
Optimistic Erasure-Coded Distributed Storage�

Partha Dutta1, Rachid Guerraoui2, and Ron R. Levy2

1 IBM India Research Lab, Bangalore, India
2 EPFL IC, Lausanne, Switzerland

Abstract. We study erasure-coded atomic register implementations in
an asynchronous crash-recovery model. Erasure coding provides a cheap
and space-efficient way to tolerate failures in a distributed system. This pa-
per presents ORCAS, Optimistic eRasure-Coded Atomic Storage, which
consists of two separate implementations, ORCAS-A and ORCAS-B. In
terms of storage space used, ORCAS-A is more efficient in systems where
we expect large number of concurrent writes, whereas, ORCAS-B is more
suitable if not many writes are invoked concurrently. Compared to replica-
tion based implementations, both ORCAS implementations significantly
save on the storage space. The implementations are optimistic in the sense
that the used storage is lower in synchronous periods, which are considered
common in practice, as compared to asynchronous periods. Indirectly, we
show that tolerating asynchronous periods does not increase storage over-
head during synchronous periods.

1 Introduction

1.1 Motivation

Preventing data loss in storage devices is one of the most critical requirements in
any storage system. Enterprise storage systems in particular have multiple levels
of redundancy built in for fault tolerance. The cost of a specialized centralized
storage server is very high and yet it does not offer protection against unforseen
consequences such as fires and floods. Distributed storage systems based on com-
modity hardware, as alternatives to their centralized counterparts, have gained
in popularity since they are cheaper, can be more reliable and offer better scal-
ability. However, implementing such systems is more complicated due to their
very distributed nature.

Most existing distributed storage systems rely on data replication to provide
fault tolerance [15]. Recently however, it has been argued that erasure coding
is a better alternative to data replication since it reduces the cost of ensuring
fault tolerance [7, 8]. In erasure-coded storage systems, instead of keeping an
identical version of a data V on each server, V is encoded into n fragments such
that V can be reconstructed from any set of at least k fragments (called k-of-n
encoding), where the size of each fragment is roughly |V |/k. A different encoded

� Part of this work was done when Partha Dutta and Ron R. Levy were at Bell Labs
Research, India.

G. Taubenfeld (Ed.): DISC 2008, LNCS 5218, pp. 182–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimistic Erasure-Coded Distributed Storage 183

fragment is stored on each of the n servers, and ideally such a system can tolerate
the failure of f = n − k servers.

The main advantage of erasure-coded storage over replicated storage is its
storage usage, i.e., less storage space is used to provide fault tolerance. For in-
stance, it is well-known that a replicated storage system with 4 servers can
tolerate at most 1 failure in an asynchronous environment. If each server has a
storage capacity of 1 TB, the total capacity of the replicated storage system is
still 1 TB. In this case the storage overhead (total capacity/useable capacity)
is 4, i.e. only 1/4 of the total capacity is available. Erasure coding allows the
reduction of this overhead to 2 in an asynchronous system, i.e., makes 2 TB
useable. In a synchronous system (with 4 servers and at most 1 failure), it is
even possible to further reduce this overhead and make 3 TB available to the
user. Clearly, the synchronous erasure-coded storage is more desirable in terms
of storage usage. Unfortunately, synchrony assumptions are often not realistic
in practice. Even if we expect the system to be synchronous most of the time, it
is good practice to tolerate asynchronous periods. The idea underlying our con-
tribution is the common practice of designing distributed systems that can cope
with worst case conditions (e.g., asynchrony and failures) but are optimized for
best case situations (e.g., synchrony and no failures) that are considered common
in practice.

1.2 Contributions

In this paper we investigate one of the fundamental building blocks of a fault-
tolerant distributed storage − multi-writer multi-reader atomic register imple-
mentations [3, 13, 15]. An atomic register is a distributed data-structure that
can be concurrently accessed by multiple processes and yet provide an “illusion”
of a sequential register. (A sequential register is a data-structure that is accessed
by a single process with read and write operations, where a read always returns
the last value written.) We consider implementations over a set of n server pro-
cesses in an asynchronous crash-recovery message-passing system where (1) each
process may crash and recover but has access to a stable storage, (2) in a run,
at most f out of n servers are faulty (i.e., eventually crash and never recover),
and (3) channels are fair-lossy.

We present two wait-free atomic register implementations ORCAS-A and
ORCAS-B (Optimistic eRasure-Coded Atomic Storage). Our implementations
are the first wait-free atomic register implementations in a crash-recovery model
that have an “optimistic” (stable) storage usage. Suppose that all possible write
values are of a fixed size Δ.1 Then in both of our implementations, during syn-
chronous periods with q alive (non-crashed) servers and when there is no write
operation in progress, the stable storage used at every alive server is Δ

q−f , whereas
during asynchronous periods when there is no write operation in progress, the
storage used is Δ

n−2f at all but f servers (in ORCAS-A, at most f servers may use

1 Through out the paper we assume that, other than the write value and its encoded
fragments, all other values (e.g., timestamp) at a server are of negligible size.

184 P. Dutta, R. Guerraoui, and R.R. Levy

Δ). However, the two implementations differ in their storage usage when there
is a write in progress. In ORCAS-A, when one or more writes are in progress,
the storage used at a server can be Δ, but even in the worst-case the storage
used is never higher than Δ. In contrast, if there are w concurrent writes in
progress in ORCAS-B then, in the worst-case, the storage used at a server can
be wΔ

n−2f . Thus in terms of storage space used, ORCAS-A is more efficient in sys-
tems where we expect large number of concurrent writes, whereas, ORCAS-B
is more suitable if not many writes are invoked concurrently. We also show how
the number of messages exchanged in ORCAS-A can be significantly reduced by
weakening the termination condition of the read from wait-free to Finite Write
(FW) termination [1].2

Both ORCAS implementations are based on a simple but effective idea. The
write first “gauges” the number of alive servers in the system by sending a
message to all servers and counting the number of replies received during a
short waiting period. Depending on the number of replies, the write decides how
to erasure code its value. Additionally, to limit the communication overhead, the
ORCAS implementations ensure that the write value or the encoded fragments
are sent to the servers in only one of the phases of a write; later, the servers can
locally compute the final encoded fragments on receiving a small message that
specifies how the value needs to be encoded (but the message does not contain
the final encoded fragments).

In particular, in ORCAS-A, the write sends the unencoded write value to all
servers and waits for replies. If it receives replies from q servers, the write sends
a message to the servers that requests them to locally encode the received value
with (q − f)-of-n encoding. (Note that q ≥ n− f because at most f servers can
be faulty.) Roughly speaking, a subsequent read can contact at least q−f of the
servers that reply to the write, and (1) either the read receives an unencoded
value from one of those servers, or (2) it receives q − f encoded fragments. In
both cases, as the write does a (q − f)-of-n encoding, the read can reconstruct
the written value. Note that, as q − f ≥ n − 2f , in the worst-case ORCAS-A
does a (n − 2f)-of-n encoding, and in synchronous periods with q alive servers,
it does a (q − f)-of-n encoding.

On the other hand, ORCAS-B, like previous erasure-coded atomic register
implementations, never sends an unencoded write value to the servers. Ideally,
to obtain the same storage usage as ORCAS-A, in a write of ORCAS-B we would
like to send an (n − 2f)-of-n encoded fragment to each server, and on receiving
replies from q servers, request the servers to keep a (q−f)-of-n encoded fragment.
However, in general, it is not possible to extract a particular fragment of a (q−f)-
of-n encoding from a single fragment of a (n−2f)-of-n encoding. Thus with this
naive approach, either a write would need to send another set of fragments to
the servers or the servers would need to exchange their fragments, resulting
in significant increase in communication overhead. We solve this problem in
ORCAS-B by a novel approach of storing multiple, much smaller fragments at

2 A similar idea was earlier used in [10] where the read satisfied obstruction-free ter-
mination.

Optimistic Erasure-Coded Distributed Storage 185

each server (instead of a single large one). Suppose the write estimates that there
are q alive servers. Then it encodes the value with x-of-nz encoding, where x is
any common multiple of n−2f and q− f , and z = x

n−2f , and sends z fragments
to each server. If the write receives replies from q servers, then it requests each
server to trim its stored fragments in the next phase, i.e., retain any y = x

q−f out
of its z fragments and delete the rest. Roughly speaking, since a read can miss
at most f servers that replied to the write, if a subsequent read sees a trimmed
server then it will eventually receive y fragments from at least q − f servers,
and if the read does not see a trimmed server, then it will receive z fragments
from at least n− 2f servers. In both cases, it receives y(q − f) = z(n− 2f) = x
fragments, and therefore, can reconstruct the written value. The advantage of
our approach over the naive approach is that, our approach has the same storage
usage as latter, but has lower communication overhead.

The detailed presentation of our algorithms can be found in [6]. Due to space
limitations, this paper focusses on ORCAS-A. Also in [6], we show lower bounds
on storage space usage in atomic register implementation in synchronous and
asynchronous systems, for a specific class of implementations (that include both
ORCAS-A and ORCAS-B, and the implementation in [7]). Roughly speaking,
we show that implementations − (1) which at the end of a write store equal
number of encoded fragments in the stable storage of the servers, and (2) do not
use different encoding schemes in the same operation − cannot have a stable
storage usage better than ORCAS-A (and ORCAS-B) in either synchronous or
asynchronous periods.

1.3 Related Work

Recently there has been lot of work on erasure-coded distributed storage [2, 5,
7, 8, 10, 11]. We discuss below three representative papers that are close to our
work.

Frolund et al. [7] describe an erasure-coded distributed storage (called FAB)
in the same system model as this paper, i.e., an asynchronous crash-recovery
model. The primary algorithm in FAB implements an atomic register. Servers
have stable-storage and keep a log containing old versions of the data, which
is periodically garbage collected. The main difference with our approach is that
in FAB the stable storage is not used optimistically. In particular, ORCAS-B
has the same storage overhead as FAB during asynchronous periods (even when
writes are in progress) but performs better during synchronous periods. Another
difference is that FAB provides strict linearizability, which ensures that partial
write operations appear to take effect before the crash or not at all. The price
that is paid by FAB is to give up wait-freedom: concurrent operations may abort.
ORCAS-B ensures that write operations are at worst completed upon recovery of
the writer and guarantees wait-freedom: all operations invoked by correct clients
eventually terminate despite the concurrent invocations of other clients.

Aguilera et al. [2] present an erasure-coded storage (that we call AJX) for
synchronous systems that is optimized for f << n. AJX provides the same
low storage overhead as ORCAS during failure-free synchronous periods, and

186 P. Dutta, R. Guerraoui, and R.R. Levy

performs better than ORCAS when there are failures. However, AJX provides
consistency guarantees of only a regular register and puts a limit on the maxi-
mum number of client failures. Also, wait-freedom is not ensured since concurrent
writes may abort.

Cachin et al. [5] propose a wait-free atomic register implementation for the
byzantine model. It uses a reliable broadcast like primitive to disseminate the data
fragments to all servers, thus guaranteeing that if one server receives a fragment,
then all do. The storage required at the servers when there is no write in progress
is Δ

n−f . At first glance, one might be tempted to compare our implementations
with a crash-failure restriction of the algorithm in [5], and conclude that our im-
plementations have worse storage requirements in asynchronous periods (Δ

n−2f).
However, one of the implications of our lower bounds in [6] is that there is no obvi-
ous translation of the algorithm in [5] to a crash-recoverymodel while maintaining
the same storage usage. (We discuss this comparison further in [6].)

2 Model and Definitions

Processes. We consider an asynchronous message passing model, without any
assumptions on communication delay or relative process speeds. For presenta-
tion simplicity, we assume the existence of a global clock. This clock however is
inaccessible to the servers and clients.

The set of servers is denoted by S and |S| = n. The jth server is denoted
by sj , 1 ≤ j ≤ n. The set of clients is denoted by C and it is bounded in size.
Clients know all servers in S, but the set of clients is unknown to the servers. A
client or a server is also called a process.

Every process executes a deterministic algorithm assigned to it, unless it
crashes. (The process does not behave maliciously.) If it crashes, the process
simply stops its execution, unless it possibly recovers, in which case the process
executes a recovery procedure which is part of the algorithm assigned to it. (Note
that in this case we assume that the process is aware that it had crashed and
recovered.) A process is faulty if there is a time after which the process crashes
and never recovers. A non-faulty process is also called a correct process. The set
of faulty processes in a run is not known in advance. In particular, any number
of clients can fail in a run. However, there is an known upper bound f ≥ 1 on the
number of faulty servers in a run. We also assume f < n/2 which is necessary
to implement a register in asynchronous model.

Every process has a volatile storage and a stable storage (e.g., hard disk). If
a process crashes and recovers, the content of its volatile storage is lost but the
content of its stable storage is unaffected. Whenever a process updates one of
its variables, it does so in its volatile storage by default. If the process decides
to store information in its stable storage, it uses a specific operation store: we
also say that the process logs the information. The process retrieves the logged
information using the operation retrieve.

Fair-lossy channels. We assume that any pair of processes, say pi and pj ,
communicate using fair-lossy channels [4, 14], which satisfies the following three

Optimistic Erasure-Coded Distributed Storage 187

properties: (1) If pj receives a message m from pi at time t then pi sent m to
pj at time t, (2) if pi sends a message m to pj a finite number of times, then pj

receives the message a finite number of times, and (3) if pi sends a message m
to pj an infinite number of times and pj is correct, then pj receives m from pi

an infinite number of times.
On top of the fair-lossy channels we can implement more useful stubborn

communication procedures (s-send and s-receive) which are used to send and
receive messages reliably [4]. In addition to the first two properties of fair-lossy
channels, stubborn procedures satisfy the following third property: If pi s-sends
a message m to a correct process pj at some time t, and pi does not crash after
time t, then pj eventually s-receives m. We would like to note that stubborn
primitives can be implemented without using stable storage [4].

Registers. A sequential register is a data structure accessed by a single process
that provides two operations: write(v), which stores v in the register and returns
ok, and read(), which returns the last value stored in the register. (We assume
that the initial value of the register is ⊥, which is not a valid input value for a
write operation.) An atomic register is a distributed data-structure that can be
concurrently accessed by multiple processes and yet provide an “illusion” of a
sequential register to the accessing processes [13, 14]. An algorithm implements
an atomic register if all runs of the algorithm satisfy the atomicity and termina-
tion properties. We follow the definition of atomicity for a crash-recovery model
given in [9], which in turn extends the definition given in [12]. We recall the
definition in [6].

We use the following two termination conditions in this paper. (1) An imple-
mentation satisfies wait-free termination (for clients) if for every run where at
most f of the servers are faulty (and any number of clients are faulty), every
operation invoked by a correct client completes. (2) An implementation satis-
fies Finite-Write (FW) termination [1] if for every run where at most f of the
servers are faulty (and any number of clients are faulty), every write invocation
by a correct client is complete, and moreover, either every read invocation by a
correct client is complete, or infinitely many writes are invoked in the run. (Note
that wait-free termination implies FW-termination.)

Erasure coding. A k-of-n erasure coding [17] is defined by the following two
primitives:

- encode(V, k, n) which returns a vector [V [1], . . . , V [n]], where V [i] denotes
ith encoded fragment. (For presentation simplicity, we will assume that encode
returns a set of n encoded fragments of V , where each fragment is tagged by its
fragment number.)

- decode(X, k, n) which given a set X of at least k fragments of V (that were
generated by encode(V, k, n)), returns V .

For our algorithms, we make no assumption on the specific implementation
of the primitives except the following one: each fragment in a k-of-n encoding of
V is roughly of size |V |/k.

188 P. Dutta, R. Guerraoui, and R.R. Levy

In the next two sections, we present two algorithms that implement erasure-
coded, multi-writer multi-reader, atomic registers in a crash-recovery model,
ORCAS-A and ORCAS-B. Both implementations have low storage overhead
when no write operation is in progress. The implementations differ in the storage
overhead during a write, and in their message sizes.

3 ORCAS-A

We now present our first implementation which we call ORCAS-A. (The pseu-
docode is given in Figures 1 and 2.) The implementation is inspired by the well-
known atomic register implementations in [3, 15]. Also, the registration process
of a read at the servers is inspired by the listeners communication pattern in [16].
The first two phases of the write function are similar to that in [3, 15]− they
store the unencoded values at n − f (a majority) of servers with an appropri-
ate timestamp. Additionally in ORCAS-A, depending on the number of servers
from which the write receives a reply, it selects an encoding r-of-n. Then, the
write performs another round trip where it requests the servers to encode the
value using r-of-n encoding and retain the fragment corresponding to its server
id. The crucial parts of the implementation are choosing an encoding r-of-n
and the condition for waiting for fragments at a read, such that, any read can
recover the written value without blocking permanently. We now describe the
implementation in more detail.

3.1 Description

Local variables. The clients maintain the following local variables: (1) ts: part
of the timestamp of the current write operation, and (2) wid, rid: the identifiers
of write and read operations, respectively, which are used to distinguish between
messages from different operations of the same client, and (3) a timer Tc whose
timeout duration is set to the round-trip time for contacting the servers in syn-
chronous periods. The pair [ts, wid] form the timestamp for the current write.
The local variables at a server sj are as follows: (1) Aj : its share of the value
stored in the register, which can either be the unencoded value or the jth en-
coded fragment, (2) τ, δ: the ts and the wid, respectively, associated with the
value in Aj , and (3) ρ: the encoding associated with the value in Aj , namely,
Aj is the jth fragment of a ρ-of-n encoding of some value. (In particular, ρ = 1
implies that Aj contains an unencoded value.)

Write operation. The write operation consists of three phases, where each
phase is a round-trip of communication from the client to the servers. The first
phase is used to compute the timestamp for the servers, the second phase to
write the unencoded value at the servers, and the final phase is used to encode
the value at the servers. On invoking a write(V), the client first increments
and logs its wid. This helps in distinguishing messages from different operations
of the same server even across a crash-recovery. It also logs ts = 0 so as to
detect an incomplete write across a crash-recovery. Next, the client sends get ts

Optimistic Erasure-Coded Distributed Storage 189

1: function initialization:
2: ts, wid, rid ← 0; r ← 1; Tc ← timer() {at every client}
3: Aj ← ⊥; τ, δ ← 0; ρ ← 1 {at every server sj}

4: function write (V) at client ci

5: wid ← wid + 1; ts ← 0
6: store(wid, ts)
7: repeat
8: send(〈get ts, wid〉, S)
9: until s-receive 〈ts ack, ∗, wid〉 from n − f servers
10: ts ← 1+ max{tsj : s-received 〈ts ack, tsj , wid〉}
11: store(ts, V)
12: trigger(Tc)
13: repeat
14: send(〈write, ts, wid, 0, V 〉, S)
15: until s-receive 〈w ack, ts, wid, 0〉 from n − f servers and expired(Tc)
16: r ← (number of servers from which s-received 〈w ack, ts, wid, 0〉 messages) −f
17: if r > 1 then
18: repeat
19: S′ ← set of servers from which s-received 〈w ack, ts, wid, 0〉 until now
20: send (〈encode, ts, wid, r〉, S′)
21: until s-receive 〈enc ack, ts, wid, r〉 from n − f servers
22: return(ok)

23: upon receive 〈get ts, wid〉 from client ci at server sj do
24: s-send(〈ts ack, τ, wid〉, {ci})

25: upon receive 〈write, ts′, wid′, rid′, V ′〉 from client ci at server sj do
26: if rid′ > 0 then
27: R ← R \ {[rid′, ∗, ∗, i]}
28: if V ′ �= ⊥ then
29: if [ts′, wid′] >lex [τ, δ] then
30: τ ← ts′; δ ← wid′; ρ ← 1; Aj ← V ′

31: store(τ, δ, ρ, Aj)
32: for all [rid, ts, id, l] ∈ R do
33: s-send(〈r ack, rid, ts′, wid′, 1, V ′〉, {cl})
34: s-send(〈w ack, ts′, wid′, rid′〉, {ci})

35: upon receive 〈encode, ts′, wid′, r′〉 from client ci at server sj do
36: if [ts′, id′] = [τ, δ] then

37: Aj ← jth fragment of encode(Aj , r′, n)
38: ρ ← r′

39: store(ρ, Aj)
40: s-send(〈enc ack, ts′, wid′, r′〉, {ci})

41: upon recovery() at server sj do
42: [τ, δ, ρ, Aj] ← retrieve()

43: upon recovery() at client ci do
44: [rid, ts, wid, r, V] ← retrieve()
45: if ts �= 0 then
46: repeat
47: send(〈write, ts, wid, 0, V 〉, S)
48: until s-receive 〈w ack, ts, wid, 0〉 from n − f servers

Fig. 1. ORCAS-A: initialization, write and recovery procedures

messages to all servers and waits until it receives ts from at least n − f servers.
(The notation send(m, X) is a shorthand for the following: for every processes
p ∈ X , send the message m to p. It is not an atomic operation.) To overcome
the effect of the fair-lossy channels, a client encloses the sending of its messages
to the servers in a repeat-until loop, and the servers reply back using the s-send
primitive. On receiving the ts from at least n − f servers, the client increments

190 P. Dutta, R. Guerraoui, and R.R. Levy

1: function read() at client ci

2: rid ← rid + 1; Γ ← 0; M ← ∅; once ← false
3: store(rid)
4: repeat
5: send(〈read, rid〉, S)
6: M ← {msg = 〈r ack, rid, ∗, ∗, ∗, ∗〉 : s-received msg}
7: TS ←maxlex{[ts, id] : 〈r ack, rid, ts, id, ∗, ∗〉 ∈ M}
8: if (M contains messages from at least n − f servers) and (once = false) then
9: Γ ← TS; once ← true
10: if TS = [0, 0] then return(⊥)
11: until (once = true) and (∃ r′, ts′, id′ such that ([ts′, id′] ≥lex Γ) and

(|{Aj : 〈r ack, rid, ts′, id′, r′, Aj〉 ∈ M}| ≥ r′))
12: A ← set of Aj satisfying the condition in line 11
13: if r′ = 1 then
14: V ← any Aj in A; V ′ ← V
15: else
16: V ← decode(A, r′, n); V ′ ← ⊥
17: repeat
18: send(〈write, ts′, id′, rid, V ′〉, S)
19: until s-receive 〈w ack, ts′, id′, rid〉 from n − f servers
20: return(V)

21: upon receive 〈read, rid〉 from client ci at server sj do
22: if R does not contain any [rid, ∗, ∗, i] then
23: R ← R ∪ [rid, τ, δ, i]
24: s-send(〈r ack, rid, τ, δ, ρ, Aj〉, {ci})

Fig. 2. ORCAS-A: read procedure

by one the maximum ts received, to obtain the ts for this write. It then logs ts
and V so that in case of a crash during the write, the client can complete the
write upon recovery. Next, it starts its timer, and sends a write message with the
timestamp [ts, wid] and the value V , to the servers. (To distinguish this message
from the write message sent by a read operation, the message also contains a
rid field which is set to 0.) A server on receiving a write message with a higher
timestamp than its current timestamp [τ, wid], updates Aj , τ and δ to V , ts and
wid of the message, respectively. It also updates the encoding ρ to 1 (to denote
that the contents of Aj is unencoded), and logs the updated variables. (The
server also sends some message to the readers which we will discuss later.) The
client waits until it receives w ack messages from at least n− f servers, and the
timer expires. (Waiting for the timer to expire ensures that the client receives a
reply from all non-crashed processes in synchronous periods.)

Next, the client select the encoding for the write to be r = q− f , where q is the
number of w ack messages received by the client. Note r ≥ 1 because q ≥ n − f
and f < n/2. Then the client sends an encode message to all servers which have
replied to the write message. A server sj on receiving this message encodes it value
Aj using r-of-n encoding, and retains only the jth fragment in Aj . It also updates
its encoding ρ to r, logs Aj and ρ, and replies to the client. The client returns from
the write on receiving n−f replies. (Note that the encode phase is skipped if r = 1,
because 1-of-n encoding is same as not encoding the value at all.)

Read operation. The read operation consists of two phases. The first phase
gathers enough fragments to reconstruct a written value, and the second phase

Optimistic Erasure-Coded Distributed Storage 191

writes back the value at the servers to ensure that any subsequent reader does
not read an older value.

On invoking a read, the client increments and logs its rid. It then sends a
read message to the servers. On receiving a read message, a server registers
the read3 by appending it to a local list R with the following parameters: the
rid of the read message, and the timestamp [τ, δ] at the server when the read
message was received. (The client de-registers in the second phase of the read:
line 27, Figure 1.) The server then replies with its current value of Aj and its
associated timestamp and encoding. In addition, whenever the server receives
a new write message with a higher timestamp, it forwards it to its registered
readers. The client on the other hand, first chooses a timestamp Γ which is
greater than or equal to the timestamp seen at n − f processes,4 and then
waits for enough fragments to reconstruct a written value that has an associated
timestamp greater than or equal to Γ : the condition in line 11 of Figure 2 simply
requires that (1) the client receives r ack from at least n−f servers, and (2) there
is an encoding r′ and timestamp [ts′, id′] such that the client has received at least
r′ fragments of the associated value, and [ts′, id′] is greater than or equal to Γ .
In [6], we show that this condition is eventually satisfied for every read whose
invoking client does not crash.

The second phase of a read is very similar to the second phase of a write
except for the following case. If the read selects a value in the first phase that
was encoded by the corresponding write (r′ > 1), then the read does not need to
write back the value to the servers because the write has already completed its
second phase. In this case, the second phase of the read is only used to deregister
the read at the servers.

Recovery Procedures. The recovery procedure at a server is straightforward:
it retrieves all the logged values. The client, in addition to retrieving the logged
values, also completes any incomplete write. (Note than, even if the last write
invocation, before the crash at a client, is complete, ts can be greater than 0. In
this case, the recovery procedure tries to rewrite the same value with the same
timestamp. It is easy to see that this attempt to rewrite the value is harmless.)

3.2 Correctness

The proof of the atomicity of ORCAS-A is similar to the implementations in [3,
15]. The only non-trivial argument in the proof of wait-free termination is proving
that the waiting condition in line 11 in Figure 2 eventually becomes true in every
run where the client does not crash after invoking the read. In this section, we
give an intuition for this proof by considering a simple case where a (possibly
incomplete) write is followed by a read, and there are no other operations.

Suppose there is a write(V) that is followed by a read(). We claim that the
read() can always reconstruct V or the initial value of the register, and it can

3 When there is no ambiguity, we also say that the server registers the client.
4 The Γ selected in this way is higher than or equal to the timestamp of all preceding

writes because two server sets of size n − f always has a non-empty intersection.

192 P. Dutta, R. Guerraoui, and R.R. Levy

always reconstruct V if the write is complete. The write() operation has two
phases that modify the state of the servers: the write phase and the encode
phase. Suppose that during the write phase, the writer receives replies from q
servers (denoted by set Q) such that q ≥ n − f > f . If the writer fails without
completing this phase, the read() can return the initial value of the register,
which does not violate atomicity. In the encode phase, an r-of-n encode message
is sent to all servers, where r = q − f ≥ n − 2f > 0. If the writer crashes, this
message reaches an arbitrary subset of servers. Subsequently, the read() contacts
a set R containing at least n− f servers. We denote the intersection of the read
and write sets, by U , i.e. U = Q ∩ R, and it follows that |U | ≥ q − f = r > 0.
There are two cases:

Case 1: There is at least one server in U which still has the unencoded value
V . The read can thus directly obtain V from this server.

Case 2: All the servers in U have received the encode message and encoded V .
Since |U | ≥ r and an r-of-n erasure code was used, there are enough fragments
for the read to reconstruct V .

However, we must also consider the case where the read() is concurrent with
multiple writes. If there is a series of consecutive writes, the write procedure
ensures that all values are eventually encoded. If the read is slow, it could receive
an encoded fragment of a different write from each server, making it impossible
for the read to reconstruct any value. But the reader registration ensures that
the servers will send all new fragments to the reader until the reader is able to
reconstruct some written value. A detailed proof of wait-freedom is given in [6].

3.3 Algorithm Complexity

In this section we discuss the theoretical performance of ORCAS-A.

Timing guarantees. For timing guarantees we consider periods of a run where
links are timely, local computation time is negligible, at least n − f servers are
alive, and no process crashes or recovers. It is easy to show that a write opera-
tion completes in three round-trips (i.e., six communication steps), as compared
to two round-trips in the implementation of [15]. (We discuss this comparison
further in Section 5.) Also it is straightforward to show that a read can complete
in two round-trips if there is no write in progress. In [6], we show that even
in the presence of concurrent writes, the read registration ensures that a read
operation terminates within five communication steps.

Messages. Except the r ack messages, the number of messages used by an
operation is linear in the number of servers. In [6], we show how to circumvent
the reader registration by slightly weakening the termination condition of the
read. Message sizes in ORCAS-A are as large as those in the replication based
register implementations of [3, 15]: the first phase of the write in ORCAS-A
sends the unencoded value to all servers.

Worst-case bound on storage. Suppose that all possible write values are of
a fixed size Δ, and the size of variables, other than those containing a value of a

Optimistic Erasure-Coded Distributed Storage 193

write operation or an encoded fragment of such a value, is negligible. Consider
a partial run pr that has no incomplete write invocation. (An invocation that
has no matching return event in the partial run is called incomplete.) The r
computed in line 16 of Figure 1 of every write is at least n − 2f . Thus, every
encoded fragment is at most of size Δ/(n − 2f). Since, there are no incomplete
write invocation in pr, and every write encodes the value at n−f processes before
it returns, the size of (stable) storage at n − f servers is at most Δ/(n − 2f)
at the end of pr. In addition, note that the size of the storage at all servers
is always bounded by Δ. This is in contrast to the implementation in [7] and
ORCAS-B implementation that we describe later, where the worst-case storage
size is dependent on the maximum number of concurrent writes.

Bound on storage in synchronous periods. Consider a partial run pr which
has no incomplete write invocation. Let wr be the write with the highest times-
tamp in pr. Let t be the time when wr was invoked. Now, assume that (1) the
links were timely in pr from time t onwards, and (2) at least n − f servers are
alive at time t, and no process crashes or recovers from time t onwards. Let
q ≥ n − f be the set of servers that are alive at time t. Then, it is easy to see
that the r computed in line 16 of Figure 1 is q − f in wr, and hence, the size of
storage at all alive servers is at most Δ/(q − f) at the end of pr. It also follows
that, if pr is a synchronous failure-free partial run, then the size of storage at all
servers is at most Δ/(n − f) at the end of pr.

FW-termination. Consider the case in the above implementation when a client
invokes a read, registers at all the servers, and then crashes. If a server does not
crash, its s-send module will send the r ack message to the client forever. Since,
these messages are of large sizes, it may significantly increase the load on the
system. Following [1], we show in [6] that if we slightly weaken the waif-free
termination condition of the read to Finite-Write (FW) termination, then such
messages are not required.

4 ORCAS-B

Although the ORCAS-A implementation saves storage space in synchronous pe-
riods, it has two important drawbacks because it sends the unencoded values to
the servers in the first phase of the write. First, it uses larger messages compared
to implementations which never send any unencoded values to the servers. Sec-
ond, if a client crashes before sending an encode message during a write, servers
are left with an unencoded value in the stable storage.5 In this section, we present
our second implementation, ORCAS-B, which like most erasure-coded register
implementations, never sends an unencoded value to the servers.

Due to lack of space, we discuss only those parts of ORCAS-B that signifi-
cantly differ from ORCAS-A. (The pseudocode is presented in [6].) The crucial

5 In practice, the second case might not cause a significant overhead because any
subsequent complete write will erase such unencoded values.

194 P. Dutta, R. Guerraoui, and R.R. Levy

difference between ORCAS-A and ORCAS-B is how the write value is encoded
during a write and how it is reconstructed during a read. In ORCAS-B, the write
consists of three phases. The first phase finds a suitable timestamp for the write,
and tries to guess the number of alive servers, say r′. The write then encodes
the value such that the following three conditions holds. (1) If the second phase
of the write succeeds in contacting only n − f servers (a worst-case scenario),
a subsequent read can reconstruct the value. (2) If the second phase succeeds
in contacting r′ servers (the optimistic case), then in the third phase, the write
can “trim” (i.e., reduce the size of) the stored encoded value at the servers, and
still a subsequent read can reconstruct the value. (3) The size of the stored en-
coded value at a server should be equal to the size of a fragment in (n−2f)-of-n
encoding in the first case, and (r′ − f)-of-n encoding in the second case. The
motivation behind these three conditions is to have the same optimistic storage
requirements as in ORCAS-A.

It is not difficult to see that if the write uses a (n − 2f)-of-n encoding, then
a server cannot locally extract its trimmed fragment in the third phase from
the encoded fragment it receives in the second phase, without making extra
assumptions about n or the erasure coding algorithm. Thus with (n − 2f)-of-
n encoding in the second phase, in the third phase of the write, either the
write needs to send the trimmed fragment to each server, or the servers need
to exchange their (second-phase) fragments. In ORCAS-B we avoid this issue
by simply storing multiple fragments at a server, while still satisfying the three
conditions above.

We define the following variables: (1) r = r′ − f , (2) x be the lcm (least
common multiple) or r and n−2f , (3) z = x/(n−2f), and (4) y = x/r. Now the
second phase of the write encodes the value using x-of-(nz) encoding. It then tries
to store z fragments at each server. If the write succeed in storing the fragments
at r′ servers, then in the next phase, it sends a trim message that requests the
servers to retain y out of its z fragments (and delete the remaining fragments).
Now it is easy to verify the above three conditions. If the second phase of the
write stores the fragments at n − f servers, a subsequent read can access at
least n− 2f of those servers, and thus receive at least (n− 2f)z = x fragments.
On the other hand, if the stored fragments at some server are trimmed, then
at least r′ servers have at least y fragments, and therefore a subsequent read
receives y fragments from at least r′ − f = r servers; i.e., ry = x fragments in
total. In both cases, since the write has used x-of-(nz) encoding, the read can
reconstruct the value. To see that the third condition is satisfied, notice that the
total size of z stored fragments at a server after the second phase of the write is
z(Δ/x) = Δ/(n− 2f). After trimming, the size of the stored fragments become
y(Δ/x) = Δ/(r′ − f).

Another significant difference between ORCAS-A and ORCAS-B is the con-
dition for deleting an old value at a server. In ORCAS-A, whenever a server
receives an unencoded value with a higher timestamp, the old fragment or the
old unencoded value is overwritten. However in ORCAS-B, if the server receives
fragments with a timestamp ts that is higher than its current timestamp, the

Optimistic Erasure-Coded Distributed Storage 195

server adds the fragments to a set L of received fragments. Subsequently, if it
receives a trim message (i.e., a message from the third phase of a write) with
timestamp ts, it deletes all fragments in L with a lower timestamp. Also, the
server sends the whole set L in its r ack reply messages to a read. (Thus the trim
message also acts as a garbage collection message.) This modification is neces-
sary in ORCAS-B because, until a sufficient number of encoded fragments are
stored at the servers, the newly written value is not recoverable from the stored
data obtained from any set of servers. The trim message acts as a confirmation
that enough fragments of the new value have been stored. A similar garbage
collection mechanism is also present in the implementation in [7]. On the other
hand, since a server in ORCAS-A receives an unencoded value first, it can di-
rectly overwrite values with lower timestamps. An important consequence of this
modification is that the worst-case storage size of ORCAS-B (and the implemen-
tation in [7]) is proportional to the number of concurrent writes, whereas, the
storage requirement in ORCAS-A is never worse than that in replication (i.e.,
storing the unencoded value at all servers). We show the wait-free termination
property of ORCAS-B in [6].

5 Discussion and Future Work

There are two related disadvantages of ORCAS-A when compared to most repli-
cation based implementations. The write needs three phases to complete as
compared to two phases in the latter. Also, the write needs four stable storage
accesses (in its critical path) as compared to two such accesses in replication
based implementations. Both disadvantages primarily result from the last phase
that is used for encoding the value at the servers, and which can be removed if
we slightly relax the requirement on the storage space. ORCAS-A ensures that
the stable storage is encoded whenever there is no write in progress. Instead, if
we require that the stable storage is eventually encoded whenever there is no
write in progress, then (with some minor modifications in ORCAS-A) the write
operation can return without waiting for the last phase. The last phase can then
be executed “lazily” by the client. (The two disadvantages and the above dis-
cussion hold for ORCAS-B as well.) On a similar note, in ORCAS-A, if a read
selects a value in the first phase that is already encoded at some server, then it
can return after the first phase, and lazily complete the second phase (which in
this case is used only for deregistering at the servers, and not for writing back
the value). It follows that, a read that has no concurrent write in ORCAS-A can
return after the first phase.

An important open problem is to study storage lower bounds on register im-
plementations in a crash-recovery model. In particular, it would be interesting
to study if our lower bounds (that are presented in [6]) hold when some of the
underlying assumptions are removed. Another interesting direction for investi-
gation can be implementations that tolerate both process crash-recovery with
fair-lossy channels and malicious processes.

196 P. Dutta, R. Guerraoui, and R.R. Levy

References

1. Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal
resilience with byzantine shared memory. Distributed Computing 18(5), 387–408
(2006)

2. Aguilera, M.K., Janakiraman, R., Xu, L.: Using erasure codes efficiently for stor-
age in a distributed system. In: Proceedings of the International Conference on
Dependable Systems and Networks (DSN), pp. 336–345 (2005)

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in a message passing
system. Journal of the ACM 42(1), 124–142 (1995)

4. Boichat, R., Guerraoui, R.: Reliable and total order broadcast in the crash-recovery
model. Journal of Parallel and Distributed Computing 65(4), 397–413 (2005)

5. Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded byzantine distributed
storage. In: Proceedings of the International Conference on Dependable Systems
and Networks (DSN), pp. 115–124 (2006)

6. Dutta, P., Guerraoui, R., Levy, R.R.: Optimistic erasure-coded distributed storage.
Technical report, EPFL-IC-LPD, Lausanne, Switzerland (2008)

7. Frolund, S., Merchant, A., Saito, Y., Spence, S., Veitch, A.: A decentralized algo-
rithm for erasure-coded virtual disks. In: Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN), pp. 125–134 (2004)

8. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient byzantine-
tolerant erasure-coded storage. In: Proceedings of the International Conference
on Dependable Systems and Networks (DSN) (2004)

9. Guerraoui, R., Levy, R.R., Pochon, B., Pugh, J.: The collective memory of amnesic
processes. ACM Transactions on Algorithms 4(1) (2008)

10. Hendricks, J., Ganger, G.R., Reiter, M.K.: Low-overhead byzantine fault-tolerant
storage. In: Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples (SOSP), pp. 73–86 (2007)

11. Hendricks, J., Ganger, G.R., Reiter, M.K.: Verifying distributed erasure-coded
data. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), pp. 139–146 (2007)

12. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

13. Lamport, L.: On interprocess communication - part i: Basic formalism, part ii:
Algorithms. DEC SRC Report, 8 (1985); Also in Distributed Computing, 1, pp.
77-101 (1986)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo
(1996)

15. Lynch, N.A., Shvartsman, A.A.: Robust emulation of shared memory using dy-
namic quorum-acknowledged broadcasts. In: Proceedings of the International Sym-
posium on Fault-Tolerant Computing Systems (FTCS) (1997)

16. Martin, J.-P., Alvisi, L., Dahlin, M.: Minimal byzantine storage. In: Proceedings
of the International Symposium on Distributed Computing (DISC), pp. 311–325
(2002)

17. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. SIAM Journal
of Applied Mathematics 8, 300–304 (1960)

	Optimistic Erasure-Coded Distributed Storage
	Introduction
	Motivation
	Contributions
	Related Work

	Model and Definitions
	ORCAS-A
	Description
	Correctness
	Algorithm Complexity

	ORCAS-B
	Discussion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

