
Fast Distributed Approximations in Planar

Graphs
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Abstract. We give deterministic distributed algorithms that given δ >
0 find in a planar graph G, (1 ± δ)-approximations of a maximum in-
dependent set, a maximum matching, and a minimum dominating set.
The algorithms run in O(log∗ |G|) rounds. In addition, we prove that no
faster deterministic approximation is possible and show that if random-
ization is allowed it is possible to beat the lower bound for deterministic
algorithms.

1 Introduction

In recent years, there has been a growing interest in designing distributed ap-
proximation algorithms for special families of networks. In particular, efficient
(in the model described below) distributed algorithms for some problems in
constant-degree graphs, unit-disc graphs, or planar networks have been recently
proposed. In contrast, for general networks most of the problems that admit easy
solutions in special classes of graphs seem either unapproachable or are prov-
ably intractable (see for example [KMW04]). In this paper, we give determin-
istic distributed approximation algorithms for the maximum independent set,
the maximum matching, and the minimum dominating set problems in planar
graphs. The algorithms run O(log∗ |G|) rounds and find a (1± δ)-approximation
in a planar graph G. In addition, we prove lower bounds for the time complex-
ity of deterministic approximation algorithms and show that if randomization is
allowed then it is possible to beat the lower bound for deterministic procedures
and give faster solutions.
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1.1 Model of Computations and Notation

We will work in a synchronous, message-passing model of computations (model
LOCAL in [Pe00]). In this model a graph is used to represent an underlying
network. Vertices of the graph correspond to computational units, and edges
represent communication links. The network is synchronized and in one round a
vertex can send, receive messages from its neighbors, and can perform some local
computations. Neither the amount of local computations nor the size of messages
sent is restricted in any way. Consequently, in this model in a graph of diameter
t, any graph-theoretic function can be computed in O(t) rounds. In addition, we
assume that vertices have unique identifiers from {1, . . . , |G|} where |G| is the
order of the underlying graph G. In some applications graphs will have additional
weights. The interpretation of the weights depends on specific applications and
they do not impact the communication in any way. We will mostly follow [D05]
in graph-theoretic terminology. In particular, we will use |G| to denote the order
of graph G and ||G|| to denote the size of G.

1.2 Related Work

Theory of distributed approximation algorithms has attracted some attention re-
cently. For a nice overview of important results in this area the reader is referred
to the survey by Elkin [E04]. Although there are very few deterministic dis-
tributed approximation algorithms that run in o(|G|) rounds in a general graph
G, in the case when the underlying network has additional properties, algorithms
that give a non-trivial approximation are much easier to design. The most em-
inent example is the classical algorithm of Cole and Vishkin from [CV86]. The
algorithm finds in O(log∗ |G|) rounds a maximal independent set in a constant-
degree graph G and provides therefore a constant approximation for the maxi-
mum independent set problem in this type of a network. Results of Linial ([L92])
and Naor ([N91]) give matching Ω(log∗ |G|) lower bounds for the running time
of deterministic and randomized distributed algorithm that find a maximal inde-
pendent set in a cycle and show that the log∗ |G| running time cannot be beaten
if one expects exact, non-approximate, solutions. Similarly, in the case of unit-
disk graphs, it is possible (see [KMNW05a], [KMNW05b], [CH06b], or [SW08])
to give fast approximation algorithms for many graph-theoretic problems that
seem intractable in general networks.

In planar graphs, approximations that run in the poly-logarithmic number of
rounds and give the approximation error of (1±O(1/ logk |G|) are known for all
problems discussed in this paper ([CHS06], [CH06a]). However if one is willing
to accept a larger approximation error (for example (1±δ)) but in a much faster
fashion (say in O(log∗ |G|) or O(1) rounds) then the methods from [CHS06] or
[CH06a] do not give any indication if such algorithms are possible to obtain. In
addition, it has not been clear if approximation problems are significantly easier
than the original Maximal Independent Set problem and if it is possible to beat
the log∗ |G| bound and give O(1)-running time algorithms that find approximate
solutions. In this direction, very recently and independently of the work in this
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paper, Lenzen, Oswald, and Wattenhofer ([LOW08]) gave a 71-approximation for
the minimum dominating set problem that runs in O(1) rounds and Lenzen, Wat-
tenhofer proved in [LW08] a lower bound which is identical with our result from
Section 4.1. The arguments from [LW08] and Section 4.1 are completely different.

1.3 Results

We will prove a few results on distributed approximations in planar graphs.
The main result is a collection of deterministic distributed algorithms which ap-
proximate a maximum independent set, a maximum matching, and a minimum
dominating set in planar graphs. The algorithms run in O(log∗ |G|) rounds. In
addition, we prove that no deterministic algorithm can run faster and give an ap-
proximation error achieved by our algorithms. At the same time, we note that an
easy randomized procedure beats the lower bound for deterministic algorithms
and with high probability finds a (1±δ)-approximation and runs in O(1) rounds.

More formally, we show that there is a deterministic distributed algorithm
which for a given δ > 0 finds in a planar graph G an independent set I of size
which is at least (1 − δ)α(G) where α(G) is the independence number of G.
The algorithm runs in O(log∗ |G|) rounds (Theorem 4). Algorithms with a simi-
lar performance can be obtained for the maximum matching problem (Theorem
5), and for the minimum dominating set problem (Theorem 6). In addition, in
the case of the maximum independent set problem, the weighted version of the
problem can be approximated in O(log∗ |G|) rounds (Theorem 4). These results
are complemented by some lower bounds. We prove that for any c > 0, no de-
terministic distributed algorithm can find a c-approximation of the maximum
independent set in a planar graph G in o(log∗ |G|) rounds, nor there is a de-
terministic distributed algorithm that finds a c-approximation of a maximum
matching in a planar graph G in o(log∗ |G|) rounds (Section 4.1). In the case of
the dominating set problem the situation is different and it is possible to find
a O(1)-approximation in O(1) rounds (see [LOW08] or Section 3.3) but for any
δ > 0 there is no deterministic algorithm which in o(log∗ |G|) rounds finds a
(5 − δ)-approximation of a minimum dominating set in a planar graph G (Sec-
tion 4.1). Finally, we note that an easy randomized procedure can find with high
probability a (1−δ)-approximation of the maximum independent set in a planar
graph in O(1) rounds (Section 4.2) and so in the case randomness is allowed,
approximation is significantly easier than solving the Maximum Independent Set
problem.

1.4 Organization

In the next section, we describe a partitioning algorithm which is used in Section 3
to obtain deterministic approximations for the maximum independent set, the
maximum matching, and the minimum dominating set problems. In Section 4 we
give lower bounds and discuss randomized algorithms.
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2 Clustering Algorithm

In this section, we give a deterministic algorithm which in O(log∗ |G|) rounds
finds a partition of a weighted planar graph with the property that the weight
of the edges between different partition classes is significantly smaller than the
total weight of the graph. The procedure is invoked in the next section to give
approximation algorithms. We will consider weighted graphs with weights de-
fined on vertices as well as weights defined on edges. For a graph G = (V, E) we
will use ω : V → R+ to denote a vertex-weight function and ω̄ : E → R+ to
denote a edge-weight function. In addition, we will sometimes slightly abuse the
notation and if F is a subgraph of G = (V, E) with ω̄ : E → R+ (or ω : V → R+)
then ω̄(F ) (or ω(F )) will be used to denote ω̄(E(F )) (or ω(V (F ))). If P is a
path then the length of P will be the number of edges in P (i.e |P | − 1).

In the course of computations we will be contracting connected subgraphs
of a planar graph and recomputing the weights. Specifically, if G = (V, E) is a
planar graph, ω̄ : E → R+ , and U1, U2, . . . , Ul are pair-wise disjoint subsets of
V such that G[Ui] is connected then we define G̃ to be the weighted graph in
which every Ui is contracted to a vertex and for u, u′ ∈ V (G̃) with u �= u′ we set

ω̄G̃(u, u′) =
∑

x∈U,y∈U ′
ω̄(x, y) (1)

where U = Ui if u is obtained by contracting Ui and U = {u} otherwise (the
same for U ′). We proceed with a few auxiliary definitions and facts.

Definition 1. A directed graph −→
F such that the maximum out-degree in F is

one is called a pseudo-forest.

If −→F is a directed graph then we use F to denote the graph obtained from −→
F by

ignoring the orientation of edges.

Fact 1. Let G = (V, E) be a planar graph with edge-weight function ω̄ : E →
R+. There is a distributed procedure which in two steps finds a pseudo-forest −→F
such that F is a subgraph of G and ω̄(F ) ≥ ω̄(G)/6.

Proof. First we show that there exists a pseudo-forest−→F such that F is a subgraph
of G and ω̄(F ) ≥ ω̄(G)/3. Indeed, since G is planar its edge set is the union of at
most 3 forests by the theorem of Nash-Williams. Now, select the heaviest forest
and root the trees to obtain the desired graph F with ω̄(F ) ≥ ω̄(G)/3. Next we
prove that a desired pseudo-forest can be obtained by a distributed procedure.
Consider the following simple algorithm. Every vertex v selects the heaviest edge
{u, v} incident to v and puts the orientation from v to u. If an edge has been
assigned the orientation in both directions then one of them is selected arbitrarily.
Clearly the obtained graph is a pseudo-forest. Since G is the union of three forests
F1, F2, F3 and 2ω̄(F ) ≥ max{ω̄(Fi)}, we have ω̄(F ) ≥ ω̄(G)/6. ��
In addition we have the following simple fact.

Fact 2. If −→F is a connected pseudo-forest such that the diameter of F is d then−→
F contains a directed path of length at least d/2.
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We develop some more notation which will be used in the next procedure. Let−→
F be a pseudo-forest vertices of which are properly colored with colors from
some set S. For a vertex v and for a set of colors C ⊂ S, let in(v, C) be the set
of arcs (u, v) (from u to v) such that the color of u is in C and let out(v, C) be
defined analogously. If C is empty then in(v, C) and out(v, C) are empty and
their weights are equal to zero.

HeavyStars

1. Find a pseudo-forset −→
F in G using the procedure from Fact 1.

2. Use Cole-Vishkin algorithm [CV86] to properly color the vertices of −→F using
colors from {1, 2, 3}.

3. For every non-isolated vertex v in parallel:
(a) If color of v is 1 then v marks all edges from in(v,{2, 3}) if ω̄(in(v,{2, 3}))>

ω̄(out(v, {2, 3})) and v marks the edge from out(v, {2, 3}) otherwise.
(b) If color of v is 2 then v marks all edges from in(v, {3}) if ω̄(in(v, {3})) >

ω̄(out(v, {3})) and v marks the edge from out(v, {3}) otherwise.
4. Let Qi’s denote connected components of the graph induced by marked

edges. In parallel, find in each Qi vertex-disjoint stars with weight of at least
ω̄(Qi)/2 and return them. (This is easily accomplished by rooting Qi’s and
considering odd and even levels.)

Lemma 1
diam(Qi) < 10.

Proof. Suppose diam(Qi) ≥ 10. Then from Fact 2, there is a directed path of
length at least 5. If there is an internal vertex v in the path of color 1 then
either the edge coming to v or coming out of v (but not both) is marked by 3(a).
Otherwise, since the length is at least 5, there must be an internal vertex of color
2 with both of its neighbors of color 3 and by 3(b) only one of these edges can
be marked. ��
Lemma 2. HeavyStars returns stars of weight at least ω̄(G)/24 and runs in
O(log∗ |G|) rounds.

Proof. From Fact 1, we have ω̄(F ) ≥ ω̄(G)/6. Every edge of F has either one
endpoint in color 1 and the second from {2, 3} or one endpoint in color 2 another
in color 3. Consequently the edges considered in steps 3(a) and 3(b) form a
partition of E(F ) and so the weight of the union of Qi’s is at least half of the
the weight of F . Finally, the stars will have at least half of the weight of Qi’s and
so the weight of them is at least ω̄(G)/24. The first, third, and the fourth step
require O(1) rounds and the coloring from step two can be found in O(log∗ |G|)
rounds. ��
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We will now describe the clustering algorithm. The procedure takes 0 < ε < 1
as an input.

Clustering

1. H := G
2. Iterate 	(log

(
1
ε

)
/ log

(
24
23

))
 times:
(a) Call HeavyStars to find vertex-disjoint stars in H .
(b) Modify H by contracting each star to a vertex and computing the weights

as in (1).
3. Let W denote the set of vertices contracted to w. Return {W |w ∈ V (H)}.

Lemma 3. Given 0 < ε < 1, Clustering finds a partition (V1, . . . , Vl) of V (G)
such that if G̃ is obtained by contracting each of Vi’s and recomputing the weights
as in (1) then

ω̄(G̃) ≤ εω̄(G).

The algorithm runs in O(log∗ |G|) rounds.

Proof. From Lemma 2 in each iteration the algorithm contracts the stars of
weight which is at least 1/24 of the total weight of the graph. Consequently
after l iterations the weight of graph H is at most

(
23
24

)l
ω̄(G) ≤ εω̄(G) if l =

	(log
(

1
ε

)
/ log

(
24
23

))
. The running time is O(log∗ |G|) from Lemma 2. ��

3 Approximating Algorithms

In this section, we will use the clustering procedure from the previous section to
give deterministic distributed approximations.

3.1 Maximum-Weight Independent Set

We will start with the maximum-weight independent set problem. Let G = (V, E)
be a planar graph with ω : V → R+. For an edge {u, v} ∈ E, define

ω̄({u, v}) = min{ω(u), ω(v)}. (2)

We have the following fact.

Fact 3
ω̄(G) ≤ 3ω(G).

Proof. From Nash-Williams theorem G has an orientation such the out-degree is
at most three. For an oriented edge (u, v) (from u to v) we have the weight of
the edge to be at most ω(u). Since the out-degree is at most three, a vertex can
be the starting point of at most three edges. ��
To approximate a maximum-weight independent set we will invoke a modified
procedure from [CH06c]. This algorithm proceeds as follows. First, consider the
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edge-weighted graph with weights from (2) and invoke Clustering to find a
partition (V1, . . . , Vl) of V (G). Then find optimal independent sets Ii in each of
the G[Vi]. (Note that the diameter of G[Vi] is O(1).) Finally correct the solution
obtained in the previous step by deleting u from Ii if {u, v} is the edge with
v ∈ Ij and ω(u) < ω(v) (In the case the weights are equal use the identifiers
to break the symmetry). Using a similar argument to the one from [CH06c] we
obtain:

Theorem 4. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar weighted graph G = (V, E) with ω : V → R+ an
independent set I of weight which is at least (1 − δ)OPT where OPT denotes
the weight of a max-weight independent set. The algorithm runs in O(log∗ |G|)
rounds.

Proof Outline. Since G is planar, OPT ≥ ω(G)/4 as χ(G) ≤ 4. Let I be the union
of Ii’s before the correction step. Then ω(I) ≥ OPT as the procedure finds the
optimal solution in each of G[Vi]’s and the restriction of any independent set
to Vi is an independent set. In the correction step, for every edge between two
different clusters we delete one of its endpoints, weight of which is at most the
weight of the edge by (2). Consequently, the total weight of deleted vertices is
at most the weight of edges between different clusters. By Fact 3, the weight of
deleted vertices is at most

εω̄(G) ≤ 3εω(G) ≤ 12εOPT = δOPT

provided ε = δ/12. ��
Unlike the maximum independent set problem, in the case of matchings and
dominating sets we can only give algorithms for the un-weighted versions of
these problems. The reason is very simple, since G is planar, we know that
the optimal solution to the maximum-weight independent set problem is of size
proportional to ω(G). This however is not the case for the weight of an optimal
solution to the max-wight matching or the min-weight dominating set problem.
In fact, even when the weights are all equal to one, an optimal solution to the
above two problems can be substantially smaller than the order of the graph.
However, in the case a graph G is un-weighted, one can use simple preprocessing
to reduce G to a graph where optimal solution is of size which is proportional
to its order.

3.2 Maximum Matching

In the case of the maximum matching problem we can adopt the ideas from
[CHS06] to show:

Theorem 5. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar graph G = (V, E) in O(log∗ |G|) rounds a matching M
such that

|M | ≥ (1 − δ)β(G)

where β(G) is the size of a maximum matching in G.
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Proof Outline. The algorithm is similar to the one from [CHS06]. First, from
[CHS06] (Lemma 6), we know that if induced stars of size at least two and
induced double stars of size at least three are eliminated from G so that only
one edge from a star and two paths of length two from each double star are left
(which can be done in O(1) rounds) then the matching in the new graph G′ will
be of size Ω(|G′|). Since at most one edge from a single star and at most two
edges from a double star can be in a matching in G, we have β(G) = β(G′).
Second, in G′ we invoke the procedure Clustering and find a partition of G′

(the edge weights are initially equal to one). Finally, in each subgraph induced by
partition classes we find an optimal solution, which can be done in O(1) rounds,
and return the union. The fact that the error of approximation is as claimed can
be verified in the same way as in the argument for Theorem 4. ��

3.3 Minimum Dominating Set

In the case of the dominating set, we must do some more preprocessing. Specif-
ically, the algorithm first finds a constant approximation of the minimum dom-
inating set in O(1) rounds and then proceeds to improve this approximation
and finds a dominating set of size (1 − δ)γ(G) where γ(G) is the size of a min-
imum dominating set in G. To complete the second step O(log∗ |G|) rounds
are needed. As noted in the introduction, recently in [LOW08], a O(1)-rounds
71-approximation of the minimum dominating set for planar graphs is given.
Although the constant approximation is not the focus of this paper we briefly
describe an alternative way for finding a O(1)-approximation in Section A. Using
a similar argument as in the case of matchings we have:

Theorem 6. There is a deterministic distributed algorithm which for given 0 <
δ < 1 finds in a planar graph G = (V, E) in O(log∗ |G|) rounds a dominating set
D such that

|D| ≤ (1 + δ)γ(G)

where γ(G) is the size of a minimum dominating set in G.

Proof. The algorithm is similar to the one from [CH06a]. After a constant ap-
proximation is obtained using the procedure from Lemma 9 from Section A or
the algorithm from [LOW08], we proceed in the following fashion. Let D =
{w1, . . . , wk} denote the dominating set obtained from the preprocessing phase.
Then

|D| ≤ cγ(G) (3)

for some constant c. A partition (W1, . . . , Wk) of V (G) is obtained by every
vertex of G joining the group of exactly one of the vertices from D that dominates
it. Then k = |D| and each Vi induces a graph of diameter at most two in G. We
contract Vi’s to obtain a planar graph H and set the weights of the edges to be
equal to one. Note that ||H || < 3k. Set ε = δ/(6 · c) and use Clustering to find
a partition (V1, . . . , Vl) of V (H) which by Lemma 3 is such that the weight of
the edges between different clusters is at most ε||H ||. Un-contract Vi’s and Wi’s
to obtain a partition (U1, . . . , Ul) of V (G). Finally in each of G[Ui]’s (which has
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a constant diameter) find an optimal dominating set Di and return the union
of these dominating sets. The running time of the algorithm is O(log∗ |G|). To
prove the approximation error, let D∗ be a minimum dominating set in G and
let D̄ be obtained from D∗ by adding all vertices wi from D with the property
that a vertex in Wi ⊂ Uj has a neighbor in V \ Uj . We have

|D̄| ≤ |D∗| + 2ε||H || < γ(G) + 6ε|D| ≤ γ(G)(1 + δ)

from (3). In addition
|
⋃

Di| ≤ |D̄|
as D̄ ∩ Ui is a dominating set in G[Ui] and Di is an optimal solution in G[Ui].
Therefore, |⋃ Di| ≤ (1 + δ)γ(G). ��

4 Lower Bounds and Randomization

In this section, we will establish lower bounds for deterministic approximation
algorithms and discuss randomized procedures.

4.1 Lower Bounds

Our lower bounds will be based on the general Ramsey’s theorem (see for ex-
ample [We01]). It is known (see [Pa99]) that Ramsey’s theorem can be used to
argue that no deterministic distributed algorithm can properly color a cycle C
with O(1) colors and run in o(log∗ |C|) rounds. We will first use this method
to establish similar results for approximation algorithms. Let R(2, m; l) denote
the least number of vertices n such that in any 2-coloring of the edges of the
complete l-uniform hypergraph on n vertices there is a monochromatic com-
plete sub-hypergraph on m vertices. The general Ramsey’s theorem shows that
R(2, m; l) is finite and a proof of the theorem provides a tower-type upper bound
(height of tower is proportional to l) for R(2, m; l).

Lemma 4. For any positive integer T there is no deterministic distributed algo-
rithm that finds in a cycle on n vertices an independent set of size Θ(n/ log(2T ) n)
in T rounds. There is no deterministic distributed algorithm that finds an inde-
pendent set of size Θ(n/ log∗ n) in a cycle on n vertices in o(log∗ n) rounds.

Proof. For notational convenience we will assume that if S = {i1, . . . , il} is a
subset of [n] := {1, . . . , n} with l elements then the elements are indexed so that
ik < il when k < l. Let C be a cycle with V (C) = [n]. For a distributed algorithm
A that finds in T rounds an independent set in C, let FA :

(
[n]

2T+1

) → {0, 1} be
defined by FA({i1, . . . , i2T+1}) = 1 if and only if iT+1 is selected by A to the
independent set provided i1, i2, . . . i2T+1 is a path in C. Then FA is a 2-coloring
of the edges of the complete (2T + 1)-uniform hypergraph H with V (H) = [n].
Let m be such that n ≥ R(2, m; 2T + 1). Then, from the Ramsey’s Theorem,
H contains a monochromatic complete hypergraph K on m vertices. Observe
that if m > 2T + 1 then the color of the edges in K cannot be one. Indeed,
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if {i1, . . . , i2T+2} is a subset of V (K) then by definition of FA, iT+1 and iT+2

are selected by A to the independent set if the path i1, . . . , i2T+2 is a subgraph
of C. Consequently every edge in K has color zero and if K = {v1, . . . , vm}
then none of vT+1, . . . , vm−T is in the independent set returned by A provided
P := v1, . . . , vm is the subgraph of C. Therefore, out of m vertices in K, m− 2T
are not in the independent set returned by A. If n − m ≥ R(2, m; 2T + 1) then
we can repeat the above argument to the hypergraph induced by [n] \ V (K).
Let p denote the number of times we will repeat the above reasoning. Then the
size of the independent set returned by the algorithm A when the ordering of
vertices in C is determined by the repeated application of the Ramsey’s theorem
is at most 2Tp + R(2, m; 2T + 1) which is at most 2nT/m + R(2, m; 2T + 1) as
pm ≤ n. It is known (see [N95]) that for some constant c,

R(2, m; 2T + 1) ≤ 22···2cm

where the number of 2’s in the tower is 2T . Thus for any constant T if m =
Θ(log(2T ) n) then the size of the independent set is at most O(n/ log(2T ) n). In
addition, very similar computations give that for the size of an independent
set to be Ω(n/ log∗ n), T must be Ω(log∗ n). Indeed, let ε > 0 and for n large
enough let m and T be two integers with (log∗ n)2/(2c) ≤ m ≤ (log∗ n)2/c and
ε log∗ n/(8 · c) ≤ 2T + 1 < ε · log∗ n/(4 · c). Then

2nT/m < εn/(2 log∗ n).

At the same time, for n large enough,

log(2T+1) R(2, m; 2T + 1) ≤ 2 log log∗ n

and 2 log log∗ n < 0.5 log(2T+1) n < log(2T+1) (εn/(2 log∗ n)). Consequently, the
size of the independent set returned by the algorithm is smaller than εn/ log∗ n.

��
A very similar lower bound can be obtained for matchings. In the case of
the dominating set the situation is different and it is possible to find a O(1)-
approximation in zero rounds. On the other hand, one can show that no de-
terministic α-approximation with α < 2 can run in o(log∗ |G|) rounds. We will
prove something slightly stronger for planar graphs.

Fact 7. There is no deterministic distributed algorithm which for every δ > 0
finds in o(log∗ |G|) rounds a dominating set of size which is at most (5− δ)γ(G)
in a planar graph G.

Proof. Let δ > 0 be fixed and suppose that there is a deterministic distributed
algorithm that finds a dominating set in any planar graph G of size at most
(5 − δ)γ(G). From a cycle C on n vertices (with 10|n), we create a graph G in
the following way. Let G = (V, E), where V = V (C) and E = E(C) ∪ {v, u ∈
V, dC(v, u) = 2}. Note that this virtual graph can be obtained from C by a
distributed algorithm, G is 4-regular, γ(G) = n/5, and G is planar. From a
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dominating set D in G returned by the algorithm we can obtain an independent
set I in C as follows. Consider C[D] and add to I all isolated vertices. For every
vertex v ∈ D with degC(v) = 1 , if the neighbor of v, w, has degC(w) = 1 then
add the vertex with a smaller identifier to I and if degC(w) = 2 then add v
to I. Let Di be the subset of D with vertices of degree i in C[D]. Note that if
v ∈ D2, that is v has degree two in C[D], then every vertex from V \ D which
is dominated by v in G is also dominated by a vertex from D1. Therefore, we
have |I| ≥ |D0|+ |D1|/2 and 4|D0|+3|D1| ≥ n−|D|. Since |D| ≤ (5− δ)γ(C) =
(1−δ/5)n, 4|D0|+3|D1| ≥ δn/5 and so |I| ≥ |D0|+ |D1|/2 ≥ δn/30. By Lemma
4 this is not possible. ��

4.2 Randomized Algorithms

In this section we will briefly discuss randomized algorithms. We focus on the
maximum independent set problem as algorithms for other problems can be
obtained using similar consideration.

Lemma 5. Let G be a graph with maximum degree at most Δ. Then there is
distributed randomized algorithm which in two rounds finds an independent set
I in G such that with probability larger than 1− exp{−|G|/(2Δ+4(Δ2 + 1))} the
size of I is at least |G|/(2Δ+2(Δ2 + 1)).

Proof. The algorithm is trivial and we will only outline it. It proceeds in two
rounds and in the first round every vertex marks itself with probability 1/2,
choices made independently. In the second round a marked vertex un-marks itself
if at least one of its neighbors is marked. Let S be a maximal set of vertices at
distance at least three in G. Note that |S| ≥ |G|/(Δ2 + 1) and the events that
two vertices from S are marked after the second round are independent. The
expected number of vertices selected from S is at least |G|/(2Δ+1(Δ2 + 1)) and
by Chernoff’s bound the probability that it is smaller than |G|/(2Δ+2(Δ2 + 1))
is less than exp{−|G|/(2Δ+4(Δ2 + 1))}. ��
Lemma 6. Let K be a positive integer and let G = (V, E) be a weighted planar
graph with ω̄ : E → {1, . . .K}, the maximum degree Δ, and with no isolated
vertices. Then there exist pair-wise disjoint subsets V1, . . . , Vl of V (G) such that

– diam(G[Vi]) ≤ 2(M − 1);
– Δ(G̃) ≤ ΔM , max{ω̄(e)|e ∈ E(G̃)} ≤ KΔM ;
– ω̄(G̃) ≤ 9ω̄(G)/10

where M := 	log(1−1/(5·82·210))

(
1

20KΔ

)
 and G̃ is obtained from G by contracting
Vi’s and recomputing the weights as in (1).

Proof. Let ε := 1/(20KΔ) and let M be as above. Let I = {v ∈ V (G)|degG(v) ≤
9}. Clearly |I| ≥ 2|G|/5. Use the algorithm from Lemma 5 to find an independent
set I1 ⊆ I with |I1| ≥ |G|/(5 · 82 · 210). Repeat the process in V \ I1 to find I2 of
size (|G|−|I1|)/(5 ·82 ·210) and continue M times. Let I1, . . . , IM be independent
sets obtained by repeating the above procedure M times. Then with parameters
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as above every vertex v ∈ Ij has at most nine neighbors in V \ (I1 ∪· · · ∪ Ij) and
with high probability,

∑ |Ij | ≥ (1− ε)|G|. For every j and every v ∈ Ij , v selects
one edge from v to the set V \ (I1 ∪ · · · ∪ Ij) of the largest weight if it has at
least one neighbor in V \ (I1 ∪ · · · ∪ Ij). The subgraph obtained in this way is a
forest with trees T1, . . . , Tl each of diameter at most 2(M − 1). Let Vi := V (Ti).
Note that the total weight of edges incident to V \ (I1 ∪ · · · ∪ IM ) is at most
K · Δ · ε|G| provided

∑ |Ij | ≥ (1 − ε)|G|. Therefore,
∑

ω̄(Ti) ≥ (ω̄(G) − K · Δ · ε|G|)/9 ≥ ω̄(G)/10

as ε = 1/(20KΔ) and ω̄(G) ≥ |G|/2. In addition, Δ(G̃) ≤ ΔM as there are at
most (ΔM − 1)/(Δ − 1) vertices in Ti and consequently max{ω̄(e)|e ∈ G̃} ≤
KΔM . Finally, note that the probability that the above procedure fails is at
most O(M exp{−O(ε|G|)} by Lemma 5 as if in the course of computations |G|−
(|I1| + · · · + |Iq|) ≤ ε|G| for some q < M then we have

∑ |Ij | ≥ (1 − ε)|G| with
probability one. ��
Corollary 8. There exists a randomized distributed algorithm which for a given
δ > 0 finds in the constant number of rounds (the constant depends on δ only) an
independent set I in a planar graph G the size of which is with high probability
larger than or equal to (1 − δ)α(G).

Proof. Let R := 48/δ and let V̄ = {v ∈ V (G)|degG(v) > R}. Then |V̄ | ≤
δα(G)/2 as α(G) ≥ |G|/4. Let G′ be the subgraph of G induced by V \ V̄ and
define ω̄(e) := 1 when e ∈ E(G′). We apply Lemma 6 L times with L such
that (0.9)L ≤ δ/16 contracting subsets repeatedly and putting aside isolated
vertices if any arise. Now we consider partition of V into V1, . . . , Vl obtained
by un-contracting the vertices (some of the Vi’s can be singletons). We have
diam(G[Vi]) ≤ C where C depends on δ only and we call a vertex v ∈ Vi border
if it has a neighbor in V (G) \ Vi. Disregard all the border vertices to obtain V̄i’s
and find optimal independent sets Ii’s in G[V̄i]’s. Finally return the union of Ii’s.
The solution returned by the procedure has size of at least α(G) − |B| where B
is the set of border vertices and |B| ≤ δα(G)/2 + 2(0.9)L|G| ≤ δα(G). ��
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A Appendix

A.1 Constant Approximation of the Minimum-Dominating Set

Our algorithm follows from the next few observation. Let K be a positive integer
which is large enough (the precise bound for K follows from computations and in
the current argument is significantly larger than 71, the constant from [LOW08])
and let G = (V, E) be a planar graph. We define B := {v|deg(v) ≥ K}, S :=
V \ B, and B′ := {v ∈ B||N(v) ∩ S| ≥ 202}.
Definition 2. Let u, v ∈ B′. Vertex u is called v-redundant if the following
conditions are satisfied.

(a) |N(u) ∩ N(v) ∩ S| ≥ |N(u) ∩ S|/10.
(b) Either |N(v)∩S| > |N(u)∩S| or |N(v)∩S| = |N(u)∩S| and ID(v) > ID(u).

Note that the constant 10 in (a) is almost arbitrary and the reason for part (b) is
to break symmetry. In particular, from part (b), a vertex u is never u-redundant.
We first observe a few simple facts about redundant vertices.

Fact 9. Let u, v ∈ B′ be such that |N(u) ∩ N(v) ∩ S| ≥ |N(u) ∩ S|/10. Then
either u is v-redundant or v is u-redundant.

Fact 10. If u is v-redundant then v is not u-redundant.

Finally we note that u cannot be v-redundant with too many v’s.

Fact 11. Let G = (V, E) be a planar graph. Then for u ∈ B′ there are at most
19 vertices v ∈ B′ such that u is v-redundant.

Proof. Since G is planar, we have |N(u)∩N(v)∩N(w)| ≤ 2 for any three distinct
vertices u, v, w. Assume u is v-redundant for every v ∈ {v1, . . . , vk}. Then

|N(u) ∩ S| ≥
k∑

i=1

|N(u) ∩ N(vi) ∩ S| − 2
(

k

2

)
≥ k|N(u) ∩ S|

10
− k2 > |N(u) ∩ S|

when k = 20. ��
Lemma 7

γ(G′) ≤ Kγ(G).

Proof. First notice that to obtain G′ only edges between S and B′ can be deleted
from G. Let D be a dominating set in G. We will add some vertices to D to
obtain a dominating set D′ in G′. If u ∈ D ∩ B′ and degG(u) �= degG′(u) then
add to D all vertices v such that u is v-redundant. By Fact 11 there are 19 such
v’s. If u ∈ D ∩ S and degG(u) �= degG′(u) then degG(u) ≤ K − 1 and add all
neighbors of u in G to D. Then |D′| ≤ K|D| as K ≥ 20 and D′ is a dominating
set in G′. Indeed, any vertex v which is dominated by a vertex u ∈ D with
uv ∈ E \ E′ is in D′. ��
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Lemma 8. Let H = (V, E) be a planar graph with no redundant pairs, let K
be a positive integer which is large enough, and let B = {v ∈ H |degH(v) ≥ K}.
Then

γ(H) ≥ min
|B|
2

,
|H |
K2

.

Proof. Let D be a dominating set in H . Consider D1 = D∩B and D2 = D \D1.
Every vertex from D2 has the degree of at most K − 1 and so there are at most
K|D2| vertices dominated by D2. Let W be the set of vertices dominated by D2.
If |W | ≥ |H |/K then |D2| ≥ |H |/K2 and we are done. Assume therefore that
|W | < |H |/K and let A = V \ (W ∪ B). Since H is planar, |B| ≤ 6|H |/K and
so |A| ≥ (1 − 7/K)|H | with every vertex from A dominated by a vertex from
D1 ⊆ B. Consider the bipartite subgraph H ′ of H with bipartition (B, A) and all
edges of H with one endpoint in B, another in A and let d1, . . . , dk be vertices
from D1 that dominate A. Every vertex a from A chooses one i ∈ {1, . . . , k}
such that di dominates a and joins the group of di. In this way we obtain stars
S1, . . . , Sk with centers in d1, . . . , dk and every a ∈ A belonging to exactly one
star. Let B̄ = {b ∈ B|degH′(b) ≥ degH(b)/2}. We note that

|B̄| ≥
(

1 − 12
K

)
|B| (4)

as otherwise 2||H [B]|| > 12
K |B|K/2 ≥ 6|B| but H [B] is planar. Note that if

b ∈ B̄ then deg′H(b) ≥ K/2 ≥ 202 and so b ∈ B′. Since there are no redundant
pairs in H , for every b, di ∈ B′ we have |NH′(b) ∩ NH′ (di)| < |NH′(di)∩S|

10 . Now
consider the planar graph H ′′ obtained from H by contracting each of the stars
to a single vertex. Every vertex from B̄ has degree of at least 10 in H ′′ and H ′′

is planar. Thus,
5|B̄| ≤ ||H ′′|| < 3(|B| + k)

which gives

|D1| ≥ k ≥ (2 − 12/K)|B|
3

≥ |B|/2

if K ≥ 24. ��
Lemma 9. There is a distributed algorithm that finds a Ω(1)-approximation of
a minimum dominating set in a planar graph in O(1) rounds.

Proof. After fixing K in the argument above, graph G′ is obtained by delet-
ing edges as described in Lemma 7. Then in H all vertices from B = {v ∈
H |degG′(v) ≥ K} are added to the dominating set and finally all vertices in G′

which are not dominated in G′ by B are added to the dominating set. The domi-
nating set has size Ω(γ(G)). Indeed, from Lemma 7, γ(G) = Ω(γ(G′)) and from
Lemma 8, γ(G′) = Ω(|B|)+Ω(|C|) where C is the set of vertices not dominated
by B in G′ (Clearly these vertices can only be dominated by vertices of degree
at most K − 1 in G′). ��
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