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Abstract. One of the most frequently studied problems in the context
of information dissemination in communication networks is the broad-
casting problem. In this paper we consider radio broadcasting in random
geometric graphs, in which n nodes are placed uniformly at random in
[0,

√
n]2, and there is a (directed) edge from a node u to a node v in the

corresponding graph iff the distance between u and v is smaller than the
transmission radius assigned to u. Throughout this paper we consider
the distributed case, i.e., each node is only aware (apart from n) of its
own coordinates and its own transmission radius, and we assume that
the transmission radii of the nodes vary according to a power law dis-
tribution. First, we consider the model in which any node is assigned a
transmission radius r > rmin according to a probability density function
ρ(r) ∼ r−α (more precisely, ρ(r) = (α − 1)rα−1

min r−α), where α ∈ (1, 3)
and rmin > δ

√
log n with δ being a large constant. For this case, we de-

velop a simple radio broadcasting algorithm which has the running time
O(log log n), with high probability, and show that this result is asymp-
totically optimal. Then, we consider the model in which any node is
assigned a transmission radius r > c according to the probability density
function ρ(r) = (α − 1)cα−1r−α, where α is drawn from the same range
as before and c is a constant. Since this graph is usually not strongly
connected, we assume that the message which has to be spread to all
nodes of the graph is placed initially in one of the nodes of the giant
component. We show that there exists a fully distributed randomized al-
gorithm which disseminates the message in O(D(log log n)2) steps, with
high probability, where D denotes the diameter of the giant component
of the graph.

Our results imply that by setting the transmission radii of the nodes
according to a power law distribution, one can design energy efficient ra-
dio networks with low average transmission radius, in which broadcasting
can be performed exponentially faster than in the (extensively studied)
case where all nodes have the same transmission power.
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1 Introduction

In view of recent technological developments in wireless/mobile communication
the abstract model of packet radio networks became very popular and received
a lot of attention in the algorithms community [2,5,9,12]. Most of the work
on time efficient radio broadcasting done so far is devoted to radio networks
with an arbitrary (in fact the worst case) topology. Our main intention is to
derive efficient distributed algorithms for radio broadcasting in random geometric
graphs, which are often used to model wireless communication networks.

1.1 Models and Motivation

A radio network is modeled by a directed graph G = (V, E), where V represents
the set of nodes of the network, and E contains ordered pairs of distinct nodes
such that (v, w) ∈ V × V iff node v can directly send a message to node w. The
total number of neighbors connected to a node by (in-)coming edges forms its
(in-)degree. The size of the network is the number of nodes n = |V |. The set of
nodes directly reachable from a node v ∈ V is the range of v.

One of the radio network properties is that a message transmitted by a node
is always sent to all nodes within its range. The communication in the network is
synchronous and it consists of a sequence of (communication) steps. During one
step, each node v either transmits or listens. If v transmits, then the transmitted
message reaches each of its neighbors by the end of this step. However, a node w
in the range of v successfully receives this message iff in this step w is listening
and v is the only transmitting node which has w in its range. If node w is
in the range of a transmitting node but is not listening, or is in the range of
more than one transmitting node, then a collision (conflict) occurs and w does
not retrieve any message in this step. In fact coping with collisions is one of
the main challenges in efficient radio communication. A commonly used tool to
handle this problem in radio networks with unknown topology is the concept of
selected families of transmission sets [5,7,9,19].

The running time of an algorithm is the number of communication steps
required to complete the considered communication task. Thus, any internal
computation within individual nodes is neglected. In this paper we are mainly
interested in the running time of distributed broadcasting algorithms using ra-
dio communication protocol. In the broadcasting problem it is assumed that a
message is placed in one of the nodes of a radio network, and the goal is to
spread this message to all nodes of the network using radio communication. In
this paper we assume that each node knows its own position ((x, y) coordinates),
its transmission radius, and the number of nodes in the network. However, the
location of the other nodes or their transmission radii are not known.

It is of our particular interest to analyze radio communication in ad hoc sen-
sor networks. Ad hoc sensor networks are often modeled by the so called G(n, r)
random geometric graph model (e.g. [18,26,28]), i.e., n vertices with radius r are



214 R. Elsässer, L. G ↪asieniec, and T. Sauerwald

placed within [0,
√

n]2 uniformly at random1, and two nodes are connected by
an edge in the resulting graph iff their Euclidean distance is smaller than r. This
simple model of radio network is applicable to wireless networks where similar
stations are randomly distributed in a flat region without large obstacles. In such
a terrain, the signal of a transmitter reaches receivers at the same distance in all
directions.

In this paper we consider radio broadcasting in two different types of random
geometric networks. Due to simplicity reasons, we assume that n points are dis-
tributed uniformly at random within [0,

√
n]2, however, the radii of the nodes

may vary according to a power law distribution, i.e., a node is assigned a trans-
mission radius larger than some value r with probability proportional to r1−α,
where α ∈ (1, 3) is a fixed constant. Similar graph models are known to have
improved fault tolerance [22] and (as we show in this paper) these networks al-
low very fast broadcasting, in fact exponentially faster than G(n, r) graphs with
polylogarithmic transmission radii, while maintaining almost the same average
energy consumption parameters as the corresponding G(n, r) model. We should
note that the graphs considered in this paper are not necessarily undirected,
since a node u with large radius may contain some node v with smaller radius
in its range, and thus u might fall outside the range of v. A precise definition of
the graph models considered in this paper can be found in Section 1.3.

1.2 Related Work

The broadcasting problem has attracted a great deal of attention in the context
of radio networks with an arbitrary topology. For networks with linearly bounded
labels, in which the nodes do not possess any global knowledge about the topol-
ogy of the network, the trivial O(n2) upper bound on deterministic broadcasting
was first improved by Chlebus et al. [6] to O(n11/6). The subsequent improve-
ments included an Õ(n5/3) time algorithm proposed by De Marco and Pelc [12],
an O(n3/2) time algorithm proposed by Chlebus et al. [5], and an O(n log2 n)
time algorithm developed by Chrobak et al. [7]. Clementi et al. [9] presented
a deterministic broadcasting algorithm for ad-hoc radio networks which works
in time Õ(DΔ), where D is the diameter of the network (the number of edges
on the longest shortest path) and Δ is the maximum in-degree of a node. The
O(n log2 n) and Õ(DΔ) algorithms, presented in [7] and [9], respectively, can eas-
ily be adapted for polynomially bounded node labels. Brusci and Del Pinto [2]
showed that for any deterministic broadcasting algorithm A in ad-hoc radio net-
works, there are networks on which A requires Ω(n log n) time. Later, Czumaj
and Rytter proposed a randomized algorithm which achieves with high proba-
bility linear broadcasting time on arbitrary networks [10]. Under the assumption
that the network diameter is known, they presented a broadcasting algorithm
which has a running time of O(D log(n/D) + log2 n). Independently, Kowalski
and Pelc introduced a similar algorithm with the same running time [24].

1 In the general model the vertices are placed in [0, 1]d for some d > 0, however, in
this paper we only consider placement of n points on the plane [0,

√
n]2.
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In the model where the network topology is known to all nodes in advance
Gaber and Mansour [17] proposed a centralized broadcasting procedure complet-
ing the task in time O(D + log5 n). Elkin and Kortsarz improved this bound to
D+O(log4 n) in general graphs and to D+O(log3 n) in planar graphs [14]. G ↪asie-
niec et al. proposed an alternative solution with times D + O(log3 n) and O(D)
respectively [20]. Very recently, the constructive upper bounds w.r.t. broad-
casting in general graphs have been improved to D + O(log3 n/ log log n) and
O(D + log2 n) in [8] and [25], respectively. Note that computing an optimal
(radio) broadcast schedule for an arbitrary network is NP-hard [4,31].

In [15] the authors considered radio broadcasting in the traditional Erdős-
Rényi random graph model. In this model, given a set of n nodes a graph Gn,p is
constructed by letting any two pair of vertices be connected with probability p,
independently. They presented centralized as well as fully distributed procedures
for the broadcasting problem in such graphs, and showed that these algorithms
are asymptotically optimal. In [1] Berenbrink et al. considered efficient radio
broadcasting algorithms w.r.t. running time and energy consumption in these
types of random graphs.

In [13] Dessmark and Pelc analyzed radio broadcasting in geometric networks.
They showed that if each node knows its neighbors, then broadcasting can be
performed in O(D) steps. If each node knows only its own position, then broad-
casting can be performed in O(n) steps, and, if the nodes are not able to detect
collisions, this result cannot be improved.

In [16] Emek et al. considered the broadcasting problem in geometric graphs
in which each node has the same transmission radius (UDG model). They deter-
mined the broadcasting time depending on the diameter D and the granularity
g, which is the inverse of the minimum distance between any two nodes. First,
it was shown that if the nodes other than the source are initially idle and can-
not transmit until they hear a message for the first time, then broadcasting can
be accomplished in time O(Dg). For the case, in which all nodes may transmit
messages from the beginning, an optimal broadcasting algorithm with running
time O(min{D + g2, D log g}) was presented.

Radio communication in the G(n, r) model has been analyzed by Lotker and
Navarra in [27]. In order to cope with radio broadcasting or gossiping on the
G(n, r) graph, these problems have first been solved on the grid. Then, Lotker
and Navarra emulated the corresponding grid protocol on the G(n, r) model, and
obtained asymptotically optimal algorithms for the broadcasting and gossiping
problem. That is, if r = Ω(

√
log n), then the time needed to spread a message is

O(D), with high probability, where D = Θ(
√

n/r) is the diameter of the graph,
with probability 1 − o(1).

Recently, Czumaj and Wang considered radio gossiping under different locality
assumptions in the G(n, r) graph and generalized the results mentioned before
[11]. However, these algorithms cannot be extended to random geometric graphs
in which the distribution of the transmission radii varies according to some (e.g.
power law) distribution.
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1.3 Our Results

In this paper, we consider distributed radio broadcasting algorithms in random
geometric graphs in which the transmitting radii of the nodes vary according to a
power law distribution. More precisely, we consider the following graph models:

1. Let n vertices be placed uniformly at random within [0,
√

n]2. In this case,
a node is assigned transmission radius r > rmin according to the probability
density function ρ(r) = (α−1)rα−1

min r−α, independently, where α ∈ (1, 3) is a
constant and rmin > δ

√
log n with δ being a (large) constant. In the resulting

graph G≥rmin a node v is in the range of a node u if the Euclidean distance
between u and v is smaller than the radius of u. The choice of δ implies that
the graph is strongly connected with very high probability2 (e.g. [29]).

2. Let n vertices be placed uniformly at random within [0,
√

n]2. Here, a node
is assigned radius r > c according to the probability density function ρ(r) =
(α−1)cα−1r−α, independently, where c is some (large) constant. The ranges
of the nodes in the resulting graph G≥c are defined by the same rules as in
the previous model.

Throughout this paper we assume full synchronization, i.e., all nodes share a
global clock. In the first model, the graph is (strongly) connected w.v.h.p. [29].
In the second model, the graph has a strongly connected giant component con-
taining Θ(n) vertices, w.v.h.p. [30]. We develop for the graph model G≥rmin an ef-
ficient randomized broadcasting algorithm3 which is able to distribute a message,
placed initially in one of the nodes of the graph, to all nodes within O(log log n)
steps. Concerning the G≥c model, we show that any message placed initially
in one of the nodes of the giant component of the graph can be distributed to
all nodes within O(D(G≥c)(log log n)2) steps, w.v.h.p., where D(G≥c) denotes
the diameter of the giant component of the graph. Notice that the nodes of the
giant component can reach any node in the graph within O(D) steps, w.v.h.p.
(cf. Section 3).

A main implication of our results is that by setting the transmission radii in
a set of nodes placed uniformly at random in the plane according to a power law
distribution, we obtain a radio network which supports very fast broadcasting
by keeping the energy consumption almost as low as in a G(n, r) graph with
the same average transmission radius. More precisely, in a graph G(n, r) with
r = logc′ n, where c′ > 1/2, a message is broadcasted to all nodes of the graph
within Θ̃(

√
n) steps, w.h.p., where Θ̃ is the Θ-function omitting polylogarithmic

terms [13]. The total energy consumption needed for transmission during the
broadcasting process is Θ̃(n). In the G≥rmin graph with rmin = logc′ n, where
c′ > 1/2, a message can be broadcasted within Θ(log log n) steps, w.h.p., while
the total energy consumption and the average transmission radius remain almost
the same as in the corresponding G(n, r) graph.
2 When we write “with very high probability” or “w.v.h.p.”, we mean with probability

1 − o(n−1).
3 The running time of this algorithm is guaranteed with high probability. “With high

probability” or “w.h.p.” means with probability 1 − o(1).



On Radio Broadcasting in Random Geometric Graphs 217

2 Broadcasting in G≥rmin

In this section, we consider the geometric random graph model G≥rmin = (V, E)
defined in the previous section. In this graph, a vertex u has an outgoing edge
to a vertex v in G≥rmin iff the corresponding Euclidean distance is smaller than
the radius assigned to u. We assume that rmin ≥ δ

√
log n, where δ is a large

constant. Then, G≥rmin is connected with very high probability [30]. In the
rest of the paper S((x, y), (x′, y′)) denotes the rectangle delimited by the points
(x, y), (x, y′), (x′, y), and (x′, y′), where 0 ≤ x ≤ x′ ≤ √

n and 0 ≤ y ≤ y′ ≤ √
n.

The distance between two nodes (x, y) and (x′, y′) means the Euclidean distance
between them and is denoted by dist((x, y), (x′, y′)). The number of hops from
a node u to a node v represents the length of a shortest path from u to v in the
resulting graph. The set of points in [0,

√
n]2 lying within the transmission radius

of at least one of the nodes of some subset S ⊆ V is called the area covered by
S. In the sequel (x0, y0) represents the node in which the message which has to
be spread to all nodes is placed at time 0.

In order to show that a message can efficiently be spread to all nodes of such
a graph, we first state the following proposition.

Proposition 1. In a graph G≥rmin (or G≥c) there are Ω(n/rα−1) nodes with
radius at least r, with probability 1 − o(n−2), for any r ≥ rmin (or r ≥ c).

Proof. We know that in this graph a node has been assigned radius r according
to the probability density function ρ(r) = (α − 1)rminr−α, independently of
all other nodes. This implies that a node has radius larger than some r with
probability

∫ ∞
r

(α − 1)rα−1
min x−αdx = rα−1

min r−(α−1). Hence, using the Chernoff
bounds [3,21] we conclude that there are less than εn/rα−1 nodes, which have
radius at least r, with probability at most

n∑

i=n−εn/rα−1

(n

i

)(

1 −
(rmin

r

)α−1
)i (rmin

r

)(α−1)(n−i)

≤
(

1 − (rmin/r)α−1

1 − ε/rα−1

)n(1−ε/rα−1) (
(rmin/r)α−1

ε/rα−1

)nε/rα−1

(1)

=
(

1 − rα−1
min − ε

rα−1 − ε

)n(1−ε/rα−1) (
rα−1
min

ε

)nε/rα−1

which equals o(n−2) whenever rmin = Ω(1) and ε is small enough. ��
Proposition 1 implies that in a graph G≥rmin there are Ω(1) nodes with radius
at least 2

√
n, with probability 1 − o(n−2). We should note that in the case of

G≥c we may replace Ω by Θ in the statement of Proposition 1.
Now we consider broadcasting in the G≥rmin graph. Here, we only consider the

case rmin < 2logε n, where ε may be any constant smaller than 1, and show that
for these graphs broadcasting can be performed in time O(D(G≥rmin)), w.h.p.,
where D(G≥rmin) denotes the diameter of the graph. The same results can also
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be shown for any G≥rmin with rmin = no(1), however, the case rmin > 2logε n

for any ε < 1 would require an elaborate case analysis which is omitted in this
extended abstract.

Now we concentrate on a lower bound on the diameter of G≥rmin .

Theorem 1. If rmin < 2logε n for some constant ε < 1, then the diameter of
G≥rmin is Ω(log log n), w.v.h.p.

The proof of this theorem is omitted due to space limitations. Intuitively, with
some constant probability a node v with radius rv can only reach nodes with
radius at most r

Θ(1)
v , and hence, there is a node with radius rmin which needs at

least Ω(log log n) hops to reach a node with radius Θ(
√

n), w.v.h.p.
Now we show that there exists an optimal distributed broadcasting algorithm

in G≥rmin . The idea behind the algorithm is that, with sufficient probability,
each node u has an edge to a node v with a somewhat larger radius. Among the
several such nodes v, one can be selected by having all such nodes v reply with
a probability inversely proportional to their expected number, after which the
chosen node can replace u and repeat the procedure. Then, after O(log log n)
steps, the broadcast message reaches a node with an edge to every other node.
A precise description of the algorithm is given in the next two paragraphs.

Let (x0, y0) denote the vertex which has the broadcast message at the be-
ginning and assume that its radius r0 is smaller than log3 n. In the first round
this node transmits the message, and its transmission range r0, together with a
control bit set to 1. The succeeding rounds consist of several steps. In the second
round the informed nodes which have their radii in the range [3r0, 6r0] transmit
in each odd step with probability 1/(rα−1

min r3−α
0 ) a control bit set to 0. If in some

odd step (x0, y0) receives the control bit, i.e., exactly one of the informed nodes
with the properties described above was transmitting, then (x0, y0) sends in the
next (even) step a control bit set to 1. In the next even step the node that sent
the control bit, received by (x0, y0) three steps before, transmits the message
and its transmission range r1, together with the control bit set to 1.

Generally, in some round i > 1 we consider two cases. If the radius ri−2

of the node (xi−2, yi−2) is smaller than log4/ε n, where ε < 6 − 2α is some
constant, then in each odd step of this round, the nodes which received the
message in the last step of round i − 1 from the node (xi−2, yi−2) and have
their radius in the range [3ri−2, 6ri−2] transmit with probability 1/(rα−1

min r3−α
i−2 )

a control bit set to 0. If ri−2 > log4/ε n, then the nodes which received the
message in the last step of round i− 1 from the node (xi−2, yi−2) and have their
radius in the range [r(4−ε)/(2(α−1))

i−2 , 2r
(4−ε)/(2(α−1))
i−2 ] transmit with probability

1/(rε/2
i−2r

α−1
min ) the control bit set to 0. In both cases if in some odd step the

node (xi−2, yi−2) receives the control bit, i.e., only one of the nodes in its range
with the properties described above has sent a message in the most recent step,
then (xi−2, yi−2) transmits in the next (even) step the control bit set to 1. In
the following even step, the single node which transmitted the control bit three
steps before transmists the message and its transmission range ri−1, together
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with the control bit set to 1. This transmitting node is denoted after this step
by (xi−1, yi−1), and round i + 1 begins.

Theorem 2. Let G≥rmin be the graph defined at the beginning of this section,
where rmin ≥ δ

√
log n. Furthermore, let a message be placed in one of the nodes of

G≥rmin . Then, the randomized distributed radio broadcasting algorithm described
above spreads the message to all nodes of G≥rmin in O(log log n) steps, w.h.p.

Proof. In order to show that the algorithm described above informs a node with
radius 2

√
n within O(log log n) rounds, w.h.p., we first prove that any node with

some radius r ∈ [δ
√

log n, log4/ε n] reaches Θ(rα−1
min r3−α) nodes which have their

radii in [3r, 6r], w.v.h.p. As in the proof of Proposition 1, we can show that a node
has its radius in the range [3r, 6r] with probability

∫ 6r

3r
(α−1)rminx

−αdx = (6α−1−
3α−1)/18α−1 · rminr−(α−1), independently. Applying now the Chernoff bounds
[3,21] we obtain that with probability 1−o(n−2) there are Θ(nrα−1

min r−(α−1)) nodes
which have their radii in the range [3r, 6r]. These nodes fall into the range of a
fixed node with radius r with probability πr2/n, independently. Hence, the Cher-
noff bounds imply that there are Θ(rα−1

min r3−α) nodes in the range of a fixed node
with radius r, w.v.h.p., whenever δ is large enough.

Next we show that any node with radius r ≥ log4/ε n reaches Θ(rε/2rα−1
min )

nodes which have their radii in [r(4−ε)/(2(α−1)), 2r(4−ε)/(2(α−1))], w.v.h.p. As be-
fore, we conclude that there are Θ(nrα−1

min r−(4−ε)/2) nodes which have their radii
in the range [r(4−ε)/(2(α−1)), 2r(4−ε)/(2(α−1))], w.v.h.p. Since any node falls into
the range of a fixed node with radius r with probability πr2/n (we ignore border
effects), independently, applying the Chernoff bounds we obtain that there are
Θ(rα−1

min rε/2) nodes in the range of a fixed node with radius r, w.v.h.p. Combin-
ing the results of the previous two paragraphs, we conclude that the diameter of
G≥rmin is O(log log n).

In order to conclude the proof, let Xi,j be a random variable which is 1 if in
the jth odd step of the ith round only one node transmits the control bit set to
0, and 0 otherwise. Furthermore, let Ai,j denote the event that E[Xi,j ] = Θ(1).
Then, due to the choice of the nodes, Pr[Xi,j |Ai,j ] = Θ(1) for any i, j. We denote
by Yl a random variable which is 1 if exactly one node transmits the control bit
set to 0 in the lth odd step (the odd steps are now counted over the whole
time period), and Al is the event that E[Xl] = Θ(1). We are looking now for
some T such that Pr[

∑T
l=1 Yl ≥ φ · D(G≥rmin)| ∪T

i=1 Al] = 1 − o(1/D(G≥rmin)),
where D(G≥rmin) is the diameter of G≥rmin and φ is some (large) constant. Since
Pr[Yl = 1|Al] = Ω(1), independently, we can use the Chernoff bounds [3,21],
and obtain that T = Θ(log log n). Since Al occurs with very high probability,
applying the Union bound over O(log log n) steps we obtain that a node with
radius at least 2

√
n gets the message within O(log log n) steps, w.h.p. Such a node

node transmits the message alone in a time step with constant probability. This
implies that within additional O(log log n) steps all nodes receive the message,
w.h.p., and the theorem follows. ��
Applying similar arguments as in the previous proof, one can show that if the al-
gorithm presented above is run for O(log n) steps, one can disseminate a message
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to all nodes of G≥rmin with very high probability (instead of probability 1−o(1)).
Using the so called echo procedure from [23], we can derandomize the algorithm
described in the proof of Theorem 2 (as well as the algorithm described in Theo-
rem 5), and obtain the same results as before. The result of Theorem 2 can also
be extended to random geometric graphs obtained from a homogeneous Pois-
son point process with some intensity which exceeds the connectivity threshold
value. Please refer to [30] for details.

3 Broadcasting in G≥c

In this section we consider the G≥c model defined in the introduction. Due to the
choice of c, this graph is not necessarily strongly connected, however, it contains
a strongly connected giant component of size Θ(n), w.v.h.p. [30]. Then, we can
state the following theorem.

Theorem 3. If q2 = 1/(3 − α), then the diameter of the giant component in
G≥c is O(log2q2 n), w.v.h.p.

Proof. In this proof we only show (due to simplicity reasons) that for any (slow-
growing) function f(n) ∈ [ω(1), O(log log n)] the diameter of the giant compo-
nent of G≥c is O(f(n) log2q2 n). To simplify the analysis, let the graph G≥c be
constructed in two steps. First, construct a graph G′

c by placing the nodes with
radius r ≤ f2/5(n) logq2 n in [0,

√
n]2, uniformly at random. In a second step,

place the remaining nodes and obtain the graph G≥c.
Let u be a node of G′

c, and let v be another node which is f(n) log2q2 n hops
away from u in G′

c (whenever such a node exists). Furthermore, let P (u, v) =
(u, u1, u2, . . . , uf(n) log2q2 n−1, v) denote a shortest path between u and v in G′

c.
We show in the following that the nodes u1, . . . , uf(n) log2q2 n−1 cover an area of
Ω(f(n) log2q2 n).

Assume for simplicity that
√

n is an integer, c is even, and c/2 divides
√

n.
Let C(i, j) denote the square S((ic/2, jc/2), ((i + 1)c/2, (j + 1)c/2)). Now we
show that any such square contains at most two nodes which lie on P (u, v). Let
us assume that there is some square C(i, j) which contains three nodes us1 , us2 ,
and us3 lying on P (u, v). Since the diameter of C(i, j) is

√
2c/2 < c every node

in this square reaches any other node within C(i, j). Then, us1 has us2 and us3

in its range, and P ′(u, v) = (u, . . . us1 , us3 , us3+1, . . . , v) is a valid path from u
to v. Since |P ′(u, v)| < |P (u, v)|, P (u, v) cannot be a shortest path from u to v,
which contradicts our assumption. Summarizing, the nodes of P (u, v) cover an
area of at least f(n) log2q2 nc2/8.

According to Proposition 1 there are Ω(n/(f2/5(n) logq2 n)α−1) with radius
larger than f2/5(n) logq2 n, with probability 1 − o(n−2). Given that there are
Ω(n/(f2/5(n) logq2 n)α−1) nodes with radius larger than f2/5(n) logq2 n in G≥c,
the area covered by P (u, v) contains no node having radius r > f2/5(n) logq2 n
with probability

(

1 − Ω(f(n) log2q2 n)
n

)Ω

„
n

(f2/5(n) logq2 n)α−1

«

≤ o(e−Ω( 5
√

f(n) log n)) ≤ o(n−3).



On Radio Broadcasting in Random Geometric Graphs 221

Therefore, there is some node with radius r > f2/5(n) logq2 n placed in the area
covered by P (u, v) with probability 1 − o(n−3). This implies that u reaches a
node which has radius larger than f2/5(n) logq2 n in O(f(n) log2q2 n) steps, with
probability 1− o(n−3). Applying now the Union bound over all nodes of G′

c, we
conclude that all nodes, which are connected to some other node via f(n) log2q2 n
hops, can reach a node with radius larger than f2/5(n) logq2 n in O(f(n) log2q2 n)
steps, with probability 1 − o(n−2). If for some node w isn’t any node w′ at
f(n) log2q2 n hops from w in G′

c, but w is in the giant component of G≥c, then w
must reach a node with radius r > f2/5(n) logq2 n in O(f(n) log2q2 n) hops. This
holds since w reaches every node in its strong component in G′

c within less than
O(f(n) log2q2 n) hops, and this component joins the giant component of G≥c via
a node of G≥c \ G′

c. According to the definition of G′
c, a node of G≥c \ G′

c has
radius larger than f2/5(n) logq2 n.

Now we show that in the range of any node which has radius r>f2/5(n) logq2 n
there is at least one node with radius larger than

f1/5(n) logq2 n · (r/(f1/5(n) logq2 n))1+(3−α)/(α−1),

with probability 1 − o(n−2). Given that there are Ω(n/rα−1) nodes which have
radii larger than r, there is no node with a radius larger than f1/5(n) logq2 n ·
(r/(f1/5(n) logq2 n))1+(3−α)/(α−1) in the range of a node having radius r with
probability

(

1 − πr2

n

)
Ω

0
BBBB@

n0
B@f1/5(n) logq2 n

 
r

f1/5(n) logq2 n

!1+ 3−α
α−1

1
CA

α−1

1
CCCCA

≤ e−ω(log n) = o(n−3).

We conclude by applying the Union bound over all nodes with radius larger than
f2/5(n) logq2 n. Iterating this procedure O(log n) times we obtain that one can
reach a node with radius 2

√
n within O(log n) additional hops.

Summarizing, any node of the giant component reaches within O(f(n) log2q2 n)
hops a node with radius 2

√
n, w.v.h.p., and the theorem follows. ��

We might ask whether the upper bound given in Theorem 3 is asymptotically
tight. A related open question was formulated in [30] about the second largest
component in G≥c, namely whether the second largest component of the tradi-
tional G(n, r) model with r = c is of size Θ(log2 n). Concerning the diameter of
the giant component in G≥c we can only prove a lower bound of Ω(log n).

Theorem 4. The diameter of the giant component of G≥c is Ω(log n), w.v.h.p.

The proof of this theorem uses similar techniques as Theorem 3. Due to lack of
space, we do not prove Theorem 4 here.

The results of Theorems 3 and 4 can be extended to further random geometric
graph models. Consider for example the graph G≥c, in which we enlarge the
radius of a node in any strongly connected component so that the graph becomes
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G≥c

t = 1 O(D(G≥c))
s = 1 1024(c log log n)2

v = (x′, y′)
s′ ← (s − 1) − ((s − 1) mod 256c2)

i′ − 1 ← s′
256c2

mod 2 log log n

i − 1 ← 1
2 log log n

· ( s′
256c2

− (i′ − 1))

j ← �(x′ mod (4ci′+1))/(ci′/4)�
j′ ← �(y′ mod (4ci′+1))/(ci′/4)�

r′(v) ∈ [ci′ , ci′+1] j = � s−1
16c

� mod 16c j′ = (s−1) mod 16c

v 1
ci

Fig. 1. Algorithm used in the proof of Theorem 5. Here r′(v) denotes the transmission
radius of node v.

strongly connected. Another model is the extension of the point Poisson process
on [0,

√
n]2 with intensity c, whereas the radii are distributed as in the G≥c

model. In all these models it is possible to broadcast any message, placed initially
in one of the nodes of the giant component, to all nodes of the graph within
O(log2/(3−α) n) steps, w.v.h.p.

Before we start with the analysis of radio broadcasting in G≥c we first give
a high level description of our broadcasting algorithm. The algorithm consists
of two main phases. In the first phase (cf. Figure 1) the goal is to let the mes-
sage generated at a source node reach a node with radius larger than c2 log log n,
w.v.h.p. In the second phase the message reaches a node with radius 2

√
n,

w.v.h.p. The second phase performs similarly to the algorithm presented for
G≥rmin , and thus, we omit the analysis of this phase in the paper. For the first
phase, we show that the message traverses a shortest path from the source of the
message to a node with radius larger than c2 log log n, w.v.h.p. In order to ensure
that each node on this path transmits the message to the next node on the path,
the algorithm consists of O(D(G≥c)) phases, and each phase is executed over
O((log log n)2 time steps. During these time steps, each informed node of radius
r, where r ∈ [c, c2 log log n], transmits at least once with some probability in the
range [r3−α/c, cr3−α]. By ensuring that interferences can only occur if several
nodes lying in the same square Ii′,j,j′ (see Figure 2) transmit at the same time,
one can show that the message will traverse the shortest path mentioned above
within O(D(G≥c)) phases, w.v.h.p.

Formaly, the distributed algorithm that guarantees the running time given
in the theorem below consists of O(D(G≥c)) initial rounds. In each round we
have 1024(c log log n)2 steps. In step 256c2(2(i − 1) log log n + (i′ − 1)) + 16cj +
j′ + 1 with 1 ≤ i, i′ ≤ 2 log log n and 0 ≤ j, j′ ≤ 16c − 1 any informed node
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I0,0
2

I16c−1,16c−1
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0,0
1
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j′
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2

i′

I
0,1
1

Fig. 2. The nodes with radius in the range [ci′ , ci′+1] placed in the squares denoted by

Ij,j′
i′ transmit in step 256c2(2(i− 1) log log n + (i′ − 1)) + 16cj + j′ + 1 with probability

1/ci. The two planes consisting of the squares I∗,∗
1 and I∗,∗

2 , respectively, are both
embedded into [0,

√
n]2 and contain the same set of points. Here, we have drawn two

parallel planes for a better visualization.

(x′, y′) with radius r′ ∈ [ci′ , ci′+1] and j = 
(x′ mod (4ci′+1))/(ci′/4)�, j′ =

(y′ mod (4ci′+1))/(ci′/4)� transmits with probability 1/ci (cf. Figure 1). For a
pseudo code of these O(D(G≥c)) initial rounds see Figure 1.

After these O(D(G≥c)) initial rounds we reach a node with a radius in the
range [c2 log log n, 2c2 log log n], and then we apply a similar procedure as in The-
orem 2. We only consider the first phase, which requires O(D(G≥c)(log log n)2)
steps. The second phase requires only O(log n) steps.

Now we state the main theorem of this section.

Theorem 5. Let G≥c be the graph defined at the beginning of this section, where
c is a large constant. Furthermore, let a message be placed in one of the nodes of
the giant component of G≥c. Then, the randomized distributed radio broadcasting
algorithm described above spreads the message to all nodes of G≥c (even to nodes
outside of the giant component) in O(D(G≥c)(log log n)2) steps, w.v.h.p., where
D(G≥c) denotes the diameter of the giant component of G≥c.

Proof. We show that within O(D(G≥c)(log log n)2) steps any (x, y) receives the
message, w.v.h.p. Obviously, two nodes (x1, y1) and (x2, y2) with radii r1, r2 ∈
[ci′ , ci′+1], where i′ ≤ 2 log log n, cannot produce an interference at any node
whenever 
(x1 mod (4ci′+1))/(ci′/4)� �= 
(x2 mod (4ci′+1))/(ci′/4)� or 
(y1

mod (4ci′+1))/(ci′/4)��=
(y2 mod (4ci′+1))/(ci′/4)�. Let now P=(v0, v1, . . . , vk)
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be a shortest path from (x0, y0) = v0 to (x, y) = vk. We know that an informed
node transmits at most 2 log log n times in a round, each time with a different
probability. Let tq,i,l denote the time step in the lth round, in which vq transmits
with probability 1/ci. Furthermore, denote by Xq,i,l a random variable which is
1 if the message reaches vq+1 in step tq,i,l and 0 otherwise. Now, vq can produce
an interference with at most O(c(3−α)i′ + log n) other nodes, with probability
1− o(n−2), where the radius rq of vq is in the range [ci′ , ci′+1]. Thus, there is at
least one i such that Pr[Xq,i,l = 1 | vq is informed before round l] = Ω(1). Let
Yl = Xq,i,l, with q = maxq′{vq′ is informed before round l}, and let i be chosen
such that Pr[Xq,i,l = 1] = Ω(1). Then, Pr[Yl = 1] = Ω(1), independently. As in
the proof of Theorem 2 we can show that there is some T = O(|P |+ log n) such
that Pr[

∑T
l=1 Yl ≥ |P |] = 1−o(n−2). Since each round consists of O((log log n)2)

steps, (x, y) becomes informed within O((|P | + log n)(log log n)2) steps, with
probability 1 − o(n−2). Applying now the Union bound over all nodes of the
graph, we obtain that within O(D(G≥c)(log log n)2) steps a node with radius in
the range [c2 log log n, 2c2 log log n] receives the message. If now c is large enough,
using the same arguments as in the proof of Theorem 2 we conclude that within
additional O(log n) steps the message reaches any node of the graph, w.v.h.p.

��
As in the case of Theorem 2, the result of Theorem 5 can also be extended to
random geometric graphs obtained from a homogeneous Poisson process with a
corresponding intensity.

We know that a message, placed on one of the nodes of a G(n, r) graph, can be
spread to all other nodes within Θ̃(

√
n) steps [13,30], v.w.h.p., where r = logc′ n

with c′ ≥ 1/2 and Θ̃ is the Θ-fuction omitting polylogarithmic terms. The total
energy consumption needed for transmission during the broadcasting process in
the network is bounded by Θ̃(n). However, if we consider our results for α being a
constant in the range (2, 3), then we may perform broadcasting in time Θ̃(log n),
and the total energy consumption needed for transmissions is still bounded by
Θ̃(n). Moreover, the average transmission radius is asymptotically the same as
in the corresponding G(n, r) graph. Thus, our results imply that if we are given
n radio transmitters, and we are allowed to set the transmission radius of each of
these devices before they are placed uniformly at random in [0,

√
n]2, then we are

able to design a radio network, which supports broadcasting in (poly)logarithmic
time and keeps the energy consumption in the network very low. Furthermore,
our results can also be extended to the case when the transmission radii of the
nodes vary in time, independently, according to a power law distribution with
some exponent α ∈ (1, 3).

4 Conclusion

As described in the introduction, our main intention was to derive efficient algo-
rithms for radio broadcasting in wireless networks which are modeled by random
geometric graphs containing nodes with different transmission radii. The results
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presented here can only be viewed as a first step in this direction, and there are
still several interesting open problems in this field which are worth to be ana-
lyzed. In the case of the G≥c model for example there is still a gap of logΘ(1) n
between the upper and lower bound w.r.t. the diameter of the giant component
of the graph, and it would be of great interest to close this gap. Another open
problem is whether it is possible to broadcast a piece of information in Gc within
O(D(G≥c)) steps.
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