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Abstract. In this paper we extend the lower bound technique by Linial
for local coloring and maximal independent sets. We show that con-
stant approximations to maximum independent sets on a ring require at
least log-star time. More generally, the product of approximation qual-
ity and running time cannot be less than log-star. Using a generalized
ring topology, we gain identical lower bounds for approximations to min-
imum dominating sets. Since our generalized ring topology is contained
in a number of geometric graphs such as the unit disk graph, our bounds
directly apply as lower bounds for quite a few algorithmic problems in
wireless networking.

Having in mind these and other results about local approximations
of maximum independent sets and minimum dominating sets, one might
think that the former are always at least as difficult to obtain as the lat-
ter. Conversely, we show that graphs exist, where a maximum indepen-
dent set can be determined without any communication, while finding
even an approximation to a minimum dominating set is as hard as in
general graphs.

1 Introduction

The recent hype about multi-hop wireless networks such as ad hoc, mesh, or
sensor networks has sparked an unprecedented interest in distributed network
algorithms, from inside the distributed computing community, and probably
even more from outside. In the last decade reams of new distributed network
algorithms have been proposed. One common theme of these algorithms is lo-
cality: As large networks demand fast and failure resistant algorithms, nodes
should be able to make decisions solely by communicating to neighboring nodes
a bounded number of times. The main challenge is to design local algorithms
which can provide global guarantees. In the center of attention are classic graph
optimization problems such as minimum dominating sets (MDS) and connected
dominating sets, as they provide, e.g., energy-efficient backbone solutions for a
variety of applications.

This abundance of distributed network algorithms is not matched by an
equally rich knowledge about lower bounds and impossibility results. Indeed,
on the lower bound side of locality research there are to the best of our knowl-
edge only two results. One is a technique by Kuhn et al. [13] which proved that

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 394–407, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Leveraging Linial’s Locality Limit 395

many classic graph optimization problems including vertex cover, matching, or
MDS cannot be polylogarithmically approximated in less than

√
log n/ log log n

time. However, the proof requires quite a peculiar “fractal” graph family barely
occuring in real world problems, and certainly not in the world of wireless net-
works. The other is a nifty lower bound by Linial [12] who proved that computing
a 3-coloring or a maximal independent set (MIS) even on a ring topology can-
not be done in constant time. Indeed, using an indistinguishibility argument,
Linial shows that at least Ω(log∗ n) time is necessary on a ring with n nodes.
Linial’s lower bound is extremely weak compared to the one due to Kuhn et al.,
conversely the ring is a topology that may appear in virtually any network. In
fact Linial’s limit also holds on a simple list, hence prohibiting constant time
solutions to the above problems on almost any graph families of practical use.

However, to the theorist’s annoyance, Linial’s bound only holds for 3-coloring
and maximal independent set, leaving important problems as MDS or maximum
indepent set (MaxIS) approximations aside. In fact, the MDS approximation
problem on Linial’s ring topology offers a trivial solution: Simply take every
node and you have a 3-approximation!

The first issue we address in this paper is whether one can extend Linial’s
lower bound towards approximation covering and packing problems such as MDS
or MaxIS, such that the lower bound still holds in natural geometric graphs
existing in wireless multi-hop networks. The weakest geometric graph model is
the unit disk graph (UDG). Our lower bounds hold in UDGs, and henceforth
in all generalizations thereof, e.g. quasi unit disk graphs, unit ball graphs, and
growth-bounded graphs.

We will prove that constant approximations of the MDS problem on a quite
simple family of UDG’s cannot be obtained in o(log∗ n) time. To the best of
our knowledge, this is the first nontrivial lower bound for this problem hold-
ing in UDG’s. More generally, if we allow for an O(f(n))-approximation of the
MDS problem in O(g(n)) time, the product f(n) · g(n) cannot be in o(log∗ n).
Strengthening Linial’s results with respect to MIS, the same bounds are proved
for the MaxIS problem on the ring.1 Like Linial’s limit our results apply to a
very general computational model, where nodes can gather all information about
nodes that are at most k hops away in k rounds, and may perform arbitrary lo-
cal computations. In addition, all bounds still apply when allowing non-uniform
algorithms, i.e., nodes to be aware of the size of the graph.

Finally we answer the question if the local complexities of both problems are
in principle related to each other. In growth-bounded graphs the MIS problem
is as least as hard as approximating a MDS, as a MIS is always a constant factor
MDS approximation. The same order holds for all other known results. However,
as is shown in the last part of the paper, this is not true in general. We will utilize
a simple construction to generate a graph family for which an exact solution to
the MaxIS problem is trivial, but MDS and approximations thereof stay as hard
as in general graphs.

1 Note that—as for 3-coloring—this result trivially generalizes to simple lists, since in
this case most of the nodes observe the same topology as on a ring.
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2 Related Work

Local algorithms have been a recurring research theme since the 80’s [4, 9, 10,
11,12]. Lately many contributions in this area have been motivated by demands
of wireless ad hoc and sensor networks. The classical minimum dominating set
and maximum independent set type problems are subject to quite a few basic
protocols in such distributed systems. Energy consumption and communication
capacities are directly affected by the quality of the given solutions. As commu-
nication ranges are limited in the systems in consideration, often the family of
bounded growth graphs (or subfamilies thereof, e.g. unit disk graphs) are exam-
ined. Under this assumption the problems seem to be closely related, as a MIS
becomes both a constant MDS and MaxIS approximation.

As a first highlight Luby [10] managed to compute a MIS in O(log n) time,
where n is the number of nodes. The algorithm works on general graphs, how-
ever, in general graphs a MIS is neither a MDS nor a MaxIS approximation. It
took until the beginning of the current century for the first distributed MDS
algorithm non-trivial in both time and approximation to be published [7]. It
yields a O(log Δ) approximation in O(log n logΔ) time, where n is the number
of nodes and Δ is the largest node degree. Kuhn et al. followed with the first
constant time algorithm providing a non-trivial approximation ratio [6]. This
result has been improved [5] to the currently best result for general graphs: A
MDS can be approximated up to a factor of O

(
Δ1/

√
k log Δ

)
in O(k) time.

For a long time the only known lower bound for local algorithms had been
Linial’s Ω(log∗ n) bound on 3-coloring and MIS on the ring. Later Kuhn et al. [13]
opposed the positive results by showing that in general graphs local algorithms
cannot compute a polylogarithmic approximation of several optimization prob-
lems, including MDS, in less than Ω

(√
log n/ log log n

)
time. Independent of and

concurrent to our own results, Czygrinow et al. [15] proved the same lower bound
on MaxIS approximations we show, but using a different argument. In the same
work they present a randomized algorithm achieving an (1 − ε)-approximation
in O(1/ε) time for any ε > 0, showing that in contrast to Lineal’s bound ran-
domization does help.

Since the graphs used in the lower bound proof in [13] are complex and most
unlikely to occur in practice, researchers started studying geometric graph classes
like unit disk graphs (UDG’s) or bounded growth graphs, which are regarded
as abstractions of realistic wireless network topologies. Close-to-optimum deter-
ministic respectively randomized MIS/MDS/MaxIS algorithms were presented
by [3] and [8]. Recently, Schneider et al. [1] devised an algorithm computing a
MIS on bounded growth graphs within O(log∗ n) time. Our lower bounds show
this bound to be tight also with respect to MDS or MaxIS approximations in
bounded growth graphs, as a MIS yields constant approximations to both in this
graph family. In other words, locally approximating a MDS or MaxIS in bounded
growth graphs is not simpler than the special case of ascertaining a MIS.

Restricting the scope further, one can study UDG’s with the nodes given
global position information. In this setting even Linial’s lower bound can be
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beaten (e.g., in [14] a PTAS for the MDS problem is given), as the positions can
be used to partition the problem into efficiently solvable local instances. Thus,
the main difficulty when approximating MDS or MaxIS in UDG’s is to break
the symmetry of the problem, which is reflected in Linial’s Limit.

3 Model and Notation

We model a network as a simple undirected graph G = (V, E), where nodes
represent processors and edges represent bidirectional communication links. Ba-
sically we use Linial’s classic synchronous message passing model, where in one
communication round each node of the network graph can send a message to
each of its direct neighbors. We allow those messages to be of arbitrary size. How-
ever, at the beginning a node v ∈ V is only equipped with information about
its communication channels and a unique identifier of O(log n) size, which for
simplicity we will refer to as v as well. Thus, a node can gather knowledge
about node identifiers and edges between nodes at most k hops away in k com-
munication rounds. Each processor may perform arbitrary local computations.
Thus in this model an algorithm running in at most k rounds can be expressed
as a function of the topology and identifiers of the (inclusive) k-neighborhood
N+

k (v) := {w ∈ V |w is in at most k hops distance of v} of each node v to a re-
sult c(v). For an algorithm to be correct, it is required that combining the choices
c(v) of all v ∈ V yields a feasible global solution of the considered problem.

We modify this standard model by dropping the assumption of uniformity,
i.e., we allow nodes to know the size n := |V | of the graph. Though we need
this in our proofs of the claimed lower bounds, we aquire even stronger results.
We will solely consider symmetric graphs, in the sense that an embedding exists
where for any to nodes v, w ∈ V and any k ∈ IN, the k-neighborhood N+

k (v)
is identical up to translation and rotation to N+

k (w). Hence an Algorithm A
running in at most k rounds on a node v ∈ V will be a function from N+

k (v),
its topology, and n to the set of possible decisions c(v), independent of wether
nodes can gather any local geometric information. This implies that our bounds
also hold, e.g., when we assume an Euclidean embedding of the graph where
nodes can determine the exact distance an edge bridges. As discussed in the
related work section, with global positition information better solutions become
possible.

Definition 1 (Local f-approximations of MaxIS). Given a graph G =
(V, E), an independent set (IS) of G is a set I ⊆ V such that for all v, w ∈ I
we have {v, w} �∈ E. A maximal independent set (MIS) is an independent set
M so that no set S ⊃ M can be an IS. A maximum independent set (MaxIS)
is an IS of maximum cardinality. Let f be a function from IN to [1,∞) ⊂ IR. A
local f -approximation algorithm for the MaxIS problem computes for each node
v ∈ V a choice c(v) ∈ {0, 1} such that I := {v ∈ V | c(v) = 1} is an IS and for
any graph G the inequality f(n)|I| ≥ |M | holds, where M is an arbitrary MIS
of G.
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Definition 2 (Local f-approximations of MDS). Given a graph G =
(V, E), a dominating set (DS) of G is a set D ⊆ V such that for each v ∈ V \D
a d ∈ D exists with {v, d} ∈ E. A minimum dominating set (MDS) is a DS
of minimum cardinality. Let f be a function from IN to [1,∞) ⊂ IR. A local
f -approximation algorithm for the MDS problem computes for each node v ∈ V
a choice c(v) ∈ {0, 1} such that D := {v ∈ V | c(v) = 1} is a DS and for any
graph G the inequality |D| ≤ f(n)|M | holds, where M is an arbitrary MDS of G.

Definition 3 (Local 3-coloring). A valid 3-coloring of a graph G = (V, E) is
a function c : V → {r, g, b} such that c(v) �= c(w) for all {v, w} ∈ E.

Definition 4 (Unit Disk Graph (UDG)). A Unit Disk Graph (UDG) is a
graph UDG(ι) = (V, E), defined by an injective function ι : V → IR2, where
E = {{v, w} ∈ V × V | 0 < ‖ι(v) − ι(w)‖IR2 ≤ 1}.
Definition 5 (Rn and Rk

n). Define the ring with n nodes as Rn := (Vn, En),
where Vn := {v1, . . . , vn} and En := {{v1, v2}, . . . , {vn−1, vn}, {vn, v1}}. Thus
Rn is simply a circle consisting of n nodes. Denote by Rk

n :=
(
Vn, Ek

n

)
the k-ring

with n nodes, i.e., Rn extended by all edges {vi, vj} with vj ∈ N+
k (vi)\ {vi} with

respect to Rn (see Figure 1).

Proposition 6. Rk
n can be realized as UDG.

Proof. Place all nodes equidistantly on a circle of radius 1
2

(
sin

(
lπ
n

))−1
, as illus-

trated by Figure 1.

Fig. 1. R3
16. Realized as UDG k is controlled by the scaling.
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4 Proofs of the Bounds

For brevity, in the subsequent analysis the term algorithm will refer to determin-
istic, local algorithms in the sense of the model described in the previous section.
We show the claimed lower bounds by means of a reduction of local 3-coloring
of the ring. For this problem Linial [12] proved the following bound:

Theorem 7 (Lower bound for local 3-coloring of the ring). There is no
deterministic local algorithm 3-coloring the ring Rn requiring less than 1

2 (log∗ n−
1) communication rounds.

Proof. The proof in [9] applies, as it also holds when we assume the nodes to
know the size of the network n.

Naor proved an analogous result for randomized algorithms [2]. We will need the
following notion:

Definition 8 (σ(n)-alternating algorithm). Suppose A is an algorithm op-
erating on Rn which assigns each node vi ∈ Vn a value c(vi) ∈ {0, 1}. We
call A σ(n)-alternating, if the length k of any monochromatic sequence c(vi) =
c(vi+1) = . . . = c(vi+k), indices taken modulo n, is smaller than σ(n).

If a σ(n)-alternating algorithm is given, one can easily obtain a 3-coloring of the
ring Rn in O(σ(n)) time:

Lemma 9 (3-coloring the marked ring). Given a σ(n)-alternating algo-
rithm A running in O(σ(n)) rounds, a 3-coloring of the ring can be computed in
O(σ(n)) rounds.

Proof. Recall that we identify nodes with their identifier, thus we can compare
two nodes v, w ∈ Rn. We define the following algorithm for 3-coloring the ring
Rn nodewise for each node v ∈ Vn:

1. Run A. Let d(v) ∈ {0, 1} denote the result of this run.
2. Find a pair of neighboring nodes {w1, w2} with d(w1) �= d(w2) which is

closest to v. If v ∈ {w1, w2}, set c(v) := b, if d(v) = 0, and c(v) := r
otherwise. Else denote by δ the distance to the closer node in {w1, w2},
w.l.o.g. w1, and set c(v) := c(w1) if δ ∈ 2IN and c(v) := c(w2) else.

3. If v has a neighbor w with c(v) = c(w) and v > w, set c(v) := g.
4. If v has a neighbor w with c(v) = c(w) = g and v > w, set c(v) to the color

none of the neighbors of v has.
5. Return c(v).

Clearly, the running time of this algorithm is in O(σ(n)), as by assumption not
more than σ(n) consecutive nodes take the same decision d(v) when running A.

We now show that it yields a valid 3-coloring of Rn. In step 2 at most one
of the neighbors of any node v ∈ Vn may take the same choice, as each node
chooses different from one of its neighbors. In step 3 from each pair of neighbors
with the same color one chooses g. Thus only neighbors both colored with g may
remain. These will be resolved in step 4, as nodes to the right and left of a pair
colored by g both must have a different color than g. �
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Fig. 2. An element of Sn displayed as part of a labeling of the ring. A “ ? ” indicates that
the identifier or output of the corresponding node is unspecified respectively unknown.
Independent of the identifiers left of v1 and right of vg(n)+2σ(n) all nodes vi from vg(n)+1

to vg(n)+σ(n) will compute c(vi) = 0.

To establish our lower bounds, we construct σ(n)-alternating algorithms out of
assumed approximation algorithms for MaxIS and MDS, respectively.

Lemma 10 (Modified MaxIS approximation). Suppose an f -approxima-
tion algorithm A for the MaxIS problem on the ring Rn running in at most
g(n) ≥ 1 rounds is given, where we have f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-
alternating algorithm A′ requiring o(log∗ n) communication rounds exists.

Proof. As stated in the last section, we identify nodes with their identifiers. Thus,
the input of A when executed on Rn is a sequence of identifiers (v1, . . . , vn),
where no identifier occurs twice. Recall that for a single node vi ∈ Vn, i ∈
{1, . . . , n}, we can express the output c(vi) of A as a function of n and the
subsequence of identifiers

(
vi−g(n), . . . , vi, . . . , vi+g(n)

)
, where indices are taken

modulo n. Set σ(n) := 10f(n)g(n) and define

Sn :=
{(

v1, . . . , vσ(n)+2g(n)

)

| ∀i ∈ {g(n) + 1, . . . , σ(n) + g(n)} : c(vi) = 0} , (1)

i.e., exactly the set of sequences preventing that A is σ(n)-alternating (see also
Figure 2). Note that due to the preceeding observations Sn is well defined, al-
though the choices of the leading and trailing g(n) many nodes may depend on
further identifiers.

For n fixed we construct a sequence of identifiers for Rn. Initially we choose
an arbitrary subsequence s ∈ Sn and assign the identifiers of s to v1, . . . , v|s|.
Now suppose we already assigned labels to the nodes v1, . . . , vj . If there exists
a sequence s ∈ Sn that can be appended to v1, . . . , vj without duplicating an
identifier, we do so. If no further sequence fits, we add n− j arbitrary identifiers
not yet present in v1, . . . , vj to complete the labeling (v1, . . . , vn) of Rn. Observe
that each sequence from Sn added implies that at least σ(n) additional nodes
will compute c(v) = 0 when A is run on the constructed labeling.

Assume for contradiction, that for arbitrarily large n it is possible to label
Rn as described in the preceding paragraph, with at least n − n

5f(n) identifiers
stemming from sequences out of Sn. By construction at least

σ(n)n
σ(n) + 2g(n)

− n

5f(n)
(2)
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many nodes compute c(v) = 0 when A is passed such a labeling as input. Thus
we have

|I| ≤ n −
(

σ(n)n
σ(n) + 2g(n)

− n

5f(n)

)
≤ 2n

5f(n)
, (3)

where I = {v ∈ Vn | c(v) = 1} denotes the resulting independent set. Since
the size of a MaxIS of Rn is

⌊
n
2

⌋
, this contradicts the assumption that A is an

f -approximation algorithm to the MaxIS problem on Rn.
Thus, an n0 ∈ IN must exist, such that for all n ≥ n0 we may choose a

maximal set of disjoint sequences {s1, . . . , sjn} ⊂ Sn such that
∣
∣
∣
∣∣
Id(n) \

(
jn⋃

i=1

si

)∣
∣
∣
∣∣
≥ n

5f(n)
, (4)

where Id(n) is the set of admissible identifiers for nodes on Rn. In other words,
at least n

5f(n) identifiers remain which cannot form a further sequence from
Sn. W.l.o.g. we may restrict Id(n) such that |Id(n)| = n, as A must yield
correct results for any admissible set of identifiers. Hence, by setting n′ :=
max{n0, 5f(n)n}, we can define an injective relabeling function rn : Id(n) →
Id(n′) such that no sequence s ∈ Sn′ is completely contained in the image of rn.

The algorithm A′ claimed to exist now consists of redefining all identifiers by
rn and simulating a run of A on the modified instance, where instead of n the
algorithm is given n′ as the number of nodes. As g(n) ≤ g(n)f(n) ∈ o(log∗ n),
the running time g(n′) of A′ is certainly in o(log∗ n) as well. Since A computes an
IS, no two consecutive nodes are assigned c(v) = 1.2 By definition no sequence
from Sn′ is contained completely in the image of rn, hence at most σ(n′) − 1 ∈
O(f(n′)g(n′)) ⊂ o(log∗ n′) = o(log∗ n) consecutive nodes compute c(v) = 0.
Thus A′ is o(log∗ n)-alternating as desired. �
We will need a similar result for the MDS approximation problem. In a ring
topology choosing every node is a trivial, yet constant MDS approximation.
Hence we will resort to the slightly more complex topology of Rk

n, which still is
present in UDG’s.

Lemma 11 (Modified MDS approximation). Assume an f -approximation
algorithm A for the MDS problem on UDG’s running in at most g(n) ≥ 1 rounds
is given, where f(n)g(n) ∈ o(log∗ n). Then an o(log∗ n)-alternating algorithm A′

requiring o(log∗ n) communication rounds exists.

Proof. We will extend the proof of Lemma 10. In a simple ring topology choosing
all nodes is a constant MDS approximation. This is not true in Rk

n. Set σk(n) :=
max{f(n), k}g(n) and define

Sk
n :=

{(
v1, . . . , vσk(n)+2kg(n)

)

| ∀i ∈ {kg(n) + 1, . . . , σk(n) + kg(n)} : c(vi) = 1 on Rk
n

}
, (5)

2 Independence is a local property, which is only affected by the input of A at a node
v and its neighbors, i.e., the identifiers of the g(n) + 1-neighborhood of v, and n.
Since any subsequence of identifiers (vi−g(n)−1, . . . , vi, . . . , vi+g(n)+1) ⊂ Id(n′) may
occur on Rn′ , the output of A′ must still form an IS.
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i.e., the set of sequences of identifiers yielding σk(n) consecutive nodes taking the
decision c(v) = 1 when A is executed on Rk

n, where the choices of the leading and
trailing kg(n) many nodes may also depend on identifiers not in the considered
sequence. As the decision of any node v depends only on identifiers of nodes in
N+

kg(n)(v), Sk
n is well defined.

We make a case decision. The first case is that a k0 ∈ IN exists allowing a
similar relabeling procedure as in Lemma 10. More precisely, k0, n0 ∈ IN exist,
such that for n ≥ n0 at most n

2 identifiers can simultanuously participate in
disjoint sequences from Sk0

n in a valid labeling of Rk0
n . Thus, by setting n′ :=

max{n0, 2n}, we can define A′ to simulate a run of A on Rk0
n′ and return the

computed result. Each simulated round of A will require k0 communication
rounds, thus the running time of A′ is bounded by k0g(n′) ∈ o(log∗ n). At most
2k0 consecutive nodes will compute c(v) = 0, as A determines a DS, and by
definition of Sk0

n′ at most σk0(n′) − 1 ∈ O(f(n′)g(n′)) ⊂ o(log∗ n′) = o(log∗ n)
consecutive nodes take the decision c(v) = 1.

The second case is that no pair k0, n0 ∈ IN as assumed in the first case exists.
Similar to the proof of Lemma 10, we construct a labeling of Rk

n with at least
n
2 many identifiers stemming from sequences in Sk

n . Running A on this instance
will yield at least

σk(n)n
2(σk(n) + 2kg(n))

≥ n

6
∈ Ω(n) (6)

many nodes choosing c(v) = 1. On the other hand, varying k, we get minimum
dominating sets with O

(
n
k

)
many nodes. Define nk to be the minimum n, such

that it is possible to construct labelings of Rk
n with n

2 identifiers from sequences
in Sk

n . Since A is an f -approximation algorithm to the MDS problem on Rk
n, we

conclude
f(nk) ∈ Ω(k) . (7)

We choose k(n) minimum such that n′ := 2n < nk(n), allowing to define a
injective relabeling function rn : Id(n) → Idk(n)(n′), such that no element of
Sk(n)

n′ lies completely in the image of rn. Here Id(n) and Idk(n) denote the sets
of admissible identifiers of Rn and Rk

n, respectively, where w.l.o.g. we assume
|Id(n)| = |Idk(n)| = n. We define A′ to be the algorithm operating on Rn, but
returning the result of a simulated run of A on R

k(n)
n′ , where we relabel all nodes

v ∈ Rn by rn(v). By definition of k(n) we have nk(n)−1 ≤ n′. Together with (7)
this yields

k(n) = (k(n) − 1) + 1 ∈ O(f(nk(n)−1) + 1) = O(f(n′)) = O(f(n)) , (8)

since f grows asymptotically sublinear. Hence we can estimate the running time
of A′ by k(n)g(n′) ∈ O(f(n)g(n)), using that g grows asymptotically sublinear
as well.

Since the simulated run of A yields a dominating set, at worst 2k(n) ∈
O(f(n)) ⊆ O(f(n)g(n)) many consecutive nodes may compute c(v) = 0. By
the definitions of Sk

n and rn at most sk(n)(n′) − 1 < max{f(n′), k(n)}g(n′) ∈
O(f(n)g(n)) consecutive nodes may take the decision c(v) = 1. Thus A′ is
o(log∗ n)-alternating, as claimed. �
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The two main theorems follow immediately from the preceding statements.

Theorem 12 (Lower bound on MaxIS approximations). No f -approxi-
mation algorithm to the MaxIS problem on the ring Rn running in at most
g(n) ≥ 1 communication rounds with f(n)g(n) ∈ o(log∗ n) exists.

Proof. Assuming the contrary, we can combine Lemma 10 and Lemma 9 to
construct an algorithm contradicting Theorem 7.

Theorem 13 (Lower bound on MDS approximations on UDG’s). No
f -approximation algorithm to the MDS problem on UDG’s running in at most
g(n) ≥ 1 time with f(n)g(n) ∈ o(log∗ n) exists.

Proof. Assuming the contrary, we can combine Lemma 11 and Lemma 9 to
construct an algorithm contradicting Theorem 7.

Note that g(n) ≥ 1 is just a formal restriction. If g(n) = 0 for infinitely many n,
the approximation ratio f must be trivial, i.e., f(n) �∈ o(n).

5 MaxIS Graphs

In this section we address the question wether the difficulties of MaxIS and
MDS approximations are related in general. As shown in Theorem 12, on a ring
topology one cannot compute a constant MaxIS approximation in constant time.
Conversely, for MDS this is trivially possible by taking all nodes to be in the DS.
On UDG’s3 a MaxIS, or even any maximal independent set, is a constant MDS
approximation, since the number of independent neighbors of a node is bounded
by a constant. Schneider et al. [1] showed how a maximal independent set can be
computed on UDG’s in O(log∗ n) time. As direct consequence of Theorem 7 this
bound is tight, as a maximal independent set on a ring allows for a 3-coloring
in a single round. Moreover, Theorem 13 shows this bound to be tight also with
respect to MDS approximations on UDG’s.

In the light of these results one might expect that approximating MaxIS is
always at least as difficult as approximating MDS. On the contrary, we will now
present an example showing that finding a MaxIS can be trivial (see Lemma 15),
while computing a MDS remains as hard as in general graphs (see Lemma 16).
Towards this end, we construct a family of graphs for which an exact solution
for the MaxIS problem can be given without any communication and without
knowing the problem size n. Conversely, MDS approximation on general graphs
reduces to MDS approximation on this graph family. Kuhn et al. [13] showed that
this problem cannot be approximated well in less than Ω

(√
log n/ log log n

)

time. The graph class examined is constructed for this special purpose, being of
no practical relevance. Indeed, the solution to the MaxIS problem will already
be encoded in the local topology of the graph. The main impact is that the
(local) complexities of MDS and MaxIS type problems depend strongly on the
considered types of graphs.
3 More generally, on bounded growth graphs.
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Definition 14 (MaxIS Graphs). Given an arbitrary graph G = (V, E), we
construct a new graph H = (VH , EH) from G. We define VH := V1∪V2∪V3∪V4,
where the Vi, i ∈ {1, 2, 3, 4}, are four disjoint copies of V . Denote by vi ∈ Vi the
nodes that are copies of a node v ∈ V . The edge set connects all nodes v1 ∈ V1

and v2 ∈ V2 to all wi that are copies of some w ∈ N+
1 (v), i.e.,

EH :=
{{vi, wj} |w ∈ N+

1 (v), i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, vi �= wj

}
. (9)

Thus, the subgraphs induced by V1 and V2 are copies of G, and each v3 ∈ V3

(and v4 ∈ V4, respectively) is connected exactly to both copies of N+
1 (v) in V1

Fig. 3. Overview of the structure of a MaxIS Graph H constructed out of some graph
G = (V, E). The displayed vertices and egdes form the subgraph S of H induced by
the copies of two nodes v, w ∈ V , where {v, w} ∈ E. This subgraph is the complete
graph without any edges between two nodes both in V3∪V4. Thus the degree of a node
in V1 ∪ V2 with respect to S equals the one of a node in V1 ∪ V2 plus three.
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and V2. An illustration is given in Figure 3. Any graph that can be constructed
in this way is a MaxIS Graph.

We will proof our statements by giving a simple criterion allowing to compute a
MaxIS on this class of graphs in zero rounds, and a local reduction of the general
MDS approximation problem to MaxIS Graphs.

Lemma 15 (Local computation of a MaxIS on MaxIS Graphs). The
set {v ∈ V | |N+

1 (v)|mod 2 = 1} is a MaxIS for any MaxIS Graph. It can be
determined locally, without communication.

Proof. We use the notation of Definition 14. The set of nodes I := V3 ∪ V4

is independent by construction. A node vi ∈ Vi, i ∈ {3, 4}, has 2|N+
1 (v)|

many neighbors in V1 ∪ V2, hence |N+
1 (vi)| is odd. On the other hand, for a

node vi ∈ Vi, i ∈ {1, 2}, we have |N+
1 (vi)| = 4|N+

1 (v)|, which is even. Thus
I = {v ∈ V | |N+

1 (v)|mod 2 = 1} holds. Moreover, since the sequence of nodes
(v1, v3, v2, v4) forms a cycle, at most two of them may participate in an IS, thus
I is a MaxIS.

As nodes know the number of their neighbors, each node can determine wether
it is in I or not without any communication. �
Lemma 16 (Reduction of MDS to MDS on MaxIS Graphs). We use the
notation of Definition 14. Given an f -approximation algorithm A to the MDS
problem on MaxIS Graphs running in g(n) time, we can define the following
algorithm A′ operating on an arbitrary graph G:

1. Simulate a run of A on the MaxIS Graph H constructed from G.
2. Return for each node v ∈ V c(v) = 1 if A computed c(vi) = 1 for some

i ∈ {1, 2, 3, 4}, and c(v) = 0 else.

Algorithm A′ is an f(4n)-approximation algorithm to the MDS problem running
in g(4n) rounds. Up to constants it is as efficient as the original one, i.e., it is
an O(f(n)) approximation running in O(g(n)) time.

Proof. Since A computes a MDS of H , Algorithm A′ will return a MDS of G: If
v1 ∈ V1 is covered by wi ∈ Vi for some i ∈ {1, 2, 3, 4}, w will cover v in G. Thus
A′ works correctly.

If M is a MDS of G, the copy M1 := {m1 |m ∈ M} is a MDS of H . Conversely,
any node v1 ∈ V1 can only be covered by copies of nodes w ∈ N+

1 (v), hence the
sizes of minimum dominating sets of G and H coincede. Thus, if A is an f(n)-
approximation algorithm to the MDS problem on MaxIS Graphs, A′ will be an
f(4n)-approximation algorithm to the MDS problem on general graphs. Since
any MDS approximation algorithm will trivially reach at least an approximation
ratio of n, A′ is an O(f(n))-approximation.

Having the nodes of G simulate a run of A on H does not require any additional
communication rounds. As we have no restrictions to message sizes, we can simply
append the information which edge in H is used to all communications, while each
node v ∈ V simulates vi, i ∈ {1, 2, 3, 4}. This is a simple task, as the neighbour-
hood of each vi is determined solely by N+

1 (v), and we have no restrictions to local
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computations. Hence, if A runs in g(n) time, A′ will require at most g(4n) time
to complete. As the diameter of any graph is bounded by the number of nodes n,
any algorithm in our computational model can be realized using at most n com-
munication rounds. Thus A′ needs at worst O(g(n)) rounds to complete. �
Finally we conclude that the local complexities of the MaxIS and MDS approx-
imation problems are incomparable.

Theorem 17. Assume an f1-approximation algorithm to the MaxIS problem
and an f2-approximation algorithm to the MDS problem, both on a family of
graphs F , are given. Denote by g1(n) ≥ 1 and g2(n) ≥ 1 bounds for their running
times. Furthermore assume the products p1(n) := f1(n) · g1(n) and p2(n) :=
f2(n) · g2(n) are minimum, i.e., the algorithms are optimum in this sense. Then
neither p1 ∈ O(p2) nor p2 ∈ O(p1) holds independent of F .

Proof. The lower bound of Kuhn et al. [13] and Lemma 16 show that on MaxIS
Graphs we have p2 ∈ Ω

(√
log n/ log log n

)
, while Lemma 15 yields p1 ∈ O(1).

Conversely, for a ring topology we trivially have p2 ∈ O(1), while Theorem 12
gives p1 �∈ o(log∗ n), implying p1 �∈ O(1) = O(p2). �

6 Conclusion

In this paper we extended Linial’s lower bound to the well-known MDS and
MaxIS problems on UDG’s. The product between running time and approxima-
tion quality of any deterministic local algorithm for these problems cannot be
in o(log∗ n).

In a couple of graph classes, especially geometric graphs, a MIS is a special case
of the MDS approximation problem. Consequently one might believe that coming
up with a distributed algorithm for MIS is harder, or at least not simpler, than
for MDS. In the second part of the paper we showed that this is not always true.
The constructed MaxIS graphs demonstrate that the two problems are generally
incomparable: In this graph class a MaxIS can be “computed” locally without
any communication, while any MDS approximation algorithm on MaxIS graphs
could be used to solve the problem on general graphs. Adding one more tessera
to the picture, the extension of Linial’s lower bound to the MaxIS approximation
problem holds on virtually any graph class.

We hope that our findings will help to get a better understanding of dis-
tributed algorithms, eventually permitting a classification of local problems re-
flecting their complexity.
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