simulators. We
present the initial system designs of each subsystem of VEEP.

Communication middleware: We select Common Object Request Broker Archi-
tecture (CORBA) as the communication middleware as it provides solutions for
R1. CPU and device simulators are executed as CORBA objects and communi-
cate using the CORBA communication mechanism. We evaluated ACE/TAO2

and MICO3, and select MICO for the present evaluation. Since periodical com-
munication with small-size data are done within hundreds μs in the large-scale
1 http://www.autosar.org
2 http://www.cs.wustl.edu/ schmidt/TAO.html
3 http://www.mico.org/

Toward Integrated Virtual Execution Platform 321

distributed embedded systems, functionalities of MICO are considered to be
sufficient for the purpose.

As an alternative, a framework to integrate an ECU simulator and mechani-
cal simulators is proposed in [7]. In the framework, the mechanical simulator is
implemented by MATLAB/Simulink 4 and a named pipe is currently used for
commutation between the ECU simulator and the mechanical simulator. How-
ever, the named pipe is not scalable to integrate a huge number of the CPU and
device simulators. Further the framework does not provide the synchronization
methods by utilizing the clock services that are present in its own simulator [13].

We must consider the synchronization between CPU simulators and device
simulators. We have two solutions: a centralized control and a decentralized
control. In the central control, a certain time service software provides the syn-
chronization information. For example, [11] defines the standardized time service
interfaces present in CORBA. [3] describes yet another time service architecture
in CORBA. In this architecture, the Synchronization Scheduler distributes a
clock event to Synchronized Clerk, which exists in a node and delivers a clock
event to a CORBA object in the node. The jitter time in the CORBA object
side is limited to 100 μs and its average value is approximately 50 μs. This is
implemented by the COBRA Event Service [12]. In the decentralized control,
each node on the CORBA manages the time and delivers the synchronization
information to the objects in the node. The TMO object provides an implemen-
tation method for that [8]. We think to develop a light-weight communication
middleware which is optimized for minimum required CORBA APIs.

CPU simulator: We utilize QEMU [2] for developing CPU simulators. The
QEMU itself is a virtual execution environment generator. The virtual execu-
tion environment, which is generated by QEMU, translates the target machine
codes to host machine codes, and executes them. The translation is in two steps:
firstly, a target machine code is translated to a number of intermediate codes
and the intermediate code is compiled to host machine codes. The benefits of
using QEMU in a CPU simulator in an embedded system support a variety of
CPUs and QEMU provides many libraries for peripheral simulation of the target
machine. A QEMU user can easily implement the functionalities when the target
programs read or write with the byte access and word access.

We have developed the NEC V850 simulator that modifies the QEMU [10],
which is used for various type of embedded systems. The total program size
of the modified and appended C source is approximately 3,000 lines, while the
total size of the QEMU is 233,000 lines. Moreover, we have modified the QEMU
so that translated codes can communicate with the CORBA’s communication
middleware.

Device simulator: In order to implement a wide variety of device simulators, we
use MATLAB/Simulink to simulate a physical object since they are widely used
for modeling control systems and simulating models. A user develops a model

4 MATLAB/Simulink are registered trademark of MathWotks, Inc.

322 Y. Nakamoto et al.

the behavior of devices. MATLAB/Simulink with a device model is connected
to the CORBA as a CORBA object.

4 Conclusions

In this paper, we present the requirements and initial system designs of a virtual
execution environments platform for the development of next-generation large-
scale distributed embedded systems. At present, we are in a nascent stage of the
development. In the future, we intend developing the VEEP, especially to solve
issues related to synchronization.

References

1. AUTOSAR. Technical Overview (June 2006)
2. Bellard, Y.: QEMU, a Fast and Portable Dynamic Translator. In: Proc. USENIX

2005 Annual Technical Conference, April 2005, pp. 41–46 (2005)
3. Calvo, I., Almeida, L., Noguero, A.: A Novel Synchronous Scheduling Service for

CORBA-RT Applications. In: Proc. 10th IEEE International Symposium on Ob-
ject and Component-Oriented Real-Time Distributed Computing, May 2007, pp.
181–188 (2007)

4. N. U. Center for Embedded Computing System. Operating System for in-vehicle
multimedia systems,
http://www.nces.is.nagoya-u.ac.jp/project/e-index.html

5. Han, D., Yi, K., Yi, S.: Evaluation of Integrated ACC (Adaptive Cruise Con-
trol)/CA(Collision Avoidance) on a Virtual Test Track. In: Proc. 2006 SICE-
ICASE International Joint Conference, October 2006, pp. 2127–2132 (2006)

6. Isermann, R., Schaffnita, J., Sinsel, S.: Hardware-in-the-loop simulation for the
design and testing of engine control systems. Control Engineering Practice 7(5),
643–653 (1999)

7. Ishikawa, M., McCune, D., Saikalis, G., Oho, S.: CPU Model-Based Hard-
ware/Software Co-design, Co-simulation and Analysis Technology for Real-Time
Embedded Control Systems. In: Proc. 13th IEEE Real Time and Embedded Tech-
nology and Applications Symposium, April 2007, pp. 3–11 (2007)

8. Kim, K.H., Liu, J.Q., Miyazaki, H., Shokri, E.H.: TMOES: A CORBA Service
Middleware Enabling High-Level Real-Time Object Programming. In: Proc. 5th
International Symposium on Autonomous Decentralized Systems, March 2001, pp.
327–335 (2001)

9. Leen, G., Heffernan, D.: Expanding automotive electronic systems. IEEE Com-
puter 35(1), 88–93 (2002)

10. NEC. V850 FAMILY 32-bit Single-Chip Microcontroller Architecure User Manual
(1994)

11. OMG. Time Service Specification, Version 1.1 (2002)
12. OMG. Event Service Specification, Version 1.2 (2004)
13. OMG. Real-time CORBA Specification, version 1.2 (2005)

http://www.nces.is.nagoya-u.ac.jp/project/e-index.html

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 323–335, 2008.
© IFIP International Federation for Information Processing 2008

A Novel Approach for Security and Robustness in
Wireless Embedded Systems

Mohammad Iftekhar Husain, Shambhu Upadhyaya,
and Madhusudhanan Chandrasekaran

Department of Computer Science and Engineering
University at Buffalo, Buffalo, NY USA 14260

{imhusain,shambhu,mc79}@cse.buffalo.edu

Abstract. Security and robustness are paramount in wireless embedded systems
due to the vulnerability of the underlying communication medium. To institute
security and reliability, most of the existing schemes perform periodic
re-establishment of authentication credentials and share secrets among various
participating nodes. However, such measures result in overheads in an energy-
constrained wireless environment. To alleviate this problem, we propose a
software approach that exploits the features of the underlying communication
protocol and uses the concept of steganography and covert channels. The high-
light of our approach is that it does not require any changes to the protocol and
relies only on the modification of frame contents without degrading the protocol
performance. We argue that our covert-channel based communication scheme
provides security and robustness at low cost and it neither requires centralized
authority nor does it disrupt the overall network operation. We evaluate the se-
curity benefits of our proposed method in terms of the difficulty of detecting the
covert channel by the adversary and compare our technique with other existing
schemes. Performance evaluation is done by determining the bandwidth effi-
ciency of the channel, backward compatibility with the standard MAC as well
as the ease of implementation.

Keywords: Covert channel, Embedded systems, Media Access Control (MAC),
RTS/CTS, Security, Wireless networks.

1 Introduction

Covert channels [1] are communication channels that are neither designed nor in-
tended to transfer information. Covert channels usually exploit the legitimate use of
shared resources and operations of a system to leak sensitive information to someone
who is not authorized to access it. In the literature, two types of covert channels exist:
storage and timing channels. A storage channel involves direct or indirect writing of a
storage location by one process (sender) and direct or indirect reading of the storage
location by another process (receiver) [2]. A timing channel involves a sender process
that signals information to another by modulating its own use of system resources
(e.g., CPU time) in such a way that this manipulation affects the real response time

324 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

observed by the second process [2]. Also, there are hybrid channels where time and
storage information are used together. Unlike traditional communication channels, a
covert channel does not need to have a high capacity or transmission rate to be useful.
In contrast, the difficulty of detection and resilience are much more important issues
for covert channels. From an adversary’s point of view, it should be hard for a moni-
tor to discover the existence of the covert channel. Network covert channels leak
information across the network through unused fields of network packets (storage
channel) as well as the timing of sending and receiving packets (timing channel).

Steganography, on the other hand, refers to concealing the existence of a message
when secret information is hidden in an innocuous cover object. From a security ana-
lyst’s point of view, covert channels can therefore also make use of network packets
as the cover object and thus can be used for secure communication. There are several
research works in the literature [4], [5] that have studied data hiding techniques in the
TCP/IP protocol suite.

As wireless embedded systems like sensors are gaining ground these days in mis-
sion critical applications, so does the need for effective security mechanisms for their
operation. Because wireless networks comprising of embedded nodes might not have
any infrastructure and/or operate in hostile and unattended environments, it is impera-
tive that these security concerns be addressed for robust and dependable operation.
However, due to inherent resource and computing constraints, security in wireless
networks poses different challenges than traditional wired network security. A desir-
able feature in wireless embedded systems is that the security solutions be light-
weight.

Cryptographic techniques in wireless networks such as WEP [17], [18] and its suc-
cessors use lightweight methods based on sharing cryptographic credentials among
the participating nodes or stations. If this information is compromised or revealed to
an adversary, the older secrets must be revoked, followed by the reestablishment of
the credentials. Even when the credential is not compromised, sometimes the nodes
might need to update or verify the credentials periodically to maintain the security
association. In a wired network, it is comparatively easier to update, verify or rebuild
the credentials in a secure way. But in the wireless domain with bandwidth and en-
ergy constraints and due to the infrastructure-less open mode, re-establishing the
security association is a difficult task. So, an important security problem in wireless
domain is how to effectively and efficiently enable a node to communicate with its
peer securely to update, verify or re-distribute security credentials without using the
standard security mechanisms or cryptographic primitives. More precisely, the focus
is to ensure the confidentiality and integrity of sensitive data that the node sends to its
peer with minimum or no overhead.

To address this security issue, we propose a covert channel based communication
mechanism using the concept of steganography. In other words, we use the technique
of data hiding using normal network packets in the wireless domain. The reason for
hiding data will become apparent shortly. The idea of the protocol is to share a pre-
deployed secret and verify the secret using covert channels in an innocuous way. We
refer to our protocol as Opportunistic Secure Communication (OpSeCom). This will
allow us to detect and isolate compromised nodes in a wireless network. The protocol

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 325

uses the technique of Bit Commitment [22] as a means to implement challenge-
response (handshake). The characteristic of Bit Commitment is that it shares a pointer
to the data first and reveals the actual data later, making it a good choice in our proto-
col for secret sharing. As IEEE 802.11 MAC is widely used in the wireless domain,
we choose the two control packets, viz. RTS (request to send) and CTS (clear to send)
to covertly (to defeat the adversary) communicate and verify the shared secret. As
RTS and CTS are optional control packets in IEEE 802.11 MAC, appearance of these
packets in the network is a normal phenomenon. Though, we are using bit commit-
ment to share secret and RTS/CTS for covert communication to demonstrate the pro-
tocol in this paper, these are open for the user to choose. In other words, our proposed
idea is generic and does not dependent on the choice of the algorithm for secret share
or network packet for covert communication.

So, we design a storage based network covert channel for opportunistic secure
communication in wireless domain for updating, verifying or re-establishing security
credentials without using standard security mechanisms. Our proposal is neither de-
pendent on a centralized authority nor it re-initializes the whole network to achieve
the goal which makes it unique from other security mechanisms. We will demonstrate
the security of our technique through the analysis of the covert channel and perform-
ance in terms of bandwidth efficiency, co-existence with standard MAC and the ease
of deployment.

The rest of the paper is organized as follows: In the next section we will formulate
the problem. Section 3 discusses our proposed solution: Opportunistic Secure Com-
munication (OpSeCom). Sections 4, 5 and 6 deal with the security analysis, the ro-
bustness of the covert channel, and the performance analysis and comparison with
related work, respectively. Section 7 concludes the paper.

2 Problem Definition and Related Work

2.1 Assumption

In this paper we assume wireless embedded systems network as a collection of decen-
tralized embedded devices that use IEEE 802.11 MAC for shared medium access and
RTS/CTS for virtual career sensing [17]. The stations (embedded devices) are subject
to energy and computational constraints. They are pre-configured for wireless com-
munication prior to deployment in the infrastructure-less mode.

We now discuss several application scenarios and available solutions to highlight
the problem domain and to put our research in perspective.

2.2 Scenario 1: Verification of Existence of Malicious Nodes

Detecting malicious nodes like phantom nodes [8] and false beacon nodes [9] is im-
portant in wireless sensor networks because it hinders the normal operation of the
network. There are several approaches [16] in the literature addressing detection of
malicious nodes. These techniques can raise alerts against a suspicious node but they
cannot exactly pinpoint the malicious nodes in a decentralized environment. They

326 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

also produce false positives. There is still lack of effective techniques to accurately
verify malicious nodes after an alert is raised so that such nodes can be excluded from
the normal network operation once and for all.

2.3 Scenario 2: Re-establishing Security Credentials

Usually, in a wireless domain, a network-wide shared key is used for cryptographic
operations in the network. Although, this makes the deployment and key management
easier, a big disadvantage of this technique is, if the shared key is revealed, the whole
network security is compromised. To restore network security, distribution of some
sort of secret information is needed among the nodes. Several key management pro-
posals [18], [19], [20] address this issue in an ad hoc manner by proposing to re-
initialize the whole network operation with new keys or security credentials. But, this
is not a viable idea in wireless domain because of the existence of energy and compu-
tational constraints as well as lack of infrastructure in most cases.

2.4 Scenario 3: Updating Trust and Security Credentials

Again, when a network-wide shared key is used, it is important to update the keys
periodically for enhanced security. Though, the periodicity of update depends on the
type of network, in wireless domain, a feasible solution will be something which is
efficient in computation and communication as well as one that does not allow the
malicious nodes to know that the credentials are being updated. Proposals addressing
these issues [14], [15] use central authority based complex cryptographic operations
which are computation-intensive. In addition, they involve exchange of multiple mes-
sages among the nodes to successfully update the credentials which incurs significant
communication overhead. So, these ideas are not feasible for resource constrained
wireless embedded systems communication.

2.5 Summary of Problem Domain

All the above mentioned scenarios in wireless embedded networks demand for careful
communication and data transfer. Such communication should be lightweight, easy to
implement and efficient. To address these issues we propose to exploit opportunities
that may exist in the form of storage based network covert channel (example:
RTS/CTS) as well as the idea of secret sharing (example: Bit Commitment). The next
section presents the details of our protocol as well as the basics of RTS/CTS and the
bit commitment protocol for a better understanding of the solution.

3 Proposed Method (OpSeCom)

3.1 Basics of RTS/CTS [17]

RTS/CTS (Request to send / Clear to send) is primarily a channel reservation mecha-
nism used by the IEEE 802.11 MAC protocol to reduce frame collisions introduced
by the hidden terminal problem and exposed node problem [17].

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 327

RTS Packet Format:

Frame

Control (2)
Duration (2)

Transmitter
Address (TA) (6)

Receiver
Address (RA) (6)

FCS(4)

Fig. 1. RTS Packet (20 Bytes) Format

The RA field of the RTS frame is the address of the intended immediate recipient
of the data. The TA field is the address of the node transmitting the RTS frame. The
duration value is the time, in microseconds, required to transmit the pending data or
management frame, plus one CTS frame, plus one ACK frame, plus three SIFS (Short
Inter Frame Space) intervals. If the calculated duration includes a fractional micro-
second, that value is rounded up to the next higher integer.

CTS Packet Format:

Frame

Control (2)
Duration(2)

Receiver
Address (RA) (6)

FCS(4)

Fig. 2. CTS Packet (14 Bytes) Format

The RA field of the CTS frame is copied from the TA field of the immediately

previous RTS frame to which the CTS is a response. The duration value is the value
obtained from the Duration field of the immediately previous RTS frame, minus the
time, in microseconds, required to transmit the CTS frame and its SIFS interval. If the
calculated duration includes a fractional microsecond, that value is rounded up to the
next higher integer.

3.2 Bit Commitment Protocol

Bit commitment is a simple and straightforward cryptographic primitive to enable
secret sharing between two mistrusting agents, say, Alice and Bob. This is how the
protocol works. Alice puts her secret in a locked box and gives it to Bob. So, neither
Alice nor Bob can change the secret as Alice does not have the box and Bob does not
have the key. To reveal the secret, Alice simply sends the key later. This ensures
secret sharing with cheat prevention. This protocol can be used in our scenarios to
implement a challenge and response between peer nodes. Details of Bit Commitment
protocol can be found in [22].

3.3 OpSeCom in Action

In order to illustrate our security protocol, we consider two wireless embedded de-
vices Alice and Bob. Alice is the node under suspicion of a compromise and Bob is
the verifying node. We assume that, there are some alarm mechanisms at Alice which
will be triggered when Alice is under attack. For example, if Alice is a wireless sensor

328 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

node, she can use photo sensors or motion sensors to detect an attack and trigger an
alarm. Also, we assume that Alice can use some software mechanisms such as anom-
aly detectors to trigger an alarm if sensitive files are accessed or altered at the applica-
tion layer. When an alarm is triggered, the system will automatically set the
corresponding bit string in the CTS packet at the MAC layer. These changes at the
MAC layer occur momentarily and the adversary at the application layer will be
oblivious of such changes as it takes place as a triggered system task.

The problem here is to verify that Alice is indeed compromised. The protocol
works in three phases as illustrated in Figure 3. Phase 1 and Phase 3 are mandatory
whereas Phase 2 is optional since verification may be needed even when there is no
attack. In the figure, horizontal arrows represent a communication while vertical ar-
rows indicate progression in time.

1. Secure Parameter Agreement Phase: When the network is established, Alice
sends two code words m and n to Bob, committing to the bit strings
corresponding to normal situation and under-attack situation respectively. They
will also agree upon the challenge sequence that Bob will send to verify the node
condition. By default, Alice will have a special CTS packet set at the MAC layer
containing the bit strings corresponding to normal situation as the covert data.
This is illustrated in Fig. 3(a). There are several bit commitment protocols [22] in
the literature and the implementer is free to choose one.

Fig. 3(a). Secure Parameter Agreement Phase

2. Node under Attack Phase: When Alice is under attack, she will trigger an alarm
which will alter the bit string in the CTS packet at the MAC layer and set it to the
bit string committed for under-attack situation as described earlier. At the same
time, Bob can also sense some abnormality in Alice’s behavior, for example too
much deviation in data, activity/inactivity, excessive dropping packets, etc. This
is illustrated in Fig. 3(b).

Alice
Suspicious Node

Bob
Verifier Node

 Commit two code words m and n

m and n are related to
the bit string committed for
normal situation and under-

attack situation, respec-
tively

Decide two bit strings
for normal situation and
under-attack situation

Agrees on the challenge sequence

The special CTS
packet is set at the MAC

layer to send the bit string
committed for normal

situation

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 329

Fig. 3(b). Node under Attack Phase

3. Covert Verification Phase: When Bob suspects that Alice is under attack or
when Bob desires to verify his security association with Alice, he will send an
RTS packet containing the challenge sequence as the covert data. Upon receiving
the special RTS packet, Alice will respond with special CTS packet already set at
the MAC layer. This response is generated at the MAC layer and is beyond the
notice of application layer. So, it is expected that, even if Alice is compromised
or captured, the special CTS packet will contain correct bit string corresponding
to the situation. So, Bob will verify the bit string and decide whether Alice is in
normal operation mode or under-attack as shown in Fig. 3(c).

Fig. 3(c). Covert Verification Phase

The covert operation of RTS and CTS packets is described below. In this particular
example we use TA and RA fields to hide data in a manner that is similar to [21].
However, the implementer can choose other network packets and fields to use as
network covert channel. For example, there are lots of unused bits in the Frame

 Sends RTS packet
Makes a special

RTS packet with the
agreed upon Challenge

Sequence

 Replies with CTS packet
Checks the CTS

packet to get the covert
info and verify the

condition of the node
using previously ex-
changed code words

Sends the special
CTS packet corre-

sponding to the situa-
tion

Attack alarm was trig-
gered and the special CTS
packet is set at the MAC

layer to send the bit string
committed for under-attack

situation

Sensed some ab-
normality in Alice’s

activity

Alice Bob

Alice Bob

330 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

Control Sequence field and the Acknowledgement frame fields in the IEEE 802.11
MAC protocol, which can be used to carry covert data.

3.4 RTS/CTS Covert Channel

In the RTS packet, there are five fields as described in Sec. 3.1. Out of these, Frame
Control, Duration, RA and FCS are necessary for the proper performance of the pro-
tocol. TA field is basically the RTS-sending station’s MAC address. This information
gets copied in the CTS RA field. So, we modify both RTS TA field and CTS RA field
in such a manner that there remains a connection between a RTS and the correspond-
ing CTS.

As both TA and RA fields should contain the MAC addresses, the modified infor-
mation in those fields should look like MAC addresses. This will keep the RTS and
CTS packets out of suspicion from non-OpSeCom nodes. This part is crucial because
if non-OpSeCom nodes suspect and start brute force analysis of the packet, they can
bring down the protocol within polynomial time. According to IEEE standard, univer-
sally administered and locally administered MAC addresses are distinguished by
setting the second least significant bit of the most significant byte of the address. If
the bit is 0, the address is universally administered. If it is 1, the address is locally
administered. Again, if the least significant bit of the most significant byte is set to 0,
the packet is meant to reach only one recipient (unicast). If the least significant bit of
the most significant byte is set to a 1, the packet is meant to be sent only once but still
reaches several stations (multicast). In our design, we will put it as a unicast locally
administered MAC address. So, the first two least significant bits of the most signifi-
cant byte will be set to 01 in our design.

Since we have used the most significant byte, we are left with 40 bits. Among
these 40 bits, we will use 8 bits for randomly generated RTS ID. Remaining 32 bits
will be the challenge sequence. So, the RTS TA field will appear as shown in Fig. 4.

02H(8) RTS ID (8) Challenge Sequence (32)

Fig. 4. OpSeCom RTS TA (6 Bytes) storage channel

The station receiving CTS will check the challenge sequence, put the bit strings
corresponding to the situation as Response Sequence and create the CTS RA storage
channel as shown in Fig. 5.

02H(8) CTS ID=RTS ID (8) Response Sequence=Bit String (32)

Fig. 5. OpSeCom CTS RA (6 Bytes) storage channel

As OpSeCom is a two way handshake, we need to modify the duration field of
RTS/CTS also. The duration field of RTS will be the time, in microseconds, required
to transmit one CTS frame, plus one SIFS interval. CTS duration value will be zero.

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 331

4 Security Analysis

Here we briefly discuss how OpSeCom can address the various security concerns
described in the scenarios of Section 2.

4.1 Verifying Existence of Malicious Nodes

In order to verify whether a device is malicious or not, a verifier device can just gen-
erate and send an OpSeCom RTS packet to it. By malicious, here we refer to non-
OpSeCom nodes or captured/compromised OpSeCom nodes. The verifier can then
check whether the suspicious device can reply back with a proper OpSeCom CTS
packet containing the committed bit string. If it is a non-OpSeCom node, the CTS-RA
field will simply contain the copy the RTS-TA field. However, OpSeCom doesn’t
address malicious insider attack.

4.2 Re-establishing or Updating Credentials

For re-establishing or updating the credential, nodes can covertly exchange the cre-
dential after loosely authenticating the nodes to each other using OpSeCom (repeat
phase 3). The capability of generating an OpSeCom RTS packet and responding back
with an OpSeCom CTS packet itself provides a means of authenticating the nodes to
each other. The data being hidden in network packets can be treated as confidential.

4.3 General Discussion

The core security of our protocol lies in the fact that the covert operation is done at
the MAC layer and it is independent of the control of application layer. When an
OpSeCom node gets a special RTS packet, it replies back to it with corresponding bit
strings in the CTS packet without consulting the upper layer which ensures the integ-
rity of the bit string.

In the secure parameter agreement phase of OpSeCom, the nodes exchange bit
commitment code words and the challenge sequence. Though, we assume that this
phase is secure, it is possible that this phase could come under attack. For example, a
malicious outsider could sniff these packets. However, having these packets will not
be of much use. Because of the property of bit commitment, even if the malicious
outsider has the bit commitment code words, they won’t give it any information about
the bit strings committed. Again, knowing only the challenge sequence is of no use if
the attacker does not know where the covert channel exists. As we have described
earlier, selection of shared secret algorithm and covert channel is open to the imple-
menter. So, the covert verification phase is also secure as the existence of the covert
channel is obscured to the outsider.

5 Covert Channel Analysis

We analyze the OpSeCom Storage Covert Channel according to the framework pro-
posed by [11].

332 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

5.1 Generation of the Covert Channel

The widespread use of RTS/CTS protocol in wireless embedded systems communica-
tion lends itself to use for covert channels. In our particular example, the unique exis-
tence of RTS/CTS and its capability to reuse RA/TA makes it a good choice as a
covert channel. Strictly speaking, the legal definition of the protocol is broken as it is
no longer guaranteed that all RTS packets can be uniquely distinguished based on the
RTS ID field. However, in practice the probability of a collision is low. When we are
using 8 bits for randomly generating the RTS ID field, the probability that two simul-
taneously generated RTS have different ID is (1-1/28) which is very high.

Setting up the OpSeCom channel is simple and straightforward. A modified ver-
sion of MAC with the desired properties is all what is needed to be implemented on
the embedded devices. The node can then decide when to trigger the channel accord-
ing to the scenarios described in Section 2.

5.2 Detection of the Covert Channel

As the OpSeCom storage covert channel is a noisy channel, it will be very difficult to
detect. Specially, we are using some usual values in RA/TA field when replacing our
own data with the MAC address. The uniqueness of our scheme is that the communi-
cating devices just need to know the challenge sequence and the method of generating
response sequence (bit strings).

6 Performance Analysis

6.1 Recognizing OpSeCom Devices

The receiver device identifies OpSeCom senders by inspecting RTS TA field. If the
sender implements OpSeCom, the most significant byte will be 02H and the lower 32-
bits will contain the challenge sequence.

As explained earlier, a receiver implementing OpSeCom extension will copy the
16 most significant bits from RTS TA to its CTS RA, and set the remaining 4 bytes of
CTS RA to the corresponding bit string. In contrast, an IEEE standard implementation
will respond with CTS RA exactly the same as RTS TA. When the sender receives a
CTS packet, it inspects the CTS RA field. If the lower order 32 bits are still set to the
challenge sequence, the sender can determine that the receiver station does not im-
plement OpSeCom, and act accordingly.

6.2 Bandwidth

The RA/TA field is 48 bits long. We are using 32 bits of it to carry cover data. A
bandwidth of 32 bits per packet can therefore be achieved. RTS and CTS packet size
is 20 bytes and 14 bytes respectively. So, In the case of RTS this approximates to one
fifth of the bandwidth of the MAC layer packet flow. For CTS, this is about one
fourth of the flow.

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 333

6.3 Backward Compatibility with Standard IEEE 802.11 MAC

The modification to the RTS/CTS frame that we have proposed is compatible with the
IEEE 802.11 MAC standard. The standard specifies the content of the CTS RA
header to be the MAC address of the receiver. However, only the intended recipient
of the frame needs to recognize that the packet is intended for it. Other stations use
only the duration field of RTS/CTS frames to refrain from initiating communication.
It follows that nodes implementing OpSeCom can coexist with standard IEEE 802.11
MAC terminals without any problem.

6.4 Effect on Overall Network Performance

Existence of OpSeCom devices does not impact the normal network operation for two
reasons. First, this method works at the MAC layer. Non-OpSeCom nodes will either
discard the special RTS packet or reply with an invalid CTS packet. Either way, it is
limited to one hop neighbors only. Second, the necessary information is being ex-
changed covertly in network control packets. So, there won’t be much communication
overhead to hinder normal network functionality.

6.5 Comparison with Standard Cryptographic Solution

We now address the practicality of our protocol by comparing the performance of
OpSeCom with public key cryptographic methods [23] that are enhanced for embed-
ded systems. We use energy consumption as the evaluation metric. Existing crypto-
graphic methods such as RSA and ECC incur both computation and communication
overhead. However, OpSeCom has a very negligible computation overhead because it
uses bit commitment realized through simple exclusive OR operation which is a sin-
gle CPU cycle instruction. This computation overhead is trivially small compared to
modular exponentiation or point multiplication used by RSA and ECC respectively.
Therefore, we will calculate energy consumption due to communication.

For public key systems like RSA and ECC, one of the necessary operations is the
public key transmission. Similarly, in OpSeCom, we need to have RTS/CTS transmis-
sion. For comparison purposes, we consider Imote2 sensor [24] clocked at 13 MHz as
our target embedded system and calculate the energy consumption for these transmis-
sions. Further, we assume its radio device (Chipcon’s CC2420) to be operated with 0dB.
At a supply voltage of 4.5V, the Imote2 draws a current of 31mA when the CPU is
operating. From [24] we see that the current drawn for both sending and receiving is
44mA. Again, the 802.15.4 radio has an effective data rate of 250kb/s. So, the energy
consumption Ers for sending or receiving is: Ers= (44mA×4.5V) / 250kb/s = 792μJ/b.
The size of RTS and CTS packets together is 34 bytes. Therefore the energy consump-
tion for transmitting (i.e., sending and receiving) RTS/CTS is 0.4J. For RSA with 1024
bit key, the energy consumption will be 1.6J. Similarly, 160 bit ECC transmission will
cost 0.25J. However, as we mentioned earlier, apart from the communication overhead,
RSA and ECC also have high computation cost. For example, in case of Imote2, energy
consumption for t sec CPU operation is: Ecpu (t) =31mA×4.5V×t =139.5t mJ which will
be quite significant.

334 M.I. Husain, S. Upadhyaya, and M. Chandrasekaran

7 Conclusion and Future Work

In this paper, we proposed a method of opportunistic secure communication in wire-
less embedded systems using shared secret and storage based network covert chan-
nels. We have compared the energy consumption of our protocol with existing
cryptographic solutions using the Imote2 platform. Our proposed method enables
neighboring nodes to achieve security goals without the help of a centralized authority
or impacting the overall network operation. These characteristics make OpSeCom a
good choice to enhance security in wireless embedded networks. Also, this method
has flexibilities to choose the secret sharing algorithm and the network packets to be
used as the cover object. In the future, we plan to implement it on different types of
wireless networks and do more rigorous performance analysis such as interoperability
with the standard MAC protocol, quantification of OpSeCom nodes’ impact on net-
work performance, and so on. We also have plans to do test bed experiments to de-
termine the efficacy of the new protocol on a real system.

Acknowledgments. This research is supported in part by U.S. Department of Defense
Grant No. H98230-07-1-0243.

References

1. Gligor, V.D.: A Guide to Understanding Covert Channel Analysis of Trusted Systems.
Technical Report NCSC-TG-030, National Computer Security Center, Maryland (1993)

2. U.S. Department of Defense: TCSEC. DoD 5200.28-STD Washington (1985)
3. Gray, J.W.: Countermeasures and Tradeoffs for a Class of Covert Timing Channel. Tech-

nical Report, HKUST (1994)
4. Ahsan, K.: Covert Channel Analysis and Data Hiding in TCP/IP. Master’s Thesis, Univer-

sity of Toronto (2000)
5. Ahsan, K., Kundur, D.: Practical Data Hiding in TCP/IP. In: Proc. Workshop on Multime-

dia Security at ACM Multimedia, Juan-les-Pins on the French Riviera (2000)
6. Virendra, M., Jadliwala, M., Chandrasekaran, M., Upadhyaya, S.: Quantifying Trust in

Mobile Ad-Hoc Networks. In: Proc. Int. Conf. Integration of Knowledge Intensive Multi-
Agent Systems (KIMAS), Waltham (2005)

7. Zhang, Q., Yu, T., Ning, P.: A Framework for Identifying Compromised Nodes in Sensor
Networks. In: Securecomm. and Workshops, Baltimore (2006)

8. Hwang, J., He, T., Kim, Y.: Detecting Phantom Nodes in Wireless Sensor Networks. In:
26th IEEE International Conference on Computer Communications, pp. 2391–2395. IEEE
Press, Anchorage (2007)

9. Liu, D., Ning, P., Du, W.: Detecting Malicious Beacon Nodes for Secure Location Discov-
ery in Wireless Sensor Networks. In: 25th International Conference on Distributed Com-
puting Systems, Ohio, pp. 609–619 (2005)

10. Wang, Z., Deng, J., Lee, R.B.: Mutual Anonymous Communications: A New Covert
Channel Based on Splitting Tree MAC. In: 26th IEEE International Conference on Com-
puter Communications, pp. 2531–2535. IEEE Press, Anchorage (2007)

11. Llamas, D., Miller, A., Allison, C.: An Evaluation Framework for the Analysis of Covert
Channels in the TCP/IP Protocol Suite. White Paper, ZDNet (2003)

 A Novel Approach for Security and Robustness in Wireless Embedded Systems 335

12. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating Routing Misbehavior in Mobile Ad
Hoc Networks. In: Proc. of International Conference on Mobile Computing and Network-
ing, Boston, pp. 255–265 (2000)

13. Yi, S., Naldurg, P., Kravets, R.: A Security-Aware Routing Protocol for Wireless Ad Hoc
Networks. In: Proc. of the 2nd ACM International Symposium on Mobile Ad Hoc Net-
working & Computing, Long Beach, pp. 299–302 (2002)

14. Dini, G., Savino, I.M.: An Efficient Key Revocation Protocol for Wireless Sensor Net-
works. In: Proc. of the 2006 International Symposium on World of Wireless, Mobile and
Multimedia Networks, Buffalo, pp. 450–452 (2006)

15. Hoeper, K., Gong, G.: Key Revocation for Identity-Based Schemes in Mobile Ad Hoc Net-
works. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-NOW 2006. LNCS, vol. 4104, pp. 224–
237. Springer, Heidelberg (2006)

16. Zhang, Y., Lee, W., Huang, Y.: Intrusion Detection Techniques for Mobile Wireless Net-
works. Wireless Networks, vol. 9, pp. 545–556. Kluwer Academic Publishers, Hingham
(2006)

17. ANSI/IEEE Std 802.11, http://ieeexplore.ieee.org/xpl/standardstoc.
jsp?isnumber=30234

18. Serge, V.: On Bluetooth Repairing: Key Agreement based on Symmetric-Key Cryptogra-
phy. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 1–9.
Springer, Heidelberg (2005)

19. Hegland, A.M., Winjum, E., Kure, Ø., Mjølsnes, S.F., Spilling, P.: Key Management in Ad
Hoc Networks, Survey and Evaluation, UniK report, Oslo (2005)

20. Damodaran, D., Singh, R., Phu, D.L.: Group Key Management in Wireless Networks Us-
ing Session Keys. In: Proceedings of the Third International Conference on Information
Technology: New Generations, Las Vegas, pp. 402–407 (2006)

21. Eriksson, J., Krishnamurthy, S.V., Faloutsos, M.: TrueLink: A Practical Countermeasure
to the Wormhole Attack in Wireless Networks. In: Proc. of the 2006 IEEE International
Conference on Network Protocols, Santa Barbara, pp. 75–84 (2006)

22. Schneier, B.: Bit Commitment, 2nd edn. Applied Cryptography, pp. 133–217. John Wiley
and Sons, Inc., Chichester (1996)

23. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing Elliptic Curve Cryptog-
raphy and RSA on 8-bit CPUs. In: Proc. of Workshop on Cryptographic Hardware and
Embedded Systems, Boston, pp. 119–132 (2004)

24. Imote2 Datasheet,
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/
Imote2_Datasheet.pdf

The Role of Field Data for Analyzing the

Dependability of Short Range Wireless
Technologies

G. Carrozza and M. Cinque

Dipartimento di Informatica e Sistemistica, Università di Napoli Federico II
Via Claudio 21, 80125 - Napoli, Italy
{ga.carrozza,macinque}@unina.it

Abstract. The migration from mobile to ubiquitous Internet is at hand,
due to the intense growth of short range wireless technologies. Users ac-
cessing the Internet through wireless devices are increasing, if compared
to “wired” ones, and they expect the same dependability level they al-
ready experience on wired networks, that is high quality “always on”
wireless networks. But how can we analyze the dependability level of a
wireless network? Direct analysis of failures from the field of application
is an effective practice to understand the actual dependability behavior
of an operational system. However, despite its wide use over the last
four decades on a large variety of systems, field data analysis has rarely
been applied to wireless networks. Through the experience gained from
extensive failure analysis of Bluetooth networks, the article shows how
field failure data can play a key role to fill the gap on understanding the
dependability behavior of wireless networks.

1 Introduction

Long time has passed since Meyer proposed of the idea of “Ubiquitous Com-
puting”, the paradigm which aims at enhancing computer use by making many
computers available throughout the physical environment, and at making com-
puters effectively invisible to the user [12]. Since then, embedded systems en-
gineering and wireless communications have progressed fast, thus making the
visionary idea of Ubiquitous Computing a reality. The intense device miniatur-
ization and the increasing power of microprocessors, along with the availability
of cheap wireless networks and connectivity, allows computers to increasingly
pervade everyday human life and activities.

Longer time has even passed since the Internet was anchored to telephone
wires and coaxial cables. Since 2005, cell phones have outnumbered PCs and,
in the last few years, people access the Internet more from a wireless device
than from a wired one, thus enabling mobile Internet access. According to ITU
reports1, mobiles dominate both in quantity and in quality. Small embedded
devices have become a daily portable necessity, which is always no more than
1 International Telecommunication Union, www.itu.int/osg/spu/presentations.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 336–347, 2008.
c© IFIP International Federation for Information Processing 2008

The Role of Field Data for Analyzing the Dependability 337

one meter away from users. PDAs, laptops, cellphones, MP3 players, webcams,
and even fridges and microwave ovens, have embedded Internet connectivity,
and allow to access the global network from everywhere. The power of mobile
has cut off geographic boundaries, hence networks, people and devices are seam-
lessly connected both on a local scale and over the world: the transition from
the Internet to the Ubiquitous Internet is at hand.

Short Range Wireless (SRW) technologies are at the core of such a revolution,
as well as the key to ubiquitous networking. They are primarily meant for indoor
use and over short ranges, in which they are able to connect portable devices
with high connection speed and low power consumption. They are often used
at the edges of the wired network, e.g., as wire replacement, to provide mobile
users with the last hop to the Internet, from anywhere and at anytime.

Nevertheless, higher mobility means lower speed, as well as worst connection
quality in terms of transmission capacity and reliability. Hence, many technical
challenges have to be faced in order to serve today customers’ demand, who
expect the same level of quality they already experience on wired networks. In
addition, the wide range of business critical applications in which SRW technolo-
gies are protagonists (e.g., mobile banking, mobile commerce, etc), along with
their usage in mission critical scenarios (e.g., remote control of robots, rescue of
catastrophe survivors, etc.) make it crucial to answer a simple question: can we
rely on these technologies?

This simple question has not a simple answer. Research efforts in the field of
dependability, wireless networks and ubiquitous systems, have to be merged to
give a satisfactory response. Indeed, a non-negligible knowledge of the depend-
ability behavior of SRW technologies is required in terms of what are the failure
modes, how can we describe/model them, what are the dependability pitfalls
and consequences to applications, and how can we face them.

Field Failure Data Analysis (FFDA) is an effective mean to gain the required
knowledge. It consists in observing spontaneous occurrences of failures of an
operational system, without forcing or inducing artificial failures in the system.
The collected failure data provide accurate information which can characterize
the dependability of the system under study.

FFDA has been successfully applied in the last four decades. Several studies
have been conducted on a large variety of systems, including operating systems
and the Internet. As for the former, hangs and the well known “blue screens”,
found on Windows NT 4 to be mostly due to application failures, were signifi-
cantly reduced in the successive generation of the OS, Windows 2000, providing
the kernel with greater isolation from errant applications [9]. As for the latter,
[10] analyzes the causes of failures and the potential effectiveness of various tech-
niques for preventing and mitigating failures in large-scale Internet services.

Despite the large use in both the academy and the industry, FFDA has rarely
been used to characterize the dependability of wireless access networks. In this
article we aim to show how field failure data can play a key role to gain the
needed knowledge to model the failure behavior and to uncover dependability

338 G. Carrozza and M. Cinque

pitfalls of wireless access networks. The resulting understanding is essential for
the effective design of any new solution for dependable wireless networking.

We focus on the Bluetooth technology, which has lots of potential applicability
in the “last meter” for personal area networks (PANs). It has been estimated
that in 2005 Bluetooth was a built-in feature for more than 600 million products,
manufactured by several companies. CSR (Cambridge Silicon Radio), in its 2007
financial report, said it expects the proportion of new cars that include Bluetooth
to increase from 5 up to 30 percent in the medium term. Car-kits use GPS high
performance solutions embedded into a Bluetooth chip, thus bringing GPS into
a wide range of new low-cost devices. Furthermore, portable devices are being
more and more equipped with both Bluetooth and IEEE 802.11 (Wi-Fi), hence
Bluetooth represents a cost-effective way to improve the connection availability
in the case Wi-Fi networks are not available; as the number of Access Points
to the Internet increases, Bluetooth demonstrated to scale better than Wi-Fi in
terms of bandwidth, delay, fairness and energy efficiency [5].

This article provides an answer to the fundamental question posed above
in the context of Bluetooth networks, by exploiting over four years authors’
research experience on FFDA of mobile/wireless environments [3,2,8]. Conducted
experiments allowed to define and to statistically model the failure modes of
Bluetooth according to the layer they occur, i.e., application, system (Bluetooth
stack and operating system), or wireless channel layer, according to both a user-
centric and a channel-centric approach (see Section 2). Some of the key findings
are summarized in the following. First, severe failures, such as connection failures
and packet losses, may manifest to applications every eight minutes, on average.
This is partially due to the bursty nature of observed channel failures, which are
more likely to elude integrity checks performed by Bluetooth, hence propagating
to the operating system and applications. Second, failures revealed in the absence
of Wi-Fi interferences are rarer, but more severe and harder to recover than when
Wi-Fi is present. Third, Bluetooth transport layers assume underlying data-link
layers to be completely reliable, hence they do not perform error and integrity
checks. However, presented results show that these layers are not able to tolerate
low level failures.

These findings provide valuable insights that have to be considered when
designing Bluetooth-based access networks with demanding dependability and
ubiquity requirements.

2 A Combined Perspective to Gain from Field Data

FFDA studies usually account three consecutive steps: i) data logging and col-
lection, where data are gathered from the operational system, usually exploiting
system log files or failure reports, ii) data filtering and manipulation, concerning
the extraction of the information which is useful for the analysis, and iii) data
analysis, i.e., the derivation of the intended results from the manipulated data.

The operational system can be observed according to both a top-down
and a bottom-up approach. The former is a well known practice in the field of

The Role of Field Data for Analyzing the Dependability 339

u
s
e
r
c
e
n
tric

p
e
rs
p
e
c
tiv

e
(e

ffe
c
t2causes

)

Bluetooth Channel

Bluetooth transport layers

(libraries and drivers)

Application layer

c
h
a
n
n
e
l
c
e
n
tr
ic

p
e
rs
p
e
c
ti
v
e
(c
a
u
s
e
s
2
e
ff
e
c
ts
)

error

failure

fault

error

failure

fault

fault

detected

not

detected
?

Manifested ?

?

OS Exception
handling

detected

User

u
s
e
r
c
e
n
tric

p
e
rs
p
e
c
tiv

e
(e

ffe
c
t2causes

)

Bluetooth Channel

Bluetooth transport layers

(libraries and drivers)

Application layer

c
h
a
n
n
e
l
c
e
n
tr
ic

p
e
rs
p
e
c
ti
v
e
(c
a
u
s
e
s
2
e
ff
e
c
ts
)

error

failure

fault

error

failure

fault

fault

detected

not

detected
?

Manifested ?

?

OS Exception
handling

detected

User

Fig. 1. User- and Channel-centric perspectives

dependability evaluation and measurement [10,4,3] that allows to infer the failure
causes starting from the effects on application and Operating System (OS) layers,
according to users’ point of view (user-centric perspective). The latter, instead, is
based on the novel idea of tracing how faults propagate to upper layers by directly
observing low level causes [2]. With respect to wireless systems, this is a channel-
centric perspective, in that data communication channel is the starting point for
system observation.

Figure 1 emphasizes the differences between the two approaches, with ref-
erence to the Bluetooth stack. It is important to precise that, according to the
terminology introduced in [1], channel failures can be seen as errors for system
failures and as faults for application failures, as well as system failures can be
seen as errors for application failures. The user-centric approach allows to an-
alyze failure propagation traces only down to the OS level (Bluetooth drivers
failures are logged on system log files). Conversely, by adopting a channel-centric
approach, it is possible to monitor failures occurring at the Bluetooth data-link
layer, namely Baseband, and to evaluate its coverage (i.e., Baseband’s ability of
self repairing corrupted frames).

In this work we show how combining both the perspectives provides a detailed
characterization of SRW technologies dependability. In particular, by following
this approach we are able to classify Bluetooth failure modes according to the
layer they manifest, and to gain insights into failure propagation traces.

2.1 Testbed and Workload

Field data have been collected by running experiments on a real-world Bluetooth
piconet (i.e. a network made up of 1 to 8 Bluetooth nodes, only one of them act-
ing as the master or coordinator). Bluetooth piconets can be easily exploited to
access the Internet, by means of the Bluetooth Personal Area Network (PAN)
profile. A user willing to surf the web with his Bluetooth-enabled mobile phone,
starts an inquiry/scan operation to discover other devices in the neighborhood,

340 G. Carrozza and M. Cinque

then - through a Service Discovery Protocol (SDP) operation - he looks for the
Network Access Point (NAP). Once the NAP has been found, the user connects
to it (note that the connection operation usually takes care of switching the role
of the mobile device to slave, letting the NAP be the master of the piconet).
Finally, the user can happily navigate to his web-mail inbox.

An application workload (WL) has been designed to emulate the behavior of
a typical PAN user. The WL performs all the steps needed to setup the PAN, as
mentioned above. The WL then stimulates the wireless channel by transferring
data on it. To add uncertainty to piconet evolution, each WL cycle is char-
acterized by several random variables modeling both connection establishment
(e.g. whether the inquiry/scan and SDP procedures are performed or not) and
channel usage (e.g. according to the random variables which are used to model
actual Internet traffic, such as Web surfing, file transfer, e-mail, etc.). Running
the WL, and collecting both application and system failures registered on OS
log files is useful to achieve the user-centric perspective. During packets trans-
mission, channel level data have been captured by using a Bluetooth air sniffer,
in order to achieve the channel-centric perspective. The sniffer provided us with
all the needed information, from failure reports at the Baseband layer to frame
status as they are delivered up to L2CAP (Logical Link Control and Access
Protocol, i.e., the Bluetooth transport) and BNEP (Bluetooth Network Encap-
sulation Protocol, which is used to emulate Ethernet links over Bluetooth).

The produced failure data come from multiple sources (WL log files, system
log files, and sniffer traces). Combining these data with temporal coalescence al-
gorithms permits to infer propagation traces from channel up to the application
layer. Data have been properly filtered to discard useless information.

Several experiments have been conducted on the piconet, during a time span
of almost two years, collecting more than 140 millions failure data items. In order
to investigate the impact of Wi-Fi on Bluetooth failure modes, they have been
performed both in presence and in absence of Wi-Fi disturbances.

3 Bluetooth Failure Modes

Field failure data demonstrate to be an effective mean to identify the failure
modes of SRW technologies.

In our case, we were able to observe several failure modes and to classify them
according to the level in which their occurrence is registered. Observed Failure
modes are summarized in Fig.2. Applications exhibit a variety of failures accord-
ing to the utilization phase where they occur, i.e., inquiry/scan and discovery
phases, PAN connection, and data transferring. Failures during the connection
can occur either while the connection is set up or while the role of the device is
switched from master to slave. Unexpectedly, failures during data transfer, such
as packet loss and mismatches in the received data, are experienced, despite error
control mechanisms performed by Baseband, such as Cyclic Redundancy Codes
(CRCs), Forward Error Correction (FEC), and Header Error Correction (HEC)
schemes. However, as discussed in [6], the weakness of integrity checks is the

The Role of Field Data for Analyzing the Dependability 341

Bluetooth PAN
Failure Modes

System
Failures

Channel
Failures

Application
Failures

Inquiry/Scan failure
The scan procedure terminates abnormally

Discovery failure
The discover procedure terminates abnormally

Connect failure
The device is unable to establish a connection

Switch role failure
The device is unable to switch the role

Packet loss
Expected packets are not received

Data mismatch
Packets are delivered with errors in the payload

Header corruption
header delivered with errors

Header length mismatch
header length deviates from the specified one

Payload corruption
payload delivered with errors

BT stack failure
A BT module (e.g., L2CAP, BNEP, …) fails

Operating System failure
An OS module (e.g., USB, hotplug, …) fails

Bluetooth PAN
Failure Modes

System
Failures

Channel
Failures

Application
Failures

Inquiry/Scan failure
The scan procedure terminates abnormally

Discovery failure
The discover procedure terminates abnormally

Connect failure
The device is unable to establish a connection

Switch role failure
The device is unable to switch the role

Packet loss
Expected packets are not received

Data mismatch
Packets are delivered with errors in the payload

Header corruption
header delivered with errors

Header length mismatch
header length deviates from the specified one

Payload corruption
payload delivered with errors

BT stack failure
A BT module (e.g., L2CAP, BNEP, …) fails

Operating System failure
An OS module (e.g., USB, hotplug, …) fails

Fig. 2. Bluetooth Failure Modes as they are observed on the field

assumption of having memoryless channels with uncorrelated errors from bit to
bit. In the case of Bluetooth, correlated errors (e.g. bursts) can occur due to the
nature of the wireless media, affected by multi-path fading and electromagnetic
interferences. The failure of the integrity checks is further investigated in the
next section.

System level failures are grouped with respect to their location, i.e., Bluetooth
software stack and Operating System. Failure types could be further refined
according to the component which signals the failure, e.g., L2CAP and BNEP.

Finally, three channel level failures classes have been identified: (i) header
corruption at the Baseband level, (ii) length mismatch, i.e., a mismatch in the
packet length reported into the Baseband header and the actual one, and (iii)
payload corruption (PC in the following) at the Baseband level. The last class
deserves more attention, since these failures are the only ones that may propa-
gate to system and application layers, in our settings. Failures belonging to the
other two classes are instead successfully detected and masked by the Baseband’s
FEC, HEC and CRC schemes.

Failure data also allow to model failure dynamics as stochastic processes.
The statistical distribution type then permits to better understand the failure
phenomenology. In our case, we attempted to fit the time to failure (TTF) for
application failures with three different statistical distributions: the Exponential,
the Lognormal, and the Weibull distributions. The fitting has been conducted
by means of a statistical software suite, using maximum likelihood estimators
and goodness of fit tests. It results that almost all application level failures are
distributed as Lognormal. The Lognormal distribution is used extensively in re-
liability applications to model failure times. A random variable can be modeled
as Lognormal if it can be thought of as the multiplicative product of many small

342 G. Carrozza and M. Cinque

independent factors. In our case, this means that application level failures are the
product of many small faults at a lower level. These faults can be both software
faults, e.g., heisenbugs (i.e., design faults which conditions of activation occur
rarely or are not easily reproducible [11]) at the various level of the Bluetooth
stack, and channel faults, as the payload corruption case. Interestingly, only data
mismatch failures are distributed as Exponential. This is coherent with the fact
that, as will be observed in next section, direct cause for data mismatches are
payload corruptions, which also resulted to be exponentially distributed.

More detailed analysis allows to derive interesting characteristics of the failure
behavior. For instance, we attempted to characterize BT connections survivabil-
ity, i.e., the duration of BT connections before they are unexpectedly lost due
to failure (and not due to normal connection closing operation). We observed
that the connection duration with respect to failures is statistically self-similar,
i.e., it shows the same statistical properties at many different scales. On a side,
this implies that connection duration times can be modeled with heavy tailored
distributions (e.g., the Pareto distribution). On the other side, this shows evi-
dence that connection durations exhibit long range dependence: the failure of a
connection at a given time is typically correlated with connection failures at all
future instants.

4 Bluetooth Uncovered Dependability Pitfalls

4.1 Impairments Due to Payload Corruptions Propagation

As stated in section 3, there exists a class of channel level failures, namely PC,
that is able to elude Baseband error control mechanisms, and to propagate to
upper layers with a non zero probability. When dealing with digital wireless
communication, the causes of such failures lie into shadowing and electromag-
netic noise, which may cause the bits to be flipped when transfered between
two end points. Moreover, as previously mentioned, the presence of multi-path
fading and electromagnetic interferences can cause correlated faults (i.e. bursts)
to occur.

Thanks to field experiments, and to a thorough inspection of packets content,
we were able both to observe the occurrence of PC on monitored Bluetooth
channel, and even to pinpoint the flipped bits.

A snapshot of a corrupted payload is shown in Fig. 3. Note that we were
able to uncover this corruption since we forced the WL to transfer a known
character sequence with a fixed length, e.g. “CCCC”. The highlighted burst is
136 bits long. This is the reason why it is able to elude Baseband error control
mechanisms. Baseband adopts a 16-bit CRC-CCITT polynomial code which is
able to detect 18 bits or longer bursts with 0.99998 probability (i.e. minor than
one). We experienced that the length of the burst is a random variable, L, with
an expected value equals to 512 bits and a standard deviation equals to 646 bits,
hence they are longer on average than 18 bits.

The Role of Field Data for Analyzing the Dependability 343

….S 1947856 Baseband 0x07e38c26 75 S
OK DM1 Continuation Go Go 1

17
S 1947856 L2CAP Slave 163 63 63 63 63 63 63 63 63 63
63 63
63 63 63 63 63 63 63 63 63 63 63 63 01 00 8b 38 01 01 89 c0 a8 01 03 60 05 00
00 00 63
63 63
63 63
63 63 63 63 63 63 63……

17 bytes

….S 1947856 Baseband 0x07e38c26 75 S
OK DM1 Continuation Go Go 1

17
S 1947856 L2CAP Slave 163 63 63 63 63 63 63 63 63 63
63 63
63 63 63 63 63 63 63 63 63 63 63 63 01 00 8b 38 01 01 89 c0 a8 01 03 60 05 00
00 00 63
63 63
63 63
63 63 63 63 63 63 63……

17 bytes

Fig. 3. Example of corrupted payload

Graph in Fig. 4 shows how a PC can propagate. On the leftmost side of the
graph, it is shown that 99.59 % of PC are detected by Baseband, hence they
do not reach upper layers. With respect to the undetected failures, values on
the graph links represent the conditional probability of failures given that a PC
occurred and eluded Baseband control. Several consequences can then occur,
according to the probabilities reported on the graph. In fact, PC can either
remain latent (i.e. isolated) at the system level, or propagate to the user level in
the form of application failures. In the former case, they are confined at system
level even if no further error controls are performed (in fact, both L2CAP and
BNEP assume underlying levels to be completely reliable). The actual induced

BNEP

L2CAP

Data
Mismatch

Packet
Loss

Connect
Failure

Switch Role
Failure

1.76 E-3

0.86 E-3

0.77 E-3

0.69 E-3

0.002

0.309

0.288
Payload

Corruption

Channel
Level

Application Level

System
Level

0.688

0.172

isolated

isolated

0.401

0.141

detected

0.996 BNEP

L2CAP

Data
Mismatch

Packet
Loss

Connect
Failure

Switch Role
Failure

1.76 E-3

0.86 E-3

0.77 E-3

0.69 E-3

0.002

0.309

0.288
Payload

Corruption

Channel
Level

Application Level

System
Level

0.688

0.172

isolated

isolated

0.401

0.141

detected

0.996

Fig. 4. Propagation phenomenology

failure depends on the location of the burst within the transmitted packet. For
instance, if the corruption affects the L2CAP header, the packet can not be
properly decoded. As a consequence, it will not be delivered to upper layers,
thus causing a packet loss, i.e. an omission failure, at the user level. In the same
way, if the burst is located in the L2CAP payload, the erroneous content can be
directly delivered to the application, which may then exhibit a value failure, i.e.
a data mismatch in the Figure.

344 G. Carrozza and M. Cinque

4.2 Problems Due to the Impact of Wi-Fi on Bluetooth

Many efforts have been devoted to investigate coexistence issues between Wi-Fi
and Bluetooth [7]. We tried to estimate how the presence of a Wi-Fi network in
the neighborhood can impact Buetooth failure modes. To this aim we let WL
run both in the presence and in absence of Wi-Fi interferences.

We compared the conducted experiments in terms of Baseband failure rate
and failure distribution over channels.

In the presence of Wi-Fi interferences, the Baseband failure rate has been
measured as 6.822 faults per second. Since the average number of transmitted
frames per second is 596, this results into a frame error rate of about 0.012 (i.e.,
about 1 frame out of 100). However, the most of these errors are promptly de-
tected and masked by Baseband’s correction mechanisms, in that its coverage,
with respect to all channel failures, has been measured as 0.9996. Undetected
failures can be modeled as an exponential random variable with a 458716 ms
mean. This means that about every eight minutes a Baseband error is not de-
tected, and a wrong frame propagates to upper layers. As one could expect, a
lower failure rate (equals to 0.516 faults per second) has been experienced when
Wi-Fi Access Points (APs) in the neighborhood are turned off.

As for failure distribution across wireless channels, results are shown in Fig. 5.
In particular, Fig. 5(a) shows failure probability for all failures (even detected
ones) over channels when WiFi is present whereas results in Fig. 5(b) refer to
the experiment conducted without WiFi disturbances. In the first case, error
probability is highly concentrated over the channels evidenced by dotted lines
corresponding to the actual channel overlap between the three Wi-Fi APs de-
ployed in our laboratory and the Bluetooth channels (Bluetooth uses 79 wireless
channels, each 1-MHz-wide, in the unlicensed 2.4 GHz band; Wi-Fi uses eleven
22-MHz-wide sub-channels across the same band of Bluetooth; when a Blue-
tooth and a WiFi radio are in the same area, a single Wi-Fi channel overlaps
with 22 of the 79 Bluetooth channels.). Fault probabilities strongly depend on
APs usage. For instance, the AP working on channels from 1 to 23 is rarely used,
thus justifying the low fault probability over these channels. Figure 5(b) shows
that the probability over interfering channels drastically decreases when WiFi
is absent. This is a further confirmation of the lower fault rate we measured in
the absence of interferences. Interestingly, we found that faults that occurred
in absence of Wi-Fi interferences were more “severe” than those that occurred
when Wi-Fi is present. This conclusion can be drawn by investigating time to
failure statistics for all failures (detected and undetected). In both cases, they fit
a Lognormal distribution, but with different values of distribution parameters
(e.g. distribution shape). This leads us to observe that in absence of Wi-Fi short
inter-arrival times of failures are more probable. In other terms, the absence
of disturbances causes the faults to be more clustered in time. The reason for
this is to be found into the frequency hopping scheme adopted by Bluetooth. In
the presence of Wi-Fi, faults are mainly due to interferences which tend to be

The Role of Field Data for Analyzing the Dependability 345

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1 7 13 19 25 31 37 43 49 55 61 67 73 79

Belkin 54g

CINI-Centr.

CNIT

F
ai

lu
re

P
ro

ba
bi

lit
y

Bluetooth Channel ID

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1 7 13 19 25 31 37 43 49 55 61 67 73 79

Belkin 54g

CINI-Centr.

CNIT

F
ai

lu
re

P
ro

ba
bi

lit
y

Bluetooth Channel ID

(a) WiFi present (overlapping zones for each AP are shown)

0

0.01

0.02

1 7 13 19 25 31 37 43 49 55 61 67 73 79

0.02

0

0.04

0

0.01

0.02

1 7 13 19 25 31 37 43 49 55 61 67 73 79

0.02

0

0.04

F
ai

lu
re

P
ro

ba
bi

lit
y

Bluetooth Channel ID

0

0.01

0.02

1 7 13 19 25 31 37 43 49 55 61 67 73 79

0.02

0

0.04

0

0.01

0.02

1 7 13 19 25 31 37 43 49 55 61 67 73 79

0.02

0

0.04

F
ai

lu
re

P
ro

ba
bi

lit
y

Bluetooth Channel ID

(b) WiFi not present

Fig. 5. Histogram of failure probability across Bluetooth channels

polarized on the overlapped channels. After the occurrence of a failure due to col-
lision, the frame is retransmitted over a different channel. However, the channel
might either be free or still occupied by the Wi-Fi interference. This variabil-
ity causes both short- and medium-length inter-failure times. When Wi-Fi is
not present, there are no polarized interferences, or, in other terms, the fault
phenomena is spread (e.g., lost of synchronization among nodes or wide-band
disturbances). Hence, it is more likely that a retransmission will fail.

In order to corroborate this intuition, we also investigate Mean Time To Re-
cover (MTTR) in both circumstances. Consistently with above results, MTTR
increases when Wi-Fi is not present (from 7.51ms to 9.52ms) , i.e. more retrans-
missions are needed when the fault phenomenon is not polarized. Finally, the
Baseband level exhibited a lower capability of detecting failures due to spread
phenomena in that its coverage decreases by one order of magnitude (it passes
from 0.9996 to 0.9968). This means that failures due to spread phenomena are
more prone to elude Baseband’s CRC integrity check.

346 G. Carrozza and M. Cinque

5 Conclusions

Short range wireless technologies are the key of ubiquitous networking. They rep-
resent the principal medium to access the Internet from mobile devices. As these
technologies are widely used in business and mission critical applications, char-
acterizing their dependability represents a significant issue. Field Failure Data
Analysis shows to be an effective instrument to build up the needed knowledge
on the dependability behavior of actual wireless networks. The case of Blue-
tooth, analyzed in the article, gives evidence of how field data help to uncover
dependability pitfalls. The achieved results are useful to define mitigation ac-
tions to improve the overall dependability level of Bluetooth networks, as shown
in our previous work. The same analysis need to be conducted on other wireless
networks enabling ubiquity both over long distances, e.g., WiMAX, (Worldwide
Interoperability for Microwave Access), and within short ranges, e.g., UWB (Ul-
tra Wide Band), and WUSB (Wireless USB), with the aim of building large
and publicly available field failure data repositories. These can be exploited by
researchers and practitioners to design dependable wireless solutions.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing 1(1), 11–33 (2004)

2. Carrozza, G., Cinque, M., Cotroneo, D., Russo, S.: Dependability Evaluation and
Modeling of the Bluetooth Data Communication Channel. In: Proc. of the 16th
Euromicro International Conference on Parallel, Distributed and network-based
Processing (February 2008)

3. Cinque, M., Cotroneo, D., Russo, S.: Collecting and Analyzing Failure Data of
Bluetooth Personal Area Networks. In: Proc. of the 36th IEEE International Con-
ference on Dependable Systems and Networks (DSN 2006) (June 2006)

4. Iyer, R.K., Kalbarczyk, Z., Kalyanakrishnam, M.: Measurement-Based Analysis of
Networked System Availability. In: Reiser, M., Haring, G., Lindemann, C. (eds.)
Dagstuhl Seminar 1997. LNCS, vol. 1769. Springer, Heidelberg (2000)

5. Johansson, P., Kapoor, R., Kazantzidis, M., Gerla, M.: Personal Area Networks:
Bluetooth or IEEE 802.11? International Journal of Wireless Information Networks
Special Issue on Mobile Ad Hoc Networks (April 2002)

6. Koopman, P., Chakravarty, T.: Cyclic Redundancy Code (CRC) Polynomial Selec-
tion For Embedded Networks. In: Proc. of the 34th IEEE International Conference
on Dependable Systems and Networks (DSN 2004) (June 2004)

7. Lansford, J., Stephens, A., Nevo, R.: Wi-Fi (802.11b) and Bluetooth: Enabling
coexistence. IEEE Network, 20–27 (September/October 2001)

8. Kalbarczyk, Z., Iyer, R.K., Cinque, M., Cotroneo, D.: How do mobile phones fail? a
failure data analysis of symbian os smart phones. In: Proc. of the 37th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2007), Ed-
inburgh, pp. 585–594 (2007)

9. Murphy, B., Levidow, B.: Windows 2000 Dependability. MSR-TR-2000-56, Mi-
crosoft Research, Microsoft Corporation, Redmond, WA (June 2000)

The Role of Field Data for Analyzing the Dependability 347

10. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet services fail,
and what can be done about it? In: Proc. of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS 2003) (March 2003)

11. Vaidyanathan, K., Trivedi, K.S.: A Comprehensive Model of Software Rejuve-
nation. IEEE Transactions on Dependable and Secure Computing 2(2), 124–137
(2005)

12. Weiser, M.: Ubiquitous computing. IEEE Computer 26(10) (October 1993)

RG-EDF: An I/O Scheduling Policy for Flash

Equipped Sensor Devices

Adam Ji Dou and Vana Kalogeraki

Dept. of Computer Science and Engineering
University of California, Riverside, CA 92521

{jdou,vana}@cs.ucr.edu

Abstract. Flash equipped sensor devices are becoming increasingly
complex and are now capable of supporting real-time multiple appli-
cations on a single sensor, rich sensing of visual and audio data, and
storage of large amounts of data. With this increase in complexity, it is
no longer sufficient to provide first in first out (FIFO) type capture of
data into more persistent memories. In this paper we propose RG-EDF,
a new scheduling policy for flash equipped sensor devices. RG-EDF aims
at providing QoS support to multimedia tasks by considering the unique
characteristics of flash-based devices. We have implemented our scheme
on a CC1010 sensor node with a SD flash card attached and compared
our technique to other popular scheduling policies. Our experimental
results show the working and benefit of our system.

1 Introduction

Wireless Sensor Networks (WSNs), composed of small, low cost and low power
sensor devices, have found popular applications in many situations including
environmental monitoring, military surveillance, inventory tracking and seismic
control. Typical sensor devices feature a low-frequency, low-power processor (≈4-
58MHz), limited memory (4-10KB), a wireless radio for communication, on-chip
sensors, and an energy source such as a set of AA batteries or solar panels.

The introduction of flash equipped sensors (RISE [4], PRESTO [11]) has
significantly enhanced the storage capacity of sensors; it allows storing large
amounts of data locally. Since the power consumed by transmitting data is a
magnitude higher [17] than storing it locally, the sensors can now store and
process data, sending only relevant information to the sink in response to pre-
set conditions or queries. Such in-network data storage provides a significant
reduction in energy usage and a corresponding increase in the lifetime of the
WSN.

As flash-based devices become increasingly popular, they are required to per-
form real-time tasks, such as storage and retrieval of multimedia data. Today,
visual (Cyclops [15], CMUcam [2]) and audio (EnviroMic [13]) sensors enable the
sensing of high bandwidth, rich data; providing much more information than sim-
ple scalar measurements of temperature, humidity, etc [10]. This rich data can
supplement the simple measurements with more complete context information.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 348–359, 2008.
c© IFIP International Federation for Information Processing 2008

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 349

Multimedia data are different from traditional file systems, as they require large
storage capacity and must support intensive real-time I/O traffic. It is common
for data generated by the tasks to be sequentially positioned on the flash, while
data generated concurrently by different tasks is multiplexed. However, such se-
quential storage can lead to significant latencies (as we show in the paper), thus
limiting the ability to meet satisfy the real-time requirements of the tasks.

Although there have been proposed several quality of service (QoS) methods
for traditional hard drives (HDD) in the literature [6,9,12], they do not readily
lend themselves for implementation on sensors or for flash memories. Most of
the traditional HDD based schedulers exploit the physical characteristics of hard
drives to provide improved performance: access time affected by the positioning
of the data access arm. This particular limitation is not applicable for flash
memories, but flash memories do have other constraints and characteristics which
must be considered. File systems specific for flash memories (ELF [8], JFFS
[16], YAFFS [3]) work around the constraints of flash memories using log based
structures, but these are more concerned with providing structures for storing
files and efficient garbage collection for freeing space than QoS and I/O efficiency,
which is the focus of our work.

In this paper we propose Reordering Grouped Earliest Deadline First (RG-
EDF), a scheduling policy for flash-based sensor devices. Our policy aims at
by combining multiple requests from the same task and selectively reordering
the requests so that several requests can be written on the flash together. Our
method provides much better performance than current method of data stor-
age by taking advantage of the unique characteristics of flash memories. This
is the first work, that we know of, which focuses on providing quality of ser-
vice for storage in flash memories on sensor devices. We have implemented our
scheme on a CC1010 sensor node with a SD flash card attached. We have exper-
imentally compared our scheduler with FIFO and regular EDF schedulers. Our
experimental results show the working and benefits of our proposed system.

2 Background

Traditional schedulers designed for improved efficiency in hard drive based sys-
tems ([14] [12] [7]) try to optimize the storage I/O by rearranging the order of
operation in such a way to minimize drive arm movement. Although flash mem-
ories do not have the physical limitations of a drive arm, we are also trying to
organize our data in a way to take advantage of I/O characteristics.

Anticipatory scheduling [9] is a proposed solution to combat prevents decep-
tive idleness by waiting for a while after requests for new requests from the
process which has just been serviced. While we do not have the problem of de-
ceptive idleness, we are inspired by the concept of waiting for additional requests
in order to increase the overall throughput for flash storage.

Bisson et al , in [6] and [5], reduce the energy consumption and increase the
efficiency of hard drive spin down algorithms through the addition of a flash
memory cache. Although they do make use of flash memories, it is used as a

350 A.J. Dou and V. Kalogeraki

SRAMR1,1 R1,2 R1,3 R1,…

R2,1 R2,2 R2,3 R2,…

R…,1 R…,2 R…,3 R…,…

Rn,1 Rn,2 Rn,3 Rn,…

Scheduler

Flash
Driver

Flash Memory

Block1,1 Block1,2 Block1,… Block1,B

Block2,1 Block2,2 Block2,… Block2,B

Block...,1 Block…,2 Block…,… Block…,B

BlockS,1 BlockS,2 BlockS,… BlockS,B

Flash Memory

(b) The structure of a flash memory with
S sectors, each containing B blocks.
Blocks are labeled as Blocksector,block

(a) The sensor system: each process
generates a series of requests, which are
placed into the scheduler residing in
SRAM. The scheduler then interacts with
the flash driver to complete the requests.

Fig. 1. System and Flash Structure

temporary cache for increased hard disk performance and they are not concerned
with the actual write efficiency to the flash memory itself.

Flash memories differ from traditional hard drive scheduling optimizations in
several critical ways, the ones we are concerned about are the I/O characteristics.
There is no disk arm on a flash device and the physical location of data on a
flash device does not affect its access or read time, however, I/O operations in
flash memory are performed in block sized units. If we wish to write or read less
than a block of data, we incur the same time and energy penalties as if we were
operating on an entire block.

Recently techniques have been proposed for data storage and indexing in sen-
sor networks. A few flash-based file systems have been proposed, including RISE
[4] and PRESTO [11]. File systems specific for flash memories (ELF [8], JFFS
[16], YAFFS [3]) implement log-like file structure designed for wear-leveling.
These are more concerned with providing structures for storing files and efficient
garbage collection for freeing space. In contrast, our work focuses on scheduling
for improving QoS and I/O efficiency, targeting real-time multimedia tasks.

3 System Design

In this section, we first present our system settings, assumptions, and highlight
the design principles. We then present an overview of the core components of
the system and how they interact with each other, we then detail the design of
the our scheduler.

3.1 System Settings

To control the order of execution and improve the quality of service, we insert a
scheduler which intercepts requests and reorders them (see Figure 1).

We focus on the I/O processes on a single sensor device. We assume that a
sensor runs n processes P1...Pn, each process Pi produces a series of requests
Ri,1, Ri,2, Rsi,3, ... (refer to Figure 1(a)). Each request Ri,k can be represented

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 351

by a tuple < ti,k, di,k, sizei,k > where ti,k is the time the request is issued, di,k

is a deadline (time that the request must complete), and sizei,k is the size of the
request. We assume that requests arrive sequentially. A request Ri,k is considered
to be written successfully if it is stored to nonvolatile memory (flash memory, in
this case) before time ti,k + di,k, otherwise, it is considered to be a miss.

The flash memory is divided into S sectors with each sector containing B
blocks of size Bsize (this is shown visually in Figure 1(b). As mentioned ear-
lier, due to the constraints of flash memory: Each write to flash memory takes
writetime, must be exactly Bsize and must occupy an entire block. Similarly,
each read from flash Memory takes readtime, can read at most Bsize and cannot
cross block boundaries. When a block bi,k in sector si is deleted or modified, all
other blocks bi,l in si must also be deleted (and possibly re-written).

3.2 Design Principle

Our work is based on the main observation of the read and write property of
flash memories: all native operations are performed at a block level. When data
is written or read from flash memory, requests for data smaller than a block
still takes the same amount of time and energy as if an entire block is read
or written. Consequently, we want our scheduler to avoid wasted capacity and
maximize utility by trying to read and write only full blocks of data.

We exploit this property in our scheduler by grouping requests and complet-
ing them together instead of separately. Grouping requests together improves
performance in two ways: by combining multiple requests together, we increase
I/O utilization and are essential writing the extra requests for ”free”. Addition-
ally, by writing multiple requests, we clear out the scheduler faster and reduce
the number of drops due to scheduler saturation. In situations where request
injection is bursty, grouping allows many of the requests from the bursts to
be together, making it especially effective in these cases when compared to the
simpler, non-grouping schedulers.

3.3 Requests

When a request is generated, space is allocated for data in the SRAM , and
the request object is sent to the scheduler. The request object contains: process
id, sequence number, the deadline of the request, its data size and a pointer to
its actual data. We chose to use a pointer to the data rather than the storing
the data in the request object because we wish to maintain a constant sized
scheduler in memory even when requests differ in size.

When the I/O component becomes idle and the application is ready to perform
the next I/O operation, it will retrieve a request object from the scheduler. Then,
a check will be made to determine if the deadline of the request can be met and
the operation is performed depending on the system’s policies (e.g. drop request
on miss).

3.4 Reordering Grouped EDF Scheduler

We introduce a new scheme, called Reordering Grouped-EDF (RG-EDF). RG-
EDF attempts to avoid performing partial block requests by grouping

352 A.J. Dou and V. Kalogeraki

consecutive tasks together each time the request with the smallest deadline will
be served. Performance is further improved by allowing for additional flexibility
in scheduling the order of writes.

We initially consider a Grouped EDF (G-EDF) scheduler. G-EDF (and RG-
EDF) uses the same heap structure as the regular EDF scheduler. When a re-
quest needs to be retrieved, instead of just returning the top item in the heap,
the G-EDF scheduler will search through the heap and try to find sequential
requests from the same process to combine.

The request Ri,k, is at the top of the heap. The scheduler will scan the heap
searching for requests Ri,k+1, Ri,k+2, ... and combine the requests until

n∑

j=0

sizei,k+j > Bsize

or all the items have been searched. The scheduler will then combine and return
the requests Ri,k...Ri,k+n−1.

The RG-EDF scheduler improves upon the base G-EDF scheduler by selec-
tively reordering the requests and waiting for new requests before returning a set
of grouped requests. RG-EDF checks if better I/O utilization can be achieved by
allowing another request with a later deadline proceed before the current earliest
deadline request in cases where the deadline of the requests permit us.

Suppose Ri,k is the earliest deadline request, we can allow a request Rj,l to
proceed ahead if we can accurately predict how long Rj,l will take to service:

ti,k > currenttime + writetime + buffertime

n∑

a=0

sizei,k+a <

m∑

b=0

sizej,l+b

where
n∑

a=0

sizei,k+a ≤ Bsizeand
m∑

b=0

sizej,l+b ≤ Bsize

This allows for the group of requests Rj,l...Rj,l+m which occupies a large por-
tion of a block to proceed before Ri,k...Ri,k+n. This also provides the opportunity
for more requests from process i to arrive while the I/O operation for process j
is underway.

4 Implementation

We implemented the system on a CC1010 sensor with a SD flash card attached
through the Serial Peripheral Interface (SPI) bus. This section discusses the
main components of the CC1010 sensor, the interface and characteristics of the
SD flash card and gives implementation details on our different schedulers. An
implementation system diagram is shown in Figure 2.

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 353

Timer1

Timer2

Timer4

treq1 treq2 treqk

xmemory

req1 req2 reqk…

scheduler heap

imemory

…

temporary requests

Time

vars, etc
reqd ata reqd ata reqd ata reqd ata

Flash Memory

CC1010 Sensor

ISR1

ISR2

ISR4

Fig. 2. Implementation structure of the schedulers

4.1 CC1010 Sensor

We are using is a Chipcon CC1010 sensor with an 8051 Enhanced Microcontroller
[1]. The main features we are concerned about in the CC1010 are its memory
model and its interrupt timers.

The memory is divided into two main sections: an internal memory (imem-
ory) of 128 bytes and an external memory (xmemory) of 2024 bytes. Since the
imemory is faster than the xmemory, we place frequently used and time sensitive
data items (such as loops and the time counter) in imemory. We use xmemory
for data structures which require large amounts of memory such as the queue
and scheduler heap.

4.2 SD Flash Card

We used a 128 MiB Sandisk card with 512 byte blocks arranged in 256 block
sectors. There are two basic operations supported by the flash SD card: reading a
block and writing a block. Any erasing and recopying of information in a sector
are handled internally by hardware on the flash card itself. Our custom flash
driver implements the two basic read and write operations.

We connect to the flash card using a SPI bus. While this does limit the speed
of reading and writing to the card, it also greatly simplify the hardware interface.
Both of the basic operations mentioned above must be completed in blocks of
exactly 512 bytes. To perform an operation, we first place the command followed
by the address of the block onto the SPI bus. We then poll the serial interface
to either read or write data to and from the card. In addition, after a write
completes on the sensor, we must wait for an additional time while the card
finalizes the operation.

Write time for a block to flash requires 9 ms, but reading from xmemory and
writing the data typically takes up to 13 ms for a full block of 512 bytes. For
the first write into a new sector, an extended write time ranging from 60 to 140
ms is required, this is a characteristic of the internal hardware of the SD flash
card. This extra time is used to reorganize the data internally and speeds up

354 A.J. Dou and V. Kalogeraki

Temp Request

uint_8 pid
uint_32 time

(a) Data Struc-
ture of Request
in temporary req-
uest queue

Request

uint_8 pid
uint_32 time
uint_32 deadline
uint_16 size
(24 bits) *dataptr

(b) Data Struc-
ture of Request in
schedulers

Perform
I/O Operation

Create Requests
+ Insert into scheduler

TRQ
not empty

TRQ
is empty

Start

(c) Main Application States

Fig. 3. Data structures and application states

subsequent writes. Reading a block takes slightly more time than writing ranging
from 11 ms to 15 ms.

4.3 Timing and Request Injection

The CC1010 sensor provides 4 interrupt timers (timer1 - timer4), 3 of which we
can use. We set timer4 as the highest priority interrupt for keeping a counter to
measure elapsed time in 1 ms increments. We simulate multiple processes issuing
requests by using the ISRs associated with timer1 and timer3.

To keep the interrupt handlers as compact as possible; a full request object
is not created at the time of an interrupt. Instead, a temporary request (treq)
object is placed into the temporary request queue (TRQ), and a request object
is created between I/O operations. The treq structure is shown in Figure 3(a)
and contains the timestamp at the time the request is injected. Between I/O
requests, complete request objects (shown in Figure 3(b)) are created for any
treqs in the TRQ and are inserted into the scheduler.

Request injection is handled by the ISRs invoked by timer1 and timer3. The
period that each timer fires its interrupt can be adjusted and this is what we
use to vary the request injection frequency. When a ISR is invoked, a treq is
created for each process and placed into the TRQ. timer1 is always used to
control process 1 and timer3 is used to control processes 2...n where there are
n total processes. We can then adjust timer1 independently of timer3 when we
wish to perform experiments where the frequency of only one process changes.

Bursty request injection is modeled by having the ISR inject multiple requests
instead of a single request. For example, on every 10th run of the ISR for timer1,
5 requests are injected for process 1 instead of a single request.

4.4 Scheduler Implementation

The application has two main states (shown in Figure 3(c)): one state where
I/O operations are being performed and another when requests are generated

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 355

and insert into the scheduler from the TRQ. Two classes of schedulers are im-
plemented: a FIFO queue and a EDF scheduler. Our RG-EDF scheduler is built
on top of the EDF scheduler base. Our schedulers also have the ability to drop
requests which are determined to miss their deadlines.

FIFO Queue. We simply used the TRQ as a FIFO queue. The TRQ is imple-
mented as a circular queue in an array of treq objects. When this queue becomes
full, no further requests are accepted and these requests are counted as dropped
requests. In the I/O phase, we simply retrieve the first treq object from the
queue, generate a full request object and perform the I/O operation.

EDF Schedulers. The base EDF scheduler is a priority queue implemented as
a binary heap. The data structure of each request in the heap can be seen in
figure 3(b). We only keep track of the time a request is generated for statistical
purposes and can be optimized out.

By keeping the size of each request object constant, we are able to use a simple
array-based heap structure. The top item in the heap will always be at index 0
and the child nodes for an item at index i would be at i ∗ 2 + 1 and i ∗ 2 + 2.
In addition to being able to remove items from the top of the heap, we can also
specify which heap index we wish to remove an item from.

Building on top of this base EDF scheduler heap, functions are introduced to
group and reorder requests. When a request is made, a list of indices from the
heap is returned containing requests which can be grouped together. Once the
application receives the list of indices, it then proceeds to retrieve, and remove
from the heap, each request, starting with the last index (this ensures that the
remaining heap indices remain valid). After retrieving all the requests in the
group, a single I/O operation can be performed.

Knowing the typical time required to write a request to flash, the scheduler
can allow requests which have later deadlines proceed ahead of requests which
have an earlier deadlines, if the earlier deadline is not violated. The scheduler
compares the grouped size of the top request with the grouped size of the next
request from a different process. If the second group of requests has a larger
total size, the second group of will be allowed to proceed first. This improves the
I/O utilization and also allows more requests from the first process to enter the
scheduler while the I/O operation is underway.

5 Experimental Evaluation

5.1 Experiment Setup

We compare the performance of our systems: RG-EDF, with the traditional
FIFO approach and an EDF implementation. We run the experiments with three
data flows. Each data flow (i) is defined by the period of the request injections,
the request sizes (sizei,k) and the deadline delay (di,k) for each request.

356 A.J. Dou and V. Kalogeraki

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(a) Bursty requests with
dropping misses

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

FIFO
regular-EDF

G-EDF
RG-EDF

(b) Non Bursty requests
with dropping misses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5000 10000 15000 20000 25000 30000 35000 40000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(c) Bursty requests with-
out dropping misses

Fig. 4. Varying period of request injection for all 3 processes with default deadline
delay (di,k = 70 ms) and request size (sizei,k = 64 bytes)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(a) Bursty requests with
dropping misses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

FIFO
regular-EDF

G-EDF
RG-EDF

(b) Non Bursty requests
with dropping misses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(c) Bursty requests with-
out dropping misses

Fig. 5. Varying period of request injection for 1 of 3 processes with default deadline
delay (di,k = 70 ms) and request size (sizei,k = 64 bytes)

We evaluate the schedulers by varying single parameters over a range of values.
We also choose some conservative default values such that each of the schedulers
perform well at these values:

– injection period: 40 ms
– request size: 64 bytes
– deadline delay: 70 ms

In addition to varying a parameter, we examined the effects of allowing the
schedulers to drop requests when it is determined that their deadlines cannot be
met. We also look at the performance in the presence of bursty traffic: instead
of a single request, 5 requests are injected for process 1 every 10 injection cycles.

For each experiment, 10 sets of 10 second runs were completed and the results
averaged. The results are also aggregated across all three processes running.

5.2 Varying Frequency

We vary the frequency for all three process at the same time. Since the deadlines
for all the request are the same and the periodic requests are injected at the same

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 357

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000 10000 15000 20000 25000 30000 35000 40000T
hr

ou
gh

pu
t (

of

 r
eq

ue
st

s
su

ce
ss

fu
lly

 w
rit

te
n)

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(a) Throughput in num-
ber of requests successfully
written

 10

 20

 30

 40

 50

 60

 70

 5000 10000 15000 20000 25000 30000 35000 40000A
ve

ra
ge

 E
nd

-t
o-

en
d

T
im

e
pe

r
R

eq
ue

st
 (

m
s)

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(b) End-to-end time each
request spends in the sys-
tem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5000 10000 15000 20000 25000 30000 35000 40000

A
ll

R
eq

ue
st

s
D

ro
pp

ed
 P

er
ce

nt
ag

e

Request Injection Period (us)

RG-EDF
FIFO

regular-EDF
G-EDF

(c) Total # of dropped re-
quests due to full scheduler
and dropping misses

Fig. 6. Varying period of request injection for all 3 processes with default deadline
delay (di,k = 70 ms) and request size (sizei,k = 64 bytes)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 200 220 240 260 280 300 320 340 360 380 400

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Size (bytes)

RG-EDF
FIFO

regular-EDF
G-EDF

(a) Bursty requests with
dropping misses

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 200 220 240 260 280 300 320 340 360 380 400

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Size (bytes)

FIFO
regular-EDF

G-EDF
RG-EDF

(b) Non Bursty requests
with dropping misses

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 220 240 260 280 300 320 340 360 380 400

S
uc

ce
ss

fu
l W

rit
e

P
er

ce
nt

ag
e

Request Size (bytes)

RG-EDF
FIFO

regular-EDF
G-EDF

(c) Bursty requests with-
out dropping misses

Fig. 7. Varying request size for all 3 processes with default injection period 40 ms and
deadline delay (di,k = 70 ms)

time, the EDF scheduler is acting exactly like the FIFO scheduler, except the
EDF scheduler has the additional overhead associated with the scheduler. The
G-EDF and RG-EDF schedulers share the same overhead as the EDF sched-
uler but is able to compensate by grouping requests together, leading to much
better performance. Figure 4 shows that G-EDF performs better than RG-EDF
because there are not many opportunities for reordering and the extra overhead
of reordering logic is demonstrated.

Figure 4 (a) and (b) show the difference in performance between bursty and
non bursty traffic, all schedulers perform better when the traffic is non bursty,
due to there being less requests overall, but G-EDF and RG-EDF handle bursty
traffic better due to their ability to group these requests together.

When we disallow dropping misses (compare Figure 4 (a) and (c)), by allowing
requests to complete even when they are going to miss their deadlines, we see that
FIFO and EDF performance drop off rapidly due to missed deadlines causing
more misses. When drops are enabled, FIFO and EDF perform much better since
they are available to only perform on-time requests. Further, figure 6(c) shows
that the majority of the drops for G-EDF and RG-EDF are due to scheduler
saturation rather than being dropped due to misses.

358 A.J. Dou and V. Kalogeraki

Figure 5 shows the results when only varying injection period for a single
process. FIFO and EDF perform better because there are less results in total to
deal with: while the injection period of the single process is increased, the other
two processes are injecting in 40 ms periods. G-EDF shows a modest amount of
performance gain while RG-EDF has many more reordering opportunities and
shows improvement over Figure 4. As the injection rate for the single process
increases, more reordering opportunities are presenting themselves.

Figure 6(a) shows the throughput of each scheduler as the injection rates are
increase. The FIFO scheduler has a constant throughput; it can write a constant
number of request independent of how many are injected. EDF suffers from the
scheduler over head is unable to keep up. G-EDF and RG-EDF both perform
well and peak when scheduler saturation causes drops. Figure 6(b) shows that
requests spend much less time in the G-EDF and RG-EDF schedulers.

5.3 Varying Request Size

In this set of experiments, we vary the request sizes. From the results (Fig 7),
we see a drop in performance from our schedulers. This occurs when the request
size increases above 256 bytes; beyond this point, the scheduler can no longer
group multiple requests together because our block size is only 512 bytes.

G-EDF and RG-EDF rely on grouping multiple requests together to improve
performance. These schedulers introduce extra sophistication and overhead; if
requests are large and grouping not possible, they act like the EDF scheduler
and the extra overhead will cause the grouping schedulers to perform poorly.

6 Conclusion

Sensor applications are become increasingly complex: requiring multiple streams
of data storage and taking rich measurements such as visual and audio data which
are frequently bursty. In this paper we have proposed the RG-EDF scheduling
policy, which shows excellent performance in many cases where simple schedulers
are insufficient. RG-EDF achieves that by taking into consideration the unique
characteristics of flash-based devices when storing real-time multimedia data. RG-
EDF is easy to implement, and thus makes it suitable for resource-constrained
sensor nodes.

References

1. Chipcon cc1010, http://www.keil.com/dd/chip/3506.htm
2. Cmucam, http://cmucam.org/
3. Yaffs (yet another flash file system), http://www.yaffs.net/
4. Banerjee, A., Mitra, A., Najjar, W., Zeinalipour-Yazti, D., Kalogeraki, V., Gunopu-

los, D.: Rise- co-s: high performance sensor storage and co-processing architecture.
In: IEEE Sensor and Ad Hoc Communications and Networks, Santa Clara, CA
(September 2005)

http://www.keil.com/dd/chip/3506.htm
http://cmucam.org/
http://www.yaffs.net/

RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices 359

5. Bisson, T., Brandt, S.: Reducing energy consumption with a non-volatile storage
cache. In: Proc. of International Workshop on Software Support for Portable Stor-
age (IWSSPS), held with RTAS 2005, San Fransisco, CA (March 2005)

6. Bisson, T., Brandt, S.A., Long, D.D.E.: Nvcache: Increasing the effectiveness of
disk spin-down algorithms with caching. In: MASCOTS, Monterey, CA, September
2006, pp. 422–432 (2006)

7. Carrera, E., Bianchini, R.: Improving disk throughput in data-intensive servers.
In: HPCA 2004, Madrid, Spain (February 2004)

8. Dai, H., Neufeld, M., Han, R.: Elf: an efficient log-structured flash file system for
micro sensor nodes. In: SenSys 2004, Baltimore, MD, USA, pp. 176–187 (2004)

9. Iyer, S., Druschel, P.: Anticipatory scheduling: A disk scheduling framework to
overcome deceptive idleness in synchronous I/O. In: 18th ACM Symposium on
Operating Systems Principles, Chateau Lake Louise, Banff, Canada (October 2001)

10. Kulkarni, P., Ganesan, D., Shenoy, P.: The case for multi–tier camera sensor net-
works. In: NOSSDAV 2005, Stevenson, Washington, USA, pp. 141–146 (2005)

11. Li, M., Ganesan, D., Shenoy, P.: Presto: feedback-driven data management in sen-
sor networks. In: NSDI 2006, San Jose, CA, p. 23 (2006)

12. Lumb, C., Schindler, J., Ganger, G.R., Riedel, E., Nagle, D.F.: Towards higher
disk head utilization: Extracting “free” bandwidth from busy disk drives. In: OSDI
2000, San Diego, CA, pp. 87–102 (2000)

13. Luo, L., Cao, Q., Huang, C., Abdelzaher, T., Stankovic, J.A., Ward, M.: Enviromic:
Towards cooperative storage and retrieval in audio sensor networks. In: ICDCS
2007, Washington, DC, USA, p. 34. IEEE Computer Society, Los Alamitos (2007)

14. Mumolo, E.: Prediction of disk arm movements in anticipation of future requests.
In: MASCOTS 1999, College Park, Maryland (October 1999)

15. Rahimi, M., Baer, R., Iroezi, O.I., Garcia, J.C., Warrior, J., Estrin, D., Srivastava,
M.: Cyclops: in situ image sensing and interpretation in wireless sensor networks.
In: SenSys 2005, San Diego, California, USA, pp. 192–204 (2005)

16. Woodhouse, D.: Jffs: The journalling flash file system. In: Proc. Ottawa Linux
Symp. (2001), http://sourceware.org/jffs2/

17. Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., Najjar, W.A.: Mi-
crohash: An efficient index structure for flash-based sensor devices. In: FAST 2005,
San Fransisco, CA (December 2005)

http://sourceware.org/jffs2/

Methods for Increasing Coverage in Wireless

Sensor Networks

Sunggu Lee and Younggyu Yang

Division of Electrical and Computer Engineering, Pohang University of Science and
Technology, San 31 Hyoja Dong, Pohang, South Korea

{slee,zhaoyue}@postech.ac.kr

Abstract. In a Wireless Sensor Network, it is important to be able to
maintain a sufficient level of coverage for a given target area. This paper
addresses the problem of determining how many and where to place ad-
ditional sensor nodes in order to increase the coverage from k to k + 1.
Several possible candidate solution methods for this problem are pro-
posed and evaluated using theoretical and simulation-based analysis.

Keywords: Wireless Sensor Network (WSN), Coverage, Algorithm.

1 Introduction

One of the most basic problems that must be addressed when working with
Wireless Sensor Networks (WSNs) is the issue of the level of coverage provided
by a set of WSN nodes. Since a WSN is most often used for “sensing” events
of interest in a target area, coverage normally refers to sensing coverage. Given
a target area being monitored by a set of WSN nodes, the area is said to be
covered if any location within that area is within the sensing range of at least
one WSN node.

More generally, a target area can be defined as being k-covered if any location
within that area is within the sensing range of at least k WSN nodes. Depending
on the WSN application, it may be necessary for an area to be k-covered with
k > 1. For example, triangulation-based localization techniques require an object
to be sensed by at least three WSN nodes. If localization is required within a
3-dimensional space, then four distance measurements are necessary (implying
a coverage level of k = 4). Fault-tolerance requirements may dictate the use of a
coverage level higher than the minimum for a particular application. Also, since
energy conservation is critical for many WSN applications, it may be necessary
for a region to be k-covered with k ≥ 2 in order to be able to periodically place
sets of nodes in suspended mode.

There are several ways in which WSN nodes could be positioned within a tar-
get area such that it is k-covered with a prespecified k value. If WSN nodes can
be exactly positioned, then specific optimal layout patterns exist for several dif-
ferent types of areas and sensing coverage fields. For instance, if a 2-dimensional
rectangular area and circular sensing coverage fields with identical radii are as-
sumed, then a hexagonal beehive-type layout (such as that used for cell phone

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 360–368, 2008.
c© IFIP International Federation for Information Processing 2008

Methods for Increasing Coverage in Wireless Sensor Networks 361

networks) is clearly optimal. In many applications, however, WSN nodes cannot
be exactly positioned. This could be the case with WSN nodes spread out over
rugged terrain or extremely large numbers of WSN nodes deployed over a short
time interval. However, given such a set of haphazardly-placed WSN nodes, it
may still be possible to add WSN nodes at specific locations such that the target
area becomes k-covered. Following discussion of related work in Section 2, this
problem will be formalized, and several candidate solutions proposed and ana-
lyzed, in Section 3. Then, to further assess these candidate solutions, simulation
results will be presented and analyzed in Section 4. Finally, conclusions will be
drawn in Section 5.

2 Previous Related Work

There are several approaches related to obtaining a desired level of coverage
for a sensing field. In [1], three general models are used to define the coverage
problem. The first model is the binary model, where each sensor’s coverage region
is modeled by a disk. The second is the probabilistic model. An event that occurs
within the coverage range of a sensor is either detected or not detected by the
sensor depending on a probability distribution. The last model considers the
coverage problem by considering the movement of targets through the sensing
field.

To determine either a given region is k-covered or not, the coverage of each
region must be computed. An approximate solution for evaluating the coverage
of each region involves dividing the entire sensing field into 1m x 1m patches.
The coverage of a given region is approximated by measuring the number of
active sensors that cover the patches within that region. Although this method
is simple, managing the coverage values for all patches is a computationally heavy
requirement. In [2], an alternative solution is proposed. Rather than determining
the coverage of each patch, their solutions are based on checking the perimeter
of each sensor’s sensing range. An advantage of this solution is that it can be
easily translated to a distributed protocol.

There are several methods used to obtain a desired level of coverage for a
sensing field. [3] proposes a mechanism for step-by-step sequential deployment
given a random initial deployment of sensors within the region to be monitored.
The strategy consists of deploying a limited number of sensors at a time until
the desired minimum exposure level is achieved. Several criteria are used for the
efficient deployment of these sensors; however, the level of coverage achieved is
not considered. [4] presents protocols that can be used to dynamically configure
a network to achieve a guaranteed level of coverage and connectivity assuming
that sufficient numbers of sensors have been deployed.

The main difference between this paper and the prior research work discussed
above is that this work focuses on determining how many and where to place
additional sensor nodes in order to increase the coverage level from k to k + 1.
According to our survey of the public literature, this work is the first of its kind
to address this particular problem.

362 S. Lee and Y. Yang

3 Problem Definition and Candidate Solutions

Let us assume a set of WSN nodes G = {w1, w2, ..., wn}. The sensing range of
a node wi ∈ G is modeled by a circular disk with radius ri. For simplicity, let
us also assume that ri = rj for all wi, wj ∈ G (uniform circular sensing ranges).
However, note that, as described in [2], coverage computation for nonuniform
and irregularly-shaped sensing ranges can be achieved using simple extensions
to the techniques used for uniform circular sensing ranges. In a like manner,
the techniques presented in this paper can be extended to other sensing range
models.

Given a uniform circular sensing range model, a set of haphazardly-placed
nodes results in a set of regions formed by the intersection of the sensing range
circles of nodes wi ∈ G. Each such region can be labeled with a “coverage” value
corresponding to the number of nodes that can detect events within that region.
Fig. 1 shows an example of a set of haphazardly-placed nodes and the resulting
coverage values.

Fig. 1. A set of haphazardly-placed nodes and the resulting coverage values

Definition 1. A coverage region CRl is a contiguous area formed by the inter-
sections of sensing range circles and the boundary of the target area A.

Definition 2. A coverage value CVl is a nonnegative integer corresponding to
the number of nodes that can detect events that occur within coverage region
CRl.

Definition 3. A node wi ∈ G covers a coverage region CRl if wi can sense any
event that may occur within CRl.

Methods for Increasing Coverage in Wireless Sensor Networks 363

Definition 4. The coverage level CL of a set of nodes G is the minimum of the
coverage values within the target area A covered by the nodes in G.

Definition 5. The intersection point set IPl of a coverage region CRl is the
set of points at the boundaries of CRl where two or more sensing range circles
or the boundary of the target area A intersect.

Given the above definitions, let us define the problem to be solved. Let us assume
that there are a set of initially-placed WSN nodes G used to sense events of
interest within a target area A. There are no limitations on the manner in which
these nodes are placed. Thus, in general, we can assume that these nodes are
initially deployed in a semi-random haphazard manner. Methods such as those
introduced in [2] can be used to compute coverage regions, coverage values, and
the overall coverage level given the set of nodes G and the target area A. If
the coverage level is sufficient for a particular application, then there is nothing
more to be done. However, if the coverage level needs to be increased, then how
should additional nodes be deployed in order to reach the desired coverage level?
This problem can be stated more formally as follows.

Problem INCC (INCreasing Coverage)

Input: A target area A, a set of initially-placed nodes G, a set of coverage regions
(with coverage values), the coverage level CL and the desired coverage level CL∗,
with CL∗ > CL.
Output: A set of additional nodes G∗ and their locations within A. G+G∗ should
have a coverage level of CL∗.

Can the INCC problem be solved in an optimal manner in polynomial time?
As discussed in the introduction, if a regular target area is used, the coverage
ranges of all nodes are identical and regular and the nodes in G are deployed
in a specific layout pattern, then optimal solutions can found in many cases by
using predefined optimal layout patterns. However, in the general case, this is
clearly a very difficult problem. More formally, it can be shown that the INCC
problem is NP-hard. The proof of this statement follows from the fact that the
Knapsack Problem, which is a well-known NP-hard problem [5], can be reduced
(in polynomial time) to a restricted form of the INCC problem.

Several different heuristic solutions can be proposed for the INCC problem.
One simple candidate solution is the the random method, in which additional
nodes are placed randomly in the target area A until the desired coverage level
is reached. However, as will be shown in our simulation results, the random
method is close to the worst solution method that can be used. Better solutions
should result if coverage regions and coverage values are taken into account.
As shown in [6], intersection point sets (Defn. 5) can be useful in determining
the WSN node sleep cycles to be used for energy conservation. Thus, taking a
hint from their method, let us also consider the use of intersection point sets in
determining the placement of additional nodes used to solve the INCC problem.

364 S. Lee and Y. Yang

With these considerations, the following candidate solutions are proposed for
the INCC problem.

Algorithm Random:

0: Let G∗ = ∅.
1: Choose a location at random within the target area A.
2: Place a new node wm at that location (G∗ = G∗ + wm) and recompute CL.
3: If CL ≥ CL∗, then stop. Otherwise, go back to Step 1.

Algorithm LowCoverage:

0: Assume CL > 0. Let G∗ = ∅, T = {CRl|CVl = CL}.
1: Let CRi = first element of T , T = T − CRi.
2: Choose any node wi ∈ G ∪ G∗|wi covers CRi.
3: Create a new node wm and place it at the same location as wi. Let G∗ =

G∗ + wm.
4: If |T | > 0, go back to Step 1.
5: Recompute the coverage level CL with G + G∗. If CL ≥ CL∗, stop. Other-

wise, let T = {CRl|CVl = CL} and go back to Step 1.

Algorithm MaxIP:

0: Let G∗ = ∅, T = {CRl|CVl = CL}.
1: Let CRi = an element of T with the maximum number of intersection points,

T = T − CRi.
2: Create a new node wm and place it at the “center of mass” of the intersection

points in CRi (G∗ = G∗ + wm).
3: If |T | > 0, go back to Step 1.
4: Recompute the coverage level CL with G + G∗. If CL ≥ CL∗, stop. Other-

wise, let T = {CRl|CVl = CL} and go back to Step 1.

Algorithm MaxIPinc:

0: Let G∗ = ∅, T = {CRl|CVl = CL}.
1: Let CRi = an element of T with the maximum number of intersection points.
2: Create a new node wm and place it at the “center of mass” of the intersection

points in CRi (G∗ = G∗ + wm).
3: Recompute the coverage level CL with G + G∗. If CL ≥ CL∗, stop. Other-

wise, let T = {CRl|CVl = CL} and go back to Step 1.

Algorithm MaxCV:

0: Let G∗ = ∅, maxCV = maximum CVl value, T = {CRl|CVl = maxCV }.
1: Let CRi = an element of T with the maximum number of intersection points.

Methods for Increasing Coverage in Wireless Sensor Networks 365

2: Create a new node wm and place it at the “center of mass” of the intersection
points in CRi (G∗ = G∗ + wm).

3: Recompute the coverage level CL with G + G∗. If CL ≥ CL∗, stop. Other-
wise, let T = {CRl|CVl = CL} and go back to Step 1.

The motivation behind the above algorithms is as follows. The Random algo-
rithm is the simplest to implement since it uses random new node deployment.
The LowCoverage algorithm is a simple method for ensuring that the coverage
level is increased in a systematic manner. It has the following property.

Theorem 1. Suppose CL = 1 and CL∗ = 2. Then Step 5 of the LowCover-
age algorithm will be executed only once. In addition, the minimum coverage
value will not increase until the last iteration (inner loop) of the LowCoverage
algorithm.

Proof. In Step 1, T is defined as the set of coverage regions CRl with the same
coverage value as CL. By placing one new node at the same location as an
existing node that covers a CRl in T , CVl will increase by one. This new node will
not cover any other coverage region in T since the initial minimum coverage value
(which is the same as the initial CL) is 1. Thus, with each inner-loop iteration
of the LowCoverage algorithm, exactly one element of T will have its coverage
value increased by one. When Step 5 is reached, all elements of T will have been
traversed. Thus, the coverage level will increase at this point and the algorithm
should terminate since CL∗ = CL + 1. Finally, as long as elements remain in T ,
those elements will have their old coverage values. This proves the second part of
the theorem.

The MaxIP algorithm places a new node at the “center of mass”1 [7] of the
intersection points of a coverage region with the minimum coverage value. This
is done for all coverage regions with the minimum coverage value. However, even
after all such regions have been covered, it is still possible for new smaller regions
to be formed that still have the old minimum coverage value. Thus, this process
needs to be repeated until the coverage level increases to the desired value.
MaxIPinc is an “incremental” form of the MaxIP algorithm that recomputes
the coverage level after each new node has been added.

Finally, in the MaxCV algorithm, we consider the possibility of placing new
nodes within the coverage regions with the largest coverage values. The reasoning
behind this strategy is that new nodes placed at such locations should have the
“biggest” potential impact since they will impact the largest number of other
coverage regions. However, simulations with this algorithm revealed that this
impact was “negative” in most cases. Thus, the MaxCV algorithm could be
considered as a “worst-possible” solution (useful for comparison purposes) for
the INCC problem.

1 The “center of mass” of a system of particles is a specific point at which, for many
purposes, the system’s mass behaves as if it were concentrated.

366 S. Lee and Y. Yang

4 Simulation Analysis

Computer simulations were used to compare the proposed solutions for the INCC
problem. A square target area (X meters on a side) was assumed. An initial set
of WSN nodes were generated randomly within this area until a specific initial
coverage level CL was achieved. However, in order to avoid extreme clustering
of WSN nodes (we would also want to avoid such clustering in most practical
application scenarios), if a newly generated random node was found to fall within
the sensing region of an existing node (or E existing nodes in the more general
case), then that newly generated node was discarded and another node generated
randomly. The sensing range of all WSN nodes were assumed to be identical
and in the shape of a circular disk with radius R. Simulation experiments were
conducted with all of the proposed algorithms and various values for the X , CL
and R parameters.

Fig. 2 shows the simulation results for all five proposed algorithms given
X = 40m (40m × 40m target area) and R = 5m (sensing radius). This figure
shows the trends in performance (number of additional nodes required to increase
the coverage level by one) of the various algorithms as the initial coverage level
CL is increased. The MaxCV algorithm was found to perform so poorly that it
was not able to complete in a reasonable amount of time given CL > 2. The
MaxCV and Random algorithms were found to perform significantly worse than

Fig. 2. Number of additional nodes required to increase CL to CL + 1 given a 40m ×
40m target area and WSN nodes with 5m sensing radii

Methods for Increasing Coverage in Wireless Sensor Networks 367

Fig. 3. Number of additional nodes required to increase CL = 1 to CL∗ = 2 (given
sensing radius R = 5m) versus X (assuming an X × X target area)

the LowCoverage, MaxIP and MaxIPinc algorithms. The MaxIPinc algorithm
was found to perform the best.

In order to investigate the trends in performance as the size of the target area
was increased, simulations were conducted with fixed CL and R and varying
X parameter values. Fig. 3 shows these results for the Random, LowCoverage,
MaxIP and MaxIPinc algorithms. The MaxCV algorithm was not simulated as
its performance was found to be significantly poorer than all other algorithms
(except the Random algorithm in certain situations), as demonstrated in the
plot of Fig. 2. The results of Fig. 3 showed a linear increase in the number of
additional nodes required to increase the coverage level by one (versus X , the
length of one side of the target area) for the LowCoverage, MaxIP and MaxIPinc
algorithms. The relative performance of all algorithms was the same as in Fig. 2.

5 Concluding Remarks

This paper investigated the problem of increasing the minimum sensing coverage
value in a target area populated with wireless sensor network (WSN) nodes. By
ensuring a minimum sensing coverage value, referred to as the coverage level CL,
any event that occurs anywhere within the target area can be monitored by at
least CL nodes. Alternatively, given CL > 1, subsets of the nodes can be placed
in sleep mode in order to conserve energy and thereby extend the lifetime of the
WSN.

The coverage level issue has been approached by investigating the problem of
determining how many and where to deploy additional nodes in order to increase

368 S. Lee and Y. Yang

the coverage level to a specific desired value. A system model has been developed
and the above problem has been formally defined. Five candidate solution meth-
ods have been proposed, including a deterministic method that can guarantee
a coverage level increase of one with a fixed number of additional nodes. Sim-
ulation studies show that a policy of incrementally deploying additional nodes
in regions with large numbers of intersecting sensing range circles results in the
best overall performance.

References

1. Wu, S.-L., Tseng, Y.-C.: Wireless Ad Hoc Networking. Auerbach Publications (Tay-
lor and Francis), Boca Raton (2007)

2. Huang, C.-F., Tseng, Y.-C.: The Coverage Problem in a Wireless Sensor Network.
In: Proc. of the 2nd ACM international conference on Wireless sensor networks and
applications (WSNA), San Diego, California, USA, pp. 115–121 (2003)

3. Clouqueur, T., Phipatanasuphom, V., Ramanathan, P., Saluja, K.K.: Sensor De-
ployment Strategy for Target Detection. In: Proc. International Workshop Wireless
Sensor Networks and Application, pp. 42–48 (2002)

4. Wang, X., Xing, G., Lu, C., Pless, R., Gill, C.: Integrated Coverage and Connectivity
Configuration in Wireless Sensor Networks. In: Proc. the 1st international conference
on Embedded networked sensor systems (SenSys), Los Angeles, California, USA, pp.
28–39 (2003)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman and Co., New York (1979)

6. Huang, C.-F., Lo, L.-C., Tseng, Y.-C., Chen, W.-T.: Decentralized Energy-
Conserving and Coverage-Preserving Protocols for Wireless Sensor Networks. In:
Proc. IEEE International Symposium on Circuits and Systems (ISCAS), vol. 1, pp.
640–643 (2005)

7. Wikipedia, http://en.wikipedia.org/

http://en.wikipedia.org/

Locks Considered Harmful:
A Look at Non-traditional Synchronization�

Michel Raynal

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
raynal@irisa.fr

Abstract. This paper considers the implementation of concurrent objects in sys-
tems prone to asynchrony and process failures. It first shows that lock-based so-
lutions have drawbacks that can make them redhibitory for systems deployed
in very demanding environments, such as embedded systems. Then, considering
the adaptive renaming problem as a paradigm of coordination and synchroniza-
tion problems, the paper investigates wait-free implementations of an adaptive
renaming object (wait-free means that these implementations do not rest on locks
or waiting loops). This problem consists in assigning new distinct names (to the
subset of processes that want to acquire a new name) in such a way that the new
name space be as small as possible.

The best that can be done in asynchronous systems prone to process crashes,
and where the processes communicate only through read/write atomic registers,
is a new naming space of size M = 2p − 1, where p is the number of processes
that want to acquire a new name (whatever the number of processes in the sys-
tem). An algorithm providing such an optimal renaming space is described. Then,
it is shown how the use of “additional power” such as appropriate failure detec-
tors, or synchronization primitives stronger than read/write operations, allows to
bypass the 2p − 1 lower bound.

Keywords: Adaptive renaming, Asynchronous system, Atomic register, Concur-
rency, Failure detector, Fault-tolerance, Lock-free synchronization, Process crash,
Shared memory system, Synchronization primitive, Wait-free computation.

1 Introduction

From mastering sequential algorithms to mastering concurrency The study of algo-
rithms lies at the core of informatics, and participate in establishing it as a science
with strong results on what can be computed (decidability) and what can be efficiently
computed (complexity). It is consequently unanimously accepted by the community
that any curriculum for undergraduate students has to include lectures on sequential
algorithms. This allows the students not only to better master the basic concepts, mech-
anisms, techniques, difficulties and subtleties that underlie the design of algorithms, but
also understand the deep nature of computer science and computer engineering.

Up to now, the implementation of concurrent objects (objects that can be concur-
rently accessed by several processes -or threads-) is mainly based on the use of locks.

� This work was supported by the European Network of Excellence ReSIST.

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 369–380, 2008.
c© IFIP International Federation for Information Processing 2008

370 M. Raynal

More precisely, a lock is associated with each concurrent object O, and each operation
accessing the internal representation of O (e.g., a push() operation on a shared stack)
is required to first lock the object O (thereby preventing the internal representation
from being concurrently accessed) and finally to release the corresponding lock when it
terminates.

Albeit (at first glance) the use of locks is relatively simple, it has several drawbacks.
When locks are used only at a large grain level they can severely reduce parallelism,
while using them at a fine grain level is error-prone. Moreover, whatever the grain level,
lock-based solutions are deadlock prone. A more severe drawback lies in the fact that, in
asynchronous systems, locks cannot cope with process crashes. This is because, when
the only means processes have to communicate is read/write atomic registers, a slow
process (whose slowness can be due to interrupts, swapping, etc.) cannot be distin-
guished from a process that has crashed. These drawbacks can make locks harmful or
even irrelevant for some applications, and become redhibitory for some classes of em-
bedded applications. A new look at synchronization concepts and techniques is hardly
needed. So, the algorithmics of synchronization has to be revisited.

Adaptive renaming as a paradigm for non-traditional synchronization. This paper con-
siders the renaming problem to illustrate non-traditional synchronization concepts and
mechanisms that need to be understood and mastered when one wants to implement
concurrent objects while preventing the previously cited drawbacks related to the use
of locks.

Let us consider a set of processes, each process having an initial name (taken from a
large name space). The adaptive renaming problem consists in designing an algorithm
that, despite asynchrony and process failures, allows processes to acquire new (distinct)
names. Moreover, the new name space has to be as small as possible (in the following
M denotes the size of the new name space). This means that M has to depend only on
the number of processes that want to acquire a new name, and not on their total number
of processes (that can be arbitrary).

The adaptive renaming problem is a paradigm of resource allocation problems: the
new names are the resources acquired by the processes. The fact that no two processes
can acquire the same new name gives it a mutual exclusion flavor. This problem has a
simple lock-based solution: namely, a shared register that contains an integer, increased
by one each time it is accessed, and protected by a lock, can be used to generate new
names. Interestingly, this implementation is adaptive (the value of M depends only on
the number of processes that compete to acquire a new name). Moreover, this size is
optimal: if p processes want to acquire a new name, M is as small as possible, i.e., we
have M = p. Unfortunately, as indicated before, as it is lock-based, this solution cannot
cope with the net effect of asynchrony and process crashes.

Wait-free adaptive renaming. A wait-free algorithm is an algorithm that allows each
process that does not crash to terminate in a finite number of computation steps, what-
ever the behavior of the other processes (i.e., despite the fact they are extremely rapid
or slow, or even have crashed) [13]. So, a wait-free implementation of an object means
absence of starvation despite asynchrony and process crashes. Trivially, a wait-free im-
plementation cannot be lock-based.

Locks Considered Harmful: A Look at Non-traditional Synchronization 371

Let p be the number of processes that require a new name. It has been shown [14]
that in a system where the processes can communicate through atomic registers only,
the size of the smallest new name space that can be obtained by a wait-free algorithm
is M = 2p − 1. This shows that, due to asynchrony and failures, there is an inherent
price that has to be paid in asynchronous read/write shared memory systems, namely,
the size of the new name space is M = p + (p − 1), i.e., p (the smallest size that can
never be bypassed) plus (p−1). The quantity (p−1) is consequently the smallest price
to be paid to master the inherent uncertainty created by the combination of asynchrony
and failures in systems where processes communicate through atomic registers only.

It is important to see that adaptivity means the following. If “today” p′ processes
want to acquire a new name, their new names belong to the interval [1..2p′ − 1]. If
“tomorrow”, p′′ additional processes want to acquire a new name, their new names will
be distinct from the previous ones and will belong to the interval [1..2p − 1] where
p = p′ + p′′.

Content of the paper. In order to investigate and illustrate non-traditional synchro-
nization (i.e., synchronization that is not based on locks) the paper considers several
wait-free implementations of an adaptive renaming object. The paper is made up of 7
sections. Section 2 first presents the system model, and Section 3 presents the adap-
tive renaming problem. Then, Section 4 presents a simple basic adaptive renaming [6]
that provides an optimal new name space (i.e., M = 2p − 1 where p is the number of
processes that participate in the renaming).

In the previous algorithm, processes communicate only through atomic registers. On
another side, we know that we can obtain M = p when the processes can additionally
use locks. So, an important question is the following: How to enrich the system in order
to provide a new renaming space whose size is smaller than 2p − 1 while ensuring that
the implementation remains wait-free? The paper presents two such approaches.

– Section 5 considers that the processes are provided with an appropriate failure de-
tector and presents a corresponding adaptive renaming algorithm such that M =
p + k − 1, where k is parameter that capture the power of the underlying failure
detector.

– Differently, Section 6 considers that the system provides the processes with syn-
chronization primitives more powerful than the basic atomic read/write operations.
It shows that, in that case, the size of the new name space directly depends on the
“power” of the synchronization primitive. The paper considers three such synchro-
nization primitives, namely, test&set, k-set agreement and compare&swap.

Finally, Section 7 concludes the paper. It is important to notice that that paper can be
considered from two complementary point of views. On one side, it presents a non-
traditional view for synchronization in embedded systems, and new algorithms. On
another side, it has a survey flavor that tries to capture the main issues of a new emerging
research topic.

2 Base System Model

Process model. The system consists of n processes that we denote p1, . . . , pn. The in-
teger i is the index of pi. Each process pi has an initial name idi. A process does not

372 M. Raynal

know the initial names of the other processes, it only knows that no two processes have
the same initial name. (The initial name is a particular value defined in pi’s initial con-
text.) The processes are asynchronous. This means that there is no bound on the time
it takes for a process to execute a computation step. A process may crash (halt prema-
turely). After it has crashed a process executes no step. A process executes correctly its
algorithm until it possibly crashes. A process that does not crash in a run is correct in
that run; otherwise, it is faulty in that run.

Communication model. The processes cooperate by accessing atomic read/write regis-
ters. Atomic means that each read or write operation appears as if it has been executed
instantaneously at some time between its begin and end events [15,16]. Each atomic
register is a one-writer/multi-readers (1WnR) register. This means that a single process
(statically determined) can write it. Atomic registers are denoted with uppercase let-
ters. The atomic registers are structured into arrays. X [1..n] being such an array, X [i]
denotes the register of that array that pi only is allowed to write. A process can have
local registers. Such registers are denoted with lowercase letters with the process index
appearing as a subscript (e.g., propi is a local register of pi). The notation ⊥ is used to
denote a default value.

The shared memory provides the processes with an atomic operation that is denoted
X.snapshot(), where X [1..n] is an array of atomic registers [1]. That operation allows
a process pi to atomically read the whole array X [1..n] (as if it was a single atomic
register). This means that the execution of X.snapshot() operation appears as if it has
been executed instantaneously at some point in time between its begin and end events.
Such an operation can be built from 1WnR atomic registers [1]. To our knowledge
the best snapshot() implementation proposed so far requires O(n log(n)) read/write
operations on base atomic registers [5].

3 Adaptive M -Renaming

The renaming problem has been introduced in [3]. Each process pi has an initial name
idi such that no two processes have the same initial name. These initial names are taken
from a set {1, . . . , N} such that n << N . Let new name() be the (only) operation
provided by an adaptive M -renaming object, i.e., an object that allows processes to
obtain new distinct names belonging to the interval [1..M] (1). The behavior of this
object (i.e., the the adaptive renaming problem) is defined by the following properties.
Let p denote the number of processes that invoke new name() (the set of participating
processes).

– Termination. If a correct process invokes new name() it obtains a new name.
– Agreement. No two processes obtain the same new name.
– Adaptivity. A new name belong to [1..M] where M is a function of p.
– Index independence. The behavior of a process is independent of its index.

The last property states that, if, in a run, a process whose index is i obtains the new
name v, that process would have obtained the very same new name if its index was j.

1 Trivially, whatever the operations the processes can use, there is no M -renaming object with
M < p.

Locks Considered Harmful: A Look at Non-traditional Synchronization 373

operation new name(idi):
(1) propi ← 1;
(2) while true do
(3) STATE [i] ←< idi, propi >;
(4) viewi ← STATE .snapshot();
(5) if (∀ j
= i : viewi [j].prop
= propi)
(6) then return (propi)
(7) else let X = {viewi [j].prop | (viewi [j].prop
= ⊥) ∧ (1 ≤ j ≤ n)};
(8) let free = the increasing sequence 1, 2, . . . , 2p − 1 from

which the integers in X have been suppressed;
(9) let Y = {viewi [j].old | (viewi [j].old
= ⊥) ∧ (1 ≤ j ≤ n)};
(10) let r = rank of idi in Y ;
(11) propi ← the rth integer in the increasing sequence free
(12) end if
(13) end while.

Fig. 1. Read/write (optimal) wait-free adaptive (2p − 1)-renaming [6]

This means that, from an operational point of view, the indexes define an underlying
communication infrastructure, namely, an addressing mechanism that can only be
used to access entries of shared arrays. Indexes cannot be used to compute new names.

4 A Read/Write Adaptive (2p − 1)-Renaming Algorithm

This section presents a simple adaptive M -renaming algorithm that provides the par-
ticipating processes with an optimal new name space, i.e., M = 2p − 1, when the
processes can cooperate through atomic registers only. This algorithm (due to Attiya
and Welch [6]) is an adaptation to asynchronous read/write shared memory systems of
a message-passing algorithm described in [3].

The communication medium: shared memory The shared memory is made up an ar-
ray of 1WnR atomic registers denoted STATE [1..n]. Each register STATE [i] is a
pair made up of two fields: STATE [i].old will contain the initial name of pi, while
STATE [i].prop will contain the last proposal of pi to acquire a new name. STATE [i]
can be written only by pi, and is initialized to < ⊥, ⊥ >.

The algorithm: underlying principle and description The algorithm is described in
Figure 1 (code for the process pi). The local register propi contains pi’s current proposal
for a new name. When pi invokes new name(idi), it sets propi to 1 (line 1), and enters
a while loop (lines 2-12). It exits that loop when it has obtained a new name (statement
return(propi) issued at line 6).

The principle of the algorithm is as follows. A new name can be considered as a slot,
and the processes compete to acquire a free slot in the interval of slots [1..2p−1]. After
entering the loop, a process pi first updates STATE [i] (line 3) in order to announce to
all the processes its current proposal for a new name (let us notice that it also implicitly
announces it is competing for a new name).

374 M. Raynal

Then, thanks to the snapshot operation on the shared memory (line 4), pi obtains a
consistent view of the system global state. This view is locally kept in the array viewi.
The behavior of pi then depends on the the consistent global state of the shared memory
it has obtained, more precisely on the value of the predicate ∀ j �= i : viewi [j].prop �=
propi. We consider both cases.

– Case 1: the predicate is true. This means that no process pj is competing with pi

for the new name propi. In that case, pi considers the current value of propi as its
new name (line 6).

– Case 2: the predicate is false. This means that several processes are competing to
obtain the same new name propi. So, pi construct a new proposal for a new name
and enters again the loop. This proposal is built from the consistent global state of
the system that pi has obtained in viewi .
The set X = {viewi [j].prop | (viewi [j].prop �= ⊥) ∧ (1 ≤ j ≤ n)}
(line 7) contains the proposals (as seen by pi) for a new name, while the set Y =
{viewi [j].old | (viewi [j].old �= ⊥) ∧ (1 ≤ j ≤ n)} (line 9) contains the initial
names of the processes that pi sees as competing for obtaining a new name.

The determination of a new proposal by pi is based on these two sets. First, pi

considers the sequence (denoted free) of the integers that are “free” and can conse-
quently be used to define a new name proposal (the sequence free contains at least
p empty slots). This sequence is the sequence of positive integers from which the
proposals in X have been suppressed (line 8). Then, pi computes its rank r among
the processes that (from its point of view) want to acquire a new name (line 9).
Finally, given the sequence free and r, pi defines its new proposal as its rank in this
sequence (this rank is r, i.e., its rank in the set of processes it sees as competing
processes).

A proof of this algorithm can be found in [6]. The proof that no two new names are the
same does not depend on the way the new names are chosen, it depends only on the fact
that all the STATE .snapshot() operations appear as if they were executed one after the
other. The fact that the new names belong to the interval [1..2p−1] depends on the way
the new names are chosen (lines 9-11).

5 Enriching the System with a Failure Detector

Considering a system where the processes can communicate through 1WnR atomic
registers (as before), this section shows that it is possible to bypass the (2p − 1) lower
bound when the processes are additionally provided with a failure detector of an ap-
propriate class. The main point is that the implementation remains wait-free. A failure
detector is a device that provides the processes with information on failures [8]. That
information can be more or less accurate according to the class (type) of the failure
detector.

To that end, a new class of failure detectors (denoted Ωk
∗) is first introduced. The

parameter k can be seen as measuring the strength of the failure detector. Then, a wait-
free adaptive renaming algorithm (introduced in [19]) that provides the processes with

Locks Considered Harmful: A Look at Non-traditional Synchronization 375

a name space whose size is M = min(2p − 1, p + k − 1) is presented. Interestingly,
this algorithm can be seen as generalization of the algorithm presented in the previous
section.

5.1 The Class Ωk
∗ of Failure Detectors

The class Ωk
∗ of failure detectors has been introduced in [20]. A failure detector of that

class provides the processes with a primitive denoted leader(). When a process invokes
that primitive, it provides a set X of processes as input parameter and obtains a non-
empty set of at least one and at most k processes. Let Π be the set of all the processes,
and Correct the set of processes that are correct in the considered run. The class Ωk∗
is made up of all the failure detectors that satisfy the following property for each set X
such that X ∩ Correct �= ∅:

– Eventual multi-leadership for each set X . There is a time after which all the invo-
cations leader(X) issued by correct processes return the same set LX and this set
is such that X ∩ Correct ∩ LX �= ∅.

The intuition that underlies this definition is the following. The set X passed as input
parameter by the invoking process pi is the set of all the processes that pi consid-
ers as being currently participating in the computation. Given a set X of participating
processes that invoke leader(X), the eventual multi-leadership property states that there
is a time after which these processes obtain the same set LX of at most k leaders, and at
least one of them is a correct process of X . Let us observe that the (at most k − 1) other
processes of LX can be any subset of processes (correct or not, participating or not).2

5.2 An Ωk
∗ -Based Adaptive M -Renaming Algorithm with

M = min(2p − 1, p + k − 1)

Shared memory. As before (algorithm described in Figure 1), the shared memory is
made up of an array STATE [1..n]. The only difference is that now each atomic register
STATE [i] is made up of three fields, STATE [i].old and STATE [i].prop (whose con-
tent and meaning are as before), plus a boolean STATE [i].done. That field, initialized
to false , is set to true by pi when it obtains its new name.

Process behavior. The algorithm executed by a process pi is described in Figure 2. A
process starts the renaming algorithm by setting a local flag denoted donei to false ,
and its current proposal for a new name to ⊥ (line 1). Then, it enters a repeat loop and
leaves it only when it has acquired a new name (lines 6, 16 and 17).

In the loop body, a process pi first writes its current state in STATE [i] to inform the
other processes about its current progress, and then atomically reads STATE (using the
snapshot() operation) to obtain a consistent view of the global state. If pi has already

2 If all invocations are such that X = Π and k = 1, Ωk
∗ boils down to the classical leader failure

detector (denoted Ω) that is the weakest failure detector that allows solving the consensus
problem [9]. Algorithms implementing leader failure detector in shared memory systems are
described in [10].

376 M. Raynal

operation new name(idi):
(1) propi ← ⊥; donei ← false;
(2) repeat
(3) STATE [i] ←< idi, propi, donei >;
(4) viewi ← STATE .snapshot();
(5) if (propi
= ⊥) ∧ (∀j
= i : viewi[j].prop
= propi)
(6) then donei ← true ; STATE [i] ←< idi, propi, donei >
(7) else contendingi ←

{viewi[j].old | (viewi[j].old
= ⊥) ∧ ¬(viewi[j].done)};
(8) leadersi ← leader(contendingi);
(9) if idi ∈ leadersi then
(10) let X = {viewi [j].prop | (viewi [j].prop
= ⊥) ∧ (1 ≤ j ≤ n)};
(11) let free = the increasing sequence 1, 2, . . . , 2p − 1 from

which the integers in X have been suppressed;
(12) let r = rank of idi in leadersi ;
(13) propi ← the rth integer in the increasing sequence free
(14) end if
(15) end if
(16) until donei end repeat;
(17) return(propi).

Fig. 2. An Ωk
∗ -based adaptive M -renaming with M = min(2p − 1, p + k − 1) [19]

determined a new name proposal and no other process pj has chosen the same new
name proposal (the predicate of line 5 is then satisfied), pi commits this last proposal
that becomes its new name by announcing it to the other processes (write of STATE [i]
at line 6), and returns that proposal as its new name (line 16).

In the other case (the predicate of line 5 is not satisfied), pi enters the lines 7-14 to
determine another new name proposal. To that end, pi first determines the processes that
are competing to have a new name. Those are the processes pj that, from pi’s point of
view, are participating in the renaming (namely, the processes pj such that my viewi[j]
.old �= ⊥) and have not yet obtained a new name (i.e., such that ¬(viewi[j].done)).
Before starting the next execution of the loop body, processes have to change their new
name proposal (otherwise, it could be possible that they loop forever). So, pi does the
following.

– After it has determined the set of processes it perceives as currently competing with
it, pi invokes leader(contendingi) to obtain a set of leaders (lines 7-8) associated
with this set contendingi of competing processes.

– If it does not appear in the current set of leaders, pi starts directly another execution
of the loop body. Let us notice that, in that case, pi’s new name proposal is not
modified.

– Differently, if it appears in the set of leaders (line 9), pi determines a new name pro-
posal before starting another execution of the loop body. This determination (done
similarly to the previous algorithm, Figure 1) consists for pi in first computing its
rank within the leader set, and then taking as new name proposal the first integer
that, from its point of view, is not used by the other processes (lines 12-13).

Locks Considered Harmful: A Look at Non-traditional Synchronization 377

Size of the new name space. The most interesting part of the proof is the part showing
that the size of the new name space is min(2p − 1, p + k − 1), where p is the number
of participating processes. Let pi be a process that returns a new name (line 17). The
new name obtained by pi is the last name it has proposed (at line 13 during the previous
iteration). When pi defined its last new name proposal, at most p − 1 other processes
have previously defined a name proposal, i.e., |{j : (j �= i) ∧ (viewi[j].prop �=
⊥)}| ≤ p − 1 (O1). Moreover, due to the definition of Ωk

∗ , when it defines its last new
name proposal, the rank of pi in leadersi is at most min(p, k) (O2). It follows from the
observations (O1) and (O2) that the last new name proposal computed by pi is upper
bounded by (p − 1) + min(p, k), i.e., M = min(2p − 1, p − 1 + k).

The proof of the termination and agreement properties are similar to the ones of the
previous algorithm. They can be found in [19].

6 Enriching the System with a Synchronization Primitive

This section considers the case where the asynchronous shared memory system is en-
riched with synchronization objects. This means that, in addition to read/write atomic
registers, the shared memory provides the processes with registers that can be accessed
by synchronization operations “stronger” than the base atomic read and write opera-
tions. Three types of synchronization objects are considered in the following, namely,
k-test&set objects, k-set agreement objects, and compare&swap objects.

6.1 Shared Memory Enriched with k-Test and Set Objects

One-shot k-test&set objects A k-test&set object provides the processes with a sin-
gle operation denoted TS competek(). “One shot” means that, given such an object, a
process can invoke that operation at most once (there is no reset operation). The invoca-
tions of TS competek() issued by the processes on such an object satisfy the following
properties:

– Termination. An invocation of TS competek() by a correct process terminates.
– Validity. The value returned by an invocation of TS competek() is 1 (winner) or 0

(loser).
– Agreement. At least one and at most k processes obtain the value 1.

The instance k = 1 does correspond to the usual test&set object proposed by some
processors. This object allows to elect exactly process from a set of processes. In
our context, as processes can crash, it is possible that some (or even all the) winner
processes are faulty.

The power of k-test&set objects when solving renaming. A wait-free adaptive algo-
rithm, based on read/write atomic registers and k-test&set objects, that provides a
renaming space of size M = 2p − � p

k � is described in [18]. This algorithm results
from an incremental construction (k-test&set objects are used to build intermediate k-
participating set objects, that are in turn used to build the renaming algorithm). Due to
space limitations, this construction is not described here.

378 M. Raynal

It is shown in [12] that M = 2p − � p
k� is the smallest new name space size that can

be obtained when one can use atomic registers and k-test&set objects only. It follows
that the algorithm described in [18] is optimal as far as the size of the renaming space
is concerned.

6.2 Shared Memory Enriched with k-Set Agreement Objects

k-set agreement objects. A k-set agreement object allows processes to propose values
and decide values. To that end such an object provides the processes with an operation
denoted SA proposek(). A process invokes that operation at most once on an object.
When it invokes SA proposek(), the invoking process supplies the value v it proposes
(input parameter). That operation returns a value w (called the value “decided by the
invoking process”; we also say that the process “decides w”). The invocations on such
an object satisfies the following properties:

– Termination. An invocation of SA proposek() by a correct process terminates.
– Validity. A decided value is a proposed value.
– Agreement. At most k distinct values are decided.

The power of kset agreement objects when solving renaming. A renaming algorithm,
based on atomic registers and k-set agreement objects is described in [11]. The size of
the new name space is M = p + k − 1 which has been shown to be optimal in [11,12].

It has been shown that the synchronization power of a k-set agreement object is
stronger than the one of a k-test&set object [12]. This difference in the synchronization
power translates directly in the size of the new name space3.

6.3 Shared Memory Enriched with Compare&Swap Objects

Compare&swap objects. In a precise sense (based on the consensus number
theory [13]), a compare&swap object belongs to class of the strongest synchronization
objects. Such an object CS is initialized to some value (say ⊥) and can be accessed
only through an atomic operation denoted Compare&Swap() that takes two inputs pa-
rameters and returns a value. Its effect can be described by the following specification:

operation Compare&Swap(old, new):
prev ← CS; if (CS = old) then CS ← new end if; return(prev).

Optimal renaming space from compare&swap objects. It is possible to design a very
simple renaming algorithm whose renaming space is M = p (i.e., M is the small-
est renaming space that can be obtained whatever the synchronization power we are
provided with), as soon as the processes can communicate through atomic read/write
registers and compare&swap objects.

3 It is easy to see that (1) for k = 1 we have p + k − 1 = 2p − � p
k
, and (2) ∀k : 1 < k <

n − 1, ∀p : 1 ≤ p ≤ n we have p + k − 1 ≤ 2p − � p
k
, and there are values of p such that

p + k − 1 < 2p − � p
k
.

Locks Considered Harmful: A Look at Non-traditional Synchronization 379

operation new name(idi):
(1) for x from 1 to n do
(2) r ← CS[x].Compare&Swap(⊥, idi);
(3) if (r = ⊥) then return(x) end if
(4) end for.

Fig. 3. A (optimal) compare&swap-based adaptive p-renaming algorithm

Such a (very simple) wait-free adaptive renaming algorithm is described in
Figure 3. It uses an array CS[1..n] of underlying compare&swap objects, each ini-
tialized to ⊥, and consists of a simple loop. During the xth iteration, the process pi

invokes CS[x].Compare&Swap(⊥, idi). If it succeeds in switching CS[x] from its ini-
tial value ⊥ to its old name idi, the process pi adopts x as its new name and stops
looping (line 3). Otherwise, the process pi proceeds to the next iteration step and then
invokes CS[x + 1].Compare&Swap(⊥, idi).

It is easy to see that, at each iteration step, exactly one process “wins” by writing its
initial name in the compare&swap object associated with that iteration step. It follows
that if p processes want to acquire a new name, at most p iterations of the loop will be
executed, hence M = p. Let us finally notice that replacing n in the for loop by +∞
(line 1), and assuming as many compare&swap base objects as participating processes,
gives an adaptive renaming algorithm that works for any number of processes.

7 Conclusion

The aim of this paper was to show that lock-based solutions have inherent drawbacks
that make them irrelevant for some applications where live synchronization in presence
of asynchrony and process crashes is crucial. To cope with this problem, the wait-free
approach has been presented and illustrated with a problem that is paradigm of synchro-
nization in presence of failures and asynchrony, namely, the adaptive renaming problem.
A simple solution based on read/write atomic registers has been presented. This solu-
tion provides a new name space whose size is M = 2p − 1 where p is the number of
participating processes. The paper has then shown how this “read/write” lower bound
can be circumvented when, in addition to atomic registers, one can benefit from an ap-
propriate failure detector, or from synchronization primitives such as k-test&set, k-set
agreement or compare&swap.

The renaming problem has given rise to a large literature. In addition to the papers
previously cited in this text, the interested reader can have a look at the following (non-
exhaustive) list of articles [2,4,7,17] that shed additional light on the problem.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic Snapshots of Shared
Memory. Journal of the ACM 40(4), 873–890 (1993)

2. Afek, Y., Merritt, M.: Fast, Wait-Free (2k − 1)-Renaming. In: Proc. 18th ACM Symposium
on Principles of Distributed Computing (PODC 1999), pp. 105–112. ACM Press, New York
(1999)

380 M. Raynal

3. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asynchronous
Environment. Journal of the ACM 37(3), 524–548 (1990)

4. Attiya, H., Fouren, A.: Adaptive and Efficient Algorithms for Lattice Agreement and Re-
naming. SIAM Journal of Computing 31(2), 642–664 (2001)

5. Attiya, H., Rachman, O.: Atomic Snapshots in O(n log n) Operations. SIAM Journal on
Computing 27(2), 319–340 (1998)

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Top-
ics, 2nd edn., 414 pages. Wiley-Interscience, Chichester (2004)

7. Borowsky, E., Gafni, E.: Immediate Atomic Snapshots and Fast Renaming. In: Proc. 12th
ACM Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–51 (1993)

8. Chandra, T., Toueg, S.: Unreliable Failure Detectors for Reliable Distributed Systems. Jour-
nal of the ACM 43(2), 225–267 (1996)

9. Chandra, T., Hadzilacos, V., Toueg, S.: The Weakest Failure Detector for Solving Consensus.
Journal of the ACM 43(4), 685–722 (1996)

10. Fernandez Anta, A., Jimenez, E., Raynal, M., Travers, C.: A Timing Assumption and two
t-Resilient Protocols for Implementing an Eventual Leader Service in Asynchronous Shared
Memory Systems. Algorithmica (to appear, 2008)

11. Gafni, E.: Renaming with k-set Consensus: an Optimal Algorithm in n + k − 1 Slots. In:
Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 36–44. Springer, Heidel-
berg (2006)

12. Gafni, E., Raynal, M., Travers, C.: Test&set, Adaptive Renaming and Set Agreement: a
Guided Visit to Asynchronous Computability. In: 26th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS 2007), pp. 93–102. IEEE Press, Los Alamitos (2007)

13. Herlihy, M.P.: Wait-Free Synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

14. Herlihy, M.P., Shavit, N.: The Topological Structure of Asynchronous Computability. Journal
of the ACM 46(6), 858–923 (1999)

15. Herlihy, M.P., Wing, J.M.: Linearizability: a Correctness Condition for Concurrent Objects.
ACM TOPLAS 12(3), 463–492 (1990)

16. Lamport, L.: On Interprocess Communication, Part II: Algorithms. Distributed Comput-
ing 1(2), 86–101 (1986)

17. Moir, M.: Fast, Long-Lived Renaming Improved and Simplified. Science of Computer Pro-
gramming 30, 287–308 (1998)

18. Mostéfaoui, A., Raynal, M., Travers, C.: Exploring Gafni’s Reduction Land: from Ωk to
Wait-free Adaptive (2p − � p

k
)-Renaming via k-Set Agreement. In: Dolev, S. (ed.) DISC

2006. LNCS, vol. 4167, pp. 1–15. Springer, Heidelberg (2006)
19. Mostéfaoui, A., Raynal, M., Travers, C.: From Renaming to k-Set Agreement. In: Prencipe,

G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 66–80. Springer, Heidelberg (2007)
20. Raynal, M., Travers, C.: In Search of the Holy Grail: Looking for the Weakest Failure De-

tector for Wait-free Set Agreement (Invited talk). In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 3–19. Springer, Heidelberg (2006)

From Model Driven Engineering to
Verification Driven Engineering

Fabrice Kordon1, Jérôme Hugues2, and Xavier Renault1

1 Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

xavier.renault@lip6.fr, fabrice.kordon@lip6.fr
2 GET-Télécom Paris – LTCI-UMR 5141 CNRS

46, rue Barrault, F-75634 Paris CEDEX 13, France
jerome.hugues@enst.fr

Abstract. The definition and construction of complex computer-based systems
require not just software engineering knowledge, but also many other domain-
specific techniques to ensure many system’s functional and non-functional prop-
erties. Hence, there is a trend to move away from programming languages to
models on which one can reason: model-driven engineering. Yet, this remains
a complex task: one need to master many techniques. In this paper, we claim
that MDE is incomplete: it is “just” an implementation framework to support
advanced model-based techniques, verification of systems non-functional prop-
erties, code generation, etc. There is a conceptual gap to fill to know “what” to
do with models. We propose to switch from MDE to VDE: Verification-Driven
Engineering, so that the user knows how to model a system to analyze it. We sum
up existing techniques and their relevant application domains.

1 Introduction

Industry-critical applications are facing multiple dimensions challenges: increasing in-
teraction patterns from traditional one-to-one to large scale peer-to-peer interaction;
support for multiple level of assurance like security, reliability, timeliness. A synthesis
of these challenges is faced by ubiquitous-like systems, which increase complexity due
to their massively parallel execution and the variety of participants (infrastructure, ser-
vice provider, user peers, etc). The notion of quality is therefore hard to define and must
reflect both the notion of service provided, and corresponding level of support to meet
user expectations in terms of cost and criticality such as mission or life-critical.

There is a trend to extend classical development methods to reduce such complexity.
Model Driven Engineering (MDE) proposes a first step to reach that goal by using
models (specifications) at every stage of the software life cycle [54]. This approach is
also called MDD for Model Driven Development [55]. Development becomes “model
centric”. Eventhough this idea seems appealing, some issues are raised.

In a MDE setting, the engineer first models a system, implements and validates it.
Testing distributed programs cannot be done easily due to the interleaving of several
instruction flows. Some more adequate abstraction is needed to perform reasoning on
the system and deduce undesired behavior or situations. As such, exploitation of models

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 381–393, 2008.
c© IFIP International Federation for Information Processing 2008

382 F. Kordon, J. Hugues, and X. Renault

in a MDE approach means nothing if the underlying techniques to process the model
are not efficient enough, or even non-existent.

It is now well accepted that traditional simulation approaches are not satisfactory
when applied to models: it is impossible to compute properties or systematically detect
unexpected situations. There is a need for formal methods to reason on specifications.

However, using formal methods is more difficult that one could expect [29], even if
maturity in that domain grows (industrial tools are now available such as Atelier-B [5] or
SCADE [26]). There is still a methodological issue for engineers who are not specialists
of formal methods but want to use them to validate some aspects of their system. The
key challenge is to know how to select techniques, to determine when these techniques
are relevant and what benefits we can expect from the existing tools.

Hence, we propose to move from MDE (Model Driven Engineering) to VDE (Verifi-
cation Driven Engineering). In this context, we claim that one need to consider Model-
Driven Engineering as a generic framework in which verification plays a specific role at
several points in the development, from early validation phase up to in-depth analysis,
with benefits to quality of system to certification.

One key guideline is to provide verification facilities to system designers. Since there
is no “silver bullet”, we must also provide enough information to help picking up the
correct technique and tools. Hence, the formal method community must provide a clas-
sification of verification techniques, and a methodological framework so that designer
can select the appropriate techniques to verify model. Finally, one must find a way to
ease the use of these appropriate notations (e.g. automata, lemmas, etc.), probably by
using some dedicated language(s).

The objective of this paper is first to sum up existing formal verification techniques,
discuss their trade-off and see how and when they can meet engineering needs. Section 2
presents existing elements in MDE to be considered for VDE and section 3 proposes
our vision of VDE.

2 Building Blocks from MDE

In this section, we list existing methods and processes one can apply to build complex
systems. Through MDE, one may process its model and analyze it, generate code on
testbed or final hardware. Still, the question of building a processable model remains.

2.1 From Models to Model Driven Engineering

The use of models is a typical step in many engineering domains, e.g. civilian engineer-
ing use models for building bridges. Surprisingly, it expanded through the software do-
main only recently through OMG’s UML. It becomes of particular benefits for complex
software because it helps to understand a complete problem and its potential solutions
through different levels of abstraction.

As authors in [55] advocate: Model-driven development methods were devised to
take advantage of this opportunity, and the accompanying technologies have matured
to the point where they are generally useful. A key characteristic of these methods is
their fundamental reliance on automation and the benefits that it brings. However, as

From Model Driven Engineering to Verification Driven Engineering 383

with all new technologies, MDD’s success relies on carefully introducing it into the
existing technological and social mix.

The base concept of MDE is the model itself, built upon a meta-model which defines
guidelines and constraints on valid models: allowed components, composition of com-
ponents and related semantics checks. This view expands from the compiler-vision of
programs based on a Backus-Naur formalism.

A model is nothing but a set of well-formed entities. To process the model and per-
form verification, one need to extract information required to perform a specific analy-
sis. MDE, as a process, provides methods and tools to automate this analysis. It relies
on implementation artifact (MOF and QVT frameworks, XML representation) to ease
interoperability between tools, and to support easy construction of tools in a uniform
framework like Eclipse. Yet, MDE is an implementation framework for model-based
tools: one need to reflect on concepts conveyed by models to build analysis tools on top
of this framework.

2.2 Formal Methods and Other Analysis Techniques

Mathematical analysis are interesting as they allow one to reason on a model based on
formal grounds. Through different theories (sets, automata, stochastic, . . .), engineers
have access to a large panel of methods. In this section, we list some of them.

Algebraic Approaches. such as Z [1] or B [3] allow to describe a system using ax-
ioms and then, prove properties of this specification as a theorem to be demonstrated
from these axioms. These methods allow one to check for the consistency of interfaces
through a complete type checking mechanism, or even to go further and prove theorems
(lemmas, invariants) on a set of interface.

These are of particular interest because the proof is parametric and abstract ; for
instance a property can hold for a number of entities taken in the natural range. How-
ever, theorem provers that help elaborating the proof are difficult to use and still require
highly skilled and experienced engineers.

Model Checking. [14] is the exhaustive investigation of a system’s state space. A
designer express a property to be tested on a model, using a logic formula expressing
a possible behavior of the system. This formula is compared with all the paths in the
system’s state space. If there is a path that does not satisfy the property, then the property
does not hold and the returned path exhibits a counter-example to the property.

The main advantage of this technique is that it is now fully automated. Yet, results are
obtained for a particular set of resources (e.g. N threads), and can be generalized. Be-
sides, it is theoretically limited by the combinatorial explosion and can mainly address
finite systems. However, recent techniques based on so called symbolic techniques1 al-
low to scale up to more complex systems. More recent studies also investigate model
checking of infinite-state systems [45]. Other extensions contemplate the verification of
time-related or probabilistic properties on a model.

1 The word symbolic is associated with two different techniques. The first one is based on state
space encoding by means of decision diagrams and was introduced in [10]. The second one re-
lies on set-based representations of states having similar structures and was introduced in [12].

384 F. Kordon, J. Hugues, and X. Renault

Analytical Techniques. defines a set of formulae that can be applied on a well-formed
model. Typical example is the Rate Monotonic Analysis [43] that provides such tech-
niques. These techniques are defined by a set of preconditions that a model must match
for being amenable to analysis, and a set of computation steps to compute a metric on
a model and conclude. Yet, these frameworks are limited to computable results. In this
context, in-depth scheduling analysis shows complexity issues that cannot be solved.

Simulation-Based Techniques. proposes methods to compute an estimation of some
properties of a system, like the Monte-Carlo method. This technique is required when
no analytical techniques can easily be derived from a system because of the many inter-
fering factors, e.g. peers in an ad hoc wireless network under the influence of electro-
magnetic perturbation. In this setting, only simulation can help gaining an estimate on
the achievable bandwidth. Yet, simulation-based, just like model checking suffers from
the combinatorial explosion problem. Furthermore, the parameters required for the sim-
ulation might be complex. The designer need a simple way to express these parameters
in a way close to the mathematical model of the underlying phenomenon.

So, if formal verification techniques are getting more mature, there is no silver bullet
since no technique can be used easily on any type of problems [40]. One technique can
be useful at one step of the software life cycle and irrelevant at the next . It is necessary
to use the right approach at the right stage of software design and development.

2.3 Related Difficulties

The use of models is delicate. Engineers must consider models quality (appropriate-
ness) [55], language limitations [54] or methodological aspects [38]. Appropriateness
of models is crucial if engineers want to reason on them. Languages involved in the
design and development process must be able to capture basics required for such rea-
soning. Basics range from static considerations (such as the composition of interfaces,
the compatibility of Quality of Service policies), to dynamic one (ensure liveness
of a model up to safety properties). This is difficult to achieve in a unified way
(in the meaning of UML) because the language becomes too complex to use and
generalization is usually against precision that is required in industrial critical
applications.

Methodological aspects are also often underestimated. The way models and associ-
ated languages are used is very important to ensure that an analysis can be performed.
Concepts and details must be considered in an appropriate way. This is even more im-
portant when formal methods are involved since a detail may ruins all the effort and
make the proof or the verification false because some hypothesis on the configuration
have been forgotten. Furthermore, the application of formal methods may face imple-
mentation limits through the so-called “state-explosion” problem, or the inability to
compute some metrics (reliability, schedulability).

It is important to clearly state what can be achieved by each family of formal methods
and to know when to use them. Then, one can states that they can provide an appropriate
answer to expected properties.

From Model Driven Engineering to Verification Driven Engineering 385

2.4 Towards a Better Use of Formal Methods

MDE defines a methodological framework to elaborate models, whereas formal meth-
ods exploit some information and derive some statements for a system. The key chal-
lenge is to orchestrate requirements for an easy modeling framework dedicated to the
designer, and the capability to apply formal methods in an efficient and consistent way.
Therefore, we propose the following requirements as a baseline to define a consistent
VDE framework that integrate MDE and verification.

R1 A modeling notation that allows the designer to capture the multiple dimension of
his system: interfaces, functionnal, non-functionnal and behavioral properties. This
requires a notation that is non-ambiguous. Standards like AADL or UML and its
profiles like MARTE define such framework.

R2 A mapping between some models elements and a mathematical framework. This
requires the modeling notation to have enough semantics, properties or expression
power to derive such mapping. For instance, core UML does not support scheduling
entities, whereas MARTE does.

R3 Eventhough semantics is present, one need to focus on the expression of complex
interaction patterns to be analyzed, like ad hoc networks, consensus, . . .

R2 and R3 requires the intervention of the formal method community in order to guide
the engineer in its modeling work. This can be a set of guidelines, wizards or specific
front-end to indicate what are the relevant information to be provided.

R4 If multiple analyzes are required, it is important to make sure the different modeling
artifacts are consistent and reflect the same model.

R5 An automated process should occur, to derive the engineer’s model onto a model
suitable for the analysis technique. Such process can be defined through the notion
of “model-bus” to exchange models.

We point out that most of these requirements where already present when the UML-SPT
profile was designed. Yet, the integration of tools is inefficient and support a limited set
of analysis, mostly performance analysis.

3 Verification Driven Engineering

Sections 2 listed requirements for integrated verification in a MDE framework. This
section defines our vision of an extended use of MDE that puts emphasis on the ex-
ploitation of models to verify and validate properties. We call it VDE for “Verification
Driven Engineering”.

If modeling the system is important, engineers often forget that a model has proper-
ties that must be defined as soon as possible. The testing research field states that tests
must be elaborated jointly with specifications. This is the same for modeling as it is
suggested in the B approach with so called ”proof obligation” [3,23].

However, there are several types of property that should be elaborated at various
levels of the software life cycle. We here propose a classification of such properties.

386 F. Kordon, J. Hugues, and X. Renault

3.1 Classification of Properties

There are three types of useful properties when designing a system: 1) Structural
properties, 2) Qualitative properties and 3) Quantitative properties.

Structural properties are the ones related to the structure of the system :

– connection and consistency between interfaces of system’s components,
– invariants to be maintained in the system,
– fault-tree analysis (dependencies between system’s components when one fails).

Most of these properties should be established at an early stage in the design process
and at a coarse grained level. They can be refined later or enriched with some smaller
coarse grained, when design is being detailed.

Qualitative properties deal with the behavior of the system e.g. schedulability, liveness,
causality and deadlock detection.

To ensure such properties, the behavior of the system must be defined. They are usu-
ally described later in the software process, when information are known about com-
ponents behavior. If specifications moves to programming early (e.g from UML class
diagram directly to implementation), these properties are not set up since it is more
difficult to elaborate them on programming language.

However, some recent work try to propose solutions to behavioral analysis of pro-
grams from their source code [33]. Some tools are already operational: Feaver [31] and
then Modex [34]. They are able to analyze C-ansi code and perform model checking
using SPIN [32]. QUASAR [27] is able to generate a communication model using Petri
Nets from an Ada Program to check for communication problems (e.g. deadlocks).

Quantitative Properties are used to evaluate performances of the system or to evaluate
its behavior considering characteristics such as probability of actions to occur when
non-determinism occurs, or the time execution time.

To set up such properties, even ore information is required such as an estimation of
execution time (for time analysis).

3.2 Relations between Properties, Techniques and Tools

Table 1 links properties to verification techniques and list well-known related tools.
We selected a set of well known verification techniques. Simulation is not formal

but remains widely used, at least as a first approach to analyze a new system. Semantic
Analysis is analyzing source code to make sure it does not violate some elementary se-
mantic checks (e.g. arithmetic on integers) or more advanced one (concurrent access on
variables like in the Esterel synchronous language). Different type checking techniques
rely on calculi and are now embedded in typical programming languages like Ada, Eif-
fel or CAML. Other techniques like theorem proving and model checking have already
been presented in section 2.2.

There are several categories of model checking that are differentiated by their com-
binatorial explosion: there now exist efficient techniques like symbolic representation

From Model Driven Engineering to Verification Driven Engineering 387

Table 1. Relations between verification needs, techniques suitable to address these needs, and
some related available tools

Frameworks In
te

rf
ac

e co
ns

ist
en

cy

Sy
st

em
in

va
ri

an
ts

Fa
ul

t-T
re

e A
na

ly
sis

Sc
he

du
la

bi
lit

y
Liv

en
es

s
C

au
sa

lit
y/

de
ad

lo
ck

s

Pe
rf

or
m

an
ce

an
al

ys
is

Available tools

Simulation × Cheddar [56], CPNTOOLS [19],
Rhapsody [58], Renew [20],
SCADE [26], Simulink [46]

Semantic Analysis × × × Cheddar [56], MAST [21],
SPARK [51], TRAIAN [62]

Type checking × EiffelStudio [25], FuZZ [44],
Z/EVES [48]

Theorem proving × × × × × Atelier B [5], Coq [16], Z/EVES [48],
PVS [57]

Model Checking... × × × × × CHARON [59], CPN-AMI [42],
FAST [41], SMV [47], SPIN [32],
SCADE [26], SPOT [24]

...timed × CADP [61], Kronos [22], TINA [8],
UPPAAL [60]

...stochastic × GreatSPN [30], PRISM [52],
QPME [50]

of states based on the computation of symmetries in the system [13] or symbolic en-
coding of states by means of decision diagrams [10,17,18] that allow to cope with state
space explosion. The use of symmetries can still be applied with some success for sto-
chastic systems (like in GreatSPN) as well as some decision diagram encoding (like in
PRISM). However, none of these techniques can be applied to timed analysis for which
analysis limitations are reached faster.

Table 1 illustrates that some properties may be evaluated using more than one tech-
niques. It is up to engineers to select the most appropriate one. It is important to point
out that all the referenced tools may rely on different notations. For instance, the tools
we refer in Table 1 for model checking with time relies on timed automata (CADP, Kro-
nos, UPPAAL) or times Petri nets (TINA). The choice may be delicate since techniques
and tools may have week and strong parts that are not the same.

3.3 Formal Methods, Drawbacks

There are numerous success stories in the use of formal methods in various domains.
This concerns numerous formal verification approaches like general Model Check-
ing [15], Model Checking from programs [11], Petri Net based techniques applied to

388 F. Kordon, J. Hugues, and X. Renault

telecommunication systems [9] or algebraic methods (B) applied on the MÉTEOR
subway line [6]. However, the underlying techniques are not easy to operate.

First, as Table 1 illustrates, a given type of property can be verified using several
techniques, and multiple tools. Each technique or tool has its advantages and drawbacks.
To be efficient, engineers must select the appropriate technique and tool for his problem.
It remains an open problem since the skills needed to address this problem require
experience. This is why formal verification is costly.

Second, there is a consistency problem between: (1) the specification, (2) its mapping
to formal specifications (required for verification) and (3) its implementation. Hence,
one must ensure that what is verified is what is implemented. Usually, (1) is a high-level
(standardized) specification that is easier to handle than a formal notation. So far, there
are several approaches to tackle this problem:

• Using transformation engines from MDE to perform in a rigorous way the trans-
formation from (1) to (2) and code generation from (1) to (3). One need to prove
that the transformations are correct. See [37] for preliminary works in the context
of CCM.

• Perform “extreme-programming like approach” and consider that (1), (2) and (3)
are the programming language [33].

• Use the formal notation as (1) and perform code generation from this notation [6].
• Use a pivot notation associated to (1) that provides a concrete semantics and trans-

lations from this pivot notation to (2) and (3) like in the MORSE project [28].

In all cases, there is an entry point notation that acts as a pivot notation which relates
several types of specifications (e.g. semi-formal, formal, implementation).

Third, when does a given property should be verified during software development ?
We sketch a proposal in section 3.4, based on our experience to link the verification of
a given property to a step in the software life cycle.

3.4 The VDE Design Process

In this section, we explicit the way VDE can be applied in a software development
process. We propose an helicoidal life cycle inspired from the prototyping based ap-
proach presented in [39]. This life-cycle is illustrated in figure 1. Each loop corresponds
to one refinement of the system as follows:

1. Developers must first build (or refine) a model.

modeling

verification+
code generation

feed-back analysis

V2 V4V1

Fig. 1. The VDE helicoidal life cycle

From Model Driven Engineering to Verification Driven Engineering 389

2. Then, they perform some verification operations using some of the techniques and
tools mentioned in table 1. To enable formal techniques, the model should be
transformed into a formal specification. Otherwise, informal approaches such as
simulation are also acceptable if the model remains executable.

3. If verification results are satisfactory, then the system can be generated and addi-
tional analysis can be performed (tests in the execution environment of the imple-
mented properties). To reduce implementation costs, code generators are required.

4. Finally, analysis of collected date (from verification and execution) is stored for
feed back. From this feed back, issues for the next refinement (loop) are deduced.

Towards Application with AADL. In [36], we evaluate potential impacts of VDE on
the development of High-Integrity systems.

We contemplated the use of AADL as a mean to describe a systems on which analysis
techniques can be applied. In fact, AADL is rich enough to express multiple aspects of
a real-time system in a concise way.

Numerous efforts are currently done to help full analysis with some of the tools we
listed: schedulability analysis with Cheddar [56]; model checking of behavioral proper-
ties with Petri Nets and CPN-AMI [42], or CHARON [59]; dimensioning analysis with
OSATE [2], etc. We think this demonstrates VDE is a feasible concept.

3.5 Open Issues

Of course, current practice and tools do not yet allow the full picture depicted in
section 3.4. Several problems remain to have VDE fully operational. So far, there
mainly are two open issues.

First, it is important to have a consistent set of information in the input specification,
from which one can derive formal specifications, in a mathematical meaning.

UML is a typical example: numerous works propose to derive formal specifications
from specific diagrams such as state-charts like [7] or sequence-charts like [4] but none
proposes simultaneous analysis from several UML diagrams. This is because connec-
tion between diagram is not formally defined. Additional interpretation must be per-
formed (possibly by means of UML profiling like in UML-MARTE [49]). Compared
to UML, AADL [53] is better to derive formal specification because all features are
expressed in one single language: interface and non-functional properties are better de-
fined and thus more exploitable for verification purpose. For instance, connections with
SCADE have been improved [35]. So, we think the elaboration of a pivot notation with
links to verification and code generation is mandatory.

Second, verification techniques and their related implementation are difficult to se-
lect. One tool may complete analysis on given model and be enable to cope with another
one. So far, deep knowledge of the involved techniques are required. This problem
is more difficult to solve, but analysis and design frameworks are still studied in the
context of large projects like IST-ASSERT2 or AVSI3.

2 http://www.assert-project.net
3 https://avsi-tees.tamu.edu/

http://www.assert-project.net
https://avsi-tees.tamu.edu/

390 F. Kordon, J. Hugues, and X. Renault

4 Conclusion

Bringing verification techniques to engineer is now recommended to ensure more con-
fidence in safety critical systems. Model-Driven Engineering emerged as an efficient
way to reason about systems. However, MDE usually focus on the “how-to-model”
rather than the “what-to-model”. It is therefore difficult to know whether a system is
suitable for analysis. A model that cannot be processed is useless for engineers, except
for documentation purposes.

This paper proposes to reflect on concepts conveyed by models, and on existing for-
mal methods and analysis techniques to draw a landscape of available tools. Therefore,
one may move from MDE to VDE: verification driven engineering. In this context, the
user would know exactly what are the facets of this system relevant for a family of
analysis (e.g. schedulability), and what are the tools available to perform it.

We proposed a list of techniques and associated tools, based on a comprehensive
state of art. So far, there is no silver-bullet: one need to combine multiple analysis;
but also for a given analysis technique, one may need to pick the appropriate tools for
interoperability, performance or its supported features.

From this complex landscape, we note there is a trend towards the integration of all
these techniques around modeling notations like AADL or MARTE. We note these two
notations provide strong support for the embedded systems domain.

Besides, one need to reflect on the exact goal of software engineering. Efficient ap-
plication of verification techniques must be set up in a methodological approach. To do
so, we propose an helicoidal cycle and advocate for its iterative nature.

From these considerations, one may provide advanced modeling tools, in which a
“wizard” would guide the engineers to build its system and validate it. Defining such a
process, and associated tools remain a key challenge for both the academic and indus-
trial communities.

References

1. ISO/IEC 13568. Z formal specification notation — syntax, type system and semantics (2002)
2. SEI AADL. Osate: An extensible source aadl tool environment. Technical report, SEI (2004)
3. Abrial, J.-R.: The B book - Assigning Programs to meanings. Cambridge Univ. Press, Cam-

bridge (1996)
4. Alur, R., Holzmann, G., Peled, D.: An analyser for mesage sequence charts. In: Margaria, T.,

Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer, Heidelberg (1996)
5. Atelier, B.: Atelier B, the industrial tool to efficiently deploy the B Method (2008),

http://www.atelierb.eu/index en.html
6. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A successful application of b in a

large project. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708,
pp. 369–387. Springer, Heidelberg (1999)

7. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and statecharts to
analysable petrinet models. In: Workshop on Software and Performance, pp. 35–45 (2002)

8. Berthomieu, B., Vernadat, F.: The TINA home page (2008),
http://www.laas.fr/tina/

9. Billington, J., Dı́az, M., Rozenberg, G. (eds.): Application of Petri Nets to Communication
Networks, Advances in Petri Nets. LNCS, vol. 1605. Springer, Heidelberg (1999)

http://www.atelierb.eu/index_en.html
http://www.laas.fr/tina/

From Model Driven Engineering to Verification Driven Engineering 391

10. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and be-
yond. Information and Computation (Special issue from LICS90) 98(2), 153–181 (1992)

11. Chandra, S., Godefroid, P., Palm, C.: Software model checking in practice: an industrial case
study. In: Proceedings of the 22nd International Conference on Software Engineering (ICSE
2002), pp. 431–441 (May 2002)

12. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and
their symbolic reachability graph. In: Jensen, K., Rozenberg, G. (eds.) Procedings of the 11th
International Conference on Application and Theory of Petri Nets (ICATPN 1990). Reprinted
in High-Level Petri Nets, Theory and Application. Springer, Heidelberg (1991)

13. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability graph for
coloured Petri nets. Theoretical Computer Science 176(1–2), 39–65 (1997)

14. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
15. Clarke, E., Wing, J.: Tools and partial analysis. ACM Comput. Surv. 28(4es), 116 (1996)
16. CoQ Project at INRIA. The Coq proof assistant,

http://coq.inria.fr/coq-eng.html
17. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data deci-

sion diagrams for Petri net analysis. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS,
vol. 2360, pp. 101–120. Springer, Heidelberg (2002)

18. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Struc-
ture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg
(2005)

19. CPN group, Univ. Aarhus. cpntools - Computer Tool for Coloured Petri Nets (2008),
http://wiki.daimi.au.dk/cpntools

20. CS dept. Univ. Hambourg. Renew (2006), http://www.renew.de
21. CTR team. Modeling and Analysis Suite for Real-Time Applications,

http://mast.unican.es/
22. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos (2002),

http://www-verimag.imag.fr/TEMPORISE/kronos/
23. Ducass, M., Roz, L.: Proof obligations of the b formal method: Local proofs ensure global

consistency. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 10–29. Springer, Hei-
delberg (2000)

24. Duret-Lutz, A., Poitrenaud, D.: SPOT, Spot Produces Our Traces,
http://spot.lip6.fr/wiki/

25. Eiffel software. EiffelStudio - A Complete Integrated Development Environment (2008),
http://www.eiffel.com

26. Esterel-technologies. SCADE Suite (2008), http://www.esterel-technologies.com/
27. Evangelista, S., Kaiser, C., Pajault, C., Pradat-Peyre, J.-F., Rousseau, P.: Dynamic tasks

verification with quasar. In: Vardanega, T., Wellings, A.J. (eds.) Ada-Europe 2005. LNCS,
vol. 3555, pp. 91–104. Springer, Heidelberg (2005)

28. Gilliers, F., Kordon, F., Velu, J.-P.: Generation of distributed programs in their target execu-
tion environment. In: Proceedings of the 15th International Workshop on Rapid System Pro-
totyping, Geneva, Switzerland, pp. 127–134. IEEE Computer Society, Los Alamitos (2004)

29. Gogen, J., Luqi.: Formal methods: Promises and problems. IEEE Software 14(1), 75–85
(1997)

30. GreatSPN group. GreatSPN home page, http://www.di.unito.it/∼greatspn
31. Holzmann, G.: Logic Verification of ANSI-C Code with SPIN. In: Havelund, K., Penix, J.,

Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 131–147. Springer, Heidelberg (2000)
32. Holzmann, G.: On-the-fly, LTL Model Checking with SPIN (2007),

http://spinroot.com/spin
33. Holzmann, G., Joshi, R.: Model-driven software verification. In: Graf, S., Mounier, L. (eds.)

SPIN 2004. LNCS, vol. 2989, pp. 76–91. Springer, Heidelberg (2004)

http://coq.inria.fr/coq-eng.html
http://wiki.daimi.au.dk/cpntools
http://www.renew.de
http://mast.unican.es/
http://www-verimag.imag.fr/TEMPORISE/kronos/
http://spot.lip6.fr/wiki/
http://www.eiffel.com
http://www.esterel-technologies.com/
http://www.di.unito.it/~greatspn
http://spinroot.com/spin

392 F. Kordon, J. Hugues, and X. Renault

34. Holzmann, G., Smith, M.: An Automated Verification Method for Distributed Systems Soft-
ware Based on Model Extraction. IEEE Trans. Software Eng. 28(4), 364–377 (2002)

35. Hugues, J., Pautet, L., Zalila, B., Dissaux, P., Perrotin, M.: Using AADL to build critical real-
time systems: Experiments in the IST-ASSERT project. In: 4th European Congress ERTS,
Toulouse, Paris (January 2008)

36. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the Prototype to the Final Embedded
System Using the Ocarina AADL Tool Suite. ACM Transactions in Embedded Computing
Systems (TECS) (October 2008)

37. Kavimandan, A., Narayanan, A., Gokhale, A.S., Karsai, G.: Evaluating the Correctness and
Effectiveness of a Middleware QoS Configuration Process in Distributed Real-Time and Em-
bedded Systems. In: 11th International Symposium on Object-oriented Real-time distributed
Computing (ISORC 2008), pp. 100–107. IEEE Computer Society, Los Alamitos (2008)

38. Kordon, F.: Design methodologies for embedded systems: Where is the super-glue? In:
11th International Symposium on Object-oriented Real-time distributed Computing (ISORC
2008), Orlando, USA (page to be published, May 2008)

39. Kordon, F., Luqi.: An Introduction to Rapid System Prototyping. IEEE Transactions on Soft-
ware Engineering 70(3), 817–821 (2002)

40. Kordon, F., Petrucci, L.: Toward Formal-Methods Oecumenism? IEEE Distributed Systems
Online 7(7) (July 2006)

41. Labri. FAST - Fast Acceleration of Symbolic Transition systems (2006),
http://www.lsv.ens-cachan.fr/fast

42. LIP6/MoVe. The CPN-AMI home page, http://www.lip6.fr/cpn-ami/
43. Liu, C.L., Layland, J.W.: Scheduling algorithms for multi-programming in hard-real-time

environment. Journal of the ACM (January 1973)
44. Spivey, M.: The fuzz type-checker for Z,

http://spivey.oriel.ox.ac.uk/mike/fuzz/
45. Madhusudan, P. (ed.): Proceedings of the 9th International Workshop on Verification of

Infinite-State Systems (INFINITY 2007), Lisboa, Portugal, September 2007. Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, Amsterdam (2007)

46. Mathwork. Simulink - Simulation and Model-Based Design (2008),
http://www.mathworks.com/products/simulink/

47. McMillan, K.L.: The SMV System,
http://www.cs.cmu.edu/∼modelcheck/smv.html

48. Meisels, I., Saaltink, M.: The z/eves reference manual (for version 1.5)
49. OMG. A UML profile for MARTE, Beta 1. Technical Report ptc/07-08-04, OMG (2007)
50. OPERA Group, Univ. Cambridge. QPME Homepage (2007),

http://www.dvs.tu-darmstadt.de/staff/skounev/QPME/
51. Praxis Hight Integrity Systems. SPARKAda (2008),

http://www.praxis-his.com/sparkada/
52. PRISM Team. PRISM - Probabilistic Symbolic Model Checker (2008),

http://www.prismmodelchecker.org/
53. SAE. Architecture Analysis & Design Language (AS5506). SAE (September 2004),

http://www.sae.org
54. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. IEEE Computer 39(2),

25–31 (2006)
55. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–25 (2003)
56. Singhoff, F.: The Cheddar project: a free real time scheduling analyzer (2007),

http://beru.univ-brest.fr/∼singhoff/cheddar/
57. SRI/CSL. PVS Specification and Verification System (2008),

http://pvs.csl.sri.com/index.shtml

http://www.lsv.ens-cachan.fr/fast
http://www.lip6.fr/cpn-ami/
http://spivey.oriel.ox.ac.uk/mike/fuzz/
http://www.mathworks.com/products/simulink/
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.dvs.tu-darmstadt.de/staff/skounev/QPME/
http://www.praxis-his.com/sparkada/
http://www.prismmodelchecker.org/
http://www.sae.org
http://beru.univ-brest.fr/~singhoff/cheddar/
http://pvs.csl.sri.com/index.shtml

From Model Driven Engineering to Verification Driven Engineering 393

58. Telelogic. Rhapsody (2008), http://www.telelogic.com/products/rhapsody/
59. Upenn, Dept of Computer Science. CHARON,

http://rtg.cis.upenn.edu/mobies/charon/
60. UPPAAL Group. UPPAAL, http://www.uppaal.com/
61. VASY Project - INRIA. Construction and Analysis of Distributed Processes (2005),

http://www.inrialpes.fr/vasy/cadp.html
62. VASY Project - INRIA. TRAIAN: A Compiler for E-LOTOS/LOTOS NT Specifications

(2008), http://www.inrialpes.fr/vasy/pub/traian

http://www.telelogic.com/products/rhapsody/
http://rtg.cis.upenn.edu/mobies/charon/
http://www.uppaal.com/
http://www.inrialpes.fr/vasy/cadp.html
http://www.inrialpes.fr/vasy/pub/traian

On Scalable Synchronization for Distributed

Embedded Real-Time Systems

Sherif F. Fahmy1, Binoy Ravindran1, and E. Douglas Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA
fahmy@vt.edu, binoy@vt.edu

2 The MITRE Corporation, Bedford, MA 01730, USA
jensen@mitre.org

Abstract. We consider the problem of programming distributed embed-
ded real-time systems with distributed dependencies. We show that the
de facto standard of using locks and condition variables in conjunction
with threads can have significant overhead and semantic difficulty and
suggest alternative programming abstractions to alleviate these prob-
lems. We also discuss several alternatives for implementing these pro-
gramming abstractions and discuss the algorithms and protocols needed.

1 Introduction

As Moore’s law appears to be reaching its limits, manufacturers of computing
machinery are turning (again) to parallelism as the next frontier in the quest
for faster computers. Today, most machines produced are multi-core and the use
of distributed systems is on the increase. Coinciding with this new direction of
using concurrency to increase application throughput, is the discovery of a rich
set of applications that are a natural fit for parallel and distributed architectures.
From distributed databases to emerging distributed real-time systems [1], such
emerging applications are only meaningful in a distributed system with multiple
computing cores cooperating to execute the semantics of the application.

This parallelism offers a great opportunity for improving performance by in-
creasing application concurrency. Unfortunately, this concurrency comes at a
cost: programmers now need to design programs, using existing operating sys-
tem and programming language features, to deal with shared access to serially
reusable resources and program synchronization. The de facto standard for pro-
gramming such systems is using threads, locks, and condition variables. Using
these abstractions, programmers have been trying to write correct concurrent
code ever since multitasking operating systems made such programs possible.

Unfortunately, the human brain does not seem to be well suited for
reasoning about concurrency [2]. The history of the software industry contains nu-
merous cases where the difficulty inherent in reasoning about concurrent code has
resulted in costly software errors that are very difficult to reproduce and hence de-
bug and fix. Among the more common errors encountered in lock-based software
systems are deadlocks, livelocks, lock convoying, and, in systems where priority is

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 394–405, 2008.
c© IFIP International Federation for Information Processing 2008

On Scalable Synchronization for Distributed Embedded Real-Time Systems 395

important (e.g, embedded real-time systems), priority inversion. Such errors stem
from the difficulty in reasoning about concurrent code.

Transactions have proven themselves to be a successful abstraction for handling
concurrency in database systems. Due to this success, researchers have attempted
to take advantage of their features for non-database systems. In particular, there
has been significant recent efforts to apply the concepts of transactions to shared
memory. Such an attempt originated as a purely hardware solution [3, 4] and was
later extended todeal with systemswhere transactional supportwasmigrated from
the hardware domain to the software domain [5]. Software transactional memory
(or STM) has, until recently, been an academic curiosity because of its high over-
head. However, as the state-of-the-art improved and more efficient algorithmswere
devised, a number of commercial and non-commercial STM systems have been de-
veloped (see implementations section of [6]). In this position paper, we discuss the
issues involved in implementing software transactional memory in distributed em-
bedded real-time systems.

2 Motivation

Currently, the industry standard abstractions for programming distributed em-
bedded systems include OMG/Real-Time CORBA’s client/server paradigm and
distributable threads [7] and OMG/DDS’s publish/subscribe abstraction [8]. The
client/server and distributable threads abstractions directly facilitate the pro-
gramming of causally-dependent, multi-node application logic. In contrast, the
publish/subscribe abstraction is a data distribution service for logically-single
hop communications (i.e., from one publisher to one subscriber), and therefore,
higher-level abstractions must be constructed – on an application-specific basis
– to express causally-dependent, multi-node application logic (e.g., publication
of topic A depends on subscription of topic B; B’s publication, in turn, depends
on subscription of topic C, and so on). All of these abstractions rely on lock-
based mechanisms for concurrency control, and thus suffer from their previously
mentioned inherent limitations.

In particular, lock-based concurrency control can easily result in local and
distributed deadlocks, due to programming errors that occur as a result of the
conceptual difficulty of the (lock-based) programming model. Detecting and re-
solving deadlocks, especially distributed deadlocks, that can potentially arise
due to distributed dependencies is complex and expensive. Note that deadlocks
can only be detected and resolved, as opposed to being avoided or prevented,
in those distributed embedded systems where it is difficult to obtain a-priori
knowledge of which activities need which resources and in what order. When a
deadlock is detected in such systems, the usual method of resolving it is to break
the cycle of the waiting processes by terminating one of them. Unfortunately,
the choice of which process to terminate is not a simple one in real-time systems.
By terminating one of the processes that are waiting in a cycle, we produce a
chain of waiting processes. Depending on how, i.e., where, we break this cycle,
it may or may not be feasible to meet the timing requirements of the remaining

396 S.F. Fahmy, B. Ravindran, and E.D. Jensen

processes. Thus, we need to consider the structure of the dependency chain, after
terminating a process to end the deadlock, in order to break the cycle in a way
that optimizes end-to-end timeliness objectives. Furthermore, a process’s depen-
dencies must be taken into account when making the choice about which process
to terminate. For example, if a significant number of processes depend on the
result of a process, terminating it to resolve a deadlock may not be in the best
interest of the application. In addition, the cost of deadlock detection/resolution
is exacerbated by the extra work necessary to restore the system to an acceptable
state when failure occurs. Thus, deadlock resolution is a complex process.

The problem of distributed deadlock detection and resolution has been exhaus-
tively studied, e.g., [9,10,11,12,13,14,15]. A number of these algorithms turned out
to be incorrect by either detecting phantom deadlocks (false positives) or not de-
tecting deadlockswhen theydo exist, e.g., [16,11].These errors occur because of the
inherent difficulty of reasoning about distributed programs. This led to attempts at
providing a formal method for analyzing such protocols to ensure correct behavior
(e.g., [13]). Despite the difficulty of reasoning about distributed deadlock, solutions
for this problemon synchronousdistributed systemshavebeendeveloped.Unfortu-
nately, for asynchronous systems, errors in the deadlock detection process become
inevitable. For real-time systems, these issues become more severe [9]. The seman-
tic difficulty of thread and lock based concurrency control and the high overhead
associated with detecting and resolving distributed deadlock, as indicated above,
are the driving motivations for finding different programming abstractions for dis-
tributed embedded real-time systems.

3 Previous Work

3.1 Alternatives to Lock-Based Programming

Academia, and certain parts of industry, have realized the limitations of lock-based
software, thus a number of proposed alternatives to lock-based software exist. The
design of lock-free, wait-free or obstruction-free data structures is one such ap-
proach. The main problem with this approach is that it is limited to a small set
of basic data structures, e.g., [17, 18, 19]. For example, to the best of our knowl-
edge, there is no lock-free implementation of a red-black tree that does not use
STM. Most of the literature on lock-free data structures concentrates on basics
such as queues, stacks, and other simple data structures. It should be noted that
lock-freedom, wait-freedom and obstruction-freedom are concepts and as such can
encompass non lock-based solutions like STM. However, we use these terms in this
context to refer to hand crafted code that allows concurrent access to a data struc-
ture without suffering from race conditions.

The discrete eventmodel presented in [20,21] provides an interesting alternative
to thread based programming. While interesting and novel, it still remains to be
seen whether programmers find the semantics of the model easier than the seman-
tics of thread-based computing. In addition, the requirement of static analysis to
determine a partial order on the events makes the system inapplicable to dynamic
systems where little or no information is available a priori.

On Scalable Synchronization for Distributed Embedded Real-Time Systems 397

Transactional processing, the semantic ancestor of STM, has been around for a
significant period of time and has proven its mettle as a method of providing con-
currency control in numerous commercial database products, in addition, it does
not place any restriction on the dynamism of the system on which it is deployed.
Unfortunately, theuseof a distributed commitprotocol, suchas the two-phasecom-
mit protocol, increases the execution time of a transaction and can lead to deadline
misses [22]. STM is a lighter-weightversion of transactionalprocessing, withnodis-
tributed commit protocol required in most cases. As such, it allows us to gain the
benefits of transactional processing (i.e., fault tolerance and semantic simplicity),
without incurring all its associated overhead.

We believe that STM is an attractive alternative to thread and lock-based dis-
tributed programming, since it eliminates many of the conceptual difficulties of
lock-based concurrency control at the expense of a justifiable overhead that be-
comes less significant as the number of processors in the system scales.

3.2 Software Transactional Memory

Since the seminal papers about hardware and software transactional memory were
published, renewed interest in the field has resulted in a large body of literature on
the topic (e.g, see [23,24,25]). This body of work encompasses both purely software
transactional memory systems and hybrid systems where software and hardware
support for transactional memory are used in conjuncture to improve performance.
Despite this large body of work, to the best of our knowledge, only three papers
investigate STM for distributed systems [26,27,28].

Webelieve thatdistributed embedded systems stand tobenefit significantly from
STM. Such systems are most distinguished by their need to: 1) react to external
events asynchronously and concurrently; 2) react to external events in a timely
manner (i.e., real-time); and 3) cope with failures (e.g., processors, networks) –
one of the raison d’être for building distributed systems. Thus, concurrency that is
fundamentally intrinsic to distributed embedded systems naturally motivates the
usage of STM. Their need to (concurrently) react timely to external events in the
presence of failures is also a compelling reason – such behaviors are very complex
to program, reason about, and obtain timing assurances using lock-based concur-
rency control mechanisms.

There has also been a dearth of work on real-time STM systems. Notable work
on transactional memory and lock-free data structures in real-time systems in-
clude [29,30, 18, 31, 32]. However, most of these works only consider uni-processor
systems (with [32] being a notable exception). In this position paper, we propose
to study the issues involved in implementing STM in distributed embedded real-
time systems. Past work has shown that STM has lower throughput for systems
with a small number of processors compared to fine-grain lock-based solutions but
that this difference in performance is quickly reversed as the number of processors
scales [33]. This, coupled with easier programming semantics of STM, makes it an
attractive concurrency controlmechanism for next generation embedded real-time
systems with multi-core architectures and high distribution.

398 S.F. Fahmy, B. Ravindran, and E.D. Jensen

With STM, deadlocks are entirely or almost entirely precluded. This will im-
mediately result in significant reductions in the cost of scheduling and resource
management algorithms, as distributeddependencies are avoided andno expensive
deadlock detection/resolution mechanisms are needed. Implementing higher level
programming constructs, like, for example, Hoare’s conditional critical regions (or
CCR) [34], on top of STM [33], allows programmers to take advantage of the dead-
lock freedom and simple semantics of STM in their programs.

4 STM for Distributed Embedded Systems

There are a number of competing abstractions for implementing STM in distrib-
uted embedded real-time systems. An interesting abstraction is the notion of real-
time distributed transactional objects, where code is immobile and objects migrate
between nodes to provide a transactional memory abstraction. Another
alternative is to allow remote invocations to occur within a transaction, spawning
sub-transactions on each node (where they are executed using STM), and using a
distributed commit protocol to ensure atomicity. A third alternative is to provide
a hybrid model, where both data and code are mobile and the decision of which is
moved is heuristically decided either dynamically or statically. Several key issues
need to be studied in order to use STM in distributed embedded systems, these are:

– Choosing an appropriate abstraction for including STMs in distributed
embedded systems,

– Designing the necessary protocols and algorithms to support these
abstractions,

– Implementing these abstractions in a programming language by making nec-
essary changes to its syntax and in the run-time environment, and

– Designing scheduling algorithms to provide end-to-end timeliness using these
new programming abstractions.

4.1 Choosing an Appropriate Abstraction

STM is a technology for multiprocessor systems, to use it in a multicomputer
environment, we need to develop appropriate abstractions. We are currently
considering three competing programming abstractions into which to incorporate
STM:

– A model where cross-node transactions are permitted using remote invoca-
tions and atomicity is enforced using an atomic commit protocol;

– A model where a distributed cache coherence protocol is used to implement
an abstraction of shared memory on top of which we can build STM; and

– A hybrid model where code or data is migrated depending on a number of
heuristics such as size and locality.

In the first approach, we manage concurrency control on each node using STM, but
allow remote invocations to occur within a transaction. Thus we allow a transac-
tion to span multiple nodes. At the conclusion of the transaction, the last node on

On Scalable Synchronization for Distributed Embedded Real-Time Systems 399

which transactional code is executed acts as a coordinator in a distributed com-
mit protocol to ensure an atomic commitment decision. Our preliminary research,
which we intend to elaborate upon, indicates that such an approach may be prone
to “retry thrashing” especially when the STM implemented on each node is lock-
free.

Since lock-free STM is an optimistic concurrency control mechanism, extend-
ing the duration of a transaction by allowing it to sequentially extend across
nodes results in a significantly higher probability of conflicts among transac-
tions. Such conflicts lead to aborted transactions that are later retried. Retrying
is antagonistic to real-time systems since it degrades one of the most important
features of real-time systems: predictability. Lock-based STM tends to reduce
some of this “thrashing” behavior since it eliminates part of the “optimism” of
the approach. However, long transactions are still more susceptible to retries
and introducing locks into the STM implementation necessitates a deadlock de-
tection and resolution solution. Fortunately such a solution does not need to be
distributed since it only needs to resolve local deadlocks.

Implementing STM on top of a distributed cache coherence protocol has been
investigated in [26, 27]. In this approach, code is immobile, but data objects
move among nodes as required. The approach uses a distributed cache coherence
protocol to find and move objects. We intend to design real-time cache coherence
protocols, where timeliness is an integral part of the algorithm. We plan to design
STM on top of these protocols and compare their performance to the flow control
abstraction. An important advantage of this approach is that it eliminates the
need for a distributed commit protocol. Since distributed commit protocols are
a major source of inefficiency in real-time systems [22], such an approach is
expected to yield better performance.

The last approach we intend to study is touched upon in [28]. This is a hybrid
approach where either data objects or code can migrate while still retaining the
semantics of STM. By allowing either code or data to migrate, we can choose a
migration scenario that results in the least amount of communication overhead.
For example, suppose we have a simple transactional program that increments
the value of a shared variable X and stores the new value in the transactional
store. Assume further that X is remote, using a data flow abstraction would
necessitate two communication delays; one to fetch X from its remote location
and the other to send it back once it has been incremented. Using a control flow
abstraction in this case may be more efficient since it will only involve a single
communication delay.

On the other hand, assume that several processes need access to a small data
structure and that these processes are in roughly the same location and are far
away from the data they need. Since communication delay depends on distances,
it may make sense to migrate the data to the processes in this case rather than
incur several long communication delays by moving the code to the data. In
short, the choice of whether to migrate code or data can have a significant
effect on performance. In [28], this is accomplished under programmer control
by allowing an on construct which a programmer can use to demarcate code that

400 S.F. Fahmy, B. Ravindran, and E.D. Jensen

should be migrated. We intend to elaborate on this by coming up with solutions
that would use static analysis at compile-time (or dynamically at run-time) to
make decisions about which part of the application to move using a number of
heuristics such as, for example, size of code/data and locality considerations.

4.2 Designing Suitable Protocols and Algorithms

The algorithms and protocols that need to be designed depend on the program-
ming abstraction we choose to implement. Some of the necessary abstractions
have been touched upon in Section 4.1, here we elaborate on these points.

For the model where code migrates, creating cross-node transactions, and
data is immobile, the main abstraction that needs to be designed is a real-time
distributed commit protocol. Since cross-node transactions are permitted, with
each node involved hosting part of the transaction, a distributed commit proto-
col is necessary to ensure atomicity. A number of distributed commit protocols
have been studied in the literature, with the two phase commit protocol being
the most commercially successful protocol. Unfortunately, the blocking seman-
tics of the two phase commit protocol may not be very suitable for real-time
systems. Therefore alternatives like the three phase commit protocol (despite
its larger overhead) may be more appropriate due to its non-blocking semantics.
Other alternatives that involve the relaxation of certain properties of distributed
commit protocols in order to improve efficiency are discussed in [22]. We intend
to design distributed commit protocols whose timeliness behavior can be quan-
tified theoretically and/or empirically, in order to allow the system to provide
guarantees on end-to-end timeliness.

For the approach where code is immobile and data migrates, the most im-
portant protocol that needs to be designed is a distributed real-time cache co-
herence protocol. This protocol needs to be location aware in order to reduce
communication latency and should be designed to reduce network congestion.
The cache coherence problem for multiprocessors has been extensively studied
in the literature [35]. There are also some solutions for the distributed cache co-
herence problem (see [36, 37, 38, 39] for a, not necessarily representative, sample
of research on this issue). Distributed cache coherence bears some similarity to
distributed hash table (or DHT) protocols which have been an active topic of
research recently due to the popularity of peer-to-peer applications. Examples
of DHT algorithms that are of interest are [40,41,42].

We envision a cache coherence algorithm based on hierarchical clustering to
reduce network traffic and path reversal to synchronize concurrent requests,
an approach used in [26]. Other approaches for implementing distributed cache
coherence will also be considered. An important part of our research in this
area will be to design cache coherence protocols that can provide timeliness
guarantees that we can verify theoretically and empirically.

For the hybrid abstraction, where both code and data can move, several is-
sues need to be determined. Among the issues that need to be resolved are the
different methods of distributing transactional meta-data in order to ensure ef-
ficient execution of the STM system, providing a mechanism to support atomic

On Scalable Synchronization for Distributed Embedded Real-Time Systems 401

commitment when code is allowed to migrate thus resulting in multi-node trans-
actions, aggregating communication in order to reduce the effect of the extra
communication necessary to manage the STM system (possibly by piggybacking
this information over normal network traffic) and optimizing network communi-
cation to reduce latency. It is also necessary to design appropriate mechanisms
for choosing whether data or code migration is going to occur. Currently, the
choice of which part of the program to migrate is performed under programmer
control [28]. We intend to design automated methods for deciding which part of
the program moves through either compile-time analysis or at run-time.

4.3 Programming Language Implementation

We need to incorporate the programming abstraction chosen and the protocols
and algorithms necessary to support them into a suitable programming language.
Issues that need to be addressed are extending the programming language syntax
to include support for higher level abstractions built upon STM. We introduce
a number of syntactic modifications to support the new constructs we propose
to implement. The most basic syntactic extension required is a method for de-
marcating atomic blocks (i.e. blocks of code that will be executed within the
context of STM), additions such as programmer controlled retry and providing
alternative transactional execution can also be considered.

In addition to these syntactic extensions, modifications to the run-time
environment are also required. Our top candidate for implementing these ab-
stractions is the emerging DRTSJ RI. We choose this language for a number of
reasons. First, the language is still under development with a substantial part of
the implementation details coming out of our research group. Second, the RI will
be evaluated by the standard’s expert community (e.g., Sun’s JSR-50 experts
group in the case of DRTSJ) as part of the standard’s approval process, result-
ing in immediate and invaluable user feedback. Third, using a garbage collected
language alleviates some of the issues involved in memory management associ-
ated with STM (by, for example, eliminating the problem of having transactions
free allocated memory explicitly while other transactions are still working on it).
Of course this necessitates augmenting the garbage collector with information
about STM in order to prevent harmful interference with STM’s meta-data.

Naturally, the actual modifications made to the programming language will
depend on the programming abstraction chosen. Regardless of the choice made
about the abstraction used to incorporate STM in distributed embedded sys-
tems, modifications to the run-time environment are necessary to support STM.
The actual modifications made are dependent on the particular design we choose
for our implementation of STM and so will not be elaborated upon in this posi-
tion paper. However, some of the design issues involved are choosing appropri-
ate meta-data to represent STM objects, providing appropriate mechanisms to
atomically commit transactions (for example by using atomic hardware instruc-
tions such as compare-and-swap, or CAS, on suitably indirected meta-data),
providing implementations for the different design choices of STM (e.g., visible
reads versus invisible reads and weak versus strong atomicity).

402 S.F. Fahmy, B. Ravindran, and E.D. Jensen

4.4 Scheduling Algorithms and Analysis

Finally, we will design scheduling algorithms that allow systems programmed
using STM to meet end-to-end timeliness requirements. This is a challenge due
to the fact that the retry behavior of STM is antagonistic to predictability.
There have been several attempts at providing timing assurances when STM is
used in real-time systems or when lock-free data structures are used in real-time
systems [29, 30, 18, 31]. These approaches only consider uni-processor systems
and use the periodic task arrival model to bound retries.

Some of the approaches are fairly sophisticated and use, for example, linear
programming [30] to derive schedulability criteria for lock-free code. The basic
idea of these approaches is that, on a uni-processor system, the number of retries is
bounded by the number of task preemptions that occur. This bound exists because
a uni-processor can only execute one process at a time. Since it is not possible for a
process to perform conflicting operations on shared memory, and hence cause the
retry of another process, unless it is running, the number of preemptions naturally
bounds the number of retries on uni-processors. Given this premise, the analysis
performed in [29,30,18,31] bounds the number of retries by bounding the number
of times a process can be preempted under different scheduling algorithms. This
analysis allows the authors to derive schedulability criteria for different scheduling
algorithms based on information about process execution times, execution times
of the retried code sections, process periods, etc.

More recently, attempts have been made at providing timeliness guarantees for
lock-free data structures built on multiprocessor systems [32]. The approach used
in [32] is suitable for Pfair-scheduled systems and other multiprocessor systems
where quantum-based scheduling is employed. The most restrictive assumption
made in this approach is that access to a shared lock-free object takes at most
two quanta of processor time. Using this assumption, the authors go on to bound
the number of retries by determining the worst-case number of accesses that can
occur to a shared object during the quanta in which it is being accessed. For
an M processor system, the worst-case number of processes that can interfere
with access to a particular shared object is M − 1. Given an upper bound on
the number of times a process can access a shared object within a quanta, it is
possible to derive an upper bound on the number of retries in such a system.
The authors also go on to describe how it is possible to use the concept of a
“supertask”, basically a single unit that is composed of several tasks that are to
be scheduled as one unit, to reduce the worst-case number of retries and hence
improve system performance.

The particular method used to bound the number of retries in the system(s) we
develop will depend on the model we target. There are two possible alternatives.
The first approach is to target uni-processor distributed systems. In such sys-
tems, each node has only one processor. In order to provide scheduling criteria for
such systems, we would use the approaches developed for uni-processor systems
to derive the number of retries that can occur on each node, and then combine
these bounds to determine the number of retries that can occur to cross-node
transactions, thus deriving schedulability criteria for STM implementations.

On Scalable Synchronization for Distributed Embedded Real-Time Systems 403

The second approach is to consider multiprocessor distributed systems. In
such systems, each node is a multiprocessor or multi-core machine. Schedulabil-
ity analysis and scheduling algorithms for such systems are considerably more
difficult due to the difficulty in deriving bounds on the number of retries in the
system. A first possible approach is to consider the Pfair-scheduling algorithm
considered in [32] for obtaining bounds on the number of retries on each node
and then combining these bounds to obtain bounds for cross-node transactions.
Other approaches will also be considered in order to reduce the number of as-
sumptions made on the system model. We will design scheduling algorithms
that can ensure that timeliness requirements are not violated by the retry be-
havior of STM on distributed systems, and provide analytical expressions for the
schedulability criteria of these scheduling algorithms.

5 Conclusions

Programming distributed systems using lock-based concurrency control is se-
mantically difficult and computationally expensive. In order to alleviate some of
these problems, we propose the use of STM for concurrency control. In order to
achieve this goal, a number of issues need to be addressed. This position paper
outlines these issues and proposes a method for solving them.

Three different abstractions for incorporating STM into distributed embedded
real-time systems are mentioned, and the algorithms and protocols necessary for
implementing these abstractions are briefly outlined. We also briefly indicate
the type of schedulability analysis that will be required to provide timeliness
guarantees for systems programmed using these abstractions.

References

1. Cares, J.R.: Distributed Networked Operations: The Foundations of Network Cen-
tric Warfare. iUniverse, Inc. (2006)

2. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
3. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-

free data structures. In: Proceedings of the Twentieth Annual International Sym-
posium on Computer Architecture (1993)

4. Knight, T.F.: An architecture for mostly functional languages. In: Proceedings of
ACM Lisp and Functional Programming Conference, August 1986, pp. 500–519
(1986)

5. Shavit, N., Touitou, D.: Software transactional memory. In: PODC, pp. 204–213
(1995)

6. Wikipedia: Software transactional memory — wikipedia, the free encyclopedia
(2008) (accessed May 24, 2008), http://en.wikipedia.org/w/index.php?title=
Software transactional memory&oldid=213906392

7. OMG: Real-time corba 2.0: Dynamic scheduling specification. Technical report,
Object Management Group (September 2001)

8. Pardo-Castellote, G.: Omg data-distribution service: Architectural overview. ICD-
CSW 00, 200 (2003)

http://en.wikipedia.org/w/index.php?title=Software_transactional_memory&oldid=213906392
http://en.wikipedia.org/w/index.php?title=Software_transactional_memory&oldid=213906392

404 S.F. Fahmy, B. Ravindran, and E.D. Jensen

9. Shih, C., Stankovic, J.A.: Survey of deadlock detection in distributed concurrent
programming environments and its application to real-time systems. Technical re-
port, Amherst, MA, USA (1990)

10. Roesler, M., Burkhard, W.A.: Resolution of deadlocks in object-oriented distrib-
uted systems. IEEE Trans. Comput. 38(8), 1212–1224 (1989)

11. de Mend́ıvil, J.R.G., Federico Fari, N., Garitagoitia, J.R., Alastruey, C.F.,
Bernabeu-Auban, J.M.: A distributed deadlock resolution algorithm for the and
model. IEEE Trans. Parallel Distrib. Syst. 10(5), 433–447 (1999)

12. Kshemkalyani, A.D., Singhal, M.: A one-phase algorithm to detect distributed
deadlocks in replicated databases. IEEE Trans. on Knowl. and Data Eng. 11(6),
880–895 (1999)

13. de Mendivil, J.R.G., Demaille, A., Auban, J.B., Garitagoitia, J.R.: Correctness of
a distributed deadlock resolution algorithm for the single request model. In: PDP
1995: Proceedings of the 3rd Euromicro Workshop on Parallel and Distributed
Processing, Washington, DC, USA, p. 254. IEEE Computer Society, Los Alamitos
(1995)

14. Elmagarmid, A.K.: A survey of distributed deadlock detection algorithms. SIG-
MOD Rec. 15(3), 37–45 (1986)

15. Mitchell, D.P., Merritt, M.J.: A distributed algorithm for deadlock detection and
resolution. In: PODC 1984: Proceedings of the third annual ACM symposium on
Principles of distributed computing, pp. 282–284. ACM, New York (1984)

16. Choudhary, A.N., Kohler, W.H., Stankovic, J.A., Towsley, D.: A modified priority
based probe algorithm for distributed deadlock detection and resolution. IEEE
Trans. Softw. Eng. 15(1), 10–17 (1989)

17. Cho, H., Ravindran, B., Jensen, E.D.: Space-optimal, wait-free real-time synchro-
nization. IEEE Transactions on Computers 56(3), 373–384 (2007)

18. Anderson, J., Ramamurthy, S., Moir, M., Jeffay, K.: Lock-free transactions for real-
time systems. In: Real-Time Databases: Issues and Applications. Kluwer Academic
Publishers, Amsterdam (1997)

19. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. icdcs 00, 522 (2003)

20. Zhao, Y., Lee, E.A., Liu, J.: Programming temporally integrated distributed em-
bedded systems. Technical Report UCB/EECS-2006-82, EECS Department, Uni-
versity of California, Berkeley (May 2006)

21. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized distrib-
uted real-time systems. In: RTAS 2007: Proceedings of the 13th IEEE Real Time
and Embedded Technology and Applications Symposium, Washington, DC, USA,
pp. 259–268. IEEE Computer Society, Los Alamitos (2007)

22. Gupta, R., Haritsa, J., Ramamritham, K., Seshadri, S.: Commit processing in
distributed real-time database systems. In: 17th IEEE Real-Time Systems Sympo-
sium, December 4-6, 1996, pp. 220–229 (1996)

23. Marathe, V.J., Scott, M.L.: A qualitative survey of modern software transactional
memory systems. Technical Report TR 839, University of Rochester Computer
Science Dept (June 2004)

24. Bobba, J., Rajwar, R., Hill, M.: Transactional memory biblography,
http://www.cs.wisc.edu/trans-memory/biblio/swtm.html

25. Korenfeld, B., Medina, M.: Transactional memory. Technical Report
MIT/LCS/TM-475, University of Tel-Aviv Computer Engineering Dept. (June
2006)

26. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3), 195–208 (2007)

http://www.cs.wisc.edu/trans-memory/biblio/swtm.html

On Scalable Synchronization for Distributed Embedded Real-Time Systems 405

27. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: PPoPP 2006, March 2006, pp. 198–208.
ACM Press, New York (2006)

28. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for
large scale clusters. In: PPoPP 2008, pp. 247–258. ACM, New York (2008)

29. Manson, J., Baker, J., Cunei, A., Jagannathan, S., Prochazka, M., Xin, B., Vitek,
J.: Preemptible atomic regions for real-time java. RTSS 0, 62–71 (2005)

30. Anderson, J., Ramamurthy, S.: A framework for implementing objects and schedul-
ing tasks in lock-free real-time systems. In: Proceedings of IEEE RTSS, December
1996, pp. 92–105. IEEE, Los Alamitos (1996)

31. Anderson, J., Ramamurthy, S., Jeffay, K.: Real-time computing with lock-free
shared objects. In: Proceedings of IEEE RTSS, December 1995, pp. 28–37. IEEE
Computer Society Press, Los Alamitos (1995)

32. Holman, P., Anderson, J.H.: Supporting lock-free synchronization in pfair-
scheduled real-time systems. J. Parallel Distrib. Comput. 66(1), 47–67 (2006)

33. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Object-
Oriented Programming, Systems, Languages, and Applications, October 2003, pp.
388–402 (2003)

34. Hoare, C.: Towards a theory of parallel programming. In: Hoare, C., Perrott, R.
(eds.) Operating System Techniques, Academic Press, pp. 61–71. Academic Press,
London (1972)

35. Stenström, P.: A survey of cache coherence schemes for multiprocessors. Com-
puter 23(6), 12–24 (1990)

36. Chang, Y., Bhuyan, L.N.: An efficient tree cache coherence protocol for distributed
shared memory multiprocessors. IEEE Transactions on Computers 48(3), 352–360
(1999)

37. Tamir, Y., Janakiraman, G.: Hierarchical coherency management for shared virtual
memory multicomputers. Journal of Parallel and Distributed Computing 15(4),
408–419 (1992)

38. Aguilar, J., Leiss, E.L.: A general adaptive cache coherency-replacement scheme for
distributed systems. In: Böhme, T., Unger, H. (eds.) IICS 2001. LNCS, vol. 2060,
pp. 116–125. Springer, Heidelberg (2001)

39. Kent, C.A.: Cache coherence in distributed systems. WRL Technical Report 87/4
(1987)

40. Hildrum, K., Krauthgamer, R., Kubiatowicz, J.: Object location in realistic net-
works. In: SPAA 2004: Proceedings of the sixteenth annual ACM symposium on
Parallelism in algorithms and architectures, pp. 25–35. ACM, New York (2004)

41. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: SPAA 1997: Proceedings of the ninth
annual ACM symposium on Parallel algorithms and architectures, pp. 311–320.
ACM, New York (1997)

42. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

43. Jensen, D., Wells, D.: A framework for integrating the real-time specification for
java and java’s remote method invocation. In: ISORC 2002: Proceedings of the
Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Washington, DC, USA, p. 13. IEEE Computer Society, Los Alamitos
(2002)

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 406–416, 2008.
© IFIP International Federation for Information Processing 2008

Implementation of an Obfuscation Tool for C/C++
Source Code Protection on the XScale Architecture*

Seongje Cho1, Hyeyoung Chang1, and Yookun Cho2

1 Dept. of Computer Science & Engineering, Dankook University, Gyeonggi-do, Korea
2 School of Computer Science and Engineering, Seoul National University, Seoul, Korea

{sjcho,hychang}@dankook.ac.kr, cho@os.snu.ac.kr

Abstract. Obfuscation is one of the most effective methods to protect software
against malicious reverse engineering intentionally making the code more com-
plex and confusing. In this paper, we implement and evaluate an obfuscation
tool, or obfuscator for protecting the intellectual property of C/C++ source
code. That is, this paper presents an implementation of a code obfuscator, a tool
which transforms a C/C++ source program into an equivalent one that is much
harder to understand. We have used the ANTRL parser generator for parsing
C/C++ programs, and applied some obfuscation algorithms. Performance analy-
sis is conducted by executing two obfuscated programs on the XScale architec-
ture to establish the relationship between the complexity and the performance of
each program. When the obfuscated source code has been compared with the
original source code, it has enough effectiveness in terms of potency and resil-
ience though it incurs some run-time overhead.

Keywords: Obfuscation, Source Code Protection, Reverse Engineering.

1 Introduction

The major types of attack against software protection mechanisms can be classified as
software piracy, malicious reverse engineering, and tampering. Software piracy is the
illegal distribution and/or reproduction of software applications for business or per-
sonal use. Global PC software piracy alone accounted for nearly $40 billion annual
loss [1] to the software industry in 2006. Many software developers therefore try to
protect their programs against illegal copying. They also worry about their applica-
tions being reverse engineered [2,3,4,5]. Certain classes of automated reverse engi-
neering tools can successfully attack compiled software to expose underlying code. In
some cases, a valuable piece of code may be extracted from an application and incor-
porated into a competitor’s code. Another related threat is software tampering [2,5,6].
Any illicit modification of program file or attack against program integrity should
make the software unusable.

As the use of a client code like ‘mobile agent’ programs downloaded or installed
on a host becomes more general, the client software is more frequently threatened by

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD, Basic Research Promotion Fund)(KRF-2008-314-D00340).

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 407

the host. This results from the power of the adversary model in digital rights man-
agement (DRM) systems, which is significantly more vulnerable than in the tradi-
tional security scenarios. The adversary can even gain complete control of the client
node–supervisory privileges along with the full physical as well as architectural object
observational capabilities. Unfortunately, the traditional security techniques to protect
software from malicious client may not be applicable to protect a client code against a
host attack [2, 3]. As a result, software protection has recently attracted tremendous
commercial interest, from major software vendors to mobile DRM venders.

While it is generally believed that complete protection of software is an unattain-
able goal, recent results have shown that some degree of protection can be achieved.
Software watermarking, obfuscation, and tamper-proofing have emerged as feasible
methods for the intellectual property (IP) protection of software [2-11]. Watermark-
ing, a defense against software piracy, is a process that makes it possible to determine
the origin of software. Obfuscation, a defense against reverse engineering, is a process
that renders software unintelligible but still functional. Tamper-proofing, a defense
against tampering, is a process so that unauthorized modifications to software (for
example, to remove a watermark) will result in nonfunctional code.

In this paper, we focus only on obfuscation techniques useful for protecting soft-
ware from reverse engineering. The paper describes the implementation and evalua-
tion of an obfuscation tool which converts a C/C++ source codes into an equivalent
one that is much harder to understand. We implement some obfuscation algorithms on
the XScale architecture and evaluate the performance and effectiveness of the
obfuscation tool in terms of potency, resilience, and cost.

The rests of the section in this paper is organized as follows. Section 2 explains ob-
fuscation, its related work, and the evaluation metrics of obfuscation. It is then fol-
lowed by the description of the proposed method in section 3. Section 4 describes the
implementation of obfuscation algorithms. We present the performance results of our
implementation in section 5. Finally, section 6 concludes the paper.

2 Obfuscation

Software obfuscation can be defined as a semantics-preserving code transformation of
a program in an attempt to make the code as complex and confusing as possible. Ob-
fuscation protects the intellectual property (IP) of software from reverse-engineering
attacks. The IP can be the software design, algorithms, or data contained in the soft-
ware. Obfuscating transformations are primarily classified depending on the kind of
information they target. Some simple transformations target the lexical structure (the
layout) of the program while others target the data structures used by the program or
its flow of control [2,4,7,8,11].

Layout obfuscations are aimed at making the code unreadable by introducing ‘for-
matting change’, ‘remove comments’, ‘remove debug information’, and ‘scramble
identifiers’ methods. Most commercial obfuscators fall in this category. Crema, one
of the oldest Java obfuscators, uses layout obfuscation. Data obfuscations are aimed at
obscuring data and data structures used in the program. These data transformations
can be classified into the following methods: ‘split variables’, ‘array transformation
including splitting and folding’, and ‘modifying inheritance including class split and
class insertion’.

408 S. Cho, H. Chang, and Y. Cho

Control obfuscations are aimed at obfuscating the flow of execution by applying
‘opaque construct’, ‘redundant code introducing opaque predicates and multiple ob-
fuscated loops’, ‘inline removing procedural abstraction’, and ‘outline creating bogus
procedural abstraction’ algorithms [2,7,8]. Several control obfuscations rely on the
existence of opaque variables and opaque predicates. A variable V is opaque if it has
some property q which is known a priori to the obfuscator, however is difficult for de-
obfuscator to deduce. Similarly, a predicate Ρ (a Boolean expression) is opaque if its
outcome is known at obfuscation time, but is difficult for the de-obfuscator to deduce.
We write ΡT (ΡF) if Ρ always evaluates to TRUE (FALSE), and Ρ? if Ρ may some-
times evaluates to TRUE and sometimes to FALSE.

In general, three criteria are considered in evaluating the quality of an obfuscation
method; including potency, resilience, and cost [2-9]. The potency refers to what
degree the transformed code is more obscure than the original. Software complexity
metrics define various complexity measures for software, such as number of predi-
cates it contains, depth of its inheritance tree, nesting levels, etc. While the goal of
good software design is to minimize complexity based on these parameters, the goal
of obfuscation is to maximize it.

The resilience of the software is a measure of how well the transformed code can
resist attacks from either the programmer or an automatic de-obfuscator. It is a com-
bination of the programmer effort to create a de-obfuscator and the time and space
required by the de-obfuscator. The highest degree of resilience is a one-way transfor-
mation that cannot be undone by a de-obfuscator. An example is when the obfusca-
tion removes information such as source code formatting. The difference between
potency and resilience is that a transformation is potent if it can confuse a human
reader, whereas it is resilient if a de-obfuscator tool cannot undo the transformation.

The cost of a transformation defines to how much computational overhead is added
to the obfuscated program. Examples of the cost are the extra execution time and
space penalty incurred by the obfuscation.

There are many software protection tools such as Cloakware, DashO, Dotfuscator, Kava
(Konfused Java), JHide, and Semantic Designs’ source code obfuscator [2,4,5,9,10,11].
Cloakware is capable of providing significant control and dataflow obfuscations of C
source code. DashO and Dotfuscator can construct layout transformations including dead
code removal and identifier renaming for Java and Microsoft Intermediate Language
(MSIL), respectively. Semantic Designs’ source code obfuscators provide a software de-
veloper with identifier renaming and optional whitespace removal for several high-level
languages. A tool called Sandmark measures the effectiveness of software-based methods
for protecting software against piracy, reverse engineering, and tampering [4]. MacBride
et. al. [9] presented a qualitative measurement of the capability of two commercial obfus-
cators, DashO-Pro and KlassMaster. The measurement showed the two obfuscators both
could cause variations in the performance of the algorithms used for testing.

3 The Structure of C/C++ Source Code Obfuscator

The approach we are going to consider is source code obfuscation to protect intellec-
tual property embedded in C/C++ source programs. The source code obfuscator
accepts a source file, and generates another functionally equivalent source file which

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 409

Fig. 1. Structure of high-level obfuscator

is much harder to understand or reverse-engineer. This is useful for technical protec-
tion of intellectual property in the following cases1. First, the source code must be
delivered for public execution purposes. Second, commercial software components
must be delivered in source form for direct integration by a customer into her end
product (portable applications in C or PHP etc., code libraries or hardware compo-
nents coded in Verilog or VHDL). Third, we have to send test cases derived from
proprietary code to vendors. Fourth, an object code still contains many clues such as
class public methods used only inside an application, as with java class files.

Figure 1 shows the overall structure of our source code obfuscator. We use a parser
generator called ANTRL, ANother Tool for Language Recognition [12], to obfuscate
the C/C++ source programs. The parser generated by the ANTRL takes C/C++ pro-
grams as input and analyzes a sequence of tokens to determine grammatical structure
with respect to a given formal grammar. It captures the implied hierarchy of the input
text and transforms it into abstract syntax tree (AST), or just syntax tree. The parser
can use a separate lexical analyzer (lexer) to create tokens from the sequence of input
characters. The AST is a finite, labeled, and directed tree, where each interior node
represents a programming language construct and the children of that node represent
meaningful components of the construct. It is used in the parser as an intermediate
between a parse tree and a data structure. Based on the information contained in the
AST, we implement the obfuscation algorithms by inserting, modifying, and restruc-
turing a proper node after locating the node to apply the algorithms.

The obfuscation tool consists of two parts; one part shown in left side of Figure 1
obtains symbol information and the other part shown in right side constructs obfusca-
tion algorithms utilizing the derived symbol information. The symbol information
includes the attributes of identifiers such as the name, type, and size of all the vari-
ables. We can finally transform an original source program into an obfuscated source
program by both using the symbol information and reconstructing the AST.

1 http://www.semdesigns.com/Products/Obfuscators

410 S. Cho, H. Chang, and Y. Cho

4 The Implementation of Obfuscation Algorithms

In the remainder of this paper we will describe and evaluate various obfuscating trans-
formations. We start by formalizing the notion of an obfuscating transformation.
Given a set of obfuscating transformations T = {T1, …, Tn} and a program C consist-
ing of source code objects (classes, methods, statements, etc.) {S1, …, Sk}, find a
new program C’ = { …, S’j = Ti(Sj), …} such that C’ has the same observable behav-
ior as C, i.e., the transformations are semantics-preserving. Our obfuscator have cur-
rently implemented some obfuscation algorithms: modifying an original program’s
layout, splitting variables, restructuring arrays, extending loop conditions, and add-
ing redundant operand. As the target programs to apply the obfuscation algorithms,
we have selected three programs, bubblesort, advanced encryption standard (AES),
and Diffie-Hellman key exchange programs. In this section, we mainly consider the
original source code and the obfuscated code of the AES program.

4.1 Layout Transformations

We first introduce layout obfuscation altering the formatting of the source file. This
involves removing source code comments, and changing the names of elements such
as the class, member variables, and the local variable. Source code comment removal
and formatting removal are free transformations, since there is no increase in space
and time from the original application. The potency is low because there is very little
semantic content in formatting. It is a one-way transformation because the formatting,
once removed, cannot be recovered. Scrambling of variable names is also a one-way
and free transformation, but it has much higher potency than formatting removal.

4.2 Split Variable

Integer variables and other variables of restricted range can be split into two or more
variables. Figure 2 shows an example where the splitting principle is applied to inte-
ger variables. Here, the elements of i are distributed over two short variables, _888
and _15871. The algorithm can sometimes substitute a target variable with a function
which returns the same value as the variable. The potency, resilience, and cost of this
method all increase with the number of variables into which the original variable is
split.

4.3 Restructure Arrays: Array Folding

A number of transformations can be devised for obscuring operations performed on
arrays: we are trying for a programmer to be able to split an array into several sub-
arrays, merge two or more arrays into one array, fold an array (increasing the number
of dimensions), or flatten an array (decreasing the number of dimensions). Figure 3
demonstrates how a one-dimensional array sbox can be folded into a two-
dimensional array sbox. Array folding increases the data structure complexity of the
potency metrics.

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 411

Fig. 2. A data transformation that splits variables

Fig. 3. Array restructuring: Array folding

4.4 Extend Loop Conditions

Figure 4 shows how we can obfuscate a loop by making the termination condition
more complex. The basic idea is to extend the loop condition with a ΡT or ΡF predi-
cate which will not affect the number of times the loop will execute. In Figure 4, our
obfuscator has added to the termination condition of the loop the ‘&&’ operator fol-
lowed by the predicate ΡT which will always evaluate to TRUE, and the ‘||’ operator
followed by the predicate ΡF which will always evaluate to FALSE.

4.5 Add Redundant Operand

By constructing some opaque variables, we can use algebraic laws to add redundant
operands to arithmetic expressions. This will increase the program length metric of
the potency metrics. Obviously, this method works best with integer expressions
where numerical accuracy is not an issue. In the obfuscated statement in Figure 5, we
construct an opaque sub-expression (int) (856* 0.0001)*4 whose value is 4.

412 S. Cho, H. Chang, and Y. Cho

Fig. 4. Loop condition insertion

Fig. 5. Add redundant operand

5 Performance Evaluation

The transformation constructing the obfuscation algorithms may increase execution
time, program complexity, and cost. We think there will always be a trade-off be-
tween the level of obfuscation and the performance overhead incurred. In this section,
we have analyzed the quality of the obfuscation algorithms on an embedded board
equipped with the Intel XScale PXA255 400MHz CPU, 128 megabyte SDRAM, and
32 megabyte Flash ROM. Embedded Linux kernel 2.4.19, g++ compiler, and the AES
and Diffie-Hellman programs have been used for performing the experiments. The
potency, resilience, and cost are considered in evaluating the quality of obfuscation
methods: ‘layout transformations’, ‘split variable’, ‘array folding’, ‘extend loop con-
ditions’, and ‘add redundant operand’.

5.1 Measures of Potency

Even though there are many complexity metrics to evaluate the degree of the
potency [8], we consider only some of the complexity measures listed in Table 1. The
goal of an obfuscating method is to maximize these measures. The potency is meas-
ured by the summation of the series for the five complexity values in Table 1. An
obfuscation method is a potent obfuscating transformation if the following equation,
its relative potency ratio with respect to a program, is satisfied.

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 413

{Potency(obfuscated program) / Potency(original program)} – 1 > 0 (1)

Table 1. Overview of some software complexity measures

Metric Metric name and Its meaning

Program Length
µ1 Complexity of a program increases with the number of operators and operands in a

program
Cyclomatic Complexity

µ2 Complexity of a function or method increases with the number of predicates in a func-
tion or method
Nesting Complexity

µ3
Complexity of a function or method increases with the nesting level of conditionals

Data Flow Complexity
µ4 Complexity of a function or method increases with the number of inter-basic block

variable references
Fan-in/out Complexity

µ5 Complexity of a function or method increases with the number of formal parameters to
the function or method, and with the number of global data structures read or updated
by the function or method.

Table 2 shows the complexity values and relative potency ratio obtained by meas-
uring the five metric values of the AES and Diffie-Hellman programs. In Table 2, we
can see that the obfuscator has increased the relative potency ratio by 0.675 for the
AES program and 0.848 for the Diffie-Hellman program, respectively when both data
and control transformations were applied.

Table 2. Complexity and potency ratio of each code before and after applying obfuscation

AES Diffie-Hellman

Original Data Control Data+Control Original Data Control Data+Control
µ1 10356 15605 13264 17311 3299 5001 4519 6094
µ2 17 23 38 32 22 30 31 41
µ3 21 25 43 37 21 25 30 37
µ4 29 50 64 71 18 34 35 50
µ5 12 21 27 32 26 33 31 36

Potency
ratio 0.507 0.288 0.675 0.513 0.372 0.848

5.2 Measures of Resilience

It is not easy to quantitatively measure resilience of the obfuscated codes. As shown
in Figure 6, we measure it on a scale from trivial to one-way according to the criteria
proposed by Collberg et. al. in [8]. One-way transformations are the highest resilience

414 S. Cho, H. Chang, and Y. Cho

Fig. 6. Resilience of an obfuscating method

Table 3. Resilience of the implemented algorithms

Target Transformation Algorithm Resilience Value

Layout Remove Comments One-way 5

Extend Loop Condition Weak ~ Strong 2~3 Control
flow Add Redundant Operands Weak ~ Strong 2~3

Split Variable Weak 2
Data

Fold Array Weak 2

in the sense that they can never be undone. Other transformations add unnecessary
information to the program that do not change its functional behavior, however which
make it difficult to construct an automatic tool to undo the transformations or execut-
ing such a tool will be extremely time-consuming. Table 3 shows the resilience of the
obfuscated algorithms implemented in Section 4.

5.3 Measures of Cost

We measured the file size and execution time of the target programs before and after
applying obfuscation methods. The experimental results are shown in Table 4. Each
execution time of the AES encryption and Diffie-Hellman key distribution programs
present the average time consumed to encrypt a plaintext file of 262144 bytes and to
generate a secret key of 128 bits, respectively. We can see from the table that the
obfuscator increases the file size and execution time of the obfuscated programs.

Table 4. File size (in bytes) and execution time (in seconds) before and after applying obfuscation

AES Diffie-Hellman

Original Data Control
Data+

Control
Original Data Control

Data+
Control

Source file
size 9658 15605 13352 17332 3299 5001 4519 6094

Object file
size 9180 13228 13200 15416 2904 3748 3896 4660

Execution
time 6.610s 7.666s 6.677s 7.711s 0.176s 0.210s 0.225s 0.250s

 Implementation of an Obfuscation Tool for C/C++ Source Code Protection 415

Fig. 7. Comparison of assembly codes before and after applying obfuscation

5.4 Comparison of Assembly Codes

Finally, we have compared the ARM assembly language of an original program with
that of its obfuscated one to check if the transformation algorithms are effective in the
machine-level code. Figure 7 shows the assembly codes corresponding to some part
of the function AddRoundKey() in the AES program. The right side part of the figure
shows the assembly code after applying two obfuscation algorithms, ‘split variable’
and ‘extend loop condition’. The assembly code of the obfuscated function is quite
different from that of the original one. As a result, our C/C++ obfuscator for the
XScale architecture is effective even though it incurs some space and time overhead.

6 Conclusion and Future Work

This paper presents the implementation of an obfuscation tool, or obfuscator on the
XScale architecture that protects C/C++ source code against malicious reverse engi-
neering by making the code as complex and confusing as possible, but still functional.
To render software unintelligible, the obfuscator uses layout transformations, data
transformations including ‘split variable’ and ‘fold array’, and control transforma-
tions such as ‘extend loop conditions’ and ‘add redundant operand’. We have also
evaluated the quality of obfuscation methods using three criteria: potency, resilience,
and cost. Experimental results have shown that our obfuscator can enhance the po-
tency and resilience of the obfuscated code, but incur some space penalty and the
extra execution time.

416 S. Cho, H. Chang, and Y. Cho

The future work for this research is to continue to introduce other obfuscation algo-
rithms in this obfuscator to make more obscure the control-flow of the source pro-
gram and the data structure used in it. We will also develop another obfuscation
method for a low-level program like assembly or machine languages, and then
incorporate it with the current obfuscation method.

References

1. Business Software Alliance, Fourth Annual BSA and IDC Global Software Piracy Study
(2006)

2. Collberg, C.S., Thomborson, C.: Watermarking, Tamper-Proofing, and Obfuscation –
Tools for Software Protection. IEEE Transactions on Software Engineering 28(8), 735–
746 (2002)

3. Gomathisankaran, M., Tyagi, A.: Architecture Support for 3D Obfuscation. IEEE Transac-
tion on Computer 55(5), 497–507 (2006)

4. Collberg, C., Myles, G., Huntwork, A.: Sandmark – Tool for Software Protection Re-
search. IEEE Security & Privacy (Software Protection), 40–49 (July/August 2003)

5. Naumovicb, G., Memon, N.: Preventing Piracy, Reverse Engineering, and Tampering.
IEEE Computer, 64–71 (2003)

6. Fu, B., Richard III, G.G., Chen, Y., Husseiny, A.: Some New Approaches For Preventing
Software Tampering. In: Proc. of the 44th ACM Southeast Regional Conference (ACM SE
2006), pp. 655–660 (2006)

7. van Oorschot, P.C.: Revisiting Software Protection. In: Boyd, C., Mao, W. (eds.) ISC
2003. LNCS, vol. 2851, pp. 1–13. Springer, Heidelberg (2003)

8. Collberg, C., Thomborson, C., Low, D.: A Taxonomy of Obfuscating Transformations.
Technical report 148, Dept. of Computer Science, University of Auckland, New Zealand
(1997)

9. MacBride, J., Mascioli, C., Marks, S., Tang, G., Head, L.M.: A Comparative Study of Java
Obfuscators. In: IASTED International Conference on Software Engineering and Applica-
tions, Phoenix, Arizona, November 14 –16, 2005, pp. 82–86 (2005)

10. Ertaul, L., Venkatesh, S.: JHide – a tool kit for code obfuscation. In: Proc. of the 8th
IASTED International Conference Software Engineering and Applications (2004)

11. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static Disassembly of Obfuscated Bina-
ries. In: Proc. of the 13th USENIX Security Symposium, pp. 255–270 (2004)

12. ANTLR, http://www.antlr.org

Automated Maintainability of TTCN-3 Test Suites
Based on Guideline Checking

George Din1, Diana Vega2, and Ina Schieferdecker2

1 FOKUS Fraunhofer Institut, Kaiserin Augusta-Allee 31, Berlin, Germany
george.din@fokus.fraunhofer.de

2 Technical University of Berlin, Franklinstr. 28-29
Berlin, Germany

Abstract. Similar to software development, the test development must be ac-
companied with a set of rules specifying how to write tests. They are grouped
together into a document called guideline. Guidelines are especially necessary
for large test specifications involving many developers and have the goal to re-
duce the effort of the overall development. So far, no universal guidelines for the
TTCN-3 language [1] have been defined. Instead, each company or team defines
and follows own development rules for test structuring and development. This pa-
per deals with the problem of how to automate the validation whether a TTCN-3
test specification complies or not with an established guideline, i.e. guideline
checking. The results of the validation process are a list of non-consistencies.
A follow up step is the refactoring which automatically proposes and applies
changes to improve the test suite compliance level, and thus its quality.

1 Introduction

In software engineering, guidelines may be defined for various aspects: models, pro-
gramming, code documentation, users guides, developers guides, user interfaces, etc.
They are useful for many reasons. First of all they help to establish a common under-
standing within the developing team. Next, they allow for easier development, changes
or extensions. Any team member is able to understand the contributions of the rest of
the team, and may even be able to extend parts contributed by other team members.
Furthermore, new developers can integrate into the team by understanding much easier
a complex system and being able to easily recognize its structure.

In this paper we consider the guidelines for test specifications written in the stan-
dardized Testing and Test Control Notation (TTCN-3) language [2]. We selected this
language due to its popularity in the nowadays test developments. Its popularity grown
over the last decade when many test suites have been specified in this language. Lots of
resources have been invested by the industry and research groups in order to make out of
TTCN-3 a general and standard testing framework. However, an important contribution
to the spreading of TTCN-3 had the European Telecommunication Standardization In-
stitute (ETSI)[3] which standardized various TTCN-3 test suites for telecommunication
protocols.

Two obvious questions occur with respect to TTCN-3 based test specifications: on
one hand, how well the tests are designed and, on the other hand, how to evaluate

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 417–430, 2008.
c© IFIP International Federation for Information Processing 2008

418 G. Din, D. Vega, and I. Schieferdecker

that they are well written in a consistent manner. Both questions can be answered by
analyzing guidelines for TTCN-3 test development.

In testing area, the guidelines have the same importance as for software engineering.
More specific we look into the problem of how to automate the guideline checking of
test specifications and how to recognize potential non-consistencies with the specified
guideline. To achieve that, we analyze several existent guidelines used for TTCN-3 test
specifications. Then, we define a method to specify guidelines in such form that they
can be used by an automated tool for guideline checking.

From a test quality perspective, the use of guidelines is an essential requirement. Ac-
cording to the quality model for test specifications proposed in [4], the guidelines com-
pliance contributes the the overall quality of the test with respect to the selected quality
criteria. In that model, the quality is seen as a set of characteristics; each characteristic
being composed of further sub-characteristics. Several of these sub-characteristics may
be evaluated in relation with guidelines:

– understandability: documentation and description of the overall purpose of the test
specification are key factors in understanding a test suite.

– learnability: to be able to extend or modify a test suite, the test developer must
understand how it is structured. Proper documentation or style guides have positive
influence on learnability.

– analyzability: concerns the degree to which deficiencies in a test specification can
be localized. For example, test specifications should be well structured to allow
code reviews.

– changeability: describes the capability of the test specification to enable necessary
modifications to be implemented. E.g. badly structured code or a test architecture
that is not expandable may have negative impact on this.

One important question is how to check whether a guideline is fulfilled or not. As
long as the nowadays software systems are very large and complex, the guideline check-
ing should be automated as much as possible. Moreover, the guideline checking should
not only determine whether an entity (e.g. documentation, program) is compliant with
the guideline but also deliver a list of inconsistencies with precise localization informa-
tion where the issues appear.

The information delivered by the guideline checker should then be used to fix the
non-consistencies. The inconsistencies are of different types as for instance: a) naming
convention related, e.g. a function does not start with f , b) logical, e.g. a piece of
functionality is placed in a wrong file, c) structural, e.g. a file is placed in a wrong
package, etc. Also in this respect, we see the need for automation. This can be realized
only on top of a taxonomy of types of inconsistencies which may appear. The automated
approach should be such programmed that any type of inconsistency can be solved
automatically or with very little human intervention.

The automation of guideline checking and inconsistencies solving should offer a
tremendous help for rapid test specification improvement. An obvious result of auto-
mated approach is the better maintainability and reusability. This way the test specifi-
cation can be specified in a consistent manner and changes can be easier propagated,
etc. In addition, the same guideline can be used for different specifications belonging
to the same application domain. Furthermore, the pieces of functionality (e.g. libraries)

Automated Maintainability of TTCN-3 Test Suites 419

specified according to a guideline are easier to be reused for another test specification
that follows the same guideline.

This paper is structured as follows. The next section gives a short introduction of
the TTCN-3 language. Section 3 looks in more detail into the structure of a guideline
while Section 4 presents our method to define guideline checking rules and presents
a classification of the refactoring possibilities. The guidelines of the IPv6 testsuite[5],
written in TTCN-3, are provided as example and discussed in Section 5. The paper
finishes with the overview on related work and the conclusion sections.

2 A Short TTCN-3 Overview

The TTCN-3 language is a text-based language and has the form of a modern pro-
gramming language, which is obviously ease to learn and to use. Specially designed
for testing, it inherits the most important typical programming language artifacts, but
additionally it includes important features required for test specification.

A TTCN-3 based test specification is called Abstract Test Specification (ATS) and
it usually consists of many files grouped into folders and subfolders. Each file contains
one or more modules. The module is the top level element of the TTCN-3 language
which is used to structure the test definitions of:

– test data: types of messages, instances of types called templates,
– test configurations: ports and components to define the active entities of a test,
– test behaviours: functions, altsteps, testcases which implement the interactions

between the components and the SUT and which make use of the test data,
– control: a global behavior to control the flow of testcases execution

Each afore mentioned definition type (except control which does not need an iden-
tifier)) has an identifier and can be placed in any module. TTCN-3 also offers the pos-
sibility of grouping elements into groups. The test developer is free to choose how to
name the identifiers, how to group the definitions and in which modules to place them.
However, the group element does not impose a new scope for the grouped elements,
but only at the logical and visual level.

As long as the test specifications contain thousands of definitions, it is extremely
important to be consistent in writing TTCN-3 test definitions and in maintaining a clear
test suite structure and file structure. The language is similar to a programming language
such as Java or C++, therefore lots of structuring possibilities, naming conventions etc.
are allowed.

Currently, all ETSI test specifications are written in the TTCN-3 language [6]. Along
the last decade, the ETSI test specifications adopted different guidelines for structuring,
naming conventions etc. We are interested in this evolution in the testsuite design and
try to derive a general view on guideline rules design.

We analyzed a number of test specifications (SIP[7], IPv6[5], M3UA[8]) standard-
ized by ETSI in order to learn which guidelines have been used and check how consis-
tent are they along the whole test specification. A classification of these rules is realized
in Section 3 while in Section 4 we present a method of how to describe guideline rules
such that an automated guideline checker is capable of checking the test specification
consistency with respect to those rules.

420 G. Din, D. Vega, and I. Schieferdecker

3 Guideline Rules Classification

A comprehensive guideline should take into account various aspects. We propose a
method to classify these aspects for TTCN-3 into three levels: physical level, language
level and architectural level. Guideline rules are defined at each level and, consequently,
they contribute with requirements to the global guideline. Fig. 1 illustrates these levels.

Fig. 1. Guideline Levels

The architectural level refers to information related to System Under Test (SUT)
(interfaces, use-cases, roles etc.), the language level refers to the definition of test con-
structs in the TTCN-3 language (types, components, testcases, etc.), while the physical
level deals with file system information such as files and folders. In this classification,
the information from one level may propagate only to the levels below (top-done) and
never to the above ones. We analyze these levels in greater detail.

3.1 Architectural Level

The architectural level includes guideline rules derived directly from the SUT
architecture.

– SUT interfaces: the interaction between the Test System (TS) and SUT is realized
over at least one interface. To increase the readability, a common guideline rule is
to group together the definitions related to one interface.

– roles: the test behavior can be designed for different roles, e.g. client, server, proxy.
The test definitions defined for one role should be grouped together.

– use cases: a test behavior corresponds to a type of interaction, i.e. use case, with the
SUT. Multiple use cases can be treated within the same test specification. To avoid
mixing the test behaviours from different use cases, a common practice is to group
together the definitions related to a use case.

Automated Maintainability of TTCN-3 Test Suites 421

– version: a test specification may refer to multiple versions of the tested SUT’ spec-
ification. A common practice is to avoid that test definitions for different SUT ver-
sions are mixed.

The information from the architectural level is used to structure the test specification
and, consequently, imposes guideline rules to the two levels below. At the language
level, the architectural information is used to group related test definitions into TTCN-3
modules and groups. Additionally, naming conventions can also be used in order to
embed architectural information into the TTCN-3 identifiers.

We give as example an SUT which has two interfaces: Interface1 and Interface2. An
architecture level guideline rule should say that the test definitions related to each in-
terface should be placed in the same group. At the logical level we have several options
to propagate the architectural rule. We may either define two TTCN-3 modules or two
groups. In either case the definitions will be grouped together:
Interface1 Definitions Module (or Group) and
Interface2 Definitions Module (or Group). A further option is to use also
naming conventions for the involved TTCN-3 types, templates or testcases such as
tc interface1 Test1, tc interface1 Test2, where the prefix tc stands
for testcase abbreviation. However, the three posibilities can be combined. For in-
stance, the tc interface1 Test1 can be added to a group of testcases for In-
terface1 Interface1 Testcases Group which is defined in a module named
Interface1 Definitions Module as illustrated in Listing 1.1.

Listing 1. 1. Test Structuring Example

1 module I n t e r f a c e 1 D e f i n i t i o n s M o d u l e {
2 group I n t e r f a c e 1 T e s t c a s e s G r o u p {
3 t e s t c a s e t c i n t e r f a c e 1 T e s t 1
4 runs on C system S {
5 . . .
6 }
7 t e s t c a s e t c i n t e r f a c e 1 T e s t 2
8 runs on C system S {
9 . . .

10 }
11 }
12 }

At the physical level, the architectural information is used to store the test definitions
into files and folders. Also in this case, naming convention rules can be used to name
the files and folders. Following the example provided above, we can store all definitions
related to each interface into separate folders such as: types/interface1/File1.ttcn3, com-
ponents/interface1/File2.ttcn3, etc. When more than one architectural guideline rules
apply, they can be combined in an arbitrary order.

422 G. Din, D. Vega, and I. Schieferdecker

3.2 Language Level

The language level contains guideline rules for writing the TTCN-3 code. They can be
classified into:

– formatting rules related to indentation, braces, white spaces, blank lines, new lines,
control statements, line wrapping and comments

– naming conventions related to the names of the identifiers of the TTCN-3 constructs
(types, templates, testcase, components, etc.)

– structural rules related to grouping the test definitions into groups and modules.

The naming conventions concern prefixing (and sometimes postfixing) rules and ap-
ply to all TTCN-3 elements which require an identifier: types, templates, functions,
altsteps, testcases, groups, modules, variables, etc. For easier localization, the TTCN-3
identifiers can be prefixed with a string indicating a group of definitions of the same
category. For example, the message types can be prefixed by strings such as Type,
type, type , T etc. Multiple prefixes can occur. For example, type definitions can
be grouped into types of messages to be sent to SUT, e.g. Send Msg, and types of
messages to be received, e.g. Received Msg. If multiple prefixes are used, they can
simply be concatenated or separated by the “ ” character.

The structural rules concern the grouping of the definitions into groups and modules.
This can be realized in many ways:

– grouping by categories: the definitions of the same category can be grouped to-
gether (e.g., types in a group of types, templates in a group of templates).

– grouping by libraries: the reusable definitions which are at the same time also gen-
eral enough to apply to different test suites should be grouped into libraries.

3.3 Physical Level

The physical level offers further structuring possibilities of TTCN-3 definitions:

– files: store particular groups of definitions in separate files
– folders: files can be further grouped into folders and subfolders.

Also at the physical level the naming conventions should appear. They are usually
propagated from the upper levels and impose prefixes for the names (or even impose the
name itself) of files or folders. For example, a file located as /types/interface1/
usecase1/sending.ttcn3 combines information from the architectural level i.e.
interface1 and usecase1 with information from the language level i.e. types
and sending. This file name means that it contains all types of messages to be sent to
SUT defined for usecase1 and for interface1.

4 Test Analyzability and Refactoring

To ensure that a guideline is followed consistently along the whole test specification,
a guideline checker is needed. Test analyzability is the characteristic of a test to be
validated against a guideline and it includes the mechanisms to define and check guide-
line rules. Refactoring is the mechanism which enables to fix inconsistencies detected
during the analyzability phase.

file:/types/interface1/usecase1/sending.ttcn3
file:/types/interface1/usecase1/sending.ttcn3

Automated Maintainability of TTCN-3 Test Suites 423

4.1 Guideline Checker Types

Guideline checking implies that all guideline rules are verified on top of a test spec-
ification. Our realization approach is illustrated in Fig. 2. The guideline rules are all
managed by a common repository and are loaded by the guideline checker. Another in-
put of the checker is the test specification itself. The guideline checker consists of rule
checkers which are of different types. Moreover, each checker type can be instantiated
for an arbitrary number of times (one instance per guideline rule). The checker reports
for each rule how many identifiers matched that rule and how many of them did comply
with it.

Fig. 2. Guideline Rules Checkers

We identify two types of checkers: naming conventions checkers and structural check-
ers. A guideline rule is instantiated in one of these checker types and it is applied to all
identifiers of a test specification. The naming convention checkers evaluate the name of
the identifier and determines if it is composed correctly. The structural checkers verify
whether the test definition whose identifier is evaluated is placed in the correct structure
(group, subgroup, module, file and folders).

4.2 Checking Rules Specification

A guideline rule consists of three parts: a filtering criterion which indicates which iden-
tifiers should follow the rule, a relation and an entity. The relation and the entity define
what the test definition selected by the filtering criterion should comply with.

Table 1. Rules examples

Rule1 (testcase)(naming:prefix)(tc)
Rule2 (testcase)(inclusion:module)(“Testcases”)
Rule3 (testcase)(naming:prefix)(arch info:interface)
Rule4 (testcase)(inclusion:group)(arch info:use-case)

Fig. 3 depicts the structure of a rule. There are two types of relations: naming rela-
tions, which define how the identifiers should be created, and inclusion relations, which
describe where to place a test definition into a structural element (group, module or file).

424 G. Din, D. Vega, and I. Schieferdecker

Fig. 3. Rule Specification

The entity can be a TTCN-3 identifier of a structural construct (group or module), a
non-structural TTCN-3 construct (component, testcase, etc.), a file system identifier (of
a file or folder) or an architectural information (role, interface, version or use case).

As shown in the figure, an inclusion relation is not possible between an identifier
and an architectural information. The naming relation is possible with an architectural
information since an identifier can be prefixed with such information.

To illustrate how these rules are created we provide a few examples in Table 1. An
identifier should match all rules which apply to it in a top-down order. All four rules
defined in the table have as filtering criterion the TTCN-3 construct “testcase” and means
that all testcases in the test specification should comply with these rules. The Rule1 and
Rule3 concern prefixing information which means that a valid testcase identifier should
be prefixed with the information provided in the rule’s entity. A valid testcase identifier
is tc Interface1 test1 since it is prefixed first with tc according to Rule1 and
withinterface1 according with Rule3. Thetc test2 is not correct since it does not
comply with the Rule3. The second rule says that all testcases should be defined within
the module with the name “Testcases” given as a string. The forth rule requires that the
testcases are grouped into groups which have names derived from use-cases names.

4.3 Refactoring

Refactoring has been discussed in detail in [9]. For testing, refactoring is defined similar
to software engineering refactoring, as the manual or automated improvement of the
structure of a test specification. There are many types of refactorings we can encounter
in a test specification. We highlight here the most used ones:

– formatting: implies indentation and changes of the locations of test definitions in a
file in terms of lines and columns.

– renaming of identifiers:gives the possibility to rename an identifier (TTCN-3 lan-
guage element, file name, etc). Some parts of the identifier (e.g. if the identifier should
be prefixed by the module name but it is not) can be changed in an automated way.
The refactoring task should also change all references to that identifier in the associ-
ated visibility scope. This type of refactoring is used for situations when an identifier
does not follow a naming convention rule, as for instance: a component type should
be prefixed by CT or should start with capital letter but it does not.

– moving a definition into another group: we distinguish between moving an iden-
tifier into a group in the same module or into a different module or file. The lat-
est two cases fit into the next refactoring schemas since they affect the module

Automated Maintainability of TTCN-3 Test Suites 425

importing and file inclusion settings. If an identifier is moved to a group within
the same module, the refactoring mechanism has to take care whether the identifier
name should be prefixed by the group name. This type of refactoring is needed
to handle inconsistencies such as, for instance, a component type definition is not
placed in the group which should contain component definitions.

– moving a definition into another module: in this case, the moved test definition has
to be imported in the modules where it is referred by using the import construct.
Also in this case, the refactoring has to be consistent with the naming conventions
regarding identifier prefixing.

– moving a definition into another file: has the same constraints as the case of moving
an identifier to another module (moving a test definition to another file implies
moving to another module as well) but also impacts the file inclusion settings for
the whole project with respect to compilation.

Sometimes, for a given non-consistency, more than one refactoring possibilities may
apply. In these situations the manual intervention is required.

Many refactoring rules can be derived from software engineering [9] and applied
to TTCN-3 as presented in [10]. However, our aim was not to identify all of them but
rather to develop a method to classify the guideline rules on various levels (architectural,
language and physical) and understand how they propagate from one level to another.
The refactoring schemes are only example of how non-consistencies can be handled in
an automated manner.

5 An Example - The IPv6 Test Suite

We selected for our analysis the standardized TTCN-3 test suite IPv6 [5] published and
free to download from ETSI web site [3]. Test specifications for IPv6 protocols are
foreseen to cover both conformance testing and interoperability testing for IPv6 core
protocols (such as IPv6 specification, neighbor discovery and stateless address auto-
configuration) and extended protocols (such as security, mobility, and transition).

5.1 Test Specification Analysis

Architectural and Physical Level Guidelines Analysis. Fig. 4 shows a view of how
the ATS has been structured at the physical level. Three important guideline rules have
been applied at this level:

– folder structuring guideline: First, the TTCN-3 files which belong to a common
logical functionality are grouped together. This structure combines an architectural
level rule with the physical level and it is reflected in the existence of two types
of folders: a) with common functionality, i.e. library folders such as libCommon,
Libcore, etc. and b) with specialized functionality, e.g. AtsCommon,AtsCore.

– folder/file/module naming convention guideline: Two guideline rules have been ap-
plied in top-down order. The first rule regards the association between a file and a
folder. It is reflected by the naming convention which requires that the file name
has to start with the name of the folder that contains that module,

426 G. Din, D. Vega, and I. Schieferdecker

Fig. 4. IPv6 Physical Level Guidelines

e.g. LibCommon AbstractData.ttcn3 is placed in the folder LibCommon.
The second rule specifies that the file name has to encapsulate the description of
the predominant type of TTCN-3 elements enclosed in the analyzed module.

– structuring based on architecture information: The testcases have been grouped in
files caring the names of the use cases such as initialization, neighbor discovery:
AtsIpv6 Initialize Testcases,
AtsIpv6 NeighborDiscovery Testcases, etc.

With respect to guideline checking, the validation of the first guideline is difficult
to automate since it is not possible to decide which functionality should belong to a
library. However, the second and the third guidelines can be checked in an automated
manner since they only verify the established naming or inclusion convention.

Language Level Guideline Compliance. There are many naming conventions used
in this specification. We provide, as example, the naming convention for the behavioral
names. These are based on the rule:

Automated Maintainability of TTCN-3 Test Suites 427

<protocol> <main functionality> <role>
<functionality> <type> <nnn>

The <protocol> is the IPv6 specification (IP6). <main functionality>
separates definitions by protocol header type into Header (HDR) and Extension header
(EHR). The roles are also used for classification. <role> is one of following: Host
(HST), Router (RTR), Node (NOD), Source Host (SOH) and Destination Host (DEH).
The <functionality> is used to classify test definitions by use case into General
(GEN), hop-by-hop options header (HBH), destination options header (DSH), routing
header (ROH), fragmentation header (FRH) and IPsec headers (SEC). <type> further
classifies test definitions into Valid Behavior, Invalid Behavior, Inopportune Behavior
and Timers (TI). The <nnn> is a simple sequential number between (001 999) to dis-
tinguish different tests of the same category.

Many naming conventions rules regarding other TTCN-3 constructs are presented in
Fig. 5 together with their statistics.

5.2 Implementation

For the automation process of guideline checking we provide an implementation based
on the TTworkbench [11] tool, an Eclipse-based IDE that offers an environment for
specifying and executing TTCN-3 tests. The main reason for selecting this tool, is that
it provides a metamodel for the TTCN-3 language which is technically realized on top
of Eclipse EMF [12]. EMF is a Java framework and code generation facility which
helps turning models rapidly into efficient, correct, and easily customizable Java code.

Fig. 5. Guidelines Rules Compliance View

428 G. Din, D. Vega, and I. Schieferdecker

Our work on the automated guideline checker follows up an earlier work [13] where
TTCN-3 test quality indicators are derived from a static analysis of a TTCN-3 test suite,
i.e. only the test sources are need. This is different from a dynamic analysis where the
investigations regard the test execution as well. The implementation is designed as a
plug-in whose invocation triggers the following actions:

– access the EMF metamodel instance of the TTCN-3 test specification
– traverse and correlate the elements of interest
– validate the guidelines and store the results
– refactor the whole test specification according to guideline rules.

We implemented and applied the set of ETSI TTCN-3 naming conventions [14] on
the Ipv6 test specification. An intuitive guideline compliance statistic is always wel-
come by test developers and has the advantage of a rapid identification of the issues
in the test specification. Therefore, we choose the tabular presentation format encapsu-
lated in a new Eclipse View. Fig. 5 presents the applied naming convention and what
level of compliance has been achieved, i.e. in a statistical manner:

ComplianceLevel = No of non respectig elements
No of elements

Each line in the table corresponds to a rule and consists of a) the expression-pattern
that the name has to follow, b) an example, and c) the obtained statistic. The list of
non-consistencies can be visualized in a separate window presenting the identifiers of
non-conforming entities. Each identifier can be replaced with a new one; the refactoring
process behind will refactor the new name along the whole test suite.

Looking into the results, we notice that the ETSI IPv6 test suite respects integrally the
naming conventions except the ones related to the group and variable names. As the Fig. 5
indicates, 262 out of 343 groups do not respect the convention of lower-case initial letter.

With respect to refactoring, the user has then the possibility to select one of the
rules which are not entirely fulfilled, e.g., the rule selected in Fig.5 is not satisfied by
5 identifiers out of 78. Next, the GUI provides the list of inconsistencies for that rule.
For each inconsistency the user is asked to introduce a new identifier. By applying the
new modifications, the old identifier is replaced with the new introduced one within the
whole test suite.

6 Related Work

The guidelines are designed to help the developer in writing better code. They are avail-
able for almost any programming language and have impact on different levels such as:
coding level, for instance for C++ in [15], design level, for instance for Java in [16],
formatting level, comments level, etc.

On the testing side, the existing work focuses more on the guidelines regarding the
effectivity of various types of tests: unit tests, integration tests, system tests etc. The
work in [17] highlights a set of 27 guideline rules for writing jUnit tests.

With respect to TTCN-3, reusability has been explored in [18]. This work concen-
trate in great detail on guidelines for writing reusable TTCN-3 code. Maintainability

Automated Maintainability of TTCN-3 Test Suites 429

aspects, and in particular refactoring, have been concerned in [19] where catalog of 20
refactoring rules derived from Java [9] have been proposed and implemented. Refactor-
ing is seen as a technique to systematically restructure code to improve its quality and
maintainability while preserving the semantics.

7 Conclusion

In this paper we introduced, analyzed and classified TTCN-3 test specification guide-
lines. In order to investigate and identify the compliance to guidelines, a reverse engi-
neering mechanism is needed. The automation of this process is essential as long as the
nowadays test specifications consists of thousands of test definitions.

The introduced concepts ensure a structured and rule oriented thinking of guide-
lines. The novelty of this approach relies on identifying the levels of guideline rules
for TTCN-3 test specifications. Additionally, we take into account the rule propagation
from one level to another.

We foresee several possible extensions. The guideline rules can be extended to fur-
ther rules such as: ontology based naming conventions, code documentation, etc. An-
other idea to be explored in future work is the combination of guideline rules obtained
from the architectural information with test definition generation. This will make possi-
ble the systematic generation of test specification skeletons from a minimal information
about the SUT (interfaces, use cases, roles, versions).

References

1. ETSI: Etsi standard es 201 873-1 v3.1.1 (2005-06): The testing and test control notation
version 3; part 1: Ttcn-3 core language. European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (2005)

2. Willcock, C., Dei, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An Introduction to TTCN-3.
John Wiley & Sons, Ltd, Nokia Research Center, Nokia, Germany, Nokia, Finland (April
2005)

3. ETSI: European Telecommunication Standards Institute - ETSI
4. Zeiß, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying the ISO 9126

Quality Model to Test Specifications Exemplified for TTCN-3 Test Specifications. In: Soft-
ware Engineering 2007 (SE 2007), March 2007. Lecture Notes in Informatics (LNI), Copy-
right Gesellschaft für Informatik, Köllen Verlag, Bonn (2007)

5. European Telecommunication Institute - ETSI: Internet Protocol version 6 (IPv6) Confor-
mance Test Specification (2006)

6. Wiles, A.: ETSI testing activities and the use of TTCN-3 (2001)
7. European Telecommunication Institute - ETSI: Session Initiation Protocol (SIP) Confor-

mance Test Specification (2006)
8. European Telecommunication Institute - ETSI: MTP Level 3 User Adaptation Layer (2002)
9. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston

(1999)
10. Zeiß, B.: A Refactoring Tool for TTCN-3. Master’s thesis, Masterarbeit im Studien-

gang Angewandte Informatik am Institut für Informatik, ZFI-BM-2006-05, ISSN 1612-
6793 (Tippfehlerbereinigte Version), Zentrum für Informatik, Georg-August-Universität
Göttingen (March 2006)

430 G. Din, D. Vega, and I. Schieferdecker

11. TestingTechnologies: TTworkbench: an Eclipse based TTCN-3 IDE,
http://www.testingtech.de/products/ttwb intro.php

12. Eclipse: Eclipse Modeling Framework (EMF) (2008)
13. Vega, D.E., Schieferdecker, I.: Towards quality of TTCN-3 tests. In: Gotzhein, R., Reed, R.

(eds.) SAM 2006. LNCS, vol. 4320. Springer, Heidelberg (2006)
14. ETSI: ETSI Naming Conventions (2007)
15. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading (1986)
16. Sun Microsystems, I., Javasoft: Java Look & Feel Design Guidelines. Addison-Wesley Long-

man Publishing Co., Inc., Boston (1999)
17. Services, G.S.: Unit testing guidelines (2007)
18. Mäki-Asiala, P.: Reuse of ttcn-3 code. Master’s thesis, VTT Electronics Helsinki (2005)
19. Zeiß, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.: Refactoring and Metrics for

TTCN-3 Test Suites. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol. 4320, pp.
148–165. Springer, Heidelberg (2006)

http://www.testingtech.de/products/ttwb_intro.php

Author Index

Aalto, Aleksi 292
Abdi, Samar 21
Abe, Issei 317
Ahn, Chulbum 102
Ayari, Brahim 280

Banâtre, Jean-Pierre 79
Bellavista, Paolo 66
Bertino, Elisa 268
Bondavalli, Andrea 186
Brinkschulte, Uwe 90

Carrozza, Gabriella 336
Chandrasekaran, Madhusudhanan 323
Chang, Chun-hyon 174
Chang, Elizabeth 1
Chang, Hyeyoung 406
Cho, Byong-Ha 304
Cho, Seongje 406
Cho, Sungchol 174
Cho, Yookun 406
Choi, Hyohyun 304
Choi, Lynn 304
Choudhuri, Siddharth 138
Cinque, Marcello 336
Corradi, Antonio 66
Courbot, Alexandre 292

Delvai, Martin 150
di Flora, Cristiano 256
Dillon, Darshan S. 1
Dillon, Tharam S. 1, 233
Din, George 417
Duk, Kwon Ki 292

Fahmy, Sherif F. 394
Fant, Julie S. 198

Gérard, Sébastien 9
Gajski, Daniel D. 21
Giannelli, Carlo 66
Givargis, Tony 138

Hamid, Brahim 9
Han, Sunyoung 174

Hugues, Jérôme 381
Husain, Mohammad Iftekhar 323
Hwang, Jaeil 102

Ishikawa, Hiroo 292
Ito, Megumi 114

Jahnich, Isabell 55
Jensen, E. Douglas 394
Ji Dou, Adam 348
Jouvray, Christophe 9
Jung, Jae Kyun 304

Kalogeraki, Vana 348
Kang, Woochul 162
Karsai, Gabor 46
Kerr, Sam 268
Khelil, Abdelmajid 280
Khyo, Guenter 150
Kim, Doo-Hyun 102
Kim, Jung Guk 174
Kim, Tae-Kyung 209
Kinebuchi, Yuki 292
Kluge, Florian 126
Kordon, Fabrice 381

Lanusse, Agnes 9
Lee, Chungwoo 102
Lee, Joonwoo 102
Lee, Sunggu 360
Lei, Sun 292
Lin, Wilfred W.K. 233
Lint, Aaron 268
Lollini, Paolo 186

Mische, Jörg 126
Montecchi, Leonardo 186
Moriyama, Yu 317

Nah, Yunmook 102
Nakajima, Tatsuo 292
Nakamoto, Yukikazu 317
Nickschas, Manuel 90

Obermaisser, Roman 34
Oikawa, Shuichi 114
Osaki, Tatsunori 317

432 Author Index

Paci, Federica 268
Pettit, Robert G. 198
Podolski, Ina 55
Prehofer, Christian 256
Priol, Thierry 79
Puschner, Peter 150

Radenac, Yann 79
Radermacher, Ansgar 9
Rammig, Franz J. 245
Ravindran, Binoy 394
Raynal, Michel 369
Renault, Xavier 381
Rettberg, Achim 55
Rhee, Boyoung 174

Satoh, Ichiro 221
Schieferdecker, Ina 417
Shin, Dong-Hoon 102
Son, Sang H. 162
Squicciarini, Anna 268
Sugaya, Midori 292

Suh, Bowon 102
Suri, Neeraj 280
Sztipanovits, Janos 46

Terada, Hiroyuki 317
Terrier, François 9

Uhrig, Sascha 126
Ungerer, Theo 126
Upadhyaya, Shambhu 323

van der Zee, Andrej 292
Vega, Diana 417
Viskic, Ines 21

Wong, Allan K.Y. 233
Wong, Jackei H.K. 233
Woo, Jungha 268

Yang, Younggyu 360
Yoo, Chuck 209
Yoo, Seehwan 209

	Title Page
	Preface
	Organization
	Table of Contents
	Using UML 2.1 to Model Multi-agent Systems
	Introduction
	What Is an Agent ?
	Characteristics of an Agent2
	Scope
	Agent Characteristics Modelled
	Sociable
	Goal-Driven

	Conclusion
	References

	Designing Fault-Tolerant Component Based Applications with a Model Driven Approach
	Introduction
	Background
	Distributed Computing System Model
	Fault-ToleranceMechanisms
	Connector Extension of the CORBA Component Model(CCM)

	Our Infrastructure
	Fault-Tolerance Framework
	Replication at a Connector Level

	Designing Fault-Tolerant Distributed Applications (MDE Approach)
	Application Modeling
	Code Generation
	Discussion

	Related Work
	Summary and Future Work
	References

	Model Based Synthesis of Embedded Software
	Introduction
	Related Work
	Model Based Design with ESE
	Platform Template
	Application Model
	Transaction Level Model
	Pin-Cycle Accurate Model

	Embedded SW Generation
	Communication Design Parameters
	Routing and Packeting
	Synchronization and Transfer

	Experimental Results
	Conclusions
	References

	Formal Specification of Gateways in Integrated Architectures
	Introduction
	Gateways Based on a Real-Time Database
	Network Adaptors
	Gateway Repository

	Formal Specification of Gateways
	Definition of Network Adaptor
	Definition of a Gateway
	Gateway State
	Formal Definition of Gateway Execution

	Model-Based Generation of Gateways
	Discussion
	References

	Model-Integrated Development of Cyber-Physical Systems
	Introduction
	Models and Cyber-Physical Systems
	Challenges in CPS
	An Approach to Development and Integration

	Related Work
	Status
	Conclusions
	References

	Towards a Middleware Approach for a Self-configurable Automotive Embedded System
	Introduction
	Related Work
	Motivation
	Proposed Middleware Architecture
	Load Balancing Strategy
	Simulation and Results
	Conclusion and Outlook
	References

	Context-Aware Middleware for Reliable Multi-hop Multi-path Connectivity
	Introduction
	Deployment Scenario and Problem Statement
	Context Data for MMHC Management
	MMHC Node Mobility
	MMHC Path Throughput
	MMHC Energy Availability

	Local and Global Management for Reliable Paths in MMHC
	Architecture and Implementation Insights
	Related Work
	Conclusions
	References

	Service Orchestration Using the Chemical Metaphor
	Introduction
	Chemical Programming Model
	Service Orchestration Using HOCL
	Coordination with HOCL
	Orchestrating Services with HOCL

	Related Work
	Conclusion and Future Work
	References

	Guiding Organic Management in aService-Oriented Real-Time Middleware Architecture
	Introduction
	Related Work
	Overview and Motivation
	A Capability-Based Mechanism for Guiding Organic Management
	Combining the Capabilities-Based Approach with Service Agents
	Integrating Capabilities with Node-Local Organic Management
	Example
	Capabilities in Action
	Summary

	Conclusion
	References

	Self-describing and Data Propagation Model for Data Distribution Service
	Introduction
	Overview of Data Distribution Service
	Self-describing Model to Support Dynamic Reconfiguration
	Self-describing Model
	Data Sample Schema

	Data Propagation Model to Support Data Persistency
	Data Propagation Model
	Data Propagation Protocol

	Experiments
	Conclusion
	References

	Improving Real-Time Performance of a Virtual Machine Monitor Based System
	Introduction
	Overview of Gandalf
	Interruptible Gandalf
	Rationale
	Invoking Linux’s Interrupt Handler
	Returning to Gandalf
	Implementation

	Performance
	Evaluation with LMbench Microbenchmark
	Interrupt Masked Cycles
	Interrupt Latency

	Related Work
	Conclusion
	References

	A Two-Layered Management Architecture for Building Adaptive Real-Time Systems
	Introduction
	The Two-Layered Management Architecture
	Communication between the Two Management Layers
	Information Flows
	Types of Monitors and Actors
	Communication Model

	Decision-Making of the Global Management
	Monitors - Status Messages
	Actors
	Decisions
	Implementation Remarks

	Conclusion and Future Work
	References

	Real-Time Access Guarantees for NAND Flash Using Partial Block Cleaning
	Introduction
	Preliminaries
	Problem Formulation
	Technical Approach
	GFTL Writes
	GFTL Reads
	GFTL Flash Management
	Write Queue Limit

	Results
	Related Work
	Conclusion
	References

	An Operating System for a Time-Predictable Computing Node
	Introduction
	The Safety-Critical Subsystem Interface
	The Connector Unit

	A Time-Predictable Application Computer
	Hardware Architecture
	The Software Architecture
	Tool Support

	Deterministic Single-Path Task Execution
	The Time-Predictable Operating System
	Kernel Design
	Communication
	Scheduling and Mode Switches
	Implementation of S-Tasks and Task Preemption
	Temporal Characteristics

	Experiments
	Hardware Platform
	A Simple Application
	Timing Measurements and Test Results

	Summary and Conclusion
	References

	Data Services in Distributed Real-Time Embedded Systems
	Introduction
	Approach
	DRACON Architecture
	Bounded-Delay Communication
	Decentralized QoS Control

	Related Works
	Conclusions
	References

	QoS-Adaptive Router Based on Per-Flow Management over NGN
	Introduction
	Background
	RACF in NGN QoS Architecture
	Legacy Router vs. Flow-Based Router

	Requirements and Design
	RACF’s Information Collection
	QoS-Adaptive Router Architecture
	Procedure of QoS-Adaptive Router

	Performance Evaluation
	Conclusion
	References

	Analysis of User Perceived QoS in Ubiquitous UMTS Environments Subject to Faults
	Introduction
	The System Context and the QoS Indicators
	Definition of the “Car Accident” Use-Case Scenario
	QoS Indicators

	Communication-Level Aspects Influencing the QoS Analysis
	Modelling Process
	The Overall UMTS Network Model

	Numerical Evaluations
	Results

	Conclusions
	References

	Cost-Performance Tradeoff for Embedded Systems
	Introduction
	Related Work
	Analysis Approach and Benefits
	Case Study
	Platform Independent Model
	Hardware Configuration Selection
	Performance Analysis
	Cost-Performance Tradeoff Analysis

	Conclusions and Future Work
	References

	Resolving Performance Anomaly Using ARF-Aware TCP
	Introduction
	Related Work
	ARF-Aware TCP: Resolving Performance Anomaly Using Transport Layer Control
	Simulation Result
	Conclusion
	References

	Context-Aware Deployment of Services in Public Spaces
	Introduction
	Approach
	Background
	Requirements
	Approach

	Deployable Context-Aware Agent Platform
	Agent Host
	Context-Aware Agent Deployment

	Context-Aware Service-Provider Agent
	User-Preference Part
	Annotation Part
	Navigation Part

	Experience
	Related Work
	Conclusion
	References

	An Ontology Supported Meta-interface for the Development and Installation of Customized Web Based Telemedicine Systems
	Introduction
	Related Work
	Nong’s Telemedicine Framework Background
	Meta-interface Paradigm – Proposed Innovative Software Development Approach
	Experimental Results
	The CAI Example
	A Customized WTS Example

	Conclusion
	References

	Cyber Biosphere for Future Embedded Systems
	Introduction
	Ant Colony Algorithms
	Artificial Hormone Systems
	Artificial Immune Systems
	Discussion
	Conclusion
	References

	Leveraging GIS Technologies for Web-Based Smart Places Services
	Introduction
	Motivation and Background
	The Proposed Web-Based Indoor GIS
	The Web as a Platform for Smart Places
	The Adopted Indoor-Positioning Technique

	Implementation and Prototyping
	Implementing the Indoor GIS Prototype
	Evaluating the Indoor GIS Prototype

	Lessons Learnt and Future Work
	References

	VeryIDX - A Digital Identity Management System for Pervasive Computing Environments
	Introduction
	VeryIDX Overview
	Preliminary Concepts
	Protocols for the Multy-Factor Verification of Strong Identity Attributes
	Identity Records
	Enrollment of Strong Identity Attributes
	Aggregate Zero-Knowledge Proof of Knowledge (AgZKPK)

	NFC implementation of the Multy-Factor Identity Attribute Verification Protocol
	NFC Cellular Phone Architecture
	Implementation

	Experimental Results
	Related Work
	Conclusion
	References

	Delay-Aware Mobile Transactions
	Introduction
	System Model, Perturbations and Scenarios
	System Model
	Application Scenarios
	Classification of Perturbations

	Design Requirements for Mobile Transactions Protocols
	Delay-Aware Mobile Transactions: Overview of the Basic Approach
	Infrastructure-Based Scenarios
	Ad-Hoc Scenarios
	Hybrid Scenarios

	Conclusion and Future Work
	References

	An Operating System Architecture for Future Information Appliances
	Introduction
	Future Information Appliances and Their Requirements
	Operating System Architecture
	Overview of Architecture
	SPUMONE: Hardware Abstraction Layer
	ArcOS: Dependable Real-Time OS
	Monitoring Service
	Anomaly Detection Service

	Sample Scenarios
	Conclusion and Future Directions
	References

	M-Geocast: Robust and Energy-Efficient Geometric Routing for Mobile Sensor Networks
	Introduction
	Related Works
	M-Geocast
	M-Geocast and Master Sink
	Location Service and Neighbor Discovery
	Detour Methods for Routing Voids
	M-Geocast Optimizations

	Simulation
	Simulation Methodology
	Simulation Results
	Detailed Evaluation of M-Geocast Under Routing Holes

	Conclusion
	References

	Toward Integrated Virtual Execution Platform for Large-Scale Distributed Embedded Systems
	Introduction
	Requirements
	Initial System Designs of VEEP
	Conclusions
	References

	A Novel Approach for Security and Robustness in Wireless Embedded Systems
	Introduction
	Problem Definition and Related Work
	Assumption
	Scenario 1: Verification of Existence of Malicious Nodes
	Scenario 2: Re-establishing Security Credentials
	Scenario 3: Updating Trust and Security Credentials
	Summary of Problem Domain

	Proposed Method (OpSeCom)
	Basics of RTS/CTS [17]
	Bit Commitment Protocol
	OpSeCom in Action
	RTS/CTS Covert Channel

	Security Analysis
	Verifying Existence of Malicious Nodes
	Re-establishing or Updating Credentials
	General Discussion

	Covert Channel Analysis
	Generation of the Covert Channel
	Detection of the Covert Channel

	Performance Analysis
	Recognizing OpSeCom Devices
	Bandwidth
	Backward Compatibility with Standard IEEE 802.11 MAC
	Effect on Overall Network Performance
	Comparison with Standard Cryptographic Solution

	Conclusion and Future Work
	References

	The Role of Field Data for Analyzing the Dependability of Short Range Wireless Technologies
	Introduction
	A Combined Perspective to Gain from Field Data
	Testbed and Workload

	Bluetooth Failure Modes
	Bluetooth Uncovered Dependability Pitfalls
	Impairments Due to Payload Corruptions Propagation
	Problems Due to the Impact of Wi-Fi on Bluetooth

	Conclusions
	References

	RG-EDF: An I/O Scheduling Policy for Flash Equipped Sensor Devices
	Introduction
	Background
	SystemDesign
	System Settings
	Design Principle
	Requests
	Reordering Grouped EDF Scheduler

	Implementation
	CC1010 Sensor
	SD Flash Card
	Timing and Request Injection
	Scheduler Implementation

	Experimental Evaluation
	Experiment Setup
	Varying Frequency
	Varying Request Size

	Conclusion
	References

	Methods for Increasing Coverage in Wireless Sensor Networks
	Introduction
	Previous Related Work
	Problem Definition and Candidate Solutions
	Simulation Analysis
	Concluding Remarks
	References

	Locks Considered Harmful: A Look at Non-traditional Synchronization
	Introduction
	Base System Model
	Adaptive M-Renaming
	A Read/Write Adaptive $(2p-1)$-Renaming Algorithm
	Enriching the System with a Failure Detector
	The Class Ω^k_* of Failure Detectors
	An Ω^k_*-Based Adaptive M-Renaming Algorithm with $M=\min(2p-1,p+k-1)$

	Enriching the System with a Synchronization Primitive
	Shared Memory Enriched with k-Test and Set Objects
	Shared Memory Enriched with k-Set Agreement Objects
	Shared Memory Enriched with Compare&Swap Objects

	Conclusion
	References

	From Model Driven Engineering to Verification Driven Engineering
	Introduction
	Building Blocks from MDE
	From Models to Model Driven Engineering
	FormalMethods and Other Analysis Techniques
	Related Difficulties
	Towards a Better Use of FormalMethods

	Verification Driven Engineering
	Classification of Properties
	Relations between Properties, Techniques and Tools
	FormalMethods, Drawbacks
	The VDE Design Process
	Open Issues

	Conclusion
	References

	On Scalable Synchronization for Distributed Embedded Real-Time Systems
	Introduction
	Motivation
	Previous Work
	Alternatives to Lock-Based Programming
	Software Transactional Memory

	STM for Distributed Embedded Systems
	Choosing an Appropriate Abstraction
	Designing Suitable Protocols and Algorithms
	Programming Language Implementation
	Scheduling Algorithms and Analysis

	Conclusions
	References

	Implementation of an Obfuscation Tool for C/C++ Source Code Protection on the XScale Architecture
	Introduction
	Obfuscation
	The Structure of C/C++ Source Code Obfuscator
	The Implementation of Obfuscation Algorithms
	Layout Transformations
	Split Variable
	Restructure Arrays: Array Folding
	Extend Loop Conditions
	Add Redundant Operand

	Performance Evaluation
	Measures of Potency
	Measures of Resilience
	Measures of Cost
	Comparison of Assembly Codes

	Conclusion and Future Work
	References

	Automated Maintainability of TTCN-3 Test Suites Based on Guideline Checking
	Introduction
	A Short TTCN-3 Overview
	Guideline Rules Classification
	Architectural Level
	Language Level
	Physical Level

	Test Analyzability and Refactoring
	Guideline Checker Types
	Checking Rules Specification
	Refactoring

	An Example - The IPv6 Test Suite
	Test Specification Analysis
	Implementation

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

