
Computing Lightweight Spanners Locally

Iyad A. Kanj1,�, Ljubomir Perković1, and Ge Xia2

1 School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL 60604
2 Department of Computer Science, Lafayette College, Easton, PA 18042

Abstract. We consider the problem of computing bounded-degree
lightweight plane spanners of unit disk graphs in the local distributed
model of computation. We are motivated by the hypothesis that such
subgraphs can provide the underlying network topology for efficient uni-
casting and multicasting in wireless distributed systems. We present the
first local distributed algorithm that computes a bounded-degree plane
lightweight spanner of a given unit disk graph. The upper bounds on
the degree, the stretch factor, and the weight of the spanner, are very
small. For example, our results imply a local distributed algorithm that
computes a plane spanner of a given unit disk graph U , whose degree is
at most 14, stretch factor at most 8.81, and weight at most 8.81 times
the weight of a Euclidean Minimum Spanning Tree of V (U).

We show a wider application of our techniques by giving an O(n log n)
time centralized algorithm that constructs bounded-degree plane
lightweight spanners of unit disk graphs (which include Euclidean graphs),
with the best upper bounds on the spanner degree, stretch factor, and
weight.

1 Introduction

Efficiency, fault tolerance, scalability, and robustness are central goals in dis-
tributed computing. This is especially true for emerging wireless distributed
systems such as ad-hoc, mesh, ubiquitous, and sensor networks. Efficiency is crit-
ical because wireless devices have typically very limited power. Fault tolerance
is required because wireless communication is prone to many errors. Scalability
is important because, in practice, wireless systems are often very large. Robust-
ness is necessary to deal with the devices’ mobility and the dynamic nature of
wireless networks.

Most of the above goals can be achieved, to some extent, with algorithms de-
veloped under the local distributed computational model, as defined by Linial [15]
and Peleg [16]. Assuming that the distributed system is modeled as a graph, a
distributed algorithm is said to be k-local if, “intuitively”, the computation at
each point of the graph depends solely on the information about the points at

� The corresponding author. Email: ikanj@cs.depaul.edu. Supported in part by a De-
Paul University Competitive Research Grant.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 365–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

366 I.A. Kanj, L. Perković, and G. Xia

distance (number of edges) at most k from the point (i.e., within k hops from
the point). This notion can be formalized as follows [15,16,18]: a distributed
algorithm is k-local if it runs in at most k synchronous communication rounds
for some integer parameter k > 0. An algorithm is called local if it is k-local
for some integer constant k. Efficient local distributed algorithms are naturally
fault-tolerant and robust because faults and changes can be handled locally by
such algorithms. These algorithms are also scalable because the computation
performed by a device is not affected by the total size of the network. Therefore,
it is natural to study what problems can or cannot be solved under this model,
as did Kuhn, Moscibroda, and Wattenhofer in [12].

We focus our attention in this paper on developing efficient local algorithms
for fundamental problems in emerging distributed systems technologies, such as
wireless ad-hoc and sensor networks. For these applications, the network is often
modeled as a unit disk graph (UDG) in the Euclidean plane: the points of the
UDG correspond to the mobile wireless devices, and its edges connect pairs of
points whose corresponding devices are in each other’s transmission range equal
to one unit.

The fundamental problem under consideration in this paper is the construc-
tion of lightweight spanners of a UDG U . The weight of each edge in U is defined
to be its Euclidean distance, and the weight of a subgraph of U is the sum of
the weights of its edges. It is well-known that a connected UDG contains a Eu-
clidean Minimum Spanning Tree (EMST) of its point-set. A spanning subgraph
of U is said to have low weight, or to be lightweight, if its weight is at most
c · wt(EMST) for some constant c. A subgraph H of U is said to be a spanner
of U if there exists a constant ρ such that: for every two points A, B ∈ U , the
weight of a shortest path between A and B in H is at most ρ times the weight
of a shortest path between A and B in U . The constant ρ is called the stretch
factor of H (with respect to U). Lightweight spanners of UDGs are fundamental
to wireless distributed systems because they represent topologies that can be
used for efficient unicasting and broadcasting. Lightweight spanners are also im-
portant in computational geometry, and much of the early work on lightweight
spanners was done from that perspective under the centralized model of com-
putation [1,2,5,6,7,8,13]. Additional requirements on spanners that have been
considered are planarity and bounded degree [2,8,9,14,17]. These requirements
are usually motivated by applications in wireless and sensor networks, whose de-
vices have limited resources. For example, the planarity of the topology is often
a requirement for efficient routing (see [3,9,11,14,17]).

The specific problem we are thus considering is the design of algorithms (in
particular, local distributed algorithms) that construct bounded-degree plane
lightweight spanners of unit disk graphs. Levcopoulos and Lingas [13] developed
the first centralized algorithm for this problem on Euclidean graphs (i.e., the
complete graph on n points in the plane), which are a special case of UDGs.
Their O(n log n) time algorithm, given a rational λ > 2, produces a plane span-
ner with stretch factor (λ−1)·Cdel and total weight (1+ 2

λ−2)·wt(EMST), where

Computing Lightweight Spanners Locally 367

the constant Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of the
Euclidean graph. Althöfer et al. [1] gave a polynomial time greedy algorithm that
constructs a lightweight plane spanner of a Euclidean graph having the same up-
per bound on the stretch factor and weight as the algorithm by Levcopoulos and
Lingas [13]. The degree of the lightweight spanner in both [13] and [1], however,
may be unbounded: it is not possible to bound the degree without worsening the
stretch factor or the weight. A more recent O(n log n) time algorithm by Bose,
Gudmundsson, and Smid [2] for Euclidean graphs, succeeded in bounding the
degree of the plane spanner by 27 but at a large cost: the stretch factor of the
obtained plane spanner is approximately 10.02, and its weight is O(wt(EMST)),
where the hidden constant in the asymptotic notation is undetermined.

Our contribution with regard to this problem is a centralized algorithm for
unit disk graphs, which include Euclidean graphs, that improves the above
algorithms. We design a centralized algorithm that, for any integer constant
Δ ≥ 14 and constant λ > 2, constructs a plane spanner of a unit disk graph
(or a Euclidean graph) having degree at most Δ, stretch factor (λ − 1) · (1 +
2π(Δ cos π

Δ)−1) ·Cdel, and weight at most (1+ 2
λ−2) ·wt(EMST) (Theorem 3.1).

We can compare our algorithm with the algorithm by Bose, Gudmundsson, and
Smid [2] if we let Δ = 14 and λ ≈ 2.475 in Theorem 3.1: we obtain an O(n log n)
time algorithm that, given a unit disk graph (or a Euclidean graph) on n points,
computes a plane spanner of the given graph having degree at most 14, stretch
factor at most 5.22, and weight at most 5.22 · wt(EMST).

We consider next the problem of computing bounded-degree plane lightweight
spanners of unit disk graphs using a local distributed algorithm. To the best of
our knowledge, the only distributed algorithm for this problem is the algorithm
in [4]. While the distributed algorithm in [4] solves the problem for a general-
ization of unit disk graphs, called quasi-unit ball graphs, in higher dimensional
Euclidean spaces, the algorithm is not local (it runs in a poly-logarithmic num-
ber of rounds), and the weight and the degree of the spanner are only bounded
asymptotically. We note that distributed algorithms for computing lightweight
spanners of general graphs have been extensively considered in the literature; see
for example [16] for a survey on some of these results. In this paper we show that
(Theorem 4.2): for any integer constant Δ ≥ 14 and constant λ > 2, there exists
a k-local distributed algorithm, where k = �(8/π) · (λ + 1)2�, that computes a
plane spanner of a given unit disk graph containing a EMST on its point-set,
of degree at most Δ, weight at most (1 + 2

λ−2) · wt(EMST), and stretch factor
(λ − 1)4 · (1 + 2π(Δ cos π

Δ)−1) · Cdel. This is the first local algorithm for this
problem. If we set Δ = 14 and λ ≈ 2.256, we obtain a k-local algorithm with k
at most 26, that computes a plane spanner of degree at most 14, stretch factor
at most 8.81, and weight at most 8.81 ·wt(EMST), of the given unit disk graph.

The remainder of this paper is organized as follows. We cover the preliminaries
in Section 2. In Section 3 we present the centralized algorithm, and in Section 4
we present the local distributed algorithm. In Section 5 we give some further
comparisons between our algorithm and the previous ones.

368 I.A. Kanj, L. Perković, and G. Xia

2 Preliminaries

Given a set of points S in the plane, the Euclidean graph E on S is defined to
be the complete graph whose point-set is S. The unit disk graph U on S is the
subgraph of E with the same point-set as E, and such that AB is an edge of
U if and only if |AB| ≤ 1, where |AB| is the Euclidean length of edge AB. We
assume in this paper that the unit disk graph U is connected. We define the
weight of an edge AB to be the Euclidean distance between points A and B,
that is wt(AB) = |AB|. For a subgraph H ⊆ E, we denote by V (H) and E(H)
the set of vertices and the set of edges of H , respectively, and by wt(H) the sum
of the weights of all the edges in H , that is, wt(H) =

∑
XY ∈E(H) wt(XY). The

length of a path P (resp. cycle C) in a subgraph H ⊆ E, denoted |P | (resp. |C|),
is the number of edges in P (resp. C). A point B is said to be a k-neighbor of
A in a subgraph H ⊆ E, if there exists a path P from A to B in H satisfying
|P | ≤ k.

Each of the synchronous communication rounds in a local distributed algo-
rithm consists of two phases: phase 1, in which every point receives messages sent
to it in the preceding phase, and phase 2, in which every point sends messages to
its neighbors. The local computation in a round occurs between the two phases.
Since our focus is on wireless systems, we will assume that a message broadcast
by a point in U will be received by all its neighbors.

The local distributed algorithm we develop in this paper constructs a sub-
graph of U and takes two steps. In the first step, all points learn about their
k-hop neighbors using a local distributed algorithm. In the second step, each
point runs a local computation to make a decision on what incident edges to
select in the final spanner (no messages are exchanged in this step). A k-local
k-neighborhood algorithm is a k-local algorithm in which each point learns about
the coordinates of its k-hop neighbors. A basic k-local k-neighborhood algorithm
runs as follows. In the first round, every point broadcasts its ID and coordinates
to its neighbors in U . In the remaining k− 1 rounds, every point broadcasts the
ID and coordinates of every point it learned about in the previous round.

Let G be a plane graph and let T be a spanning tree of G. Call an edge
e ∈ E(T) a tree edge and an edge e ∈ E(G)− T a non-tree edge. Every non-tree
edge induces a unique cycle in the graph T + e called the fundamental cycle of
e. Since T is embedded in the plane, we can talk about the fundamental region
of e, which is the closed region in the plane enclosed by the fundamental cycle
of e (other than the outer face of T + e).

Definition 2.1. Define a relationship 	 on the set E(G) as follows. For every
edge e, e 	 e. For two edges e and e′ in E(G), e 	 e′ if and only if e is contained
in the fundamental region of e′.

It is not difficult to verify that 	 is a partial order relation on E(G), and hence
(E(G),) is a partially ordered set (POSET). Note that any two distinct tree
edges are not comparable by 	, and that every tree edge is a minimal element
in (E(G),). Therefore, we can topologically sort the edges in E(G) to form a

Computing Lightweight Spanners Locally 369

list L = 〈e1, . . . , er〉, in which no non-tree edge appears before a tree edge, and
such that if ei 	 ej then ei does not appear after ej in L.

Lemma 2.1. Let ei be a non-tree edge. Then there exists a unique face Fi in G
such that every edge ej of Fi satisfies ej 	 ei.

Proof. Let Fi be the face of G containing ei and residing in the fundamental
region of ei, and let ej be an edge on Fi. Since ej is on Fi, ej is contained in the
fundamental region of ei. By the definition of 	, we have ej 	 ei. This shows
the existence of such a face Fi.

To prove the uniqueness of Fi, suppose that there is another distinct face F ′
i

with the above properties. Since every edge ej on F ′
i satisfies ej 	 ei, every edge

on F ′
i is contained in the fundamental region of ei, and hence the whole face

F ′
i is contained in the fundamental region of ei. This means that there are two

distinct faces containing ei that are enclosed within the fundamental cycle of ei.
This contradicts the planarity of G.

We will call the unique face associated with a non-tree edge ei, described in
Lemma 2.1, the fundamental face of ei.

The following result is a consequence of the proof of Theorem 2 in [1]. A
similar, but less general result, was also proved earlier by Levcopoulos and Lin-
gas [13]. A different proof can also be found in [10].

Theorem 2.1. ([1])

(i) Let G be a connected weighted planar graph with nonnegative weights satis-
fying the following property: for every cycle C in G and every edge e ∈ C,
wt(C) ≥ λ ·wt(e) for some constant λ > 2. Then wt(G) ≤ (1+ 2

λ−2) ·wt(T),
where T is a MST of G.

(ii) Let G be a connected weighted plane graph with nonnegative weights, and let
T be a spanning tree in G. Let λ > 2 be a constant. Suppose that for every
edge e ∈ E(G) − T we have wt(Fe) ≥ λ · wt(e), where Fe is the boundary
cycle of the fundamental face of e in G. Then wt(G) ≤ (1 + 2

λ−2) · wt(T).

3 The Centralized Algorithm

In this section we present a centralized algorithm that constructs a bounded-
degree plane lightweight spanner of U .

Kanj and Perlović [9] gave an O(n log n) time centralized algorithm that, given
a Euclidean graph E on a set of n points in the plane, and an integer parameter
Δ ≥ 14, constructs a plane spanner G′ of E containing a EMST of V (E), of
degree at most Δ, and of stretch factor ρ = (1 + 2π(Δ cos π

Δ)−1) · Cdel, where
Cdel ≈ 2.42 is the stretch factor of the Delaunay subgraph of E. This result can
be extended to unit disk graphs:

Lemma 3.1. For any Δ ≥ 14, the subgraph G′
U of the spanner G′ described

in [9], consisting of those edges in G′ of weight at most 1, is a plane spanner

370 I.A. Kanj, L. Perković, and G. Xia

of the unit disk graph U on V (E) of degree at most Δ, and of stretch factor
ρ = (1 + 2π(Δ cos π

Δ)−1) · Cdel (with respect to U). Moreover, G′
U contains a

EMST of V (U).

Proof. We need to verify that the subgraph G′
U of G′ obtained by removing

every edge of weight greater than 1 from G′, is also a spanner of the unit disk
graph U satisfying the same properties that G′ satisfies with respect to Euclidean
graph E.

It was shown in [9] that the spanner G′ satisfies the property that, for every
edge AB ∈ E that is not in G′, there exists a path PAB from A to B in G′

of weight at most ρ · wt(AB), and such that AB has maximum weight among
all edges on PAB (see Theorem 2.10 in [9]). Since the unit disk graph U is the
subgraph of E consisting precisely of those edges in E of weight at most 1, by
discarding from G′ every edge of weight greater than 1, we obtain a subgraph
G′

U of U that is plane and of degree at most Δ. Since U is connected, U contains
a EMST of V (U), and hence every edge in the EMST has weight at most 1.
Since G′ contains a EMST of V (U), it follows from the preceding statement,
and from the definition of G′

U , that G′
U contains a EMST of V (U) as well. If

an edge AB ∈ U is not in G′, from the properties of the spanner G′ described
above, there exists a path PAB in G′ whose weight is at most ρ ·wt(AB), and on
which AB is the edge of maximum weight. From the definition of G′

U , the path
PAB is also in G′

U . It follows that the same algorithm described in [9] computes
a plane spanner G′

U of the unit disk graph U , of degree at most Δ, and of stretch
factor (1 + 2π(Δ cos π

Δ)−1) · Cdel, for any integer parameter Δ ≥ 14. �
The spanner G′

U , however, may not be of light weight. Therefore, we need to
discard edges from G′

U so that the resulting subgraph is of light weight, while at
the same time not affecting the stretch factor of G′

U by much. To do so, since G′
U

is a plane graph containing a EMST of V (U), we would like to employ part (ii)
of Theorem 2.1. However, there is one technical problem: the fundamental faces
of G′

U may not satisfy the condition in part (ii) of Theorem 2.1, namely that
the weight of every fundamental face Fe of a non-EMST edge e in G′

U satisfies
wt(Fe) ≥ λ · wt(e) (λ > 2 is a constant). We will show next how to prune the
set of edges in G′

U so that this condition is satisfied.
Let T be a EMST of V (U) contained in G′

U . As described in Section 2, we
can order the non-tree edges in G′

U with respect to the partial order 	 described
in Definition 2.1. Let L′ = 〈e1, e2, . . . , es〉 be the sequence of non-tree edges in
G′

U sorted in a non-decreasing order with respect to the partial order 	. Note
that, by the definition of the partial order 	, if we add the edges in L′ to T
in the respective order they appear in L′, once an edge ei is added to form a
fundamental face in the partially-grown graph, this fundamental face will remain
a face in the resulting graph after all the edges in L′ have been added to T . That
is, the face will not be affected (i.e., changed/split) by the addition of any later
edge in this sequence.

Given a constant λ > 2, to construct the desired lightweight spanner G, we
first initialize G to the EMST T . We consider the non-tree edges of G′

U in the
order that they appear in L′. Inductively, suppose that we have processed the

Computing Lightweight Spanners Locally 371

edges e1, . . . , ei−1 in L′. To process edge ei, let Fi be the fundamental face of
ei in G + ei. If wt(Fi) > λ · wt(ei), we add ei to G; otherwise, ei is not added
to G. This completes the description of the construction process. Let G be the
resulting graph at the end of the construction process.

Lemma 3.2. Given the set of n points V (E) in the plane, the graph G can be
constructed in O(n log n) time.

Proof. We first describe how to compute the sequence L′.
The bounded-degree plane spanner G′ of E can be constructed in O(n log n)

time [9], and obviously so can G′
U . Since every point in G′

U has bounded degree,
and since G′

U is a geometric plane graph, in O(1) time we can compute a rotation
system for the points in G′

U (for example, for every point in G′
U , we can list

its incident edges in clockwise order). Moreover, since G′
U has O(n) edges, the

EMST T contained in G′
U can be computed in O(n log n) time by a standard

MST algorithm. Now using the rotation system of G′
U , we can traverse the edges

on the boundary face of G′
U . As we traverse these edges, we remove them from

the graph and push the non-tree (with respect to T) edges into a stack; we
also remove any isolated points resulting from this process. Note that the non-
tree edges on the outer face of G′

U are the maximal edges with respect to the
ordering 	. We repeat this process until G′

U is empty, and at that point, the
stack contains the sequence of non-tree edges, sorted according to the partial
order 	; this stack constitutes the list L′. Clearly, this process can be carried
out in O(n) time.

After computing L′, we initialize G to the EMST T . As we consider the
edges in L′, when we add an edge e in L′ to form a fundamental face Fe in
G + e, we need to check whether the fundamental face Fe satisfies the condition
wt(Fe) > λ · wt(e). To do so, we need to traverse the edges on Fe. If e is not
subsequently added to G, we might need to traverse some edges on Fe multiple
times when we later consider edges that are larger than e in the ordering 	. To
avoid this problem, we can do the following. If we decide to add an edge to G,
we add this edge and mark it as a “real” edge of G. On the other hand, if e is
not to be added to G, we still add e to G but we mark it as a “virtual” edge of
G, and assign it a weight equal to the weight of its fundamental face. The graph
G will consist of the tree T plus the set of edges that were marked as real edges.
This way each edge in G is traversed at most twice (as every edge appears in at
most two faces), and the running time is kept O(n).

It follows that G can be constructed in O(n log n) time, and the proof is
complete. �

Theorem 3.1. For any integer parameter Δ ≥ 14 and any constant λ > 2, the
subgraph G of the unit disk graph U constructed above is a plane spanner of U
containing a EMST of V (U), whose degree is at most Δ, whose stretch factor is
(λ − 1) · ρ, where ρ = (1 + 2π(Δ cos π

Δ)−1) · Cdel, and whose weight is at most
(1 + 2

λ−2) · wt(EMST). Moreover, G can be constructed in O(n log n) time.

372 I.A. Kanj, L. Perković, and G. Xia

Proof. The planarity and degree bound of G follow from the fact that G is
a subgraph of G′

U . By construction, G contains a EMST of V (U), and every
fundamental face Fe of a non-tree edge e in G satisfies wt(Fe) ≥ λ · wt(e).
Therefore, by part (ii) of Theorem 2.1, we have wt(G) ≤ (1 + 2

λ−2) ·wt(EMST).
Since by Lemma 3.2 G can be constructed in O(n log n) time, it suffices to show
that the stretch factor of G with respect to U is (λ − 1) · ρ.

Note that G′
U has stretch factor ρ with respect to U . If an edge ei is in G′

U

but not in G, then by the construction of G, when the edge ei is considered, the
fundamental face Fi of ei in G+ei satisfies wt(Fi) ≤ λ·wt(ei) (otherwise, the edge
ei would have been added). Therefore, when edge ei was considered, G contained
a path between the endpoints of ei whose weight is at most (λ− 1) ·wt(ei). This
path will remain in G after all edges in L′ have been considered. Therefore,
every edge in E(G′

U)−E(G) is stretched by a factor at most λ−1. Since G′
U has

stretch factor ρ with respect to U , it follows that the stretch factor of G with
respect to U is (λ − 1) · ρ. This completes the proof. �

Note that since a Euclidean graph is a unit disk graph with radius equal to ∞,
the above theorem holds for Euclidean graphs as well.

4 The Local Distributed Algorithm

In this section we present a local distributed algorithm that constructs a bounded-
degree plane lightweight spanner of U .

The same paper by Kanj and Perlović [9], described above, presents a 3-local
distributed algorithm that, given a unit disk graph U and an integer parameter
Δ ≥ 14, constructs a plane spanner G′ of U containing a EMST of V (U), of
degree at most Δ and stretch factor ρ = (1 + 2π(Δ cos π

Δ)−1) · Cdel. Again, G′

might not be of light weight, and we need to discard edges from G′ so that the
obtained subgraph is of light weight. Ultimately, we would like to be able to apply
Theorem 2.1. However, a serious problem, which was not present previously in
the centralized model, poses itself here in the local model: the removal of the
edges from the spanner by different points in the graph needs to be coordinated.
This problem was overcome in the centralized model by using a global ordering
among the edges of the spanner. Clearly, no local distributed algorithm is capable
of computing the global partial order described in Definition 2.1. To coordinate
the removal of edges, we use an idea that at its core sits a clustering technique.

Fix an infinite rectilinear tiling T of the plane whose tiles are � × � squares,
for some positive constant � to be determined later. Assume, without loss of
generality, that one of the tiles in T has its bottom-left corner coinciding with
the origin (0, 0), and that this fact is known to the points in U . Note that
this assumption is justifiable in practice because an absolute reference system
usually exists (a coordinates system, for example). Therefore, any point in U
can determine (using simple arithmetic operations) which tile of T it resides in.
We start with the following simple fact whose proof is easy to verify.

Computing Lightweight Spanners Locally 373

Fact 4.1. Let C be a cycle of weight at most �. The orthogonal projection 1 of
C on any straight line has weight at most �/2.

Let TI be the translation with vector (0, 0) (the identity translation), TH the
translation of vector (�/2, 0) (horizontal translation), TV the translation of vec-
tor (0, �/2) (vertical translation), and TD the translation of vector (�/2, �/2)
(diagonal translation). We have the following simple lemma.

Lemma 4.1. Let C be any cycle of weight at most �. There exists a translation
T in {TI , TH , TV , TD} such that the translate of C, T (C), resides in a single tile
of T .

Proof. (Sketch) If C resides within a single tile of T then clearly translation TI

serves the purpose. If C resides within exactly two horizontal (resp. vertical)
tiles of T , then these two tiles must be adjacent, and it is easy to verify using
Fact 4.1 that translation TH (resp. TV) serves the purpose. Finally, if C resides
within more than two tiles of T , then again, using Fact 4.1, it can be easily
verified that translation TD serves the purpose. �

Even though a cycle of weight � may not reside within a single tile of T ,
Lemma 4.1 shows that by affecting some translation T in {TI , TH , TV , TD}, the
translate of C under T will reside in a single tile. For each translation T in
{TI , TH , TV , TD}, the points in G whose translates under T reside in a single
tile will form a separate cluster. Then, these points will coordinate the detec-
tion and removal of the low-weight cycles residing in the cluster by applying a
centralized algorithm to the cluster. Since the clusters do not overlap, and since
each cluster works as a centralized unit, this maintains the stretch factor under
control, while ensuring the removal of every low weight cycle. The centralized
algorithm that we apply to each cluster is the standard greedy algorithm that
has been extensively used (see for example [1]) to compute lightweight spanners.
Given a graph H and a parameter α > 1, this greedy algorithm sorts the edges
in H in a non-decreasing order of their weight, and starts adding these edges
to an empty graph in the sorted order. The algorithm adds an edge AB to the
growing graph if and only if no path between A and B whose weight is at most
α ·wt(AB) exists in the growing graph. We will call this algorithm Centralized
Greedy. The following properties about this greedy algorithm are known:

Fact 4.2. Let H be a subgraph of the Euclidean graph E, and let α > 1 be a
constant. Let H ′ be the subgraph of H constructed by the algorithm Centralized
Greedy when applied to H with parameter α. Then:

(i) H ′ is a spanner of H with stretch factor α.
(ii) H ′ contains a MST of H.
(iii) For any cycle C in H ′ and any edge e on C, wt(C) > (1 + α) · wt(e).

1 By the orthogonal projection of C on a given line we mean the set of points that are
the orthogonal projections of the points in C on the given line. Note that, by the
continuity of the curve C, this set of points is a straight line segment.

374 I.A. Kanj, L. Perković, and G. Xia

Lemma 4.2. Let t0 be a tile in T , and let Ut0 be the subgraph of U induced by
all the points of U residing in tile t0. If A and B are two points in the same
connected component of Ut0 , then A and B are (�(8/π) · (�+1)2�)-hop neighbors
in U (i.e., A and B are at most �(8/π) · (� + 1)2� hops away from one another
in U).

Proof. Let Pmin = (A = p0, p1, . . . , px = B) be a path between A and B in t0 of
minimum length. Let Di, for i = 0, . . . , x, be the disk centered at pi and of radius
1/2, and observe that all the disks Di are contained within a bounding square-
box B of dimensions (� + 1)× (� + 1), whose center coincides with the center of
t0. Observe also that the disks Di, for even i, are mutually disjoint; that is, the
points pi, for even i, form an independent set in U (otherwise, Pmin would not
be a minimal-length path between A and B). Therefore, the area of the region
R, denoted a, determined by the union of the disks Di, for even i, is the sum
of the areas determined by these individual disks. The value of a is precisely
(π/4) · �x/2�. Since the region R is contained in the bounding box B of area
(�+1)×(�+1), we have a ≤ (�+1)2. Consequently, (π/4)·�x/2� ≤ (�+1)2. Solving
for the integer x in the previous equation we obtain x ≤ �(8/π) · (� + 1)2�. This
shows that the length of the path Pmin, which is x, is bounded by �(8/π)·(�+1)2�,
and the proof is complete. �

We now present the local distributed algorithm formally and prove that it con-
structs the desired lightweight spanner. The input to the algorithm is the spanner
G′ of U constructed in [9], and a constant λ > 2. We set � = λ in the above tiling
T . We assume that each point in U has computed its (�(8/π) · (λ + 1)2�)-hop
neighbors in U by applying the k-local k-neighborhood algorithm described in
Section 2, where k = �(8/π) · (λ + 1)2�. By Lemma 4.2, this ensures that every
point knows all the points in its connected component residing with it in the
same tile under any translation.2 After that, for every round j ∈ {I, H, V, D},
each point p ∈ U executes the following algorithm Local-LightSpanner:

(i) p applies translation Tj to compute its virtual coordinates under Tj ; Sup-
pose that the translate of p under Tj, Tj(p), resides in tile t0 ∈ T ;

(ii) p determines the set Sj(p) of all the points in the resulting subgraph of G′

(prior to round j) whose translates under Tj reside in the same connected
component as Tj(p) in tile t0;

(iii) p applies the algorithm Centralized Greedy to the subgraph Hj(p) of
the resulting graph of G′ induced by Sj(p) with parameter α = λ − 1; if p
decides to remove an edge (p, q) from Hj(p) then p removes (p, q) from its
adjacency list in G′;

Note that since all the points whose translate reside in a single tile apply the
same algorithm to the same subgraph during any round j, if a point p decides
to remove an edge (p, q), then point q must reach the same decision of removing
edge (p, q).
2 Note that the subgraph of G′ induced by the set of points in a single tile may not

be connected.

Computing Lightweight Spanners Locally 375

Let G be the subgraph of G′ consisting of the set of remaining edges in G′

after each point p ∈ G′ applies the algorithm Local-LightSpanner.

Theorem 4.1. The subgraph G of G′ is a spanner of U containing a EMST
of V (U), with stretch factor ρ · (λ − 1)4, and satisfying wt(G′) ≤ (1 + 2

λ−2) ·
wt(EMST), where ρ is the stretch factor of G′.

Proof. We first show that G is of light weight. To do so, we need to show that G
satisfies the conditions of part (i) in Theorem 2.1. We show first that G contains
a EMST of V (U).

Since G′ contains a EMST of V (U), it suffices to show that after each round of
the algorithm Local-LightSpanner, the resulting graph still contains a EMST
of V (U). Fix a round j ∈ {I, H, V, D}, and let G′+ be the graph resulting from
G′ just before the execution of round j, and G′− that resulting from G′ after
the execution of round j. Assume inductively that G′+ contains a EMST of
V (U). Note that any edge removed from G′+ in round j must have its translate
contained within a single tile in T . Let t0 be a tile in T . In round j, each point
p whose translate Tj(p) is in t0, applies the algorithm Centralized Greedy
to the subgraph of G′+, Hj(p), induced by the set of vertices Sj(p) defined in
the algorithm Local-LightSpanner. By part (ii) of Fact 4.2, this algorithm
computes a spanner for Hj(p) containing a“local” EMST τ0 of Hj(p). It is easy
to see that an edge e in a EMST of G′+ whose translate Tj(e) is in Hj(p), its
translate Tj(e) is either an edge of τ0, or is contained in a cycle whose edges
other than e have the same weight as e and are in τ0. Otherwise, by adding
Tj(e) to τ0, we create a cycle on which Tj(e) is the edge of maximum weight
(if not, Tj(e) could replace an edge of τ0 of larger weight than e, contradicting
the minimality of τ0), and this means that Tj(e) would be the edge of maximum
weight on some cycle of G′; since a translation is an isometric transformation—
and hence preserves length, this contradicts the fact that e is an edge in a EMST
of G′+. Therefore, if an edge in a EMST of G′+ is removed during round j, then
G′− will still contain a path between the endpoints of e all of whose edges have
the same weight as e. Consequently, G′− will still contain a EMST of V (U). It
follows that G contains a EMST of V (U).

Now we show that for every cycle C in G, and for every edge e on C, we have
wt(C) ≥ λ · wt(C). Suppose not, and let cycle C and edge e ∈ C be a counter
example. Since every edge in U has weight at most 1, and wt(C) < λ · wt(e), it
follows that wt(C) < λ, and by Lemma 4.1, there exists a round j in which the
translate of C resides in a single tile t0 of T . By part (iii) of Fact 4.2, after the
application of the algorithm Centralized Greedy to the connected component
κ containing the translate of C in tile t0 in round j, no cycle of weight smaller or
equals to (1+α) ·wt(e) = (1+λ−1) ·wt(e) = λ ·wt(e) in the inverse translation
of κ remains; in particular, the cycle C will no longer be present in the resulting
graph. This is a contradiction. It follows that G satisfies the conditions of part
(i) in Theorem 2.1, and wt(G) ≤ (1 + 2

λ−2) · wt(EMST).
Finally, it remains to show that the stretch factor of G, with respect to U ,

is at most ρ · (λ − 1)4. Since G′ has stretch factor ρ, it suffices to show that
after each round of the algorithm Local-LightSpanner, the stretch factor of

376 I.A. Kanj, L. Perković, and G. Xia

the resulting graph increases from the previous round by a multiplicative factor
of at most (λ − 1). Fix a round j ∈ {I, H, V, D}, and let G′+ and G′− be as
above. Suppose that an edge e is removed by the algorithm in round j. Then
the translate of e in round j must reside in a single tile t0 of T . Since by part (i)
of Fact 4.2 the algorithm Centralized Greedy has stretch factor α = λ − 1,
and since a translation is an isometric transformation, a path of weight at most
(λ− 1) ·wt(e) remains between the endpoints of e in G′−. Therefore, the stretch
factor of G′− with respect to G′+ increases by a multiplicative factor of at most
(λ − 1) during round j. This completes the proof. �

We conclude with the following theorem:

Theorem 4.2. Let U be a connected unit disk graph, Δ ≥ 14 be an integer con-
stant, and λ > 2 be a constant. Then there exists a k-local distributed algorithm
with k = �(8/π) · (λ + 1)2�, that computes a plane spanner of U containing a
EMST of V (U), of degree at most Δ, weight at most (1+ 2

λ−2) ·wt(EMST), and
stretch factor (λ − 1)4 · (1 + 2π(Δ cos π

Δ)−1) · Cdel, where Cdel ≈ 2.42.

5 Conclusion

We have developed in this paper a robust, scalable, and efficient algorithm
for a fundamental communication problem—constructing efficient topologies
for broadcasting and unicasting—in systems modeled as unit disk graphs. The
bounds on the parameters of the algorithm and the constructed topology are
small, and suggest that the algorithm and the topology are practical, as the
following discussion shows.

In table 1, we compare the centralized Euclidean graph lightweight spanner
algorithms LL92 by Levcopoulos and Lingas [13], ADDJS93 by Althöfer et al. [1],
and BGS05 by Bose, Gudmundsson, and Smid [2] with our centralized algorithm
KPX08 and our local distributed algorithm KPXLoc08, both developed to com-
pute lightweight spanners of the more general unit disk graphs. The table gives
the bounds on the stretch factor, the weight factor (the constant c∗ such that
the weight of the spanner is at most c∗ · wt(EMST)), the maximum degree and
the running time. Note that the first two algorithms (LL92 and ADDJS93) do
not guarantee an upper bound on the degree of the spanner. Our algorithms

Table 1. A comparison of lightweight spanner algorithms given the constant λ > 2
and the maximum degree bound Δ; the following notations are used: ρ∗ = (λ−1) ·Cdel,
c∗ = (1 + 2

λ−2
), and a∗ = 1 + 2π(Δ cos π

Δ
)−1

Algorithm LL92 [13] ADDJS93 [1] BGS05 [2] KPX08 KPXLoc08

Stretch factor ρ∗ ρ∗ 10.02 a∗ · ρ∗ a∗ · (λ − 1)3 · ρ∗

Weight factor c∗ c∗ O(1) c∗ c∗

Max. degree ∞ ∞ 27 Δ Δ

Running time O(n log n) O(n2 log n) O(n log n) O(n log n) N/A

Computing Lightweight Spanners Locally 377

Table 2. Comparison between algorithm BGS05 [2] and our algorithms KPX08 and
KPXLoc08 for different values of Δ

Δ = 14 27

BGS05 N/A ρ∗ = 10.02, c∗ = O(1)

KPX08 ρ∗, c∗ = 5.22 ρ∗, c∗ = 4.63

KPXLoc08 ρ∗, c∗ = 8.81 ρ∗, c∗ = 8.08

match their bounds on the weight factor to provide a maximum degree bound at
a small multiplicative cost in the stretch factor (a∗ for our centralized algorithm
and (λ − 1)3 · a∗ for our local distributed algorithm). For example, for a degree
bound of 14, our upper bound on the stretch factor increases (with respect to [13]
and [1]) by a multiplicative constant of 1.47 for the centralized algorithm, and of
2.92 (corresponding to λ = 2.256) for the local distributed algorithm. For larger
values of Δ, the multiplicative factors are even smaller.

In table 2 we use some concrete values for Δ and λ in order to compare our
algorithms with the algorithm BGS05 by Bose, Gudmundsson, and Smid [2].
Their algorithm only guarantees a maximum degree bound of 27. The listed
bounds for stretch factor ρ∗ and weight factor c∗ for Δ = 27 are obtained by
setting λ = 2.551 in KPX08 and λ = 2.282 in KPXLoc08. The bounds for stretch
factor ρ∗ and weight factor c∗ when Δ = 14 are obtained by setting λ = 2.475
in KPX08 and λ = 2.256 in KPXLoc08.

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. Algorithmica 42(3-4), 249–264 (2005)

3. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery
in ad hoc wireless networks. wireless networks 7(6), 609–616 (2001)

4. Damian, M., Pandit, S., Pemmaraju, S.: Local approximation schemes for topology
control. In: Proceedings of PODC, pp. 208–217 (2006)

5. Das, G., Heffernan, P., Narasimhan, G.: Optimally sparse spanners in 3-
dimensional euclidean space. In: Proceedings of SoCG, pp. 53–62 (1993)

6. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean span-
ners. In: Proceedings of SoCG, pp. 132–139 (1994)

7. Das, G., Narasimhan, G., Salowe, J.: A new way to weigh malnourished euclidean
graphs. In: Proceedings of SODA, pp. 215–222 (1995)

8. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithms for
constructing sparse geometric spanners. SIAM J. Comput. 31(5), 1479–1500 (2002)

9. Kanj, I., Perković, L.: On geometric spanners of euclidean and unit disk graphs.
In: Proceedings of STACS (2008)

10. Kanj, I., Perkovic, L., Xia, G.: Computing lightweight spanning subgraphs locally.
Technical report # 08-002,
http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx

http://www.cdm.depaul.edu/research/Pages/TechnicalReports.aspx

378 I.A. Kanj, L. Perković, and G. Xia

11. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proceeding of CCCG, vol. 11, pp. 51–54 (2005)

12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proceedings of PODC, pp. 300–309 (2004)

13. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the com-
plete graphs and almost as cheap as minimum spanning trees. Algorithmica 8(3),
251–256 (1992)

14. Li, X.-Y., Calinescu, G., Wan, P.-J., Wang, Y.: Localized delaunay triangulation
with application in ad hoc wireless networks. IEEE Trans. on Parallel and Dis-
tributed Systems. 14(10), 1035–1047 (2003)

15. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

16. Peleg, D.: Distributed computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematis and Applications (2000)

17. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. MONET 11(2), 161–175 (2006)

18. Wattenhofer, R.: Sensor networks: distributed algorithms reloaded - or revolutions?
In: Proceedings of SIROCCO, pp. 24–28 (2006)

	Computing Lightweight Spanners Locally
	Introduction
	Preliminaries
	The Centralized Algorithm
	The Local Distributed Algorithm
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

