The Weakest Failure Detector for
Message Passing Set-Agreement

Carole Delporte-Gallet!, Hugues Fauconnier!,

Rachid Guerraoui?, and Andreas Tielmann®-*

! Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France
2 School of Computer and Communication Sciences,
EPFL, Switzerland

Abstract. In the set-agreement problem, n processes seek to agree on at
most n— 1 different values. This paper determines the weakest failure de-
tector to solve this problem in a message-passing system where processes
may fail by crashing. This failure detector, called the Loneliness detector
and denoted L, outputs one of two values, “true” or “false” such that:
(1) there is at least one process where £ outputs always “false”, and (2)
if only one process is correct, £ eventually outputs “true” at this process.

Keywords: set-agreement, failure detectors.

1 Introduction

The set-agreement problem [I] has no deterministic solution in asynchronous
systems where any number of processes can fail by crashing [2I3l4] and the re-
maining processes have no information about such failures. With failure detection
however, the impossibility can be circumvented [5]. For instance, with a perfect
failure detection mechanism that accurately detects crashes, it is trivial for the
processes to reach agreement. A natural question is what failure information is
necessary and sufficient to reach agreement. In the parlance of [6], this question
can be precisely formulated using the notion of “weakest failure detector”: In
short, the weakest failure detector to solve a problem is one that (a) indeed
solves the problem and (b) can be emulated by any failure detector that solves
the problem. Property (a) conveys the sufficiency of the failure detector whereas
property (b) conveys its necessity.

Several papers have been devoted to determine the weakest failure detector
to solve the set-agreement problem in a distributed system where any number of
processes can fail by crashing [7IS[9/T0]. In particular, Zieliniski proved recently
that anti-{2 — a failure detector that outputs id’s of processes such that the id of
at least one correct process is output only finitely many times — is the weakest
failure detector for set-agreement in a shared memory system [10]. The proof of

* Work was supported by grants from Région Ile-de-France.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 109 2008.
© Springer-Verlag Berlin Heidelberg 2008

110 C. Delporte-Gallet et al.

the result is particularly involved and builds on earlier proof techniques from [6]
and [§].

In the context of message passing however, the weakest failure detector for
set-agreement has not been determined yet and one might have hoped to derive it
somehow from anti-{2. Indeed, Zielitiski conjectured in [I1] that failure detector
X [12] — the weakest failure detector to build a shared memory in a message pass-
ing system — is both sufficient and necessary to implement set-agreement. This
would mean that some common denominator of anti-2 and X' would constitute
the weakest failure detector for set-agreement in message passing. Nevertheless,
Delporte et al. recently disproved Zielinski’s conjecture by showing that Y is
not necessary, albeit sufficient [13]. The question of the weakest failure detector
to solve set-agreement in a message passing system remained thus open. The
contribution of this paper is precisely to close the question.

We introduce the Loneliness failure detector, denoted £, and we show that
it is the weakest failure detector for set-agreement in a message passing system.
Failure detector £ outputs, whenever queried by a process, one of two values:
“true” or “false” such that the following two properties are satisfied: (1) there
is at least one process where the output is always “false”, and (2) if only one
process is correct (does not crash), then the output at this process is eventually
“true” forever. We first give an algorithm that solves set-agreement using £. The
particularity of the algorithm is its non-symmetric nature as it heavily exploits
the total order on the identity of the processes. We then assume that there is
an algorithm A that solves set-agreement (with some failure detector), and we
show how to “extract” from A the output of £. Our approach here is, on the
one hand, different from the approach of [6] where each process locally simulates
several runs of A and, on the other hand, different from the approach of [I0],
as well as [§], where the extraction relies on the asynchronous impossibility of a
problem. In our case, the processes execute one instance of A, without knowing
the automaton of A performed at each process. The processes obtain the output
of £ by “simply” intercepting communication between these automata. This
leads to a very simple, almost trivial, extraction algorithm.

Our proof that £ is the weakest in message passing is thus remarkably simple
and this might be surprising compared to the rather involved proof of Zielinski
[10] in shared memory systems. Somehow, we show that — contrary to a wide
belief — results in message passing systems are sometimes easier to prove than
in shared memory.

We prove that — not surprisingly — failure detector L is strictly stronger than
anti-{2, the weakest in a shared memory system. (Indeed a message passing sys-
tem can be emulated by a shared memory system but the converse requires ad-
ditional assumptions, e.g., a majority of correct processes [I4].) Furthermore, we
show that no failure detector that may behave arbitrarily for any finite amount
of time is stronger than £ (but nevertheless such failure detectors can be in-
comparable with £). We also show that for n > 2, X is strictly stronger than
L, confirming the result of [I3] that emulating a shared memory requires more
information about failures than reaching agreement (Figure [II).

The Weakest Failure Detector for Message Passing Set-Agreement 111

|
l
|
1 emulate registers set-agreement set-agreement
problem '
| in message-passing in message-passing in shared-memory
+ + +
____________ :_______L_____________J._____________J_________
| | | |
weakest i L L
| .
failure | b)) . . L . . anti-{2
: is strictly stronger is strictly stronger
detector
|

Fig. 1. Relations between failure detector classes

The rest of the paper is organized as follows. We first define our model in
Section 2l Then we show that £ is sufficient for set-agreement in Section Bl and
that £ is also necessary in Section @l In Section Bl we show that £ is strictly
stronger than anti-f2. And finally, in Section [6] we show that for n > 2, X' is
strictly stronger than L.

2 Model and Definitions

2.1 Processes and Failure Detectors

The system model we consider is that of Chandra et al. [6] which we briefly recall
here. We consider a set IT = {pi,...,pn} of n > 2 processes which communi-
cate by message passing over a fully connected network with reliable links. Any
number of processes may fail by prematurely halting, i.e. they crash. However,
no process can otherwise deviate from its protocol. We assume a global clock 7°
that is used to depict steps in an execution; the clock is not accessible to the
processes.

A failure pattern is a function from time 7 to 27 that specifies for every time
t which processes have crashed by time ¢. A process p; that does not crash in a
failure pattern F is said to be correct in F (p; € correct(F)). A process is said
to be alive until it crashes. Processes that are not correct are called faulty. An
environment £ is a set of possible failure patterns. In this paper, we consider
every environment, i.e. any number of processes may crash and in particular any
process may crash at any time.

A failure detector D is a distributed oracle that provides the processes with
information about failures. A failure detector is defined by its histories. Given
a failure pattern F € &, a history H of a failure detector D is a function from
II x T to Rp, the failure detector range of D, i.e. the set of possible outputs of
D: D(F) denotes a set of failure detector histories that are allowed for F.

An algorithm A is modeled as a set of n deterministic automata, one for every
process in the system. A run of A proceeds in steps and at every time ¢ at most
one process executes a step. We assume only fair runs, i.e. every correct process

112 C. Delporte-Gallet et al.

executes infinitely many steps. A step consists of receiving a (possibly empty)
message, reading a value of a failure detector, changing the state accordingly,
and outputting a (possibly empty) message.

A failure detector is said to solve a problem in a given environment £ if there
is an algorithm that solves the problem using message passing and that failure
detector (and no other information about failures) for every failure pattern in £.
A failure detector D is said to be stronger than another failure detector D’ in an
environment & if there is an algorithm that uses only D to emulate the output
of D’ for every failure pattern in €. Similarly, detector D is weaker than D’ in £
if D’ is stronger than D in £. Failure detector D is said to be strictly stronger
than failure detector D’ in environment & if D is stronger than D’ in £ but not
vice versa.

The weakest failure detector [6] D to solve a given problem in an environment
£ is a failure detector that is sufficient to solve the problem in £ and that is also
necessary to solve the problem, i.e. D is weaker than any failure detector that
solves the problem in &.

We define D to be (strictly) stronger (resp. weaker) than D’ if D is (strictly)
stronger (resp. weaker) in every environment. Similarly, a weakest failure detec-
tor for a problem is defined to be a weakest failure detector for this problem for
every environment.

2.2 Set-Agreement

In the set-agreement problem, every process p; starts with some proposal value v;
and tries to decide a value such that the following three properties are satisfied:

Agreement: At most n — 1 different values are decided.

Validity: Every value that has been decided must have been a proposal value
of some process.

Termination: Eventually, every correct process decides a value.

2.3 Failure Detector £

We now define the Loneliness detector L. This failure detector outputs one of
two values “true” and “false”. The intuition behind the semantics of this failure
detector is that if the output at some correct process is “false” forever, then
there is another alive process in the system. By convention, we assume that if a
process is crashed at time ¢, then its failure detector output at time ¢ is “false”.
The following properties are satisfied:

— at least one process never outputs “true”, and
— if only one process is correct, then it eventually outputs “true” forever.

More formally:

Definition 1. The range of L is { “true”, “false”}. For every environment &,
for every failure pattern F € £, and every history H € L(F):

Ip; € II,Vt, H(p;, t) # “true” (1)
A Vp; € II, correct(F) = {p;} = Ft,Vt' > t, H(p;,t') = “true” (2)

The Weakest Failure Detector for Message Passing Set-Agreement 113

3 The Sufficient Part

To show that failure detector L is sufficient to solve set-agreement in our model,
we give an algorithm that implements set-agreement with £. The algorithm is
depicted in Figure

To ensure that at most n—1 proposal values are decided, every process tries to
agree with another process on one value. To achieve this, initially some processes
send their values. To prevent a circular value exchange, i.e. a situation where the
proposal values are simply permuted, the values are only sent to processes with
a higher id. This means, that process p; sends its value to everybody (except
itself), process p; to all processes from p;11 to p,, and process p, to nobody.

If some process received] one of these values, it sends this value to all other
processes and decides. As long as there is another correct process, every correct
process decides either through one of the messages that were initially sent or, if
it does not receive such a message (e.g., because it has a lower id than the other
correct processes), it decides through a message of an already decided process.
Note that it may be possible that a process receives its initial value back in
such a message. In this case, the sender of this message does not decide its own
proposal value.

To deal with crashes, we only execute these steps if the output of the failure
detector is “false”. But in the case of only one correct process in the system,
we do not want to wait for messages of other processes forever. Therefore, if the
output of the failure detector changes to “true” — and by its property (2) in the
case of only one correct process it will eventually do so — this process simply
decides its own proposal value. We can do this without violating agreement,
because by property () there will always be one process that does not decide

Algorithm for process p;:
1 to propose(v):

2 initially:

3 send (v) to all p; with j > 3;

4+ on receive (v') do:

5 send (v') to all;

6 decide v'; halt; (* decision D1 x)
7 on L = “true” do:

8 send (v) to all;

9 decide v; halt; (* decision D2 x)

Fig. 2. Implementing set-agreement with £

! For simplicity of the presentation, we assume that the code Lines [BHf and Lines RO
are executed atomically.

114 C. Delporte-Gallet et al.

due to a “true” output, and as we have argued before, processes that decide due
to a message exchange eliminate at least one value.

Proposition 1. The algorithm in Figure [d implements set-agreement in every
environment E.

Proof. We have to prove the three properties of set-agreement, namely agree-
ment, validity, and termination.

Agreement. We start with the agreement property of set-agreement. We assume
a run where all processes decide and every process p; has a distinct initial value
v;. Without this assumption, agreement is trivially met.

By Property [l) of £, not all processes can have decided by decision D2.
Therefore, in such a run at least one process decides by D1. This means that
it is sufficient to show that if at least one process decides by D1, then at most
n — 1 values are decided.

Among the processes that decide by D1, consider p; as the process with the
highest id and let v’ be the decided value. We distinguish between the two cases
where p; decides its initial value (v/ = v;), and where it does not.

Case 1: The only possibility that the decided value v’ is equal to p;’s value v;
is that a process p; with j > ¢ has received p;’s initial message and decided
v;. Therefore, p; and p; decide the same value and at most n — 1 values are
decided.

Case 2: If v/ is not equal to v; and ¢ = n, then v,, will never be decided because
process p, does not send its value to anybody. If i < n, then the only
possibility that v; is decided is if a process p, with k£ > ¢ has received v;
from p; and decided by D1. But as p; is the process with the highest id that
decides by D1, such a k does not exist. And therefore, v; is never decided.

Validity. The validity property of set-agreement is trivially satisfied, since only
proposal values are sent.

Termination. If some correct process decides by D1 or D2, then it sends its
decided value to all processes and all correct processes that have not yet decided
eventually receive this value and also decide.

Therefore, it remains to show that in every run some correct process decides
by D1 or D2. We distinguish two cases: the case when there exist at least two
correct processes in a run with a failure pattern F € £, and the case with only
one correct process.

Case 1: If there are at least two correct processes and none decides by D2,
then eventually, the one with the highest id receives the initial message of
the other ones and decides by D1.

Case 2: If there is only one correct process and it does not decide by D1, then
by property () of £, this process eventually decides by decision D2. O

The Weakest Failure Detector for Message Passing Set-Agreement 115

4 The Necessary Part

Following the approach of Chandra et al. [6], we show that failure detector £ is
necessary to solve set-agreement in our model by providing an algorithm that
emulates the output of £ given any algorithm A and failure detector D, such that
A using D solves set-agreement. Figure [3] presents such an emulation algorithm.
The output of our emulation of £ is provided through a special variable output.

The idea for the emulation of £ is that if all messages that are sent by algo-
rithm A get delayed for a very long time, the safety properties of set-agreement
still have to hold, while for the case that only one process is correct, even the
liveness property has to hold, i.e. the algorithm has to terminate. Therefore,
every process executes A with D, omits to send any messages that are generated
by algorithm A to other processes, and outputs “false” until A terminates.

Property () of £ is thus always fulfilled, because otherwise the executions
at all processes would have terminated without ever receiving a message and
therefore agreement could not have been guaranteed. But nevertheless, if there
is only one correct process p;, the algorithm A executed at p; has to terminate
and property @) of £ is also guaranteed.

Interestingly, this technique works for every non-trivial problem in which com-
munication between processes is necessary, i.e. where not all processes may termi-
nate without receiving messages from other processes. Therefore, L is necessary
for all of these problems.

Proposition 2. The algorithm in Figurel[d implements L in every environment

E.

Proof. Assume there exists a run r, where the algorithm in Figure [B] does not
fulfill property (@) of £ with a failure pattern F € £. This means, that in run r,
for every process, there exists a time when output = “true”, i.e. the execution of
algorithm A has terminated at all processes without receiving any message from
other processes at all.

Let ¢ be the time at which A has terminated at all processes in run r. Then,
since the system is totally asynchronous, it is possible to construct a valid run
r" of A with the same failure pattern F, where all messages to other processes
get delayed to a time after ¢, and all processes have terminated A at time t.

Algorithm for process p;:

1 output := “false”;
2 execute A with value ¢ and detector D, but omit sending messages to others;
3 if A has terminated, then output := “true”;

Fig. 3. Implementing £ with an algorithm A and a failure detector D that solve set-
agreement

116 C. Delporte-Gallet et al.

Note that a failure detector is solely specified as a function over a failure
pattern in an execution, i.e. it is not allowed to output any information about
the state of other processes or to give hints about the proposal values.

Therefore, to fulfill the validity property of set-agreement, the decision value
at every process p; can only be its proposal value 7. A contradiction with the
agreement property of set-agreement. Therefore, property () of £ is always
satisfied.

If for some run r of our algorithm, for some process p;, F is the failure pattern
in run r and correct(F) = {p;}, then it is possible to construct a run 74 of A in
which no faulty process is able to send a message (because the system is totally
asynchronous) and p; takes exactly the same steps as in r. By the termination
property of set-agreement, eventually algorithm A has to terminate in run r 4 at
pi- Since r and r 4 are indistinguishable for p;, it terminates the execution of A also
in r and the output changes to “true”. Thus, property (2] is also satisfied. O

Theorem 1. L is the weakest failure detector for set-agreement in a message
passing system.

Proof. We have shown in Proposition [l that £ is sufficient and in Proposition 2]
that it is necessary for set-agreement in all environments. a

5 Comparing £ and Anti-{2

To keep our proofs as generic as possible, we first introduce the notion of eventual
failure detectors. We say that a failure detector is an eventual failure detector if
the detector can behave arbitrarily for any finite amount of time. A more formal
definition can be found in [I5] where such failure detectors are called strongly
unreliable failure detectors.

Zieliniski shows in [16] that every eventual failure detector (that satisfies some
other assumptions that are irrelevant here) is stronger than anti-{2, the weakest
failure detector for set-agreement in a shared memory [I0]. Each query to the
anti-f2 detector returns a process id. The failure detector guarantees that there
is a correct process whose id will be returned only finitely many times. Clearly,
anti-{2 is an eventual failure detector and £ is not. We show that £ is strictly
stronger than anti-f2. This means, that to implement set-agreement in message
passing there is a strictly stronger failure detector necessary than in shared
memory.

Lemma 1. L is stronger than anti-{2.

Proof. An implementation of anti-{2 using L is given in Figure @l The basic idea
is simple: Every process p; outputs the id j of a process p; such that j is the
lowest id of all processes from which p; has not yet heard that they have had
a “true” as failure detector output. For this, the processes remember the ids
of processes that have received a “true” from L in a set lonely. The output of
anti-f2 is emulated in a special variable output.

The Weakest Failure Detector for Message Passing Set-Agreement 117

Algorithm for process p;:

1 initially:
2 lonely := ();
output := {1};

[

4 on L= “true” do:

5 lonely := lonely U {i};

6 send (lonely) to all;

7 output := min({1,...,n} \ lonely);

s on receive (lonely') do:

0 if lonely # lonely then send {lonely U lonely') to all;
10 lonely := lonely U lonely';

11 output := min({1,...,n} \ lonely);

Fig. 4. Implementation of anti-{2 using £

We now show that this transformation indeed emulates anti-f2. From property
[of the definition of £, the output of at least one process is never a “true”.
Therefore, there is always at least one id that is output (i.e. it is never lonely =
{1,...,n}).

To prove that there is a correct process whose id is output only finitely often,
note that eventually the set lonely is the same at all correct processes because it
can only grow and will always be a subset of {1,...,n} (and every correct process
relays it after every change). Therefore, eventually all correct processes have the
same output. Now assume the id of every correct process is output infinitely often
at the processes. This implies that there is only one correct process, because all
processes always output the minimum of {1,...,n}\ lonely which can only shrink
and therefore never oscillates between different process ids. But from property
of the definition of £, a single correct process eventually receives a “true” and
therefore belongs to its set lonely. A contradiction. a

Lemma 2. No eventual failure detector is stronger than L.

Proof. Assume there exists an algorithm A that transforms an eventual failure
detector D to L. Then, assume for every 1 < i < n, a run r; of A with failure
pattern F; and correct(F;) = {p;} and where the faulty processes take no steps.
If A is correct, then eventually the output at process p; in run r; has to be
“true”, say at time t;. Similarly, assume a run 7 of A with a failure pattern
F with correct(F) = II, but no process p; receives a message from any other
process before or at time ¢; and every p; is scheduled as in r;. Let the output
of D at every process p; before time ¢; be exactly as in run r; (this is possible,
since D may behave arbitrarily for any finite amount of time). Then, for every
process p;, run r; is indistinguishable from run r before time ¢; and every process
p; outputs “true” at time t;. But this contradicts property [0 of L. o

118 C. Delporte-Gallet et al.

Theorem 2. L is strictly stronger than anti-{2.

Proof. Follows directly from Lemma [Il and Lemma O

6 Comparing £ and ¥

We now show that X', the weakest failure detector to emulate a shared memory
in message-passing systems [12] is strictly stronger than £. In a sense, this indi-
cates that emulating a shared memory in message passing is strictly harder than
solving set-agreement, confirming the result of [I3]. By convention, we assume
that if a process is crashed at time ¢, then its failure detector output is IT at
time ¢. At each invocation, X' outputs a list of trusted processes and it satisfies
two properties:

Intersection: Given any two lists of trusted processes, possibly at different
times and by different processes, at least one process belongs to both lists.

Completeness: Eventually no faulty process is ever trusted by any correct
process.

Lemma 3. X is stronger than L.

Proof. The reduction is simple: At the beginning, every process outputs “false”.
For every process p;, if the output of X is {p;}, output “true”.

Assume that for every process there is some time when the output of L is
“true”. Since this happens only if at every process p;, {p;} is output, the inter-
section property of X' is clearly violated. Therefore, this will never happen and
property [l of £ is never violated.

From the completeness property follows that if a process p; is the only correct
process, the output will eventually be “true” (property 2] of L). a

For the special case that the system consists only of two processes, the specifica-
tions of set-agreement and consensus are equivalent. Delporte-Gallet et al. show
in [I7] that for this case X is the weakest failure detector for consensus. Together
with Theorem [I] this immediately implies that £ and X' are also equivalent for
this case. However, in the following lemma we show that for n > 2 this is not
the case.

Lemma 4. L is not stronger than X, if n > 2.

Proof. Assume there exists an algorithm A that transforms £ into X. Let P =
Py, Py, P; be any partitioning of I7. Then assume two runs r; and ro where the
processes in P; are correct in run r; and all other processes are faulty from the
beginning, and the output of £ at the processes in partition P; is “true”. Since
A fulfills completeness, it eventually has to output in every run r; a subset of
P;, say at time ;.

Now imagine a run r in which the processes in P; and P» are correct and
the output of £ is “true”. Additionally, no message of a process from a different
partition is received in partition P, and P» before time ¢ (respectively ¢2) and

The Weakest Failure Detector for Message Passing Set-Agreement 119

the messages between the processes in P; and P, are exactly scheduled as in
runs r; and r2. The runs r; and 79 are indistinguishable from run r before time
t1 (respectively to). Therefore, the output at time ¢; will be a subset of P; for
partition ¢ = 1, 2. But this contradicts to the intersection property of 3. So there
exists no such algorithm A. a

Theorem 3. Ifn > 2, then X is strictly stronger than L.

Proof. Lemma [shows that X is stronger than £ and Lemma [shows that it is
strictly stronger. a

7 Summary

We have determined the weakest failure detector for set-agreement in a message-
passing system where processes may fail by crashing. The failure detector is
called £ and it returns at every invocation “true” or “false”. It ensures that (1)
there is at least one process where the output is always “false”, and (2) if there
is only one correct process, then the output at this process is eventually “true”
forever.

Acknowledgments. We are grateful to Sam Toueg for helpful suggestions on the
sufficient part of our proof. Furthermore, we would like to thank the reviewers
for their helpful comments.

References

1. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132-158 (1993)

2. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. Comput. 29(5), 1449-1483 (2000)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the twenty-fifth annual
ACM symposium on Theory of computing, pp. 91-100. ACM, New York (1993)

4. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(6), 858-923 (1999)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225-267 (1996)

6. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685-722 (1996)

7. Raynal, M., Travers, C.: In search of the holy grail: Looking for the weakest failure
detector for wait-free set agreement. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 3-19. Springer, Heidelberg (2006)

8. Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N., Newport, C.: On the weakest
failure detector ever. In: PODC 2007: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing, pp. 235-243. ACM, New York
(2007)

120

9.

10.

11.

12.

13.

14.

15.

16.

17.

C. Delporte-Gallet et al.

Chen, W., Zhang, J., Chen, Y., Liu, X.: Weakening failure detectors for k -set
agreement via the partition approach. In: Pelc, A. (ed.) DISC 2007. LNCS,
vol. 4731, pp. 123-138. Springer, Heidelberg (2007)

Zielinski, P.: Anti-Omega: the weakest failure detector for set agreement. In: PODC
2008: Proceedings of the twenty-seventh annual ACM symposium on Principles of
distributed computing (2008)

Zielinski, P.: Anti-Omega: the weakest failure detector for set-agreement. Technical
report, UCAM-CL-TR~694 (2007)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Shared memory vs message
passing. Technical report, LPD-REPORT-2003-001 (2003)

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Sharing is harder than agreeing.
In: PODC 2008: Proceedings of the twenty-seventh annual ACM symposium on
Principles of distributed computing (2008)

Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124-142 (1995)

Guerraoui, R.: Indulgent algorithms. In: PODC 2000: Proceedings of the nineteenth
annual ACM symposium on Principles of distributed computing (2000)

Zieliriski, P.: Automatic classification of eventual failure detectors. In: Pelc, A. (ed.)
DISC 2007. LNCS, vol. 4731, pp. 465-479. Springer, Heidelberg (2007)
Delporte-Gallet, C., Fauconnier, H., Guerraoui, R. (Almost) all objects are uni-
versal in message passing systems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724. Springer, Heidelberg (2005)

	The Weakest Failure Detector for Message Passing Set-Agreement
	Introduction
	Model and Definitions
	Processes and Failure Detectors
	Set-Agreement
	Failure Detector \wfs

	The Sufficient Part
	The Necessary Part
	Comparing \wfs and Anti-Ω
	Comparing \wfs and Σ
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

